The Definitive Guide to PyQt Programming

Rapid GUI Programming
with Python and Qt

Prentice Hall
Open Source Software Development Series

Arnold Robbins, Series Editor

“Real world code from real world applications”

Open Source technology has revolutionized the computing world. Many large-scale projects are in

production use worldwide, such as Apache, MySQL, and Postgres, with programmers writing applications
in a variety of languages including Perl, Python, and PHP. These technologies are in use on many different
systems, ranging from proprietary systems, to Linux systems, to traditional UNIX systems, to mainframes.

The Prentice Hall Open Source Software Development Series is designed to bring you the best of these
Open Source technologies. Not only will you learn how to use them for your projects, but you will learn
from them. By seeing real code from real applications, you will learn the best practices of Open Source
developers the world over.

Titles currently in the series include:

Linux® Debugging and Performance Tuning SELinux by Example
Steve Best Frank Mayer, David Caplan, Karl MacMillan
0131492470, Paper, ©2006 0131963694, Paper, ©2007
The Definitive Guide to the Xen Hypervisor UNIX to Linux® Porting
David Chisnall Alfredo Mendoza, Chakarat Skawratananond,
013234971X, Hard, ©2008 Artis Walker

0131871099, Paper, ©2006
Understanding AJAX
Joshua Eichorn Rapid Web Applications with TurboGears
0132216353, Paper, ©2007 Mark Ramm, Kevin Dangoor, Gigi Sayfan

0132433885, Paper, © 2007
The Linux Programmer’s Toolbox

John Fusco Linux Programming by Example
0132198576, Paper, ©2007 Arnold Robbins
0131429647, Paper, © 2004
Embedded Linux Primer 31429647, Paper
Christopher Hallinan The Linux® Kernel Primer
0131679848, Paper, ©2007 Claudia Salzberg, Gordon Fischer,
The Apache Modules Book Steven Smolski
Nick Kew 0131181637, Paper, ©2006
0132409674, Paper, © 2007 Rapid GUI Programming with Python and Qt

Mark Summerfield

. .. 0132354187, Hard, © 2008
New to the series: Digital Short Cuts

Short Cuts are short, concise, PDF documents designed specifically for busy technical professionals like
you. Each Short Cut is tightly focused on a specific technology or technical problem. Written by industry
experts and best selling authors, Short Cuts are published with you in mind — getting you the technical
information that you need — now.

Understanding AJAX: Debugging Embedded Linux
Consuming the Sent Data with XML and JSON Christopher Hallinan
Joshua Eichorn 0131580132, Adobe Acrobat PDF, © 2007
0132337932, Adobe Acrobat PDF, © 2007 .
Using BusyBox
Christopher Hallinan

0132335921, Adobe Acrobat PDF, © 2007

Rapid GUI Programming
with Python and Qt

The Definitive Guide to PyQt Programming

Mark Summerfield
(X J
:': Upper Saddle River, NJ - Boston - Indianapolis - San Francisco
PRENTICE New York - Toronto - Montreal - London - Munich - Paris - Madrid

HALL Capetown - Sydney - Tokyo - Singapore - Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark
claim, the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for
incidental or consequential damages in connection with or arising out of the use of the information or
programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or
special sales, which may include electronic versions and/or custom covers and content particular to your
business, training goals, marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales @pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international @pearsoned.com

Visit us on the Web: www.prenhallprofessional.com

Library of Congress Cataloging-in-Publication Data

Summerfield, Mark

Rapid GUI programming with Python and Qt : the definitive guide to PyQt programming / Mark
Summerfield.

p. cm.

Includes bibliographical references and index.

ISBN 978-0-13-235418-9 (hardcover : alk. paper)
1. Qt (Electronic resource) 2. Graphical user interfaces (Computer systems) 3. Python (Computer
program language) 1. Title.

QA76.9.U835892007

005.1°2—dc22

2007034852

Copyright © 2008 Pearson Education, Inc.
All rights reserved. Printed in the United States of America.

Trolltech®, Qt® and the Trolltech logo are registered trademarks of Trolltech ASA.

ISBN-13: 978-0-13-235418-9
ISBN-10: 0-13-235418-7

Text printed in the United States on recycled paper at Edwards Brothers in Ann Arbor, Michigan.
First printing, October 2007

www.prenhallprofessional.com
www.prenhallprofessional.com/safarienabled

This book is dedicated to

Andrea Summerfield

This page intentionally left blank

Contents

Foreword i

Introduction i

Part I: Python Programming

Chapter 1. Data Types and Data Structures
Executing PythonCodeo,
Variablesand Objects ...,
Numbersand Strings ...,

Integers and Long Integers,
Floatsand Decimals ...,
Bytestrings, Unicode Strings, and QStrings
Collectionsc.uiii i e

N 123 7= AP
Built-in Functions i
SUMMATY ...ttt
XIS oottt e

Chapter 2. Control Structurescccovee...
Conditional Branching
77070 o5 s VA

List Comprehensions and Generators
Functions ...
Generator Functions
Using Keyword Argumentscciiiiiiiinnn.
Lambda Functions
Dynamic Function Creation
Partial Function Application
Exception Handling o ..

vii

SUMIMATY ...ttt e 72

EXerciSes ... e 72
Chapter 3. Classesand Modules 75
Creating Instancescciiiiiiiiiinnneiiiiiinnn 77
Methods and Special Methods, ... 79
Static Data, and Static Methods and Decorators 85
Example: The Length Classccooiiiiiii., 86
Collection Classesvvviiiiiiiiiii i iiiieeen 92
Example: The OrderedDictClasscccovveiiiii... 92
Inheritance and Polymorphism 929
Modules and Multifile Applicationsccoou..... 104
Using thedoctest Moduleccoiiiiin.. 105
UMM ALY ...ttt ettt 107
EXerCiSes o 108

Part II: Basic GUI Programming

Chapter 4. Introduction to GUI Programming 111
A Pop-UpAlertin 25Linescovviininiiiiiiiiiiiiiannnn... 112

An Expression Evaluatorin 30 Lines 116

A Currency Converterin 70Linescoiiiiinn.... 121
Signalsand Slots ..ot e e 127
SUMIMATY ...ttt ittt ittt 136
EXerciSe ... 137
Chapter 5. Dialogsciiiiiiiiiii i 139
Dumb Dialogscoooiiii i e 141
Standard Dialogs ...t e 147
Modal OK/Cancel-Style Dialogsccviiinnn. 148

Smart Dialogs ...t e 154
Modeless Apply/Close-Style Dialogs 155
Modeless “Live” Dialogsccoiiiiiiiiiiiiiinnn.. 159
SUMMATY ...ttt ittt ettt 162
EXerCiSe ..o 163
Chapter 6. MainWindowsiiiiiiiiinnnn.. 165
Creatinga Main Windowccciiiiiiiiiiiiiinnnn... 166
Actions and Key Sequencescccoiiiiiinnnneann.. 171
Resource Filesooiiiiiiiiiiiiinn.. 172

Creating and Using Actionscoiiiiinneeennnnn. 174

Restoring and Saving the Main Window’s State 181
Handling User Actions oo, 190
Handling File Actions i, 191
Handling Edit Actionsttt 197
Handling Help Actions iiiiiiiiineeeinann. 200
SUMIMIATY ...ttt e 201
Exercise ... 202
Chapter 7. Using QtDesignerccv... 205
Designing User Interfacesc ... 208
Implementing Dialogs, 216
Testing Dialogs . ..coovviei i e 221
SUMIMATY ...ttt ittt ettt 223
ExXercise ... 224
Chapter 8. Data Handling and Custom File Formats 227
Main Window Responsibilities, 229
Data Container Responsibilitiescooi..... 235
Saving and Loading Binary Files 240
Writing and Reading Using QDataStream 240
Writing and Reading Using the pickle Module 246
Saving and Loading Text Files, 249
Writing and Reading Using QTextStream 250
Writing and Reading Using the codecs Module 255
Saving and Loading XML Files ..., 256
Writing XML ... e 256
Reading and Parsing XML with PyQt’s DOM Classes 259
Reading and Parsing XML with PyQt’s SAX Classes 262
SUMIMATY ...ttt ittt ittt 265
EXercise ... 266

Part III: Intermediate GUI Programming

Chapter 9. Layouts and Multiple Documents 269
Layout Policiesccoiiiiiiiiiiiii i 270

Tab Widgets and Stacked Widgetsoo..... 272
Extension Dialogscoouiiiiiiiii i 276

I 01 7 =3 280
Single Document Interface (SDI) 283

ix

Multiple Document Interface (MDI) 290

SUMMATY ...ttt ettt ettt iiieeens 300
EXErCISE ..o 301
Chapter 10. Events, the Clipboard, and Drag and Drop 303
The Event-Handling Mechanismcccou..... 303
Reimplementing Event Handlers 305
Using the Clipboard i, 310
Dragand Dropcooiiiiiiiii e 312
Handling CustomDatat 313
SUMINATY ...ttt 317
EXerciSe ... 318
Chapter 11. Custom Widgets 321
Using Widget Style Sheets 322
Creating Composite Widgetsc .. 325
Subclassing Built-in Widgets 326
Subclassing QWidget 328
Example: A FractionSlider......................... ..ot 331
Example: A Flow-Mixing Widget 339

UM ATY ...ttt ettt 345
EXercise ... e 346
Chapter 12. Item-Based Graphics 349
Custom and Interactive GraphicsItems 351
Animation and Complex Shapesccoiiiiiiiiinnnn.... 368
SUMIMNATY ...ttt ittt ettt 378
BEXercise ..o 379
Chapter 13. Rich Text and Printing 381
RichText Editing ... i 382
Using QSyntaxHighlighter 382
ARichText LineEdit i .. 389
Printing Documents 398
Printing Imagescooiiiiiiiii e 400
Printing Documents Using HTML and QTextDocument 401
Printing Documents Using QTextCursor and QTextDocument 403
Printing Documents Using QPainter 407

10 0010102 411
BEXerciSe ..o 412

Chapter 14. Model/View Programming 413

Using the Convenience Item Widgets 415
Creating Custom Models 423
Implementing the View Logic 424
Implementing the Custom Model 427
Creating Custom Delegates, 436
SUMIMATY ...ttt ittt ittt 442
EXercise ... e 443
Chapter 15. Databasesc.ccoiiiiiiiiiiiiiiiiieennnnn. 445
Connecting tothe Database, 446
Executing SQL Queries ...t 446
Using Database Form Viewsiiiiiiiiiinnnn.... 451
Using Database Table Viewscooviiiiiiiiiiiiiinnnn.... 457
SUMIMATY ..ottt ittt ettt s 470
BEXercise ... e 471

Part IV: Advanced GUI Programming

Chapter 16. Advanced Model/View Programming 475
CUustom VIEwWS ...ttt e e 476
GenericDelegates 483
Representing Tabular DatainTrees 492
SUMMATY ...ttt 505
EXercise ..o e 505

Chapter 17. Online Help and Internationalization 509
Online Help ..ot e i 510
Internationalization i i 512
SUMMATY ...ttt et et iieeens 519
BXErCISE ..ot 520

Chapter 18. Networking 521
Creatinga TCPClient, 523
Creatinga TCP Servercccuiiiiiiiiiiiiiiiiiiiiinnnn. 529
SUMMATY ...ttt ettt ettt et iiieeens 534
Exercise ... 534

xi

Chapter 19. Multithreading 537

Creating a Threaded Servercccoiiiiiiiiiiinnnnn. 539
Creating and Managing Secondary Threads 544
Implementing a Secondary Thread 552
SUMIMATY ...ttt ettt 557
EXercise ... e 558
ThisIsNot Quitethe End 559
Appendix A. Installing 561
Installingon Windows, 561
Installingon MacOS X it 566
Installing on Linux and Unix ..., 570
Appendix B. Selected PyQt Widgets 575
Appendix C. Selected PyQt Class Hierarchies 581
Indexo 585

xii

Foreword

As PyQt’s creator, I'm delighted to see that this book has been written. Al-
though I served as one of the book’s technical reviewers, I'm happy to confess
that I learned a few things myself.

The PyQt documentation covers the APIs of all the PyQt classes. This book
shows you how to use all those classes, how to combine them to create dialogs,
main windows, and entire applications—all of which look good and work well,
with no arbitrary limits, and using a programming language that is a joy
to use.

What I particularly like about the book is that the examples aren’t trivial ones
designed to illustrate a simple point, but are potentially useful in their own
right. The way that different approaches are considered will reward the reader
who wants to develop a deeper understanding of how to apply PyQt to the
development of large scale, production quality applications.

I began the PyQt story back in the late 1990s. I had been using Tcl/Tk for
some time, but I felt that Tk applications looked ugly, especially when I saw
what had been achieved with the first version of KDE. I had wanted to switch

to Python, and so I thought I would combine the change of language with a
change of GUI library.

Initially I used some wrappers that had been written using SWIG, but I con-
cluded that I could produce a more suitable wrapper tool myself. I set to work
creating SIP, and released PyQt 0.1 supporting Qt 1.41 in November 1998.
Development has continued regularly ever since, both to keep up with new re-
leases of Qt and to broaden the scope of PyQt with, for example, the addition
of support tools and improved documentation. By 2000, PyQt 2.0 supported
Qt 2.2 on both Linux and Windows. Qt 3 support appeared in 2001, and
Mac OS X support in 2002. The PyQt4 series began with PyQt 4.0 in June 2006
with support for Qt 4.

My primary goal has always been to allow Python and Qt to work together in
a way that feels natural to Python programmers, while allowing them to do
anything they want in Python that can be done in C++. The key to achieving
this was the development of SIP. This gave me a specialized code generator
over which I had complete control and ensures that Python and Qt will always
fit snugly together.

The essential process of developing and maintaining PyQt is now well estab-
lished. Much of the work is now automated, which means that keeping up with

xiii

new releases of Qt from Trolltech is no longer the problem it once was, and en-
surs that PyQt will continue for years to come.

It’s been very gratifying to watch the growth of the PyQt community over the
years. If this book is part of your introduction to PyQt, then welcome!

— Phil Thompson
Wimborne, Dorset, U.K.
August 25, 2007

Xiv

Introduction

This book teaches how to write GUI applications using the Python program-
ming language and the Qt application development framework. The only
essential prior knowledge is that you can program in some object-oriented pro-
gramming language, such as C++, C#, Java, or of course, Python itself. For the
rich text chapter, some familiarity with HTML and with regular expressionsis
assumed, and the databases and threading chapters assume some basic knowl-
edge of those topics. A knowledge of GUI programming is not required, since
all the key concepts are covered.

The book will be useful to people who program professionally as part of their
job, whether as full-time software developers, or those from other disciplines,
including scientists and engineers, who need to do some programming in sup-
port of their work. It is also suitable for undergraduate and post-graduate stu-
dents, particularly those doing courses or research that includes a substantial
computing element. The exercises (with solutions) are provided especially to
help students.

Python is probably the easiest to learn and nicest scripting language in
widespread use, and Qt is probably the best library for developing GUI applica-
tions. The combination of Python and Qt, “PyQt”, makes it possible to develop
applications on any supported platform and run them unchanged on all the
supported platforms—for example, all modern versions of Windows, Linux,
Mac OS X, and most Unix-based systems. No compilation is required thanks
to Python being interpreted, and no source code changes to adapt to different
operating systems are required thanks to Qt abstracting away the platform-
specific details. We only have to copy the source file or files to a target machine
that has both Python and PyQt installed and the application will run.

If you are new to Python: Welcome! You are about to discover a language that
is clear to read and write, and that is concise without being cryptic. Python
supports many programming paradigms, but because our focus is on GUI
programming, we will take an object-oriented approach everywhere except in
the very early chapters.

Python is a very expressive language, which means that we can usually write
far fewer lines of Python code than would be required for an equivalent appli-
cation written in, say, C++ or Java. This makes it possible to show some small
but complete examples throughout the text, and makes PyQt an ideal tool for
rapidly and easily developing GUI applications, whether for prototyping or for
production use.

Qt

2 Introduction

:8| fhome/mark/books/rapid-gui-programming-with-python-and-qt/eg/chap08/mymovies.pyw - Ericd — O X

File Edit View Start Debug Unittest Project Refactoring Exiras Settings Window Bookmarks Help

T @ @ 8 a3 a|a B R|=ax==3 g 2E=d
@ 2cdedimoviedig.py moviedata.py mymovies.pyw gOEL VS
Il class MainWindow(QMainwWindow): ’—| '@ ‘ B | | == ‘ ™ ‘

def _ init_ (self, parent=None): |:| ‘mymowespyw24 init__ | I Source

super (MainWindow, self)._ init (parent)

Locals / Value
self.movies = moviedata.MovieContainer() parent None I
self.table = QTablewWidget() o self < man MainWi...
self.setCentralWidget(self.table) T

- £ movies <moviedata.MovieC..
status = self.statusBar() | ;

status.setSizeGripEnabled(False)
status.showMessage("Ready", 5000)

_MovieC... False

_MovieC... <PyQt4.QtCore.QS...
_MovieC... 0items
fileNewAction = self.createAction("&New..." ®_ MovieG... 0items

QKeySequence.New, "filenew", & able <PyOt4.QiGUL.QTa...
"Create a movie data file")
fileOpenAction = self.createAction("&0pen.. | |[«] | 0|
QKeySequence.Open, "fileopen”, [

|-

|;||File: /home/.../rapid-gui-programming-with-python-../eg/chap08/mymovies.pyw HLine: 24“Posz 33|D|

Figure 1 The Eric4 IDE—a PyQt4 application

Since the emphasis of the book is on GUI programming, Part I provides a
fast-paced Python tutorial as well as some PyQt coverage. This material is
clearly marked (just like this paragraph, with “Qt” in the margin) to make
it easy for experienced Python programmers to skip the Python they already
know. Parts II, ITI, and IV of the book are all PyQt-specific and assume that
readers can already program in Python, whether from previous experience or
from reading Part 1.

Quite often in programming we reach decision points when there are several
possible approaches we could take. Reference books and the online documen-
tation identify what classes, methods, and functions are available, and in some
cases provide examples, but such documents rarely provide a broader context.
This book gives the necessary context, highlighting the key decision points for
GUI programming and offering insights into the pros and cons so that you can
decide for yourself what the right policy is for your particular circumstances.
For example, when you create a dialog, should it be modal or modeless? (See
Chapter 5 for an explanation and policy recommendations on this issue.)

PyQt is used to write all kinds of GUI applications, from accounting appli-
cations, to visualization tools used by scientists and engineers. Figure 1, for
example, shows Eric4, a powerful integrated development environment that is
written in PyQt. It is possible to write PyQt applications that are just tens of
lines long, and medium-size projects of 1000 to 10000 lines are very common.
Some commercial companies have built 100 000-line PyQt applications, with

Introduction 3

programming teams varying in size from just one person to more than a dozen
people. Many in-house tools are written using PyQt, but because these are of-
ten used to gain competitive advantage, the companies involved generally do
not permit their use of PyQt to be made public. PyQt is also widely used in the
open source world, with games, utilities, visualization tools, and IDEs all writ-
ten using it.

This book is specifically about PyQt4, the Python bindings for the Qt 4 C++
application development framework* PyQt4 is provided in the form of ten
Python modules which between them contain around 400 classes and about
6000 methods and functions. All the example programs have been tested on
Windows, Linux, and Mac OS X, using Python 2.5, Qt 4.2, and PyQt 4.2, and
additionally on Windows and Linux using Qt 4.3 and PyQt 4.3. Backporting to
earlier versions is possible in some cases, but we recommend using the most
up-to-date versions of Python, Qt, and PyQt.

Python, PyQt, and Qt can be used free of charge for noncommercial purposes,
but the license used by Python is different from that used by PyQt and Qt.
Python is available with a very liberal license that allows it to be used to de-
velop both commercial and noncommercial applications. Both PyQt and Qt are
dual-licensed: This essentially allows them to be used to develop noncommer-
cial applications—which must in turn be licensed using an acceptable open
source license such as the GNU General Public License (GPL); or to be used to
develop commercial applications—in this case, a commercial PyQt license and
a commercial Qt license must be purchased.

The Structure of the Book

The book is divided into four parts. PartIisprimarily a rapid conversion course
aimed at non-Python programmers who are familiar with an object-oriented
language, although it also has some (clearly marked) PyQt content. Because
the core Python language is mostly simple and is quite small, these chapters
can teach the basics of Python to a sufficient extent that real Python applica-
tions can be written.

If you think that you can pick up the Python syntax simply through reading
it, you might be tempted to skip Part I and dive straight into the GUI pro-
gramming that begins in Part II. The early chapters in Part IT include back-
references to the relevant pages in Part I to support readers who choose this
approach. However, even for readers familiar with Python, we recommend
reading about QString in Chapter 1. If you are unfamiliar with partial function
application (currying), it is important to read the subsection that covers this in
Chapter 2, since this technique is sometimes used in GUI programming.

*There are also Python bindings for the older Qt 3 library, but there is no reason to use that library
for new projects, especially since Qt 4 offers far more functionality and is easier to use.

4 Introduction

Part IT begins by showing three tiny PyQt GUI applications to give an initial
impression of what PyQt programming is like. It also explains some of the
fundamental concepts involved in GUI programming, including PyQt’s high-
level signals and slots communication mechanism. Chapter 5 shows how to
create dialogs and how to create and lay out widgets (“controls” in Windows-
speak—the graphical elements that make up a user interface such as buttons,
listboxes, and such) in a dialog. Dialogs are central to GUI programming: Most
GUI applications have a single main window, and dozens or scores of dialogs,
so this topic is covered in depth.

After the dialogs chapter comes Chapter 6, which covers main windows,
including menus, toolbars, dock windows, and keyboard shortcuts, as well as
loading and saving application settings. Part II’s final chapters show how to
create dialogs using Q¢ Designer, Qt’s visual design tool, and how to save data
in binary, text, and XML formats.

Part III gives deeper coverage of some of the topics covered in Part II, and in-
troduces many new topics. Chapter 9 shows how to lay out widgets in quite
sophisticated ways, and how to handle multiple documents. Chapter 10 covers
low-level event handlers, and how to use the clipboard as well as drag and drop,
text, HTML, and binary data. Chapter 11 shows how to modify and subclass
existing widgets, and how to create entirely new widgets from scratch, with
complete control over their appearance and behavior. This chapter also shows
how to do basic graphics. Chapter 12 shows how to use Qt 4.2’s new graphics
view architecture, which is particularly suited to handling large numbers of in-
dependent graphical objects. Qt’'s HTML-capable rich text engine is covered in
Chapter 13. This chapter also covers printing both to paper and to PDF files.

Part III concludes with two chapters on model/view programming: Chapter 14
introduces the subject and shows how to use Qt’s built-in views and how to
create custom data models and custom delegates, and Chapter 15 shows how
to use the model/view architecture to perform database programming.

Part IV continues the model/view theme, with coverage of three different
advanced model/view topics in Chapter 16. The first section of Chapter 17
describes the techniques that can be used for providing online help, and the
second section explains how to internationalize an application, including how
to use Qt’s translation tools to create translation files. The Python standard
library provides its own classes for networking and for threading, but in the
last two chapters of Part IV we show how to do networking and threading us-
ing PyQt’s classes.

Appendix A explains where Python, PyQt, and Qt can be obtained, and how to
install them on Windows, Mac OS X, and Linux. PyQt is much easier to learn
if you install it and try out some of the exercises, and if you inspect some of
the example code. Appendix B presents screenshots and brief descriptions
of selected PyQt widgets; this is helpful for those new to GUI programming.
Appendix C presents diagrams of some of PyQt’s key class hierarchies; this

Introduction 5

is useful for getting to know what classes PyQt has to offer and how they
are related.

If you have never used Python before, you should begin by reading Chapters
1-6 in order. If you already know Python, at least read the string policy (in
bullet points on page 28), and skim the material in Chapter 2 (apart from the
first section, which you’ll know well). Make sure that you are comfortable with
lambda and partial function application, both of which are covered in Chapter 2.
It is probably also worth skimming Chapter 3 as well. Then read Chapters 4,
5, and 6 in order.

Once you have covered the first six chapters, you have covered the essentials
of Python and the fundamentals of PyQt.

Chapter 7 is useful if you want to know how to create dialogs using a visual
design tool rather than purely by hand coding, something that can save a lot
of time. For file handling, at least read the first three sections of Chapter 8. If
you plan to write and read text files, also read Chapter 8’s fourth section, and
similarly the fifth section if you are going to use XML files.

For Part III, at the least read Chapter 10’s first section, on event handling, and
all of Chapter 11. Chapter 12 and the first section of Chapter 13 assume that
you have read about PyQt’s event handling, and that you have read Chapter 11.
Chapters 9 and 14 can be read stand-alone in this part, but Chapter 15 assumes
that you have read Chapter 14.

In Part IV, Chapter 16 assumes that you have read Chapters 14 and 15, but the
other chapters can be read independently.

If you find errors in the text or in the examples, or have other comments,
please write to mark@qtrac.eu quoting “PyQt book” in the subject line. The
book’s home page, where any corrections will be published, and from where the
examples and exercise solutions can be downloaded, is http://www.qtrac.eu/
pyqgtbook.html.

If you want to participate in the PyQt community, it is worthwhile joining the
mailing list. Gotohttp://www.riverbankcomputing.com/mailman/listinfo/pyqt to
find a link to the archive, so that you can see what the mailing list is like, and
also for a form for joining. Python also has mailing lists and other community
activities. For these, go to http://www.python.org/community.

Acknowledgments

I have many people to thank, and I will begin with those who have been
intimately involved with the book.

Jasmin Blanchette is a senior software developer at Trolltech, a Qt expert, and
a fine editor and writer in his own right. I have cowritten two C++/Qt books
with him. Jasmin has made a huge number of suggestions and criticisms that
have immensely improved the quality of this book.

http://www.qtrac.eu/pyqtbook.html
http://www.qtrac.eu/pyqtbook.html
http://www.python.org/community
http://www.riverbankcomputing.com/mailman/listinfo/pyqt

6 Introduction

David Boddie, Trolltech’s documentation manager, is an active PyQt open
source developer who has made many contributions to PyQt itself. His input
has helped ensure that I have covered everything necessary, and done so in a
sensible order.

Richard Chamberlain is cofounder and chief technology officer of Jadu Ltd., a
content management company. His feedback and insights have helped ensure
that the book is as broadly accessible as possible. He has also helped refine and
improve the code used in the examples and exercises.

Trenton Schulz is a Trolltech developer who has been a valuable reviewer of
my previous books. For thisbook, he hasbrought his Python and Qt knowledge
to bear, giving considerable feedback on the manuscript. Along with Richard,
he also ensured that Mac OS X users were never forgotten. In addition, he
spotted many subtle errors that I had missed.

Phil Thompson is PyQt’s creator and maintainer. He has been supportive of
the book from the start, even adding features and improvements to PyQt as
a direct result of discussions we have had regarding the book. He has made
numerous suggestions for the book’s improvement, and corrected many
mistakes and misunderstandings.

Special thanks to Samuel Rolland, who let me loose on his Mac laptop, to install
PyQt, test the examples, and take screenshots.

Thanks are also due to Guido van Rossum, creator of Python, as well as to the
wider Python community who have contributed so much to make Python, and
especially its libraries, so useful and enjoyable to use.

Thanks also to Trolltech, for developing and maintaining Qt, and in particular
to the Trolltech developers both past and present, many of whom I have had
the pleasure of working with, and who ensure that Qt is the best cross-platform
GUI development framework in existence.

Particular thanks to Jeff Kingston, creator of the Lout typesetting language.
I use Lout for all my books and for most of my other writing projects. Over
the years, Jeff has made many improvements and added numerous features to
Lout in response to feedback from users, including many that I have asked for
myself. Thanks also to James Cloos who created the condensed version of the
DejaVu Sans Mono font (itself derived from Jim Lyles’ Vera font) from which
this book’s monospaced font is derived.

The publisher, in the person of Editor-in-Chief Karen Gettman, was supportive
of this book from the very beginning. And special thanks to my editor, Debra
Williams-Cauley, for her support, and for making the entire process as smooth
as possible. Thanks also to Lara Wysong who managed the production process
so well, and to the proofreader, Audrey Doyle, who did such fine work.

Last but not least, I want to acknowledge my wife, Andrea. Her love, loyalty,
and support always give me strength and hope.

Part 1

Python Programming

This page intentionally left blank

® Executing Python Code
@® Variables and Objects
® Numbers and Strings
@® Collections

@® Built-in Functions

Data Types and Data Structures

In this chapter, we begin a Python conversion course that shows non-Python
programmers how to program with Python. We introduce some fundamental
data types and data structures, as well as some of Python’s procedural syntax.
The approach taken throughout is to emphasize realistic code like that used
in practice, rather than giving the formal definitions and explanations that
are already available in the documentation that is supplied with Python and
available online at http://www.python.org.

R Python Shell

hle Edit Shell Debug Oplions Windows Help
=»> def factorialin): N
ifn< 2:
return 1
i =1
while n »= 2:
f ¥=n
n—-=1
return f

»»» factorial (0)

1

=»> factorial(l)

i

=»» Tactorial(s)

120

=»» Tactorial (700
11978571669969891796072783721680098736458938142546425
| 857555352864628009582789845319680000000000000000L

|Ln: 32[Col: 4

Figure 1.1 The IDLE Python Shell window

If you have not already installed Python and PyQt, it would be a good idea to
do so: That way you will be able to try out the examples that accompany this
book (downloadable from http://www.qtrac.eu/pyqgtbook.html). See Appendix A
for installation details. One advantage of installing the software is that the
IDLE integrated development environment is installed along with Python.

http://www.python.org
http://www.qtrac.eu/pyqtbook.html

10 Chapter 1. Data Types and Data Structures

The IDLE Development Environment

The full installation of Python includes IDLE, a basic but very use-
ful integrated development environment. When IDLE is launched (click
Start—All Programs—Python 2.x—IDLE on Windows, or click Finder—Applica-
tions—>MacPython 2.x—IDLE on Mac OS X, or run idle &in a console on Linux),
it presents its Python Shell window.

As the screenshot in Figure 1.1 shows, IDLE has a rather retro Windows 95
look. This is because it is written in Tkinter rather than in PyQt. We've
chosen to use IDLE because IDLE comes as standard with Python and is
very simple to learn and use. If you want to use a much more powerful and
modern-looking IDE, you might prefer Eric4 which is written in PyQt, or
one of the other Python IDEs that are available. However, if you are new to
Python, we recommend that you start out with the simpler IDLE, and once
you are more experienced with PyQt, then trying the other IDEs to see if you
prefer one of them. And of course, you could simply use a plain text editor
and debug using print statements and not use an IDE at all.

IDLE provides three key facilities: the ability to enter Python expressions
and code and to see the results directly in the Python Shell; a code editor
that provides Python-specific color syntax highlighting; and a debugger
that can be used to step through code to help identify and kill bugs. The
Python Shell is especially useful for trying out simple algorithms, snippets
of code, and regular expressions, and can also be used as a very powerful and
flexible calculator.

Executing Python Code

Before we can really explore the Python language we need to know how to
execute Python code. We will show this by reviewing a tiny example program
that is just one line long.

We must use a plain text editor for working with Python files.* On Windows it
is possible to use Notepad, but IDLE includes a suitable Python editor designed
specifically for editing Python code: Simply start IDLE and then click File—New
Window.

We will type the following line into a file, called hello. py:
print "Hello World"

Note that no semicolon is necessary: In Python newline acts as a statement
separator. Also, we do not need a newline, “\n”, in the string, since print
automatically adds a newline unless we suppress it with a trailing comma.

*The programs in this book are written using ASCII characters, with escape sequences where Uni-
code is required. It is possible to use Latin-1, UTF-8, or other encodings for strings and comments
in Python programs, as explained in the documentation under “Encoding declarations”.

Executing Python Code 11

Assuming that we have saved the code in the file hello.py (in the directory
C:\pyqt\chap0l if using Windows), we can start up a console (click Start—All Pro-
grams—Accessories—Console on Windows XP—sometimes Console is called Com-
mand Prompt; or run Terminal.app from /Applications/Utilities on Mac OS X),
change to that directory, and execute the program like this:

C:\>cd c:\pyqt\chap0l
C:\pyqt\chap0l>hello.py

As long as Python is correctly installed, Windows will recognize the .py file
extension and give the file to python.exe to execute. The program will print
“Hello World” on the console as we would expect*

On Mac OS X and Linux we must explicitly run the interpreter by typing its
name and the file’s name at the console’s prompt, like this:

% python hello.py

This will work providing that Python is installed and in your PATH. Alternative-
ly, for Linux and Mac OS X, we can add an additional “shebang” (shell execute)
comment line which tells the operating system to use a Python interpreter,
making the hello.py file two lines long:

#!/usr/bin/env python
print "Hello World"

For this to work on Mac OS X and Linux, the file’s permissions must be set
correctly. For example, at the console prompt in the same directory as the file,
enter chmod +x hello.py to make the file executable.

Python comments start with “#” and continue until the end of the line. This
means that it is perfectly safe to add the “shebang” line to all Python programs,
since the comment is ignored on Windows but on Linux it tells the operating
system to execute the file using a Python interpreter. Appendix A shows how
to associate the Python interpreter with .py and .pyw files on Mac OS X.

When we speak of executing a Python program, what happens behind the
scenes is that Python reads the .py (or .pyw) file into memory, and parses it, to
get a bytecode program that it then goes on to execute. For each module thatis
imported by the program, Python first checks to see whether there is a precom-
piled bytecode version (in a .pyo or .pyc file) that has a timestamp which corre-
sponds toits .py file. If thereis, Python uses the bytecode version; otherwise, it
parses the module’s . py file, saves it into a . pyc file, and uses the bytecode it just
generated. So, unlike Java, we don’t have to explicitly bytecode-compile any
modules, whether they are supplied with Python or are ones we have written
ourselves. And in most Python installations, the supplied modules are com-

*Mac OS X users note that whenever we refer to a console, this is the same as a Mac Terminal.

12 Chapter 1. Data Types and Data Structures

piled as part of the installation process so as to avoid having to compile them
whenever a Python application that uses them is run.

Variables and Objects

In most programming languages, including C++ and Java, we must declare
each variable, specifying its type, before it can be used. This is called static
typing, because the compiler knows at compile time what type each variable is.
Python, like most very high level languages, uses a different approach: Vari-
ables have no type restrictions (dynamic typing), and they don’t need to be
declared.

We could learn about Python’s variables and identifiers by creating and
executing a file, as we did with hello.py in the preceding section. But for trying
out small code snippets we don’t need to create a file at all. We can just enter
the lines directly in the IDLE Python Shell window at the >>> prompt:

71
"DOVG"

>>> X
>>>y

The whitespace around the assignment operator = is optional but is included
because it makes the code easier to read. As a matter of style we will always
put one space before and after binary operators. On the other hand, it is
important that each statement occupies its own line and has no extraneous
leading whitespace. This is because Python uses indentation and line breaks
to signify its block structure, rather than the braces and semicolons used by
many other programming languages.

Now we are ready to review what the two lines actually do. The first line
creates an object of type int and binds the name x to it.* The second line creates
an object of type str (an 8-bit string type) and binds the name y to it.

Some Python programmers refer to names (such as the x and y used earlier),
as object references since they refer to objects rather than being objects in their
own right. For basic data types like int and str it makes no difference whether
we see their variables as “objects” or as “object references”; they behave in the
same way as they do in other programming languages:

>>> X = 82
>>> X += 7
>>> X

89

Later on we will see cases where the fact that Python variables are object
references makes a difference.

*This is similar to the Java assignment, Integer x = new Integer(71); for C++ a near-equivalent
would be int xd = 71; int &x = xd;.

Lists
5 31

Variables and Objects 13

Functions, Methods, and Operators Terminology

The term function is used to refer to a subroutine that can be executed
independently, and the term method is used to refer to a function that can
only be executed when bound to an object, that is, called on an instance of a
particular class.

An operator may be independent or it may be bound to an object, but unlike
functions and methods, operators do not use parentheses. Operators that
are represented by symbols such as +, *, and < are rather obviously called
operators, but operators that have names such as del and print are often
called statements.

Python functions do not have to be pure in the mathematical sense: They
do not have to return a value and they can modify their arguments. Python
functions are like C and C++ functions, or like Pascal functions that take var
parameters. Python methods are like C++ or Java member functions.

Python has two ways of comparing objects: by “identity” and by “value”. An
object’s identity is effectively its address in memory, and this is what an object
reference holds. If we use comparison operators, such as == and <, we get
value comparison. For example, two strings are equal using == if they both
contain the same text. If we use is we get identity comparison, which is fast
because we are just comparing two addresses and don’t have to look at the
objects themselves. An object’s identity can be obtained by calling id() on an
object reference.

Python has a special object called None. This can be assigned to any variable
and it means that the variable has no value. There is only ever one instance of
the None object, so we can always use the fast is and is not comparisons when
testing for it.

Notice that we wrote x on its own at the >>> prompt. If we write an expression
or variable in IDLE, its value is automatically printed. In a program, we must
use an explicit print statement to print an expression. For example:

print x

Python’s print statement is an operator, not a function, and for this reason
it is invoked without using parentheses (just as we use + and other operators
without them).

Earlier we said that Python uses dynamic typing. There are two factors
involved in this. First, we can assign any object to any variable; for example,
we could write:

x = 47
x = "Heron"

14 Chapter 1. Data Types and Data Structures

After the first line x’s type is int, and after the second line x’s type is str, so
clearly the type associated with the name x is determined by what the name is
bound to, and not by any intrinsic property of its own. For this reason , we do
not need to associate a particular type with a particular name.

The second aspect of Python’s dynamic typing is that the typing is
strong: Python does not permit operations between incompatible types, as the
following example, typed into IDLE, shows:

>>>x = 41
>>>y = "Flamingo"
>>> X + y

Traceback (most recent call last):
File <pyshell#2>, line 1, in <module>
X +y
TypeError: unsupported operand type(s) for +: 'int' and 'str'

When we attempted to apply the binary + operator, Python raised a TypeError
exception and refused to perform the operation* (Exceptions are covered in
Chapter 2.)

If we were to assign to y a type compatible with x’s type, such as an int or float,
the addition would work fine:

>>> X = 41
>>>y = 8.5
>>> X + y

49.5

Although x and y are of different types (int and float), Python provides the
same kind of automatic type promotion that other languages use, so the x is
converted to a float and the calculation performed is actually 41.0 + 8.5.

The rectangles represent the objects, and the
circles the object references, that result from
the execution of the code shown.

Q

Il

(e}
N
L

=17
d
= "A sentence" @ "A sentence"

[¢>)
]

(@]
non
T 0o
/
o
A\
{ \l/
o
1
/ >
Q.
\\
|

o
|

Figure 1.2 Object references and objects

Assigning a value to a variable is called binding, since we bind names to
objects. If we assign a new object to an existing variable, we are said to be

*The line of the traceback, File "<pyshell#2>", and so on, varies every time, so your line may be
different from the one shown here.

Variables and Objects 15

rebinding the name. This is illustrated in Figure 1.2. When we do this, what
happens to the object the name was originally bound to? For example:

>>>x = "Sparrow"
>>>x = 9.8

What has happened to the str object that holds the text “Sparrow”? Once an
object has no names bound to it, it is scheduled for garbage collection, and in
due course it may be deleted from memory. This is very similar to how things
work in Java.

Python variable names consist of ASCII letters, digits, and underscores ().
Variable names should begin with a letter, and they are case-sensitive (rowan,
Rowan, and roWan are three different variables). No Python variable should be
given the name of any of Python’s keywords (see Table 1.1), nor of Python’s
built-in constants such as None, True, or False.

Numbers and Strings

Python provides several numeric types and two string types. What all these
types have in common is that they are immutable. This means that in Python,
numbers and strings cannot be changed. This sounds rather limiting, but
thanks to Python’s augmented assignment operators (+=, *=, etc.), it simply is
not a problem.

Before looking at the specific data types we will look at one important conse-
quence of the immutability. Let us type some simple expressions into IDLE:

>>>x = 5
>>>y = X
>>> X, Y
(5, 5)

Here we have created an object of type int with the value 5 and bound the
name x to it. We have then assigned x to y which has the effect of binding
y to the same object that x is bound to. So, when we print them in IDLE (in
a program we would have to write print x, y, but in IDLE we just write an
expression and IDLE automatically prints it), IDLE outputs the values as a
tuple—essentially a read-only list of values.

Now let us increment y:

>>>y 4= 1
>>> X, Y

(5, 6)

We might have expected both x and y to have the value 6 since both referred
to the same integer object. But because Python numbers (and strings) are
immutable, this does not happen. The augmented assignment operators when
applied to immutable objects are mere syntactic sugar: They do not change

Tuples
5 29

16 Chapter 1. Data Types and Data Structures

Table 1.1 Python’s Keywords*

and class elif finally if lambda print while
as26 continue else for import not raise yith%®
assert!® def except from in or return yjeld*®
break del exec global is pass try

the objects they are applied to. So what really happened is this:y = y + 1, so
a new integer object was created (with value 6), and y was bound to this new
object. As a result, when we asked IDLE to print x and y, they were referring
to different objects, each with a different value.

We need to bear in mind the fact that the = operator performs a binding oper-
ation rather than an assignment. The name on the left-hand side is bound (or
rebound if the name already exists) to the object on the right-hand side. For im-
mutable objects, it makes no difference at all, as we will see in a moment. But
for mutable objects, it means that using = will not give us a copy (it just binds
another name to the original object), so when we really need a copy we must
use a copy() method, or a function from Python’s copy module, as discussed
shortly.

In practice, the immutability of numbers and strings is very convenient.
For example:

>>>s = "Bath"
>>>t = n Hatll
>>>| = S
>>>6 4= t
>>>5, t, u

('Bath Hat', ' Hat', 'Bath')

Notice that we assigned string s to u. Intuitively we would expect that u holds
the value “Bath” that was, in effect, assigned to it, and we do not expect that
applying += to s will have any side effects, even though both s and u refer to the
same string. And our intuition is correct: u’s value is not changed because when
+=is applied to s, a new string object is created and bound to s, and u is left as
the only object now referring to the original “Bath” string.

Integers and Long Integers

Python provides three integral types: bool, int, and long. The bool type can only
take the values True or False, and when used in a numeric context these are
treated as 1 and 0. The long type can hold an integer whose size is limited only
by the machine’s available memory, so integers hundreds of digits long can be
created and processed. The only downside is that the long type is slower to pro-

*The numbers beside some of the keywords indicate the version of Python that introduced them.

Shallow
and
Deep
Copying
sidebar

= 34

Numbers and Strings 17

cessthan the int type. The int typeis the same signed integer type provided by
most programming languages; however, if an operation is applied toan int that
would make its value exceed its range (for example, a value greater than 2° - 1
or less than -2°! on some machines), the int is automatically type promoted into
a long.

Python uses the suffix L to signify a long, and we can do the same in code when
necessary. For example:

>>>p =5 ** 35

>>>(q = 7L
>>>r =2+ (
>>>p, q, r

(2910383045673370361328125L, 7L, 9L)

Integer literals are assumed to be base 10 (decimal) numbers, except those that
start with a 0x, which are treated as hexadecimal (base 16), for example, 0x3F,
which is decimal 63, and those that start with 0 which are treated as octal (base
8). Any kind of integer literal can have L appended to it to make it into a long.

Python supports the common operators that we would expect for numbers,
including +, -, *, /, %, and their augmented cousins, +=, -=, *=, /=, and %=. Python
also provides ** for raising a number to a power.

By default, Python’s / division operator performs truncating division when
both operands are of type int. For example, 5 / 3, produces 1. This is the norm
in most programming languages, but it can be inconvenient in Python since
dynamic typing means that a variable might be an int or a float at different
times. The solution is to tell Python to always do “true division”, which pro-
duces floating-point results whenever necessary, and to use the // operator
when we really want truncation to occur. We will see how to do this in Chap-
ter 4.

Floats and Decimals

Python provides three kinds of floating-point values: float, Decimal, and
complex. Type float holds double-precision floating-point numbers whose range
depends on the C (or Java) compiler Python was built with; they have limited
precision and cannot be reliably compared for equality. Numbers of type float
are written with a decimal point, or using scientific notation, for example, 0.0,
5.7, 8.9e-4. It is salutary to type these into IDLE:

>>>0.0, 5.7, 8.9e-4
(0.0, 5.7000000000000002, 0.00088999999999999995)

The inaccuracy is not a Python-specific problem: Computers represent floating-
point numbers using base 2, which can represent some decimals exactly (such
as 0.5) but others only approximately (such as 0.1). Furthermore, the represen-
tation uses a fixed number of bits, so there is a limit to the number of digits
that can be held.

18 Chapter 1. Data Types and Data Structures

In practice this is rarely a problem since most floating-point numbers use 64
bits which is more than sufficient in most cases. But if we need high precision,
Python’s Decimal numbers from the decimal module can be used. These perform
calculations that are accurate to the level of precision we specify (by default,
to 28 decimal places) and can represent periodic numbers like 0.1 exactly; but
processing is a lot slower than with normal floats. Because of their accuracy,
Decimal numbers are suitable for financial calculations.

Before Decimal numbers can be used, the decimal module must be imported. The
syntax for doing this is the same whether we are writing code in a .py file, or
typing in IDLE as we are here:

>>> import decimal

Here we have imported the decimal module into our IDLE Shell window. (The
import semantics are explained in the Importing Objects sidebar.) Integer
literals can be passed to the Decimal constructor, but because Decimals are
high-precision and floats are not, we cannot pass floats; instead, we must
provide floating-point values as strings. For example:

>>> decimal.Decimal(19), decimal.Decimal("5.1"),
decimal.Decimal("8.9e-4")
(Decimal("19"), Decimal("5.1"), Decimal("0.00089"))

The number decimal.Decimal("5.1") is held exactly; as a float it would proba-
bly be something like 5.0999999999999996. Similarly, decimal.Decimal("0.00089")
would be something like 0.00088999999999999995. We can easily convert from
Decimal to float, although we may lose precision by doing so:

>>>d = decimal.Decimal("1.1")
>>>f = float(d)
>>> f

1.1000000000000001

Python also provides complex numbers as a built-in data type. These numbers
consist of a real and an imaginary component, the latter indicated by the suffix
j.* For example:

>>> ¢ = 5.440.8j
>>> type(c)
<type 'complex'>

Here we have entered a complex number (with the syntax real part+imagin-
ary partj), and used Python’s type() function to tell us what type the c is
bound to.

*Mathematicians use i for imaginary numbers, whereas engineers, and Python, use .

Numbers and Strings 19

Importing Objects

Python has a large and comprehensive library of modules that provides a
huge amount of predefined functionality. We can use this functionality by
importing the constants, variables, functions, and classes that we want. The
general syntax for importing is:

import moduleName

We can then access objects inside the module using the dot operator. For
example, the random module provides the randint() function, which can be
imported and used like this:

import random
X = random.randint(1, 10)

Note that it is common to put import statements at the beginning of . py files,
but they can be put elsewhere—for example, inside a function definition.

One benefit of Python’s module system is that each module acts as a names-
pace, so we avoid name collisions effortlessly. For example, we may have de-
fined our own randint() function, but there is no name conflict because the
imported one in the example is accessed using the fully qualified name ran-
dom. randint(). And as we will see in Chapter 3, we can create our own mod-
ules and import our own objects.

Modules themselves can contain other modules, and for very large modules,
it is more convenient to import objects directly into the current namespace.
Python provides a syntax for this. For example:

from PyQt4.QtCore import x
x = QString()
y = QDate()

Here we have imported every object, that is, all the classes from the PyQt4
module’s QtCore module, and this allows us to use their unqualified names.
Using this syntax is frowned on by some developers, but since we know that
almost all of the PyQt objects begin with a capital “Q”, providing we don’t
create any of our own objects with names beginning with “Q”, we will not get
any name collisions and can type far less. However, for those who prefer to
use fully qualified names in all cases, the plain import syntax can be used:

import PyQt4
x = PyQt4.QtCore.QString()
y = PyQt4.QtCore.QDate()

For the sake of brevity we will use the from ... import syntax for the PyQt4
modules, although we will use the plain import syntax for everything else.

20 Chapter 1. Data Types and Data Structures

Python’s floating-point numbers provide the same basic operations as its in-
tegral numbers, with integers being promoted to floating-point when numeric
types are mixed in the same expression.

Bytestrings, Unicode Strings, and QStrings

There are two built-in string types in Python: str which holds bytes, and uni-
code which holds Unicode characters. Both types support a common set of
string-processing operations. Like numbers, Python strings are immutable.
They are also sequences, so they can be passed to functions that accept
sequences and can use Python’s sequence operations, for example, the len()
function which returns the length of a sequence. PyQt provides a third string
type, QString.

If we only deal with 7-bit ASCII characters, that is, characters in the range
0-127, and if we want to save some memory, we can use strs. However, if we
use an 8-bit character set, we must be careful that we know which codec we are
using. In Western Europe, for example, 8-bit strings are often encoded using
the Latin-1 encoding. In general, it is not always possible simply by examining
the bytes to determine which 8-bit encoding is used for a particular string (or
file). Modern GUI libraries, including Qt, use Unicode strings, so the safest
route is to use strs for 7-bit ASCII and for raw binary 8-bit bytes, and unicode
or QString otherwise.

Python strings are created by using quotes:

>>>q = "Green"

>>>1t = ' trees'
>>>q + t

'Green trees'

Python does not mind whether we use double or single quotes as long as we use
the same kind at both ends.

To force a string literal to be of type unicode, we precede its initial quote
with u:

>>>bird = "Sparrow"

>>> beast = u"Unicorn"

>>> type(bird), type(beast), type(bird + beast)
(<type 'str'>, <type 'unicode'>, <type 'unicode'>)

Notice that we can use binary + to concatenate strings, and that if we involve
str and unicode objects in the same operation the str operands are promoted
to unicode and the resultant object is of type unicode. (If the str contains
characters outside the 7-bit ASCII range, Python raises a UnicodeEncodeError
exception; exceptions are covered in Chapter 2.)

In Python there is no separate “character” type: A single character is a string
of length 1. We can get a character from a byte value using chr(), which

QString
5 28

Numbers and Strings 21

accepts an integer value in the range 0-255. The Python documentation does
not specify which encoding is used for values outside the ASCII range, (i.e.,
above 127). For Unicode, we can use unichr(), which accepts an integer in the
range 0—65 535.* To convert the other way, from a character to its integer value
(ASCII value or Unicode code point), we can use ord(). For example:

>>>euro = unichr(8364)
>>>print euro

<€

>>>ord(euro)

8364

Why did we use print instead of letting IDLE output the result? Because IDLE
shows non-ASCII characters in strings using hexadecimal escapes, so without
print IDLE will output u'\u20ac"'.

It is also possible to access Unicode characters by name:

>>>euro = u"\N{euro sign}"
>>> print euro
<€

If we need to include special characters in a string we can escape them using
a backslash, (“\”). Table 1.2 shows the escapes available; the Unicode ones only
make sense inside unicode strings.

Here are two examples that show how to escape quotes:

"He said \"No you don't!\" again."
'What\'s up with him?'

We don’t need to escape single quotes inside strings delimited by double
quotes, and we don’t need to escape double quotes inside strings delimited by
single quotes.

For multiline strings we can use “triple” quotes:

''"'This string has three lines in it, with a 'quote',
another "quote", and with just one embedded newline \
since we have escaped one of them.'"'

These kinds of strings can include escaped characters just like normal strings,
and can be delimited by three single quotes as shown, or by three double
quotes. Newlines in triple-quoted strings, and in Python code, can be escaped
by preceding them with a backslash. (This works correctly on Windows too,
even though Windows uses two characters at the end of lines rather than
one.)

*The range extends to 1114 111 if Python was configured to use the UCS-4 representation.

22 Chapter 1. Data Types and Data Structures

Table 1.2 Python’s String Escapes

Escape Meaning

\newline Escape (i.e., ignore) the newline

\\ Backslash (\)

\' Single quote ()

\" Double quote (")

\a ASCII bell (BEL)

\b ASCII backspace (BS)

\f ASCII formfeed (FF)

\n ASCII linefeed (LF)

\N{name} Unicode character name

\r ASCII carriage return (CR)

\t ASCII tab (TAB)

\uhhhh Unicode character with the given 16-bit hexadecimal value
\Uhhhhhhhh Unicode character with the given 32-bit hexadecimal value
\v ASCII vertical tab (VT)

\ooo Character with the given octal value

\xhh Character with the given hexadecimal value

Python strings are sequences where individual characters can be accessed
by positional indexing, with the first character at index position 0. It is also
possible to index from the end of the string, with the last character’s index
position being -1. For example:

>>>phrase = "The red balloon"
>>> phrase[0], phrase[5], phrase[-1]
(ITI , Iel , Inl)

Negative indexes are used to access characters from right to left, with the right
most character position being -1, the one to the left of that at position -2, and
S0 on.

Python sequences support slicing, which means that we can copy subsequences
from a sequence. A slice has one, two, or three colon-separated components: the
start (which defaults to index 0), the end (which defaults to the length of
the sequence), and another one which we will ignore. Slices are taken from
and including the start index up to but excluding the end index. Here are
some examples:

>>> phrase = "The red balloon"
>>> phrase[:3]

Numbers and Strings 23

'The'
>>> phrase[-3:1]
‘oon
>>> phrase[4:7]
"red’

Since Python strings are immutable it is not possible to assign to a character
or slice inside a string:

>5> p = ||pad||
>>>p[l] = "o" # WRONG
Traceback (most recent call last):
File <pyshell#64>, line 1, in <module>

pll]l = o
TypeError: object does not support item assignment

The easiest way to insert a character into a string is by using the slicing
syntax:

>>>p = "pad”

>>>p = p[:1] + "0o" + p[2:]
>>>p

Ipodl

It may appear annoying that we have to specify literal numbers, but in
practical programming we normally get the indexes using method calls—for
example, using the find() method.

Other approaches are possible. For example:

>>>p = "pad”

>>>p = "o0".join((p[:1]1, pl[2:1))
>>>p

IpOdl

Programmers from a Pascal or C++ background who are used to mutable
strings may find the immutability of strings awkward at first. Python does, of
course, offer mutable strings; they are provided by the StringI0 module and the
(faster) cStringI0 module. PyQt’s QString class is also mutable. But with prac-
tice, the Python way of working with immutable strings, and in particular, the
idiom shown above, concatenating using the join() method, will soon be second
nature. We will look at another idiom, used for “composing” strings, shortly.

Python strings have many useful methods, but we will concentrate on the most
commonly used ones. In Python, methods are invoked on object references by
using the dot . operator to access the method, and parentheses () to signify
that we are performing a method (member function) call.* For example:

*As noted earlier, parentheses are not used with operators such as + and print.

24 Chapter 1. Data Types and Data Structures

>>>line = "The quick brown fox."
>>> line.find("q")
4

The find() method returns the index position of the leftmost occurrence of the
string it is given as an argument, inside the string it is applied to. It returns -1
on failure.

Python also provides an index() method that has identical usage, but which
raises a ValueError exception on failure. Other sequence classes (such as lists)
also have an index() method, so having one for strings gives consistency.

Since we can use either find() or index() on strings, is there any reason to
prefer one over the other? For one-off searches, it is often convenient to use
find() and just check the return value. But if we have a block of code where
we are performing lots of searches, using find() forces us to check the return
value of every search, whereas using index() allows us to assume the result is
always valid, and if it isn’t, to handle any errors in a single exception handler.
Of course, if we don’t catch the exception, it will be passed up the call stack, and
if it isn’t caught anywhere it will cause the application to terminate. We use
both approaches throughout the book, using whichever one is most appropriate
on a case-by-case basis.

String methods can be applied both to string objects and to string literals:

>>> "malthusian catastrophe".title()
'Malthusian Catastrophe'

The title() method returns a string that is a copy of the string it is applied
to, but with the first letter of every word capitalized. Python provides string
formatting of data types using a syntax that is very similar to the C library’s
printf() function.

To achieve formatting we use the binary % operator, which takes a format string
left-hand argument and a right-hand object (often a tuple of objects), which are
to be formatted. For example:

>>> "There are %i items" % 5
'There are 5 items'

The %i in the string is replaced by the number 5. The letter following the % in
a string format specifies the type of object that is expected, with %i signifying
an integer.

Here is an example that shows three different types being replaced, with
arrows showing which % item is replaced by which tuple element:

| | |

\Z ' i i i
>>> "The %i %S cost %f dollars" % (3, "fish", 17.49)
'The 3 fish cost 17.490000 dollars'

Excep-
tions vs.
testing
for
errors

= 68

Tuples
s 29

Numbers and Strings 25

Table 1.3 Selected String Methods and Functions

.join((x,...))

.lower()

.upper()
.replace(x, y)

.split()

.strip()

Syntax Description

X in s Returns True if string x is a substring of string s

X not in s Returns True if x is not a substring of string s

X+S Returns the concatenation of strings x and s

s *x1i Returns a string consisting of int i concatenations of
string s. For example, "Abc" * 3 produces "AbcAbcAbc".

len(s) Returns the length of string s; this is a byte count if s is
of type str and a character count if s is of type unicode

s.count(x) Returns the number of times string x occurs in string s.
This method, and several others, can take optional start
and end arguments to restrict the search to a slice of the
string they are called on.

.endswith(x) Returns True if string s ends with string x

.startswith(x) Returns True if string s starts with string x

.find(x) Returns the index position of the leftmost occurrence of x
in s; returns -1 if x is not found

.rfind(x) Like find(), but searches from right to left

.index(x) Returns the index position of the leftmost occurrence of x
in s; raises a ValueError exception if no x is found

.rindex(x) Like index (), but searches from right to left

.isdigit() Returns True if the string is not empty and the character
or characters it contains are all digits

.isalpha() Like isdigit(), but checks for letters

Returns a string which is the concatenation of the given

sequence delimited by the string on which the method is

called. For example,":".join(("A", "BB", "CCC")) returns
"A:BB:CCC". The delimiter can be empty.

Returns a lower-cased copy of string s
Returns an upper-cased copy of string s

Returns a copy of string s with any occurrences of string
x replaced by copies of string y

Returns a list of strings, splitting on whitespace. For
example, "ab\tc d e".split() returns ["ab", "c", "d",
"e"]. This method can be given a first argument which is
a string to split on, and a second argument which is the
maximum number of splits to make.

Returns a copy of the string with leading and trailing

whitespace removed. Accepts an optional string argu-
ment specifying which characters should be removed.

26 Chapter 1. Data Types and Data Structures

The % items are called format specifiers, and format strings contain at least
one. Format specifiers consist of a percent (%) symbol followed by a formatting
character. The percent symbol itself is specified by using %%. In the example,
we used %i which is the format specifier for an int, %s which is the specifier for
a string, and %f which is the specifier for a float.

Earlier we looked at how to insert a substring into a string. We showed how
to do this using slicing, and the more Pythonic way using the string join()
method. Here is a third way, using format specifiers:

>>>p = Ilpadll

>>>p = "%50%s" % (p[:1], p[2:])
>>>p

lpodl

Here we create a new string which consists of a string (which comes from the
first slice of p), “0”, and another string (from the second slice of p). The join()
approach shown earlier is used for concatenating strings; this approach is used
for “composing” strings.

We can exercise some control over the formatting of % items by putting some
information between the % and the letter. For example, to show only two digits
after the decimal place for a float we can use the specifier %.2f:

>>> "The length is %.2f meters" % 72.8958
'The length is 72.90 meters'

Here are a few more examples, two of which show the use of the % operator in
conjunction with the print statement:

>>>print "An integer", 5, "and a float", 65.3

An integer 5 and a float 65.3

>>>print "An integer %i and a float %f" % (5, 65.3)
An integer 5 and a float 65.300000

>>>print "An integer %i and a float %.1f" % (5, 65.3)
An integer 5 and a float 65.3

In many cases, %i (and its synonym, %d), %f, and %s suffice. The full details of
what format specifiers are available and how they can be modified to give spe-
cific results are given in the Python documentation;in this case, look for “String
Formatting Operations”. Other approaches to string formatting are also possi-
ble with Python, for example, Perl-like interpolation is provided by the Template
class in the string module. It is even possible to use a C++-like syntax; see the
recipe “Using a C++-like iostream Syntax”, in the Python Cookbook. (See the
Python Documentation sidebar.)

Notice that the print statement automatically outputs a space between each
argument it prints. It is possible to avoid this using sys.stdout.write() instead
of print; more coverage of write() is given in Chapter 6.

Numbers and Strings 27

Python Documentation

Python is supplied with a large amount of documentation. Most of the doc-
umentation is of good quality, but there are a few areas where the coverage
israther thin. Navigating the documentation using the HTML version takes
practice because it is organized more like a physical book than an online doc-
ument and has far too few cross-reference links between pages.

Windows users are fortunate here because for them the documentation
is supplied in Windows help file format. Click Start—All Programs—Python
2.x—Python Manuals to launch the Windows help browser. This tool has both
an Index and a Search function that makes finding documentation easy. For
example, to find the information about string format specifiers, simply enter
“formatting” in the Index line edit and the entry “formatting, string (%)”
will appear.

It is well worth skimming through the documentation. We suggest that you
look at the “Library Reference” page (Lib.html) to see what Python’s stan-
dard library offers, and clicking through to the documentation of whichever
topics are of interest. This should provide an initial impression of what is
available and should also help you to establish a mental picture of where
you can find the documentation you are interested in.

Note that some topics are covered under more than one heading. For exam-
ple, to read about strings, see “Sequence Types”, “String Methods”, “String
Formatting Operations”, and “String Services”. Similarly, for files and direc-
tories, see “File and Directory Access”, “Data Compression and Archiving”,
and “Files and Directories”.

For those who prefer printed information, the following books are worth con-
sidering.

e (Core PYTHON Programming by Wesley Chun. This is a Python
tutorial that may be suitable if you are completely new to Python and
want a slower pace than Part I of this book provides.

e Python in a Nutshell by Alex Martelli. This is an excellent reference
book that gives detailed and accurate coverage of the Python language
and Python’s standard library.

* Python Cookbook 2nd Edition, edited by Alex Martelli, Anna Martel-
li Ravenscroft, and David Ascher. This book provides lots of small
practical functions, classes, snippets, and ideas, and will help broad-
en any Python programmer’s awareness of what can be done
with Python. The recipes are also available online at http://aspn.
activestate.com/ASPN/Python/Cookbook.

For online Python information, the starting point is http://www.python.org.
This site is also home to the Python wiki. PyQt-specific information is
provided at http://www. riverbankcomputing.co.uk. The PyQt wikiis at http://
www.diotavelli.net/PyQtWiki.

http://www.python.org
http://aspn.activestate.com/ASPN/Python/Cookbook
http://aspn.activestate.com/ASPN/Python/Cookbook
http://www.diotavelli.net/PyQtWiki
http://www.diotavelli.net/PyQtWiki
http://www.riverbankcomputing.co.uk

Qt

28 Chapter 1. Data Types and Data Structures

When using PyQt we have access to an additional string type, QString. Unlike
Python’s str and unicode, QString is mutable; this means that we can change
QStrings in place, inserting and removing substrings, and changing individual
characters. QString has a rather different API from that provided by str and
unicode. (Qt provides QString because Qt is written in C++, which does not yet
have built-in Unicode support.)

QString holds Unicode characters, but depending on which version of Python
we are using, the internal representation may be different from Python’s Uni-
code representation; this doesn’t really matter, since PyQt can easily convert
between unicode and QString. For example:

>>> from PyQt4.QtCore import =
>>>a = QString("apple")

>>> b = unicode("baker")
>>>print a + b

applebaker

>>> type(a + b)

<class 'PyQt4.QtCore.QString'>

Here we import all the classes from the QtCore module, made available to us
through the PyQt4 module. When we perform operations involving QStrings
and Python strings, the resultant strings are always QStrings as the type()
function reveals.

When using PyQt, Qt methods that take string arguments can be given str,
unicode, or QString types, and PyQt will perform any necessary conversion
automatically. Qt methods that return strings always return QStrings. In view
of Python’s dynamic typing, we can easily become confused and not be sure
whether we have a QString or a Python string. For this reason, it is wise to
decide on a policy for string usage so that we always know where we stand.

The policy we use with PyQt is as follows:

¢ Use type str only when working with strictly 7-bit ASCII strings or with
raw 8-bit data, that is, with raw bytes.

¢ For strings that will be used only by PyQt functions, for example, strings
that are returned by one PyQt function only to be passed at some point to
another PyQt function—do not convert such strings. Simply keep them as
QStrings.

¢ In all other cases, use unicode strings, converting QStrings to unicode as
soon as possible. In other words, as soon as a QString has been returned
from a Qt function, always immediately convert it to type unicode.

This policy means that we avoid making incorrect assumptions about 8-bit
string encodings (because we use Unicode). It also ensures that the strings we
pass to Python functions have the methods that Python expects: QStrings have
different methods from str and unicode, so passing them to Python functions

String
slicing

22

Numbers and Strings 29

can lead to errors. PyQt uses QString rather than unicode because when PyQt
was first created, Python’s Unicode support was nowhere near as good as it
is today.

Collections

Once we have variables, that is, individual named object references to objects
of particular types, it is natural to want to have entire collections of object
references. Python’s standard collection types hold object references, so they
can, in effect, hold collections of any type of object. Another consequence of
collections using object references is that they can refer to objects of different
types: They are not restricted to holding items that are all of a single type.

The built-in collection types are tuple, list, dict (dictionary), set, and frozenset.
All except tuple and frozenset are mutable, so items can be added and deleted
from lists, dictionaries, and sets. Some additional mutable collection types are
provided in the collections module*

Python has one collection type in its standard library that does not hold object
references; instead, it holds numbers of a specified type. This is the array type
and it is used in situations where large numbers of numbers need to be stored
and processed as efficiently as possible.

In this section, we will look at Python’s built-in collection types.
Tuples

A tuple is an ordered sequence of zero or more object references. Like strings
(and as we will see shortly, like lists), tuples support sequence functions such
as len() as well as the same slicing syntax that we saw earlier. This makes it
really easy to extract items from a tuple. However, tuples are immutable so
we cannot replace or delete any of their items. If we want to be able to modify
an ordered sequence, we simply use a list instead of a tuple; or if we already
have a tuple but want to modify it, we just convert it to a list and then apply
our changes.

We have already had some informal exposure to tuples; for example, some of
our interactions in IDLE produced results that were wrapped up as tuples, and
we also used tuples to provide multiple arguments to the % operator.

Here are some examples that show how to construct tuples:

>>> empty = ()
>>> type(empty)
<type 'tuple'>
>>>one = ("Canary")

*The Qt library provides its own rich set of container classes for C++, but these are not available
in PyQt, and in any case, Python’s own collection classes are perfectly good to use.

30 Chapter 1. Data Types and Data Structures

>>> type(one)

<type 'str's>

>>>one = ("Canary",)
>>> type(one)

<type 'tuple'>

Creating an empty tuple is simple, but for a one item tuple, we must use a
comma to distinguish it from a parenthesized expression:

>>>things = ("Parrot", 3.5, u"\u20AC")
>>> type(things)
<type 'tuple'>

Tuples can hold items of any type; here we have str, float, and unicode items.
It is also possible to drop the parentheses for tuples that have at least two items
and where the meaning is unambiguous:

>>> jtems = "Dog", 99, "Cow", 28
>>> type(items)
<type 'tuple'>

Tuples can be arbitrarily nested and can be sliced, as these examples show:

>>> names = "Albert", "Brenda", "Cecil", "Donna"
>>> names|[:3]

('Albert', 'Brenda', 'Cecil')

>>> names[1]

'Brenda’

We create a tuple of names, then take a slice of the first three items, and then
look at the item at index position 1. Like all Python sequences, the first item is
at position O:

>>>names = names[0], names[1l], "Bernadette", names[2], names[3]
>>> names
('Albert', 'Brenda', 'Bernadette', 'Cecil', 'Donna')

Now we have changed the names tuple to refer to a new tuple with an extra item
in the middle. It might be tempting to write names[:1] instead of names[0],
names[1], and similarly names[2:] for the last two names, but if we did so we
would end up with a three-item tuple:

(('Albert', 'Brenda'), 'Bernadette', ('Cecil', 'Donna'))

This is because when we use slicing on a tuple the slices are always tuples
themselves.

>>> names
('Albert', 'Brenda', 'Bernadette', 'Cecil', 'Donna')
>>> names = names|[:4]

Collections 31

>>> names
('"Albert', 'Brenda', 'Bernadette', 'Cecil')

Here, we have, in effect, chopped off the last name by taking a tuple of the
first 4 items, that is, those with index positions 0, 1, 2, and 3. In slicing, the first
number is the first index and this item is included in the result, and the second
number is the last index and this item is excluded from the result.

>>> names
('"Albert', 'Brenda', 'Bernadette', 'Cecil')

>>> names = names|[:-1]
>>> names
('"Albert', 'Brenda', 'Bernadette')

Another way of chopping off the last item is to index from the end; this way we
don’t have to know what the length of the tuple is. But if we want to know the
length we can use the len() function:

>>>pets = (("Dog", 2), ("Cat", 3), ("Hamster", 14))
>>> len(pets)

3

>>> pets

(('Dog', 2), ('Cat', 3), ('Hamster', 14))
>>> pets[2][1]

14

>>> pets[1][0:2]

('Cat', 3)

>>> pets[1]

('Cat', 3)

Tuples can be nested and items accessed using as many square brackets
as necessary.

Any sequence can be given to the tuple constructor to create a tuple. For ex-
ample:

>>> tuple("some text")
(ISI' IOI' Imll Iell 1 I' Itl, IeI' IXI, Itl)

Tuples are useful when we need fixed ordered collections of objects. They are
also used as arguments to some functions and methods. For example, starting
with Python 2.5, the str.endswith() method accepts either a single string
argument (e.g., ".png") or a tuple of strings (e.g., (".png", ".jpg", ".jpeg")).

Lists

The list type is an ordered sequence type similar to the tuple type. All the
sequence functions and the slicing that we have seen working with strings and
tuples work in exactly the same way for lists. What distinguishes tuples from
listsis that lists are mutable and have methods that we can use to modify them.

Python
2.5

32 Chapter 1. Data Types and Data Structures

And whereas tuples are created using parentheses, lists are created using
square brackets (or by using the list() constructor).

Let us look at some slicing examples that extract parts of a list:

>>> fruit = ["Apple", "Hawthorn", "Loquat", "Medlar", "Pear", "Quince"]
>>> fruit[:2]

['Apple', 'Hawthorn']

>>> fruit[-1]

'Quince’

>>> fruit[2:5]

['Loquat', 'Medlar', 'Pear']

Here, we have used the familiar slicing syntax that we have already used for
strings and tuples.

Because lists are mutable we can insert and delete list items. This is achieved
by using method calls, or by using the slicing syntax where slices are used on
both sides of the assignment operator. First we will look at the method calls:

>>> fruit.insert(4, "Rowan")

>>> fruit

['Apple', 'Hawthorn', 'Loquat', 'Medlar', 'Rowan', 'Pear',
"Quince']

>>> del fruit[4]

>>> fruit

['Apple', 'Hawthorn', 'Loquat', 'Medlar', 'Pear', 'Quince']

We have inserted a new item and then deleted it, using a method call and an
operator. The del statement is used to remove an item at a particular index
position, whereas the remove () method is used to remove an item that matches
remove()’s parameter. So, in this example, we could also have less efficiently
deleted using fruit.remove("Rowan").

Now we will do the same thing using slicing:

>>> fruit[4:4] = ["Rowan"]

>>> fruit

['Apple', 'Hawthorn', 'Loquat', 'Medlar', 'Rowan', 'Pear',
"Quince']

>>> fruit[4:5] = []

>>> fruit

['Apple', 'Hawthorn', 'Loquat', 'Medlar', 'Pear', 'Quince']

When we assigned “Rowan” we used square brackets because we were insert-
ing a list slice (a one-item list) into a list slice. If we had omitted the brackets,
Python would have treated the word “Rowan” as a list in its own right, and
would have inserted “R”, “0”, and so on, as separate items.

Collections

33

Table 1.4 Selected List Methods and Functions

Syntax Description

x in L Returns True if item x isin list L

X not in L Returns True if item x is not in list L

L+m Returns a list containing all the items of list L and of list
m; the extend() method does the same but more efficiently

len(L) Returns the length of list L

L.count(x) Returns the number of times item x occursin list L

L.index(x) Returns the index position of the leftmost occurrence of
item x in list L, or raises a ValueError exception

L.append(x) Appends item x to the end of list L

L.extend(m) Appends all list m’s items to the end of list L

L.insert(i, x) Insertsitem x into list L at index position int i

L.remove(x) Removes the leftmost occurrence of item x from list L, or
raises a ValueError exception if no x is found

L.pop() Returns and removes the rightmost item of 1ist L

L.pop(i) Returns and removes the item at index position int i in L

L.reverse() Reverses list L in-place

L.sort() Sorts list L in-place; this method accepts optional argu-

ments such as a comparison function or a “key” to facilitate
DSU (decorate, sort, undecorate) sorting

When inserting using slices, the source and target slices can be of different
lengths. If the target slice is of zero length, such as fruit[4:4], only insertion
takes place; but if the target’s length is greater than zero, the number of items
in the target slice are replaced by the items in the slice that is inserted. In
this example, we replaced a one-item slice with a zero-item slice, effectively
deleting the one item.

Here are a few more examples:

>>> fruit[2:3] = ["Plum", "Peach"]

>>> fruit

['Apple', 'Hawthorn', 'Plum', 'Peach', 'Medlar', 'Quince']
>>> fruit[4:4] = ["Apricot", "Cherry", "Greengage"l]

>>> fruit

['Apple', 'Hawthorn', 'Plum', 'Peach', 'Apricot', 'Cherry',
'Greengage', 'Medlar', 'Quince']

>>>bag = fruit[:]

>>> bag

['Apple', 'Hawthorn', 'Plum', 'Peach', 'Apricot', 'Cherry',
'Greengage', 'Medlar', 'Quince']

34 Chapter 1. Data Types and Data Structures

Shallow and Deep Copying

We saw earlier (on page 16) that if we have two variables referring to
the same string and we change one of them, for example using += to
append—Python creates a new string. This occurs because Python strings
are immutable. For mutable types such as lists (and dictionaries, covered
shortly), the situation is different.

For example, if we create a list with two variables referring to it, and we
change the list through one of the variables, both variables now refer to the
same changed list:

>>> seaweed = ["Aonori", "Carola", "Dulse"]

>>>macroalgae = seaweed

>>> seaweed, macroalgae

(['Aonori', 'Carola', 'Dulse'], ['Aonori', 'Carola', 'Dulse'])
>>>macroalgae[2] = "Hijiki"

>>> seaweed, macroalgae

(['Aonori', 'Carola', 'Hijiki'], ['Aonori', 'Carola', 'Hijiki'])

This is because by default, Python uses shallow copying when copying
mutable data. We can force Python to do a deep copy by taking a slice that
consists of the entire list:

>>> seaweed = ["Aonori", "Carola", "Dulse"]

>>>macroalgae = seaweed]:]

>>> seaweed, macroalgae

(['Aonori', 'Carola', 'Dulse'], ['Aonori', 'Carola', 'Dulse'])
>>>macroalgae[2] = "Hijiki"

>>> seaweed, macroalgae

(["Aonori', 'Carola', 'Dulse'], ['Aonori', 'Carola', 'Hijiki'])

Slices always copy the items sliced, whether we slice a part of a list, or the
whole list as we have done here. However, this works only one level deep,
so if we had a list of lists, the sublists would only be shallow-copied. Some

other collection types—for example, dict—provide a copy () method which is
their equivalent of [:].

For deep copying that works to any depth we must import the copy module
and use the deepcopy() function. In practice though, this is very rarely a
problem, and when it does trip us up, using deepcopy() sorts it out for us.

We have replaced a slice of length one, fruit[2:3] (“Loquat”), with a slice of
length two. We have also inserted a slice of three items without removing any.
In the last example we copied all of fruit’s items to bag; this could have been
done using bag = fruit, but with subtly different semantics; see the Shallow and
Deep Copying sidebar for more about copying lists.

Collections 35

Multiple consecutive items can be deleted using del on a slice, or by assigning
a zero-length slice to a slice. To insert multiple items we can use slicing, or
we can slice with operator +, and to add at the end we can use extend(). See
Table 1.4 for a summary of the methods and functions applicable to lists.

Dictionaries

The dict type is a data dictionary, also known as an associative array. A
dictionary holds a set of unordered key—value pairs and provides very fast key
lookup. Keys are unique and must be of an immutable type, such as a Python
string, a number, or a tuple; the value can be of any type including collection
types, so it is possible to create arbitrarily nested data structures. Although
dictionaries are not sequences, we can get sequences of their keys and values,
as we will see in the next chapter.

Similar data structures exist in other languages—for example, Perl’s hash,
Java’s HashMap, and C++s unordered_map.

Notice that a tuple can be a dictionary key, but a list cannot, since a dictionary’s
keys must be immutable. In languages that offer only simple keys like strings
and numbers, programmers who want multi-item keys must resort to con-
verting their items into a string, but thanks to tuples this kind of hack is not
necessary in Python.

Here are some examples that show how to create a dictionary and access items
in it:
>>> insects = {"Dragonfly": 5000, "Praying Mantis": 2000,
"Fly": 120000, "Beetle": 350000}
>>> insects
{'Fly': 120000, 'Dragonfly': 5000, 'Praying Mantis': 2000,
'Beetle': 350000}
>>> insects["Dragonfly"]
5000
>>> insects["Grasshopper"] = 20000
>>>insects
{'Fly': 120000, 'Dragonfly': 5000, 'Praying Mantis': 2000,
'Grasshopper': 20000, 'Beetle': 350000}

Items can be deleted from a dictionary in the same way they can be deleted
from a list. For example:

>>> del insects["Fly"]

>>> insects

{'Dragonfly': 5000, 'Praying Mantis': 2000, 'Grasshopper': 20000,
'Beetle': 350000}

>>> insects.pop("Beetle")

350000

>>> insects

{'Dragonfly': 5000, 'Praying Mantis': 2000, 'Grasshopper': 20000}

36 Chapter 1. Data Types and Data Structures

Table 1.5 Selected Dictionary Methods and Functions

Syntax Description

x in d Returns True if item x is in dict d

x not in d Returns True if x isnot in dict d

len(d) Returns the number of items in dict d

d.clear() Removes all items from dict d

d.copy() Returns a shallow copy of dict d

d.keys() Returns a list of all the keys in dict d

d.values() Returns a list of all the valuesin dict d

d.items() Returns a list of tuples of all the (key, value) pairs in
dictd

d.get (k) Returns the value with key k, or None

d.get(k, x) Returns the value with key k if kisin dict d; otherwise,
returns x

d.setdefault(k, x) The same asthe get() method, except that if the key is
not in dict d, a new item is inserted with the given key
and a value of None or x if x is given

d.pop (k) Returns and removes the item with key k; raises a
KeyError exception if there is no such key in dict d

d.pop(k, x) Returns and removes the item with key k if kisin dict
d; otherwise, returns x

Dictionaries can be constructed using the dict() constructor, and if the keys
happen to be valid identifiers (i.e., alphanumeric beginning with an alphabetic
character and with no whitespace), we can use a more convenient syntax:

>>>vitamins = dict(B12=1000, B6=250, A=380, C=5000, D3=400)
>>> vitamins
{'A': 380, 'C': 5000, 'B12': 1000, 'D3': 400, 'B6': 250}

We mentioned earlier that dictionary keys can be tuples; here is one last
example to show this in action:

>>>points3d = {(3, 7, -2): "Green", (4, -1, 11): "Blue",

(8, 15, 6): "Yellow"}

>>> points3d

{(4, -1, 11): 'Blue', (8, 15, 6): 'Yellow', (3, 7, -2): 'Green'}
>>> points3d[(8, 15, 6)]

'Yellow'

In Chapter 2 we will see how to iterate over dictionaries in their “natural”
arbitrary order, and also in key order.

Collections 37

Sets

Python provides two set types: set and frozenset. Both are unordered, so
neither is a sequence. Sets are mutable, so items can be added and removed.
Frozensets are immutable and cannot be changed; however, this means that
they are suitable for use as dictionary keys.

Every item in a set is unique; if we try to add an item that is already in a
set the add() call does nothing. Two sets are equal if they contain the same
items, no matter what order those items were inserted in. Sets are similar to
dictionaries that have only keys and no values. Lists, on the other hand keep,
their items in insertion order (unless they are sorted), and allow duplicates.

A frozenset is constructed with a single sequence parameter—for example a
tuple or a list. A set can be constructed in the same way. For example:

>>> unicorns = set(("Narwhal", "Oryx", "Eland"))

>>> "Mutant Goat" in unicorns
False

>>> "0ryx" in unicorns

True

Since we created a set rather than a frozenset we can add and remove items.
For example:

>>>unicorns.add("Mutant Goat")

>>> unicorns

set(['Oryx', 'Mutant Goat', 'Eland', 'Narwhal'])
>>> unicorns.add("Eland")

>>> unicorns

set(['Oryx', 'Mutant Goat', 'Eland', 'Narwhal'])
>>> unicorns.remove("Narwhal")

>>> unicorns

set(['Oryx', 'Mutant Goat', 'Eland'])

The set classes also support the standard set operations—for example, union,
intersection, and difference—and for some operations provide both methods
and operators, as Table 1.6 shows.

Built-in Functions

As we have already seen, Python has a number of built-in functions and
operators: for example, del, print, len(), and type(). Tables 1.7-1.9 show some
others that are useful, some of which we will discuss here.

In IDLE, or when using the Python interpreter directly, we can use the help()
function to get information about an object, or to enter Python’s interactive
help system. For example:

>>> help(str)

38 Chapter 1. Data Types and Data Structures

Table 1.6 Selected Set Methods and Functions

Syntax Description

X in s Returns True if item x is in set s

X not in s Returns True if item x is not in set s

len(s) Returns the number of items in set s

s.clear() Removes all the items from set s

s.copy() Returns a shallow copy of set s

s.add(x) Adds item x to set s if it is not already in s

s.remove(x)

Removesitem x from set s, or raises a KeyError exception
if xisnotin s

s.discard(x) Removes item x from set s if itisin s

s.issubset(t) Returns True if set s is a subset of set t

s <=t

s.issuperset(t) Returns True if set s is a superset of set t

s >=t

s.union(t) Returns a new set that has all the items from set s and

s |t from set t

s.intersection(t) Returnsa new set that haseach item that is both in set

s&t sandin set t

s.difference(t) Returns a new set that has every item that is in set s

s -t that is not in set t

Table 1.7 Selected Sequence-Related Built-ins

Syntax Description

all(q) Returns True if all items in q are True; q is an iterable—for [z
example, a sequence such as a string or a list

any(q) Returns True if any item in q is True Fython

X in g Returns True if item x is in sequence g; also works for dictio-
naries

x not in g Returns True if item x is not in sequence q; also works for dic-
tionaries

len(q) Returns the number of items in sequence g; also works for dic-
tionaries

max(q) Returns the maximum item of sequence q

min(q) Returns the minimum item of sequence q

sum(q) Returns the sum of the items in sequence q

Built-in Functions

39

Syntax
chr(i)

unichr(i)

ord(c)

dir(x)
help(x)

hasattr(x, a)
id(x)

isinstance(x, C)

type(x)

eval(s)

open(f, m)

range(1i)

Table 1.8 Some Useful Built-ins

Description

Returns a one-character str whose ASCII value is given
by int i

Returns a one-character unicode string whose Unicode
code point is given by int i

Returns the int that is the byte value (0-255) if cis a
one-character str string, or the int for the Unicode code
point if ¢ is a one-character unicode string

Returns a list of most of object x’s attributes, including
all its method names

In IDLE, prints a brief description of object x’s type and
a list of its attributes including all its methods

Returns True if the object x has the attribute called a
Returns the unique ID of the object that object reference
x refers to

Returns True if x is an instance of class C or a subclass of
class C

Returns the type of x; isinstance() is preferred since

it accounts for inheritance; type() is most often used

for debugging

Returns the result of evaluating the string s which can
contain an arbitrary Python expression

Opens the file named in string f using mode m, and re-
turns the file handle; covered in Chapter 6

Returns a list of int i ints numbered from 0 to i - 1; ad-
ditional arguments specify start, end, and step values

This will display all the str class’s methods with a brief explanation of each.
Quite a lot of information is provided, so we often have to scroll up using the
PageUp key or using the scrollbar.

>>> help()

With no arguments the help() function takes us into the interactive help
system. Type quit to return to normal IDLE interaction.

Once we are familiar with Python’s classes and we need just a quick reminder,
we can use dir() to get a bare list of a class’s methods, for example:

>>> dir(str)

range()
ex-
amples

= 50

40 Chapter 1. Data Types and Data Structures

Table 1.9 Selected Math-Related Built-ins

Syntax Description
abs(n) Returns the absolute value of number n

divmod(i, j) Returns a tuple containing the quotient and remainder that
result from dividing i by j

hex (i) Returns a hexadecimal string representing number i

oct(i) Returns an octal string representing number i

float(x) Returns x converted to a float; x may be a string or a num-
ber

int(x) Returns x converted to an int; x may be a string or a num-
ber

long(x) Returns x converted to a long; x may be a string or a num-
ber

pow(x, V) Returns x raised to the power y; can accept a third modulo

argument—the two-argument form is the same as using
operator **

round(x, n) Returns float value x rounded to n digits after the deci-
mal place

The range() function is covered in Chapter 2 when we look at looping, and the
open() function is covered in Chapter 6 when we look at reading and writing
files. The hasattr() and isinstance() functions are covered in Chapter 3.

For the sequence-related functions, max() and min() work on sequences that
contain strings as well as those that contain numbers, but may give suprising
results:

>>>x = "Zebras don't sail"
>>>max(x), min(x)
(I.tl, 1 I)

The ordering is based on the byte values for str strings and on code points for
unicode strings. For example, ord("Z") is 90, whereas ord("t") is 116.

Some of Python’s built-in mathematical functions are shown in Table 1.9.
Python is also supplied with a mathematics library that has all the standard
functions we would expect. We can discover what they are by importing the
math module, and using dir():

>>> import math

>>> dir(math)

[' doc_ ', ' file ', ' name_ ', 'acos', 'asin', 'atan', 'atan2',
‘ceil', 'cos', 'cosh', 'degrees', 'e', 'exp', 'fabs', 'floor', 'fmod',
"frexp', 'hypot', 'ldexp', 'log', 'logl0®', 'modf', 'pi', 'pow',
‘radians', 'sin', 'sinh', 'sqrt', 'tan', 'tanh']

Built-in Functions 41

The first three items are special methods (indicated by leading and trailing
double underscores); we will learn more about special methods in Chapter 3.
All the rest are functions, except for math.e and math.pi, which are constants.
We can find out what type an item is interactively. For example:

>>> import math

>>> type(math.pi), type(math.sin)

(<type 'float'>, <type 'builtin function or method'>)
>>>math.pi, math.sin

(3.1415926535897931, <built-in function sin>)
>>>math.sin(math.pi)

1.2246063538223773e-16*

At first it is quite useful to explore what Python offers in this interactive
way, but reading the documentation, particularly skimming the “Library
Reference”, will provide a broad overview of what Python’s standard libraries
have to offer.

Summary

In this chapter, we saw the use of the assignment using operator =, numeric
addition using + (with type-promotion of an int to a float), and augmented as-
signment with +=. We also saw the print operator and learned that since IDLE
automatically prints expressions, we use print much less often when using
IDLE. We also saw that comments are introduced by a # and continue until the
end of the line. In fact Python can separate statements with semicolons but it
is very unusual to do this: In Python, a statement occupies a single line; newline
is the statement separator.

We have learned how Python strings are created by using quotes, and how
strings can be sliced and concatenated using the [] and + operators. We also
summarized some of the key methods that Python strings provide: We will see
numerous examples of their use in working code throughout the book. We saw
that QString is a distinct Unicode string type and that we need to have a policy
governing our use of QStrings and Python strings (normally unicode strings)
when programming using PyQt.

The chapter introduced Python’s major collection types. Tuples provide a nice
way of grouping items together and can be used as dictionary keys. Lists are
ordered and can hold duplicates. They provide fast insertions and deletions,
and fast index-based lookup. Dictionaries are unordered and have unique
keys. Like lists, they provide fast insertions and deletions. They also provide
fast key-based lookup. Sets can be thought of as dictionaries that don’t hold
values. We will make great use of all these types in the rest of the book.

*The value 0.00000000000000012246063538223773 s close to 0 as expected.

42 Chapter 1. Data Types and Data Structures

Finally, we had a quick glimpse at some of Python’s built-in functionality and
at one of its mathematics modules. In Chapter 3, we will see how to create
our own modules. But before that, we need to learn about Python’s control
structures so that we can branch, loop, call our own functions, and handle
exceptions—all of which are the subject of the next chapter.

Exercises

The purpose of the exercises here, and throughout the book, is to encourage
you to try out Python, and from Part II onward, PyQt, to get some hands-on
experience. The exercises are designed to require as little typing as possible,
and they are graded from least to most challenging.

The exercises for this chapter can all be tried out directly in IDLE; from
Chapter 2 onward, they are slightly longer and will need to be typed into files,
as we will explain.

1. Run IDLE, and type in the following:

one = [9, 36, 16, 25, 4, 1]
two = dict(india=9, golf=17, juliet=5, foxtrot=61, hotel=8)
three = {11: "lima", 13: "kilo", 12: "mike"}

Try to predict what the len(),max(),min(), and sum() functions will produce
for each of the three collections, and then apply the functions and see the
results. Do they do what you expected?

2. Continuing in IDLE, assign a dictionary’s keys to two variables, and then
change one of them like this:

d = dict(november=11, oscar=12, papa=13, quebec=14)
vl = v2 = d.keys()

vl, v2 # This will show the contents of the lists
vl[3] = "X"

After this, do you expect vl and v2 to be the same or different? Why? Print
out vl and v2 to see. Now try assigning to vl and v2 separately, and again
change one:

vl = d.keys()
v2 = d.keys()
V1[3] = ||X||

Will vl and v2 be the same as before? Print them out to see. If any of this
is mysterious, try rereading the sidebar on page 34.

3. In the documentation, string-related methods and functions are covered
in several places—find and read or skim these pages: “Sequence types”,
“String methods”, “String formatting operations”, and “String constants”.

Exercises 43

If you are comfortable with regular expressions, also look at the “Regular
expression operations” pages.

Still in IDLE, create two floating-point values:

f
g

-34.814
723.126

Based on your reading of the string-formatting documentation, create a
single format string that when used with the % operator will produce the
string < -34.81> when applied to f and <+723.13> when applied to g.

Solutions to the exercises, and all the source code for the examples, is available
online from the author’s Web site at http://www.gtrac.eu/pyqtbook.html. In
the pyqtbook.zip file (and in the pyqtbook.tar.gz file) there are subdirectories,
chap01, chap02, and so on, and in these are the relevant examples and answers.
This chapter’s answers are in chap0l/answers. txt.

http://www.qtrac.eu/pyqtbook.html

This page intentionally left blank

® Conditional Branching
® Looping
® Functions

® Exception Handling

Control Structures

To write programs we need data types, with variables and data structures in
which to store them, and we need control structures such as branches and loops
to provide control of program flow and iteration. In this chapter, we will learn
how to use Python’s if statement and how to loop using for and while loops.
Exceptions can affect the flow of control, so we also cover both handling and
creating exceptions.

One fundamental way of encapsulating functionality is to put it into functions
and methods. This chapter shows how to define functions, and the next chapter
shows how to define classes and methods. Programmers coming from a C++
or similar background are used to functions being defined just once. The same
is true in Python, but with an additional possibility: In Python, we can create
functions at runtime in a way that reflects the current circumstances, as we
will see later in this chapter.

In the preceding chapter, we used IDLE to experiment with snippets of Python
code. In this chapter, we will almost always simply show the code as it would be
written in a file as part of a program. However, it is perfectly possible to type
the snippets used in this chapter into IDLE to see the results “live”, and this is
certainly worth doing for anything covered that you are not sure about.

Some of Python’s functions and operators work on Boolean values. For exam-
ple, the binary operator in returns True if its left-hand operand is in its right-
hand operand. Similarly, the if and while statements evaluate the expressions
they are given, as we will see shortly.

In Python, a value evaluates to False if it is the predefined constant False, the
number 0, the special object None, an empty sequence (e.g., an empty string or
list), or an empty collection; otherwise, the value is True.

In PyQt an empty QString and any “null” object, that is, any object of a PyQt
data type that has an isNull() method (and where isNull() returns True), eval-
uates to False. For example, an empty QStringList,a null QDate, a null QDateTinme,

45

Qt

46 Chapter 2. Control Structures

and a null QTime are all False. Correspondingly, nonempty and non-null PyQt
objects are True.

We can test any object to see its Boolean value by converting it to a bool type.
For example:

from PyQt4.QtCore import x

now = QDate.currentDate()

never = QDate()

print bool(now), bool(never) # Prints "True False"

The QDate() constructor with no arguments creates a null date; the QDate.
currentDate() static method returns today’s date which, of course, is not null.

Conditional Branching

Python provides an if statement with the same semantics as languages like
C++ and Java, although with its own sparse syntax:

if expressionl:
suitel
elif expression2:

suite2
else:
suite3

The first thing that stands out to programmers used to C++ or Java is that
there are no parentheses and no braces. The other thing to notice is the
colon: This is part of the syntax and is easy to forget when starting out. Colons
are used with else, elif, and in many other places to indicate that a block of
code (a suite in Python-speak)is to follow. As we would expect, there can be any
number of elifs (including none), and optionally, there can be a single else at
the end.

Unlike most other programming languages, Python uses indentation to signify
its block structure. Some programmers don’t like this, at least at first, and some
get quite emotional about the issue. But it takes just a few days to get used to,
and after a few months, brace-free code seems much nicer and less cluttered to
read than code that uses braces.

Since suites are indicated using indentation, the question that naturally arises
is, “What kind of indentation?”. The Python style guidelines recommend four
spaces per level of indentation, and only spaces (no tabs). Most modern text ed-
itors can be set up to handle this automatically (IDLE’s editor does, of course).
Python will work fine with any number of spaces or with tabs, providing that
the indentation used is consistent. In this book, we will follow the official
Python guidelines.

Let’s begin with a very simple example:

Conditional Branching 47

Table 2.1 Logical Operations

Group Operators Description

Comparison <,<=,==, The <> operator is also permitted as a synonym
I=,>= > for != but is deprecated

Identity is,is not These are used to determine if two object refer-
ences refer to the same underlying object

Membership in,not in These are used on lists, dictionaries, and strings,
as we saw in Chapter 1

Logical not,and, Both and and or short-circuit; the bit-wise equiv-
or alents are: ~ (not), & (and), | (or), and " (xor)

if x > 0:
print x

In this case, the suite is just one statement (print x). In general, a suite is a
single statement, or an indented block of statements (which themselves may
contain nested suites), or the keyword pass which does absolutely nothing. The
reason we need pass is because Python’s syntax requires a suite, so if we want
to put in a stub, or indicate that we are handling a “do nothing” case, we must
use something, so Python provides pass; for example:

if x ==
pass # do nothing in this case

In general, whenever Python’s syntax has a colon followed by a suite, the suite
can be on the same line if it is just a single statement. For example:

if x == 5: pass

If the suite is more than a single statement, it must begin on the following line
at the next level of indentation.

Python supports the standard comparison operators, and for logical operations
it uses names (not, and, and or) rather than symbols. It is also possible to
combine comparison expressions in a way that is familiar to mathematicians:

if 1 <= x <= 10:
print x

Here, we print x if it is between 1 and 10. If x is an expression with no side
effects, the above statement is equivalent to:

if 1 <= x and x <= 10:
print x

48 Chapter 2. Control Structures

No Dangling Else Trap

One additional benefit of using indentation is that the “dangling else
ambiguity” is impossible in Python. For example, here is some C++ code:

if (x > 0)
if (y > 0)
z =1;
else
zZ =5;

The code sets z to 1 if both x and y are greater than 0, and it looks like it
will set z to 5 if x is less than or equal to 0. But in fact, it sets z to 5 only if
x is greater than 0 and if y is less than or equal to 0. Here is what it means
in Python:

if x > 0:
if y > 0:
z=1

else:
zZ=5

And if we really want z set to 5 if x is less than or equal to 0, we would
write this:

if x > 0:
if y > 0:
z=1
else:
z=5

Thanks to Python’s indentation-based block structure, we avoid the
“dangling else” trap.

The first form is preferred: It is clearer and simpler, it is more efficient (since
x may be a complex expression involving some overhead to evaluate), and it is
easier to maintain (again because the x is used only once rather than twice).

Python provides multiway branching using elif and else; there is no case (or
switch) statement.

if x < 10:
print "small"
elif x < 100:

print "medium"
elif x < 1000:

print "large"
else:

print "huge"

Conditional Branching 49

Python 2.5 introduced a conditional expression. It is a kind of if statement
that can be used in expressions, and it is equivalent to the ternary operators
used by some other languages. The Python syntax is quite different from
C++s and Java’s, which use ? : for their ternary operators, and it has the form
trueResult if expression else falseResult; so the expression is in the middle:

print "x is zero or positive" if x >= 0 else "x is negative"

This will print “x is zero or positive” if x >= 0 evaluates to True; otherwise, it will
print “x is negative”*

Looping

Python provides two loop constructs. One is the while loop, whose basic
syntax is:

while expression:
suite

Here is an example:

count = 10

while count != 0:
print count,
count =1

This will print “1098 76 54 32 1”—all on one line, due to the print statement’s
trailing comma. Notice that we must have a colon before the indented suite.

Loops can be broken out of prematurely, using the break statement. This is
particularly helpful in loops which will not otherwise terminate, that is,
because their conditional expression is always true:

while True:
item = getNextItem()
if not item:
break
processItem(item)

Python’s while loop can also have an associated else statement using the
following syntax:

while expression:
suitel

else:
suite2

*Andrew Kuchling, author of the “What’s New in Python” documents, recommends always using
parentheses with conditional expressions. In this book, we use them only when necessary.

Python
2.5

50 Chapter 2. Control Structures

The else clause (with its associated suite) is optional. It is executed if the loop
terminates at the condition, rather than due to a break statement. It is not
often used, but can be useful in some situations:

i=20
while i < len(mylist):
if mylist[i] == item:
print "Found the item"
break
i+=1
else:
print "Didn't find the item"

The while loop is very versatile, but since it is so common to want to loop over
all the items in a list, or to loop a specific number of times, Python provides an
additional loop construct that is more convenient in such cases. This is the for
loop, whose syntax is:

for variable in iterable:
suitel

else:
suite2

The else works the same as in the while loop, that is, its suite is executed if
the for loop completes, but not if it was terminated by a break statement. An
iterable is an object that can be iterated over, such as a string, a tuple, a list, a
dictionary, or an iterator (such as a generator, covered later). In the case of a
dictionary, it is the keys that are iterated over.

Here, we iterate over a string, that is, over each character in the string:

for char in "aeiou":
print "%s=%d" % (char, ord(char)),

This prints “a=97 e=101 i=105 0=111 u=117”. The variable char takes each
value from the iterable in turn (in this case “a”, then “e”, and so on up to “u”),
and for each iteration executes the associated suite.

The range() built-in function returns a list of integers that can conveniently be
used in for loops. For example:

for i in range(10):
print i,

This prints “01234 56 78 9”. By default, the range() function returns a list
of integers starting at 0, increasing by 1, up to but excluding the given value.
It also has two- and three-argument forms:

range(3, 7) # Returns [3, 4, 5, 6]
range(-4, 12, 3) # Returns [-4, -1, 2, 5, 8, 11]

Looping 51

Python also provides an xrange() function with the same semantics, but which
is more memory-efficient in a for loop, because it evaluates lazily rather than
generating the entire list of integers in one go. We will normally use range()
and substitute it with xrange() only if it makes a significant difference to per-
formance.

If the for loop’s iterable is mutable (e.g., a list or a dictionary), it must not
be changed inside the loop. If we want to change a list or dictionary as we
iterate over it, we must iterate over a list of the list’s indexes or a list of the
dictionary’s keys, or use a shallow copy, rather than working directly on the
collections themselves. For example:

presidents = dict(Washington=(1789, 1797), Adams=(1797, 1801),
Jefferson=(1801, 1809), Madison=(1809, 1817))
for key in presidents.keys():
if key == "Adams":
del presidents[key]
else:
print president, presidents[key]

This removes the “Adams” key (and its associated value) from the presidents
dictionary, and prints:

Madison (1809, 1817)
Jefferson (1801, 1809)
Washington (1789, 1797)

Notice that although Python normally uses newline as a statement separator,
this does not occur inside parentheses. The same is true when we create lists
in square brackets or dictionaries in braces. This is why we can spread the
construction of the presidents dictionary over a couple of lines without having
to escape the intervening newline with a backslash (\).

Since dictionaries hold pairs of keys and values, Python provides methods for
iterating over the keys, the values, and the pairs. And as a convenience, if we
simply iterate over a dictionary, we don’t even have to call the keys() method
to get the keys:

presidents = dict(Washington=(1789, 1797), Adams=(1797, 1801),
Jefferson=(1801, 1809), Madison=(1809, 1817))
for key in presidents:
print "%s: %d-%d" % (key, presidents[key][0], presidents[key][1])

This prints (not necessarily in this order):

Madison: 1809-1817
Jefferson: 1801-1809
Washington: 1789-1797
Adams: 1797-1801

52 Chapter 2. Control Structures

When we iterate over a dictionary in a for loop the variable is set to each
dictionary key in turn.* Dictionaries are unordered, so their keys are returned
in an undefined order.

To get the values rather than the keys we can use the values() method—for
example, for dates in presidents.values(): and to get pairs we can use the
items() method. For example:

for item in presidents.items():
print "%s: %d-%d" % (item[0], item[1][0], item[1][1])

This produces the same output as the previous example, as does the following:

for president, dates in presidents.items():
print "%s: %d-%d" % (president, dates[0], dates[1])

Here we have unpacked each pair returned by the items() method, the dates
being the two-element tuple of dates.

If we want to iterate in order, we must explicitly sort the list before we iterate
on it. For example, to iterate in name order we can do this:

for key in sorted(presidents):
print "%s: %d-%d" % (key, presidents[key][0], presidents[key][1])

Both for loops and the sorted() function can work on sequences or on iterators.
Iterators are objects that support Python’s iterator protocol, which means that
they provide a next() method, and raise a StopIteration exception when they
have no more items. Not surprisingly, lists and strings implement the proto-
col: A list iterator returns each item in the list in turn, and a string iterator
returns each character of the string in turn. Dictionaries also support the pro-
tocol: They return each of their keys in turn (in an arbitrary order). So, when
we use a for loop or call sorted() on a dictionary, we actually operate on the
dictionary’s keys. For example:

names = list(presidents)
names == ['Madison', 'Jefferson', 'Washington', 'Adams']

So in the for loop, we effectively called sorted(list(presidents)) which is the
same as sorted(presidents.keys()). If we want to be more explicit, we could
break things down into steps:

keys = presidents.keys() # 0r: keys = list(presidents)
keys.sort()
for key in keys:
print "%s: %d-%d" % (key, presidents[key][0], presidents[key][1])

*Note for C++/Qt programmers: Python’s for loop iterates over a dictionary’s keys, whereas Qt’s
foreach loop iterates over a QMap’s values.

%

operator

24 =

Looping 53

Python’s sort() method and sorted() function can take additional arguments.
So, for example, we could sort the presidents dictionary by dates.

In addition to the keys(), values(), and items() methods, dictionaries also
provide iterkeys(), itervalues(), and iteritems() methods. These additional
methods can be used just like the plain versions, and they provide better per-
formance. However, they cannot be used to iterate over a dictionary whose keys
will change during the iteration.

Just like while loops, we can use break to leave a for loop before the iterations
are complete. We can also use continue in both kinds of loop to immediately
jump to the next iteration. For example:

for x in range(-5, 6):
if x ==
continue # goes directly to the next iteration
print 1.0 / x,

This will produce output like this: “-0.2 -0.25 -0.333333333333 -0.5-1.0 1.0 0.5
0.333333333333 0.25 0.2”. Without the continue, we would eventually attempt
division by zero and get an exception.

As mentioned earlier, Python’s loops can have an optional else clause that is
executed only if the loop completed, that is, the else clause will not be executed
if break was called inside the loop. An example will make this clearer; here is
an inefficient way of generating a list of primes:

primes = [2]
for x in range(2, 50):
if x % 2:
for p in primes:
if x%p==0:
break # exits the loop and skips the else
else:
primes.append(x)

When we saw the % operator earlier, it was used with string operands and
produced a formatted string as its result. Here, we use the % operator with
integer operands, and in this context it performs the modulus (remainder)
operation, and produces an integer as its result.

At the end, the primes listis [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41,
43, 47]. The append() method is called only if the iteration over the primes list
completes, that is, if x is not divisible by any previous prime.

List Comprehensions and Generators

Producing lists using a for loop in conjunction with range() is easy. In addition,
Python provides an alternative approach called list comprehensions—these are
expressions that generate lists. (Note that this and other advanced sections in

54 Chapter 2. Control Structures

Parts I, I, and III, are indicated by a rocket in the margin. You can skip these
on first reading since back-references are given where appropriate.)

Let us generate a list of numbers divisible by 5:

fives = []
for x in range(50):
if x %5 == 0:
fives.append(x)
fives = [0, 5, 10, 15, 20, 25, 30, 35, 40, 45]

This involves the familiar combination of for and range().

Now we will see how to generate a simple list of consecutive numbers using a
list comprehension:

[x for x in range(10)]

This produces thelist [0, 1, 2, 3, 4, 5, 6, 7, 8, 9].List comprehensions can
have conditions attached:

fives = [x for x in range(50) if x % 5 == 0]

This generates the same fives list as our original for loop. More complex list
comprehensions with nested for loops are perfectly possible, although the more
conventional syntax may be easier to read in such cases.

One drawback of list comprehensions is that they generate the entire list
in one go, which can consume a lot of memory if the list is very large. This
problem also applies to the conventional syntax, but you can get around it by
using xrange() instead of range(). Python generators provide another solution.
These are expressions that work like list comprehensions, except that they
generate their lists lazily.

fives = (x for x in range(50) if x % 5 == 0)

This is almost identical to the list comprehension (the only obvious difference
being the use of parentheses rather than square brackets), but the object re-
turned is not a list! Instead, a generator is returned. A generator is an iterator,
so we can do things like this:

for x in (x for x in range(50) if x % 5 == 0):
print x,

which will print “0 5 10 15 20 25 30 35 40 45”.

List comprehensions are not strictly necessary in Python programming; the
coverage here is mostly to ensure that they are recognizable when reading
other people’s code, and to provide a taste of some of Python’s more advanced
features. When we use them later on, we will generally show equivalent code
that uses for loops, for example. On the other hand, generators, although an

Looping 55

advanced and relatively new feature of Python, cannot easily be mimicked. We
will create a simple generator function in the next section, and some very short
generator methods in an example class in Chapter 3.

Functions

In general, functions allow us to package up and parameterize commonly used
functionality. Python provides three types of functions: ordinary functions,
lambda functions, and methods. In this section, we will concentrate on ordi-
nary functions, with a very brief mention of lambda functions; we will cover
methods in Chapter 3.

In Python, every function has either “global” or “local” scope. Broadly speaking,
global scope means that the function is visible within the file in which it is de-
fined and is accessible from any file which imports that file. Local scope means
that the function was defined inside another scope (e.g., inside another func-
tion) and is visible only within the enclosing local scope. We will not concern
ourselves further with this issue here, but will return to it in Chapter 3.

Functions are defined using the def statement, using the syntax:

def functionName(optional parameters):
suite

For example:

def greeting():
print "Welcome to Python"

The function name must be a valid identifier. Functions are called using
parentheses, so to execute the greeting() function we do this:

greeting() # Prints "Welcome to Python"

A function’s name is an object reference to the function, and like any oth-
er object reference it can be assigned to another variable or stored in a data
structure:

g = greeting
g() # Prints "Welcome to Python"

This makes keeping lists or dictionaries of functions trivial in Python.

Functions that accept parameters can be given the parameter values by posi-
tion (“positional arguments”), by name (“keyword arguments”; but nothing to
do with the language’s keywords), or by a combination of both. Let us look at a
concrete example: Python does not provide a range() function that operates on
floats, so we will create one ourselves.

56 Chapter 2. Control Structures

def frange(start, stop, inc):
result = []
while start < stop:
result.append(start)
start += inc
return result

If we call this function as frange(0, 5, 0.5) thelist we get backis [0, 0.5, 1.0,
1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5], as we expect.

Like normal Python variables, we do not specify types for our parameters.
And since we have not given any default arguments, every parameter must
be specified, otherwise we will get a TypeError exception. For those unfamiliar
with default arguments, Python allows us to give values to parameters in a
function’s signature. Each such value is a “default argument”, and it is used if
the corresponding argument is not given when the function is called.

In many cases we create functions where one or more arguments will almost
always have the same values. Python allows us to provide default arguments
for such situations, and we have taken advantage of this to provide a default
argument for the third parameter, as this revised def line shows:

def frange(start, stop, inc=1.0):

This works fine; for example, we can now call frange(0, 5) toget [0, 1.0, 2.0,
3.0, 4.0] since the increment defaults to 1.0. In common with other languages
that allow default arguments, Python does not permit a parameter without a
default argument to follow one that has a default argument; so we could not
have frange(start=0, 5). Nor does Python allow overloaded functions. Neither
of these restrictions is ever a problem in practice, as we will see shortly when
we discuss keyword arguments.

Unfortunately, our frange() function does not provide the same argument
logic as range() provides. For range(), if one argument is given it is the upper
bound, if two are given they are the lower and upper bounds, and if three are
given they are the bounds and the step size. So we will create a final frange()
function, which more carefully mimics range()’s behavior:*

def frange(arg@, argl=None, arg2=None):
"""Returns a list of floats using range-like syntax

frange(start, stop, inc) # start = argd stop = argl inc = arg2
frange(start, stop) # start = argd stop = argl inc = 1.0
frange(stop) # start = 0.0 stop = argd inc = 1.0
start = 0.0

*For a more sophisticated frange(), see “Writing a range-like Function with Float Increments” in
the Python Cookbook.

Functions 57

inc = 1.0

if arg2 is not None: # 3 arguments given
start = arg0
stop = argl
inc = arg2

elif argl is not None: # 2 arguments given
start = arg0
stop = argl

else: # 1 argument given
stop = arg0

Build and return a list

result = []

while start < (stop - (inc / 2.0)):
result.append(start)
start += inc

return result

For example, frange(5) returns [0.0, 1.0, 2.0, 3.0, 4.0],frange(5, 10) returns
[5, 6.0, 7.0, 8.0, 9.0],and frange(2, 5, 0.5) returns [2, 2.5, 3.0, 3.5, 4.0,
4.5].

The loop condition is different from the one we used earlier. It is designed to
prevent you from accidentally reaching the stop value due to floating-point
rounding errors.

After the def line, we have a triple-quoted string—and the string is not
assigned to anything. An unassigned string that follows a def statement—or
that is the first thing in a .py or .pyw file or that follows a class statement, as
we will see later on in Part I—is called a “docstring”. It is the natural place to
document functions. By convention, the first line is a brief summary, separated
from the rest by a blank line.

In most of the examples shown in the rest of the book, we will omit the doc-
strings to save space. They are included in the source code that accompanies
the book where appropriate.

The use of None is a more convenient default than, say, O since 0 might be a
legitimate upper bound. We could have compared to None using the syntax
arg2 !=None, but using is not is more efficient and better Python style. This is
because if we use is we get identity comparison rather than value comparison,
which is fast because we are just comparing two addresses and don’t have to
look at the objects themselves. Python has one global None object, so comparing
with it using is or is not is very fast.

The parameters passed to Python functions are always object references. In
the case of references to immutable objects like strings and numbers, we can
treat the parameters as though they were passed by value. This is because
if an immutable parameter is “changed” inside a function, the parameter is
simply bound to a new object, and the original object it referred to is left intact.

58 Chapter 2. Control Structures

Conversely, mutable objects, that is, parameters that are object references
to mutable types like lists and dictionaries, can be changed inside functions.
These parameter-passing behaviors are the same as in Java.*

All Python functions return a value. This is done either explicitly by using a
return or yield statement (covered next), or implicitly, in which case Python
will return None for us. Unlike C++ or Java, we are not tied down to specifying
one particular return type: We can return any type we want since what we
return is an object reference that is bound to a variable of any type. Python
functions always return a single value, but because that value can be a tuple
or a list or any other collection, for all practical purposes, Python functions can
return any number of values.

Generator Functions

If we replace the code at the end of the frange() function as shown in the fol-
lowing code snippet, we will turn the function into a generator. Generators do
not have return statements;instead, they have yield statements. If a generator
runs out of values, that is, if control reaches the end of the function, instead of
returning, Python automatically raises a StopIteration exception:

Build and return a list # Return each value on demand
result = [] while start < (stop - (inc / 2.0)):
while start < (stop - (inc / 2.0)): yield start
result.append(start) 9 start += inc
start += inc
return result

Now, if we call frange(5), we will get back a generator object, not a list. We can
force the generator to give us a list by doing this: list(frange(5)). But a more
common use of generators is in loops:

for x in frange(10):
print x,

This will output “0.01.02.03.04.05.06.07.0 8.0 9.0” whichever version we use.
But for long lists the generator version will be much more efficient, because
rather than creating the whole list in memory like the list version, it creates
only one item at a time.

The yield statement behaves like a return statement, but for one crucial differ-
ence: After yield has returned a value, when the generator is next called it will
continue from the statement following the yield with all its previous state in-
tact. So the first time the frange() generator is called, assuming, say frange(5),
it returns 0.0; the second time it returns 1.0, and so on. After returning 9.0 the
while expression evaluates to False and the function terminates.

*Mutable parameters in Python are similar to Pascal’s var parameters and to C++s non-const ref-
erences.

Functions 59

Because the function is a generator (and this is the case purely because we
have used yield), when it finishes it does not return a value, but instead
raises a StopIteration exception. In the context of a for loop, the for gracefully
handles this particular exception, taking it not as an error, but as an indication
that the iteration has completed, so the for loop ends and the flow of control
moves to the for loop’s else suite, or to the statement following the for loop’s
suite, if there is no else. Similarly, if we coerce a generator into a list, the list
constructor will automatically handle the StopIteration exception.

A generator is an object that has a next() function, so we can explore the
behavior of our frange() generator interactively if we wish:

>>> list(frange(1l, 3, 0.75))

[1, 1.75, 2.5]

>>>gen = frange(l, 3, 0.75)

>>> gen.next()

1

>>> gen.next()

1.75

>>> gen.next()

2.5

>>> gen.next()

Traceback (most recent call last):
File <pyshell#126>, line 1, in -toplevel-

gen.next()
StopIteration

We generated the whole three-item list using list(), and then we used the
generator returned by frange() to produce each successive value in the same
way that a for loop does.

Using Keyword Arguments

Python’s argument-handling abilities are very versatile. So far we have
provided parameters using positional syntax. For example, the first parameter
we gave to our frange() function always went to arg0, the second to argl, and
the third to arg2. We have also used default arguments so that some arguments
could be omitted. But what happens if we want to pass, say, the first and third
arguments, but accept the default second argument? In the next example, we
will see how we can achieve this.

Python provides a strip() method for stripping whitespace (or other unwanted
characters) from the ends of a string, but it does not provide a function for
cleaning up the whitespace inside a string; something that we often need to do
when we get strings from users. Here is a function that strips whitespace from
both ends of a string and replaces each sequence of internal whitespace with
a single space:

Import-
ing

Objects
sidebar

19 =

60 Chapter 2. Control Structures

Experimenting with Functions in Files

Both frange() and a generator version, gfrange(), are in the file chap02/
frange.py. If we want to try these or any other functions interactively, we can
start up IDLE, and append the path where the file we want to use is located
to the paths it searches; for example:

>>> import sys
>>> sys.path.append("C:/pyqt/chap02")

Now the relevant module can be loaded into IDLE:

>>> import frange

The file we wish to import from must have a .py extension, and we must not
include the extension in the import statement. Now we can use frange() and
gfrange() inside IDLE:

>>> frange.frange(3, 5, 0.25)
[3, 3.25, 3.5, 3.75, 4.0, 4.25, 4.5, 4.75]

The first name frange is the module name, and within that module we wish
to access the frange function, which is why we write frange.frange(). We
did the same thing a moment ago, when we imported the sys module and
accessed its path list using sys.path.

Although we prefer to use IDLE, it is also possible to directly use the Python
interpreter when experimenting interactively. If we simply run the Python
executable itself (python.exe, for example) in a console, we will get the
familiar >>> prompt and be able to use the interpreter interactively.

def simplify(text, space=" \t\r\n\f", delete=""):
result = []
word = ""
for char in text:
if char in delete:
continue
elif char in space:
if word:
result.append(word)
word = ""
else:
word += char
if word:
result.append(word)
return " ".join(result)

Functions 61

The function iterates over every character in the text string. If the characteris
in the delete string (which, by default, is empty), we ignore it. If it is a “space”
(i.e., it is in the space string), we append the word we have been building up to
our list of words, and set the next word to be empty. Otherwise, we append the
character to the word we are building up. At the end, we tack on the last word
to our list of words. Finally, we return the list of words as a single string with
each word separated by a single space, using the string join() method.*

Now let us look at how we can use the function:

simplify(" this and\n that\t too") # Returns "this and that too"
simplify(" Washington D.C.\n",

delete=",;:.") # Returns "Washington DC"
simplify(delete="aeiou", text=" disemvoweled ") # Returns "dsmvwld"

In the first case, we use the default arguments for the space and delete param-
eters. In the second case, we use Python’s keyword argument syntax to specify
the third parameter while accepting the default for the second parameter. In
the last case, we use keyword syntax for both of the arguments we want to use.
Notice that if we use keyword syntax, the order of the keyword arguments is
up to us—providing that if we also use positional arguments, these precede the
keyword arguments, as the second call shows.

The code we have used for simplify() is not as Pythonic as it could be. For
example, we should really store word as a list of characters rather than as a
string, and we don’t need the space parameter since we could use the string
object’s isspace() method instead. The file chap02/simplified.py contains the
simplify() shown here and a similar function, simplified(), which uses the
more Pythonic approach. And as noted earlier, although we usually don’t show
the docstrings in the book, they are in the files.

Python’s argument passing is even more sophisticated than we have shown so
far. In addition to named arguments, Python functions can be given signatures
that accept a variable number of positional arguments and a variable number
of keyword arguments. This is a much more versatile and powerful version of
C++’s and Java’s variable argument lists, but it is rarely needed, so we will not
cover it.

Lambda Functions

So far, we've always defined functions using def, but Python provides a second
way of creating functions:

cube = lambda x: pow(x, 3)

The lambda keyword is used to create simple anonymous functions. Lambda
functions cannot contain control structures (no branches or loops), nor do they
have a return statement: The value returned is simply whatever the expression

*The QString.simplified() method is like our simplify() function called with just one argument.

62 Chapter 2. Control Structures

evaluates to. Lambda functions can be closures, a topic covered later. In this
example, we have assigned the lambda function to the variable cube, which we
can now use, for example: cube(3) which will return 27.

Some Python programmers dislike lambda; certainly it is not needed since def
can be used to create any function we want. However, when we start on GUI
programming we will see one context where lambda can be useful, although we
will also show alternatives that don’t use it.

Dynamic Function Creation

The Python interpreter starts reading from the top of the .py or .pyw file. When
the interpreter encounters a def statement it executes the statement, thereby
creating the function and binding the name following the def to it. Any code
that is not inside a def statement (or inside a class statement, as we will see in
the next chapter) is executed directly.

Python cannot call functions or use objects that have not been defined. So
Python programs that occupy a single file tend to have a Pascal-like structure
with lots of function definitions from the top down, and at the end a call to one
of them to start the processing off.

Unlike C++ and Java, Python programs do not have a fixed entry point, and
the name “main” is not special. The Python interpreter simply executes the
code it encounters from the first line down. For example, here is a complete
Python program:

#!/usr/bin/env python

def hello():
print "Hello"

def world():
print "World"

def main():
hello()
world()

main()

The interpreter executes def hello(), that is, it creates the hello() function,
then creates the world() function, and then creates the main() function. Finally
the interpreter reaches a function call, to main() in this case, so the interpreter
executes the function call, at which point what we normally think of as
program execution commences.

Python programmers usually put only one statement at the top level, a call to
the first function they want to execute. They usually call this function main(),
and call their other functions from it, resulting in a structure similar to that
used by C++ and Java.

Clo-
sures

= 64

Functions 63

Since def statements are executed at runtime, it is possible to use different
definitions depending on the situation. This is especially useful when we want
to use functionality in one version of Python that is not available in an earlier
one, without forcing our users to upgrade.

For example, Python 2.4 introduced the sorted() function. What if we had
some code that needed sorted(), but some of our users were using Python 2.3
and some were using 2.4 or later? We could simply rely on the sorted() method
for 2.4 or later, and provide our own equivalent function for older Pythons:

import sys

if sys.version info[:2] < (2, 4):
def sorted(items):
items = list(items)
items.sort()
return items

We begin by importing the sys module, which provides the version info tuple.
Then we use this tuple to get the major and minor version numbers. Only if
the version is lower than 2.4 do we define our own sorted() function. Notice also
that we can compare tuples: Python can compare data structures, including
nested ones, providing all the types they contain can be compared.

Partial Function Application

As we will see when we begin GUI programming, we sometimes have situations
where we need to call a particular function, but we actually know what one of
the parameters will be when we are writing the code. For example, we might
have several buttons that all need to invoke the same function, but parameter-
ized in some way by which particular button is the cause of the invocation.

In the simplest case we want to store a function (i.e., an object reference to a
function) that we can then call later. A function stored like this is known as a
callback. Here is a trivial example:

def hello(who):
print "Hello", who

def goodbye(who):
print "Goodbye", who

funclist = [hello, goodbye]

Some time later

for func in funclist:
func("Me")

This prints “Hello Me”, and then “Goodbye Me”. Here, we have stored two func-
tions and then called them later on. Notice that we passed the same argument,
"Me", each time we called func(). Since we know what the argument is in ad-

Python
2.5

64 Chapter 2. Control Structures

vance, it would be nice to be able to somehow package up both the function to
be called and the parameter we want to use into a single callable object.

A solution to this is partial function application (also known as “currying”),
which simply means that we take a function and zero, one, or more parameters
for it, and wrap them up into a new function which, when invoked, will call the
original function with the parameters we wrapped, and with any others that
are passed at call time. Such wrapped functions are called closures because
they encapsulate some of their calling context when they are created.

To get a flavor for how this works, let us imagine a very simple GUI program
where we have two buttons that, when pressed, will call the same action()
function. (We won’t worry about how we transform button pressesinto function
calls right now; it is very easy, and fully explained in Chapter 4.)

def action(button):
print "You pressed button", button

Now when we create our buttons, naturally we know which ones they are, so
we want to tell the first button to make the call action("0One") and the second to
callaction("Two").But this presents us with a problem. We know what we want
called, but we don’t want the call to take place until a button is pressed. So, for
example, we want to give the first button a function which wraps action() and
the parameter "One", so that when the first button is pressed it can call action()
with the right parameter.

So, what we need is a function that will take a function and an argument and
return a function, that when, called will call the original function with the
original argument. In Python 2.5, thisis easy assuming our previous definition
of action():

import functools

buttonOneFunc = functools.partial(action, "One")
buttonTwoFunc = functools.partial(action, "Two")

The functools.partial() function takes a function as the first argument, and
then any number of other arguments, and returns a function that, when
called, will call the passed function with the passed arguments, and with any
additional arguments that are given at call time.

So, when buttonOneFunc() is called, it will simply call action("One") just as we
want. As we mentioned earlier, a function’s name is simply an object reference
that happens to refer to a function, so it can be passed as a parameter like any
other object reference.

But where does this leave users of earlier versions of Python? We could provide
our own very simple and less powerful version of partial().For example:

Functions 65

def partial(func, arg):
def callme():
return func(arg)
return callme

Inside the partial() function we create an inner function, callme(), that, when
called, will call the function and argument that were passed to the partial()
function. After creating the callme() function, we then return an object
reference to it so that it can be called later.

This means that we can now write:

buttonOneFunc
buttonTwoFunc

partial(action, "One")
partial(action, "Two")

Ideally, it would be nice to use functools.partial() when it is available, and fall
back on our own simple partial() function otherwise. Well, since we can define
functions at runtime, this is perfectly possible:

import sys

if sys.version info[:2] < (2, 5):
def partial(func, arg):
def callme():
return func(arg)
return callme
else:
from functools import partial

The if statement ensures that if we are using a version of Python older than
2.5 we create a partial() function that takes a function and a single argument
and returns a function that, when called, will call the function passed in
with the argument. But if we are using a later version of Python, we use the
functools.partial() function, so in our code we can always call partial(), and
whichever version was created will be the one used.

Now, just as before, we can write:

buttonOneFunc = partial(action, "One")
buttonTwoFunc = partial(action, "Two")

Only this time the code will work with both old and new versions of Python.

The partial() function we have defined is just about the simplest possible. It
is also possible to create much more sophisticated wrappers that can take po-
sitional and keyword arguments at the time they are wrapped, and additional
positional and keyword arguments at the time they are called; functionality
that functools.partial() already provides. We use partial() in several places
from Part IT onward, but in each case the simple partial() function shown in
this section could be used if Python 2.5 or later was not available.

66 Chapter 2. Control Structures

In the next section, we will continue to take a fairly high-level view of func-
tions, and look at the possibilities that are available to us for the notification
and handling of error conditions.

Exception Handling

Many primers push exception handling quite far back, often after covering
object-oriented programming. We put them here in the control structures
chapter because exception handling is relevant in both procedural and object-
oriented programming, and because exception handling can cause the flow of
execution to change dramatically, which certainly qualifies exception handlers
as a kind of control structure.

An exception is an object that is “raised” (or “thrown”) under some specific cir-
cumstances. When an exception is raised, the normal flow of execution ceases
and the interpreter looks for a suitable exception handler to pass the exception
to. It begins by looking at the enclosing block and works its way out. If no suit-
able exception handler is found in the current function, the interpreter will go
up the call stack, looking for a handler in the function’s caller, and if that fails
in the caller’s caller, and so on.

As the interpreter searches for a suitable exception handler, it may encounter
finally blocks; any such blocks are executed, after which the search for an
exception handler is resumed. (We use finally blocks for cleaning up—for
example, to ensure that a file is closed, as we will see shortly.)

If a handler is found, the interpreter passes control to the handler, and
execution continues from there. If, having gone all the way up the call stack to
the top level, no handler is found, the application will terminate and report the
exception that was the cause.

In Python, exceptions can be raised by built-in or library functions and
methods, or by us in our code. The exceptions that are raised can be of any of
the built-in exception types or our own custom exception types.

Exception handlers are blocks with the general syntax:

try:
suitel
except exceptions:

suite2
else:
suite3

Here, the code in suitel is executed, and if an exception occurs, control will
pass to the except statement. If the except statement is suitable, suite2 will
be executed; we will discuss what happens otherwise shortly. If no exception
occurs, suite3 is executed after suitel is finished.

The except statement has more than one syntax; here are some examples:

Exception Handling 67

except IndexError: pass

except ValueError, e: pass

except (IOError, OSError), e: pass
except: pass

In the first case we are asking to handle IndexError exceptions but do not re-
quire any information about the exception if it is raised. In the second case we
handle ValueError exceptions, and we want the exception object (which is put
in variable e). In the third case we handle both I0Error and 0SError exceptions,
and if either occurs, we also want the exception object, and again this is put
in variable e. The last case should not be used, since it will catch any excep-
tion: Using such a broad exception handler is usually unwise because it will
catch all kinds of exception, including those we don’t expect, thereby masking
logical errors in our code. Because we have used pass for the suites, if an ex-
ception is caught, no further action is taken, and execution will continue from
the finally block if there is one, and then from the statement following the try

block.
Exception

StandardError

v v v v v

[ArithmeticError} [EnvironmentError] [EOFError] [LookupError] \/ValueError]
I
2 v I v
M 0SError \/IndexError] [KeyError]

Figure 2.1 Some of Python’s exception hierarchy

It is also possible for a single try block to have more than one exception
handler:

try:
process()

except IndexError, e:
print "Error: %s" % e

except LookupError, e:
print "Error: %s" % e

The order of the handlers is important. In this case, IndexError is a subclass
of LookupError, so if we had LookupError first, control would never pass to the
IndexError handler. This is because LookupError matches both itself and all its
subclasses. Just like C++ and Java, when we have multiple exception handlers
for the same try block they are examined in the order that they appear. This
means that we must order them from most specific to least specific. Some of
Python’s exception hierarchy is shown in Figure 2.1; the least specific exception
is at the top, going down to the most specific at the bottom.

68 Chapter 2. Control Structures

Now that we have a broad overview of exceptions, let’s see how their use
compares with a more conventional error handling approach; this will also give
us a feel for their use and syntax. We will look at two code snippets that have
the same number of lines and that do exactly the same thing: They extract
the first angle-bracketed item from a string. In both cases we assume that the
variable text holds the string we are going to search.

Testing for errors # Exception handling
result = "" try:
i = text.find("<") i = text.index("<")
if i > -1: j = text.index(">", i + 1)
j = text.find(">", i + 1) result = text[i:j + 1]
if § > -1: except ValueError:
result = text[i:j + 1] result = ""
print result print result

Both approaches ensure that result is an empty string if no angle-bracketed
substring is found. However, the right-hand snippet focuses on the positive
with each line in the try block able to assume that the previous lines executed
correctly—because if they hadn’t, they would have raised an exception and
execution would have jumped to the except block.

If we were searching for a single substring, using find() would be more conve-
nient than using the exception handling machinery; but as soon as we need to
do two or more things that could fail, exception handling, as here, usually re-
sults in cleaner code with a clear demarcation between the code we are expect-
ing to execute and the code we’ve written to cope with errors and out-cases.

When we write our own functions, we can have them raise exceptions in failure
cases if we wish; for example, we could put a couple of lines at the beginning
of the simplify() function we developed in a previous section:

def simplify(text, space=" \t\r\n\f", delete=""):
if not space and not delete:
raise Exception, "Nothing to skip or delete"

This will work, but unfortunately, the Exception class (which is the convention-
al base class for Python exceptions) isn’t specific to our circumstances. This is
easily solved by creating our own custom exception and raising that instead:

class SimplifyError(Exception): pass

def simplify(text, space=" \t\r\n\f", delete=""):
if not space and not delete:
raise SimplifyError, "Nothing to skip or delete"

Exceptions are class instances, and although we don’t cover classes until
Chapter 3, the syntax for creating an exception class is so simple that there

Exception Handling 69

seems to be no reason not to show it here. The class statement has a similar
structure to a def statement, with the class keyword, followed by the name,
except that in the parentheses we put the base classes rather than parameter
names. We've used pass to indicate an empty suite, and we have chosen to
inherit Exception. We could have inherited from one of Exception’s subclasses
instead; for example, ValueError.

In practice, though, raising an exception in this particular case may be overkill.
We could take the view that the function will always be called with space
or delete or both nonempty, and we can assert this belief rather than use
an exception:

def simplify(text, space=" \t\r\n\f", delete=""):
assert space or delete

This will raise an AssertionError exception if both space and delete are empty,
and probably expresses the logic of the function’s preconditions better than the
previous two attempts. If the exception is not caught (and an assertion should
not be), the program will terminate and issue an error message saying that an
AssertionError was the cause and providing a traceback that identifies the file
and line where the assertion failed.

Another context where exception handling can be useful is breaking out of
deeply nested loops. For example, imagine that we have a three-dimensional
grid of values and we want to find the first occurrence of a particular target
item. Here is the conventional approach:

found = False
for x in range(len(grid)):
for y in range(len(grid[x])):
for z in range(len(grid[x][y])):
if grid[x][yl[z] == target:
found = True
break
if found:
break
if found:
break
if found:
print "Found at (%d, %d, %d)" % (x, y, z)
else:
print "Not found"

This is 15 lines long. It is easy to understand, but tedious to type and rather
inefficient. Now we will use an approach that uses exception handling:

class FoundException(Exception): pass

try:

70 Chapter 2. Control Structures

for x in range(len(grid)):
for y in range(len(grid[x])):
for z in range(len(grid[x][y])):
if grid[x][y]l[z] == target:
raise FoundException

except FoundException:

print "Found at (%d, %d, %d)" % (x, y, z)
else:

print "Not found"

This version is only 11 lines long. If the target is found, we raise the exception
and handle that situation. If no exception is raised, the try block’s else suite
is executed.

In some situations, we want some cleanup code to be called no matter what.
For example, we may want to guarantee that we close a file or a network or
database connection even if our code has a bug. This is achieved using a try ...
finally block, as the next example shows:

filehandle = open(filename)
try:
for line in filehandle:
process(line)
finally:
filehandle.close()

Here we open a file with the given filename and get a file handle. We then
iterate over the file handle—which is a generator and gives us one line at a
time in the context of a for loop. If any exception occurs, the interpreter looks
for the except or finally that is nearest in scope. In this case, it does not find
an except, but it does find a finally, so the interpreter switches control to the
finally suite and executes it. If no exception occurs, the finally block will be
executed after the try suite has finished. So either way, the file will be closed.

Python versions prior to 2.5 do not support try ... except ... finally blocks. So
if we need both except and finally we must use two blocks, a try ... except
and a try ... finally, with one nested inside the other. For example, in Python
versions up to 2.4, the most robust way to open and process a file is like this:

fh = None
try:
try:
fh = open(fname)
process(fh)

except IOError, e:
print "I/0 error: %s" % e
finally:
if fh:
fh.close()

Exception Handling 71

This code makes use of things we have already discussed, but to make sure we
have a firm grip on exception handling, we will consider the code in detail.

If the file can’t be opened in the first place, the except block is executed and
then the finally block—which will do nothing since the file handle will still
be None because the file could not be opened. On the other hand, if the file is
opened and processing commences, there might be an I/O error. If this hap-
pens, the except block is executed, and again control will then pass to the fi-
nally block, and the file will be closed.

If an exception occurs that is not an I0Error, or an I0Error subclass, for exam-
ple, perhaps a ValueError occurs in our process() function—the interpreter
will consider the except block to be unsuitable and will look for the nearest en-
closing exception handler that is suitable. As it looks, the interpreter will first
encounter the finally block which it will then execute, after which, (i.e., after
closing the file), it will then look for a suitable exception handler.

If the file is opened and processing completes with no exception being raised,
the except block is skipped, but the finally block is still executed since finally
blocks are executed no matter what happens. So, in all cases, apart from the
interpreter being killed by the user (or, in very rare cases, crashing), if the file
was opened, it will be closed.

In Python 2.5 and later, we can use a simpler approach that has the same
semantics because we can have try ... except ... finally blocks:

fh = None
try:
fh = open(fname)
process(fh)
except IOError, e:
print "I/0 error: %s" % e
finally:
if fh:
fh.close()

Using this syntax, it is still possible to have an else block for when no exception
occurred; it is placed after the last except block and before the one and only
finally block. We will revisit this topic in the context of files in Chapter 6.

No matter what version of Python we use, finally blocks are always executed
whether an exception occurs or not, exactly once, either when the try suite is
finished, or when an exception is raised that shifts the flow of control outside
the try block.

Python 2.6 (and Python 2.5 with a from _ future import with statement state-
ment) offers another approach entirely: “context managers”. For file handling,
we prefer the try ... finally approach, but in other cases, we prefer context
managers. For example, we show how to use context managers for locking and
unlocking read/write locks used by threads in Chapter 19.

Python
2.5

Python
2.6

72 Chapter 2. Control Structures

Summary

In this chapter we saw how to branch using if, and how to create multiway
branches using if with elifs and, optionally, with else. We also saw how to loop
using while and for, and how to generate lists of integers using range(). We
learned about the dictionary methods that provide a dictionary’s keys, values,
and key—value pairs (items), and we took a brief look at sorting. We also had
a glimpse at how to use Python’s list comprehensions and generators.

We saw how to create functions using def (and with lambda). We used positional
and keyword arguments, and we developed two useful functions, frange() and
simplify(). We saw how Python creates functions dynamically as it reads a
.py file, and how we can use this dynamism to provide similar functionality
in older Python versions to that which is available in newer versions. And we
saw how to use partial function application to create wrapper functions that
encapsulate a function with its arguments (closures).

We also learned how to raise exceptions, how to create custom exceptions, and
how to handle exceptions. We saw how to use finally to guarantee cleanup,
and we discussed some of the more complex exception-handling possibilities
that Python offers. We also saw that exception handling can lead to cleaner
code when we have suites where multiple exceptions could occur, and how they
can be used to cleanly exit a set of deeply nested loops.

Creating custom exceptions led us on to creating simple classes; classes that
have no attributes (no member data) and no methods. In the next chapter we
will look more formally at classes, and learn how to create them and instantiate
instances of them, with any attributes and methods we wish.

Exercises

In Chapter 1, the exercises were short enough to be typed into IDLE. From now
on we recommend that you type your solutions into a file with a .py extension,
and add some test calls at the end. For example, you might write a file with
this structure:

#!/usr/bin/env python

def mysolution(arg0, argl):
pass # Whatever code is needed

mysolution(1, 2) # Call with one set of parameters
mysolution("a", "b") # Call with another set of parameters
Additional calls to make sure all boundary cases are tested

If you are using Windows, make sure that you run your test programs inside a
console window; similarly, Mac OS X users should use a Terminal. You may also
need to include print statements so that you can see the results. (Exercises
involving GUI applications begin in Part II.)

Exercises 73

If you look at the book’s source code, including this chapter’s answers. py file, you
will find that the code often has long docstrings, in many cases occupying far
more lines than the code itself. This is because the docstrings usually include
usage examples which do double duty as unit tests, as we will see in Chapter 3’s
“Using the doctest Module” subsection.

1. Write a function with signature:
valid(text, chars="ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789")

The function should return a (possibly empty) string which is a copy of
text that only contains characters in chars. For example:

valid("Barking!") # Returns "B"
valid("KL754", "0123456789") # Returns "754"
valid("BEAN", "abcdefghijklmnopgrstuvwxyz") # Returns ""

It can be done in half a dozen lines, using a for loop and an if statement,
not counting the docstring, which should also be written.

2. Write a function with signature:

charcount (text)

(=]

This should return a dictionary with 28 keys, “a”, “b”, ..., “z”, plus
“whitespace” and “others”. For every lowercase character in text, if the
character is alphabetic, increment the corresponding key; if the character
is whitespace, increment the “whitespace” key; otherwise, increment the
“others” key. For example, the call:

stats = charcount("Exceedingly Edible")
will mean that stats is a dictionary with the following contents:

{'whitespace': 1, 'others': 0, 'a': 0, 'c': 1, 'b': 1, 'e': 5,

‘d':2, '¢g':1, 'f': 0, 'i': 2, 'h'r 0, 'k': 0, 'j': 0, 'm':0,
'+ 2, '0o': 0, 'n': 1, '‘q': 0, 'p': 0, 's': 0, 'r': 0, 'u:0,
't': 0, 'w:0, 'v:0, 'y':1, 'x':1, 'z': 0}

Using a dictionary and a for loop, it can be done in slightly more than a
dozen lines of code.

3. Create a function with signature:
integer(number)

The number parameter is either a number or a string that can be converted
to a number. The function should return the number as type int, rounding
it if the number passed in is a float. If the conversion fails, catch the
ValueError exception, and return 0. Make sure it works for both strings
and literal numbers, such as 4.5, 32, “23”, and “-15.1”, and that it correctly

74 Chapter 2. Control Structures

returns zero for invalid numbers like “tonsils”. This can be done in half a
dozen lines. (Hint: To work with all the cases you’ll always need to convert
to type float first, that is, by calling float() on the input.)

4. Now write a function with signature:
incrementString(text="AAAA")

The function must “increment” the given string. Here are some ex-

amples:

incrementString("A") # Returns "B"
incrementString("Z") # Returns "AA"
incrementString("AM") # Returns "AN"
incrementString("AZ") # Returns "BA"
incrementString("BA") # Returns "BB"
incrementString("BZ") # Returns "CA"
incrementString("ZZA") # Returns "ZZB"
incrementString("ZZzZ") # Returns "AAAA"
incrementString("AAAA“) # Returns "AAAB"
incrementString("AAAZ") # Returns "AABA"
incrementString("ABC2") # Raises a ValueError

The characters in text must be A-Z (or a—z, in which case the function
must upper-case them); otherwise the function should raise a ValueError
exception.

This is a bit more challenging than the previous exercises. The code can
be written in less than 20 lines if you use a couple of list comprehensions,
although it can also be written without them. It is a bit tricky to get right.
(Hint: The reversed() function returns a sequence in reverse order.)

5. If you read the section on function generators, try writing a generator
with signature:

leapyears(yearlist)

The yearlist parameter is a sequence of year numbers—for example,
[1600, 1604, 1700, 1704, 1800, 1900, 1996, 2000, 2004]. Given this input,
the output would be the years 1600, 1604, 1704, 1996, 2000, and 2004, one
at a time. This can be done in about half a dozen lines. (Hint: Leap years
are divisible by 4, but if they are divisible by 100, must also be divisible
by 400.)

Model answers for this chapter’s exercises are in the file chap02/answers. py.

® Creating Instances
@® Methods and Special Methods

® Inheritance and Polymorphism

® Modules and Multifile Applications

Classes and Modules

Python fully supports procedural and object-oriented programming, and leaves
us free to use either approach, or to combine the two. So far we have done proce-
dural programming, although we have already used some Python classes—for
example, the str string class. What we have not yet done is defined our own
classes. In this chapter we will learn how to create classes and methods, and
how to do object-oriented programming with Python. And in all subsequent
chapters, we will almost always use an object-oriented approach in the pro-
grams we write.

We assume that you are familiar with object-oriented programming—for
example using C++ or Java—but will take the opportunity to clarify our ter-
minology. We use the term “object”, and occasionally the term “instance”, to
refer to an instance of a particular class. We use the terms “class”, “type”,
and “data type”, interchangeably. Variables that belong to a specific instance
are called “attributes” or “instance variables”. Variables that are used inside
methods that are not instance variables are called “local variables”, or simply
“variables”. We use the term “base class” to refer to a class that is inherited
from; a base class may be the immediate ancestor, or may be further up the
inheritance tree. Some people use the term “super class” for this concept. We
use the terms “subclass” and “derived class” for a class that inherits from an-
other class.

In Python, any method can be overridden (reimplemented) in a subclass; this
is the same as Java (apart from Java’s “final” methods).* Overloading, that
is, having methods with the same name but with different parameter lists in
the same class, is not supported, although this is not a limitation in practice
because of Python’s versatile argument-handling capabilities. In fact, the
underlying Qt C++ API makes extensive use of overloading, but PyQt handles
this seamlessly behind the scenes, so in practice, we can call any “overloaded”
Qt method and rely on PyQt to do the right thing.

*In C++ terminology, all Python methods are virtual.

75

Qt

76 Chapter 3. Classes and Modules

This chapter begins with the basic syntax for creating classes. We then look
at how to construct and initialize objects, and how to implement methods. One
of the nicest features of Python’s object-oriented support is that it allows us to
reimplement “special methods”. This means we can make our classes seamless-
ly blend in so that they behave just like built-in classes. For example, it is easy
to make our classes work with the comparison operators such as == and <. We
then look at the numeric special methods: these allow us to overload operators
such as + and += which can be useful when creating complete custom data types,
especially numeric ones. If our class is a collection, there are some additional
special methods we can reimplement so that, for example, our collection will
support the in operator and the len() function. The chapter concludes with a
section on Python’s support for inheritance and polymorphism.

For historical reasons, there are two kinds of user-defined types (classes) that
Python provides: “old-style” and “new-style”. The only obvious difference is
that old-style classes either have no base class, or have only old-style base
classes. New-style classes always derive from a new-style class, for example,
object, Python’s ultimate base class. Since there is no reason to use old-style
classes, and because they will be dropped from the language from Python 3.0,
we will always use new-style classes.

The syntax for creating a class is simple:

class className(base classes):
suite

In the class’s suite we can have def statements; and in such a context they
create methods for their enclosing class rather than functions.

It is also possible to have “empty” classes, with no methods or attributes (data
members) of their own, as we saw at the end of the preceding chapter when we
derived our own custom exception class.

New-style classes always have at least one base class—for example, object.
Unlike Java, Python supports multiple inheritance, that is, Python classes can
inherit from one, two, or more base classes. We will mostly avoid this feature
because it can lead to unnecessary and confusing complexity. Python does not
support abstract classes (classes that cannot be instantiated, and that can only
be derived from—useful for defining interfaces), but the effect of having an
abstract class can be achieved all the same. We will look at a small example
of multiple inheritance where one of the base classes is “abstract” and is used
purely to provide an API (rather like a Java interface).

In Python, all methods and attributes are accessible from both inside and
outside the class; there are no access specifiers such as “public” and “private”.
Python does have a concept of “private”—objects with names that begin with a
single leading underscore are considered to be private. As far as methods and
instance variables are concerned, their privacy is merely a convention that we
are invited to respect. And as for modules, private classes and functions, that
is, those whose name begins with a leading underscore, are not imported when

Creating Instances 77

using the from moduleName import * syntax. Python also has a concept of “very
private”—methods and attributes with names that begin with two leading un-
derscores. Very private objects are still accessible, but the Python interpreter
mangles their names to make it difficult to access them by mistake.

Now that we know the basic syntax for creating a class and have a broad
overview of Python’s object-oriented features, we are ready to see how to create
a class and some instances.

Creating Instances

In most object-oriented languages, objects are created in two steps: First, the
object is constructed, and second, the object is initialized. Some languages
merge these two steps into one, but Python keeps them separate. Python has
the new () special method which is called to construct an object, and the
__init () special method which is called to initialize a newly constructed
object. It is very rare to actually need to implement new () ourselves; not
one of the custom classes in this book needs it—and older versions of Python
did not even have the new () special method. Python is perfectly capable of
constructing our objects for us, so in almost every case the only method we need
toimplementis init ().

In view of Python’s two-step object creation, we will normally talk of object
creation rather than construction. Also, we will generally refer to a class’s
initializer (its __init () method), since that is the method that is normally
reimplemented in custom classes and the one that is closer to the idea of a
constructor that is used in languages like C++ and Java.

Let’s see how to create a classin practice. We will create one that stores a string
(the name of a kind of chair) and a number (how many legs the chair has):

class Chair(object):
"""This class represents chairs."""

def init (self, name, legs=4):
self.name = name
self.legs = legs

It is conventional to follow a class statement with a docstring as shown in the
preceding code. We will not normally show docstrings in the book, but they are
included where appropriate in the accompanying example code. The blank line
is purely for aesthetics and clarity.

Methods with names beginning and ending with two underscores are “special”
methods. Python uses such methods to integrate custom classes so that they
can have the same usage patterns as built-in classes, as we will soon see.

The init () method, and indeed every method, has a first parameter that
is the Python equivalent to the C++ or Java “this” variable, that is, a variable
that refers to the object itself. This variable is conventionally called self. We

78 Chapter 3. Classes and Modules

must put self as the first item of every (nonstatic*) method’s parameter list,
although we never need to pass it since Python will do that for us.

Although the name “self” is merely conventional, we will always use it. Inside
the object, we must use self explicitly when we want to refer to instance meth-
ods or attributes. For example, in the Chair class’s initializer, we have created
two data attributes using self. Thanks to Python’s dynamic nature, it is possi-
ble to create additional attributes in other methods, and even to add additional
attributes to particular instances if we wish; but we will take a more conserva-
tive line that is sufficient for the GUI programming we are working toward.

To create an instance of a class, we use the following syntax:
instance = className(arguments)

The parentheses are mandatory, even if we don’t pass any arguments. Behind
the scenes, Python constructs the object by calling the class’s static _new ()
method (which is inherited from object, or in rare cases is implemented by
us), and then calls _init () on the newly constructed object. The resulting
initialized object is returned.

In the case of our Chair class, we must pass either one or two arguments
(Python passes the first self argument automatically for us); for example:

chairl = Chair("Barcelona")
chair2 = Chair("Bar Stool", 1)

Since the attributes are public, they can be read or assigned to using the dot (.)
operator; for example: print chair2.name will print “Bar Stool”, and chairl.legs
=2 will change chairl’s legs attribute’s value from 4 to 2.

Object-oriented purists will no doubt be uncomfortable with this kind of direct
access to attributes from outside the instance, whereas those with a taste for
extreme programming may be perfectly happy with it since we can always add
accessor methods later.

Now that we have seen how construction and initialization are handled, we
need to consider object destruction. C++ programmers are used to using de-
structors and relying on the fact that they can delete objects at a time of their
own choosing. Java and Python programmers do not have that particular
luxury. Instead, they have automatic garbage collection, which makes pro-
gramming much easier in general but with the one drawback of not giving fine
control over exactly when objects are deleted. If resources need to be protect-
ed, the solution is normally to use a try ... finally block to guarantee cleanup.
When an object is about to be garbage-collected its _del () special method is
called, with self asits only argument. Asis common practice in Python (and in
Java regarding the finalize() method), we very rarely use this particular special

*A static method is one that can be called on a class or an instance and has no self parameter. Nor-
mal methods are non-static, that is, they have a self parameter and must be called on instances.

Creating Instances 79

method. To put this in perspective, out of more than 170 classes in this book’s
examples and exercise solutions, not one reimplements del ().

We have now learned how to create and initialize an object of a custom class.
Next, we will see how to provide additional methods to give our class distinctive
behavior. We will also learn how to ensure that our classes smoothly integrate
with the rest of Python, and act just like built-in classes where that is appro-
priate.

Methods and Special Methods

We will begin by looking at a class that uses accessor methods to get and set
the value of attributes, rather than using direct attribute access.

class Rectangle(object):

def init (self, width, height):
self.width = width
self.height = height

def getWidth(self):
return self.width

def setWidth(self, width):
self.width = width

def getHeight(self):
return self.height

def setHeight(self, height):
self.height = height

def area(self):
return self.getWidth() x self.getHeight()

We have chosen to use a Java-style naming convention for both getters and
setters. Now we can write code like this:

rect = Rectangle(50, 10)
print rect.area() # Prints "500"
rect.setWidth(20)

We could just as easily have implemented the area() method like this:

def area(self):
return self.width x self.height

Writing trivial accessor methods as we have done here is the right approach for
languages like C++ because it provides maximum flexibility, and no overhead
in the compiled code. And if at a later stage we needed to perform some com-
putation in an accessor, we can simply add in the functionality without requir-

80 Chapter 3. Classes and Modules

ing users of our class to change their code. But in Python, it is not necessary
to write such accessors. Instead, we can directly read and write attributes, and
if at a later stage we need to perform some computation, we can use Python’s
property() function. This function allows us to create named properties that
can replace attributes. Properties are accessed just like attributes, but behind
the scenes they call the methods that we specify to get and set the value.

Here is a second version of the Rectangle class, this time using direct attribute
access for the width and height, and a property for the area:

class Rectangle(object):

def init (self, width, height):
self.width = width
self.height = height

def _area(self):
return self.width x self.height
area = property(fget=_area)

This allows us to write code like this:

rect = Rectangle(5, 4)
print rect.width, rect.height, rect.area # Prints (5, 4, 20)
rect.width = 6

Python’s property() function can be used to specify a getter, a setter, a deletion
method, and a docstring. Since we specified only a getter, the area property is
read-only. If later on we needed to perform some computation when the width
was accessed, we could simply turn it into a property, like this:

def width(self):
return self. width

def setWidth(self, width):
Perform some computation
self. width = width

width = property(fget= width, fset= setWidth)

Notice that we have changed the name of the instance variable from width to
__width to avoid a name collision with the width property. In general, properties
whose values are held in instance variables use private names (names with
two leading underscores) for the instance variables, to avoid name collisions
with the property name that the class’s user uses. For example, users of the
Rectangle class with the width property, can get and set the width attribute
exactly the same as before, only now, the width() and setWidth() methods are
used behind the scenes to perform these operations, and the attribute’s data is
held in the width instance variable.

Discus-
sion of
private
names

1= 88

Methods and Special Methods 81

Table 3.1 Basic Special Methods

Method Syntax Description
__init (self, args) x = X() Initializes a newly created instance
_call _ (self, args) x() Makes instances callable, that is,

turns them into functors. The args
are optional. (Advanced)

__cmp__(self, other) x ==y Returns-1if self <other, 0if they are
X<y equal, and 1 otherwise. If _cmp_ ()
etc isimplemented, it will be used for any
comparison operators that are not ex-
plicitly implemented.
__eq_ (self, other) x ==y Returns True if x is equal to y
__ne_ (self, other) x !l=y Returns True if x is not equal to y
_ le (self, other) x <=y Returns True if x is less than or equal
toy
1t (self, other) x <y Returns True if x isless than y
_ge (self, other) x>=y Returns True if x is greater than or
equal toy
gt (self, other) x>y Returns True if x is greater than y
__nonzero__ (self) if x: Returns True if x is nonzero
pass
__repr__(self) y = eval('x") Returns an eval()-able representa-

tion of x. Using backticks is the same
as calling repr().*

str (self) print x Returns a human-readable represen-
tation of x
__unicode (self) print x Returns a human-readable Unicode

representation of x

Python offers even more control over attribute access than we have shown
here, but since this is not necessary to our goal of GUI programming, we will
leave this as a topic to look up if it ever becomes of interest. The starting point
is the documentation for the getattr (), getattribute (), and _setat-
tr_ () special methods.

The mechanics of Python methods, including special methods, are exactly the
same as for functions, but with the addition of the self first argument, and
the ability to access self’s attributes and call self’s methods. We just have to
remember that when we call methods or access instance variables, we must
specify the instance using self. For example,in the Rectangle class’s setHeight ()

*Tt is best to use repr() rather than backticks since backticks will be dropped in Python 3.0.

82 Chapter 3. Classes and Modules

method, we used self.height to refer to the instance variable and plain height
to refer to the parameter, that is, to a local variable. Similarly, in the area()
method, we call two Rectangle methods, again using self. This is quite different
from C++ and Java, where the instance is assumed.

In C++ it is possible to implement operators, that is, to provide our own im-
plementations of operators for our data types. The C++ syntax uses the key-
word operator followed by the operator itself—for example, operator+()—but
in Python every operator has a name, so to implement a class’s + operator in
Python we would implement an _add () method. All the Python methods for
implementing operators are special methods, and this is signified by them hav-
ing names that begin and end with two underscores.

To better integrate our custom classes into Python, there are some additional
general special methods which may be worth implementing. For example, we
might want to provide support for the comparison operators, and a Boolean val-
ue for instances of our class. We will add a few more methods to the Rectangle
class to show the possibilitiesin action, but for brevity we won’t repeat the class
statement and the methods we have already implemented. We will start with
comparisons:

def _cmp_ (self, other):
return cmp(self.area(), other.area())

If we want we can implement a special method for every one of the comparison
operators. For example, if we implement 1t () “less than”, we will be able to
compare instances of our class with the < operator. However, if we don’t want
to implement the comparison operators individually, we can simply implement
__cmp__ () as we have done here. Python will use the specific special method

for comparisons if it has been implemented, but will fall back on __cmp__ () oth-
erwise. So just by implementing this one special method, all the comparison
operators (<, <=, ==, !=, >=, >) will work with Rectangle objects:

rectA = Rectangle(4, 4)

rectB = Rectangle(8, 2)
rectA == rectB # True because both have the same area
rectA < rectB # False

We used the built-in cmp () function to implement cmp (). The cmp() function
takes two objects and returns -1 if the first is less than the second, 0 if they are
equal, and 1 otherwise. We used the rectangles’ areas as the basis for compar-
ison, which is why we got the rather surprising True result in our example. A
stricter, and perhaps better implementation might be:

def _cmp_ (self, other):
if (self.width != other.width):
return cmp(self.width, other.width)
return cmp(self.height, other.height)

Methods and Special Methods 83

Here we return the result of comparing the heights if the widths are the same;
otherwise, we return the result of comparing the widths.

If we do not reimplement any comparison special methods, in most cases
Python will happily perform comparisons for us, although not necessarily in
the way we would want. If we are creating a class where comparisons make
sense, we ought to implement cmp_ (). For other classes, the safest thing to
do is to implement cmp () with a body of return NotImplementedError.

def _nonzero (self):
return self.width or self.height

This special method is used when the object is in a Boolean context; for
example, bool(rectA), or if rectB: and returns True if the object is “nonzero”.

def _repr_ (self):
return "Rectangle(%d, %d)" % (self.width, self.height)

The “representation” special method must return a string which, if evaluated
(e.g., using eval()), will result in the construction of an object with the same
properties as the object it is called on. Some objects are too complex to support
this, and for some objects, such as a window or a button in a GUI, it doesn’t
make sense; so such classes don’t provide a _repr_ () implementation. In
a string % operator’s format string we use %r to get the result of this special
method; we can also use the repr() function or the backticks ' operator. Back-
ticks are just a syntactic alternative to using repr(). For example, repr(x) and
x both return identical results: the representation of object x as returned by
x’s __repr_ () method.

There is also a __str () special method that must return a string represen-
tation of the object it is called on (like Java’s toString() method), but unlike
__repr__(), the representation is meant to be human-readable and does not
have tobe eval()-able.If, asin thiscase,the str () methodisnotimplement-
ed, Python will use the repr () method instead. For example:

rect = Rectangle(8, 9)
print rect # Prints "Rectangle(8, 9)" using _ repr ()

If we want a human-readable Unicode string representation of our class, we
can implement unicode ().

There are a few more general special methods that we could implement, but
which are not appropriate for the Rectangle class. All the commonly implement-
ed general special methods are listed in Table 3.1.

At this point, C++ programmers might be wondering where the copy construc-
tor and assignment operators are, and Java programmers might be wonder-
ing about the clone() method. Python does not use a copy constructor and
reimplementing the assignment operator is not necessary. If we want to do
an assignment we just use = and Python will bind a new name to our existing

84 Chapter 3. Classes and Modules

Table 3.2 Selected Numeric Special Methods

Method Syntax Method Syntax
__float_ (self) float(x) _ int (self) int(x)
__abs_ (self) abs(x) __neg__ (self) -X
__add__ (self, other) X +y __sub_ (self, other) X -y
__ladd_(self, other) X +=y __isub_ (self, other) X —=y
__radd__ (self, other) y + X __rsub_ (self, other) y - X
__mul_ (self, other) X ¥y __mod__ (self, other) X%y
_ imul_ (self, other) X *=y __imod (self, other) X %=y
__rmul__ (self, other) y * x __rmod__ (self, other) Yy % X
__floordiv__ (self, other) x // vy __truediv_ (self, other) x /vy
__ifloordiv_ (self, other) x //=y _ itruediv_ (self, other) x /=y
_ rfloordiv_ (self, other) vy // x _ rtruediv_ (self, other) vy / x

object. If we really do need a copy of our object, we can use the copy() or deep-
copy () function from the copy module, the first for objects that don’t have nested
attributes or when a shallow copy suffices, and the second for objects that must
be copied in full. Alternatively, we can provide our own copy method, which we
usually call copy() since this is conventional Python practice.

For numerical classes, it is often convenient to provide functionality to support
the standard numeric operators, such as + and +=. This is achieved in Python’s
usual way, by implementing various special methods. If we implement only +,
Python will use it to provide +=, but it is often best to implement both since that
gives us finer control and makes it easier to optimize the operations.

The most commonly implemented numeric special methods are listed in
Table 3.2. Those not listed include bit-shifting operators and hexadecimal and
octal conversion operators.

The reason for two different division operators is that Python can perform
either integer or floating-point division, as explained on page 17.

Some special methods have two or three versions; for example, add (),
radd(),and iadd ().The “r” versions (e.g., radd ()), are for situations
where the left-hand operand does not have a suitable method, but the right-
hand operand does. For example, if we have the expression x + y, with x and
y of types X and Y, Python will first try to evaluate the expression by calling
X. add_ (x, y).Butif type X does not have this method, Python will then try
Y. radd_(x, y).If Y has no such method, an exception will be raised.

({352

In the “i” versions, the “i” stands for “in-place”. They are used for augmented
assignment operators such as +=. We will shortly see an example that shows
many of these methods in practice, but first we must learn how to create static
data and static methods.

Methods and Special Methods 85

Static Data, and Static Methods and Decorators

In some situations it is useful to have data that is associated with a class as a
whole rather than with its instances. For example, if we have a Balloon class,
we might want to know how many unique colors have been used:

class Balloon(object):
unique colors = set()

def init (self, color):
self.color = color
Balloon.unique colors.add(color)

@staticmethod
def uniqueColorCount():
return len(Balloon.unique colors)

@staticmethod
def uniqueColors():
return Balloon.unique colors.copy()

Static data is created inside a class block, but outside of any def statements.
To access static data, we must qualify the name, and the easiest way to do so is
by using the class name, as we do in the Balloon class’s static methods. We will
see static data and methods in more realistic contexts in the next subsection.

The @staticmethod is a decorator. A decorator is a function that takes a function
as an argument, wraps it in some way, and assigns the wrapped function back
to the original function’s name, so it has the same effect as writing this:

def uniqueColors():
return Balloon.unique colors.copy()
uniqueColors = staticmethod(uniqueColors)

The @ symbol is used to signify a decorator. The staticmethod() function is one
of Python’s built-in functions.

We can use more than one decorator. For example, a suitable decorator could
be written to instrument functions and methods, or to log each time a method
is called. For example:

@logger

@recalculate

def changeWidth(self, width):
self.width = width

Here, whenever the object’s width is changed two decorators are applied: log-
ger(), which might record the change in a log file or database, and recalcu-
late(), which might update the object’s area.

Trun-
cating
division

17 =

86 Chapter 3. Classes and Modules

In addition to static methods, Python also supports “class methods”. These are
similar to static methods in that they do not have a self first argument, and so
can be called using a class or an instance. What distinguishes them from static
methodsis that they have a Python-supplied first argument, the class they are
called on. This is conventionally called cls.

Example: The Length Class

Now that we have seen a lot of Python’s general and numerical special meth-
ods, we are in a position to create a complete custom data type. We will create
the Length class to hold physical lengths. We want to be able to create lengths
using syntax like this: distance = Length("22 miles"). And we want to be able to
retrieve lengths in the units we prefer—for example, km = distance.to("km").
The class must not support the multiplication of lengths by lengths (since that
would produce an area), but should support multiplication by amounts; for ex-
ample distance * 2.

As usual, although the source code, in chap83/length.py, has docstrings, we
will not show them in the following snippets, both to save space and to avoid
distracting us from the code itself.

from _ future import division

The first statement in the file is rather intriguing. The from _future import
syntax is used to switch on Python features that will be on by default in a later
version. Such statements must always come first. In this case, we are saying
that we want to switch on Python’s future division behavior, which is for / to
do “true”, or floating-point division, rather than what it does normally, that is,
truncating division. (The // operator does truncating division, if that is what
we really need.)

class Length(object):

convert = dict(mi=621.371e-6, miles=621.371e-6, mile=621.371e-6,
yd=1.094, yards=1.094, yard=1.094,
ft=3.281, feet=3.281, foot=3.281,
inches=39.37, inch=39.37,
mm=1000, millimeter=1000, millimeters=1000,
millimetre=1000, millimetres=1000,
cm=100, centimeter=100, centimeters=100,
centimetre=100, centimetres=100,
m=1.0, meter=1.0, meters=1.0, metre=1.0, metres=1.0,
km=0.001, kilometer=0.001, kilometers=0.001,
kilometre=0.001, kilometres=0.001)

convert["in"] = 39.37

numbers = frozenset("0123456789.eE")

We begin with a class statement to give our class a name, and to provide a
context in which we can create static data and methods. We have inherited

Methods and Special Methods 87

from object, so our class is new-style. Then we create some static data. First
we create a dictionary that maps names to conversion factors. We can’t use
“in” as an argument name because it is a Python keyword, so we insert it into
the dictionary separately using the [] operator. We also create a set of the
characters that are valid in floating-point numbers.

def init (self, length=None):
if length is None:
self. amount = 0.0
else:
digits = ""
for i, char in enumerate(length):
if char in Length.numbers:
digits += char
else:
self. amount = float(digits)
unit = length[i:].strip().Llower()
break
else:
raise ValueError, "need an amount and a unit"
self. amount /= Length.convert[unit]

Inside the initializer, the local variables length, digits, i, char, and unit all go
out of scope at the end of the method. We refer only to one instance variable,
self. amount.This variable always holds the given length in meters, no matter
what units were used in the initializer, and is accessible from any method. We
also refer to two static variables, Length.numbers and Length.convert.

When a Length object is created, Python will call the init () method. We
give the user two options: Pass no arguments, in which case the length will be
0 meters, or pass a string that specifies an amount and a unit with optional
whitespace separating the two.

If a string is given, we want to iterate over the characters that are valid in num-
bers, and then take the remainder to be the units. Python’s enumerate() function
returns an iterator that returns a tuple of two values on each iteration, an in-
dex number starting from 0, and the corresponding item from the sequence. So
if the string in length was "7 mi",the tuplesreturned would be (0, "7"), (1, " "),
(2, "m"),and (3, "i"). We can unpack a tuple in a for loop simply by providing
enough variables.

As long as we retrieve characters that are in the numbers set we add them to
our digits string. Once we reach a character that isn’t in the set, we attempt
to convert the digits string to a float, and take the rest of the length string to
be the units. We strip off any leading and trailing whitespace from the units
string, and lowercase the string. Finally, we calculate how many meters the giv-
en length is by using the conversion factor from the static convert dictionary.

88 Chapter 3. Classes and Modules

We called our data attribute amount, rather than, say, amount, because we want
this data to be private. Python will name-mangle any name in a class that
begins with two underscores (and which does not end in two underscores) to
be preceded by an underscore and the class name to make the attribute’s name
unique. In this case, amount will be mangled to be Length amount. When we
look at some of the special methods, we will see a practical reason why this
is beneficial.

Clearly many things could go wrong. The floating-point conversion could fail,
there may be no units given (in which case we raise an exception, along with
a “reason” string), or the units may not match any in the convert dictionary.
In this method, we have chosen to let the possible exceptions be raised, docu-
menting them in the method’s docstring so that users of the class know what
to expect.

def set(self, length):
self. init (length)

We want our lengths to be mutable, so we have provided a set() method. It
takesthe same argumentas init (),andbecause init () isaninitializer
rather than a constructor, we can safely pass the work on to it.

def to(self, unit):
return self. amount x Length.convert[unit]

We store lengths inside the class as meters. This means that we need to
maintain only a single floating-point value, rather than, say, a value and a unit.
But just as we can specify our preferred units when we create a length, we also
want to be able to retrieve a length as a value in the units of our choice. This
is what the to() method achieves. It uses the convert dictionary to convert the
meters value to the units specified.

def copy(self):
other = Length()
other. amount = self. amount
return other

As we know, if we use the = operator, we will simply bind (or rebind) a name,
so if we want a genuine copy of a length we need some means of doing it. Here
we have chosen to provide a copy() method. But we did not have to: Instead,
we could have simply relied on the copy module. For example:

import copy
import length

X
y

length.Length("3 km")
copy . copy (x)

We have imported both the standard copy module and our own length module,
(assuming that chap03 is in sys.path, and that the module is called length.py).

Methods and Special Methods 89

Then we created two independent lengths. If, instead, we had done y = x and
then changed x using the set() method, y would have changed too. Of course,
since we have implemented our own copy() method, we could also have copied
by writing y = x. copy().

We could have implemented the copy() method differently. For example:

def copy(self): # Alternative #1
import copy
return copy.copy(self)

def copy(self): # Alternative #2
return eval(repr(self))

The first of these uses Python’s standard copy module to implement the copy ()
function. The second uses the repr() method to provide an eval()-able string
version of the length—for example, Length('3000.000000m')—and then uses
eval() to evaluate this code;in this case, it constructs a new length of the same
size as the original.

@staticmethod
def units():
return Length.convert.keys()

We have provided this static method to give users of our class access to the
names of the units we support. By using keys(), we ensure that a list of unit
names is returned, rather than an object reference to our static dictionary.

With the exceptionof the init () initialization method, none of the methods
we have looked at so far has been a special method. But we want our Length
class to work like a standard Python class, so that it can be used with operators
like * and *=, compared, and converted to suitable compatible types. All these
things are achievable by implementing special methods. We will begin with
comparisons.

def _cmp_ (self, other):
return cmp(self. amount, other. amount)

This method is easy to implement since we can just compare how long each
length is.

The other object could be an object of any type. Thanks to Python’s name
mangling, the actual comparison is made between self. Length amount and
other. Length amount. If the other object does not have a Length amount at-
tribute, that is, if it is not a length, Python will raise an AttributeError which
is what we want. This is true of all the other methods that take a length argu-
ment in addition to self.

Without the name mangling, there is a small risk of the other object not being
a length, yet happening to have an _ amount attribute. To prevent this risk

90 Chapter 3. Classes and Modules

we might have used type testing, even though this is often poor practice in
object-oriented programming.

def _repr_ (self):
return "Length('%.6fm')" % self. amount

def str_ (self):
return "%.3fm" % self. amount

Python’s floating-point accuracy depends on the compiler it was built with, but
it is very likely to be accurate to much more than the six decimal places we have
chosen to use for our “representation” method.

For the string representation, we don’t need to be as accurate, nor do we
need to return a string that can be eval()’d, so we just return the raw length
and the meters unit. If users of our Length class want a string represen-
tation with a different unit, they can use to()—for example, "%s miles" %
length.Length("200 ft").to("miles").

def add (self, other):
return Length("sfm" % (self. amount + other. amount))

def iadd (self, other):
self. amount += other. amount
return self

We have used two special methods to support addition. The first supportsbina-
ry + with a length operand on either side. It constructs and returns a new Length
object. The second supports += for incrementing a length by another length.

They allow us to write code like this:

x = length.Length("30ft")
y = length.Length("250cm")
Z=X+Yy # z == Length('11.643554m")
X +=y # x == Length('11.643554m")

It is also possible to implement radd () for mixed-type arithmetic, but we
have not done so because it does not make sense for the Length class.

We will omit the code that provides support for subtraction since it is almost
identical to the code for addition (and is in the source file).

def mul (self, other):
if isinstance(other, Length):
raise ValueError, \
"Length * Length produces an area not a Length"

return Length("sfm" % (self. amount x other))

Methods and Special Methods 91

def rmul_(self, other):
return Length("sfm" % (other % self. amount))

def imul (self, other):
self. amount = other
return self

For the multiplication methods, we provide support for multiplying a length
by a number. If we assume that x is a length, mul () supports uses like x *
5,and __rmul_ () supports uses like 5 * x. We must explicitly disallow multi-
plying lengths together in _mul () since the result would be an area and not
a length. We do not need to do thisin _rmul_ () because mul () is always
tried first, and if it raises an exception, Python does not try _rmul_ (). The
__imul_ () method supportsin-place (augmented) multiplication—for example,
X *= 5.

def truediv_ (self, other):
return Length("%fm" % (self. amount / other))

def itruediv_ (self, other):
self. amount /= other
return self

The implementation of the division special methods has a similar structure
to the other arithmetic methods. One reason for showing them is to remind
ourselves that the reason the / and /= operators perform floating-point division
is because of the from future import division directive at the beginning of
the length.py file. It is also possible to reimplement truncating division, but
that isn’t appropriate for the Length class.

Another reason for showing them is that they are subtly different from the
addition methods we have just seen. Although addition and subtraction
operate only on lengths, multiplication and division operate on a length and
a number.

def float (self):
return self. amount

def int (self):

return int(round(self. amount))

We have chosen to support two type conversions, both of which are easy to
write and understand.The str () method implemented earlier is also a type
conversion (to type str).

Now that we have seen how to implement a custom data type, we will turn our
attention to implementing a custom collection class.

Genera-

tor
func-
tions

58 =u

92 Chapter 3. Classes and Modules

Collection Classes

In Python, collections are sequences such as lists and strings, mappings such
as dictionaries, or sets. If we implement our own collection classes we can use
special methods to make our collections usable with the same syntax and
semantics as the built-in collection types. Table 3.3 lists the special methods
common to collections, and in this section we discuss some of the specifics of
each kind of collection.

In the case of sequences, it is common to implement add () and radd ()
to support concatenation with +, and in the case of a mutable collection, to
implement iadd (), for +=, too. Similarly, the mul () methods should be
implemented to support * for repeating the collection. If an invalid index is
given, we should raise an IndexError exception. In addition to special methods,
a custom sequence collection ought to implement append(), count(), index(),
insert(), extend(), pop(), remove(), reverse(), and sort().

For mappings, we should raise KeyError if an invalid key is given, and in ad-
dition to the special methods, we should at least implement copy() and get(),
along with items(), keys(), and values(), and their iterator versions, such as
iteritems(). A Python iterator is a function or method that returns successive
values—for example, each character in a string, or each item in a list or dictio-
nary. They are often implemented by generators.

For sets, we should also raise KeyError if an invalid key is used; for example,
when calling remove(). Set collections should implement issubset(), issuper-
set(),union(), intersection(),difference(), symmetric difference(),and copy().
For mutable sets, additional methods should be provided, including add(), re-
move(), and discard().

Example: The OrderedDict Class

A rare omission from Python’s standard library is an ordered dictionary. Plain
dictionaries provide very fast lookup, but do not provide ordering. For example,
if we wanted to iterate over a dictionary’s values in key order, we would copy
the keys to a list, sort the list, and iterate over the list, using the list’s elements
to access the dictionary’s values. For small dictionaries, or where we do this
rarely, sorting may be fine, but when the dictionary is large or sorted frequently,
sorting every time may be computationally expensive.

An obvious solution is to create an ordered dictionary, and that is what we will
do here.

Understanding the OrderedDict example is not necessary for learning GUI
programming, but we do use the techniques and methods explained here in
some of the programs that we will cover later on. For now, though, you could
safely skip to the next section, starting on page 99, and then return here to
understand the techniques when you encounter them in later chapters.

Methods and Special Methods 93

Table 3.3 Selected Collection Special Methods

Method Syntax Description

__contains__ (self, x) X iny Returns True if x is in sequence y or if
xisakeyindict y. This method is also
used for not in.

__len_ (self) len(y) Returns the number of itemsiny

__getitem (self, k) y[k] Returns the k-th item of sequence y or
the value for key k in dict y

__setitem (self, k, v) y[k] =v Sets the k-th item of sequence y or the
value for key k in dict y,tov

__delitem (self, k) del y[k] Deletes the k-th item of sequence y or
the item with key k in dict y

_iter (self) for x in y: Returns an iterator into collection y
pass

One approach would be to inherit dict, but we will instead use aggregation
(also called composition), and defer consideration of inheritance until the
next section.

To get an ordered dictionary, we will create a class that stores a normal dic-
tionary, and alongside it, an ordered list of the dictionary’s keys. We will
implement all of the dict API, but we will not show update() or fromkeys()
because they both go beyond what we have covered and what we need for
GUI programming. (Of course, both of these methods are in the source code,
chap03/ordereddict.py.)

The first executable statement in the file is an import statement:
import bisect

The bisect module provides methods for searching ordered sequences such as
lists using the binary chop algorithm. We will discuss it shortly when we see it
in use.

For this class we don’t need any static data, so we will begin by looking at both
the class statement and the definition of _init ():

class OrderedDict(object):

def init (self, dictionary=None):
self. keys =[]
self. dict = {}
if dictionary is not None:
if isinstance(dictionary, OrderedDict):
self. dict = dictionary. dict.copy()
self. keys = dictionary. keys[:]
else:

Dic-
tionary
methods

36 =1

94 Chapter 3. Classes and Modules

dict(dictionary).copy()
sorted(self. dict.keys())

self. dict
self. keys

We create a list called keys and a dictionary called dict. If the OrderedDict
isinitialized with another dictionary, we need to get that dictionary’s data. The
simplest and most direct way of doing this is how we do it in the else suite.
We convert the object to a dictionary (which costs nothing if it is already a
dictionary), and take a shallow copy of it. Then we take a sorted list of the
dictionary’s keys.

The approach used in the else suite works in all cases, but purely for efficiency,
we have introduced a type test using isinstance(). This function returns True if
its first argument is an instance of the class or classes (passed as a tuple) given
as its second argument, or any of their base classes. So if we are initializing
from another OrderedDict (or from an OrderedDict subclass) we can simply
shallow-copy its dictionary, which costs the same as before, and shallow-copy
its keys, which is cheaper because they are already sorted.

Since our dictionary is ordered, in addition to the normal dictionary methods
we should also be able to access the value of a dictionary item at a particular
index position in the dictionary. That is what the first two methods we are
going to implement provide:

def getAt(self, index):
return self. dict[self. keys[index]]

def setAt(self, index, value):
self. dict[self. keys[index]] = value

The getAt() method returns the index-th item in the dictionary. It does this by
accessing the dictionary using the key the list holds in the index-th position.
The setAt() method uses the same logic, except that it sets the value for the
dictionary item that is at the index-th position.

def getitem (self, key):
return self. dict[key]

If we have a dictionary, d, and use the syntax value = d[key], the getitem ()
special method is called. We simply pass the work on to the dictionary we are
holding inside our OrderedDict class. If the key is not in _ dict it will raise a
KeyError, which is what we want, since we want OrderedDict to have the same
behavior as a dict, except when key order is an issue.

def setitem (self, key, value):
if key not in self. dict:
bisect.insort left(self. keys, key)
self. dict[key] = value

Methods and Special Methods 95

If the user assigns to a dictionary using the syntax d[key] = value, we again rely
on the dict to dothe work. But if the key is not already in the dict, it can’t
be in the list of keys either, so we must add it.

The insort left() function takes a sorted sequence, such as a sorted list,
and an item to insert. It locates the position in the sequence where the item
should go to preserve the sequence’s order, and inserts the item there. The
insort left() function, like all the bisect module’s functions, uses a binary
chop, so performance is excellent even on very long sequences.

Another approach would have been to simply append the new key and then
call sort() on the list. Python’s sorting functionality is highly optimized for
partially sorted data, so performance might not be too bad, but we prefer the
more efficient solution.

def delitem (self, key):
i = bisect.bisect left(self. keys, key)
del self. keys[i]
del self. dict[key]

Deleting an item is quite simple. The bisect left() function takes a sorted
sequence, such as a sorted list, and an item. It returns the index position where
the item is in the sequence (or where the item would have been if it was in
the sequence). We assume the key is in the list, relying on an exception being
raised if it isn’t. We delete the key by index position from the keys list, and
delete the (key, value) by key from the dictionary.

We could instead have deleted the key from the keys list with a single state-
ment, self. keys.remove(key), but that would have used a slow linear search.

def get(self, key, value=None):
return self. dict.get(key, value)

This method returns the value for the given key, unless the key is not present
in the dictionary, in which case it returns the specified value (which defaults to
None). Since key order is not involved, we can simply pass on the work.

def setdefault(self, key, value):
if key not in self. dict:
bisect.insort left(self. keys, key)
return self. dict.setdefault(key, value)

This method is similar to get(), but with one important difference: If the key
is not in the dictionary, it is inserted with the given value. And in the case of a
key that isn’t in the dictionary, we must, of course, insert it into our key list.

def pop(self, key, value=None):
if key not in self. dict:
return value
i = bisect.bisect left(self. keys, key)

List
compre-
hen-
sions

53 =

96 Chapter 3. Classes and Modules

del self. keys[i]
return self. dict.pop(key, value)

This method is also similar to get(), except that it removes the item with the
given key if it is in the dictionary. Naturally, if a key is removed from the
dictionary, we must also remove it from the list of keys.

def popitem(self):
item = self. dict.popitem()
i = bisect.bisect left(self. keys, item[0])
del self. keys[i]
return item

This method removes and returns an arbitrary item, that is, a (key, value) tuple
We first remove the arbitrary item from the dictionary (since we don’t know
what it will be in advance), then remove its key from our list of keys, and finally
return the item that was removed.

def has_key(self, key):
return key in self. dict

def contains_ (self, key):
return key in self. dict

The has_key() method is supported for backward compatibility; nowadays pro-
grammers use in, which is implemented by the contains () special method.

def _len_ (self):

return len(self. dict)

This returns how many items are in the dictionary. We could just as easily have
returned len(self. keys).

def keys(self):
return self. keys[:]

We return our dictionary’s keys as a shallow copy of our key list, so they are in
key order. A standard dict returns its keys in an arbitrary order.

def values(self):
return [self. dict[key] for key in self. keys]

We return the dictionary’s values in key order. To do this we create a list of the
values by iterating over the key list in a list comprehension. This could also
be done using a for loop:

result = []

for key in self. keys:
result.append(self. dict[keyl)

return result

Genera-
tor
func-
tions

58 =

Methods and Special Methods 97

Writing one line of code rather than four obviously makes the list comprehen-
sion more appealing, although the syntax can take some getting used to.

def items(self):
return [(key, self. dict[key]) for key in self. keys]

We use a similar approach for returning items, as (key, value) tuples, and again
we could use a conventional loop instead:

result = []

for key in self. keys:
result.append((key, self. dict[key]))

return result

By now, though, list comprehensions should start to become more familiar.

def iter (self):
return iter(self. keys)

def iterkeys(self):
return iter(self. keys)

An iterator is a “callable object” (typically a function or method) that returns
the “next” item each time it is called. (Such objects have a next () function which
is what Python calls.)

An iterator for a sequence such as a string, list, or tuple, can be obtained by us-
ing the iter() function, which is what we do here. For dictionaries, when an it-
erator is requested, an iterator to the dictionary’s keys is returned, although for
consistency, the dict API also provides an iterkeys() method, since it also pro-
vides itervalues() and iteritems() methods. If iter() is called on a dictionary,
such as an OrderedDict instance, Python uses the iter () special method.

def itervalues(self):
for key in self. keys:
yield self. dict[keyl]

If itervalues() is called, we must return a generator that returns the dictio-
nary’s values. For a plain dict, the generator returns each value in an arbitrary
order, but for the OrderedDict we want to return the values in key order.

Any function or method that contains a yield statement is a generator. The
yield statement behaves like a return statement, except that after the yield
has returned a value, when the generator is next called it will continue from
the statement following the yield with all its previous state intact. So in this
method, after each dictionary value is returned, the next iteration of the for
loop takes place, until all the values have been returned.

def iteritems(self):
for key in self. keys:

98 Chapter 3. Classes and Modules

yield key, self. dict[key]

This is almost identical to itervalues(), except that we return a (key, value)
tuple. (We don’t need to use parentheses to signify a tuple here, because there
is no ambiguity.)

def copy(self):
dictionary = OrderedDict()
dictionary. keys = self. keys[:]
dictionary. dict = self. dict.copy()
return dictionary

For copying, we perform a shallow copy of the keys list and of the internal
dictionary, so the cost is proportional to the dictionary’s size.

def clear(self):
self. keys
self. dict

(]
{}

This is the easiest function. We could have used list() and dict() rather than
[]and {}.

def repr_ (self):
pieces = []
for key in self. keys:
pieces.append("%r: %r" % (key, self. dict[key]))
return "OrderedDict({%s})" % ", ".join(pieces)

We have chosen to provide an eval()-able form of our dictionary. (And since
we have not implemented str (), this will also be used when the dictionary
is required as a string—for example, in a print statement.) For each (key,
value) pair, we use the %r “representation” format so, for example, strings will
be quoted, but numbers will not be. Here are two examples that show repr()
in action:

d = OrderedDict(dict(s=1, a=2, n=3, i=4, t=5))
print repr(d)
Prints "OrderedDict({'a': 2, 'i': 4, 'n': 3, 's': 1, 't': 5})"

d = OrderedDict({2: 'a', 3: 'm', 1: 'x'})
print *d’ # Same as print repr(d)
Prints "OrderedDict({1: 'x', 2: 'a', 3: 'm'})"

Naturally, this method could have been implemented using a list comprehen-
sion, but in this case a for loop seems to be easier to understand.

We have now completed our review of the OrderedDict class. One piece of
functionality that may appear to be missing from this and the other Python
collectionsis the ability to load and save to a file. In fact, Python has the ability
to load and save collections, including nested collections, to bytestrings and to

Methods and Special Methods 99

files, providing they contain objects that can be represented, such as Booleans,
numbers, strings, and collections of such objects. (Actually, Python can even
load and save functions, classes, and in some cases, instances.) We will learn
about this functionality in Chapter 8.

Inheritance and Polymorphism

Just as we would expect from a language that supports object-oriented pro-
gramming, Python supports inheritance and polymorphism. We have already
used inheritance because the classes we have created so far have inherited ob-
ject, but in this section we will go into more depth. All Python methods are vir-
tual, so if we reimplement a method in a base class the reimplemented method
will be the one that is called. We will see shortly how we can access base class
methods, for example, when we want to use them as part of a reimplement-
ed method.

Let us begin with a simple class that holds some basic information about a
work of art:

class Item(object):

def init (self, artist, title, year=None):
self. artist = artist
self. title = title
self. year = year

We have inherited the object base class and given our class three private data
attributes. Since we have made the attributes private, we must either provide
accessors for them, or create properties through which we can access them. In
this example, we have chosen to use accessors:

def artist(self):
return self. artist

def setArtist(self, artist):
self. artist = artist

The accessors for the title and year attributes are structurally the same
as those for the artist attribute, so we have not shown them.

def str (self):
year = ""
if self. year is not None:
year = " in %d" % self. year
return "%s by %s%s" % (self. title, self. artist, year)

If a string representation is required, we return a string in the form “title by
artist” if _ year is None, and “¢itle by artist in year” otherwise.

100 Chapter 3. Classes and Modules

Now that we can encapsulate some basic information about a work of art, we
can create a Painting subclass to hold information on paintings:

class Painting(Item):

def init (self, artist, title, year=None):
super(Painting, self). init (artist, title, year)

The preceding code is the entire subclass. We have not added any data at-
tributes or new methods, so we just use the super() built-in function to initialize
the Item base class. The super() function takes a class and returns the class’s
base class. If the function is also passed an instance (as we do here), the re-
turned base class object is bound to the instance we passed in, which means we
can call (base class) methods on the instance.

It is also possible to call the base class by naming it explicitly—for example,
Item. init (self, artist, title, year); notice that we must pass the self
parameter ourselves if we use this approach.

We don’t have to call the base class _init () at all—for example, if the base
class has no data attributes. And if we do call it, the super() call does not have
to be the first call we make, although it usually is in _init () implemen-
tations.

Now we will look at a slightly more elaborate subclass:

class Sculpture(Item):

def init (self, artist, title, year=None, material=None):
super(Sculpture, self). init (artist, title, year)
self. material = material

The Sculpture class has an additional attribute, so after initializing through
the base class we also initialize the extra attribute.

We won’t show the accessors since they are structurally the same as those used
for the artist’s name.

def str_ (self):

materialString = ""
if self. material is not None:

materialString = " (%s)" % self. material
return "%s%s" % (super(Sculpture, self). str (),

materialString)

The str_ () method uses the base class’s _str () method, and if the ma-
terial is known, it tacks it on to the end of the resultant string. We cannot call
str(self) because that would lead to an infinite recursion (calling str ()
again and again), but there is no problem calling a special method explicitly
when necessary, as we do here.

Inheritance and Polymorphism 101

Because of Python’s polymorphism, the right str_ () method will always be
called. For example:

a = Painting("Cecil Collins", "The Sleeping Fool", 1943)

print a # Prints "The Sleeping Fool by Cecil Collins in 1943"
b = Sculpture("Auguste Rodin", "The Secret", 1925, "bronze")

print b # Prints "The Secret by Auguste Rodin in 1925 (bronze)"

Although we have shown polymorphism using a special method, it works
exactly the same for ordinary methods.

Python uses dynamic typing, also called duck typing (“If it walks like a duck
and it quacks like a duck, it is a duck”). This is very flexible. For example,
suppose we had a class like this:

class Title(object):

def init (self, title)
self. title = title

def title(self):
return self. title

Now we could do this:

items = []
items.append(Painting("Cecil Collins", "The Poet", 1941))
items.append(Sculpture("Auguste Rodin", "Naked Balzac", 1917,
"plaster"))
items.append(Title("Eternal Springtime"))
for item in items:
print item.title()

This will print the title of each item, even though the items are of different
types. All that matters to Python is that they all support the required method,
in this case title().

But what if we had a collection of items, but we were not sure if all of them
supported the title() method? With the code as it stands we would get an
AttributeError as soon as we reached an item that didn’t support title(). One
solution is to use exception handling:

try:
for item in items:
print item.title()
except AttributeError:
pass

102 Chapter 3. Classes and Modules

That contains the problem, but stops the loop as soon as an unsuitable item
is encountered. This might tempt us to use type checking, with type() or
isinstance(), for example:

for item in items:
if isinstance(item, Item):
print item.title()

This will work perfectly for Paintings and Sculptures since they are both Item
subclasses, but will fail on Title objects. Furthermore, this approach is not
really good object-oriented style. What we really want to do is say “can it
quack?”, and we can do this using hasattr():

for item in items:
if hasattr(item, "title"):
print item.title()

Now our items can be Paintings, Sculptures, Titles, or even strings (since
strings have a title() method).

One question remains, though: How do we know that the attribute is a
method—that it is callable—rather than a data attribute? One approach is to
use callable(). For example:

for item in items:
if hasattr(item, "title") and callable(item.title):
print item.title()

We still need to use hasattr() because we must call callable() only on some-
thing that exists (otherwise, we will get an exception), in this case an instance
attribute that is a method.

Python’s introspection is very powerful, and it has more features than those
we have covered here. But whether it is wise to use it, apart from isinstance(),
is debatable.

Sometimes it is useful to define an abstract base class (an interface) that
simply defines a particular API. For example, works of art and other kinds of
items have dimensions, so it might be useful to have a Dimension interface that
had area() and volume() methods. Although Python provides no formal support
for interfaces, we can achieve what we want by implementing a class that has
no data attributes, and whose methods raise the NotImplementedError exception.
For example:

class Dimension(object):

def area(self):
raise NotImplementedError, "Dimension.area()"

def volume(self):

Inheritance and Polymorphism 103

raise NotImplementedError, "Dimension.volume()"

This defines the Dimension interface as having the two methods we want. If we
multiply-inherit Dimension and forget to reimplement the methods, we will get
a NotImplementedError exception if we try to use them. Here is a new version of
the Painting class that makes use of the interface:

class Painting(Item, Dimension):

def init (self, artist, title, year=None, width=None,
height=None):
super(Painting, self). init (artist, title, year)
self. width = width
self. height = height

To calculate a painting’s area we need its width and height, so we add these to
the constructor, and assign them to suitable attributes:

def area(self):
if self. width is None or self. height is None:
return None
return self. width % self. height

def volume(self):
return None

We must implement area() and volume(). Although the volume() method does
not make sense for a painting, we must provide an implementation anyway
(since the interface requires one), so we do so and return None. An alternative
would have been to have raised an exception—for example, ValueError.

It would be natural to rework the Sculpture class to accept width, height, and
depth arguments, and to provide a volume() implementation. But an area() im-
plementation may or may not make sense for a sculpture. We might mean the
overall area of the total volume, or the area of a face from a particular view-
point. Since there is ambiguity, we could either pass an additional argument to
disambiguate, or give up and either return None or raise an exception.

Multiply inheriting just involves listing two or more base classes in the class
statement. The order in which the base classes appear does not matter in our
example, but can matter in more complex hierarchies.

Python’s object-oriented functionality goes beyond what we have covered in
this chapter. For instances that need to store a fixed set of attributes as com-
pactly as possible, it is possible to use the slots class attribute. We mention
this only to highlight the fact that this is completely different from the PyQt
slots (which are functions and more commonly methods) that we will encounter
in the GUI chapters. It is also possible to create meta-classes, but again thisis
beyond the scope of what we need for GUI programming, so we do not need to
cover the topic here.

Signals
and
slots

= 127

Import-

ing
Objects
sidebar

19 =

104 Chapter 3. Classes and Modules

Modules and Multifile Applications

Object-oriented programming allows us to package up functionality (e.g., meth-
ods and data attributes), into classes. Python modules allow us to package up
functionality at a higher level—for example, entire sets of classes, functions,
and instance variables. A moduleis simply a file with a . py extension. Modules
may have code that is executed when they are imported, but more commonly
they simply provide functions and classes which are instantiated when they
are imported. We have already seen examples of this: The Length classisin a
file called length. py, and is therefore accessible as the length module. When im-
porting a module, we specify the name of the module file without the extension.
For example:

import length
a = length.Length("4.5 yd")

Only modules that are in the current directory, or in Python’s sys.path list, can
be imported. If we need access to modules that are elsewhere in the filesystem,
we can add additional pathsto sys.path. In addition to a file, a module can be an
entire directory of files. In these cases, the directory must contain a file called
__init _.py. This file can be (and often is) empty; it is simply used as a marker
to tell Python that the directory contains .py files and that the directory name
is the top-level module name. For example, we might create a directory called
mylibrary and put length.py, ordereddict.py,and an empty init .pyinit. As
long as we add the directory that contains the mylibrary directory to Python’s
path, we could do this:

import mylibrary.length
a = mylibrary.length.Length("14.3 km")

In practice, we might prefer to alias mylibrary.length to something shorter.
For example:

import mylibrary.length as length
a = length.Length("948mm")

Python’s module handling is a lot more sophisticated than we have shown,
but what we have covered is sufficient for the GUI programming which is our
main concern.* Python and PyQt applications can be written in a single file
or can be spread over multiple files. We will show both approaches in the
coming chapters.

*The module import semantics are due to change in Python 2.7, with imports becoming absolute
rather than relative. See http://www.python.org/dev/peps/pep-0328for details.

http://www.python.org/dev/peps/pep-0328

Modules and Multifile Applications 105

Using the doctest Module

Python has considerable support for testing, with the doctest and unittest
modules for unit testing and the test module for regression testing. PyQt also
provides unit-testing functionality with the QtTest module.

When we create modules, such as the length and ordereddict modules we wrote
earlier, they are designed to be imported and the objects they provide (e.g., the
Length and OrderedDict classes), used by the importing application. But since
.py files can also be executables, we can easily include unit-testing code: When
the module is imported the unit-testing code is simply ignored; but when the
module is run the unit tests are executed. This approach is supported by the
doctest module.

The doctest module makes unit testing as simple and painless as possible.
To use it all we need to do is add examples to our docstrings, showing what
we would type into the interactive Python interpreter (or IDLE) and what
response we expect back. For example, here is the OrderedDict class’s get()
method in full:

def get(self, key, value=None):
"""Returns the value associated with key or value if key isn't
in the dictionary

>>> d = OrderedDict(dict(s=1, a=2, n=3, i=4, t=5, y=6))
>>> d.get("X", 21)

21

>>> d.get("i")

4

return self. dict.get(key, value)

The docstring contains a brief description of the method’s purpose, and then
some examples written as though they were typed into the interpreter. We
begin by creating an OrderedDict object; we don’t need to import or qualify since
we are inside the ordereddict module. We then write a call to the method we are
testing and what the interpreter (or IDLE) is expected to respond. And then
we do another call and response.

The doctest module uses this syntax because it is so familiar to Python pro-
grammers through their use of the interactive Python interpreter or of IDLE,
or of any other Python IDE, such as Eric4, that embeds a Python interpreter.
When the tests are run, the doctest module will import the module itself,
then read every docstring (using Python’s introspection capabilities) and then
execute each statement that begins with the >>> prompt. It then checks the
result against the expected output (which may be nothing), and will report any
failures.

106 Chapter 3. Classes and Modules

To make a module able to use doctest like this we just need to add three lines
at the end of the module:

if name ==" main_":
import doctest
doctest.testmod()

Whether a module is imported by being the subject of an import statement, or
is invoked on the command line, all the module’s code is executed. This causes
the module’s functions and classes to be created ready for use.

We can tell whether a module was imported because in this case its __name
attribute is set to the module’s name. On the other hand, if a module is invoked
its name attributeissetto main .

As shown earlier, we can use an if statement to see whether the module was
imported, in which case we do nothing else. But if the module was invoked
on the command line, we import the doctest module and execute the testmod ()
function which performs all our tests.

We can perform a test run from inside a console window. For example:

C:\>cd c:\pyqt\chap03
C:\pyqgt\chap03>ordereddict.py

If there are no test failures, the module will run silently. If there are any
errors, these will be output to the console. We can force the doctest module to
be more verbose by using the -v flag:

C:\pyqt\chap03>ordereddict.py -v

This shows every single test that is performed, and a summary at the end.

It is also possible to test for expected failures, for example, out-cases where we
expect an exception to be raised. For these we just write the first and last lines
of the expected output (because the traceback in the middle may vary) and use
an ellipsis, ..., to indicate the traceback. For example, here is the OrderedDict
class’s setAt () method in full:

def setAt(self, index, value):
"""Sets the index-th item's value to the given value

>>> d = OrderedDict(dict(s=1, a=2, n=3, i=4, t=5, y=6))
>>> d.getAt(5)

6

>>> d.setAt(5, 99)

>>> d.getAt(5)

99

>>> d.setAt (19, 42)

Traceback (most recent call last):

Modules and Multifile Applications 107

IndexError: list index out of range

self. dict[self. keys[index]] = value

We created an OrderedDict of six items, but in the last test attempted to set
the nonexistent twentieth item’s value. This causes the dictionary to raise an
IndexError, so we write what the interactive Python interpreter would output,
and the doctest module understands this and will pass the test if the exception
was correctly raised.

The doctest module is less sophisticated than the unittest module, but it is
both easy to use and unobtrusive. We have used it in all the examples shown
so far, as can be seen by looking at the book’s source code.

Summary

This chapter took us from being users of classes to being creators of classes.
We saw how to initialize newly created instances using the init () special
method, and how to implement many of the other special methods so that our
custom data types (classes) can behave just like Python’s built-in classes. We
also learned how to create both ordinary methods and static methods, and how
to store and access both per-instance and static data.

We reviewed two complete examples. The Length class, a numeric data type,
and the OrderedDict class, a collection class. We also made use of much of
the knowledge gained from the previous chapters, including some of Python’s
advanced features, such as list comprehensions and generator methods.

This chapter also showned how to do both single and multiple inheritance,
and gave an example of how to create a simple interface class. We learned
more about using isinstance() for type testing, and about hasattr() and duck

typing.

We concluded the chapter with an overview of how Python modules and
multifile applications work. We also looked at the doctest module and saw how
eagy it is to create unit tests that look like examples in our docstrings.

We now know the Python language fundamentals. We can create variables, use
collections, and create our own data types and collection types. We can branch,
loop, call functions and methods, and raise and handle exceptions. Clearly,
there is a lot more to learn, but we can cover everything else we require as the
need arises. We are now ready to start GUI application programming, a topic
that begins in the next chapter and which occupies the rest of the book.

108 Chapter 3. Classes and Modules

Exercises

1. Implement a Tribool data type. This is a data type that can have one of
three values: True, False, or unknown (for which you should use None). In
addition to init (), implement str (), repr (), and cmp ();
also, implement nonzero () for conversion to bool(), invert () for
logical not (~), and () for logical and (&), and _or () for logical or (|).
There are two possible logics that can be used: propagating, where any ex-
pression involving unknown (i.e., None) is unknown, and nonpropagating,
where any expression involving unknown that can be evaluated is evalu-
ated. Use nonpropagating logic so that your Tribools match the truth ta-
ble shown here, and where t is Tribool(True), f is Tribool(False), and n is
Tribool(None) (for unknown):

Expression Result Expression Result Expression Result

~t False ~f True ~n None
t&t True t & f False t & n None
f & f False f & n False n&n None
t |t True t | f True t | n True
f | f False f | n None n| n None

For example, with nonpropagating logic, True | None is True, because as long
as one operand to logical or is true, the expression is true. But False | None
is None (unknown), because we cannot determine the result.

Most of the methods can be implemented in just a few lines of code.
Make sure that you use the doctest module and write unit tests for all
the methods.

2. Implement a Stack class and an EmptyStackError exception class. The Stack
class should use a list to store its items, and should provide pop() to return
and remove the item at the top of the stack (the rightmost item), top() to
return the item at the top of the stack, and push() to push a new item onto
the stack. Also provide special methods so that len() and str() will work
sensibly. Make sure that pop() and top() raise EmptyStackError if the stack
is empty when they are called. The methods can be written using very few
lines of code. Make sure that you use the doctest module and write unit
tests for all the methods.

The model answers are provided in the files chap83/tribool.py and chap03/
stack.py.

Part 11

Basic GUI Programming

This page intentionally left blank

® A Pop-Up Alert in 25 Lines
® An Expression Evaluator in 30 Lines
® A Currency Converter in 70 Lines

@® Signals and Slots

Introduction to GUI
Programming

In this chapter we begin with brief reviews of three tiny yet useful GUI appli-
cations written in PyQt. We will take the opportunity to highlight some of the
issues involved in GUI programming, but we will defer most of the details to
later chapters. Once we have a feel for PyQt GUI programming, we will discuss
PyQt’s “signals and slots” mechanism—this is a high-level communication
mechanism for responding to user interaction that allows us to ignore irrele-
vant detail.

Although PyQt is used commercially to build applications that vary in size from
hundreds of lines of code to more than 100000 lines of code, the applications
we will build in this chapter are all less than 100 lines, and they show just how
much can be done with very little code.

In this chapter we will design our user interfaces purely by writing code, but in
Chapter 7, we will learn how to create user interfaces using Qt’s visual design
tool, @t Designer.

Python console applications and Python module files always have a .py exten-
sion, but for Python GUI applications we use a .pyw extension. Both .py and
.pyw are fine on Linux, but on Windows, .pyw ensures that Windows uses the
pythonw.exe interpreter instead of python.exe, and this in turn ensures that
when we execute a Python GUI application, no unnecessary console window
will appear.* On Mac OS X, it is essential to use the .pyw extension.

The PyQt documentation is provided as a set of HTML files, independent of
the Python documentation. The most commonly referred to documents are
those covering the PyQt API. These files have been converted from the original
C++/Qt documentation files, and their index page is called classes.html; Win-

*If you use Windows and an error message box titled, “pythonw.exe - Unable To Locate Component”
pops up, it almost certainly means that you have not set your path correctly. See Appendix A,
page 564, for how to fix this.

111

112 Chapter 4. Introduction to GUI Programming

dows users will find a link to this page in their Start button’s PyQt menu. It is
well worth looking at this page to get an overview of what classes are available,
and of course to dip in and read about those classes that seem interesting.

The first application we will look at is an unusual hybrid: a GUI application
that must be launched from a console because it requires command-line argu-
ments. We have included it because it makes it easier to explain how the PyQt
event loop works (and what that is), without having to go into any other GUI
details. The second and third examples are both very short but standard GUI
applications. They both show the basics of how we can create and lay out wid-
gets (“controls” in Windows-speak)—labels, buttons, comboboxes, and other on-
screen elements that users can view and, in most cases, interact with. They
also show how we can respond to user interactions—for example, how to call a
particular function or method when the user performs a particular action.

In the last section we will cover how to handle user interactions in more depth,
and in the next chapter we will cover layouts and dialogs much more thorough-
ly. Use this chapter to get a feel for how things work, without worrying about
the details: The chapters that follow will fill in the gaps and will familiarize you
with standard PyQt programming practices.

A Pop-Up Alert in 25 Lines

Our first GUI application is a bit odd. First, it must be run from the console,
and second it has no “decorations”—no title bar, no system menu, no X close
button. Figure 4.1 shows the whole thing.

Wake Up

Figure 4.1 The Alert program

To get the output displayed, we could enter a command line like this:

C:\>cd c:\pyqt\chap04
C:\pyqgt\chap04>alert.pyw 12:15 Wake Up

When run, the program executes invisibly in the background, simply marking
time until the specified time is reached. At that point,it popsup a window with
the message text. About a minute after showing the window, the application
will automatically terminate.

The specified time must use the 24-hour clock. For testing purposes we can use
a time that has just gone; for example, by using 12:15 when it is really 12:30,
the window will pop up immediately (well, within less than a second).

Now that we know what it does and how to run it, we will review the implemen-
tation. The file is a few lines longer than 25 lines because we have not counted

A Pop-Up Alert in 25 Lines 113

comment lines and blank lines in the total—but there are only 25 lines of exe-
cutable code. We will begin with the imports.

import sys

import time

from PyQt4.QtCore import x
from PyQt4.QtGui import =

We import the sys module because we want to access the command-line
arguments it holds in the sys.argv list. The time module is imported because
we need its sleep() function, and we need the PyQt modules for the GUI and
for the QTime class.

app = QApplication(sys.argv)

We begin by creating a QApplication object. Every PyQt GUI application must
have a QApplication object. This object provides access to global-like informa-
tion such as the application’s directory, the screen size (and which screen the
application is on, in a multihead system), and so on. This object also provides
the event loop, discussed shortly.

When we create a QApplication object we pass it the command-line arguments;
this is because PyQt recognizes some command-line arguments of its own,
such as -geometry and -style, so we ought to give it the chance to read them.
If QApplication recognizes any of the arguments, it acts on them, and removes
them from the list it was given. The list of arguments that QApplication
recognizes is given in the QApplication’s initializer’s documentation.

try:
due = QTime.currentTime()
message = "Alert!"
if len(sys.argv) < 2:
raise ValueError
hours, mins = sys.argv[1l].split(":")
due = QTime(int(hours), int(mins))
if not due.isValid():
raise ValueError
if len(sys.argv) > 2:
message = " ".join(sys.argv[2:])
except ValueError:
message = "Usage: alert.pyw HH:MM [optional messagel]" # 24hr clock

At the very least, the application requires a time, so we set the due variable
to the time right now. We also provide a default message. If the user has
not given at least one command-line argument (a time), we raise a ValueError
exception. This will result in the time being now and the message being the
“usage” error message.

114 Chapter 4. Introduction to GUI Programming

If the first argument does not contain a colon, a ValueError will be raised when
we attempt to unpack two items from the split() call. If the hours or minutes
are not a valid number, a ValueError will be raised by int(), and if the hours or
minutes are out of range, due will be an invalid QTime, and we raise a ValueError
ourselves. Although Python provides its own date and time classes, the PyQt
date and time classes are often more convenient (and in some respects more
powerful), so we tend to prefer them.

If the time is valid, we set the message to be the space-separated concatenation
of the other command-line arguments if there are any; otherwise, we leave it as
the default “Alert!” that we set at the beginning. (When a program is executed
on the command line, it is given a list of arguments, the first being the invoking
name, and the rest being each sequence of nonwhitespace characters, that is,
each “word”, entered on the command line. The words may be changed by the
shell—for example, by applying wildcard expansion. Python puts the words it
is actually given in the sys.argv list.)

Now we know when the message must be shown and what the message is.

while QTime.currentTime() < due:
time.sleep(20) # 20 seconds

We loop continuously, comparing the current time with the target time. The
loop will terminate if the current time is later than the target time. We could
have simply put a pass statement inside the loop, but if we did that Python
would loop as quickly as possible, gobbling up processor cycles for no good
reason. The time.sleep() command tells Python to suspend processing for
the specified number of seconds, 20 in this case. This gives other programs
more opportunity to run and makes sense since we don’t want to actually do
anything while we wait for the due time to arrive.

Apart from creating the QApplication object, what we have done so far is
standard console programming.

label = QLabel("" + message + "")
label.setWindowFlags(Qt.SplashScreen)

label.show()

QTimer.singleShot (60000, app.quit) # 1 minute

app.exec_ ()

We have created a QApplication object, we have a message, and the due time
has arrived, so now we can begin to create our application. A GUI application
needs widgets, and in this case we need a label to show the message. A QLabel
can accept HTML text, so we give it an HTML string that tells it to display bold
red text of size 72 points.*

*The supported HTML tags are listed at http://doc.trolltech.com/richtext-html-subset.html.

http://doc.trolltech.com/richtext-html-subset.html

A Pop-Up Alert in 25 Lines 115

In PyQt, any widget can be used as a top-level window, even a button or a label.
When a widget is used like this, PyQt automatically gives it a title bar. We
don’t want a title bar for this application, so we set the label’s window flags to
those used for splash screens since they have no title bar. Once we have set up
the label that will be our window, we call show() on it. At this point, the label
window is not shown! The call to show() merely schedules a “paint event”, that
is,it adds a new event to the QApplication object’s event queue that is a request
to paint the specified widget.

Next, we set up a single-shot timer. Whereas the Python library’s time.sleep()
function takes a number of seconds, the QTimer.singleShot() function takes a
number of milliseconds. We give the singleShot () method two arguments: how
long until it should time out (one minute in this case), and a function or method
for it to call when it times out.

In PyQt terminology, the function or method we have given is called a “slot”,
although in the PyQt documentation the terms “callable”, “Python slot”, and
“Qt slot” are used to distinguish slots from Python’s slots , a feature of
new-style classes that is described in the Python Language Reference. In this
book we will use the PyQt terminology, since we never use slots .

So now we have two events scheduled: A paint event that wants to take
place immediately, and a timer timeout event that wants to take place in a
minute’s time.

The call to app.exec_() starts off the QApplication object’s event loop.* The first
event it gets is the paint event, so the label window pops up on-screen with
the given message. About one minute later the timer timeout event occurs
and the QApplication.quit() method is called. This method performs a clean
termination of the GUI application. It closes any open windows, frees up any
resources it has acquired, and exits.

Event loops are used by all GUI applications. In pseudocode, an event loop
looks like this:

while True:
event = getNextEvent()
if event:
if event == Terminate:

break
processEvent(event)

When the user interacts with the application, or when certain other things
occur, such as a timer timing out or the application’s window being uncovered
(maybe because another application was closed), an event is generated inside
PyQt and added to the event queue. The application’s event loop continuously

*PyQt uses exec_() rather than exec() to avoid conflicting with Python’s built-in exec statement.

Signals
and
slots

= 127

116 Chapter 4. Introduction to GUI Programming

Read Input Start Event Loop

L
:

Process

Event to
Process?

Write Output

—

Process

Terminate

0

Request to
Terminate?

Classic
Batch-processing Yes
Application Classic GUI

Figure 4.2 Batch processing applications versus GUI applications

checks to see whether there is an event to process, and if there is, it processes
it (or passes it on to the event’s associated function or method for processing).

Although complete, and quite useful if you use consoles, the application uses
only a single widget. Also, we have not given it any ability to respond to user
interaction. It also worksrather like traditional batch-processing programs. It
is invoked, performs some processing (waits, then shows a message), and ter-
minates. Most GUI programs work differently. Once invoked, they run their
event loop and respond to events. Some events come from the user—for ex-
ample, key presses and mouse clicks—and some from the system, for example,
timers timing out and windows being revealed. They process in response to re-
quests that are the result of events such as button clicks and menu selections,
and terminate only when told to do so.

The next application we will look at is much more conventional than the one
we’ve just seen, and is typical of many very small GUI applications generally.

An Expression Evaluator in 30 Lines

This application is a complete dialog-style application written in 30 lines of
code (excluding blank and comment lines). “Dialog-style” means an application
that has no menu bar, and usually no toolbar or status bar, most commonly
with some buttons (as we will see in the next section), and with no central
widget. In contrast, “main window-style” applications normally have a menu
bar, toolbars, a status bar, and in some cases buttons too; and they have a

Trun-
cating
division

17 =0

An Expression Evaluator in 30 Lines 117

central widget (which may contain other widgets, of course). We will look at
main window-style applications in Chapter 6.

M Calculate E@

304344-284+29417424 = 162

9,540 is ineealid!

9.54/0,85 =11.2235294118

pi * &in{30) = -3.103992891 76

2 * 32 = 4294967296

2% 64 = 18446744073709551616

z ** g

Figure 4.3 The Calculate application

This application uses two widgets: A QTextBrowser which is a read-only multi-
line text box that can display both plain text and HTML;and a QLineEdit, which
is a single-line text box that displays plain text. All text in PyQt widgets is Uni-
code, although it can be converted to other encodings when necessary.

The Calculate application (shown in Figure 4.3), can be invoked just like any
normal GUI application by clicking (or double-clicking depending on platform
and settings) itsicon. (It can also be launched from a console, of course.) Once
the application is running, the user can simply type mathematical expressions
into the line edit and when they press Enter (or Return), the expression and its
result are appended to the QTextBrowser. Any exceptions that are raised due to
invalid expressions or invalid arithmetic (such as division by zero) are caught
and turned into error messages that are simply appended to the QTextBrowser.

As usual, we will look at the code in sections. This example follows the pattern
that we will use for all future GUI applications: A form is represented by a
class, behavior in response to user interaction is handled by methods, and the
“main” part of the program is tiny.

from future import division
import sys

from math import x

from PyQt4.QtCore import x

from PyQt4.QtGui import =

Since we are doing mathematics and don’t want any surprises like truncating
division, we make sure we get floating-point division. Normally we import
non-PyQt modules using the import moduleName syntax;but since we want all of
the math module’s functions and constants available to our program’s users, we
simply import them all into the current namespace. As usual, we import sys
to get the sys.argv list, and we import everything from both the QtCore and the
QtGui modules.

class Form(QDialog):

118 Chapter 4. Introduction to GUI Programming

def init (self, parent=None):
super(Form, self). init (parent)
self.browser = QTextBrowser()
self.lineedit = QLineEdit("Type an expression and press Enter")
self.lineedit.selectAll()
layout = QVBoxLayout()
layout.addWidget(self.browser)
layout.addWidget(self.lineedit)
self.setLayout(layout)
self.lineedit.setFocus()
self.connect(self.lineedit, SIGNAL("returnPressed()"),
self.updateli)
self.setWindowTitle("Calculate")

As we have seen, any widget can be used as a top-level window. But in most
cases when we create a top-level window we subclass QDialog, or QMainWindow,
or occasionally, QWidget. Both QDialog and QMainWindow, and indeed all of PyQt’s
widgets, are derived from QWidget, and all are new-style classes. By inheriting
QDialog we get a blank form, that is, a gray rectangle, and some convenient
behaviors and methods. For example, if the user clicks the close X button, the
dialog will close. By default, when a widget is closed it is merely hidden; we
can, of course, change this behavior, as we will see in the next chapter.

We give our Form class’s _init () method a default parent of None, and use
super() to initialize it. A widget that has no parent becomes a top-level win-
dow, which is what we want for our form. We then create the two widgets we
need and keep references to them so that we can access them later, outside
of init (). Since we did not give these widgets parents, it would seem that
they will become top-level windows—which would not make sense. We will see
shortly that they get parents later on in the initializer. We give the QLineEdit
some initial text to show, and select it all. This will ensure that as soon as the
user starts typing, the text we gave will be overwritten.

We want the widgets to appear vertically, one above the other, in the window.
This is achieved by creating a QVBoxLayout and adding our two widgets to it, and
then setting the layout on the form. If you run the application and resize it,
you will find that any extra vertical space is given to the QTextBrowser, and that
both widgets will grow horizontally. This is all handled automatically by the
layout manager, and can be fine-tuned by setting layout policies.

One important side effect of using layouts is that PyQt automatically repar-
ents the widgets that are laid out. So although we did not give our widgets a
parent of self (the Forminstance), when we call setLayout () the layout manager
gives ownership of the widgets and of itself to the form, and takes ownership of
any nested layouts itself. This means that none of the widgets that are laid out
is a top-level window, and all of them have parents, which is what we want. So
when the form is deleted, all its child widgets and layouts will be deleted with
it, in the correct order.

An Expression Evaluator in 30 Lines 119

Object Ownership

All PyQt classes that derive from Q0bject—and this includes all the widgets,
since QWidget is a QObject subclass—can have a “parent”. The parent—child
relationship is used for two complementary purposes. A widget that has no
parent is a top-level window, and a widget that has a parent (always another
widget) is contained (displayed) within its parent. The relationship also
defines ownership, with parents owning their children.

PyQt uses the parent—child ownership model to ensure that if a parent—for
example, a top-level window—is deleted, all its children, for example, all the
widgets the window contains, are automatically deleted as well. To avoid
memory leaks, we should always make sure that any Q0bject, including all
QWidgets, has a parent, the sole exception being top-level windows.

Most PyQt Q0bject subclasses have constructors that take a parent object
as their last (optional) argument. But for widgets we generally do not (and
need not) pass this argument. This is because widgets used in dialogs are
laid out with layout managers, and when this occurs they are automatically
reparented to the widget in which they are laid out, so they end up with the
correct parent without requiring us to take any special action.

There are some cases where we must explicitly pass a parent—for example,
when constructing Q0bject subclass objects that are not widgets, or that are
widgets but which will not be laid out (such as dock widgets); we will see
several examples of such cases in later chapters.

One final point is that it is possible to get situations where a Python variable
is referring to an underlying PyQt object that no longer exists. This issue is
covered in Chapter 9, in the “aliveness” discussion starting on page 287.

The widgets on a form can be laid out using a variety of techniques. We can use
the resize() and move() methods to give them absolute sizes and positions; we
can reimplement the resizeEvent () method and calculate their sizes and posi-
tions dynamically, or we can use PyQt’s layout managers. Using absolute sizes
and positions is very inconvenient. For one thing, we have to perform lots of
manual calculations, and for another, if we change the layout we have to redo
the calculations. Calculating the sizes and positions dynamically is a better
approach, but still requires us to write quite a lot of tedious calculating code.

Using layout managers makes things a lot easier. And layout managers are
quite smart: They automatically adapt to resize events and to content changes.
Anyone used to dialogs in many versions of Windows will appreciate the bene-
fits of having dialogs that can be resized (and that do so sensibly), rather than
being forced to use small, nonresizable dialogs which can be very inconvenient
when their contents are too large to fit. Layout managers also make life easier
for internationalized programs since they adapt to content, so translated labels
will not be “chopped off” if the target language is more verbose than the origi-
nal language.

PyQt
string
policy

28 =1

120 Chapter 4. Introduction to GUI Programming

PyQt provides three layout managers: one for vertical layouts, one for horizon-
tal layouts, and one for grid layouts. Layouts can be nested, so quite sophisti-
cated layouts are possible. And there are other ways of laying out widgets, such
as using splitters or tab widgets. All of these approaches are considered in more
depth in Chapter 9.

As a courtesy to our users, we want the focus to start in the QLineEdit; we call
setFocus() to achieve this. We must do this after setting the layout.

The connect() call is something we will look at in depth later in this chapter.
Suffice it to say that every widget (and some other Q0bjects) announce state
changes by emitting “signals”. These signals (which are nothing to do with
Unix signals) are usually ignored. However, we can choose to take notice of
any signals we are interested in, and we do this by identifying the Q0bject that
we want to know about, the signal it emits that we are interested in, and the
function or method we want called when the signal is emitted.

So in this case, when the user presses Enter (or Return) in the QLineEdit, the
returnPressed() signal will be emitted as usual, but because of our connect()
call, when this occurs, our updateUi() method will be called. We will see what
happens then in a moment.

The last thing we doin _init () is set the window’s title.

As we will see shortly, the form is created and show() is called on it. Once the
event loop begins, the form is shown—and nothing more appears to happen.
The application is simply running the event loop, waiting for the user to
click the mouse or press a key. Once the user starts interacting, the results
of their interaction are processed. So if the user types in an expression, the
QLineEdit will take care of displaying what they type, and if they press Enter,
our updateli() method will be called.

def updateUi(self):
try:
text = unicode(self.lineedit.text())
self.browser.append("%s = %s" % (text, eval(text)))
except:
self.browser.append(
"%s is invalid!" % text)

When updateUi() is called it retrieves the text from the QLineEdit, immediately
converting it to a unicode object. We then use Python’s eval() function to
evaluate the string as an expression. If this is successful, we append a string
to the QTextBrowser that has the expression text, an equals sign, and then the
result in bold. Although we normally convert QStrings to unicode as soon as
possible, we can pass QStrings, unicodes, and strs to PyQt methods that expect
a QString, and PyQt will automatically perform any necessary conversion. If
any exception occurs, we append an error message instead. Using a catch-all
except block like this is not good general practice, but for a 30-line program it
seems reasonable.

Signals
and
slots

= 127

An Expression Evaluator in 30 Lines 121

By using eval() we avoid all the work of parsing and error checking that we
would have to do ourselves if we were using a compiled language.

app = QApplication(sys.argv)
form = Form()

form.show()

app.exec ()

Now that we have defined our Form class, at the end of the calculate.pyw file, we
create the QApplication object, instantiate an instance of our form, schedule it
to be painted, and start off the event loop.

And that is the complete application. But it isn’t quite the end of the story. We
have not said how the user can terminate the application. Because our form
derives from QDialog, it inherits some behavior. For example, if the user clicks
the close button X, or if they press the Esc key, the form will close. When a form
closes, it is hidden. When the form is hidden PyQt will detect that the applica-
tion has no visible windows and that no further interaction is possible. It will
therefore delete the form and perform a clean termination of the application.

In some cases, we want an application to continue even if it is not visible—for
example, a server. For these cases, we can call QApplication.setQuitOnLast-
WindowClosed(False). It is also possible, although rarely necessary, to be notified
when the last window is closed.

On Mac OS X, and some X Windows window managers, like twm, an applica-
tion like this will not have a close button, and on the Mac, choosing Quit on the
menu bar will not work. In such cases, pressing Esc will terminate the appli-
cation, and in addition on the Mac, Command+. will also work. In view of this,
for applications that are likely to be used on the Mac or with twm or similar,
it is best to provide a Quit button. Adding buttons to dialogs is covered in this
chapter’s last section.

We are now ready to look at the last small, complete example that we will
present in this chapter. It has more custom behavior, has a more complex
layout, and does more sophisticated processing, but its fundamental structure
is very similar to the Calculate application, and indeed to that of many other
PyQt dialogs.

A Currency Converter in 70 Lines

One small utility that is often useful is a currency converter. But since ex-
change rates frequently change, we cannot simply create a static dictionary of
conversion rates as we did for the units of length in the Length class we created
in the previous chapter. Fortunately, the Bank of Canada provides exchange
rates in a file that is accessible over the Internet, and which uses an easy-
to-parse format. The rates are sometimes a few days old, but they are good

122 Chapter 4. Introduction to GUI Programming

enough for estimating the cash required for trips or how much a foreign con-
tract is likely to pay. The application is shown in Figure 4.4.

Exchange Rates Date; 04/19/2007

Norwegian Krone | |55856 e

LK. Pound Sterling | 490,20

Figure 4.4 The Currency application

The application must first download and parse the exchange rates. Then it
must create a user interface which the user can manipulate to specify the
currencies and the amount that they are interested in.

As usual, we will begin with the imports:

import sys

import urllib2

from PyQt4.QtCore import x
from PyQt4.QtGui import =

Both Python and PyQt provide classes for networking. In Chapter 18, we will
use PyQt’s classes, but here we will use Python’s urllib2 module because it
provides a very useful convenience function that makes it easy to grab a file
over the Internet.

class Form(QDialog):

def init (self, parent=None):
super(Form, self). init (parent)

date = self.getdata()
rates = sorted(self.rates.keys())

datelLabel = QLabel(date)

self.fromComboBox = QComboBox()
self.fromComboBox.addItems(rates)
self.fromSpinBox = QDoubleSpinBox()
self.fromSpinBox.setRange(0.01, 10000000.00)
self.fromSpinBox.setValue(1.00)
self.toComboBox = QComboBox ()
self.toComboBox.addItems(rates)

self.tolLabel = QLabel("1.00")

After initializing our form using super(), we call our getdata() method. As we
will soon see, this method gets the exchange rates, populates the self.rates
dictionary, and returns a string holding the date the rates were in force. The
dictionary’skeys are currency names, and the values are the conversion factors.

Inst-
ance
vari-
ables

77

A Currency Converter in 70 Lines 123

We take a sorted copy of the dictionary’s keys so that we can present the user
with sorted lists of currenciesin the comboboxes. The date and rates variables,
and the datelLabel, are referred to only inside _init (), so we do not keep ref-
erences to them in the class instance. On the other hand, we do need to access
the comboboxes and the toLabel (which displays the amount of the target cur-
rency), so we make these instance variables by using self.

We add the same sorted list of currencies to both comboboxes, and we create
a QDoubleSpinBox, a spinbox that handles floating-point values. We provide a
minimum and maximum value for the spinbox, and also an initial value. It is
good practice to always set a spinbox’s range before setting its value, since if we
set the value first and this happens to be outside the default range, the value
will be reduced or increased to fit the default range.

Since both comboboxes will initially show the same currency and the initial
value to convert is 1.00, the result shown in the tolLabel must also be 1.00, so
we set this explicitly.

grid = QGridLayout()
grid.addWidget(dateLabel, 0, 0)
grid.addWidget(self.fromComboBox, 1, 0)
grid.addwWidget(self.fromSpinBox, 1, 1)
grid.addWidget(self.toComboBox, 2, 0)
grid.addWidget(self.toLabel, 2, 1)
self.setlLayout(grid)

A grid layout seems to be the simplest solution to laying out the widgets. When
we add a widget to a grid we give the row and column position it should occupy,
both of which are 0-based. The layout is shown schematically in Figure 4.5.
Much more can be done with grid layouts. For example, we can have spanning
rows and columns; all of this is covered later, in Chapter 9.

datelLabel (0,0)
self.fromComboBox (1,0) | self.fromSpinBox (1,1)
self.toComboBox (2,0) | self.tolLabel 2,1)

Figure 4.5 The Currency application’s grid layout

If we look at the screenshot, or run the application, it is clear that column 0
of the grid layout is much wider than column 1. But there is nothing in the
code that specifies this, so why does it happen? Layouts are smart enough to
adapt to their environment, both to the space available and to the contents and
size policies of the widgets they are managing. In this case, the comboboxes
are stretched horizontally to be wide enough to show the widest currency text
in full, and the spinbox is stretched horizontally to be wide enough to show
its maximum value. Since comboboxes are the widest items in column 0, they
effectively set that column’s minimum width; and similarly for the spinbox

124 Chapter 4. Introduction to GUI Programming

in column 1. If we run the application and try to make the window narrower,
nothing will happen because it is already at its minimum width. But we can
make the window wider and both columns will stretch to occupy the extra
space. Itis,of course, possible tobias the layout so that it gives more horizontal
space to, say, column 0, when extra space is available.

None of the widgets is initially stretched vertically because that is not neces-
sary for any of them. But if we increase the window’s height, all of the extra
space will go to the dateLabel because that is the only widget on the form that
likes to grow in every direction and has no other widgets to constrain it.

Now that we have created, populated, and laid out the widgets, it is time to set
up the form’s behavior.

self.connect(self.fromComboBox,
SIGNAL("currentIndexChanged(int)"), self.updateUi)
self.connect(self.toComboBox,
SIGNAL("currentIndexChanged(int)"), self.updateUi)
self.connect(self.fromSpinBox,
SIGNAL("valueChanged(double)"), self.updateUi)
self.setWindowTitle("Currency")

If the user changes the current item in one of the comboboxes, the relevant
combobox will emit a currentIndexChanged() signal with the index position
of the new current item. Similarly, if the user changes the value held by the
spinbox, a valueChanged() signal will be emitted with the new value. We have
connected all these signals to just one Python slot: updateUi(). This does not
have to be the case, as we will see in the next section, but it happens to be a
sensible choice for this application.

And at the end of __init () we set the window’s title.

def updateUi(self):
to = unicode(self.toComboBox.currentText())
from_ = unicode(self.fromComboBox.currentText())
amount = (self.rates[from] / self.rates[to]) x \
self.fromSpinBox.value()
self.toLabel.setText("%0.2f" % amount)

This method is called in response to the currentIndexChanged() signal emitted
by the comboboxes, and in response to the valueChanged() signal emitted by the
spinbox. All the signals involved also pass a parameter. As we will see in the
next section, we can ignore signal parameters, as we do here.

No matter which signal was involved, we go through the same process. We
extract the “to” and “from” currencies, calculate the “to” amount, and set the
toLabel’s text accordingly. We have given the “from” text’s variable the name
from_because from is a Python keyword and therefore not available to us. We
had to escape a newline when calculating the amount to make the line narrow

A Currency Converter in 70 Lines 125

enough to fit on the page; and in any case, we prefer to limit line lengths to
make it easier to read two files side by side on the screen.

def getdata(self): # Idea taken from the Python Cookbook
self.rates = {}
try:
date = "Unknown"
fh = urllib2.urlopen("http://www.bankofcanada.ca"
"/en/markets/csv/exchange eng.csv")
for line in fh:
if not line or line.startswith(("#", "Closing ")):
continue
fields = line.split(",")
if line.startswith("Date "):
date = fields[-1]
else:
try:
value = float(fields[-1])
self.rates[unicode(fields[0])] = value
except ValueError:
pass
return "Exchange Rates Date: " + date
except Exception, e:
return "Failed to download:\n%s" % e

This method is where we get the data that drives the application. We begin
by creating a new instance attribute, self.rates. Unlike C++, Java, and similar
languages, Python allows us to create instance attributes as and when we
need them—for example, in the constructor, in the initializer, or in any other
method. We can even add attributes to specific instances on the fly.

Since a lot can go wrong with network connections—for example, the network
might be down, the host might be down, the URL may have changed, and so
on, we need to make the application more robust than in the previous two ex-
amples. Another possible problem is that we may get an invalid floating-point
value such as the “NA” (Not Available) that the currency data sometimes con-
tains. We have an inner try ... except block that catches invalid numbers. So
if we fail to convert a currency value to a floating-point number, we simply skip
that particular currency and continue.

We handle every other possibility by wrapping almost the entire method in an
outer try ...except block. (Thisis too general for most applications, but it seems
acceptable for a tiny 70-line application.) If a problem occurs, we catch the
exception raised and return it as a string to the caller, init (). The string
that is returned by getdata() is shown in the datelLabel, so normally this label
will show the date applicable to the exchange rates, but in an error situation it
will show the error message instead.

126 Chapter 4. Introduction to GUI Programming

Notice that we have split the URL string into two strings over two lines
because it is so long—and we did not need to escape the newline. This works
because the strings are within parentheses. If that wasn’t the case, we would
either have to escape the newline or concatenate them using + (and still escape
the newline).

We initialize the date variable with a string indicating that we don’t know what
dates the rates were calculated. We then use the urllib2.urlopen() function
to give us a file handle to the file we are interested in. The file handle can be
used to read the entire file in one go using its read() method, but in this case
we prefer to read line by line using readlines().

Here is the data from the exchange eng.csv file on one particular day. Some
columns, and most rows, have been omitted; these are indicated by ellipses.

#

Date (<m>/<d>/<year>),01/05/2007,...,01/12/2007,01/15/2007
Closing Can/US Exchange Rate,1.1725,...,1.1688,1.1667

U.S. Dollar (Noon),1.1755,...,1.1702,1.1681

Argentina Peso (Floating Rate),0.3797,...,0.3773,0.3767
Australian Dollar,0.9164,...,0.9157,0.9153

Vietnamese Dong,0.000073,...,0.000073,0.000073

The exchange_eng.csv file’s format uses several different kinds of lines. Com-
ment lines begin with “#”, and there may also be blank lines; we ignore all
these. The exchange rates are listed by name, followed by rates, all comma-
separated. The rates are those applying on particular dates, with the last one
on each line being the most recent. We split each of these lines on commas and
take the first item to be the currency name, and the last item to be the exchange
rate. There is also a line that begins with “Date”; this lists the dates applying
to each column. When we encounter this line we take the last date, since that
is the one that corresponds with the exchange rates we are using. There is also
a line that begins “Closing”; we ignore it.

For each exchange rate line we insert an item into the self.rates dictionary,
using the currency’s name for the key and the exchange rate as the value. We
have assumed that the file’s text is either 7-bit ASCII or Unicode; if it isn’t
one of these we may get an encoding error. If we knew the encoding, we could
specify it as a second argument when we call unicode().

app = QApplication(sys.argv)
form = Form()

form.show()

app.exec_ ()

A Currency Converter in 70 Lines 127

We have used exactly the same code as the previous example to create the
QApplication object, instantiate the Currency application’s form, and start off
the event loop.

As for program termination, just like the previous example, because we have
subclassed QDialog, if the user clicks the close X button or presses Esc, the
window will close and then PyQt will terminate the application. In Chapter 6,
we will see how to provide more explicit means of termination, and how to
ensure that the user has the opportunity to save any unsaved changes and
program settings.

By now it should be clear that using PyQt for GUI programming is straightfor-
ward. Although we will see more complex layouts later on, they are not intrin-
sically difficult, and because the layout managers are smart, in most cases they
“just work”. Naturally, there is a lot more to be covered—for example, creating
main window-style applications, creating dialogs that the user can pop-up for
interaction, and so on. But we will begin with something fundamental to PyQt,
that so far we have glossed over: the signals and slots communication mecha-
nism, which is the subject of the next section.

Signals and Slots

Every GUlI library provides the details of events that take place, such as mouse
clicks and key presses. For example, if we have a button with the text Click Me,
and the user clicks it, all kinds of information becomes available. The GUI
library can tell us the coordinates of the mouse click relative to the button,
relative to the button’s parent widget, and relative to the screen; it can tell us
the state of the Shift, Ctrl, Alt, and NumLock keys at the time of the click; and the
precise time of the click and of the release; and so on. Similar information can
be provided if the user “clicked” the button without using the mouse. The user
may have pressed the Tab key enough times to move the focus to the button
and then pressed Spacebar, or maybe they pressed Alt+C. Although the outcome
is the same in all these cases, each different means of clicking the button
produces different events and different information.

The Qt library was the first to recognize that in almost every case, program-
mers don’t need or even want all the low-level details: They don’t care how the
button was pressed, they just want to know that it was pressed so that they can
respond appropriately. For this reason Qt, and therefore PyQt, provides two
communication mechanisms: a low-level event-handling mechanism which is
similar to those provided by all the other GUI libraries, and a high-level mech-
anism which Trolltech (makers of Qt) have called “signals and slots”. We will
look at the low-level mechanism in Chapter 10, and again in Chapter 11, but
in this section we will focus on the high-level mechanism.

Every Q0bject—including all of PyQt’s widgets since they derive from QWidget,
a Q0bject subclass—supports the signals and slots mechanism. In particular,
they are capable of announcing state changes, such as when a checkbox

128 Chapter 4. Introduction to GUI Programming

becomes checked or unchecked, and other important occurrences, for example
when a button is clicked (by whatever means). All of PyQt’s widgets have a set
of predefined signals.

Whenever a signal is emitted, by default PyQt simply throws it away! To take
notice of a signal we must connect it to a sloz. In C++/Qt, slots are methods that
must be declared with a special syntax; but in PyQt, they can be any callable
we like (e.g., any function or method), and no special syntax is required when
defining them.

Most widgets also have predefined slots, so in some cases we can connect a pre-
defined signal to a predefined slot and not have to do anything else to get the
behavior we want. PyQt is more versatile than C++/Qt in this regard, because
we can connect not just to slots, but also to any callable, and from PyQt 4.2, it
is possible to dynamically add “predefined” signals and slots to Q0bjects. Let’s
see how signals and slots works in practice with the Signals and Slots program
shown in Figure 4.6.

M Signals and Slots @@

Figure 4.6 The Signals and Slots program

Both the QDial and QSpinBox widgets have valueChanged() signals that, when
emitted, carry the new value. And they both have setValue() slots that take an
integer value. We can therefore connect these two widgets to each other so that
whichever one the user changes, will cause the other to be changed correspond-
ingly:

class Form(QDialog):

def _init (self, parent=None):
super(Form, self). init (parent)

dial = QDial()
dial.setNotchesVisible(True)
spinbox = QSpinBox()

layout = QHBoxLayout()
layout.addWidget (dial)
layout.addWidget (spinbox)
self.setLayout(layout)

self.connect(dial, SIGNAL("valueChanged(int)"),
spinbox.setValue)

self.connect(spinbox, SIGNAL("valueChanged(int)"),
dial.setValue)

Signals and Slots 129

self.setWindowTitle("Signals and Slots")

Since the two widgets are connected in this way, if the user moves the dial—say
to value 20—the dial will emit a valueChanged(20) signal which will, in turn,
cause a call to the spinbox’s setValue() slot with 20 as the argument. But then,
since its value has now been changed, the spinbox will emit a valueChanged(20)
signal which will in turn cause a call to the dial’s setValue() slot with 20 as the
argument. So it lookslike we will get an infinite loop. But what happensisthat
the valueChanged() signal is not emitted if the value is not actually changed.
This is because the standard approach to writing value-changing slots is to
begin by comparing the new value with the existing one. If the values are
the same, we do nothing and return; otherwise, we apply the change and emit
a signal to announce the change of state. The connections are depicted in
Figure 4.7.

SIGNAL("valueChanged(int)") 1 v setValue(int)

‘ QDial ‘ ‘ QSpinBox ‘

setValue(int) * SIGNAL("valueChanged(int)")
Figure 4.7 The signals and slots connections

Now let’s look at the general syntax for connections. We assume that the PyQt
modules have been imported using the from ... import * syntax, and that s and
w are QObjects, normally widgets, with s usually being self.

s.connect(w, SIGNAL("signalSignature"), functionName)
s.connect(w, SIGNAL("signalSignature"), instance.methodName)
s.connect(w, SIGNAL("signalSignature"),

Instance, SLOT("slotSignature"))

The signalSignature is the name of the signal and a (possibly empty) comma-
separated list of parameter type names in parentheses. If the signal is a Qt sig-
nal, the type names must be the C++ type names, such as int and QString. C++
type names can be rather complex, with each type name possibly including one
or more of const, *, and & When we write them as signal (or slot) signatures we
can drop any consts and &s, but must keep any *s. For example, almost every
Qt signal that passes a QString uses a parameter type of const QString&, but in
PyQt, just using QString alone is sufficient. On the other hand, the QListWidget
has a signal with the signature itemActivated(QListWidgetItem*), and we must
use this exactly as written.

PyQt signals are defined when they are actually emitted and can have any
number of any type of parameters, as we will see shortly.

The slotSignature has the same form as a signalSignature except that the
name is of a Qt slot. A slot may not have more arguments than the signal
that is connected to it, but may have less; the additional parameters are then

130 Chapter 4. Introduction to GUI Programming

discarded. Corresponding signal and slot arguments must have the same
types, so for example, we could not connect a QDial’s valueChanged(int) signal to
a QLineEdit’s setText(QString) slot.

In our dial and spinbox example we used the instance.methodName syntax as we
did with the example applications shown earlier in the chapter. But when the
slot is actually a Qt slot rather than a Python method, it is more efficient to use
the SLOT() syntax:

self.connect(dial, SIGNAL("valueChanged(int)"),
spinbox, SLOT("setValue(int)"))

self.connect(spinbox, SIGNAL("valueChanged(int)"),
dial, SLOT("setValue(int)"))

We have already seen that it is possible to connect multiple signals to the same
slot. It is also possible to connect a single signal to multiple slots. Although
rare, we can also connect a signal to another signal: In such cases, when the
first signal is emitted, it will cause the signal it is connected to, to be emitted.

Connections are made using QObject.connect(); they can be broken using Q0b-
ject.disconnect(). In practice, we rarely need to break connections ourselves
since, for example, PyQt will automatically disconnect any connections involv-
ing an object that has been deleted.

So far we have seen how to connect to signals, and how to write slots—which
are ordinary functions or methods. And we know that signals are emitted to
signify state changes or other important occurrences. But what if we want to
create a component that emits its own signals? This is easily achieved using
QObject.emit().For example, here is a complete QSpinBox subclass that emitsits
own custom atzero signal, and that also passes a number:

class ZeroSpinBox(QSpinBox):
zeros = 0

def init (self, parent=None):
super(ZeroSpinBox, self). init (parent)
self.connect(self, SIGNAL("valueChanged(int)"), self.checkzero)

def checkzero(self):
if self.value() ==
self.zeros += 1
self.emit (SIGNAL("atzero"), self.zeros)

We connect to the spinbox’s own valueChanged() signal and have it call our
checkzero() slot. If the value happens to be 0, the checkzero() slot emits the
atzero signal, along with a count of how many times it has been zero; passing
additional data like this is optional. The lack of parentheses for the signal is
important: It tells PyQt that this is a “short-circuit” signal.

Signals and Slots 131

A signal with no arguments (and therefore no parentheses) is a short-circuit
Python signal. When such a signal is emitted, any data can be passed as
additional arguments to the emit() method, and they are passed as Python
objects. This avoids the overhead of converting the arguments to and from C++
data types, and also means that arbitrary Python objects can be passed, even
ones which cannot be converted to and from C++ data types. A signal with at
least one argument is either a Qt signal or a non-short-circuit Python signal.
In these cases, PyQt will check to see whether the signal is a Qt signal, and if
it is not will assume that it is a Python signal. In either case, the arguments
are converted to C++ data types.

Here is how we connect to the signal in the form’s _init () method:
zerospinbox = ZeroSpinBox()
self.connect(zerospinbox, SIGNAL("atzero"), self.announce)

Again, we must not use parentheses because it is a short-circuit signal. And
for completeness, here is the slot it connects to in the form:

def announce(self, zeros):
print "ZeroSpinBox has been at zero %d times" % zeros

If we use the SIGNAL() function with an identifier but no parentheses, we are
specifying a short-circuit signal as described earlier. We can use this syntax
both to emit short-circuit signals, and to connect to them. Both uses are shown
in the example.

If we use the SIGNAL() function with a signalSignature (a possibly empty paren-
thesized list of comma-separated PyQt types), we are specifying either a
Python or a Qt signal. (A Python signal is one that is emitted in Python code; a
Qt signal is one emitted from an underlying C++ object.) We can use this syntax
both to emit Python and Qt signals, and to connect to them. These signals can
be connected to any callable, that is, to any function or method, including Qt
slots; they can also be connected using the SLOT() syntax, with a slotSignature.
PyQt checks to see whether the signal is a Qt signal, and if it is not it assumes
it is a Python signal. If we use parentheses, even for Python signals, the argu-
ments must be convertible to C++ data types.

We will now look at another example, a tiny custom non-GUI class that has a
signal and a slot and which shows that the mechanism is not limited to GUI
classes—any QObject subclass can use signals and slots.

class TaxRate(QObject):

def init (self):
super(TaxRate, self). init ()
self. rate = 17.5

132 Chapter 4. Introduction to GUI Programming

def rate(self):
return self. rate

def setRate(self, rate):
if rate != self. rate:
self. rate = rate
self.emit (SIGNAL("rateChanged"), self. rate)

Both the rate() and the setRate() methods can be connected to, since any
Python callable can be used as a slot. If the rate is changed, we update the pri-
vate rate value and emit a custom rateChanged signal, giving the new rate as
aparameter. We have also used the faster short-circuit syntax. If we wanted to
use the standard syntax, the only difference would be that the signal would be
written as SIGNAL ("rateChanged(float)").If we connect the rateChanged signal to
the setRate() slot, because of the if statement, no infinite loop will occur. Let
us look at the class in use. First we will declare a function to be called when
the rate changes:

def rateChanged(value):
print "TaxRate changed to %.2f%%" % value

And now we will try it out:

vat = TaxRate()

vat.connect(vat, SIGNAL("rateChanged"), rateChanged)
vat.setRate(17.5) # No change will occur (new rate is the same)
vat.setRate(8.5) # A change will occur (new rate is different)

This will cause just one line to be output to the console: “TaxRate changed
to 8.50%”.

In earlier examples where we connected multiple signals to the same slot, we
did not care who emitted the signal. But sometimes we want to connect two or
more signals to the same slot, and have the slot behave differently depending
on who called it. In this section’s last example we will address this issue.

I Connections

o] [Tt l [Thres] | Four | [Five vou clicked button 'Four'

Figure 4.8 The Connections program

The Connections program shown in Figure 4.8, has five buttons and a label.
When one of the buttons is clicked the signals and slots mechanism is used
to update the label’s text. Here is how the first button is created in the form’s
__init_ () method:

buttonl = QPushButton("One")

Partial
function
applica-
tion

63 =

Signals and Slots 133

All the other buttons are created in the same way, differing only in their
variable name and the text that is passed to them.

We will start with the simplest connection, which is used by buttonl. Here is
the init () method’s connect() call:

self.connect(buttonl, SIGNAL("clicked()"), self.one)

We have used a dedicated method for this button:

def one(self):
self.label.setText("You clicked button 'One'")

Connecting a button’s clicked() signal to a single method that responds
appropriately is probably the most common connection scenario.

But what if most of the processing was the same, with just some parameteri-
zation depending on which particular button was pressed? In such cases, it is
usually best to connect each button to the same slot. There are two approaches
to doing this. One is to use partial function application to wrap a slot with a
parameter so that when the slot is invoked it is parameterized with the button
that called it. The other is to ask PyQt to tell us which button called the slot.
We will show both approaches, starting with partial function application.

Back on page 65 we created a wrapper function which used Python 2.5s
functools.partial() function or our own simple partial() function:

import sys

if sys.version info[:2] < (2, 5):
def partial(func, arg):
def callme():
return func(arg)
return callme
else:
from functools import partial

Using partial() we can now wrap a slot and a button name together. So we
might be tempted to do this:

self.connect(button2, SIGNAL("clicked()"),
partial(self.anyButton, "Two")) # WRONG for PyQt 4.0-4.2

Unfortunately, this won’t work for PyQt versions prior to 4.3. The wrapper func-
tion is created in the connect () call, but as soon as the connect() call completes,
the wrapper goes out of scope and is garbage-collected. From PyQt 4.3, wrap-
pers made with functools.partial() are treated specially when they are used
for connections like this. This means that the function connected to will not be
garbage-collected, so the code shown earlier will work correctly.

PyQt
4.3

Lambda
func-
tions

61 =

PyQt
4.1.1

134 Chapter 4. Introduction to GUI Programming

For PyQt 4.0, 4.1, and 4.2, we can still use partial(): We just need to keep a
reference to the wrapper—we will not use the reference except for the connect()
call, but the fact that it is an attribute of the form instance will ensure that
the wrapper function will not go out of scope while the form exists, and will
therefore work. So the connection is actually made like this:

self.button2callback = partial(self.anyButton, "Two")
self.connect(button2, SIGNAL("clicked()"),
self.button2callback)

When button2 is clicked, the anyButton() method will be called with a string
parameter containing the text “Two”. Here is what this method looks like:

def anyButton(self, who):
self.label.setText("You clicked button '%s'" % who)

We could have used this slot for all the buttons using the partial() function
that we have just shown. And in fact, we could avoid using partial() at all and
get the same results:

self.button3callback = lambda who="Three": self.anyButton(who)
self.connect(button3, SIGNAL("clicked()"),
self.button3callback)

Here we've created a lambda function that is parameterized by the button’s
name. It works the same as the partial() technique, and calls the same anyBut-
ton() method, only with lambda being used to create the wrapper.

Both button2callback() and button3callback() call anyButton(); the only
difference between them is that the first passes “T'wo” as its parameter and the
second passes “Three”.

If we are using PyQt 4.1.1 or later, and we use lambda callbacks, we don’t have
to keep a reference to them ourselves. This is because PyQt treats lambda spe-
cially when used to create wrappers in a connection. (This is the same special
treatment that is expected to be extended to functools.partial() in PyQt 4.3.)
For this reason we can use lambda directly in connect() calls. For example:

self.connect(button3, SIGNAL("clicked()"),
lambda who="Three": self.anyButton(who))

The wrapping technique works perfectly well, but there is an alternative
approach that is slightly more involved, but which may be useful in some cases,
particularly when we don’t want to wrap our calls. This other technique is used
to respond to button4 and to button5. Here are their connections:

self.connect(button4, SIGNAL("clicked(
self.connect(button5, SIGNAL("clicked(

"), self.clicked)

)
)"), self.clicked)

Signals and Slots 135

Notice that we do not wrap the clicked() method that they are both connected
to, so at first sight it looks like there is no way to tell which button called the
clicked() method* However, the implementation makes clear that we can
distinguish if we want to:

def clicked(self):
button = self.sender()
if button is None or not isinstance(button, QPushButton):
return
self.label.setText("You clicked button '%s'" % button.text())

Inside a slot we can always call sender() to discover which Q0bject the invoking
signal came from. (This could be None if the slot was called using a normal
method call.) Although we know that we have connected only buttons to this
slot, we still take care to check. We have used isinstance(), but we could have
used hasattr(button, "text") instead. If we had connected all the buttons to
this slot, it would have worked correctly for them all.

Some programmers don’t like using sender () because they feel that it isn’t good
object-oriented style, so they tend to use partial function application when
needs like this arise.

There is actually one other technique that can be used to get the effect of
wrapping a function and a parameter. It makes use of the QSignalMapper class,
and an example of its use is shown in Chapter 9.

It is possible in some situations for a slot to be called as the result of a signal,
and the processing performed in the slot, directly or indirectly, causes the
signal that originally called the slot to be called again, leading to an infinite
cycle. Such cycles are rare in practice. Two factors help reduce the possibility
of cycles. First, some signals are emitted only if a real change takes place. For
example, if the value of a QSpinBox is changed by the user, or programmatically
by a setValue() call, it emits its valueChanged() signal only if the new value is
different from the current value. Second, some signals are emitted only as the
result of user actions. For example,QLineEdit emitsits textEdited() signal only
when the text is changed by the user, and not when it is changed in code by a
setText () call.

If a signal-slot cycle does seem to have occurred, naturally, the first thing to
check is that the code’s logic is correct: Are we actually doing the processing we
thought we were? If the logic is right, and we still have a cycle, we might be
able to break the cycle by changing the signals that we connect to—for exam-
ple, replacing signals that are emitted as a result of programmatic changes,
with those that are emitted only as a result of user interaction. If the prob-
lem persists, we could stop signals being emitted at certain places in our code
using Q0bject.blockSignals(), which is inherited by all QWidget classes and is

* It is conventional PyQt programming style to give a slot the same name as the signal that
connects to it.

QSig-
nal-
Mapper

= 297

136 Chapter 4. Introduction to GUI Programming

passed a Boolean—True to stop the object emitting signals and False to resume
signalling.

This completes our formal coverage of the signals and slots mechanism. We
will see many more examples of signals and slots in practice in almost all the
examples shown in the rest of the book. Most other GUI libraries have copied
the mechanism in some form or other. This is because the signals and slots
mechanism is very useful and powerful, and leaves programmers free to focus
on the logic of their applications rather than having to concern themselves
with the details of how the user invoked a particular operation.

Summary

In this chapter, we saw that it is possible to create hybrid console—-GUI applica-
tions. This can actually be taken much further—for example, by including all
the GUI code within the scope of an if block and executing it only if PyQt is
installed. This would allow us to create a GUI application that could fall back
to “console mode” if some of our users did not have PyQt.

We also saw that unlike conventional batch-processing programs, GUI applica-
tions have an event loop that runs continuously, checking for user events like
mouse clicks and key presses, and system events like timers timing out or win-
dows being revealed, and terminating only when requested to do so.

The Calculate application showed us a very simple but structurally typical
dialog init () method. The widgets are created, laid out, and connected,
and one or more other methods are used to respond to user interaction. The
Currency application used the same approach, only with a more sophisticated
interface, and more complex behavior and processing. The Currency applica-
tion also showed that we can connect multiple signals to a single slot without
formality.

PyQt’s signals and slots mechanism allows us to handle user interaction at a
much higher level of abstraction than the specific details of mouse clicks and
key presses. It lets us focus on what users want to do rather than on how they
asked to do it. All the PyQt widgets emit signals to announce state changes
and other important occurrences; and most of the time we can ignore the sig-
nals. But for those signals that we are interested in, it is easy to use QOb-
ject.connect() to ensure that the function or method of our choice is called
when the signal is emitted so that we can respond to it. Unlike C++/Qt, which
must designate certain methods specially as slots, in PyQt we are free to use
any callable, that is, any function or method, as a slot.

We also saw how to connect multiple signals to a single slot, and how to use
partial function application or the sender() method so that the slot can respond
appropriately depending on which widget signalled it.

Summary 137

We also learned that we do not have to formally declare our own custom sig-
nals: We can simply emit them using Q0bject.emit(), along with any additional
parameters we want to pass.

Exercise

Write a dialog-style application that calculates compound interest. The appli-
cation should be very similar in style and structure to the Currency application,
and should look like this:

Principal: |$ 2000,00

Rate: 5.25 %

Ak (43

<

YEars:

Amount $ 221551

The amount should be automatically recalculated every time the user changes
one of the variable factors, that is, the principle, rate, or years. The years
combobox should have the texts “1 year”, “2 years”, “3 years”, and so on, so
the number of years will be the combobox’s current index + 1. The compound
interest formula in Python is amount = principal * ((1+ (rate / 100.0)) ** years).
The QDoubleSpinBox class has setPrefix() and setSuffix() methods which can
be used for the “$” and “%” symbols. The whole application can be written in
around 60 lines.

Hint: The updating can be done by connecting suitable spinbox and combobox
signals to an updateli() slot where the calculations are performed and the
amount label is updated.

A model answer is provided in the file chap04/interest. pyw.

This page intentionally left blank

® Dumb Dialogs
@® Standard Dialogs
® Smart Dialogs

Dialogs

Almost every GUI application has at least one dialog, and the majority of GUI
applications have one main window with dozens or scores of dialogs. Dialogs
can be used to make announcements that are too important to put in the status
bar or into a log file. In such cases, they typically just have a label for the text
and an OK button for the user to press when they’ve read the message. Mostly,
dialogs are used to ask users questions. Some are simple and need just a yes
or no answer. Others ask users to make another kind of choice—for example,
what file, folder, color, or font do they want to use. For all these, PyQt provides
built-in dialogs.

Our focus in this chapter is on creating custom dialogs so that we can ask
users for their requirements and preferences when none of the built-in dialogs
is suitable.

One question that we do not address, concerns which widget is suitable for a
particular purpose. For example, if we want a user to make a choice between
three options, we might provide three radio buttons, or a three-item list widget
or combobox. Or we might use a tri-state checkbox. And these are not the
only possibilities. For those new to GUI programming, Appendix B provides
screenshots and brief descriptions of selected PyQt widgets which may be
helpful when making these decisions.

Qt is supplied with Q¢ Designer, a visual design tool that makes it easy to
“draw” dialogs without having to write any code for creating and laying out
their widgets. It can also be used to set up some of a dialog’s behavior. We cover
Qt Designer later, in Chapter 7. In this chapter we will create all the dialogs in
code. Some developers make all their dialogs this way, and others prefer to use
Qt Designer. This book shows both approaches so that you can decide which is
best to use on a case-by-case basis.

One way to classify dialogs is by their “intelligence”, where they may be
“dumb”, “standard”, or “smart”, depending on how much knowledge about the
application’s data is built into them. These classifications affect how we im-
plement and instantiate (create instances of) dialogs, and for each one we have

139

140 Chapter 5. Dialogs

devoted a section of this chapter. Each of these sections begins with an expla-
nation of what the classification means, and explains the pros and cons through
a worked example.

In addition to an intelligence classification, dialogs can also be categorized by
their modality. An application modal dialog is a dialog that, once invoked, is
the only part of an application that the user can interact with. Until the user
closes the dialog, they cannot use the rest of the application. The user is, of
course, free to interact with other applications, for example, by clicking one to
give it the focus.

A window modal dialog is one that works in a similar way to an application
modal dialog, except that it only prevents interaction with its parent window,
parent’s parent window, and so on up to the top-level parent, as well as the
parent windows’ sibling windows. For applications that have a single top-level
window there is no practical difference between application modality and
window modality. When referring to a “modal” window without specifying
which kind, window modality is assumed.

The opposite of a modal dialog is a modeless dialog. When a modeless dialog
is invoked, the user can interact with the dialog, and with the rest of the
application. This has implications for how we design our code, since it may
be that the user can affect program state both in the main window and in the
modeless dialog, which then has an effect on the other.

Another important aspect of writing dialogs is how we handle validation.
Wherever possible we try to choose suitable widgets and set their properties to
avoid having to write any validation code ourselves. For example, if we need an
integer we could use a QSpinBox and use its setRange() method to constrain the
range to the values that are acceptable to us. We call validation that applies
to individual widgets “widget-level” validation; database programmers often
call this “field-level” validation. Sometimes we need to go further than widget-
level validation, particularly when there are interdependencies. For example,
a theater booking system might have two comboboxes, one to select a floor and
the other to select a seat row. If the ground floor had seat rows A—R, and the
first floor had seat rows M-T, then clearly only some floor and seat row com-
binations are valid. For these cases, we must perform “form-level” validation;
database programmers often call this “record-level” validation.

Another validation issue concerns when the validation takes place. Ideal-
ly we don’t want users to be able to enter invalid data at all, but sometimes
this can be quite tricky to prevent. We break validation into two broad cate-
gories: “post-mortem”, which is validation that takes place at the point when
the user wants to have their settings accepted, and “preventative”, which takes
place as the user manipulates editing widgets.

Since dialogs can have different levels of intelligence, three kinds of modality,
and a variety of validation strategies, it would appear that there are many
possible combinations to choose from. In practice, the combinations we use

Dumb Dialogs 141

tend to be the same ones each time. For example, in most situations we might
make dumb and standard dialogs modal and smart dialogs modeless. As for
validation, the right strategy is very dependent on circumstances. We will see
examples of the most common use cases in this chapter, and we will see further
dialog examples throughout the rest of the book.

Dumb Dialogs

We define a “dumb” dialog to be a dialog whose widgets are set to their initial
values by the dialog’s caller, and whose final values are obtained directly from
the widgets, again by the dialog’s caller. A dumb dialog has no knowledge of
what data its widgets are used to present and edit. We can apply some basic
validation to a dumb dialog’s widgets, but it is not common (or always possible)
to set up validation that incorporates interdependencies between widgets; in
other words, form-level validation is not usually done in dumb dialogs. Dumb
dialogs are normally modal dialogs with an “accept” button (e.g., OK) and a
“reject” button (e.g., Cancel).

The main advantages of using dumb dialogs are that we do not have to write
any code to provide them with an API, nor any code for additional logic. Both of
these benefits are a consequence of all their widgets being publically accessible.
The main disadvantages are that the code that uses them is tied to their user
interface (because we access the widgets directly), so we cannot easily imple-
ment complex validation—and they are much less convenient than a standard
or smart dialog if needed in more than one place.

We will begin with a concrete example. Suppose we have a graphics application
and we want to let the user set some pen properties—for example, the pen’s
width, style, and whether lines drawn with it should have beveled edges. Fig-
ure 5.1 shows what we want to achieve.

B Pen Properties @@

width: 2B Beveled edges

Figure 5.1 The Pen Properties dialog

In this case, we don’t need “live” or interactive updating of the pen’s properties,
so a modal dialog is sufficient. And since the validation required is quite
simple, we can use a dumb dialog in this situation.

We would use the dialog by popping it up modally in a slot that is connected to a
menu option, toolbar button, or dialog button. If the user clicked OK, we would
then update our pen properties; if they clicked Cancel, we would do nothing.
Here is what the calling slot might look like:

142 Chapter 5. Dialogs

def setPenProperties(self):

dialog = PenPropertiesDlg(self)

dialog.widthSpinBox.setValue(self.width)

dialog.beveledCheckBox.setChecked(self.beveled)

dialog.styleComboBox.setCurrentIndex(

dialog.styleComboBox.findText(self.style))

if dialog.exec ():
self.width = dialog.widthSpinBox.value()
self.beveled = dialog.beveledCheckBox.isChecked()
self.style = unicode(dialog.styleComboBox.currentText())
self.updateData()

We begin by creating a PenPropertiesDlg dialog—we will see the details of
this shortly; all we need to know now is that it has a width spinbox, a beveled
checkbox, and a style combobox. We pass a parent, self (the calling form) to the
dialog, to take advantage of the fact that by default, PyQt centers a dialog over
its parent, and also because dialogs that have a parent do not get a separate
entry in the taskbar. We then access the widgets directly, setting their values
to those held by the calling form. The QComboBox. findText () method returns the
index position of the item with the matching text.

When we call exec_() on a dialog, the dialog is shown modally. This means that
the dialog’s parent windows and their sibling windows are blocked until the
dialog is closed. Only when the user closes the dialog (either by “accepting”
or by “rejecting” it) does the exec_() call return. The return value evaluates to
True if the user accepted the dialog; otherwise, it evaluates to False. If the user
accepted the dialog we know that they want their settings to take effect, so we
read them out of the dialog’s widgets and update our application’s data. The
updateData() call at the end is just one of our own custom methods that makes
the application show the pen properties in the main window.

At the end of the setPenProperties() method the PenPropertiesDlg will go out
of scope and will become a candidate for garbage collection. For this reason,
we must always create a new dialog and populate its widgets whenever setPen-
Properties() is called. This approach saves memory, at the price of some speed
overhead. For tiny dialogs like this, the overhead is too small for the user to
notice, but later on we will show an alternative approach that avoids creating
and destroying dialogs every time.

Using a dumb dialog means that the dialog is quite loosely coupled to the
application. We could completely decouple it by making the labels accessi-
ble as instance variables. Then we could use the PenPropertiesDlg to edit any
kind of data that required a spinbox, a checkbox, and a combobox, simply by
changing the labels. For example, we could use it to record a weather reading
with a “Temperature” spinbox, an “Is raining” checkbox, and a “Cloud cover”
combobox.

Dumb Dialogs 143

Now that we have seen how we can use the dialog, let’s look at the code that
implementsit. The PenPropertiesDlg has a single method, init (), which we
will look at in parts.

class PenPropertiesDlg(QDialog):

def init (self, parent=None):
super(PenPropertiesDlg, self). init (parent)

Not surprisingly, our dialog is a QDialog subclass, and we initialize it in the way
we have seen a few times already.

widthLabel = QLabel("&Width:")

self.widthSpinBox = QSpinBox()

widthLabel.setBuddy(self.widthSpinBox)

self.widthSpinBox.setAlignment(Qt.AlignRight|Qt.AlignVCenter)

self.widthSpinBox.setRange(0, 24)

self.beveledCheckBox = QCheckBox("&Beveled edges")

stylelLabel = QLabel("&Style:")

self.styleComboBox = QComboBox()

stylelLabel.setBuddy(self.styleComboBox)

self.styleComboBox.addItems(["Solid", "Dashed", "Dotted",
"DashDotted", "DashDotDotted"])

okButton = QPushButton("&0K")

cancelButton = QPushButton("Cancel")

For each editing widget, we also create a corresponding label so that the user
can tell what they are editing. When we put an ampersand (&) in a label’s
text it can have two possible meanings. It can simply be a literal ampersand.
Or it can signify that the ampersand should not be shown, but instead the
letter following it should be underlined to show that it represents a keyboard
accelerator. For example, in the case of the widthLabel, its text of "&Width:"
will appear as Width: and its accelerator will be Alt+W. On Mac OS X the default
behavior is to ignore accelerators; for this reason, PyQt does not display the
underlines on this platform.

What distinguishes between a literal ampersand and an accelerator amper-
sand is if the label has a “buddy”: If it does, the ampersand signifies an accel-
erator. A buddy is a widget that PyQt will pass the keyboard focus to when the
corresponding label’s accelerator is pressed. So, when the user presses Alt+W,
the keyboard focus will be switched to the widthSpinBox. Thisin turn means that
if the user presses the up or down arrow keys or PageUp or PageDown, these will
affect the widthSpinBox since it has the keyboard focus.

In the case of buttons, an underlined letter in the button’s text is used to signify
an accelerator. So in this case, the okButton’s text, "&0K", appears as OK, and
the user can press the button by clicking it with the mouse, by tabbing to it
and pressing the spacebar, or by pressing Alt+O. It is not common to provide an
accelerator for Cancel (or Close) buttons since these are normally connected to

144 Chapter 5. Dialogs

the dialog’s reject() slot, and QDialog provides a keyboard shortcut for that,
the Esc key* Checkboxes and radio buttons are somewhat similar to buttons
in that they have text that can have an accelerator. For example, the beveled
checkbox has an underlined “B”, so the user can toggle the checkbox’s checked
state by pressing Alt+B.

One disadvantage of creating buttons like this is that when we come to lay
them out we will do so in one particular order. For example, we might put OK
to the left of Cancel. But on some windowing systems this order is wrong. PyQt
has a solution for this, covered in the Dialog Button Layout sidebar.

We have aligned the spinbox’s number to the right, vertically centered, and
set its valid range to be 0-24. In PyQt, a pen width (i.e., a line width) of 0 is
allowed and signifies a 1-pixel-wide width regardless of any transformations.
Pen widths of 1 and above are drawn at the given width, and respect any
transformations, such as scaling, that are in force.

By using a spinbox and setting a range for it, we avoid the possibility of invalid
pen widths that might have been entered had we used, for example, a line
edit. Very often, simply choosing the right widget and setting its properties
appropriately provides all the widget-level validation that is needed. This
is also shown by our use of the beveled checkbox: Either the pen draws lines
with beveled edges or it doesn’t. And the same is true again with our use of a
combobox of line styles—the user can choose only a valid style, that is, a style
from a list that we have provided.

buttonLayout = QHBoxLayout()
buttonLayout.addStretch()
buttonLayout.addWidget (okButton)
buttonLayout.addwWidget(cancelButton)

layout = QGridLayout()
layout.addWidget(widthLabel, 0, 0)
layout.addWidget(self.widthSpinBox, 0, 1)
layout.addWidget(self.beveledCheckBox, 0, 2)
layout.addWidget(styleLabel, 1, 0)
layout.addWidget(self.styleComboBox, 1, 1, 1, 2)
layout.addLayout (buttonLayout, 2, 0, 1, 3)
self.setLayout(layout)

— e~ o~ —

We have used two layouts, one nested inside the other, to get the layout we
want. We begin by laying out the buttons horizontally, beginning with a
“stretch”. The stretch will consume as much space as possible, which has the ef-
fect of pushing the two buttons as far to the right as they can go, and still fit.

*We use the terms “keyboard accelerator” and “accelerator” for the Alt+Letter key sequences that
can be used to click buttons and switch focus in dialogs, and to pop up menus. We use the term
“keyboard shortcut” for any other kind of key sequence—for example, the key sequence Ctrl+S,
which is often used to save files. We will see how to create keyboard shortcuts in Chapter 6.

Dumb Dialogs 145

Dialog Button Layout

In some of our early examples, we have put the buttons on the right of
the dialogs, with the OK button first and then the Cancel button next. This
is the most common layout on Windows, but it is not always correct. For
example, for Mac OS X or for the GNOME desktop environment, they should
be swapped.

If we want our applications to have the most native look and feel possible
and expect to deploy them on different platforms, issues like button ordering
and positioning will matter to us. Qt 4.2 (PyQt 4.1) provides a solution for
this particular problem: the QDialogButtonBox class.

Instead of creating OK and Cancel buttons directly, we create a QDialogBut-
tonBox. For example:

buttonBox = QDialogButtonBox(QDialogButtonBox.OkK|
QDialogButtonBox.Cancel)

To make a button the “default” button, that is, the one that is pressed when
the user presses Enter (assuming that the widget with keyboard focus does
not handle Enter key presses itself), we can do this:

buttonBox.button(QDialogButtonBox.0k).setDefault(True)

Since a button box is a single widget (although it contains other widgets), we
can add it directly to the dialog’s existing layout, rather than putting it in
its own layout and nesting that inside the dialog’s layout. Here is what we
would do in the PenPropertiesDlg example’s grid layout:

layout.addWidget (buttonBox, 3, 0, 1, 3)

And instead of connecting from the buttons’ clicked() signals, we can make
connections from the button box, which has its own signals that correspond
to user actions:

self.connect(buttonBox, SIGNAL("accepted()"),
self, SLOT("accept()"))

self.connect(buttonBox, SIGNAL("rejected()"),
self, SLOT("reject()"))

We are still free to connect to individual buttons’ clicked() signals, though,
and often do so for dialogs that have many buttons.

The QDialogButtonBox defaults to using a horizontal layout, but can be set to
use a vertical layout by passing Qt.Vertical to its constructor, or by calling
setOrientation().

We use QDialogButtonBox for most of the examples, but it could always be re-
placed by individual QPushButtons if backward compatibility was an issue.

PyQt
4.1

146

Chapter 5. Dialogs

widthLabel

widthSpinBox | beveledCheckBox

styleLabel

styleComboBox

‘ okButton ‘ cancelButton

Figure 5.2 The Pen Properties dialog’s layout

The width label, width spinbox, and bevel checkbox are laid out side by side in
three columns using a grid layout. The style label and style combobox are put
on the next row, with the style combobox set to span two columns. The argu-
ments to the QGridLayout.addWidget() method are the widget, the row, the col-
umn, and then optionally, the number of rows to span, followed by the number
of columns to span. We add the button layout as a third row to the grid layout,
having it span all three columns. Finally, we set the layout on the dialog. The
layout is shown schematically in Figure 5.2; the grid layout is shown shaded.

self.connect(okButton, SIGNAL("clicked()"),

self, SLOT("accept()"))

self.connect(cancelButton, SIGNAL("clicked()"),

self, SLOT("reject()"))

self.setWindowTitle("Pen Properties")

At the end of init () we make the necessary connections. We connect
the OK button’s clicked() signal to the dialog’s accept() slot: This slot will

Table 5.1 Selected Layout Methods

Syntax
b.addLayout(1)

o

.addSpacing(i)
b.addStretch(i)

b.addWidget (w)
b.setStretchFactor(x, i)

g.addLayout(l, r, c)

g.addWidget(w, r, c)

g.setRowStretch(r, i)
g.setColumnStretch(c, i)

Description

Adds QLayout 1 to QBoxLayout b, which is normally
a QHBoxLayout or a QVBoxLayout

Adds a QSpacerItem of fixed size int i to layout b

Adds a QSpacerItem with minimum size 0 and a
stretch factor of int i to layout b

Adds QWidget w to layout b

Sets the stretch factor of layout b’s layout or
widget x to int i

Adds QLayout 1 to QGridLayout g at row int r and
column int c; additional row span and column
span arguments can be given

Adds QWidget w to QGridLayout g at row int r and
column int c; additional row span and column
span arguments can be given

Sets QGridLayout g’s row r’s stretch to int i
Sets QGridLayout g’s column c’s stretch to int i

Dumb Dialogs 147

close the dialog and return a True value. The Cancel button is connected in a
corresponding way. Finally, we set the window’s title.

For small dumb dialogs that are only ever called from one place, it is possible
to avoid creating a dialog class at all. Instead, we can simply create all the
widgets in the invoking method, lay them out, connect them, and call exec ().
If exec_ () returns True, we can then extract the values from the widgets and
we are done. The file chap05/pen.pyw contains the Pen Properties dialog and a
dummy program with two buttons, one to invoke the PenPropertiesDlg we have
just reviewed and another that does everything inline. Creating dialogs inline
is not an approach that we would recommend, so we will not review the code
for doing it, but it is mentioned and provided in the example’s setPenInline()
method for completeness.

Dumb dialogs are easy to understand and use, but setting and getting values
using a dialog’s widgets is not recommended except for the very simplest
dialogs, where only one, two, or at most, a few values are involved. We have
shown them primarily as a gentle introduction to dialogs, since creating, laying
out, and connecting the widgets is the same in any kind of dialog. In the next
section, we will look at standard dialogs, both modal and modeless ones.

Standard Dialogs

We consider a dialog to be a “standard” dialog if it initializes its widgets in
accordance with the values set through its initializer or through its meth-
ods, and whose final values are obtained by method calls or from instance
variables—not directly from the dialog’s widgets. A standard dialog can have
both widget-level and form-level validation. Standard dialogs are either modal,
with “accept” and “reject” buttons, or (less commonly) modeless, in which case
they have “apply” and “close” buttons and notify state changes through signal
and slot connections.

One key advantage of standard dialogs is that the caller does not need to
know about their implementation, only how to set the initial values, and how
to get the resultant values if the user clicked OK. Another advantage, at least
for modal standard dialogs, is that the user cannot interact with the dialog’s
parent windows and their sibling windows, so the relevant parts of the ap-
plication’s state will probably not change behind the dialog’s back. The main
drawback of using a standard dialog is most apparent when it must handle lots
of different data items, since all the items must be fed into the dialog and the
results retrieved on each invocation, and this may involve many lines of code.

As with the previous section, we will explain by means of an example. In this
case, the example will be used both in this section and in the next section so
that we can see the different approaches and trade-offs between standard and
smart dialogs more clearly.

148 Chapter 5. Dialogs

Let us imagine that we have an application that needs to display a table of
floating-point numbers, and that we want to give users some control over the
format of the numbers. One way to achieve this is to provide a menu option,
toolbar button, or keyboard shortcut that will invoke a modal dialog which the
user can interact with to set their formatting preferences. Figure 5.3 shows a
number format dialog that has been popped up over a table of numbers.

1 K L M M o ~
16 2,205.70 2,311.90 B e & 54700,50 2,803.70
M Set Number Format (Modal) @@
17 3,603.38 2,404.92 b 470,05 3,340.29

Thousands separator ||

15 -9510.54 3,133.07 562,17 4,349.04
Decimal marker

19 -3,7880.19 2,661.66 ,215.60 3,7610.05
Decimal places z k=

z0 -1,7280.27 4,059.57 D B Femetive mumhes 959073 1,643,356

21 -2,3690.62 -3,4650.37 [o [conce 034012 4,987.43

22 -3,9900,35 951,94 T 010,99 -3,4430.89 o

< >

Figure 5.3 The modal Set Number Format dialog in context

The data that we want the dialog to make available to the user is held in a
dictionary in the main form. Here is how the dictionary is initialized:

self.format = dict(thousandsseparator=",",
decimalmarker=".", decimalplaces=2,
rednegatives=False)

Using a dictionary like this is very convenient, and makes it easy to add
additional items.

We have put the dialog in its own file, numberformatdlgl.py, which the applica-
tion, numbers.pyw,imports. The number “1” in the filename distinguishesit from
the other two versions of the dialog covered in the next section.

Modal OK/Cancel-Style Dialogs

Let us begin by seeing how the dialog is used; we assume that the setNumber-
Format1l() method is called in response to some user action.

def setNumberFormatl(self):
dialog = numberformatdlgl.NumberFormatDlg(self.format, self)
if dialog.exec ():
self.format = dialog.numberFormat()
self.refreshTable()

Buddies
143 =1

Standard Dialogs 149

We start by creating the dialog and passing it the format dictionary from which
the dialog will initialize itself, and self so that the dialog is tied to the calling
form—centered over it and not having its own taskbar entry.

As we mentioned earlier, calling exec_() pops up the dialog it is called on as a
modal dialog, so the user must either accept or reject the dialog before they can
interact with the dialog’s parents and their siblings. In the next section, we
will use modeless versions of the dialog that don’t impose this restriction.

If the user clicks OK, we set the format dictionary to have the values set in the
dialog, and update the table so that the numbers are displayed with the new
format. If the user cancels, we do nothing. At the end of the method, the dialog
goes out of scope and is therefore scheduled for garbage collection.

To save space, and to avoid needless repetition, from now on we will not show
any import statements, unless their presence is not obvious. So, for example,
we will no longer show from PyQt4.QtCore import * or the PyQt4.QtGui import.

We are now ready to see the implementation of the dialog itself.

class NumberFormatDlg(QDialog):

def init (self, format, parent=None):
super(NumberFormatDlg, self). init (parent)

The init () method beginsin the same way as all the other dialogs we have
seen so far.

thousandsLabel = QLabel("&Thousands separator")
self.thousandsEdit = QLineEdit(format["thousandsseparator"])
thousandsLabel.setBuddy(self.thousandsEdit)
decimalMarkerLabel = QLabel("Decimal &marker")
self.decimalMarkerEdit = QLineEdit(format["decimalmarker"])
decimalMarkerLabel.setBuddy(self.decimalMarkerEdit)
decimalPlacesLabel = QLabel("&Decimal places")
self.decimalPlacesSpinBox = QSpinBox()
decimalPlacesLabel.setBuddy(self.decimalPlacesSpinBox)
self.decimalPlacesSpinBox.setRange(0, 6)
self.decimalPlacesSpinBox.setValue(format["decimalplaces"])
self.redNegativesCheckBox = QCheckBox("&Red negative numbers")
self.redNegativesCheckBox.setChecked(format["rednegatives"])

buttonBox = QDialogButtonBox(QDialogButtonBox.O0k|
QDialogButtonBox.Cancel)

For each aspect of the format that we want the user to be able to change we
create a label so that they know what they are editing, and a suitable editing
widget. Since the format argument is mandatory, we assume that it has all
the values we need, so we use it to initialize the editing widgets. We also use
setBuddy () calls to support keyboard users since not all users are able to use the
mouse.

150 Chapter 5. Dialogs

Table 5.2 Selected @DialogButtonBox Methods and Signals

Syntax Description

d.addButton(b, r) Adds QPushButton b, with QDialogButtonBox.ButtonRole
r,to QDialogButtonBox d

d.addButton(t, r) Adds a QPushButton with text t and with button role r
to QDialogButtonBox d, and returns the added button

d.addButton(s) Adds a QPushButton, specified as QDialogButton-
Box.StandardButton s, to QDialogButtonBox d and re-
turns the added button

d.setOrientation(o) Sets the QDialogButtonBox’s orientation to
Qt.Orientation o (vertical or horizontal)

d.button(s) Returns the QDialogButtonBox’s QPushButton specified
as StandardButton s, or None if there isn’t one

d.accepted() This signal is emitted if a button with the QDialogBut-
tonBox.Accept role is clicked

d.rejected() This signal is emitted if a button with the QDialogBut-

tonBox.Reject role is clicked

The only validation we have put in place is to limit the range of the decimal
places spinbox. We have chosen to do “post-mortem” validation, that is, to
validate after the user has entered values, at the point where they click OK to
accept their edits. In the next section, we will see “preventative” validation,
which prevents invalid edits in the first place.

self.format = format.copy()

We need to take a copy of the format dictionary that was passed in, since we
want to be able to change the dictionary inside the dialog without affecting the
original dictionary.

grid = QGridLayout()

grid.addwWidget(thousandsLabel, 0, 0)
grid.addwWidget(self.thousandsEdit, 0, 1)
grid.addWidget(decimalMarkerLabel, 1, 0)
grid.addWidget(self.decimalMarkerEdit, 1, 1)
grid.addwWidget(decimalPlacesLabel, 2, 0)
grid.addWidget(self.decimalPlacesSpinBox, 2, 1)
grid.addWidget(self.redNegativesCheckBox, 3, 0, 1, 2)
grid.addwWidget (buttonBox, 4, 0, 1, 2)
self.setlLayout(grid)

—_— e~~~ o~~~ —~

The layout is very similar in appearance to the one we used for the Pen Proper-
ties dialog, except that this time we have a QDialogButtonBox widget rather than
a layout for the buttons. This makes it possible to create the entire layout using
a single QGridLayout.

Standard Dialogs 151

thousandsLabel self.thousandsEdit
decimalMarkerLabel | self.decimalMarkerEdit
decimalPlacesLabel | self.decimalPlacesSpinBox
self.redNegativesCheckBox

okButton | cancelButton

Figure 5.4 The Set Number Format dialog’s layout

Both the “red negatives” checkbox and the button box are laid out so that they
each span one row and two columns. Row and column spans are specified by the
last two arguments to the QGridLayout’s addWidget() and addLayout() methods.
The layout is shown in Figure 5.4, with the grid shown shaded.

self.connect(buttonBox, SIGNAL("accepted()"),
self, SLOT("accept()"))

self.connect(buttonBox, SIGNAL("rejected()"),
self, SLOT("reject()"))

self.setWindowTitle("Set Number Format (Modal)")

The code for making the connections and setting the window’s title is similar
to what we used for the Pen Properties dialog, only this time we use the button
box’s signals rather than connecting directly to the buttons themselves.

def numberFormat(self):
return self.format

If the user clicks OK, the dialog is accepted and returns a True value. In this
case, the calling form’s method overwritesits format dictionary with the dialog’s
dictionary, by calling the numberFormat() method. Since we have not made the
dialog’s self.format attribute very private (i.e., by calling it _format), we could
have accessed it from outside the form directly; we will take that approach in
a later example.

When the user clicks OK, because we are using post-mortem validation, it is
possible that some of the editing widgets contain invalid data. To handle this,
we reimplement QDialog.accept() and do our validation there. Because the
method is quite long, we will look at it in parts.

def accept(self):
class ThousandsError(Exception): pass
class DecimalError(Exception): pass
Punctuation = frozenset(" ,;:.")

We begin by creating two exception classes that we will use inside the accept()
method. These will help to keep our code cleaner and shorter than would
otherwise be possible. We also create a set of the characters that we will allow
to be used as thousands separators and decimal place markers.

152 Chapter 5. Dialogs

The only editing widgets we are concerned with validating are the two line
edits. This is because the decimal places spinbox is already limited to a
valid range, and because the “red negatives” checkbox can only be checked or
unchecked, both of which are valid.

thousands = unicode(self.thousandsEdit.text())
decimal = unicode(self.decimalMarkerEdit.text())
try:
if len(decimal) ==
raise DecimalError, ("The decimal marker may not be "
"empty.")
if len(thousands) > 1:
raise ThousandsError, ("The thousands separator may "
"only be empty or one character."

~

if len(decimal) > 1:
raise DecimalError, ("The decimal marker must be "
"one character.")
if thousands == decimal:
raise ThousandsError, ("The thousands separator and "
"the decimal marker must be different."
if thousands and thousands not in Punctuation:
raise ThousandsError, ("The thousands separator must "
"be a punctuation symbol.")
if decimal not in Punctuation:
raise DecimalError, ("The decimal marker must be a "
"punctuation symbol.")

~

except ThousandsError, e:
QMessageBox.warning(self, "Thousands Separator Error",
unicode(e))
self.thousandsEdit.selectAll()
self.thousandsEdit.setFocus()
return
except DecimalError, e:
QMessageBox.warning(self, "Decimal Marker Error",
unicode(e))
self.decimalMarkerEdit.selectAll()
self.decimalMarkerEdit.setFocus()
return

We begin by getting the text from the two line edits. Although it is acceptable
to have no thousands separator, a decimal marker must be present, so we begin
by checking that the decimalMarkerEdit has at least one character. If it doesn’t,
we raise our custom DecimalError with suitable error text. We also raise
exceptions if either of the texts is longer than one character, or if they are the
same character, or if either contains a character that is not in our Punctuation
set. The if statements differ regarding punctuation because the thousands
separator is allowed to be empty, but the decimal place marker is not.

Standard Dialogs 153

M Thousands Separator Error

'E The thousands separator must be & punctuation symbal,
*

Figure 5.5 A QMessageBox warning

We have used parentheses around the error strings that are in two parts to
turn them into single expressions; an alternative syntax would have been
to drop the parentheses, and instead concatenate the two parts and escape
the newline.

Depending on whether we get a ThousandsError or a DecimalError, we display a
“warning” message box with appropriate error text, as illustrated in Figure 5.5.
We must convert the exception object e to be a string (we have used unicode()
to do this) so that it is suitable as an argument to the QMessageBox’s static
warning() method. We will make more use of the QMessageBox static methods,
including the use of additional arguments, both in this chapter and throughout
the book.

Once the user has acknowledged the error message by closing the message
box, we select the text in the invalid line edit and give the focus to the line edit,
ready for the user to make their correction. Then we return—so the dialog is
not accepted and the user must either fix the problem or click Cancel to close
the dialog and abandon their changes.

self.format["thousandsseparator"] = thousands
self.format["decimalmarker"] = decimal
self.format["decimalplaces"] = \
self.decimalPlacesSpinBox.value()
self.format["rednegatives"] =\
self.redNegativesCheckBox.isChecked()
QDialog.accept(self)

If no exception is raised, neither of the return statements is executed and
execution falls through to this final part of the accept() method. Here we
update the dialog’s format dictionary with the values from the editing widgets,
and call the base class’s accept () method. The form will be closed (i.e., hidden)
and a True value returned from the exec () statement. As we saw earlier, the
caller, on receiving a True value from exec (), goes on to retrieve the dialog’s
format using the numberFormat () method.

Why didn’t we use super() to call the base class’s accept() at the end instead of
naming QDialog explicitly? The short answer is that using super() in this con-
text won’t work. PyQt tries to be as efficient as possible by using lazy attribute
lookup, but the result is that super() does not work as we would expect in PyQt

QMess-
ageBox
sidebar

= 188

154 Chapter 5. Dialogs

subclasses. (For an explanation, see the PyQt pyqt4ref.html documentation,
under “super and PyQt classes”.)

Although the dialog is hidden only when it is accepted (or rejected), once it goes
out of scope, that is, at the end of the caller’s setNumberFormatl() method, the
dialog is scheduled for garbage collection.

Creating modal dialogs like this one is usually straightforward. The only
complications involved concern whether we have layouts and validation that
require some care to get right, as we do here.

In some cases the user will want to be able to see the results of their choices,
perhaps changing their choices a few times until they are satisfied. For these
situations modal dialogs can be inconvenient since the user must invoke the
dialog, perform their edits, accept, see the results, and then repeat the cycle
until they are happy. If the dialog was modeless and was able to update the
application’s state without being closed, the user could simply invoke the dialog
once, perform their edits, see the effects, and then do more edits, and so on: a
much faster cycle. We will see how to achieve this in the next section; we will
also look at a much simpler and more active validation strategy—preventative
validation.

Smart Dialogs

We define a “smart” dialog to be one that initializes its widgets in accordance
with data references or data structures that are passed to its initializer, and
which is capable of updating the data directly in response to user interaction.
Smart dialogs can have both widget-level and form-level validation. Smart
dialogs are usually modeless, with “apply” and “close” buttons, although they
can also be “live”, in which case they may have no buttons, with changes to
widgets reflected directly into the data they have access to. Smart modeless

Table 5.3 Selected @Dialog Methods

Syntax Description

d.accept() Closes (hides) QDialog d, stops its event loop, and causes
exec_() toreturn with a True value. The dialog is deleted
if Qt.WA DeleteOnClose is set

d.reject() Closes (hides) QDialog d, stops its event loop, and causes
exec_ () toreturn with a False value

d.done(1) Closes (hides) QDialog d, stops its event loop, and causes
exec () toreturn int 1

d.exec () Shows QDialog d modally, blocking until it is closed

d. show() Shows QDialog d modelessly; inherited from QWidget

d.setSizeGrip- Shows or hides QDialog d’s size grip depending on bool b
Enabled(b)

Smart Dialogs 155

dialogs that have “apply” buttons notify state changes through signal and
slot connections.

The main benefit of using a smart modeless dialog is seen at the point of use.
When the dialog is created, it is given references to the calling form’s data
structures so that the dialog can update the data structures directly with no
further code required at the call point. The downsides are that the dialog must
have knowledge of the calling form’s data structures so that it correctly reflects
the data values into its widgets and only applies changes that are valid, and
that, being modeless, there is a risk of the data the dialog depends on being
changed from under it if the user interacts with some other part of the appli-
cation.

In this section we are going to continue with the theme of number format
dialogs so that we can compare the various approaches.

Modeless Apply/Close-Style Dialogs

If we want our users to be able to repeatedly change the number format and
see the results, it will be much more convenient for them if they could do so
without having to keep invoking and accepting the number format dialog. The
solution is to use a modeless dialog which allows them to interact with the
number format widgets and to apply their changes and to see the effect, as
often as they like. Dialogs like this usually have an Apply button and a Close
button. Unlike a modal OK/Cancel-style dialog, which can be canceled, leaving
everything as it was before, once Apply has been clicked the user cannot revert
their changes. Of course we could provide a Revert button or a Defaults button,
but this would require more work.

Superficially, the only difference between the modeless and the modal versions
of the dialog is the button text. However, there are two other important differ-
ences: The calling form’s method creates and invokes the dialog differently, and
the dialog must make sure it is deleted, not just hidden, when it is closed. Let
us begin by looking at how the dialog is invoked.

def setNumberFormat2(self):
dialog = numberformatdlg2.NumberFormatDlg(self.format, self)
self.connect(dialog, SIGNAL("changed"), self.refreshTable)
dialog.show()

We create the dialog in the same way we created the modal version earlier;it is
shown in Figure 5.6. We then connect the dialog’s changed Python signal to the
calling form’s refreshTable() method, and then we just call show() on the dialog.
When we call show(), the dialog is popped up as a modeless dialog. Application
execution continues concurrently with the dialog, and the user can interact
with both the dialog and other windows in the application.

Whenever the dialog emits its changed signal, the main form’s refreshTable()
method is called, and this will reformat all the numbers in the table using

156 Chapter 5. Dialogs

Bl Set Number Format {Modeless) E]@

Thousands separator |,|

Decimal marker

4

Decimal places z

[] Red negative numbers

Close l l apply

Figure 5.6 The modeless Set Number Format dialog

the format dictionary’s settings. We can imagine that this means that when
the user clicks the Apply button the format dictionary will be updated and the
changed signal emitted. We will see shortly that this is indeed what happens.

Although the dialog variable goes out of scope, PyQt is smart enough to keep
a reference to modeless dialogs, so the dialog continues to exist. But when the
user clicks Close, the dialog would normally only be hidden, so if the user in-
voked the dialog again and again, more and more memory would be needlessly
consumed, as more dialogs would be created but none deleted. One solution to
this is to make sure that the dialog is deleted, rather than hidden, when it is
closed. (We will see another solution when we look at a “live” dialog, shortly.)

We shall start with the dialog’s _init () method.

def init (self, format, parent=None):
super(NumberFormatDlg, self). init (parent)
self.setAttribute(Qt.WA DeleteOnClose)

After calling super(), we call setAttribute() to make sure that when the dialog
is closed it will be deleted rather than merely hidden.

punctuationRe = QRegExp(r"[,;:.1")

thousandsLabel = QLabel("&Thousands separator")
self.thousandsEdit = QLineEdit(format["thousandsseparator"])
thousandsLabel.setBuddy(self.thousandsEdit)
self.thousandsEdit.setMaxLength(1)
self.thousandsEdit.setValidator(
QRegExpValidator(punctuationRe, self))

decimalMarkerLabel = QLabel("Decimal &marker")
self.decimalMarkerEdit = QLineEdit(format["decimalmarker"])
decimalMarkerLabel.setBuddy(self.decimalMarkerEdit)
self.decimalMarkerEdit.setMaxLength(1)
self.decimalMarkerEdit.setValidator(
QRegExpValidator(punctuationRe, self))
self.decimalMarkerEdit.setInputMask("X")

Smart Dialogs 157

decimalPlacesLabel = QLabel("&Decimal places")
self.decimalPlacesSpinBox = QSpinBox()
decimalPlacesLabel.setBuddy(self.decimalPlacesSpinBox)
self.decimalPlacesSpinBox.setRange(0, 6)
self.decimalPlacesSpinBox.setValue(format["decimalplaces"])

self.redNegativesCheckBox = QCheckBox("&Red negative numbers")
self.redNegativesCheckBox.setChecked(format["rednegatives"])

buttonBox = QDialogButtonBox(QDialogButtonBox.Apply|
QDialogButtonBox.Close)

The creation of the form’s widgets is very similar to what we did before, but
this time we are using preventative validation almost exclusively. We set a one-
character maximum length on the thousands separator and decimal marker
line edits, and in both cases we also set a QRegExpValidator. A validator will only
allow the user to enter valid characters, and in the case of a regular expres-
sion validator, only characters that match the regular expression* PyQt uses a
regular expression syntax that is essentially a subset of the syntax offered by
Python’s re module.

The QRegExpValidator’s initializer requires both a regular expression and a par-
ent, which is why we have passed self in addition to the regular expression.

In this case, we have set the validation regular expression to be “[,;:.]”. This is
a character class and means that the only characters that are valid are those
contained in the square brackets, that is, space, comma, semicolon, colon,
and period. Notice that the regular expression string is preceded by “r”. This
signifies a “raw” string and means that (almost) all of the charactersinside the
string are to be taken as literals. This considerably reduces the need to escape
regular expression special characters such as “\”, although here it does not
matter. Nonetheless, we always use “r” with regular expression strings as a
matter of good practice.

Although we are happy to accept an empty thousands separator, we require a
decimal marker. For this reason we have used an input mask. A mask of “X”
says that one character of any kind is required—we don’t have to concern our-
selves with what the character will be because the regular expression valida-
tor will ensure that it is valid. Format masks are explained in the QLineEd-
it.inputMask property’s documentation®

The only other difference to the way we created the widgets in the modal
version of the dialog is that we create Apply and Close buttons rather than OK
and Cancel buttons.

*The QRegExp documentation provides a brief introduction to regular expressions. For in-depth
coverage, see Mastering Regular Expressions by Jeffrey E. Friedl.

® Every PyQt Q0bject and QWidget has “properties”. These are similar in principle to Python
properties, except that they can be accessed using the property() and setProperty() methods.

158 Chapter 5. Dialogs

self.format = format

In the modal dialog we took a copy of the caller’s format dictionary; here we
take a reference to it, so that we can change it directly from within the dialog.

We will not show the dialog’s layout since it is identical to the layout used in
the modal dialog shown earlier.

self.connect(buttonBox.button(QDialogButtonBox.Apply),
SIGNAL("clicked()"), self.apply)
self.connect(buttonBox, SIGNAL("rejected()"),
self, SLOT("reject()"))
self.setWindowTitle("Set Number Format (Modeless)")

We create two signal—slot connections. The first one is between the Apply
button’s clicked() signal and the apply() method. To make this connection, we
must retrieve a reference to the button from the button box using its button()
method, passing the same argument, QDialogButtonBox.Apply, that we used to
create the button in the first place.

The connection to reject() will cause the dialog to close, and because of the
Qt.WA DeleteOnClose attribute, the dialog will be deleted rather than hidden.
There is no connection to the dialog’s accept() slot, so the only way to get rid
of the dialog is to close it. If the user clicks the Apply button, the apply() slot,
shown next, will be called. Naturally, we also set a window title.

The final method in this class is apply (), which we will review in two parts.

def apply(self):
thousands = unicode(self.thousandsEdit.text())
decimal = unicode(self.decimalMarkerEdit.text())
if thousands == decimal:
QMessageBox.warning(self, "Format Error",
"The thousands separator and the decimal marker "
"must be different.")
self.thousandsEdit.selectAll()
self.thousandsEdit.setFocus()
return
if len(decimal) ==
QMessageBox.warning(self, "Format Error",

"The decimal marker may not be empty.")
self.decimalMarkerEdit.selectAll()
self.decimalMarkerEdit.setFocus()
return

Form-level validation is normally necessary when two or more widgets’ values
are interdependent. In this example, we do not want to allow the thousands sep-
arator to be the same as the decimal place marker, so we check for this situation
in the apply () method, and if it has occurred we notify the user, put the focusin
the thousands separator line edit, and return without applying the user’s edits.

Smart Dialogs 159

We could have avoided this by connecting both line edits’ textEdited() signals
to a “check and fix” slot—we will do this in the next example.

We must also check that the decimal marker isn’t empty. Although the decimal
place marker’s line edit regular expression validator wants a single character,
it allows the line edit to be empty. This is because an empty string is a valid
prefix for a string that has a valid character. After all, the line edit may have
been empty when the user switched the focus into it.

self.format["thousandsseparator"] = thousands
self.format["decimalmarker"] = decimal
self.format["decimalplaces"] = \
self.decimalPlacesSpinBox.value()
self.format["rednegatives"] = \
self.redNegativesCheckBox.isChecked()
self.emit (SIGNAL("changed"))

If there are no validation problems, neither of the return statements is exe-
cuted and we fall through to the end of the accept() slot. Here we update the
format dictionary. The self.format variable is a reference to the caller’s format
dictionary, so the changes are applied directly to the caller’s data structure.
Finally, we emit a changed signal, and as we have seen, this causes the caller’s
refreshTable() method to be called, which in turn formats all the numbers in
the table using the caller’s format dictionary.

This dialog is smarter than the standard one we created in the preceding
section. It works directly on the caller’s data structure (the format dictionary),
and notifies the caller when the data structure has changed so that the changes
can be applied. We could have made it smarter still and given it a reference
to the caller’s refreshTable() method and had the dialog execute it directly: We
will use this approach in the next example.

In situations where the user wants to repeatedly apply changes, it may be
inconvenient for them to keep having to click an Apply button. They may just
want to manipulate a dialog’s widgets and see the effects immediately. We will
see how to do this next.

Modeless “Live” Dialogs

For our last number format example, we will review a smart modeless “live”
dialog—a dialog that works very similarly to the one we have just seen, but
which has no buttons, and where changes are applied automatically and
immediately. The dialog is shown in Figure 5.7.

In the modal version of the dialog we used post-mortem validation, and in the
smart modeless version we used a mixture of post-mortem and preventative
validation. In this example, we will use preventative validation exclusively.
Also, instead of creating a signal-slot connection so that the dialog can notify

160 Chapter 5. Dialogs

Ml Set Number, Format [~ Live') @@

Thousands separator ||

Decimal marker

4

Decimal places z

[] red negative numbers

Figure 5.7 The “live” Set Number Format dialog

the caller of changes, we give the dialog the method to call when there are
changes to be applied so that it can call this method whenever necessary.

We could create this dialog in exactly the same way as the previous dialog, but
we will instead demonstrate a different approach. Rather than creating the
dialog when it is needed and then destroying it, creating and destroying on
every use, we will create it just once, the first time it is needed, and then hide
it when the user is finished with it, showing and hiding on every use.

def setNumberFormat3(self):
if self.numberFormatDlg is None:
self.numberFormatDlg = numberformatdlg3.NumberFormatDlg(
self.format, self.refreshTable, self)
self.numberFormatDlg.show()
self.numberFormatDlg.raise ()
self.numberFormatDlg.activateWindow()

In the calling form’s initializer, we have the statement self.numberFormatDlg =
None. This ensures that the first time this method is called the dialog is created.
Then, we show the dialog as before. But in this case, when the dialog is closed
it is merely hidden (because we do not set the Qt.WA DeleteOnClose widget
attribute). So when this method is called, we may be creating and showing the
dialog for the first time, or we may be showing a dialog that was created earlier
and subsequently hidden. To account for the second possibility, we must both
raise (put the dialog on top of all the other windows in the application) and
activate (give the focus to the dialog); doing these the first time is harmless*

Also, we have made the dialog even smarter than the previous one, and instead
of setting up a signal-slot connection, we pass the bound refreshTable()
method to the dialog as an additional parameter.

The init () method is almost the same as before, with just three differences.
First, it does not set the Qt.WA DeleteOnClose attribute so that when the dialog
is closed, it will be hidden, not deleted. Second, it keeps a copy of the method it
is passed (i.e., it keeps a reference to self.refreshTable() in self.callback), and

*PyQt uses raise () rather than raise() to avoid conflict with the built-in raise statement.

Smart Dialogs 161

third, its signal and slot connections are slightly different than before. Here
are the connection calls:

self.connect(self.thousandsEdit,
SIGNAL("textEdited(QString)"), self.checkAndFix)
self.connect(self.decimalMarkerEdit,
SIGNAL("textEdited(QString)"), self.checkAndFix)
self.connect(self.decimalPlacesSpinBox,
SIGNAL("valueChanged(int)"), self.apply)
self.connect(self.redNegativesCheckBox,
SIGNAL("toggled(bool)"), self.apply)

As before, we can rely on the decimal places spinbox to ensure that only a valid
number of decimal placesis set, and similarly the “red negatives” checkbox can
only be in a valid state, so changes to either of these can be applied immedi-
ately.

But for the line edits, we now connect their textEdited() signals. These signals
are emitted whenever the user types in a character or deletes a character from
them. The checkAndFix () slot will both ensure that the line edits hold valid text
and apply the change immediately. There are no buttons in this dialog: The
user can close it by pressing Esc, which will then hide it. The dialog will be
deleted only when its calling form is deleted, because at that point the caller’s
self.numberFormatDlg instance variable will go out of scope, and with no other
reference to the dialog, it will be scheduled for garbage collection.

def apply(self):

self.format["thousandsseparator"] = \
unicode(self.thousandsEdit.text())

self.format["decimalmarker"] =\
unicode(self.decimalMarkerkEdit.text())

self.format["decimalplaces"] = \
self.decimalPlacesSpinBox.value()

self.format["rednegatives"] =\
self.redNegativesCheckBox.isChecked()

self.callback()

The apply() method is the simplest we have seen so far. This is because
it is called only when all the editing widgets hold valid data, so no post-
mortem validation is required. It no longer emits a signal to announce a state
change—instead, it calls the method it was given and this applies the changes
directly to the caller’s form.

def checkAndFix(self):
thousands = unicode(self.thousandsEdit.text())
decimal = unicode(self.decimalMarkerEdit.text())
if thousands == decimal:
self.thousandsEdit.clear()
self.thousandsEdit.setFocus()

162 Chapter 5. Dialogs

if len(decimal) ==
self.decimalMarkerEdit.setText(".")
self.decimalMarkerEdit.selectAll()
self.decimalMarkerEdit.setFocus()
self.apply()

This method applies preventative validation as the user types in either of the
line edits. We still rely on the line edit validators, maximum length properties,
and in the case of the decimal place marker line edit, an input mask, with all
of these combining to provide almost all the validation that we need. But it is
still possible for the user to set the same text in both—in which case we delete
the thousands separator and move the focus to its line edit, or (if the user tries
hard) for the decimal place marker to be empty—in which case we set a valid
alternative, select it, and give it the keyboard focus. At the end we know that
both line edits are valid, so we call apply() and apply the changes.

One benefit of using the show/hide approach is that the dialog’s state is main-
tained automatically. If we have to create the dialog each time it is used we
must populate it with data, but for this dialog, whenever it is shown (after the
first time), it already has the correct data. Of course, in this particular exam-
ple we have three dialogs that are all used to edit the same data, which means
that this dialog could become out of sync; we ignore this issue because having
multiple dialogs editing the same data is not something we would do in a real
application.

By passing in both the data structure (the format dictionary) and the caller’s
update method (refreshTable(), passed as self.callback), we have made this
dialog very smart—and very tightly coupled to its caller. For this reason,
many programmers prefer the “middle way” of using standard dialogs—dumb
dialogs are too limited and can be inconvenient to use, and smart dialogs can be
more work to maintain because of the tight coupling their knowledge of their
callers’ data structures implies.

Summary

We categorized dialogs into three “intelligences”, dumb, standard, and smart,
and showned that they can be used modally or modelessly. Dumb dialogs are
easy to create, and are perfectly adequate for doing widget-level validation.
Dumb dialogs are normally used modally, and if we are careful they can be
generalized since they can be very loosely coupled to the application’s logic.
Nonetheless, using dumb dialogs usually ends up leading to programmer
frustration and the need to rewrite in the form of a standard or smart dialog,
so it is often best to avoid them except for those very simple cases where just
one or two values are required and the built-in QInputDialog static dialogs are
not suitable.

The most common choice is between a standard modal dialog and a smart
modeless dialog, and in the latter case between the “apply” and “live” styles

Summary 163

of updating. Modal dialogs are the easiest to program because they block any
other interaction with the dialog’s parent windows and their sibling windows,
thereby reducing the risk that the data they are working on is changed from
under them. But modeless dialogs are preferred by some users, and are par-
ticularly convenient when users want to try out various options before deciding
which ones they want. Modal dialogs can also be used for this purpose if they
provide some kind of preview; for example, font dialogs are often modal, and
show sample text that reflects the user’s font settings as they change them.

The two validation strategies that we have looked at, post-mortem and pre-
ventative, can be used on their own or in combination. From a usability point
of view, preventative is often considered to be superior, although it can lead
to user frustration. For example, a user might complain (“I want to set this to
five but it won’t let me”) when the setting is invalid because of another setting
elsewhere on the form.

It is possible to design a dialog so that it can be used both for adding and for
editing items. These add/edit dialogs are no different from other kinds of
dialogs when it comes to the creation, layout, and connection of their widgets.
The key difference is that they may need to behave in different ways depend-
ing on whether they are adding or editing. When editing, the widgets are pop-
ulated from the item passed in, and when adding, the widgets are populated
with default values. If the dialog is accepted, it may simply provide accessors
through which the values set can be retrieved, leaving the work to the caller, or
it may be smart, able to update edited items directly, and to create new items if
the user is adding. See the AddEditMovieDlg class in chap08/additemmoviedlg.py
(its user interface design is in chap08/additemmoviedlg.ui), and the TextItemDlg
class in chapl2/pagedesigner. pwy, for examples of add/edit item dialogs.

Another possibility is to avoid using a dialog at all and to allow the user to edit
data in-place—for example, in a list or table. This approach is covered in the
chapters on model/view programming.

Exercise

Write a stand-alone string list editing dialog. The dialog should useif name
==" main_": so that it can be run and tested independently. It should look
like the dialog shown in Figure 5.8.

The strings should be held in a QListWidget. The Sort button is easy to im-
plement since we can connect its clicked() signal directly to the QListWid-
get.sortItems() method.

The dialog should work on its own string list, either a copy of one passed in,
or one it creates itself, and when accepted should emit a signal containing
the list (as a QStringlList), and also have a publically accessible data attribute,
stringlist.

The reject() slot should be implemented like this:

164 Chapter 5. Dialogs

E!derberry ~ fdd...

Fig

Guava ;

Honetyde

Juriperbdl - add Fruit

Lemon | Quince] |

Mectaring [Ok l [Cancel]

Orange Dionaan

Plurn =
Sort

Strawberry B 2

Tangerine

Ugli Fruit v Clase

Figure 5.8 The String List dialog with an item being added

def reject(self):
self.accept()

For testing purposes put the following code at the end of the file:

if name ==" main_":

fruit = ["Banana", "Apple", "Elderberry", "Clementine", "Fig",
"Guava", "Mango", "Honeydew Melon", "Date", "Watermelon",
"Tangerine", "Ugli Fruit", "Juniperberry", "Kiwi",
"Lemon", "Nectarine", "Plum", "Raspberry", "Strawberry",
"Orange"]

app = QApplication(sys.argv)

form = StringListDlg("Fruit", fruit)

form.exec ()

print "\n".join([unicode(x) for x in form.stringlist])

This creates a StringlListDlg instance, with a string that names the kind of
things in the list, and a list of strings, and then calls it modally. When the user
closes the dialog we print the list of strings on the console so that we can see
the effects of our edits.

You will need to read the documentation for QListWidget, and for QInputDia-
log.getText () which can be used for getting a string to be added and for editing
an existing string. This exercise can be done in about 120 lines of code.

A model answer is provided by the file chap05/stringlistdlg.py. The program
can be tested by running it. (On Windows, it should be run from a console; on
Mac OS X, from a Terminal.)

® Creating a Main Window
® Handling User Actions

Main Windows

Most applications are main-window-style applications, that is, they have a
menu bar, toolbars, a status bar, a central area, and possibly dock windows, to
provide the user with a rich yet navigable and comprehensible user interface.
In this chapter, we will see how to create a main-window-style application
which demonstrates how to create and use all of these features.

< Image Changer - penguin. png* E@@
Eile Edit Help

208 hHUSw-:

Log g %

Loaded penguin.png

Mirrared vertically

Urmirrared Vertically

Mirrored Horizontally

Swapped Red and Blue

Inverted

Unswapped Red and Blue
Unirwerted

Figure 6.1 The Image Changer application

300 % 357

We will use the Image Changer application shown in Figure 6.1 to demonstrate
how to create a main-window-style application. Like most such applications it
has menus, toolbars, and a status bar; it also has a dock window. In addition
to seeing how to create all these user interface elements, we will cover how
to relate user interactions with them, to methods that perform the relevant
actions.

165

166 Chapter 6. Main Windows

This chapter also explains how to handle the creation of new files and the open-
ing of existing files, including keeping the user interface synchronized with
the application’s state. Also covered is how to give the user the opportunity to
save unsaved changes, and how to manage a recently used files list. We will
also show how to save and restore user preferences, including the sizes and
positions of the main window and of the toolbars and dock windows.

Most applications have a data structure for holding their data, and use one
or more widgets through which users can view and edit the data. The Image
Changer application holds its data in a single QImage object, and uses a QLabel
widget as its data viewer. In Chapter 8, we will see a main-window-style ap-
plication that is used to present and edit lots of data items, and in Chapter 9,
we will see how to create main window applications that can handle multiple
documents.

Before looking at how to create the application, we will discuss some of the
state that a user interface must maintain. Quite often, some menu options
and toolbar buttons are “checkable”, that is, they can be in one of two states.
For example, in a word processor, a toolbar button for toggling italic text
could be “on” (pushed down) or “off”. If there is also an italic menu option, we
must make sure that the menu option and the toolbar button are kept in sync.
Fortunately, PyQt makes it easy to automate such synchronization.

Some options may be interdependent. For example, we can have text left-
aligned, centered, or right-aligned, but only one of these can be “on” at any one
time. So if the user switched on centered alignment, the left and right align-
ment toolbar buttons and menu options must be switched off. Again, PyQt
makes it straightforward to synchronize such interdependent options. In this
chapter, we will cover options that are noncheckable, such as “file open”, and
both independent and interdependent checkable options.

Although some menu and toolbar options can have an immediate effect on the
application’s data, others are used to invoke dialogs through which users can
specify precisely what they want done. Since we have given so much coverage
to dialogs in the preceding two chapters, here we will concentrate on how they
are used rather than on how they are created. In this chapter we will see how
to invoke custom dialogs, and also how to use many of PyQt’s built-in dialogs,
including dialogs for choosing a filename, the print dialog, and dialogs for
asking the user for an item of data, such as a string or a number.

Creating a Main Window

For most main-window-style applications, the creation of the main window
follows a similar pattern. We begin by creating and initializing some data
structures, then we create a “central widget” which will occupy the main win-
dow’s central area, and then we create and set up any dock windows. Next, we
create “actions” and insert them into menus and toolbars. It is quite common
to also read in the application’s settings, and for applications that restore the

Creating a Main Window 167

imagechanger.pyw

MainWindow
main()
[
v 3y v
qrc_resources.py newimagedlg.py helpform.py
Icons & HTML help files NewImageDlg HelpForm

rl

ui newimagedlg.py

User interface module

Figure 6.2 The Image Changer’s modules, classes, and functions

user’s workspace, to load the files that the application had open when it was
last terminated.

The files that make up the Image Changer application are shown in Figure 6.2.
The application’s main window class is in the file chap06/imagechanger.pyw. The
initializer is quite long, so we will look at it in pieces. But first we will look at
the imports that precede the class definition.

import os

import platform

import sys

from PyQt4.QtCore import x
from PyQt4.QtGui import =
import helpform

import newimagedlg

import qrc_resources

__version = "1.0.0"

In this book, the practice is to import Python’s standard modules, then third-
party modules (such as PyQt), and then our own modules. We will discuss the
items we use from the os and platform modules when we use them in the code.
The sys module is used to provide sys.argv as usual. The helpform and newim-
agedlg modules provide the HelpForm and NewImageDlg classes. We will discuss
the gqrc_resources module later on.

It is common for applications to have a version string, and conventional to call
it _version ;we will use it in the application’s about box.

Now we can look at the beginning of the MainWindow class.

class MainWindow(QMainWindow) :

def init (self, parent=None):
super(MainWindow, self). init (parent)

Object
Owner-
ship
sidebar

119 =

168 Chapter 6. Main Windows

self.image = QImage()

self.dirty = False

self.filename = None
self.mirroredvertically = False
self.mirroredhorizontally = False

The initializer begins conventionally with the super() call. Next, we create
a null QImage that we will use to hold the image the user loads or creates. A
QImage is not a QObject subclass, so it does not need a parent; instead, we can
leave its deletion to Python’s normal garbage collection when the application
terminates. We also create some instance variables. We use dirty as a Boolean
flag to indicate whether the image has unsaved changes. The filename is
initially set to None, which we use to signify that either there is no image, or
there is a newly created image that has never been saved.

PyQt provides various mirroring capabilities, but for this example application
we have limited ourselves to just three possibilities: having the image mirrored
vertically, horizontally, or not at all. We need to keep track of the mirrored
state so that we can keep the user interface in sync, as we will see when we
discuss the mirroring actions.

self.imagelLabel = QLabel()
self.imagelLabel.setMinimumSize (200, 200)
self.imagelLabel.setAlignment (Qt.AlignCenter)
self.imagelLabel.setContextMenuPolicy(Qt.ActionsContextMenu)
self.setCentralWidget(self.imagelLabel)

In some applications the central widget is a composite widget (a widget that is
composed of other widgets, laid out just like those in a dialog), or an item-based
widget (such as a list or table), but here a single QLabel is sufficient. A QLabel
can display plain text, or HTML, or an image in any of the image formats that
PyQt supports; later on we will see how to discover what these formats are,
since they can vary. We have set a minimum size because initially the label has
nothing to show, and would therefore take up no space, which would look pecu-
liar. We have chosen to align our images vertically and horizontally centered.

PyQt offers many ways of creating context menus, but we are going to use the
easiest and most common approach. First, we must set the context menu policy
for the widget which we want to have a context menu. Then, we must add
some actions to the widget—something we will do further on. When the user
invokes the context menu, the menu will pop up, displaying the actions that
were added.

Unlike dialogs, where we use layouts, in a main-window-style application we
only ever have one central widget—although this widget could be composite, so
there is no limitation in practice. We only need to call setCentralWidget() and
we are done. This method both lays out the widget in the main window’s central
area, and reparents the widget so that the main window takes ownership
of it.

Creating a Main Window 169

Menu Bar

Toolbar Areas

Dock Window Areas

Central Widget

Status Bar

Figure 6.3 QMainWindow’s areas

Toolbars are suitable for holding toolbar buttons, and some other kinds of wid-
gets such as comboboxes and spinboxes. For larger widgets, for tool palettes, or
for any widget that we want the user to be able to drag out of the window to
float freely as an independent window in its own right, using a dock window is
often the right choice.

Dock windows are windows that can appear in the dock areas shown in Fig-
ure 6.3. They have a small caption, and restore and close buttons, and they can
be dragged from one dock area to another, or float freely as independent top-
level windows in their own right. When they are docked they automatically
provide a splitter between themselves and the central area, and this makes
them easy to resize.

In PyQt, dock windows are instances of the QDockWidget class. We can add a
single widget to a dock widget, just as we can have a single widget in a main
window’s central area, and in the same way this is no limitation, since the
widget added can be a composite.

logDockWidget = QDockWidget("Log", self)
logDockWidget.setObjectName("LogDockWidget")
logDockWidget.setAllowedAreas(Qt.LeftDockWidgetArea|
Qt.RightDockWidgetArea)
self.listWidget = QListWidget()
logDockWidget.setWidget(self.listWidget)
self.addDockWidget (Qt.RightDockWidgetArea, logDockWidget)

Dock widgets are not put into a layout, so when we create them, in addition to
providing their window caption, we must give them a parent. By setting a par-
ent, we ensure that the dock widget does not go out of scope and get garbage-

Object
Owner-
ship
sidebar

119 =

170 Chapter 6. Main Windows

collected by Python at the wrong time. Instead, the dock widget will be deleted
when its parent, the top-level window (the main window), is deleted.

Every PyQt object can be given an object name, although up to now we have
never done so. Object names can sometimes be useful in debugging, but we
have set one here because we want PyQt to save and restore the dock widget’s
size and position, and since there could be any number of dock widgets, PyQt
uses the object name to distinguish between them.

By default, dock widgets can be dragged into any dock area and are movable,
floatable, and closable. Since our dock widget is going to be used to store a
list—a widget that is usually tall and narrow—it only makes sense for it to be
in the left or right dock areas (or to float), so we use setAllowedAreas () to restrict
the areas. Dock widgets also have a setFeatures() method which is used to
control whether the dock widget can be moved, floated, or closed, but we do not
need to use it here because the defaults are fine.

Once the dock widget has been set up, we create the widget it will hold, in this
case a list widget. Then we add the widget to the dock widget, and the dock
widget to the main window. We did not have to give the list widget a parent
because when it is added to the dock widget the dock widget takes ownership
of it.

self.printer = None

We want users to be able to print out their images. To do this we need to
create a QPrinter object. We could create the printer whenever we need it and
leave it to be garbage-collected afterward. But we prefer to keep an instance
variable, initially set to None. The first time the user asks to print we will create
aQPrinter and assignit to our printer variable. This has two benefits. First, we
create the printer object only when it is needed, and second, because we keep
a reference to it, it stays around—and keeps all its previous state such as the
user’s choice of printer, paper size, and so on.

self.sizelabel = QLabel()
self.sizelabel.setFrameStyle(QFrame.StyledPanel|QFrame.Sunken)
status = self.statusBar()

status.setSizeGripEnabled(False)
status.addPermanentWidget(self.sizelLabel)
status.showMessage("Ready", 5000)

For the application’s status bar, we want the usual message area on the left, and
a status indicator showing the width and height of the current image. We do
this by creating a QLabel widget and adding it to the status bar. We also switch
off the status bar’s size grip since that seems inappropriate when we have an
indicator label that shows the image’s dimensions. The status bar itself is cre-
ated for us the first time we call the QMainWindow’s statusBar() method. If we call
the status bar’s showMessage () method with a string, the string will be displayed
in the status bar, and will remain on display until either another showMessage()

Creating a Main Window 171

call supplants it or until clearMessage() is called. We have used the two-argu-
ment form, where the second argument is the number of milliseconds (5000,
i.e., 5 seconds), that the message should be shown for; after this time the status
bar will clear itself.

So far we have seen how to create the main window’s central widget, create a
dock widget, and set up the status bar. Now we are almost ready to create the
menus and toolbars, but first we must understand what PyQt actions are, and
then take a brief detour to learn about resources.

Actions and Key Sequences

Qt’s designers recognized that user interfaces often provide several different
ways for the user to achieve the same thing. For example, creating a new file
in many applications can be done via the File—New menu option, or by clicking
the New File toolbar button, B, or by using the Ctrl+N keyboard shortcut. In
general, we do not care how the user asked to perform the action, we only care
what action they asked to be done. PyQt encapsulates user actions using the
QAction class. So, for example, to create a “file new” action we could write code
like this:

fileNewAction = QAction(QIcon("images/filenew.png"), "&New", self)
fileNewAction.setShortcut(QKeySequence.New)

helpText = "Create a new image"

fileNewAction.setToolTip(helpText)
fileNewAction.setStatusTip(helpText)

self.connect(fileNewAction, SIGNAL("triggered()"), self.fileNew)

This assumes that we have a suitable icon and a fileNew() method. The am-
persand in the menu item’s text means that the menu item will appear as New
(except on Mac OS X or unless the windowing system is set to suppress un-
derlines), and that keyboard users will be able to invoke it by pressing Alt+FN,
assuming that the File menu’s text is "&File" so that it appears as File. Alterna-
tively, the user could use the shortcut that was created by setShortcut(), and
simply press Ctrl+N instead.

Many key sequences are standardized, some even across different windowing
systems. For example, Windows, KDE, and GNOME all use Ctrl+N for “new”
and Ctrl+S for “save”. Mac OS X is similar, with Command+N and Command+S
for these actions. The QKeySequence class in PyQt 4.2 provides constants for the
standardized key sequences, such as QKeySequence.New. This is especially useful
when the standardized key sequences differ across windowing systems, or
where more than one key sequence is associated with an action. For example,
if we set a shortcut to QKeySequence.Paste, PyQt will trigger a “paste” action in
response to Ctrl+V or Shift+lns on Windows; Ctrl+V, Shift+Ins, or F18 on KDE and
GNOME; and Command+V on Mac OS X.

For key sequences that are not standardized (or if we want backward com-
patibility with earlier PyQt releases), we can provide the shortcut as a string;

(4]
4.2

Object
Owner-
ship
sidebar

119 =

172 Chapter 6. Main Windows
Table 6.1 Selected QAction Methods

Syntax Description

a.data() Returns QAction a’s user data as a QVariant

a.setData(v) Sets QAction a’s user data to QVariant v

a.isChecked() Returns True if QAction a is checked

a.setChecked(b) Checks or unchecks QAction a depending on bool b

a.isEnabled() Returns True if QAction a is enabled

a.setEnabled(b) Enables or disables QAction a depending on bool b

a.setSeparator(b) Sets QAction a to be a normal action or a separator
depending on bool b

a.setShortcut(k) Sets QAction a’s keyboard shortcut to QKeySequence k

a.setStatusTip(s) Sets QAction a’s status tip text to string s

a.setText(s) Sets QAction a’s text to string s

a.setToolTip(s) Sets QAction a’s tooltip text to string s

a.setWhatsThis(s) Sets QAction a’s What’s This? text to string s

a.toggled(b) This signal is emitted when QAction a’s checked status
changes; bool b is True if the action is checked

a.triggered(b) This signal is emitted when QAction a is invoked; the

optional bool b is True if QAction a is checked

for example, setShortcut("Ctrl+Q"). This book uses the standardized key se-
quences that are available, and otherwise falls back to using strings.

Notice that we give the QAction a parent of self (the form in which the action
is applicable). It is important that every QObject subclass (except top-level win-
dows) has a parent; for widgets this is usually achieved by laying them out, but
for a pure data object like a QAction, we must provide the parent explicitly.

Once we have created the action, we can add it to a menu and to a toolbar
like this:

fileMenu.addAction(fileNewAction)
fileToolbar.addAction(fileNewAction)

Now whenever the user invokes the “file new” action (by whatever means), the
fileNew() method will be called.

Resource Files

Unfortunately, there is a small problem with the code we have written. It as-
sumes that the application’s working directory is the directory where it is locat-
ed. This is the normal case under Windows where the .pyw (or a shortcut to it)
is clicked (or double-clicked). But if the program is executed from the command

Creating a Main Window 173

line from a different directory—for example, ./chap06/imagechanger.pyw—none
of the icons will appear. This is because we gave the icon’s path as images, that
is, a path relative to the application’s working directory, so when invoked from
elsewhere, the icons were looked for in the . /images directory (which might not
even exist), when in fact they are in the ./chap06/images directory.

We might be tempted to try to solve the problem using Python’s os.getcwd()
function; but this returns the directory where we invoked the application,
which as we have noted, may not be the directory where the application actu-
ally resides. Nor does PyQt’s QApplication.applicationDirPath() method help,
since this returns the path to the Python executable, not to our application it-
self. One solution isto use os.path.dirname(_file) to provide a prefix for the
icon filenames, since the file variable holds the full name and path of the
current .py or .pyw file.

Another solution is to put all our icons (and help files, and any other small
resources) into a single .py module and access them all from there. This not
only solves the path problem (because Python knows how to look for a module
to be imported), but also means that instead of having dozens of icons, help
files, and similar, some of which could easily become lost, we have a single
module containing them all.

To produce a resource module we must do two things. First, we must create a
.qrc file that contains details of the resources we want included, and then we
must run pyrcc4 which reads a .qrc file and produces a resource module. The
.qrc file is in a simple XML format that is easy to write by hand. Here is an
extract from the resources.qgrc file used by the Image Changer application:

<!DOCTYPE RCC><RCC version="1.0">

<qresource>

<file alias="filenew.png">images/filenew.png</file>
<file alias="fileopen.png">images/fileopen.png</file>

<file alias="icon.png">images/icon.png</file>

<file>help/editmenu.html</file>
<file>help/filemenu.html</file>
<file>help/index.html</file>
</qresource>

</RCC>

The ellipsis represents many lines that have been omitted to save space
because they are all very similar. Each <file> entry must contain a filename,
with its relative path if it is in a subdirectory. Now, if we want to use the “file
new” action’s image, we could write QIcon(":/images/filenew.png"). But thanks
to the alias, we can shorten this to QIcon(":/filenew.png"). The leading :/ tells
PyQt that the file is a resource. Resource files can be treated just like normal
(read-only) files in the filesystem, the only difference being that they have the

174 Chapter 6. Main Windows

special path prefix. But before we can use resources, we must make sure we
generate the resource module and import it into our application.

Earlier we showed the imports for the Image Changer application, and the last
one was import qrc_resources. The qrc_resources.py module was generated by
pyrccd using the following command line:

C:\pyqt\chapb6>pyrcc4 -o qrc_resources.py resources.qrc

We must run this command whenever we change the resources.qrc file.

As a convenience for readers, two small Python programs are provided with the
examples to make using pyrcc4, and some other PyQt command-line programs,
much easier. One is mkpyqt. py, itself a command-line program, and the other is
Make PyQt, a GUI application written in PyQt4. This means, for example, that
instead of running pyrcc4 ourselves, we can simply type this:

C:\pyqt\chap06>mkpyqt.py

Both mkpygt.py and Make PyQt do the same thing: They run pyuic4 and other
PyQt tools, and for each one they automatically use the correct command-line
arguments; they are described in the next chapter.

Creating and Using Actions

The code we saw earlier for creating a “file new” action required six lines to
create and set up the action. Most main-window-style applications have scores
of actions, so typing six lines for each one would soon become very tedious. For
this reason, we have created a helper method which allows us to reduce the
code for creating actions to just two or three lines. We will look at the helper,
and then see how it is used in the main window’s initializer.

def createAction(self, text, slot=None, shortcut=None, icon=None,
tip=None, checkable=False, signal="triggered()"):
action = QAction(text, self)
if icon is not None:
action.setIcon(QIcon(":/%s.png" % icon))
if shortcut is not None:
action.setShortcut(shortcut)
if tip is not None:
action.setToolTip(tip)
action.setStatusTip(tip)
if slot is not None:
self.connect(action, SIGNAL(signal), slot)
if checkable:
action.setCheckable(True)
return action

mk—
pyat.py
and
Make
PyQt
sidebar

=z 207

Creating a Main Window 175

This method does everything that we did by hand for the “file new” action. In
addition, it handles cases where there is no icon, as well as “checkable” actions.
Icons are optional, although for actions that will be added to a toolbar it is
conventional to provide one. An action is checkable if it can have “on” and “off”
states like the Bold or Italic actions that word processors normally provide.

Notice that the last argument to the QAction constructor is self; this is the
action’s parent (the main window) and it ensures that the action will not be
garbage-collected when it goes out of the initializer’s scope. In some cases, we
make actions instance variables so that we can access them outside the form’s
initializer, something we don’t need to do in this particular example.

Here is how we can create the “file new” action using the createAction()
helper method:

fileNewAction = self.createAction("&New...", self.fileNew,
QKeySequence.New, "filenew", "Create an image file")

With the exception of the “file quit” action (and “file save as”, for which we don’t
provide a shortcut), the other file actions are created in the same way, so we
won’t waste space by showing them.

fileQuitAction = self.createAction("&Quit", self.close,
"Ctri+Q", "filequit", "Close the application")

The QKeySequence class does not have a standardized shortcut for application
termination, so we have chosen one ourselves and specified it as a string.
We could have just as easily used a different shortcut—for example, Alt+X or
Alt+F4.

The close() slot is inherited from QMainWindow. If the main window is closed
by invoking the “file quit” action (which we have just connected to the close()
slot), for example, by clicking File—Quit or by pressing Ctrl+Q, the base class’s
close() method will be called. But if the user clicks the application’s close
button, X, the close() method is not called.

The only way we can be sure we are intercepting attempts to close the window
is to reimplement the close event handler. Whether the application is closed by
the close() method or via the close button, the close event handler is always
called. So, by reimplementing this event handler we can give the user the
opportunity to save any unsaved changes, and we can save the application’s
settings.

In general, we can implement an application’s behavior purely through the
high-level signals and slots mechanism, but in this one important case we must
use the lower-level event-handling mechanism. However, reimplementing the
close event is no different from reimplementing any other method, and it is not
difficult, as we will see when we cover it further on. (Event handling is covered
in Chapter 10.)

Object
Owner-
ship
sidebar

119 =0

176 Chapter 6. Main Windows

The editing actions are created in a similar way, but we will look at a few of
them because of subtle differences.

editZoomAction = self.createAction("&Zoom...", self.editZoom,
"Alt+Z", "editzoom", "Zoom the image")

It is convenient for users to be able to zoom in and out to see an image in more
or less detail. We have provided a spinbox in the toolbar to allow mouse users
to change the zoom factor (and which we will come to shortly), but we must also
support keyboard users, so for them we create an “edit zoom” action which will
be added to the Edit menu. When triggered, the method connected to this action
will pop up a dialog box where the user can enter a zoom percentage.

There are standardized key sequences for zoom in and for zoom out, but there
is not one for zooming generally, so we have chosen to use Alt+Z in this case.
(We did not use Ctrl+Z, since that is the standardized key sequence for undo on
most platforms.)

editInvertAction = self.createAction("&Invert",
self.editInvert, "Ctrl+I", "editinvert",
"Invert the image's colors", True, "toggled(bool)")

The “edit invert” action is a toggle action. We could still use the triggered()
signal, but then we would need to call isChecked() on the action to find out
its state. It is more convenient for us to use the toggled(bool) signal since
that not only tells us that the action has been invoked, but also whether it is
checked. Actions also have a triggered(bool) signal that is emitted only for
user changes, but that is not suitable here because whether the checked status
of the invert action is changed by the user or programmatically, we want to act
on it.

The “edit swap red and blue” action is similar to the “edit invert” action, so we
won’t show it.

Like the “edit invert” action and the “edit swap red and blue” action, the mir-
ror actions are also checkable, but unlike the “invert” and “swap red and blue”
actions which are independent, we have chosen to make the mirror actions
mutually exclusive, allowing only one to be “on” at any one time. To get this
behavior we create the mirror actions in the normal way, but add each of them
to an “action group”. An action group is a class which manages a set of check-
able actions and ensures that if one of the actions it manages is set to “on”, the
others are all set to “off™.

mirrorGroup = QActionGroup(self)

An action group is a QObject subclass that is neither a top-level window nor a
widget that is laid out, so we must give it an explicit parent to ensure that it is
deleted by PyQt at the right time.

Creating a Main Window 177

Once we have created the action group, we create the actions in the same way
as before, only now we add each one to the action group.

editUnMirrorAction = self.createAction("&Unmirror",
self.editUnMirror, "Ctrl+U", "editunmirror",
"Unmirror the image", True, "toggled(bool)")

mirrorGroup.addAction(editUnMirrorAction)

We have not shown the code for the “edit mirror vertically” or “edit mirror
horizontally” actions since it is almost identical to the code shown earlier.

editUnMirrorAction.setChecked(True)

Checkable actions default to being “off”, but when we have a group like this
where exactly one must be “on” at a time, we must choose one to be on in the
first place. In this case, the “edit unmirror” action is the most sensible to switch
on initially. Checking the action will cause it to emit its toggled() signal, but
at this stage the QImage is null, and as we will see, no change is applied to a
null image.

We create two more actions, “help about”, and “help help”, with code very
similar to what we have already seen.

Although the actions are all in existence, none of them actually works! This is
because they become operational only when they have been added to a menu,
a toolbar, or both.

File N Help

‘,_-' I‘. Irvvert Chrl+L @ 100 = :
: I-I Swap Red and Blue Chrl+A
L, 20O, Al+Z

'r‘ Mirror Horizonkally Chrl+H

’;‘ Mirror Yertically Cerl+y

Figure 6.4 The Edit menu and the Mirror submenu

Menus in the menu bar are created by accessing the main window’s menu bar
(which is created the first time menuBar() is called, just like the status bar).
Here is the code for creating the Edit menu:

editMenu = self.menuBar().addMenu("&Edit")
self.addActions(editMenu, (editInvertAction,
editSwapRedAndBlueAction, editZoomAction))

We have created the Edit menu, and then used addActions() to add some actions
to it. This is sufficient to produce the Edit menu shown in Figure 6.4, apart from
the Mirror option, which we will look at in a moment.

178 Chapter 6. Main Windows

Actions are added to menus and toolbars using addAction(). To reduce typing
we have created a tiny helper method which can be used to add actions to a
menu or to a toolbar, and which can also add separators. Here is its code:

def addActions(self, target, actions):
for action in actions:
if action is None:
target.addSeparator()
else:
target.addAction(action)

The target is a menu or toolbar, and actions is a list or tuple of actions or
Nones. We could have used the built-in QWidget.addActions() method, but in that
case we would have to create separator actions (shown later) rather than use
Nones.

The last option on the Edit menu, Mirror, has a small triangle on its right. This
signifies that it has a submenu.

mirrorMenu = editMenu.addMenu(QIcon(":/editmirror.png"),
"&Mirror")
self.addActions(mirrorMenu, (editUnMirrorAction,
editMirrorHorizontalAction, editMirrorVerticalAction))

Submenus are populated in exactly the same way as any other menu, but they
are added to their parent menu using QMenu.addMenu() rather than to the main
window’s menu bar using QMainWindow.menuBar () .addMenu(). Having created the
mirror menu, we add actions to it using our addActions() helper method, just
as we did before.

Most menus are created and then populated with actions in the same way as
the Edit menu, but the File menu is different.

self.fileMenu = self.menuBar().addMenu("&File")
self.fileMenuActions = (fileNewAction, fileOpenAction,
fileSaveAction, fileSaveAsAction, None,
filePrintAction, fileQuitAction)
self.connect(self.fileMenu, SIGNAL("aboutToShow()"),
self.updateFileMenu)

We want the File menu to show recently used files. For this reason, we do not
populate the File menu here, but instead generate it dynamically whenever the
user invokes it. This is why we made the File menu an instance variable, and
also why we have an instance variable holding the File menu’s actions. The con-
nection ensures that whenever the File menu is invoked our updateFileMenu()
slot will be called. We will review this slot later on.

The Help menu is created conventionally, in the same way as the Edit menu, so
we won’t show it.

Creating a Main Window 179

=0
Figure 6.5 The File toolbar

With the menus in place, we can now turn to the toolbars.

fileToolbar = self.addToolBar("File")

fileToolbar.setObjectName("FileToolBar")

self.addActions(fileToolbar, (fileNewAction, fileOpenAction,
fileSaveAsAction))

Creating a toolbar is similar to creating a menu: We call addToolBar () to create a
QToolBar object and populate it using addActions (). We can use our addActions()
method for both menus and toolbars because their APIs are very similar, with
both providing addAction() and addSeparator() methods. We set an object name
so that PyQt can save and restore the toolbar’s position—there can be any num-
ber of toolbars and PyQt uses the object name to distinguish between them,
just as it does for dock widgets. The resulting toolbar is shown in Figure 6.5.

The edit toolbar and the checkable actions (“edit invert”, “edit swap red and
blue”, and the mirror actions) are all created in the same way. But as Figure 6.6
shows, the edit toolbar has a spinbox in addition to its toolbar buttons. In view
of this, we will show the code for this toolbar in full, showing it in two parts for
ease of explanation.

editToolbar = self.addToolBar("Edit")

editToolbar.setObjectName("EditToolBar")

self.addActions(editToolbar, (editInvertAction,
editSwapRedAndBlueAction, editUnMirrorAction,
editMirrorVerticalAction,
editMirrorHorizontalAction))

Creating a toolbar and adding actions to it is the same for all toolbars.

We want to provide the user with a quick means of changing the zoom factor, so
we provide a spinbox in the edit toolbar to make this possible. Earlier, we put
a separate “edit zoom” action in the Edit menu, to cater to keyboard users.

self.zoomSpinBox = QSpinBox()
self.zoomSpinBox.setRange(1l, 400)
self.zoomSpinBox.setSuffix(" %")
self.zoomSpinBox.setValue(100)
self.zoomSpinBox.setToolTip("Zoom the image")
self.zoomSpinBox.setStatusTip(self.zoomSpinBox.toolTip())
self.zoomSpinBox.setFocusPolicy(Qt.NoFocus)
self.connect(self.zoomSpinBox,
SIGNAL("valueChanged(int)"), self.showImage)
editToolbar.addwWidget(self.zoomSpinBox)

180 Chapter 6. Main Windows

EI'. I»I [Z’] = M [100% 2

A F.

Figure 6.6 The Edit toolbar

The pattern for adding widgets to a toolbar is always the same: We create the
widget, set it up, connect it to something to handle user interaction, and add
it to the toolbar. We have made the spinbox an instance variable because we
will need to access it outside the main window’s initializer. The addWidget () call
passes ownership of the spinbox to the toolbar.

We have now fully populated the menus and toolbars with actions. Although
every action was added to the menus, some were not added to the toolbars. This
is quite conventional; usually only the most frequently used actions are added
to toolbars.

Earlier we saw the following line of code:
self.imagelLabel.setContextMenuPolicy(Qt.ActionsContextMenu)

This tells PyQt that if actions are added to the imageLabel widget, they are to
be used for a context menu, such as the one shown in Figure 6.7.

self.addActions(self.imagelLabel, (editInvertAction,
editSwapRedAndBlueAction, editUnMirrorAction,
editMirrorVerticalAction, editMirrorHorizontalAction))

We can reuse our addActions() method to add actions to the label widget,
providing we don’t pass Nones since QWidget does not have an addSeparator()
method. Setting the policy and adding actions to a widget are all that is neces-
sary to get a context menu for that widget.

I<. Invert ChrHL
I"I Swap Red and Blue Cerl+a
Unmirror Chrl4+U
|;| Mirrar Yertically Cerly
m Mirvor Horizontally Chrl4+H

Figure 6.7 The Image Label’s context menu

The QWidget class has an addAction() method that is inherited by the QMenu,
QMenuBar, and QToolBar classes. This is why we can add actions to any of these
classes. Although the QWidget class does not have an addSeparator() method,
one is provided for convenience in the QMenu, QMenuBar, and QToolBar classes.
If we want to add a separator to a context menu, we must do so by adding a
separator action. For example:

Creating a Main Window 181

separator = QAction(self)

separator.setSeparator(True)

self.addActions(editToolbar, (editInvertAction,
editSwapRedAndBlueAction, separator, editUnMirrorAction,
editMirrorVerticalAction, editMirrorHorizontalAction))

If we need more sophisticated context menu handling—for example, where the
menu’s actions vary depending on the application’s state, we can reimplement
the relevant widget’s contextMenuEvent() event-handling method. Event
handling is covered in Chapter 10.

When we create a new image or load an existing image, we want the user
interface to revert to its original state. In particular, we want the “edit invert”
and “edit swap red and green” actions to be “off”, and the mirror action to be
“edit unmirrored”.

self.resetableActions = ((editInvertAction, False),
(editSwapRedAndBlueAction, False),
(editUnMirrorAction, True))

We have created an instance variable holding a tuple of pairs, with each pair
holding an action and the checked state it should have when a new image is
created or loaded. We will see resetableActions in use when we review the
fileNew() and loadFile() slots.

In the Image Changer application, all of the actions are enabled all of the
time. This is fine, since we always check for a null image before performing
any action, but it has the disadvantage that, for example, “file save” will be
enabled if there is no image or if there is an unchanged image, and similarly,
the edit actions will be enabled even if there is no image. The solution is to
enable or disable actions depending on the application’s state, as the sidebar in
Chapter 13 shows.

Restoring and Saving the Main Window’s State

Now that the main window’s user interface has been fully set up, we are almost
ready to finish the initializer method, but before we do we will restore the
application’s settings from the previous run (or use default settings if this is
the very first time the application has been run).

Before we can look at application settings, though, we must make a quick
detour and look at the creation of the application object and how the main win-
dow itself is created. The very last executable statement in the imagechang-
er.pyw file is the bare function call:

main()

As usual, we have chosen to use a conventional name for the first function we
execute. Here is its code:

context-
Menu-
Event()

= 307

En-
abling
and
Dis-
abling
Actions
sidebar

= 385

182 Chapter 6. Main Windows

def main():
app = QApplication(sys.argv)
app.setOrganizationName("Qtrac Ltd.")
app.setOrganizationDomain("qtrac.eu")
app.setApplicationName("Image Changer")
app.setWindowIcon(QIcon(":/icon.png"))
form = MainWindow()
form.show()
app.exec_ ()

The function’s first line is one we have seen many times before. The next three
lines are new. Our primary use of them is for loading and saving application
settings. If we create a QSettings object without passing any arguments, it
will use the organization name or domain (depending on platform), and the
application name that we have set here. So, by setting these once on the
application object, we don’t have to remember to pass them whenever we need
a QSettings instance.

But what do these names mean? They are used by PyQt to save the applica-
tion’s settings in the most appropriate place—for example, in the Windows
registry, or in a directory under $HOME/.config on Linux, or in $HOME/Library/
Preferences on Mac OS X. The registry keys or file and directory names are de-
rived from the names we give to the application object.

We can tell that the icon file is loaded from the qrc_resources module because
its path begins with :/.

After we have set up the application object, we create the main window, show
it, and start off the event loop, in the same way as we have done in examples
in previous chapters.

Now we can return to where we got up to in the MainWindow. init () method,
and see how it restores system settings.

settings = QSettings()
self.recentFiles = settings.value("RecentFiles").toStringList()
size = settings.value("MainWindow/Size",
QVariant(QSize (600, 500))).toSize()
self.resize(size)
position = settings.value("MainWindow/Position",
QVariant (QPoint (0, 0))).toPoint()

self.move(position)
self.restoreState(

settings.value("MainWindow/State").toByteArray())

self.setWindowTitle("Image Changer")
self.updateFileMenu()
QTimer.singleShot (0, self.loadInitialFile)

Creating a Main Window 183

We begin by creating a QSettings object. Since we passed no arguments, the
names held by the application object are used to locate the settings informa-
tion. We begin by retrieving the recently used files list. The QSettings.value()
method always returns a QVariant, so we must convert it to the data type we are
expecting.

Next, we use the two-argument form of value(), where the second argument is
a default value. This means that the very first time the application is run, it has
no settings at all, so we will get a QSize() object with a width of 600 pixels and
a height of 500 pixels.* On subsequent runs, the size returned will be whatever
the size of the main window was when the application was terminated—so
long as we remember to save the size when the application terminates. Once
we have a size, we resize the main window to the given size. After getting
the previous (or default) size, we retrieve and set the position in exactly the
same way.

There is no flickering, because the resizing and positioning are done in the
main window’s initializer, before the window is actually shown to the user.

Qt 4.2 introduced two new QWidget methods for saving and restoring a top-level
window’s geometry. Unfortunately, a bug meant that they were not reliable
in all situations on X11-based systems, and for this reason we have restored
the window’s size and position as separate items. Qt 4.3 has fixed the bug, so
with Qt 4.3 (e.g., with PyQt 4.3), instead of retrieving the size and position and
calling resize() and move(), everything can be done using a single line:

self.restoreGeometry(settings.value("Geometry").toByteArray())

This assumes that the geometry was saved when the application was terminat-
ed, as we will see when we look at the closeEvent().

The QMainWindow class provides a restoreState() method and a saveState()
method; these methods restore from and save to a QByteArray. The data they
save and restore are the dock window sizes and positions, and the toolbar
positions—but they work only for dock widgets and toolbars that have unique
object names.

After setting the window’s title, we call updateFileMenu() to create the File menu.
Unlike the other menus, the File menu is generated dynamically; this is so
that it can show any recently used files. The connection from the File menu’s
aboutToShow() signal to the updateFileMenu() method means that the File menu
is created afresh whenever the user clicks File in the menu bar, or presses Alt+F.
But until this method has been called for the first time, the File menu does not
exist—which means that the keyboard shortcuts for actions that have not been
added to a toolbar, such as Ctrl+Q for “file quit”, will not work. In view of this,
we explicitly call updateFileMenu() to create an initial File menu and to activate
the keyboard shortcuts.

*PyQt’s documentation rarely gives units of measurement because it is assumed that the units
are pixels, except for QPrinter, which uses points.

(417
4.3

close-
Event ()

= 185

184 Chapter 6. Main Windows

Doing Lots of Processing at Start-Up

If we need to do lots of processing at start-up—for example, if we need to
load in lots of large files, we always do so in a separate loading method. At
the end of the main form’s constructor, the loading method is called through
a zero-timeout single-shot timer.

What would happen if we didn’t use a single-shot timer? Imagine, for ex-
ample, that the method was loadInitialFiles() and that it loaded lots of
multimegabyte files. The file loading would be done when the main window
was being created, that is, before the show() call, and before the event loop
(exec_()) had been started. This means that the user might experience a
long delay between launching the application and actually seeing the ap-
plication’s window appear on-screen. Also, if the file loading might result
in message boxes being popped up—for example, to report errors—it makes
more sense to have these appear after the main window is shown, and when
the event loop is running.

We want the main window to appear as quickly as possible so that the
user knows that the launch was successful, and so that they can see any
long-running processes, like loading large files, through the main window’s
user interface. This is achieved by using a single-shot timer as we did in the
Image Changer example.

This works because a single-shot timer with a timeout of zero does not
execute the slot it is given immediately. Instead, it puts the slot to be called
in the event queue and then simply returns. At this point, the end of the
main window’s initializer is reached and the initialization is complete. The
very next statement (in main()) is a show() call on the main window, and this
does nothing except add a show event to the event queue. So, now the event
queue has a timer event and a show event. A timer event with a timeout of
zero is taken to mean “do this when the event queue has nothing else to do”,
so when the next statement, exec (), is reached and starts off the event loop,
it always chooses to handle the show event first, so the form appears, and
then, with no other events left, the single-shot timer’s event is processed,
and the loadInitialFiles() call is made.

The initializer’s last line looks rather peculiar. A single-shot timer takes a
timeout argument (in milliseconds), and a method to call when the timeout oc-
curs. So, it looks as though the line could have been written like this instead:

self.loadInitialFile()

In this application, where we load at most only one initial file, and where that
file is very unlikely to be as big even as 1 MB, we could use either approach
without noticing any difference. Nonetheless, calling the method directly is
not the same as using a single-shot timer with a zero timeout, as the Doing Lots
of Processing at Start-Up sidebar explains.

Creating a Main Window 185

We have finished reviewing the code for initializing the main window, so now
we can begin looking at the other methods that must be implemented to pro-
vide the application’s functionality. Although the Image Changer applicationis
just one specific example, to the greatest extent possible we have made the code
either generic or easily adaptable so that it could be used as the basis for other
main-window-style applications, even ones that are completely different.

In view of the discussions we have just had, it seems appropriate to begin our
coverage with the loadInitialFile() method.

def loadInitialFile(self):
settings = QSettings()
fname = unicode(settings.value("LastFile").toString())
if fname and QFile.exists(fname):
self.loadFile(fname)

This method uses a QSettings object to get the last image that the application
used. If there was such an image, and it still exists, the program attempts to
load it. We will review loadFile() when we cover the file actions.

We could just as easily have written if fname and os.access(fname, os.F 0K): It
makes no noticable difference here, but for multiperson projects, it may be wise
to have a policy of preferring PyQt over the standard Python libraries or vice
versa in cases like this, just to keep things as simple and clear as possible.

We discussed restoring the application’s state a little earlier, so it seems
appropriate to cover the close event, since that is where we save the applica-
tion’s state.

def closeEvent(self, event):
if self.okToContinue():
settings = QSettings()
filename = QVariant(QString(self.filename)) \
if self.filename is not None else QVariant()
settings.setValue("LastFile", filename)
recentFiles = QVariant(self.recentFiles) \
if self.recentFiles else QVariant()
settings.setValue("RecentFiles", recentFiles)
settings.setValue("MainWindow/Size", QVariant(self.size()))
settings.setValue("MainWindow/Position",
QVariant(self.pos()))
settings.setValue("MainWindow/State",
QVariant(self.saveState()))
else:
event.ignore()

If the user attempts to close the application, by whatever means (apart from
killing or crashing it), the closeEvent() method is called. We begin by calling
our own custom okToContinue() method; this returns True if the user really

v

Qt
4.3

186 Chapter 6. Main Windows

Table 6.2 Selected QMainWindow Methods

Syntax Description

m.addDockWidget(a, d) Adds QDockWidget d into Qt.QDockWidgetArea a in
QMainWindow m

m.addToolBar(s) Adds and returns a new QToolBar called string s

m.menuBar() Returns QMainWindow m’s QMenuBar (which is created
the first time this method is called)

m.restoreGeometry(ba) Restores QMainWindow m’s position and size to
those encapsulated in QByteArray ba —

m.restoreState(ba) Restores QMainWindow m’s dock widgets and toolbars
to the state encapsulated in QByteArray ba
m.saveGeometry() Returns QMainWindow m’s position and size en- E

capsulated in a QByteArray

m.saveState() Returns the state of QMainWindow m’s dock widgets
and toolbars, that is, their sizes and positions, en-
capsulated in a QByteArray

m.setCentralWidget(w) Sets QMainWindow m’s central widget to be QWidget w

m.statusBar() Returns QMainWindow m’s QStatusBar (which is created
the first time this method is called)

m.setWindowIcon(i) Sets QMainWindow m’s icon to QIcon i; this method is
inherited from QWidget

m.setWindowTitle(s) Sets QMainWindow m’s title to string s; this method is
inherited from QWidget

wants to close, and False otherwise. It is inside okToContinue() that we give
the user the chance to save unsaved changes. If the user does want to close,
we create a fresh QSettings object, and store the “last file” (i.e., the file the user
has open), the recently used files, and the main window’s state. The QSettings
class only reads and writes QVariant objects, so we must be careful to provide
either null QVariants (created with QVariant()), or QVariants with the correct
information in them.

If the user chose not to close, we call ignore() on the close event. This will tell
PyQt to simply discard the close event and to leave the application running.

If we are using Qt 4.3 (e.g., with PyQt 4.3) and have restored the main window’s
geometry using QWidget. restoreGeometry(), we can save the geometry like this:

settings.setValue("Geometry", QVariant(self.saveGeometry()))

If we take this approach, we do not need to save the main window’s size or
position separately.

def okToContinue(self):
if self.dirty:

Creating a Main Window 187

reply = QMessageBox.question(self,
"Image Changer - Unsaved Changes",
"Save unsaved changes?",
QMessageBox.Yes|QMessageBox.No |
QMessageBox.Cancel)
if reply == QMessageBox.Cancel:
return False
elif reply == QMessageBox.Yes:
self.fileSave()
return True

This method is used by the closeEvent(), and by the “file new” and “file open”
actions. If the image is “dirty”, that is, if it has unsaved changes, we pop up a
message box and ask the user what they want to do. If they click Yes, we save
the image to disk and return True. If they click No, we simply return True, so the
unsaved changes will be lost. If they click Cancel, we return False, which means
that the unsaved changes are not saved, but the current image will remain
current, so it could be saved later.

All the examples in the book use yes/no or yes/no/cancel message boxes to give
the user the opportunity to save unsaved changes. An alternative favored by
some developers is to use Save and Discard buttons (using the QMessageBox.Save
and QMessageBox.Discard button specifiers), instead.

The recently used files list is part of the application’s state that must not only
be saved and restored when the application is terminated and executed, but
also kept current at runtime. Earlier we connected the fileMenu’s aboutToShow()
signal to a custom updateFileMenu() slot. So, when the user presses Alt+F or
clicks the File menu, this slot is called before the File menu is shown.

def updateFileMenu(self):
self.fileMenu.clear()
self.addActions(self.fileMenu, self.fileMenuActions[:-1])
current = QString(self.filename) \
if self.filename is not None else None
recentFiles = []
for fname in self.recentFiles:
if fname != current and QFile.exists(fname):
recentFiles.append(fname)
if recentFiles:
self.fileMenu.addSeparator()
for i, fname in enumerate(recentFiles):
action = QAction(QIcon(":/icon.png"), "&%d %s" % (
i+ 1, QFileInfo(fname).fileName()), self)
action.setData(QVariant(fname))
self.connect(action, SIGNAL("triggered()"),
self.loadFile)
self.fileMenu.addAction(action)

188 Chapter 6. Main Windows

The Static QMessageBox Methods

The QMessageBox class offers several static convenience methods that pop
up a modal dialog with a suitable icon and buttons. They are useful for
offering users dialogs that have a single OK button, or Yes and No buttons,
and similar.

The most commonly used QMessageBox static methods are critical(), infor-
mation(), question(), and warning(). The methods take a parent widget (over
which they center themselves), window title text, message text (which can be
plain text or HTML), and zero or more button specifications. If no buttons
are specified, a single OK button is provided.

The buttons can be specified using constants, or we can provide our own text.
In Qt 4.0 and Qt 4.1, it was very common to bitwise or QMessageBox.Default
with OK or Yes buttons—this means the button will be pressed if the user
presses Enter, and to bitwise or QMessageBox.Escape with the Cancel or No
buttons, which will then be pressed if the user presses Esc. For example:

reply = QMessageBox.question(self,
"Image Changer - Unsaved Changes", "Save unsaved changes?",
QMessageBox.Yes |QMessageBox.Default,
QMessageBox.No | QMessageBox.Escape)

The methods return the constant of the button that was pressed.

From Qt 4.2, the QMessageBox API has been simplified so that instead of
specifying buttons and using bitwise ORrs, we can just use buttons. For
example, for a yes/no/cancel dialog we could write:

reply = QMessageBox.question(self,
"Image Changer - Unsaved Changes", "Save unsaved changes?",
QMessageBox. Yes |QMessageBox.No | QMessageBox. Cancel)

In this case, PyQt will automatically make the Yes (accept) button the default
button, activated by the user pressing Enter, and the Cancel (reject) button the
escape button, activated by the user pressing Esc. The QMessageBox methods
also make sure that the buttons are shown in the correct order for the plat-
form. We use the Qt 4.2 syntax for the examples in this book.

The message box is closed by the user clicking the “accept” button (often
Yes or OK) or the “reject” button (often No or Cancel). The user can also, in
effect, press the “reject” button by clicking the window’s close button, X, or
by pressing Esc.

If we want to create a customized message box—for example, using cus-
tom button texts and a custom icon—we can create a QMessageBox instance.
We can then use methods such as QMessageBox.addButton() and QMessage-
Box.setIcon(), and pop up the message box by calling QMessageBox.exec ().

Creating a Main Window 189

self.fileMenu.addSeparator()
self.fileMenu.addAction(self.fileMenuActions[-1])

We begin by clearing all the File menu’s actions. Then we add back the original
list of file menu actions, such as “file new” and “file open”, but excluding the last
one, “file quit”. Then we iterate over the recently used files list, creating a local
list which only contains files that still exist in the filesystem, and excluding the
current file. Although it does not seem to make much sense, many applications
include the current file, often showing it first in the list.

Now, if there are any recently used files in our local list we add a separator to
the menu and then create an action for each one with text that just contains
the filename (without the path), preceded by a numbered accelerator: 1,2, ..., 9.
PyQt’s QFileInfo class provides information on files similar to some of the
functions offered by Python’s os module. The QFileInfo.fileName() method is
equivalent to os.path.basename(). For each action, we also store an item of “user
data”—in this case, the file’s full name, including its path. Finally, we connect
each recently used filename’s action’s triggered() signal to the loadFile() slot,
and add the action to the menu. (We cover loadFile() in the next section.) At
the end, we add another separator, and the File menu’s last action, “file quit”.

But how is the recently used files list created and maintained? We saw in the
form’s initializer that we initially populate the recentFiles string list from the
application’s settings. We have also seen that the list is correspondingly saved
in the closeEvent (). New files are added to the list using addRecentFile().

def addRecentFile(self, fname):
if fname is None:
return
if not self.recentFiles.contains(fname):
self.recentFiles.prepend(QString(fname))
while self.recentFiles.count() > 9:
self.recentFiles.takelLast()

This method prepends the given filename, and then pops off any excess files
from the end (the ones added longest ago) so that we never have more than nine
filenames in our list. We keep the recentFiles variable as a QStringList, which
is why we have used QStringList methods rather than Python list methods
on it.

The addRecentFile() method itself is called inside the fileNew(), fileSaveAs(),
and loadFile() methods; and indirectly from loadInitialFile(), fileOpen(),and
updateFileMenu(), all of which either call or connect to loadFile(). So, when we
save an image for the first time, or under a new name, or create a new image,
or open an existing image, the filename is added to the recently used files list.
However, the newly added filename will not appear in the File menu, unless we
subsequently create or open another image, since our updateFileMenu() method
does not display the current image’s filename in the recently used files list.

190 Chapter 6. Main Windows

Chrl+H

I
\ Open... Chrl+0

N

o Save Chrl+S
A Save bs

=4 Prink Chrl+P

) 1 Christmas_Island.png
) 2U3A.png

) diss013-2-14802.jpg
) 4.gimp.png

@] cuit Chrl+0

Figure 6.8 The File menu with some recently used files

The approach to handling recently used files that we have taken here is just
one of many possibilities. An alternative is to create the File menu just once,
with a set of actions at the end for recently used files. When the menu is
updated, instead of being cleared and re-created, the actions set aside for
recently used files are simply hidden or shown, in the latter case having had
their filenames updated to reflect the current set of recently used files. From
the user’s point of view, there is no discernable difference whichever approach
we take under the hood, so in either case the File menu will look similar to the
one shown in Figure 6.8.

Both approaches can be used to implement recently used files in a File menu,
adding the list at the end as we have done in the Image Changer application,
just before the Quit option. They can also both be used to implement the Open
Recent File menu option that has all the recent files as a submenu, as used by
OpenOffice.org and some other applications. The benefits of using a separate
Open Recent File option is that the File menu is always the same, and full paths
can be shown in the submenu—something we avoid when putting recently
used files directly in the File menu so that it doesn’t become extremely wide
(and therefore, ugly).

Handling User Actions

In the preceding section, we created the appearance of our main-window-style
application and provided its behavioral infrastructure by creating a set of
actions. We also saw how to save and restore application settings, and how to
manage a recently used files list.

Some of an application’s behavior is automatically handled by PyQt—for
example, window minimizing, maximizing, and resizing—so we do not have to
do this ourselves. Some other behaviors can be implemented purely through
signals and slots connections. In this section we are concerned with the actions

okToCon-
tinue()

186 =u

Handling User Actions 191

that are directly under the control of the user and which can be used to view,
edit, and output, their data.

Handling File Actions

The File menu is probably the most widely implemented menu in main-window-

style applications, and in most cases it offers, at the least, “new”, “save”, and
“quit” (or “exit”) options.

def fileNew(self):

if not self.okToContinue():
return

dialog = newimagedlg.NewImageDlg(self)

if dialog.exec ():
self.addRecentFile(self.filename)
self.image = QImage()
for action, check in self.resetableActions:

action.setChecked(check)
self.image = dialog.image()
self.filename = None
self.dirty = True
self.showImage()
self.sizelabel.setText("%d x %d" % (self.image.width(),
self.image.height()))

self.updateStatus("Created new image")

When the user asks to work on a new file we begin by seeing whether it is “okay
to continue”. This gives the user the chance to save or discard any unsaved
changes, or to change their mind entirely and cancel the action.

W Image Chooser. - New Image @g|

wfidkh: 125p 5
Height: 7Epx 3

Brush pattern:

Color

[Ok H Cancel]

Figure 6.9 The New Image dialog

If the user continues, we pop up a modal NewImageD1lg in which they can specify
the size, color, and brush pattern of the image they want to create. This dialog,
shown in Figure 6.9, is created and used just like the dialogs we created in
the preceding chapter. However, the New Image dialog’s user interface was

192 Chapter 6. Main Windows

created using @t Designer, and the user interface file must be converted
into a module file, using pyuic4, for the dialog to be usable. This can be done
directly by running pyuic4, or by running either mkpyqt.py or Make PyQt, both
of which are easier since they work out the correct command-line arguments
automatically. We will cover all of these matters in the next chapter.

If the user accepts the dialog, we add the current filename (if any) to the
recently used files list. Then we set the current image to be a null image, to
ensure that any changes to checkable actions have no effect on the image. Next
we go through the actions that we want to be reset when a new image is created
or loaded, setting each one to our preferred default value. Now we can safely
set the image to the one created by the dialog.

We set the filename to be None and the dirty flag to be True to ensure that
the user will be prompted to save the image and asked for a filename, if they
terminate the application or attempt to create or load another image.

We then call showImage() which displays the image in the imagelLabel, scaled
according to the zoom factor. Finally, we update the size label in the status bar,
and call updateStatus().

def updateStatus(self, message):
self.statusBar().showMessage(message, 5000)
self.listWidget.addItem(message)
if self.filename is not None:
self.setWindowTitle("Image Changer - %s[*]" % \
os.path.basename(self.filename))
elif not self.image.isNull():
self.setWindowTitle("Image Changer - Unnamed[*]")
else:
self.setWindowTitle("Image Changer[*]")
self.setWindowModified(self.dirty)

We begin by showing the message that has been passed, with a timeout of five
seconds. We also add the message to the log widget to keep a log of every action
that has taken place.

If the user has opened an existing file, or has saved the current file, we will
have a filename. We put the filename in the window’s title using Python’s
0s.path.basename() function to get the filename without the path. We could just
as easily have written QFileInfo(fname).fileName() instead, as we did earlier.
If there is no filename and the image variable is not a null image, it means
that the user has created a new image, but has not yet saved it; so we use a
fake filename of “Unnamed”. The last case is where no file has been opened
or created.

Regardless of what we set the window title to be, we include the string "[*]"
somewhere inside it. This string is never displayed as it is: Instead it is used
to indicate whether the file is dirty. On Linux and Windows this means that

mk—
pyqt.py
and
Make
PyQt
sidebar

= 207

List
compre-
hen-
sions

53 =

Handling User Actions 193

the filename will be shown unadorned if it has no unsaved changes, and
with an asterisk (¥) replacing the "[*]" string otherwise. On Mac OS X, the
close button will be shown with a dot in it if there are unsaved changes. The
mechanism depends on the window modified status, so we make sure we set
that to the state of the dirty flag.

def fileOpen(self):
if not self.okToContinue():
return
dir = os.path.dirname(self.filename) \
if self.filename is not None else "."
formats = ["*.%s" % unicode(format).lower() \
for format in QImageReader.supportedImageFormats()]
fname = unicode(QFileDialog.getOpenFileName(self,
"Image Changer - Choose Image", dir,
"Image files (%s)" % " ".join(formats)))
if fname:
self.loadFile(fname)

If the user asks to open an existing image, we first make sure that they
have had the chance to save or discard any unsaved changes, or to cancel the
action entirely.

If the user has decided to continue, as a courtesy, we want to pop up a file open
dialog set to a sensible directory. If we already have an image filename, we
use its path; otherwise, we use “.”, the current directory. We have also chosen
to pass in a file filter string that limits the image file types the file open dialog
can show. Such file types are defined by their extensions, and are passed as
a string. The string may specify multiple extensions for a single type, and
multiple types. For example, a text editor might pass a string of:

"Text files (*.txt)\nHTML files (*.htm *.html)"

If there is more than one type, we must separate them with newlines. If a type
can handle more than one extension, we must separate the extensions with
spaces. The string shown will produce a file type combobox with two items,
“Text files” and “HTML files”, and will ensure that the only file types shown in
the dialog are those that have an extension of .txt, .htm, or .html.

In the case of the Image Changer application, we use the list of image type
extensions for the image types that can be read by the version of PyQt that the
application is using. At the very least, this is likely to include .bmp, .jpg (and
.jpeg, the same as .jpg), and .png. The list comprehension iterates over the
readable image extensions and creates a list of strings of the form “*.bmp”,
“* jpg”, and so on; these are joined, space-separated, into a single string by the
string join() method.

194 Chapter 6. Main Windows

The QFileDialog.getOpenFileName() method returns a QString which either
holds a filename (with the full path), or is empty (if the user canceled). If the
user chose a filename, we call loadFile() to load it.

Here, and throughout the program, when we have needed the application’s
name we have simply written it. But since we set the name in the application
object in main() to simplify our QSettings usage, we could instead retrieve
the name whenever it was required. In this case, the relevant code would
then become:

fname = unicode(QFileDialog.getOpenFileName(self,
"%s — Choose Image" % QApplication.applicationName(),
dir, "Image files (%s)" % " ".join(formats)))

It is surprising how frequently the name of the application is used. The file
imagechanger.pyw is less than 500 lines, but it uses the application’s name
a dozen times. Some developers prefer to use the method call to guarantee
consistency. We will discuss string handling further in Chapter 17, when we
cover internationalization.

If the user opens a file, the loadFile() method is called to actually perform the
loading. We will look at this method in two parts.

def loadFile(self, fname=None):
if fname is None:

action = self.sender()

if isinstance(action, QAction):
fname = unicode(action.data().toString())
if not self.okToContinue():

return

else:

return

If the method is called from the fileOpen() method or from the loadInitial-
File() method, it is passed the filename to open. But if it is called from a
recently used file action, no filename is passed. We can use this difference to
distinguish the two cases. If arecently used file action wasinvoked, we retrieve
the sending object. This should be a QAction, but we check to be safe, and then
extract the action’s user data, in which we stored the recently used file’s full
name including its path. User data is held as a QVariant, so we must convert it
to a suitable type. At this point, we check to see whether it is okay to continue.
We do not have to make this test in the “file open” case, because there, the check
is made before the user is even asked for the name of a file to open. So now, if
the method has not returned, we know that we have a filename in fname that
we must try to load.

if fname:
self.filename = None
image = QImage(fname)

add-
Recent-
File()

189 =1

Handling User Actions 195

if image.isNull():
message = "Failed to read %s" % fname
else:
self.addRecentFile(fname)
self.image = QImage()
for action, check in self.resetableActions:
action.setChecked(check)
self.image = image
self.filename = fname
self.showImage()
self.dirty = False
self.sizelabel.setText("%d x %d" % (
image.width(), image.height()))
message = "Loaded %s" % os.path.basename(fname)
self.updateStatus(message)

We begin by making the current filename None and then we attempt to read
the image into a local variable. PyQt does not use exception handling, so errors
must always be discovered indirectly. In this case, a null image means that for
some reason we failed to load the image. If the load was successful we add the
new filename to the recently used files list, where it will appear only if another
file is subsequently opened, or if this one is saved under another name. Next,
we set the instance image variable to be a null image: This means that we are
free to reset the checkable actions to our preferred defaults without any side
effects. This works because when the checkable actions are changed, although
the relevant methods will be called due to the signal-slot connections, the
methods do nothing if the image is null.

After the preliminaries, we assign the local image to the image instance
variable and the local filename to the filename instance variable. Next, we call
showImage() to show the image at the current zoom factor, clear the dirty flag,
and update the size label. Finally, we call updateStatus() to show the message
in the status bar, and to update the log widget.

def fileSave(self):
if self.image.isNull():
return
if self.filename is None:
self.fileSaveAs()
else:
if self.image.save(self.filename, None):
self.updateStatus("Saved as %s" % self.filename)
self.dirty = False
else:
self.updateStatus("Failed to save %s" % self.filename)

The fileSave() method, and many others, act on the application’s data (a QImage
instance), but make no sense if there is no image data. For this reason, many

196 Chapter 6. Main Windows

of the methods do nothing and return immediately if there is no image data
for them to work on.

If thereisimage data, and the filename is None, the user must have invoked the
“file new” action, and is now saving their image for the first time. For this case,
we pass on the work to the fileSaveAs() method.

If we have a filename, we attempt to save the image using QImage.save(). This
method returns a Boolean success/failure flag, in response to which we update
the status accordingly. (We have deferred coverage of loading and saving
custom file formats to Chapter 8, since we are concentrating purely on main
window functionality in this chapter.)

def fileSaveAs(self):
if self.image.isNull():
return
fname = self.filename if self.filename is not None else "."
formats = ["*.%s" % unicode(format).lower() \
for format in QImageWriter.supportedImageFormats()]
fname = unicode(QFileDialog.getSaveFileName(self,
"Image Changer - Save Image", fname,
"Image files (%s)" % " ".join(formats)))
if fname:
if "." not in fname:
fname += ".png"
self.addRecentFile(fname)
self.filename = fname
self.fileSave()

When the “file save as” action is triggered we begin by retrieving the current
filename. If the filename is None, we set it to be “.”, the current directory. We
then use the QFileDialog.getSaveFileName() dialog to prompt the user to give
us a filename to save under. If the current filename is not None, we use that as
the default name—the file save dialog takes care of giving a warning yes/no
dialog if the user chooses the name of a file that already exists. We use the
same technique for setting the file filters string as we used for the “file open”
action, but this time using the list of image formats that this version of PyQt
can write (which may be different from the list of formats it can read).

If the user entered a filename that does not include a dot, that is, it has no
extension, we set the extension to be .png. Next, we add the filename to the
recently used files list (so that it will appear if a different file is subsequently
opened, or if this one is saved under a new name), set the filename instance
variable to the name, and pass the work of saving to the fileSave() method
that we have just reviewed.

The last file action we must consider is “file print”. When this action is invoked
the filePrint() method is called. This method paints the image on a printer.
Since the method uses techniques that we have not covered yet, we will defer

close-
Event()

185 &

Handling User Actions 197

discussion of it until later. The technique it uses is shown in the Printing
Images sidebar, and coverage of the filePrint() method itself is in Chapter 13
(from page 400), where we also discuss approaches to printing documents
in general.

The only file action we have not reviewed is the “file quit” action. This action
is connected to the main window’s close() method, which in turn causes a
close event to be put on the event queue. We provided a reimplementation of
the closeEvent() handler in which we made sure the user had the chance to
save unsaved changes, using a call to okToContinue(), and where we saved the
application’s settings.

Handling Edit Actions

Most of the functionality of the file actions was provided by the MainWindow
subclass itself. The only work passed on was the image loading and saving,
which the QImage instance variable was required to do. This particular division
of responsibilities between a main window and the data structure that holds
the data is very common. The main window handles the high-level file new,
open, save, and recently used files functionality, and the data structure handles
loading and saving.

It is also common for most, or even all, of the editing functionality to be provid-
ed either by the view widget or by the data structure. In the Image Changer
application, all the data manipulation is handled by the data structure (the im-
age QImage), and the presentation of the data is handled by the data viewer (the
imageLabel QLabel). Again, this is a very common separation of responsibilities.

In this section, we will review most of the edit actions, omitting a couple that
are almost identical to ones that are shown. We will be quite brief here, since
the functionality is specific to the Image Changer application.

def editInvert(self, on):
if self.image.isNull():
return
self.image.invertPixels()
self.showImage()
self.dirty = True
self.updateStatus("Inverted" if on else "Uninverted")

If the user invokes the “edit invert” action, it will be checked (or unchecked). In
either case, we simply invert the image’s pixels using the functionality provided
by QImage, show the changed image, set the dirty flag, and call updateStatus()
so that the status bar briefly shows the action that was performed, and an ad-
ditional item is added to the log.

The editSwapRedAndBlue() method (not shown) is the same except that it uses
the QImage.rgbSwapped() method, and it has different status text.

Print-
ing
Images
sidebar

= 363

198 Chapter 6. Main Windows

def editMirrorHorizontal(self, on):
if self.image.isNull():
return

self.image = self.image.mirrored(True, False)
self.showImage()
self.mirroredhorizontally = not self.mirroredhorizontally
self.dirty = True
self.updateStatus("Mirrored Horizontally" \

if on else "Unmirrored Horizontally")

This method is structurally the same as editInvert() and editSwapRedAndBlue().
The QImage.mirrored() method takes two Boolean flags, the first for horizontal
mirroring and the second for vertical mirroring. In the Image Changer
application, we have deliberately restricted what mirroring is allowed, so users
can only have no mirroring, vertical mirroring, or horizontal mirroring, but not
a combination of vertical and horizontal. We also keep an instance variable
that keeps track of whether the image is horizontally mirrored.

The editMirrorVertical() method, not shown, is virtually identical.

def editUnMirror(self, on):
if self.image.isNull():
return
if self.mirroredhorizontally:
self.editMirrorHorizontal(False)
if self.mirroredvertically:
self.editMirrorVertical(False)

This method switches off whichever mirroring is in force, or does nothing if
the image is not mirrored. It does not set the dirty flag or update the status: It
leaves that for editMirrorHorizontal() or editMirrorVertical(), if it calls either
of them.

The application provides two means by which the user can change the zoom fac-
tor. They can interact with the zoom spinbox in the toolbar—its valueChanged()
signal is connected to the showImage() slot that we will review shortly—or they
can invoke the “edit zoom” action in the Edit menu. If they use the “edit zoom”
action, the editZoom() method is called.

def editZoom(self):
if self.image.isNull():
return
percent, ok = QInputDialog.getInteger(self,
"Image Changer - Zoom", "Percent:",
self.zoomSpinBox.value(), 1, 400)
if ok:
self.zoomSpinBox.setValue(percent)

Handling User Actions 199

We begin by using one of the QInputDialog class’s static methods to obtain a
zoom factor. The getInteger() method takes a parent (over which the dialog will
center itself), a caption, text describing what data is wanted, an initial value,
and, optionally, minimum and maximum values.

The QInputDialog provides some other static convenience methods, including
getDouble() to get a floating-point value, getItem() to choose a string from a list,
and getText() to get a string. For all of them, the return value is a two-tuple,
containing the value and a Boolean flag indicating whether the user entered
and accepted a valid value.

If the user clicked OK, we set the zoom spinbox’s value to the given integer.
If this value is different from the current value, the spinbox will emit a val-
ueChanged() signal. This signal is connected to the showImage() slot, so the slot
will be called if the user chose a new zoom percentage value.

def showImage(self, percent=None):
if self.image.isNull():
return
if percent is None:
percent = self.zoomSpinBox.value()
factor = percent / 100.0
width = self.image.width() * factor
height = self.image.height() x factor
image = self.image.scaled(width, height, Qt.KeepAspectRatio)
self.imagelLabel.setPixmap(QPixmap.fromImage(image))

This slot is called when a new image is created or loaded, whenever a transfor-
mation is applied, and in response to the zoom spinbox’s valueChanged() signal.
This signal is emitted whenever the user changes the toolbar zoom spinbox’s
value, either directly using the mouse, or indirectly through the “edit zoom”
action described earlier.

We retrieve the percentage and turn it into a zoom factor that we can use to
produce the image’s new width and height. We then create a copy of the image
scaled to the new size and preserving the aspect ratio, and set the imageLabel
to display this image. The label requires an image as a QPixmap, so we use the
static QPixmap.fromImage() method to convert the QImage to a QPixmap.

Notice that zooming the image in this way has no effect on the original image;
it is purely a change in view, not an edit. This is why the dirty flag does not
need to be set.

According to PyQt’s documentation, QPixmaps are optimized for on-screen
display (so they are fast to draw), and QImages are optimized for editing (which
is why we have used them to hold the image data).

200 Chapter 6. Main Windows

Handling Help Actions

When we created the main window’s actions, we provided each with help text,
and set it as their status text and as their tooltip text. This means that when
the user navigates the application’s menu system, the status text of the cur-
rently highlighted menu option will automatically appear in the status bar.
Similarly, if the user hovers the mouse over a toolbar button, the corresponding
tooltip text will be displayed in a tooltip.

For an application as small and simple as the Image Changer, status tips and
tooltips might be entirely adequate. Nonetheless, we have provided an online
help system to show how it can be done, although we defer coverage until
Chapter 17 (from page 510).

@ About Image Changer g|
L{.J_ Image Changer v 1.0.0
- Copyright @ 2007 Qtrac Lbd. All rights reserved,
This application can be used to perform simple image manipulations,

Python 2.5.0 - Qb 4.2,3 - PyQt 4.2 on Windows

Figure 6.10 The about Image Changer box

Whether or not we provide online help, it is always a good idea to provide an
“about” box. This should at least show the application’s version and copyright
notice, as Figure 6.10 illustrates.

def helpAbout(self):

QMessageBox.about(self, "About Image Changer",
"""<p>Image Changer v %s
<p>Copyright © 2007 Qtrac Ltd.
All rights reserved.
<p>This application can be used to perform
simple image manipulations.
<p>Python %s - Qt %s - PyQt %s on %s""" % (
__version_, platform.python version(),
QT _VERSION STR, PYQT VERSION STR, platform.system()))

The QMessageBox.about () static convenience method pops up a modal OK-style
message box with the given caption and text. The text can be HTML, as it is
here. The message box will use the application’s window icon if there is one.

We display the application’s version, and version information about the Python,
Qt, and PyQt libraries, as well as the platform the application is running on.
The library version information is probably of no direct use to the user, but it
may be very helpful to support staff who are being asked for help by the user.

Summary 201

Summary

Main-window-style applications are created by subclassing QMainWindow. The
window has a single widget (which may be composite and so contain other
widgets) as its central widget.

Actions are used to represent the functionality the application provides to
its users. These actions are held as QAction objects which have text (used in
menus), icons (used in both menus and toolbars), tooltips and status tips, and
that are connected to slots, which, when invoked, will perform the appropriate
action. Usually, all the actions are added to the main window’s menus, and the
most commonly used ones are added to toolbars. To support keyboard users, we
provide keyboard shortcuts for frequently used actions, and menu accelerators
to make menu navigation as quick and convenient as possible.

Some actions are checkable, and some groups of checkable actions may be
mutually exclusive, that is, one and only one may be checked at any one
time. PyQt supports checkable actions by the setting of a single property, and
supports mutually exclusive groups of actions through QActionGroup objects.

Dock windows are represented by dock widgets and are easy to create and set
up. Arbitrary widgets can be added to dock widgets and to toolbars, although
in practice we only usually add small or letterbox-shaped widgets to toolbars.

Actions, action groups, and dock windows must all be given a parent
explicitly—the main window, for example—to ensure that they are deleted at
the right time. This is not necessary for the application’s other widgets and
QObjects because they are all owned either by the main window or by one of the
main window’s children. The application’s non-Q0bject objects can be left to be
deleted by Python’s garbage collector.

Applications often use resources (small files, such as icons, and data files), and
PyQt’s resource mechanism makes accessing and using them quite easy. They
do require an extra build step, though, either using PyQt’s pyrcc4 console ap-
plication, or the mkpyqt.py or Make PyQt programs supplied with the book’s
examples.

Dialogs can be created entirely in code as we did in the preceding chapter, or
using @t Designer, as we will see in the next chapter. If we need to incorporate
Qt Designer user interface files in our application, like resources they require
an extra build step, either using PyQt’s pyuic4 console application, or again,
using mkpyqt.py or Make PyQt.

Once the main window’s visual appearance has been created by setting its
central widget and by creating menus, toolbars, and perhaps dock windows,
we can concern ourselves with loading and saving application settings. Many
settings are commonly loaded in the main window’s initializer, and settings are
normally saved (and the user given the chance to save unsaved changes) in a
reimplementation of the closeEvent() method.

202 Chapter 6. Main Windows

If we want to restore the user’s workspace, loading in the files they had open
the last time they ran the application, it is best to use a single-shot timer at the
end of the main window’s initializer to load the files.

Most applications usually have a dataset and one or more widgets that are
used to present and edit the data. Since the focus of the chapter has been on
the main window’s user interface infrastructure, we opted for the simplest
possible data and visualization widget, but in later chapters the emphasis will
be the other way around.

It is very common to have the main window take care of high-level file handling
and the list of recently used files, and for the object holding the data to be re-
sponsible for loading, saving, and editing the data.

At this point in the book, you now know enough Python and PyQt to create both
dialog-style and main-window-style GUI applications. In the next chapter, we
will show @t Designer in action, an application that can considerably speed
up the development and maintenance of dialogs. And in the last chapter of
Part II, we will explore some of the key approaches to saving and loading
custom file formats, using both the PyQt and the Python libraries. In Parts III
and IV, we will explore PyQt both more deeply, looking at event handling and
creating custom widgets, for example, and more broadly, learning about PyQt’s
model/view architecture and other advanced features, including threading.

Exercise

Create the dialog shown in Figure 6.11. It should have the class name Re-
sizeDlg, and itsinitializer should accept an initial width and height. The dialog
should provide a method called result(), which must return a two-tuple of the
width and height the user has chosen. The spinboxes should have a minimum
of 4 and a maximum of four times the width (or height) passed in. Both should
show their contents right-aligned.

W Image Changer - Resize @@

width: foo %
Height: 357 %
[Ok, l [Cancel]

Figure 6.11 The Image Changer resize dialog

Modify the Image Changer application so that it has a new “edit resize” action.
The action should appear on the Edit menu (after the “edit zoom” action). An
icon called editresize.png is in the images subdirectory, but will need to be
added to the resources.qrc file. You will also need to import the resize dialog
you have just created.

Exercise 203

The resize dialog should be used in an editResize() slot that the “edit resize”
action should be connected to. The dialog is used like this:

form = resizedlg.ResizeDlg(self.image.width(),
self.image.height(), self)
if form.exec ():
width, height = form.result()

Unlike the editZoom() slot, the image itself should be changed, so the size label,
status bar, and dirty status must all be changed if the size is changed. On the
other hand, if the “new” size is the same as the original size, no resizing should
take place.

The resize dialog can be written in less than 50 lines, and the resize slot in less
than 20 lines, with the new action just requiring an extra one or two lines in a
couple of places in the main window’s initializer.

A model solution is in the files chap06/imagechanger ans.pyw and chap06/resize-
dlg.py.

This page intentionally left blank

® Designing User Interfaces
® Implementing Dialogs
® Testing Dialogs

Using Qt Designer

In Chapter 5 we created dialogs purely by writing code. In our initializers we
created the widgets we needed and set their initial properties. Then we cre-
ated one or more layout managers to which we added the widgets to get the
appearance we wanted. In some cases, when working with vertical or horizon-
tal layouts we added a “stretch” which would expand to fill unwanted space.
And after laying out the widgets we connected the signals we were interested
in to the methods we wanted to handle them.

| P Qt Designer E@@

File Edt Form Tools ‘window Help
= (e 2 3 [JE ==
| By B =) | W 2 e A
Widget Box g x il P Find and Replace - findandreplacedls. ui .Ob]e‘:t dmspeston g x
=] Spacers ~ Ohject Class fad
[pgd] Horizontal Spacer Find what: Find syntaxComboBiox | QCombofiox
E Vertical Spacer S| | | = <nonames QHBoxLay.
(=] Reblocs caseCheckBox QCheckBox
=] Buttans D I m Whel 4 |
ASE SENSIKVE /& Words
o] push Button = £l Replace Al | : wholeCheckBox QiZheckBox
mitax: |Literal text - — = <naname > QBoxLay.
@ Tool Button L P | mmmas 12
@ Radio Button é Pro.pert).t Editar 5 X
i Check Box = Propetty Value ”
K Close
_ Bk windowModality Qt::MonModal
[+ Item Wiews (Model-Based [
= enabled true
[+ Item Widgets (Ttem-Based; I : R
ROty Ll £ el
[sizePolicy [Preferred, Preferr...
D Group Box =
| B minimumSize [0, 0]
E Tool Box | maximumSize |[16777215, 167772... %
[Tab ‘Widget Signalslot Editor 5 X
E Skacked Widget Sender Signal Receiver Slot:
D Frame | closeButtan clicked{) FindandReplaceDlg reject()
D Widget
D Dack Widget
(=] TomuE Widoers o @

Figure 7.1 Q¢ Designer

Some programmers prefer to do everything in code, whereas others prefer to
use a visual design tool to create their dialogs. With PyQt, we can do either,

205

Buddies
143 =

206 Chapter 7. Using Qt Designer

or even both. The Image Changer application from the preceding chapter
had two custom dialogs: the ResizeDlg, which was created purely in code (in
the exercise), and the NewImageDlg, which was created using Q¢ Designer. We
showed how to do things in code first so that you would get a strong sense
of how the layout managers work. But in this chapter we are going to create
dialogs using @t Designer, which is shown in Figure 7.1.

Qt Designer can be used to create user interfaces for dialogs, custom widgets,
and main windows. We will only cover dialogs; custom widgets are almost
the same, only they are based on the “Widget” template rather than one of
the “Dialog” templates. Using @t Designer for main windows offers fewer
advantages, apart from the convenience of a visual QAction editor. @t Designer
can also be used to create and edit resource files.

The user interfaces are stored in .ui files, and include details of a form’s wid-
gets and layouts. In addition, Q¢ Designer can be used to associate labels with
their “buddies”, and to set the tab-order, that is, the order in which widgets get
the keyboard focus when the user presses the Tab key. This can also be done
in code with QWidget.setTabOrder(), but it is rarely necessary for hand-coded
forms, since the default is the order of widget creation, which is usually what
we want. Qt Designer can also be used to make signal-slot connections, but
only between built-in signals and slots.

Once a user interface has been designed and saved in a .ui file, it must be con-
verted into code before it can be used. This is done using the pyuic4 command-
line program. For example:

C:\pyqt\chap07>pyuic4 -o ui_findandreplacedlg.py findandreplacedlg.ui

As mentioned in the previous chapter, we can use either mkpyqt.py or Make
PyQt to run pyuic4 for us. However, generating a Python module (a .py file)
from a .ui file is not enough to make the user interface usable.* Note that the
generated code (in the ui_*.py files) should never be hand-edited because any
changes will be overwritten the next time pyuic4 is run.

From the end-user’s perspective, it makes no difference whether a dialog’s
user interface is hand-coded or created with @¢ Designer. However, there is a
significant difference in the implementation of a dialog’s initializer, since we
must create, lay out, and connect the dialog’s widgets if hand coding, but only
need to call a particular method to achieve the same thing with a dialog that
uses a @t Designer user interface.

One great benefit of using Q¢ Designer,in addition to the convenience of design-
ing dialogs visually, is that if we change the design, we only have to regenerate
the user interface module (using pyuic4 directly, or via mkpyqt . py or Make PyQt),
and we do not need to change our code. The only time that we must change our
code is if we add, delete, or rename widgets that we refer to in our code. This

*Tt is possible, though uncommon, to load and use the .ui file directly using PyQt4.uic.loadUi().

mk—
pyqt.py
and
Make
PyQt
sidebar

=z 207

Introduction 207

mkpyqt.py and Make PyQt

The mkpyqt.py console application and the Make PyQt (makepyqt . pyw) GUI ap-
plication, are build programs that run PyQt’s pyuic4, pyrcc4, pylupdate4, and
lrelease programs for us. They both do exactly the same job, automatically
using the correct command-line arguments to run PyQt’s helper programs,
and they both check timestamps to avoid doing unnecessary work.

M Make PyQt g@@
Path: | Ciipyat

converted chap0&inewimagedly. ui ko chapleiui_newimagedlg. py
converted chapO&iresources.gre to chap06igre_resources, py

converted chap07ifindandreplacedlg. ui to chap07iui_findandreplacedlg. py
converted chap07iticketorderdigl.ui to chap07ui_ticketorderdigl. py
converted chap07iticketorderdig2, ui to chap07ui_ticketorderdigz, py
converted chap08iaddeditmoviedlg.ui to chap08iui_addeditmoviedlg, py
converted chap08iaddeditmoviedlgx, ui to chap0aiui_addeditmoviedigs:.py
converted chap08iaddeditmoviedlg_ans, ui ko chap0&iui_addeditmoviedig_ans. py
converted chap08iresources. gre to chap0&igre_resources, py

converted chap09ifindandreplacedlg. ui to chap09ui_findandreplacedlg. py
converted chap09ipaymentdlg, ui to chap09iui_paymentdlg.py

converted chap09iresources. gre to chap09gre_resources. py

converted chap09ivehiclerentaldly. ui ko chap09iui_vehiclerentaldlg. py
converted chapl2ymitefarm.ui to chap12ui_miteform.py

converted chapl3iresources.gre to chapl3igre_resources.py

converted chaplSiresources.gre to chap1Sigre_resources. py

converted chapl 7inewimagedly. ui to chapl 7iui_newimagedlg. py
converted chapl 7iresources.gre to chapl7igre_resources. py

updated chapl7imagechanger_fr.ts

generated chapl 7iimagechanger_fr.gm

Recurse Translate [] Dry Run [Quit] [More '] E Build ; [Clean]

The build programs look for .ui files and run pyuic4 on them to produce
files with the same name but prefixed with ui and with their extension
changed to .py. Similarly, they look for .qrc files and run pyrcc4 on them to
produce files with the same name but prefixed with qrc , and again with
their extension changed to .py.

For example, if we run mkpyqt.py in the chap06 directory, we get:

C:\pyqt\chap06>..\mkpyqt.py
./newimagedlg.ui —> ./ui _newimagedlg.py
./resources.qrc —> ./qrc_resources.py

The same thing can be achieved by running Make PyQt: click the Path button
to set the path to C:\pyqt\chap06, and then click the Build button. If we make
any changes we can simply run mkpyqt.py again, or click Build if using Make
PyQt, and any necessary updates will be made.

Both build programs can delete the generated files ready for a fresh build,
and both can work recursively on entire directory trees using the -r option
for mkpygt.py or by checking the Recurse checkbox for Make PyQt. Run
mkpygt.py -h in a console for a summary of its options. The Make PyQt
program has tooltips for its checkboxes and buttons. In some cases, it may
be necessary to set the tool paths; click More—Tool paths, on the first use.

208 Chapter 7. Using Qt Designer

means that using @t Designer is much quicker and easier for experimenting
with designs than editing hand-coded layouts, and helps maintain a separation
between the visual design created using Q¢ Designer, and the behavior imple-
mented in code.

In this chapter we will create an example dialog, using it to learn how to use
Qt Designer to create and lay out widgets, to set buddies and tab order, and to
make signal-slot connections. We will also see how to use the user interface
modules generated by pyuic4, and how to create connections to our custom slots
automatically without having to use connect() calls in the initializer.

For the examples, we have used the @t Designer that comes with Qt 4.2. Earlier
versions of Q¢ Designer do not have the QFontComboBox or QCalendarWidget wid-
gets, and their “Dialog” templates use QPushButtons rather than a QDialogBut-
tonBox.

Designing User Interfaces

Before we can begin we must start @¢ Designer. On Linux, run designer & in a
console (assuming it is in your path), or invoke it from your menu system. On
Windows XP, click Start—Qt by Trolltech—Designer, and on Mac OS X launch it
using Finder. @t Designer starts with a New Form dialog; click Dialog with Buttons
Bottom and then click Create. This will create a new form with a caption of
“untitled”, and with the QDialogButtonBox as shown in Figure 7.2.

P untitled

[o]4] [Cancel

Figure 7.2 A dialog with buttons bottom dialog

When Q¢ Designer is run for the first time it defaults to “Multiple Top-Level
Windows” mode—this can be confusing, except for Mac OS X users for whom
this approach is the norm. To get everything in one window as shown in Fig-

Designing User Interfaces 209

ure 7.1, click Edit—User Interface Mode—Docked Window.* @¢ Designer will remem-
ber this setting, so it needs to be done only once.

Qt Designer is not difficult to use, but it does take some initial practice. One
thing that helps is to do things in a particular order, as shown in the following
list of steps. For steps 1 and 2, always work from “back” to “front”, that is,
always start with containers (group boxes, tab widgets, frames), and then go
on to the normal widgets that belong inside, that is, on top of them. We will
go through an example step-by-step in a moment, but first here is a general
description of how to create a dialog using Q¢ Designer.

1. Drag a widget onto the form and place it in approximately the right
position; there is no need to place it exactly, and normally only container
widgets need to be resized.

2. Set the widget’s properties if necessary; if the widget will be referred to
in code, at least give it a sensible name.

3. Repeat steps 1 and 2 until all the required widgets are on the form.

4. If there are large gaps, drag in horizontal or vertical spacers (these
appear as blue springs) to fill them; sometimes, when gaps are obvious,
spacers are added during steps 1 and 2.

5. Select two or more widgets (or spacers or layouts) to be laid out (Shift+Click
each one), and then lay them out using a layout manager or a splitter.

6. Repeat step 5 until all the widgets and spacers are in layouts.

7. Click the form (to deselect everything) and lay out the form by using one
of the layout managers.

8. Create buddies for the form’s labels.

9. Set the form’s tab order if the order is wrong.

10. Create signal-slot connections between built-in signals and slots where
appropriate.

11. Preview the form and check that everything works as intended.

12. Set the form’s object name (this is used in its class name), and the form’s
title, and save it so that it has a filename. For example, if the object name
is “PaymentDlg”, we would probably give it a title of “Payment” and a
filename of paymentdlg.ui.

If the layout is wrong, use undo to go back to where you think you could start
laying things out again, and have another go. If that is not possible or does
not work, or if the layout is being changed some time after it was originally
created, simply break the layouts that need changing and then redo them.
Usually, it is necessary to break the form’s layout (click the form, then the Break

*From Qt 4.3 this option is available by clicking Edit—Preferences.

210 Chapter 7. Using Qt Designer

Layout toolbar button) before changing the layouts within the form; so at the
end the form itself must be laid out again.

Although it is possible to drag layouts onto the form and then drag widgets
into the layouts, the best practice is to drag all the widgets and spacers onto the
form, and then repeatedly select some widgets and spacers and apply layouts
to them. The one situation where it makes sense to add widgets to an existing
layout is if we want to drag widgets into gaps—for example, into empty cells in
a grid layout.

Now that we have the overall principles in mind, we will go step by step
through the design of the Find and Replace dialog shown in Figure 7.3.

M Find and Replace

Find what: coincidence] Eind

Repl. ith:
eplace wi Replace

[] case sensitive wehole waords

Replace Al
Synkax; Literal bext

ddi).
K

Clase

Figure 7.3 A Find and Replace dialog

Create a new form based on one of the “Dialog” templates. This will give us a
form with a button box. The button box has two buttons, OK and Cancel, with
signal—slot connections already set up.

Click the button box and then click Edit—Delete. This will leave us with a
completely blank form. For this example we will use QPushButtons instead
of a QDialogButtonBox. This will allow us to exercise finer control than can be
achieved using a QDialogButtonBox inside Q¢ Designer, and gives us the chance
to do signal-slot button connections in @¢ Designer. In most of the other exam-
ples, and in the exercise, we use a QDialogButtonBox.

By default, @t Designer has a dock window on the left called Widget Box.
This contains all the widgets that @¢ Designer can handle. The widgets are
grouped into sections, and toward the end is a group called Display Widgets;
this contains the Label widget. (@t Designer does not use class names for its
widgets, at least not in the user interface it presents to us, but in almost every
case it is obvious which class a particular name refers to.)

Click and drag a Label onto the form, toward the top left. We don’t care what
this label is called because we will not refer to it in code, but the default text of
“TextLabel” is not what we want. When a widget is first dragged and dropped
it is automatically selected, and the selected widget is always the one whose
properties are shown in the property editor. Go to the Property Editor dock
window (normally on the right), and scroll down to the “text” property. Change
this to “Find &what:”. It does not matter that the text now appears to be

Designing User Interfaces 211

truncated on the form; once the label is laid out the layout manager will make
sure that the text is displayed in full.

Now drag a Line Edit (from the Input Widgets group), and put this to the right
of the Label. Go tothe property editor and change the Line Edit’s “objectName”
(the very first property of all widgets) to “findLineEdit”. We are giving it a sen-
sible name because we want to refer to this line edit in our code.

Now drag another Label and another Line Edit below the first two. The
second Label should have the text “Replace w&ith” and the second Line Edit
should be called “replaceLineEdit”. The form should now look very similar to
Figure 7.4.

[Dialog - untitled*

Find 2uwhi

[]
Replace v g
=]

Figure 7.4 Two Labels and two Line Edits

At any time we can save the form by pressing Ctrl+S or File—Save. When we save
we will use the filename, findandreplacedlg. ui.

Every editable property (and some read-only properties) are shown in the prop-
erty editor. But in addition, @¢ Designer provides a context menu. The first
option in the context menu is normally one that allows us to change the wid-
get’s most “important” property (e.g., a Label’s or a Line Edit’s “text” property),
and a second option that allows us to change the widget’s object name. If we
change a checkbox, radio button, or push button’s text using the context menu,
the editing is done in-place, in which case we must press Enter to finish. We
will always talk of changing properties in the property editor, but you can, of
course, use the context menu if you prefer.

We will now add the two checkboxes. Drag a Check Box from the Buttons
group (near the top of the Widget Box) and put it underneath the second Label.
Change its object name to “caseCheckBox” and its text to “&Case sensitive”,
by using the property editor or the context menu. Drag a second Check Box to
the right of the first: Change its object name to “wholeCheckBox” and its text
to “Whé&ole words”, and set its “checked” state to “true”. The form should now
be similar to the one shown in Figure 7.5.

212 Chapter 7. Using Qt Designer

[Dialog - untitled®

Find &swh:

Replace »

]]
[] Case sensi ij Whole wom
| B []

Figure 7.5 Two Labels, two Line Edits, and two Checkboxes

Now we will add the Syntax label and combobox. Drag a Label below the case-
sensitive checkbox and set its text to “&Syntax:”. Now drag a Combo Box (from
the Input Widgets group) to the right of the Syntax Label. Change the Combo
Box’s object name to “syntaxComboBox”. Right-click the Combo Box and choose
the first menu option, Edit ltems. Click the “+” icon, and type in “Literal text”.
Repeat this to add “Regular expression”. Click the OK button to finish.

If the user resizes the form we want the widgets to stay neatly together rather
than spreading out, so drag a Vertical Spacer (from the Spacers group near
the top of the Widget Box) and put it below the Combo Box. When we design
forms using code we use stretches, but when we design them visually we use
spacers: They both expand to fill empty space. Adding a stretch to a layout
is essentially the same as inserting a QSpacerItem into a layout, but is less
to type.

To make the buttons visually separate from the widgets we have just created,
we will put a vertical line between them and the other widgets. Drag a Vertical
Line (actually a QFrame with shape QFrame.VLine) from the Display Widgets
group (near the bottom of the Widget Box) and put it to the right of all the
widgets in the form, but leaving space to the right of it for the buttons. Now
the form should look like Figure 7.6.

We are now ready to create the buttons. Drag a Push Button (from the Buttons
group near the top of the Widget Box) to the top right of the form. Change
its object name to “findButton” and its text to “&Find”. Drag another button
beneath the Find button, and give it the object name “replaceButton” and set
its text to be “&Replace”. Create a third button, below the Replace button. Give
it an object name of “replaceAllButton” and change its text to “Replace &All”.
Now drag a Vertical Spacer under the Replace Allbutton. Finally, drag a fourth
button below the spacer. Give this button the object name “closeButton” and
change its text to “Close”.

Now we have all the widgets and spacers we need and we have set all their
properties appropriately. The form should look like that shown in Figure 7.7.

Designing User Interfaces 213

% Dialog - untitled®

Find Bwhsz -

Replace » -

[] case sensi [whale war

BSyntax: Literal bex

+\'\'\'\'\'\'\'\'\'\'\4

Figure 7.6 A Find and Replace dialog without buttons

[Dialog - untitled®

Find &uwh: Find

Replace v Replace

[] case sensi [whole war Replace Al

@S ynta; Literal kex W

[MARAVIRAY
(=]
I
o

F\‘\‘\‘\‘\‘\‘\‘\'\'\\\l

Figure 7.7 A Find and Replace dialog that is not laid out

What is the best way to lay out this form? What is the best design for this form?
The answers to these questions are matters of taste and practice. Here, we
simply show the mechanics, and leave the aesthetics to you.

We will begin by laying out the first two Labels and their Line Edits. Click
the form to deselect everything, then Shift+Click the Find what Label and its Line
Edit, and the Replace with Label and its Line Edit. Once these four widgets are
selected, click Form—Lay Out in a Grid (or click the corresponding toolbar button).
The layout is indicated by a red line—layout lines are not visible at runtime.

Now deselect everything (by clicking the form), and select the two Check
Boxes. Click Form—lLay Out Horizontally. Again, deselect everything, and this
time lay out the Syntax Label and Combo Box using a horizontal layout. There
should now be three layouts—a grid and two horizontal layouts, like those
shown in Figure 7.8.

We can now lay out the layouts on the left-hand side of the form. Click the form
to deselect everything. It can be tricky to select layouts (rather than widgets),
so instead of selecting by using Shift+Click, we will use a selection rectangle.
Click near the bottom left of the form, and drag the selection rectangle: This

214 Chapter 7. Using Qt Designer

% Dialog - untitled®

Find
Find Gawhat: I—
Feplace waith:

|D Case sensitive || Whole words | el

E&yntax: |Literal-text vi

*\\\\\\\\\\\4

+\\\\\'\'\'\'\'\'\\|

[}
f=}
W
b

Figure 7.8 A Find and Replace dialog with some layouts

rectangle only needs to touch an object to select it, so drag up and right so that
it touches the left-hand Vertical Spacer and the three layouts—and nothing
else (not the Vertical Line, for example). Now, release and click Form—Lay Out
Vertically.

We can use the same selection technique to lay out the buttons. Click the
form to deselect everything. Now click near the bottom right of the form and
drag so that the selection rectangle touches the Close button, the right-hand
Vertical Spacer, and the other three buttons—and nothing else. Now, release
and click Form—Lay Out Vertically. We should now have a form with every widget
in the left- or right-hand layout and a Vertical Line in the middle, as shown in
Figure 7.9.

[Dialog - untitled®

Find &what: Eind
Feplace waith: Replace

[Case sensitive [] whole words Replace Al

ynka: |Litera| ket v

\\\\\\\\\\\\l

] }‘“\““““4 I I [I
cldla|

Close
w

Figure 7.9 A Find and Replace dialog almost laid out

We are now ready to lay out the form itself. Deselect everything by clicking
the form. Now click Form—Lay Out Horizontally. The form will now look a bit too
tall, so just drag the bottom of the form up until the form looks better. If you
drag a lot, the spacers may “disappear”; they are still there, but just too small
to be seen.

Designing User Interfaces 215

We can now preview the form to see what the layout really looks like, and dur-
ing the preview we can drag the form’s corner to make it smaller and larger
to check that its resizing behavior is sensible. To preview, click Form—Preview
(or press Ctrl+R). It is also possible to preview in different styles using the
Form—Preview in menu option. The form should now look like the one in Fig-
ure 7.10.If thisis not the case, use Edit—Undo to unwind your changes, and then
lay things out again. If you have to redo a layout, it sometimes helps to resize
and reposition some of the widgets to give Q¢ Designer more of a clue about how
you want the layout to go, especially when using grid layouts.

[Dialog - untitled®

Find 2aubat: Eind

Replace wadth: Replace

[Case sensitive [whole words

Replace Al

wnkax; Literal text W

(e

\\\\\‘\‘\\|

Close

Figure 7.10 A laid out Find and Replace dialog

We are now ready to set the labels’ buddies, set the form’s tab order, do any
connections we need, and name and save the form.

We will start with buddies. Click Edit—Edit Buddies to switch on buddy mode. To
set up buddy relationships we click a Label and drag to the widget we want to
be its buddy. So in this example, we must click the Find what Label and drag to
its Line Edit, and then do the same for the Replace with Label and its Line Edit,
and then for the Syntax Label and the Combo Box. To leave buddy mode, press
F3. Now, no ampersands (&) should be visible in the Labels.

Next we will set the form’s tab order. Click Edit—Edit Tab Order, and then click
each numbered box in turn, in the tab order that you want. To leave tab order
mode, press F3.

The Find, Replace, and Replace All buttons will need to be connected to our own
custom methods; we will do this outside of @¢ Designer. But the Close button can
be connected to the dialog’s reject () slot. To do this, click Edit—Edit Signals/Slots,
and then drag from the Close button to the form. When you release, the Config-
ure Connection dialog will pop up. Click the (no-argument) clicked() signal from
the list of signals on the left, and the reject() slot from the list of slots on the
right, and then click OK. To leave signal-slot mode, press F3.

Click the form to deselect everything. This also has the effect of making
the property editor show the form’s properties. Set the dialog’s object name
(which will be used in its class name) to “FindAndReplaceDlg”, and set the
“windowTitle” property to “Find and Replace”. Now click File—Save to save the
user interface, giving it a filename of findandreplacedlg.ui.

216 Chapter 7. Using Qt Designer

In this section, we have confined ourselves to using @t Designer to create a cus-
tom dialog using one of the “Dialog” templates, since this is sufficient to learn
the basics of how to use @t Designer. However, Qt Designer can be used to cre-
ate much more complex dialogs than the one we have created here, including
dialogs with tab widgets and widget stacks that are often used for configura-
tion dialogs that have dozens or even scores of options. It is also possible to
extend @t Designer with plug-ins that contain custom widgets. These widgets
are normally written in C++, but from PyQt 4.2, it is also possible to incorporate
custom widgets written in Python.

The Qt documentation includes a comprehensive Q¢ Designer manual that
goes into more depth and covers more of the facilities available. The material
covered in this section is sufficient to get started, but the only way to learn Q¢
Designer properly is to use it.

Having designed a user interface, the next step is to make it usable in our
code.

Implementing Dialogs

When we create a user interface with Q¢ Designer, we create a subclass using
multiple inheritance in which we put the code we need to give the user interface
the behavior we need.* The first class we inherit is QDialog. If we were using
the “Widget” template our first inherited class would be QWidget, and if we were
using the “Main Window” template our first inherited class would be QMainWin-
dow. The second class we inherit is the class that represents the user interface
we designed using Qt Designer.

In the preceding section, we created a user interface with a form object
name of “FindAndReplaceDlg”, stored in the file findandreplacedlg.ui. We
must run pyuic4 (directly, or via mkpyqt.py or Make PyQt) to generate the
ui findandreplacedlg.py module file. The module has a class in it whose name
is the form’s object name with a Ui prefix, so in this case the class name is
Ui FindAndReplaceDlg.

We will call our subclass FindAndReplaceDlg, and put it in the file findand-
replacedlg.py.

Before we look at the class declaration and initializer, we will look at the
imports.

import re

from PyQt4.QtCore import x
from PyQt4.QtGui import x
import ui_findandreplacedlg

*QOther approaches are possible, and they are covered in the online documentation. None of them
is quite as convenient as the approach we use here, though.

Implementing Dialogs 217

The first import is the regular expression module that we will use in the code.
The second and third imports are the usual ones for PyQt programming. The
last import is of the generated user interface module. Now we can look at
our subclass.

class FindAndReplaceDlg(QDialog,
ui findandreplacedlg.Ui FindAndReplaceDlg):

def init (self, text, parent=None):

super(FindAndReplaceDlg, self). init (parent)

self. text = unicode(text)

self. index = 0

self.setupUi(self)

if not MAC:
self.findButton.setFocusPolicy(Qt.NoFocus)
self.replaceButton.setFocusPolicy(Qt.NoFocus)
self.replaceAllButton.setFocusPolicy(Qt.NoFocus)
self.closeButton.setFocusPolicy(Qt.NoFocus)

self.updateUli()

We inherit from both QDialog and from Ui FindAndReplaceDlg. We rarely need
to use multiple inheritance in Python programming, but for this situation it
makes things much easier than would otherwise be the case. Our FindAnd-
ReplaceDlg subclass is, in effect, the union of the two classes it inherits from,
and can access their attributes directly, prefixed with self, of course.

We have set our initializer to accept text that is the data the dialog will work
on, and a parent widget. The super() call is made on the first inherited class,
QDialog. We keep a copy of the text, and also an index position, in case the user
clicks Find more than once to find subsequent occurrences of the same text.

The call to the setupUi() method is something we have not seen before. This
method is provided by the generated module. When called it creates all the
widgets specified in the user interface file, lays them out according to our
design, sets their buddies and tab order, and makes the connections we set. In
other words, it re-creates the form we designed in Q¢ Designer.

In addition, the setupUi() method calls QtCore.QMetaObject.connectSlotsBy-
Name(), a static method that creates signal-slot connections between form
widget signals and methods in our subclass that follow a particular naming
convention. Any method whose name is of the form on widgetName signalName
will have the named widget’s named signal connected to it.

For example, our form has a widget called findLineEdit of type QLineEdit. One
of the signals emitted by a QLineEdit is textEdited(QString). So, if we want to
connect this signal, without calling the connect() method in the initializer, we
can leave the job to setupUi(). This will work as long as we call the slot we
want the signal to connect to, on_findLineEdit textEdited. This is the approach
we have used for all the connections in the form, apart from the Close button’s
clicked() signal that we connected visually in Q¢ Designer.

Decora-
tors

85 =

218 Chapter 7. Using Qt Designer

For Windows and Linux users, it is convenient to set the buttons’ focus policies
to “No Focus”. This makes no difference to mouse users, but is often helpful
to keyboard users. It means that pressing Tab moves the keyboard focus only
among the editing widgets—in this example, the find line edit, the replace line
edit, the checkboxes, and the combobox—which is usually more convenient
than having to Tab over the buttons too. Keyboard users can still press any
button using its keyboard accelerator (Esc in the case of the close button).
Unfortunately, buddies and buttons don’t provide Mac OS X keyboard users
with accelerators (unless they switch on support for assistive devices), so these
users need to be able to Tab to all controls, including the buttons. To cater to all
platforms, instead of setting the buttons’ focus policies in Q¢ Designer, we set
them manually, after the user interface has been created by setupUi().

The MAC Boolean variable is True if the underlying window system is Mac OS X.
It was set at the beginning of the file, after the imports, using the following
rather enigmatic statement:

MAC = "qt mac_set native menubar" in dir()
A clearer way of writing this is:

import PyQt4.QtGui
MAC = hasattr(PyQt4.QtGui, "qgt mac _set native menubar")

These work because the PyQt4.QtGui.qt mac_set native menubar() function
exists only on Mac OS X systems. We will use a similar technique for X Window
System detection in Chapter 11.

The updateUi() method called at the end is our own custom method; we use it to
enable or disable the buttons depending on whether the user has entered any
text to find.

@pyqtSignature("QString")

def on _findLineEdit textEdited(self, text):
self. index = 0
self.updateUli()

Thanks to setupUi(), this method is automatically connected to by the findLine-
Edit’s textEdited() signal. Whenever we want an automatic connection we use
the @pyqtSignature decorator to specify the signal’s arguments. The purpose of
the decorator is to distinguish between signals that have the same name but
different parameters. In this particular case, there is only one textEdited() sig-
nal, so the decorator is not strictly necessary; but we always use the decorator
as a matter of good practice. For example, if a later version of PyQt introduced
another signal with the same name but with different arguments, code that
used the decorator would continue to work, but code without it would not.

Since this slot is called when the user changes the find text, we reset the index
position from which to start the search to 0 (the beginning). Here, and in the
initializer, we end with a call to updateUi().

Implementing Dialogs 219

def updateUi(self):
enable = not self.findLineEdit.text().isEmpty()
self.findButton.setEnabled(enable)
self.replaceButton.setEnabled(enable)
self.replaceAllButton.setEnabled(enable)

We have already seen many examples of a method of this kind. Here, we enable
the Find, Replace, and Replace All buttons, if the user has entered a find text. It
does not matter whether there is any replace text, since it is perfectly valid to
replace something with nothing, that is, to delete the text that is found. This
method is the reason why the form starts with every button except the Close
button disabled.

When the user closes the form, the text it holds (which may be different from
the original text if the user has used replace or replace all) is accessible using
the text() method.

def text(self):
return self. text

Some Python programmers would not provide a method for this; instead, they
would have a self.text variable (rather than self. text), and access the
variable directly.

The rest of the dialog’s functionality is implemented in methods that are in-
voked as a result of the user pressing one of the buttons (other than the Close
button), plus a helper method. Their implementation is not specifically rele-
vant to using @t Designer, but we will briefly review them for completeness.

@pyqtSignature("")
def on findButton clicked(self):
regex = self.makeRegex()
match = regex.search(self. text, self. index)
if match is not None:
self. index = match.end()
self.emit (SIGNAL("found"), match.start())
else:
self.emit (SIGNAL("notfound"))

A button’s clicked() signal has an optional Boolean argument that we are
not interested in, so we specify an empty parameter list for the @pyqtSignature
decorator. In contrast, we could not have used an empty parameter list for the
on_findLineEdit textEdited() slot’s decorator, because the textEdited() signal’s
argument is not optional, so it must be included.

To perform the search, we create a regular expression to specify the find text
and some of the search’s characteristics. Then we search the text using the
regular expression, from the current index position. If a match was found we
update the index position to be at the match’s end, ready for a subsequent

Raw
strings

157 &

220 Chapter 7. Using Qt Designer

search, and emit a signal with the position in the text where the find text
was found.

def makeRegex(self):

findText = unicode(self.findLineEdit.text())

if unicode(self.syntaxComboBox.currentText()) == "Literal":
findText = re.escape(findText)

flags = re.MULTILINE|re.DOTALL|re.UNICODE

if not self.caseCheckBox.isChecked():
flags |= re.IGNORECASE

if self.wholeCheckBox.isChecked():
findText = r"\b%s\b" % findText

return re.compile(findText, flags)

We begin by getting the find text that the user has entered. We know that it
cannot be empty because the buttons (apart from the Close button) are enabled
only if there is some find text. If the user has chosen a literal text search, we
use the re.escape() function to escape any regular expression meta-characters
(like “\”) that may be in the user’s find text. Then we initialize our search
flags. We supplement the flags with the re.IGNORECASE flag if the caseCheckBox is
unchecked. If the user has asked to search for whole words, we put a \b before
and after the find text: This is a token in Python’s (and QRegExp’s) regular ex-
pression language that specifies a word boundary. The r in front of the string
literal indicates a “raw” string in which we can write characters like “\” un-
escaped. Finally we return the regular expression in compiled (ready-to-use)
form.*

If we knew that the text to be searched was normally going to be a QString
rather than a unicode, it might be preferable to use the PyQt QRegExp class
rather than the Python standard library’s re class.

@pyqtSignature("")
def on_replaceButton clicked(self):
regex = self.makeRegex()
self. text = regex.sub(unicode(self.replaceLineEdit.text()),
self. text, 1)

This method is quite simple because it passes on its preparation work to the
makeRegex () method. We use the sub method (“substitute”) to replace the first
occurrence of the find text with the replacement text. The replacement text
could be empty. The 1 is the maximum number of replacements to make.

@pyqtSignature("")
def on_replaceAllButton clicked(self):
regex = self.makeRegex()

*The QRegExp documentation provides a brief introduction to regular expressions. Python’s regular
expression engine is covered in the re module documentation. For in-depth coverage see Mastering
Regular Expressions by Jeffrey E. Friedl.

Implementing Dialogs 221

self. text = regex.sub(unicode(self.replaceLineEdit.text()),
self. text)

This method is almost identical to the one earlier. The only difference is that
we do not specify a maximum number of replacements, so sub() will replace as
many (nonoverlapping) occurrences of the find text as it finds.

We have now implemented the FindAndReplaceDlg. The implementation of the
dialog’s methods is not really any different from what we have done before,
except for our use of the decorator and setupUi() to provide automatic con-
nections.

To use the dialog in an application we must make sure that the
ui findandreplacedlg.py module file is generated, and we must import the find-
andreplacedlg module we have just written. We will see how the form is created
and used in the next section.

Testing Dialogs

Since any PyQt widget, including any dialog, can be used as a top-level window
in its own right, it is easy to test a dialog by instantiating it and starting the
event loop.* Often, though, we need to do a bit more. For example, we may need
to set up some initial data, or provide methods to receive the dialog’s signals so
that we can see that they are working correctly.

In the case of the Find and Replace dialog, we need some initial text, and
we need to check that the connections work and that the find and replace
methods work.

So, at the end of the findandreplacedlg.py file, we have added some extra
code. This code is executed only if the file is run stand-alone, so it does not
affect performance or interfere with the use of the dialog when it is used in
an application.

if name ==" main_":
import sys
text = """US experience shows that, unlike traditional patents,

software patents do not encourage innovation and R&D, quite the
contrary. In particular they hurt small and medium-sized enterprises
and generally newcomers in the market. They will just weaken the market
and increase spending on patents and litigation, at the expense of
technological innovation and research. Especially dangerous are
attempts to abuse the patent system by preventing interoperability as a
means of avoiding competition with technological ability.

—-—— Extract quoted from Linus Torvalds and Alan Cox's letter

*When using pyuic4 we can specify a command-line option of -x to get the dialog generated with a
bit of extra code so that it can be tested stand-alone.

222 Chapter 7. Using Qt Designer

to the President of the European Parliament
http://www.effi.org/patentit/patents torvalds cox.html"""

def found(where):
print "Found at %d" % where

def nomore():
print "No more found"

app = QApplication(sys.argv)

form = FindAndReplaceDlg(text)
form.connect(form, SIGNAL("found"), found)
form.connect(form, SIGNAL("notfound"), nomore)
form.show()

app.exec_ ()

print form.text()

We begin by importing the sys module, and then we create a piece of text to
work on. Next, we create a couple of simple functions for the dialog’s signals to
be connected to.

We create the QApplication object in the normal way, and then we create an
instance of our dialog, passing it our test text. We connect the dialog’s two
signals to our slots, and call show(). Then we start off the event loop. When the
event loop terminates we print the dialog’s text: This will be different from the
original text if the user replaced some text.

The dialog can now be run from a console and tested.
C:\pygt\chap07>python findandreplacedlg.py

Unless using automated testing tools, it is often helpful to add testing function-
ality to dialogs. It does not take too much time or effort to write them, and run-
ning them whenever a change is made to the dialog’s logic will help minimize
the introduction of bugs.

Sometimes we pass complex objects to dialogs that may appear to make testing
impossible. But thanks to Python’s duck typing we can always create a fake
class that simulates enough behavior to be usable for testing. For example,
in Chapter 12, we use a property editor dialog. This dialog operates on “Node”
objects, so in the testing code we create a FakeNode class that provides the meth-
ods for setting and getting a node’s properties that the dialog makes use of.
(The relevant files are chapl2/propertiesdlg.ui, from which ui propertiesdlg.py
is generated, and chapl2/propertiesdlg.py where the PropertiesDlg is imple-
mented.)

Summary 223

Summary

Qt Designer provides a quick and easy way to create user interfaces. Using
a visual design tool makes it much easier to see whether a design “works”.
Another benefit of @t Designer is that if we change a design, providing we
have not added, removed, or renamed any widgets we refer to in code, our code
will not need to be changed at all. And even if we do add, rename, or remove
widgets, the changes to our code may be quite small, since @¢ Designer handles
all the widget creation and laying out for us.

The fundamental principles of using Q¢ Designer are always the same: We drag
widgets onto a form, containers (such as frames, group boxes, and tab widgets)
first, then ordinary widgets, and we set their properties. Then we add spacers
to occupy gaps. Next we select particular widgets, spacers, and layouts, and
apply layouts to them, repeating this process until everything is laid out. Then
we lay out the form itself. At the end we set buddies, the tab order, and the
signal—slot connections.

Implementing dialogs with user interfaces that have been created by Q¢ De-
signer is similar to implementing them by hand. The biggest difference is in
the initializer, where we simply call setupUi() to create and lay out the widgets,
and to create the signal-slot connections. The methods we implement can be
done just as we have done them before (and their code will be no different), but
usually we use the on_widgetName signalName naming convention, along with
the @pyqtSignature decorator to take advantage of setupUi()’s ability to auto-
matically create connections.

A use case that we have not covered is to use the “Widget” template to create
composite widgets (widgets made up of two or more other widgets laid out to-
gether). In some cases these widget designs can be used for entire forms, and in
other cases they can be used as components of forms—for example, to provide
the page of a tab widget or of a widget stack. Or two or more composite wid-
gets could be laid out together in a form to create a more complex form. This
use is possible by using @t Designer and generating the Python modules in the
normal way. Then we can import the generated modules, and in our form class,
we call each custom widget’s setupUi() method to create the user interface.

The questions about how smart a dialog is, what modality it should have, and
how it validates are no different for dialogs created with Q¢ Designer than for
those created by hand. The only exception that we can set widget propertiesin
Qt Designer—for example, we could set a spinbox’s range and initial value. We
can, of course, do the same thing in code, but for widgets that need only simple
validation, doing it all in @¢ Designer is usually more convenient.

We must use pyuic4 to generate Python modules from Q¢ Designer .ui files, ei-
ther by running pyuic4 directly or by using mkpyqt.py or Make PyQt, both of
which also generate Python modules for resource files if .qrc files are present.

224 Chapter 7. Using Qt Designer

If we are not using testing tools, adding testing code that is executed only if the
form is run stand-alone does not affect the performance of our dialogs, and can
be very convenient both during development and when maintaining a dialog.
If complex objects that the dialog depends on are not available, we can often
create a “fake” class that provides the same methods as the complex object, and
pass an instance of the fake class for testing purposes.

All PyQt programs can be written entirely by hand; there is never any need to
use @t Designer. However, designing dialogs with a visual design tool can be
very helpful, since the results can be seen immediately, and changes to designs
can be made quickly and easily. Another benefit of using @t Designer is that a
lot of fairly repetitive code for creating, laying out, and connecting widgets can
be automatically generated rather than written by hand. Q¢ Designer wasused
to create a dialog in both this chapter, and the preceding one. We will see many
more examples of dialogs created with Q¢ Designer in the following chapters.

Exercise

Use Q¢ Designer to create a user interface with one of the designs shown in
Figure 7.11, or with a design of your own. You will probably need to use a Grid
Layout, as well as Vertical and Horizontal Layouts. For grid layouts, you may
have to try a few times, perhaps resizing and positioning widgets to help Q¢
Designer create the grid you want. Use QDialogButtonBoxes for the buttons.

M Ticket Order #1

Customer: |
Cuskorner: |

when: 21/04/2007 00:00:00 &
when: 08/05/2007 00:00:00 %

_ =

Price: $0,00 % | Quantity: 1 * | Amount $0.00 Brice: $0.00 5

Quiankity: 1[5

Figure 7.11 A dialog with two different designs

The price spinbox should have a range of 0.00-5000.00, be right-aligned, and
have a prefix of “¢ ”, as shown in Figure 7.11. The quantity spinbox should
have a range of 1-50 and also be right-aligned. Set the date format to be
whatever you prefer if you don’t like the default.

The widgets you will refer to in code should have sensible names—for example,
customerLineEdit and priceSpinBox.

Make the appropriate buddies, that is, from the “customer” Label to its Line
Edit, from the “when” Label to the Date Time Edit, and so on. Also make sure
that the Tab order is customer, when date, price, quantity, button box.

Exercise 225

Create a subclass to use the user interface. The code should ensure that the
OK button is enabled only if the customer Line Edit is not empty and the
amount is greater than zero. To access a button in a QDialogButtonBox, use the
button() method with the button’s constant as the argument—for example,
buttonBox.button(QDialogButtonBox.0k).

The amount should be recalculated and shown in the amount label every
time the user changes one of the spinbox values. Set the when date’s range
to be from tomorrow, until next year. Provide a result() method that returns
a four-tuple (unicode, datetime.datetime, float, int) for the customer, when
date, price, and quantity. (If you are using a PyQt version prior to 4.1, return
the date as a QDateTime; otherwise, use the QDateTime.toPyDateTime() method to
get a datetime.datetime.)

Include enough test code at the end to create and show a TicketOrderDlg so
that you can interact with it. After the event loop has finished print the tuple
returned by the result() method on the console.

The subclass, including the test code, can be written in about 60 lines. If
this is the first time you have used Q¢ Designer it may take 15—-20 minutes
to get the design right, but with practice a dialog like this should take just a
few minutes.

Model solutions are provided in chap07/ticketorderdlgl.ui and chap07/ticket-
orderdlg2.ui, with a test program in chap07/ticketorderdlg.py.

This page intentionally left blank

Main Window Responsibilities

Data Container Responsibilities

(]

([

® Saving and Loading Binary Files
@® Saving and Loading Text Files

([

Saving and Loading XML Files

Data Handling and Custom File
Formats

Most applications need to load and save data. Often the data format is
predetermined because the application is reading data produced by some other
application over which it has no control. But for applications where we create
our own file formats, a lot of options are available.

In Chapter 6 we created a main-window-style application from which we
learned how to create menus and toolbars, and how to handle file loading and
saving. Inthischapter we will work on another main-window-style application,
but this time our focus will be on the application’s data.

L] My Movies

31

Catch Me If You Can | 2002 |

File Edit Help
FOd v X

Title | Year | Mins Acquired | Notes (]
24 |Bride of Frankenstein 1935.; 80 Fri Feb 23, 2007 Elsa Lanchester D
25 |Bridget Jones' Diary 2001 | 9?: Sun Apr 11, 2004 Hugh Grant, Reneé Zelwegger, Colin F|rth
26 |Brief Encounter | 1945 86 Sun Jul 24, 2005 Trevor Howard, Celia Johnson; Rachmanu
27 |Brighton Rock :.194?.: 92 Mon Sep 3, 2007 H|chard Attenborough -
28 |A Canterbury Tale 1944 124 Sun May 28, 2006 Powell & Pressburger
29 L I 0g g e Jan 8 200 ey
30 |Casablanca . 1942 102; Sat Jul 8, 20'0'0 Humphrey Bogart, Ingrid Bergman, Paul H

141|

Tue Sep 18, 2007 Spielberg. Leonardo DiCaprio, Tom Hank'

|

Saved 193 movie records to mymovies.mgb

Figure 8.1 The My Movies application

The application we will take as our example is called My Movies; it is shown
in Figure 8.1. It is used to store some basic information about the movies we

227

String
policy

28 =1

228 Chapter 8. Data Handling and Custom File Formats

might have in our collection. The application will allow us to view and edit a
collection of custom Movie objects (or movie records as we will call them), and
to load and save these records from and to disk in a variety of formats.

If you just want to dive straight into file handling, you can jump ahead to
the relevant sections. Coverage of saving and loading binary files begins
on page 240, of text files on page 249, and of XML files on page 256. You can
always come back to the first two sections to cover the relationship between the
GUI and file handling.

In all the previous examples we usually kept as much data as possible in
Python data types and converted to and from PyQt types only when necessary.
And for strings in particular, we proposed a policy that meant that we always
converted QStrings to unicodes as soon as possible and always operated on uni-
code strings. But in this chapter we are going to take the opposite approach,
and keep all our data in PyQt types, converting to Python types only when
necessary. One reason for doing this is that PyQt provides excellent support
for binary data, and uses the same binary formats as C++/Qt, which is useful
when working with files that must be accessed by both C++ and Python pro-
grams. Another reason is that this will also provide a contrast that will help us
understand the pros and cons of each approach so that we can make the right
decisions in applications we work on later.

One immediate benefit of holding data in PyQt types is that we do not have
to keep converting data that we give to or get from the widgets we use for
viewing and editing. When dealing with a large collection of data, this could
be a significant saving of processing overhead.

When we have custom data to load and save five options are available to us.
We can use binary, plain text, or XML files, or we can use QSettings objects with
an explicit filename, or we can use a database. In this chapter we will cover
the first three options, and briefly mention the fourth, QSettings, here. We will
defer coverage of databases until Chapter 15.

All the options apart from QSettings can be implemented using either Python’s
standard library or PyQt. In this chapter, we will discuss loading and saving
both binary and text formats using both libraries so that we can compare and
contrast them. For XML, we will use PyQt for loading and parsing, and we will
do the saving ourselves. Python’s standard library also provides considerable
XML support, but covering it would not show anything that cannot be done
with PyQt’s XML classes.

In Chapter 6, we saw how to use a QSettings object to save and load user
settings, such as the main window’s size and position, and a list of recently
used files. The class stores all data as QVariants, but this is perfectly accept-
able for small amounts of data. We can use this class to store custom data
by creating a QSettings instance with a filename—for example, iniFile =
QSettings("curvedata.ini", QSettings.IniFormat). Now we can use the iniFile

Main Window Responsibilities 229

object to write data using setValue() and to read data using value(), in both
cases converting between QVariant and the relevant type.

In the following section we will look at the high-level file handling and data
presentation that are performed by the application’s main window subclass.
In the second section, we will look at the application’s data module, including
the implementation of individual data items, and of the data item container in
which the application’s data is held.

Then, in the subsequent sections, we will look at saving and loading data in
various formats. In the section on binary files, we will look at how to use PyQt’s
QDataStream class and also the standard Python library’s cPickle module to load
and save our collection of movie records. In the section on text files, we will see
how to load and save our movie records in plain text using PyQt’s QTextStream
and the Python standard library’s codecs module. And in the last section we
will write the code to save the records as XML by hand, and see how to use both
DOM and SAX parsers to read back the XML data.

Main Window Responsibilities

The main window is usually given responsibility for offering the user the high-
level file-handling actions, and for presenting the application’s data. In this
section, we will focus particularly on the file actions, since they differ from
what we did in Chapter 6’s Image Changer application and they are more rep-
resentative of what happens in larger applications. We will also look at how
the data is presented to the user. In the My Movies application, the data is held
in a “container” (a MovieContainer), and all the work of saving and loading (and
exporting and importing)is passed on to the container by the main window. We
will look at the container in the next section, and at the container’s saving and
loading code in the sections that follow that.

The source code is in the chap88 directory, and it includes a @t Designer-de-
signed user interface for adding and editing movie records. Figure 8.2 shows
the application’s Python modules.

We have chosen to make a distinction between saving and exporting, and
between loading and importing. When we load a file, the filename we used
becomes the application’s current filename for when we save. If we save a file,
we use the application’s current filename, so subsequent saves will be to the
same file. We can change the current filename by using the “save as” action.
When we import a file, we clear the current filename; this means that the data
must be given a new filename if the user wants to save it. If the user exports
the data, they are asked for a new filename, and the current filename is not
affected.

Now we are ready to look at the main window’s file-handling functionality.
We will begin by looking at the start of the main window’s initializer, to see

230 Chapter 8. Data Handling and Custom File Formats

mymovies.pyw

MainWindow
main()
] x
: =
addeditmoviedlg.py moviedata.py
AddEditMovieDlg Movie
LA} »| MovieContainer
- - - intFromQStr() N
ddedit dlg. in .
ui addeditmoviedlg.py encodedNewlines () qrc_resources.py
User interface module decodedNewlines () Icons

Figure 8.2 The My Movie application’s modules, classes, and functions

the creation of the data-holding movie container and the data-presenting
QTableWidget.

class MainWindow(QMainWindow):

def init (self, parent=None):
super(MainWindow, self). init (parent)

self.movies = moviedata.MovieContainer()
self.table = QTableWidget()
self.setCentralWidget(self.table)

After calling super(), we create a new empty movies container. (We will look
at the Movie and MovieContainer classes shortly.) Then we create a QTableWidget.
This widget is used to present and optionally to edit tabular data. The table
is set up and populated in updateTable(). We have omitted the rest of the
initializer, since we already know from Chapter 6 how to set up the status bar,
create the file, edit, and help actions, populate the menus and toolbars, and
restore the application’s state from the previous session’s settings.

For completeness, we will now take a brief detour to review updateTable() to
see how the table widget is set up and populated. (You could skip ahead to the
fileNew() method on page 232 if you prefer to focus purely on the file handling.)
The approach we are using is very simple and direct. PyQt also offers a more
sophisticated approach to populating and editing item-based widgets such as
lists, tables, and trees, using PyQt’s model/view architecture—we will learn
about this in Chapter 14.

def updateTable(self, current=None):
self.table.clear()
self.table.setRowCount(len(self.movies))
self.table.setColumnCount(5)
self.table.setHorizontalHeaderLabels(["Title", "Year", "Mins",
"Acquired", "Notes"])

Main Window Responsibilities 231

self.table.setAlternatingRowColors(True)
self.table.setEditTriggers(QTableWidget.NoEditTriggers)
self.table.setSelectionBehavior(QTableWidget.SelectRows)
self.table.setSelectionMode(QTableWidget.SingleSelection)
selected = None

This method is quite long, so we will review it in three parts. It can be called
with no argument, in which case it simply populates the table; or it can be
called with the id() of the current Movie, in which case it makes the specified
movie’s row selected and visible (scrolling if necessary), after populating the
table. A current movie is passed if a movie has just been added or edited.

We begin by clearing the table; this gets rid of both the data and the headings.
Next, we set the row and column counts, and the column headers. We set
the table’s properties so that the user cannot edit anything in-place, since we
prefer to use a separate add/edit dialog in this particular application. We also
ensure that users can select only a single row at a time. The selected variable
holds the QTableWidgetItem that holds the title and id() of the current movie, if
there is one.

for row, movie in enumerate(self.movies):

item = QTableWidgetItem(movie.title)

if current is not None and current == id(movie):
selected = item

item.setData(Qt.UserRole, QVariant(long(id(movie))))

self.table.setItem(row, 0, item)

year = movie.year

if year != movie.UNKNOWNYEAR:
item = QTableWidgetItem("%d" % year)
item.setTextAlignment(Qt.AlignCenter)
self.table.setItem(row, 1, item)

minutes = movie.minutes

if minutes != movie.UNKNOWNMINUTES:
item = QTableWidgetItem("%d" % minutes)
item.setTextAlignment (Qt.AlignRight|Qt.AlignVCenter)
self.table.setItem(row, 2, item)

item = QTableWidgetItem(movie.acquired.toString(

moviedata.DATEFORMAT))

item.setTextAlignment (Qt.AlignRight|Qt.AlignVCenter)

self.table.setItem(row, 3, item)

notes = movie.notes

if notes.length() > 40:
notes = notes.left(39) + "..."

self.table.setItem(row, 4, QTableWidgetItem(notes))

Each cell in a QTableWidget is represented by a QTableWidgetItem. These items
can hold displayable text as well as “user” data. We iterate over every movie
in the movie container, creating one row of items for each one. We store the

232 Chapter 8. Data Handling and Custom File Formats

movie’s title in the first cell (item) of each row, and set this item’s user data to
hold the movie’s id (). We must convert the ID to be a long, to ensure that it is
held correctly inside the QVariant. Once the item has been created and set up,
we put it in the table at the appropriate row and column.

We only populate the year and minutes cells if we have data for them. For the
notes, we truncate and add an ellipsis if the data is long, since notes could be
many paragraphs in size.

self.table.resizeColumnsToContents()

if selected is not None:
selected.setSelected(True)
self.table.setCurrentItem(selected)
self.table.scrollToItem(selected)

Once all the table items have been added, we resize the table’s columns to
match their contents.

When we iterate over the movies in the movie container, the movies are re-
turned in alphabetical order (but ignoring leading “A”, “An”, and “The”, words).
If the user adds a new movie or edits an existing movie, we want to ensure that
the movie they have just added or edited is both selected and visible. This is
achieved by calling updateTable() after the add or edit, with the ID of the movie
they added or edited. At the end of updateTable(), if a movie ID was passed in,
the selected variable will hold the item corresponding to the movie’s title cell,
and this item (and therefore the item’s row) will be made both current and se-
lected, and if necessary the table widget will scroll to make sure that the row
is visible to the user.

def fileNew(self):
if not self.okToContinue():
return
self.movies.clear()
self.statusBar().clearMessage()
self.updateTable()

This method is similar to the method of the same name used for the Image
Changer application. The key difference is that instead of the main window be-
ing responsible for the data, the work is delegated to the movie container held
in self.movies. When updateTable() is called, there will be no movie records, so
the widget will just show the column headers and nothing else.

The okToContinue() method is almost the same as the one we used in the Image
Changer application. The only difference is that instead of the condition check-
ing self.dirty (since the Image Changer’s main window held the application’s
data) it calls self.movies.isDirty() because in this application, the movies con-
tainer holds the data.

def fileOpen(self):
if not self.okToContinue():

Main Window Responsibilities 233

return
path = QFileInfo(self.movies.filename()).path() \
if not self.movies.filename().isEmpty() else "."
fname = QFileDialog.getOpenFileName(self,
"My Movies - Load Movie Data", path,
"My Movies data files (%s)" % \
self.movies.formats())
if not fname.isEmpty():
ok, msg = self.movies.load(fname)
self.statusBar().showMessage(msg, 5000)
self.updateTable()

The file open method is structurally the same as we have seen before. The
movie container holds the current filename as a QString. Normally, an appli-
cation has just one custom file format, but for the sake of illustration the My
Movies application supports several, so we have provided a formats() method
to return the extensions that can be used.

The main window subclass passes on the work of loading to the movies
container. We have designed our movie container’s load and save methods to
return a Boolean success/failure flag and a message. The message is either an
error message, or a report of how many movie records were loaded or saved. In
the My Movies application, we use only the message.

If the load is successful, the movie container will contain the new movie records
and updateTable() will display them. If the load failed, the movie container will
be empty, and updateTable() will show only the column headers.

def fileSave(self):
if self.movies.filename().isEmpty():
self.fileSaveAs()
else:
ok, msg = self.movies.save()
self.statusBar().showMessage(msg, 5000)

Again, the logic for this method is the same as we have seen before. The code
used for saving and loading depends on the filename extension, as we will
see later.

We will skip the code for fileSaveAs(); it is the same as for the Image Chang-
er application, except that we use QString rather than unicode methods with
the filename, and we use a default extension of .mgb (My Movies in Qt binary
format).

def fileImportDOM(self):
self.fileImport("dom")

def fileImportSAX(self):
self.fileImport("sax")

234

Chapter 8. Data Handling and Custom File Formats

def fileImport(self, format):

if not self.okToContinue():
return
path = QFileInfo(self.movies.filename()).path() \
if not self.movies.filename().isEmpty() else "."
fname = QFileDialog.getOpenFileName(self,
"My Movies - Import Movie Data", path,
"My Movies XML files (*.xml)")
if not fname.isEmpty():
if format == "dom":
ok, msg = self.movies.importDOM(fname)
else:
ok, msg = self.movies.importSAX(fname)
self.statusBar().showMessage(msg, 5000)
self.updateTable()

Normally we would provide a single import method and use either a SAX or a
DOM parser. Here we have chosen to show both parsers in use, so we provide
two separate import actions. Both produce the same results.

The file action code for importing is very similar to the “file open” action, only
we use the import parser specified by the user. And as with all the file-handling
code, we pass on the work to the movie container.

def fileExportXml(self):

fname = self.movies.filename()
if fname.isEmpty():
fname = "."
else:
i = fname.lastIndex0f(".")
if i > 0:
fname = fname.left(i)
fname += ".xml"
fname = QFileDialog.getSaveFileName(self,
"My Movies - Export Movie Data", fname,
"My Movies XML files (*.xml)")
if not fname.isEmpty():
if not fname.contains("."):
fname += ".xml"
ok, msg = self.movies.exportXml(fname)
self.statusBar().showMessage(msg, 5000)

We provide only one XML export method. The code is similar to the “file
save as” action. Notice that we must use QString methods to ensure that the
filename has the .xml extension, rather than the unicode methods we used in
the Image Changer application, because the filename is held as a QString.

Ordered-
Dict

92 =

Data Container Responsibilities 235

Data Container Responsibilities

The application’s data container is responsible for holding all the data
items, that is, the movie records, and for saving and loading them to and
from disk. We saw in the preceding section when we looked at the MainWin-
dow.updateTable() method how the container could be iterated over using a for
loop to get all the movies so that they could be displayed in the application’s
QTableWidget. In this section, we will look at the functionality provided by the
moviedata module, including the data structures used to hold the movie data,
how we provide support for ordered iteration, and other aspects, but excluding
the actual saving and loading code since that is covered in the sections that
follow.

Why use a custom data container at all? After all, we could simply use one
of Python’s built-in data structures, such as a list or a dictionary. We prefer to
take an approach where we wrap a standard data structure in a custom con-
tainer class. This ensures that accesses to the data are controlled by our class,
which helps to maintain data integrity. It also makes it easier to extend the
container’s functionality, and to replace the underlying data structure in the fu-
ture, without affecting existing code. In other words, this is an object-oriented
approach that avoids the disadvantages of simply using, say, a list, with some
global functions.

We will begin with the moviedata module’s imports and constants.

import bisect

import codecs

import copy reg

import cPickle

import gzip

from PyQt4.QtCore import x
from PyQt4.QtXml import =

We store the movies in canonicalized title order, ignoring case, and ignoring
leading “A”, “An”, and “The” words. To minimize insertion and lookup times
we maintain the order using the bisect module, using the same techniques we
used for the OrderedDict we implemented in Chapter 3.

The codecs module is necessary for reading and writing Python text files using
a specific text codec. The copy reg and cPickle modules are used for saving and
loading Python “pickles”—these are files that contain arbitrary Python data
structures. The gzip module is used to compress data; we will use it to compress
and decompress our pickled data. The PyQt4.QtCore import is familiar, but we
must also import the PyQt4.QtXml module to give us access to PyQt’s SAX and
DOM parsers. We will see all of these modules in use in the following sections.
Note that we do not need the PyQt4.QtGui module, since the moviedata module is
a pure data-handling module with no GUI functionality.

CODEC = "UTF-8"

236 Chapter 8. Data Handling and Custom File Formats

NEWPARA
NEWLINE

unichr(0x2029)
unichr(0x2028)

We want to use the UTF-8 codec for text files. Thisis an 8-bit Unicode encoding
that uses one byte for each ASCII character, and two or more bytes for any
other character. It is probably the most widely used Unicode text encoding used
in files. By using Unicode we can store text written in just about any human
language in use today.

Although \n is a valid Unicode character, we will need to use the Unicode-spe-
cific paragraph break and line break characters when we use XML. This is be-
cause XML parsers do not normally distinguish between one ASCII whitespace
character, such as newline, and another, such as space, which is not convenient
if we want to preserve the user’s line and paragraphs breaks.

class Movie(object):
UNKNOWNYEAR = 1890
UNKNOWNMINUTES = 0

def _init (self, title=None, year=UNKNOWNYEAR,
minutes=UNKNOWNMINUTES, acquired=None, notes=None):
self.title = title
self.year = year
self.minutes = minutes
self.acquired = acquired \
if acquired is not None else QDate.currentDate()
self.notes = notes

The Movie class is used to hold the data about one movie. We use instance
variables directly rather than providing simple getters and setters. The title
and notes are stored as QStrings, and the date acquired as a QDate. The year the
movie was released and its duration in minutes are held as ints. We provide
two static constants to indicate that we do not know when the movie was
released or how long it is.

We are now ready to look at the movie container class. This class holds an
ordered list of movies, and provides functionality for saving and loading (and
exporting and importing) movies in a variety of formats.

class MovieContainer(object):
MAGIC NUMBER = 0x3051E
FILE VERSION = 100

def init (self):
self. fname = QString()
self. movies = []
self. movieFromId = {}
self. dirty = False

id()
function

13 =

Object
refer-
ences

12 =

Data Container Responsibilities 237

The MAGIC NUMBER and FILE VERSION are used for saving and loading files using
PyQt’s QDataStream class.

The filename is held as a QString. Each element of the movies list is itself a
two-element list, the first element being a sort key and the second a Movie. This
is the class’s main data structure, and it is used to hold the movies in order. The
__movieFromId dictionary’s keys are the id()s of Movie objects, and the values
are Movies. As we saw in Chapter 1, every Python object very conveniently has
a unique ID, available by calling id() on it. This dictionary is used to provide
fast movie lookup when a movie’s ID is known. For example, the main window
stores movie IDs as “user” data in its first column of QTableWidgetItems. There
is no duplication of data, of course, since the two data structures really hold
references to Movie objects rather than Movie objects themselves.

def iter (self):
for pair in iter(self. movies):
yield pair[1]

When the MainWindow.updateTable() method iterated over the movie container
using a for loop, Python used the container’s iter () method. Here we can
see that we iterate over the ordered list of [key, movie]lists, returning just the
movie item each time.

def _len_ (self):

return len(self. movies)

This method allows us to use the len() function on movie containers.

In the following sections we will see the code for loading and saving the movies
held in a movie container in various formats. But first we will look at how
the container is cleared, and how movies are added, deleted, and updated, so
that we can get a feel for how the container works, particularly regarding or-
dering.

def clear(self, clearFilename=True):
self. movies = []
self. movieFromId = {}
if clearFilename:
self. fname = QString()
self. dirty = False

This method is used to clear all the data, possibly including the filename. It
is called from MainWindow.fileNew(), which does clear the filename, and from
the various save and load methods, which leave the filename untouched. The
movie container maintains a dirty flag so that it always knows whether there
are unsaved changes.

def add(self, movie):
if id(movie) in self. movieFromId:

238 Chapter 8. Data Handling and Custom File Formats

return False
key = self.key(movie.title, movie.year)
bisect.insort left(self. movies, [key, movie])
self. movieFromId[id(movie)] = movie
self. dirty = True
return True

The first if statement ensures that we don’t add the same movie twice. We
use the key() method to generate a suitable order key, and then use the bisect
module’s insort left() function to insert the two-element [key, movie] list
into the movies list. This is very fast because the bisect module uses the
binary chop algorithm. We also make sure that the movieFromId dictionary is
up-to-date, and set the container to be dirty.

def key(self, title, year):
text = unicode(title).lower()
if text.startswith("a "):
text = text[2:]
elif text.startswith("an "):
text = text[3:]
elif text.startswith("the "):
text = text[4:]
parts = text.split(" ", 1)
if parts[0].isdigit():
text = "%08d " % int(parts[0])
if len(parts) > 1:
text += parts[1]
return u"%s\t%d" % (text.replace(" ", ""), year)

This method generates a key string suitable for ordering our movie data. We
do not guarantee key uniqueness (although it would not be difficult to do),
because the ordered data structure is a list in which duplicate keys are not a
problem. The code is English-specific, eliminating the definite and indefinite
articles from movie titles. If the movie’s title begins with a number, we pad the
number with leading zeros so that, for example, “20” will come before “100”. We
do not need to pad the year, because years are always exactly four digits. All the
other data is stored using PyQt data types, but we have chosen to use unicode
for the key strings.

def delete(self, movie):
if id(movie) not in self. movieFromId:
return False
key = self.key(movie.title, movie.year)
i = bisect.bisect left(self. movies, [key, movie])
del self. movies[i]
del self. movieFromId[id(movie)]
self. dirty = True
return True

Data Container Responsibilities 239

To delete a movie we must remove it from both data structures, and in the case
of the movies list, we must first find the movie’s index position.

def updateMovie(self, movie, title, year, minutes=None,
notes=None):

if minutes is not None:
movie.minutes = minutes

if notes is not None:
movie.notes = notes

if title != movie.title or year != movie.year:
key = self.key(movie.title, movie.year)
i = bisect.bisect left(self. movies, [key, movie])
self. movies[i][0] = self.key(title, year)
movie.title = title
movie.year = year
self. movies.sort()

self. dirty = True

If the user edits a movie, the application always calls this method with the
user’s changes. If the minutes or notes are passed as None, we take that to mean
that they have not been changed. If the movie’s title or year has changed, the
movie may now be in the wrong position in the movies list. In these cases,
we find the movie using its original title and year, set the new title and year,
and then re-sort the list. This is not as expensive in practice as it may at first
appear. The list will contain, at most, one incorrectly sorted item, and Python’s
sort algorithm is highly optimized for partially sorted data.

If we ever found that we had a performance problem here, we could always
reimplement updateMovie() using delete() and add() instead.

@staticmethod
def formats():
return "*.mgb *.mpb *.mgt *.mpt"

Normally, we would provide one, or at most two, custom data formats for an
application, but for the purposes of illustration we provide three formats using
four extensions. Extension .mgb is Qt binary format, and it uses the QDataSt ream
class, and extension .mpb is Python pickle format (using gzip compression). Ex-
tension .mqt is Qt text format, and it uses the QTextStream class, and extension
.mpt is Python text format. Both text formats are identical, but by using dif-
ferent extensions we can use different save and load code for the purposes of
comparison.

def save(self, fname=QString()):
if not fname.isEmpty():
self. fname = fname
if self. fname.endsWith(".mgb"):
return self.saveQDataStream()

240 Chapter 8. Data Handling and Custom File Formats

elif self. fname.endsWith(".mpb"):
return self.savePickle()
elif self. fname.endsWith(".mqt"):
return self.saveQTextStream()
elif self. fname.endsWith(".mpt"):
return self.saveText()
return False, "Failed to save: invalid file extension"

When the user invokes the “file save” action we would expect the data contain-
er’s save() method to be invoked. This is indeed what happens in My Movies
and is the normal practice. However, here,instead of performing the save itself,
the save() method hands the work to a method that is specific to the filename’s
extension. This is purely so that we can show how to save in the different for-
mats;in a real application we would normally use only one format.

There is a corresponding load() method, that has the same logic as the save()
method and passes its work to load methods that are extension-specific. All the
load and save methods return a two-element tuple, the first element a Boolean
success/failure flag and the second a message, either an error message or a
report of what successfully occurred.

We have now seen the application’s infrastructure for file handling, and the
container’s data structures that hold the data in memory. In the following
sections, we will look at the code that performs the saving and loading of the
container’s data to and from disk.

Saving and Loading Binary Files

Both PyQt and the Python standard library provide facilities for writing
and reading binary files. PyQt uses the QDataStream class, and the Python
standard library uses the file class, either directly or in conjunction with the
pickle module.

Binary formats are not human-readable, but they are the easiest to code and
the fastest to write and read to and from disk. No parsing is necessary: Num-
bers, dates, and many PyQt types, including images, can be read and written
without formality. PyQt’s support for binary files is very strong: PyQt ensures
that binary files are platform-independent, and it isn’t difficult to version our
binary file types so that we can extend our file format when required. The
Python standard library’s pickle module (and its faster cPickle counterpart)
also provide fast platform-independent loading and saving, but may not be
as efficient as PyQt’s QDataStream for handling complex PyQt types, such as
images.

Writing and Reading Using QDataStream

The QDataStream class can read and write Python Boolean and numeric types,
and PyQt types, including images, in binary format. Files written by QData-

Ap-
proach-
es to
File
Error
Han-
dling
sidebar

= 244

Saving and Loading Binary Files 241

Stream are platform-independent; the class automatically takes care of endian-
ness and word size.

Almost every new version of PyQt has a QDataStream that uses a new binary
format for data storage—thisis done so that QDataStream can accommodate new
data types, and to support enhancements to existing data types. This is not
a problem, because every version of QDataStream can read data stored in the
formatsused by all its previous versions. In addition, QDataStream always stores
integers the same way, no matter which version of QDataStream is being used.

def saveQDataStream(self):

error = None

fh = None

try:
fh = QFile(self. fname)
if not fh.open(QIODevice.WriteOnly):

raise IOError, unicode(fh.errorString())

stream = QDataStream(fh)
stream.writeInt32(MovieContainer.MAGIC NUMBER)
stream.writeInt32(MovieContainer.FILE VERSION)
stream.setVersion(QDataStream.Qt 4 2)

Since PyQt uses return values rather than exceptions, if the file cannot be
opened we raise an exception ourselves since we prefer the exception-based
approach to error handling. Having opened the file, we create a QDataStream
object to write to it.

PyQt cannot guess what size integer we want to use to store int and long inte-
gers, so we must write integer values using the writeIntn() and writeUIntn()
methods, where n is 8, 16, 32, or 64, that is, the number of bits to use to store
the integer. For floating-point numbers, QDataStream provides the writeDouble()
and readDouble() methods. These operate on Python floats (equivalent to C
and C++ doubles), and are stored as 64-bit values in IEEE-754 format.

The first integer we write is the “magic number”. This is an arbitrary number
that we use to identify My Movies data files. This number will never change.
We should give any custom binary data file a unique magic number, since
filename extensions cannot always be relied upon to correctly identify a file’s
type. Next we write a “file version”. This is the version of our file format (we
have set it to be 100). If we decide to change the file format later, the magic
number will remain the same—after all, the file will still hold movie data—but
the file format will change (e.g., to 101) so that we can execute different code to
load it to account for the difference in format.

Since integers are always saved in the same format, we can safely write them
before setting the QDataStream version. But once we have written the magic
number and file version, we should set the QDataStream version to the one that
PyQt should use for writing and reading the rest of the data. If we want to
take advantage of a later version we could use our original file format for

242 Chapter 8. Data Handling and Custom File Formats

version Qt 4 2, and another file format for the later version. Then, when we
come to load the data, we could set the QDataStream version depending on our
file format number.

Setting the QDataStream version is very important, since it will ensure that
any PyQt data type is saved and loaded correctly. The only situation where
it does not matter is if we are only saving and loading integers, since their
representation never changes.

for key, movie in self. movies:
stream << movie.title
stream.writeIntl6(movie.year)
stream.writeIntl6(movie.minutes)
stream << movie.acquired << movie.notes

Now we iterate over the movie data, writing each movie’s data to the data
stream. The data’s format is illustrated in Figure 8.3. The QDataStream class
overloads the << operator for many PyQt classes, including, for example,
QString, QDate, and QImage, so we must use a C++-like streaming syntax to write
our data. The << operator writes its right operand to the data stream that isits
left operand. It can be applied repeatedly to the same stream, since it returns
the stream it is applied to, but for integers, we must use the writeIntn() and
writeUIntn() methods.

‘int32 H int,, HMovie #1 H Movie #2 ‘ ‘Movie #n ‘

ostring |[int,; |[int,, |[apate |[astring |

Figure 8.3 The QDataStream My Movies file format

Since we are writing binary data, we do not have to do any formatting. We just
have to ensure that when we load the data back, we use the same QDataStream
version, and that we load in the same data typesin the same order as we saved.
So, in this case, we will load back two integers (the magic and file version
numbers), and then any number of movie records, each comprising a string,
two integers, a date, and a string.

except (IOError, OSError), e:
error = "Failed to save: %s" % e
finally:
if fh is not None:
fh.close()
if error is not None:
return False, error
self. dirty = False

Saving and Loading Binary Files 243

return True, "Saved %d movie records to %s" % (
len(self. movies),
QFileInfo(self. fname).fileName())

If there are any errors, we simply give up and return a failure flag and an error
message. Otherwise, we clear the dirty flag and return a success flag and a
message indicating how many records were saved.

The corresponding load method is just as straightforward, although it does
have to do more error handling.

def loadQDataStream(self):
error = None
fh = None
try:
fh = QFile(self. fname)
if not fh.open(QIODevice.ReadOnly):
raise IOError, unicode(fh.errorString())
stream = QDataStream(fh)
magic = stream.readInt32()
if magic != MovieContainer.MAGIC NUMBER:
raise IOError, "unrecognized file type"
version = stream.readInt32()
if version < MovieContainer.FILE VERSION:
raise I0Error, "old and unreadable file format"
elif version > MovieContainer.FILE VERSION:
raise I0Error, "new and unreadable file format"
stream.setVersion(QDataStream.Qt 4 2)
self.clear(False)

We create the QFile object and QDataStream object the same as before, except this
time using ReadOnly rather than WriteOnly mode. Then we read in the magic
number. If this is not the unique My Movies data file number, we raise an
exception. Next we read the file version, and make sure it is one that we can
handle. At this point, we would branch depending on the file version, if we had
more than one version of this file format in use. Then we set the QDataStream
version.

The next step is to clear the movies data structures. We do this as late as
possible so that if an exception was raised earlier, the original data will be
left intact. The False argument tells the clear() method to clear movies and
__movieFromId, but not the filename.

while not stream.atEnd():
title = QString()
acquired = QDate()
notes = QString()
stream >> title
year = stream.readIntl6()

244 Chapter 8. Data Handling and Custom File Formats

Approaches to File Error Handling

The approach used for handling file errors in this chapter has the structure
shown here on the left. Another equally valid approach, used, for example,
in chap@9/textedit.py and chapl4/ships.py, is shown here on the right.

error = None exception = None
fh = None fh = None
try: try:
open file and read data # open file and read data
except (IOError, O0SError), e: except (IOError, OSError), e:
error = unicode(e) exception = e
finally: finally:
if fh is not None: if fh is not None:
fh.close() fh.close()
if error is not None: if exception is not None:
return False, error raise exception
return True, "Success"

At the call point, and assuming we are dealing with a load() method, we
might use code like this for the left-hand approach:

ok, msg = load(args)
if not ok:
QMessageBox.warning(self, "File Error", msg)

And for the right-hand approach we could use code like this:

try:
load(args)
except (IOError, OSError), e:
QMessageBox.warning(self, "File Error", unicode(e))

Another approach, used in chap09/sditexteditor.pyw and chap12/pagedesign-
er.pyw, is to do all the error handling inside the file-handling method itself:

fh = None
try:

open file and read data
except (IOError, OSError), e:

QMessageBox.warning(self, "File Error", unicode(e))
finally:

if fh is not None:

fh.close()

At the call point we simply call load(args), leaving the load() method itself
to report any problems to the user.

Saving and Loading Binary Files 245

Syntax
s.atEnd()

s.setVersion(v)

S << X

s.readBool()
s.readDouble()
s.readInt16()

s.readInt32()
s.readInt64()

x = QString()
s >> X

s.writeBool(b)
s.write-

Double(f)
s.writeIntl6(i)
s.writeInt32(i)

s.writeInt64(1)

Table 8.1 Selected QDataStream Methods

Description

Returns True if the end of QDataStream s has been
reached

Sets QDataStream s’s version to v, where v is one of Qt 1 0,
Qt 2.0,...,Qt 4 2,0orQt 4 3

Writes object x to QDataStream s; x can be of type QBrush,
QColor, QDate, QDateTime, QFont, QIcon, QImage, QMatrix,
QPainterPath, QPen, QPixmap, QSize, QString, QVariant, etc.

Reads a bool from QDataStream s

Reads a float from QDataStream s

Reads a 16-bit int from QDataStream s. There is also a
readUInt16() method.

Reads a 32-bit int from QDataStream s. There is also a
readUInt32() method.

Reads a 64-bit long from QDataStream s. There is also a
readUInt64() method.

Reads object x from QDataStream s; x must already exist (so
that the data stream knows what data type to read), and
can be any of the types writable by <<

Writes bool b to QDataStream s

Writes float f to QDataStream s

Writes int i as a 16-bit int to QDataStream s. There is also
awriteUIntl6() method.
Writes int i as a 32-bit int to QDataStream s. There is also
awriteUInt32() method.
Writes long 1 as a 64-bit int to QDataStream s. There is also
awritelUInt64() method.

minutes = stream.readInt16()
stream >> acquired >> notes
self.add(Movie(title, year, minutes, acquired, notes))

We could have stored the number of movies at the beginning of the file, after
the file version. But instead we simply iterate over the data stream until we
reach the end. For non-numeric data types we must create variables that hold
empty values of the correct type. Then we use the >> operator, which takes
a data stream as its left operand and a variable as its right operand; it reads
a value of the right operand’s type from the stream and puts it into the right
operand. The operator returns the file stream, so it can be applied repeatedly.

246 Chapter 8. Data Handling and Custom File Formats

For integers we must always read using the readIntn() and readUIntn()
methods with the same number of bits as we specified when writing.

Once we have read in a single movie’s data, we create a new Movie object and
immediately add it to the container’s data structures using the add() method
we reviewed in the preceding section.

except (IOError, OSError), e:
error = "Failed to load: %s" % e
finally:
if fh is not None:
fh.close()
if error is not None:
return False, error
self. dirty = False
return True, "Loaded %d movie records from %s" % (
len(self. movies),
QFileInfo(self. fname).fileName())

The error handling and the final return statement are structurally the same as
we used for the save method.

Using the PyQt QDataStream class to write binary data is not very different in
principle from using Python’s file class. We must be careful to use the correct
QDataStream version, and we ought to use a magic number and file version,
or some equivalent approach. The use of the << and >> operators is not very
Pythonic, but it is easy to understand.

We could have put code for writing a movie in the Movie class itself, perhaps
with a method that took a QDataStream argument and wrote the movie’s data to
it. In practice it is usually more convenient, and almost always more flexible,
to have the data container do the file handling