

Rapid GUI Programming
with Python and Qt

Prentice Hall
Open Source Software Development Series

Arnold Robbins, Series Editor

“Real world code from real world applications”
Open Source technology has revolutionized the computing world. Many large-scale projects are in
production use worldwide, such as Apache, MySQL, and Postgres, with programmers writing applications
in a variety of languages including Perl, Python, and PHP. These technologies are in use on many different
systems, ranging from proprietary systems, to Linux systems, to traditional UNIX systems, to mainframes.

The Prentice Hall Open Source Software Development Series is designed to bring you the best of these
Open Source technologies. Not only will you learn how to use them for your projects, but you will learn
from them. By seeing real code from real applications, you will learn the best practices of Open Source
developers the world over.

Titles currently in the series include:

Linux® Debugging and Performance Tuning
Steve Best
0131492470, Paper, ©2006

The Defi nitive Guide to the Xen Hypervisor
David Chisnall
013234971X, Hard, ©2008

Understanding AJAX
Joshua Eichorn
0132216353, Paper, ©2007

The Linux Programmer’s Toolbox
John Fusco
0132198576, Paper, ©2007

Embedded Linux Primer
Christopher Hallinan
0131679848, Paper, ©2007

The Apache Modules Book
Nick Kew
0132409674, Paper, © 2007

SELinux by Example
Frank Mayer, David Caplan, Karl MacMillan
0131963694, Paper, ©2007

UNIX to Linux® Porting
Alfredo Mendoza, Chakarat Skawratananond,
Artis Walker
0131871099, Paper, ©2006

Rapid Web Applications with TurboGears
Mark Ramm, Kevin Dangoor, Gigi Sayfan
0132433885, Paper, © 2007

Linux Programming by Example
Arnold Robbins
0131429647, Paper, ©2004

The Linux® Kernel Primer
Claudia Salzberg, Gordon Fischer,
Steven Smolski
0131181637, Paper, ©2006

Rapid GUI Programming with Python and Qt
Mark Summerfi eld
0132354187, Hard, © 2008

New to the series: Digital Short Cuts
Short Cuts are short, concise, PDF documents designed specifi cally for busy technical professionals like
you. Each Short Cut is tightly focused on a specifi c technology or technical problem. Written by industry
experts and best selling authors, Short Cuts are published with you in mind — getting you the technical
information that you need — now.

Understanding AJAX:
Consuming the Sent Data with XML and JSON
Joshua Eichorn
0132337932, Adobe Acrobat PDF, © 2007

Debugging Embedded Linux
Christopher Hallinan
0131580132, Adobe Acrobat PDF, © 2007

Using BusyBox
Christopher Hallinan
0132335921, Adobe Acrobat PDF, © 2007

Rapid GUI Programming
with Python and Qt

The Definitive Guide to PyQt Programming

Mark Summerfield

Upper Saddle River, NJ · Boston · Indianapolis · San Francisco
New York · Toronto · Montreal · London · Munich · Paris · Madrid
Capetown · Sydney · Tokyo · Singapore · Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark
claim, the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for
incidental or consequential damages in connection with or arising out of the use of the information or
programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or
special sales, which may include electronic versions and/or custom covers and content particular to your
business, training goals, marketing focus, and branding interests. For more information, please contact:

 U.S. Corporate and Government Sales
 (800) 382-3419
 corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

 International Sales
 international@pearsoned.com

Visit us on the Web: www.prenhallprofessional.com

Library of Congress Cataloging-in-Publication Data

Summerfield, Mark
 Rapid GUI programming with Python and Qt : the definitive guide to PyQt programming / Mark
Summerfield.
 p. cm.
 Includes bibliographical references and index.
 ISBN 978-0-13-235418-9 (hardcover : alk. paper)
1. Qt (Electronic resource) 2. Graphical user interfaces (Computer systems) 3. Python (Computer
program language) I. Title.

 QA76.9.U83S89 2007
 005.1’2—dc22

2007034852

Copyright © 2008 Pearson Education, Inc.

All rights reserved. Printed in the United States of America.

Trolltech®, Qt® and the Trolltech logo are registered trademarks of Trolltech ASA.

ISBN-13: 978-0-13-235418-9

ISBN-10: 0-13-235418-7

Text printed in the United States on recycled paper at Edwards Brothers in Ann Arbor, Michigan.

First printing, October 2007

www.prenhallprofessional.com
www.prenhallprofessional.com/safarienabled

This book is dedicated to

Andrea Summerfield

This page intentionally left blank

Contents

Foreword . xiii

Introduction . 1

Part I: Python Programming

Chapter 1. Data Types and Data Structures . 9
Executing Python Code . 10
Variables and Objects . 12
Numbers and Strings . 15

Integers and Long Integers . 16
Floats and Decimals . 17
Bytestrings, Unicode Strings, and QStrings 20

Collections . 29
Tuples . 29
Lists . 31
Dictionaries . 35
Sets . 37

Built-in Functions . 37
Summary . 41
Exercises . 42

Chapter 2. Control Structures . 45
Conditional Branching . 46
Looping . 49

List Comprehensions and Generators . 53
Functions . 55

Generator Functions . 58
Using Keyword Arguments . 59
Lambda Functions . 61
Dynamic Function Creation . 62
Partial Function Application . 63

Exception Handling . 66

vii

Summary . 72
Exercises . 72

Chapter 3. Classes and Modules . 75
Creating Instances . 77
Methods and Special Methods . 79

Static Data, and Static Methods and Decorators 85
Example: The Length Class . 86
Collection Classes . 92
Example: The OrderedDict Class . 92

Inheritance and Polymorphism . 99
Modules and Multifile Applications . 104

Using the doctest Module . 105
Summary . 107
Exercises . 108

Part II: Basic GUI Programming

Chapter 4. Introduction to GUI Programming 111
A Pop-Up Alert in 25 Lines . 112
An Expression Evaluator in 30 Lines . 116
A Currency Converter in 70 Lines . 121
Signals and Slots . 127
Summary . 136
Exercise . 137

Chapter 5. Dialogs . 139
Dumb Dialogs . 141
Standard Dialogs . 147

Modal OK/Cancel-Style Dialogs . 148
Smart Dialogs . 154

Modeless Apply/Close-Style Dialogs . 155
Modeless “Live” Dialogs . 159

Summary . 162
Exercise . 163

Chapter 6. Main Windows . 165
Creating a Main Window . 166

Actions and Key Sequences . 171
Resource Files . 172

viii

Creating and Using Actions . 174
Restoring and Saving the Main Window’s State 181

Handling User Actions . 190
Handling File Actions . 191
Handling Edit Actions . 197
Handling Help Actions . 200

Summary . 201
Exercise . 202

Chapter 7. Using Qt Designer . 205
Designing User Interfaces . 208
Implementing Dialogs . 216
Testing Dialogs . 221
Summary . 223
Exercise . 224

Chapter 8. Data Handling and Custom File Formats 227
Main Window Responsibilities . 229
Data Container Responsibilities . 235
Saving and Loading Binary Files . 240

Writing and Reading Using QDataStream 240
Writing and Reading Using the pickle Module 246

Saving and Loading Text Files . 249
Writing and Reading Using QTextStream 250
Writing and Reading Using the codecs Module 255

Saving and Loading XML Files . 256
Writing XML . 256
Reading and Parsing XML with PyQt’s DOM Classes 259
Reading and Parsing XML with PyQt’s SAX Classes 262

Summary . 265
Exercise . 266

Part III: Intermediate GUI Programming

Chapter 9. Layouts and Multiple Documents . 269
Layout Policies . 270
Tab Widgets and Stacked Widgets . 272

Extension Dialogs . 276
Splitters . 280
Single Document Interface (SDI) . 283

ix

Multiple Document Interface (MDI) . 290
Summary . 300
Exercise . 301

Chapter 10. Events, the Clipboard, and Drag and Drop 303
The Event-Handling Mechanism . 303
Reimplementing Event Handlers . 305
Using the Clipboard . 310
Drag and Drop . 312

Handling Custom Data . 313
Summary . 317
Exercise . 318

Chapter 11. Custom Widgets . 321
Using Widget Style Sheets . 322
Creating Composite Widgets . 325
Subclassing Built-in Widgets . 326
Subclassing QWidget . 328

Example: A Fraction Slider . 331
Example: A Flow-Mixing Widget . 339

Summary . 345
Exercise . 346

Chapter 12. Item-Based Graphics . 349
Custom and Interactive Graphics Items . 351
Animation and Complex Shapes . 368
Summary . 378
Exercise . 379

Chapter 13. Rich Text and Printing . 381
Rich Text Editing . 382

Using QSyntaxHighlighter . 382
A Rich Text Line Edit . 389

Printing Documents . 398
Printing Images . 400
Printing Documents Using HTML and QTextDocument 401
Printing Documents Using QTextCursor and QTextDocument 403
Printing Documents Using QPainter . 407

Summary . 411
Exercise . 412

x

Chapter 14. Model/View Programming . 413
Using the Convenience Item Widgets . 415
Creating Custom Models . 423

Implementing the View Logic . 424
Implementing the Custom Model . 427

Creating Custom Delegates . 436
Summary . 442
Exercise . 443

Chapter 15. Databases . 445
Connecting to the Database . 446
Executing SQL Queries . 446
Using Database Form Views . 451
Using Database Table Views . 457
Summary . 470
Exercise . 471

Part IV: Advanced GUI Programming

Chapter 16. Advanced Model/View Programming 475
Custom Views . 476
Generic Delegates . 483
Representing Tabular Data in Trees . 492
Summary . 505
Exercise . 505

Chapter 17. Online Help and Internationalization 509
Online Help . 510
Internationalization . 512
Summary . 519
Exercise . 520

Chapter 18. Networking . 521
Creating a TCP Client . 523
Creating a TCP Server . 529
Summary . 534
Exercise . 534

xi

Chapter 19. Multithreading . 537
Creating a Threaded Server . 539
Creating and Managing Secondary Threads . 544
Implementing a Secondary Thread . 552
Summary . 557
Exercise . 558
This Is Not Quite the End . 559

Appendix A. Installing . 561
Installing on Windows . 561
Installing on Mac OS X . 566
Installing on Linux and Unix . 570

Appendix B. Selected PyQt Widgets . 575

Appendix C. Selected PyQt Class Hierarchies 581

Index . 585

xii

Foreword

As PyQt’s creator, I’m delighted to see that this book has been written. Al-
though I served as one of the book’s technical reviewers, I’m happy to confess
that I learned a few things myself.

The PyQt documentation covers the APIs of all the PyQt classes. This book
shows you how to use all those classes, how to combine them to create dialogs,
main windows, and entire applications—all of which look good and work well,
with no arbitrary limits, and using a programming language that is a joy
to use.

What I particularly like about the book is that the examples aren’t trivial ones
designed to illustrate a simple point, but are potentially useful in their own
right. The way that different approachesare considered will reward the reader
who wants to develop a deeper understanding of how to apply PyQt to the
development of large scale, production quality applications.

I began the PyQt story back in the late 1990s. I had been using Tcl/Tk for
some time, but I felt that Tk applications looked ugly, especially when I saw
what had been achieved with the first version of KDE. I had wanted to switch
to Python, and so I thought I would combine the change of language with a
change of GUI library.

Initially I used some wrappers that had been written using SWIG, but I con-
cluded that I could produce a more suitable wrapper tool myself. I set to work
creating SIP, and released PyQt 0.1 supporting Qt 1.41 in November 1998.
Development has continued regularly ever since, both to keep up with new re-
leases of Qt and to broaden the scope of PyQt with, for example, the addition
of support tools and improved documentation. By 2000, PyQt 2.0 supported
Qt 2.2 on both Linux and Windows. Qt 3 support appeared in 2001, and
Mac OS X support in 2002. The PyQt4 series began with PyQt 4.0 in June 2006
with support for Qt 4.

My primary goal has always been to allow Python and Qt to work together in
a way that feels natural to Python programmers, while allowing them to do
anything they want in Python that can be done in C++. The key to achieving
this was the development of SIP. This gave me a specialized code generator
over which I had complete control and ensures that Python and Qt will always
fit snugly together.

The essential process of developing and maintaining PyQt is now well estab-
lished. Much of the work is now automated,which means that keeping up with

xiii

new releases of Qt from Trolltech is no longer the problem it once was, and en-
surs that PyQt will continue for years to come.

It’s been very gratifying to watch the growth of the PyQt community over the
years. If this book is part of your introduction to PyQt, then welcome!

— Phil Thompson
Wimborne, Dorset, U.K.

August 25, 2007

xiv

Introduction

This book teaches how to write GUI applications using the Python program-
ming language and the Qt application development framework. The only
essential prior knowledge is that you can program in some object-oriented pro-
gramming language, such as C++, C#, Java, or of course, Python itself. For the
rich text chapter, some familiarity with HTML and with regular expressions is
assumed, and the databases and threading chapters assume some basic knowl-
edge of those topics. A knowledge of GUI programming is not required, since
all the key concepts are covered.

The book will be useful to people who program professionally as part of their
job, whether as full-time software developers, or those from other disciplines,
including scientists and engineers, who need to do some programming in sup-
port of their work. It is also suitable for undergraduate and post-graduate stu-
dents, particularly those doing courses or research that includes a substantial
computing element. The exercises (with solutions) are provided especially to
help students.

Python is probably the easiest to learn and nicest scripting language in
widespread use, and Qt is probably the best library for developing GUI applica-
tions. The combination of Python and Qt, “PyQt”, makes it possible to develop
applications on any supported platform and run them unchanged on all the
supported platforms—for example, all modern versions of Windows, Linux,
Mac OS X, and most Unix-based systems. No compilation is required thanks
to Python being interpreted, and no source code changes to adapt to different
operating systems are required thanks to Qt abstracting away the platform-
specific details. We only have to copy the source file or files to a target machine
that has both Python and PyQt installed and the application will run.

If you are new to Python: Welcome! You are about to discover a language that
is clear to read and write, and that is concise without being cryptic. Python
supports many programming paradigms, but because our focus is on GUI
programming, we will take an object-oriented approach everywhere except in
the very early chapters.

Python is a very expressive language, which means that we can usually write
far fewer lines of Python code than would be required for an equivalent appli-
cation written in, say, C++ or Java. This makes it possible to show some small
but complete examples throughout the text, and makes PyQt an ideal tool for
rapidly and easily developing GUI applications, whether for prototyping or for
production use.

1

2 Introduction

Figure 1 The Eric4 IDE—a PyQt4 application

Since the emphasis of the book is on GUI programming, Part I provides a
fast-paced Python tutorial as well as some PyQt coverage. This material is
clearly marked (just like this paragraph, with “Qt” in the margin) to make
it easy for experienced PythonQt programmers to skip the Python they already
know. Parts II, III, and IV of the book are all PyQt-specific and assume that
readers can already program in Python, whether from previous experience or
from reading Part I.

Quite often in programming we reach decision points when there are several
possible approaches we could take. Reference books and the online documen-
tation identify what classes, methods, and functions are available, and in some
cases provide examples, but such documents rarely provide a broader context.
This book gives the necessary context, highlighting the key decision points for
GUI programming and offering insights into the pros and cons so that you can
decide for yourself what the right policy is for your particular circumstances.
For example, when you create a dialog, should it be modal or modeless? (See
Chapter 5 for an explanation and policy recommendations on this issue.)

PyQt is used to write all kinds of GUI applications, from accounting appli-
cations, to visualization tools used by scientists and engineers. Figure 1, for
example, shows Eric4, a powerful integrated development environment that is
written in PyQt. It is possible to write PyQt applications that are just tens of
lines long, and medium-size projects of 1000 to 10000 lines are very common.
Some commercial companies have built 100000-line PyQt applications, with

Introduction 3

programming teams varying in size from just one person to more than a dozen
people. Many in-house tools are written using PyQt, but because these are of-
ten used to gain competitive advantage, the companies involved generally do
not permit their use of PyQt to be made public. PyQt is also widely used in the
open source world, with games, utilities, visualization tools, and IDEs all writ-
ten using it.

This book is specifically about PyQt4, the Python bindings for the Qt 4 C++
application development framework.★ PyQt4 is provided in the form of ten
Python modules which between them contain around 400 classes and about
6000 methods and functions. All the example programs have been tested on
Windows, Linux, and Mac OS X, using Python 2.5, Qt 4.2, and PyQt 4.2, and
additionally on Windows and Linux using Qt 4.3 and PyQt 4.3. Backporting to
earlier versions is possible in some cases, but we recommend using the most
up-to-date versions of Python, Qt, and PyQt.

Python, PyQt, and Qt can be used free of charge for noncommercial purposes,
but the license used by Python is different from that used by PyQt and Qt.
Python is available with a very liberal license that allows it to be used to de-
velop both commercial and noncommercial applications. Both PyQt and Qt are
dual-licensed: This essentially allows them to be used to develop noncommer-
cial applications—which must in turn be licensed using an acceptable open
source license such as the GNU General Public License (GPL); or to be used to
develop commercial applications—in this case, a commercial PyQt license and
a commercial Qt license must be purchased.

The Structure of the Book

The book is divided into four parts. Part I is primarily a rapid conversion course
aimed at non-Python programmers who are familiar with an object-oriented
language, although it also has some (clearly marked) PyQt content. Because
the core Python language is mostly simple and is quite small, these chapters
can teach the basics of Python to a sufficient extent that real Python applica-
tions can be written.

If you think that you can pick up the Python syntax simply through reading
it, you might be tempted to skip Part I and dive straight into the GUI pro-
gramming that begins in Part II. The early chapters in Part II include back-
references to the relevant pages in Part I to support readers who choose this
approach. However, even for readers familiar with Python, we recommend
reading about QString in Chapter 1. If you are unfamiliar with partial function
application (currying), it is important to read the subsection that covers this in
Chapter 2, since this technique is sometimes used in GUI programming.

★There are also Python bindings for the older Qt 3 library, but there is no reason to use that library
for new projects, especially since Qt 4 offers far more functionality and is easier to use.

4 Introduction

Part II begins by showing three tiny PyQt GUI applications to give an initial
impression of what PyQt programming is like. It also explains some of the
fundamental concepts involved in GUI programming, including PyQt’s high-
level signals and slots communication mechanism. Chapter 5 shows how to
create dialogs and how to create and lay out widgets (“controls” in Windows-
speak—the graphical elements that make up a user interface such as buttons,
listboxes, and such) in a dialog. Dialogs are central to GUI programming:Most
GUI applications have a single main window, and dozens or scores of dialogs,
so this topic is covered in depth.

After the dialogs chapter comes Chapter 6, which covers main windows,
including menus, toolbars, dock windows, and keyboard shortcuts, as well as
loading and saving application settings. Part II’s final chapters show how to
create dialogs using Qt Designer, Qt’s visual design tool, and how to save data
in binary, text, and XML formats.

Part III gives deeper coverage of some of the topics covered in Part II, and in-
troduces many new topics. Chapter 9 shows how to lay out widgets in quite
sophisticated ways, and how to handle multiple documents. Chapter 10 covers
low-level event handlers,and how to use the clipboard as well as drag and drop,
text, HTML, and binary data. Chapter 11 shows how to modify and subclass
existing widgets, and how to create entirely new widgets from scratch, with
complete control over their appearance and behavior. This chapter also shows
how to do basic graphics. Chapter 12 shows how to use Qt 4.2’s new graphics
view architecture,which is particularly suited to handling large numbers of in-
dependent graphical objects. Qt’s HTML-capable rich text engine is covered in
Chapter 13. This chapter also covers printing both to paper and to PDF files.

Part III concludes with two chapters on model/view programming: Chapter 14
introduces the subject and shows how to use Qt’s built-in views and how to
create custom data models and custom delegates, and Chapter 15 shows how
to use the model/view architecture to perform database programming.

Part IV continues the model/view theme, with coverage of three different
advanced model/view topics in Chapter 16. The first section of Chapter 17
describes the techniques that can be used for providing online help, and the
second section explains how to internationalize an application, including how
to use Qt’s translation tools to create translation files. The Python standard
library provides its own classes for networking and for threading, but in the
last two chapters of Part IV we show how to do networking and threading us-
ing PyQt’s classes.

Appendix A explains where Python, PyQt, and Qt can be obtained, and how to
install them on Windows, Mac OS X, and Linux. PyQt is much easier to learn
if you install it and try out some of the exercises, and if you inspect some of
the example code. Appendix B presents screenshots and brief descriptions
of selected PyQt widgets; this is helpful for those new to GUI programming.
Appendix C presents diagrams of some of PyQt’s key class hierarchies; this

Introduction 5

is useful for getting to know what classes PyQt has to offer and how they
are related.

If you have never used Python before, you should begin by reading Chapters
1–6 in order. If you already know Python, at least read the string policy (in
bullet points on page 28), and skim the material in Chapter 2 (apart from the
first section, which you’ll know well). Make sure that you are comfortable with
lambda and partial function application,both of which are covered in Chapter 2.
It is probably also worth skimming Chapter 3 as well. Then read Chapters 4,
5, and 6 in order.

Once you have covered the first six chapters, you have covered the essentials
of Python and the fundamentals of PyQt.

Chapter 7 is useful if you want to know how to create dialogs using a visual
design tool rather than purely by hand coding, something that can save a lot
of time. For file handling, at least read the first three sections of Chapter 8. If
you plan to write and read text files, also read Chapter 8’s fourth section, and
similarly the fifth section if you are going to use XML files.

For Part III, at the least read Chapter 10’s first section, on event handling, and
all of Chapter 11. Chapter 12 and the first section of Chapter 13 assume that
you have read about PyQt’s event handling,and that you have read Chapter 11.
Chapters 9 and 14 can be read stand-alone in this part,but Chapter 15 assumes
that you have read Chapter 14.

In Part IV, Chapter 16 assumes that you have read Chapters 14 and 15, but the
other chapters can be read independently.

If you find errors in the text or in the examples, or have other comments,
please write to mark@qtrac.eu quoting “PyQt book” in the subject line. The
book’s home page, where any corrections will be published, and from where the
examples and exercise solutions can be downloaded, is http://www.qtrac.eu/

pyqtbook.html.

If you want to participate in the PyQt community, it is worthwhile joining the
mailing list. Go to http://www.riverbankcomputing.com/mailman/listinfo/pyqt to
find a link to the archive, so that you can see what the mailing list is like, and
also for a form for joining. Python also has mailing lists and other community
activities. For these, go to http://www.python.org/community.

Acknowledgments

I have many people to thank, and I will begin with those who have been
intimately involved with the book.

Jasmin Blanchette is a senior software developer at Trolltech, a Qt expert, and
a fine editor and writer in his own right. I have cowritten two C++/Qt books
with him. Jasmin has made a huge number of suggestions and criticisms that
have immensely improved the quality of this book.

http://www.qtrac.eu/pyqtbook.html
http://www.qtrac.eu/pyqtbook.html
http://www.python.org/community
http://www.riverbankcomputing.com/mailman/listinfo/pyqt

6 Introduction

David Boddie, Trolltech’s documentation manager, is an active PyQt open
source developer who has made many contributions to PyQt itself. His input
has helped ensure that I have covered everything necessary, and done so in a
sensible order.

Richard Chamberlain is cofounder and chief technology officer of Jadu Ltd., a
content management company. His feedback and insights have helped ensure
that the book is as broadly accessible as possible. He has also helped refine and
improve the code used in the examples and exercises.

Trenton Schulz is a Trolltech developer who has been a valuable reviewer of
my previous books. For this book, he has brought his Python and Qt knowledge
to bear, giving considerable feedback on the manuscript. Along with Richard,
he also ensured that Mac OS X users were never forgotten. In addition, he
spotted many subtle errors that I had missed.

Phil Thompson is PyQt’s creator and maintainer. He has been supportive of
the book from the start, even adding features and improvements to PyQt as
a direct result of discussions we have had regarding the book. He has made
numerous suggestions for the book’s improvement, and corrected many
mistakes and misunderstandings.

Special thanks to Samuel Rolland, who let me loose on his Mac laptop, to install
PyQt, test the examples, and take screenshots.

Thanks are also due to Guido van Rossum, creator of Python, as well as to the
wider Python community who have contributed so much to make Python, and
especially its libraries, so useful and enjoyable to use.

Thanks also to Trolltech, for developing and maintaining Qt, and in particular
to the Trolltech developers both past and present, many of whom I have had
the pleasure of working with,and who ensure that Qt is the best cross-platform
GUI development framework in existence.

Particular thanks to Jeff Kingston, creator of the Lout typesetting language.
I use Lout for all my books and for most of my other writing projects. Over
the years, Jeff has made many improvements and added numerous features to
Lout in response to feedback from users, including many that I have asked for
myself. Thanks also to James Cloos who created the condensed version of the
DejaVu Sans Mono font (itself derived from Jim Lyles’ Vera font) from which
this book’s monospaced font is derived.

The publisher, in the person of Editor-in-Chief Karen Gettman,was supportive
of this book from the very beginning. And special thanks to my editor, Debra
Williams-Cauley, for her support, and for making the entire process as smooth
as possible. Thanks also to Lara Wysong who managed the production process
so well, and to the proofreader, Audrey Doyle, who did such fine work.

Last but not least, I want to acknowledge my wife, Andrea. Her love, loyalty,
and support always give me strength and hope.

Part I

Python Programming

This page intentionally left blank

Data Types and Data Structures

11 ● Executing Python Code

● Variables and Objects

● Numbers and Strings

● Collections

● Built-in Functions

In this chapter, we begin a Python conversion course that shows non-Python
programmers how to program with Python. We introduce some fundamental
data types and data structures, as well as some of Python’s procedural syntax.
The approach taken throughout is to emphasize realistic code like that used
in practice, rather than giving the formal definitions and explanations that
are already available in the documentation that is supplied with Python and
available online at http://www.python.org.

Figure 1.1 The IDLE Python Shell window

If you have not already installed Python and PyQt, it would be a good idea to
do so: That way you will be able to try out the examples that accompany this
book (downloadable from http://www.qtrac.eu/pyqtbook.html). See Appendix A
for installation details. One advantage of installing the software is that the
IDLE integrated development environment is installed along with Python.

9

http://www.python.org
http://www.qtrac.eu/pyqtbook.html

10 Introduction

The IDLE Development Environment

The full installation of Python includes IDLE, a basic but very use-
ful integrated development environment. When IDLE is launched (click
Start→All Programs→Python 2.x→IDLE on Windows, or click Finder→Applica-
tions→MacPython 2.x→IDLE on Mac OS X, or run idle & in a console on Linux),
it presents its Python Shell window.

As the screenshot in Figure 1.1 shows, IDLE has a rather retro Windows 95
look. This is because it is written in Tkinter rather than in PyQt. We’ve
chosen to use IDLE because IDLE comes as standard with Python and is
very simple to learn and use. If you want to use a much more powerful and
modern-looking IDE, you might prefer Eric4 which is written in PyQt, or
one of the other Python IDEs that are available. However, if you are new to
Python, we recommend that you start out with the simpler IDLE, and once
you are more experienced with PyQt, then trying the other IDEs to see if you
prefer one of them. And of course, you could simply use a plain text editor
and debug using print statements and not use an IDE at all.

IDLE provides three key facilities: the ability to enter Python expressions
and code and to see the results directly in the Python Shell; a code editor
that provides Python-specific color syntax highlighting; and a debugger
that can be used to step through code to help identify and kill bugs. The
Python Shell is especially useful for trying out simple algorithms, snippets
of code,and regular expressions,and can also be used as a very powerful and
flexible calculator.

Executing Python Code

Before we can really explore the Python language we need to know how to
execute Python code. We will show this by reviewing a tiny example program
that is just one line long.

Chapter 1. Data Types and Data Structures

We must use a plain text editor for working with Python files.★ On Windows it
is possible to use Notepad,but IDLE includes a suitable Python editor designed
specifically for editing Python code:Simply start IDLE and then click File→New
Window.

We will type the following line into a file, called hello.py:

print "Hello World"

Note that no semicolon is necessary: In Python newline acts as a statement
separator. Also, we do not need a newline, “\n”, in the string, since print

automatically adds a newline unless we suppress it with a trailing comma.

★The programs in this book are written using ASCII characters, with escape sequences where Uni-
code is required. It is possible to use Latin-1, UTF-8, or other encodings for strings and comments
in Python programs, as explained in the documentation under “Encoding declarations”.

Executing Python Code 11

Assuming that we have saved the code in the file hello.py (in the directory
C:\pyqt\chap01 if using Windows), we can start up a console (click Start→All Pro-
grams→Accessories→Console on Windows XP—sometimesConsole is called Com-
mand Prompt; or run Terminal.app from /Applications/Utilities on Mac OS X),
change to that directory, and execute the program like this:

C:\>cd c:\pyqt\chap01

C:\pyqt\chap01>hello.py

As long as Python is correctly installed, Windows will recognize the .py file
extension and give the file to python.exe to execute. The program will print
“Hello World” on the console as we would expect.★

On Mac OS X and Linux we must explicitly run the interpreter by typing its
name and the file’s name at the console’s prompt, like this:

% python hello.py

This will work providing that Python is installed and in your PATH. Alternative-
ly, for Linux and Mac OS X, we can add an additional “shebang” (shell execute)
comment line which tells the operating system to use a Python interpreter,
making the hello.py file two lines long:

#!/usr/bin/env python

print "Hello World"

For this to work on Mac OS X and Linux, the file’s permissions must be set
correctly. For example, at the console prompt in the same directory as the file,
enter chmod +x hello.py to make the file executable.

Python comments start with “#” and continue until the end of the line. This
means that it is perfectly safe to add the “shebang” line to all Python programs,
since the comment is ignored on Windows but on Linux it tells the operating
system to execute the file using a Python interpreter. Appendix A shows how
to associate the Python interpreter with .py and .pyw files on Mac OS X.

When we speak of executing a Python program, what happens behind the
scenes is that Python reads the .py (or .pyw) file into memory, and parses it, to
get a bytecode program that it then goes on to execute. For each module that is
imported by the program, Python first checks to see whether there is a precom-
piled bytecode version (in a .pyo or .pyc file) that has a timestamp which corre-
sponds to its .py file. If there is, Python uses the bytecode version; otherwise, it
parses the module’s .py file, saves it into a .pyc file, and uses the bytecode it just
generated. So, unlike Java, we don’t have to explicitly bytecode-compile any
modules, whether they are supplied with Python or are ones we have written
ourselves. And in most Python installations, the supplied modules are com-

★Mac OS X users note that whenever we refer to a console, this is the same as a Mac Terminal.

12 Chapter 1. Data Types and Data Structures

piled as part of the installation process so as to avoid having to compile them
whenever a Python application that uses them is run.

Variables and Objects

In most programming languages, including C++ and Java, we must declare
each variable, specifying its type, before it can be used. This is called static
typing, because the compiler knows at compile time what type each variable is.
Python, like most very high level languages, uses a different approach: Vari-
ables have no type restrictions (dynamic typing), and they don’t need to be
declared.

We could learn about Python’s variables and identifiers by creating and
executing a file, as we did with hello.py in the preceding section. But for trying
out small code snippets we don’t need to create a file at all. We can just enter
the lines directly in the IDLE Python Shell window at the >>> prompt:

>>> x = 71
>>> y = "Dove"

The whitespace around the assignment operator = is optional but is included
because it makes the code easier to read. As a matter of style we will always
put one space before and after binary operators. On the other hand, it is
important that each statement occupies its own line and has no extraneous
leading whitespace. This is because Python uses indentation and line breaks
to signify its block structure, rather than the braces and semicolons used by
many other programming languages.

Now we are ready to review what the two lines actually do. The first line
creates an object of type int and binds the name x to it.★ The second line creates
an object of type str (an 8-bit string type) and binds the name y to it.

Some Python programmers refer to names (such as the x and y used earlier),
as object references since they refer to objects rather than being objects in their
own right. For basic data types like int and str it makes no difference whether
we see their variables as “objects” or as “object references”; they behave in the
same way as they do in other programming languages:

>>> x = 82
>>> x += 7
>>> x
89

Later on we will see cases where the fact that Python variables are Lists

☞ 31

object
references makes a difference.

★This is similar to the Java assignment, Integer x = new Integer(71); for C++ a near-equivalent
would be int xd = 71; int &x = xd;.

Variables and Objects 13

Functions, Methods, and Operators Terminology

The term function is used to refer to a subroutine that can be executed
independently, and the term method is used to refer to a function that can
only be executed when bound to an object, that is, called on an instance of a
particular class.

An operator may be independent or it may be bound to an object, but unlike
functions and methods, operators do not use parentheses. Operators that
are represented by symbols such as +, *, and < are rather obviously called
operators, but operators that have names such as del and print are often
called statements.
Python functions do not have to be pure in the mathematical sense: They
do not have to return a value and they can modify their arguments. Python
functions are like C and C++ functions, or like Pascal functions that take var
parameters. Python methods are like C++ or Java member functions.

Python has two ways of comparing objects: by “identity” and by “value”. An
object’s identity is effectively its address in memory, and this is what an object
reference holds. If we use comparison operators, such as == and <, we get
value comparison. For example, two strings are equal using == if they both
contain the same text. If we use is we get identity comparison, which is fast
because we are just comparing two addresses and don’t have to look at the
objects themselves. An object’s identity can be obtained by calling id() on an
object reference.

Python has a special object called None. This can be assigned to any variable
and it means that the variable has no value. There is only ever one instance of
the None object, so we can always use the fast is and is not comparisons when
testing for it.

Notice that we wrote x on its own at the >>> prompt. If we write an expression
or variable in IDLE, its value is automatically printed. In a program, we must
use an explicit print statement to print an expression. For example:

print x

Python’s print statement is an operator, not a function, and for this reason
it is invoked without using parentheses (just as we use + and other operators
without them).

Earlier we said that Python uses dynamic typing. There are two factors
involved in this. First, we can assign any object to any variable; for example,
we could write:

x = 47

x = "Heron"

14 Chapter 1. Data Types and Data Structures

After the first line x’s type is int, and after the second line x’s type is str, so
clearly the type associated with the name x is determined by what the name is
bound to, and not by any intrinsic property of its own. For this reason , we do
not need to associate a particular type with a particular name.

The second aspect of Python’s dynamic typing is that the typing is
strong: Python does not permit operations between incompatible types, as the
following example, typed into IDLE, shows:

>>> x = 41
>>> y = "Flamingo"
>>> x + y

Traceback (most recent call last):

File <pyshell#2>, line 1, in <module>
x + y

TypeError: unsupported operand type(s) for +: 'int' and 'str'

When we attempted to apply the binary + operator, Python raised a TypeError

exception and refused to perform the operation.★ (Exceptions are covered in
Chapter 2.)

If we were to assign to y a type compatible with x’s type, such as an int or float,
the addition would work fine:

>>> x = 41
>>> y = 8.5
>>> x + y

49.5

Although x and y are of different types (int and float), Python provides the
same kind of automatic type promotion that other languages use, so the x is
converted to a float and the calculation performed is actually 41.0 + 8.5.

a = 9 a 9
The rectangles represent the objects, and the
circles the object references, that result from
the execution of the code shown.

b = 8

c = b
b 8

c

d 7d = 7

e = d

d = "A sentence" e "A sentence"

Figure 1.2 Object references and objects

Assigning a value to a variable is called binding, since we bind names to
objects. If we assign a new object to an existing variable, we are said to be

★The line of the traceback, File "<pyshell#2>", and so on, varies every time, so your line may be
different from the one shown here.

Variables and Objects 15

rebinding the name. This is illustrated in Figure 1.2. When we do this, what
happens to the object the name was originally bound to? For example:

>>> x = "Sparrow"

>>> x = 9.8

What has happened to the str object that holds the text “Sparrow”? Once an
object has no names bound to it, it is scheduled for garbage collection, and in
due course it may be deleted from memory. This is very similar to how things
work in Java.

Python variable names consist of ASCII letters, digits, and underscores (_).
Variable names should begin with a letter, and they are case-sensitive (rowan,
Rowan, and roWan are three different variables). No Python variable should be
given the name of any of Python’s keywords (see Table 1.1), nor of Python’s
built-in constants such as None, True, or False.

Numbers and Strings

Python provides several numeric types and two string types. What all these
types have in common is that they are immutable. This means that in Python,
numbers and strings cannot be changed. This sounds rather limiting, but
thanks to Python’s augmented assignment operators (+=, *=, etc.), it simply is
not a problem.

Before looking at the specific data types we will look at one important conse-
quence of the immutability. Let us type some simple expressions into IDLE:

>>> x = 5
>>> y = x
>>> x, y

(5, 5)

Here we have created an object of type int with the value 5 and bound the
name x to it. We have then assigned x to y which has the effect of binding
y to the same object that x is bound to. So, when we print them in IDLE (in
a program we would have to write print x, y, but in IDLE we just write an
expression and IDLE Tuples

☞ 29

automatically prints it), IDLE outputs the values as a
tuple—essentially a read-only list of values.

Now let us increment y:

>>> y += 1
>>> x, y

(5, 6)

We might have expected both x and y to have the value 6 since both referred
to the same integer object. But because Python numbers (and strings) are
immutable, this does not happen. The augmented assignment operators when
applied to immutable objects are mere syntactic sugar: They do not change

16 Chapter 1. Data Types and Data Structures

Table 1.1 Python’s Keywords★

and class elif finally if lambda print while

as2.6 continue else for import not raise with2.6

assert1.5 def except from in or return yield2.3

break del exec global is pass try

the objects they are applied to. So what really happened is this: y = y + 1, so
a new integer object was created (with value 6), and y was bound to this new
object. As a result, when we asked IDLE to print x and y, they were referring
to different objects, each with a different value.

We need to bear in mind the fact that the = operator performs a binding oper-
ation rather than an assignment. The name on the left-hand side is bound (or
rebound if the name already Shallow

and
Deep
Copying
sidebar

☞ 34

exists) to the object on the right-hand side.For im-
mutable objects, it makes no difference at all, as we will see in a moment. But
for mutable objects, it means that using = will not give us a copy (it just binds
another name to the original object), so when we really need a copy we must
use a copy() method, or a function from Python’s copy module, as discussed
shortly.

In practice, the immutability of numbers and strings is very convenient.
For example:

>>> s = "Bath"
>>> t = " Hat"
>>> u = s
>>> s += t
>>> s, t, u

('Bath Hat', ' Hat', 'Bath')

Notice that we assigned string s to u. Intuitively we would expect that u holds
the value “Bath” that was, in effect, assigned to it, and we do not expect that
applying += to s will have any side effects, even though both s and u refer to the
same string.And our intuition is correct:u’s value is not changed because when
+= is applied to s, a new string object is created and bound to s, and u is left as
the only object now referring to the original “Bath” string.

Integers and Long Integers

Python provides three integral types:bool, int, and long. The bool type can only
take the values True or False, and when used in a numeric context these are
treated as 1 and 0. The long type can hold an integer whose size is limited only
by the machine’s available memory, so integers hundreds of digits long can be
created and processed. The only downside is that the long type is slower to pro-

★The numbers beside some of the keywords indicate the version of Python that introduced them.

Numbers and Strings 17

cess than the int type. The int type is the same signed integer type provided by
most programming languages;however, if an operation is applied to an int that
would make its value exceed its range (for example, a value greater than 231 - 1
or less than -231 on some machines), the int is automatically type promoted into
a long.

Python uses the suffix L to signify a long, and we can do the same in code when
necessary. For example:

>>> p = 5 ** 35

>>> q = 7L

>>> r = 2 + q
>>> p, q, r

(2910383045673370361328125L, 7L, 9L)

Integer literals are assumed to be base 10 (decimal) numbers, except those that
start with a 0x, which are treated as hexadecimal (base 16), for example, 0x3F,
which is decimal 63, and those that start with 0 which are treated as octal (base
8). Any kind of integer literal can have L appended to it to make it into a long.

Python supports the common operators that we would expect for numbers,
including +, -, *, /, %, and their augmented cousins, +=, -=, *=, /=, and %=. Python
also provides ** for raising a number to a power.

By default, Python’s / division operator performs truncating division when
both operands are of type int. For example, 5 / 3, produces 1. This is the norm
in most programming languages, but it can be inconvenient in Python since
dynamic typing means that a variable might be an int or a float at different
times. The solution is to tell Python to always do “true division”, which pro-
duces floating-point results whenever necessary, and to use the // operator
when we really want truncation to occur. We will see how to do this in Chap-
ter 4.

Floats and Decimals

Python provides three kinds of floating-point values: float, Decimal, and
complex. Type float holds double-precision floating-point numbers whose range
depends on the C (or Java) compiler Python was built with; they have limited
precision and cannot be reliably compared for equality. Numbers of type float

are written with a decimal point, or using scientific notation, for example, 0.0,
5.7, 8.9e-4. It is salutary to type these into IDLE:

>>> 0.0, 5.7, 8.9e-4

(0.0, 5.7000000000000002, 0.00088999999999999995)

The inaccuracy is not a Python-specific problem:Computers represent floating-
point numbers using base 2, which can represent some decimals exactly (such
as 0.5) but others only approximately (such as 0.1). Furthermore, the represen-
tation uses a fixed number of bits, so there is a limit to the number of digits
that can be held.

18 Chapter 1. Data Types and Data Structures

In practice this is rarely a problem since most floating-point numbers use 64
bits which is more than sufficient in most cases. But if we need high precision,
Python’s Decimal numbers from the decimal module can be used. These perform
calculations that are accurate to the level of precision we specify (by default,
to 28 decimal places) and can represent periodic numbers like 0.1 exactly; but
processing is a lot slower than with normal floats. Because of their accuracy,
Decimal numbers are suitable for financial calculations.

Before Decimal numbers can be used, the decimal module must be imported.The
syntax for doing this is the same whether we are writing code in a .py file, or
typing in IDLE as we are here:

>>> import decimal

Here we have imported the decimal module into our IDLE Shell window. (The
import semantics are explained in the Importing Objects sidebar.) Integer
literals can be passed to the Decimal constructor, but because Decimals are
high-precision and floats are not, we cannot pass floats; instead, we must
provide floating-point values as strings. For example:

>>> decimal.Decimal(19), decimal.Decimal("5.1"),

decimal.Decimal("8.9e-4")

(Decimal("19"), Decimal("5.1"), Decimal("0.00089"))

The number decimal.Decimal("5.1") is held exactly; as a float it would proba-
bly be something like 5.0999999999999996.Similarly,decimal.Decimal("0.00089")
would be something like 0.00088999999999999995. We can easily convert from
Decimal to float, although we may lose precision by doing so:

>>> d = decimal.Decimal("1.1")

>>> f = float(d)

>>> f
1.1000000000000001

Python also provides complex numbers as a built-in data type. These numbers
consist of a real and an imaginary component, the latter indicated by the suffix
j.★ For example:

>>> c = 5.4+0.8j

>>> type(c)

<type 'complex'>

Here we have entered a complex number (with the syntax real_part+imagin-

ary_partj), and used Python’s type() function to tell us what type the c is
bound to.

★Mathematicians use i for imaginary numbers, whereas engineers, and Python, use j.

Numbers and Strings 19

Importing Objects

Python has a large and comprehensive library of modules that provides a
huge amount of predefined functionality. We can use this functionality by
importing the constants, variables, functions, and classes that we want. The
general syntax for importing is:

import moduleName

We can then access objects inside the module using the dot operator. For
example, the random module provides the randint() function, which can be
imported and used like this:

import random

x = random.randint(1, 10)

Note that it is common to put import statements at the beginning of .py files,
but they can be put elsewhere—for example, inside a function definition.

One benefit of Python’s module system is that each module acts as a names-
pace, so we avoid name collisions effortlessly. For example, we may have de-
fined our own randint() function, but there is no name conflict because the
imported one in the example is accessed using the fully qualified name ran-

dom.randint(). And as we will see in Chapter 3, we can create our own mod-
ules and import our own objects.

Modules themselves can contain other modules, and for very large modules,
it is more convenient to import objects directly into the current namespace.
Python provides a syntax for this. For example:

from PyQt4.QtCore import *
x = QString()

y = QDate()

Here we have imported every object, that is, all the classes from the PyQt4

module’s QtCore module, and this allows us to use their unqualified names.
Using this syntax is frowned on by some developers, but since we know that
almost all of the PyQt objects begin with a capital “Q”, providing we don’t
create any of our own objects with names beginning with “Q”, we will not get
any name collisions and can type far less. However, for those who prefer to
use fully qualified names in all cases, the plain import syntax can be used:

import PyQt4

x = PyQt4.QtCore.QString()

y = PyQt4.QtCore.QDate()

For the sake of brevity we will use the from … import syntax for the PyQt4

modules, although we will use the plain import syntax for everything else.

20 Chapter 1. Data Types and Data Structures

Python’s floating-point numbers provide the same basic operations as its in-
tegral numbers, with integers being promoted to floating-point when numeric
types are mixed in the same expression.

Bytestrings, Unicode Strings, and QStrings

There are two built-in string types in Python: str which holds bytes, and uni-

code which holds Unicode characters. Both types support a common set of
string-processing operations. Like numbers, Python strings are immutable.
They are also sequences, so they can be passed to functions that accept
sequences and can use Python’s sequence QString

☞ 28

operations, for example, the len()

function which returns the length of a sequence. PyQt provides a third string
type, QString.

If we only deal with 7-bit ASCII characters, that is, characters in the range
0–127, and if we want to save some memory, we can use strs. However, if we
use an 8-bit character set, we must be careful that we know which codec we are
using. In Western Europe, for example, 8-bit strings are often encoded using
the Latin-1 encoding. In general, it is not always possible simply by examining
the bytes to determine which 8-bit encoding is used for a particular string (or
file). Modern GUI libraries, including Qt, use Unicode strings, so the safest
route is to use strs for 7-bit ASCII and for raw binary 8-bit bytes, and unicode

or QString otherwise.

Python strings are created by using quotes:

>>> g = "Green"

>>> t = ' trees'
>>> g + t

'Green trees'

Python does not mind whether we use double or single quotes as long as we use
the same kind at both ends.

To force a string literal to be of type unicode, we precede its initial quote
with u:

>>> bird = "Sparrow"

>>> beast = u"Unicorn"
>>> type(bird), type(beast), type(bird + beast)

(<type 'str'>, <type 'unicode'>, <type 'unicode'>)

Notice that we can use binary + to concatenate strings, and that if we involve
str and unicode objects in the same operation the str operands are promoted
to unicode and the resultant object is of type unicode. (If the str contains
characters outside the 7-bit ASCII range, Python raises a UnicodeEncodeError

exception; exceptions are covered in Chapter 2.)

In Python there is no separate “character” type: A single character is a string
of length 1. We can get a character from a byte value using chr(), which

Numbers and Strings 21

accepts an integer value in the range 0–255. The Python documentation does
not specify which encoding is used for values outside the ASCII range, (i.e.,
above 127). For Unicode, we can use unichr(), which accepts an integer in the
range 0–65535.★ To convert the other way, from a character to its integer value
(ASCII value or Unicode code point), we can use ord(). For example:

>>> euro = unichr(8364)

>>> print euro

>>> ord(euro)
8364

Why did we use print instead of letting IDLE output the result? Because IDLE
shows non-ASCII characters in strings using hexadecimal escapes, so without
print IDLE will output u'\u20ac'.

It is also possible to access Unicode characters by name:

>>> euro = u"\N{euro sign}"

>>> print euro

If we need to include special characters in a string we can escape them using
a backslash, (“\”). Table 1.2 shows the escapes available; the Unicode ones only
make sense inside unicode strings.

Here are two examples that show how to escape quotes:

"He said \"No you don't!\" again."

'What\'s up with him?'

We don’t need to escape single quotes inside strings delimited by double
quotes, and we don’t need to escape double quotes inside strings delimited by
single quotes.

For multiline strings we can use “triple” quotes:

'''This string has three lines in it, with a 'quote',

another "quote", and with just one embedded newline \

since we have escaped one of them.'''

These kinds of strings can include escaped characters just like normal strings,
and can be delimited by three single quotes as shown, or by three double
quotes. Newlines in triple-quoted strings, and in Python code, can be escaped
by preceding them with a backslash. (This works correctly on Windows too,
even though Windows uses two characters at the end of lines rather than
one.)

★The range extends to 1114111 if Python was configured to use the UCS-4 representation.

22 Chapter 1. Data Types and Data Structures

Table 1.2 Python’s String Escapes

Escape Meaning

\newline Escape (i.e., ignore) the newline

\\ Backslash (\)

\' Single quote (’)

\" Double quote (")

\a ASCII bell (BEL)

\b ASCII backspace (BS)

\f ASCII formfeed (FF)

\n ASCII linefeed (LF)

\N{name} Unicode character name

\r ASCII carriage return (CR)

\t ASCII tab (TAB)

\uhhhh Unicode character with the given 16-bit hexadecimal value

\Uhhhhhhhh Unicode character with the given 32-bit hexadecimal value

\v ASCII vertical tab (VT)

\ooo Character with the given octal value

\xhh Character with the given hexadecimal value

Python strings are sequences where individual characters can be accessed
by positional indexing, with the first character at index position 0. It is also
possible to index from the end of the string, with the last character’s index
position being -1. For example:

>>> phrase = "The red balloon"

>>> phrase[0], phrase[5], phrase[-1]

('T', 'e', 'n')

Negative indexes are used to access characters from right to left, with the right
most character position being -1, the one to the left of that at position -2, and
so on.

Python sequences support slicing, which means that we can copy subsequences
from a sequence. A slice has one, two, or three colon-separated components: the
start (which defaults to index 0), the end (which defaults to the length of
the sequence), and another one which we will ignore. Slices are taken from
and including the start index up to but excluding the end index. Here are
some examples:

>>> phrase = "The red balloon"

>>> phrase[:3]

Numbers and Strings 23

'The'
>>> phrase[-3:]

'oon'
>>> phrase[4:7]

'red'

Since Python strings are immutable it is not possible to assign to a character
or slice inside a string:

>>> p = "pad"

>>> p[1] = "o" # WRONG

Traceback (most recent call last):

File <pyshell#64>, line 1, in <module>

p[1] = o

TypeError: object does not support item assignment

The easiest way to insert a character into a string is by using the slicing
syntax:

>>> p = "pad"

>>> p = p[:1] + "o" + p[2:]
>>> p

'pod'

It may appear annoying that we have to specify literal numbers, but in
practical programming we normally get the indexes using method calls—for
example, using the find() method.

Other approaches are possible. For example:

>>> p = "pad"

>>> p = "o".join((p[:1], p[2:]))
>>> p

'pod'

Programmers from a Pascal or C++ background who are used to mutable
strings may find the immutability of strings awkward at first. Python does, of
course, offer mutable strings; they are provided by the StringIO module and the
(faster) cStringIO module. PyQt’s QString class is also mutable. But with prac-
tice, the Python way of working with immutable strings, and in particular, the
idiom shown above, concatenating using the join() method,will soon be second
nature. We will look at another idiom, used for “composing” strings, shortly.

Python strings have many useful methods, but we will concentrate on the most
commonly used ones. In Python, methods are invoked on object references by
using the dot . operator to access the method, and parentheses () to signify
that we are performing a method (member function) call.★ For example:

★As noted earlier, parentheses are not used with operators such as + and print.

24 Chapter 1. Data Types and Data Structures

>>> line = "The quick brown fox."

>>> line.find("q")

4

The find() method returns the index position of the leftmost occurrence of the
string it is given as an argument, inside the string it is applied to. It returns -1
on failure.

Python also provides an index() method that has identical usage, but which
raises a ValueError exception on failure. Other sequence classes (such as lists)
also have an index() method, so having one for strings gives consistency.

Since we can use either find() or index() on strings, is there any reason to
prefer one over the other? For one-off searches, it is often convenient to use
find() and just check the return value. Excep-

tions vs.
testing
for
errors

☞ 68

But if we have a block of code where
we are performing lots of searches, using find() forces us to check the return
value of every search, whereas using index() allows us to assume the result is
always valid, and if it isn’t, to handle any errors in a single exception handler.
Of course, if we don’t catch the exception, it will be passed up the call stack,and
if it isn’t caught anywhere it will cause the application to terminate. We use
both approaches throughout the book, using whichever one is most appropriate
on a case-by-case basis.

String methods can be applied both to string objects and to string literals:

>>> "malthusian catastrophe".title()

'Malthusian Catastrophe'

The title() method returns a string that is a copy of the string it is applied
to, but with the first letter of every word capitalized. Python provides string
formatting of data types using a syntax that is very similar to the C library’s
printf() function.

To achieve formatting we use the binary % operator,which takes a format string
left-hand argument and a right-hand object (often a Tuples

☞ 29

tuple of objects),which are
to be formatted. For example:

>>> "There are %i items" % 5
'There are 5 items'

The %i in the string is replaced by the number 5. The letter following the % in
a string format specifies the type of object that is expected, with %i signifying
an integer.

Here is an example that shows three different types being replaced, with
arrows showing which % item is replaced by which tuple element:

>>> "The %i %s cost %f dollars" % (3, "fish", 17.49)

'The 3 fish cost 17.490000 dollars'

Numbers and Strings 25

Table 1.3 Selected String Methods and Functions

Syntax Description

x in s Returns True if string x is a substring of string s

x not in s Returns True if x is not a substring of string s

x + s Returns the concatenation of strings x and s

s * i Returns a string consisting of int i concatenations of
string s. For example, "Abc" * 3 produces "AbcAbcAbc".

len(s) Returns the length of string s; this is a byte count if s is
of type str and a character count if s is of type unicode

s.count(x) Returns the number of times string x occurs in string s.
This method, and several others, can take optional start
and end arguments to restrict the search to a slice of the
string they are called on.

s.endswith(x) Returns True if string s ends with string x

s.startswith(x) Returns True if string s starts with string x

s.find(x) Returns the index position of the leftmost occurrence of x

in s; returns -1 if x is not found
s.rfind(x) Like find(), but searches from right to left
s.index(x) Returns the index position of the leftmost occurrence of x

in s; raises a ValueError exception if no x is found
s.rindex(x) Like index(), but searches from right to left
s.isdigit() Returns True if the string is not empty and the character

or characters it contains are all digits
s.isalpha() Like isdigit(), but checks for letters
s.join((x,…)) Returns a string which is the concatenation of the given

sequence delimited by the string on which the method is
called. For example,":".join(("A", "BB", "CCC")) returns
"A:BB:CCC". The delimiter can be empty.

s.lower() Returns a lower-cased copy of string s

s.upper() Returns an upper-cased copy of string s

s.replace(x, y) Returns a copy of string s with any occurrences of string
x replaced by copies of string y

s.split() Returns a list of strings, splitting on whitespace. For
example, "ab\tc d e".split() returns ["ab", "c", "d",

"e"]. This method can be given a first argument which is
a string to split on, and a second argument which is the
maximum number of splits to make.

s.strip() Returns a copy of the string with leading and trailing
whitespace removed. Accepts an optional string argu-
ment specifying which characters should be removed.

26 Chapter 1. Data Types and Data Structures

The % items are called format specifiers, and format strings contain at least
one. Format specifiers consist of a percent (%) symbol followed by a formatting
character. The percent symbol itself is specified by using %%. In the example,
we used %i which is the format specifier for an int, %s which is the specifier for
a string, and %f which is the specifier for a float.

Earlier we looked at how to insert a substring into a string. We showed how
to do this using slicing, and the more Pythonic way using the string join()

method. Here is a third way, using format specifiers:

>>> p = "pad"

>>> p = "%so%s" % (p[:1], p[2:])
>>> p

'pod'

Here we create a new string which consists of a string (which comes from the
first slice of p), “o”, and another string (from the second slice of p). The join()

approach shown earlier is used for concatenating strings; this approach is used
for “composing” strings.

We can exercise some control over the formatting of % items by putting some
information between the % and the letter. For example, to show only two digits
after the decimal place for a float we can use the specifier %.2f:

>>> "The length is %.2f meters" % 72.8958

'The length is 72.90 meters'

Here are a few more examples, two of which show the use of the % operator in
conjunction with the print statement:

>>> print "An integer", 5, "and a float", 65.3

An integer 5 and a float 65.3

>>> print "An integer %i and a float %f" % (5, 65.3)

An integer 5 and a float 65.300000

>>> print "An integer %i and a float %.1f" % (5, 65.3)

An integer 5 and a float 65.3

In many cases, %i (and its synonym, %d), %f, and %s suffice. The full details of
what format specifiers are available and how they can be modified to give spe-
cific results are given in the Python documentation; in this case, look for “String
Formatting Operations”. Other approaches to string formatting are also possi-
ble with Python, for example,Perl-like interpolation is provided by the Template

class in the string module. It is even possible to use a C++-like syntax; see the
recipe “Using a C++-like iostream Syntax”, in the Python Cookbook. (See the
Python Documentation sidebar.)

Notice that the print statement automatically outputs a space between each
argument it prints. It is possible to avoid this using sys.stdout.write() instead
of print; more coverage of write() is given in Chapter 6.

Numbers and Strings 27

Python Documentation

Python is supplied with a large amount of documentation. Most of the doc-
umentation is of good quality, but there are a few areas where the coverage
is rather thin. Navigating the documentation using the HTML version takes
practice because it is organized more like a physical book than an online doc-
ument and has far too few cross-reference links between pages.

Windows users are fortunate here because for them the documentation
is supplied in Windows help file format. Click Start→All Programs→Python
2.x→Python Manuals to launch the Windows help browser. This tool has both
an Index and a Search function that makes finding documentation easy. For
example, to find the information about string format specifiers, simply enter
“formatting” in the Index line edit and the entry “formatting, string (%)”
will appear.

It is well worth skimming through the documentation. We suggest that you
look at the “Library Reference” page (lib.html) to see what Python’s stan-
dard library offers, and clicking through to the documentation of whichever
topics are of interest. This should provide an initial impression of what is
available and should also help you to establish a mental picture of where
you can find the documentation you are interested in.

Note that some topics are covered under more than one heading. For exam-
ple, to read about strings, see “Sequence Types”, “String Methods”, “String
Formatting Operations”, and “String Services”. Similarly, for files and direc-
tories, see “File and Directory Access”, “Data Compression and Archiving”,
and “Files and Directories”.
For those who prefer printed information, the following books are worth con-
sidering.

• Core PYTHON Programming by Wesley Chun. This is a Python
tutorial that may be suitable if you are completely new to Python and
want a slower pace than Part I of this book provides.

• Python in a Nutshell by Alex Martelli. This is an excellent reference
book that gives detailed and accurate coverage of the Python language
and Python’s standard library.

• Python Cookbook 2nd Edition, edited by Alex Martelli, Anna Martel-
li Ravenscroft, and David Ascher. This book provides lots of small
practical functions, classes, snippets, and ideas, and will help broad-
en any Python programmer’s awareness of what can be done
with Python. The recipes are also available online at http://aspn.

activestate.com/ASPN/Python/Cookbook.

For online Python information, the starting point is http://www.python.org.
This site is also home to the Python wiki. PyQt-specific information is
provided at http://www.riverbankcomputing.co.uk.The PyQt wiki is at http://
www.diotavelli.net/PyQtWiki.

http://www.python.org
http://aspn.activestate.com/ASPN/Python/Cookbook
http://aspn.activestate.com/ASPN/Python/Cookbook
http://www.diotavelli.net/PyQtWiki
http://www.diotavelli.net/PyQtWiki
http://www.riverbankcomputing.co.uk

28 Chapter 1. Data Types and Data Structures

When using PyQt we have access to an additional string type, QString. Unlike
Python’s str and unicode, QString is mutable; this means that we can change
QStrings in place, inserting and removing substrings, and changing individual
characters.Qt QString has a rather different API from that provided by str and
unicode. (Qt provides QString because Qt is written in C++, which does not yet
have built-in Unicode support.)

QString holds Unicode characters, but depending on which version of Python
we are using, the internal representation may be different from Python’s Uni-
code representation; this doesn’t really matter, since PyQt can easily convert
between unicode and QString. For example:

>>> from PyQt4.QtCore import *
>>> a = QString("apple")

>>> b = unicode("baker")

>>> print a + b

applebaker

>>> type(a + b)

<class 'PyQt4.QtCore.QString'>

Here we import all the classes from the QtCore module, made available to us
through the PyQt4 module. When we perform operations involving QStrings
and Python strings, the resultant strings are always QStrings as the type()

function reveals.

When using PyQt, Qt methods that take string arguments can be given str,
unicode, or QString types, and PyQt will perform any necessary conversion
automatically. Qt methods that return strings always return QStrings. In view
of Python’s dynamic typing, we can easily become confused and not be sure
whether we have a QString or a Python string. For this reason, it is wise to
decide on a policy for string usage so that we always know where we stand.

The policy we use with PyQt is as follows:

• Use type str only when working with strictly 7-bit ASCII strings or with
raw 8-bit data, that is, with raw bytes.

• For strings that will be used only by PyQt functions, for example, strings
that are returned by one PyQt function only to be passed at some point to
another PyQt function—do not convert such strings. Simply keep them as
QStrings.

• In all other cases, use unicode strings, converting QStrings to unicode as
soon as possible. In other words, as soon as a QString has been returned
from a Qt function, always immediately convert it to type unicode.

This policy means that we avoid making incorrect assumptions about 8-bit
string encodings (because we use Unicode). It also ensures that the strings we
pass to Python functions have the methods that Python expects: QStrings have
different methods from str and unicode, so passing them to Python functions

Numbers and Strings 29

can lead to errors. PyQt uses QString rather than unicode because when PyQt
was first created, Python’s Unicode support was nowhere near as good as it
is today.

Collections
Once we have variables, that is, individual named object references to objects
of particular types, it is natural to want to have entire collections of object
references. Python’s standard collection types hold object references, so they
can, in effect, hold collections of any type of object. Another consequence of
collections using object references is that they can refer to objects of different
types: They are not restricted to holding items that are all of a single type.

The built-in collection types are tuple, list, dict (dictionary),set, and frozenset.
All except tuple and frozenset are mutable, so items can be added and deleted
from lists, dictionaries, and sets. Some additional mutable collection types are
provided in the collections module.★

Python has one collection type in its standard library that does not hold object
references; instead, it holds numbers of a specified type. This is the array type
and it is used in situations where large numbers of numbers need to be stored
and processed as efficiently as possible.

In this section, we will look at Python’s built-in collection types.

Tuples

A tuple is an ordered sequence of zero or more object references.String
slicing

22 ☞

Like strings
(and as we will see shortly, like lists), tuples support sequence functions such
as len() as well as the same slicing syntax that we saw earlier. This makes it
really easy to extract items from a tuple. However, tuples are immutable so
we cannot replace or delete any of their items. If we want to be able to modify
an ordered sequence, we simply use a list instead of a tuple; or if we already
have a tuple but want to modify it, we just convert it to a list and then apply
our changes.

We have already had some informal exposure to tuples; for example, some of
our interactions in IDLE produced results that were wrapped up as tuples, and
we also used tuples to provide multiple arguments to the % operator.

Here are some examples that show how to construct tuples:

>>> empty = ()

>>> type(empty)

<type 'tuple'>

>>> one = ("Canary")

★The Qt library provides its own rich set of container classes for C++, but these are not available
in PyQt, and in any case, Python’s own collection classes are perfectly good to use.

30 Chapter 1. Data Types and Data Structures

>>> type(one)

<type 'str'>

>>> one = ("Canary",)

>>> type(one)

<type 'tuple'>

Creating an empty tuple is simple, but for a one item tuple, we must use a
comma to distinguish it from a parenthesized expression:

>>> things = ("Parrot", 3.5, u"\u20AC")

>>> type(things)

<type 'tuple'>

Tuples can hold items of any type; here we have str, float, and unicode items.
It is also possible to drop the parentheses for tuples that have at least two items
and where the meaning is unambiguous:

>>> items = "Dog", 99, "Cow", 28

>>> type(items)

<type 'tuple'>

Tuples can be arbitrarily nested and can be sliced, as these examples show:

>>> names = "Albert", "Brenda", "Cecil", "Donna"

>>> names[:3]

('Albert', 'Brenda', 'Cecil')

>>> names[1]

'Brenda'

We create a tuple of names, then take a slice of the first three items, and then
look at the item at index position 1. Like all Python sequences, the first item is
at position 0:

>>>names = names[0], names[1], "Bernadette", names[2], names[3]
>>> names
('Albert', 'Brenda', 'Bernadette', 'Cecil', 'Donna')

Now we have changed the names tuple to refer to a new tuple with an extra item
in the middle. It might be tempting to write names[:1] instead of names[0],

names[1], and similarly names[2:] for the last two names, but if we did so we
would end up with a three-item tuple:

(('Albert', 'Brenda'), 'Bernadette', ('Cecil', 'Donna'))

This is because when we use slicing on a tuple the slices are always tuples
themselves.

>>> names
('Albert', 'Brenda', 'Bernadette', 'Cecil', 'Donna')

>>> names = names[:4]

Collections 31

>>> names
('Albert', 'Brenda', 'Bernadette', 'Cecil')

Here, we have, in effect, chopped off the last name by taking a tuple of the
first 4 items, that is, those with index positions 0, 1, 2, and 3. In slicing, the first
number is the first index and this item is included in the result, and the second
number is the last index and this item is excluded from the result.

>>> names
('Albert', 'Brenda', 'Bernadette', 'Cecil')

>>> names = names[:-1]
>>> names
('Albert', 'Brenda', 'Bernadette')

Another way of chopping off the last item is to index from the end; this way we
don’t have to know what the length of the tuple is. But if we want to know the
length we can use the len() function:

>>> pets = (("Dog", 2), ("Cat", 3), ("Hamster", 14))

>>> len(pets)

3
>>> pets

(('Dog', 2), ('Cat', 3), ('Hamster', 14))

>>> pets[2][1]

14
>>> pets[1][0:2]

('Cat', 3)

>>> pets[1]

('Cat', 3)

Tuples can be nested and items accessed using as many square brackets
as necessary.

Any sequence can be given to the tuple constructor to create a tuple. For ex-
ample:

>>> tuple("some text")

('s', 'o', 'm', 'e', ' ', 't', 'e', 'x', 't')

Tuples are useful when we need fixed ordered collections of objects. They are
also used as Python

2.5
arguments to some functions and methods. For example, starting

with Python 2.5, the str.endswith() method accepts either a single string
argument (e.g., ".png") or a tuple of strings (e.g., (".png", ".jpg", ".jpeg")).

Lists

The list type is an ordered sequence type similar to the tuple type. All the
sequence functions and the slicing that we have seen working with strings and
tuples work in exactly the same way for lists. What distinguishes tuples from
lists is that lists are mutable and have methods that we can use to modify them.

32 Chapter 1. Data Types and Data Structures

And whereas tuples are created using parentheses, lists are created using
square brackets (or by using the list() constructor).

Let us look at some slicing examples that extract parts of a list:

>>> fruit = ["Apple", "Hawthorn", "Loquat", "Medlar", "Pear", "Quince"]

>>> fruit[:2]

['Apple', 'Hawthorn']

>>> fruit[-1]

'Quince'

>>> fruit[2:5]

['Loquat', 'Medlar', 'Pear']

Here, we have used the familiar slicing syntax that we have already used for
strings and tuples.

Because lists are mutable we can insert and delete list items. This is achieved
by using method calls, or by using the slicing syntax where slices are used on
both sides of the assignment operator. First we will look at the method calls:

>>> fruit.insert(4, "Rowan")

>>> fruit
['Apple', 'Hawthorn', 'Loquat', 'Medlar', 'Rowan', 'Pear',

'Quince']

>>> del fruit[4]

>>> fruit
['Apple', 'Hawthorn', 'Loquat', 'Medlar', 'Pear', 'Quince']

We have inserted a new item and then deleted it, using a method call and an
operator. The del statement is used to remove an item at a particular index
position, whereas the remove() method is used to remove an item that matches
remove()’s parameter. So, in this example, we could also have less efficiently
deleted using fruit.remove("Rowan").

Now we will do the same thing using slicing:

>>> fruit[4:4] = ["Rowan"]

>>> fruit
['Apple', 'Hawthorn', 'Loquat', 'Medlar', 'Rowan', 'Pear',

'Quince']

>>> fruit[4:5] = []

>>> fruit
['Apple', 'Hawthorn', 'Loquat', 'Medlar', 'Pear', 'Quince']

When we assigned “Rowan” we used square brackets because we were insert-
ing a list slice (a one-item list) into a list slice. If we had omitted the brackets,
Python would have treated the word “Rowan” as a list in its own right, and
would have inserted “R”, “o”, and so on, as separate items.

Collections 33

Table 1.4 Selected List Methods and Functions

Syntax Description

x in L Returns True if item x is in list L

x not in L Returns True if item x is not in list L

L + m Returns a list containing all the items of list L and of list
m; the extend() method does the same but more efficiently

len(L) Returns the length of list L

L.count(x) Returns the number of times item x occurs in list L

L.index(x) Returns the index position of the leftmost occurrence of
item x in list L, or raises a ValueError exception

L.append(x) Appends item x to the end of list L

L.extend(m) Appends all list m’s items to the end of list L

L.insert(i, x) Inserts item x into list L at index position int i

L.remove(x) Removes the leftmost occurrence of item x from list L, or
raises a ValueError exception if no x is found

L.pop() Returns and removes the rightmost item of list L

L.pop(i) Returns and removes the item at index position int i in L

L.reverse() Reverses list L in-place

L.sort() Sorts list L in-place; this method accepts optional argu-
ments such as a comparison function or a “key” to facilitate
DSU (decorate, sort, undecorate) sorting

When inserting using slices, the source and target slices can be of different
lengths. If the target slice is of zero length, such as fruit[4:4], only insertion
takes place; but if the target’s length is greater than zero, the number of items
in the target slice are replaced by the items in the slice that is inserted. In
this example, we replaced a one-item slice with a zero-item slice, effectively
deleting the one item.

Here are a few more examples:

>>> fruit[2:3] = ["Plum", "Peach"]

>>> fruit
['Apple', 'Hawthorn', 'Plum', 'Peach', 'Medlar', 'Quince']

>>> fruit[4:4] = ["Apricot", "Cherry", "Greengage"]

>>> fruit
['Apple', 'Hawthorn', 'Plum', 'Peach', 'Apricot', 'Cherry',

'Greengage', 'Medlar', 'Quince']

>>> bag = fruit[:]

>>> bag

['Apple', 'Hawthorn', 'Plum', 'Peach', 'Apricot', 'Cherry',

'Greengage', 'Medlar', 'Quince']

34 Chapter 1. Data Types and Data Structures

Shallow and Deep Copying

We saw earlier (on page 16) that if we have two variables referring to
the same string and we change one of them, for example using += to
append—Python creates a new string. This occurs because Python strings
are immutable. For mutable types such as lists (and dictionaries, covered
shortly), the situation is different.

For example, if we create a list with two variables referring to it, and we
change the list through one of the variables, both variables now refer to the
same changed list:

>>> seaweed = ["Aonori", "Carola", "Dulse"]

>>> macroalgae = seaweed

>>> seaweed, macroalgae

(['Aonori', 'Carola', 'Dulse'], ['Aonori', 'Carola', 'Dulse'])

>>> macroalgae[2] = "Hijiki"

>>> seaweed, macroalgae

(['Aonori', 'Carola', 'Hijiki'], ['Aonori', 'Carola', 'Hijiki'])

This is because by default, Python uses shallow copying when copying
mutable data. We can force Python to do a deep copy by taking a slice that
consists of the entire list:

>>> seaweed = ["Aonori", "Carola", "Dulse"]

>>> macroalgae = seaweed[:]

>>> seaweed, macroalgae

(['Aonori', 'Carola', 'Dulse'], ['Aonori', 'Carola', 'Dulse'])

>>> macroalgae[2] = "Hijiki"

>>> seaweed, macroalgae

(['Aonori', 'Carola', 'Dulse'], ['Aonori', 'Carola', 'Hijiki'])

Slices always copy the items sliced, whether we slice a part of a list, or the
whole list as we have done here. However, this works only one level deep,
so if we had a list of lists, the sublists would only be shallow-copied. Some
other collection types—for example, dict—provide a copy() method which is
their equivalent of [:].

For deep copying that works to any depth we must import the copy module
and use the deepcopy() function. In practice though, this is very rarely a
problem, and when it does trip us up, using deepcopy() sorts it out for us.

We have replaced a slice of length one, fruit[2:3] (“Loquat”), with a slice of
length two. We have also inserted a slice of three items without removing any.
In the last example we copied all of fruit’s items to bag; this could have been
done using bag = fruit, but with subtly different semantics; see the Shallow and
Deep Copying sidebar for more about copying lists.

Collections 35

Multiple consecutive items can be deleted using del on a slice, or by assigning
a zero-length slice to a slice. To insert multiple items we can use slicing, or
we can slice with operator +, and to add at the end we can use extend(). See
Table 1.4 for a summary of the methods and functions applicable to lists.

Dictionaries

The dict type is a data dictionary, also known as an associative array. A
dictionary holds a set of unordered key–value pairs and provides very fast key
lookup. Keys are unique and must be of an immutable type, such as a Python
string, a number, or a tuple; the value can be of any type including collection
types, so it is possible to create arbitrarily nested data structures. Although
dictionaries are not sequences, we can get sequences of their keys and values,
as we will see in the next chapter.

Similar data structures exist in other languages—for example, Perl’s hash,
Java’s HashMap, and C++’s unordered_map.

Notice that a tuple can be a dictionary key, but a list cannot, since a dictionary’s
keys must be immutable. In languages that offer only simple keys like strings
and numbers, programmers who want multi-item keys must resort to con-
verting their items into a string, but thanks to tuples this kind of hack is not
necessary in Python.

Here are some examples that show how to create a dictionary and access items
in it:

>>> insects = {"Dragonfly": 5000, "Praying Mantis": 2000,

"Fly": 120000, "Beetle": 350000}

>>> insects
{'Fly': 120000, 'Dragonfly': 5000, 'Praying Mantis': 2000,

'Beetle': 350000}

>>> insects["Dragonfly"]

5000
>>> insects["Grasshopper"] = 20000

>>> insects
{'Fly': 120000, 'Dragonfly': 5000, 'Praying Mantis': 2000,

'Grasshopper': 20000, 'Beetle': 350000}

Items can be deleted from a dictionary in the same way they can be deleted
from a list. For example:

>>> del insects["Fly"]

>>> insects
{'Dragonfly': 5000, 'Praying Mantis': 2000, 'Grasshopper': 20000,

'Beetle': 350000}

>>> insects.pop("Beetle")

350000
>>> insects
{'Dragonfly': 5000, 'Praying Mantis': 2000, 'Grasshopper': 20000}

36 Chapter 1. Data Types and Data Structures

Table 1.5 Selected Dictionary Methods and Functions

Syntax Description

x in d Returns True if item x is in dict d

x not in d Returns True if x is not in dict d

len(d) Returns the number of items in dict d

d.clear() Removes all items from dict d

d.copy() Returns a shallow copy of dict d

d.keys() Returns a list of all the keys in dict d

d.values() Returns a list of all the values in dict d

d.items() Returns a list of tuples of all the (key, value) pairs in
dict d

d.get(k) Returns the value with key k, or None

d.get(k, x) Returns the value with key k if k is in dict d; otherwise,
returns x

d.setdefault(k, x) The same as the get() method, except that if the key is
not in dict d, a new item is inserted with the given key
and a value of None or x if x is given

d.pop(k) Returns and removes the item with key k; raises a
KeyError exception if there is no such key in dict d

d.pop(k, x) Returns and removes the item with key k if k is in dict

d; otherwise, returns x

Dictionaries can be constructed using the dict() constructor, and if the keys
happen to be valid identifiers (i.e., alphanumeric beginning with an alphabetic
character and with no whitespace), we can use a more convenient syntax:

>>> vitamins = dict(B12=1000, B6=250, A=380, C=5000, D3=400)

>>> vitamins
{'A': 380, 'C': 5000, 'B12': 1000, 'D3': 400, 'B6': 250}

We mentioned earlier that dictionary keys can be tuples; here is one last
example to show this in action:

>>> points3d = {(3, 7, -2): "Green", (4, -1, 11): "Blue",

(8, 15, 6): "Yellow"}

>>> points3d

{(4, -1, 11): 'Blue', (8, 15, 6): 'Yellow', (3, 7, -2): 'Green'}

>>> points3d[(8, 15, 6)]

'Yellow'

In Chapter 2 we will see how to iterate over dictionaries in their “natural”
arbitrary order, and also in key order.

Collections 37

Sets

Python provides two set types: set and frozenset. Both are unordered, so
neither is a sequence. Sets are mutable, so items can be added and removed.
Frozensets are immutable and cannot be changed; however, this means that
they are suitable for use as dictionary keys.

Every item in a set is unique; if we try to add an item that is already in a
set the add() call does nothing. Two sets are equal if they contain the same
items, no matter what order those items were inserted in. Sets are similar to
dictionaries that have only keys and no values. Lists, on the other hand keep,
their items in insertion order (unless they are sorted), and allow duplicates.

A frozenset is constructed with a single sequence parameter—for example a
tuple or a list. A set can be constructed in the same way. For example:

>>> unicorns = set(("Narwhal", "Oryx", "Eland"))

>>> "Mutant Goat" in unicorns
False
>>> "Oryx" in unicorns

True

Since we created a set rather than a frozenset we can add and remove items.
For example:

>>> unicorns.add("Mutant Goat")

>>> unicorns
set(['Oryx', 'Mutant Goat', 'Eland', 'Narwhal'])

>>> unicorns.add("Eland")

>>> unicorns
set(['Oryx', 'Mutant Goat', 'Eland', 'Narwhal'])

>>> unicorns.remove("Narwhal")

>>> unicorns
set(['Oryx', 'Mutant Goat', 'Eland'])

The set classes also support the standard set operations—for example, union,
intersection, and difference—and for some operations provide both methods
and operators, as Table 1.6 shows.

Built-in Functions
As we have already seen, Python has a number of built-in functions and
operators: for example, del, print, len(), and type(). Tables 1.7–1.9 show some
others that are useful, some of which we will discuss here.

In IDLE, or when using the Python interpreter directly, we can use the help()

function to get information about an object, or to enter Python’s interactive
help system. For example:

>>> help(str)

38 Chapter 1. Data Types and Data Structures

Table 1.6 Selected Set Methods and Functions

Syntax Description

x in s Returns True if item x is in set s

x not in s Returns True if item x is not in set s

len(s) Returns the number of items in set s

s.clear() Removes all the items from set s

s.copy() Returns a shallow copy of set s

s.add(x) Adds item x to set s if it is not already in s

s.remove(x) Removes item x from set s, or raisesa KeyError exception
if x is not in s

s.discard(x) Removes item x from set s if it is in s

s.issubset(t)
s <= t

Returns True if set s is a subset of set t

s.issuperset(t)
s >= t

Returns True if set s is a superset of set t

s.union(t)
s | t

Returns a new set that has all the items from set s and
from set t

s.intersection(t)
s & t

Returns a new set that has each item that is both in set

s and in set t

s.difference(t)
s - t

Returns a new set that has every item that is in set s

that is not in set t

Table 1.7 Selected Sequence-Related Built-ins

Syntax Description

all(q) Returns True if all items in q are True; q is an iterable—for
example, a sequence such as a string or a list

Python
2.5

any(q) Returns True if any item in q is True Python
2.5

x in q Returns True if item x is in sequence q; also works for dictio-
naries

x not in q Returns True if item x is not in sequence q; also works for dic-
tionaries

len(q) Returns the number of items in sequence q; also works for dic-
tionaries

max(q) Returns the maximum item of sequence q

min(q) Returns the minimum item of sequence q

sum(q) Returns the sum of the items in sequence q

Built-in Functions 39

Table 1.8 Some Useful Built-ins

Syntax Description

chr(i) Returns a one-character str whose ASCII value is given
by int i

unichr(i) Returns a one-character unicode string whose Unicode
code point is given by int i

ord(c) Returns the int that is the byte value (0–255) if c is a
one-character str string, or the int for the Unicode code
point if c is a one-character unicode string

dir(x) Returns a list of most of object x’s attributes, including
all its method names

help(x) In IDLE, prints a brief description of object x’s type and
a list of its attributes including all its methods

hasattr(x, a) Returns True if the object x has the attribute called a

id(x) Returns the unique ID of the object that object reference
x refers to

isinstance(x, C) Returns True if x is an instance of class C or a subclass of
class C

type(x) Returns the type of x; isinstance() is preferred since
it accounts for inheritance; type() is most often used
for debugging

eval(s) Returns the result of evaluating the string s which can
contain an arbitrary Python expression

open(f, m) Opens the file named in string f using mode m, and re-
turns the file handle; covered in Chapter 6

range(i) Returns a list of int i range()

ex-
amples

☞ 50

ints numbered from 0 to i - 1; ad-
ditional arguments specify start, end, and step values

This will display all the str class’s methods with a brief explanation of each.
Quite a lot of information is provided, so we often have to scroll up using the
PageUp key or using the scrollbar.

>>> help()

With no arguments the help() function takes us into the interactive help
system. Type quit to return to normal IDLE interaction.

Once we are familiar with Python’s classes and we need just a quick reminder,
we can use dir() to get a bare list of a class’s methods, for example:

>>> dir(str)

40 Chapter 1. Data Types and Data Structures

Table 1.9 Selected Math-Related Built-ins

Syntax Description

abs(n) Returns the absolute value of number n

divmod(i, j) Returns a tuple containing the quotient and remainder that
result from dividing i by j

hex(i) Returns a hexadecimal string representing number i

oct(i) Returns an octal string representing number i

float(x) Returns x converted to a float; x may be a string or a num-
ber

int(x) Returns x converted to an int; x may be a string or a num-
ber

long(x) Returns x converted to a long; x may be a string or a num-
ber

pow(x, y) Returns x raised to the power y; can accept a third modulo
argument—the two-argument form is the same as using
operator **

round(x, n) Returns float value x rounded to n digits after the deci-
mal place

The range() function is covered in Chapter 2 when we look at looping, and the
open() function is covered in Chapter 6 when we look at reading and writing
files. The hasattr() and isinstance() functions are covered in Chapter 3.

For the sequence-related functions, max() and min() work on sequences that
contain strings as well as those that contain numbers, but may give suprising
results:

>>> x = "Zebras don't sail"
>>> max(x), min(x)

('t', ' ')

The ordering is based on the byte values for str strings and on code points for
unicode strings. For example, ord("Z") is 90, whereas ord("t") is 116.

Some of Python’s built-in mathematical functions are shown in Table 1.9.
Python is also supplied with a mathematics library that has all the standard
functions we would expect. We can discover what they are by importing the
math module, and using dir():

>>> import math

>>> dir(math)

['__doc__', '__file__', '__name__', 'acos', 'asin', 'atan', 'atan2',

'ceil', 'cos', 'cosh', 'degrees', 'e', 'exp', 'fabs', 'floor', 'fmod',

'frexp', 'hypot', 'ldexp', 'log', 'log10', 'modf', 'pi', 'pow',

'radians', 'sin', 'sinh', 'sqrt', 'tan', 'tanh']

Built-in Functions 41

The first three items are special methods (indicated by leading and trailing
double underscores); we will learn more about special methods in Chapter 3.
All the rest are functions, except for math.e and math.pi, which are constants.
We can find out what type an item is interactively. For example:

>>> import math

>>> type(math.pi), type(math.sin)

(<type 'float'>, <type 'builtin_function_or_method'>)

>>> math.pi, math.sin

(3.1415926535897931, <built-in function sin>)

>>> math.sin(math.pi)

1.2246063538223773e-16★

At first it is quite useful to explore what Python offers in this interactive
way, but reading the documentation, particularly skimming the “Library
Reference”, will provide a broad overview of what Python’s standard libraries
have to offer.

Summary

In this chapter, we saw the use of the assignment using operator =, numeric
addition using + (with type-promotion of an int to a float), and augmented as-
signment with +=. We also saw the print operator and learned that since IDLE
automatically prints expressions, we use print much less often when using
IDLE. We also saw that comments are introduced by a # and continue until the
end of the line. In fact Python can separate statements with semicolons but it
is very unusual to do this:In Python,a statement occupiesa single line;newline
is the statement separator.

We have learned how Python strings are created by using quotes, and how
strings can be sliced and concatenated using the [] and + operators. We also
summarized some of the key methods that Python strings provide: We will see
numerous examples of their use in working code throughout the book. We saw
that QString is a distinct Unicode string type and that we need to have a policy
governing our use of QStrings and Python strings (normally unicode strings)
when programming using PyQt.

The chapter introduced Python’s major collection types. Tuples provide a nice
way of grouping items together and can be used as dictionary keys. Lists are
ordered and can hold duplicates. They provide fast insertions and deletions,
and fast index-based lookup. Dictionaries are unordered and have unique
keys. Like lists, they provide fast insertions and deletions. They also provide
fast key-based lookup. Sets can be thought of as dictionaries that don’t hold
values. We will make great use of all these types in the rest of the book.

★The value 0.00000000000000012246063538223773 is close to 0 as expected.

42 Chapter 1. Data Types and Data Structures

Finally, we had a quick glimpse at some of Python’s built-in functionality and
at one of its mathematics modules. In Chapter 3, we will see how to create
our own modules. But before that, we need to learn about Python’s control
structures so that we can branch, loop, call our own functions, and handle
exceptions—all of which are the subject of the next chapter.

Exercises
The purpose of the exercises here, and throughout the book, is to encourage
you to try out Python, and from Part II onward, PyQt, to get some hands-on
experience. The exercises are designed to require as little typing as possible,
and they are graded from least to most challenging.

The exercises for this chapter can all be tried out directly in IDLE; from
Chapter 2 onward, they are slightly longer and will need to be typed into files,
as we will explain.

1. Run IDLE, and type in the following:

one = [9, 36, 16, 25, 4, 1]

two = dict(india=9, golf=17, juliet=5, foxtrot=61, hotel=8)

three = {11: "lima", 13: "kilo", 12: "mike"}

Try to predict what the len(), max(), min(), and sum() functions will produce
for each of the three collections, and then apply the functions and see the
results. Do they do what you expected?

2. Continuing in IDLE, assign a dictionary’s keys to two variables, and then
change one of them like this:

d = dict(november=11, oscar=12, papa=13, quebec=14)

v1 = v2 = d.keys()

v1, v2 # This will show the contents of the lists

v1[3] = "X"

After this, do you expect v1 and v2 to be the same or different? Why? Print
out v1 and v2 to see. Now try assigning to v1 and v2 separately, and again
change one:

v1 = d.keys()

v2 = d.keys()

v1[3] = "X"

Will v1 and v2 be the same as before? Print them out to see. If any of this
is mysterious, try rereading the sidebar on page 34.

3. In the documentation, string-related methods and functions are covered
in several places—find and read or skim these pages: “Sequence types”,
“String methods”, “String formatting operations”, and “String constants”.

Exercises 43

If you are comfortable with regular expressions, also look at the “Regular
expression operations” pages.

Still in IDLE, create two floating-point values:

f = -34.814

g = 723.126

Based on your reading of the string-formatting documentation, create a
single format string that when used with the % operator will produce the
string < -34.81> when applied to f and <+723.13> when applied to g.

Solutions to the exercises, and all the source code for the examples, is available
online from the author’s Web site at http://www.qtrac.eu/pyqtbook.html. In
the pyqtbook.zip file (and in the pyqtbook.tar.gz file) there are subdirectories,
chap01, chap02, and so on, and in these are the relevant examples and answers.
This chapter’s answers are in chap01/answers.txt.

http://www.qtrac.eu/pyqtbook.html

This page intentionally left blank

Control Structures

22 ● Conditional Branching

● Looping

● Functions

● Exception Handling

To write programs we need data types, with variables and data structures in
which to store them, and we need control structures such as branches and loops
to provide control of program flow and iteration. In this chapter, we will learn
how to use Python’s if statement and how to loop using for and while loops.
Exceptions can affect the flow of control, so we also cover both handling and
creating exceptions.

One fundamental way of encapsulating functionality is to put it into functions
and methods. This chapter shows how to define functions,and the next chapter
shows how to define classes and methods. Programmers coming from a C++
or similar background are used to functions being defined just once. The same
is true in Python, but with an additional possibility: In Python, we can create
functions at runtime in a way that reflects the current circumstances, as we
will see later in this chapter.

In the preceding chapter, we used IDLE to experiment with snippets of Python
code. In this chapter,we will almost always simply show the code as it would be
written in a file as part of a program. However, it is perfectly possible to type
the snippets used in this chapter into IDLE to see the results “live”, and this is
certainly worth doing for anything covered that you are not sure about.

Some of Python’s functions and operators work on Boolean values. For exam-
ple, the binary operator in returns True if its left-hand operand is in its right-
hand operand. Similarly, the if and while statements evaluate the expressions
they are given, as we will see shortly.

In Python, a value evaluates to False if it is the predefined constant False, the
number 0, the special object None, an empty sequence (e.g., an empty string or
list), or an empty collection; otherwise, the value is True.

In PyQt an empty QString and any “null” object, that is, any object of a PyQt
data type that has an isNull() method (and where QtisNull() returns True), eval-
uates to False.For example, an empty QStringList, a null QDate, a null QDateTime,

45

46 Chapter 2. Control Structures

and a null QTime are all False. Correspondingly, nonempty and non-null PyQt
objects are True.

We can test any object to see its Boolean value by converting it to a bool type.
For example:

from PyQt4.QtCore import *
now = QDate.currentDate()

never = QDate()

print bool(now), bool(never) # Prints "True False"

The QDate() constructor with no arguments creates a null date; the QDate.

currentDate() static method returns today’s date which, of course, is not null.

Conditional Branching

Python provides an if statement with the same semantics as languages like
C++ and Java, although with its own sparse syntax:

if expression1:

suite1
elif expression2:

suite2
else:

suite3

The first thing that stands out to programmers used to C++ or Java is that
there are no parentheses and no braces. The other thing to notice is the
colon: This is part of the syntax and is easy to forget when starting out. Colons
are used with else, elif, and in many other places to indicate that a block of
code (a suite in Python-speak) is to follow. As we would expect, there can be any
number of elifs (including none), and optionally, there can be a single else at
the end.

Unlike most other programming languages, Python uses indentation to signify
its block structure.Some programmersdon’t like this, at least at first,and some
get quite emotional about the issue. But it takes just a few days to get used to,
and after a few months, brace-free code seems much nicer and less cluttered to
read than code that uses braces.

Since suites are indicated using indentation, the question that naturally arises
is, “What kind of indentation?”. The Python style guidelines recommend four
spaces per level of indentation, and only spaces (no tabs).Most modern text ed-
itors can be set up to handle this automatically (IDLE’s editor does, of course).
Python will work fine with any number of spaces or with tabs, providing that
the indentation used is consistent. In this book, we will follow the official
Python guidelines.

Let’s begin with a very simple example:

Conditional Branching 47

Table 2.1 Logical Operations

Group Operators Description

Comparison <, <=, ==,
!=, >=, >

The <> operator is also permitted as a synonym
for != but is deprecated

Identity is, is not These are used to determine if two object refer-
ences refer to the same underlying object

Membership in, not in These are used on lists, dictionaries, and strings,
as we saw in Chapter 1

Logical not, and,
or

Both and and or short-circuit; the bit-wise equiv-
alents are: ~ (not), & (and), | (or), and ^ (xor)

if x > 0:

print x

In this case, the suite is just one statement (print x). In general, a suite is a
single statement, or an indented block of statements (which themselves may
contain nested suites), or the keyword pass which does absolutely nothing. The
reason we need pass is because Python’s syntax requires a suite, so if we want
to put in a stub, or indicate that we are handling a “do nothing” case, we must
use something, so Python provides pass; for example:

if x == 5:

pass # do nothing in this case

In general, whenever Python’s syntax has a colon followed by a suite, the suite
can be on the same line if it is just a single statement. For example:

if x == 5: pass

If the suite is more than a single statement, it must begin on the following line
at the next level of indentation.

Python supports the standard comparison operators, and for logical operations
it uses names (not, and, and or) rather than symbols. It is also possible to
combine comparison expressions in a way that is familiar to mathematicians:

if 1 <= x <= 10:

print x

Here, we print x if it is between 1 and 10. If x is an expression with no side
effects, the above statement is equivalent to:

if 1 <= x and x <= 10:

print x

48 Chapter 2. Control Structures

No Dangling Else Trap

One additional benefit of using indentation is that the “dangling else
ambiguity” is impossible in Python. For example, here is some C++ code:

if (x > 0)

if (y > 0)

z = 1;

else

z = 5;

The code sets z to 1 if both x and y are greater than 0, and it looks like it
will set z to 5 if x is less than or equal to 0. But in fact, it sets z to 5 only if
x is greater than 0 and if y is less than or equal to 0. Here is what it means
in Python:

if x > 0:

if y > 0:

z = 1

else:

z = 5

And if we really want z set to 5 if x is less than or equal to 0, we would
write this:

if x > 0:

if y > 0:

z = 1

else:

z = 5

Thanks to Python’s indentation-based block structure, we avoid the
“dangling else” trap.

The first form is preferred: It is clearer and simpler, it is more efficient (since
x may be a complex expression involving some overhead to evaluate), and it is
easier to maintain (again because the x is used only once rather than twice).

Python provides multiway branching using elif and else; there is no case (or
switch) statement.

if x < 10:

print "small"

elif x < 100:

print "medium"

elif x < 1000:

print "large"

else:

print "huge"

Conditional Branching 49

Python 2.5 introduced a conditional expression. It is a kind of if Python

2.5
statement

that can be used in expressions, and it is equivalent to the ternary operators
used by some other languages. The Python syntax is quite different from
C++’s and Java’s, which use ? : for their ternary operators, and it has the form
trueResult if expression else falseResult; so the expression is in the middle:

print "x is zero or positive" if x >= 0 else "x is negative"

This will print “x is zero or positive” if x >= 0 evaluates to True; otherwise, it will
print “x is negative”.★

Looping

Python provides two loop constructs. One is the while loop, whose basic
syntax is:

while expression:

suite

Here is an example:

count = 10

while count != 0:

print count,

count -= 1

This will print “10 9 8 7 6 5 4 3 2 1”—all on one line, due to the print statement’s
trailing comma. Notice that we must have a colon before the indented suite.

Loops can be broken out of prematurely, using the break statement. This is
particularly helpful in loops which will not otherwise terminate, that is,
because their conditional expression is always true:

while True:

item = getNextItem()

if not item:

break

processItem(item)

Python’s while loop can also have an associated else statement using the
following syntax:

while expression:

suite1
else:

suite2

★Andrew Kuchling, author of the “What’s New in Python” documents, recommends always using
parentheses with conditional expressions. In this book, we use them only when necessary.

50 Chapter 2. Control Structures

The else clause (with its associated suite) is optional. It is executed if the loop
terminates at the condition, rather than due to a break statement. It is not
often used, but can be useful in some situations:

i = 0

while i < len(mylist):

if mylist[i] == item:

print "Found the item"

break

i += 1

else:

print "Didn't find the item"

The while loop is very versatile, but since it is so common to want to loop over
all the items in a list, or to loop a specific number of times, Python provides an
additional loop construct that is more convenient in such cases. This is the for

loop, whose syntax is:

for variable in iterable:
suite1

else:
suite2

The else works the same as in the while loop, that is, its suite is executed if
the for loop completes, but not if it was terminated by a break statement. An
iterable is an object that can be iterated over, such as a string, a tuple, a list, a
dictionary, or an iterator (such as a generator, covered later). In the case of a
dictionary, it is the keys that are iterated over.

Here, we iterate over a string, that is, over each character in the string:

for char in "aeiou":

print "%s=%d" % (char, ord(char)),

This prints “a=97 e=101 i=105 o=111 u=117”. The variable char takes each
value from the iterable in turn (in this case “a”, then “e”, and so on up to “u”),
and for each iteration executes the associated suite.

The range() built-in function returns a list of integers that can conveniently be
used in for loops. For example:

for i in range(10):

print i,

This prints “0 1 2 3 4 5 6 7 8 9”. By default, the range() function returns a list
of integers starting at 0, increasing by 1, up to but excluding the given value.
It also has two- and three-argument forms:

range(3, 7) # Returns [3, 4, 5, 6]

range(-4, 12, 3) # Returns [-4, -1, 2, 5, 8, 11]

Looping 51

Python also provides an xrange() function with the same semantics, but which
is more memory-efficient in a for loop, because it evaluates lazily rather than
generating the entire list of integers in one go. We will normally use range()

and substitute it with xrange() only if it makes a significant difference to per-
formance.

If the for loop’s iterable is mutable (e.g., a list or a dictionary), it must not
be changed inside the loop. If we want to change a list or dictionary as we
iterate over it, we must iterate over a list of the list’s indexes or a list of the
dictionary’s keys, or use a shallow copy, rather than working directly on the
collections themselves. For example:

presidents = dict(Washington=(1789, 1797), Adams=(1797, 1801),

Jefferson=(1801, 1809), Madison=(1809, 1817))

for key in presidents.keys():

if key == "Adams":

del presidents[key]

else:

print president, presidents[key]

This removes the “Adams” key (and its associated value) from the presidents

dictionary, and prints:

Madison (1809, 1817)

Jefferson (1801, 1809)

Washington (1789, 1797)

Notice that although Python normally uses newline as a statement separator,
this does not occur inside parentheses. The same is true when we create lists
in square brackets or dictionaries in braces. This is why we can spread the
construction of the presidents dictionary over a couple of lines without having
to escape the intervening newline with a backslash (\).

Since dictionaries hold pairs of keys and values, Python provides methods for
iterating over the keys, the values, and the pairs. And as a convenience, if we
simply iterate over a dictionary, we don’t even have to call the keys() method
to get the keys:

presidents = dict(Washington=(1789, 1797), Adams=(1797, 1801),

Jefferson=(1801, 1809), Madison=(1809, 1817))

for key in presidents:

print "%s: %d-%d" % (key, presidents[key][0], presidents[key][1])

This prints (not necessarily in this order):

Madison: 1809-1817

Jefferson: 1801-1809

Washington: 1789-1797

Adams: 1797-1801

52 Chapter 2. Control Structures

When we iterate over a dictionary in a for loop the variable is set to each
dictionary key in turn.★ Dictionaries are unordered, so their keys are returned
in an undefined order.

To get the values rather than the keys we can use the values() method—for
example, for dates in presidents.values(): and to get pairs we can use the
items() method. For example:

for item in presidents.items():

print "%s: %d-%d" % (item[0], item[1][0], item[1][1])

This produces the same output as the previous example, as does the following:

for president, dates in presidents.items():

print "%s: %d-%d" % (president, dates[0], dates[1])

Here we have unpacked each pair returned by the items() method, the dates

being the two-element tuple of dates.

If we want to iterate in order, we must explicitly sort the list before we iterate
on it. For example, to iterate in name order we can do this:

for key in sorted(presidents):

print "%s: %d-%d" % (key, presidents[key][0], presidents[key][1])

Both for loops and the sorted() function can work on sequences or on iterators.
Iterators are objects that support Python’s iterator protocol, which means that
they provide a next() method, and raise a StopIteration exception when they
have no more items. Not surprisingly, lists and strings implement the proto-
col: A list iterator returns each item in the list in turn, and a string iterator
returns each character of the string in turn. Dictionaries also support the pro-
tocol: They return each of their keys in turn (in an arbitrary order). So, when
we use a for loop or call sorted() on a dictionary, we actually operate on the
dictionary’s keys. For example:

names = list(presidents)

names == ['Madison', 'Jefferson', 'Washington', 'Adams']

So in the for loop, we effectively called sorted(list(presidents)) which is the
same as sorted(presidents.keys()). If we want to be more explicit, we could
break things down into steps:

keys = presidents.keys() # Or: keys = list(presidents)

keys.sort()

for key in keys:

print "%s: %d-%d" % (key, presidents[key][0], presidents[key][1])

★Note for C++/Qt programmers: Python’s for loop iterates over a dictionary’s keys, whereas Qt’s
foreach loop iterates over a QMap’s values.

Looping 53

Python’s sort() method and sorted() function can take additional arguments.
So, for example, we could sort the presidents dictionary by dates.

In addition to the keys(), values(), and items() methods, dictionaries also
provide iterkeys(), itervalues(), and iteritems() methods. These additional
methods can be used just like the plain versions, and they provide better per-
formance. However, they cannot be used to iterate over a dictionary whose keys
will change during the iteration.

Just like while loops, we can use break to leave a for loop before the iterations
are complete. We can also use continue in both kinds of loop to immediately
jump to the next iteration. For example:

for x in range(-5, 6):

if x == 0:

continue # goes directly to the next iteration

print 1.0 / x,

This will produce output like this: “-0.2 -0.25 -0.333333333333 -0.5 -1.0 1.0 0.5
0.333333333333 0.25 0.2”. Without the continue, we would eventually attempt
division by zero and get an exception.

As mentioned earlier, Python’s loops can have an optional else clause that is
executed only if the loop completed, that is, the else clause will not be executed
if break was called inside the loop. An example will make this clearer; here is
an inefficient way of generating a list of primes:

primes = [2]

for x in range(2, 50):

if x % 2:

for p in primes:

if x % p == 0:

break # exits the loop and skips the else

else:

primes.append(x)

When we saw the % operator earlier,%

operator

24 ☞

it was used with string operands and
produced a formatted string as its result. Here, we use the % operator with
integer operands, and in this context it performs the modulus (remainder)
operation, and produces an integer as its result.

At the end, the primes list is [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41,

43, 47]. The append() method is called only if the iteration over the primes list
completes, that is, if x is not divisible by any previous prime.

List Comprehensions and Generators

Producing lists using a for loop in conjunction with range() is easy. In addition,
Python provides an alternative approach called list comprehensions—these are
expressions that generate lists. (Note that this and other advanced sections in

54 Chapter 2. Control Structures

Parts I, II, and III, are indicated by a rocket in the margin. You can skip these
on first reading since back-references are given where appropriate.)

Let us generate a list of numbers divisible by 5:

fives = []

for x in range(50):

if x % 5 == 0:

fives.append(x)

fives = [0, 5, 10, 15, 20, 25, 30, 35, 40, 45]

This involves the familiar combination of for and range().

Now we will see how to generate a simple list of consecutive numbers using a
list comprehension:

[x for x in range(10)]

This produces the list [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]. List comprehensions can
have conditions attached:

fives = [x for x in range(50) if x % 5 == 0]

This generates the same fives list as our original for loop. More complex list
comprehensions with nested for loops are perfectly possible,although the more
conventional syntax may be easier to read in such cases.

One drawback of list comprehensions is that they generate the entire list
in one go, which can consume a lot of memory if the list is very large. This
problem also applies to the conventional syntax, but you can get around it by
using xrange() instead of range(). Python generators provide another solution.
These are expressions that work like list comprehensions, except that they
generate their lists lazily.

fives = (x for x in range(50) if x % 5 == 0)

This is almost identical to the list comprehension (the only obvious difference
being the use of parentheses rather than square brackets), but the object re-
turned is not a list! Instead, a generator is returned. A generator is an iterator,
so we can do things like this:

for x in (x for x in range(50) if x % 5 == 0):

print x,

which will print “0 5 10 15 20 25 30 35 40 45”.

List comprehensions are not strictly necessary in Python programming; the
coverage here is mostly to ensure that they are recognizable when reading
other people’s code, and to provide a taste of some of Python’s more advanced
features. When we use them later on, we will generally show equivalent code
that uses for loops, for example. On the other hand, generators, although an

Looping 55

advanced and relatively new feature of Python, cannot easily be mimicked.We
will create a simple generator function in the next section, and some very short
generator methods in an example class in Chapter 3.

Functions
In general, functions allow us to package up and parameterize commonly used
functionality. Python provides three types of functions: ordinary functions,
lambda functions, and methods. In this section, we will concentrate on ordi-
nary functions, with a very brief mention of lambda functions; we will cover
methods in Chapter 3.

In Python, every function has either “global” or “local” scope.Broadly speaking,
global scope means that the function is visible within the file in which it is de-
fined and is accessible from any file which imports that file. Local scope means
that the function was defined inside another scope (e.g., inside another func-
tion) and is visible only within the enclosing local scope. We will not concern
ourselves further with this issue here, but will return to it in Chapter 3.

Functions are defined using the def statement, using the syntax:

def functionName(optional_parameters):

suite

For example:

def greeting():

print "Welcome to Python"

The function name must be a valid identifier. Functions are called using
parentheses, so to execute the greeting() function we do this:

greeting() # Prints "Welcome to Python"

A function’s name is an object reference to the function, and like any oth-
er object reference it can be assigned to another variable or stored in a data
structure:

g = greeting

g() # Prints "Welcome to Python"

This makes keeping lists or dictionaries of functions trivial in Python.

Functions that accept parameters can be given the parameter values by posi-
tion (“positional arguments”), by name (“keyword arguments”; but nothing to
do with the language’s keywords), or by a combination of both. Let us look at a
concrete example: Python does not provide a range() function that operates on
floats, so we will create one ourselves.

56 Chapter 2. Control Structures

def frange(start, stop, inc):

result = []

while start < stop:

result.append(start)

start += inc

return result

If we call this function as frange(0, 5, 0.5) the list we get back is [0, 0.5, 1.0,

1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5], as we expect.

Like normal Python variables, we do not specify types for our parameters.
And since we have not given any default arguments, every parameter must
be specified, otherwise we will get a TypeError exception. For those unfamiliar
with default arguments, Python allows us to give values to parameters in a
function’s signature. Each such value is a “default argument”, and it is used if
the corresponding argument is not given when the function is called.

In many cases we create functions where one or more arguments will almost
always have the same values. Python allows us to provide default arguments
for such situations, and we have taken advantage of this to provide a default
argument for the third parameter, as this revised def line shows:

def frange(start, stop, inc=1.0):

This works fine; for example, we can now call frange(0, 5) to get [0, 1.0, 2.0,

3.0, 4.0] since the increment defaults to 1.0. In common with other languages
that allow default arguments, Python does not permit a parameter without a
default argument to follow one that has a default argument; so we could not
have frange(start=0, 5). Nor does Python allow overloaded functions. Neither
of these restrictions is ever a problem in practice, as we will see shortly when
we discuss keyword arguments.

Unfortunately, our frange() function does not provide the same argument
logic as range() provides. For range(), if one argument is given it is the upper
bound, if two are given they are the lower and upper bounds, and if three are
given they are the bounds and the step size. So we will create a final frange()
function, which more carefully mimics range()’s behavior:★

def frange(arg0, arg1=None, arg2=None):

"""Returns a list of floats using range-like syntax

frange(start, stop, inc) # start = arg0 stop = arg1 inc = arg2

frange(start, stop) # start = arg0 stop = arg1 inc = 1.0

frange(stop) # start = 0.0 stop = arg0 inc = 1.0

"""

start = 0.0

★For a more sophisticated frange(), see “Writing a range-like Function with Float Increments” in
the Python Cookbook.

Functions 57

inc = 1.0

if arg2 is not None: # 3 arguments given

start = arg0

stop = arg1

inc = arg2

elif arg1 is not None: # 2 arguments given

start = arg0

stop = arg1

else: # 1 argument given

stop = arg0

Build and return a list

result = []

while start < (stop - (inc / 2.0)):

result.append(start)

start += inc

return result

For example,frange(5) returns[0.0, 1.0, 2.0, 3.0, 4.0],frange(5, 10) returns
[5, 6.0, 7.0, 8.0, 9.0], and frange(2, 5, 0.5) returns [2, 2.5, 3.0, 3.5, 4.0,

4.5].

The loop condition is different from the one we used earlier. It is designed to
prevent you from accidentally reaching the stop value due to floating-point
rounding errors.

After the def line, we have a triple-quoted string—and the string is not
assigned to anything. An unassigned string that follows a def statement—or
that is the first thing in a .py or .pyw file or that follows a class statement, as
we will see later on in Part I—is called a “docstring”. It is the natural place to
document functions. By convention, the first line is a brief summary,separated
from the rest by a blank line.

In most of the examples shown in the rest of the book, we will omit the doc-
strings to save space. They are included in the source code that accompanies
the book where appropriate.

The use of None is a more convenient default than, say, 0 since 0 might be a
legitimate upper bound. We could have compared to None using the syntax
arg2 != None, but using is not is more efficient and better Python style. This is
because if we use is we get identity comparison rather than value comparison,
which is fast because we are just comparing two addresses and don’t have to
look at the objects themselves. Python has one global None object, so comparing
with it using is or is not is very fast.

The parameters passed to Python functions are always object references. In
the case of references to immutable objects like strings and numbers, we can
treat the parameters as though they were passed by value. This is because
if an immutable parameter is “changed” inside a function, the parameter is
simply bound to a new object, and the original object it referred to is left intact.

58 Chapter 2. Control Structures

Conversely, mutable objects, that is, parameters that are object references
to mutable types like lists and dictionaries, can be changed inside functions.
These parameter-passing behaviors are the same as in Java.★

All Python functions return a value. This is done either explicitly by using a
return or yield statement (covered next), or implicitly, in which case Python
will return None for us. Unlike C++ or Java, we are not tied down to specifying
one particular return type: We can return any type we want since what we
return is an object reference that is bound to a variable of any type. Python
functions always return a single value, but because that value can be a tuple
or a list or any other collection, for all practical purposes, Python functions can
return any number of values.

Generator Functions

If we replace the code at the end of the frange() function as shown in the fol-
lowing code snippet, we will turn the function into a generator. Generators do
not have return statements; instead, they have yield statements.If a generator
runs out of values, that is, if control reaches the end of the function, instead of
returning, Python automatically raises a StopIteration exception:

Build and return a list

result = []

while start < (stop - (inc / 2.0)):

result.append(start)

start += inc

return result

➔

Return each value on demand

while start < (stop - (inc / 2.0)):

yield start

start += inc

Now, if we call frange(5), we will get back a generator object, not a list. We can
force the generator to give us a list by doing this: list(frange(5)). But a more
common use of generators is in loops:

for x in frange(10):

print x,

This will output “0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0” whichever version we use.
But for long lists the generator version will be much more efficient, because
rather than creating the whole list in memory like the list version, it creates
only one item at a time.

The yield statement behaves like a return statement, but for one crucial differ-
ence: After yield has returned a value, when the generator is next called it will
continue from the statement following the yield with all its previous state in-
tact. So the first time the frange() generator is called, assuming, say frange(5),
it returns 0.0; the second time it returns 1.0, and so on. After returning 9.0 the
while expression evaluates to False and the function terminates.

★Mutable parameters in Python are similar to Pascal’s var parameters and to C++’s non-const ref-
erences.

Functions 59

Because the function is a generator (and this is the case purely because we
have used yield), when it finishes it does not return a value, but instead
raises a StopIteration exception. In the context of a for loop, the for gracefully
handles this particular exception, taking it not as an error, but as an indication
that the iteration has completed, so the for loop ends and the flow of control
moves to the for loop’s else suite, or to the statement following the for loop’s
suite, if there is no else. Similarly, if we coerce a generator into a list, the list
constructor will automatically handle the StopIteration exception.

A generator is an object that has a next() function, so we can explore the
behavior of our frange() generator interactively if we wish:

>>> list(frange(1, 3, 0.75))

[1, 1.75, 2.5]

>>> gen = frange(1, 3, 0.75)

>>> gen.next()

1
>>> gen.next()

1.75
>>> gen.next()

2.5
>>> gen.next()

Traceback (most recent call last):

File <pyshell#126>, line 1, in -toplevel-

gen.next()

StopIteration

We generated the whole three-item list using list(), and then we used the
generator returned by frange() to produce each successive value in the same
way that a for loop does.

Using Keyword Arguments

Python’s argument-handling abilities are very versatile. So far we have
provided parametersusing positional syntax. For example, the first parameter
we gave to our frange() function always went to arg0, the second to arg1, and
the third to arg2. We have also used default arguments so that some arguments
could be omitted. But what happens if we want to pass, say, the first and third
arguments, but accept the default second argument? In the next example, we
will see how we can achieve this.

Python provides a strip() method for stripping whitespace (or other unwanted
characters) from the ends of a string, but it does not provide a function for
cleaning up the whitespace inside a string; something that we often need to do
when we get strings from users. Here is a function that strips whitespace from
both ends of a string and replaces each sequence of internal whitespace with
a single space:

60 Chapter 2. Control Structures

Experimenting with Functions in Files

Both frange() and a generator version, gfrange(), are in the file chap02/

frange.py. If we want to try these or any other functions interactively,we can
start up IDLE, and append the path where the file we want to use is located
to the paths it searches; for example:

>>> import sys

>>> sys.path.append("C:/pyqt/chap02")

Now the relevant module can be loaded into IDLE:

>>> import frange

The file we wish to import from must have a .py extension, and we must not
include the extension in the import statement. Now we can use frange() and
gfrange() inside IDLE:

>>> frange.frange(3, 5, 0.25)

[3, 3.25, 3.5, 3.75, 4.0, 4.25, 4.5, 4.75]

The first name frange is the module name, and within that module weImport-
ing
Objects
sidebar

19 ☞

wish
to access the frange function, which is why we write frange.frange(). We
did the same thing a moment ago, when we imported the sys module and
accessed its path list using sys.path.

Although we prefer to use IDLE, it is also possible to directly use the Python
interpreter when experimenting interactively. If we simply run the Python
executable itself (python.exe, for example) in a console, we will get the
familiar >>> prompt and be able to use the interpreter interactively.

def simplify(text, space=" \t\r\n\f", delete=""):

result = []

word = ""

for char in text:

if char in delete:

continue

elif char in space:

if word:

result.append(word)

word = ""

else:

word += char

if word:

result.append(word)

return " ".join(result)

Functions 61

The function iterates over every character in the text string. If the character is
in the delete string (which, by default, is empty), we ignore it. If it is a “space”
(i.e., it is in the space string), we append the word we have been building up to
our list of words, and set the next word to be empty. Otherwise, we append the
character to the word we are building up. At the end, we tack on the last word
to our list of words. Finally, we return the list of words as a single string with
each word separated by a single space, using the string join() method.★

Now let us look at how we can use the function:

simplify(" this and\n that\t too") # Returns "this and that too"

simplify(" Washington D.C.\n",

delete=",;:.") # Returns "Washington DC"

simplify(delete="aeiou", text=" disemvoweled ") # Returns "dsmvwld"

In the first case, we use the default arguments for the space and delete param-
eters. In the second case, we use Python’s keyword argument syntax to specify
the third parameter while accepting the default for the second parameter. In
the last case, we use keyword syntax for both of the arguments we want to use.
Notice that if we use keyword syntax, the order of the keyword arguments is
up to us—providing that if we also use positional arguments, these precede the
keyword arguments, as the second call shows.

The code we have used for simplify() is not as Pythonic as it could be. For
example, we should really store word as a list of characters rather than as a
string, and we don’t need the space parameter since we could use the string
object’s isspace() method instead. The file chap02/simplified.py contains the
simplify() shown here and a similar function, simplified(), which uses the
more Pythonic approach. And as noted earlier, although we usually don’t show
the docstrings in the book, they are in the files.

Python’s argument passing is even more sophisticated than we have shown so
far. In addition to named arguments,Python functions can be given signatures
that accept a variable number of positional arguments and a variable number
of keyword arguments. This is a much more versatile and powerful version of
C++’s and Java’s variable argument lists, but it is rarely needed, so we will not
cover it.

Lambda Functions

So far, we’ve always defined functions using def, but Python provides a second
way of creating functions:

cube = lambda x: pow(x, 3)

The lambda keyword is used to create simple anonymous functions. Lambda
functions cannot contain control structures (no branches or loops), nor do they
have a return statement: The value returned is simply whatever the expression

★The QString.simplified()method is like our simplify() function called with just one argument.

62 Chapter 2. Control Structures

evaluates to. Lambda functions can be closures, a topic covered later. Clo-
sures

☞ 64

In this
example, we have assigned the lambda function to the variable cube, which we
can now use, for example: cube(3) which will return 27.

Some Python programmers dislike lambda; certainly it is not needed since def

can be used to create any function we want. However, when we start on GUI
programming we will see one context where lambda can be useful, although we
will also show alternatives that don’t use it.

Dynamic Function Creation

The Python interpreter starts reading from the top of the .py or .pyw file. When
the interpreter encounters a def statement it executes the statement, thereby
creating the function and binding the name following the def to it. Any code
that is not inside a def statement (or inside a class statement, as we will see in
the next chapter) is executed directly.

Python cannot call functions or use objects that have not been defined. So
Python programs that occupy a single file tend to have a Pascal-like structure
with lots of function definitions from the top down, and at the end a call to one
of them to start the processing off.

Unlike C++ and Java, Python programs do not have a fixed entry point, and
the name “main” is not special. The Python interpreter simply executes the
code it encounters from the first line down. For example, here is a complete
Python program:

#!/usr/bin/env python

def hello():

print "Hello"

def world():

print "World"

def main():

hello()

world()

main()

The interpreter executes def hello(), that is, it creates the hello() function,
then creates the world() function, and then creates the main() function. Finally
the interpreter reaches a function call, to main() in this case, so the interpreter
executes the function call, at which point what we normally think of as
program execution commences.

Python programmers usually put only one statement at the top level, a call to
the first function they want to execute. They usually call this function main(),
and call their other functions from it, resulting in a structure similar to that
used by C++ and Java.

Functions 63

Since def statements are executed at runtime, it is possible to use different
definitions depending on the situation. This is especially useful when we want
to use functionality in one version of Python that is not available in an earlier
one, without forcing our users to upgrade.

For example, Python 2.4 introduced the sorted() function. What if we had
some code that needed sorted(), but some of our users were using Python 2.3
and some were using 2.4 or later? We could simply rely on the sorted() method
for 2.4 or later, and provide our own equivalent function for older Pythons:

import sys

if sys.version_info[:2] < (2, 4):

def sorted(items):

items = list(items)

items.sort()

return items

We begin by importing the sys module, which provides the version_info tuple.
Then we use this tuple to get the major and minor version numbers. Only if
the version is lower than 2.4 do we define our own sorted() function.Notice also
that we can compare tuples: Python can compare data structures, including
nested ones, providing all the types they contain can be compared.

Partial Function Application

As we will see when we begin GUI programming,we sometimes have situations
where we need to call a particular function, but we actually know what one of
the parameters will be when we are writing the code. For example, we might
have several buttons that all need to invoke the same function, but parameter-
ized in some way by which particular button is the cause of the invocation.

In the simplest case we want to store a function (i.e., an object reference to a
function) that we can then call later. A function stored like this is known as a
callback. Here is a trivial example:

def hello(who):

print "Hello", who

def goodbye(who):

print "Goodbye", who

funclist = [hello, goodbye]

Some time later

for func in funclist:

func("Me")

This prints “Hello Me”, and then “Goodbye Me”. Here, we have stored two func-
tions and then called them later on. Notice that we passed the same argument,
"Me", each time we called func(). Since we know what the argument is in ad-

64 Chapter 2. Control Structures

vance, it would be nice to be able to somehow package up both the function to
be called and the parameter we want to use into a single callable object.

A solution to this is partial function application (also known as “currying”),
which simply means that we take a function and zero, one, or more parameters
for it, and wrap them up into a new function which, when invoked, will call the
original function with the parameters we wrapped, and with any others that
are passed at call time. Such wrapped functions are called closures because
they encapsulate some of their calling context when they are created.

To get a flavor for how this works, let us imagine a very simple GUI program
where we have two buttons that, when pressed, will call the same action()

function. (We won’t worry about how we transform button presses into function
calls right now; it is very easy, and fully explained in Chapter 4.)

def action(button):

print "You pressed button", button

Now when we create our buttons, naturally we know which ones they are, so
we want to tell the first button to make the call action("One") and the second to
call action("Two").But this presents us with a problem. We know what we want
called, but we don’t want the call to take place until a button is pressed. So, for
example, we want to give the first button a function which wraps action() and
the parameter "One", so that when the first button is pressed it can call action()
with the right parameter.

So, what we need is a function that will take a function and an argument and
return a function, that when, called will call the original function with the
original argument. InPython

2.5
Python 2.5, this is easy assuming our previous definition

of action():

import functools

buttonOneFunc = functools.partial(action, "One")

buttonTwoFunc = functools.partial(action, "Two")

The functools.partial() function takes a function as the first argument, and
then any number of other arguments, and returns a function that, when
called, will call the passed function with the passed arguments, and with any
additional arguments that are given at call time.

So, when buttonOneFunc() is called, it will simply call action("One") just as we
want. As we mentioned earlier, a function’s name is simply an object reference
that happens to refer to a function, so it can be passed as a parameter like any
other object reference.

But where does this leave users of earlier versions of Python? We could provide
our own very simple and less powerful version of partial(). For example:

Functions 65

def partial(func, arg):

def callme():

return func(arg)

return callme

Inside the partial() function we create an inner function, callme(), that, when
called, will call the function and argument that were passed to the partial()

function. After creating the callme() function, we then return an object
reference to it so that it can be called later.

This means that we can now write:

buttonOneFunc = partial(action, "One")

buttonTwoFunc = partial(action, "Two")

Ideally, it would be nice to use functools.partial() when it is available, and fall
back on our own simple partial() function otherwise. Well, since we can define
functions at runtime, this is perfectly possible:

import sys

if sys.version_info[:2] < (2, 5):

def partial(func, arg):

def callme():

return func(arg)

return callme

else:

from functools import partial

The if statement ensures that if we are using a version of Python older than
2.5 we create a partial() function that takes a function and a single argument
and returns a function that, when called, will call the function passed in
with the argument. But if we are using a later version of Python, we use the
functools.partial() function, so in our code we can always call partial(), and
whichever version was created will be the one used.

Now, just as before, we can write:

buttonOneFunc = partial(action, "One")

buttonTwoFunc = partial(action, "Two")

Only this time the code will work with both old and new versions of Python.

The partial() function we have defined is just about the simplest possible. It
is also possible to create much more sophisticated wrappers that can take po-
sitional and keyword arguments at the time they are wrapped, and additional
positional and keyword arguments at the time they are called; functionality
that functools.partial() already provides. We use partial() in several places
from Part II onward, but in each case the simple partial() function shown in
this section could be used if Python 2.5 or later was not available.

66 Chapter 2. Control Structures

In the next section, we will continue to take a fairly high-level view of func-
tions, and look at the possibilities that are available to us for the notification
and handling of error conditions.

Exception Handling

Many primers push exception handling quite far back, often after covering
object-oriented programming. We put them here in the control structures
chapter because exception handling is relevant in both procedural and object-
oriented programming, and because exception handling can cause the flow of
execution to change dramatically, which certainly qualifies exception handlers
as a kind of control structure.

An exception is an object that is “raised” (or “thrown”) under some specific cir-
cumstances. When an exception is raised, the normal flow of execution ceases
and the interpreter looks for a suitable exception handler to pass the exception
to. It begins by looking at the enclosing block and works its way out. If no suit-
able exception handler is found in the current function, the interpreter will go
up the call stack, looking for a handler in the function’s caller, and if that fails
in the caller’s caller, and so on.

As the interpreter searches for a suitable exception handler, it may encounter
finally blocks; any such blocks are executed, after which the search for an
exception handler is resumed. (We use finally blocks for cleaning up—for
example, to ensure that a file is closed, as we will see shortly.)

If a handler is found, the interpreter passes control to the handler, and
execution continues from there. If, having gone all the way up the call stack to
the top level, no handler is found, the application will terminate and report the
exception that was the cause.

In Python, exceptions can be raised by built-in or library functions and
methods, or by us in our code. The exceptions that are raised can be of any of
the built-in exception types or our own custom exception types.

Exception handlers are blocks with the general syntax:

try:

suite1
except exceptions:

suite2
else:

suite3

Here, the code in suite1 is executed, and if an exception occurs, control will
pass to the except statement. If the except statement is suitable, suite2 will
be executed; we will discuss what happens otherwise shortly. If no exception
occurs, suite3 is executed after suite1 is finished.

The except statement has more than one syntax; here are some examples:

Exception Handling 67

except IndexError: pass

except ValueError, e: pass

except (IOError, OSError), e: pass

except: pass

In the first case we are asking to handle IndexError exceptions but do not re-
quire any information about the exception if it is raised. In the second case we
handle ValueError exceptions, and we want the exception object (which is put
in variable e). In the third case we handle both IOError and OSError exceptions,
and if either occurs, we also want the exception object, and again this is put
in variable e. The last case should not be used, since it will catch any excep-
tion: Using such a broad exception handler is usually unwise because it will
catch all kinds of exception, including those we don’t expect, thereby masking
logical errors in our code. Because we have used pass for the suites, if an ex-
ception is caught, no further action is taken, and execution will continue from
the finally block if there is one, and then from the statement following the try

block.

Exception

StandardError

ArithmeticError EnvironmentError EOFError LookupError ValueError

IOError OSError IndexError KeyError

Figure 2.1 Some of Python’s exception hierarchy

It is also possible for a single try block to have more than one exception
handler:

try:

process()

except IndexError, e:

print "Error: %s" % e

except LookupError, e:

print "Error: %s" % e

The order of the handlers is important. In this case, IndexError is a subclass
of LookupError, so if we had LookupError first, control would never pass to the
IndexError handler. This is because LookupError matches both itself and all its
subclasses. Just like C++ and Java, when we have multiple exception handlers
for the same try block they are examined in the order that they appear. This
means that we must order them from most specific to least specific. Some of
Python’s exception hierarchy is shown in Figure 2.1; the least specific exception
is at the top, going down to the most specific at the bottom.

68 Chapter 2. Control Structures

Now that we have a broad overview of exceptions, let’s see how their use
compares with a more conventional error handling approach; this will also give
us a feel for their use and syntax. We will look at two code snippets that have
the same number of lines and that do exactly the same thing: They extract
the first angle-bracketed item from a string. In both cases we assume that the
variable text holds the string we are going to search.

Testing for errors

result = ""

i = text.find("<")

if i > -1:

j = text.find(">", i + 1)

if j > -1:

result = text[i:j + 1]

print result

Exception handling

try:

i = text.index("<")

j = text.index(">", i + 1)

result = text[i:j + 1]

except ValueError:

result = ""

print result

Both approaches ensure that result is an empty string if no angle-bracketed
substring is found. However, the right-hand snippet focuses on the positive
with each line in the try block able to assume that the previous lines executed
correctly—because if they hadn’t, they would have raised an exception and
execution would have jumped to the except block.

If we were searching for a single substring, using find() would be more conve-
nient than using the exception handling machinery; but as soon as we need to
do two or more things that could fail, exception handling, as here, usually re-
sults in cleaner code with a clear demarcation between the code we are expect-
ing to execute and the code we’ve written to cope with errors and out-cases.

When we write our own functions, we can have them raise exceptions in failure
cases if we wish; for example, we could put a couple of lines at the beginning
of the simplify() function we developed in a previous section:

def simplify(text, space=" \t\r\n\f", delete=""):

if not space and not delete:

raise Exception, "Nothing to skip or delete"

This will work, but unfortunately, the Exception class (which is the convention-
al base class for Python exceptions) isn’t specific to our circumstances. This is
easily solved by creating our own custom exception and raising that instead:

class SimplifyError(Exception): pass

def simplify(text, space=" \t\r\n\f", delete=""):

if not space and not delete:

raise SimplifyError, "Nothing to skip or delete"

Exceptions are class instances, and although we don’t cover classes until
Chapter 3, the syntax for creating an exception class is so simple that there

Exception Handling 69

seems to be no reason not to show it here. The class statement has a similar
structure to a def statement, with the class keyword, followed by the name,
except that in the parentheses we put the base classes rather than parameter
names. We’ve used pass to indicate an empty suite, and we have chosen to
inherit Exception. We could have inherited from one of Exception’s subclasses
instead; for example, ValueError.

In practice, though, raising an exception in this particular case may be overkill.
We could take the view that the function will always be called with space

or delete or both nonempty, and we can assert this belief rather than use
an exception:

def simplify(text, space=" \t\r\n\f", delete=""):

assert space or delete

This will raise an AssertionError exception if both space and delete are empty,
and probably expresses the logic of the function’s preconditions better than the
previous two attempts. If the exception is not caught (and an assertion should
not be), the program will terminate and issue an error message saying that an
AssertionError was the cause and providing a traceback that identifies the file
and line where the assertion failed.

Another context where exception handling can be useful is breaking out of
deeply nested loops. For example, imagine that we have a three-dimensional
grid of values and we want to find the first occurrence of a particular target
item. Here is the conventional approach:

found = False

for x in range(len(grid)):

for y in range(len(grid[x])):

for z in range(len(grid[x][y])):

if grid[x][y][z] == target:

found = True

break

if found:

break

if found:

break

if found:

print "Found at (%d, %d, %d)" % (x, y, z)

else:

print "Not found"

This is 15 lines long. It is easy to understand, but tedious to type and rather
inefficient. Now we will use an approach that uses exception handling:

class FoundException(Exception): pass

try:

70 Chapter 2. Control Structures

for x in range(len(grid)):

for y in range(len(grid[x])):

for z in range(len(grid[x][y])):

if grid[x][y][z] == target:

raise FoundException

except FoundException:

print "Found at (%d, %d, %d)" % (x, y, z)

else:

print "Not found"

This version is only 11 lines long. If the target is found, we raise the exception
and handle that situation. If no exception is raised, the try block’s else suite
is executed.

In some situations, we want some cleanup code to be called no matter what.
For example, we may want to guarantee that we close a file or a network or
database connection even if our code has a bug. This is achieved using a try …
finally block, as the next example shows:

filehandle = open(filename)

try:

for line in filehandle:

process(line)

finally:

filehandle.close()

Here we open a file with the given filename and get a file handle. We then
iterate over the file handle—which is a generator and gives us one line at a
time in the context of a for loop. If any exception occurs, the interpreter looks
for the except or finally that is nearest in scope. In this case, it does not find
an except, but it does find a finally, so the interpreter switches control to the
finally suite and executes it. If no exception occurs, the finally block will be
executed after the try suite has finished. So either way, the file will be closed.

Python versions prior to 2.5 do not support try … except … finally blocks. So
if we need both except and finally we must use two blocks, a try … except

and a try … finally, with one nested inside the other. For example, in Python
versions up to 2.4, the most robust way to open and process a file is like this:

fh = None

try:

try:

fh = open(fname)

process(fh)

except IOError, e:

print "I/O error: %s" % e

finally:

if fh:

fh.close()

Exception Handling 71

This code makes use of things we have already discussed, but to make sure we
have a firm grip on exception handling, we will consider the code in detail.

If the file can’t be opened in the first place, the except block is executed and
then the finally block—which will do nothing since the file handle will still
be None because the file could not be opened. On the other hand, if the file is
opened and processing commences, there might be an I/O error. If this hap-
pens, the except block is executed, and again control will then pass to the fi-

nally block, and the file will be closed.

If an exception occurs that is not an IOError, or an IOError subclass, for exam-
ple, perhaps a ValueError occurs in our process() function—the interpreter
will consider the except block to be unsuitable and will look for the nearest en-
closing exception handler that is suitable. As it looks, the interpreter will first
encounter the finally block which it will then execute, after which, (i.e., after
closing the file), it will then look for a suitable exception handler.

If the file is opened and processing completes with no exception being raised,
the except block is skipped, but the finally block is still executed since finally

blocks are executed no matter what happens. So, in all cases, apart from the
interpreter being killed by the user (or, in very rare cases, crashing), if the file
was opened, it will be closed.

In Python 2.5 and later, we can use a simpler approach that has the same
semantics Python

2.5
because we can have try … except … finally blocks:

fh = None

try:

fh = open(fname)

process(fh)

except IOError, e:

print "I/O error: %s" % e

finally:

if fh:

fh.close()

Using this syntax, it is still possible to have an else block for when no exception
occurred; it is placed after the last except block and before the one and only
finally block. We will revisit this topic in the context of files in Chapter 6.

No matter what version of Python we use, finally blocks are always executed
whether an exception occurs or not, exactly once, either when the try suite is
finished, or when an exception is raised that shifts the flow of control outside
the try block.

Python 2.6 (and Python 2.5 with a from __future__ import Python

2.6
with_statement state-

ment) offers another approach entirely: “context managers”. For file handling,
we prefer the try … finally approach, but in other cases, we prefer context
managers. For example, we show how to use context managers for locking and
unlocking read/write locks used by threads in Chapter 19.

72 Chapter 2. Control Structures

Summary

In this chapter we saw how to branch using if, and how to create multiway
branches using if with elifs and, optionally, with else. We also saw how to loop
using while and for, and how to generate lists of integers using range(). We
learned about the dictionary methods that provide a dictionary’s keys, values,
and key–value pairs (items), and we took a brief look at sorting. We also had
a glimpse at how to use Python’s list comprehensions and generators.

We saw how to create functions using def (and with lambda). We used positional
and keyword arguments, and we developed two useful functions, frange() and
simplify(). We saw how Python creates functions dynamically as it reads a
.py file, and how we can use this dynamism to provide similar functionality
in older Python versions to that which is available in newer versions. And we
saw how to use partial function application to create wrapper functions that
encapsulate a function with its arguments (closures).

We also learned how to raise exceptions, how to create custom exceptions, and
how to handle exceptions. We saw how to use finally to guarantee cleanup,
and we discussed some of the more complex exception-handling possibilities
that Python offers. We also saw that exception handling can lead to cleaner
code when we have suites where multiple exceptions could occur, and how they
can be used to cleanly exit a set of deeply nested loops.

Creating custom exceptions led us on to creating simple classes; classes that
have no attributes (no member data) and no methods. In the next chapter we
will look more formally at classes,and learn how to create them and instantiate
instances of them, with any attributes and methods we wish.

Exercises
In Chapter 1, the exercises were short enough to be typed into IDLE.From now
on we recommend that you type your solutions into a file with a .py extension,
and add some test calls at the end. For example, you might write a file with
this structure:

#!/usr/bin/env python

def mysolution(arg0, arg1):

pass # Whatever code is needed

mysolution(1, 2) # Call with one set of parameters

mysolution("a", "b") # Call with another set of parameters

Additional calls to make sure all boundary cases are tested

If you are using Windows, make sure that you run your test programs inside a
console window; similarly, Mac OS X users should use a Terminal. You may also
need to include print statements so that you can see the results. (Exercises
involving GUI applications begin in Part II.)

Exercises 73

If you look at the book’s source code, including this chapter’sanswers.py file, you
will find that the code often has long docstrings, in many cases occupying far
more lines than the code itself. This is because the docstrings usually include
usage examples which do double duty as unit tests, as we will see in Chapter 3’s
“Using the doctest Module” subsection.

1. Write a function with signature:

valid(text, chars="ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789")

The function should return a (possibly empty) string which is a copy of
text that only contains characters in chars. For example:

valid("Barking!") # Returns "B"

valid("KL754", "0123456789") # Returns "754"

valid("BEAN", "abcdefghijklmnopqrstuvwxyz") # Returns ""

It can be done in half a dozen lines, using a for loop and an if statement,
not counting the docstring, which should also be written.

2. Write a function with signature:

charcount(text)

This should return a dictionary with 28 keys, “a”, “b”, …, “z”, plus
“whitespace” and “others”. For every lowercase character in text, if the
character is alphabetic, increment the corresponding key; if the character
is whitespace, increment the “whitespace” key; otherwise, increment the
“others” key. For example, the call:

stats = charcount("Exceedingly Edible")

will mean that stats is a dictionary with the following contents:

{'whitespace': 1, 'others': 0, 'a': 0, 'c': 1, 'b': 1, 'e': 5,

'd': 2, 'g': 1, 'f': 0, 'i': 2, 'h': 0, 'k': 0, 'j': 0, 'm': 0,

'l': 2, 'o': 0, 'n': 1, 'q': 0, 'p': 0, 's': 0, 'r': 0, 'u': 0,

't': 0, 'w': 0, 'v': 0, 'y': 1, 'x': 1, 'z': 0}

Using a dictionary and a for loop, it can be done in slightly more than a
dozen lines of code.

3. Create a function with signature:

integer(number)

The number parameter is either a number or a string that can be converted
to a number. The function should return the number as type int, rounding
it if the number passed in is a float. If the conversion fails, catch the
ValueError exception, and return 0. Make sure it works for both strings
and literal numbers, such as 4.5, 32, “23”, and “-15.1”, and that it correctly

74 Chapter 2. Control Structures

returns zero for invalid numbers like “tonsils”. This can be done in half a
dozen lines. (Hint: To work with all the cases you’ll always need to convert
to type float first, that is, by calling float() on the input.)

4. Now write a function with signature:

incrementString(text="AAAA")

The function must “increment” the given string. Here are some ex-
amples:

incrementString("A") # Returns "B"

incrementString("Z") # Returns "AA"

incrementString("AM") # Returns "AN"

incrementString("AZ") # Returns "BA"

incrementString("BA") # Returns "BB"

incrementString("BZ") # Returns "CA"

incrementString("ZZA") # Returns "ZZB"

incrementString("ZZZ") # Returns "AAAA"

incrementString("AAAA") # Returns "AAAB"

incrementString("AAAZ") # Returns "AABA"

incrementString("ABC2") # Raises a ValueError

The characters in text must be A–Z (or a–z, in which case the function
must upper-case them); otherwise the function should raise a ValueError

exception.

This is a bit more challenging than the previous exercises. The code can
be written in less than 20 lines if you use a couple of list comprehensions,
although it can also be written without them. It is a bit tricky to get right.
(Hint: The reversed() function returns a sequence in reverse order.)

5. If you read the section on function generators, try writing a generator
with signature:

leapyears(yearlist)

The yearlist parameter is a sequence of year numbers—for example,
[1600, 1604, 1700, 1704, 1800, 1900, 1996, 2000, 2004]. Given this input,
the output would be the years 1600, 1604, 1704, 1996, 2000, and 2004, one
at a time. This can be done in about half a dozen lines. (Hint: Leap years
are divisible by 4, but if they are divisible by 100, must also be divisible
by 400.)

Model answers for this chapter’s exercises are in the file chap02/answers.py.

Classes and Modules

33 ● Creating Instances

● Methods and Special Methods

● Inheritance and Polymorphism

● Modules and Multifile Applications

Python fully supports procedural and object-oriented programming,and leaves
us free to use either approach,or to combine the two. So far we have done proce-
dural programming, although we have already used some Python classes—for
example, the str string class. What we have not yet done is defined our own
classes. In this chapter we will learn how to create classes and methods, and
how to do object-oriented programming with Python. And in all subsequent
chapters, we will almost always use an object-oriented approach in the pro-
grams we write.

We assume that you are familiar with object-oriented programming—for
example using C++ or Java—but will take the opportunity to clarify our ter-
minology. We use the term “object”, and occasionally the term “instance”, to
refer to an instance of a particular class. We use the terms “class”, “type”,
and “data type”, interchangeably. Variables that belong to a specific instance
are called “attributes” or “instance variables”. Variables that are used inside
methods that are not instance variables are called “local variables”, or simply
“variables”. We use the term “base class” to refer to a class that is inherited
from; a base class may be the immediate ancestor, or may be further up the
inheritance tree. Some people use the term “super class” for this concept. We
use the terms “subclass” and “derived class” for a class that inherits from an-
other class.

In Python, any method can be overridden (reimplemented) in a subclass; this
is the same as Java (apart from Java’s “final” methods).★ Overloading, that
is, having methods with the same name but with different parameter lists in
the same class, is not supported, although this is not a limitation in practice
because of Python’s versatile argument-handling capabilities. In fact, the
underlying Qt C++ API makes Qtextensive use of overloading, but PyQt handles
this seamlessly behind the scenes, so in practice, we can call any “overloaded”
Qt method and rely on PyQt to do the right thing.

★In C++ terminology, all Python methods are virtual.

75

76 Chapter 3. Classes and Modules

This chapter begins with the basic syntax for creating classes. We then look
at how to construct and initialize objects, and how to implement methods. One
of the nicest features of Python’s object-oriented support is that it allows us to
reimplement “special methods”.This means we can make our classes seamless-
ly blend in so that they behave just like built-in classes. For example, it is easy
to make our classes work with the comparison operators such as == and <. We
then look at the numeric special methods: these allow us to overload operators
such as + and += which can be useful when creating complete custom data types,
especially numeric ones. If our class is a collection, there are some additional
special methods we can reimplement so that, for example, our collection will
support the in operator and the len() function. The chapter concludes with a
section on Python’s support for inheritance and polymorphism.

For historical reasons, there are two kinds of user-defined types (classes) that
Python provides: “old-style” and “new-style”. The only obvious difference is
that old-style classes either have no base class, or have only old-style base
classes. New-style classes always derive from a new-style class, for example,
object, Python’s ultimate base class. Since there is no reason to use old-style
classes, and because they will be dropped from the language from Python 3.0,
we will always use new-style classes.

The syntax for creating a class is simple:

class className(base_classes):

suite

In the class’s suite we can have def statements; and in such a context they
create methods for their enclosing class rather than functions.

It is also possible to have “empty” classes, with no methods or attributes (data
members) of their own, as we saw at the end of the preceding chapter when we
derived our own custom exception class.

New-style classes always have at least one base class—for example, object.
Unlike Java, Python supports multiple inheritance, that is, Python classes can
inherit from one, two, or more base classes. We will mostly avoid this feature
because it can lead to unnecessary and confusing complexity. Python does not
support abstract classes (classes that cannot be instantiated, and that can only
be derived from—useful for defining interfaces), but the effect of having an
abstract class can be achieved all the same. We will look at a small example
of multiple inheritance where one of the base classes is “abstract” and is used
purely to provide an API (rather like a Java interface).

In Python, all methods and attributes are accessible from both inside and
outside the class; there are no access specifiers such as “public” and “private”.
Python does have a concept of “private”—objects with names that begin with a
single leading underscore are considered to be private. As far as methods and
instance variables are concerned, their privacy is merely a convention that we
are invited to respect. And as for modules, private classes and functions, that
is, those whose name begins with a leading underscore, are not imported when

Creating Instances 77

using the from moduleName import * syntax. Python also has a concept of “very
private”—methods and attributes with names that begin with two leading un-
derscores. Very private objects are still accessible, but the Python interpreter
mangles their names to make it difficult to access them by mistake.

Now that we know the basic syntax for creating a class and have a broad
overview of Python’s object-oriented features, we are ready to see how to create
a class and some instances.

Creating Instances

In most object-oriented languages, objects are created in two steps: First, the
object is constructed, and second, the object is initialized. Some languages
merge these two steps into one, but Python keeps them separate. Python has
the __new__() special method which is called to construct an object, and the
__init__() special method which is called to initialize a newly constructed
object. It is very rare to actually need to implement __new__() ourselves; not
one of the custom classes in this book needs it—and older versions of Python
did not even have the __new__() special method. Python is perfectly capable of
constructing our objects for us, so in almost every case the only method we need
to implement is __init__().

In view of Python’s two-step object creation, we will normally talk of object
creation rather than construction. Also, we will generally refer to a class’s
initializer (its __init__() method), since that is the method that is normally
reimplemented in custom classes and the one that is closer to the idea of a
constructor that is used in languages like C++ and Java.

Let’s see how to create a class in practice. We will create one that stores a string
(the name of a kind of chair) and a number (how many legs the chair has):

class Chair(object):

"""This class represents chairs."""

def __init__(self, name, legs=4):

self.name = name

self.legs = legs

It is conventional to follow a class statement with a docstring as shown in the
preceding code. We will not normally show docstrings in the book, but they are
included where appropriate in the accompanying example code. The blank line
is purely for aesthetics and clarity.

Methods with names beginning and ending with two underscores are “special”
methods. Python uses such methods to integrate custom classes so that they
can have the same usage patterns as built-in classes, as we will soon see.

The __init__() method, and indeed every method, has a first parameter that
is the Python equivalent to the C++ or Java “this” variable, that is, a variable
that refers to the object itself. This variable is conventionally called self. We

78 Chapter 3. Classes and Modules

must put self as the first item of every (nonstatic★) method’s parameter list,
although we never need to pass it since Python will do that for us.

Although the name “self” is merely conventional, we will always use it. Inside
the object, we must use self explicitly when we want to refer to instance meth-
ods or attributes. For example, in the Chair class’s initializer, we have created
two data attributes using self. Thanks to Python’s dynamic nature, it is possi-
ble to create additional attributes in other methods, and even to add additional
attributes to particular instances if we wish; but we will take a more conserva-
tive line that is sufficient for the GUI programming we are working toward.

To create an instance of a class, we use the following syntax:

instance = className(arguments)

The parentheses are mandatory, even if we don’t pass any arguments. Behind
the scenes, Python constructs the object by calling the class’s static __new__()

method (which is inherited from object, or in rare cases is implemented by
us), and then calls __init__() on the newly constructed object. The resulting
initialized object is returned.

In the case of our Chair class, we must pass either one or two arguments
(Python passes the first self argument automatically for us); for example:

chair1 = Chair("Barcelona")

chair2 = Chair("Bar Stool", 1)

Since the attributes are public, they can be read or assigned to using the dot (.)
operator; for example: print chair2.name will print “Bar Stool”, and chair1.legs

= 2 will change chair1’s legs attribute’s value from 4 to 2.

Object-oriented purists will no doubt be uncomfortable with this kind of direct
access to attributes from outside the instance, whereas those with a taste for
extreme programming may be perfectly happy with it since we can always add
accessor methods later.

Now that we have seen how construction and initialization are handled, we
need to consider object destruction. C++ programmers are used to using de-
structors and relying on the fact that they can delete objects at a time of their
own choosing. Java and Python programmers do not have that particular
luxury. Instead, they have automatic garbage collection, which makes pro-
gramming much easier in general but with the one drawback of not giving fine
control over exactly when objects are deleted. If resources need to be protect-
ed, the solution is normally to use a try … finally block to guarantee cleanup.
When an object is about to be garbage-collected its __del__() special method is
called, with self as its only argument. As is common practice in Python (and in
Java regarding the finalize() method),we very rarely use this particular special

★A static method is one that can be called on a class or an instance and has no self parameter.Nor-
mal methods are non-static, that is, they have a self parameter and must be called on instances.

Creating Instances 79

method. To put this in perspective, out of more than 170 classes in this book’s
examples and exercise solutions, not one reimplements __del__().

We have now learned how to create and initialize an object of a custom class.
Next, we will see how to provide additional methods to give our class distinctive
behavior. We will also learn how to ensure that our classes smoothly integrate
with the rest of Python, and act just like built-in classes where that is appro-
priate.

Methods and Special Methods

We will begin by looking at a class that uses accessor methods to get and set
the value of attributes, rather than using direct attribute access.

class Rectangle(object):

def __init__(self, width, height):

self.width = width

self.height = height

def getWidth(self):

return self.width

def setWidth(self, width):

self.width = width

def getHeight(self):

return self.height

def setHeight(self, height):

self.height = height

def area(self):

return self.getWidth() * self.getHeight()

We have chosen to use a Java-style naming convention for both getters and
setters. Now we can write code like this:

rect = Rectangle(50, 10)

print rect.area() # Prints "500"

rect.setWidth(20)

We could just as easily have implemented the area() method like this:

def area(self):

return self.width * self.height

Writing trivial accessor methods as we have done here is the right approach for
languages like C++ because it provides maximum flexibility, and no overhead
in the compiled code. And if at a later stage we needed to perform some com-
putation in an accessor, we can simply add in the functionality without requir-

80 Chapter 3. Classes and Modules

ing users of our class to change their code. But in Python, it is not necessary
to write such accessors. Instead, we can directly read and write attributes, and
if at a later stage we need to perform some computation, we can use Python’s
property() function. This function allows us to create named properties that
can replace attributes. Properties are accessed just like attributes, but behind
the scenes they call the methods that we specify to get and set the value.

Here is a second version of the Rectangle class, this time using direct attribute
access for the width and height, and a property for the area:

class Rectangle(object):

def __init__(self, width, height):

self.width = width

self.height = height

def _area(self):

return self.width * self.height

area = property(fget=_area)

This allows us to write code like this:

rect = Rectangle(5, 4)

print rect.width, rect.height, rect.area # Prints (5, 4, 20)

rect.width = 6

Python’s property() function can be used to specify a getter, a setter, a deletion
method, and a docstring. Since we specified only a getter, the area property is
read-only. If later on we needed to perform some computation when the width
was accessed, we could simply turn it into a property, like this:

def _width(self):

return self.__width

def _setWidth(self, width):

Perform some computation

self.__width = width

width = property(fget=_width, fset=_setWidth)

Notice that we have changed the name of the instance variable from width to
__width to avoid a name collision with the width property. In general, properties
whose values are held in instance Discus-

sion of
private
names

☞ 88

variables use private names (names with
two leading underscores) for the instance variables, to avoid name collisions
with the property name that the class’s user uses. For example, users of the
Rectangle class with the width property, can get and set the width attribute
exactly the same as before, only now, the _width() and _setWidth() methods are
used behind the scenes to perform these operations, and the attribute’s data is
held in the __width instance variable.

Methods and Special Methods 81

Table 3.1 Basic Special Methods

Method Syntax Description

__init__(self, args) x = X() Initializes a newly created instance

__call__(self, args) x() Makes instances callable, that is,
turns them into functors. The args

are optional. (Advanced)
__cmp__(self, other) x == y

x < y

etc

Returns -1 if self < other, 0 if they are
equal, and 1 otherwise. If __cmp__()

is implemented, it will be used for any
comparison operators that are not ex-
plicitly implemented.

__eq__(self, other) x == y Returns True if x is equal to y

__ne__(self, other) x != y Returns True if x is not equal to y

__le__(self, other) x <= y Returns True if x is less than or equal
to y

__lt__(self, other) x < y Returns True if x is less than y

__ge__(self, other) x >= y Returns True if x is greater than or
equal to y

__gt__(self, other) x > y Returns True if x is greater than y

__nonzero__(self) if x:

 pass
Returns True if x is nonzero

__repr__(self) y = eval(`x`) Returns an eval()-able representa-
tion of x. Using backticks is the same
as calling repr().★

__str__(self) print x Returns a human-readable represen-
tation of x

__unicode__(self) print x Returns a human-readable Unicode
representation of x

Python offers even more control over attribute access than we have shown
here, but since this is not necessary to our goal of GUI programming, we will
leave this as a topic to look up if it ever becomes of interest. The starting point
is the documentation for the __getattr__(), __getattribute__(), and __setat-

tr__() special methods.

The mechanics of Python methods, including special methods, are exactly the
same as for functions, but with the addition of the self first argument, and
the ability to access self’s attributes and call self’s methods. We just have to
remember that when we call methods or access instance variables, we must
specify the instance using self.For example, in the Rectangle class’ssetHeight()

★It is best to use repr() rather than backticks since backticks will be dropped in Python 3.0.

82 Chapter 3. Classes and Modules

method, we used self.height to refer to the instance variable and plain height

to refer to the parameter, that is, to a local variable. Similarly, in the area()

method, we call two Rectangle methods, again using self. This is quite different
from C++ and Java, where the instance is assumed.

In C++ it is possible to implement operators, that is, to provide our own im-
plementations of operators for our data types. The C++ syntax uses the key-
word operator followed by the operator itself—for example, operator+()—but
in Python every operator has a name, so to implement a class’s + operator in
Python we would implement an __add__() method. All the Python methods for
implementing operators are special methods, and this is signified by them hav-
ing names that begin and end with two underscores.

To better integrate our custom classes into Python, there are some additional
general special methods which may be worth implementing. For example, we
might want to provide support for the comparison operators,and a Boolean val-
ue for instances of our class. We will add a few more methods to the Rectangle

class to show the possibilities in action,but for brevity we won’t repeat the class

statement and the methods we have already implemented. We will start with
comparisons:

def __cmp__(self, other):

return cmp(self.area(), other.area())

If we want we can implement a special method for every one of the comparison
operators.For example, if we implement __lt__() “less than”, we will be able to
compare instances of our class with the < operator. However, if we don’t want
to implement the comparison operators individually, we can simply implement
__cmp__() as we have done here. Python will use the specific special method
for comparisons if it has been implemented, but will fall back on __cmp__() oth-
erwise. So just by implementing this one special method, all the comparison
operators (<, <=, ==, !=, >=, >) will work with Rectangle objects:

rectA = Rectangle(4, 4)

rectB = Rectangle(8, 2)

rectA == rectB # True because both have the same area

rectA < rectB # False

We used the built-in cmp() function to implement __cmp__(). The cmp() function
takes two objects and returns -1 if the first is less than the second, 0 if they are
equal, and 1 otherwise. We used the rectangles’ areas as the basis for compar-
ison, which is why we got the rather surprising True result in our example. A
stricter, and perhaps better implementation might be:

def __cmp__(self, other):

if (self.width != other.width):

return cmp(self.width, other.width)

return cmp(self.height, other.height)

Methods and Special Methods 83

Here we return the result of comparing the heights if the widths are the same;
otherwise, we return the result of comparing the widths.

If we do not reimplement any comparison special methods, in most cases
Python will happily perform comparisons for us, although not necessarily in
the way we would want. If we are creating a class where comparisons make
sense, we ought to implement __cmp__(). For other classes, the safest thing to
do is to implement __cmp__() with a body of return NotImplementedError.

def __nonzero__(self):

return self.width or self.height

This special method is used when the object is in a Boolean context; for
example, bool(rectA), or if rectB: and returns True if the object is “nonzero”.

def __repr__(self):

return "Rectangle(%d, %d)" % (self.width, self.height)

The “representation” special method must return a string which, if evaluated
(e.g., using eval()), will result in the construction of an object with the same
properties as the object it is called on. Some objects are too complex to support
this, and for some objects, such as a window or a button in a GUI, it doesn’t
make sense; so such classes don’t provide a __repr__() implementation. In
a string % operator’s format string we use %r to get the result of this special
method; we can also use the repr() function or the backticks `` operator. Back-
ticks are just a syntactic alternative to using repr(). For example, repr(x) and
`x` both return identical results: the representation of object x as returned by
x’s __repr__() method.

There is also a __str__() special method that must return a string represen-
tation of the object it is called on (like Java’s toString() method), but unlike
__repr__(), the representation is meant to be human-readable and does not
have to be eval()-able. If, as in this case, the __str__() method is not implement-
ed, Python will use the __repr__() method instead. For example:

rect = Rectangle(8, 9)

print rect # Prints "Rectangle(8, 9)" using __repr__()

If we want a human-readable Unicode string representation of our class, we
can implement __unicode__().

There are a few more general special methods that we could implement, but
which are not appropriate for the Rectangle class. All the commonly implement-
ed general special methods are listed in Table 3.1.

At this point, C++ programmers might be wondering where the copy construc-
tor and assignment operators are, and Java programmers might be wonder-
ing about the clone() method. Python does not use a copy constructor and
reimplementing the assignment operator is not necessary. If we want to do
an assignment we just use = and Python will bind a new name to our existing

84 Chapter 3. Classes and Modules

Table 3.2 Selected Numeric Special Methods

Method Syntax Method Syntax

__float__(self) float(x) __int__(self) int(x)

__abs__(self) abs(x) __neg__(self) -x

__add__(self, other) x + y __sub__(self, other) x - y

__iadd__(self, other) x += y __isub__(self, other) x -= y

__radd__(self, other) y + x __rsub__(self, other) y - x

__mul__(self, other) x * y __mod__(self, other) x % y

__imul__(self, other) x *= y __imod__(self, other) x %= y

__rmul__(self, other) y * x __rmod__(self, other) y % x

__floordiv__(self, other) x // y __truediv__(self, other) x / y

__ifloordiv__(self, other) x //= y __itruediv__(self, other) x /= y

__rfloordiv__(self, other) y // x __rtruediv__(self, other) y / x

object. If we really do need a copy of our object, we can use the copy() or deep-

copy() function from the copy module, the first for objects that don’t have nested
attributes or when a shallow copy suffices, and the second for objects that must
be copied in full. Alternatively, we can provide our own copy method, which we
usually call copy() since this is conventional Python practice.

For numerical classes, it is often convenient to provide functionality to support
the standard numeric operators, such as + and +=. This is achieved in Python’s
usual way, by implementing various special methods. If we implement only +,
Python will use it to provide +=, but it is often best to implement both since that
gives us finer control and makes it easier to optimize the operations.

The most commonly implemented numeric special methods are listed in
Table 3.2. Those not listed include bit-shifting operators and hexadecimal and
octal conversion operators.

The reason for two different division operators is that Python can perform
either integer or floating-point division, as explained on page 17.

Some special methods have two or three versions; for example, __add__(),
__radd__(), and __iadd__(). The “r” versions (e.g., __radd__()), are for situations
where the left-hand operand does not have a suitable method, but the right-
hand operand does. For example, if we have the expression x + y, with x and
y of types X and Y, Python will first try to evaluate the expression by calling
X.__add__(x, y). But if type X does not have this method, Python will then try
Y.__radd__(x, y). If Y has no such method, an exception will be raised.

In the “i” versions, the “i” stands for “in-place”. They are used for augmented
assignment operators such as +=. We will shortly see an example that shows
many of these methods in practice, but first we must learn how to create static
data and static methods.

Methods and Special Methods 85

Static Data, and Static Methods and Decorators

In some situations it is useful to have data that is associated with a class as a
whole rather than with its instances. For example, if we have a Balloon class,
we might want to know how many unique colors have been used:

class Balloon(object):

unique_colors = set()

def __init__(self, color):

self.color = color

Balloon.unique_colors.add(color)

@staticmethod

def uniqueColorCount():

return len(Balloon.unique_colors)

@staticmethod

def uniqueColors():

return Balloon.unique_colors.copy()

Static data is created inside a class block, but outside of any def statements.
To access static data, we must qualify the name, and the easiest way to do so is
by using the class name, as we do in the Balloon class’s static methods. We will
see static data and methods in more realistic contexts in the next subsection.

The @staticmethod is a decorator. A decorator is a function that takes a function
as an argument, wraps it in some way, and assigns the wrapped function back
to the original function’s name, so it has the same effect as writing this:

def uniqueColors():

return Balloon.unique_colors.copy()

uniqueColors = staticmethod(uniqueColors)

The @ symbol is used to signify a decorator. The staticmethod() function is one
of Python’s built-in functions.

We can use more than one decorator. For example, a suitable decorator could
be written to instrument functions and methods, or to log each time a method
is called. For example:

@logger

@recalculate

def changeWidth(self, width):

self.width = width

Here, whenever the object’s width is changed two decorators are applied: log-
ger(), which might record the change in a log file or database, and recalcu-

late(), which might update the object’s area.

86 Chapter 3. Classes and Modules

In addition to static methods, Python also supports “class methods”. These are
similar to static methods in that they do not have a self first argument, and so
can be called using a class or an instance. What distinguishes them from static
methods is that they have a Python-supplied first argument, the class they are
called on. This is conventionally called cls.

Example: The Length Class

Now that we have seen a lot of Python’s general and numerical special meth-
ods, we are in a position to create a complete custom data type. We will create
the Length class to hold physical lengths. We want to be able to create lengths
using syntax like this: distance = Length("22 miles"). And we want to be able to
retrieve lengths in the units we prefer—for example, km = distance.to("km").
The class must not support the multiplication of lengths by lengths (since that
would produce an area), but should support multiplication by amounts; for ex-
ample distance * 2.

As usual, although the source code, in chap03/length.py, has docstrings, we
will not show them in the following snippets, both to save space and to avoid
distracting us from the code itself.

from __future__ import division

The first statement in the file is rather intriguing.Trun-
cating
division

17 ☞

The from __future__ import

syntax is used to switch on Python features that will be on by default in a later
version. Such statements must always come first. In this case, we are saying
that we want to switch on Python’s future division behavior, which is for / to
do “true”, or floating-point division, rather than what it does normally, that is,
truncating division. (The // operator does truncating division, if that is what
we really need.)

class Length(object):

convert = dict(mi=621.371e-6, miles=621.371e-6, mile=621.371e-6,

yd=1.094, yards=1.094, yard=1.094,

ft=3.281, feet=3.281, foot=3.281,

inches=39.37, inch=39.37,

mm=1000, millimeter=1000, millimeters=1000,

millimetre=1000, millimetres=1000,

cm=100, centimeter=100, centimeters=100,

centimetre=100, centimetres=100,

m=1.0, meter=1.0, meters=1.0, metre=1.0, metres=1.0,

km=0.001, kilometer=0.001, kilometers=0.001,

kilometre=0.001, kilometres=0.001)

convert["in"] = 39.37

numbers = frozenset("0123456789.eE")

We begin with a class statement to give our class a name, and to provide a
context in which we can create static data and methods. We have inherited

Methods and Special Methods 87

from object, so our class is new-style. Then we create some static data. First
we create a dictionary that maps names to conversion factors. We can’t use
“in” as an argument name because it is a Python keyword, so we insert it into
the dictionary separately using the [] operator. We also create a set of the
characters that are valid in floating-point numbers.

def __init__(self, length=None):

if length is None:

self.__amount = 0.0

else:

digits = ""

for i, char in enumerate(length):

if char in Length.numbers:

digits += char

else:

self.__amount = float(digits)

unit = length[i:].strip().lower()

break

else:

raise ValueError, "need an amount and a unit"

self.__amount /= Length.convert[unit]

Inside the initializer, the local variables length, digits, i, char, and unit all go
out of scope at the end of the method. We refer only to one instance variable,
self.__amount. This variable always holds the given length in meters, no matter
what units were used in the initializer, and is accessible from any method. We
also refer to two static variables, Length.numbers and Length.convert.

When a Length object is created, Python will call the __init__() method. We
give the user two options: Pass no arguments, in which case the length will be
0 meters, or pass a string that specifies an amount and a unit with optional
whitespace separating the two.

If a string is given,we want to iterate over the characters that are valid in num-
bers,and then take the remainder to be the units.Python’s enumerate() function
returns an iterator that returns a tuple of two values on each iteration, an in-
dex number starting from 0, and the corresponding item from the sequence. So
if the string in length was "7 mi", the tuples returned would be (0, "7"),(1, " "),
(2, "m"), and (3, "i"). We can unpack a tuple in a for loop simply by providing
enough variables.

As long as we retrieve characters that are in the numbers set we add them to
our digits string. Once we reach a character that isn’t in the set, we attempt
to convert the digits string to a float, and take the rest of the length string to
be the units. We strip off any leading and trailing whitespace from the units
string,and lowercase the string. Finally,we calculate how many meters the giv-
en length is by using the conversion factor from the static convert dictionary.

88 Chapter 3. Classes and Modules

We called our data attribute __amount, rather than, say, amount, because we want
this data to be private. Python will name-mangle any name in a class that
begins with two underscores (and which does not end in two underscores) to
be preceded by an underscore and the class name to make the attribute’s name
unique. In this case, __amount will be mangled to be _Length__amount. When we
look at some of the special methods, we will see a practical reason why this
is beneficial.

Clearly many things could go wrong. The floating-point conversion could fail,
there may be no units given (in which case we raise an exception, along with
a “reason” string), or the units may not match any in the convert dictionary.
In this method, we have chosen to let the possible exceptions be raised, docu-
menting them in the method’s docstring so that users of the class know what
to expect.

def set(self, length):

self.__init__(length)

We want our lengths to be mutable, so we have provided a set() method. It
takes the same argument as __init__(), and because __init__() is an initializer
rather than a constructor, we can safely pass the work on to it.

def to(self, unit):

return self.__amount * Length.convert[unit]

We store lengths inside the class as meters. This means that we need to
maintain only a single floating-point value, rather than, say, a value and a unit.
But just as we can specify our preferred units when we create a length, we also
want to be able to retrieve a length as a value in the units of our choice. This
is what the to() method achieves. It uses the convert dictionary to convert the
meters value to the units specified.

def copy(self):

other = Length()

other.__amount = self.__amount

return other

As we know, if we use the = operator, we will simply bind (or rebind) a name,
so if we want a genuine copy of a length we need some means of doing it. Here
we have chosen to provide a copy() method. But we did not have to: Instead,
we could have simply relied on the copy module. For example:

import copy

import length

x = length.Length("3 km")

y = copy.copy(x)

We have imported both the standard copy module and our own length module,
(assuming that chap03 is in sys.path, and that the module is called length.py).

Methods and Special Methods 89

Then we created two independent lengths. If, instead, we had done y = x and
then changed x using the set() method, y would have changed too. Of course,
since we have implemented our own copy() method, we could also have copied
by writing y = x.copy().

We could have implemented the copy() method differently. For example:

def copy(self): # Alternative #1

import copy

return copy.copy(self)

def copy(self): # Alternative #2

return eval(repr(self))

The first of these uses Python’s standard copy module to implement the copy()

function. The second uses the repr() method to provide an eval()-able string
version of the length—for example, Length('3000.000000m')—and then uses
eval() to evaluate this code; in this case, it constructs a new length of the same
size as the original.

@staticmethod

def units():

return Length.convert.keys()

We have provided this static method to give users of our class access to the
names of the units we support. By using keys(), we ensure that a list of unit
names is returned, rather than an object reference to our static dictionary.

With the exception of the __init__() initialization method,none of the methods
we have looked at so far has been a special method. But we want our Length

class to work like a standard Python class, so that it can be used with operators
like * and *=, compared, and converted to suitable compatible types. All these
things are achievable by implementing special methods. We will begin with
comparisons.

def __cmp__(self, other):

return cmp(self.__amount, other.__amount)

This method is easy to implement since we can just compare how long each
length is.

The other object could be an object of any type. Thanks to Python’s name
mangling, the actual comparison is made between self._Length__amount and
other._Length__amount. If the other object does not have a _Length__amount at-
tribute, that is, if it is not a length, Python will raise an AttributeError which
is what we want. This is true of all the other methods that take a length argu-
ment in addition to self.

Without the name mangling, there is a small risk of the other object not being
a length, yet happening to have an __amount attribute. To prevent this risk

90 Chapter 3. Classes and Modules

we might have used type testing, even though this is often poor practice in
object-oriented programming.

def __repr__(self):

return "Length('%.6fm')" % self.__amount

def __str__(self):

return "%.3fm" % self.__amount

Python’s floating-point accuracy depends on the compiler it was built with, but
it is very likely to be accurate to much more than the six decimal places we have
chosen to use for our “representation” method.

For the string representation, we don’t need to be as accurate, nor do we
need to return a string that can be eval()’d, so we just return the raw length
and the meters unit. If users of our Length class want a string represen-
tation with a different unit, they can use to()—for example, "%s miles" %

length.Length("200 ft").to("miles").

def __add__(self, other):

return Length("%fm" % (self.__amount + other.__amount))

def __iadd__(self, other):

self.__amount += other.__amount

return self

We have used two special methods to support addition. The first supports bina-
ry + with a length operand on either side. It constructsand returnsa new Length

object. The second supports += for incrementing a length by another length.

They allow us to write code like this:

x = length.Length("30ft")

y = length.Length("250cm")

z = x + y # z == Length('11.643554m')

x += y # x == Length('11.643554m')

It is also possible to implement __radd__() for mixed-type arithmetic, but we
have not done so because it does not make sense for the Length class.

We will omit the code that provides support for subtraction since it is almost
identical to the code for addition (and is in the source file).

def __mul__(self, other):

if isinstance(other, Length):

raise ValueError, \

"Length * Length produces an area not a Length"

return Length("%fm" % (self.__amount * other))

Methods and Special Methods 91

def __rmul__(self, other):

return Length("%fm" % (other * self.__amount))

def __imul__(self, other):

self.__amount *= other

return self

For the multiplication methods, we provide support for multiplying a length
by a number. If we assume that x is a length, __mul__() supports uses like x *

5, and __rmul__() supports uses like 5 * x. We must explicitly disallow multi-
plying lengths together in __mul__() since the result would be an area and not
a length. We do not need to do this in __rmul__() because __mul__() is always
tried first, and if it raises an exception, Python does not try __rmul__(). The
__imul__() method supports in-place (augmented)multiplication—for example,
x *= 5.

def __truediv__(self, other):

return Length("%fm" % (self.__amount / other))

def __itruediv__(self, other):

self.__amount /= other

return self

The implementation of the division special methods has a similar structure
to the other arithmetic methods. One reason for showing them is to remind
ourselves that the reason the / and /= operators perform floating-point division
is because of the from __future__ import division directive at the beginning of
the length.py file. It is also possible to reimplement truncating division, but
that isn’t appropriate for the Length class.

Another reason for showing them is that they are subtly different from the
addition methods we have just seen. Although addition and subtraction
operate only on lengths, multiplication and division operate on a length and
a number.

def __float__(self):

return self.__amount

def __int__(self):

return int(round(self.__amount))

We have chosen to support two type conversions, both of which are easy to
write and understand.The __str__() method implemented earlier is also a type
conversion (to type str).

Now that we have seen how to implement a custom data type, we will turn our
attention to implementing a custom collection class.

92 Chapter 3. Classes and Modules

Collection Classes

In Python, collections are sequences such as lists and strings, mappings such
as dictionaries, or sets. If we implement our own collection classes we can use
special methods to make our collections usable with the same syntax and
semantics as the built-in collection types. Table 3.3 lists the special methods
common to collections, and in this section we discuss some of the specifics of
each kind of collection.

In the case of sequences, it is common to implement __add__() and __radd__()

to support concatenation with +, and in the case of a mutable collection, to
implement __iadd__(), for +=, too. Similarly, the __mul__() methods should be
implemented to support * for repeating the collection. If an invalid index is
given, we should raise an IndexError exception. In addition to special methods,
a custom sequence collection ought to implement append(), count(), index(),
insert(), extend(), pop(), remove(), reverse(), and sort().

For mappings, we should raise KeyError if an invalid key is given, and in ad-
dition to the special methods, we should at least implement copy() and get(),
along with items(), keys(), and values(), and their iterator versions, such as
iteritems().Genera-

tor
func-
tions

58 ☞

A Python iterator is a function or method that returns successive
values—for example, each character in a string, or each item in a list or dictio-
nary. They are often implemented by generators.

For sets, we should also raise KeyError if an invalid key is used; for example,
when calling remove(). Set collections should implement issubset(), issuper-
set(), union(), intersection(), difference(), symmetric_difference(), and copy().
For mutable sets, additional methods should be provided, including add(), re-
move(), and discard().

Example: The OrderedDict Class

A rare omission from Python’s standard library is an ordered dictionary. Plain
dictionariesprovide very fast lookup,but do not provide ordering. For example,
if we wanted to iterate over a dictionary’s values in key order, we would copy
the keys to a list, sort the list, and iterate over the list, using the list’s elements
to access the dictionary’s values. For small dictionaries, or where we do this
rarely, sorting may be fine,but when the dictionary is large or sorted frequently,
sorting every time may be computationally expensive.

An obvious solution is to create an ordered dictionary, and that is what we will
do here.

Understanding the OrderedDict example is not necessary for learning GUI
programming, but we do use the techniques and methods explained here in
some of the programs that we will cover later on. For now, though, you could
safely skip to the next section, starting on page 99, and then return here to
understand the techniques when you encounter them in later chapters.

Methods and Special Methods 93

Table 3.3 Selected Collection Special Methods

Method Syntax Description

__contains__(self, x) x in y Returns True if x is in sequence y or if
x is a key in dict y. This method is also
used for not in.

__len__(self) len(y) Returns the number of items in y

__getitem__(self, k) y[k] Returns the k-th item of sequence y or
the value for key k in dict y

__setitem__(self, k, v) y[k] = v Sets the k-th item of sequence y or the
value for key k in dict y, to v

__delitem__(self, k) del y[k] Deletes the k-th item of sequence y or
the item with key k in dict y

__iter__(self) for x in y:

pass
Returns an iterator into collection y

One approach would be to inherit dict, but we will instead use aggregation
(also called composition), and defer consideration of inheritance until the
next section.

To get an ordered dictionary, we will create a class that stores a normal dic-
tionary, and alongside it, an ordered list of the dictionary’s keys. We will
implement all of the dict API, but we will not show update() or fromkeys()

because they both go beyond what we have covered and what we need for
GUI programming. (Of course, both of these methods are in the source code,
chap03/ordereddict.py.)

The first executable statement in the file is an import statement:

import bisect

The bisect module provides methods for searching ordered sequences such as
lists using the binary chop algorithm. We will discuss it shortly when we see it
in use.

For this class we don’t need any static data, so we will begin by looking at both
the class statement and the definition of __init__():

class OrderedDict(object):

def __init__(self, dictionary=None):

self.__keys = []

self.__dict = {}

if dictionary is not None:

if isinstance(dictionary, OrderedDict):

self.__dict = dictionary.__dict.copy()

self.__keys = dictionary.__keys[:]

else:

94 Chapter 3. Classes and Modules

self.__dict = dict(dictionary).copy()

self.__keys = sorted(self.__dict.keys())

We create a list called __keys and a dictionary called __dict. If the OrderedDict

is initialized with another dictionary,we need to get that dictionary’sdata. The
simplest and most direct way of doing this is how we do it in the else suite.
We convert the object to a dictionary (which costs nothing if it is already a
dictionary), and take a shallow copy of it. Then we take a sorted list of the
dictionary’s keys.

The approach used in the else suite works in all cases, but purely for efficiency,
we have introduced a type test using isinstance(). This function returns True if
its first argument is an instance of the class or classes (passed as a tuple) given
as its second argument, or any of their base classes. So if we are initializing
from another OrderedDict (or from an OrderedDict subclass) we can simply
shallow-copy its dictionary, which costs the same as before, and shallow-copy
its keys, which is cheaper because they are already sorted.

Since our dictionary is ordered, in addition to the normal dictionary methods
we should also be able to access the value of a dictionary item at a particular
index position in the dictionary. That is what the first two methods we are
going to implement provide:

def getAt(self, index):

return self.__dict[self.__keys[index]]

def setAt(self, index, value):

self.__dict[self.__keys[index]] = value

The getAt() method returns the index-th item in the dictionary. It does this by
accessing the dictionary using the key the list holds in the index-th position.
The setAt() method uses the same logic, except that it sets the value for the
dictionary item that is at the index-th position.

def __getitem__(self, key):

return self.__dict[key]

If we have a dictionary,Dic-
tionary
methods

36 ☞

d, and use the syntax value = d[key], the __getitem__()

special method is called. We simply pass the work on to the dictionary we are
holding inside our OrderedDict class. If the key is not in __dict it will raise a
KeyError, which is what we want, since we want OrderedDict to have the same
behavior as a dict, except when key order is an issue.

def __setitem__(self, key, value):

if key not in self.__dict:

bisect.insort_left(self.__keys, key)

self.__dict[key] = value

Methods and Special Methods 95

If the user assigns to a dictionary using the syntax d[key] = value, we again rely
on the __dict to do the work. But if the key is not already in the __dict, it can’t
be in the list of keys either, so we must add it.

The insort_left() function takes a sorted sequence, such as a sorted list,
and an item to insert. It locates the position in the sequence where the item
should go to preserve the sequence’s order, and inserts the item there. The
insort_left() function, like all the bisect module’s functions, uses a binary
chop, so performance is excellent even on very long sequences.

Another approach would have been to simply append the new key and then
call sort() on the list. Python’s sorting functionality is highly optimized for
partially sorted data, so performance might not be too bad, but we prefer the
more efficient solution.

def __delitem__(self, key):

i = bisect.bisect_left(self.__keys, key)

del self.__keys[i]

del self.__dict[key]

Deleting an item is quite simple. The bisect_left() function takes a sorted
sequence, such as a sorted list, and an item. It returns the index position where
the item is in the sequence (or where the item would have been if it was in
the sequence). We assume the key is in the list, relying on an exception being
raised if it isn’t. We delete the key by index position from the keys list, and
delete the (key, value) by key from the dictionary.

We could instead have deleted the key from the keys list with a single state-
ment, self.__keys.remove(key), but that would have used a slow linear search.

def get(self, key, value=None):

return self.__dict.get(key, value)

This method returns the value for the given key, unless the key is not present
in the dictionary, in which case it returns the specified value (which defaults to
None). Since key order is not involved, we can simply pass on the work.

def setdefault(self, key, value):

if key not in self.__dict:

bisect.insort_left(self.__keys, key)

return self.__dict.setdefault(key, value)

This method is similar to get(), but with one important difference: If the key
is not in the dictionary, it is inserted with the given value. And in the case of a
key that isn’t in the dictionary, we must, of course, insert it into our key list.

def pop(self, key, value=None):

if key not in self.__dict:

return value

i = bisect.bisect_left(self.__keys, key)

96 Chapter 3. Classes and Modules

del self.__keys[i]

return self.__dict.pop(key, value)

This method is also similar to get(), except that it removes the item with the
given key if it is in the dictionary. Naturally, if a key is removed from the
dictionary, we must also remove it from the list of keys.

def popitem(self):

item = self.__dict.popitem()

i = bisect.bisect_left(self.__keys, item[0])

del self.__keys[i]

return item

This method removes and returns an arbitrary item, that is, a (key, value) tuple
We first remove the arbitrary item from the dictionary (since we don’t know
what it will be in advance), then remove its key from our list of keys,and finally
return the item that was removed.

def has_key(self, key):

return key in self.__dict

def __contains__(self, key):

return key in self.__dict

The has_key() method is supported for backward compatibility; nowadays pro-
grammers use in, which is implemented by the __contains__() special method.

def __len__(self):

return len(self.__dict)

This returns how many items are in the dictionary.We could just as easily have
returned len(self.__keys).

def keys(self):

return self.__keys[:]

We return our dictionary’s keys as a shallow copy of our key list, so they are in
key order. A standard dict returns its keys in an arbitrary order.

def values(self):

return [self.__dict[key] for key in self.__keys]

WeList
compre-
hen-
sions

53 ☞

return the dictionary’s values in key order. To do this we create a list of the
values by iterating over the key list in a list comprehension. This could also
be done using a for loop:

result = []

for key in self.__keys:

result.append(self.__dict[key])

return result

Methods and Special Methods 97

Writing one line of code rather than four obviously makes the list comprehen-
sion more appealing, although the syntax can take some getting used to.

def items(self):

return [(key, self.__dict[key]) for key in self.__keys]

We use a similar approach for returning items, as (key, value) tuples, and again
we could use a conventional loop instead:

result = []

for key in self.__keys:

result.append((key, self.__dict[key]))

return result

By now, though, list comprehensions should start to become more familiar.

def __iter__(self):

return iter(self.__keys)

def iterkeys(self):

return iter(self.__keys)

An iterator is a “callable object” (typically a function or method) that returns
the “next” item each time it is called. (Such objects have a next() function which
is what Python calls.)

An iterator for a sequence such as a string, list, or tuple, can be obtained by us-
ing the iter() function, which is what we do here. For dictionaries, when an it-
erator is requested,an iterator to the dictionary’skeys is returned,although for
consistency, the dict API also provides an iterkeys() method, since it also pro-
vides itervalues() and iteritems() methods. If iter() is called on a dictionary,
such as an OrderedDict instance, Python uses the __iter__() special method.

def itervalues(self):

for key in self.__keys:

yield self.__dict[key]

If itervalues() is called, we must return a generator that returns the dictio-
nary’s values.For a plain dict, the generator returns each value in an arbitrary
order, but for the OrderedDict we want to return the values in key order.

Any function or method that contains a yield statement is aGenera-
tor
func-
tions

58 ☞

generator. The
yield statement behaves like a return statement, except that after the yield

has returned a value, when the generator is next called it will continue from
the statement following the yield with all its previous state intact. So in this
method, after each dictionary value is returned, the next iteration of the for

loop takes place, until all the values have been returned.

def iteritems(self):

for key in self.__keys:

98 Chapter 3. Classes and Modules

yield key, self.__dict[key]

This is almost identical to itervalues(), except that we return a (key, value)
tuple. (We don’t need to use parentheses to signify a tuple here, because there
is no ambiguity.)

def copy(self):

dictionary = OrderedDict()

dictionary.__keys = self.__keys[:]

dictionary.__dict = self.__dict.copy()

return dictionary

For copying, we perform a shallow copy of the keys list and of the internal
dictionary, so the cost is proportional to the dictionary’s size.

def clear(self):

self.__keys = []

self.__dict = {}

This is the easiest function. We could have used list() and dict() rather than
[] and {}.

def __repr__(self):

pieces = []

for key in self.__keys:

pieces.append("%r: %r" % (key, self.__dict[key]))

return "OrderedDict({%s})" % ", ".join(pieces)

We have chosen to provide an eval()-able form of our dictionary. (And since
we have not implemented __str__(), this will also be used when the dictionary
is required as a string—for example, in a print statement.) For each (key,
value) pair, we use the %r “representation” format so, for example, strings will
be quoted, but numbers will not be. Here are two examples that show repr()

in action:

d = OrderedDict(dict(s=1, a=2, n=3, i=4, t=5))

print repr(d)

Prints "OrderedDict({'a': 2, 'i': 4, 'n': 3, 's': 1, 't': 5})"

d = OrderedDict({2: 'a', 3: 'm', 1: 'x'})

print `d` # Same as print repr(d)

Prints "OrderedDict({1: 'x', 2: 'a', 3: 'm'})"

Naturally, this method could have been implemented using a list comprehen-
sion, but in this case a for loop seems to be easier to understand.

We have now completed our review of the OrderedDict class. One piece of
functionality that may appear to be missing from this and the other Python
collections is the ability to load and save to a file. In fact, Python has the ability
to load and save collections, including nested collections, to bytestrings and to

Methods and Special Methods 99

files, providing they contain objects that can be represented, such as Booleans,
numbers, strings, and collections of such objects. (Actually, Python can even
load and save functions, classes, and in some cases, instances.) We will learn
about this functionality in Chapter 8.

Inheritance and Polymorphism

Just as we would expect from a language that supports object-oriented pro-
gramming, Python supports inheritance and polymorphism. We have already
used inheritance because the classes we have created so far have inherited ob-

ject, but in this section we will go into more depth. All Python methods are vir-
tual, so if we reimplement a method in a base class the reimplemented method
will be the one that is called. We will see shortly how we can access base class
methods, for example, when we want to use them as part of a reimplement-
ed method.

Let us begin with a simple class that holds some basic information about a
work of art:

class Item(object):

def __init__(self, artist, title, year=None):

self.__artist = artist

self.__title = title

self.__year = year

We have inherited the object base class and given our class three private data
attributes. Since we have made the attributes private, we must either provide
accessors for them, or create properties through which we can access them. In
this example, we have chosen to use accessors:

def artist(self):

return self.__artist

def setArtist(self, artist):

self.__artist = artist

The accessors for the __title and __year attributes are structurally the same
as those for the __artist attribute, so we have not shown them.

def __str__(self):

year = ""

if self.__year is not None:

year = " in %d" % self.__year

return "%s by %s%s" % (self.__title, self.__artist, year)

If a string representation is required, we return a string in the form “title by
artist” if __year is None, and “title by artist in year” otherwise.

100 Chapter 3. Classes and Modules

Now that we can encapsulate some basic information about a work of art, we
can create a Painting subclass to hold information on paintings:

class Painting(Item):

def __init__(self, artist, title, year=None):

super(Painting, self).__init__(artist, title, year)

The preceding code is the entire subclass. We have not added any data at-
tributes or new methods,so we just use the super() built-in function to initialize
the Item base class. The super() function takes a class and returns the class’s
base class. If the function is also passed an instance (as we do here), the re-
turned base class object is bound to the instance we passed in, which means we
can call (base class) methods on the instance.

It is also possible to call the base class by naming it explicitly—for example,
Item.__init__(self, artist, title, year); notice that we must pass the self

parameter ourselves if we use this approach.

We don’t have to call the base class __init__() at all—for example, if the base
class has no data attributes. And if we do call it, the super() call does not have
to be the first call we make, although it usually is in __init__() implemen-
tations.

Now we will look at a slightly more elaborate subclass:

class Sculpture(Item):

def __init__(self, artist, title, year=None, material=None):

super(Sculpture, self).__init__(artist, title, year)

self.__material = material

The Sculpture class has an additional attribute, so after initializing through
the base class we also initialize the extra attribute.

We won’t show the accessors since they are structurally the same as those used
for the artist’s name.

def __str__(self):

materialString = ""

if self.__material is not None:

materialString = " (%s)" % self.__material

return "%s%s" % (super(Sculpture, self).__str__(),

materialString)

The __str__() method uses the base class’s __str__() method, and if the ma-
terial is known, it tacks it on to the end of the resultant string. We cannot call
str(self) because that would lead to an infinite recursion (calling __str__()

again and again), but there is no problem calling a special method explicitly
when necessary, as we do here.

Inheritance and Polymorphism 101

Because of Python’s polymorphism, the right __str__() method will always be
called. For example:

a = Painting("Cecil Collins", "The Sleeping Fool", 1943)

print a # Prints "The Sleeping Fool by Cecil Collins in 1943"

b = Sculpture("Auguste Rodin", "The Secret", 1925, "bronze")

print b # Prints "The Secret by Auguste Rodin in 1925 (bronze)"

Although we have shown polymorphism using a special method, it works
exactly the same for ordinary methods.

Python uses dynamic typing, also called duck typing (“If it walks like a duck
and it quacks like a duck, it is a duck”). This is very flexible. For example,
suppose we had a class like this:

class Title(object):

def __init__(self, title)

self.__title = title

def title(self):

return self.__title

Now we could do this:

items = []

items.append(Painting("Cecil Collins", "The Poet", 1941))

items.append(Sculpture("Auguste Rodin", "Naked Balzac", 1917,

"plaster"))

items.append(Title("Eternal Springtime"))

for item in items:

print item.title()

This will print the title of each item, even though the items are of different
types. All that matters to Python is that they all support the required method,
in this case title().

But what if we had a collection of items, but we were not sure if all of them
supported the title() method? With the code as it stands we would get an
AttributeError as soon as we reached an item that didn’t support title(). One
solution is to use exception handling:

try:

for item in items:

print item.title()

except AttributeError:

pass

102 Chapter 3. Classes and Modules

That contains the problem, but stops the loop as soon as an unsuitable item
is encountered. This might tempt us to use type checking, with type() or
isinstance(), for example:

for item in items:

if isinstance(item, Item):

print item.title()

This will work perfectly for Paintings and Sculptures since they are both Item

subclasses, but will fail on Title objects. Furthermore, this approach is not
really good object-oriented style. What we really want to do is say “can it
quack?”, and we can do this using hasattr():

for item in items:

if hasattr(item, "title"):

print item.title()

Now our items can be Paintings, Sculptures, Titles, or even strings (since
strings have a title() method).

One question remains, though: How do we know that the attribute is a
method—that it is callable—rather than a data attribute? One approach is to
use callable(). For example:

for item in items:

if hasattr(item, "title") and callable(item.title):

print item.title()

We still need to use hasattr() because we must call callable() only on some-
thing that exists (otherwise, we will get an exception), in this case an instance
attribute that is a method.

Python’s introspection is very powerful, and it has more features than those
we have covered here. But whether it is wise to use it, apart from isinstance(),
is debatable.

Sometimes it is useful to define an abstract base class (an interface) that
simply defines a particular API. For example, works of art and other kinds of
items have dimensions, so it might be useful to have a Dimension interface that
had area() and volume() methods. Although Python provides no formal support
for interfaces, we can achieve what we want by implementing a class that has
no data attributes,and whose methods raise the NotImplementedError exception.
For example:

class Dimension(object):

def area(self):

raise NotImplementedError, "Dimension.area()"

def volume(self):

Inheritance and Polymorphism 103

raise NotImplementedError, "Dimension.volume()"

This defines the Dimension interface as having the two methods we want. If we
multiply-inherit Dimension and forget to reimplement the methods, we will get
a NotImplementedError exception if we try to use them. Here is a new version of
the Painting class that makes use of the interface:

class Painting(Item, Dimension):

def __init__(self, artist, title, year=None, width=None,

height=None):

super(Painting, self).__init__(artist, title, year)

self.__width = width

self.__height = height

To calculate a painting’s area we need its width and height, so we add these to
the constructor, and assign them to suitable attributes:

def area(self):

if self.__width is None or self.__height is None:

return None

return self.__width * self.__height

def volume(self):

return None

We must implement area() and volume(). Although the volume() method does
not make sense for a painting, we must provide an implementation anyway
(since the interface requires one), so we do so and return None. An alternative
would have been to have raised an exception—for example, ValueError.

It would be natural to rework the Sculpture class to accept width, height, and
depth arguments,and to provide a volume() implementation. But an area() im-
plementation may or may not make sense for a sculpture. We might mean the
overall area of the total volume, or the area of a face from a particular view-
point. Since there is ambiguity, we could either pass an additional argument to
disambiguate, or give up and either return None or raise an exception.

Multiply inheriting just involves listing two or more base classes in the class

statement. The order in which the base classes appear does not matter in our
example, but can matter in more complex hierarchies.

Python’s object-oriented functionality goes beyond what we have covered in
this chapter. For instances that need to store a fixed set of attributes as com-
pactly as possible, it is possible to use the __slots__ class attribute. Signals

and
slots

☞ 127

We mention
this only to highlight the fact that this is completely different from the PyQt
slots (which are functions and more commonly methods) that we will encounter
in the GUI chapters. It is also possible to create meta-classes, but again this is
beyond the scope of what we need for GUI programming, so we do not need to
cover the topic here.

104 Chapter 3. Classes and Modules

Modules and Multifile Applications

Object-oriented programming allows us to package up functionality (e.g.,meth-
ods and data attributes), into classes. Python modules allow us to package up
functionality at a higher level—for example, entire sets of classes,Import-

ing
Objects
sidebar

19 ☞

functions,
and instance variables. A module is simply a file with a .py extension. Modules
may have code that is executed when they are imported, but more commonly
they simply provide functions and classes which are instantiated when they
are imported. We have already seen examples of this: The Length class is in a
file called length.py, and is therefore accessible as the length module. When im-
porting a module, we specify the name of the module file without the extension.
For example:

import length

a = length.Length("4.5 yd")

Only modules that are in the current directory, or in Python’s sys.path list, can
be imported. If we need access to modules that are elsewhere in the filesystem,
we can add additional paths to sys.path. In addition to a file, a module can be an
entire directory of files. In these cases, the directory must contain a file called
__init__.py. This file can be (and often is) empty; it is simply used as a marker
to tell Python that the directory contains .py files and that the directory name
is the top-level module name. For example, we might create a directory called
mylibrary and put length.py, ordereddict.py, and an empty __init__.py in it. As
long as we add the directory that contains the mylibrary directory to Python’s
path, we could do this:

import mylibrary.length

a = mylibrary.length.Length("14.3 km")

In practice, we might prefer to alias mylibrary.length to something shorter.
For example:

import mylibrary.length as length

a = length.Length("948mm")

Python’s module handling is a lot more sophisticated than we have shown,
but what we have covered is sufficient for the GUI programming which is our
main concern.★ Python and PyQt applications can be written in a single file
or can be spread over multiple files. We will show both approaches in the
coming chapters.

★The module import semantics are due to change in Python 2.7, with imports becoming absolute
rather than relative. See http://www.python.org/dev/peps/pep-0328for details.

http://www.python.org/dev/peps/pep-0328

Modules and Multifile Applications 105

Using the doctest Module

Python has considerable support for testing, with the doctest and unittest

modules for unit testing and the test module for regression testing. PyQt also
provides unit-testing functionality with the QtTest module.

When we create modules, such as the length and ordereddict modules we wrote
earlier, they are designed to be imported and the objects they provide (e.g., the
Length and OrderedDict classes), used by the importing application. But since
.py files can also be executables, we can easily include unit-testing code: When
the module is imported the unit-testing code is simply ignored; but when the
module is run the unit tests are executed. This approach is supported by the
doctest module.

The doctest module makes unit testing as simple and painless as possible.
To use it all we need to do is add examples to our docstrings, showing what
we would type into the interactive Python interpreter (or IDLE) and what
response we expect back. For example, here is the OrderedDict class’s get()

method in full:

def get(self, key, value=None):

"""Returns the value associated with key or value if key isn't

in the dictionary

>>> d = OrderedDict(dict(s=1, a=2, n=3, i=4, t=5, y=6))

>>> d.get("X", 21)

21

>>> d.get("i")

4

"""

return self.__dict.get(key, value)

The docstring contains a brief description of the method’s purpose, and then
some examples written as though they were typed into the interpreter. We
begin by creating an OrderedDict object; we don’t need to import or qualify since
we are inside the ordereddict module. We then write a call to the method we are
testing and what the interpreter (or IDLE) is expected to respond. And then
we do another call and response.

The doctest module uses this syntax because it is so familiar to Python pro-
grammers through their use of the interactive Python interpreter or of IDLE,
or of any other Python IDE, such as Eric4, that embeds a Python interpreter.
When the tests are run, the doctest module will import the module itself,
then read every docstring (using Python’s introspection capabilities) and then
execute each statement that begins with the >>> prompt. It then checks the
result against the expected output (which may be nothing), and will report any
failures.

106 Chapter 3. Classes and Modules

To make a module able to use doctest like this we just need to add three lines
at the end of the module:

if __name__ == "__main__":

import doctest

doctest.testmod()

Whether a module is imported by being the subject of an import statement, or
is invoked on the command line, all the module’s code is executed. This causes
the module’s functions and classes to be created ready for use.

We can tell whether a module was imported because in this case its __name__

attribute is set to the module’s name. On the other hand, if a module is invoked
its __name__ attribute is set to __main__.

As shown earlier, we can use an if statement to see whether the module was
imported, in which case we do nothing else. But if the module was invoked
on the command line, we import the doctest module and execute the testmod()

function which performs all our tests.

We can perform a test run from inside a console window. For example:

C:\>cd c:\pyqt\chap03

C:\pyqt\chap03>ordereddict.py

If there are no test failures, the module will run silently. If there are any
errors, these will be output to the console. We can force the doctest module to
be more verbose by using the -v flag:

C:\pyqt\chap03>ordereddict.py -v

This shows every single test that is performed, and a summary at the end.

It is also possible to test for expected failures, for example, out-cases where we
expect an exception to be raised. For these we just write the first and last lines
of the expected output (because the traceback in the middle may vary) and use
an ellipsis, …, to indicate the traceback. For example, here is the OrderedDict

class’s setAt() method in full:

def setAt(self, index, value):

"""Sets the index-th item's value to the given value

>>> d = OrderedDict(dict(s=1, a=2, n=3, i=4, t=5, y=6))

>>> d.getAt(5)

6

>>> d.setAt(5, 99)

>>> d.getAt(5)

99

>>> d.setAt(19, 42)

Traceback (most recent call last):

...

Modules and Multifile Applications 107

IndexError: list index out of range

"""

self.__dict[self.__keys[index]] = value

We created an OrderedDict of six items, but in the last test attempted to set
the nonexistent twentieth item’s value. This causes the dictionary to raise an
IndexError, so we write what the interactive Python interpreter would output,
and the doctest module understands this and will pass the test if the exception
was correctly raised.

The doctest module is less sophisticated than the unittest module, but it is
both easy to use and unobtrusive. We have used it in all the examples shown
so far, as can be seen by looking at the book’s source code.

Summary

This chapter took us from being users of classes to being creators of classes.
We saw how to initialize newly created instances using the __init__() special
method, and how to implement many of the other special methods so that our
custom data types (classes) can behave just like Python’s built-in classes. We
also learned how to create both ordinary methods and static methods, and how
to store and access both per-instance and static data.

We reviewed two complete examples. The Length class, a numeric data type,
and the OrderedDict class, a collection class. We also made use of much of
the knowledge gained from the previous chapters, including some of Python’s
advanced features, such as list comprehensions and generator methods.

This chapter also showned how to do both single and multiple inheritance,
and gave an example of how to create a simple interface class. We learned
more about using isinstance() for type testing, and about hasattr() and duck
typing.

We concluded the chapter with an overview of how Python modules and
multifile applications work. We also looked at the doctest module and saw how
easy it is to create unit tests that look like examples in our docstrings.

We now know the Python language fundamentals. We can create variables,use
collections, and create our own data types and collection types. We can branch,
loop, call functions and methods, and raise and handle exceptions. Clearly,
there is a lot more to learn, but we can cover everything else we require as the
need arises. We are now ready to start GUI application programming, a topic
that begins in the next chapter and which occupies the rest of the book.

108 Chapter 3. Classes and Modules

Exercises

1. Implement a Tribool data type. This is a data type that can have one of
three values: True, False, or unknown (for which you should use None). In
addition to __init__(), implement __str__(), __repr__(), and __cmp__();
also, implement __nonzero__() for conversion to bool(), __invert__() for
logical not (~), __and__() for logical and (&), and __or__() for logical or (|).
There are two possible logics that can be used: propagating, where any ex-
pression involving unknown (i.e., None) is unknown, and nonpropagating,
where any expression involving unknown that can be evaluated is evalu-
ated. Use nonpropagating logic so that your Tribools match the truth ta-
ble shown here, and where t is Tribool(True), f is Tribool(False), and n is
Tribool(None) (for unknown):

Expression Result Expression Result Expression Result

~t False ~f True ~n None

t & t True t & f False t & n None

f & f False f & n False n & n None

t | t True t | f True t | n True

f | f False f | n None n | n None

For example, with nonpropagating logic, True | None is True, because as long
as one operand to logical or is true, the expression is true. But False | None

is None (unknown), because we cannot determine the result.

Most of the methods can be implemented in just a few lines of code.
Make sure that you use the doctest module and write unit tests for all
the methods.

2. Implement a Stack class and an EmptyStackError exception class. The Stack

class should use a list to store its items, and should provide pop() to return
and remove the item at the top of the stack (the rightmost item), top() to
return the item at the top of the stack, and push() to push a new item onto
the stack. Also provide special methods so that len() and str() will work
sensibly. Make sure that pop() and top() raise EmptyStackError if the stack
is empty when they are called. The methods can be written using very few
lines of code. Make sure that you use the doctest module and write unit
tests for all the methods.

The model answers are provided in the files chap03/tribool.py and chap03/

stack.py.

Part II

Basic GUI Programming

This page intentionally left blank

Introduction to GUI
Programming

44 ● A Pop-Up Alert in 25 Lines

● An Expression Evaluator in 30 Lines

● A Currency Converter in 70 Lines

● Signals and Slots

In this chapter we begin with brief reviews of three tiny yet useful GUI appli-
cations written in PyQt. We will take the opportunity to highlight some of the
issues involved in GUI programming, but we will defer most of the details to
later chapters. Once we have a feel for PyQt GUI programming,we will discuss
PyQt’s “signals and slots” mechanism—this is a high-level communication
mechanism for responding to user interaction that allows us to ignore irrele-
vant detail.

Although PyQt is used commercially to build applicationsthat vary in size from
hundreds of lines of code to more than 100000 lines of code, the applications
we will build in this chapter are all less than 100 lines, and they show just how
much can be done with very little code.

In this chapter we will design our user interfaces purely by writing code, but in
Chapter 7, we will learn how to create user interfaces using Qt’s visual design
tool, Qt Designer.

Python console applications and Python module files always have a .py exten-
sion, but for Python GUI applications we use a .pyw extension. Both .py and
.pyw are fine on Linux, but on Windows, .pyw ensures that Windows uses the
pythonw.exe interpreter instead of python.exe, and this in turn ensures that
when we execute a Python GUI application, no unnecessary console window
will appear.★ On Mac OS X, it is essential to use the .pyw extension.

The PyQt documentation is provided as a set of HTML files, independent of
the Python documentation. The most commonly referred to documents are
those covering the PyQt API. These files have been converted from the original
C++/Qt documentation files, and their index page is called classes.html; Win-

★If you use Windows and an error message box titled, “pythonw.exe - Unable To Locate Component”
pops up, it almost certainly means that you have not set your path correctly. See Appendix A,
page 564, for how to fix this.

111

112 Chapter 4. Introduction to GUI Programming

dows users will find a link to this page in their Start button’s PyQt menu. It is
well worth looking at this page to get an overview of what classes are available,
and of course to dip in and read about those classes that seem interesting.

The first application we will look at is an unusual hybrid: a GUI application
that must be launched from a console because it requires command-line argu-
ments. We have included it because it makes it easier to explain how the PyQt
event loop works (and what that is), without having to go into any other GUI
details. The second and third examples are both very short but standard GUI
applications. They both show the basics of how we can create and lay out wid-
gets (“controls” in Windows-speak)—labels,buttons, comboboxes,and other on-
screen elements that users can view and, in most cases, interact with. They
also show how we can respond to user interactions—for example, how to call a
particular function or method when the user performs a particular action.

In the last section we will cover how to handle user interactions in more depth,
and in the next chapter we will cover layouts and dialogs much more thorough-
ly. Use this chapter to get a feel for how things work, without worrying about
the details:The chapters that follow will fill in the gaps and will familiarize you
with standard PyQt programming practices.

A Pop-Up Alert in 25 Lines

Our first GUI application is a bit odd. First, it must be run from the console,
and second it has no “decorations”—no title bar, no system menu, no X close
button. Figure 4.1 shows the whole thing.

Figure 4.1 The Alert program

To get the output displayed, we could enter a command line like this:

C:\>cd c:\pyqt\chap04

C:\pyqt\chap04>alert.pyw 12:15 Wake Up

When run, the program executes invisibly in the background, simply marking
time until the specified time is reached. At that point, it pops up a window with
the message text. About a minute after showing the window, the application
will automatically terminate.

The specified time must use the 24-hour clock. For testing purposes we can use
a time that has just gone; for example, by using 12:15 when it is really 12:30,
the window will pop up immediately (well, within less than a second).

Now that we know what it does and how to run it, we will review the implemen-
tation. The file is a few lines longer than 25 lines because we have not counted

A Pop-Up Alert in 25 Lines 113

comment lines and blank lines in the total—but there are only 25 lines of exe-
cutable code. We will begin with the imports.

import sys

import time

from PyQt4.QtCore import *
from PyQt4.QtGui import *

We import the sys module because we want to access the command-line
arguments it holds in the sys.argv list. The time module is imported because
we need its sleep() function, and we need the PyQt modules for the GUI and
for the QTime class.

app = QApplication(sys.argv)

We begin by creating a QApplication object. Every PyQt GUI application must
have a QApplication object. This object provides access to global-like informa-
tion such as the application’s directory, the screen size (and which screen the
application is on, in a multihead system), and so on. This object also provides
the event loop, discussed shortly.

When we create a QApplication object we pass it the command-line arguments;
this is because PyQt recognizes some command-line arguments of its own,
such as -geometry and -style, so we ought to give it the chance to read them.
If QApplication recognizes any of the arguments, it acts on them, and removes
them from the list it was given. The list of arguments that QApplication

recognizes is given in the QApplication’s initializer’s documentation.

try:

due = QTime.currentTime()

message = "Alert!"

if len(sys.argv) < 2:

raise ValueError

hours, mins = sys.argv[1].split(":")

due = QTime(int(hours), int(mins))

if not due.isValid():

raise ValueError

if len(sys.argv) > 2:

message = " ".join(sys.argv[2:])

except ValueError:

message = "Usage: alert.pyw HH:MM [optional message]" # 24hr clock

At the very least, the application requires a time, so we set the due variable
to the time right now. We also provide a default message. If the user has
not given at least one command-line argument (a time), we raise a ValueError

exception. This will result in the time being now and the message being the
“usage” error message.

114 Chapter 4. Introduction to GUI Programming

If the first argument does not contain a colon, a ValueError will be raised when
we attempt to unpack two items from the split() call. If the hours or minutes
are not a valid number, a ValueError will be raised by int(), and if the hours or
minutes are out of range, due will be an invalid QTime, and we raise a ValueError

ourselves. Although Python provides its own date and time classes, the PyQt
date and time classes are often more convenient (and in some respects more
powerful), so we tend to prefer them.

If the time is valid, we set the message to be the space-separated concatenation
of the other command-line arguments if there are any; otherwise,we leave it as
the default “Alert!” that we set at the beginning. (When a program is executed
on the command line, it is given a list of arguments, the first being the invoking
name, and the rest being each sequence of nonwhitespace characters, that is,
each “word”, entered on the command line. The words may be changed by the
shell—for example, by applying wildcard expansion. Python puts the words it
is actually given in the sys.argv list.)

Now we know when the message must be shown and what the message is.

while QTime.currentTime() < due:

time.sleep(20) # 20 seconds

We loop continuously, comparing the current time with the target time. The
loop will terminate if the current time is later than the target time. We could
have simply put a pass statement inside the loop, but if we did that Python
would loop as quickly as possible, gobbling up processor cycles for no good
reason. The time.sleep() command tells Python to suspend processing for
the specified number of seconds, 20 in this case. This gives other programs
more opportunity to run and makes sense since we don’t want to actually do
anything while we wait for the due time to arrive.

Apart from creating the QApplication object, what we have done so far is
standard console programming.

label = QLabel("" + message + "")

label.setWindowFlags(Qt.SplashScreen)

label.show()

QTimer.singleShot(60000, app.quit) # 1 minute

app.exec_()

We have created a QApplication object, we have a message, and the due time
has arrived, so now we can begin to create our application. A GUI application
needs widgets, and in this case we need a label to show the message. A QLabel

can accept HTML text, so we give it an HTML string that tells it to display bold
red text of size 72 points.★

★The supported HTML tags are listed at http://doc.trolltech.com/richtext-html-subset.html.

http://doc.trolltech.com/richtext-html-subset.html

A Pop-Up Alert in 25 Lines 115

In PyQt, any widget can be used as a top-level window, even a button or a label.
When a widget is used like this, PyQt automatically gives it a title bar. We
don’t want a title bar for this application, so we set the label’s window flags to
those used for splash screens since they have no title bar. Once we have set up
the label that will be our window, we call show() on it. At this point, the label
window is not shown! The call to show() merely schedules a “paint event”, that
is, it adds a new event to the QApplication object’s event queue that is a request
to paint the specified widget.

Next, we set up a single-shot timer. Whereas the Python library’s time.sleep()
function takes a number of seconds, the QTimer.singleShot() function takes a
number of milliseconds. We give the singleShot() method two arguments: how
long until it should time out (one minute in this case), and a function or method
for it to call when it times out.

In PyQt terminology, the function or method we have given is called a Signals
and
slots

☞ 127

“slot”,
although in the PyQt documentation the terms “callable”, “Python slot”, and
“Qt slot” are used to distinguish slots from Python’s __slots__, a feature of
new-style classes that is described in the Python Language Reference. In this
book we will use the PyQt terminology, since we never use __slots__.

So now we have two events scheduled: A paint event that wants to take
place immediately, and a timer timeout event that wants to take place in a
minute’s time.

The call to app.exec_() starts off the QApplication object’s event loop.★ The first
event it gets is the paint event, so the label window pops up on-screen with
the given message. About one minute later the timer timeout event occurs
and the QApplication.quit() method is called. This method performs a clean
termination of the GUI application. It closes any open windows, frees up any
resources it has acquired, and exits.

Event loops are used by all GUI applications. In pseudocode, an event loop
looks like this:

while True:

event = getNextEvent()

if event:

if event == Terminate:

break

processEvent(event)

When the user interacts with the application, or when certain other things
occur, such as a timer timing out or the application’s window being uncovered
(maybe because another application was closed), an event is generated inside
PyQt and added to the event queue. The application’s event loop continuously

★PyQt uses exec_() rather than exec() to avoid conflicting with Python’s built-in exec statement.

116 Chapter 4. Introduction to GUI Programming

Invoke

Read Input

Process

Write Output

Terminate

Classic
Batch-processing
Application

Invoke

Start Event Loop

Event to

Process?

Request to

Terminate?

Process

Terminate
Classic GUI
Application

Yes

Yes

No

No

Figure 4.2 Batch processing applications versus GUI applications

checks to see whether there is an event to process, and if there is, it processes
it (or passes it on to the event’s associated function or method for processing).

Although complete, and quite useful if you use consoles, the application uses
only a single widget. Also, we have not given it any ability to respond to user
interaction. It also works rather like traditional batch-processing programs. It
is invoked, performs some processing (waits, then shows a message), and ter-
minates. Most GUI programs work differently. Once invoked, they run their
event loop and respond to events. Some events come from the user—for ex-
ample, key presses and mouse clicks—and some from the system, for example,
timers timing out and windows being revealed. They process in response to re-
quests that are the result of events such as button clicks and menu selections,
and terminate only when told to do so.

The next application we will look at is much more conventional than the one
we’ve just seen, and is typical of many very small GUI applications generally.

An Expression Evaluator in 30 Lines

This application is a complete dialog-style application written in 30 lines of
code (excluding blank and comment lines). “Dialog-style” means an application
that has no menu bar, and usually no toolbar or status bar, most commonly
with some buttons (as we will see in the next section), and with no central
widget. In contrast, “main window-style” applications normally have a menu
bar, toolbars, a status bar, and in some cases buttons too; and they have a

An Expression Evaluator in 30 Lines 117

central widget (which may contain other widgets, of course). We will look at
main window-style applications in Chapter 6.

Figure 4.3 The Calculate application

This application uses two widgets: A QTextBrowser which is a read-only multi-
line text box that can display both plain text and HTML;and a QLineEdit, which
is a single-line text box that displays plain text. All text in PyQt widgets is Uni-
code, although it can be converted to other encodings when necessary.

The Calculate application (shown in Figure 4.3), can be invoked just like any
normal GUI application by clicking (or double-clicking depending on platform
and settings) its icon. (It can also be launched from a console, of course.) Once
the application is running, the user can simply type mathematical expressions
into the line edit and when they press Enter (or Return), the expression and its
result are appended to the QTextBrowser. Any exceptions that are raised due to
invalid expressions or invalid arithmetic (such as division by zero) are caught
and turned into error messages that are simply appended to the QTextBrowser.

As usual, we will look at the code in sections. This example follows the pattern
that we will use for all future GUI applications: A form is represented by a
class, behavior in response to user interaction is handled by methods, and the
“main” part of the program is tiny.

from __future__ import division

import sys

from math import *
from PyQt4.QtCore import *
from PyQt4.QtGui import *

Since we are doing mathematics and don’t want any surprises like truncating
division, we make sure we get floating-point division.Trun-

cating
division

17 ☞

Normally we import
non-PyQt modules using the import moduleName syntax; but since we want all of
the math module’s functions and constants available to our program’s users, we
simply import them all into the current namespace. As usual, we import sys

to get the sys.argv list, and we import everything from both the QtCore and the
QtGui modules.

class Form(QDialog):

118 Chapter 4. Introduction to GUI Programming

def __init__(self, parent=None):

super(Form, self).__init__(parent)

self.browser = QTextBrowser()

self.lineedit = QLineEdit("Type an expression and press Enter")

self.lineedit.selectAll()

layout = QVBoxLayout()

layout.addWidget(self.browser)

layout.addWidget(self.lineedit)

self.setLayout(layout)

self.lineedit.setFocus()

self.connect(self.lineedit, SIGNAL("returnPressed()"),

self.updateUi)

self.setWindowTitle("Calculate")

As we have seen, any widget can be used as a top-level window. But in most
cases when we create a top-level window we subclass QDialog, or QMainWindow,
or occasionally, QWidget. Both QDialog and QMainWindow, and indeed all of PyQt’s
widgets, are derived from QWidget, and all are new-style classes. By inheriting
QDialog we get a blank form, that is, a gray rectangle, and some convenient
behaviors and methods. For example, if the user clicks the close X button, the
dialog will close. By default, when a widget is closed it is merely hidden; we
can, of course, change this behavior, as we will see in the next chapter.

We give our Form class’s __init__() method a default parent of None, and use
super() to initialize it. A widget that has no parent becomes a top-level win-
dow, which is what we want for our form. We then create the two widgets we
need and keep references to them so that we can access them later, outside
of __init__(). Since we did not give these widgets parents, it would seem that
they will become top-level windows—which would not make sense. We will see
shortly that they get parents later on in the initializer. We give the QLineEdit

some initial text to show, and select it all. This will ensure that as soon as the
user starts typing, the text we gave will be overwritten.

We want the widgets to appear vertically, one above the other, in the window.
This is achieved by creating a QVBoxLayout and adding our two widgets to it, and
then setting the layout on the form. If you run the application and resize it,
you will find that any extra vertical space is given to the QTextBrowser, and that
both widgets will grow horizontally. This is all handled automatically by the
layout manager, and can be fine-tuned by setting layout policies.

One important side effect of using layouts is that PyQt automatically repar-
ents the widgets that are laid out. So although we did not give our widgets a
parent of self (the Form instance),when we call setLayout() the layout manager
gives ownership of the widgets and of itself to the form,and takes ownership of
any nested layouts itself. This means that none of the widgets that are laid out
is a top-level window, and all of them have parents, which is what we want. So
when the form is deleted, all its child widgets and layouts will be deleted with
it, in the correct order.

An Expression Evaluator in 30 Lines 119

Object Ownership

All PyQt classes that derive from QObject—and this includes all the widgets,
since QWidget is a QObject subclass—can have a “parent”. The parent–child
relationship is used for two complementary purposes. A widget that has no
parent is a top-level window, and a widget that has a parent (always another
widget) is contained (displayed) within its parent. The relationship also
defines ownership, with parents owning their children.

PyQt uses the parent–child ownership model to ensure that if a parent—for
example, a top-level window—is deleted, all its children, for example, all the
widgets the window contains, are automatically deleted as well. To avoid
memory leaks, we should always make sure that any QObject, including all
QWidgets, has a parent, the sole exception being top-level windows.

Most PyQt QObject subclasses have constructors that take a parent object
as their last (optional) argument. But for widgets we generally do not (and
need not) pass this argument. This is because widgets used in dialogs are
laid out with layout managers, and when this occurs they are automatically
reparented to the widget in which they are laid out, so they end up with the
correct parent without requiring us to take any special action.

There are some cases where we must explicitly pass a parent—for example,
when constructing QObject subclass objects that are not widgets, or that are
widgets but which will not be laid out (such as dock widgets); we will see
several examples of such cases in later chapters.

One final point is that it is possible to get situations where a Python variable
is referring to an underlying PyQt object that no longer exists. This issue is
covered in Chapter 9, in the “aliveness” discussion starting on page 287.

The widgets on a form can be laid out using a variety of techniques. We can use
the resize() and move() methods to give them absolute sizes and positions; we
can reimplement the resizeEvent() method and calculate their sizes and posi-
tions dynamically, or we can use PyQt’s layout managers. Using absolute sizes
and positions is very inconvenient. For one thing, we have to perform lots of
manual calculations, and for another, if we change the layout we have to redo
the calculations. Calculating the sizes and positions dynamically is a better
approach, but still requires us to write quite a lot of tedious calculating code.

Using layout managers makes things a lot easier. And layout managers are
quite smart: They automatically adapt to resize events and to content changes.
Anyone used to dialogs in many versions of Windows will appreciate the bene-
fits of having dialogs that can be resized (and that do so sensibly), rather than
being forced to use small, nonresizable dialogs which can be very inconvenient
when their contents are too large to fit. Layout managers also make life easier
for internationalized programs since they adapt to content, so translated labels
will not be “chopped off” if the target language is more verbose than the origi-
nal language.

120 Chapter 4. Introduction to GUI Programming

PyQt provides three layout managers: one for vertical layouts, one for horizon-
tal layouts, and one for grid layouts. Layouts can be nested, so quite sophisti-
cated layoutsare possible. And there are other ways of laying out widgets,such
as using splittersor tab widgets.All of these approachesare considered in more
depth in Chapter 9.

As a courtesy to our users, we want the focus to start in the QLineEdit; we call
setFocus() to achieve this. We must do this after setting the layout.

The connect() call is something we will look at in depth Signals
and
slots

☞ 127

later in this chapter.
Suffice it to say that every widget (and some other QObjects) announce state
changes by emitting “signals”. These signals (which are nothing to do with
Unix signals) are usually ignored. However, we can choose to take notice of
any signals we are interested in, and we do this by identifying the QObject that
we want to know about, the signal it emits that we are interested in, and the
function or method we want called when the signal is emitted.

So in this case, when the user presses Enter (or Return) in the QLineEdit, the
returnPressed() signal will be emitted as usual, but because of our connect()

call, when this occurs, our updateUi() method will be called. We will see what
happens then in a moment.

The last thing we do in __init__() is set the window’s title.

As we will see shortly, the form is created and show() is called on it. Once the
event loop begins, the form is shown—and nothing more appears to happen.
The application is simply running the event loop, waiting for the user to
click the mouse or press a key. Once the user starts interacting, the results
of their interaction are processed. So if the user types in an expression, the
QLineEdit will take care of displaying what they type, and if they press Enter,
our updateUi() method will be called.

def updateUi(self):

try:

text = unicode(self.lineedit.text())

self.browser.append("%s = %s" % (text, eval(text)))

except:

self.browser.append(

"%s is invalid!" % text)

When updateUi() is called it retrieves the text from thePyQt
string
policy

28 ☞

QLineEdit, immediately
converting it to a unicode object. We then use Python’s eval() function to
evaluate the string as an expression. If this is successful, we append a string
to the QTextBrowser that has the expression text, an equals sign, and then the
result in bold. Although we normally convert QStrings to unicode as soon as
possible, we can pass QStrings, unicodes, and strs to PyQt methods that expect
a QString, and PyQt will automatically perform any necessary conversion. If
any exception occurs, we append an error message instead. Using a catch-all
except block like this is not good general practice, but for a 30-line program it
seems reasonable.

An Expression Evaluator in 30 Lines 121

By using eval() we avoid all the work of parsing and error checking that we
would have to do ourselves if we were using a compiled language.

app = QApplication(sys.argv)

form = Form()

form.show()

app.exec_()

Now that we have defined our Form class, at the end of the calculate.pyw file, we
create the QApplication object, instantiate an instance of our form, schedule it
to be painted, and start off the event loop.

And that is the complete application. But it isn’t quite the end of the story. We
have not said how the user can terminate the application. Because our form
derives from QDialog, it inherits some behavior. For example, if the user clicks
the close button X, or if they press the Esc key, the form will close. When a form
closes, it is hidden. When the form is hidden PyQt will detect that the applica-
tion has no visible windows and that no further interaction is possible. It will
therefore delete the form and perform a clean termination of the application.

In some cases, we want an application to continue even if it is not visible—for
example, a server. For these cases, we can call QApplication.setQuitOnLast-

WindowClosed(False). It is also possible, although rarely necessary, to be notified
when the last window is closed.

On Mac OS X, and some X Windows window managers, like twm, an applica-
tion like this will not have a close button, and on the Mac, choosing Quit on the
menu bar will not work. In such cases, pressing Esc will terminate the appli-
cation, and in addition on the Mac, Command+.will also work. In view of this,
for applications that are likely to be used on the Mac or with twm or similar,
it is best to provide a Quit button. Adding buttons to dialogs is covered in this
chapter’s last section.

We are now ready to look at the last small, complete example that we will
present in this chapter. It has more custom behavior, has a more complex
layout, and does more sophisticated processing, but its fundamental structure
is very similar to the Calculate application, and indeed to that of many other
PyQt dialogs.

A Currency Converter in 70 Lines

One small utility that is often useful is a currency converter. But since ex-
change rates frequently change, we cannot simply create a static dictionary of
conversion rates as we did for the units of length in the Length class we created
in the previous chapter. Fortunately, the Bank of Canada provides exchange
rates in a file that is accessible over the Internet, and which uses an easy-
to-parse format. The rates are sometimes a few days old, but they are good

122 Chapter 4. Introduction to GUI Programming

enough for estimating the cash required for trips or how much a foreign con-
tract is likely to pay. The application is shown in Figure 4.4.

Figure 4.4 The Currency application

The application must first download and parse the exchange rates. Then it
must create a user interface which the user can manipulate to specify the
currencies and the amount that they are interested in.

As usual, we will begin with the imports:

import sys

import urllib2

from PyQt4.QtCore import *
from PyQt4.QtGui import *

Both Python and PyQt provide classes for networking. In Chapter 18, we will
use PyQt’s classes, but here we will use Python’s urllib2 module because it
provides a very useful convenience function that makes it easy to grab a file
over the Internet.

class Form(QDialog):

def __init__(self, parent=None):

super(Form, self).__init__(parent)

date = self.getdata()

rates = sorted(self.rates.keys())

dateLabel = QLabel(date)

self.fromComboBox = QComboBox()

self.fromComboBox.addItems(rates)

self.fromSpinBox = QDoubleSpinBox()

self.fromSpinBox.setRange(0.01, 10000000.00)

self.fromSpinBox.setValue(1.00)

self.toComboBox = QComboBox()

self.toComboBox.addItems(rates)

self.toLabel = QLabel("1.00")

After initializing our form using super(), we call our getdata() method. As we
will soon see, this method gets the exchange rates, populates the self.rates

dictionary, and returns a string holding the date the rates were in force. The
dictionary’skeys are currency names,and the values are the conversion factors.

A Currency Converter in 70 Lines 123

We take a sorted copy of the dictionary’s keys so that we can present the user
with sorted lists of currencies in the comboboxes. The date and rates variables,
and the dateLabel, are referred to only inside __init__(), so we do not keep ref-
erences to them in the class instance. On the other hand, we do need to access
the comboboxes and theInst-

ance
vari-
ables

77 ☞

toLabel (which displays the amount of the target cur-
rency), so we make these instance variables by using self.

We add the same sorted list of currencies to both comboboxes, and we create
a QDoubleSpinBox, a spinbox that handles floating-point values. We provide a
minimum and maximum value for the spinbox, and also an initial value. It is
good practice to always set a spinbox’s range before setting its value, since if we
set the value first and this happens to be outside the default range, the value
will be reduced or increased to fit the default range.

Since both comboboxes will initially show the same currency and the initial
value to convert is 1.00, the result shown in the toLabel must also be 1.00, so
we set this explicitly.

grid = QGridLayout()

grid.addWidget(dateLabel, 0, 0)

grid.addWidget(self.fromComboBox, 1, 0)

grid.addWidget(self.fromSpinBox, 1, 1)

grid.addWidget(self.toComboBox, 2, 0)

grid.addWidget(self.toLabel, 2, 1)

self.setLayout(grid)

A grid layout seems to be the simplest solution to laying out the widgets.When
we add a widget to a grid we give the row and column position it should occupy,
both of which are 0-based. The layout is shown schematically in Figure 4.5.
Much more can be done with grid layouts. For example, we can have spanning
rows and columns; all of this is covered later, in Chapter 9.

dateLabel (0, 0)

self.fromComboBox (1, 0) self.fromSpinBox (1, 1)

self.toComboBox (2, 0) self.toLabel (2, 1)

Figure 4.5 The Currency application’s grid layout

If we look at the screenshot, or run the application, it is clear that column 0
of the grid layout is much wider than column 1. But there is nothing in the
code that specifies this, so why does it happen? Layouts are smart enough to
adapt to their environment, both to the space available and to the contents and
size policies of the widgets they are managing. In this case, the comboboxes
are stretched horizontally to be wide enough to show the widest currency text
in full, and the spinbox is stretched horizontally to be wide enough to show
its maximum value. Since comboboxes are the widest items in column 0, they
effectively set that column’s minimum width; and similarly for the spinbox

124 Chapter 4. Introduction to GUI Programming

in column 1. If we run the application and try to make the window narrower,
nothing will happen because it is already at its minimum width. But we can
make the window wider and both columns will stretch to occupy the extra
space. It is, of course,possible to bias the layout so that it gives more horizontal
space to, say, column 0, when extra space is available.

None of the widgets is initially stretched vertically because that is not neces-
sary for any of them. But if we increase the window’s height, all of the extra
space will go to the dateLabel because that is the only widget on the form that
likes to grow in every direction and has no other widgets to constrain it.

Now that we have created, populated, and laid out the widgets, it is time to set
up the form’s behavior.

self.connect(self.fromComboBox,

SIGNAL("currentIndexChanged(int)"), self.updateUi)

self.connect(self.toComboBox,

SIGNAL("currentIndexChanged(int)"), self.updateUi)

self.connect(self.fromSpinBox,

SIGNAL("valueChanged(double)"), self.updateUi)

self.setWindowTitle("Currency")

If the user changes the current item in one of the comboboxes, the relevant
combobox will emit a currentIndexChanged() signal with the index position
of the new current item. Similarly, if the user changes the value held by the
spinbox, a valueChanged() signal will be emitted with the new value. We have
connected all these signals to just one Python slot: updateUi(). This does not
have to be the case, as we will see in the next section, but it happens to be a
sensible choice for this application.

And at the end of __init__() we set the window’s title.

def updateUi(self):

to = unicode(self.toComboBox.currentText())

from_ = unicode(self.fromComboBox.currentText())

amount = (self.rates[from_] / self.rates[to]) * \

self.fromSpinBox.value()

self.toLabel.setText("%0.2f" % amount)

This method is called in response to the currentIndexChanged() signal emitted
by the comboboxes, and in response to the valueChanged() signal emitted by the
spinbox. All the signals involved also pass a parameter. As we will see in the
next section, we can ignore signal parameters, as we do here.

No matter which signal was involved, we go through the same process. We
extract the “to” and “from” currencies, calculate the “to” amount, and set the
toLabel’s text accordingly. We have given the “from” text’s variable the name
from_ because from is a Python keyword and therefore not available to us. We
had to escape a newline when calculating the amount to make the line narrow

A Currency Converter in 70 Lines 125

enough to fit on the page; and in any case, we prefer to limit line lengths to
make it easier to read two files side by side on the screen.

def getdata(self): # Idea taken from the Python Cookbook

self.rates = {}

try:

date = "Unknown"

fh = urllib2.urlopen("http://www.bankofcanada.ca"

"/en/markets/csv/exchange_eng.csv")

for line in fh:

if not line or line.startswith(("#", "Closing ")):

continue

fields = line.split(",")

if line.startswith("Date "):

date = fields[-1]

else:

try:

value = float(fields[-1])

self.rates[unicode(fields[0])] = value

except ValueError:

pass

return "Exchange Rates Date: " + date

except Exception, e:

return "Failed to download:\n%s" % e

This method is where we get the data that drives the application. We begin
by creating a new instance attribute, self.rates. Unlike C++, Java, and similar
languages, Python allows us to create instance attributes as and when we
need them—for example, in the constructor, in the initializer, or in any other
method. We can even add attributes to specific instances on the fly.

Since a lot can go wrong with network connections—for example, the network
might be down, the host might be down, the URL may have changed, and so
on, we need to make the application more robust than in the previous two ex-
amples. Another possible problem is that we may get an invalid floating-point
value such as the “NA” (Not Available) that the currency data sometimes con-
tains. We have an inner try … except block that catches invalid numbers. So
if we fail to convert a currency value to a floating-point number, we simply skip
that particular currency and continue.

We handle every other possibility by wrapping almost the entire method in an
outer try …except block. (This is too general for most applications,but it seems
acceptable for a tiny 70-line application.) If a problem occurs, we catch the
exception raised and return it as a string to the caller, __init__(). The string
that is returned by getdata() is shown in the dateLabel, so normally this label
will show the date applicable to the exchange rates, but in an error situation it
will show the error message instead.

126 Chapter 4. Introduction to GUI Programming

Notice that we have split the URL string into two strings over two lines
because it is so long—and we did not need to escape the newline. This works
because the strings are within parentheses. If that wasn’t the case, we would
either have to escape the newline or concatenate them using + (and still escape
the newline).

We initialize the date variable with a string indicating that we don’t know what
dates the rates were calculated. We then use the urllib2.urlopen() function
to give us a file handle to the file we are interested in. The file handle can be
used to read the entire file in one go using its read() method, but in this case
we prefer to read line by line using readlines().

Here is the data from the exchange_eng.csv file on one particular day. Some
columns, and most rows, have been omitted; these are indicated by ellipses.

...

#

Date (<m>/<d>/<year>),01/05/2007,...,01/12/2007,01/15/2007

Closing Can/US Exchange Rate,1.1725,...,1.1688,1.1667

U.S. Dollar (Noon),1.1755,...,1.1702,1.1681

Argentina Peso (Floating Rate),0.3797,...,0.3773,0.3767

Australian Dollar,0.9164,...,0.9157,0.9153

...

Vietnamese Dong,0.000073,...,0.000073,0.000073

The exchange_eng.csv file’s format uses several different kinds of lines. Com-
ment lines begin with “#”, and there may also be blank lines; we ignore all
these. The exchange rates are listed by name, followed by rates, all comma-
separated. The rates are those applying on particular dates, with the last one
on each line being the most recent. We split each of these lines on commas and
take the first item to be the currency name, and the last item to be the exchange
rate. There is also a line that begins with “Date”; this lists the dates applying
to each column. When we encounter this line we take the last date, since that
is the one that corresponds with the exchange rates we are using. There is also
a line that begins “Closing”; we ignore it.

For each exchange rate line we insert an item into the self.rates dictionary,
using the currency’s name for the key and the exchange rate as the value. We
have assumed that the file’s text is either 7-bit ASCII or Unicode; if it isn’t
one of these we may get an encoding error. If we knew the encoding, we could
specify it as a second argument when we call unicode().

app = QApplication(sys.argv)

form = Form()

form.show()

app.exec_()

A Currency Converter in 70 Lines 127

We have used exactly the same code as the previous example to create the
QApplication object, instantiate the Currency application’s form, and start off
the event loop.

As for program termination, just like the previous example, because we have
subclassed QDialog, if the user clicks the close X button or presses Esc, the
window will close and then PyQt will terminate the application. In Chapter 6,
we will see how to provide more explicit means of termination, and how to
ensure that the user has the opportunity to save any unsaved changes and
program settings.

By now it should be clear that using PyQt for GUI programming is straightfor-
ward. Although we will see more complex layouts later on, they are not intrin-
sically difficult, and because the layout managers are smart, in most cases they
“just work”. Naturally, there is a lot more to be covered—for example, creating
main window-style applications, creating dialogs that the user can pop-up for
interaction,and so on. But we will begin with something fundamental to PyQt,
that so far we have glossed over: the signals and slots communication mecha-
nism, which is the subject of the next section.

Signals and Slots

Every GUI library provides the details of events that take place, such as mouse
clicks and key presses. For example, if we have a button with the text Click Me,
and the user clicks it, all kinds of information becomes available. The GUI
library can tell us the coordinates of the mouse click relative to the button,
relative to the button’s parent widget, and relative to the screen; it can tell us
the state of the Shift, Ctrl, Alt, and NumLock keys at the time of the click; and the
precise time of the click and of the release; and so on. Similar information can
be provided if the user “clicked” the button without using the mouse. The user
may have pressed the Tab key enough times to move the focus to the button
and then pressed Spacebar, or maybe they pressed Alt+C. Although the outcome
is the same in all these cases, each different means of clicking the button
produces different events and different information.

The Qt library was the first to recognize that in almost every case, program-
mers don’t need or even want all the low-level details: They don’t care how the
button was pressed, they just want to know that it was pressed so that they can
respond appropriately. For this reason Qt, and therefore PyQt, provides two
communication mechanisms: a low-level event-handling mechanism which is
similar to those provided by all the other GUI libraries, and a high-level mech-
anism which Trolltech (makers of Qt) have called “signals and slots”. We will
look at the low-level mechanism in Chapter 10, and again in Chapter 11, but
in this section we will focus on the high-level mechanism.

Every QObject—including all of PyQt’s widgets since they derive from QWidget,
a QObject subclass—supports the signals and slots mechanism. In particular,
they are capable of announcing state changes, such as when a checkbox

128 Chapter 4. Introduction to GUI Programming

becomes checked or unchecked, and other important occurrences, for example
when a button is clicked (by whatever means). All of PyQt’s widgets have a set
of predefined signals.

Whenever a signal is emitted, by default PyQt simply throws it away! To take
notice of a signal we must connect it to a slot. In C++/Qt, slots are methods that
must be declared with a special syntax; but in PyQt, they can be any callable
we like (e.g., any function or method), and no special syntax is required when
defining them.

Most widgets also have predefined slots, so in some cases we can connect a pre-
defined signal to a predefined slot and not have to do anything else to get the
behavior we want. PyQt is more versatile than C++/Qt in this regard, because
we can connect not just to slots, but also to any callable, and from PyQt 4.2, it
is possible to dynamically add “predefined” signals and slots to QObjects. Let’s
see how signals and slots works in practice with the Signals and Slots program
shown in Figure 4.6.

Figure 4.6 The Signals and Slots program

Both the QDial and QSpinBox widgets have valueChanged() signals that, when
emitted, carry the new value. And they both have setValue() slots that take an
integer value. We can therefore connect these two widgets to each other so that
whichever one the user changes, will cause the other to be changed correspond-
ingly:

class Form(QDialog):

def __init__(self, parent=None):

super(Form, self).__init__(parent)

dial = QDial()

dial.setNotchesVisible(True)

spinbox = QSpinBox()

layout = QHBoxLayout()

layout.addWidget(dial)

layout.addWidget(spinbox)

self.setLayout(layout)

self.connect(dial, SIGNAL("valueChanged(int)"),

spinbox.setValue)

self.connect(spinbox, SIGNAL("valueChanged(int)"),

dial.setValue)

Signals and Slots 129

self.setWindowTitle("Signals and Slots")

Since the two widgets are connected in this way, if the user moves the dial—say
to value 20—the dial will emit a valueChanged(20) signal which will, in turn,
cause a call to the spinbox’s setValue() slot with 20 as the argument. But then,
since its value has now been changed, the spinbox will emit a valueChanged(20)

signal which will in turn cause a call to the dial’s setValue() slot with 20 as the
argument. So it looks like we will get an infinite loop. But what happens is that
the valueChanged() signal is not emitted if the value is not actually changed.
This is because the standard approach to writing value-changing slots is to
begin by comparing the new value with the existing one. If the values are
the same, we do nothing and return; otherwise, we apply the change and emit
a signal to announce the change of state. The connections are depicted in
Figure 4.7.

QDial QSpinBox

SIGNAL("valueChanged(int)")

setValue(int)

setValue(int)

SIGNAL("valueChanged(int)")

Figure 4.7 The signals and slots connections

Now let’s look at the general syntax for connections. We assume that the PyQt
modules have been imported using the from … import * syntax, and that s and
w are QObjects, normally widgets, with s usually being self.

s.connect(w, SIGNAL("signalSignature"), functionName)

s.connect(w, SIGNAL("signalSignature"), instance.methodName)

s.connect(w, SIGNAL("signalSignature"),

instance, SLOT("slotSignature"))

The signalSignature is the name of the signal and a (possibly empty) comma-
separated list of parameter type names in parentheses. If the signal is a Qt sig-
nal, the type names must be the C++ type names, such as int and QString. C++
type names can be rather complex, with each type name possibly including one
or more of const, *, and &. When we write them as signal (or slot) signatures we
can drop any consts and &s, but must keep any *s. For example, almost every
Qt signal that passes a QString uses a parameter type of const QString&, but in
PyQt, just using QString alone is sufficient. On the other hand, the QListWidget

has a signal with the signature itemActivated(QListWidgetItem*), and we must
use this exactly as written.

PyQt signals are defined when they are actually emitted and can have any
number of any type of parameters, as we will see shortly.

The slotSignature has the same form as a signalSignature except that the
name is of a Qt slot. A slot may not have more arguments than the signal
that is connected to it, but may have less; the additional parameters are then

130 Chapter 4. Introduction to GUI Programming

discarded. Corresponding signal and slot arguments must have the same
types, so for example, we could not connect a QDial’s valueChanged(int) signal to
a QLineEdit’s setText(QString) slot.

In our dial and spinbox example we used the instance.methodName syntax as we
did with the example applications shown earlier in the chapter. But when the
slot is actually a Qt slot rather than a Python method, it is more efficient to use
the SLOT() syntax:

self.connect(dial, SIGNAL("valueChanged(int)"),

spinbox, SLOT("setValue(int)"))

self.connect(spinbox, SIGNAL("valueChanged(int)"),

dial, SLOT("setValue(int)"))

We have already seen that it is possible to connect multiple signals to the same
slot. It is also possible to connect a single signal to multiple slots. Although
rare, we can also connect a signal to another signal: In such cases, when the
first signal is emitted, it will cause the signal it is connected to, to be emitted.

Connections are made using QObject.connect(); they can be broken using QOb-

ject.disconnect(). In practice, we rarely need to break connections ourselves
since, for example, PyQt will automatically disconnect any connections involv-
ing an object that has been deleted.

So far we have seen how to connect to signals, and how to write slots—which
are ordinary functions or methods. And we know that signals are emitted to
signify state changes or other important occurrences. But what if we want to
create a component that emits its own signals? This is easily achieved using
QObject.emit(). For example, here is a complete QSpinBox subclass that emits its
own custom atzero signal, and that also passes a number:

class ZeroSpinBox(QSpinBox):

zeros = 0

def __init__(self, parent=None):

super(ZeroSpinBox, self).__init__(parent)

self.connect(self, SIGNAL("valueChanged(int)"), self.checkzero)

def checkzero(self):

if self.value() == 0:

self.zeros += 1

self.emit(SIGNAL("atzero"), self.zeros)

We connect to the spinbox’s own valueChanged() signal and have it call our
checkzero() slot. If the value happens to be 0, the checkzero() slot emits the
atzero signal, along with a count of how many times it has been zero; passing
additional data like this is optional. The lack of parentheses for the signal is
important: It tells PyQt that this is a “short-circuit” signal.

Signals and Slots 131

A signal with no arguments (and therefore no parentheses) is a short-circuit
Python signal. When such a signal is emitted, any data can be passed as
additional arguments to the emit() method, and they are passed as Python
objects. This avoids the overhead of converting the arguments to and from C++
data types, and also means that arbitrary Python objects can be passed, even
ones which cannot be converted to and from C++ data types. A signal with at
least one argument is either a Qt signal or a non-short-circuit Python signal.
In these cases, PyQt will check to see whether the signal is a Qt signal, and if
it is not will assume that it is a Python signal. In either case, the arguments
are converted to C++ data types.

Here is how we connect to the signal in the form’s __init__() method:

zerospinbox = ZeroSpinBox()
...

self.connect(zerospinbox, SIGNAL("atzero"), self.announce)

Again, we must not use parentheses because it is a short-circuit signal. And
for completeness, here is the slot it connects to in the form:

def announce(self, zeros):

print "ZeroSpinBox has been at zero %d times" % zeros

If we use the SIGNAL() function with an identifier but no parentheses, we are
specifying a short-circuit signal as described earlier. We can use this syntax
both to emit short-circuit signals, and to connect to them. Both uses are shown
in the example.

If we use the SIGNAL() function with a signalSignature (a possibly empty paren-
thesized list of comma-separated PyQt types), we are specifying either a
Python or a Qt signal. (A Python signal is one that is emitted in Python code; a
Qt signal is one emitted from an underlying C++ object.) We can use this syntax
both to emit Python and Qt signals, and to connect to them. These signals can
be connected to any callable, that is, to any function or method, including Qt
slots; they can also be connected using the SLOT() syntax, with a slotSignature.
PyQt checks to see whether the signal is a Qt signal, and if it is not it assumes
it is a Python signal. If we use parentheses, even for Python signals, the argu-
ments must be convertible to C++ data types.

We will now look at another example, a tiny custom non-GUI class that has a
signal and a slot and which shows that the mechanism is not limited to GUI
classes—any QObject subclass can use signals and slots.

class TaxRate(QObject):

def __init__(self):

super(TaxRate, self).__init__()

self.__rate = 17.5

132 Chapter 4. Introduction to GUI Programming

def rate(self):

return self.__rate

def setRate(self, rate):

if rate != self.__rate:

self.__rate = rate

self.emit(SIGNAL("rateChanged"), self.__rate)

Both the rate() and the setRate() methods can be connected to, since any
Python callable can be used as a slot. If the rate is changed, we update the pri-
vate __rate value and emit a custom rateChanged signal, giving the new rate as
a parameter. We have also used the faster short-circuit syntax. If we wanted to
use the standard syntax, the only difference would be that the signal would be
written as SIGNAL("rateChanged(float)"). If we connect the rateChanged signal to
the setRate() slot, because of the if statement, no infinite loop will occur. Let
us look at the class in use. First we will declare a function to be called when
the rate changes:

def rateChanged(value):

print "TaxRate changed to %.2f%%" % value

And now we will try it out:

vat = TaxRate()

vat.connect(vat, SIGNAL("rateChanged"), rateChanged)

vat.setRate(17.5) # No change will occur (new rate is the same)

vat.setRate(8.5) # A change will occur (new rate is different)

This will cause just one line to be output to the console: “TaxRate changed
to 8.50%”.

In earlier examples where we connected multiple signals to the same slot, we
did not care who emitted the signal. But sometimes we want to connect two or
more signals to the same slot, and have the slot behave differently depending
on who called it. In this section’s last example we will address this issue.

Figure 4.8 The Connections program

The Connections program shown in Figure 4.8, has five buttons and a label.
When one of the buttons is clicked the signals and slots mechanism is used
to update the label’s text. Here is how the first button is created in the form’s
__init__() method:

button1 = QPushButton("One")

Signals and Slots 133

All the other buttons are created in the same way, differing only in their
variable name and the text that is passed to them.

We will start with the simplest connection, which is used by button1. Here is
the __init__() method’s connect() call:

self.connect(button1, SIGNAL("clicked()"), self.one)

We have used a dedicated method for this button:

def one(self):

self.label.setText("You clicked button 'One'")

Connecting a button’s clicked() signal to a single method that responds
appropriately is probably the most common connection scenario.

But what if most of the processing was the same, with just some parameteri-
zation depending on which particular button was pressed? In such cases, it is
usually best to connect each button to the same slot.Partial

function
applica-
tion

63 ☞

There are two approaches
to doing this. One is to use partial function application to wrap a slot with a
parameter so that when the slot is invoked it is parameterized with the button
that called it. The other is to ask PyQt to tell us which button called the slot.
We will show both approaches, starting with partial function application.

Back on page 65 we created a wrapper function which used Python 2.5’s
functools.partial() function or our own simple partial() function:

import sys

if sys.version_info[:2] < (2, 5):

def partial(func, arg):

def callme():

return func(arg)

return callme

else:

from functools import partial

Using partial() we can now wrap a slot and a button name together. So we
might be tempted to do this:

self.connect(button2, SIGNAL("clicked()"),

partial(self.anyButton, "Two")) # WRONG for PyQt 4.0-4.2

Unfortunately,this won’t work for PyQt versionsprior to 4.3.The wrapper func-
tion is created in the connect() call, but as soon as the connect() call completes,
the wrapper goes out of scope and is garbage-collected. PyQt

4.3

From PyQt 4.3, wrap-
pers made with functools.partial() are treated specially when they are used
for connections like this. This means that the function connected to will not be
garbage-collected, so the code shown earlier will work correctly.

134 Chapter 4. Introduction to GUI Programming

For PyQt 4.0, 4.1, and 4.2, we can still use partial(): We just need to keep a
reference to the wrapper—we will not use the reference except for the connect()

call, but the fact that it is an attribute of the form instance will ensure that
the wrapper function will not go out of scope while the form exists, and will
therefore work. So the connection is actually made like this:

self.button2callback = partial(self.anyButton, "Two")

self.connect(button2, SIGNAL("clicked()"),

self.button2callback)

When button2 is clicked, the anyButton() method will be called with a string
parameter containing the text “Two”. Here is what this method looks like:

def anyButton(self, who):

self.label.setText("You clicked button '%s'" % who)

We could have used this slot for all the buttons using the partial() function
that we have just shown. And in fact, we could avoid using partial() at all and
get the same results:

self.button3callback = lambda who="Three": self.anyButton(who)

self.connect(button3, SIGNAL("clicked()"),

self.button3callback)

Here we’ve created a lambda function that is parameterized by theLambda
func-
tions

61 ☞

button’s
name. It works the same as the partial() technique, and calls the same anyBut-

ton() method, only with lambda being used to create the wrapper.

Both button2callback() and button3callback() call anyButton(); the only
difference between them is that the first passes “Two” as its parameter and the
second passes “Three”.

If we are using PyQt 4.1.1 or later, and we use lambda callbacks, we don’t have
to keep a reference to them ourselves. This is because PyQtPyQt

4.1.1

treats lambda spe-
cially when used to create wrappers in a connection. (This is the same special
treatment that is expected to be extended to functools.partial() in PyQt 4.3.)
For this reason we can use lambda directly in connect() calls. For example:

self.connect(button3, SIGNAL("clicked()"),

lambda who="Three": self.anyButton(who))

The wrapping technique works perfectly well, but there is an alternative
approach that is slightly more involved, but which may be useful in some cases,
particularly when we don’t want to wrap our calls. This other technique is used
to respond to button4 and to button5. Here are their connections:

self.connect(button4, SIGNAL("clicked()"), self.clicked)

self.connect(button5, SIGNAL("clicked()"), self.clicked)

Signals and Slots 135

Notice that we do not wrap the clicked() method that they are both connected
to, so at first sight it looks like there is no way to tell which button called the
clicked() method.★ However, the implementation makes clear that we can
distinguish if we want to:

def clicked(self):

button = self.sender()

if button is None or not isinstance(button, QPushButton):

return

self.label.setText("You clicked button '%s'" % button.text())

Inside a slot we can always call sender() to discover which QObject the invoking
signal came from. (This could be None if the slot was called using a normal
method call.) Although we know that we have connected only buttons to this
slot, we still take care to check. We have used isinstance(), but we could have
used hasattr(button, "text") instead. If we had connected all the buttons to
this slot, it would have worked correctly for them all.

Some programmers don’t like using sender() because they feel that it isn’t good
object-oriented style, so they tend to use partial function application when
needs like this arise.

There is actually one other technique that can be used to get the effect QSig-

nal-

Mapper

☞ 297

of
wrapping a function and a parameter. It makes use of the QSignalMapper class,
and an example of its use is shown in Chapter 9.

It is possible in some situations for a slot to be called as the result of a signal,
and the processing performed in the slot, directly or indirectly, causes the
signal that originally called the slot to be called again, leading to an infinite
cycle. Such cycles are rare in practice. Two factors help reduce the possibility
of cycles. First, some signals are emitted only if a real change takes place. For
example, if the value of a QSpinBox is changed by the user, or programmatically
by a setValue() call, it emits its valueChanged() signal only if the new value is
different from the current value. Second, some signals are emitted only as the
result of user actions. For example,QLineEdit emits its textEdited() signal only
when the text is changed by the user, and not when it is changed in code by a
setText() call.

If a signal–slot cycle does seem to have occurred, naturally, the first thing to
check is that the code’s logic is correct:Are we actually doing the processing we
thought we were? If the logic is right, and we still have a cycle, we might be
able to break the cycle by changing the signals that we connect to—for exam-
ple, replacing signals that are emitted as a result of programmatic changes,
with those that are emitted only as a result of user interaction. If the prob-
lem persists, we could stop signals being emitted at certain places in our code
using QObject.blockSignals(), which is inherited by all QWidget classes and is

★ It is conventional PyQt programming style to give a slot the same name as the signal that
connects to it.

136 Chapter 4. Introduction to GUI Programming

passed a Boolean—True to stop the object emitting signals and False to resume
signalling.

This completes our formal coverage of the signals and slots mechanism. We
will see many more examples of signals and slots in practice in almost all the
examples shown in the rest of the book. Most other GUI libraries have copied
the mechanism in some form or other. This is because the signals and slots
mechanism is very useful and powerful, and leaves programmers free to focus
on the logic of their applications rather than having to concern themselves
with the details of how the user invoked a particular operation.

Summary

In this chapter, we saw that it is possible to create hybrid console–GUI applica-
tions. This can actually be taken much further—for example, by including all
the GUI code within the scope of an if block and executing it only if PyQt is
installed. This would allow us to create a GUI application that could fall back
to “console mode” if some of our users did not have PyQt.

We also saw that unlike conventional batch-processing programs, GUI applica-
tions have an event loop that runs continuously, checking for user events like
mouse clicks and key presses, and system events like timers timing out or win-
dows being revealed, and terminating only when requested to do so.

The Calculate application showed us a very simple but structurally typical
dialog __init__() method. The widgets are created, laid out, and connected,
and one or more other methods are used to respond to user interaction. The
Currency application used the same approach, only with a more sophisticated
interface, and more complex behavior and processing. The Currency applica-
tion also showed that we can connect multiple signals to a single slot without
formality.

PyQt’s signals and slots mechanism allows us to handle user interaction at a
much higher level of abstraction than the specific details of mouse clicks and
key presses. It lets us focus on what users want to do rather than on how they
asked to do it. All the PyQt widgets emit signals to announce state changes
and other important occurrences; and most of the time we can ignore the sig-
nals. But for those signals that we are interested in, it is easy to use QOb-

ject.connect() to ensure that the function or method of our choice is called
when the signal is emitted so that we can respond to it. Unlike C++/Qt, which
must designate certain methods specially as slots, in PyQt we are free to use
any callable, that is, any function or method, as a slot.

We also saw how to connect multiple signals to a single slot, and how to use
partial function application or the sender() method so that the slot can respond
appropriately depending on which widget signalled it.

Summary 137

We also learned that we do not have to formally declare our own custom sig-
nals: We can simply emit them using QObject.emit(), along with any additional
parameters we want to pass.

Exercise
Write a dialog-style application that calculates compound interest. The appli-
cation should be very similar in style and structure to the Currency application,
and should look like this:

The amount should be automatically recalculated every time the user changes
one of the variable factors, that is, the principle, rate, or years. The years
combobox should have the texts “1 year”, “2 years”, “3 years”, and so on, so
the number of years will be the combobox’s current index + 1. The compound
interest formula in Python is amount = principal * ((1 + (rate / 100.0)) ** years).
The QDoubleSpinBox class has setPrefix() and setSuffix() methods which can
be used for the “$” and “%” symbols. The whole application can be written in
around 60 lines.

Hint: The updating can be done by connecting suitable spinbox and combobox
signals to an updateUi() slot where the calculations are performed and the
amount label is updated.

A model answer is provided in the file chap04/interest.pyw.

This page intentionally left blank

Dialogs

55 ● Dumb Dialogs

● Standard Dialogs

● Smart Dialogs

Almost every GUI application has at least one dialog, and the majority of GUI
applications have one main window with dozens or scores of dialogs. Dialogs
can be used to make announcements that are too important to put in the status
bar or into a log file. In such cases, they typically just have a label for the text
and an OK button for the user to press when they’ve read the message. Mostly,
dialogs are used to ask users questions. Some are simple and need just a yes
or no answer. Others ask users to make another kind of choice—for example,
what file, folder, color, or font do they want to use. For all these, PyQt provides
built-in dialogs.

Our focus in this chapter is on creating custom dialogs so that we can ask
users for their requirements and preferences when none of the built-in dialogs
is suitable.

One question that we do not address, concerns which widget is suitable for a
particular purpose. For example, if we want a user to make a choice between
three options, we might provide three radio buttons, or a three-item list widget
or combobox. Or we might use a tri-state checkbox. And these are not the
only possibilities. For those new to GUI programming, Appendix B provides
screenshots and brief descriptions of selected PyQt widgets which may be
helpful when making these decisions.

Qt is supplied with Qt Designer, a visual design tool that makes it easy to
“draw” dialogs without having to write any code for creating and laying out
their widgets. It can also be used to set up some of a dialog’s behavior. We cover
Qt Designer later, in Chapter 7. In this chapter we will create all the dialogs in
code. Some developers make all their dialogs this way, and others prefer to use
Qt Designer. This book shows both approaches so that you can decide which is
best to use on a case-by-case basis.

One way to classify dialogs is by their “intelligence”, where they may be
“dumb”, “standard”, or “smart”, depending on how much knowledge about the
application’s data is built into them. These classifications affect how we im-
plement and instantiate (create instances of) dialogs, and for each one we have

139

140 Chapter 5. Dialogs

devoted a section of this chapter. Each of these sections begins with an expla-
nation of what the classification means,and explains the pros and cons through
a worked example.

In addition to an intelligence classification, dialogs can also be categorized by
their modality. An application modal dialog is a dialog that, once invoked, is
the only part of an application that the user can interact with. Until the user
closes the dialog, they cannot use the rest of the application. The user is, of
course, free to interact with other applications, for example, by clicking one to
give it the focus.

A window modal dialog is one that works in a similar way to an application
modal dialog, except that it only prevents interaction with its parent window,
parent’s parent window, and so on up to the top-level parent, as well as the
parent windows’ sibling windows. For applications that have a single top-level
window there is no practical difference between application modality and
window modality. When referring to a “modal” window without specifying
which kind, window modality is assumed.

The opposite of a modal dialog is a modeless dialog. When a modeless dialog
is invoked, the user can interact with the dialog, and with the rest of the
application. This has implications for how we design our code, since it may
be that the user can affect program state both in the main window and in the
modeless dialog, which then has an effect on the other.

Another important aspect of writing dialogs is how we handle validation.
Wherever possible we try to choose suitable widgets and set their properties to
avoid having to write any validation code ourselves. For example, if we need an
integer we could use a QSpinBox and use its setRange() method to constrain the
range to the values that are acceptable to us. We call validation that applies
to individual widgets “widget-level” validation; database programmers often
call this “field-level” validation. Sometimes we need to go further than widget-
level validation, particularly when there are interdependencies. For example,
a theater booking system might have two comboboxes, one to select a floor and
the other to select a seat row. If the ground floor had seat rows A–R, and the
first floor had seat rows M–T, then clearly only some floor and seat row com-
binations are valid. For these cases, we must perform “form-level” validation;
database programmers often call this “record-level” validation.

Another validation issue concerns when the validation takes place. Ideal-
ly we don’t want users to be able to enter invalid data at all, but sometimes
this can be quite tricky to prevent. We break validation into two broad cate-
gories: “post-mortem”, which is validation that takes place at the point when
the user wants to have their settings accepted, and “preventative”,which takes
place as the user manipulates editing widgets.

Since dialogs can have different levels of intelligence, three kinds of modality,
and a variety of validation strategies, it would appear that there are many
possible combinations to choose from. In practice, the combinations we use

Dumb Dialogs 141

tend to be the same ones each time. For example, in most situations we might
make dumb and standard dialogs modal and smart dialogs modeless. As for
validation, the right strategy is very dependent on circumstances. We will see
examples of the most common use cases in this chapter, and we will see further
dialog examples throughout the rest of the book.

Dumb Dialogs

We define a “dumb” dialog to be a dialog whose widgets are set to their initial
values by the dialog’s caller, and whose final values are obtained directly from
the widgets, again by the dialog’s caller. A dumb dialog has no knowledge of
what data its widgets are used to present and edit. We can apply some basic
validation to a dumb dialog’s widgets, but it is not common (or always possible)
to set up validation that incorporates interdependencies between widgets; in
other words, form-level validation is not usually done in dumb dialogs. Dumb
dialogs are normally modal dialogs with an “accept” button (e.g., OK) and a
“reject” button (e.g., Cancel).

The main advantages of using dumb dialogs are that we do not have to write
any code to provide them with an API,nor any code for additional logic. Both of
these benefits are a consequence of all their widgetsbeing publically accessible.
The main disadvantages are that the code that uses them is tied to their user
interface (because we access the widgets directly), so we cannot easily imple-
ment complex validation—and they are much less convenient than a standard
or smart dialog if needed in more than one place.

We will begin with a concrete example. Suppose we have a graphicsapplication
and we want to let the user set some pen properties—for example, the pen’s
width, style, and whether lines drawn with it should have beveled edges. Fig-
ure 5.1 shows what we want to achieve.

Figure 5.1 The Pen Properties dialog

In this case, we don’t need “live” or interactive updating of the pen’s properties,
so a modal dialog is sufficient. And since the validation required is quite
simple, we can use a dumb dialog in this situation.

We would use the dialog by popping it up modally in a slot that is connected to a
menu option, toolbar button, or dialog button. If the user clickedOK, we would
then update our pen properties; if they clicked Cancel, we would do nothing.
Here is what the calling slot might look like:

142 Chapter 5. Dialogs

def setPenProperties(self):

dialog = PenPropertiesDlg(self)

dialog.widthSpinBox.setValue(self.width)

dialog.beveledCheckBox.setChecked(self.beveled)

dialog.styleComboBox.setCurrentIndex(

dialog.styleComboBox.findText(self.style))

if dialog.exec_():

self.width = dialog.widthSpinBox.value()

self.beveled = dialog.beveledCheckBox.isChecked()

self.style = unicode(dialog.styleComboBox.currentText())

self.updateData()

We begin by creating a PenPropertiesDlg dialog—we will see the details of
this shortly; all we need to know now is that it has a width spinbox, a beveled
checkbox,and a style combobox. We pass a parent,self (the calling form) to the
dialog, to take advantage of the fact that by default, PyQt centers a dialog over
its parent, and also because dialogs that have a parent do not get a separate
entry in the taskbar. We then access the widgets directly, setting their values
to those held by the calling form. The QComboBox.findText() method returns the
index position of the item with the matching text.

When we call exec_() on a dialog, the dialog is shown modally. This means that
the dialog’s parent windows and their sibling windows are blocked until the
dialog is closed. Only when the user closes the dialog (either by “accepting”
or by “rejecting” it) does the exec_() call return. The return value evaluates to
True if the user accepted the dialog; otherwise, it evaluates to False. If the user
accepted the dialog we know that they want their settings to take effect, so we
read them out of the dialog’s widgets and update our application’s data. The
updateData() call at the end is just one of our own custom methods that makes
the application show the pen properties in the main window.

At the end of the setPenProperties() method the PenPropertiesDlg will go out
of scope and will become a candidate for garbage collection. For this reason,
we must always create a new dialog and populate its widgets whenever setPen-
Properties() is called. This approach saves memory, at the price of some speed
overhead. For tiny dialogs like this, the overhead is too small for the user to
notice, but later on we will show an alternative approach that avoids creating
and destroying dialogs every time.

Using a dumb dialog means that the dialog is quite loosely coupled to the
application. We could completely decouple it by making the labels accessi-
ble as instance variables. Then we could use the PenPropertiesDlg to edit any
kind of data that required a spinbox, a checkbox, and a combobox, simply by
changing the labels. For example, we could use it to record a weather reading
with a “Temperature” spinbox, an “Is raining” checkbox, and a “Cloud cover”
combobox.

Dumb Dialogs 143

Now that we have seen how we can use the dialog, let’s look at the code that
implements it. The PenPropertiesDlg has a single method, __init__(), which we
will look at in parts.

class PenPropertiesDlg(QDialog):

def __init__(self, parent=None):

super(PenPropertiesDlg, self).__init__(parent)

Not surprisingly, our dialog is a QDialog subclass, and we initialize it in the way
we have seen a few times already.

widthLabel = QLabel("&Width:")

self.widthSpinBox = QSpinBox()

widthLabel.setBuddy(self.widthSpinBox)

self.widthSpinBox.setAlignment(Qt.AlignRight|Qt.AlignVCenter)

self.widthSpinBox.setRange(0, 24)

self.beveledCheckBox = QCheckBox("&Beveled edges")

styleLabel = QLabel("&Style:")

self.styleComboBox = QComboBox()

styleLabel.setBuddy(self.styleComboBox)

self.styleComboBox.addItems(["Solid", "Dashed", "Dotted",

"DashDotted", "DashDotDotted"])

okButton = QPushButton("&OK")

cancelButton = QPushButton("Cancel")

For each editing widget, we also create a corresponding label so that the user
can tell what they are editing. When we put an ampersand (&) in a label’s
text it can have two possible meanings. It can simply be a literal ampersand.
Or it can signify that the ampersand should not be shown, but instead the
letter following it should be underlined to show that it represents a keyboard
accelerator. For example, in the case of the widthLabel, its text of "&Width:"

will appear asWidth: and its accelerator will be Alt+W. On Mac OS X the default
behavior is to ignore accelerators; for this reason, PyQt does not display the
underlines on this platform.

What distinguishes between a literal ampersand and an accelerator amper-
sand is if the label has a “buddy”: If it does, the ampersand signifies an accel-
erator. A buddy is a widget that PyQt will pass the keyboard focus to when the
corresponding label’s accelerator is pressed. So, when the user presses Alt+W,
the keyboard focus will be switched to the widthSpinBox.This in turn means that
if the user presses the up or down arrow keys or PageUp or PageDown, these will
affect the widthSpinBox since it has the keyboard focus.

In the case of buttons,an underlined letter in the button’s text is used to signify
an accelerator. So in this case, the okButton’s text, "&OK", appears as OK, and
the user can press the button by clicking it with the mouse, by tabbing to it
and pressing the spacebar, or by pressing Alt+O. It is not common to provide an
accelerator for Cancel (or Close) buttons since these are normally connected to

144 Chapter 5. Dialogs

the dialog’s reject() slot, and QDialog provides a keyboard shortcut for that,
the Esc key.★ Checkboxes and radio buttons are somewhat similar to buttons
in that they have text that can have an accelerator. For example, the beveled
checkbox has an underlined “B”, so the user can toggle the checkbox’s checked
state by pressing Alt+B.

One disadvantage of creating buttons like this is that when we come to lay
them out we will do so in one particular order. For example, we might put OK
to the left of Cancel. But on some windowing systems this order is wrong. PyQt
has a solution for this, covered in the Dialog Button Layout sidebar.

We have aligned the spinbox’s number to the right, vertically centered, and
set its valid range to be 0–24. In PyQt, a pen width (i.e., a line width) of 0 is
allowed and signifies a 1-pixel-wide width regardless of any transformations.
Pen widths of 1 and above are drawn at the given width, and respect any
transformations, such as scaling, that are in force.

By using a spinbox and setting a range for it, we avoid the possibility of invalid
pen widths that might have been entered had we used, for example, a line
edit. Very often, simply choosing the right widget and setting its properties
appropriately provides all the widget-level validation that is needed. This
is also shown by our use of the beveled checkbox: Either the pen draws lines
with beveled edges or it doesn’t. And the same is true again with our use of a
combobox of line styles—the user can choose only a valid style, that is, a style
from a list that we have provided.

buttonLayout = QHBoxLayout()

buttonLayout.addStretch()

buttonLayout.addWidget(okButton)

buttonLayout.addWidget(cancelButton)

layout = QGridLayout()

layout.addWidget(widthLabel, 0, 0)

layout.addWidget(self.widthSpinBox, 0, 1)

layout.addWidget(self.beveledCheckBox, 0, 2)

layout.addWidget(styleLabel, 1, 0)

layout.addWidget(self.styleComboBox, 1, 1, 1, 2)

layout.addLayout(buttonLayout, 2, 0, 1, 3)

self.setLayout(layout)

We have used two layouts, one nested inside the other, to get the layout we
want. We begin by laying out the buttons horizontally, beginning with a
“stretch”. The stretch will consume as much space as possible,which has the ef-
fect of pushing the two buttons as far to the right as they can go, and still fit.

★We use the terms “keyboard accelerator” and “accelerator” for the Alt+Letter key sequences that
can be used to click buttons and switch focus in dialogs, and to pop up menus. We use the term
“keyboard shortcut” for any other kind of key sequence—for example, the key sequence Ctrl+S,
which is often used to save files. We will see how to create keyboard shortcuts in Chapter 6.

Dumb Dialogs 145

Dialog Button Layout

In some of our early examples, we have put the buttons on the right of
the dialogs, with the OK button first and then the Cancel button next. This
is the most common layout on Windows, but it is not always correct. For
example, for Mac OS X or for the GNOME desktop environment, they should
be swapped.

If we want our applications to have the most native look and feel Qt

4.2

possible
and expect to deploy them on different platforms, issues like button ordering
and positioning will matter to us. Qt 4.2 (PyQt 4.1)

PyQt

4.1

provides a solution for
this particular problem: the QDialogButtonBox class.

Instead of creating OK and Cancel buttons directly, we create a QDialogBut-

tonBox. For example:

buttonBox = QDialogButtonBox(QDialogButtonBox.Ok|

QDialogButtonBox.Cancel)

To make a button the “default” button, that is, the one that is pressed when
the user presses Enter (assuming that the widget with keyboard focus does
not handle Enter key presses itself), we can do this:

buttonBox.button(QDialogButtonBox.Ok).setDefault(True)

Since a button box is a single widget (although it contains other widgets),we
can add it directly to the dialog’s existing layout, rather than putting it in
its own layout and nesting that inside the dialog’s layout. Here is what we
would do in the PenPropertiesDlg example’s grid layout:

layout.addWidget(buttonBox, 3, 0, 1, 3)

And instead of connecting from the buttons’ clicked() signals, we can make
connections from the button box, which has its own signals that correspond
to user actions:

self.connect(buttonBox, SIGNAL("accepted()"),

self, SLOT("accept()"))

self.connect(buttonBox, SIGNAL("rejected()"),

self, SLOT("reject()"))

We are still free to connect to individual buttons’ clicked() signals, though,
and often do so for dialogs that have many buttons.

The QDialogButtonBox defaults to using a horizontal layout, but can be set to
use a vertical layout by passing Qt.Vertical to its constructor, or by calling
setOrientation().

We use QDialogButtonBox for most of the examples, but it could always be re-
placed by individual QPushButtons if backward compatibility was an issue.

146 Chapter 5. Dialogs

widthLabel widthSpinBox beveledCheckBox

styleLabel styleComboBox

stretch okButton cancelButton

Figure 5.2 The Pen Properties dialog’s layout

The width label, width spinbox, and bevel checkbox are laid out side by side in
three columns using a grid layout. The style label and style combobox are put
on the next row, with the style combobox set to span two columns. The argu-
ments to the QGridLayout.addWidget() method are the widget, the row, the col-
umn, and then optionally, the number of rows to span, followed by the number
of columns to span. We add the button layout as a third row to the grid layout,
having it span all three columns. Finally, we set the layout on the dialog. The
layout is shown schematically in Figure 5.2; the grid layout is shown shaded.

self.connect(okButton, SIGNAL("clicked()"),

self, SLOT("accept()"))

self.connect(cancelButton, SIGNAL("clicked()"),

self, SLOT("reject()"))

self.setWindowTitle("Pen Properties")

At the end of __init__() we make the necessary connections. We connect
the OK button’s clicked() signal to the dialog’s accept() slot: This slot will

Table 5.1 Selected Layout Methods

Syntax Description

b.addLayout(l) Adds QLayout l to QBoxLayout b, which is normally
a QHBoxLayout or a QVBoxLayout

b.addSpacing(i) Adds a QSpacerItem of fixed size int i to layout b
b.addStretch(i) Adds a QSpacerItem with minimum size 0 and a

stretch factor of int i to layout b
b.addWidget(w) Adds QWidget w to layout b
b.setStretchFactor(x, i) Sets the stretch factor of layout b’s layout or

widget x to int i

g.addLayout(l, r, c) Adds QLayout l to QGridLayout g at row int r and
column int c; additional row span and column
span arguments can be given

g.addWidget(w, r, c) Adds QWidget w to QGridLayout g at row int r and
column int c; additional row span and column
span arguments can be given

g.setRowStretch(r, i) Sets QGridLayout g’s row r’s stretch to int i

g.setColumnStretch(c, i) Sets QGridLayout g’s column c’s stretch to int i

Dumb Dialogs 147

close the dialog and return a True value. The Cancel button is connected in a
corresponding way. Finally, we set the window’s title.

For small dumb dialogs that are only ever called from one place, it is possible
to avoid creating a dialog class at all. Instead, we can simply create all the
widgets in the invoking method, lay them out, connect them, and call exec_().
If exec_() returns True, we can then extract the values from the widgets and
we are done. The file chap05/pen.pyw contains the Pen Properties dialog and a
dummy program with two buttons, one to invoke the PenPropertiesDlg we have
just reviewed and another that does everything inline. Creating dialogs inline
is not an approach that we would recommend, so we will not review the code
for doing it, but it is mentioned and provided in the example’s setPenInline()

method for completeness.

Dumb dialogs are easy to understand and use, but setting and getting values
using a dialog’s widgets is not recommended except for the very simplest
dialogs, where only one, two, or at most, a few values are involved. We have
shown them primarily as a gentle introduction to dialogs, since creating, laying
out, and connecting the widgets is the same in any kind of dialog. In the next
section, we will look at standard dialogs, both modal and modeless ones.

Standard Dialogs

We consider a dialog to be a “standard” dialog if it initializes its widgets in
accordance with the values set through its initializer or through its meth-
ods, and whose final values are obtained by method calls or from instance
variables—not directly from the dialog’s widgets. A standard dialog can have
both widget-level and form-level validation. Standard dialogsare either modal,
with “accept” and “reject” buttons, or (less commonly) modeless, in which case
they have “apply” and “close” buttons and notify state changes through signal
and slot connections.

One key advantage of standard dialogs is that the caller does not need to
know about their implementation, only how to set the initial values, and how
to get the resultant values if the user clicked OK. Another advantage, at least
for modal standard dialogs, is that the user cannot interact with the dialog’s
parent windows and their sibling windows, so the relevant parts of the ap-
plication’s state will probably not change behind the dialog’s back. The main
drawback of using a standard dialog is most apparent when it must handle lots
of different data items, since all the items must be fed into the dialog and the
results retrieved on each invocation, and this may involve many lines of code.

As with the previous section, we will explain by means of an example. In this
case, the example will be used both in this section and in the next section so
that we can see the different approaches and trade-offs between standard and
smart dialogs more clearly.

148 Chapter 5. Dialogs

Let us imagine that we have an application that needs to display a table of
floating-point numbers, and that we want to give users some control over the
format of the numbers. One way to achieve this is to provide a menu option,
toolbar button, or keyboard shortcut that will invoke a modal dialog which the
user can interact with to set their formatting preferences. Figure 5.3 shows a
number format dialog that has been popped up over a table of numbers.

Figure 5.3 The modal Set Number Format dialog in context

The data that we want the dialog to make available to the user is held in a
dictionary in the main form. Here is how the dictionary is initialized:

self.format = dict(thousandsseparator=",",

decimalmarker=".", decimalplaces=2,

rednegatives=False)

Using a dictionary like this is very convenient, and makes it easy to add
additional items.

We have put the dialog in its own file, numberformatdlg1.py, which the applica-
tion,numbers.pyw, imports. The number “1” in the filename distinguishes it from
the other two versions of the dialog covered in the next section.

Modal OK/Cancel-Style Dialogs

Let us begin by seeing how the dialog is used; we assume that the setNumber-

Format1() method is called in response to some user action.

def setNumberFormat1(self):

dialog = numberformatdlg1.NumberFormatDlg(self.format, self)

if dialog.exec_():

self.format = dialog.numberFormat()

self.refreshTable()

Standard Dialogs 149

We start by creating the dialog and passing it the format dictionary from which
the dialog will initialize itself, and self so that the dialog is tied to the calling
form—centered over it and not having its own taskbar entry.

As we mentioned earlier, calling exec_() pops up the dialog it is called on as a
modal dialog, so the user must either accept or reject the dialog before they can
interact with the dialog’s parents and their siblings. In the next section, we
will use modeless versions of the dialog that don’t impose this restriction.

If the user clicksOK, we set the format dictionary to have the values set in the
dialog, and update the table so that the numbers are displayed with the new
format. If the user cancels,we do nothing. At the end of the method, the dialog
goes out of scope and is therefore scheduled for garbage collection.

To save space, and to avoid needless repetition, from now on we will not show
any import statements, unless their presence is not obvious. So, for example,
we will no longer show from PyQt4.QtCore import * or the PyQt4.QtGui import.

We are now ready to see the implementation of the dialog itself.

class NumberFormatDlg(QDialog):

def __init__(self, format, parent=None):

super(NumberFormatDlg, self).__init__(parent)

The __init__() method begins in the same way as all the other dialogs we have
seen so far.

thousandsLabel = QLabel("&Thousands separator")

self.thousandsEdit = QLineEdit(format["thousandsseparator"])

thousandsLabel.setBuddy(self.thousandsEdit)

decimalMarkerLabel = QLabel("Decimal &marker")

self.decimalMarkerEdit = QLineEdit(format["decimalmarker"])

decimalMarkerLabel.setBuddy(self.decimalMarkerEdit)

decimalPlacesLabel = QLabel("&Decimal places")

self.decimalPlacesSpinBox = QSpinBox()

decimalPlacesLabel.setBuddy(self.decimalPlacesSpinBox)

self.decimalPlacesSpinBox.setRange(0, 6)

self.decimalPlacesSpinBox.setValue(format["decimalplaces"])

self.redNegativesCheckBox = QCheckBox("&Red negative numbers")

self.redNegativesCheckBox.setChecked(format["rednegatives"])

buttonBox = QDialogButtonBox(QDialogButtonBox.Ok|

QDialogButtonBox.Cancel)

For each aspect of the format that we want the user to be able to change we
create a label so that they know what they are editing, and a suitable editing
widget. Since the format argument is mandatory, we assume that it has all
the values we need, so we use it to initialize the editing widgets.Buddies

143 ☞

We also use
setBuddy() calls to support keyboard users since not all users are able to use the
mouse.

150 Chapter 5. Dialogs

Table 5.2 Selected QDialogButtonBox Methods and Signals

Syntax Description

d.addButton(b, r) Adds QPushButton b, with QDialogButtonBox.ButtonRole

r, to QDialogButtonBox d

d.addButton(t, r) Adds a QPushButton with text t and with button role r

to QDialogButtonBox d, and returns the added button
d.addButton(s) Adds a QPushButton, specified as QDialogButton-

Box.StandardButton s, to QDialogButtonBox d and re-
turns the added button

d.setOrientation(o) Sets the QDialogButtonBox’s orientation to
Qt.Orientation o (vertical or horizontal)

d.button(s) Returns the QDialogButtonBox’s QPushButton specified
as StandardButton s, or None if there isn’t one

d.accepted() This signal is emitted if a button with the QDialogBut-

tonBox.Accept role is clicked
d.rejected() This signal is emitted if a button with the QDialogBut-

tonBox.Reject role is clicked

The only validation we have put in place is to limit the range of the decimal
places spinbox. We have chosen to do “post-mortem” validation, that is, to
validate after the user has entered values, at the point where they click OK to
accept their edits. In the next section, we will see “preventative” validation,
which prevents invalid edits in the first place.

self.format = format.copy()

We need to take a copy of the format dictionary that was passed in, since we
want to be able to change the dictionary inside the dialog without affecting the
original dictionary.

grid = QGridLayout()

grid.addWidget(thousandsLabel, 0, 0)

grid.addWidget(self.thousandsEdit, 0, 1)

grid.addWidget(decimalMarkerLabel, 1, 0)

grid.addWidget(self.decimalMarkerEdit, 1, 1)

grid.addWidget(decimalPlacesLabel, 2, 0)

grid.addWidget(self.decimalPlacesSpinBox, 2, 1)

grid.addWidget(self.redNegativesCheckBox, 3, 0, 1, 2)

grid.addWidget(buttonBox, 4, 0, 1, 2)

self.setLayout(grid)

The layout is very similar in appearance to the one we used for the Pen Proper-
ties dialog, except that this time we have a QDialogButtonBox widget rather than
a layout for the buttons.This makes it possible to create the entire layout using
a single QGridLayout.

Standard Dialogs 151

thousandsLabel self.thousandsEdit

decimalMarkerLabel self.decimalMarkerEdit

decimalPlacesLabel self.decimalPlacesSpinBox

self.redNegativesCheckBox

okButton cancelButton

Figure 5.4 The Set Number Format dialog’s layout

Both the “red negatives” checkbox and the button box are laid out so that they
each span one row and two columns.Row and column spans are specified by the
last two arguments to the QGridLayout’s addWidget() and addLayout() methods.
The layout is shown in Figure 5.4, with the grid shown shaded.

self.connect(buttonBox, SIGNAL("accepted()"),

self, SLOT("accept()"))

self.connect(buttonBox, SIGNAL("rejected()"),

self, SLOT("reject()"))

self.setWindowTitle("Set Number Format (Modal)")

The code for making the connections and setting the window’s title is similar
to what we used for the Pen Properties dialog, only this time we use the button
box’s signals rather than connecting directly to the buttons themselves.

def numberFormat(self):

return self.format

If the user clicks OK, the dialog is accepted and returns a True value. In this
case, the calling form’smethod overwrites its format dictionary with the dialog’s
dictionary, by calling the numberFormat() method. Since we have not made the
dialog’s self.format attribute very private (i.e., by calling it __format), we could
have accessed it from outside the form directly; we will take that approach in
a later example.

When the user clicks OK, because we are using post-mortem validation, it is
possible that some of the editing widgets contain invalid data. To handle this,
we reimplement QDialog.accept() and do our validation there. Because the
method is quite long, we will look at it in parts.

def accept(self):

class ThousandsError(Exception): pass

class DecimalError(Exception): pass

Punctuation = frozenset(" ,;:.")

We begin by creating two exception classes that we will use inside the accept()

method. These will help to keep our code cleaner and shorter than would
otherwise be possible. We also create a set of the characters that we will allow
to be used as thousands separators and decimal place markers.

152 Chapter 5. Dialogs

The only editing widgets we are concerned with validating are the two line
edits. This is because the decimal places spinbox is already limited to a
valid range, and because the “red negatives” checkbox can only be checked or
unchecked, both of which are valid.

thousands = unicode(self.thousandsEdit.text())

decimal = unicode(self.decimalMarkerEdit.text())

try:

if len(decimal) == 0:

raise DecimalError, ("The decimal marker may not be "

"empty.")

if len(thousands) > 1:

raise ThousandsError, ("The thousands separator may "

"only be empty or one character.")

if len(decimal) > 1:

raise DecimalError, ("The decimal marker must be "

"one character.")

if thousands == decimal:

raise ThousandsError, ("The thousands separator and "

"the decimal marker must be different.")

if thousands and thousands not in Punctuation:

raise ThousandsError, ("The thousands separator must "

"be a punctuation symbol.")

if decimal not in Punctuation:

raise DecimalError, ("The decimal marker must be a "

"punctuation symbol.")

except ThousandsError, e:

QMessageBox.warning(self, "Thousands Separator Error",

unicode(e))

self.thousandsEdit.selectAll()

self.thousandsEdit.setFocus()

return

except DecimalError, e:

QMessageBox.warning(self, "Decimal Marker Error",

unicode(e))

self.decimalMarkerEdit.selectAll()

self.decimalMarkerEdit.setFocus()

return

We begin by getting the text from the two line edits. Although it is acceptable
to have no thousands separator, a decimal marker must be present, so we begin
by checking that the decimalMarkerEdit has at least one character. If it doesn’t,
we raise our custom DecimalError with suitable error text. We also raise
exceptions if either of the texts is longer than one character, or if they are the
same character, or if either contains a character that is not in our Punctuation

set. The if statements differ regarding punctuation because the thousands
separator is allowed to be empty, but the decimal place marker is not.

Standard Dialogs 153

Figure 5.5 A QMessageBox warning

We have used parentheses around the error strings that are in two parts to
turn them into single expressions; an alternative syntax would have been
to drop the parentheses, and instead concatenate the two parts and escape
the newline.

Depending on whether we get a ThousandsError or a DecimalError, we display a
“warning” message box with appropriate error text,as illustrated in Figure 5.5.
We QMess-

ageBox

sidebar

☞ 188

must convert the exception object e to be a string (we have used unicode()

to do this) so that it is suitable as an argument to the QMessageBox’s static
warning() method. We will make more use of the QMessageBox static methods,
including the use of additional arguments,both in this chapter and throughout
the book.

Once the user has acknowledged the error message by closing the message
box, we select the text in the invalid line edit and give the focus to the line edit,
ready for the user to make their correction. Then we return—so the dialog is
not accepted and the user must either fix the problem or click Cancel to close
the dialog and abandon their changes.

self.format["thousandsseparator"] = thousands

self.format["decimalmarker"] = decimal

self.format["decimalplaces"] = \

self.decimalPlacesSpinBox.value()

self.format["rednegatives"] = \

self.redNegativesCheckBox.isChecked()

QDialog.accept(self)

If no exception is raised, neither of the return statements is executed and
execution falls through to this final part of the accept() method. Here we
update the dialog’s format dictionary with the values from the editing widgets,
and call the base class’s accept() method. The form will be closed (i.e., hidden)
and a True value returned from the exec_() statement. As we saw earlier, the
caller, on receiving a True value from exec_(), goes on to retrieve the dialog’s
format using the numberFormat() method.

Why didn’t we use super() to call the base class’s accept() at the end instead of
naming QDialog explicitly? The short answer is that using super() in this con-
text won’t work. PyQt tries to be as efficient as possible by using lazy attribute
lookup, but the result is that super() does not work as we would expect in PyQt

154 Chapter 5. Dialogs

subclasses. (For an explanation, see the PyQt pyqt4ref.html documentation,
under “super and PyQt classes”.)

Although the dialog is hidden only when it is accepted (or rejected), once it goes
out of scope, that is, at the end of the caller’s setNumberFormat1() method, the
dialog is scheduled for garbage collection.

Creating modal dialogs like this one is usually straightforward. The only
complications involved concern whether we have layouts and validation that
require some care to get right, as we do here.

In some cases the user will want to be able to see the results of their choices,
perhaps changing their choices a few times until they are satisfied. For these
situations modal dialogs can be inconvenient since the user must invoke the
dialog, perform their edits, accept, see the results, and then repeat the cycle
until they are happy. If the dialog was modeless and was able to update the
application’sstate without being closed, the user could simply invoke the dialog
once, perform their edits, see the effects, and then do more edits, and so on: a
much faster cycle. We will see how to achieve this in the next section; we will
also look at a much simpler and more active validation strategy—preventative
validation.

Smart Dialogs

We define a “smart” dialog to be one that initializes its widgets in accordance
with data references or data structures that are passed to its initializer, and
which is capable of updating the data directly in response to user interaction.
Smart dialogs can have both widget-level and form-level validation. Smart
dialogs are usually modeless, with “apply” and “close” buttons, although they
can also be “live”, in which case they may have no buttons, with changes to
widgets reflected directly into the data they have access to. Smart modeless

Table 5.3 Selected QDialog Methods

Syntax Description

d.accept() Closes (hides) QDialog d, stops its event loop, and causes
exec_() to return with a True value. The dialog is deleted
if Qt.WA_DeleteOnClose is set

d.reject() Closes (hides) QDialog d, stops its event loop, and causes
exec_() to return with a False value

d.done(i) Closes (hides) QDialog d, stops its event loop, and causes
exec_() to return int i

d.exec_() Shows QDialog d modally, blocking until it is closed
d.show() Shows QDialog d modelessly; inherited from QWidget

d.setSizeGrip-

Enabled(b)
Shows or hides QDialog d’s size grip depending on bool b

Smart Dialogs 155

dialogs that have “apply” buttons notify state changes through signal and
slot connections.

The main benefit of using a smart modeless dialog is seen at the point of use.
When the dialog is created, it is given references to the calling form’s data
structures so that the dialog can update the data structures directly with no
further code required at the call point. The downsides are that the dialog must
have knowledge of the calling form’s data structures so that it correctly reflects
the data values into its widgets and only applies changes that are valid, and
that, being modeless, there is a risk of the data the dialog depends on being
changed from under it if the user interacts with some other part of the appli-
cation.

In this section we are going to continue with the theme of number format
dialogs so that we can compare the various approaches.

Modeless Apply/Close-Style Dialogs

If we want our users to be able to repeatedly change the number format and
see the results, it will be much more convenient for them if they could do so
without having to keep invoking and accepting the number format dialog. The
solution is to use a modeless dialog which allows them to interact with the
number format widgets and to apply their changes and to see the effect, as
often as they like. Dialogs like this usually have an Apply button and a Close
button. Unlike a modal OK/Cancel-style dialog, which can be canceled, leaving
everything as it was before, once Apply has been clicked the user cannot revert
their changes. Of course we could provide a Revert button or a Defaults button,
but this would require more work.

Superficially, the only difference between the modeless and the modal versions
of the dialog is the button text. However, there are two other important differ-
ences:The calling form’s method creates and invokes the dialog differently,and
the dialog must make sure it is deleted, not just hidden, when it is closed. Let
us begin by looking at how the dialog is invoked.

def setNumberFormat2(self):

dialog = numberformatdlg2.NumberFormatDlg(self.format, self)

self.connect(dialog, SIGNAL("changed"), self.refreshTable)

dialog.show()

We create the dialog in the same way we created the modal version earlier; it is
shown in Figure 5.6. We then connect the dialog’s changed Python signal to the
calling form’s refreshTable() method, and then we just call show() on the dialog.
When we call show(), the dialog is popped up as a modeless dialog. Application
execution continues concurrently with the dialog, and the user can interact
with both the dialog and other windows in the application.

Whenever the dialog emits its changed signal, the main form’s refreshTable()

method is called, and this will reformat all the numbers in the table using

156 Chapter 5. Dialogs

Figure 5.6 The modeless Set Number Format dialog

the format dictionary’s settings. We can imagine that this means that when
the user clicks the Apply button the format dictionary will be updated and the
changed signal emitted. We will see shortly that this is indeed what happens.

Although the dialog variable goes out of scope, PyQt is smart enough to keep
a reference to modeless dialogs, so the dialog continues to exist. But when the
user clicks Close, the dialog would normally only be hidden, so if the user in-
voked the dialog again and again, more and more memory would be needlessly
consumed, as more dialogs would be created but none deleted. One solution to
this is to make sure that the dialog is deleted, rather than hidden, when it is
closed. (We will see another solution when we look at a “live” dialog, shortly.)

We shall start with the dialog’s __init__() method.

def __init__(self, format, parent=None):

super(NumberFormatDlg, self).__init__(parent)

self.setAttribute(Qt.WA_DeleteOnClose)

After calling super(), we call setAttribute() to make sure that when the dialog
is closed it will be deleted rather than merely hidden.

punctuationRe = QRegExp(r"[,;:.]")

thousandsLabel = QLabel("&Thousands separator")

self.thousandsEdit = QLineEdit(format["thousandsseparator"])

thousandsLabel.setBuddy(self.thousandsEdit)

self.thousandsEdit.setMaxLength(1)

self.thousandsEdit.setValidator(

QRegExpValidator(punctuationRe, self))

decimalMarkerLabel = QLabel("Decimal &marker")

self.decimalMarkerEdit = QLineEdit(format["decimalmarker"])

decimalMarkerLabel.setBuddy(self.decimalMarkerEdit)

self.decimalMarkerEdit.setMaxLength(1)

self.decimalMarkerEdit.setValidator(

QRegExpValidator(punctuationRe, self))

self.decimalMarkerEdit.setInputMask("X")

Smart Dialogs 157

decimalPlacesLabel = QLabel("&Decimal places")

self.decimalPlacesSpinBox = QSpinBox()

decimalPlacesLabel.setBuddy(self.decimalPlacesSpinBox)

self.decimalPlacesSpinBox.setRange(0, 6)

self.decimalPlacesSpinBox.setValue(format["decimalplaces"])

self.redNegativesCheckBox = QCheckBox("&Red negative numbers")

self.redNegativesCheckBox.setChecked(format["rednegatives"])

buttonBox = QDialogButtonBox(QDialogButtonBox.Apply|

QDialogButtonBox.Close)

The creation of the form’s widgets is very similar to what we did before, but
this time we are using preventative validation almost exclusively.We set a one-
character maximum length on the thousands separator and decimal marker
line edits, and in both cases we also set a QRegExpValidator. A validator will only
allow the user to enter valid characters, and in the case of a regular expres-
sion validator, only characters that match the regular expression.★ PyQt uses a
regular expression syntax that is essentially a subset of the syntax offered by
Python’s re module.

The QRegExpValidator’s initializer requires both a regular expression and a par-
ent, which is why we have passed self in addition to the regular expression.

In this case, we have set the validation regular expression to be “[,;:.]”. This is
a character class and means that the only characters that are valid are those
contained in the square brackets, that is, space, comma, semicolon, colon,
and period. Notice that the regular expression string is preceded by “r”. This
signifies a “raw” string and means that (almost) all of the characters inside the
string are to be taken as literals. This considerably reduces the need to escape
regular expression special characters such as “\”, although here it does not
matter. Nonetheless, we always use “r” with regular expression strings as a
matter of good practice.

Although we are happy to accept an empty thousands separator, we require a
decimal marker. For this reason we have used an input mask. A mask of “X”
says that one character of any kind is required—we don’t have to concern our-
selves with what the character will be because the regular expression valida-
tor will ensure that it is valid. Format masks are explained in the QLineEd-

it.inputMask property’s documentation.✪

The only other difference to the way we created the widgets in the modal
version of the dialog is that we create Apply and Close buttons rather than OK
and Cancel buttons.

★ The QRegExp documentation provides a brief introduction to regular expressions. For in-depth
coverage, see Mastering Regular Expressions by Jeffrey E. Friedl.
✪ Every PyQt QObject and QWidget has “properties”. These are similar in principle to Python
properties, except that they can be accessed using the property() and setProperty() methods.

158 Chapter 5. Dialogs

self.format = format

In the modal dialog we took a copy of the caller’s format dictionary; here we
take a reference to it, so that we can change it directly from within the dialog.

We will not show the dialog’s layout since it is identical to the layout used in
the modal dialog shown earlier.

self.connect(buttonBox.button(QDialogButtonBox.Apply),

SIGNAL("clicked()"), self.apply)

self.connect(buttonBox, SIGNAL("rejected()"),

self, SLOT("reject()"))

self.setWindowTitle("Set Number Format (Modeless)")

We create two signal–slot connections. The first one is between the Apply
button’s clicked() signal and the apply() method. To make this connection, we
must retrieve a reference to the button from the button box using its button()

method, passing the same argument, QDialogButtonBox.Apply, that we used to
create the button in the first place.

The connection to reject() will cause the dialog to close, and because of the
Qt.WA_DeleteOnClose attribute, the dialog will be deleted rather than hidden.
There is no connection to the dialog’s accept() slot, so the only way to get rid
of the dialog is to close it. If the user clicks the Apply button, the apply() slot,
shown next, will be called. Naturally, we also set a window title.

The final method in this class is apply(), which we will review in two parts.

def apply(self):

thousands = unicode(self.thousandsEdit.text())

decimal = unicode(self.decimalMarkerEdit.text())

if thousands == decimal:

QMessageBox.warning(self, "Format Error",

"The thousands separator and the decimal marker "

"must be different.")

self.thousandsEdit.selectAll()

self.thousandsEdit.setFocus()

return

if len(decimal) == 0:

QMessageBox.warning(self, "Format Error",

"The decimal marker may not be empty.")

self.decimalMarkerEdit.selectAll()

self.decimalMarkerEdit.setFocus()

return

Form-level validation is normally necessary when two or more widgets’ values
are interdependent.In this example,we do not want to allow the thousandssep-
arator to be the same as the decimal place marker, so we check for this situation
in the apply() method, and if it has occurred we notify the user, put the focus in
the thousands separator line edit, and return without applying the user’s edits.

Smart Dialogs 159

We could have avoided this by connecting both line edits’ textEdited() signals
to a “check and fix” slot—we will do this in the next example.

We must also check that the decimal marker isn’t empty. Although the decimal
place marker’s line edit regular expression validator wants a single character,
it allows the line edit to be empty. This is because an empty string is a valid
prefix for a string that has a valid character. After all, the line edit may have
been empty when the user switched the focus into it.

self.format["thousandsseparator"] = thousands

self.format["decimalmarker"] = decimal

self.format["decimalplaces"] = \

self.decimalPlacesSpinBox.value()

self.format["rednegatives"] = \

self.redNegativesCheckBox.isChecked()

self.emit(SIGNAL("changed"))

If there are no validation problems, neither of the return statements is exe-
cuted and we fall through to the end of the accept() slot. Here we update the
format dictionary. The self.format variable is a reference to the caller’s format

dictionary, so the changes are applied directly to the caller’s data structure.
Finally, we emit a changed signal, and as we have seen, this causes the caller’s
refreshTable() method to be called, which in turn formats all the numbers in
the table using the caller’s format dictionary.

This dialog is smarter than the standard one we created in the preceding
section. It works directly on the caller’s data structure (the format dictionary),
and notifies the caller when the data structure has changed so that the changes
can be applied. We could have made it smarter still and given it a reference
to the caller’s refreshTable() method and had the dialog execute it directly: We
will use this approach in the next example.

In situations where the user wants to repeatedly apply changes, it may be
inconvenient for them to keep having to click an Apply button. They may just
want to manipulate a dialog’s widgets and see the effects immediately. We will
see how to do this next.

Modeless “Live” Dialogs

For our last number format example, we will review a smart modeless “live”
dialog—a dialog that works very similarly to the one we have just seen, but
which has no buttons, and where changes are applied automatically and
immediately. The dialog is shown in Figure 5.7.

In the modal version of the dialog we used post-mortem validation, and in the
smart modeless version we used a mixture of post-mortem and preventative
validation. In this example, we will use preventative validation exclusively.
Also, instead of creating a signal–slot connection so that the dialog can notify

160 Chapter 5. Dialogs

Figure 5.7 The “live” Set Number Format dialog

the caller of changes, we give the dialog the method to call when there are
changes to be applied so that it can call this method whenever necessary.

We could create this dialog in exactly the same way as the previous dialog, but
we will instead demonstrate a different approach. Rather than creating the
dialog when it is needed and then destroying it, creating and destroying on
every use, we will create it just once, the first time it is needed, and then hide
it when the user is finished with it, showing and hiding on every use.

def setNumberFormat3(self):

if self.numberFormatDlg is None:

self.numberFormatDlg = numberformatdlg3.NumberFormatDlg(

self.format, self.refreshTable, self)

self.numberFormatDlg.show()

self.numberFormatDlg.raise_()

self.numberFormatDlg.activateWindow()

In the calling form’s initializer, we have the statement self.numberFormatDlg =

None. This ensures that the first time this method is called the dialog is created.
Then, we show the dialog as before. But in this case, when the dialog is closed
it is merely hidden (because we do not set the Qt.WA_DeleteOnClose widget
attribute). So when this method is called, we may be creating and showing the
dialog for the first time, or we may be showing a dialog that was created earlier
and subsequently hidden. To account for the second possibility, we must both
raise (put the dialog on top of all the other windows in the application) and
activate (give the focus to the dialog); doing these the first time is harmless.★

Also, we have made the dialog even smarter than the previous one, and instead
of setting up a signal–slot connection, we pass the bound refreshTable()

method to the dialog as an additional parameter.

The __init__() method is almost the same as before,with just three differences.
First, it does not set the Qt.WA_DeleteOnClose attribute so that when the dialog
is closed, it will be hidden, not deleted. Second, it keeps a copy of the method it
is passed (i.e., it keeps a reference to self.refreshTable() in self.callback), and

★PyQt uses raise_() rather than raise() to avoid conflict with the built-in raise statement.

Smart Dialogs 161

third, its signal and slot connections are slightly different than before. Here
are the connection calls:

self.connect(self.thousandsEdit,

SIGNAL("textEdited(QString)"), self.checkAndFix)

self.connect(self.decimalMarkerEdit,

SIGNAL("textEdited(QString)"), self.checkAndFix)

self.connect(self.decimalPlacesSpinBox,

SIGNAL("valueChanged(int)"), self.apply)

self.connect(self.redNegativesCheckBox,

SIGNAL("toggled(bool)"), self.apply)

As before, we can rely on the decimal places spinbox to ensure that only a valid
number of decimal places is set, and similarly the “red negatives” checkbox can
only be in a valid state, so changes to either of these can be applied immedi-
ately.

But for the line edits, we now connect their textEdited() signals. These signals
are emitted whenever the user types in a character or deletes a character from
them. The checkAndFix() slot will both ensure that the line edits hold valid text
and apply the change immediately. There are no buttons in this dialog: The
user can close it by pressing Esc, which will then hide it. The dialog will be
deleted only when its calling form is deleted, because at that point the caller’s
self.numberFormatDlg instance variable will go out of scope, and with no other
reference to the dialog, it will be scheduled for garbage collection.

def apply(self):

self.format["thousandsseparator"] = \

unicode(self.thousandsEdit.text())

self.format["decimalmarker"] = \

unicode(self.decimalMarkerEdit.text())

self.format["decimalplaces"] = \

self.decimalPlacesSpinBox.value()

self.format["rednegatives"] = \

self.redNegativesCheckBox.isChecked()

self.callback()

The apply() method is the simplest we have seen so far. This is because
it is called only when all the editing widgets hold valid data, so no post-
mortem validation is required. It no longer emits a signal to announce a state
change—instead, it calls the method it was given and this applies the changes
directly to the caller’s form.

def checkAndFix(self):

thousands = unicode(self.thousandsEdit.text())

decimal = unicode(self.decimalMarkerEdit.text())

if thousands == decimal:

self.thousandsEdit.clear()

self.thousandsEdit.setFocus()

162 Chapter 5. Dialogs

if len(decimal) == 0:

self.decimalMarkerEdit.setText(".")

self.decimalMarkerEdit.selectAll()

self.decimalMarkerEdit.setFocus()

self.apply()

This method applies preventative validation as the user types in either of the
line edits. We still rely on the line edit validators, maximum length properties,
and in the case of the decimal place marker line edit, an input mask, with all
of these combining to provide almost all the validation that we need. But it is
still possible for the user to set the same text in both—in which case we delete
the thousands separator and move the focus to its line edit, or (if the user tries
hard) for the decimal place marker to be empty—in which case we set a valid
alternative, select it, and give it the keyboard focus. At the end we know that
both line edits are valid, so we call apply() and apply the changes.

One benefit of using the show/hide approach is that the dialog’s state is main-
tained automatically. If we have to create the dialog each time it is used we
must populate it with data, but for this dialog, whenever it is shown (after the
first time), it already has the correct data. Of course, in this particular exam-
ple we have three dialogs that are all used to edit the same data, which means
that this dialog could become out of sync; we ignore this issue because having
multiple dialogs editing the same data is not something we would do in a real
application.

By passing in both the data structure (the format dictionary) and the caller’s
update method (refreshTable(), passed as self.callback), we have made this
dialog very smart—and very tightly coupled to its caller. For this reason,
many programmers prefer the “middle way” of using standard dialogs—dumb
dialogs are too limited and can be inconvenient to use, and smart dialogs can be
more work to maintain because of the tight coupling their knowledge of their
callers’ data structures implies.

Summary

We categorized dialogs into three “intelligences”, dumb, standard, and smart,
and showned that they can be used modally or modelessly. Dumb dialogs are
easy to create, and are perfectly adequate for doing widget-level validation.
Dumb dialogs are normally used modally, and if we are careful they can be
generalized since they can be very loosely coupled to the application’s logic.
Nonetheless, using dumb dialogs usually ends up leading to programmer
frustration and the need to rewrite in the form of a standard or smart dialog,
so it is often best to avoid them except for those very simple cases where just
one or two values are required and the built-in QInputDialog static dialogs are
not suitable.

The most common choice is between a standard modal dialog and a smart
modeless dialog, and in the latter case between the “apply” and “live” styles

Summary 163

of updating. Modal dialogs are the easiest to program because they block any
other interaction with the dialog’s parent windows and their sibling windows,
thereby reducing the risk that the data they are working on is changed from
under them. But modeless dialogs are preferred by some users, and are par-
ticularly convenient when users want to try out various options before deciding
which ones they want. Modal dialogs can also be used for this purpose if they
provide some kind of preview; for example, font dialogs are often modal, and
show sample text that reflects the user’s font settings as they change them.

The two validation strategies that we have looked at, post-mortem and pre-
ventative, can be used on their own or in combination. From a usability point
of view, preventative is often considered to be superior, although it can lead
to user frustration. For example, a user might complain (“I want to set this to
five but it won’t let me”) when the setting is invalid because of another setting
elsewhere on the form.

It is possible to design a dialog so that it can be used both for adding and for
editing items. These add/edit dialogs are no different from other kinds of
dialogs when it comes to the creation, layout, and connection of their widgets.
The key difference is that they may need to behave in different ways depend-
ing on whether they are adding or editing. When editing, the widgets are pop-
ulated from the item passed in, and when adding, the widgets are populated
with default values. If the dialog is accepted, it may simply provide accessors
through which the values set can be retrieved, leaving the work to the caller, or
it may be smart, able to update edited items directly, and to create new items if
the user is adding. See the AddEditMovieDlg class in chap08/additemmoviedlg.py

(its user interface design is in chap08/additemmoviedlg.ui), and the TextItemDlg

class in chap12/pagedesigner.pwy, for examples of add/edit item dialogs.

Another possibility is to avoid using a dialog at all and to allow the user to edit
data in-place—for example, in a list or table. This approach is covered in the
chapters on model/view programming.

Exercise
Write a stand-alone string list editing dialog. The dialog should use if __name__

== "__main__": so that it can be run and tested independently. It should look
like the dialog shown in Figure 5.8.

The strings should be held in a QListWidget. The Sort button is easy to im-
plement since we can connect its clicked() signal directly to the QListWid-

get.sortItems() method.

The dialog should work on its own string list, either a copy of one passed in,
or one it creates itself, and when accepted should emit a signal containing
the list (as a QStringList), and also have a publically accessible data attribute,
stringlist.

The reject() slot should be implemented like this:

164 Chapter 5. Dialogs

Figure 5.8 The String List dialog with an item being added

def reject(self):

self.accept()

For testing purposes put the following code at the end of the file:

if __name__ == "__main__":

fruit = ["Banana", "Apple", "Elderberry", "Clementine", "Fig",

"Guava", "Mango", "Honeydew Melon", "Date", "Watermelon",

"Tangerine", "Ugli Fruit", "Juniperberry", "Kiwi",

"Lemon", "Nectarine", "Plum", "Raspberry", "Strawberry",

"Orange"]

app = QApplication(sys.argv)

form = StringListDlg("Fruit", fruit)

form.exec_()

print "\n".join([unicode(x) for x in form.stringlist])

This creates a StringListDlg instance, with a string that names the kind of
things in the list, and a list of strings, and then calls it modally. When the user
closes the dialog we print the list of strings on the console so that we can see
the effects of our edits.

You will need to read the documentation for QListWidget, and for QInputDia-

log.getText() which can be used for getting a string to be added and for editing
an existing string. This exercise can be done in about 120 lines of code.

A model answer is provided by the file chap05/stringlistdlg.py. The program
can be tested by running it. (On Windows, it should be run from a console; on
Mac OS X, from a Terminal.)

Main Windows

66 ● Creating a Main Window

● Handling User Actions

Most applications are main-window-style applications, that is, they have a
menu bar, toolbars, a status bar, a central area, and possibly dock windows, to
provide the user with a rich yet navigable and comprehensible user interface.
In this chapter, we will see how to create a main-window-style application
which demonstrates how to create and use all of these features.

Figure 6.1 The Image Changer application

We will use the Image Changer application shown in Figure 6.1 to demonstrate
how to create a main-window-style application. Like most such applications it
has menus, toolbars, and a status bar; it also has a dock window. In addition
to seeing how to create all these user interface elements, we will cover how
to relate user interactions with them, to methods that perform the relevant
actions.

165

166 Chapter 6. Main Windows

This chapter also explains how to handle the creation of new files and the open-
ing of existing files, including keeping the user interface synchronized with
the application’s state. Also covered is how to give the user the opportunity to
save unsaved changes, and how to manage a recently used files list. We will
also show how to save and restore user preferences, including the sizes and
positions of the main window and of the toolbars and dock windows.

Most applications have a data structure for holding their data, and use one
or more widgets through which users can view and edit the data. The Image
Changer application holds its data in a single QImage object, and uses a QLabel

widget as its data viewer. In Chapter 8, we will see a main-window-style ap-
plication that is used to present and edit lots of data items, and in Chapter 9,
we will see how to create main window applications that can handle multiple
documents.

Before looking at how to create the application, we will discuss some of the
state that a user interface must maintain. Quite often, some menu options
and toolbar buttons are “checkable”, that is, they can be in one of two states.
For example, in a word processor, a toolbar button for toggling italic text
could be “on” (pushed down) or “off”. If there is also an italic menu option, we
must make sure that the menu option and the toolbar button are kept in sync.
Fortunately, PyQt makes it easy to automate such synchronization.

Some options may be interdependent. For example, we can have text left-
aligned, centered, or right-aligned, but only one of these can be “on” at any one
time. So if the user switched on centered alignment, the left and right align-
ment toolbar buttons and menu options must be switched off. Again, PyQt
makes it straightforward to synchronize such interdependent options. In this
chapter, we will cover options that are noncheckable, such as “file open”, and
both independent and interdependent checkable options.

Although some menu and toolbar options can have an immediate effect on the
application’s data, others are used to invoke dialogs through which users can
specify precisely what they want done. Since we have given so much coverage
to dialogs in the preceding two chapters, here we will concentrate on how they
are used rather than on how they are created. In this chapter we will see how
to invoke custom dialogs, and also how to use many of PyQt’s built-in dialogs,
including dialogs for choosing a filename, the print dialog, and dialogs for
asking the user for an item of data, such as a string or a number.

Creating a Main Window

For most main-window-style applications, the creation of the main window
follows a similar pattern. We begin by creating and initializing some data
structures, then we create a “central widget” which will occupy the main win-
dow’s central area, and then we create and set up any dock windows. Next, we
create “actions” and insert them into menus and toolbars. It is quite common
to also read in the application’s settings, and for applications that restore the

Creating a Main Window 167

imagechanger.pyw

MainWindow

main()

qrc_resources.py

Icons & HTML help files

newimagedlg.py

NewImageDlg

helpform.py

HelpForm

ui_newimagedlg.py

User interface module

Figure 6.2 The Image Changer’s modules, classes,and functions

user’s workspace, to load the files that the application had open when it was
last terminated.

The files that make up the Image Changer application are shown in Figure 6.2.
The application’s main window class is in the file chap06/imagechanger.pyw. The
initializer is quite long, so we will look at it in pieces. But first we will look at
the imports that precede the class definition.

import os

import platform

import sys

from PyQt4.QtCore import *
from PyQt4.QtGui import *
import helpform

import newimagedlg

import qrc_resources

__version__ = "1.0.0"

In this book, the practice is to import Python’s standard modules, then third-
party modules (such as PyQt), and then our own modules. We will discuss the
items we use from the os and platform modules when we use them in the code.
The sys module is used to provide sys.argv as usual. The helpform and newim-

agedlg modules provide the HelpForm and NewImageDlg classes. We will discuss
the qrc_resources module later on.

It is common for applications to have a version string, and conventional to call
it __version__; we will use it in the application’s about box.

Now we can look at the beginning of the MainWindow class.

class MainWindow(QMainWindow):

def __init__(self, parent=None):

super(MainWindow, self).__init__(parent)

168 Chapter 6. Main Windows

self.image = QImage()

self.dirty = False

self.filename = None

self.mirroredvertically = False

self.mirroredhorizontally = False

The initializer begins conventionally with the super() call. Next, we create
a null QImage that we will use to hold the image the user loads or creates. A
QImage is not a QObject subclass, so it does not need a parent; instead, we can
leave its deletion to Python’s normal garbage collection when the application
terminates. We also create some instance variables. We use dirty as a Boolean
flag to indicate whether the image has unsaved changes. The filename is
initially set to None, which we use to signify that either there is no image, or
there is a newly created image that has never been saved.

PyQt provides various mirroring capabilities, but for this example application
we have limited ourselves to just three possibilities:having the image mirrored
vertically, horizontally, or not at all. We need to keep track of the mirrored
state so that we can keep the user interface in sync, as we will see when we
discuss the mirroring actions.

self.imageLabel = QLabel()

self.imageLabel.setMinimumSize(200, 200)

self.imageLabel.setAlignment(Qt.AlignCenter)

self.imageLabel.setContextMenuPolicy(Qt.ActionsContextMenu)

self.setCentralWidget(self.imageLabel)

In some applications the central widget is a composite widget (a widget that is
composed of other widgets, laid out just like those in a dialog), or an item-based
widget (such as a list or table), but here a single QLabel is sufficient. A QLabel

can display plain text, or HTML, or an image in any of the image formats that
PyQt supports; later on we will see how to discover what these formats are,
since they can vary. We have set a minimum size because initially the label has
nothing to show, and would therefore take up no space, which would look pecu-
liar. We have chosen to align our images vertically and horizontally centered.

PyQt offers many ways of creating context menus, but we are going to use the
easiest and most common approach.First, we must set the context menu policy
for the widget which we want to have a context menu. Then, we must add
some actions to the widget—something we will do further on. When the user
invokes the context menu, the menu will pop up, displaying the actions that
were added.

Unlike dialogs, where we use layouts, in a main-window-style application we
only ever have one central widget—although this widget could beObject

Owner-
ship
sidebar

119 ☞

composite, so
there is no limitation in practice. We only need to call setCentralWidget() and
we are done.This method both lays out the widget in the main window’s central
area, and reparents the widget so that the main window takes ownership
of it.

Creating a Main Window 169

Window Title ✕

Menu Bar

Toolbar Areas

Dock Window Areas

Central Widget

Status Bar

Figure 6.3 QMainWindow’s areas

Toolbars are suitable for holding toolbar buttons, and some other kinds of wid-
gets such as comboboxes and spinboxes. For larger widgets, for tool palettes, or
for any widget that we want the user to be able to drag out of the window to
float freely as an independent window in its own right, using a dock window is
often the right choice.

Dock windows are windows that can appear in the dock areas shown in Fig-
ure 6.3. They have a small caption, and restore and close buttons, and they can
be dragged from one dock area to another, or float freely as independent top-
level windows in their own right. When they are docked they automatically
provide a splitter between themselves and the central area, and this makes
them easy to resize.

In PyQt, dock windows are instances of the QDockWidget class. We can add a
single widget to a dock widget, just as we can have a single widget in a main
window’s central area, and in the same way this is no limitation, since the
widget added can be a composite.

logDockWidget = QDockWidget("Log", self)

logDockWidget.setObjectName("LogDockWidget")

logDockWidget.setAllowedAreas(Qt.LeftDockWidgetArea|

Qt.RightDockWidgetArea)

self.listWidget = QListWidget()

logDockWidget.setWidget(self.listWidget)

self.addDockWidget(Qt.RightDockWidgetArea, logDockWidget)

Dock widgets are not put into a layout, so when we create them, in addition to
providing their window caption, we must give them a parent. By setting a par-
ent, we ensure that the dock widget does not go out of scope and get garbage-

170 Chapter 6. Main Windows

collected by Python at the wrong time. Instead,Object
Owner-
ship
sidebar

119 ☞

the dock widget will be deleted
when its parent, the top-level window (the main window), is deleted.

Every PyQt object can be given an object name, although up to now we have
never done so. Object names can sometimes be useful in debugging, but we
have set one here because we want PyQt to save and restore the dock widget’s
size and position, and since there could be any number of dock widgets, PyQt
uses the object name to distinguish between them.

By default, dock widgets can be dragged into any dock area and are movable,
floatable, and closable. Since our dock widget is going to be used to store a
list—a widget that is usually tall and narrow—it only makes sense for it to be
in the left or right dock areas (or to float), so we use setAllowedAreas() to restrict
the areas. Dock widgets also have a setFeatures() method which is used to
control whether the dock widget can be moved, floated, or closed, but we do not
need to use it here because the defaults are fine.

Once the dock widget has been set up, we create the widget it will hold, in this
case a list widget. Then we add the widget to the dock widget, and the dock
widget to the main window. We did not have to give the list widget a parent
because when it is added to the dock widget the dock widget takes ownership
of it.

self.printer = None

We want users to be able to print out their images. To do this we need to
create a QPrinter object. We could create the printer whenever we need it and
leave it to be garbage-collected afterward. But we prefer to keep an instance
variable, initially set to None. The first time the user asks to print we will create
a QPrinter and assign it to our printer variable. This has two benefits. First,we
create the printer object only when it is needed, and second, because we keep
a reference to it, it stays around—and keeps all its previous state such as the
user’s choice of printer, paper size, and so on.

self.sizeLabel = QLabel()

self.sizeLabel.setFrameStyle(QFrame.StyledPanel|QFrame.Sunken)

status = self.statusBar()

status.setSizeGripEnabled(False)

status.addPermanentWidget(self.sizeLabel)

status.showMessage("Ready", 5000)

For the application’sstatusbar,we want the usual message area on the left,and
a status indicator showing the width and height of the current image. We do
this by creating a QLabel widget and adding it to the status bar. We also switch
off the status bar’s size grip since that seems inappropriate when we have an
indicator label that shows the image’s dimensions. The status bar itself is cre-
ated for us the first time we call the QMainWindow’s statusBar() method. If we call
the status bar’s showMessage() method with a string, the string will be displayed
in the status bar, and will remain on display until either another showMessage()

Creating a Main Window 171

call supplants it or until clearMessage() is called. We have used the two-argu-
ment form, where the second argument is the number of milliseconds (5000,
i.e., 5 seconds), that the message should be shown for; after this time the status
bar will clear itself.

So far we have seen how to create the main window’s central widget, create a
dock widget, and set up the status bar. Now we are almost ready to create the
menus and toolbars, but first we must understand what PyQt actions are, and
then take a brief detour to learn about resources.

Actions and Key Sequences

Qt’s designers recognized that user interfaces often provide several different
ways for the user to achieve the same thing. For example, creating a new file
in many applications can be done via the File→Newmenu option, or by clicking
the New File toolbar button, , or by using the Ctrl+N keyboard shortcut. In
general, we do not care how the user asked to perform the action, we only care
what action they asked to be done. PyQt encapsulates user actions using the
QAction class. So, for example, to create a “file new” action we could write code
like this:

fileNewAction = QAction(QIcon("images/filenew.png"), "&New", self)

fileNewAction.setShortcut(QKeySequence.New)

helpText = "Create a new image"

fileNewAction.setToolTip(helpText)

fileNewAction.setStatusTip(helpText)

self.connect(fileNewAction, SIGNAL("triggered()"), self.fileNew)

This assumes that we have a suitable icon and a fileNew() method. The am-
persand in the menu item’s text means that the menu item will appear as New
(except on Mac OS X or unless the windowing system is set to suppress un-
derlines), and that keyboard users will be able to invoke it by pressing Alt+F,N,
assuming that the Filemenu’s text is "&File" so that it appears as File. Alterna-
tively, the user could use the shortcut that was created by setShortcut(), and
simply press Ctrl+N instead.

Many key sequences are standardized, some even across different windowing
systems. For example, Windows, KDE, and GNOME all use Qt

4.2

Ctrl+N for “new”
and Ctrl+S for “save”. Mac OS X is similar, with Command+N and Command+S
for these actions. The QKeySequence class in PyQt 4.2 provides constants for the
standardized key sequences, such as QKeySequence.New. This is especially useful
when the standardized key sequences differ across windowing systems, or
where more than one key sequence is associated with an action. For example,
if we set a shortcut to QKeySequence.Paste, PyQt will trigger a “paste” action in
response to Ctrl+V or Shift+Ins on Windows; Ctrl+V, Shift+Ins, or F18 on KDE and
GNOME; and Command+V on Mac OS X.

For key sequences that are not standardized (or if we want backward com-
patibility with earlier PyQt releases), we can provide the shortcut as a string;

172 Chapter 6. Main Windows

Table 6.1 Selected QAction Methods

Syntax Description

a.data() Returns QAction a’s user data as a QVariant

a.setData(v) Sets QAction a’s user data to QVariant v

a.isChecked() Returns True if QAction a is checked
a.setChecked(b) Checks or unchecks QAction a depending on bool b

a.isEnabled() Returns True if QAction a is enabled
a.setEnabled(b) Enables or disables QAction a depending on bool b

a.setSeparator(b) Sets QAction a to be a normal action or a separator
depending on bool b

a.setShortcut(k) Sets QAction a’s keyboard shortcut to QKeySequence k

a.setStatusTip(s) Sets QAction a’s status tip text to string s

a.setText(s) Sets QAction a’s text to string s

a.setToolTip(s) Sets QAction a’s tooltip text to string s

a.setWhatsThis(s) Sets QAction a’s What’s This? text to string s

a.toggled(b) This signal is emitted when QAction a’s checked status
changes; bool b is True if the action is checked

a.triggered(b) This signal is emitted when QAction a is invoked; the
optional bool b is True if QAction a is checked

for example, setShortcut("Ctrl+Q"). This book uses the standardized key se-
quences that are available, and otherwise falls back to using strings.

Notice that we give the QAction a parent of self (the form inObject
Owner-
ship
sidebar

119 ☞

which the action
is applicable). It is important that every QObject subclass (except top-level win-
dows) has a parent; for widgets this is usually achieved by laying them out, but
for a pure data object like a QAction, we must provide the parent explicitly.

Once we have created the action, we can add it to a menu and to a toolbar
like this:

fileMenu.addAction(fileNewAction)

fileToolbar.addAction(fileNewAction)

Now whenever the user invokes the “file new” action (by whatever means), the
fileNew() method will be called.

Resource Files

Unfortunately, there is a small problem with the code we have written. It as-
sumes that the application’s working directory is the directory where it is locat-
ed. This is the normal case under Windows where the .pyw (or a shortcut to it)
is clicked (or double-clicked).But if the program is executed from the command

Creating a Main Window 173

line from a different directory—for example, ./chap06/imagechanger.pyw—none
of the icons will appear. This is because we gave the icon’s path as images, that
is, a path relative to the application’s working directory, so when invoked from
elsewhere, the icons were looked for in the ./images directory (which might not
even exist), when in fact they are in the ./chap06/images directory.

We might be tempted to try to solve the problem using Python’s os.getcwd()

function; but this returns the directory where we invoked the application,
which as we have noted, may not be the directory where the application actu-
ally resides. Nor does PyQt’s QApplication.applicationDirPath() method help,
since this returns the path to the Python executable, not to our application it-
self. One solution is to use os.path.dirname(__file__) to provide a prefix for the
icon filenames, since the __file__ variable holds the full name and path of the
current .py or .pyw file.

Another solution is to put all our icons (and help files, and any other small
resources) into a single .py module and access them all from there. This not
only solves the path problem (because Python knows how to look for a module
to be imported), but also means that instead of having dozens of icons, help
files, and similar, some of which could easily become lost, we have a single
module containing them all.

To produce a resource module we must do two things. First, we must create a
.qrc file that contains details of the resources we want included, and then we
must run pyrcc4 which reads a .qrc file and produces a resource module. The
.qrc file is in a simple XML format that is easy to write by hand. Here is an
extract from the resources.qrc file used by the Image Changer application:

<!DOCTYPE RCC><RCC version="1.0">

<qresource>

<file alias="filenew.png">images/filenew.png</file>

<file alias="fileopen.png">images/fileopen.png</file>

···
<file alias="icon.png">images/icon.png</file>

<file>help/editmenu.html</file>

<file>help/filemenu.html</file>

<file>help/index.html</file>

</qresource>

</RCC>

The ellipsis represents many lines that have been omitted to save space
because they are all very similar. Each <file> entry must contain a filename,
with its relative path if it is in a subdirectory. Now, if we want to use the “file
new” action’s image, we could write QIcon(":/images/filenew.png"). But thanks
to the alias, we can shorten this to QIcon(":/filenew.png"). The leading :/ tells
PyQt that the file is a resource. Resource files can be treated just like normal
(read-only) files in the filesystem, the only difference being that they have the

174 Chapter 6. Main Windows

special path prefix. But before we can use resources, we must make sure we
generate the resource module and import it into our application.

Earlier we showed the imports for the Image Changer application, and the last
one was import qrc_resources. The qrc_resources.py module was generated by
pyrcc4 using the following command line:

C:\pyqt\chap06>pyrcc4 -o qrc_resources.py resources.qrc

We must run this command whenever we change the resources.qrc file.

As a convenience for readers, two small Python programs are provided with the
examples to make using pyrcc4, and some other PyQt command-line programs,
much easier. One is mkpyqt.py, itself a command-line program, mk-

pyqt.py

and
Make
PyQt
sidebar

☞ 207

and the other is
Make PyQt, a GUI application written in PyQt4. This means, for example, that
instead of running pyrcc4 ourselves, we can simply type this:

C:\pyqt\chap06>mkpyqt.py

Both mkpyqt.py and Make PyQt do the same thing: They run pyuic4 and other
PyQt tools, and for each one they automatically use the correct command-line
arguments; they are described in the next chapter.

Creating and Using Actions

The code we saw earlier for creating a “file new” action required six lines to
create and set up the action. Most main-window-style applications have scores
of actions, so typing six lines for each one would soon become very tedious. For
this reason, we have created a helper method which allows us to reduce the
code for creating actions to just two or three lines. We will look at the helper,
and then see how it is used in the main window’s initializer.

def createAction(self, text, slot=None, shortcut=None, icon=None,

tip=None, checkable=False, signal="triggered()"):

action = QAction(text, self)

if icon is not None:

action.setIcon(QIcon(":/%s.png" % icon))

if shortcut is not None:

action.setShortcut(shortcut)

if tip is not None:

action.setToolTip(tip)

action.setStatusTip(tip)

if slot is not None:

self.connect(action, SIGNAL(signal), slot)

if checkable:

action.setCheckable(True)

return action

Creating a Main Window 175

This method does everything that we did by hand for the “file new” action. In
addition, it handles cases where there is no icon, as well as “checkable” actions.
Icons are optional, although for actions that will be added to a toolbar it is
conventional to provide one. An action is checkable if it can have “on” and “off”
states like the Bold or Italic actions that word processors normally provide.

Notice that the last argument to the QAction constructor is self; this is the
action’s parent (the main window) and it ensures that the action will not be
garbage-collected when it goes out of the initializer’s scope. In some cases, we
make actions instance variables so that we can access them outside the form’s
initializer, something we don’t need to do in this particular example.

Here is how we can create the “file new” action using the createAction()

helper method:

fileNewAction = self.createAction("&New...", self.fileNew,

QKeySequence.New, "filenew", "Create an image file")

With the exception of the “file quit” action (and “file save as”, for which we don’t
provide a shortcut), the other file actions are created in the same way, so we
won’t waste space by showing them.

fileQuitAction = self.createAction("&Quit", self.close,

"Ctrl+Q", "filequit", "Close the application")

The QKeySequence class does not have a standardized shortcut for application
termination, so we have chosen one ourselves and specified it as a string.
We could have just as easily used a different shortcut—for example, Alt+X or
Alt+F4.

The close() slot is inherited from QMainWindow. If the main window is closed
by invoking the “file quit” action (which we have just connected to the close()

slot), for example, by clicking File→Quit or by pressing Ctrl+Q, the base class’s
close() method will be called. But if the user clicks the application’s close
button, X, the close() method is not called.

The only way we can be sure we are intercepting attempts to close the window
is to reimplement the close event handler. Whether the application is closed by
the close() method or via the close button, the close event handler is always
called. So, by reimplementing this event handler we can give the user the
opportunity to save any unsaved changes, and we can save the application’s
settings.

In general, we can implement an application’s behavior purely through the
high-level signals and slots mechanism,but in this one important case we must
use the lower-level event-handling mechanism. However, reimplementing the
close event is no different from reimplementing any other method, and it is not
difficult, as we will see when we cover it further on. (Event handling is covered
in Chapter 10.)

176 Chapter 6. Main Windows

The editing actions are created in a similar way, but we will look at a few of
them because of subtle differences.

editZoomAction = self.createAction("&Zoom...", self.editZoom,

"Alt+Z", "editzoom", "Zoom the image")

It is convenient for users to be able to zoom in and out to see an image in more
or less detail. We have provided a spinbox in the toolbar to allow mouse users
to change the zoom factor (and which we will come to shortly), but we must also
support keyboard users, so for them we create an “edit zoom” action which will
be added to theEditmenu. When triggered, the method connected to this action
will pop up a dialog box where the user can enter a zoom percentage.

There are standardized key sequences for zoom in and for zoom out, but there
is not one for zooming generally, so we have chosen to use Alt+Z in this case.
(We did not use Ctrl+Z, since that is the standardized key sequence for undo on
most platforms.)

editInvertAction = self.createAction("&Invert",

self.editInvert, "Ctrl+I", "editinvert",

"Invert the image's colors", True, "toggled(bool)")

The “edit invert” action is a toggle action. We could still use the triggered()

signal, but then we would need to call isChecked() on the action to find out
its state. It is more convenient for us to use the toggled(bool) signal since
that not only tells us that the action has been invoked, but also whether it is
checked. Actions also have a triggered(bool) signal that is emitted only for
user changes, but that is not suitable here because whether the checked status
of the invert action is changed by the user or programmatically, we want to act
on it.

The “edit swap red and blue” action is similar to the “edit invert” action, so we
won’t show it.

Like the “edit invert” action and the “edit swap red and blue” action, the mir-
ror actions are also checkable, but unlike the “invert” and “swap red and blue”
actions which are independent, we have chosen to make the mirror actions
mutually exclusive, allowing only one to be “on” at any one time. To get this
behavior we create the mirror actions in the normal way, but add each of them
to an “action group”. An action group is a class which manages a set of check-
able actions and ensures that if one of the actions it manages is set to “on”, the
others are all set to “off”.

mirrorGroup = QActionGroup(self)

An action group is a QObject subclass that is neither a top-levelObject
Owner-
ship
sidebar

119 ☞

window nor a
widget that is laid out, so we must give it an explicit parent to ensure that it is
deleted by PyQt at the right time.

Creating a Main Window 177

Once we have created the action group, we create the actions in the same way
as before, only now we add each one to the action group.

editUnMirrorAction = self.createAction("&Unmirror",

self.editUnMirror, "Ctrl+U", "editunmirror",

"Unmirror the image", True, "toggled(bool)")

mirrorGroup.addAction(editUnMirrorAction)

We have not shown the code for the “edit mirror vertically” or “edit mirror
horizontally” actions since it is almost identical to the code shown earlier.

editUnMirrorAction.setChecked(True)

Checkable actions default to being “off”, but when we have a group like this
where exactly one must be “on” at a time, we must choose one to be on in the
first place. In this case, the “edit unmirror” action is the most sensible to switch
on initially. Checking the action will cause it to emit its toggled() signal, but
at this stage the QImage is null, and as we will see, no change is applied to a
null image.

We create two more actions, “help about”, and “help help”, with code very
similar to what we have already seen.

Although the actions are all in existence, none of them actually works! This is
because they become operational only when they have been added to a menu,
a toolbar, or both.

Figure 6.4 The Edit menu and the Mirror submenu

Menus in the menu bar are created by accessing the main window’s menu bar
(which is created the first time menuBar() is called, just like the status bar).
Here is the code for creating the Editmenu:

editMenu = self.menuBar().addMenu("&Edit")

self.addActions(editMenu, (editInvertAction,

editSwapRedAndBlueAction, editZoomAction))

We have created the Editmenu, and then used addActions() to add some actions
to it. This is sufficient to produce the Editmenu shown in Figure 6.4, apart from
the Mirror option, which we will look at in a moment.

178 Chapter 6. Main Windows

Actions are added to menus and toolbars using addAction(). To reduce typing
we have created a tiny helper method which can be used to add actions to a
menu or to a toolbar, and which can also add separators. Here is its code:

def addActions(self, target, actions):

for action in actions:

if action is None:

target.addSeparator()

else:

target.addAction(action)

The target is a menu or toolbar, and actions is a list or tuple of actions or
Nones. We could have used the built-in QWidget.addActions() method, but in that
case we would have to create separator actions (shown later) rather than use
Nones.

The last option on the Edit menu, Mirror, has a small triangle on its right. This
signifies that it has a submenu.

mirrorMenu = editMenu.addMenu(QIcon(":/editmirror.png"),

"&Mirror")

self.addActions(mirrorMenu, (editUnMirrorAction,

editMirrorHorizontalAction, editMirrorVerticalAction))

Submenus are populated in exactly the same way as any other menu, but they
are added to their parent menu using QMenu.addMenu() rather than to the main
window’s menu bar using QMainWindow.menuBar().addMenu(). Having created the
mirror menu, we add actions to it using our addActions() helper method, just
as we did before.

Most menus are created and then populated with actions in the same way as
the Editmenu, but the Filemenu is different.

self.fileMenu = self.menuBar().addMenu("&File")

self.fileMenuActions = (fileNewAction, fileOpenAction,

fileSaveAction, fileSaveAsAction, None,

filePrintAction, fileQuitAction)

self.connect(self.fileMenu, SIGNAL("aboutToShow()"),

self.updateFileMenu)

We want the File menu to show recently used files. For this reason, we do not
populate the Filemenu here, but instead generate it dynamically whenever the
user invokes it. This is why we made the Filemenu an instance variable, and
also why we have an instance variable holding the Filemenu’s actions. The con-
nection ensures that whenever the File menu is invoked our updateFileMenu()

slot will be called. We will review this slot later on.

The Helpmenu is created conventionally, in the same way as the Edit menu, so
we won’t show it.

Creating a Main Window 179

Figure 6.5 The File toolbar

With the menus in place, we can now turn to the toolbars.

fileToolbar = self.addToolBar("File")

fileToolbar.setObjectName("FileToolBar")

self.addActions(fileToolbar, (fileNewAction, fileOpenAction,

fileSaveAsAction))

Creating a toolbar is similar to creating a menu:We call addToolBar() to create a
QToolBar object and populate it using addActions(). We can use our addActions()

method for both menus and toolbars because their APIs are very similar, with
both providing addAction() and addSeparator() methods. We set an object name
so that PyQt can save and restore the toolbar’s position—there can be any num-
ber of toolbars and PyQt uses the object name to distinguish between them,
just as it does for dock widgets. The resulting toolbar is shown in Figure 6.5.

The edit toolbar and the checkable actions (“edit invert”, “edit swap red and
blue”, and the mirror actions) are all created in the same way. But as Figure 6.6
shows, the edit toolbar has a spinbox in addition to its toolbar buttons. In view
of this, we will show the code for this toolbar in full, showing it in two parts for
ease of explanation.

editToolbar = self.addToolBar("Edit")

editToolbar.setObjectName("EditToolBar")

self.addActions(editToolbar, (editInvertAction,

editSwapRedAndBlueAction, editUnMirrorAction,

editMirrorVerticalAction,

editMirrorHorizontalAction))

Creating a toolbar and adding actions to it is the same for all toolbars.

We want to provide the user with a quick means of changing the zoom factor, so
we provide a spinbox in the edit toolbar to make this possible. Earlier, we put
a separate “edit zoom” action in the Editmenu, to cater to keyboard users.

self.zoomSpinBox = QSpinBox()

self.zoomSpinBox.setRange(1, 400)

self.zoomSpinBox.setSuffix(" %")

self.zoomSpinBox.setValue(100)

self.zoomSpinBox.setToolTip("Zoom the image")

self.zoomSpinBox.setStatusTip(self.zoomSpinBox.toolTip())

self.zoomSpinBox.setFocusPolicy(Qt.NoFocus)

self.connect(self.zoomSpinBox,

SIGNAL("valueChanged(int)"), self.showImage)

editToolbar.addWidget(self.zoomSpinBox)

180 Chapter 6. Main Windows

Figure 6.6 The Edit toolbar

The pattern for adding widgets to a toolbar is always the same: We create the
widget, set it up, connect it to something to handle user interaction, and add
it to the toolbar. We have made the spinbox an instance variable because we
will need to access it outside the main window’s initializer. The addWidget() call
passes ownership of the spinbox to the toolbar.

We have now fully populated the menus and toolbars with actions. Although
every action was added to the menus, some were not added to the toolbars.This
is quite conventional; usually only the most frequently used actions are added
to toolbars.

Earlier we saw the following line of code:

self.imageLabel.setContextMenuPolicy(Qt.ActionsContextMenu)

This tells PyQt that if actions are added to the imageLabel widget, they are to
be used for a context menu, such as the one shown in Figure 6.7.

self.addActions(self.imageLabel, (editInvertAction,

editSwapRedAndBlueAction, editUnMirrorAction,

editMirrorVerticalAction, editMirrorHorizontalAction))

We can reuse our addActions() method to add actions to the label widget,
providing we don’t pass Nones since QWidget does not have an addSeparator()

method. Setting the policy and adding actions to a widget are all that is neces-
sary to get a context menu for that widget.

Figure 6.7 The Image Label’s context menu

The QWidget class has an addAction() method that is inherited by the QMenu,
QMenuBar, and QToolBar classes. This is why we can add actions to any of these
classes. Although the QWidget class does not have an addSeparator() method,
one is provided for convenience in the QMenu, QMenuBar, and QToolBar classes.
If we want to add a separator to a context menu, we must do so by adding a
separator action. For example:

Creating a Main Window 181

separator = QAction(self)

separator.setSeparator(True)

self.addActions(editToolbar, (editInvertAction,

editSwapRedAndBlueAction, separator, editUnMirrorAction,

editMirrorVerticalAction, editMirrorHorizontalAction))

If we need more sophisticated context menu handling—for example, where context-

Menu-

Event()

☞ 307

the
menu’s actions vary depending on the application’s state, we can reimplement
the relevant widget’s contextMenuEvent() event-handling method. Event
handling is covered in Chapter 10.

When we create a new image or load an existing image, we want the user
interface to revert to its original state. In particular, we want the “edit invert”
and “edit swap red and green” actions to be “off”, and the mirror action to be
“edit unmirrored”.

self.resetableActions = ((editInvertAction, False),

(editSwapRedAndBlueAction, False),

(editUnMirrorAction, True))

We have created an instance variable holding a tuple of pairs, with each pair
holding an action and the checked state it should have when a new image is
created or loaded. We will see resetableActions in use when we review the
fileNew() and loadFile() slots.

In the Image Changer application, all of the actions are enabled all of En-
abling
and
Dis-
abling
Actions
sidebar

☞ 385

the
time. This is fine, since we always check for a null image before performing
any action, but it has the disadvantage that, for example, “file save” will be
enabled if there is no image or if there is an unchanged image, and similarly,
the edit actions will be enabled even if there is no image. The solution is to
enable or disable actions depending on the application’s state, as the sidebar in
Chapter 13 shows.

Restoring and Saving the Main Window’s State

Now that the main window’s user interface has been fully set up, we are almost
ready to finish the initializer method, but before we do we will restore the
application’s settings from the previous run (or use default settings if this is
the very first time the application has been run).

Before we can look at application settings, though, we must make a quick
detour and look at the creation of the application object and how the main win-
dow itself is created. The very last executable statement in the imagechang-

er.pyw file is the bare function call:

main()

As usual, we have chosen to use a conventional name for the first function we
execute. Here is its code:

182 Chapter 6. Main Windows

def main():

app = QApplication(sys.argv)

app.setOrganizationName("Qtrac Ltd.")

app.setOrganizationDomain("qtrac.eu")

app.setApplicationName("Image Changer")

app.setWindowIcon(QIcon(":/icon.png"))

form = MainWindow()

form.show()

app.exec_()

The function’s first line is one we have seen many times before. The next three
lines are new. Our primary use of them is for loading and saving application
settings. If we create a QSettings object without passing any arguments, it
will use the organization name or domain (depending on platform), and the
application name that we have set here. So, by setting these once on the
application object, we don’t have to remember to pass them whenever we need
a QSettings instance.

But what do these names mean? They are used by PyQt to save the applica-
tion’s settings in the most appropriate place—for example, in the Windows
registry, or in a directory under $HOME/.config on Linux, or in $HOME/Library/

Preferences on Mac OS X. The registry keys or file and directory names are de-
rived from the names we give to the application object.

We can tell that the icon file is loaded from the qrc_resources module because
its path begins with :/.

After we have set up the application object, we create the main window, show
it, and start off the event loop, in the same way as we have done in examples
in previous chapters.

Now we can return to where we got up to in the MainWindow.__init__() method,
and see how it restores system settings.

settings = QSettings()

self.recentFiles = settings.value("RecentFiles").toStringList()

size = settings.value("MainWindow/Size",

QVariant(QSize(600, 500))).toSize()

self.resize(size)

position = settings.value("MainWindow/Position",

QVariant(QPoint(0, 0))).toPoint()

self.move(position)

self.restoreState(

settings.value("MainWindow/State").toByteArray())

self.setWindowTitle("Image Changer")

self.updateFileMenu()

QTimer.singleShot(0, self.loadInitialFile)

Creating a Main Window 183

We begin by creating a QSettings object. Since we passed no arguments, the
names held by the application object are used to locate the settings informa-
tion. We begin by retrieving the recently used files list. The QSettings.value()

method always returns a QVariant, so we must convert it to the data type we are
expecting.

Next, we use the two-argument form of value(), where the second argument is
a default value.This means that the very first time the application is run, it has
no settings at all, so we will get a QSize() object with a width of 600 pixels and
a height of 500 pixels.★ On subsequent runs, the size returned will be whatever
the size of the main window was when the application was terminated—so
long as we remember to save the size when the application terminates. Once
we have a size, we resize the main window to the given size. After getting
the previous (or default) size, we retrieve and set the position in exactly the
same way.

There is no flickering, because the resizing and positioning are done in the
main window’s initializer, before the window is actually shown to the user.

Qt 4.2 introduced two new QWidget methods for saving and restoring a top-level
window’s geometry. Unfortunately, a bug meant that they were Qt

4.3

not reliable
in all situations on X11-based systems, and for this reason we have restored
the window’s size and position as separate items. Qt 4.3 has fixed the bug, so
with Qt 4.3 (e.g., with PyQt 4.3), instead of retrieving the size and position and
calling resize() and move(), everything can be done using a single line:

self.restoreGeometry(settings.value("Geometry").toByteArray())

This assumes that the geometry was saved when the application was close-

Event()

☞ 185

terminat-
ed, as we will see when we look at the closeEvent().

The QMainWindow class provides a restoreState() method and a saveState()

method; these methods restore from and save to a QByteArray. The data they
save and restore are the dock window sizes and positions, and the toolbar
positions—but they work only for dock widgets and toolbars that have unique
object names.

After setting the window’s title,we call updateFileMenu() to create the Filemenu.
Unlike the other menus, the File menu is generated dynamically; this is so
that it can show any recently used files. The connection from the File menu’s
aboutToShow() signal to the updateFileMenu() method means that the Filemenu
is created afresh whenever the user clicks File in the menu bar, or presses Alt+F.
But until this method has been called for the first time, the Filemenu does not
exist—which means that the keyboard shortcuts for actions that have not been
added to a toolbar, such as Ctrl+Q for “file quit”, will not work. In view of this,
we explicitly call updateFileMenu() to create an initial Filemenu and to activate
the keyboard shortcuts.

★PyQt’s documentation rarely gives units of measurement because it is assumed that the units
are pixels, except for QPrinter, which uses points.

184 Chapter 6. Main Windows

Doing Lots of Processing at Start-Up

If we need to do lots of processing at start-up—for example, if we need to
load in lots of large files, we always do so in a separate loading method. At
the end of the main form’s constructor, the loading method is called through
a zero-timeout single-shot timer.

What would happen if we didn’t use a single-shot timer? Imagine, for ex-
ample, that the method was loadInitialFiles() and that it loaded lots of
multimegabyte files. The file loading would be done when the main window
was being created, that is, before the show() call, and before the event loop
(exec_()) had been started. This means that the user might experience a
long delay between launching the application and actually seeing the ap-
plication’s window appear on-screen. Also, if the file loading might result
in message boxes being popped up—for example, to report errors—it makes
more sense to have these appear after the main window is shown, and when
the event loop is running.

We want the main window to appear as quickly as possible so that the
user knows that the launch was successful, and so that they can see any
long-running processes, like loading large files, through the main window’s
user interface. This is achieved by using a single-shot timer as we did in the
Image Changer example.

This works because a single-shot timer with a timeout of zero does not
execute the slot it is given immediately. Instead, it puts the slot to be called
in the event queue and then simply returns. At this point, the end of the
main window’s initializer is reached and the initialization is complete. The
very next statement (in main()) is a show() call on the main window, and this
does nothing except add a show event to the event queue. So, now the event
queue has a timer event and a show event. A timer event with a timeout of
zero is taken to mean “do this when the event queue has nothing else to do”,
so when the next statement,exec_(), is reached and starts off the event loop,
it always chooses to handle the show event first, so the form appears, and
then, with no other events left, the single-shot timer’s event is processed,
and the loadInitialFiles() call is made.

The initializer’s last line looks rather peculiar. A single-shot timer takes a
timeout argument (in milliseconds), and a method to call when the timeout oc-
curs. So, it looks as though the line could have been written like this instead:

self.loadInitialFile()

In this application, where we load at most only one initial file, and where that
file is very unlikely to be as big even as 1MB, we could use either approach
without noticing any difference. Nonetheless, calling the method directly is
not the same as using a single-shot timer with a zero timeout,as the Doing Lots
of Processing at Start-Up sidebar explains.

Creating a Main Window 185

We have finished reviewing the code for initializing the main window, so now
we can begin looking at the other methods that must be implemented to pro-
vide the application’s functionality. Although the Image Changer application is
just one specific example, to the greatest extent possible we have made the code
either generic or easily adaptable so that it could be used as the basis for other
main-window-style applications, even ones that are completely different.

In view of the discussions we have just had, it seems appropriate to begin our
coverage with the loadInitialFile() method.

def loadInitialFile(self):

settings = QSettings()

fname = unicode(settings.value("LastFile").toString())

if fname and QFile.exists(fname):

self.loadFile(fname)

This method uses a QSettings object to get the last image that the application
used. If there was such an image, and it still exists, the program attempts to
load it. We will review loadFile() when we cover the file actions.

We could just as easily have written if fname and os.access(fname, os.F_OK): It
makes no noticable difference here, but for multiperson projects, it may be wise
to have a policy of preferring PyQt over the standard Python libraries or vice
versa in cases like this, just to keep things as simple and clear as possible.

We discussed restoring the application’s state a little earlier, so it seems
appropriate to cover the close event, since that is where we save the applica-
tion’s state.

def closeEvent(self, event):

if self.okToContinue():

settings = QSettings()

filename = QVariant(QString(self.filename)) \

if self.filename is not None else QVariant()

settings.setValue("LastFile", filename)

recentFiles = QVariant(self.recentFiles) \

if self.recentFiles else QVariant()

settings.setValue("RecentFiles", recentFiles)

settings.setValue("MainWindow/Size", QVariant(self.size()))

settings.setValue("MainWindow/Position",

QVariant(self.pos()))

settings.setValue("MainWindow/State",

QVariant(self.saveState()))

else:

event.ignore()

If the user attempts to close the application, by whatever means (apart from
killing or crashing it), the closeEvent() method is called. We begin by calling
our own custom okToContinue() method; this returns True if the user really

186 Chapter 6. Main Windows

Table 6.2 Selected QMainWindow Methods

Syntax Description

m.addDockWidget(a, d) Adds QDockWidget d into Qt.QDockWidgetArea a in
QMainWindow m

m.addToolBar(s) Adds and returns a new QToolBar called string s

m.menuBar() Returns QMainWindow m’s QMenuBar (which is created
the first time this method is called)

m.restoreGeometry(ba) Restores QMainWindow m’s position and size to
those encapsulated in QByteArray ba

 Qt
4.3

m.restoreState(ba) Restores QMainWindow m’s dock widgets and toolbars
to the state encapsulated in QByteArray ba

m.saveGeometry() Returns QMainWindow m’s position and size en-
capsulated in a QByteArray

 Qt
4.3

m.saveState() Returns the state of QMainWindow m’s dock widgets
and toolbars, that is, their sizes and positions, en-
capsulated in a QByteArray

m.setCentralWidget(w) Sets QMainWindow m’s central widget to be QWidget w

m.statusBar() Returns QMainWindow m’s QStatusBar (which is created
the first time this method is called)

m.setWindowIcon(i) Sets QMainWindow m’s icon to QIcon i; this method is
inherited from QWidget

m.setWindowTitle(s) Sets QMainWindow m’s title to string s; this method is
inherited from QWidget

wants to close, and False otherwise. It is inside okToContinue() that we give
the user the chance to save unsaved changes. If the user does want to close,
we create a fresh QSettings object, and store the “last file” (i.e., the file the user
has open), the recently used files, and the main window’s state. The QSettings

class only reads and writes QVariant objects, so we must be careful to provide
either null QVariants (created with QVariant()), or QVariants with the correct
information in them.

If the user chose not to close, we call ignore() on the close event. This will tell
PyQt to simply discard the close event and to leave the application running.

If we are using Qt 4.3 (e.g.,with PyQt 4.3) and have restored the main window’s Qt

4.3 geometry using QWidget.restoreGeometry(), we can save the geometry like this:

settings.setValue("Geometry", QVariant(self.saveGeometry()))

If we take this approach, we do not need to save the main window’s size or
position separately.

def okToContinue(self):

if self.dirty:

Creating a Main Window 187

reply = QMessageBox.question(self,

"Image Changer - Unsaved Changes",

"Save unsaved changes?",

QMessageBox.Yes|QMessageBox.No|

QMessageBox.Cancel)

if reply == QMessageBox.Cancel:

return False

elif reply == QMessageBox.Yes:

self.fileSave()

return True

This method is used by the closeEvent(), and by the “file new” and “file open”
actions. If the image is “dirty”, that is, if it has unsaved changes, we pop up a
message box and ask the user what they want to do. If they click Yes, we save
the image to disk and return True. If they click No, we simply return True, so the
unsaved changes will be lost. If they clickCancel, we return False, which means
that the unsaved changes are not saved, but the current image will remain
current, so it could be saved later.

All the examples in the book use yes/no or yes/no/cancel message boxes to give
the user the opportunity to save unsaved changes. An alternative favored by
some developers is to use Save and Discard buttons (using the QMessageBox.Save

and QMessageBox.Discard button specifiers), instead.

The recently used files list is part of the application’s state that must not only
be saved and restored when the application is terminated and executed, but
also kept current at runtime. Earlier we connected the fileMenu’s aboutToShow()
signal to a custom updateFileMenu() slot. So, when the user presses Alt+F or
clicks the Filemenu, this slot is called before the Filemenu is shown.

def updateFileMenu(self):

self.fileMenu.clear()

self.addActions(self.fileMenu, self.fileMenuActions[:-1])

current = QString(self.filename) \

if self.filename is not None else None

recentFiles = []

for fname in self.recentFiles:

if fname != current and QFile.exists(fname):

recentFiles.append(fname)

if recentFiles:

self.fileMenu.addSeparator()

for i, fname in enumerate(recentFiles):

action = QAction(QIcon(":/icon.png"), "&%d %s" % (

i + 1, QFileInfo(fname).fileName()), self)

action.setData(QVariant(fname))

self.connect(action, SIGNAL("triggered()"),

self.loadFile)

self.fileMenu.addAction(action)

188 Chapter 6. Main Windows

The Static QMessageBox Methods

The QMessageBox class offers several static convenience methods that pop
up a modal dialog with a suitable icon and buttons. They are useful for
offering users dialogs that have a single OK button, or Yes and No buttons,
and similar.
The most commonly used QMessageBox static methods are critical(), infor-
mation(), question(), and warning(). The methods take a parent widget (over
which they center themselves),window title text,message text (which can be
plain text or HTML), and zero or more button specifications. If no buttons
are specified, a single OK button is provided.

The buttons can be specified using constants, or we can provide our own text.
In Qt 4.0 and Qt 4.1, it was very common to bitwise OR QMessageBox.Default

with OK or Yes buttons—this means the button will be pressed if the user
presses Enter, and to bitwise OR QMessageBox.Escape with the Cancel or No
buttons, which will then be pressed if the user presses Esc. For example:

reply = QMessageBox.question(self,

"Image Changer - Unsaved Changes", "Save unsaved changes?",

QMessageBox.Yes|QMessageBox.Default,

QMessageBox.No|QMessageBox.Escape)

The methods return the constant of the button that was pressed.

From Qt 4.2, the QMessageBox API has been simplified so that instead Qt

4.2

of
specifying buttons and using bitwise ORs, we can just use buttons. For
example, for a yes/no/cancel dialog we could write:

reply = QMessageBox.question(self,

"Image Changer - Unsaved Changes", "Save unsaved changes?",

QMessageBox.Yes|QMessageBox.No|QMessageBox.Cancel)

In this case,PyQt will automatically make theYes (accept)button the default
button,activated by the user pressing Enter, and theCancel (reject)button the
escape button, activated by the user pressing Esc. The QMessageBox methods
also make sure that the buttons are shown in the correct order for the plat-
form. We use the Qt 4.2 syntax for the examples in this book.

The message box is closed by the user clicking the “accept” button (often
Yes or OK) or the “reject” button (often No or Cancel). The user can also, in
effect, press the “reject” button by clicking the window’s close button, X, or
by pressing Esc.

If we want to create a customized message box—for example, using cus-
tom button texts and a custom icon—we can create a QMessageBox instance.
We can then use methods such as QMessageBox.addButton() and QMessage-

Box.setIcon(), and pop up the message box by calling QMessageBox.exec_().

Creating a Main Window 189

self.fileMenu.addSeparator()

self.fileMenu.addAction(self.fileMenuActions[-1])

We begin by clearing all the Filemenu’s actions. Then we add back the original
list of file menu actions, such as “file new” and “file open”,but excluding the last
one, “file quit”. Then we iterate over the recently used files list, creating a local
list which only contains files that still exist in the filesystem, and excluding the
current file. Although it does not seem to make much sense, many applications
include the current file, often showing it first in the list.

Now, if there are any recently used files in our local list we add a separator to
the menu and then create an action for each one with text that just contains
the filename (without the path), preceded by a numbered accelerator:1, 2, …, 9.
PyQt’s QFileInfo class provides information on files similar to some of the
functions offered by Python’s os module. The QFileInfo.fileName() method is
equivalent to os.path.basename().For each action, we also store an item of “user
data”—in this case, the file’s full name, including its path. Finally, we connect
each recently used filename’s action’s triggered() signal to the loadFile() slot,
and add the action to the menu. (We cover loadFile() in the next section.) At
the end, we add another separator, and the Filemenu’s last action, “file quit”.

But how is the recently used files list created and maintained? We saw in the
form’s initializer that we initially populate the recentFiles string list from the
application’s settings. We have also seen that the list is correspondingly saved
in the closeEvent(). New files are added to the list using addRecentFile().

def addRecentFile(self, fname):

if fname is None:

return

if not self.recentFiles.contains(fname):

self.recentFiles.prepend(QString(fname))

while self.recentFiles.count() > 9:

self.recentFiles.takeLast()

This method prepends the given filename, and then pops off any excess files
from the end (the ones added longest ago) so that we never have more than nine
filenames in our list. We keep the recentFiles variable as a QStringList, which
is why we have used QStringList methods rather than Python list methods
on it.

The addRecentFile() method itself is called inside the fileNew(), fileSaveAs(),
and loadFile() methods; and indirectly from loadInitialFile(), fileOpen(), and
updateFileMenu(), all of which either call or connect to loadFile(). So, when we
save an image for the first time, or under a new name, or create a new image,
or open an existing image, the filename is added to the recently used files list.
However, the newly added filename will not appear in the Filemenu, unless we
subsequently create or open another image, since our updateFileMenu() method
does not display the current image’s filename in the recently used files list.

190 Chapter 6. Main Windows

Figure 6.8 The File menu with some recently used files

The approach to handling recently used files that we have taken here is just
one of many possibilities. An alternative is to create the File menu just once,
with a set of actions at the end for recently used files. When the menu is
updated, instead of being cleared and re-created, the actions set aside for
recently used files are simply hidden or shown, in the latter case having had
their filenames updated to reflect the current set of recently used files. From
the user’s point of view, there is no discernable difference whichever approach
we take under the hood, so in either case the Filemenu will look similar to the
one shown in Figure 6.8.

Both approaches can be used to implement recently used files in a File menu,
adding the list at the end as we have done in the Image Changer application,
just before the Quit option. They can also both be used to implement the Open
Recent File menu option that has all the recent files as a submenu, as used by
OpenOffice.org and some other applications. The benefits of using a separate
Open Recent File option is that the Filemenu is always the same, and full paths
can be shown in the submenu—something we avoid when putting recently
used files directly in the File menu so that it doesn’t become extremely wide
(and therefore, ugly).

Handling User Actions

In the preceding section, we created the appearance of our main-window-style
application and provided its behavioral infrastructure by creating a set of
actions. We also saw how to save and restore application settings, and how to
manage a recently used files list.

Some of an application’s behavior is automatically handled by PyQt—for
example, window minimizing, maximizing, and resizing—so we do not have to
do this ourselves. Some other behaviors can be implemented purely through
signals and slots connections. In this section we are concerned with the actions

Handling User Actions 191

that are directly under the control of the user and which can be used to view,
edit, and output, their data.

Handling File Actions

The Filemenu is probably the most widely implemented menu in main-window-
style applications, and in most cases it offers, at the least, “new”, “save”, and
“quit” (or “exit”) options.

def fileNew(self):

if not self.okToContinue():

return

dialog = newimagedlg.NewImageDlg(self)

if dialog.exec_():

self.addRecentFile(self.filename)

self.image = QImage()

for action, check in self.resetableActions:

action.setChecked(check)

self.image = dialog.image()

self.filename = None

self.dirty = True

self.showImage()

self.sizeLabel.setText("%d x %d" % (self.image.width(),

self.image.height()))

self.updateStatus("Created new image")

When the user asks to work on a new file we begin by seeing whether it isokToCon-

tinue()

186 ☞

“okay
to continue”. This gives the user the chance to save or discard any unsaved
changes, or to change their mind entirely and cancel the action.

Figure 6.9 The New Image dialog

If the user continues, we pop up a modal NewImageDlg in which they can specify
the size, color, and brush pattern of the image they want to create. This dialog,
shown in Figure 6.9, is created and used just like the dialogs we created in
the preceding chapter. However, the New Image dialog’s user interface was

192 Chapter 6. Main Windows

created using Qt Designer, and the user interface file must be converted
into a module file, using pyuic4, for the dialog to be usable. This can be done
directly by running pyuic4, or by running either mkpyqt.py or mk-

pyqt.py

and
Make
PyQt
sidebar

☞ 207

Make PyQt, both
of which are easier since they work out the correct command-line arguments
automatically. We will cover all of these matters in the next chapter.

If the user accepts the dialog, we add the current filename (if any) to the
recently used files list. Then we set the current image to be a null image, to
ensure that any changes to checkable actions have no effect on the image. Next
we go through the actions that we want to be reset when a new image is created
or loaded, setting each one to our preferred default value. Now we can safely
set the image to the one created by the dialog.

We set the filename to be None and the dirty flag to be True to ensure that
the user will be prompted to save the image and asked for a filename, if they
terminate the application or attempt to create or load another image.

We then call showImage() which displays the image in the imageLabel, scaled
according to the zoom factor. Finally, we update the size label in the status bar,
and call updateStatus().

def updateStatus(self, message):

self.statusBar().showMessage(message, 5000)

self.listWidget.addItem(message)

if self.filename is not None:

self.setWindowTitle("Image Changer - %s[*]" % \

os.path.basename(self.filename))

elif not self.image.isNull():

self.setWindowTitle("Image Changer - Unnamed[*]")

else:

self.setWindowTitle("Image Changer[*]")

self.setWindowModified(self.dirty)

We begin by showing the message that has been passed, with a timeout of five
seconds.We also add the message to the log widget to keep a log of every action
that has taken place.

If the user has opened an existing file, or has saved the current file, we will
have a filename. We put the filename in the window’s title using Python’s
os.path.basename() function to get the filename without the path. We could just
as easily have written QFileInfo(fname).fileName() instead, as we did earlier.
If there is no filename and the image variable is not a null image, it means
that the user has created a new image, but has not yet saved it; so we use a
fake filename of “Unnamed”. The last case is where no file has been opened
or created.

Regardless of what we set the window title to be, we include the string "[*]"

somewhere inside it. This string is never displayed as it is: Instead it is used
to indicate whether the file is dirty. On Linux and Windows this means that

Handling User Actions 193

the filename will be shown unadorned if it has no unsaved changes, and
with an asterisk (*) replacing the "[*]" string otherwise. On Mac OS X, the
close button will be shown with a dot in it if there are unsaved changes. The
mechanism depends on the window modified status, so we make sure we set
that to the state of the dirty flag.

def fileOpen(self):

if not self.okToContinue():

return

dir = os.path.dirname(self.filename) \

if self.filename is not None else "."

formats = ["*.%s" % unicode(format).lower() \

for format in QImageReader.supportedImageFormats()]

fname = unicode(QFileDialog.getOpenFileName(self,

"Image Changer - Choose Image", dir,

"Image files (%s)" % " ".join(formats)))

if fname:

self.loadFile(fname)

If the user asks to open an existing image, we first make sure that they
have had the chance to save or discard any unsaved changes, or to cancel the
action entirely.

If the user has decided to continue, as a courtesy, we want to pop up a file open
dialog set to a sensible directory. If we already have an image filename, we
use its path; otherwise, we use “.”, the current directory. We have also chosen
to pass in a file filter string that limits the image file types the file open dialog
can show. Such file types are defined by their extensions, and are passed as
a string. The string may specify multiple extensions for a single type, and
multiple types. For example, a text editor might pass a string of:

"Text files (*.txt)\nHTML files (*.htm *.html)"

If there is more than one type, we must separate them with newlines. If a type
can handle more than one extension, we must separate the extensions with
spaces. The string shown will produce a file type combobox with two items,
“Text files” and “HTML files”, and will ensure that the only file types shown in
the dialog are those that have an extension of .txt, .htm, or .html.

In the case of the Image Changer application, we use the list of image type
extensions for the image types that can be read by the version of PyQt that the
application is using. At the very least, this is likely to include .bmp, .jpg (and
.jpeg, the same as .jpg), and .png.List

compre-
hen-
sions

53 ☞

The list comprehension iterates over the
readable image extensions and creates a list of strings of the form “*.bmp”,
“*.jpg”, and so on; these are joined, space-separated, into a single string by the
string join() method.

194 Chapter 6. Main Windows

The QFileDialog.getOpenFileName() method returns a QString which either
holds a filename (with the full path), or is empty (if the user canceled). If the
user chose a filename, we call loadFile() to load it.

Here, and throughout the program, when we have needed the application’s
name we have simply written it. But since we set the name in the application
object in main() to simplify our QSettings usage, we could instead retrieve
the name whenever it was required. In this case, the relevant code would
then become:

fname = unicode(QFileDialog.getOpenFileName(self,

"%s - Choose Image" % QApplication.applicationName(),

dir, "Image files (%s)" % " ".join(formats)))

It is surprising how frequently the name of the application is used. The file
imagechanger.pyw is less than 500 lines, but it uses the application’s name
a dozen times. Some developers prefer to use the method call to guarantee
consistency. We will discuss string handling further in Chapter 17, when we
cover internationalization.

If the user opens a file, the loadFile() method is called to actually perform the
loading. We will look at this method in two parts.

def loadFile(self, fname=None):

if fname is None:

action = self.sender()

if isinstance(action, QAction):

fname = unicode(action.data().toString())

if not self.okToContinue():

return

else:

return

If the method is called from the fileOpen() method or from the loadInitial-

File() method, it is passed the filename to open. But if it is called from a
recently used file action, no filename is passed. We can use this difference to
distinguish the two cases. If a recently used file action was invoked,we retrieve
the sending object. This should be a QAction, but we check to be safe, and then
extract the action’s user data, in which we stored the recently used file’s full
name including its path. User data is held as a QVariant, so we must convert it
to a suitable type. At this point, we check to see whether it is okay to continue.
We do not have to make this test in the “file open” case, because there, the check
is made before the user is even asked for the name of a file to open. So now, if
the method has not returned, we know that we have a filename in fname that
we must try to load.

if fname:

self.filename = None

image = QImage(fname)

Handling User Actions 195

if image.isNull():

message = "Failed to read %s" % fname

else:

self.addRecentFile(fname)

self.image = QImage()

for action, check in self.resetableActions:

action.setChecked(check)

self.image = image

self.filename = fname

self.showImage()

self.dirty = False

self.sizeLabel.setText("%d x %d" % (

image.width(), image.height()))

message = "Loaded %s" % os.path.basename(fname)

self.updateStatus(message)

We begin by making the current filename None and then we attempt to read
the image into a local variable. PyQt does not use exception handling, so errors
must always be discovered indirectly. In this case, a null image means that for
some reason we failed to load the image. Ifadd-

Recent-

File()

189 ☞

the load was successful we add the
new filename to the recently used files list, where it will appear only if another
file is subsequently opened, or if this one is saved under another name. Next,
we set the instance image variable to be a null image: This means that we are
free to reset the checkable actions to our preferred defaults without any side
effects. This works because when the checkable actions are changed, although
the relevant methods will be called due to the signal–slot connections, the
methods do nothing if the image is null.

After the preliminaries, we assign the local image to the image instance
variable and the local filename to the filename instance variable. Next, we call
showImage() to show the image at the current zoom factor, clear the dirty flag,
and update the size label. Finally, we call updateStatus() to show the message
in the status bar, and to update the log widget.

def fileSave(self):

if self.image.isNull():

return

if self.filename is None:

self.fileSaveAs()

else:

if self.image.save(self.filename, None):

self.updateStatus("Saved as %s" % self.filename)

self.dirty = False

else:

self.updateStatus("Failed to save %s" % self.filename)

The fileSave() method,and many others,act on the application’s data (a QImage

instance), but make no sense if there is no image data. For this reason, many

196 Chapter 6. Main Windows

of the methods do nothing and return immediately if there is no image data
for them to work on.

If there is image data, and the filename is None, the user must have invoked the
“file new” action, and is now saving their image for the first time. For this case,
we pass on the work to the fileSaveAs() method.

If we have a filename, we attempt to save the image using QImage.save(). This
method returns a Boolean success/failure flag, in response to which we update
the status accordingly. (We have deferred coverage of loading and saving
custom file formats to Chapter 8, since we are concentrating purely on main
window functionality in this chapter.)

def fileSaveAs(self):

if self.image.isNull():

return

fname = self.filename if self.filename is not None else "."

formats = ["*.%s" % unicode(format).lower() \

for format in QImageWriter.supportedImageFormats()]

fname = unicode(QFileDialog.getSaveFileName(self,

"Image Changer - Save Image", fname,

"Image files (%s)" % " ".join(formats)))

if fname:

if "." not in fname:

fname += ".png"

self.addRecentFile(fname)

self.filename = fname

self.fileSave()

When the “file save as” action is triggered we begin by retrieving the current
filename. If the filename is None, we set it to be “.”, the current directory. We
then use the QFileDialog.getSaveFileName() dialog to prompt the user to give
us a filename to save under. If the current filename is not None, we use that as
the default name—the file save dialog takes care of giving a warning yes/no
dialog if the user chooses the name of a file that already exists. We use the
same technique for setting the file filters string as we used for the “file open”
action, but this time using the list of image formats that this version of PyQt
can write (which may be different from the list of formats it can read).

If the user entered a filename that does not include a dot, that is, it has no
extension, we set the extension to be .png. Next, we add the filename to the
recently used files list (so that it will appear if a different file is subsequently
opened, or if this one is saved under a new name), set the filename instance
variable to the name, and pass the work of saving to the fileSave() method
that we have just reviewed.

The last file action we must consider is “file print”. When this action is invoked
the filePrint() method is called. This method paints the image on a printer.
Since the method uses techniques that we have not covered yet, we will defer

Handling User Actions 197

discussion of it until later. The technique it Print-
ing
Images
sidebar

☞ 363

uses is shown in the Printing
Images sidebar, and coverage of the filePrint() method itself is in Chapter 13
(from page 400), where we also discuss approaches to printing documents
in general.

The only file action we have not reviewed is the “file quit” action. This action
is connected to the main window’s close() method, which in turn causes a
close event to be put on the event queue. Weclose-

Event()

185 ☞

provided a reimplementation of
the closeEvent() handler in which we made sure the user had the chance to
save unsaved changes, using a call to okToContinue(), and where we saved the
application’s settings.

Handling Edit Actions

Most of the functionality of the file actions was provided by the MainWindow

subclass itself. The only work passed on was the image loading and saving,
which the QImage instance variable was required to do. This particular division
of responsibilities between a main window and the data structure that holds
the data is very common. The main window handles the high-level file new,
open, save, and recently used files functionality,and the data structure handles
loading and saving.

It is also common for most, or even all, of the editing functionality to be provid-
ed either by the view widget or by the data structure. In the Image Changer
application, all the data manipulation is handled by the data structure (the im-

age QImage), and the presentation of the data is handled by the data viewer (the
imageLabel QLabel). Again, this is a very common separation of responsibilities.

In this section, we will review most of the edit actions, omitting a couple that
are almost identical to ones that are shown. We will be quite brief here, since
the functionality is specific to the Image Changer application.

def editInvert(self, on):

if self.image.isNull():

return

self.image.invertPixels()

self.showImage()

self.dirty = True

self.updateStatus("Inverted" if on else "Uninverted")

If the user invokes the “edit invert” action, it will be checked (or unchecked). In
either case,we simply invert the image’spixelsusing the functionality provided
by QImage, show the changed image, set the dirty flag, and call updateStatus()
so that the status bar briefly shows the action that was performed, and an ad-
ditional item is added to the log.

The editSwapRedAndBlue() method (not shown) is the same except that it uses
the QImage.rgbSwapped() method, and it has different status text.

198 Chapter 6. Main Windows

def editMirrorHorizontal(self, on):

if self.image.isNull():

return

self.image = self.image.mirrored(True, False)

self.showImage()

self.mirroredhorizontally = not self.mirroredhorizontally

self.dirty = True

self.updateStatus("Mirrored Horizontally" \

if on else "Unmirrored Horizontally")

This method is structurally the same as editInvert() and editSwapRedAndBlue().
The QImage.mirrored() method takes two Boolean flags, the first for horizontal
mirroring and the second for vertical mirroring. In the Image Changer
application,we have deliberately restricted what mirroring is allowed, so users
can only have no mirroring, vertical mirroring, or horizontal mirroring, but not
a combination of vertical and horizontal. We also keep an instance variable
that keeps track of whether the image is horizontally mirrored.

The editMirrorVertical() method, not shown, is virtually identical.

def editUnMirror(self, on):

if self.image.isNull():

return

if self.mirroredhorizontally:

self.editMirrorHorizontal(False)

if self.mirroredvertically:

self.editMirrorVertical(False)

This method switches off whichever mirroring is in force, or does nothing if
the image is not mirrored. It does not set the dirty flag or update the status: It
leaves that for editMirrorHorizontal() or editMirrorVertical(), if it calls either
of them.

The application provides two means by which the user can change the zoom fac-
tor. They can interact with the zoom spinbox in the toolbar—its valueChanged()
signal is connected to the showImage() slot that we will review shortly—or they
can invoke the “edit zoom” action in the Editmenu. If they use the “edit zoom”
action, the editZoom() method is called.

def editZoom(self):

if self.image.isNull():

return

percent, ok = QInputDialog.getInteger(self,

"Image Changer - Zoom", "Percent:",

self.zoomSpinBox.value(), 1, 400)

if ok:

self.zoomSpinBox.setValue(percent)

Handling User Actions 199

We begin by using one of the QInputDialog class’s static methods to obtain a
zoom factor.The getInteger() method takes a parent (over which the dialog will
center itself), a caption, text describing what data is wanted, an initial value,
and, optionally, minimum and maximum values.

The QInputDialog provides some other static convenience methods, including
getDouble() to get a floating-point value, getItem() to choose a string from a list,
and getText() to get a string. For all of them, the return value is a two-tuple,
containing the value and a Boolean flag indicating whether the user entered
and accepted a valid value.

If the user clicked OK, we set the zoom spinbox’s value to the given integer.
If this value is different from the current value, the spinbox will emit a val-

ueChanged() signal. This signal is connected to the showImage() slot, so the slot
will be called if the user chose a new zoom percentage value.

def showImage(self, percent=None):

if self.image.isNull():

return

if percent is None:

percent = self.zoomSpinBox.value()

factor = percent / 100.0

width = self.image.width() * factor

height = self.image.height() * factor

image = self.image.scaled(width, height, Qt.KeepAspectRatio)

self.imageLabel.setPixmap(QPixmap.fromImage(image))

This slot is called when a new image is created or loaded, whenever a transfor-
mation is applied, and in response to the zoom spinbox’s valueChanged() signal.
This signal is emitted whenever the user changes the toolbar zoom spinbox’s
value, either directly using the mouse, or indirectly through the “edit zoom”
action described earlier.

We retrieve the percentage and turn it into a zoom factor that we can use to
produce the image’s new width and height. We then create a copy of the image
scaled to the new size and preserving the aspect ratio, and set the imageLabel

to display this image. The label requires an image as a QPixmap, so we use the
static QPixmap.fromImage() method to convert the QImage to a QPixmap.

Notice that zooming the image in this way has no effect on the original image;
it is purely a change in view, not an edit. This is why the dirty flag does not
need to be set.

According to PyQt’s documentation, QPixmaps are optimized for on-screen
display (so they are fast to draw), and QImages are optimized for editing (which
is why we have used them to hold the image data).

200 Chapter 6. Main Windows

Handling Help Actions

When we created the main window’s actions, we provided each with help text,
and set it as their status text and as their tooltip text. This means that when
the user navigates the application’s menu system, the status text of the cur-
rently highlighted menu option will automatically appear in the status bar.
Similarly, if the user hovers the mouse over a toolbar button, the corresponding
tooltip text will be displayed in a tooltip.

For an application as small and simple as the Image Changer, status tips and
tooltips might be entirely adequate. Nonetheless, we have provided an online
help system to show how it can be done, although we defer coverage until
Chapter 17 (from page 510).

Figure 6.10 The about Image Changer box

Whether or not we provide online help, it is always a good idea to provide an
“about” box. This should at least show the application’s version and copyright
notice, as Figure 6.10 illustrates.

def helpAbout(self):

QMessageBox.about(self, "About Image Changer",

"""Image Changer v %s

<p>Copyright © 2007 Qtrac Ltd.

All rights reserved.

<p>This application can be used to perform

simple image manipulations.

<p>Python %s - Qt %s - PyQt %s on %s""" % (

__version__, platform.python_version(),

QT_VERSION_STR, PYQT_VERSION_STR, platform.system()))

The QMessageBox.about() static convenience method pops up a modal OK-style
message box with the given caption and text. The text can be HTML, as it is
here. The message box will use the application’s window icon if there is one.

We display the application’sversion,and version information about the Python,
Qt, and PyQt libraries, as well as the platform the application is running on.
The library version information is probably of no direct use to the user, but it
may be very helpful to support staff who are being asked for help by the user.

Summary 201

Summary

Main-window-style applications are created by subclassing QMainWindow. The
window has a single widget (which may be composite and so contain other
widgets) as its central widget.

Actions are used to represent the functionality the application provides to
its users. These actions are held as QAction objects which have text (used in
menus), icons (used in both menus and toolbars), tooltips and status tips, and
that are connected to slots, which, when invoked, will perform the appropriate
action. Usually, all the actions are added to the main window’s menus, and the
most commonly used ones are added to toolbars. To support keyboard users,we
provide keyboard shortcuts for frequently used actions, and menu accelerators
to make menu navigation as quick and convenient as possible.

Some actions are checkable, and some groups of checkable actions may be
mutually exclusive, that is, one and only one may be checked at any one
time. PyQt supports checkable actions by the setting of a single property, and
supports mutually exclusive groups of actions through QActionGroup objects.

Dock windows are represented by dock widgets and are easy to create and set
up. Arbitrary widgets can be added to dock widgets and to toolbars, although
in practice we only usually add small or letterbox-shaped widgets to toolbars.

Actions, action groups, and dock windows must all be given a parent
explicitly—the main window, for example—to ensure that they are deleted at
the right time. This is not necessary for the application’s other widgets and
QObjects because they are all owned either by the main window or by one of the
main window’s children. The application’s non-QObject objects can be left to be
deleted by Python’s garbage collector.

Applications often use resources (small files, such as icons, and data files), and
PyQt’s resource mechanism makes accessing and using them quite easy. They
do require an extra build step, though, either using PyQt’s pyrcc4 console ap-
plication, or the mkpyqt.py or Make PyQt programs supplied with the book’s
examples.

Dialogs can be created entirely in code as we did in the preceding chapter, or
using Qt Designer, as we will see in the next chapter. If we need to incorporate
Qt Designer user interface files in our application, like resources they require
an extra build step, either using PyQt’s pyuic4 console application, or again,
using mkpyqt.py or Make PyQt.

Once the main window’s visual appearance has been created by setting its
central widget and by creating menus, toolbars, and perhaps dock windows,
we can concern ourselves with loading and saving application settings. Many
settings are commonly loaded in the main window’s initializer, and settings are
normally saved (and the user given the chance to save unsaved changes) in a
reimplementation of the closeEvent() method.

202 Chapter 6. Main Windows

If we want to restore the user’s workspace, loading in the files they had open
the last time they ran the application, it is best to use a single-shot timer at the
end of the main window’s initializer to load the files.

Most applications usually have a dataset and one or more widgets that are
used to present and edit the data. Since the focus of the chapter has been on
the main window’s user interface infrastructure, we opted for the simplest
possible data and visualization widget, but in later chapters the emphasis will
be the other way around.

It is very common to have the main window take care of high-level file handling
and the list of recently used files, and for the object holding the data to be re-
sponsible for loading, saving, and editing the data.

At this point in the book, you now know enough Python and PyQt to create both
dialog-style and main-window-style GUI applications. In the next chapter, we
will show Qt Designer in action, an application that can considerably speed
up the development and maintenance of dialogs. And in the last chapter of
Part II, we will explore some of the key approaches to saving and loading
custom file formats, using both the PyQt and the Python libraries. In Parts III
and IV, we will explore PyQt both more deeply, looking at event handling and
creating custom widgets, for example, and more broadly, learning about PyQt’s
model/view architecture and other advanced features, including threading.

Exercise
Create the dialog shown in Figure 6.11. It should have the class name Re-

sizeDlg, and its initializer should accept an initial width and height. The dialog
should provide a method called result(), which must return a two-tuple of the
width and height the user has chosen. The spinboxes should have a minimum
of 4 and a maximum of four times the width (or height) passed in. Both should
show their contents right-aligned.

Figure 6.11 The Image Changer resize dialog

Modify the Image Changer application so that it has a new “edit resize” action.
The action should appear on the Edit menu (after the “edit zoom” action). An
icon called editresize.png is in the images subdirectory, but will need to be
added to the resources.qrc file. You will also need to import the resize dialog
you have just created.

Exercise 203

The resize dialog should be used in an editResize() slot that the “edit resize”
action should be connected to. The dialog is used like this:

form = resizedlg.ResizeDlg(self.image.width(),

self.image.height(), self)

if form.exec_():

width, height = form.result()

Unlike the editZoom() slot, the image itself should be changed, so the size label,
status bar, and dirty status must all be changed if the size is changed. On the
other hand, if the “new” size is the same as the original size, no resizing should
take place.

The resize dialog can be written in less than 50 lines, and the resize slot in less
than 20 lines, with the new action just requiring an extra one or two lines in a
couple of places in the main window’s initializer.

A model solution is in the files chap06/imagechanger_ans.pyw and chap06/resize-

dlg.py.

This page intentionally left blank

Using Qt Designer

77 ● Designing User Interfaces

● Implementing Dialogs

● Testing Dialogs

In Chapter 5 we created dialogs purely by writing code. In our initializers we
created the widgets we needed and set their initial properties. Then we cre-
ated one or more layout managers to which we added the widgets to get the
appearance we wanted. In some cases, when working with vertical or horizon-
tal layouts we added a “stretch” which would expand to fill unwanted space.
And after laying out the widgets we connected the signals we were interested
in to the methods we wanted to handle them.

Figure 7.1 Qt Designer

Some programmers prefer to do everything in code, whereas others prefer to
use a visual design tool to create their dialogs. With PyQt, we can do either,

205

206 Introduction

or even both. The Image Changer application from the preceding chapter
had two custom dialogs: the ResizeDlg, which was created purely in code (in
the exercise), and the NewImageDlg, which was created using Qt Designer. We
showed how to do things in code first so that you would get a strong sense
of how the layout managers work. But in this chapter we are going to create
dialogs using Qt Designer, which is shown in Figure 7.1.

Qt Designer can be used to create user interfaces for dialogs, custom widgets,
and main windows. We will only cover dialogs; custom widgets are almost
the same, only they are based on the “Widget” template rather than one of
the “Dialog” templates. Using Qt Designer for main windows offers fewer
advantages, apart from the convenience of a visual QAction editor. Qt Designer
can also be used to create and edit resource files.

The user interfaces are stored in .ui files, and include details of a form’s wid-
gets and layouts. In addition, Qt Designer can be used to associate labels with
their “buddies”, and to set theBuddies

143 ☞

tab-order, that is, the order in which widgets get
the keyboard focus when the user presses the Tab key. This can also be done
in code with QWidget.setTabOrder(), but it is rarely necessary for hand-coded
forms, since the default is the order of widget creation, which is usually what
we want. Qt Designer can also be used to make signal–slot connections, but
only between built-in signals and slots.

Chapter 7. Using Qt Designer

Once a user interface has been designed and saved in a .ui file, it must be con-
verted into code before it can be used. This is done using the pyuic4 command-
line program. For example:

C:\pyqt\chap07>pyuic4 -o ui_findandreplacedlg.py findandreplacedlg.ui

As mentioned in the previous chapter, we can use either mkpyqt.py or mk-

pyqt.py

and
Make
PyQt
sidebar

☞ 207

Make
PyQt to run pyuic4 for us. However, generating a Python module (a .py file)
from a .ui file is not enough to make the user interface usable.★ Note that the
generated code (in the ui_*.py files) should never be hand-edited because any
changes will be overwritten the next time pyuic4 is run.

From the end-user’s perspective, it makes no difference whether a dialog’s
user interface is hand-coded or created with Qt Designer. However, there is a
significant difference in the implementation of a dialog’s initializer, since we
must create, lay out, and connect the dialog’s widgets if hand coding, but only
need to call a particular method to achieve the same thing with a dialog that
uses a Qt Designer user interface.

One great benefit of using Qt Designer, in addition to the convenience of design-
ing dialogs visually, is that if we change the design, we only have to regenerate
the user interface module (using pyuic4 directly,or via mkpyqt.py or Make PyQt),
and we do not need to change our code. The only time that we must change our
code is if we add, delete, or rename widgets that we refer to in our code. This

★It is possible, though uncommon, to load and use the .ui file directly using PyQt4.uic.loadUi().

Introduction 207

mkpyqt.py and Make PyQt

The mkpyqt.py console application and the Make PyQt (makepyqt.pyw) GUI ap-
plication, are build programs that run PyQt’s pyuic4, pyrcc4, pylupdate4, and
lrelease programs for us. They both do exactly the same job, automatically
using the correct command-line arguments to run PyQt’s helper programs,
and they both check timestamps to avoid doing unnecessary work.

The build programs look for .ui files and run pyuic4 on them to produce
files with the same name but prefixed with ui_ and with their extension
changed to .py. Similarly, they look for .qrc files and run pyrcc4 on them to
produce files with the same name but prefixed with qrc_, and again with
their extension changed to .py.

For example, if we run mkpyqt.py in the chap06 directory, we get:

C:\pyqt\chap06>..\mkpyqt.py

./newimagedlg.ui -> ./ui_newimagedlg.py

./resources.qrc -> ./qrc_resources.py

The same thing can be achieved by running Make PyQt:click thePathbutton
to set the path to C:\pyqt\chap06, and then click the Build button. If we make
any changes we can simply run mkpyqt.py again, or click Build if using Make
PyQt, and any necessary updates will be made.

Both build programs can delete the generated files ready for a fresh build,
and both can work recursively on entire directory trees using the -r option
for mkpyqt.py or by checking the Recurse checkbox for Make PyQt. Run
mkpyqt.py -h in a console for a summary of its options. The Make PyQt
program has tooltips for its checkboxes and buttons. In some cases, it may
be necessary to set the tool paths; click More→Tool paths, on the first use.

208 Chapter 7. Using Qt Designer

means that using Qt Designer is much quicker and easier for experimenting
with designs than editing hand-coded layouts,and helps maintain a separation
between the visual design created using Qt Designer, and the behavior imple-
mented in code.

In this chapter we will create an example dialog, using it to learn how to use
Qt Designer to create and lay out widgets, to set buddies and tab order, and to
make signal–slot connections. We will also see how to use the user interface
modules generated by pyuic4, and how to create connections to our custom slots
automatically without having to use connect() calls in the initializer.

For the examples, we have used the Qt Designer that comes with Qt 4.2.Earlier
versions of Qt Designer do not have the QFontComboBox or QCalendarWidget wid-
gets, and their “Dialog” templates use QPushButtons rather than a QDialogBut-

tonBox.

Designing User Interfaces

Before we can begin we must start Qt Designer. On Linux, run designer & in a
console (assuming it is in your path), or invoke it from your menu system. On
Windows XP, click Start→Qt by Trolltech→Designer, and on Mac OS X launch it
using Finder. Qt Designer starts with a New Form dialog; click Dialog with Buttons
Bottom and then click Create. This will create a new form with a caption of
“untitled”, and with the QDialogButtonBox as shown in Figure 7.2.

Figure 7.2 A dialog with buttons bottom dialog

When Qt Designer is run for the first time it defaults to “Multiple Top-Level
Windows” mode—this can be confusing, except for Mac OS X users for whom
this approach is the norm. To get everything in one window as shown in Fig-

Designing User Interfaces 209

ure 7.1, click Edit→User InterfaceMode→DockedWindow.★ Qt Designer will remem-
ber this setting, so it needs to be done only once.

Qt Designer is not difficult to use, but it does take some initial practice. One
thing that helps is to do things in a particular order, as shown in the following
list of steps. For steps 1 and 2, always work from “back” to “front”, that is,
always start with containers (group boxes, tab widgets, frames), and then go
on to the normal widgets that belong inside, that is, on top of them. We will
go through an example step-by-step in a moment, but first here is a general
description of how to create a dialog using Qt Designer.

1. Drag a widget onto the form and place it in approximately the right
position; there is no need to place it exactly, and normally only container
widgets need to be resized.

2. Set the widget’s properties if necessary; if the widget will be referred to
in code, at least give it a sensible name.

3. Repeat steps 1 and 2 until all the required widgets are on the form.

4. If there are large gaps, drag in horizontal or vertical spacers (these
appear as blue springs) to fill them; sometimes, when gaps are obvious,
spacers are added during steps 1 and 2.

5. Select two or more widgets (or spacers or layouts) to be laid out (Shift+Click
each one), and then lay them out using a layout manager or a splitter.

6. Repeat step 5 until all the widgets and spacers are in layouts.

7. Click the form (to deselect everything) and lay out the form by using one
of the layout managers.

8. Create buddies for the form’s labels.

9. Set the form’s tab order if the order is wrong.

10. Create signal–slot connections between built-in signals and slots where
appropriate.

11. Preview the form and check that everything works as intended.

12. Set the form’s object name (this is used in its class name), and the form’s
title, and save it so that it has a filename. For example, if the object name
is “PaymentDlg”, we would probably give it a title of “Payment” and a
filename of paymentdlg.ui.

If the layout is wrong, use undo to go back to where you think you could start
laying things out again, and have another go. If that is not possible or does
not work, or if the layout is being changed some time after it was originally
created, simply break the layouts that need changing and then redo them.
Usually, it is necessary to break the form’s layout (click the form, then the Break

★From Qt 4.3 this option is available by clicking Edit→Preferences.

210 Chapter 7. Using Qt Designer

Layout toolbar button) before changing the layouts within the form; so at the
end the form itself must be laid out again.

Although it is possible to drag layouts onto the form and then drag widgets
into the layouts, the best practice is to drag all the widgets and spacers onto the
form, and then repeatedly select some widgets and spacers and apply layouts
to them. The one situation where it makes sense to add widgets to an existing
layout is if we want to drag widgets into gaps—for example, into empty cells in
a grid layout.

Now that we have the overall principles in mind, we will go step by step
through the design of the Find and Replace dialog shown in Figure 7.3.

Figure 7.3 A Find and Replace dialog

Create a new form based on one of the “Dialog” templates. This will give us a
form with a button box. The button box has two buttons, OK and Cancel, with
signal–slot connections already set up.

Click the button box and then click Edit→Delete. This will leave us with a
completely blank form. For this example we will use QPushButtons instead
of a QDialogButtonBox. This will allow us to exercise finer control than can be
achieved using a QDialogButtonBox inside Qt Designer, and gives us the chance
to do signal–slot button connections in Qt Designer. In most of the other exam-
ples, and in the exercise, we use a QDialogButtonBox.

By default, Qt Designer has a dock window on the left called Widget Box.
This contains all the widgets that Qt Designer can handle. The widgets are
grouped into sections, and toward the end is a group called Display Widgets;
this contains the Label widget. (Qt Designer does not use class names for its
widgets, at least not in the user interface it presents to us, but in almost every
case it is obvious which class a particular name refers to.)

Click and drag a Label onto the form, toward the top left. We don’t care what
this label is called because we will not refer to it in code, but the default text of
“TextLabel” is not what we want. When a widget is first dragged and dropped
it is automatically selected, and the selected widget is always the one whose
properties are shown in the property editor. Go to the Property Editor dock
window (normally on the right), and scroll down to the “text” property. Change
this to “Find &what:”. It does not matter that the text now appears to be

Designing User Interfaces 211

truncated on the form; once the label is laid out the layout manager will make
sure that the text is displayed in full.

Now drag a Line Edit (from the Input Widgets group), and put this to the right
of the Label. Go to the property editor and change the Line Edit’s “objectName”
(the very first property of all widgets) to “findLineEdit”. We are giving it a sen-
sible name because we want to refer to this line edit in our code.

Now drag another Label and another Line Edit below the first two. The
second Label should have the text “Replace w&ith” and the second Line Edit
should be called “replaceLineEdit”. The form should now look very similar to
Figure 7.4.

Figure 7.4 Two Labels and two Line Edits

At any time we can save the form by pressing Ctrl+S or File→Save. When we save
we will use the filename, findandreplacedlg.ui.

Every editable property (and some read-only properties) are shown in the prop-
erty editor. But in addition, Qt Designer provides a context menu. The first
option in the context menu is normally one that allows us to change the wid-
get’s most “important” property (e.g., a Label’s or a Line Edit’s “text” property),
and a second option that allows us to change the widget’s object name. If we
change a checkbox, radio button, or push button’s text using the context menu,
the editing is done in-place, in which case we must press Enter to finish. We
will always talk of changing properties in the property editor, but you can, of
course, use the context menu if you prefer.

We will now add the two checkboxes. Drag a Check Box from the Buttons
group (near the top of the Widget Box) and put it underneath the second Label.
Change its object name to “caseCheckBox” and its text to “&Case sensitive”,
by using the property editor or the context menu. Drag a second Check Box to
the right of the first: Change its object name to “wholeCheckBox” and its text
to “Wh&ole words”, and set its “checked” state to “true”. The form should now
be similar to the one shown in Figure 7.5.

212 Chapter 7. Using Qt Designer

Figure 7.5 Two Labels, two Line Edits,and two Checkboxes

Now we will add the Syntax label and combobox. Drag a Label below the case-
sensitive checkbox and set its text to “&Syntax:”.Now drag a Combo Box (from
the Input Widgets group) to the right of the Syntax Label. Change the Combo
Box’s object name to “syntaxComboBox”.Right-click the Combo Box and choose
the first menu option, Edit Items. Click the “+” icon, and type in “Literal text”.
Repeat this to add “Regular expression”. Click the OK button to finish.

If the user resizes the form we want the widgets to stay neatly together rather
than spreading out, so drag a Vertical Spacer (from the Spacers group near
the top of the Widget Box) and put it below the Combo Box. When we design
forms using code we use stretches, but when we design them visually we use
spacers: They both expand to fill empty space. Adding a stretch to a layout
is essentially the same as inserting a QSpacerItem into a layout, but is less
to type.

To make the buttons visually separate from the widgets we have just created,
we will put a vertical line between them and the other widgets. Drag a Vertical
Line (actually a QFrame with shape QFrame.VLine) from the Display Widgets
group (near the bottom of the Widget Box) and put it to the right of all the
widgets in the form, but leaving space to the right of it for the buttons. Now
the form should look like Figure 7.6.

We are now ready to create the buttons. Drag a Push Button (from the Buttons
group near the top of the Widget Box) to the top right of the form. Change
its object name to “findButton” and its text to “&Find”. Drag another button
beneath the Find button, and give it the object name “replaceButton” and set
its text to be “&Replace”. Create a third button, below the Replace button. Give
it an object name of “replaceAllButton” and change its text to “Replace &All”.
Now drag a Vertical Spacer under the Replace All button. Finally, drag a fourth
button below the spacer. Give this button the object name “closeButton” and
change its text to “Close”.

Now we have all the widgets and spacers we need and we have set all their
properties appropriately. The form should look like that shown in Figure 7.7.

Designing User Interfaces 213

Figure 7.6 A Find and Replace dialog without buttons

Figure 7.7 A Find and Replace dialog that is not laid out

What is the best way to lay out this form? What is the best design for this form?
The answers to these questions are matters of taste and practice. Here, we
simply show the mechanics, and leave the aesthetics to you.

We will begin by laying out the first two Labels and their Line Edits. Click
the form to deselect everything, then Shift+Click the Find what Label and its Line
Edit, and the Replace with Label and its Line Edit. Once these four widgets are
selected, click Form→Lay Out in a Grid (or click the corresponding toolbar button).
The layout is indicated by a red line—layout lines are not visible at runtime.

Now deselect everything (by clicking the form), and select the two Check
Boxes. Click Form→Lay Out Horizontally. Again, deselect everything, and this
time lay out the Syntax Label and Combo Box using a horizontal layout. There
should now be three layouts—a grid and two horizontal layouts, like those
shown in Figure 7.8.

We can now lay out the layouts on the left-hand side of the form. Click the form
to deselect everything. It can be tricky to select layouts (rather than widgets),
so instead of selecting by using Shift+Click, we will use a selection rectangle.
Click near the bottom left of the form, and drag the selection rectangle: This

214 Chapter 7. Using Qt Designer

Figure 7.8 A Find and Replace dialog with some layouts

rectangle only needs to touch an object to select it, so drag up and right so that
it touches the left-hand Vertical Spacer and the three layouts—and nothing
else (not the Vertical Line, for example). Now, release and click Form→Lay Out
Vertically.

We can use the same selection technique to lay out the buttons. Click the
form to deselect everything. Now click near the bottom right of the form and
drag so that the selection rectangle touches the Close button, the right-hand
Vertical Spacer, and the other three buttons—and nothing else. Now, release
and click Form→Lay Out Vertically. We should now have a form with every widget
in the left- or right-hand layout and a Vertical Line in the middle, as shown in
Figure 7.9.

Figure 7.9 A Find and Replace dialog almost laid out

We are now ready to lay out the form itself. Deselect everything by clicking
the form. Now click Form→Lay Out Horizontally. The form will now look a bit too
tall, so just drag the bottom of the form up until the form looks better. If you
drag a lot, the spacers may “disappear”; they are still there, but just too small
to be seen.

Designing User Interfaces 215

We can now preview the form to see what the layout really looks like, and dur-
ing the preview we can drag the form’s corner to make it smaller and larger
to check that its resizing behavior is sensible. To preview, click Form→Preview
(or press Ctrl+R). It is also possible to preview in different styles using the
Form→Preview in menu option. The form should now look like the one in Fig-
ure 7.10. If this is not the case,useEdit→Undo to unwind your changes,and then
lay things out again. If you have to redo a layout, it sometimes helps to resize
and reposition some of the widgets to give Qt Designer more of a clue about how
you want the layout to go, especially when using grid layouts.

Figure 7.10 A laid out Find and Replace dialog

We are now ready to set the labels’ buddies, set the form’s tab order, do any
connections we need, and name and save the form.

We will start with buddies.Click Edit→Edit Buddies to switch on buddy mode. To
set up buddy relationships we click a Label and drag to the widget we want to
be its buddy. So in this example, we must click the Find what Label and drag to
its Line Edit, and then do the same for the Replace withLabel and its Line Edit,
and then for the Syntax Label and the Combo Box. To leave buddy mode, press
F3. Now, no ampersands (&) should be visible in the Labels.

Next we will set the form’s tab order. Click Edit→Edit Tab Order, and then click
each numbered box in turn, in the tab order that you want. To leave tab order
mode, press F3.

The Find, Replace, and Replace All buttons will need to be connected to our own
custom methods;we will do this outside of Qt Designer.But theClosebutton can
be connected to the dialog’s reject() slot. To do this, click Edit→Edit Signals/Slots,
and then drag from the Close button to the form. When you release, the Config-
ureConnectiondialog will pop up. Click the (no-argument) clicked() signal from
the list of signals on the left, and the reject() slot from the list of slots on the
right, and then click OK. To leave signal–slot mode, press F3.

Click the form to deselect everything. This also has the effect of making
the property editor show the form’s properties. Set the dialog’s object name
(which will be used in its class name) to “FindAndReplaceDlg”, and set the
“windowTitle” property to “Find and Replace”. Now click File→Save to save the
user interface, giving it a filename of findandreplacedlg.ui.

216 Chapter 7. Using Qt Designer

In this section, we have confined ourselves to using Qt Designer to create a cus-
tom dialog using one of the “Dialog” templates, since this is sufficient to learn
the basics of how to use Qt Designer. However, Qt Designer can be used to cre-
ate much more complex dialogs than the one we have created here, including
dialogs with tab widgets and widget stacks that are often used for configura-
tion dialogs that have dozens or even scores of options. It is also possible to
extend Qt Designer with plug-ins that contain custom widgets. These widgets
are normally written in C++, but from PyQt 4.2, it is also possible to incorporate
custom widgets written in Python.

The Qt documentation includes a comprehensive Qt Designer manual that
goes into more depth and covers more of the facilities available. The material
covered in this section is sufficient to get started, but the only way to learn Qt
Designer properly is to use it.

Having designed a user interface, the next step is to make it usable in our
code.

Implementing Dialogs

When we create a user interface with Qt Designer, we create a subclass using
multiple inheritance in which we put the code we need to give the user interface
the behavior we need.★ The first class we inherit is QDialog. If we were using
the “Widget” template our first inherited class would be QWidget, and if we were
using the “Main Window” template our first inherited class would be QMainWin-

dow. The second class we inherit is the class that represents the user interface
we designed using Qt Designer.

In the preceding section, we created a user interface with a form object
name of “FindAndReplaceDlg”, stored in the file findandreplacedlg.ui. We
must run pyuic4 (directly, or via mkpyqt.py or Make PyQt) to generate the
ui_findandreplacedlg.py module file. The module has a class in it whose name
is the form’s object name with a Ui_ prefix, so in this case the class name is
Ui_FindAndReplaceDlg.

We will call our subclass FindAndReplaceDlg, and put it in the file findand-

replacedlg.py.

Before we look at the class declaration and initializer, we will look at the
imports.

import re

from PyQt4.QtCore import *
from PyQt4.QtGui import *
import ui_findandreplacedlg

★Other approaches are possible, and they are covered in the online documentation. None of them
is quite as convenient as the approach we use here, though.

Implementing Dialogs 217

The first import is the regular expression module that we will use in the code.
The second and third imports are the usual ones for PyQt programming. The
last import is of the generated user interface module. Now we can look at
our subclass.

class FindAndReplaceDlg(QDialog,

ui_findandreplacedlg.Ui_FindAndReplaceDlg):

def __init__(self, text, parent=None):

super(FindAndReplaceDlg, self).__init__(parent)

self.__text = unicode(text)

self.__index = 0

self.setupUi(self)

if not MAC:

self.findButton.setFocusPolicy(Qt.NoFocus)

self.replaceButton.setFocusPolicy(Qt.NoFocus)

self.replaceAllButton.setFocusPolicy(Qt.NoFocus)

self.closeButton.setFocusPolicy(Qt.NoFocus)

self.updateUi()

We inherit from both QDialog and from Ui_FindAndReplaceDlg. We rarely need
to use multiple inheritance in Python programming, but for this situation it
makes things much easier than would otherwise be the case. Our FindAnd-

ReplaceDlg subclass is, in effect, the union of the two classes it inherits from,
and can access their attributes directly, prefixed with self, of course.

We have set our initializer to accept text that is the data the dialog will work
on, and a parent widget. The super() call is made on the first inherited class,
QDialog. We keep a copy of the text, and also an index position, in case the user
clicks Findmore than once to find subsequent occurrences of the same text.

The call to the setupUi() method is something we have not seen before. This
method is provided by the generated module. When called it creates all the
widgets specified in the user interface file, lays them out according to our
design, sets their buddies and tab order, and makes the connections we set. In
other words, it re-creates the form we designed in Qt Designer.

In addition, the setupUi() method calls QtCore.QMetaObject.connectSlotsBy-

Name(), a static method that creates signal–slot connections between form
widget signals and methods in our subclass that follow a particular naming
convention. Any method whose name is of the form on_widgetName_signalName

will have the named widget’s named signal connected to it.

For example, our form has a widget called findLineEdit of type QLineEdit. One
of the signals emitted by a QLineEdit is textEdited(QString). So, if we want to
connect this signal, without calling the connect() method in the initializer, we
can leave the job to setupUi(). This will work as long as we call the slot we
want the signal to connect to, on_findLineEdit_textEdited. This is the approach
we have used for all the connections in the form, apart from the Close button’s
clicked() signal that we connected visually in Qt Designer.

218 Chapter 7. Using Qt Designer

For Windows and Linux users, it is convenient to set the buttons’ focus policies
to “No Focus”. This makes no difference to mouse users, but is often helpful
to keyboard users. It means that pressing Tab moves the keyboard focus only
among the editing widgets—in this example, the find line edit, the replace line
edit, the checkboxes, and the combobox—which is usually more convenient
than having to Tab over the buttons too. Keyboard users can still press any
button using its keyboard accelerator (Esc in the case of the close button).
Unfortunately, buddies and buttons don’t provide Mac OS X keyboard users
with accelerators (unless they switch on support for assistive devices), so these
users need to be able to Tab to all controls, including the buttons. To cater to all
platforms, instead of setting the buttons’ focus policies in Qt Designer, we set
them manually, after the user interface has been created by setupUi().

The MAC Boolean variable is True if the underlying window system is Mac OS X.
It was set at the beginning of the file, after the imports, using the following
rather enigmatic statement:

MAC = "qt_mac_set_native_menubar" in dir()

A clearer way of writing this is:

import PyQt4.QtGui

MAC = hasattr(PyQt4.QtGui, "qt_mac_set_native_menubar")

These work because the PyQt4.QtGui.qt_mac_set_native_menubar() function
exists only on Mac OS X systems.We will use a similar technique for X Window
System detection in Chapter 11.

The updateUi() method called at the end is our own custom method; we use it to
enable or disable the buttons depending on whether the user has entered any
text to find.

@pyqtSignature("QString")

def on_findLineEdit_textEdited(self, text):

self.__index = 0

self.updateUi()

Thanks to setupUi(), this method is automatically connected to byDecora-
tors

85 ☞

the findLine-

Edit’s textEdited() signal. Whenever we want an automatic connection we use
the @pyqtSignature decorator to specify the signal’s arguments. The purpose of
the decorator is to distinguish between signals that have the same name but
different parameters. In this particular case, there is only one textEdited() sig-
nal, so the decorator is not strictly necessary; but we always use the decorator
as a matter of good practice. For example, if a later version of PyQt introduced
another signal with the same name but with different arguments, code that
used the decorator would continue to work, but code without it would not.

Since this slot is called when the user changes the find text, we reset the index
position from which to start the search to 0 (the beginning). Here, and in the
initializer, we end with a call to updateUi().

Implementing Dialogs 219

def updateUi(self):

enable = not self.findLineEdit.text().isEmpty()

self.findButton.setEnabled(enable)

self.replaceButton.setEnabled(enable)

self.replaceAllButton.setEnabled(enable)

We have already seen many examples of a method of this kind.Here, we enable
the Find, Replace, and Replace All buttons, if the user has entered a find text. It
does not matter whether there is any replace text, since it is perfectly valid to
replace something with nothing, that is, to delete the text that is found. This
method is the reason why the form starts with every button except the Close
button disabled.

When the user closes the form, the text it holds (which may be different from
the original text if the user has used replace or replace all) is accessible using
the text() method.

def text(self):

return self.__text

Some Python programmers would not provide a method for this; instead, they
would have a self.text variable (rather than self.__text), and access the
variable directly.

The rest of the dialog’s functionality is implemented in methods that are in-
voked as a result of the user pressing one of the buttons (other than the Close
button), plus a helper method. Their implementation is not specifically rele-
vant to using Qt Designer, but we will briefly review them for completeness.

@pyqtSignature("")

def on_findButton_clicked(self):

regex = self.makeRegex()

match = regex.search(self.__text, self.__index)

if match is not None:

self.__index = match.end()

self.emit(SIGNAL("found"), match.start())

else:

self.emit(SIGNAL("notfound"))

A button’s clicked() signal has an optional Boolean argument that we are
not interested in, so we specify an empty parameter list for the @pyqtSignature

decorator. In contrast, we could not have used an empty parameter list for the
on_findLineEdit_textEdited() slot’s decorator, because the textEdited() signal’s
argument is not optional, so it must be included.

To perform the search, we create a regular expression to specify the find text
and some of the search’s characteristics. Then we search the text using the
regular expression, from the current index position. If a match was found we
update the index position to be at the match’s end, ready for a subsequent

220 Chapter 7. Using Qt Designer

search, and emit a signal with the position in the text where the find text
was found.

def makeRegex(self):

findText = unicode(self.findLineEdit.text())

if unicode(self.syntaxComboBox.currentText()) == "Literal":

findText = re.escape(findText)

flags = re.MULTILINE|re.DOTALL|re.UNICODE

if not self.caseCheckBox.isChecked():

flags |= re.IGNORECASE

if self.wholeCheckBox.isChecked():

findText = r"\b%s\b" % findText

return re.compile(findText, flags)

We begin by getting the find text that the user has entered. We know that it
cannot be empty because the buttons (apart from the Close button) are enabled
only if there is some find text. If the user has chosen a literal text search, we
use the re.escape() function to escape any regular expression meta-characters
(like “\”) that may be in the user’s find text. Then we initialize our search
flags. We supplement the flags with the re.IGNORECASE flag if the caseCheckBox is
unchecked. If the user has asked to search for whole words, we put a \b before
and after the find text: This is a token in Python’s (and QRegExp’s) regular ex-
pression language that specifies a word boundary. The r inRaw

strings

157 ☞

front of the string
literal indicates a “raw” string in which we can write characters like “\” un-
escaped. Finally we return the regular expression in compiled (ready-to-use)
form.★

If we knew that the text to be searched was normally going to be a QString

rather than a unicode, it might be preferable to use the PyQt QRegExp class
rather than the Python standard library’s re class.

@pyqtSignature("")

def on_replaceButton_clicked(self):

regex = self.makeRegex()

self.__text = regex.sub(unicode(self.replaceLineEdit.text()),

self.__text, 1)

This method is quite simple because it passes on its preparation work to the
makeRegex() method. We use the sub method (“substitute”) to replace the first
occurrence of the find text with the replacement text. The replacement text
could be empty. The 1 is the maximum number of replacements to make.

@pyqtSignature("")

def on_replaceAllButton_clicked(self):

regex = self.makeRegex()

★The QRegExp documentation provides a brief introduction to regular expressions. Python’s regular
expression engine is covered in the re module documentation. For in-depth coverage see Mastering
Regular Expressions by Jeffrey E. Friedl.

Implementing Dialogs 221

self.__text = regex.sub(unicode(self.replaceLineEdit.text()),

self.__text)

This method is almost identical to the one earlier. The only difference is that
we do not specify a maximum number of replacements, so sub() will replace as
many (nonoverlapping) occurrences of the find text as it finds.

We have now implemented the FindAndReplaceDlg. The implementation of the
dialog’s methods is not really any different from what we have done before,
except for our use of the decorator and setupUi() to provide automatic con-
nections.

To use the dialog in an application we must make sure that the
ui_findandreplacedlg.py module file is generated,and we must import the find-

andreplacedlg module we have just written. We will see how the form is created
and used in the next section.

Testing Dialogs

Since any PyQt widget, including any dialog, can be used as a top-level window
in its own right, it is easy to test a dialog by instantiating it and starting the
event loop.★ Often, though, we need to do a bit more. For example, we may need
to set up some initial data, or provide methods to receive the dialog’s signals so
that we can see that they are working correctly.

In the case of the Find and Replace dialog, we need some initial text, and
we need to check that the connections work and that the find and replace
methods work.

So, at the end of the findandreplacedlg.py file, we have added some extra
code. This code is executed only if the file is run stand-alone, so it does not
affect performance or interfere with the use of the dialog when it is used in
an application.

if __name__ == "__main__":

import sys

text = """US experience shows that, unlike traditional patents,

software patents do not encourage innovation and R&D, quite the

contrary. In particular they hurt small and medium-sized enterprises

and generally newcomers in the market. They will just weaken the market

and increase spending on patents and litigation, at the expense of

technological innovation and research. Especially dangerous are

attempts to abuse the patent system by preventing interoperability as a

means of avoiding competition with technological ability.

--- Extract quoted from Linus Torvalds and Alan Cox's letter

★When using pyuic4 we can specify a command-line option of -x to get the dialog generated with a
bit of extra code so that it can be tested stand-alone.

222 Chapter 7. Using Qt Designer

to the President of the European Parliament

http://www.effi.org/patentit/patents_torvalds_cox.html"""

def found(where):

print "Found at %d" % where

def nomore():

print "No more found"

app = QApplication(sys.argv)

form = FindAndReplaceDlg(text)

form.connect(form, SIGNAL("found"), found)

form.connect(form, SIGNAL("notfound"), nomore)

form.show()

app.exec_()

print form.text()

We begin by importing the sys module, and then we create a piece of text to
work on. Next, we create a couple of simple functions for the dialog’s signals to
be connected to.

We create the QApplication object in the normal way, and then we create an
instance of our dialog, passing it our test text. We connect the dialog’s two
signals to our slots, and call show(). Then we start off the event loop. When the
event loop terminates we print the dialog’s text: This will be different from the
original text if the user replaced some text.

The dialog can now be run from a console and tested.

C:\pyqt\chap07>python findandreplacedlg.py

Unless using automated testing tools, it is often helpful to add testing function-
ality to dialogs. It does not take too much time or effort to write them, and run-
ning them whenever a change is made to the dialog’s logic will help minimize
the introduction of bugs.

Sometimes we pass complex objects to dialogs that may appear to make testing
impossible. But thanks to Python’s duck typing we can always create a fake
class that simulates enough behavior to be usable for testing. For example,
in Chapter 12, we use a property editor dialog. This dialog operates on “Node”
objects, so in the testing code we create a FakeNode class that provides the meth-
ods for setting and getting a node’s properties that the dialog makes use of.
(The relevant files are chap12/propertiesdlg.ui, from which ui_propertiesdlg.py

is generated, and chap12/propertiesdlg.py where the PropertiesDlg is imple-
mented.)

Summary 223

Summary

Qt Designer provides a quick and easy way to create user interfaces. Using
a visual design tool makes it much easier to see whether a design “works”.
Another benefit of Qt Designer is that if we change a design, providing we
have not added, removed, or renamed any widgets we refer to in code, our code
will not need to be changed at all. And even if we do add, rename, or remove
widgets, the changes to our code may be quite small, since Qt Designer handles
all the widget creation and laying out for us.

The fundamental principles of using Qt Designer are always the same:We drag
widgets onto a form, containers (such as frames, group boxes, and tab widgets)
first, then ordinary widgets, and we set their properties. Then we add spacers
to occupy gaps. Next we select particular widgets, spacers, and layouts, and
apply layouts to them, repeating this process until everything is laid out. Then
we lay out the form itself. At the end we set buddies, the tab order, and the
signal–slot connections.

Implementing dialogs with user interfaces that have been created by Qt De-
signer is similar to implementing them by hand. The biggest difference is in
the initializer, where we simply call setupUi() to create and lay out the widgets,
and to create the signal–slot connections. The methods we implement can be
done just as we have done them before (and their code will be no different), but
usually we use the on_widgetName_signalName naming convention, along with
the @pyqtSignature decorator to take advantage of setupUi()’s ability to auto-
matically create connections.

A use case that we have not covered is to use the “Widget” template to create
composite widgets (widgets made up of two or more other widgets laid out to-
gether). In some cases these widget designs can be used for entire forms, and in
other cases they can be used as components of forms—for example, to provide
the page of a tab widget or of a widget stack. Or two or more composite wid-
gets could be laid out together in a form to create a more complex form. This
use is possible by using Qt Designer and generating the Python modules in the
normal way. Then we can import the generated modules, and in our form class,
we call each custom widget’s setupUi() method to create the user interface.

The questions about how smart a dialog is, what modality it should have, and
how it validates are no different for dialogs created with Qt Designer than for
those created by hand. The only exception that we can set widget properties in
Qt Designer—for example, we could set a spinbox’s range and initial value. We
can, of course, do the same thing in code, but for widgets that need only simple
validation, doing it all in Qt Designer is usually more convenient.

We must use pyuic4 to generate Python modules from Qt Designer .ui files, ei-
ther by running pyuic4 directly or by using mkpyqt.py or Make PyQt, both of
which also generate Python modules for resource files if .qrc files are present.

224 Chapter 7. Using Qt Designer

If we are not using testing tools, adding testing code that is executed only if the
form is run stand-alone does not affect the performance of our dialogs, and can
be very convenient both during development and when maintaining a dialog.
If complex objects that the dialog depends on are not available, we can often
create a “fake” class that provides the same methods as the complex object, and
pass an instance of the fake class for testing purposes.

All PyQt programs can be written entirely by hand; there is never any need to
use Qt Designer. However, designing dialogs with a visual design tool can be
very helpful, since the results can be seen immediately, and changes to designs
can be made quickly and easily. Another benefit of using Qt Designer is that a
lot of fairly repetitive code for creating, laying out, and connecting widgets can
be automatically generated rather than written by hand. Qt Designer was used
to create a dialog in both this chapter,and the preceding one. We will see many
more examples of dialogs created with Qt Designer in the following chapters.

Exercise
Use Qt Designer to create a user interface with one of the designs shown in
Figure 7.11, or with a design of your own. You will probably need to use a Grid
Layout, as well as Vertical and Horizontal Layouts. For grid layouts, you may
have to try a few times, perhaps resizing and positioning widgets to help Qt
Designer create the grid you want. Use QDialogButtonBoxes for the buttons.

Figure 7.11 A dialog with two different designs

The price spinbox should have a range of 0.00–5000.00, be right-aligned, and
have a prefix of “$ ”, as shown in Figure 7.11. The quantity spinbox should
have a range of 1–50 and also be right-aligned. Set the date format to be
whatever you prefer if you don’t like the default.

The widgets you will refer to in code should have sensible names—for example,
customerLineEdit and priceSpinBox.

Make the appropriate buddies, that is, from the “customer” Label to its Line
Edit, from the “when” Label to the Date Time Edit, and so on. Also make sure
that the Tab order is customer, when date, price, quantity, button box.

Exercise 225

Create a subclass to use the user interface. The code should ensure that the
OK button is enabled only if the customer Line Edit is not empty and the
amount is greater than zero. To access a button in a QDialogButtonBox, use the
button() method with the button’s constant as the argument—for example,
buttonBox.button(QDialogButtonBox.Ok).

The amount should be recalculated and shown in the amount label every
time the user changes one of the spinbox values. Set the when date’s range
to be from tomorrow, until next year. Provide a result() method that returns
a four-tuple (unicode, datetime.datetime, float, int) for the customer, when
date, price, and quantity. (If you are using a PyQt version prior to 4.1, return
the date as a QDateTime; otherwise, use the QDateTime.toPyDateTime() method to
get a datetime.datetime.)

Include enough test code at the end to create and show a TicketOrderDlg so
that you can interact with it. After the event loop has finished print the tuple
returned by the result() method on the console.

The subclass, including the test code, can be written in about 60 lines. If
this is the first time you have used Qt Designer it may take 15–20 minutes
to get the design right, but with practice a dialog like this should take just a
few minutes.

Model solutions are provided in chap07/ticketorderdlg1.ui and chap07/ticket-

orderdlg2.ui, with a test program in chap07/ticketorderdlg.py.

This page intentionally left blank

Data Handling and Custom File
Formats

88 ● Main Window Responsibilities

● Data Container Responsibilities

● Saving and Loading Binary Files

● Saving and Loading Text Files

● Saving and Loading XML Files

Most applications need to load and save data. Often the data format is
predetermined because the application is reading data produced by some other
application over which it has no control. But for applications where we create
our own file formats, a lot of options are available.

In Chapter 6 we created a main-window-style application from which we
learned how to create menus and toolbars, and how to handle file loading and
saving. In thischapter we will work on another main-window-style application,
but this time our focus will be on the application’s data.

Figure 8.1 The My Movies application

The application we will take as our example is called My Movies; it is shown
in Figure 8.1. It is used to store some basic information about the movies we

227

228 Chapter 8. Data Handling and Custom File Formats

might have in our collection. The application will allow us to view and edit a
collection of custom Movie objects (or movie records as we will call them), and
to load and save these records from and to disk in a variety of formats.

If you just want to dive straight into file handling, you can jump ahead to
the relevant sections. Coverage of saving and loading binary files begins
on page 240, of text files on page 249, and of XML files on page 256. You can
always come back to the first two sections to cover the relationship between the
GUI and file handling.

In all the previous examples we usually kept as much data as possible in
Python data types and converted to and from PyQt types only when necessary.
And for strings in particular, we proposed a policy thatString

policy

28 ☞

meant that we always
converted QStrings to unicodes as soon as possible and always operated on uni-

code strings. But in this chapter we are going to take the opposite approach,
and keep all our data in PyQt types, converting to Python types only when
necessary. One reason for doing this is that PyQt provides excellent support
for binary data, and uses the same binary formats as C++/Qt, which is useful
when working with files that must be accessed by both C++ and Python pro-
grams. Another reason is that this will also provide a contrast that will help us
understand the pros and cons of each approach so that we can make the right
decisions in applications we work on later.

One immediate benefit of holding data in PyQt types is that we do not have
to keep converting data that we give to or get from the widgets we use for
viewing and editing. When dealing with a large collection of data, this could
be a significant saving of processing overhead.

When we have custom data to load and save five options are available to us.
We can use binary, plain text, or XML files, or we can use QSettings objects with
an explicit filename, or we can use a database. In this chapter we will cover
the first three options, and briefly mention the fourth, QSettings, here. We will
defer coverage of databases until Chapter 15.

All the options apart from QSettings can be implemented using either Python’s
standard library or PyQt. In this chapter, we will discuss loading and saving
both binary and text formats using both libraries so that we can compare and
contrast them. For XML, we will use PyQt for loading and parsing, and we will
do the saving ourselves. Python’s standard library also provides considerable
XML support, but covering it would not show anything that cannot be done
with PyQt’s XML classes.

In Chapter 6, we saw how to use a QSettings object to save and load user
settings, such as the main window’s size and position, and a list of recently
used files. The class stores all data as QVariants, but this is perfectly accept-
able for small amounts of data. We can use this class to store custom data
by creating a QSettings instance with a filename—for example, iniFile =

QSettings("curvedata.ini", QSettings.IniFormat). Now we can use the iniFile

Main Window Responsibilities 229

object to write data using setValue() and to read data using value(), in both
cases converting between QVariant and the relevant type.

In the following section we will look at the high-level file handling and data
presentation that are performed by the application’s main window subclass.
In the second section, we will look at the application’s data module, including
the implementation of individual data items, and of the data item container in
which the application’s data is held.

Then, in the subsequent sections, we will look at saving and loading data in
various formats. In the section on binary files, we will look at how to use PyQt’s
QDataStream class and also the standard Python library’s cPickle module to load
and save our collection of movie records. In the section on text files, we will see
how to load and save our movie records in plain text using PyQt’s QTextStream

and the Python standard library’s codecs module. And in the last section we
will write the code to save the records as XML by hand, and see how to use both
DOM and SAX parsers to read back the XML data.

Main Window Responsibilities

The main window is usually given responsibility for offering the user the high-
level file-handling actions, and for presenting the application’s data. In this
section, we will focus particularly on the file actions, since they differ from
what we did in Chapter 6’s Image Changer application and they are more rep-
resentative of what happens in larger applications. We will also look at how
the data is presented to the user. In the My Movies application, the data is held
in a “container” (a MovieContainer), and all the work of saving and loading (and
exporting and importing) is passed on to the container by the main window. We
will look at the container in the next section, and at the container’s saving and
loading code in the sections that follow that.

The source code is in the chap08 directory, and it includes a Qt Designer-de-
signed user interface for adding and editing movie records. Figure 8.2 shows
the application’s Python modules.

We have chosen to make a distinction between saving and exporting, and
between loading and importing. When we load a file, the filename we used
becomes the application’s current filename for when we save. If we save a file,
we use the application’s current filename, so subsequent saves will be to the
same file. We can change the current filename by using the “save as” action.
When we import a file, we clear the current filename; this means that the data
must be given a new filename if the user wants to save it. If the user exports
the data, they are asked for a new filename, and the current filename is not
affected.

Now we are ready to look at the main window’s file-handling functionality.
We will begin by looking at the start of the main window’s initializer, to see

230 Chapter 8. Data Handling and Custom File Formats

mymovies.pyw

MainWindow

main()

addeditmoviedlg.py

AddEditMovieDlg

ui_addeditmoviedlg.py

User interface module

moviedata.py

Movie

MovieContainer

intFromQStr()

encodedNewlines()

decodedNewlines()

qrc_resources.py

Icons

Figure 8.2 The My Movie application’s modules, classes,and functions

the creation of the data-holding movie container and the data-presenting
QTableWidget.

class MainWindow(QMainWindow):

def __init__(self, parent=None):

super(MainWindow, self).__init__(parent)

self.movies = moviedata.MovieContainer()

self.table = QTableWidget()

self.setCentralWidget(self.table)

After calling super(), we create a new empty movies container. (We will look
at the Movie and MovieContainer classes shortly.) Then we create a QTableWidget.
This widget is used to present and optionally to edit tabular data. The table
is set up and populated in updateTable(). We have omitted the rest of the
initializer, since we already know from Chapter 6 how to set up the status bar,
create the file, edit, and help actions, populate the menus and toolbars, and
restore the application’s state from the previous session’s settings.

For completeness, we will now take a brief detour to review updateTable() to
see how the table widget is set up and populated. (You could skip ahead to the
fileNew() method on page 232 if you prefer to focus purely on the file handling.)
The approach we are using is very simple and direct. PyQt also offers a more
sophisticated approach to populating and editing item-based widgets such as
lists, tables, and trees, using PyQt’s model/view architecture—we will learn
about this in Chapter 14.

def updateTable(self, current=None):

self.table.clear()

self.table.setRowCount(len(self.movies))

self.table.setColumnCount(5)

self.table.setHorizontalHeaderLabels(["Title", "Year", "Mins",

"Acquired", "Notes"])

Main Window Responsibilities 231

self.table.setAlternatingRowColors(True)

self.table.setEditTriggers(QTableWidget.NoEditTriggers)

self.table.setSelectionBehavior(QTableWidget.SelectRows)

self.table.setSelectionMode(QTableWidget.SingleSelection)

selected = None

This method is quite long, so we will review it in three parts. It can be called
with no argument, in which case it simply populates the table; or it can be
called with the id() of the current Movie, in which case it makes the specified
movie’s row selected and visible (scrolling if necessary), after populating the
table. A current movie is passed if a movie has just been added or edited.

We begin by clearing the table; this gets rid of both the data and the headings.
Next, we set the row and column counts, and the column headers. We set
the table’s properties so that the user cannot edit anything in-place, since we
prefer to use a separate add/edit dialog in this particular application. We also
ensure that users can select only a single row at a time. The selected variable
holds the QTableWidgetItem that holds the title and id() of the current movie, if
there is one.

for row, movie in enumerate(self.movies):

item = QTableWidgetItem(movie.title)

if current is not None and current == id(movie):

selected = item

item.setData(Qt.UserRole, QVariant(long(id(movie))))

self.table.setItem(row, 0, item)

year = movie.year

if year != movie.UNKNOWNYEAR:

item = QTableWidgetItem("%d" % year)

item.setTextAlignment(Qt.AlignCenter)

self.table.setItem(row, 1, item)

minutes = movie.minutes

if minutes != movie.UNKNOWNMINUTES:

item = QTableWidgetItem("%d" % minutes)

item.setTextAlignment(Qt.AlignRight|Qt.AlignVCenter)

self.table.setItem(row, 2, item)

item = QTableWidgetItem(movie.acquired.toString(

moviedata.DATEFORMAT))

item.setTextAlignment(Qt.AlignRight|Qt.AlignVCenter)

self.table.setItem(row, 3, item)

notes = movie.notes

if notes.length() > 40:

notes = notes.left(39) + "..."

self.table.setItem(row, 4, QTableWidgetItem(notes))

Each cell in a QTableWidget is represented by a QTableWidgetItem. These items
can hold displayable text as well as “user” data. We iterate over every movie
in the movie container, creating one row of items for each one. We store the

232 Chapter 8. Data Handling and Custom File Formats

movie’s title in the first cell (item) of each row, and set this item’s user data to
hold the movie’s id(). We must convert the ID to be a long, to ensure that it is
held correctly inside the QVariant. Once the item has been created and set up,
we put it in the table at the appropriate row and column.

We only populate the year and minutes cells if we have data for them. For the
notes, we truncate and add an ellipsis if the data is long, since notes could be
many paragraphs in size.

self.table.resizeColumnsToContents()

if selected is not None:

selected.setSelected(True)

self.table.setCurrentItem(selected)

self.table.scrollToItem(selected)

Once all the table items have been added, we resize the table’s columns to
match their contents.

When we iterate over the movies in the movie container, the movies are re-
turned in alphabetical order (but ignoring leading “A”, “An”, and “The”, words).
If the user adds a new movie or edits an existing movie, we want to ensure that
the movie they have just added or edited is both selected and visible. This is
achieved by calling updateTable() after the add or edit, with the ID of the movie
they added or edited. At the end of updateTable(), if a movie ID was passed in,
the selected variable will hold the item corresponding to the movie’s title cell,
and this item (and therefore the item’s row) will be made both current and se-
lected, and if necessary the table widget will scroll to make sure that the row
is visible to the user.

def fileNew(self):

if not self.okToContinue():

return

self.movies.clear()

self.statusBar().clearMessage()

self.updateTable()

This method is similar to the method of the same name used for the Image
Changer application.The key difference is that instead of the main window be-
ing responsible for the data, the work is delegated to the movie container held
in self.movies. When updateTable() is called, there will be no movie records, so
the widget will just show the column headers and nothing else.

The okToContinue() method is almost the same as the one we used in the Image
Changer application.The only difference is that instead of the condition check-
ing self.dirty (since the Image Changer’s main window held the application’s
data) it calls self.movies.isDirty() because in this application, the movies con-
tainer holds the data.

def fileOpen(self):

if not self.okToContinue():

Main Window Responsibilities 233

return

path = QFileInfo(self.movies.filename()).path() \

if not self.movies.filename().isEmpty() else "."

fname = QFileDialog.getOpenFileName(self,

"My Movies - Load Movie Data", path,

"My Movies data files (%s)" % \

self.movies.formats())

if not fname.isEmpty():

ok, msg = self.movies.load(fname)

self.statusBar().showMessage(msg, 5000)

self.updateTable()

The file open method is structurally the same as we have seen before. The
movie container holds the current filename as a QString. Normally, an appli-
cation has just one custom file format, but for the sake of illustration the My
Movies application supports several, so we have provided a formats() method
to return the extensions that can be used.

The main window subclass passes on the work of loading to the movies
container. We have designed our movie container’s load and save methods to
return a Boolean success/failure flag and a message. The message is either an
error message, or a report of how many movie records were loaded or saved. In
the My Movies application, we use only the message.

If the load is successful, the movie container will contain the new movie records
and updateTable() will display them. If the load failed, the movie container will
be empty, and updateTable() will show only the column headers.

def fileSave(self):

if self.movies.filename().isEmpty():

self.fileSaveAs()

else:

ok, msg = self.movies.save()

self.statusBar().showMessage(msg, 5000)

Again, the logic for this method is the same as we have seen before. The code
used for saving and loading depends on the filename extension, as we will
see later.

We will skip the code for fileSaveAs(); it is the same as for the Image Chang-
er application, except that we use QString rather than unicode methods with
the filename, and we use a default extension of .mqb (My Movies in Qt binary
format).

def fileImportDOM(self):

self.fileImport("dom")

def fileImportSAX(self):

self.fileImport("sax")

234 Chapter 8. Data Handling and Custom File Formats

def fileImport(self, format):

if not self.okToContinue():

return

path = QFileInfo(self.movies.filename()).path() \

if not self.movies.filename().isEmpty() else "."

fname = QFileDialog.getOpenFileName(self,

"My Movies - Import Movie Data", path,

"My Movies XML files (*.xml)")

if not fname.isEmpty():

if format == "dom":

ok, msg = self.movies.importDOM(fname)

else:

ok, msg = self.movies.importSAX(fname)

self.statusBar().showMessage(msg, 5000)

self.updateTable()

Normally we would provide a single import method and use either a SAX or a
DOM parser. Here we have chosen to show both parsers in use, so we provide
two separate import actions. Both produce the same results.

The file action code for importing is very similar to the “file open” action, only
we use the import parser specified by the user. And as with all the file-handling
code, we pass on the work to the movie container.

def fileExportXml(self):

fname = self.movies.filename()

if fname.isEmpty():

fname = "."

else:

i = fname.lastIndexOf(".")

if i > 0:

fname = fname.left(i)

fname += ".xml"

fname = QFileDialog.getSaveFileName(self,

"My Movies - Export Movie Data", fname,

"My Movies XML files (*.xml)")

if not fname.isEmpty():

if not fname.contains("."):

fname += ".xml"

ok, msg = self.movies.exportXml(fname)

self.statusBar().showMessage(msg, 5000)

We provide only one XML export method. The code is similar to the “file
save as” action. Notice that we must use QString methods to ensure that the
filename has the .xml extension, rather than the unicode methods we used in
the Image Changer application, because the filename is held as a QString.

Data Container Responsibilities 235

Data Container Responsibilities

The application’s data container is responsible for holding all the data
items, that is, the movie records, and for saving and loading them to and
from disk. We saw in the preceding section when we looked at the MainWin-

dow.updateTable() method how the container could be iterated over using a for

loop to get all the movies so that they could be displayed in the application’s
QTableWidget. In this section, we will look at the functionality provided by the
moviedata module, including the data structures used to hold the movie data,
how we provide support for ordered iteration, and other aspects, but excluding
the actual saving and loading code since that is covered in the sections that
follow.

Why use a custom data container at all? After all, we could simply use one
of Python’s built-in data structures, such as a list or a dictionary. We prefer to
take an approach where we wrap a standard data structure in a custom con-
tainer class. This ensures that accesses to the data are controlled by our class,
which helps to maintain data integrity. It also makes it easier to extend the
container’s functionality,and to replace the underlying data structure in the fu-
ture, without affecting existing code. In other words, this is an object-oriented
approach that avoids the disadvantages of simply using, say, a list, with some
global functions.

We will begin with the moviedata module’s imports and constants.

import bisect

import codecs

import copy_reg

import cPickle

import gzip

from PyQt4.QtCore import *
from PyQt4.QtXml import *

We store the movies in canonicalized title order, ignoring case, and ignoring
leading “A”, “An”, and “The” words. To minimizeOrdered-

Dict

92 ☞

insertion and lookup times
we maintain the order using the bisect module, using the same techniques we
used for the OrderedDict we implemented in Chapter 3.

The codecs module is necessary for reading and writing Python text files using
a specific text codec. The copy_reg and cPickle modules are used for saving and
loading Python “pickles”—these are files that contain arbitrary Python data
structures.The gzip module is used to compress data; we will use it to compress
and decompress our pickled data. The PyQt4.QtCore import is familiar, but we
must also import the PyQt4.QtXml module to give us access to PyQt’s SAX and
DOM parsers. We will see all of these modules in use in the following sections.
Note that we do not need the PyQt4.QtGui module, since the moviedata module is
a pure data-handling module with no GUI functionality.

CODEC = "UTF-8"

236 Chapter 8. Data Handling and Custom File Formats

NEWPARA = unichr(0x2029)

NEWLINE = unichr(0x2028)

We want to use the UTF-8 codec for text files. This is an 8-bit Unicode encoding
that uses one byte for each ASCII character, and two or more bytes for any
other character.It is probably the most widely used Unicode text encoding used
in files. By using Unicode we can store text written in just about any human
language in use today.

Although \n is a valid Unicode character, we will need to use the Unicode-spe-
cific paragraph break and line break characters when we use XML. This is be-
cause XML parsers do not normally distinguish between one ASCII whitespace
character, such as newline, and another, such as space, which is not convenient
if we want to preserve the user’s line and paragraphs breaks.

class Movie(object):

UNKNOWNYEAR = 1890

UNKNOWNMINUTES = 0

def __init__(self, title=None, year=UNKNOWNYEAR,

minutes=UNKNOWNMINUTES, acquired=None, notes=None):

self.title = title

self.year = year

self.minutes = minutes

self.acquired = acquired \

if acquired is not None else QDate.currentDate()

self.notes = notes

The Movie class is used to hold the data about one movie. We use instance
variables directly rather than providing simple getters and setters. The title
and notes are stored as QStrings, and the date acquired as a QDate. The year the
movie was released and its duration in minutes are held as ints. We provide
two static constants to indicate that we do not know when the movie was
released or how long it is.

We are now ready to look at the movie container class. This class holds an
ordered list of movies, and provides functionality for saving and loading (and
exporting and importing) movies in a variety of formats.

class MovieContainer(object):

MAGIC_NUMBER = 0x3051E

FILE_VERSION = 100

def __init__(self):

self.__fname = QString()

self.__movies = []

self.__movieFromId = {}

self.__dirty = False

Data Container Responsibilities 237

The MAGIC_NUMBER and FILE_VERSION are used for saving and loading files using
PyQt’s QDataStream class.

The filename is held as a QString. Each element of the __moviesid()

function

13 ☞

list is itself a
two-element list, the first element being a sort key and the second a Movie. This
is the class’s main data structure,and it is used to hold the movies in order. The
__movieFromId dictionary’s keys are the id()s of Movie objects, and the values
are Movies. As we saw in Chapter 1,Object

refer-
ences

12 ☞

every Python object very conveniently has
a unique ID, available by calling id() on it. This dictionary is used to provide
fast movie lookup when a movie’s ID is known. For example, the main window
stores movie IDs as “user” data in its first column of QTableWidgetItems. There
is no duplication of data, of course, since the two data structures really hold
references to Movie objects rather than Movie objects themselves.

def __iter__(self):

for pair in iter(self.__movies):

yield pair[1]

When the MainWindow.updateTable() method iterated over the movie container
using a for loop, Python used the container’s __iter__() method. Here we can
see that we iterate over the ordered list of [key, movie] lists, returning just the
movie item each time.

def __len__(self):

return len(self.__movies)

This method allows us to use the len() function on movie containers.

In the following sections we will see the code for loading and saving the movies
held in a movie container in various formats. But first we will look at how
the container is cleared, and how movies are added, deleted, and updated, so
that we can get a feel for how the container works, particularly regarding or-
dering.

def clear(self, clearFilename=True):

self.__movies = []

self.__movieFromId = {}

if clearFilename:

self.__fname = QString()

self.__dirty = False

This method is used to clear all the data, possibly including the filename. It
is called from MainWindow.fileNew(), which does clear the filename, and from
the various save and load methods, which leave the filename untouched. The
movie container maintains a dirty flag so that it always knows whether there
are unsaved changes.

def add(self, movie):

if id(movie) in self.__movieFromId:

238 Chapter 8. Data Handling and Custom File Formats

return False

key = self.key(movie.title, movie.year)

bisect.insort_left(self.__movies, [key, movie])

self.__movieFromId[id(movie)] = movie

self.__dirty = True

return True

The first if statement ensures that we don’t add the same movie twice. We
use the key() method to generate a suitable order key, and then use the bisect

module’s insort_left() function to insert the two-element [key, movie] list
into the __movies list. This is very fast because the bisect module uses the
binary chop algorithm. We also make sure that the __movieFromId dictionary is
up-to-date, and set the container to be dirty.

def key(self, title, year):

text = unicode(title).lower()

if text.startswith("a "):

text = text[2:]

elif text.startswith("an "):

text = text[3:]

elif text.startswith("the "):

text = text[4:]

parts = text.split(" ", 1)

if parts[0].isdigit():

text = "%08d " % int(parts[0])

if len(parts) > 1:

text += parts[1]

return u"%s\t%d" % (text.replace(" ", ""), year)

This method generates a key string suitable for ordering our movie data. We
do not guarantee key uniqueness (although it would not be difficult to do),
because the ordered data structure is a list in which duplicate keys are not a
problem. The code is English-specific, eliminating the definite and indefinite
articles from movie titles. If the movie’s title begins with a number, we pad the
number with leading zeros so that, for example, “20” will come before “100”.We
do not need to pad the year,because years are always exactly four digits. All the
other data is stored using PyQt data types, but we have chosen to use unicode

for the key strings.

def delete(self, movie):

if id(movie) not in self.__movieFromId:

return False

key = self.key(movie.title, movie.year)

i = bisect.bisect_left(self.__movies, [key, movie])

del self.__movies[i]

del self.__movieFromId[id(movie)]

self.__dirty = True

return True

Data Container Responsibilities 239

To delete a movie we must remove it from both data structures, and in the case
of the __movies list, we must first find the movie’s index position.

def updateMovie(self, movie, title, year, minutes=None,

notes=None):

if minutes is not None:

movie.minutes = minutes

if notes is not None:

movie.notes = notes

if title != movie.title or year != movie.year:

key = self.key(movie.title, movie.year)

i = bisect.bisect_left(self.__movies, [key, movie])

self.__movies[i][0] = self.key(title, year)

movie.title = title

movie.year = year

self.__movies.sort()

self.__dirty = True

If the user edits a movie, the application always calls this method with the
user’s changes. If the minutes or notes are passed as None, we take that to mean
that they have not been changed. If the movie’s title or year has changed, the
movie may now be in the wrong position in the __movies list. In these cases,
we find the movie using its original title and year, set the new title and year,
and then re-sort the list. This is not as expensive in practice as it may at first
appear. The list will contain, at most, one incorrectly sorted item, and Python’s
sort algorithm is highly optimized for partially sorted data.

If we ever found that we had a performance problem here, we could always
reimplement updateMovie() using delete() and add() instead.

@staticmethod

def formats():

return "*.mqb *.mpb *.mqt *.mpt"

Normally, we would provide one, or at most two, custom data formats for an
application, but for the purposes of illustration we provide three formats using
four extensions. Extension .mqb is Qt binary format, and it uses the QDataStream

class, and extension .mpb is Python pickle format (using gzip compression). Ex-
tension .mqt is Qt text format, and it uses the QTextStream class, and extension
.mpt is Python text format. Both text formats are identical, but by using dif-
ferent extensions we can use different save and load code for the purposes of
comparison.

def save(self, fname=QString()):

if not fname.isEmpty():

self.__fname = fname

if self.__fname.endsWith(".mqb"):

return self.saveQDataStream()

240 Chapter 8. Data Handling and Custom File Formats

elif self.__fname.endsWith(".mpb"):

return self.savePickle()

elif self.__fname.endsWith(".mqt"):

return self.saveQTextStream()

elif self.__fname.endsWith(".mpt"):

return self.saveText()

return False, "Failed to save: invalid file extension"

When the user invokes the “file save” action we would expect the data contain-
er’s save() method to be invoked. This is indeed what happens in My Movies
and is the normal practice. However,here, instead of performing the save itself,
the save() method hands the work to a method that is specific to the filename’s
extension. This is purely so that we can show how to save in the different for-
mats; in a real application we would normally use only one format.

There is a corresponding load() method, that has the same Ap-
proach-
es to
File
Error
Han-
dling
sidebar

☞ 244

logic as the save()

method and passes its work to load methods that are extension-specific. All the
load and save methods return a two-element tuple, the first element a Boolean
success/failure flag and the second a message, either an error message or a
report of what successfully occurred.

We have now seen the application’s infrastructure for file handling, and the
container’s data structures that hold the data in memory. In the following
sections, we will look at the code that performs the saving and loading of the
container’s data to and from disk.

Saving and Loading Binary Files

Both PyQt and the Python standard library provide facilities for writing
and reading binary files. PyQt uses the QDataStream class, and the Python
standard library uses the file class, either directly or in conjunction with the
pickle module.

Binary formats are not human-readable, but they are the easiest to code and
the fastest to write and read to and from disk. No parsing is necessary: Num-
bers, dates, and many PyQt types, including images, can be read and written
without formality. PyQt’s support for binary files is very strong: PyQt ensures
that binary files are platform-independent, and it isn’t difficult to version our
binary file types so that we can extend our file format when required. The
Python standard library’s pickle module (and its faster cPickle counterpart)
also provide fast platform-independent loading and saving, but may not be
as efficient as PyQt’s QDataStream for handling complex PyQt types, such as
images.

Writing and Reading Using QDataStream

The QDataStream class can read and write Python Boolean and numeric types,
and PyQt types, including images, in binary format. Files written by QData-

Saving and Loading Binary Files 241

Stream are platform-independent; the class automatically takes care of endian-
ness and word size.

Almost every new version of PyQt has a QDataStream that uses a new binary
format for data storage—this is done so that QDataStream can accommodate new
data types, and to support enhancements to existing data types. This is not
a problem, because every version of QDataStream can read data stored in the
formats used by all its previous versions. In addition,QDataStream always stores
integers the same way, no matter which version of QDataStream is being used.

def saveQDataStream(self):

error = None

fh = None

try:

fh = QFile(self.__fname)

if not fh.open(QIODevice.WriteOnly):

raise IOError, unicode(fh.errorString())

stream = QDataStream(fh)

stream.writeInt32(MovieContainer.MAGIC_NUMBER)

stream.writeInt32(MovieContainer.FILE_VERSION)

stream.setVersion(QDataStream.Qt_4_2)

Since PyQt uses return values rather than exceptions, if the file cannot be
opened we raise an exception ourselves since we prefer the exception-based
approach to error handling. Having opened the file, we create a QDataStream

object to write to it.

PyQt cannot guess what size integer we want to use to store int and long inte-
gers, so we must write integer values using the writeIntn() and writeUIntn()

methods, where n is 8, 16, 32, or 64, that is, the number of bits to use to store
the integer. For floating-point numbers, QDataStream provides the writeDouble()

and readDouble() methods. These operate on Python floats (equivalent to C
and C++ doubles), and are stored as 64-bit values in IEEE-754 format.

The first integer we write is the “magic number”. This is an arbitrary number
that we use to identify My Movies data files. This number will never change.
We should give any custom binary data file a unique magic number, since
filename extensions cannot always be relied upon to correctly identify a file’s
type. Next we write a “file version”. This is the version of our file format (we
have set it to be 100). If we decide to change the file format later, the magic
number will remain the same—after all, the file will still hold movie data—but
the file format will change (e.g., to 101) so that we can execute different code to
load it to account for the difference in format.

Since integers are always saved in the same format, we can safely write them
before setting the QDataStream version. But once we have written the magic
number and file version, we should set the QDataStream version to the one that
PyQt should use for writing and reading the rest of the data. If we want to
take advantage of a later version we could use our original file format for

242 Chapter 8. Data Handling and Custom File Formats

version Qt_4_2, and another file format for the later version. Then, when we
come to load the data, we could set the QDataStream version depending on our
file format number.

Setting the QDataStream version is very important, since it will ensure that
any PyQt data type is saved and loaded correctly. The only situation where
it does not matter is if we are only saving and loading integers, since their
representation never changes.

for key, movie in self.__movies:

stream << movie.title

stream.writeInt16(movie.year)

stream.writeInt16(movie.minutes)

stream << movie.acquired << movie.notes

Now we iterate over the movie data, writing each movie’s data to the data
stream. The data’s format is illustrated in Figure 8.3. The QDataStream class
overloads the << operator for many PyQt classes, including, for example,
QString, QDate, and QImage, so we must use a C++-like streaming syntax to write
our data. The << operator writes its right operand to the data stream that is its
left operand. It can be applied repeatedly to the same stream, since it returns
the stream it is applied to, but for integers, we must use the writeIntn() and
writeUIntn() methods.

int32 int32 Movie #1 Movie #2 … Movie #n

QString int16 int16 QDate QString

Figure 8.3 The QDataStream My Movies file format

Since we are writing binary data, we do not have to do any formatting. We just
have to ensure that when we load the data back, we use the same QDataStream

version, and that we load in the same data types in the same order as we saved.
So, in this case, we will load back two integers (the magic and file version
numbers), and then any number of movie records, each comprising a string,
two integers, a date, and a string.

except (IOError, OSError), e:

error = "Failed to save: %s" % e

finally:

if fh is not None:

fh.close()

if error is not None:

return False, error

self.__dirty = False

Saving and Loading Binary Files 243

return True, "Saved %d movie records to %s" % (

len(self.__movies),

QFileInfo(self.__fname).fileName())

If there are any errors, we simply give up and return a failure flag and an error
message. Otherwise, we clear the dirty flag and return a success flag and a
message indicating how many records were saved.

The corresponding load method is just as straightforward, although it does
have to do more error handling.

def loadQDataStream(self):

error = None

fh = None

try:

fh = QFile(self.__fname)

if not fh.open(QIODevice.ReadOnly):

raise IOError, unicode(fh.errorString())

stream = QDataStream(fh)

magic = stream.readInt32()

if magic != MovieContainer.MAGIC_NUMBER:

raise IOError, "unrecognized file type"

version = stream.readInt32()

if version < MovieContainer.FILE_VERSION:

raise IOError, "old and unreadable file format"

elif version > MovieContainer.FILE_VERSION:

raise IOError, "new and unreadable file format"

stream.setVersion(QDataStream.Qt_4_2)

self.clear(False)

We create the QFile object and QDataStream object the same as before, except this
time using ReadOnly rather than WriteOnly mode. Then we read in the magic
number. If this is not the unique My Movies data file number, we raise an
exception. Next we read the file version, and make sure it is one that we can
handle. At this point, we would branch depending on the file version, if we had
more than one version of this file format in use. Then we set the QDataStream

version.

The next step is to clear the movies data structures. We do this as late as
possible so that if an exception was raised earlier, the original data will be
left intact. The False argument tells the clear() method to clear __movies and
__movieFromId, but not the filename.

while not stream.atEnd():

title = QString()

acquired = QDate()

notes = QString()

stream >> title

year = stream.readInt16()

244 Chapter 8. Data Handling and Custom File Formats

Approaches to File Error Handling

The approach used for handling file errors in this chapter has the structure
shown here on the left. Another equally valid approach, used, for example,
in chap09/textedit.py and chap14/ships.py, is shown here on the right.

error = None

fh = None

try:

open file and read data

except (IOError, OSError), e:

error = unicode(e)

finally:

if fh is not None:

fh.close()

if error is not None:

return False, error

return True, "Success"

exception = None

fh = None

try:

open file and read data

except (IOError, OSError), e:

exception = e

finally:

if fh is not None:

fh.close()

if exception is not None:

raise exception

At the call point, and assuming we are dealing with a load() method, we
might use code like this for the left-hand approach:

ok, msg = load(args)

if not ok:

QMessageBox.warning(self, "File Error", msg)

And for the right-hand approach we could use code like this:

try:

load(args)

except (IOError, OSError), e:

QMessageBox.warning(self, "File Error", unicode(e))

Another approach, used in chap09/sditexteditor.pyw and chap12/pagedesign-

er.pyw, is to do all the error handling inside the file-handling method itself:

fh = None

try:

open file and read data

except (IOError, OSError), e:

QMessageBox.warning(self, "File Error", unicode(e))

finally:

if fh is not None:

fh.close()

At the call point we simply call load(args), leaving the load() method itself
to report any problems to the user.

Saving and Loading Binary Files 245

Table 8.1 Selected QDataStream Methods

Syntax Description

s.atEnd() Returns True if the end of QDataStream s has been
reached

s.setVersion(v) Sets QDataStream s’s version to v, where v is one of Qt_1_0,
Qt_2_0, …, Qt_4_2, or Qt_4_3

s << x Writes object x to QDataStream s; x can be of type QBrush,
QColor, QDate, QDateTime, QFont, QIcon, QImage, QMatrix,
QPainterPath, QPen, QPixmap, QSize, QString, QVariant, etc.

s.readBool() Reads a bool from QDataStream s

s.readDouble() Reads a float from QDataStream s

s.readInt16() Reads a 16-bit int from QDataStream s. There is also a
readUInt16() method.

s.readInt32() Reads a 32-bit int from QDataStream s. There is also a
readUInt32() method.

s.readInt64() Reads a 64-bit long from QDataStream s. There is also a
readUInt64() method.

x = QString()

s >> x
Reads object x from QDataStream s; x must already exist (so
that the data stream knows what data type to read), and
can be any of the types writable by <<

s.writeBool(b) Writes bool b to QDataStream s

s.write-

Double(f)
Writes float f to QDataStream s

s.writeInt16(i) Writes int i as a 16-bit int to QDataStream s. There is also
a writeUInt16() method.

s.writeInt32(i) Writes int i as a 32-bit int to QDataStream s. There is also
a writeUInt32() method.

s.writeInt64(l) Writes long l as a 64-bit int to QDataStream s. There is also
a writeUInt64() method.

minutes = stream.readInt16()

stream >> acquired >> notes

self.add(Movie(title, year, minutes, acquired, notes))

We could have stored the number of movies at the beginning of the file, after
the file version. But instead we simply iterate over the data stream until we
reach the end. For non-numeric data types we must create variables that hold
empty values of the correct type. Then we use the >> operator, which takes
a data stream as its left operand and a variable as its right operand; it reads
a value of the right operand’s type from the stream and puts it into the right
operand. The operator returns the file stream, so it can be applied repeatedly.

246 Chapter 8. Data Handling and Custom File Formats

For integers we must always read using the readIntn() and readUIntn()

methods with the same number of bits as we specified when writing.

Once we have read in a single movie’s data, we create a new Movie object and
immediately add it to the container’s data structures using the add() method
we reviewed in the preceding section.

except (IOError, OSError), e:

error = "Failed to load: %s" % e

finally:

if fh is not None:

fh.close()

if error is not None:

return False, error

self.__dirty = False

return True, "Loaded %d movie records from %s" % (

len(self.__movies),

QFileInfo(self.__fname).fileName())

The error handling and the final return statement are structurally the same as
we used for the save method.

Using the PyQt QDataStream class to write binary data is not very different in
principle from using Python’s file class. We must be careful to use the correct
QDataStream version, and we ought to use a magic number and file version,
or some equivalent approach. The use of the << and >> operators is not very
Pythonic, but it is easy to understand.

We could have put code for writing a movie in the Movie class itself, perhaps
with a method that took a QDataStream argument and wrote the movie’s data to
it. In practice it is usually more convenient, and almost always more flexible,
to have the data container do the file handling rather than the individual
data items.

Writing and Reading Using the pickle Module

Python’s standard pickle module, and its faster cPickle counterpart, can save
arbitrary Python data structures to disk and load them back again. These
modules provide exactly the same functions and functionality. The only differ-
ence between them is that the pickle module is implemented purely in Python,
and the cPickle module is implemented in C. These modules only understand
the data types in the Python standard library, and classes that are built from
them. If we want to pickle PyQt-specific data types with PyQt versions prior
to PyQt 4.3, we must tell the pickle (or cPickle) module how to handle them.

def _pickleQDate(date):

return QDate, (date.year(), date.month(), date.day())

def _pickleQString(qstr):

return QString, (unicode(qstr),)

Saving and Loading Binary Files 247

copy_reg.pickle(QDate, _pickleQDate)

copy_reg.pickle(QString, _pickleQString)

The copy_reg module is used to specify how to read and write nonstandard
data types. The information is provided by calling copy_reg.pickle() with two
arguments. The first argument is the new-style class that we want to be able to
pickle, and the second is a function. The function must take a single argument,
an instance of the class we want to pickle,and should return a two-tuple,whose
first element is the class and whose second element is a tuple of standard
Python types that can be fed into the class’s constructor to create an instance
that has the same value as the instance passed in.

With this information the pickle module can store instances of our class by
storing the class name as text and the arguments as a tuple of standard Python
types. Then, when we want to unpickle (load) the data back, Python can use
eval() to re-create our instances.

PyQt 4.3 includes support for pickling basic Qt data types, including QByte-

Array, QChar, QColor, QDate, PyQt

4.3

QDateTime, QKeySequence, QLine, QLineF, QMatrix, QPoint,
QPointF, QPolygon, QRect, QRectF, QSize, QSizeF, QString, QTime, and all PyQt
enums. This means that we can “pickle” any of these types without having to
write and register our own pickling functions.

def savePickle(self):

error = None

fh = None

try:

fh = gzip.open(unicode(self.__fname), "wb")

cPickle.dump(self.__movies, fh, 2)

except (IOError, OSError), e:

error = "Failed to save: %s" % e

finally:

if fh is not None:

fh.close()

if error is not None:

return False, error

self.__dirty = False

return True, "Saved %d movie records to %s" % (

len(self.__movies),

QFileInfo(self.__fname).fileName())

We can easily save any Python data structure, including recursive data struc-
tures, as a pickle. We do this by opening a file in binary mode and using the
dump() function. In this example, we have chosen to save our pickle compressed
(which may reduce file size by around 50 percent), but we could have avoided
using compression like this:

fh = open(unicode(self.__fname), "wb")

248 Chapter 8. Data Handling and Custom File Formats

We must convert the filename to unicode because it is held as a QString. The wb

argument to open() means “write binary”. The dump() function takes a Python
data structure, in this case our list of [key, movie] lists, a file handle, and a
format code. We always use format code 2, which means pickle binary format.

Since the keys are generated by the key() method, we really need to save only
the Movie instances, rather than the [key, movie] lists. If disk space was at a
premium we might do this, but it would require us to regenerate the keys when
the data was loaded, so it represents a trade-off between disk space and speed
of saving and loading. We have opted to sacrifice disk space for the sake of
faster and easier saving and loading.

def loadPickle(self):

error = None

fh = None

try:

fh = gzip.open(unicode(self.__fname), "rb")

self.clear(False)

self.__movies = cPickle.load(fh)

for key, movie in self.__movies:

self.__movieFromId[id(movie)] = movie

except (IOError, OSError), e:

error = "Failed to load: %s" % e

finally:

if fh is not None:

fh.close()

if error is not None:

return False, error

self.__dirty = False

return True, "Loaded %d movie records from %s" % (

len(self.__movies),

QFileInfo(self.__fname).fileName())

Unpickling is almost as easy as pickling. We must remember to open the file
using gzip so that it gets uncompressed. The rb argument to open() means
“read binary”. We use the pickle load() function to retrieve the data; it takes a
file handle and returns the entire data structure. We assign the data structure
directly to our __movies list. Then we iterate over the movies to populate the
__movieFromId dictionary: This cannot be saved because it depends on Movie

id()s which will vary every time the application is run.

Pickling and unpickling is the easiest approach to saving and loading binary
data, and is ideal for situations when our data is held in standard Python data
types. If we hold our data as PyQt data types, it is usually best to use QData-

Stream. This class is more efficient than the pickle module at storing complex
PyQt data types like images (because there is none of the conversion overhead
that is required when pickling), and it produces more compact files than the
pickle module produces (unless the pickled data is compressed). It also makes

Saving and Loading Binary Files 249

it easy to provide seamless data format interoperability with C++/Qt appli-
cations.

Saving and Loading Text Files

PyQt and the Python standard library provide facilities for writing and
reading text files. PyQt uses the QTextStream class, and the Python standard
library uses the codecs module.

Plain text formats are usually human-readable, in a text editor, for example,
and are usually easy to write. Any kind of data can be written as plain text one
way or another. Numbers and dates can be written quite easily and compactly
by using their string representations, and other types, such as images, can be
written in more verbose forms—for example, using .xpm format.

Reading plain text that includes nontextual data or that has structure (for
example, a record structure) means that we must write a parser, and this
can be quite difficult, especially for complex data or complex data structures.
Plain text formats can also be quite tricky to extend in a way that remains
compatible with earlier formats, and they are vulnerable to being misread due
to differences between the encoding read and the encoding written,since a user
might edit them using a text editor that assumes a different encoding from
the one that was actually used. These formats are most useful for simple file
structures that store simple data types.★

Format Example

{{MOVIE}} title ↵ {{MOVIE}} 12 Monkeys

year minutes acquired ↵ 1995 129 2001-06-21

{NOTES} ↵ {NOTES}

notes ↵ Based on La Jetée

{{ENDMOVIE}} ↵ {{ENDMOVIE}}

Figure 8.4 The My Movies text format

The data we need to write contains only simple types: strings, integers, and a
date. But we still need to structure the text file so that each movie record can
be distinguished, and we must account for the fact that the notes text may
extend over multiple lines.

The structure we have chosen is shown in Figure 8.4. In the Format column on
the left, spaces are indicated by and newlines by ↵.

The notes may span multiple lines, but we have assumed that no line of
notes begins with the text {{ENDMOVIE}}. A more robust solution would in-

★If the format is very simple, it may be easiest to use a QSettings object and have it read and write
to a specified file rather than to hand-code.

250 Chapter 8. Data Handling and Custom File Formats

volve escaping. For example, we could assume that for any line that begins
with, say, \, we ignore the \ and take the rest of the line as literal text. This
would allow us to include a line with the text {{ENDMOVIE}}”, by writing it
as \{{ENDMOVIE}}.

Writing and Reading Using QTextStream

The code for writing in text format using QTextStream is very similar to the code
we used for writing using QDataStream.

def saveQTextStream(self):

error = None

fh = None

try:

fh = QFile(self.__fname)

if not fh.open(QIODevice.WriteOnly):

raise IOError, unicode(fh.errorString())

stream = QTextStream(fh)

stream.setCodec(CODEC)

for key, movie in self.__movies:

stream << "{{MOVIE}} " << movie.title << "\n" \

<< movie.year << " " << movie.minutes << " " \

<< movie.acquired.toString(Qt.ISODate) \

<< "\n{NOTES}"

if not movie.notes.isEmpty():

stream << "\n" << movie.notes

stream << "\n{{ENDMOVIE}}\n"

There are two crucial points to note. First we must specify the encoding we
want to use. We are using UTF-8 in all cases; (CODEC holds the text UTF-8). If
we do not do this, PyQt will use the local 8-bit encoding, which could be any of
ASCII, Latin-1, or UTF-8 in the United States, Latin-1 or UTF-8 in Western
Europe, and EUC-JP, JIS, Shift-JIS, or UTF-8 in Japan. By specifying the
encoding, we ensure that we always write and read using the encoding we have
specified so that characters are not misinterpreted. Unfortunately, we cannot
guarantee that users will edit our text file using the correct encoding. If the
files are likely to be edited, we could write the encoding on the first line in
ASCII—for example, as encoding="UTF-8" in a similar way to XML—to at least
provide a hint to the editor. This problem should diminish in the coming years
since UTF-8 is becoming the de facto global standard for encoding text files.

The second point should be obvious: All data must be written as text.
QTextStream overloads operator << to handle Booleans, numbers, and QStrings
automatically, but other data types must be converted to their string represen-
tations. For dates we have chosen to use ISO (YYYY-MM-DD) format. We have
also chosen to avoid having a blank line after the {NOTES} marker if the notes
are empty.

Saving and Loading Text Files 251

We have omitted the code for the except and finally blocks since it is the same
as we have seen a few times before—for example, in the saveQDataStream()

method.

Although writing in text format is straightforward, reading it back is not
so easy. For one thing, we will have to read each integer (year, minutes, and
components of the acquired date) as text and convert it to the integer the text
represents. But the main issue is that we must correctly parse the file to pick
out each movie’s record attributes.

Handling integers is not too difficult since QString provides a toInt() method;
but the method returns a success/failure flag rather than raising an exception,
and checking for this every time we handle a number will mean that we need
three lines of code per number instead of one. For this reason, we have created
a more Pythonic wrapper function for reading integers.

def intFromQStr(qstr):

i, ok = qstr.toInt()

if not ok:

raise ValueError, unicode(qstr)

return i

This function simply calls QString.toInt() and raises an exception on failure,
or returns the integer on success.

start TITLE NUMBERS NOTES END finish

{{MOVIE}}… numbers… {NOTES}

text…

{{ENDMOVIE}}

Figure 8.5 The My Movies text format’s finite state automaton for each movie

To parse our movies text file we will use a finite state automaton to gather each
movie’s data. The automaton for parsing a single movie is illustrated in Fig-
ure 8.5. This just means that before we read each line, we have an expectation
of what the line will contain. If the expectation is not met, we have an error;
otherwise, we read the expected data and set the expectation for what the next
line should contain.

def loadQTextStream(self):

error = None

fh = None

try:

fh = QFile(self.__fname)

if not fh.open(QIODevice.ReadOnly):

raise IOError, unicode(fh.errorString())

stream = QTextStream(fh)

stream.setCodec(CODEC)

self.clear(False)

lino = 0

252 Chapter 8. Data Handling and Custom File Formats

The method begins familiarly enough. Once we have opened the file, created
the QTextStream, and set the codec, we clear the existing movie data, and are
ready to read in the data from disk.

For each movie we first expect a “title” line containing {{MOVIE}} followed
by a space and the movie’s title, then a “numbers” line that will have the year,
minutes, and acquired date, then a “notes” line that just contains {NOTES},
then zero or more lines of notes text, and finally an “end” line containing just
{{ENDMOVIE}}. We begin by expecting a “title” line.

To help the user find format errors we keep track of the current line number
in the lino variable, which we will use in error messages.

The body of the while loop that we use to read through the file is quite long, so
we will look at it in parts.

while not stream.atEnd():

title = year = minutes = acquired = notes = None

line = stream.readLine()

lino += 1

if not line.startsWith("{{MOVIE}}"):

raise ValueError, "no movie record found"

else:

title = line.mid(len("{{MOVIE}}")).trimmed()

We begin by initializing the variables that will hold one movie’s attributes to
None so that it is easy to tell whether we have read them all.

We iterate over each line in the file. Unlike the Python standard library’s
file.readline() method, PyQt’s QTextStream.readLine() strips off the line’s
trailing newline. Each time we read a line we increment lino.

The first line we expect for any movie is one beginning with the {{MOVIE}}
marker. If the line is wrong we raise an exception with an error message; the
exception handler will add the line number in the message passed up to the
user. If we have a correct line, we extract the movie’s title by reading the text
that follows the {{MOVIE}} marker at the beginning of the line, stripping off
any leading and trailing whitespace.

The QString.mid(n) method is the equivalent of unicode[n:], and QString.

trimmed() is the same as unicode.strip().

Now we are ready to read the “numbers” line.

if stream.atEnd():

raise ValueError, "premature end of file"

line = stream.readLine()

lino += 1

parts = line.split(" ")

if parts.count() != 3:

raise ValueError, "invalid numeric data"

Saving and Loading Text Files 253

year = intFromQStr(parts[0])

minutes = intFromQStr(parts[1])

ymd = parts[2].split("-")

if ymd.count() != 3:

raise ValueError, "invalid acquired date"

acquired = QDate(intFromQStr(ymd[0]),

intFromQStr(ymd[1]),

intFromQStr(ymd[2]))

We begin by checking that we haven’t prematurely reached the end of the file,
and if we have, we raise an exception. Otherwise, we read in the “numbers”
line. This line should have an integer (the year), a space, an integer (the min-
utes),a space,and the acquired date in YYYY-MM-DD format. We initially split
the line on the space character and this should give us three strings, year, min-
utes, and acquired date. We use our intFromQStr() function to convert the text
to the integer it represents; if any conversion fails an exception is raised and
handled in this method’s exception handler. We convert the year and minutes
directly, but for the acquired date we must split the string again, this time on
the hyphen character, and then construct a QDate using the integer values ex-
tracted from each part.

Now we are ready to read the {NOTES} marker, optionally followed by lines of
notes, and finally the {{ENDMOVIE}} marker.

if stream.atEnd():

raise ValueError, "premature end of file"

line = stream.readLine()

lino += 1

if line != "{NOTES}":

raise ValueError, "notes expected"

notes = QString()

while not stream.atEnd():

line = stream.readLine()

lino += 1

if line == "{{ENDMOVIE}}":

if title is None or year is None or \

minutes is None or acquired is None or \

notes is None:

raise ValueError, "incomplete record"

self.add(Movie(title, year, minutes,

acquired, notes.trimmed()))

break

else:

notes += line + "\n"

else:

raise ValueError, "missing endmovie marker"

254 Chapter 8. Data Handling and Custom File Formats

Table 8.2 Selected QTextStream Methods

Syntax Description

s.atEnd() Returns True if the end of QTextStream s has been reached
s.setCodec(c) Sets QTextStream s’s text codec to the one specified in c—this

can be a string (e.g., “UTF-8”), or a QTextCodec object
s << x Writes object x to QTextStream s; x can be of type bool, float,

int, long, QString, str, unicode, and a few others
s.readLine() Reads one line, returning it as a QString stripped of any

end-of-line characters
s.readAll() Reads the entire file, returning it as a QString

We expect to get a single line containing the {NOTES} marker. At this point,
we set the notes variable to be an empty QString. Even if no notes text is added,
the fact that we have a QString rather than a None is enough to tell us that we
read the notes, even if they were empty.

Now there are two possibilities. Either we have the {{ENDMOVIE}} marker,
or we are reading a line of notes. In the latter case we simply append the
line to the notes we have accumulated so far, adding back the newline that
PyQt’s readLine() method stripped off. Then we loop, and have either the
{{ENDMOVIE}} marker or another line of notes.

If we get the marker, we check that none of our variables is None to ensure that
we have read all the data for a movie record, and then we create and add a new
movie with the data we have gathered. Now we break out of the inner while

loop ready to read another movie, or to finish if the one just read was the last
one in the file.

If we never get the {{ENDMOVIE}} marker, at some point the end of the file
will be reached and the inner while loop will terminate.while

loop’s
else

clause

50 ☞

If this occurs, the while

loop’s else suite will execute and raise a suitable exception.A while or for loop’s
else suite is executed only if the loop completes, not if it is terminated by a
break statement.

except (IOError, OSError, ValueError), e:

error = "Failed to load: %s on line %d" % (e, lino)

finally:

if fh is not None:

fh.close()

if error is not None:

return False, error

self.__dirty = False

return True, "Loaded %d movie records from %s" % (

len(self.__movies),

QFileInfo(self.__fname).fileName())

Saving and Loading Text Files 255

The error handling is almost identical to what we have seen before, only this
time we include the line number where the error occurred.

Writing and Reading Using the codecs Module

An alternative to using the PyQt classes is to use Python’s built-in and
standard library classes for writing and reading text files. Files can be written
and read directly using the file class, but if we want to specify the encoding,
we must use the codecs module instead.

def saveText(self):

error = None

fh = None

try:

fh = codecs.open(unicode(self.__fname), "w", CODEC)

for key, movie in self.__movies:

fh.write(u"{{MOVIE}} %s\n" % unicode(movie.title))

fh.write(u"%d %d %s\n" % (movie.year, movie.minutes,

movie.acquired.toString(Qt.ISODate)))

fh.write(u"{NOTES}")

if not movie.notes.isEmpty():

fh.write(u"\n%s" % unicode(movie.notes))

fh.write(u"\n{{ENDMOVIE}}\n")

We have used exactly the same text format as we used when writing with a
QTextStream, so the code is very similar to saveQTextStream(). We open the file
using the codecs.open() function rather than the open() function; we do not
have to specify a “binary” flag. We have omitted the code from the except block
to the end since it is the same as we have seen before.

def loadText(self):

error = None

fh = None

try:

fh = codecs.open(unicode(self.__fname), "rU", CODEC)

self.clear(False)

lino = 0

while True:

title = year = minutes = acquired = notes = None

line = fh.readline()

if not line:

break

lino += 1

if not line.startswith("{{MOVIE}}"):

raise ValueError, "no movie record found"

else:

title = QString(line[len("{{MOVIE}}"):].strip())

256 Chapter 8. Data Handling and Custom File Formats

We have shown only the first few lines of the loadText() method that corre-
sponds to saveText(). This is because the method uses the same algorithm and
almost the same code as the loadQTextStream() method. The only significant
differences are due to the fact that we read in the lines as Python unicodes, so
we must convert the title and notes to QStrings. Also, Python keeps the new-
lines rather than discarding them, and returns an empty string to signify that
the end of the file has been reached, so we must slightly modify the code to
account for this. For the integers we can use Python’s int() function rather
than the intFromQStr() function we needed for QStrings.

We have chosen to read back in rU mode, which stands for “read universal
newlines”, rather than plain r mode, which stands for “read”. This just means
that the lines will be read correctly even if written on, say, Linux, and read
back on say, Windows, even though the two operating systems use different
line-ending conventions.

Saving and Loading XML Files

Both PyQt and the Python standard library can read and write XML files.
PyQt provides two parsers for reading, and can write XML using its QDomDocu-

ment class. PyQt 4.3 adds two new XML classes. The QXmlStreamReader class is
lightweight like SAX, but easier to use, and the QXmlStreamWriter class is much
easier and more efficient for writing than writing by hand or using DOM. The
Python standard library also provides extensive XML support, but in this sec-
tion we will confine ourselves to the functionality offered by the PyQt library,
since Python’s XML classes are well covered by Python’s documentation and in
such books as Python and XML and XML Processing in Python.

XML formats tend to be a lot more verbose than plain text formats, and not so
easy for humans to read. On the other hand, encoding issues are taken care
of, so hand editing can be more reliable than with plain text, and the parsing
of the overall file structure is usually a lot easier using a suitable XML library
than for plain text files. XML formats are generally simpler to extend than
either binary or plain text formats, although care must be taken when writing
XML to ensure that data does not contain XML meta-characters. Writing
XML is straightforward, but reading it requires the use of a parser. There are
two very different and widely used XML parser APIs: DOM (Document Object
Model), which loads entire XML documents into memory and is well suited to
editing a document’s structure, and SAX (Simple API for XML), which works
incrementally, so is less resource-hungry and is suitable for searching and
processing XML documents. We will show both parsers in action.

Writing XML

If we have read an XML document into a QDomDocument, or if we have created
and populated a QDomDocument in code, the easiest way to save the document to
disk is to use QDomDocument.toString() to get a QString of the entire document

Saving and Loading XML Files 257

in XML format, and to save the string to disk. In practice, though, we often
use XML only as a data-interchange format, and hold our data in custom data
structures. In these cases, we need to write the XML ourselves, and that is
what we will look at in a moment.

In XML, sequences of “whitespace” characters, such as newlines, tabs, and
spaces, are usually treated as a single space. This is often convenient, but
not in the case of our movie notes, since for the notes we want to preserve the
newlines and paragraph breaks that the user has inserted.

def encodedNewlines(text):

return text.replace("\n\n", NEWPARA).replace("\n", NEWLINE)

def decodedNewlines(text):

return text.replace(NEWPARA, "\n\n").replace(NEWLINE, "\n")

The preceding two functions can be used to preserve the users’ paragraph
breaks and newlines. The first function encodes paragraph breaks and new-
lines into the Unicode character that represents them, and the second one
decodes Unicode paragraph breaks and newlines back to the familiar \n char-
acter.

With these two functions available, we are ready to see how to export our movie
data in XML format. Let us begin by looking at the format we are aiming
to produce:

<?xml version='1.0' encoding='UTF-8'?>

<!DOCTYPE MOVIES>

<MOVIES VERSION='1.0'>

...

<MOVIE YEAR='1951' MINUTES='100' ACQUIRED='2002-02-07'>

<TITLE>The African Queen</TITLE>

<NOTES>

Katherine Hepburn, Humphrey Bogart

</NOTES>

</MOVIE>

...

</MOVIES>

The ellipses represent movie records that have been omitted to save space and
are not part of the format. Although we will always write the <MOVIE> tag’s
attributes in the same order, as far as the XML parsers are concerned the order
is arbitrary. Attribute values should not contain single or double quotes, or
the XML meta-characters, <, >, or &.★ This means that for attribute values, we
should either escape them, or ensure that we only use values that we know do
not contain these characters—for example, numbers, dates and times in ISO

★To escape XML text we must convert < to <, > to >, and & to &. In attribute values, in
addition to these conversions, we must convert ' to ' and " to ".

258 Chapter 8. Data Handling and Custom File Formats

format, and Booleans. For character data such as the title and notes, we can
include quotes, since only the meta-characters are not permitted.

def exportXml(self, fname):

error = None

fh = None

try:

fh = QFile(fname)

if not fh.open(QIODevice.WriteOnly):

raise IOError, unicode(fh.errorString())

stream = QTextStream(fh)

stream.setCodec(CODEC)

stream << ("<?xml version='1.0' encoding='%s'?>\n"

"<!DOCTYPE MOVIES>\n"

"<MOVIES VERSION='1.0'>\n" % CODEC)

We have chosen to use PyQt’s QTextStream to write our XML file; wePyQt

4.1

could just
as easily have used the codecs module, although in that case we would need to
convert the QStrings to unicodes.★

The method starts off in the now familiar way. Once the QTextStream has been
created, we set its codec to UTF-8 as usual, and then we output the first three
lines—these are always the same.

for key, movie in self.__movies:

stream << ("<MOVIE YEAR='%d' MINUTES='%d' "

"ACQUIRED='%s'>\n" % (

movie.year, movie.minutes,

movie.acquired.toString(Qt.ISODate))) \

<< "<TITLE>" << Qt.escape(movie.title) \

<< "</TITLE>\n<NOTES>"

if not movie.notes.isEmpty():

stream << "\n" << Qt.escape(

encodedNewlines(movie.notes))

stream << "\n</NOTES>\n</MOVIE>\n"

stream << "</MOVIES>\n"

We iterate over our movie data in the same way as we have done previously.
The Qt.escape() function takes a QString and returns it with any XML meta-
characters properly escaped. And we use our encodedNewlines() function to con-
vert any paragraph and line breaks in the notes to their Unicode equivalents.
We do not perform any escaping on the attributes because we know that they
cannot contain any unacceptable characters. We have omitted the end of the
method since the exception handling and return are structurally the same as
those we have seen before.

★PyQt 4.0 has a bug that prevents QTextStream from writing correctly, so for PyQt 4.0 we must use
the codecs module. The problem does not exist in PyQt 4.1 and later versions.

Saving and Loading XML Files 259

Reading and Parsing XML with PyQt’s DOM Classes

PyQt’s QDomDocument class can be used to read in an entire (well-formed) XML
document in one go. But once we have a QDomDocument, we must be able to use
it. Some applications reflect the document into a widget, often a QTreeWidget,
whereas others, like My Movies, which use XML purely as a data-interchange
format, traverse the document, populating their data structures as they go.

def importDOM(self, fname):

dom = QDomDocument()

error = None

fh = None

try:

fh = QFile(fname)

if not fh.open(QIODevice.ReadOnly):

raise IOError, unicode(fh.errorString())

if not dom.setContent(fh):

raise ValueError, "could not parse XML"

except (IOError, OSError, ValueError), e:

error = "Failed to import: %s" % e

finally:

if fh is not None:

fh.close()

if error is not None:

return False, error

try:

self.populateFromDOM(dom)

except ValueError, e:

return False, "Failed to import: %s" % e

self.__fname = QString()

self.__dirty = True

return True, "Imported %d movie records from %s" % (

len(self.__movies), QFileInfo(fname).fileName())

The first part of the load method should appear familiar, but notice that
the entire file is read when we call QDomDocument.setContent(). If this method
succeeds (returns True), we know that the XML was successfully parsed.

Once we have a QDomDocument, we need to extract our data from it, and that is
what the populateFromDOM() method does.

The end of the method is different from what we have seen before. We clear
the filename and set the dirty flag to True. This will ensure that if the user tries
to save the XML movie data they have just imported, or if they try to quit the
application, they will be given a “save as” dialog so that they get the chance to
save the data in one of the application’s binary or text formats.

260 Chapter 8. Data Handling and Custom File Formats

Earlier we mentioned that a QDomDocument could easily be written to a file. Here
is how we could do it, assuming that dom is a QDomDocument and filename is a valid
filename, but with no error checking:

codecs.open(filename, "w", "utf-8").write(unicode(dom.toString()))

This will produce a file that is slightly different from the one produced by the
exportXml() method. For example, the QDomDocument.toString() method indents
nested tags, uses double quotes rather than single quotes for attributes,
and may order the attributes differently. Nonetheless, the XML document
produced is canonically identical to the one produced by exportXml().

Once the QDomDocument has read in the XML file we need to traverse its contents
to populate the application’s data structures, and to do this we begin by calling
populateFromDOM() on the document.

def populateFromDOM(self, dom):

root = dom.documentElement()

if root.tagName() != "MOVIES":

raise ValueError, "not a Movies XML file"

self.clear(False)

node = root.firstChild()

while not node.isNull():

if node.toElement().tagName() == "MOVIE":

self.readMovieNode(node.toElement())

node = node.nextSibling()

We start by checking that the XML file we read is indeed a movies XML file.
If it is not we raise an exception, and if it is, we clear our data structures so
that they are ready to be populated by the data extracted from the DOM doc-
ument.

DOM documents are composed of “nodes”, each of which represents an XML
tag or the text between tags. A node may have children and it may have
siblings. In the case of the movies XML format, we have sibling <MOVIE> nodes
that have <TITLE> and <NOTES> child nodes, and these child nodes in turn have
child text nodes. So to extract our data we iterate over the <MOVIE> nodes,
and for each one we encounter, we extract its attributes and the data from its
child nodes.

def readMovieNode(self, element):

def getText(node):

child = node.firstChild()

text = QString()

while not child.isNull():

if child.nodeType() == QDomNode.TextNode:

text += child.toText().data()

child = child.nextSibling()

return text.trimmed()

Saving and Loading XML Files 261

The readMovieNode() begins with a nested function definition. The getText()

function takes a node as an argument—for example, a <TITLE> or <NOTES>

opening tag—and iterates over its child text nodes, accumulating their text.
Finally, it returns the text, with whitespace stripped from either end. As noted
earlier, the QString.trimmed() method does the same job as unicode.strip().

year = intFromQStr(element.attribute("YEAR"))

minutes = intFromQStr(element.attribute("MINUTES"))

ymd = element.attribute("ACQUIRED").split("-")

if ymd.count() != 3:

raise ValueError, "invalid acquired date %s" % \

unicode(element.attribute("ACQUIRED"))

acquired = QDate(intFromQStr(ymd[0]), intFromQStr(ymd[1]),

intFromQStr(ymd[2]))

The readMovieNode() method itself begins by extracting the <MOVIE> tag’s
attribute data and converting it from text into ints for the year and minutes,
and into a QDate for the date acquired.

We could have avoided having to handle the details of the acquired date our-
selves, and pushed the work onto the parser. For example, instead of having
a single ACQUIRED attribute, we could have had ACQUIREDYEAR, ACQUIREDMONTH, and
ACQUIREDDAY, each with an integer value. With these three attributes we would
not need to do the split on hyphens, but the format would have been more
verbose.

title = notes = None

node = element.firstChild()

while title is None or notes is None:

if node.isNull():

raise ValueError, "missing title or notes"

if node.toElement().tagName() == "TITLE":

title = getText(node)

elif node.toElement().tagName() == "NOTES":

notes = getText(node)

node = node.nextSibling()

if title.isEmpty():

raise ValueError, "missing title"

self.add(Movie(title, year, minutes, acquired,

decodedNewlines(notes)))

Each <MOVIE> node has two child nodes, <TITLE> and <NOTES>. Although we
always write them in the same order in the exportXml() method, we don’t want
to force the child nodes to have a particular order. For this reason, we iterate
over the child nodes and use the nested getText() method to gather the text for
whichever child node we encounter.

At the end, providing the movie has a title, we create a new Movie object and
immediately add it to our data structures using add().

262 Chapter 8. Data Handling and Custom File Formats

Using a DOM parser for importing XML into custom data structures works
fine, although we often need to write small helper functions like getText().
DOM is best used in situations where we want to hold and manipulate the
XML data inside a QDomDocument itself, rather than converting it into other
data structures.

Reading and Parsing XML with PyQt’s SAX Classes

Importing XML using a SAX parser works quite differently than using a DOM
parser. With SAX, we define a handler class that implements just the methods
that we are interested in, and then give an instance of the handler to the SAX
parser to use as it parses the XML. Parsing is not done in one go as it is with
DOM, but rather piece by piece, with our handler’s methods being called when
the data they handle is encountered. Any methods that we do not implement
are provided by the base class, and in all cases they safely do nothing.

def importSAX(self, fname):

error = None

fh = None

try:

handler = SaxMovieHandler(self)

parser = QXmlSimpleReader()

parser.setContentHandler(handler)

parser.setErrorHandler(handler)

fh = QFile(fname)

input = QXmlInputSource(fh)

self.clear(False)

if not parser.parse(input):

raise ValueError, handler.error

except (IOError, OSError, ValueError), e:

error = "Failed to import: %s" % e

finally:

if fh is not None:

fh.close()

if error is not None:

return False, error

self.__fname = QString()

self.__dirty = True

return True, "Imported %d movie records from %s" % (

len(self.__movies), QFileInfo(fname).fileName())

We begin by creating an instance of a custom SaxMovieHandler and of a SAX
XML parser. The parser can be given a content handler, an error handler,
and some other handlers; we have chosen to create just one handler, one that
can handle both content and errors, so we set this same handler for these
two purposes.

Saving and Loading XML Files 263

We get a QFile file handle and turn this into an XML “input source”. At this
point we clear our data structures, again as late as possible, and then we tell
the parser to parse the XML file. The parser returns True on success and False

on failure.

There is no separate phase for populating our data structures since we handle
all of this inside our SaxMovieHandler class as parsing progresses. At the end
we clear the filename and set the dirty flag to True, just as we did at the end of
the importDOM() method.

The SaxMovieHandler class is a QXmlDefaultHandler subclass. For content han-
dling it would normally implement at least startElement(), endElement(), and
characters() to handle start tags with their attributes, end tags, and the text
between tags. If we use the same handler for handling errors as we do here, we
must also at least implement the fatalError() method.

class SaxMovieHandler(QXmlDefaultHandler):

def __init__(self, movies):

super(SaxMovieHandler, self).__init__()

self.movies = movies

self.text = QString()

self.error = None

The super() call ensures that the base class is properly initialized. The movies

parameter is the movie container itself. The text instance variable is used
to hold between tags text—for example, the title or notes text—and the error

variable will be given an error message if something goes wrong.

def clear(self):

self.year = None

self.minutes = None

self.acquired = None

self.title = None

self.notes = None

The first time this method is called it creates an instance variable for each of a
movie’s attributes. Every time it is called it sets the variables to None; this will
make it easy to test whether we have read all of a movie’s attributes.

def startElement(self, namespaceURI, localName, qName, attributes):

if qName == "MOVIE":

self.clear()

self.year = intFromQStr(attributes.value("YEAR"))

self.minutes = intFromQStr(attributes.value("MINUTES"))

ymd = attributes.value("ACQUIRED").split("-")

if ymd.count() != 3:

raise ValueError, "invalid acquired date %s" % \

unicode(attributes.value("ACQUIRED"))

self.acquired = QDate(intFromQStr(ymd[0]),

264 Chapter 8. Data Handling and Custom File Formats

intFromQStr(ymd[1]),

intFromQStr(ymd[2]))

elif qName in ("TITLE", "NOTES"):

self.text = QString()

return True

This method is reimplemented from the base class, and for this reason we must
use the same signature. We are interested in only the last two parameters: the
qName (qualified name) that holds the tag’s name, and attributes that hold’s
the tag’s attribute data. This method is called whenever a new start tag
is encountered.

If a new <MOVIE> tag is encountered we clear the corresponding instance
variables, then populate the year, minutes, and acquired date from the tag’s
attribute data. This leaves the title and notes variables set to None.

If the tag is a <TITLE> or <NOTES> tag, we can expect to get its corresponding text
(if there is any), so we set the text variable to be an empty string, ready to be
appended to.

Every reimplemented method must return True on success or False on failure;
so we return True at the end.

def characters(self, text):

self.text += text

return True

Whenever text is encountered between tags, the characters() method is called.
We simply append the text to the text variable. The end tag will tell us
whether we are accumulating title or note text.

def endElement(self, namespaceURI, localName, qName):

if qName == "MOVIE":

if self.year is None or self.minutes is None or \

self.acquired is None or self.title is None or \

self.notes is None or self.title.isEmpty():

raise ValueError, "incomplete movie record"

self.movies.add(Movie(self.title, self.year,

self.minutes, self.acquired,

decodedNewlines(self.notes)))

self.clear()

elif qName == "TITLE":

self.title = self.text.trimmed()

elif qName == "NOTES":

self.notes = self.text.trimmed()

return True

This method is called whenever an end tag is reached. The tag’s name is in the
qName parameter. If the end tag is </MOVIE>, none of the movie data instance
variables should be None (although the title or notes could be empty QStrings).

Saving and Loading XML Files 265

If none of the variables is None, and providing the movie has a title, we create
a new Movie object and immediately add it to the movies container.

If we have reached a title or notes end tag, we know that the text that has
been accumulated in the text QString has the text between the corresponding
start and end tags, so we assign this text accordingly. If there was no text, the
assignment will be of an empty QString.

def fatalError(self, exception):

self.error = "parse error at line %d column %d: %s" % (

exception.lineNumber(), exception.columnNumber(),

exception.message())

return False

If a parsing error occurs, the fatalError() method is called. We reimplement it
to populate the handler’s error text, and return False to indicate failure. This
will cause the parser to finish parsing and to return False to its caller.

Using PyQt’s SAX parser requires us to create at least one separate handler
subclass. This is not difficult, especially since we need to reimplement only the
methods we want to use. Parsing with SAX is also less memory-hungry than
using DOM, since SAX works incrementally,and is noticeably faster, especially
for larger documents.

Summary

With all the choices available, which is the best format to use, and should we
use the Python or the PyQt classes?

Using a binary format is best for performance and platform independence, and
it is also the simplest to implement. Using a plain text format is appropriate
for small files that typically hold only simple values like strings, numbers, and
dates, and that are intended to be hand-edited. Even so, there is a risk that the
user’s text editor will assume a different encoding from the one we have used.
We recommend using UTF-8 for all plain text formats, since it is becoming
the de facto standard encoding. Reading and writing XML is a lot slower than
reading and writing binary files (except for small files, that is, less than ~1MB),
but it is worth offering, at least as export and import formats. After all, if our
users can export and import their data in XML format, it gives them the ability
to export their data, process it with some other tool, and then import back the
processed data, without having to know or care about the details of the binary
format our application normally uses.

As for whether we use the Python or PyQt classes, it probably does not matter
at all for small files holding simple data types. If we want to minimize our pro-
gramming effort, using the cPickle module is probably the easiest route. But
if we have large files (multimegabytes) or if we use complex PyQt types like
QBrush, QCursor, QFont, QIcon, QImage, and so on, it is easiest and most efficient
to use QDataStream since it can read and write all these types directly. The one

266 Chapter 8. Data Handling and Custom File Formats

drawback of using a binary format is that if we want to change our format,
we must at least change our load method so that it can load both our new and
our old formats. This is not a problem in practice, as long as we include a file
version at the start of our data after the magic number, since we can use this
to determine which loading code to use.

At this stage we have covered the fundamentals of GUI programming. We can
create main window applications,with menus, toolbars,and dock windows,and
we can create and pop up any kind of dialog we like. We have also learned how
to use Qt Designer to simplify and speed up dialog design, and we saw how to
load and save application data in various formats. In Part III we will both deep-
en and broaden our GUI programming knowledge, learning how to handle mul-
tiple documents and how to create complex dialogs that are manageable for the
user. We will also explore some of PyQt’s major architectural features, from its
low-level event-handling mechanism to the creation of custom widgets, includ-
ing coverage of 2D graphics, as well as higher-level features including item-
based graphics, rich text (HTML) handling, and model/view programming.

Exercise
Modify the My Movies application so that each Movie object can store an extra
piece of information: a QString called “location”, which is where the movie is
located—for example, the room and shelf. Provide only saving and loading of
binary Qt format .mqb files and export and import of XML files, so remove the
code for saving and loading pickles and text files. Make sure that your new My
Movies application can still read the original application’s .mqb and .xml files,
that is, files that do not have location data.

The moviedata module’s Movie class will need an extra QString attribute, called
“location”. The MovieContainer class will need several small changes. You will
need to have both an old and a current file version number so you know which
kind you are dealing with. The formats() method should now return only the
string *.mqb, or could be eliminated entirely. The save() and load() methods
need to handle only .mqb files, and must account for the location and the
different file versions. Similarly the exportXml() method and the two import
XML methods must also account for the possible presence of <LOCATION> tags.
The changes to the user interface should be obvious, so we won’t list them.

None of these changes involves many lines of code, but some are subtle and
will take a bit of care to get right. Make sure that you test your changes. For
example, load in an old file in .mqb format, and import a file in the old .xml

format. Add some locations and save the data in a new .mqb file and export as
XML. Read both of these back in to check that everything works properly.

A model solution is provided in the files, chap08/mymovies_ans.pyw, chap08/

moviedata_ans.pyw, chap08/addeditmoviedlg_ans.ui, and chap08/addeditmoviedlg-

_ans.py.

Part III

Intermediate GUI Programming

This page intentionally left blank

Layouts and Multiple Documents

99 ● Layout Policies

● Tab Widgets and Stacked Widgets

● Splitters

● Single Document Interface (SDI)

● Multiple Document Interface (MDI)

In every dialog we have created so far, all the widgets have been visible at
the same time. But in some cases, such as, complex configuration dialogs or
property editors, so many widgets are required that showing them all at once
could confuse the user. For such situations we can use tab widgets or stacked
widgets that allow us to group related widgets together, and show only the
relevant group, or we can use extension dialogs that can show extra options on
demand. These techniques can help make dialogs smaller and easier for users
to navigate and use; we will cover them in this chapter’s second section.

In the main-window-style applications we have created, we had one central
widget. But in some situations, we need to show two or more widgets in the
central area, and often want to give the user some control over their relative
sizes. One way to achieve this is to use a single central widget with dock win-
dows; we saw this approach in Chapter 6. Another approach is to use splitters,
the subject of this chapter’s third section.

Another issue that arises with main-window-style applications is how we deal
with multiple documents. There are four main approachesto this. One is to use
multiple instances of the application. In this approach, the user launches one
instance of the application for each document they wish to work on. In theory
this requires no programming effort at all, but in practice, we might want to
implement some kind of file-locking scheme or use interprocesscommunication
to ensure that the user does not start the application two or more times on the
same document. All the applications we have created so far are of this kind,
although none of them has used file locking.★

A second approach is to use SDI (Single Document Interface). This means that
the user is expected to run only one instance of the application, but can use
that application instance to create as many main windows as they need to
handle all the documents they wish to work on. (It is possible to ensure that
the user can only have one instance of an application running at the same

★For file-locking code, see “File Locking Using a Cross-Platform API” in the Python Cookbook.

269

270 Chapter 9. Layouts and Multiple Documents

time, but the technique varies from platform to platform and is beyond the
scope of this book.) This approach is quite fashionable, and is recommended by
the Apple Human Interface Guidelines for “document-style” applications. It is
covered in the fourth section.

A third approach is to use MDI (Multiple Document Interface). Again, the user
is expected to run only one instance of the application, but here, all the doc-
uments are kept within a single “workspace”, that is, in child windows inside
the main window’s central area. MDI is less fashionable than SDI, and is also
less resource hungry. For MDI applications, there is just one main window, no
matter how many documents are being worked on, whereas SDI has a main
window with its menu bar, toolbars, and so on for every document. The final
section of this chapter will show how to implement an MDI application.

A fourth alternative is to use a tab widget with each document occupying its
own tab page. This approach is used by many modern Web browsers. We will
only cover tab widgets in the context of dialogs, although in the exercise you
will get the chance to create a tab-widget-based main window application,
and perhaps surprisingly, the code required is very similar to that used for an
MDI application.

But before looking at tab widgets and stacked widgets in dialogs, and handling
multiple documents, we will take a brief diversion to discuss layouts in a bit
more depth than when we first encountered them.

Layout Policies

In earlier chapters, we saw many examples of PyQt’s layout managers in
action. It is possible in PyQt to set specific fixed sizes and positions for widgets,
or to handle layouts manually by reimplementing each widget’s resizeEvent()

handler. But using layout managers is by far the easiest approach,and it offers
additional benefits compared with manual approaches.

Layout managers allow widgets to grow and shrink to make the best use of
the space available to them, dynamically responding to the user changing the
containing form’s size. Layout managers provide a minimum size for a form
based on all the widgets’ minimum sizes. This ensures that the form cannot
be made too small to be usable, and is not fixed, but dependent on the widgets’
contents—for example, a label might need more or less width depending on
whether the text it is displaying is in English or German.

The QVBoxLayout, QHBoxLayout, and QGridLayout layout managers are very versa-
tile. The box layouts can include “stretches” that consume space between wid-
gets to prevent widgets from growing too tall or too wide. And grid layouts can
have widgets that span multiple rows and columns. All the layout managers
can be nested inside each other, so very sophisticated layouts can be created.

Nonetheless, sometimes the layout managers alone are not sufficient to
achieve the layout we want. One simple way to help the layout managers is to

Layout Policies 271

Table 9.1 PyQt’s Size Policies

Policy Effect

Fixed
The widget has the size specified by its size hint and
never changes size

Minimum
The widget’s size hint is its minimum size; it cannot be
shrunk smaller than this, but it can grow bigger

Maximum
The widget’s size hint is its maximum size; it cannot
grow bigger than this, but it can shrink down to its
minimum size hint

Preferred

The widget’s size hint is its preferred size; it can be
shrunk down to its minimum size hint, or it can grow
bigger than its size hint

Expanding

The widget can be shrunk down to its minimum size
hint, or it can grow bigger than its size hint, but it
prefers to grow bigger

set the size policies of those widgets that are not being laid out satisfactorily.
Every widget has vertical and horizontal size policies that can be set indepen-
dently. (Every widget can also have a fixed minimum and maximum size, but
using size policies usually provides better resizing behavior.) In addition, two
sizes are associated with every widget: a size hint and a minimum size hint.
The former is the widget’s preferred size, and the latter is the smallest size the
widget can be shrunk to. The sizes are used by the size policies as shown in
Table 9.1.

For example, a QLineEdit might have a default horizontal policy of Expanding

and a vertical policy of Fixed. This would mean that the line edit will take up as
much horizontal space as it can get, but will always have the same vertical size.
Every built-in PyQt widget has sensible size hints and size policies already set,
so normally we need to change them for only one or two widgets when tweaking
a layout.

Size policies also store a “stretch factor” in addition to a policy. This is used
to indicate how layout managers should share space between widgets. For
example, if we had a QVBoxLayout that contained two QListWidgets, both would
want to grow in both directions. But if we wanted the bottom one to grow faster
than the top one, we could give the top one a stretch factor of 1 and the bottom
one a stretch factor of 3. This will ensure that if the user resizes, the extra
space will be distributed between the two widgets in a proportion of 1:3.

If setting size policies and stretch factors is still not enough, we can always cre-
ate a subclass and reimplement the sizeHint() and minimumSizeHint() methods
to return the size we want. We will see examples of this in Chapter 11.

272 Chapter 9. Layouts and Multiple Documents

Tab Widgets and Stacked Widgets

Some dialogs require so many widgets to present all the options that they
make available that they become difficult for the user to understand. The most
obvious way to deal with this is to create two or more dialogs and to divide the
options between them. This is a good approach when it is possible since it min-
imizes the demands made on the user, and may also be easier from a mainte-
nance point of view than a single complex dialog. But often we need to use a
single dialog because the options we are presenting to the user are related and
need to be presented together.

When we must use a single dialog, there are two kinds of groups of options
that we must consider. One kind is simply a group of related options. This
is most easily handled by using a QTabWidget. A tab widget can have as many
“pages” (child widgets and tab captions) as necessary, each one laid out with
the widgets that are needed to present the relevant options. Figure 9.1 shows
a PaymentDlg, an example of a three-page tab widget that was created using Qt
Designer.

Figure 9.1 A dialog that uses a tab widget for choosing a payment method

In Qt Designer’s Widget Box’s Containers section there is a Tab Widget. This
can be dragged onto a form like any other widget. Like most container widgets,
and unlike most other widgets, we normally have to manually resize the
tab widget after dropping it on the form, to roughly the size we want. In Qt
Designer, the tab widget has context menu options for deleting and adding
pages. The current page can be set by clicking the relevant tab or by setting
the “currentIndex” property. The current page’s tab text can be set by setting
the “currentTabText” property.

Once a tab widget has been dragged onto a form and resized, we can drag
other widgets onto its pages. These widgets can be laid out in the normal
way, and each tab page can be laid out in a similar way to the form itself: by
deselecting all the widgets, then clicking the tab page, and then applying a
layout manager.

Thanks to their labelled tabs, tab widgets make it obvious to the user that there
are more options on other tab pages, and provide an easy means by which the

Tab Widgets and Stacked Widgets 273

user can navigate between pages. Tab widgets can have rounded or angled tab
corners, and can have the tabs at the top, bottom, left, or right.

Although using Qt Designer is quicker and easier than creating the dialog by
hand, it is interesting and useful to know how to achieve the same thing purely
in code. We won’t show the creation of the ordinary widgets, since we have
seen that enough times by now; instead, we will focus on the tab widget and
the form’s overall layout. The following extracts are all from the PaymentDlg

class’s initializer in chap09/paymentdlg.pyw. (The Qt Designer version is in the
files paymentdlg.ui and paymentdlg.py.)

tabWidget = QTabWidget()

cashWidget = QWidget()

cashLayout = QHBoxLayout()

cashLayout.addWidget(self.paidCheckBox)

cashWidget.setLayout(cashLayout)

tabWidget.addTab(cashWidget, "Cas&h")

We create the tab widget just like any other widget. Each page in a tab widget
must contain a widget, so we create a new widget, cashWidget, and create a lay-
out for it. Then we add the relevant widgets—in this case, just one, paidCheck-
Box—to the layout, and then set the layout on the containing widget. Finally,
we add the containing widget as a new tab to the tab widget, along with the
tab’s label text.★

checkWidget = QWidget()

checkLayout = QGridLayout()

checkLayout.addWidget(checkNumLabel, 0, 0)

checkLayout.addWidget(self.checkNumLineEdit, 0, 1)

checkLayout.addWidget(bankLabel, 0, 2)

checkLayout.addWidget(self.bankLineEdit, 0, 3)

checkLayout.addWidget(accountNumLabel, 1, 0)

checkLayout.addWidget(self.accountNumLineEdit, 1, 1)

checkLayout.addWidget(sortCodeLabel, 1, 2)

checkLayout.addWidget(self.sortCodeLineEdit, 1, 3)

checkWidget.setLayout(checkLayout)

tabWidget.addTab(checkWidget, "Chec&k")

This tab is created in exactly the same way as the first one. The only differ-
ences are that we have used a grid layout, and we have more widgets to put in
the layout.

We won’t show the code for the third tab, because it is structurally the same as
the ones we have already seen.

★In the PyQt documentation, and to some extent, the QTabWidget’s API, the term “tab” is used to
refer to a tab’s label alone, and to a tab’s label and page together.

274 Chapter 9. Layouts and Multiple Documents

layout = QVBoxLayout()

layout.addLayout(gridLayout)

layout.addWidget(tabWidget)

layout.addWidget(self.buttonBox)

self.setLayout(layout)

For completeness,we have shown the heart of the dialog’s layout, omitting only
the creation of the grid layout that holds the labels, line edits, and spinboxes at
the top of the form. The buttons are provided by a QDialogButtonBox, a widget
that can be laid out like any other. Finally, we lay out the whole form in a
vertical box layout: first the grid at the top, then the tab widget in the middle,
and then the button box at the bottom.

Another kind of options group is one that is applicable only in certain circum-
stances. In the simple case where a group of options is applicable or not, we
can use a checkable QGroupBox. If the user unchecks the group box, all the wid-
gets it contains are disabled. This means that the user can see what options
the group contains, even when they are unavailable, which is often helpful. In
other cases, we might have two or more groups of options, only one of which is
applicable at any one time. For this situation, a QStackedWidget provides a so-
lution. Conceptually, a stacked widget is a tab widget that has no tabs. So the
user has no visual clue that a stacked widget is present, and has no means of
navigating between the stacked widget’s pages.

Design Time Preview Time Runtime

Figure 9.2 A dialog that uses a stacked widget

To use a stacked widget, we can drag a Stacked Widget onto a form in Qt
Designer, and resize it in the same way as for a tab widget. Inside Qt Designer a
stacked widget is indicated by two tiny arrowheads in its top right-hand corner.
These arrowheads are also present when the form is previewed, but they do
not appear at runtime—they are shown at the top right of the color combobox
in the first two screenshots in Figure 9.2. Widgets can be dragged onto stacked
widget pages and laid out in exactly the same way as for tab widgets. Stacked
widgets have a context menu that has options for adding and deleting pages,

Tab Widgets and Stacked Widgets 275

just like a tab widget, and additional options for navigating between pages and
for changing the page order.

Since stacked widgets have no tabs, we must provide the user with a means
of navigating between pages. In the VehicleRentalDlg shown in Figure 9.2, the
vehicle type combobox is used as a page selector. To make this work, in Qt De-
signer we have connected the combobox’scurrentIndexChanged(int) signal to the
stacked widget’s setCurrentIndex(int) slot. Another commonly used approach
that lets users see all the pages available is to use a QListWidget containing
the name of each page, and connecting its currentRowChanged(int) signal in the
same way we connected the combobox’s signal.

We will now see how to create a stacked widget in code. The following extracts
are from the VehicleRentalDlg class’s initializer in chap09/vehiclerentaldlg.pyw.
(The Qt Designer version is in the files vehiclerentaldlg.ui and vehicle-

rentaldlg.py.)

self.stackedWidget = QStackedWidget()

carWidget = QWidget()

carLayout = QGridLayout()

carLayout.addWidget(colorLabel, 0, 0)

carLayout.addWidget(self.colorComboBox, 0, 1)

carLayout.addWidget(seatsLabel, 1, 0)

carLayout.addWidget(self.seatsSpinBox, 1, 1)

carWidget.setLayout(carLayout)

self.stackedWidget.addWidget(carWidget)

Adding a “page” to a stacked widget is very similar to adding a tab to a tab
widget. We begin by creating a plain widget, and then create a layout for it
and lay out the widgets we want. Then we set the layout on the plain widget
and add this widget to the widget stack. We have not shown the code for the
vanWidget, because it is structurally identical.

topLayout = QHBoxLayout()

topLayout.addWidget(vehicleLabel)

topLayout.addWidget(self.vehicleComboBox)

bottomLayout = QHBoxLayout()

bottomLayout.addWidget(mileageLabel)

bottomLayout.addWidget(self.mileageLabel)

layout = QVBoxLayout()

layout.addLayout(topLayout)

layout.addWidget(self.stackedWidget)

layout.addLayout(bottomLayout)

layout.addWidget(self.buttonBox)

self.setLayout(layout)

Once again, for completeness we have shown the whole dialog’s layout. We
begin with a top layout that has the combobox that is used to set the stacked

276 Chapter 9. Layouts and Multiple Documents

widget’s current widget. Then we create a bottom layout of the mileage labels,
and then a button layout for the buttons. Next, we add all of these layouts, and
the stacked widget itself, to a vertical box layout.

self.connect(self.buttonBox, SIGNAL("accepted()"), self.accept)

self.connect(self.buttonBox, SIGNAL("rejected()"), self.reject)

self.connect(self.vehicleComboBox,

SIGNAL("currentIndexChanged(QString)"),

self.setWidgetStack)

self.connect(self.weightSpinBox, SIGNAL("valueChanged(int)"),

self.weightChanged)

We must provide the user with a navigation mechanism, and we do this by
connecting the vehicle combobox’s currentIndexChanged() signal to a custom
setWidgetStack() slot. The last slot is simply part of the form’s validation;
it is there to set the maximum mileage, which is fixed for cars but for vans is
dependent on their weight.

def setWidgetStack(self, text):

if text == "Car":

self.stackedWidget.setCurrentIndex(0)

self.mileageLabel.setText("1000 miles")

else:

self.stackedWidget.setCurrentIndex(1)

self.weightChanged(self.weightSpinBox.value())

def weightChanged(self, amount):

self.mileageLabel.setText("%d miles" % (8000 / amount))

The setWidgetStack() slot makes the appropriate widget visible, and handles
part of the mileage setting since this varies depending on whether the vehicle
is a car or a van.

We have used the combobox’s current text to determine which widget to make
visible. A possibly more robust approach would be to associate a data item with
each combobox item (using the two-argument QComboBox.addItem() method),
and use the current item’s data item to choose which widget to show.

Extension Dialogs

There is another approach that we can take for complex dialogs: extension
dialogs. These are typically used for cases where the dialog has “simple” and
“advanced” options. Initially the dialog is shown with the simple options, but
a toggle button is provided to show or hide the advanced options.

The extension dialog shown in Figure 9.3 shows the extra checkboxes when
the More toggle button is depressed. Any QPushButton can be made into a
toggle button by calling setCheckable(True) on it, or by setting its “checkable”
property to True in Qt Designer.

Tab Widgets and Stacked Widgets 277

Figure 9.3 An extension dialog

To make the extension dialog work we have used two “tricks”. The first trick
is to put all the advanced options’ widgets inside a QFrame. This means that we
need to hide and show only the frame, since PyQt will automatically hide and
show all the widgets inside the frame to reflect the frame’s state of visibility.
If we don’t want the user to see the frame’s outline when it is visible, we can
simply set its “frameShape” property to QFrame.NoFrame.

The second trick is to make the dialog a fixed size. This will ensure that the
dialog shrinks as small as possible (while keeping its margins), and takes
account of the dialog’s visible contents. The effect of this is to make the di-
alog short when the advanced options are hidden, and tall enough to show
the advanced options when they are visible. We must also hide the frame
when the dialog is created. Here is the code for the dialog’s initializer (from
chap09/findandreplacedlg.py):

class FindAndReplaceDlg(QDialog,

ui_findandreplacedlg.Ui_FindAndReplaceDlg):

def __init__(self, parent=None):

super(FindAndReplaceDlg, self).__init__(parent)

self.setupUi(self)

self.moreFrame.hide()

self.layout().setSizeConstraint(QLayout.SetFixedSize)

But how do we relate the More button to the shown/hidden state of the frame?
Simply by connecting the moreButton’s toggled(bool) signal to the moreFrame’s
setVisible(bool) slot. Note that if this connection is made in Qt Designer,
we must check the Configure Connection dialog’s “Show all signals and slots”
checkbox; otherwise, the setVisible() slot will not appear.

For this section’s final example, we will again look at how to achieve the layout
in code. Unlike the previous two layouts which showed the use of new widgets
(QTabWidget and QStackedWidget), this dialog’s layout uses only widgets we have
seen before—but does so in new ways. The following extractsare from the Find-

278 Chapter 9. Layouts and Multiple Documents

AndReplaceDlg class’s initializer in chap09/findandreplacedlg.pyw. (The Qt De-
signer version is in the files findandreplacedlg.ui and findandreplacedlg.py.)

We will only show the creation of the form’s widgets that are specifically
relevant to extension dialogs. The form’s layout is shown in Figure 9.4.

moreFrame = QFrame()

moreFrame.setFrameStyle(QFrame.StyledPanel|QFrame.Sunken)

We create a frame in which we will put the extra checkboxes. If we didn’t do
the setFrameStyle() call, the frame would have no outline.

line = QFrame()

line.setFrameStyle(QFrame.VLine|QFrame.Sunken)

The line that we “draw” to visually separate the dialog’s main widgets on
the left from the buttons on the right is also a frame. Horizontal lines can be
created by using a frame style of QFrame.HLine.

moreButton = QPushButton("&More")

moreButton.setCheckable(True)

The More button is different from other buttons in one respect: It is checkable.
This means that it acts like a toggle button, staying down when clicked the first
time, then coming up when clicked the next time, and so on.

findLabel findLineEdit

replaceLabel replaceLineEdit

caseCheckBox

wholeCheckBox

backwardsCheckBox g

regexCheckBox

ignoreNotesCheckBox

findButton

replaceButton

closeButton

moreButton

s
t
r
e
t
c
h

gridLayout

frameLayout m
o
r
e
F
r
a
m
e

leftLayout

buttonLayout

mainLayout

Figure 9.4 The Find and Replace dialog’s layout

The labels and line edits are laid out in a grid; we will not show the code since
we have seen this kind of layout many times before.

frameLayout = QVBoxLayout()

frameLayout.addWidget(self.backwardsCheckBox)

frameLayout.addWidget(self.regexCheckBox)

frameLayout.addWidget(self.ignoreNotesCheckBox)

moreFrame.setLayout(frameLayout)

Tab Widgets and Stacked Widgets 279

We want the extra checkboxes to be laid out inside the more frame. To do this
we create a layout, in this case a vertical box layout, and add the checkboxes to
it. Then we set the layout on the frame. In previous examples, we have added
layouts to layouts to achieve nesting, but here we nest by adding a layout to a
frame. So in addition to being able to nest layouts inside one another, we can
also nest frames and group boxes inside layouts, which gives us a great deal
of flexibility.

leftLayout = QVBoxLayout()

leftLayout.addLayout(gridLayout)

leftLayout.addWidget(self.caseCheckBox)

leftLayout.addWidget(self.wholeCheckBox)

leftLayout.addWidget(moreFrame)

The left layout is a vertical box layout to which we add the grid layout (with
the labels and line edits), the case sensitivity and whole words checkboxes,
and then the more frame (that contains the extra checkboxes in a vertical
box layout).

buttonLayout = QVBoxLayout()

buttonLayout.addWidget(self.findButton)

buttonLayout.addWidget(self.replaceButton)

buttonLayout.addWidget(closeButton)

buttonLayout.addWidget(moreButton)

buttonLayout.addStretch()

The button layout is very similar to ones we have seen before, only this time it
is using a vertical box layout rather than a horizontal box layout.

mainLayout = QHBoxLayout()

mainLayout.addLayout(leftLayout)

mainLayout.addWidget(line)

mainLayout.addLayout(buttonLayout)

self.setLayout(mainLayout)

The dialog’s main layout is a horizontal box layout, with the left layout on the
left, then the dividing line, and then the button layout. The line will grow and
shrink vertically according to whether the more frame is visible (and therefore
whether the dialog is tall or short).

moreFrame.hide()

mainLayout.setSizeConstraint(QLayout.SetFixedSize)

We initially hide the more frame (and therefore the widgets it contains), and
we use the set fixed size trick to ensure that the dialog resizes itself according
to whether the more frame is visible.

self.connect(moreButton, SIGNAL("toggled(bool)"),

moreFrame, SLOT("setVisible(bool)"))

280 Chapter 9. Layouts and Multiple Documents

The last thing we must do is connect the More button’s toggled() signal to the
more frame’s setVisible() slot. When the frame is hidden (or shown), it will in
turn hide (or show) all the widgets laid out inside it, because when show() or
hide() is called on a widget, PyQt automatically propagates these calls to all
the widget’s children.

We have noted that there are two versions of each dialog shown in this section.
One version is written entirely in code, for example, paymentdlg.pyw—and the
other version has a Qt Designer user interface, with code in a module file—for
example, paymentdlg.ui and paymentdlg.py. By comparing the “all in code” (.pyw)
versions with the Qt Designer and module versions (.py), we can see clearly how
much code writing we can avoid by using Qt Designer. An additional benefit of
using Qt Designer, especially for complex widgets, is that it makes changing
the design much easier than is the case when we do things manually.

Splitters

Some main-window-style applications need to use more than one widget in
their central area. Two common types of applications that need to do this are
email clients and network news readers. There are three approaches we can
take to handle this. One is to create a composite Compos-

ite
widgets

☞ 325

widget, that is, a widget that
is composed of other widgets (created and laid out like a dialog, but inheriting
from QWidget instead of QDialog), and use this widget as the main window’s cen-
tral widget. Another approach is to have just one central widget and put the
other widgets inside dock windows—we have already seen this in Chapter 6.
The third approach is to use splitters, the topic of this section.

Figure 9.5 shows a mock-up of a news reader application, and Figure 9.6
illustrates the relationship between the form’s splitters and widgets. Splitters
are fully supported by Qt Designer, and are used in much the same way as
vertical and horizontal box layouts: We select two or more widgets, and click
Form→Lay Out Horizontally in Splitter or Form→Lay Out Vertically in Splitter.

In this section we will show how to create splitters in code, including how
to save and restore their relative positions. We will begin by looking at the
relevant parts of the News Reader mock-up’s initializer.

class MainWindow(QMainWindow):

def __init__(self, parent=None):

super(MainWindow, self).__init__(parent)

self.groupsList = QListWidget()

self.messagesList = QListWidget()

self.messageView = QTextBrowser()

The initializer begins conventionally with the call to super(). The next three
lines are slightly unusual, since although this is a main window, we have
created three widgets instead of just one.

Splitters 281

Figure 9.5 The News Reader application mock-up

self.messageSplitter = QSplitter(Qt.Vertical)

self.messageSplitter.addWidget(self.messagesList)

self.messageSplitter.addWidget(self.messageView)

self.mainSplitter = QSplitter(Qt.Horizontal)

self.mainSplitter.addWidget(self.groupsList)

self.mainSplitter.addWidget(self.messageSplitter)

self.setCentralWidget(self.mainSplitter)

We now create two splitters. The first is the messageSplitter; this holds the
message list and message view widgets vertically, one above the other. The
second splitter, mainSplitter, splits horizontally, with the group list widget on
its left and the message splitter on its right. Like box layouts, splitters can hold
more than two widgets, in which case they place a splitter in between each pair
of widgets. The main splitter holds one widget and the other splitter, which
in turn holds the other two widgets. So the main splitter ultimately holds
everything else, and since splitters are widgets (unlike box layouts, which are
layouts), a splitter can be added as a main window’s central widget, as we have
done here.

Some users find splitters annoying because they can resize them only by using
the mouse. We will minimize this annoyance by saving and restoring the user’s
splitter sizes. This is helpful since the user can simply set the sizes once, and
from then on the sizes they set will be honored.

282 Chapter 9. Layouts and Multiple Documents

groupList

messageList

messageView

mainSplitter

messageSplitter

0 1

0

1The numbers are the
index positions of the
widgets inside the splitters.

Figure 9.6 The News Reader’s splitters and widgets

settings = QSettings()

size = settings.value("MainWindow/Size",

QVariant(QSize(600, 500))).toSize()

self.resize(size)

position = settings.value("MainWindow/Position",

QVariant(QPoint(0, 0))).toPoint()

self.move(position)

self.restoreState(

settings.value("MainWindow/State").toByteArray())

self.messageSplitter.restoreState(

settings.value("MessageSplitter").toByteArray())

self.mainSplitter.restoreState(

settings.value("MainSplitter").toByteArray())

Saving the user’s main window settings begins with some familiar code for
restoring the window’s size and position and the state of any toolbars and dock
windows it may have. Splitters too have a state, and this is restored and saved
in the same way as the main window’s state.

def closeEvent(self, event):

if self.okToContinue():

settings = QSettings()

settings.setValue("MainWindow/Size", QVariant(self.size()))

settings.setValue("MainWindow/Position",

QVariant(self.pos()))

settings.setValue("MainWindow/State",

QVariant(self.saveState()))

settings.setValue("MessageSplitter",

QVariant(self.messageSplitter.saveState()))

settings.setValue("MainSplitter",

QVariant(self.mainSplitter.saveState()))

else:

event.ignore()

In the main window’s close event, again the code begins in a familiar way, only
we now save the state of the splitters in addition to the main window’s size,
position, and state.

Splitters 283

When the News Reader application is run for the very first time, by default the
main splitter gives exactly half its width to the group list widget, and half to
the message splitter. Similarly, the message splitter gives half its height to the
message list widget and half to the message view widget. We want to change
these proportions, making the group list narrower and the message viewer
taller, and we can do so by applying stretch factors. For example:

self.mainSplitter.setStretchFactor(0, 1)

self.mainSplitter.setStretchFactor(1, 3)

self.messageSplitter.setStretchFactor(0, 1)

self.messageSplitter.setStretchFactor(1, 2)

The first argument to setStretchFactor() is the 0-based index position of the
widget (from left to right, or from top to bottom), and the second argument
is the stretch factor to be applied. In this case, we have said that the zero-th
widget (the group list widget) should have a stretch factor of 1 and the first
widget (the message splitter) should have a stretch factor of 3, thus dividing
the horizontal space in a proportion of 1:3. Similarly, for the message splitter
we split the vertical space in a proportion of 1:2 in favor of the message view
widget. Since we save and restore the splitters’ sizes, the stretch factors have
an effect only the first time the application is run.

Single Document Interface (SDI)

For some applications, users want to be able to handle multiple documents.
This can usually be achieved simply by running more than one instance of an
application, but this can consume a lot of resources. Another disadvantage
of using multiple instances is that it is not easy to provide a common Window
menu that the user can use to navigate between their various documents.

There are three commonly used solutions to this. One is to use a single main
window with a tab widget, and with each tab holding one document. This
approach is fashionable for Web browsers,but it can be inconvenient when edit-
ing documents since it isn’t possible to see two or more documents at once. We
will not show this approach since the coverage of tab widgets in this chapter’s
second section is sufficient,and because you’ll have the chance to try it for your-
self in the exercise. The other two approaches are SDI, which we will cover in
this section, and MDI, which we will cover in the next section.

The key to creating an SDI application is to create a window subclass that
handles everything itself, including loading, saving, and cleanup, reducing the
application to be essentially a collection of one or more such windows.

We will begin by looking at some extracts from the SDI Text Editor’s initializer;
the application itself is shown in Figure 9.7.

class MainWindow(QMainWindow):

NextId = 1

284 Chapter 9. Layouts and Multiple Documents

Figure 9.7 SDI Text Editor with three documents

Instances = set()

def __init__(self, filename=QString(), parent=None):

super(MainWindow, self).__init__(parent)

self.setAttribute(Qt.WA_DeleteOnClose)

MainWindow.Instances.add(self)

The NextId static variable is used to provide numbers for new empty win-
dows: “Unnamed-1.txt”, “Unnamed-2.txt”, and so on.

The application consists of one or more MainWindow instances, each of which
must be able to act independently. However, there are three common situations
where we need to access all of the instances from inside any one of them. One
is to provide a “save all” option, another is to provide a Window menu through
which the user can switch between the window instances, and another is to
provide a “quit” option that the user can use to terminate the application, and
which must implicitly close every window. The Instances static variable is
what we use to keep track of all the instances.

When a new window instance is created, we set it to delete itself when closed.
This means that windows can be closed directly by the user or indirectly
by other instances (when the application is terminated, for example). One
implication of using Qt.WA_DeleteOnClose is that the window should take care
of saving unsaved changes and cleaning up itself. We also add the window to
the static set of window instances so that any window instance can gain access
to all the other windows. We will look into all of these matters further on.

Single Document Interface (SDI) 285

self.editor = QTextEdit()

self.setCentralWidget(self.editor)

The QTextEdit is the ideal widget for our central widget, with some actions
being able to be passed directly to it, as we will see in acreate-

Action()

175 ☞

moment. We will now
look at just a few of the actions, skipping the createAction() method that we
have seen before.

fileSaveAllAction = self.createAction("Save A&ll",

self.fileSaveAll, icon="filesave",

tip="Save all the files")

This action is similar to almost all the other file actions, with a connection to
one of the MainWindow subclass’s methods.

fileCloseAction = self.createAction("&Close", self.close,

QKeySequence.Close, "fileclose",

"Close this text editor")

The “close” action is similar to those we have seen before. As usual, we do not
reimplement the close() method, but instead reimplement the closeEvent()

handler so that we can intercept any clean closure of the window. What is
different is that this action closes the only current window, not the application
(unless this is the application’s only window).

fileQuitAction = self.createAction("&Quit", self.fileQuit,

"Ctrl+Q", "filequit", "Close the application")

The “quit” action terminates the application, and does so by closing each
of the SDI Text Editor’s windows, as we will see when we review the file-

Quit() method.

editCopyAction = self.createAction("&Copy", self.editor.copy,

QKeySequence.Copy, "editcopy",

"Copy text to the clipboard")

This action connects to the QTextEdit’s relevant slot. The same is true of the
“cut” and “paste” actions.

The menus, toolbars, and status bar are all created in ways that we have seen
previously, except for theWindowmenu, which we will look at now.

self.windowMenu = self.menuBar().addMenu("&Window")

self.connect(self.windowMenu, SIGNAL("aboutToShow()"),

self.updateWindowMenu)

We do not add any actions to the Window menu at all. Instead, we simply
connect the menu’s aboutToShow() method to our custom updateWindowMenu()

method which, as we will see, populates the menu with all the SDI Text Editor
windows.

286 Chapter 9. Layouts and Multiple Documents

self.connect(self, SIGNAL("destroyed(QObject*)"),

MainWindow.updateInstances)

When the user closes a window, thanks to the Qt.WA_DeleteOnClose flag, the
window will be deleted. But because we have a reference to the window in the
static Instances set, the window cannot be garbage-collected. For this reason
we connect the window’s destroyed() signal to a slot that updates the Instances

by removing any windows that have been closed. We will discuss this in more
detail when we look at the updateInstances() method.

Since each window is responsible for a single file, we can have a single filename
associated with each window. The filename can be passed to the window’s
initializer, and it defaults to an empty QString. The last lines of the initializer
handle the filename.

self.filename = filename

if self.filename.isEmpty():

self.filename = QString("Unnamed-%d.txt" % \

MainWindow.NextId)

MainWindow.NextId += 1

self.editor.document().setModified(False)

self.setWindowTitle("SDI Text Editor - %s" % self.filename)

else:

self.loadFile()

If the window has no filename, either because the application has just been
started or because the user has invoked the “file new” action, we create a
suitable window title; otherwise, we load the given file.

The closeEvent(), loadFile(), fileSave(), and fileSaveAs() methods are very
similar to ones we have seen before, so we will not describe them here. (They
are in the source code in chap09/sditexteditor.pyw, of course.) Instead, we will
focus on those things that are special for an SDI application.

def fileNew(self):

MainWindow().show()

When the user invokes the “file new” action, this method is called. Another
instance of this class is created, and show() is called on it (so it is shown mode-
lessly).At the end of the method,we would expect the window to go out of scope
and be destroyed since it does not have a PyQt parent and it is not an instance
variable. But inside the main window’s initializer, the window adds itself to
the static Instances set, so an object reference to the window still exists, and
therefore, the window is not destroyed.

def fileOpen(self):

filename = QFileDialog.getOpenFileName(self,

"SDI Text Editor -- Open File")

if not filename.isEmpty():

Single Document Interface (SDI) 287

if not self.editor.document().isModified() and \

self.filename.startsWith("Unnamed"):

self.filename = filename

self.loadFile()

else:

MainWindow(filename).show()

This method is slightly different from similar ones we have seen before. If
the user gives a filename, and the current document is both unmodified and
unnamed (i.e., a new empty document), we load the file into the existing
window; otherwise, we create a new window, passing it the filename to load.

def fileSaveAll(self):

count = 0

for window in MainWindow.Instances:

if isAlive(window) and \

window.editor.document().isModified():

if window.fileSave():

count += 1

self.statusBar().showMessage("Saved %d of %d files" % (

count, len(MainWindow.Instances)), 5000)

As a courtesy to users, we provide a Save Allmenu option. When it is invoked
we iterate over every window in the Instances set, and for each window that is
“alive” and modified, we save it.

A window is alive if it has not been deleted. Unfortunately, this is not quite
as simple as it seems. There are two lifetimes associated with a QWidget: the
lifetime of the Python variable that refers to the widget (in this case, the Main-

Window instances in the Instances set), and the lifetime of the underlying PyQt
object that is the widget as far as the computer’s window system is concerned.

Normally, the lifetimes of a PyQt object and its Python variable are exactly the
same. But here they may not be. For example, suppose we started the applica-
tion and clicked File→New a couple of times so that we had three windows, and
then we navigated to one of them and closed it. At this point the window that
is closed (thanks to the Qt.WA_DeleteOnClose attribute) will be deleted.

Under the hood, PyQt actually calls the deleteLater() method on the deleted
window. This gives the window the chance to finish anything it is in the middle
of doing, so that it can be cleanly deleted. This will normally be all over in less
than a millisecond, at which point the underlying PyQt object is deleted from
memory and no longer exists. But the Python reference in the Instances set
will still be in place, only now referring to a PyQt object that has gone. For this
reason, we must always check any window in the Instances set for aliveness
before accessing it.

def isAlive(qobj):

import sip

288 Chapter 9. Layouts and Multiple Documents

try:

sip.unwrapinstance(qobj)

except RuntimeError:

return False

return True

The sip module is one of PyQt’s supporting modules that we do not normally
need to access directly. But in cases where we need to dig a bit deeper, it can be
useful. Here, the method tries to access a variable’s underlying PyQt object.
If the object has been deleted, a RuntimeError exception is raised, in which case
we return False; otherwise, the object still exists and we return True.★ By per-
forming this check, we ensure that a window that has been closed and deleted
is not inadvertently accessed, even if we have not yet deleted the variable that
refers to the window.

@staticmethod

def updateInstances(qobj):

MainWindow.Instances = set([window for window \

in MainWindow.Instances if isAlive(window)])

Whenever a window is closed (and therefore deleted), it emits a destroyed()

signal, which we connected to the updateInstances() method in the initializer.
This method overwrites the Instances set with a set that contains only those
window instances that are still alive.

So why do we need to check for aliveness when we iterate over the
instances—for example, in the fileSaveAll() method—since this method en-
sures that the Instances set is kept up-to-date and is holding only live windows?
The reason is that it is theoretically possible that between the time when a win-
dow is closed and the Instances set is updated, the window is iterated over in
some other method.

Whenever the user clicks the Window menu in any SDI Text Editor window,
a menu listing all the current windows appears. This occurs because the
windowMenu’s aboutToShow() signal is connected to the updateWindowMenu() slot
that populates the menu.

def updateWindowMenu(self):

self.windowMenu.clear()

for window in MainWindow.Instances:

if isAlive(window):

self.windowMenu.addAction(window.windowTitle(),

self.raiseWindow)

First any existing menu entries are cleared; there will always be at least one,
the current window. Next we iterate over all the window instances and add an

★The isAlive() function is based on Giovanni Bajo’s PyQt (then PyKDE) mailing list posting, “How
to detect if an object has been deleted”. The list is used for both PyQt and PyKDE.

Single Document Interface (SDI) 289

action for any that are alive. The action has text that is simply the window’s
title (the filename) and a slot—raiseWindow()—to be called when the menu
option is invoked by the user.

def raiseWindow(self):

action = self.sender()

if not isinstance(action, QAction):

return

for window in MainWindow.Instances:

if isAlive(window) and \

window.windowTitle() == action.text():

window.activateWindow()

window.raise_()

break

This method could be called by any of the Window menu’s entries. We begin
with a sanity check, and then we iterate over the window instances to see
which one has a title whose text matches the action’s text. If we find a match,
we make the window concerned the “active” window (the application’s top-level
window that has the keyboard focus), and raise it to be on top of all other
windows so that the user can see it.

In the MDI section that follows we will see how to create a more sophisticated
Windowmenu, with accelerators and some additional menu options.

def fileQuit(self):

QApplication.closeAllWindows()

PyQt provides a convenient method for closing all of an application’s top-level
windows. This method calls close() on all the windows, which in turn causes
each window to get a closeEvent(). In this event (not shown), we check to see
whether the QTextEdit’s text has unsaved changes, and if it has we pop up a
message box asking the user if they want to save.

app = QApplication(sys.argv)

app.setWindowIcon(QIcon(":/icon.png"))

MainWindow().show()

app.exec_()

At the end of the sditexteditor.pyw file, we create a QApplication instance and
a single MainWindow instance and then start off the event loop.

Using the SDI approach is very fashionable, but it has some drawbacks. Since
each main window has its own menu bar, toolbar, and possibly dock windows,
there is more resource overhead than for a single main window.★ Also, although
it is easy to switch between windows using the Window menu, if we wanted

★On Mac OS X there is only one menu bar, at the top of the screen. It changes to reflect whichever
window currently has the focus.

290 Chapter 9. Layouts and Multiple Documents

more control over window sizing and positioning, we would have to write the
code ourselves. These problems can be solved by using the less fashionable
MDI approach that we cover in the next section.

Multiple Document Interface (MDI)

MDI offers many benefits compared with SDI or with running multiple appli-
cation instances. MDI applications are less resource-hungry, and they make it
much easier to offer the user the ability to lay out their document windows
in relation to each other. One drawback, however, is that you cannot switch
between MDI windows using Alt+Tab (Command+Tabon Mac OS X),although this
is rarely a problem in practice since for MDI applications, programmers invari-
ably implement a Windowmenu for navigating between windows.

The key to creating MDI applications is to create a widget subclass that handles
everything itself, including loading, saving, and cleanup, with the application
holding these widgets in an MDI “workspace”, and passing on to them any
widget-specific actions.

In this section, we will create a text editor that offers the same kind of function-
ality as the SDI Text Editor from the preceding section, except that this time
we will make it an MDI application. The application is shown in Figure 9.8.

Each document is presented and edited using an instance of a custom TextEdit

widget, a QTextEdit subclass. The widget has the Qt.WA_DeleteOnClose attribute
set, has a filename instance variable, and loads and saves the filename it is giv-
en. If the widget is closed (and therefore deleted), its close event handler gives
the user the opportunity to save any unsaved changes. The TextEdit implemen-
tation is straightforward, and it is quite similar to code we have seen before, so
we will not review it here; its source code is in the module chap09/textedit.py.

The code for the application proper is in the file chap09/texteditor.pyw. We
will review the code for this, starting with some extracts from the MainWindow

subclass’s initializer.

class MainWindow(QMainWindow):

def __init__(self, parent=None):

super(MainWindow, self).__init__(parent)

self.mdi = QWorkspace()

self.setCentralWidget(self.mdi)

PyQt’s MDI widget is called QWorkspace.★ Like a tab widget or a stacked widget,
a QWorkspace can have widgets added to it. These widgets are laid out by the
workspace, rather like a miniature desktop, with the widgets tiled, cascaded,
iconized, or dragged and resized by the user within the workspace’s area.

★From Qt 4.3, MDI is provided by the QMdiArea class with an API similar to QWorkspace.

Multiple Document Interface (MDI) 291

Figure 9.8 MDI Text Editor with four documents

It is possible to have a workspace that is larger than its window by calling
QWorkspace.setScrollBarsEnabled(True). The workspace’s background can be set
by specifying a background brush.

fileNewAction = self.createAction("&New", self.fileNew,

QKeySequence.New, "filenew", "Create a text file")

Most of the file actions are created as we have seen before. But as we will see,
the MDI editor, like the SDI editor, does not have an okToContinue() method
because each document window takes care of itself.

fileQuitAction = self.createAction("&Quit", self.close,

"Ctrl+Q", "filequit", "Close the application")

If we close the application’swindow, the application will terminate. All the doc-
ument windows will be closed, and any with unsaved changes are responsible
for prompting the user and saving if asked to do so.

editCopyAction = self.createAction("&Copy", self.editCopy,

QKeySequence.Copy, "editcopy",

"Copy text to the clipboard")

In the SDI editor we passed on the “copy”, “cut”,and “paste” actions to each win-
dow’s QTextEdit to handle. This is not possible in the MDI application because
when the user triggers one of these actions, it must be applied to whichever

292 Chapter 9. Layouts and Multiple Documents

TextEdit window is active. For this reason the main window must do some work
itself, as we will see when we review the implementation of these actions.

We have not shown the code for the other file and edit actions, because they all
follow the same pattern as those shown earlier.

self.windowNextAction = self.createAction("&Next",

self.mdi.activateNextWindow, QKeySequence.NextChild)

self.windowPrevAction = self.createAction("&Previous",

self.mdi.activatePreviousWindow,

QKeySequence.PreviousChild)

self.windowCascadeAction = self.createAction("Casca&de",

self.mdi.cascade)

self.windowTileAction = self.createAction("&Tile",

self.mdi.tile)

self.windowRestoreAction = self.createAction("&Restore All",

self.windowRestoreAll)

self.windowMinimizeAction = self.createAction("&Iconize All",

self.windowMinimizeAll)

self.windowArrangeIconsAction = self.createAction(

"&Arrange Icons", self.mdi.arrangeIcons)

self.windowCloseAction = self.createAction("&Close",

self.mdi.closeActiveWindow, QKeySequence.Close)

All the window actions are created as instance variables because we will be
accessing them in another method. For some of the actions we can pass the
work directly onto the mdi workspace instance, but minimizing and restoring
all the MDI windows we must handle ourselves.

self.windowMapper = QSignalMapper(self)

self.connect(self.windowMapper, SIGNAL("mapped(QWidget*)"),

self.mdi, SLOT("setActiveWindow(QWidget*)"))

In the Window menu that we will create, we need some way of making
the window that the user chooses the active window. We saw a very sim-
ple solution to this problem in the preceding section. Another approach
is to use partial function application, connecting each window action to
QWorkspace.setActiveWindow() with the relevant TextEdit as argument. Here we
have taken a pure PyQt approach, and we have used the QSignalMapper class.
We will explain its use when we review the updateWindowMenu() method.

self.windowMenu = self.menuBar().addMenu("&Window")

self.connect(self.windowMenu, SIGNAL("aboutToShow()"),

self.updateWindowMenu)

The connection to aboutToShow() ensures that our updateWindowMenu() method is
called before the menu is shown.

Multiple Document Interface (MDI) 293

self.updateWindowMenu()

self.setWindowTitle("Text Editor")

QTimer.singleShot(0, self.loadFiles)

At the end of the constructor we call updateWindowMenu() to force the Window
menu to be created. This may seem strange; after all, it will be created anyway
when the user tries to use it, so why do so now? The reason is that if we auto-
matically load in some documents at startup, the user might want to navigate
between them using our keyboard shortcuts (F6 and Shift+F6), but the shortcuts
will become active only after the menu has been created.

def closeEvent(self, event):

failures = []

for textEdit in self.mdi.windowList():

if textEdit.isModified():

try:

textEdit.save()

except IOError, e:

failures.append(str(e))

if failures and \

QMessageBox.warning(self, "Text Editor -- Save Error",

"Failed to save%s\nQuit anyway?" % \

"\n\t".join(failures),

QMessageBox.Yes|QMessageBox.No) == QMessageBox.No:

event.ignore()

return

settings = QSettings()

settings.setValue("MainWindow/Size", QVariant(self.size()))

settings.setValue("MainWindow/Position",

QVariant(self.pos()))

settings.setValue("MainWindow/State",

QVariant(self.saveState()))

files = QStringList()

for textEdit in self.mdi.windowList():

if not textEdit.filename.startsWith("Unnamed"):

files.append(textEdit.filename)

settings.setValue("CurrentFiles", QVariant(files))

self.mdi.closeAllWindows()

When the application is terminated we give the user the opportunity to save
any unsaved changes. Then we save the main window’s size, position, and
state. We also save a list of all the filenames from all the MDI windows. At
the end we call QWorkspace.closeAllWindows(), which will result in each window
receiving a close event.

If any save fails, we take note, and after all the files have been processed, if
there were errors we pop up a message box informing the user and give them
the chance to cancel terminating the application.

294 Chapter 9. Layouts and Multiple Documents

In the TextEdit’s close event there is code to give the user the chance to save any
unsaved changes, but at this point there can’t be any because we have already
handled this by saving unsaved changes at the beginning of this method.
We have the code in the TextEdit’s close event because the user can close any
window at any time, so each window must be able to cope with being closed.
But we do not use this when the application is terminated, and instead call
save() for modified files, because we want to keep a current files list, and to do
that every file must have a proper filename before we reach the code for saving
the current files list, and calling save() earlier achieves this.

def loadFiles(self):

if len(sys.argv) > 1:

for filename in sys.argv[1:31]: # Load at most 30 files

filename = QString(filename)

if QFileInfo(filename).isFile():

self.loadFile(filename)

QApplication.processEvents()

else:

settings = QSettings()

files = settings.value("CurrentFiles").toStringList()

for filename in files:

filename = QString(filename)

if QFile.exists(filename):

self.loadFile(filename)

QApplication.processEvents()

We have designed this application so that it will load back all the files that were
open the last time the application was run. However, if the user specifies one or
more files on the command line, we ignore the previously opened files, and open
just those the user has specified. In this case, we have chosen to arbitrarily
limit the number of files to 30, to protect the user from inadvertently giving a
file specification of *.* in a directory with hundreds or thousands of files.

The QApplication.processEvents() calls temporarily yield control to the event
loop so that any events that have accumulated—such as paint events—can be
handled. Then processing resumes from the next statement. The effect in this
application is that an editor window willDoing

Lots of
Process-
ing at
Start-
Up
sidebar

184 ☞

pop up immediately after each file has
been loaded, rather than the windows appearing only after all the files have
been loaded. This makes it clear to the user that the application is doing some-
thing, whereas a long delay at the beginning might make the user think that
the application has crashed. Another benefit of using processEvents() is that
the user’s mouse and keyboard events will get some processor time,keeping the
application responsive even if a lot of other processing is taking place.

Using processEvents() to keep an application responsive during long-running
operations is much easier than using threading. Nonetheless, this method
must be used with care because it could lead to events being handled that
cause problems for the long-running operations themselves. One way to help

Multiple Document Interface (MDI) 295

reduce the risk is to pass extra parameters—for example, a flag that limits
the kinds of events that should be processed, and a maximum time to be spent
processing events. We will see another example of the use of processEvents()

in Chapter 12; threading is the subject of Chapter 19.

def loadFile(self, filename):

textEdit = textedit.TextEdit(filename)

try:

textEdit.load()

except (IOError, OSError), e:

QMessageBox.warning(self, "Text Editor -- Load Error",

"Failed to load %s: %s" % (filename, e))

textEdit.close()

del textEdit

else:

self.mdi.addWindow(textEdit)

textEdit.show()

When a file is loaded, as a result of either loadFiles() or fileOpen(), it creates
a new TextEdit, with the given filename, and tells the editor to load the file. If
loading fails, the user is informed in a message box, and the editor is closed and
deleted. If loading succeeds, the editor is added to the workspace and shown.
We do not need a static instances variable to keep the TextEdit instances alive,
since QWorkspace takes care of this automatically for us.

def fileNew(self):

textEdit = textedit.TextEdit()

self.mdi.addWindow(textEdit)

textEdit.show()

This method simply creates a new editor,adds it to the workspace,and shows it.
The editor’s window title will be “Unnamed-n.txt”, where n is an incrementing
integer starting from one. If the user types in any text and attempts to close
or save the editor, they will be prompted to choose a proper filename.

def fileOpen(self):

filename = QFileDialog.getOpenFileName(self,

"Text Editor -- Open File")

if not filename.isEmpty():

for textEdit in self.mdi.windowList():

if textEdit.filename == filename:

self.mdi.setActiveWindow(textEdit)

break

else:

self.loadFile(filename)

If the user chooses to open a file, we check to see whether it is already in one of
the workspace’s editors. If it is we simply make that editor’s window the active

296 Chapter 9. Layouts and Multiple Documents

window. Otherwise we load the file into a new editor window. If our users
wanted to be able to load the same file more than once—for example, to look at
different parts of a long file—we could simply call loadFile() every time and
not bother to see whether the file is in an existing editor.

def fileSave(self):

textEdit = self.mdi.activeWindow()

if textEdit is None or not isinstance(textEdit, QTextEdit):

return

try:

textEdit.save()

except (IOError, OSError), e:

QMessageBox.warning(self, "Text Editor -- Save Error",

"Failed to save %s: %s" % (textEdit.filename, e))

When the user triggers the “file save” action,we determine which file they want
to save by calling QWorkspace.activeWindow(). If this returns a TextEdit, we call
save() on it.

def fileSaveAll(self):

errors = []

for textEdit in self.mdi.windowList():

if textEdit.isModified():

try:

textEdit.save()

except (IOError, OSError), e:

errors.append("%s: %s" % (textEdit.filename, e))

if errors:

QMessageBox.warning(self, "Text Editor -- Save All Error",

"Failed to save\n%s" % "\n".join(errors))

As a convenience, we have provided a “save all” action. Since there might be a
lot of windows, and if there is a problem saving one (for example, lack of disk
space), the problem might affect many windows. So instead of giving error
messages when each save() fails, we accumulate the errors in a list and show
them all at the end, if there are any to show.

def editCopy(self):

textEdit = self.mdi.activeWindow()

if textEdit is None or not isinstance(textEdit, QTextEdit):

return

cursor = textEdit.textCursor()

text = cursor.selectedText()

if not text.isEmpty():

clipboard = QApplication.clipboard()

clipboard.setText(text)

Multiple Document Interface (MDI) 297

This method starts in the same way the previous one did—and the same way
all the methods that apply to one particular window start—by retrieving the
editor that the user is working on. The QTextCursor returned by QTextEdit.text-

Cursor() is a programmatic equivalent to the cursor the user uses, but it is
independent of the user’s cursor; this class is discussed more fully in Chap-
ter 13. If there is selected text, we copy it to the system’s global clipboard.★

def editCut(self):

textEdit = self.mdi.activeWindow()

if textEdit is None or not isinstance(textEdit, QTextEdit):

return

cursor = textEdit.textCursor()

text = cursor.selectedText()

if not text.isEmpty():

cursor.removeSelectedText()

clipboard = QApplication.clipboard()

clipboard.setText(text)

This method is almost the same as the copy method. The only difference is that
if there is selected text, we remove it from the editor.

def editPaste(self):

textEdit = self.mdi.activeWindow()

if textEdit is None or not isinstance(textEdit, QTextEdit):

return

clipboard = QApplication.clipboard()

textEdit.insertPlainText(clipboard.text())

If the clipboard has text, whether from a copy or cut operation in this appli-
cation, or from another application, we insert it into the editor at the editor’s
current cursor position.

All the basic MDI window operations are provided by QWorkspace slots, so we do
not need to provide tiling, cascading, or window navigation ourselves. But we
do have to provide the code for minimizing and restoring all windows.

def windowRestoreAll(self):

for textEdit in self.mdi.windowList():

textEdit.showNormal()

The windowMinimizeAll() method (not shown) is the same, except that we call
showMinimized() instead of showNormal().

A QSignalMapper object is one that emits a mapped() signal whenever its map()

slot is called. The parameter it passes in its mapped() signal is the one that

★ X Window System users have two clipboards: the default one and the mouse selection one.
Mac OS X also has a “Find” clipboard. PyQt provides access to all the available clipboards using
an optional “mode” second argument to setText() and text().

298 Chapter 9. Layouts and Multiple Documents

was set to correspond with whichever QObject called the map() slot. We use a
signal mapper to relate actions in the Window menu with TextEdit widgets so
that when the user chooses a particular window, the appropriate TextEdit will
become the active window. This is set up in two places: the form’s initializer,
and in the updateWindowMenu() method, and is illustrated in Figure 9.9.

(QObject, QObject)

(QObject, QWidget)

(QObject, int)

…

sender parameter

sender

QSignalMapper

QObject
SLOT(map())

SIGNAL(
mapped(

QObject
))

SIGNAL(mapped(QWidget))
SIGNAL(mapped(int))

Figure 9.9 The general operation of a QSignalMapper

In the form’s initializer we made a signal–slot connection from the signal map-
per’s mapped(QWidget*) signal to the MDI workspace’ssetActiveWindow(QWidget*)
slot. To use this, the signal mapper must emit a signal that corresponds to the
MDI window the user has chosen from the Window menu, and this is set up in
the updateWindowMenu() method. The MDI Text Editor’s signal mapper is illus-
trated in Figure 9.10.

def updateWindowMenu(self):

self.windowMenu.clear()

self.addActions(self.windowMenu, (self.windowNextAction,

self.windowPrevAction, self.windowCascadeAction,

self.windowTileAction, self.windowRestoreAction,

self.windowMinimizeAction,

self.windowArrangeIconsAction, None,

self.windowCloseAction))

textEdits = self.mdi.windowList()

if not textEdits:

return

We begin by clearing all the actions from the Window menu, and then we add
back all the standard actions. Next, we get the list of TextEdit windows; if
there are none we are finished and simply return; otherwise, we must add an
entry for each window.

self.windowMenu.addSeparator()

i = 1

menu = self.windowMenu

for textEdit in textEdits:

title = textEdit.windowTitle()

if i == 10:

self.windowMenu.addSeparator()

menu = menu.addMenu("&More")

Multiple Document Interface (MDI) 299

accel = ""

if i < 10:

accel = "&%d " % i

elif i < 36:

accel = "&%c " % chr(i + ord("@") - 9)

We iterate over all the windows. For the first nine,we create an “accel” string of
&1, &2, and so on, to produce 1,2, …,9. If there are ten or more windows,we create
a submenu with the text “More”, and add the tenth and subsequent windows to
this submenu. For the tenth to thirty-sixth windows, we create accel strings of
&A, &B, …, &Z; for any other windows we do not provide an accel string. (The %c

format string is used to specify a single character.) The More submenu’s accel-
erators are English-specific; other languages may need different treatment.

action = menu.addAction("%s%s" % (accel, title))

self.connect(action, SIGNAL("triggered()"),

self.windowMapper, SLOT("map()"))

self.windowMapper.setMapping(action, textEdit)

i += 1

We create a new action with the (possibly empty) accel text and the title
text—the window’s title, which is the filename without the path. Then we
connect the action’s triggered() signal to the signal mapper’s map() slot. This
means that whenever the user chooses a window from the Window menu, the
signal mapper’s map() slot will be called. Notice that neither the signal nor the
slot has parameters; it is up to the signal mapper to figure out which action
triggered it—it could use sender(), for example. After the signal–slot connec-
tion, we set up a mapping inside the signal mapper from the action to the cor-
responding TextEdit.

actionN

(action1, textEdit1)
(action2, textEdit2)

…

SLOT(mdi.activateWindow(textEditN))

SLOT(map())

SIGNAL(mapped(textEditN))

w
i
n
d
o
w
M
a
p
p
e
r

Figure 9.10 The MDI Editor’s signal mapper

When the signal mapper’s map() slot is called, the signal mapper will find out
which action called it, and use the mapping to determine which TextEdit to pass
as a parameter. Then the signal mapper will emit its own mapped(QWidget*)

signal, with the parameter. We connected the mapped() signal to the MDI

300 Chapter 9. Layouts and Multiple Documents

workspace’s setActiveWindow() slot, so this slot is in turn called, and the Text-

Edit passed as a parameter will become the active window.

That completes our review of the MDI Text Editor. We have skipped the code
for creating the application object and the main window since it is the same as
many code examples we have seen in previous examples.

Summary

When we have dialogs with lots of options, we can often make things more
manageable for the user by using tab widgets and stacked widgets. Tab wid-
gets are especially useful for when we want the user to be able to view and edit
all the available options. Stacked widgets are suitable for when we want the
user to see only the currently relevant page of options. For stacked widgets we
must provide a means by which the user can select the current page—for exam-
ple, a combobox or a list widget of page names. When some of a dialog’s options
are “advanced” or infrequently needed, we can use an extension dialog, hiding
the extra options unless the user asks to see them. Checked group boxes can be
used to enable or disable the widgets they contain; this is useful if we want the
user to be able to see the options available, even when they are disabled. For
some dialogs, all of these approaches can be used in combination, although in
such complex cases, the validation logic might become rather convoluted.

Splitters are very useful for creating multiple-widget main windows and give
the user control over the relative sizes of the widgets. An alternative approach
is to have a single central widget, and to put the other widgets in dock windows.
Dock windows automatically put a splitter between themselves and the
central widget when docked, and can be dragged from one dock area to another
or floated free.

SDI makes it easy for users to open multiple documents inside the same appli-
cation. SDI also makes possible some interaction across the windows, such as
having “save all” and “quit” actions and aWindowmenu, that are not very easily
achieved using a separate application instance for each document. The SDI ap-
proach is very fashionable, and although it is more resource-hungry than MDI,
it is probably easier for very inexperienced users to understand than MDI.

MDI provides the same benefits as SDI, except that the document windows are
constrained to appear within a single main window’s central area. This avoids
duplicating menus and toolbars, and it makes it easier to arrange windows in
relation to one another. One drawback of MDI is that some users find it more
difficult to understand than SDI, at least at first. MDI is not limited to having
windows of just one widget type, although most modern MDI applications that
use more than one widget type in the main window have one type for document
windows, and the other types are put in dock windows.

In both the SDI and MDI example applications, all of the actions are enabled
all of the time. This is not a problem since any actions that don’t make sense

Summary 301

harmlessly do nothing. However, to avoid En-
abling
and
Dis-
abling
Actions
sidebar

☞ 385

confusing some users, it might be
better to enable or disable actions depending on the application’s state; the
sidebar in Chapter 13 shows how this can be done.

Layouts, splitters, tab widgets, stacked widgets, dock windows, SDI, and MDI
together provide a wide range of user interface design options. In addition,
it is possible to create our own layouts in code, or to create our own layout
managers, so the possibilities really are limitless.

Exercise
Modify the MDI Text Editor application (texteditor.pyw) so that instead of
using MDI it uses a QTabWidget and becomes a tabbed editor.

TheWindowmenu will not be required, so all the code associated with it can be
removed. A new “file close tab” action will be needed, as will a corresponding
method to handle it. Instead of using QWorkspace.windowList(), use a for loop
to iterate from 0 to QTabWidget.count(), and use QTabWidget.widget() to access
each window in turn.

The closeEvent() will need changing, and it is probably the trickiest to get
right. Change loadFiles() to limit the number of files loaded on the command
line to 10. fileNew() will need to create a TextEdit as before, and then add it
to the tab widget using QTabWidget.addTab(), giving the widget and its win-
dow title as parameters. Instead of calling show() on the widget, use QTabWid-

get.setCurrentWidget(). The fileOpen(), loadFile(), fileSave(), fileSaveAs(),
and fileSaveAll() methods will need small changes. The edit methods need to
change only their first line of code to use QTabWidget.currentWidget() instead of
QWorkspace.activeWindow().

Once everything is working, add two keyboard shortcuts, one for QKey-

Sequence.PreviousChild and the other for QKeySequence.NextChild, along with
suitable methods, prevTab() and nextTab(), to make them work.

The changes amount to about a dozen lines, plus an extra twenty lines or so
for the shortcuts and their methods; as always the emphasis is on thought and
understanding rather than on typing.

A model solution is provided in the file chap09/tabbededitor.pyw.

This page intentionally left blank

Events, the Clipboard, and Drag
and Drop

1010 ● The Event-Handling Mechanism

● Reimplementing Event Handlers

● Using the Clipboard

● Drag and Drop

In this short chapter we begin by describing the key concepts involved in event
handling. In the second section we build on this knowledge to show how to
control a widget’s behavior and appearance by reimplementing low-level event
handlers. Later chaptersbuild on the material covered in the first two sections,
particularly Chapter 11, which shows how to create custom widgets.

The chapter’s third section shows how to use the clipboard, and in particular
how to pass and retrieve plain text, HTML, and images to and from the
system’s global clipboard. The last section shows how to implement drag and
drop, both by using PyQt’s easy-to-use built-in functionality, and by handling
it ourselves to drag and drop custom data. The exercise builds on the coverage
of dragging and dropping custom data to allow the user to choose whether to
move or copy when dropping.

The Event-Handling Mechanism

PyQt provides two mechanisms for dealing with events: the high-level signals
and slots mechanism, and low-level event handlers. The signalsSignals

and
slots

127 ☞

and slots
approach is ideal when we are concerned with what actions the user wants to
perform, without getting bogged down in the details of how specifically they
asked. Signals and slots can also be used to customize some aspects of how
widgets behave. But when we need to go deeper, particularly when creating
custom widgets, we need to use low-level event handlers.

PyQt provides a rich variety of event handlers, some concerned with widget
behavior, such as those that handle key presses and mouse events, and others
concerned with widget appearance, such as those that handle paint events and
resize events.

PyQt’s event-handling mechanism works in the logical way we would expect.
For example, if the user clicks the mouse or presses a key on a widget with key-

303

304 Chapter 10. Events, the Clipboard,and Drag and Drop

board focus, the widget is given the event. If the widget handles the event, that
is the end of the story. But if the widget does not handle the event, the event
is propagated to the widget’s parent—another benefit of PyQt’s parent–child
hierarchy. This passing of unhandled events from child to parent continues
right up to the top-level widget, and if that doesn’t handle the event, the event
is simply thrown away.

PyQt provides five different ways of intercepting and handling events. The
first two approaches are the most heavily used, with the others needed rarely,
if ever.

The simplest approach is to reimplement a specific event handler. So far,
we have seen just one example of this: the reimplementation of a widget’s
closeEvent(). As we will see in this chapter and in subsequent chapters, we
can control a widget’s behavior by reimplementing other event handlers—for
example, keyPressEvent(), mousePressEvent(), and mouseReleaseEvent(). We
can also control a widget’s appearance by reimplementing resizeEvent() and
paintEvent(). When we reimplement these events we often don’t call the base
class implementation since we want our own code executed only as a result of
the event handler being called.

Before any specific event handler is called, the event() event handler is called.
Reimplementing this method allows us to handle events that cannot be han-
dled properly in the specific event handlers (in particular, overriding the Tab
key’s keyboard focus changing behavior), or to implement events for which no
specific handler exists, such as QEvent.ToolBarChange. When we reimplement
this handler,we call the base class implementation for any events we don’t han-
dle ourselves.

The third and fourth approaches use event filters. We can call installEvent-
Filter() on any QObject. This will mean that all events for the QObject are
passed to our event filter first: We can discard or modify any of the events
before they reach the target object. An even more powerful version of this ap-
proach is to install an event filter on the QApplication object, although its only
practical uses are for debugging and for handling mouse events sent to disabled
widgets. It is possible to install multiple event filters on an object or on QAp-

plication, in which case they are executed in order from most to least recently
installed.

Event filters provide a very powerful means of handling events, and new-
comers to PyQt programming are often tempted to use them. But we recom-
mend avoiding the use of event filters, at least until you have a lot of PyQt
programming experience. If very large numbers of event filters are installed,
application performance can suffer; also, they can considerably increase code
complexity compared with simply reimplementing specific event handlers, or
the event() handler. We will not look at any event filter examples, since they
should be avoided in general PyQt programming—they are really relevant only
when creating custom widgets—and even then they are rarely necessary.

The Event-Handling Mechanism 305

The fifth approach is to subclass QApplication and reimplement its notify()

method. This method is called before any event filter or event handler, so
it provides the ultimate in control. In practice, this would be done only for
debugging, and even then, using event filters is probably more flexible.

Reimplementing Event Handlers

The screenshot in Figure 10.1 shows a QWidget subclass that has some reimple-
mented event handlers. The Events application in chap10/events.pyw reports
certain events and conditions, and we will use it to see how event handling is
done in PyQt. Later chapters use the same techniques that we describe here
to do much more sophisticated and realistic event handling. We will begin by
looking at an extract from the application’s initializer to see its instance data.

Figure 10.1 Testing custom event handlers

class Widget(QWidget):

def __init__(self, parent=None):

super(Widget, self).__init__(parent)

self.justDoubleClicked = False

self.key = QString()

self.text = QString()

self.message = QString()

We hold the text of the most recent key press in key, the text to be painted—for
example, “The mouse is at…”—in text, and a message text in message. We also
keep track of whether the user has just done a double-click.

The first event handler we will consider is the paint event. We will defer a
proper discussion of painting to Chapter 11.

def paintEvent(self, event):

text = self.text

i = text.indexOf("\n\n")

if i >= 0:

text = text.left(i)

if not self.key.isEmpty():

text += "\n\nYou pressed: %s" % self.key

painter = QPainter(self)

painter.setRenderHint(QPainter.TextAntialiasing)

306 Chapter 10. Events, the Clipboard,and Drag and Drop

painter.drawText(self.rect(), Qt.AlignCenter, text)

if self.message:

painter.drawText(self.rect(),

Qt.AlignBottom|Qt.AlignHCenter, self.message)

QTimer.singleShot(5000, self.message.clear)

QTimer.singleShot(5000, self.update)

The text to be displayed consists of two parts. The first part usually contains
the mouse coordinates, and the second part (which may be empty) contains the
last key that the user pressed. In addition, message text may be painted at the
bottom of the widget, in which case the single-shot timers clear the message
text after 5 seconds and schedule a paint event to repaint the widget without
the message text.

In paint events it is quite common to ignore the event as we have done here.
(The event can tell us the exact region that needs repainting so it can be used to
optimize painting by just painting the region that needs updating, a technique
we will use in Chapter 16.) The rect() method returns a QRect with the widget’s
dimensions, so we simply draw the text centered in the given rectangle. We
do not call the base class’s paint event; this is standard practice in PyQt paint
event handlers, and in any case, the QWidget paint event does nothing.

def resizeEvent(self, event):

self.text = QString("Resized to QSize(%d, %d)" % (

event.size().width(),

event.size().height()))

self.update()

Whenever the widget is resized—for example, by the user dragging a corner
or side—a resize event is generated. We set our instance text to show the new
size, and call update() to schedule a paint event. A resize event also has the
previous size,available from the QResizeEvent.oldSize() method. We do not call
the base class’s resize event, since it does nothing.

def keyPressEvent(self, event):

self.key = QString()

if event.key() == Qt.Key_Home:

self.key = "Home"

elif event.key() == Qt.Key_End:

self.key = "End"

elif event.key() == Qt.Key_PageUp:

if event.modifiers() & Qt.ControlModifier:

self.key = "Ctrl+PageUp"

else:

self.key = "PageUp"

elif event.key() == Qt.Key_PageDown:

if event.modifiers() & Qt.ControlModifier:

self.key = "Ctrl+PageDown"

Reimplementing Event Handlers 307

else:

self.key = "PageDown"

elif Qt.Key_A <= event.key() <= Qt.Key_Z:

if event.modifiers() & Qt.ShiftModifier:

self.key = "Shift+"

self.key += event.text()

if self.key:

self.key = QString(self.key)

self.update()

else:

QWidget.keyPressEvent(self, event)

If the user presses a key, we are informed through the keyPressEvent(). There
is also a corresponding keyReleaseEvent(), but that is rarely reimplemented.
The QKeyEvent parameter provides several useful methods, including key(),
which returns the key code for the key that was pressed,and modifiers(), which
returns a bit flag indicating the state of the Shift, Ctrl, and Alt keys.

We have chosen to handle the Home, End, PageUp, Ctrl+PageUp, PageDown,
and Ctrl+PageDown key sequences, and the alphabetic keys A…Z as well as
Shift+A…Shift+Z. We store a textual representation of what was pressed in the
key variable and call update() to schedule a paint event. If the user pressed a
key that we do not handle, we pass on the key press to the base class implemen-
tation, a practice that is common when handling key events.

def contextMenuEvent(self, event):

menu = QMenu(self)

oneAction = menu.addAction("&One")

twoAction = menu.addAction("&Two")

self.connect(oneAction, SIGNAL("triggered()"), self.one)

self.connect(twoAction, SIGNAL("triggered()"), self.two)

if not self.message:

menu.addSeparator()

threeAction = menu.addAction("Thre&e")

self.connect(threeAction, SIGNAL("triggered()"),

self.three)

menu.exec_(event.globalPos())

The easiest way to create a context menu is to add actions to a widget using
QWidget.addAction(), and to set the widget’s context menu policy to Qt.Actions-

ContextMenu; we saw how this was done in Chapter 6 on page 180. But if we
want fine control over what happens as a result of a context menu event—for
example, offering different options depending on the application’s state—we
can reimplement the context menu event handler as we have done here.

The globalPos() method returns the mouse position at the time the context
menu was invoked; we pass the position to QMenu.exec_() to ensure that the
menu is popped up where the user expects it.

308 Chapter 10. Events, the Clipboard,and Drag and Drop

def mouseDoubleClickEvent(self, event):

self.justDoubleClicked = True

self.text = QString("Double-clicked.")

self.update()

If the user double-clicks, this event handler is called. In this example, we need
to keep track of whether the user has just double-clicked because we are also
reimplementing the mouse release and mouse move events. A mouse release
event will occur as the result of a double-click, and a mouse move event is
almost certain to occur on a double-click because the user’s hand is unlikely to
be perfectly steady.

We take the same approach as we have done in the other event handlers: We
set the text and schedule a repaint to show it. It is quite common not to call the
base class for mouse events that we handle ourselves.

def mouseReleaseEvent(self, event):

if self.justDoubleClicked:

self.justDoubleClicked = False

else:

self.setMouseTracking(not self.hasMouseTracking())

if self.hasMouseTracking():

self.text = QString("Mouse tracking is on.\n"

"Try moving the mouse!\n"

"Single click to switch it off")

else:

self.text = QString("Mouse tracking is off.\n"

"Single click to switch it on")

self.update()

If the user has just released the mouse, except just after a double-click, we tog-
gle mouse tracking. When tracking is on, mouse move events are produced for
all mouse movements; when tracking is off, mouse move events are produced
only when the mouse is dragged. By default, mouse tracking is off. Here we
use a mouse click (i.e., the release after a click) to toggle mouse tracking on or
off. As before, we set the text, and schedule a paint event to show it.

def mouseMoveEvent(self, event):

if not self.justDoubleClicked:

globalPos = self.mapToGlobal(event.pos())

self.text = QString("The mouse is at\nQPoint(%d, %d) "

"in widget coords, and\n"

"QPoint(%d, %d) in screen coords" % (

event.pos().x(), event.pos().y(),

globalPos.x(), globalPos.y()))

self.update()

Reimplementing Event Handlers 309

Table 10.1 Selected QWidget Event-Handling Methods

Syntax Description

w.closeEvent(e) Reimplement to give the user the opportunity to
save unsaved changes and to save user settings;
w is a custom QWidget subclass, and e is a handler-
specific QEvent subclass

w.contextMenu-

Event(e)
Reimplement to provide custom context menus.
An easier alternative is to call setContextMenu-
Policy(Qt.ActionsContextMenu) and add actions to
the widget using QWidget.addAction().

w.dragEnterEvent(e) Reimplement to indicate whether the widget will
accept or reject the drop in QDragEnterEvent e

w.dragMoveEvent(e) Reimplement to set the acceptable drop
actions—for example, not accepted, or one or more
of, move, copy, and link, for QDragMoveEvent e

w.dropEvent(e) Reimplement to handle the drop in QDropEvent e

w.event(e) Reimplement for events that don’t have specific
event handlers—for example, for Tabkey handling.
This is inherited from QObject.

w.keyPressEvent(e) Reimplement to respond to key presses
w.mouseDoubleClick-

Event(e)
Reimplement to respond to double-clicks specified
in QMouseEvent e

w.mouseMoveEvent(e) Reimplement to respond to mouse moves specified
in QMouseEvent e. This event handler is affected by
QWidget.setMouseTracking().

w.mousePressEvent(e) Reimplement to respond to mouse presses
w.mouseReleaseEvent(e) Reimplement to respond to mouse releases
w.paintEvent(e) Reimplement to draw the widget
w.resizeEvent(e) Reimplement to resize the widget

If the user has toggled mouse tracking on (by clicking the mouse), mouse move
events will be produced and this method will be called for each of them. We
retrieve the mouse’s position in screen coordinates, that is, coordinates rela-
tive to the top left of the screen, and in widget coordinates, that is, coordinates
relative to the top left of the widget. Both coordinate systems have a top left
of (0, 0), with y coordinates increasing downward and x coordinates increasing
rightward.

def event(self, event):

if event.type() == QEvent.KeyPress and \

event.key() == Qt.Key_Tab:

self.key = QString("Tab captured in event()")

310 Chapter 10. Events, the Clipboard,and Drag and Drop

self.update()

return True

return QWidget.event(self, event)

When an event is passed to a widget the widget’s event() method is called first.
This method returns True if it handled the event, and False otherwise. In the
case of returning False, PyQt will send the event to the widget’s parent, and
then to the parent’s parent, until one of the handlers returns True, or until it
reaches the top level (no parent), in which case the event is thrown away. The
event() method may handle the event itself, or may delegate the work to a
specific event handler like paintEvent() or mousePressEvent().

When the user presses Tab, in almost every case, the widget with the keyboard
focus’s event() method will call setFocus() on the next widget in the tab order
and will return True without passing the event to any of the key handlers. (The
QTextEdit class reimplements the event handler to insert literal tabs into the
text, but can be told to revert to the normal focus-switching behavior.)

We cannot stop Tab from changing keyboard focus by reimplementing a key
event handler, because the key press is never passed onto them. So we must
instead reimplement the event() method and handle Tab presses there.

In this example, if the user presses Tab, we simply update the text that is
displayed. We also return True indicating that we have handled the event. This
prevents the event from being propagated any further. For all other events, we
call the base class implementation.

Realistic event handlers are often more sophisticated than the ones shown
here, but our purpose at the moment is just to see how the event-handling
mechanism works. In the next chapter and in subsequent chapters, we will
often reimplement event handlers including paintEvent() and resizeEvent(),
as well as contextMenuEvent(), wheelEvent(), keyPressEvent(), and mousePressEv-

ent(), all in realistic contexts. And in the last section of this chapter we will
reimplement some of the drag-and-drop-related events.

Using the Clipboard

PyQt provides clipboard support for text in QTextEdit, QLineEdit, QTableWidget,
and the other widgets where textual data can be edited. PyQt’s clipboard
and drag-and-drop systems use data in MIME (Multipurpose Internet Mail
Extensions) format, a format that can be used to store any arbitrary data.

Occasionally, it is convenient to pass data to the clipboard or retrieve data from
the clipboard directly in code. PyQt makes this easy. The QApplication class
provides a static method that returns a QClipboard object, and we can set or get
text, images, or other data to or from the clipboard through this object.

Using the Clipboard 311

The clipboard holds only one object at a time, so if we set, say, a string, and
then we set an image, only the image will be available because the string will
be deleted when we set the image.

Here is how we set text on the clipboard:

clipboard = QApplication.clipboard()

clipboard.setText("I've been clipped!")

The text is set as plain text; we will see how to handle HTML shortly.

clipboard = QApplication.clipboard()

clipboard.setPixmap(QPixmap(os.path.join(

os.path.dirname(__file__), "images/gvim.png")))

Image data can be set on the clipboard using setImage() for QImages, or set-

Pixmap() for pixmaps,as we have done here.Both QImage and QPixmap can handle
a wide variety of standard image formats.

Retrieving data from the clipboard is just as easy:

clipboard = QApplication.clipboard()

self.textLabel.setText(clipboard.text())

If the clipboard has no text—for example, if it has an image, or some custom
data type—QClipboard.text() will return an empty string.

clipboard = QApplication.clipboard()

self.imageLabel.setPixmap(clipboard.pixmap())

If the clipboard has no image—for example, if it has text, or some custom data
type—QClipboard.pixmap() will return a null image.

In addition to handling plain text and images we can handle some other kinds
of data. For example, here is how we would copy HTML text to the clipboard:

mimeData = QMimeData()

mimeData.setHtml(

"Bold and Red")

clipboard = QApplication.clipboard()

clipboard.setMimeData(mimeData)

If we want to retrieve HTML text, including HTML wrapped in a QMimeData

object, we can use QClipboard.text("html"). This will return an empty string
if there is no text, or if the text is not in HTML format—for example, if it is
plain text. Here is the generic way to retrieve data that has been wrapped in
a QMimeData object:

clipboard = QApplication.clipboard()

mimeData = clipboard.mimeData()

312 Chapter 10. Events, the Clipboard,and Drag and Drop

if mimeData.hasHtml():

self.textLabel.setText(mimeData.html())

In some situations we want to set and get our own custom data formats to and
from the clipboard. We can do this using the QMimeData class, as we will see in
the next section.

Data set on or retrieved from the clipboard usually works on the operating
system’s global clipboard. In addition, by specifying the clipboard mode, it is
possible to use the selection clipboard (an additional clipboard that exists on
Linux and other systems that use the X Window System), or the find paste-
board used on Mac OS X.

Drag and Drop

Many PyQt widgets support drag and drop out of the box, only requiring us
to switch on the support to make it work. For example, the application shown
in Figure 10.2 starts out with items in the left hand QListWidget, and with
nothing in the QListWidget in the middle or in the QTableWidget on the right.
The screenshot shows the application after some items have been dragged
and dropped.

The application’s source code is in the file chap10/draganddrop.pyw.

Figure 10.2 PyQt’s built-in drag-and-drop facilities

The drag-and-drop functionality is achieved purely by setting properties on
the widgets involved. Here is the code that created the left-hand list widget:

listWidget = QListWidget()

listWidget.setAcceptDrops(True)

listWidget.setDragEnabled(True)

The middle list widget is similar, except that we have set it to icon view mode
instead of list view mode:

iconListWidget = QListWidget()

iconListWidget.setAcceptDrops(True)

iconListWidget.setDragEnabled(True)

Drag and Drop 313

iconListWidget.setViewMode(QListWidget.IconMode)

Making the QTableWidget support drag and drop is achieved in exactly the same
way, with a call of setAcceptDrops(True) and a call of setDragEnabled(True).

No other code is necessary; what is shown is sufficient to allow users to drag
icon and text items from one list widget to another, and to and from cells in
the table.

The built-in drag-and-drop facilities are very convenient, and are often
sufficient. But if we need to be able to handle our own custom data, we must
reimplement some event handlers, as we will see in the following subsection.

Handling Custom Data

The application shown in Figure 10.3 supports drag and drop for custom data;
in particular, icons and text. (The source code is in chap10/customdragand-

drop.pyw.) Although this is the same functionality as the built-in drag-and-drop
facilities offer, the techniques used are generic and can be applied to any arbi-
trary data we like.

The icons and text can be dragged from the list widget on the left to the list
widget on the right (which is in icon mode), or to the custom widget at the
bottom left, or to the custom line edit at the bottom right—although in this last
case only the text is used.

Figure 10.3 Dragging and dropping custom data

For custom data that is put on the clipboard or used by PyQt’s drag-and-drop
system, we use QMimeData objects, with our own custom MIME types. MIME is
a standardized format for handling multipart custom data. MIME data has a
type and a subtype—for example, text/plain, text/html, or image/png. To handle
custom MIME data we must choose a custom type and subtype, and wrap the
data in a QMimeData object.

For this example we have created a MIME type of application/x-icon-and-text.
It is good practice for custom MIME subtypes to begin with x-. We have stored
the data in a QByteArray, a resizable array of bytes, and which for this example
holds a QString and a QIcon, although it could hold any arbitrary data.

314 Chapter 10. Events, the Clipboard,and Drag and Drop

We will begin by seeing how to make a QLineEdit subclass that can accept
drops of MIME type application/x-icon-and-text, making use of the text and
ignoring the icon.

class DropLineEdit(QLineEdit):

def __init__(self, parent=None):

super(DropLineEdit, self).__init__(parent)

self.setAcceptDrops(True)

The initializer simply sets the line edit to accept drops.

def dragEnterEvent(self, event):

if event.mimeData().hasFormat("application/x-icon-and-text"):

event.accept()

else:

event.ignore()

When the user drags over the line edit we want to display an icon if the MIME
data being dragged is a type that we can handle; otherwise the line edit will
display the “no drop” icon (which often appears as). By accepting the drag
enter event we signify that we can accept drops of the type of MIME data on
offer; by ignoring we say that we cannot accept such data. The icon used for
acceptable data is set when the drag is initiated as we will see later on.

The drag-related event handlers are called automatically by PyQt when
necessary because we set accept drops in the initializer.

def dragMoveEvent(self, event):

if event.mimeData().hasFormat("application/x-icon-and-text"):

event.setDropAction(Qt.CopyAction)

event.accept()

else:

event.ignore()

As the user drags over the widget dragMoveEvent()s occur; we want the data to
be copied (rather than moved), so we set the drop action accordingly.

def dropEvent(self, event):

if event.mimeData().hasFormat("application/x-icon-and-text"):

data = event.mimeData().data("application/x-icon-and-text")

stream = QDataStream(data, QIODevice.ReadOnly)

text = QString()

stream >> text

self.setText(text)

event.setDropAction(Qt.CopyAction)

event.accept()

else:

event.ignore()

Drag and Drop 315

If the user drops the data on the widget we must handle it. We do thisStream-
ing to
QData-

Stream

242 ☞

PyQt

4.1

by
extracting the data (a QByteArray), and then creating a QDataStream to read
the data. The QDataStream class can read and write from and to any QIODevice

including files, network sockets, external processes, and byte arrays. Since
we are only interested in the string, that is all that we extract from the byte
array. Note that to be able to stream QIcons to or from a QDataStream we must
use PyQt 4.1 or later.

The DropLineEdit only supports dropping, so for our next example, we will
create a QListWidget subclass which supports both dragging and dropping.

class DnDListWidget(QListWidget):

def __init__(self, parent=None):

super(DnDListWidget, self).__init__(parent)

self.setAcceptDrops(True)

self.setDragEnabled(True)

The initializer is similar to what we used before, except that we enable both
dragging and dropping.

def dragMoveEvent(self, event):

if event.mimeData().hasFormat("application/x-icon-and-text"):

event.setDropAction(Qt.MoveAction)

event.accept()

else:

event.ignore()

This is almost identical to the DropLineEdit’s dragMoveEvent(); the difference is
that here we set the drop action to be Qt.MoveAction rather than Qt.CopyAction.
The code for the dragEnterEvent() is not shown: It is the same as for the
DropLineEdit.

def dropEvent(self, event):

if event.mimeData().hasFormat("application/x-icon-and-text"):

data = event.mimeData().data("application/x-icon-and-text")

stream = QDataStream(data, QIODevice.ReadOnly)

text = QString()

icon = QIcon()

stream >> text >> icon

item = QListWidgetItem(text, self)

item.setIcon(icon)

event.setDropAction(Qt.MoveAction)

event.accept()

else:

event.ignore()

316 Chapter 10. Events, the Clipboard,and Drag and Drop

This code is again similar to the DropLineEdit, only now we want theStream-
ing from
QData-

Stream

245 ☞

icon
as well as the text. To add an item to a QListWidget we must create a new
QListWidgetItem and pass the list widget (self) as the item’s parent.

def startDrag(self, dropActions):

item = self.currentItem()

icon = item.icon()

data = QByteArray()

stream = QDataStream(data, QIODevice.WriteOnly)

stream << item.text() << icon

mimeData = QMimeData()

mimeData.setData("application/x-icon-and-text", data)

drag = QDrag(self)

drag.setMimeData(mimeData)

pixmap = icon.pixmap(24, 24)

drag.setHotSpot(QPoint(12, 12))

drag.setPixmap(pixmap)

if drag.start(Qt.MoveAction) == Qt.MoveAction:

self.takeItem(self.row(item))

This is the only method that is not in the DropLineEdit, and it is the one that
makes it possible to drag from DnDListWidgets.We don’t have to check the return
value of currentItem() because only items can be dragged, so we know that if
startDrag() is called there will be an item to drag. The startDrag() method is
called automatically by PyQt when needed because we set drag enabled in the
initializer.

We create a new empty byte array, and use QDataStream to populate it with
the QListWidgetItem’s icon and text. There is no need to call setVersion() on
QDataStream when we use it purely for handling in-memory data that exists
only during the runtime of the application and that is not exchanged with
any other application. Once we have populated the byte array, we wrap it in
a QMimeData object. Then we create a QDrag object, and give it the MIME data.
We have chosen to use the data’s icon as the icon to be used for the drag: If we
had not done so, PyQt would provide a default icon. We have also set the drag’s
“hotspot” to be the center of the icon. The mouse’s hotspot will always coincide
with the icon’s hotspot.

The call to QDrag.start() initiates the drag; we give as a parameter the action
or actions that we will accept. If the drag succeeds, that is, if the data is suc-
cessfully dropped, the start() method returns the action that occurred—for
example, copy or move. If the action was move, we remove the dragged QList-

WidgetItem from this list widget. Qt

4.3

From Qt 4.3, QDrag.exec_() should be used in-
stead of QDrag.start().

The setAcceptDrops() method is inherited from QWidget, but setDragEnabled()

is not, so by default it is available in only certain widgets. If we want to create
a custom widget that supports drops, we can simply call setAcceptDrops(True)
and reimplement dragEnterEvent(), dragMoveEvent(), and dropEvent(), as we

Drag and Drop 317

have done in the preceding examples. If we also want the custom widget to
support drags, and the widget inherits QWidget or some QWidget subclass that
does not have setDragEnabled(), we must do two things to make the widget
support dragging. One is to provide a startDrag() method so that a QDrag object
can be created, and another is to make sure the startDrag() method is called at
an appropriate time. The easiest way to ensure that startDrag() is called is to
reimplement the mouseMoveEvent():

def mouseMoveEvent(self, event):

self.startDrag()

QWidget.mouseMoveEvent(self, event)

The widget at the bottom left of the example application is a direct QWidget

subclass and uses this technique. Its startDrag() method is very similar to
the one we have just seen, and only a tiny bit simpler because it initiates copy
drags rather than move drags, so we don’t have to do anything regardless of
whether the drag is dropped successfully.

Summary

When we use existing widgets, PyQt’s signals and slots mechanism is often all
we need to get the behaviors we want. But when we create custom widgets—for
example, to exercise fine control over the appearance and behavior of a
widget—we must reimplement low-level event handlers.

For appearance, reimplementing paintEvent() is often sufficient, although in
some cases we may also need to reimplement resizeEvent(). We normally don’t
call the base class implementation for these events. For behavior it is common
to reimplement keyPressEvent() and some of the mouse events such as mouse-

PressEvent() or mouseMoveEvent(). We often don’t call the base class implemen-
tation for mouse events, although it is usually harmless to do so. If we exercise
lower-level control by reimplementing QWidget.event(), we must return True for
those events that we handle ourselves,and we must return the result of calling
the base class implementation for those events that we don’t handle.

We don’t often need to handle the clipboard in our own code, since most of
PyQt’s text editing widgets automatically interact with the clipboard in the
way we would expect. But if we do want to work with the clipboard in code, set-
ting and getting text and image data is straightforward, using the QClipboard

object returned by QApplication.clipboard(). Setting HTML data is slightly
more involved since we must wrap the HTML in a QMimeData object, although
retrieving HTML is easy. When we use MIME data with the clipboard we are
not limited to HTML; we can store and retrieve any kind of data by using the
same techniques we used to handle drag-and-drop data.

The built-in drag-and-drop support provided by the standard PyQt widgets is
very easy to set up and use. In some cases though,we need to drag and drop our
own custom data types. The code required to do so is not difficult to write, and

318 Chapter 10. Events, the Clipboard,and Drag and Drop

using QByteArray ensures that we can drag and drop any amount of data of any
C++ or PyQt data type. However, if the amount of data is very large, it may be
faster and less memory demanding to pass a token to stand for the data (say,
an index position in a data structure), rather than the data itself, and actually
copy data only when necessary.

It is also possible to bypass PyQt’s drag-and-drop facilities entirely, and
implement our own drag-and-drop system by reimplementing the mouse event
handlers. This is not as difficult as it sounds, but it is clearly less convenient
than using what PyQt already provides.

PyQt’s event-handling system is very powerful, and yet quite easy to use. In
most cases using the higher-level signals and slots mechanism is much easier
and is more appropriate. But when we need fine control and customization,
reimplementing event handlers will let us get the precise appearance and
behavior we want—and we will see this in action in the next chapter, when we
implement some custom widgets.

Exercise
Modify the DnDListWidget class so that when the user drops they get a pop-up
menu at the mouse position with two options, Copy and Move. Modify the
dragMoveEvent() to have a drop action of move rather than copy. The menu will
need to go in the dropEvent(), before creating the new list item.

The QMenu.exec_() method takes a QPoint argument which tells it where to
pop up; the QCursor.pos() method provides the current mouse position. The
drop event’s drop action must be set to copy or move depending on what the
user chose.

The startDrag() method will need to be modified slightly: The start() call must
be given both move and copy actions as acceptable actions, and should remove
the item only if the user chose to move.

The trickiest part is deciding how to respond to the menu actions. You could
use functools.partial() or lambda functions for example. In the model solution,
we simply use an instance variable that holds the drop action and have two
methods, one that sets the drop action to be move and the other to be copy, and
simply connect the menu actions to these methods.

A subtler approach is also possible. Instead of using a pop-up menu, in the
drag move event examine the keyboard modifiers and set the drop action to
move by default, or to copy if theCtrlkey is pressed. Similarly, in the drop event
set the drop action depending on the state of the Ctrl key. This is less intrusive
than a pop-up menu, but also less obvious for casual or naive users.

In the solution, we have created two QListWidget subclasses, DnDMenuListWidget
and DndCtrlListWidget, to show both of these approaches. Only about 25 lines
need to be added or changed (once you have copyied/pasted DndListWidget

Exercise 319

and renamed each of the two versions) to implement both of the approaches
described here.

A model solution is provided in the file chap10/customdraganddrop_ans.pyw.

This page intentionally left blank

Custom Widgets

1111 ● Using Widget Style Sheets

● Creating Composite Widgets

● Subclassing Built-in Widgets

● Subclassing QWidget

One of PyQt’s greatest and longest-standing strengths is the ease with which it
is possible to create custom widgets. The custom widgets we create with PyQt
are made the same way as the standard built-in widgets, so they integrate
seamlessly and have no arbitrary restrictions on their appearance or behavior.
Creating custom widgets in PyQt is not a matter of “one size fits all”. Rather,
we can choose from a number of approaches that give us increasing levels of
control over our widgets’ behavior and appearance.

The most basic level of customization is to simply set some of the properties
of an existing widget. We have already done this a number of times in ear-
lier chapters. For example, in the preceding chapter we enabled PyQt’s de-
fault drag-and-drop behavior simply by calling setAcceptDrops(True) and
setDragEnabled(True) on our widgets. For spinboxes, we can constrain their
behavior—for example, by calling setRange() to set a minimum and maximum
value—and can affect their appearance by using setPrefix() and setSuffix().
We will not show examples of this approach in this chapter because we have
already seen it in action many times before.

If setting the properties of an existing widget is insufficient, we can use a style
sheet to customize the widget’s appearance and some aspects Qt

4.2

of its behavior.
The ability to set style sheets on widgets was introduced with Qt 4.2, and we
will see a simple example to give a taste of what is possible in this chapter.

Sometimes we need not so much to customize a particular widget, but to create
a composite widget that combines two or more other widgets. We will look at
a simple example of how this can be done.

If we need to change the behavior of an existing widget beyond what can be
achieved by setting properties, we can subclass the widget and reimplement
whichever event handlers are necessary to achieve the control we want.

But in some cases, we need a widget that is different from any of the standard
built-in widgets. For these situations we can subclass QWidget directly and can
completely define the behavior and appearance of the widget ourselves. We

321

322 Chapter 11. Custom Widgets

will show two examples of this, the first a “generic” widget that might be used
in many places and many applications and the second an application-specific
widget of the kind that might be created for just one program.

Using Widget Style Sheets

We have already seen many examples of customizing widgets by changing
their properties. Some of these have affected widget behavior, such as setting
a QSpinBox’s range, and others have affected widget appearance, such as setting
a QLabel’s frame. Qt 4.2 introduced a new Qt

4.2

widget property, the style sheet prop-
erty. This property holds a QString and uses a syntax borrowed from HTML’s
CSS (Cascading Style Sheets).★

The screenshot in Figure 11.1 shows a dialog that has a style sheet set. Style
sheets apply to the widget they are set on, and all the widget’s child widgets. In
this case, we have set the combobox to use dark blue text and the line edits to
used dark green text. We have also set line edits that are “mandatory” to have
a yellow background.

Figure 11.1 A dialog customized using a style sheet

No PyQt widget has a “mandatory” property, but from Qt 4.2 it isPyQt

4.2

possible to
add properties dynamically to QObjects. Note that Qt properties are different
from Python properties—for example, they are accessed using property() and
setProperty(). From PyQt 4.2, the QtCore.pyqtProperty() function can be used
to create properties that are both Python and Qt properties at the same time.

self.lineedits = (self.forenameEdit, self.surnameEdit,

self.companyEdit, self.phoneEdit,

self.emailEdit)

for lineEdit in self.lineedits:

lineEdit.setProperty("mandatory", QVariant(True))

★Style sheets are not officially supported on Mac OS X, so they may not behave predictably. They
are expected to be supported from Qt 4.4 onward.

Using Widget Style Sheets 323

self.connect(lineEdit, SIGNAL("textEdited(QString)"),

self.updateUi)

The preceding code is from the form’s initializer.It addsa “mandatory” property
to those line edits that we do not want the user to be able to leave blank. All
Qt properties are held as QVariants. The signal–slot connections are discussed
shortly.

We have created a style sheet for the widget as a class static variable, and
set it on the form toward the end of the constructor. We could just as easily
have read the style sheet from a file (since it is simply plain text), or from a
PyQt resource.

StyleSheet = """

QComboBox { color: darkblue; }

QLineEdit { color: darkgreen; }

QLineEdit[mandatory="true"] {

background-color: rgb(255, 255, 127);

color: darkblue;

}

"""

···
self.setStyleSheet(ContactDlg.StyleSheet)

The style sheet syntax essentially consists of “selectors” and property name:
value pairs. In the preceding snippet, the first line has a selector of QComboBox,
which means that its property values will apply to any QComboBox or QComboBox

subclass that is a child of the widget on which the style sheet is set. In this
case, the effect is to set the text color to dark blue. The second selector is a
QLineEdit, and this works similarly.

The third selector is more specific: It specifies both a class, and a property of
that class whose state must be matched. In other words, this third selector will
apply only to QLineEdit and QLineEdit subclasses that have a “mandatory” prop-
erty, and where that property’s value is True. For such cases, the background
color is set to yellow (specified as an RGB triple), and the text color is set to
dark blue.

The dialog is slightly subtler than it may at first appear. This is because
the company line edit is mandatory only if the category combobox is set to
“Business”. To achieve this we need the signal–slot connections shown earlier,
and one other connection:

self.connect(self.categoryComboBox, SIGNAL("activated(int)"),

self.updateUi)

All the connections are to the updateUi() method:

324 Chapter 11. Custom Widgets

def updateUi(self):

mandatory = self.companyEdit.property("mandatory").toBool()

if self.categoryComboBox.currentText() == "Business":

if not mandatory:

self.companyEdit.setProperty("mandatory",

QVariant(True))

elif mandatory:

self.companyEdit.setProperty("mandatory", QVariant(False))

if mandatory != \

self.companyEdit.property("mandatory").toBool():

self.setStyleSheet(ContactDlg.StyleSheet)

enable = True

for lineEdit in self.lineedits:

if lineEdit.property("mandatory").toBool() and \

lineEdit.text().isEmpty():

enable = False

break

self.buttonBox.button(QDialogButtonBox.Ok).setEnabled(enable)

If the user has changed the category, we must reapply the style sheet to force
the widgets to be restyled. This ensures that the background of the company
line edit is correctly set to white or yellow depending on whether it is manda-
tory. Unfortunately, on slower machines, there is a slight flicker when the style
sheet is reset—for this reason we have slightly long-winded code to ensure that
the style sheet is reapplied only if necessary. Reapplying a style sheet is not
necessary for changes to “pseudostates” such as enabled, checked, and hover.

Style sheets have a much richer syntax,and are much more powerful, than this
simple example might suggest. For example, if we precede a selector with a dot,
as in .QLineEdit, the selector will apply only to the class specified and not to its
subclasses. If we want to a selector to apply to one specific widget we can call
setObjectName() on the widget and then use that name as part of the selector.
For example, if we had a button with an object name of “findButton”, the selec-
tor that would apply only to that button would be QPushButton#findButton.

Some widgets have “subcontrols”. For example, a QComboBox has an arrow that
the user can click to make its list drop down. Subcontrols can be specified as
part of the selector—for example, QComboBox::drop-down. Pseudostates can be
specified using a single colon—for example, QCheckBox:checked.

In addition to setting colors, style sheets can also be used to set fonts, borders,
margins, paddings, and backgrounds. One quick and easy way to experiment
with simple style sheets is to run Qt Designer, create a new form, drag some
widgets onto the form, and then enter and edit a style sheet for the form.

A style sheet can be set on a particular widget in a form, or on the form
(QDialog or QMainWindow) itself. In either case, the style sheet will automatically
be applied to any child widgets. It is also possible (and quite common) to set

Using Widget Style Sheets 325

a single style sheet for the entire application, in which case we set it on the
QApplication object.

Creating Composite Widgets

A composite widget is a widget that is composed of two or more other widgets.
We are already experienced composite widget creators: For example, every
dialog we have created is a composite widget. We are dedicating some space to
a topic we have already covered because unlike the dialogs we created earlier
(which were QDialog subclasses), we want to create composite widgets that are
not dialogs, and that instead can be used inside dialogs (or as a main window’s
central widget).

The kind of composite widget we want is very similar to a dialog: We create the
child widgets, lay them out, and do any signal–slot connections we need. The
main difference is that we inherit from QWidget rather than from QDialog.

Figure 11.2 A dialog using labelled widgets

The screenshot in Figure 11.2 shows what looks like a conventional dialog,
but in fact we have explicitly created only six widgets rather than twelve.
This is because we have used four custom LabelledLineEdits, and one custom
LabelledTextEdit, along with a QDialogButtonBox.

Our labelled editors are special in two ways. First, they automatically set up
buddy relationships, and second, they can lay out the label either to the left or
above their editing widget.

self.zipcode = LabelledLineEdit("&Zipcode:")

self.notes = LabelledTextEdit("&Notes:", ABOVE)

Creating labelled editors is easy, as this snippet from the form’s initializer
shows. The LabelledLineEdit exposes its widgets as instance variables, so we

326 Chapter 11. Custom Widgets

can access its QLabel as LabelledLineEdit.label and its QLineEdit as Labelled-

LineEdit.lineEdit. The LabelledTextEdit has the same label, and has a textEdit

for its QTextEdit. The ABOVE is just a module constant; there is also a correspond-
ing LEFT.

class LabelledLineEdit(QWidget):

def __init__(self, labelText=QString(), position=LEFT,

parent=None):

super(LabelledLineEdit, self).__init__(parent)

self.label = QLabel(labelText)

self.lineEdit = QLineEdit()

self.label.setBuddy(self.lineEdit)

layout = QBoxLayout(QBoxLayout.LeftToRight \

if position == LEFT else QBoxLayout.TopToBottom)

layout.addWidget(self.label)

layout.addWidget(self.lineEdit)

self.setLayout(layout)

The preceding code is the complete LabelledLineEdit class. If we want to
connect signals and slots to its label or line edit, we can do so by accessing them
directly since they are held as public instance variables. Instead of using a
QVBoxLayout or a QHBoxLayout, we have used their base class so that we can set
the layout direction when the labelled line edit is created. We won’t show the
code for the LabelledTextEdit since it differs only in that we create a QTextEdit

instead of a QLineEdit and call it textEdit instead of lineEdit.

Although we have created the composite labelled editing widgets purely in
code, it is possible to create composite widgets using Qt Designer, basing them
on the “Widget” template.

Creating composite widgets that are used repeatedly can save time in large
projects. They are also useful when we want to create a main-window-style ap-
plication whose central widget must consist of two or more widgets, and where
using an MDI workspace, splitters, or dock windows is not a suitable solution.

Subclassing Built-in Widgets

Sometimes we need a widget that is similar in appearance and behavior to an
existing widget, but with more customization required than can be achieved
by using a style sheet or by setting other widget properties. In these cases, we
can subclass the similar widget and customize it to our needs.★

To show how to subclass an existing widget, let us imagine that we need a
spinbox that works on Roman numerals rather than on decimals, like the one
shown in Figure 11.3. Providing we know how to convert integers to Roman

★Appendix B provides screenshots and brief descriptions of selected PyQt widgets,and Appendix C
shows selected PyQt class hierarchies.

Subclassing Built-in Widgets 327

numeral strings and back again, it is straightforward to subclass QSpinBox for
this purpose.

Figure 11.3 A Roman spinbox

When subclassing a spinbox we will need to reimplement three methods: vali-
date(), which is used by the spinbox to prevent invalid data from being entered;
valueFromText(), which is used to convert text entered by the user into an in-
teger; and textFromValue(), which is used to convert an integer into its textual
representation.We will also need to do some setting up in the initializer, so it is
with that method that we will begin.

class RomanSpinBox(QSpinBox):

def __init__(self, parent=None):

super(RomanSpinBox, self).__init__(parent)

regex = QRegExp(r"^M?M?M?(?:CM|CD|D?C?C?C?)"

r"(?:XC|XL|L?X?X?X?)(?:IX|IV|V?I?I?I?)$")

regex.setCaseSensitivity(Qt.CaseInsensitive)

self.validator = QRegExpValidator(regex, self)

self.setRange(1, 3999)

self.connect(self.lineEdit(), SIGNAL("textEdited(QString)"),

self.fixCase)

PyQt provides its own regular expression class, with a syntax very similar to
that used by Python’s re module. The main difference is that QRegExp does not
support nongreedy quantifiers,although it will allow the entire regular expres-
sion to be nongreedy. The regular expression sets out which combinations of
letters constitute valid Roman numbers in the range 1–3999.★

We make the regular expression case-insensitive because we don’t mind
whether the user enters lower or uppercase letters—and anyway, we will force
the input to be uppercase ourselves. Validators can either be one of PyQt’s
predefined validators (for integers and for floating-point numbers), or be based
on a regular expression such as the one we have used here. The signal–slot
connection is set up so that whenever the user enters any text we can force it
to be uppercase.

def fixCase(self, text):

self.lineEdit().setText(text.toUpper())

A QSpinBox has a QLineEdit component, and it provides an accessor method to
retrieve it. We use this to uppercase whatever the user has typed in. (The user

★The regular expression is adapted from one given in Dive into Python by Mark Pilgrim.

328 Chapter 11. Custom Widgets

cannot type invalid letters like “A”, “B”, “1”, or “2”, because the validator will
not accept them.)

def validate(self, text, pos):

return self.validator.validate(text, pos)

We must provide a validate() method. This will automatically be called
whenever the user changes the text, since this behavior is part of the QSpinBox’s
API. We can simply pass on the work to the validator object we created in the
initializer.

def valueFromText(self, text):

return intFromRoman(unicode(text))

If the user enters text, the spinbox needs to know the integer value it repre-
sents. We simply pass this on to an intFromRoman() function adapted from the
“Roman Numerals” recipe in the Python Cookbook.

def textFromValue(self, value):

return romanFromInt(value)

The spinbox must be able to convert integers to their textual
representation—for example, when setValue() is called or when the user incre-
ments or decrements the value using the spinbox buttons.Again we pass on the
work, this time to a romanFromInt() function, adapted from the feedback given
on the “Decimal to Roman Numerals” recipe in the Python Cookbook.

The RomanSpinBox can be used anywhere a conventional QSpinBox is used, the
only limitation being the range of numbers it can cope with. A much more
complex example of subclassing an existing widget is presented in Chapter 13,
where a QTextEdit is used to create a RichTextLineEdit.

Subclassing QWidget

When we cannot get the custom widget we need by setting properties, using
a style sheet, or subclassing an existing widget, we can create the widget we
need from scratch. In practice, we always create custom widgets by subclassing
QWidget, since this provides a lot of behind-the-scenes convenience that we
don’t need or want to worry about, leaving us free to focus on what matters: the
appearance and behavior of our custom widget.

In this section, we will look at two different custom widgets. The first, Frac-
tionSlider, is a generic “range control”-type widget that might be used many
times. The second, YPipeWidget, is an application-specific widget that may be
needed in only one particular program.

Before we go into the details of these two widgets, we will first discuss painting
in PyQt, and in particular the coordinate systems that are used by QPainter. A
QPainter has two separate coordinate systems: a device (physical) coordinate

Subclassing QWidget 329

system that matches the pixels in the widget’s area, and a logical coordinate
system. By default, the logical coordinate system is set to exactly match the
physical coordinate system.

In fact, the physical coordinates are not necessarily pixels since they depend on
the underlying paint device. This can be a QGLPixelBuffer (for 2D and 3D paint-
ing), a QImage, a QPicture, a QPixmap, a QPrinter (in which case the coordinates
are points, 1

72"), a QSvgGenerator (introduced with Qt 4.3), or a QWidget.

In PyQt terminology the physical coordinate system is called the “viewport”,
and confusingly, the logical coordinate system is called the “window”.

(150, 200)

(420, 320)

(-37.5, -20)

(3, 4)

(0, 0)

(800, 600)

(-60, -60)

(60, 60)
Viewport Window

Figure 11.4 The viewport and window coordinate systems

In Figure 11.4, we have a physical widget size of 800 × 600. By calling setWin-

dow(-60, -60, 120, 120) we can create a “window” with a top-left coordinate of
(-60, -60), a width of 120, a height of 120, and centered at point (0, 0). The
window’s coordinate system is a logical coordinate system that QPainter auto-
matically maps to the underlying physical device. After the setWindow() call,
all our painting takes place using the logical (window) coordinate system.

In this case, the widget is rectangular, but our window has the same width and
height. This means that the items we paint will be stretched out horizontally,
since coordinates in the y-axis will be scaled by QPainter in the ratio 120:600
(1:5), whereas those in the x-axis will be scaled in the ratio 120:800 (1:6 2

3).

For most widgets, a rectangular region works perfectly well, but in some
cases—for example, if we really want our logical window to be square—we
can change the viewport so that we operate on only a proportion of the wid-
get’s area.

side = min(self.width(), self.height())

painter.setViewport((self.width() - side) / 2,

(self.height() - side) / 2, side, side)

This code, executed inside a widget’s paintEvent(), changes the widget’s
viewport to be the largest centered square region that will fit. In the example
earlier, this will produce a viewport of 600 × 600 pixels with no top or bottom
margins, but with a 100-pixel margin on the left and on the right. The window
will now be an exact square, and the aspect ratio of anything we paint in it will
be preserved.

330 Chapter 11. Custom Widgets

Table 11.1 Selected QWidget Methods

Syntax Description

w.addAction(a) Adds QAction a to QWidget w; useful for context menus
w.close() Hides QWidget w; or deletes it if Qt.WA_DeleteOnClose is set
w.hasFocus() Returns True if QWidget w has the keyboard focus
w.height() Returns QWidget w’s height
w.hide() Hides QWidget w

w.move(x, y) Moves the top-level QWidget w to position (x, y)
w.raise_() Raises QWidget w to the top of the parent widget’s stack
w.rect() Returns QWidget w’s dimensions as a QRect

w.restore-

Geometry(ba)
Restores top-level QWidget w’s geometry to that encoded in
QByteArray ba

w.save-

Geometry()
Returns a QByteArray that encodes QWidget w’s geometry

w.setAccept-

Drops(b)
Sets whether QWidget w will accept drops depending on
bool b

w.setAttrib-

ute(wa, b)
Sets Qt.WidgetAttribute wa on or off depending on bool b.
The most common attribute used is Qt.WA_DeleteOnClose.

w.setContext-

MenuPolicy(p)
Sets QWidget w’s context menu policy to policy p. Policies
include Qt.NoContextMenu and Qt.ActionsContextMenu.

w.setCursor(c) Sets QWidget w’s cursor to c, a QCursor or a Qt.CursorShape

w.setEnabled(b) Sets QWidget w to be enabled or disabled depending on b

w.setFocus() Gives the keyboard focus to QWidget w

w.setFont(f) Sets QWidget w’s font to QFont f

w.setLayout(l) Sets QWidget w’s layout to QLayout l

w.setSize-

Policy(hp, vp)
Sets QWidget w’s horizontal and vertical QSizePolicys to hp

and vp

w.setStyle-

Sheet(s)
Sets QWidget w’s style sheet to the CSS text in string s

w.setWindow-

Icon(i)
Sets top-level QWidget w’s icon to QIcon i

w.setWindow-

Title(s)
Sets top-level QWidget w’s title to string s

w.show() Shows top-level QWidget w modelessly. It can be shown
modally by using setWindowModality().

w.update() Schedules a paint event for QWidget w

w.update-

Geometry()
For non-top-level widgets, notifies any containing layouts
that QWidget w’s geometry may have changed

w.width() Returns QWidget w’s width

Subclassing QWidget 331

The main benefit of using a window is that it allows us to paint using logical
coordinates. This is very convenient because it means that all the scaling that
is needed—for example, when the user resizes the widget—is taken care of
automatically by PyQt. This benefit also turns out to have a drawback: If we
want to paint text, the text will be scaled along with everything else. For this
reason, it is often easiest to work in physical (viewport) coordinates for custom
widgets that paint text, and logical (window) coordinates otherwise. We show
both approaches, with the FractionSlider using viewport coordinates and the
YPipeWidget using window coordinates.

Example: A Fraction Slider

The FractionSlider is a widget that allows the user to choose a fraction between
0 and 1 inclusive; it is shown in Figure 11.5. We will allow programmers who
use our slider to set a denominator in the range 3–60, and will emit value-

Changed(int, int) signals (with the numerator and denominator) whenever the
user changes the fraction. We provide both mouse and keyboard control, and
we paint the entire widget ourselves. We also ensure that the widget’s mini-
mum size hint is always proportional to the size of the denominator, so that the
widget cannot be resized to be too small to show the fraction texts.

Figure 11.5 A dialog using a Fraction Slider

We will begin by looking at the static data and the initializer.

class FractionSlider(QWidget):

XMARGIN = 12.0

YMARGIN = 5.0

WSTRING = "999"

def __init__(self, numerator=0, denominator=10, parent=None):

super(FractionSlider, self).__init__(parent)

self.__numerator = numerator

self.__denominator = denominator

self.setFocusPolicy(Qt.WheelFocus)

self.setSizePolicy(QSizePolicy(QSizePolicy.MinimumExpanding,

QSizePolicy.Fixed))

The XMARGIN and YMARGIN are used to give some horizontal and vertical spacing
around the edges of the widget. The WSTRING is a string containing text that is

332 Chapter 11. Custom Widgets

the longest we could possibly need: two digits to display, and an extra digit to
provide some margin.

We provide default values that start the widget off as showing zero tenths. We
chose a focus policy of Qt.WheelFocus because that isSize

policies

271 ☞

the “strongest” one, which
means that the widget will accept focus if tabbed to or clicked on, or if the
user uses the mouse wheel on it. We set the size policies for the horizontal and
vertical directions. By doing this we help ensure that our widget will cooperate
properly with the layout managers. Here we have said that in the horizontal
direction, the widget can be shrunk to its minimum size but prefers to grow,
and in the vertical direction the widget has a fixed size of whatever height its
sizeHint() method returns.

def decimal(self):

return self.__numerator / float(self.__denominator)

def fraction(self):

return self.__numerator, self.__denominator

We provide two convenience methods for returning the value, the first return-
ing a floating-point value and the second a pair of integers.

def setFraction(self, numerator, denominator=None):

if denominator is not None:

if 3 <= denominator <= 60:

self.__denominator = denominator

else:

raise ValueError, "denominator out of range"

if 0 <= numerator <= self.__denominator:

self.__numerator = numerator

else:

raise ValueError, "numerator out of range"

self.update()

self.updateGeometry()

This method can be used just to set the numerator, or to set both numerator
and denominator. Once the fraction has been changed we call update() to
schedule a paint event so that the gold triangle that marks the current fraction
is repainted in the right place.

We also call updateGeometry(). This is to tell any layout manager that is re-
sponsible for this widget that the widget’s geometry might have changed. This
may appear strange—after all, we have changed only the fraction. But if we
changed the denominator, the widget’s size hint will have changed to allow for
more (or less) fractions to be displayed. As a result, if there is a layout manager
for the widget, it will recalculate its layout, asking the widget for its size hints
and adjusting the layout if necessary.

Subclassing QWidget 333

We have chosen to deal with invalid values by raising exceptions. This is
because setFraction() is normally called programmatically, and so should
never be given out-of-range values in the normal run of things. An alterna-
tive approach would be to force the numerator and denominator to be within
range: This approach is taken in the keyboard and mouse event handlers that
give the widget its behavior, and it is to these that we now turn.

def mousePressEvent(self, event):

if event.button() == Qt.LeftButton:

self.moveSlider(event.x())

event.accept()

else:

QWidget.mousePressEvent(self, event)

If the user clicks the widget, we want to set the numerator to the nearest
fraction. We could do the calculations in the mouse press event, but since we
want to support dragging the gold triangle as well as clicking to move it, we
have factored out this code into a separate moveSlider() method that takes the
mouse’s x coordinate as an argument. After changing the fraction, we accept
the event, since we have handled it. If we did not handle the click (for example,
if it was a right-click), we call the base class implementation, although this is
not strictly necessary.

def moveSlider(self, x):

span = self.width() - (FractionSlider.XMARGIN * 2)

offset = span - x + FractionSlider.XMARGIN

numerator = int(round(self.__denominator * \

(1.0 - (offset / span))))

numerator = max(0, min(numerator, self.__denominator))

if numerator != self.__numerator:

self.__numerator = numerator

self.emit(SIGNAL("valueChanged(int,int)"),

self.__numerator, self.__denominator)

self.update()

We begin by calculating the “span” of the widget, excluding the horizontal
margins. Then we find how far along the x-axis the mouse was clicked (or
dragged) and calculate the numerator as a proportion of the widget’s width.
If the user clicked or dragged in the left margin area, we set the numerator
to 0, and if they clicked or dragged in the right margin area, we set it to equal
the denominator (so the fraction will be 1). If the numerator has changed from
before, we set the instance variable accordingly and emit a signal announcing
that the value has changed. We then call update() to schedule a paint event (to
move the gold triangle).

We have chosen to emit a Python non-short-circuit signal; we could justShort-
circuit
signals

131 ☞

as
easily have made it a short-circuit signal by dropping the (int,int). It is also

334 Chapter 11. Custom Widgets

possible to define signals using the __pyqtSignals__ class attribute, although
this is really useful only for custom widgets written in PyQt that are to be
integrated with Qt Designer.★

def mouseMoveEvent(self, event):

self.moveSlider(event.x())

This tiny method is all that we need to support dragging the gold triangle to
change the fraction. This method is called only if the mouse is being dragged,
that is, if the left mouse button is pressed at the same time the mouse is being
moved. This is QWidget’s standard behavior—we can have mouse move events
generated for all mouse moves, regardless of the mouse buttons, by calling
QWidget.setMouseTracking(True), if we wish.

def keyPressEvent(self, event):

change = 0

if event.key() == Qt.Key_Home:

change = -self.__denominator

elif event.key() in (Qt.Key_Up, Qt.Key_Right):

change = 1

elif event.key() == Qt.Key_PageUp:

change = (self.__denominator // 10) + 1

elif event.key() in (Qt.Key_Down, Qt.Key_Left):

change = -1

elif event.key() == Qt.Key_PageDown:

change = -((self.__denominator // 10) + 1)

elif event.key() == Qt.Key_End:

change = self.__denominator

if change:

numerator = self.__numerator

numerator += change

numerator = max(0, min(numerator, self.__denominator))

if numerator != self.__numerator:

self.__numerator = numerator

self.emit(SIGNAL("valueChanged(int,int)"),

self.__numerator, self.__denominator)

self.update()

event.accept()

else:

QWidget.keyPressEvent(self, event)

For keyboard support, we want Home to set the fraction to 0,End to set it to 1, up
or right arrow keys to move to the next fraction up, and down or left arrow keys
to move to the next fraction down. We have also set PageUp to move one-tenth
of the way up and PageDown to move one-tenth of the way down.

★See the PyQt pyqt4ref.html documentation, under “Writing Qt Designer Plugins”.

Subclassing QWidget 335

The code for ensuring that the numerator is in range, and for setting the
instance variable, and so on, is identical to what we did in the mouse press
event handler. And again we pass on unhandled key presses to the base class
implementation—which does nothing, just as the base class mouse click han-
dler does nothing.

def sizeHint(self):

return self.minimumSizeHint()

We have decided that the widget’s preferred size is its minimum size. Strictly
speaking we did not have to reimplement this method,but by doing so we make
our intention clear. Thanks to the size policies we set in the initializer, the wid-
get can grow horizontally to occupy as much horizontal space as is available.

def minimumSizeHint(self):

font = QFont(self.font())

font.setPointSize(font.pointSize() - 1)

fm = QFontMetricsF(font)

return QSize(fm.width(FractionSlider.WSTRING) * \

self.__denominator,

(fm.height() * 4) + FractionSlider.YMARGIN)

A QFontMetricsF object is initialized by a QFont object, in this case the widget’s
default font.★ This font is inherited from the widget’s parent, which in turn
inherits from its parent, and so on, with top-level widgets inheriting their
fonts (and color schemes and other user settings) from the QApplication object,
which itself takes them from the user preferences reported by the underlying
windowing system. We can of course ignore the users’ preferences and set an
explicit font in any widget.

The QFontMetricsF object provides the real metrics, i.e., those of the font actu-
ally used—and this may be different from the font that was specified. For ex-
ample, if the Helvetica font is used, it will almost certainly be found and used
on Linux or Mac OS X, but on Windows, Ariel is likely to be used in its place.
We have chosen to use a font size one less than the user’s preferred font size to
show the fractions, which is why we call setPointSize().

We set the widget’s minimum width to be the width necessary to display all the
fractions, assuming that each one is three digits wide, i.e., two digits plus some
empty margin either side. The overall width is actually slightly less than this
because we don’t include the horizontal margins. We set the widget’s minimum
height to be four times the height of one character, i.e., enough vertical space
for the fraction “segments” (the rectangles that signify each fraction), the
vertical lines, the numerator, and the denominator. And just as for the width,
the actual height is slightly less than this, because we only account for half of
the vertical margin.

★PyQt also has a QFontMetrics class which gives integer rather than floating-point values. Similarly
PyQt has QLine, QLineF, QPoint, QPointF, QPolygon, QPolygonF, QRect, QRectF, and some others.

336 Chapter 11. Custom Widgets

Having implemented the key and mouse event handlers, set the size policies,
and implemented the size hint methods, we have made the widget have appro-
priate behavior for user interaction and in relation to any layout manager that
might be asked to lay out the widget. There is only one thing left to do:We must
paint the widget when required to do so. The paintEvent() is rather long, so we
will look at it in pieces.

def paintEvent(self, event=None):

font = QFont(self.font())

font.setPointSize(font.pointSize() - 1)

fm = QFontMetricsF(font)

fracWidth = fm.width(FractionSlider.WSTRING)

indent = fm.boundingRect("9").width() / 2.0

if not X11:

fracWidth *= 1.5

span = self.width() - (FractionSlider.XMARGIN * 2)

value = self.__numerator / float(self.__denominator)

We begin by getting the font we want to use, as well as its font metrics. Then
we calculate fracWidth, the width of one fraction, as well as an indent for each
fraction’s dividing line. The if statement is used to compensate for differences
between the font metrics on the X Window System and other window systems
such as Windows and Mac OS X. The span is the width of the widget exclud-
ing the horizontal margins, and the value is the floating-point value of the
fraction.

The X11 Boolean variable is True if the underlying window system is the
X Window System, as it normally is on Linux, BSD, Solaris, and similar, and
False otherwise—for example, on Windows and Mac OS X. It was set at the
beginning of the file, after the imports, using the following statement:

X11 = "qt_x11_wait_for_window_manager" in dir()

We could write it more clearly as:

import PyQt4.QtGui

X11 = hasattr(PyQt4.QtGui, "qt_x11_wait_for_window_manager")

These work because the PyQt4.QtGui.qt_x11_wait_for_window_manager() func-
tion exists only on systems that are using the X Window System. We used a
similar technique for Mac OS X detection in Chapter 7.

painter = QPainter(self)

painter.setRenderHint(QPainter.Antialiasing)

painter.setRenderHint(QPainter.TextAntialiasing)

painter.setPen(self.palette().color(QPalette.Mid))

painter.setBrush(self.palette().brush(QPalette.AlternateBase))

painter.drawRect(self.rect())

Subclassing QWidget 337

We create a QPainter and set its render hints to give us antialiased drawing.
Then we set the pen (which is used for shape outlines and for drawing text) and
the brush (which is used for fills), and draw a rectangle over the entire widget.
Because we used different shades for the pen and brush, this has the effect of
giving the widget a border and a slightly indented look.

The QApplication object has a QPalette that contains colors for various purposes,
such as text foreground and background colors, button colors, and so on. The
colors are identified by their roles, such as QPalette.Text or QPalette.Highlight,
although we have used rather more obscure roles in this example. There are,
in fact, three sets of these colors, one for each of the widget states: “active”,
“disabled”, and “inactive”. Every QWidget also has a QPalette, with colors inher-
ited from the QApplication palette—which in turn is initialized with colors from
the underlying window system and therefore reflects the user’s preferences.
PyQt tries very hard to ensure that the colors in a palette work well together,
providing good contrast, for example. As programmers,we are free to use what-
ever colors we like, but especially for standard requirements such as text colors
and backgrounds, it is best to use the palette.

segColor = QColor(Qt.green).dark(120)

segLineColor = segColor.dark()

painter.setPen(segLineColor)

painter.setBrush(segColor)

painter.drawRect(FractionSlider.XMARGIN,

FractionSlider.YMARGIN, span, fm.height())

We create a dark green color for the segments,and an even darker green for the
vertical lines that mark them out. Then we draw a rectangle that encompasses
all the segments.

textColor = self.palette().color(QPalette.Text)

segWidth = span / self.__denominator

segHeight = fm.height() * 2

nRect = fm.boundingRect(FractionSlider.WSTRING)

x = FractionSlider.XMARGIN

yOffset = segHeight + fm.height()

Here, we set the text color to use based on the user’s palette. Then we work
out the width and height of each segment, and set an initial x position and a
yOffset. The nRect is a rectangle large enough to contain a number with some
left and right margin space.

for i in range(self.__denominator + 1):

painter.setPen(segLineColor)

painter.drawLine(x, FractionSlider.YMARGIN, x, segHeight)

painter.setPen(textColor)

y = segHeight

rect = QRectF(nRect)

338 Chapter 11. Custom Widgets

rect.moveCenter(QPointF(x, y + fm.height() / 2.0))

painter.drawText(rect, Qt.AlignCenter, QString.number(i))

y = yOffset

rect.moveCenter(QPointF(x, y + fm.height() / 2.0))

painter.drawText(rect, Qt.AlignCenter,

QString.number(self.__denominator))

painter.drawLine(QPointF(rect.left() + indent, y),

QPointF(rect.right() - indent, y))

x += segWidth

In this loop we draw the vertical lines that mark out each segment, the numer-
ator below each segment, and the denominator below each numerator, along
with the dividing line between them. For the drawText() calls we provide a
rectangle in which the text should be drawn, and by using Qt.AlignCenter, we
ensure that the text is vertically and horizontally centered inside the specified
rectangle. We use the same rectangle, but indented at the left and right, to
calculate the end points of the dividing line, which we then draw. The y offsets
are fixed for every line, numerator, and denominator, but the x offsets increase
by one segment width after drawing each fraction.

span = int(span)

y = FractionSlider.YMARGIN - 0.5

triangle = [QPointF(value * span, y),

QPointF((value * span) + \

(2 * FractionSlider.XMARGIN), y),

QPointF((value * span) + \

FractionSlider.XMARGIN, fm.height())]

painter.setPen(Qt.yellow)

painter.setBrush(Qt.darkYellow)

painter.drawPolygon(QPolygonF(triangle))

At the end we draw the gold triangle that shows the user which fraction is
selected. We specify polygons by providing a list of points. We don’t have to
duplicate the first point at the end, since if we use drawPolygon(), PyQt will
automatically join the first and last points and fill the enclosed area. In the
next chapter we will see more advanced drawing techniques, including the use
of the very versatile QPainterPath class.

We have now completed the generic FractionSlider widget. It has both key-
board and mouse support, looks reasonable on all platforms,and interactsprop-
erly with the layout managers.

The QPainter class offers many more possibilities than we have needed for
this widget, but in the next subsection we will see more of what can be done,
including drawing unfilled polygons and polygons that use gradient fills. We
will also see how to include other widgets inside a custom widget.

Subclassing QWidget 339

Example: A Flow-Mixing Widget

It is sometimes appropriate to create custom widgets for particular applica-
tions. For this example, we will assume that we have an application in which
we are modeling the flow of fluid through a “Y”-shaped pipe, as depicted in Fig-
ure 11.6.

Figure 11.6 A YPipe widget

The widget must draw three gradient-filled polygons and three black outlines
(to give a clear border to the pipe shapes),and must allow the user to set the left
and right flows, as well as show the combined flow. We have chosen to provide
spinboxes for the user to set the flows and to use a label to show the resultant
flow. The advantages of using these built-in widgets include that we need con-
cern ourselves only with their positioning and connections; we can leave PyQt
to provide mouse and keyboard interaction and to display them properly. An-
other benefit is that we can paint our custom widget using a “window”, that is,
using logical rather than device (viewport) coordinates, and do not have to wor-
ry about scaled text because the text appears only in widgets that are overlaid
on top of the custom widget, and are not affected by the window settings.

We will start by looking at the initializer, taking it in two parts.

class YPipeWidget(QWidget):

def __init__(self, leftFlow=0, rightFlow=0, maxFlow=100,

parent=None):

super(YPipeWidget, self).__init__(parent)

self.leftSpinBox = QSpinBox(self)

self.leftSpinBox.setRange(0, maxFlow)

self.leftSpinBox.setValue(leftFlow)

self.leftSpinBox.setSuffix(" l/s")

340 Chapter 11. Custom Widgets

self.leftSpinBox.setAlignment(Qt.AlignRight|Qt.AlignVCenter)

self.connect(self.leftSpinBox, SIGNAL("valueChanged(int)"),

self.valueChanged)

After the super() call, we create the left spinbox, set some of its parameters,
and connect it to a valueChanged() method that we will look at in a moment.
Notice that we give the spinbox a parent of self (the YPipeWidget instance); this
is because the spinbox will not be laid out, so no layout manager will reparent
the spinbox to the parent widget for us. We have omitted the creation and
setup of the right spinbox because the code is almost identical.

self.label = QLabel(self)

self.label.setFrameStyle(QFrame.StyledPanel|QFrame.Sunken)

self.label.setAlignment(Qt.AlignCenter)

fm = QFontMetricsF(self.font())

self.label.setMinimumWidth(fm.width(" 999 l/s "))

self.setSizePolicy(QSizePolicy(QSizePolicy.Expanding,

QSizePolicy.Expanding))

self.setMinimumSize(self.minimumSizeHint())

self.valueChanged()

We create the label that we will use to show the combined flow, and set
some of its properties. We give it a minimum width so that it will not resize
disconcertingly—for example, if the flow rate changes between 9 and 10, or 99
and 100. We set the size policies of the YPipeWidget to expanding, which means
that the widget wants to grow in both directions as much as possible. We also
set the widget’s minimum size to its minimum size hint, and call valueChanged()
to give the label an initial value.

def valueChanged(self):

a = self.leftSpinBox.value()

b = self.rightSpinBox.value()

self.label.setText("%d l/s" % (a + b))

self.emit(SIGNAL("valueChanged"), a, b)

self.update()

Whenever the user changes one of the flow spinboxes, this method is called. It
updates the label, emits its own valueChanged Python signal,which any external
widget could connect to, and schedules a repaint. The reason for the repaint is
that the gradient fills are colored in proportion to the spinbox values.

def values(self):

return self.leftSpinBox.value(), self.rightSpinBox.value()

This method provides the flow spinbox values as a two-tuple.

def minimumSizeHint(self):

return QSize(self.leftSpinBox.width() * 3,

Subclassing QWidget 341

self.leftSpinBox.height() * 5)

We have made the widget’s minimum width and height proportional to the
spinboxes. This ensures that the “Y” shape never becomes too small to be un-
derstandable.

def resizeEvent(self, event=None):

fm = QFontMetricsF(self.font())

x = (self.width() - self.label.width()) / 2

y = self.height() - (fm.height() * 1.5)

self.label.move(x, y)

y = self.height() / 60.0

x = (self.width() / 4.0) - self.leftSpinBox.width()

self.leftSpinBox.move(x, y)

x = self.width() - (self.width() / 4.0)

self.rightSpinBox.move(x, y)

The resize event is particularly important for widgets that contain other
widgets and that do not have a layout. This is because we use this event to
position the child widgets. A resize event is always called before a widget is
first shown, so we automatically get the chance to position the child widgets
before the widget is seen by the user for the first time.

The label is horizontally centered, and drawn near the bottom of the wid-
get. (The y coordinates increase downward, so self.height() returns the
greatest—bottommost—y value.) The two spinboxes are drawn near the top, 1

60

of the height below the least—topmost—y value, and 1
4 of the widget’s width in

from the left or right edge.

Because we have used QSpinBoxes and a QLabel, along with a couple of
signal–slot connections, all the user interaction is taken care of, so we need to
concern ourselves only with resizing and painting. Although the painting is
simplified by having the spinboxes and label drawn by PyQt, it is still a little
involved, so we will look at the paint event in pieces.

def paintEvent(self, event=None):

LogicalSize = 100.0

def logicalFromPhysical(length, side):

return (length / side) * LogicalSize

fm = QFontMetricsF(self.font())

ymargin = (LogicalSize / 30.0) + \

logicalFromPhysical(self.leftSpinBox.height(),

self.height())

ymax = LogicalSize - \

logicalFromPhysical(fm.height() * 2, self.height())

width = LogicalSize / 4.0

cx, cy = LogicalSize / 2.0, LogicalSize / 3.0

342 Chapter 11. Custom Widgets

ax, ay = cx - (2 * width), ymargin

bx, by = cx - width, ay

dx, dy = cx + width, ay

ex, ey = cx + (2 * width), ymargin

fx, fy = cx + (width / 2), cx + (LogicalSize / 24.0)

gx, gy = fx, ymax

hx, hy = cx - (width / 2), ymax

ix, iy = hx, fy

Rather than work in device (physical) coordinates and have to scale all the
coordinates ourselves, we have created a logical coordinate system, with a top
left of (0, 0) and a width and height of 100 (LogicalSize). We have defined a tiny
helper function used to calculate a y margin above which the spinboxes are
drawn, and a maximum y below which the label is drawn.

a b d e

c

i f

h g

Figure 11.7 The YPipe’s coordinate points

As Figure 11.7 indicates, we do all our painting in terms of the points needed to
draw the “Y” shape. For each point in the figure, we calculate an x coordinate
and a y coordinate. For example, the top-left point is a, so its coordinates in
the code are ax and ay. Most of the calculations are done in terms of point c, (cx,
cy).

painter = QPainter(self)

painter.setRenderHint(QPainter.Antialiasing)

side = min(self.width(), self.height())

painter.setViewport((self.width() - side) / 2,

(self.height() - side) / 2, side, side)

painter.setWindow(0, 0, LogicalSize, LogicalSize)

We create the painter and set its viewport to be the largest centered square
area that will fit inside its rectangle. We then set a window, that is, impose
our own logical coordinate system, leaving PyQt to take care of transforming
logical to physical coordinates.

painter.setPen(Qt.NoPen)

Subclassing QWidget 343

Table 11.2 Selected QPainter Methods (Excluding Drawing-Related Methods)

Syntax Description

p.restore() Restores QPainter p’s state to the last saved state
p.rotate(a) Rotates QPainter p by int a°

p.save() Saves QPainter p’s state, including its transformation
matrix, pen, and brush

p.scale(x, y) Scales QPainter p horizontally by float x and verti-
cally by float y; 1.0 is unscaled, 0.5 is half size, 3.0 is
three times the size

p.setMatrix(m) Sets QPainter p’s transformation matrix to QMatrix m

p.setRenderHint(h) Turns on the QPainter.RenderHint h. Hints include
QPainter.Antialiasing, QPainter.TextAntialiasing,
and QPainter.SmoothPixmapTransform.

p.setView-

port(x, y, w, h)
Constrains QPainter p’s viewport (physical coordi-
nates) to the rectangle with top-left corner at point
(x, y), and with width w and height h; all the arguments
are ints

p.setWin-

dow(x, y, w, h)
Sets QPainter p’s logical coordinate system to the
rectangle with top-left corner at point (x, y), and with
width w and height h; all the arguments are ints

p.shear(x, y) Shears QPainter p’s coordinate system horizontally by
float x and vertically by float y

p.translate(dx, dy) Moves QPainter p’s coordinate system horizontally by
int dx and vertically by int dy

We turn off the pen because we do not want an outline around the polygons we
will draw for each part of the pipe. Instead, we will draw in the lines we want
at the end of the paint event.

gradient = QLinearGradient(QPointF(0, 0), QPointF(0, 100))

gradient.setColorAt(0, Qt.white)

a = self.leftSpinBox.value()

gradient.setColorAt(1, Qt.red if a != 0 else Qt.white)

painter.setBrush(QBrush(gradient))

painter.drawPolygon(

QPolygon([ax, ay, bx, by, cx, cy, ix, iy]))

For the left part of the “Y” shape representing the left spinbox—the shape (a,
b, c, i)—we use a linear color gradient going from white to red.

gradient = QLinearGradient(QPointF(0, 0), QPointF(0, 100))

gradient.setColorAt(0, Qt.white)

b = self.rightSpinBox.value()

gradient.setColorAt(1, Qt.blue if b != 0 else Qt.white)

344 Chapter 11. Custom Widgets

Table 11.3 Selected QPainter Drawing-Related Methods

Syntax Description

p.drawArc(r, a, s) Draws an arc on QPainter p in the circle bounded by
QRect r, starting at angle int a°, and spanning s

16°

p.drawChord(r, a, s) Draws a chord on QPainter p in the circle bounded by
QRect r, starting at angle int a°, and spanning s

16°

p.drawConvex-

Polygon(pl)
Draws a convex polygon on QPainter p connecting the
list of QPoints in pl, and connects the last point back
to the first

p.drawEllipse(r) Draws an ellipse on QPainter p bounded by QRect r;
draws a circle if r is square

p.drawImage(pt, i) Draws QImage i at QPoint pt on QPainter p; different
arguments allow drawing just part of the image

p.drawLine(p1, p2) Draws a line between QPoints p1 and p2 on QPainter

p. Many argument variations are possible; there are
also drawLines() methods.

p.drawPath(pp) Draws the QPainterPath pp on QPainter p

p.drawPie(r, a, s) Draws a pie segment in the circle bounded by QRect

r, starting at angle int a°, and spanning s
16°

p.drawPixmap(pt, px) Draws QPixmap px at QPoint pt on QPainter p; different
arguments allow drawing just part of the pixmap

p.drawPoint(pt) Draws QPoint pt on QPainter p; there are also draw-

Points() methods
p.drawPolygon(pl) Draws a polygon on QPainter p connecting the list

of QPoints in pl, and connects the last point back to
the first

p.drawPolyline(pl) Draws a polyline on QPainter p connecting the list

of QPoints in pl; does not connect the last point to
the first

p.drawRect(r) Draws a QRect r on QPainter p

p.drawRound-

Rect(r, x, y)
Draws a rounded rectangle on QPainter p bounded by
QRect r, and using rounding factors ints x and y

p.drawText(r, s, o) Draws string s on QPainter p bounded by QRect r, and
using the optional QTextOption o

p.drawText(x, y, s) Draws string s on QPainter p at point (x, y)
p.fillPath(pp, b) Fills QPainterPath pp with QBrush b on QPainter p

p.fillRect(r, b) Fills QRect r with QBrush b on QPainter p

p.setBrush(b) Sets the brush for filled shapes to QBrush b

p.setPen(pn) Sets the pen for lines and outlines to QPen pn

p.setFont(f) Sets QPainter p’s text font to QFont f

Subclassing QWidget 345

painter.setBrush(QBrush(gradient))

painter.drawPolygon(

QPolygon([cx, cy, dx, dy, ex, ey, fx, fy]))

The right part—shape (d, e, f , c)—is very similar to the left part, only it uses a
gradient going from white to blue.

if (a + b) == 0:

color = QColor(Qt.white)

else:

ashare = (a / (a + b)) * 255.0

bshare = 255.0 - ashare

color = QColor(ashare, 0, bshare)

gradient = QLinearGradient(QPointF(0, 0), QPointF(0, 100))

gradient.setColorAt(0, Qt.white)

gradient.setColorAt(1, color)

painter.setBrush(QBrush(gradient))

painter.drawPolygon(

QPolygon([cx, cy, fx, fy, gx, gy, hx, hy, ix, iy]))

The stem of the “Y”—shape (c, f , g, h, i)—is drawn with a linear gradient
that goes from white to a red/blue color that is proportional to the left/right
flow rates.

painter.setPen(Qt.black)

painter.drawPolyline(QPolygon([ax, ay, ix, iy, hx, hy]))

painter.drawPolyline(QPolygon([gx, gy, fx, fy, ex, ey]))

painter.drawPolyline(QPolygon([bx, by, cx, cy, dx, dy]))

We finish by drawing the lines that represent the sides of the pipe. The first
line goes from a to i to h, marking out the left of the pipe, the second from g to
f to e, marking out the right of the pipe, and the third, from b to c to d, marks
the “V”-shaped part at the top.

Just like the built-in PyQt widgets, both the YPipeWidget and the Fraction-

Slider can be used as top-level widgets, and this is particularly useful when
developing and testing custom widgets. Both chap11/fractionslider.py and
chap11/ypipewidget.py can be run as stand-alone programs because both have
an if __name__ == "__main__": statement after the QWidget subclass, with code
that creates a QApplication, and that creates and shows the custom widget.

Summary

PyQt offers several different ways of customizing widget appearance and be-
havior. The simplest and most frequently used approach is to set existing wid-
get properties to the values we want. From Qt 4.2, the style sheet property is
available, and this allows us to have a dramatic effect on the appearance of
our widgets simply by entering plain text using the CSS syntax. One common

346 Chapter 11. Custom Widgets

and very easy use of style sheets is to set the background color of mandatory
widgets.

Composite widgets allow us to lay out two or more widgets together and to
then treat the resultant widget as a single widget. This can save time if the
composite widget is used a lot, and also provides a way of having more than one
widget in a main window-style application’s central area. Some programmers
make the constituent widgets private and forward their signals and slots, but
in many cases the simplest approach is to leave the constituent widgets as
public instance variables and to access and connect to them directly.

Subclassing existing widgets to adapt their appearance and especially their be-
havior is a lot easier than creating a QWidget subclass and doing everything our-
selves. This approach works well with almost every PyQt widget, since most
of them are designed to be subclassed. The only limitation of this approach is
that it can be applied only to widgets that are similar enough to the widget we
want, to make the adaptation feasible.

If we need to create a widget unlike any other, or if we want complete control
over the appearance and behavior of our custom widget, we can subclass QWid-
get. Our subclass must reimplement paintEvent(), sizeHint(), and minimumSize-

Hint(), and will almost always reimplement keyPressEvent() and some of the
mouse event handlers. Most of the built-in widgets are created in this way,
with the rest being subclasses of other built-in widgets.

All the widgets we have customized or created in this chapter, and indeed
throughout the book, are quite conventional in their appearance and behavior.
PyQt does not enforce such conservatism, and we are free to create widgets
with any appearance and any behaviors we can imagine.

Exercise
Create the Counters custom widget shown in Figure 11.8. The widget should
show a 3 × 3 grid, with each square either blank (showing just the background
color) or with a red or yellow ellipse. The state of any grid square should
change from blank to red to yellow and back to blank in an endless cycle.
Changes of state should occur when the user clicks a square or presses the
spacebar on a square. The keyboard focus should be shown by drawing the
square with a thick blue pen instead of the normal thin black pen used for the
other squares. The user should be able to change the focused square by click-
ing a square or by using the up, down, left, and right arrow keys to move the
focus.

Make sure that you provide a size hint and minimum size hint so that the
widget has good resizing behavior and cannot be shrunk too small. The paint
event is quite short, but slightly subtle; you will probably need to save and
restore the painter’s state, using QPainter.save() and QPainter.restore(), so
that pen and brush colors intended for one square don’t propagate to others.

Exercise 347

Figure 11.8 The Counters custom widget

Include an if __name__ == "__main__": statement at the end, and create a
QApplication object and an instance of the Counters widget so that you can test
it. The whole thing can be done in less than 130 lines.

A solution is given in chap11/counters.py.

This page intentionally left blank

Item-Based Graphics

1212 ● Custom and Interactive Graphics
Items

● Animation and Complex Shapes

If we create a custom widget and reimplement its paint event, we can draw any
graphics we like. This approach was shown in the preceding chapter, and it is
ideal for drawing custom widgets, for drawing graphs, and for drawing small
numbers of items. But if we need to draw lots of independent items, anything
from dozens to tens of thousands of them, or if we need to draw items that
the user can interact with individually—for example, clicking, dragging, and
selecting them—or if we need to animate items, PyQt’s graphics view classes
are a much better choice than reimplementing a custom widget’s paint event.

The graphics view classes—QGraphicsView, QGraphicsScene, and Qt

4.2

QGraphics-

Item—along with the QGraphicsItem subclasses, were introduced

PyQt

4.1

with Qt 4.2, so
the examples in this chapter will work only with a version of PyQt that has
bindings to Qt 4.2 or later, such as PyQt 4.1. However, we strongly recommend
that you use PyQt 4.2 or later for graphics-view-based applications.

To use the graphics view classes we must create a scene, represented by a
QGraphicsScene object. Scenes are pure data, and they can be visualized only
by associating them with one or more QGraphicsView objects. The items that are
drawn in a scene are QGraphicsItem subclasses. PyQt provides several prede-
fined subclasses, including QGraphicsLineItem, QGraphicsPixmapItem, QGraphics-
SimpleTextItem (plain text), and QGraphicsTextItem (HTML). It is also possible to
create custom graphics item subclasses, as we will see later in this chapter.

Once a scene has been created, and has had items added to it, it can be visual-
ized using a QGraphicsView. One powerful feature of graphics views is that we
can apply transformations to them, such as scaling and rotation, that change
how the scene appears, but without changing any of the scene’s items them-
selves. It is also possible to associate more than one graphics view with a par-
ticular scene, to allow different parts of the scene to be viewed, and with each
view having its own independent transformations.

The graphics view classes are essentially two-dimensional; nonetheless, every
item has a z value, with higher z-valued items being drawn on top of those with
lower z values. Collision detection is based on item (x, y) positions. In addition

349

350 Introduction

to information about collisions, the scene can tell us which items contain a
particular point or are in a particular region, and which are selected. Scenes
have a foreground layer, useful, for example, to draw a grid that overlays
all the items in the scene; they also have a background layer that is drawn
underneath all the items, useful for providing a background image or color.

Chapter 12. Item-Based Graphics

Items are either children of the scene (rather like PyQt’s normal parent–child
widget relationships), or a child of another item. When transformations are
applied to an item, they are automatically applied to all the item’s children, re-
cursively to the greatest grandchild. This means that if an item is moved—for
example, dragged by the user—all its children will be dragged with it. It is
also possible to have groups of peer items, that is, transformations on one item
in the group affect only that item’s children, not the other members of the
group.

Item #1 Item
#2

(0, 0)

(width, height)

Scene

Figure 12.1 Graphics items use local logical coordinates

The graphics view classes use three different coordinate systems, although in
practice we usually care about only two of them. Views use the physical coor-
dinate system. Scenes use a logical coordinate system that we choose when
we create them. PyQt automatically maps sceneView-

port and
window
coordi-
nates

329 ☞

coordinates to view coordi-
nates. In essence, scenes use “window” coordinates and views use “viewport”
coordinates. So, when we are positioning items we place them in terms of
scene coordinates. The third coordinate system is the one used by items. This
is particularly convenient because it is a logical coordinate system centered
on point (0, 0). Each item’s (0, 0) is actually at the item’s position in the scene.
This means that in practice, we can always draw items in terms of their center
point—and we do not have to care about any transformations that have been
applied to them by parent items, since the scene will automatically take care
of these for us. Figure 12.1 illustrates the relationship between scene and item
coordinates.

In this chapter we will look at two examples that between them show many dif-
ferent aspects of the graphics view classes. The first example is typical of the
kind of application where the user creates items one by one, and manipulates
items either individually or in selected groups. This application also shows
user interaction, including selecting, moving, and resizing items. The second
example shows animated composite items with complex shapes. It also shows
how to minimize the work done to draw items depending on the scene’s level of
detail (how zoomed in or out it is).

Custom and Interactive Graphics Items 351

Custom and Interactive Graphics Items

The predefined graphics items can be made movable, selectable, and focusable
by calling setFlags() on them with suitable constants. Users can drag movable
items with the mouse, and they can select selectable items by clicking them,
and by using Ctrl+Click to select multiple items. Focusable items will receive
key events, but will ignore them unless we create an item subclass with a key
event handler. Similarly, we can make items responsive to mouse events by
subclassing and implementing appropriate mouse event handlers.

In this section, we will use two of the predefined graphics items, and create
two custom graphics item subclasses to show how to use graphics items, and
how to control their behavior and appearance. We will also see how to load and
save scenes, and how to print them. To do these things we will look at the Page
Designer application shown in Figure 12.2. This program allows the user to
create a page that can contain text, images, and boxes. Users can also create
lines—these are just boxes that are 1 pixel wide or high. The images created
by the user can be saved and loaded as .pgd files, a custom file format specific
to this application, and they can be printed (or saved as PDF files) using a
print dialog.

For the text items, a QGraphicsTextItem subclass is used, extended to allow the
user to set the item’s font and text by double-clicking. For the box (and line)
items a QGraphicsItem subclass is used. This has a context menu, plus keyboard
support for resizing, and it handles all its own drawing. The pixmap items
simply use the built-in QGraphicsPixmapItem class, and the page and margin
guidelines use the built-in QGraphicsRectItem class. The view that shows the
scene is a QGraphicsView subclass that supports rubber-band selection and
mouse-wheel scaling.

We will begin by looking at the QGraphicsView subclass. Then we will review the
main form, and finally we will review the custom QGraphicsItem subclasses.

class GraphicsView(QGraphicsView):

def __init__(self, parent=None):

super(GraphicsView, self).__init__(parent)

self.setDragMode(QGraphicsView.RubberBandDrag)

self.setRenderHint(QPainter.Antialiasing)

self.setRenderHint(QPainter.TextAntialiasing)

def wheelEvent(self, event):

factor = 1.41 ** (-event.delta() / 240.0)

self.scale(factor, factor)

The preceding code is the complete GraphicsView subclass. In the initializer
we set the drag mode: This means that dragging on the view will cause PyQt
to give us a rubber band, and every item touched by the rubber band will be

352 Chapter 12. Item-Based Graphics

Figure 12.2 The Page Designer application

selected.The render hints are propagated to any item that is painted inside the
view, so we do not need to set the hints for each individual graphics item.

The wheel event is called whenever the user rolls the mouse wheel, and it will
cause the view to scale smaller or larger depending on which way the wheel
is rolled. The effect of this is to change the apparent size of the page—the
underlying scene is not changed at all. The math used in this event handler
is rather tricky, but this isn’t a problem since the method can be copied and
pasted “as is”.

Near the top of chap12/pagedesigner.pyw we have some global declarations.

PageSize = (612, 792)

PointSize = 10

MagicNumber = 0x70616765

FileVersion = 1

Dirty = False

Custom and Interactive Graphics Items 353

The page size is in points for U.S. Letter-size paper. (The source code also has
the A4 page size, commented out.) The magic number and file version are used
by QDataStream, as we have seen in Chapter 8 and elsewhere. We also have a
global dirty flag.

We have not shown the imports, but they include functools. This isPartial
function
applica-
tion

63 ☞

needed
because in the context menu we use the functools.partial() function to wrap
the methods to call with a suitable argument.

The main form’s initializer is quite long, so we will look at it in parts but omit
code that is similar to what we have seen elsewhere—for example, where we
create and lay out the form’s buttons.

class MainForm(QDialog):

def __init__(self, parent=None):

super(MainForm, self).__init__(parent)

self.filename = QString()

self.copiedItem = QByteArray()

self.pasteOffset = 5

self.prevPoint = QPoint()

self.addOffset = 5

self.borders = []

self.printer = QPrinter(QPrinter.HighResolution)

self.printer.setPageSize(QPrinter.Letter)

The copied item is essentially a lump of binary data that describes the most
recent item to be cut or copied. We store this data inside the application rather
than on the clipboard because it is of no use to any other application. The paste
offset is used when the user repeatedly pastes the same item, and the previous
point and add offset are used when the user repeatedly adds the same item
type. In both cases the newly added items are added at offset positions rather
than exactly on top of the previous item. This makes it easier for the user to
see where they are.

The borders list will contain two graphics items, both yellow rectangles: one
giving the page outline and the other giving an outline inside the page allowing
for some margin space. They are used as guidelines and are not saved or
printed.

Although it is possible to create a QPrinter object when it is needed, by creating
one and keeping it as an instance variable, we ensure that the user’s settings,
such as page size, are preserved between uses in the same session.

self.view = GraphicsView()

self.scene = QGraphicsScene(self)

self.scene.setSceneRect(0, 0, PageSize[0], PageSize[1])

self.addBorders()

self.view.setScene(self.scene)

354 Chapter 12. Item-Based Graphics

Table 12.1 Selected QGraphicsScene Methods

Syntax Description

s.addEllipse(r, pn, b) Adds an ellipse bounded by QRectF r, outlined
by QPen pn and filled with QBrush b, to QGraphics-

Scene s

s.addItem(g) Adds QGraphicsItem g to QGraphicsScene s. The oth-
er add*() methods are conveniences for creating
and adding some of the built-in graphics items.

s.addLine(l, pn) Adds QLineF l, drawn with QPen pn, to s

s.addPath(pp, pn, b) Adds QPainterPath pp, outlined by QPen pn and
filled with QBrush b, to QGraphicsScene s

s.addPixmap(px) Adds QPixmap px to QGraphicsScene s

s.addPolygon(pg, pn, b) Adds QPolygon pg, outlined by QPen pn and filled
with QBrush b, to QGraphicsScene s

s.addRect(r, pn, b) Adds QRect r, outlined by QPen pn and filled with
QBrush b, to QGraphicsScene s

s.addText(t, f) Adds text t using QFont f, to QGraphicsScene s

s.collidingItems(g) Returns a (possibly empty) list of the QGraphics-

Items that QGraphicsItem g collides with
s.items() Returns all the QGraphicsItems in QGraphicsScene

s; using different arguments, those items that
are at a particular point, or that are within or
that intersect with a given rectangle, polygon, or
painter path, can be returned

s.removeItem(g) Removes QGraphicsItem g from QGraphicsScene s;
ownership passes to the caller

s.render(p) Renders QGraphicsScene s on QPainter p; additional
arguments can be used to control the source and
destination rectangle

s.setBackgroundBrush(b) Sets QGraphicsScene s’s background to QBrush b

s.setScene-

Rect(x, y, w, h)
Sets QGraphicsScene s’s rectangle to position (x, y),
with width w and height h; the arguments are
floats

s.update() Schedules a paint event for QGraphicsScene s

s.views() Returns a (possibly empty) list of QGraphicsViews
that are showing QGraphicsScene s

We create an instance of our custom GraphicsView class, as well as a standard
QGraphicsScene. The rectangle we set on the scene is the “window”, that is, the
logical coordinate system that the scene will use—in this case, a rectangle with

Custom and Interactive Graphics Items 355

a top-left point of (0, 0), and a width and height corresponding to the page’s size
in points.

The rest of the initializer creates and connects the buttons, and lays out the
buttons and the view.

def addBorders(self):

self.borders = []

rect = QRectF(0, 0, PageSize[0], PageSize[1])

self.borders.append(self.scene.addRect(rect, Qt.yellow))

margin = 5.25 * PointSize

self.borders.append(self.scene.addRect(

rect.adjusted(margin, margin, -margin, -margin),

Qt.yellow))

This method creates two QGraphicsRectItems, the first corresponding to the
size of a page and the second (indicating the margins) inside the first. The
QRect.adjusted() method returns a rectangle with its top-left and bottom-right
points adjusted by the two sets of dx and dy pairs. In this case, the top left
is moved right and down (by each being increased by margin amount) and the
bottom right is moved left and up (by each being reduced by margin amount).

def removeBorders(self):

while self.borders:

item = self.borders.pop()

self.scene.removeItem(item)

del item

When we print or save we do not want to include the borders. This method
destructively retrieves each item from the self.borders list (in a random
order), and removes the items from the scene. When an item is removed from
a scene the scene automatically notifies its views so that they can repaint the
uncovered area. An alternative to deleting is to call setVisible(False) to hide
the borders.

The call to QGraphicsScene.removeItem() removes the item (and its children)
from the scene, but it does not delete the item, instead passing ownership to its
caller. So after the removeItem() call, the item still exists. We could just leave
the item to be deleted when each item reference goes out of scope, but we prefer
to explicitly delete the items to make it clear that we have taken ownership
and really are deleting them.

def addPixmap(self):

path = QFileInfo(self.filename).path() \

if not self.filename.isEmpty() else "."

fname = QFileDialog.getOpenFileName(self,

"Page Designer - Add Pixmap", path,

"Pixmap Files (*.bmp *.jpg *.png *.xpm)")

if fname.isEmpty():

356 Chapter 12. Item-Based Graphics

return

self.createPixmapItem(QPixmap(fname), self.position())

When the user clicks theAddPixmapbutton this method is called. We simply ob-
tain the name of the image file the user wants to add to the page, and pass the
work on to a createPixmapItem() method. We don’t do everything in one method
because splitting the functionality is more convenient—for example, for when
we load pixmaps from a Page Designer .pgd file. The position() method is used
to get the position where an item should be added; we will review it shortly.

def createPixmapItem(self, pixmap, position, matrix=QMatrix()):

item = QGraphicsPixmapItem(pixmap)

item.setFlags(QGraphicsItem.ItemIsSelectable|

QGraphicsItem.ItemIsMovable)

item.setPos(position)

item.setMatrix(matrix)

self.scene.clearSelection()

self.scene.addItem(item)

item.setSelected(True)

global Dirty

Dirty = True

The graphics view classes include QGraphicsPixmapItem which is perfect for
showing images in scenes. QGraphicsItem’s have three flags in Qt 4.2, ItemIs-
Movable, ItemIsSelectable and ItemIsFocusable. (Qt 4.3 adds ItemClipsToShape,
ItemClipsChildrenToShape, and ItemIgnoresTransformations, this last particular-
ly useful for showing text that we don’t want the view to transform.)

Having created the item, we set its position in the scene. The setPos() method
is the only item method that works in terms of scene coordinates; all the others
work in item local logical coordinates. We do not have to set a transformation
matrix (and the one returned by QMatrix() is the identity matrix), but we want
an explicit matrix so that we can use it when we come to save and load (or copy
and paste) the scene’s items.★

The QMatrix class holds a 3 × 3 matrix and is specifically designed for graphical
transformations, rather than being a general matrix class. As such, it is a rare
example of a poorly named Qt class. From Qt 4.3, QMatrix has been superceded
by the more sensibly named QTransform class, which is also capable of more
powerful transformations since it uses a 4 × 4 matrix.

Once the item is set up, we clear any existing selections and add the item to the
scene. Then we select it, ready for the user to interact with it.

def position(self):

point = self.mapFromGlobal(QCursor.pos())

if not self.view.geometry().contains(point):

★An identity matrix in this context is one that, when set, causes no transformations to occur.

Custom and Interactive Graphics Items 357

coord = random.randint(36, 144)

point = QPoint(coord, coord)

else:

if point == self.prevPoint:

point += QPoint(self.addOffset, self.addOffset)

self.addOffset += 5

else:

self.addOffset = 5

self.prevPoint = point

return self.view.mapToScene(point)

This method is used to provide a position in the scene where a newly added
item should go. If the mouse is over the view, we use the mouse position
provided by QCursor.pos()—“cursor” in this context means mouse cursor—but
add an offset if an item has just been added at the same place. This means that
if the user repeatedly presses an Add button, each successive item will be offset
from the one before, making it easier for the user to see and interact with them.
If the mouse is outside the view, we put the item at a semirandom position near
the top left of the scene.

The mapFromGlobal() method converts a screen coordinate into a physical wid-
get coordinate as used by the view. But scenes use their own logical coordinate
system, so we must use QGraphicsView.mapToScene() to convert the physical co-
ordinate into a scene coordinate.

def addText(self):

dialog = TextItemDlg(position=self.position(),

scene=self.scene, parent=self)

dialog.exec_()

This method is called when the user clicks the Add Text button. It pops up a
smart add/edit item dialog, shown in Figure 12.3. If the user clicks OK, a new
item is added with the text and font of their choice. We won’t discuss the
dialog, since it isn’t relevant to graphics programming; its source code is in
chap12/pagedesigner.pyw.

We do not need to keep a reference to the added item because we pass owner-
ship of it to the scene inside the smart dialog.

def addBox(self):

BoxItem(self.position(), self.scene)

This method is called when the user clicks the Add Box button. The user can
resize the box, even turning it into a line (by reducing the width or height to 1
pixel) by using the arrow keys, as we will see.

Again, we don’t need to keep a reference to the added box item, because
ownership is given to the scene.

358 Chapter 12. Item-Based Graphics

Figure 12.3 Adding a new text item

We want the user to be able to cut, copy, and paste items inside Page Designer,
but since the items are not meaningful for other applications we will not use
the clipboard.

def copy(self):

item = self.selectedItem()

if item is None:

return

self.copiedItem.clear()

self.pasteOffset = 5

stream = QDataStream(self.copiedItem, QIODevice.WriteOnly)

self.writeItemToStream(stream, item)

If the user invokes the copy action we start by seeing whether there is exactly
one selected item. If there is, we clear the copied item byte array, and create a
data stream to write to the byte array. There is no need to use QDataStream.set-

Version() because the data stream is used only for cutting, copying, and past-
ing during a single run of the application, so using whatever happens to be the
current version is fine. We will look at the writeItemToStream() and the corre-
sponding readItemFromStream() methods later.

def selectedItem(self):

items = self.scene.selectedItems()

if len(items) == 1:

return items[0]

return None

This method returns the one selected item,or None if there are no selected items
or if there are two or more selected items. The QGraphicsScene.selectedItems()

method returns a list of the selected items. There are also items() methods
that return lists of the items that intersect a particular point or are inside
a particular rectangle or polygon, and there is a collidingItems() method to
report collisions.

Custom and Interactive Graphics Items 359

def cut(self):

item = self.selectedItem()

if item is None:

return

self.copy()

self.scene.removeItem(item)

del item

This method copies the selected item using copy(), and then removes it from
the scene. As mentioned when we discussed removing the border rectangles,
removeItem() only removes an item from the scene; it does not delete the item.
We could leave the item to be deleted when the item reference goes out of
scope, but we prefer to explicitly delete it to make it clear that we have taken
ownership and are really deleting the item.

def paste(self):

if self.copiedItem.isEmpty():

return

stream = QDataStream(self.copiedItem, QIODevice.ReadOnly)

self.readItemFromStream(stream, self.pasteOffset)

If an item has been cut or copied to the copied item, we simply create a data
stream and read the item’s data from the copied item byte array. The read-

ItemFromStream() method takes care of creating the item and adding it to
the scene.

def writeItemToStream(self, stream, item):

if isinstance(item, QGraphicsTextItem):

stream << QString("Text") << item.pos() << item.matrix() \

<< item.toPlainText() << item.font()

elif isinstance(item, QGraphicsPixmapItem):

stream << QString("Pixmap") << item.pos() \

<< item.matrix() << item.pixmap()

elif isinstance(item, BoxItem):

stream << QString("Box") << item.pos() << item.matrix() \

<< item.rect

stream.writeInt16(item.style)

This method is used by copy(), cut() (indirectly), and save(). For each item
it writes a string that describes the item’s type, then the item’s position and
transformation matrix, and then any extra item-specific data. For text items,
the extra data is the item’s text and font; for pixmap items, the extra data is
the pixmap itself—which means that the .pgd file could be quite large; and for
boxes, the extra data is the box’s rectangle and line style.

def readItemFromStream(self, stream, offset=0):

type = QString()

position = QPointF()

360 Chapter 12. Item-Based Graphics

matrix = QMatrix()

stream >> type >> position >> matrix

if offset:

position += QPointF(offset, offset)

if type == "Text":

text = QString()

font = QFont()

stream >> text >> font

TextItem(text, position, self.scene, font, matrix)

elif type == "Box":

rect = QRectF()

stream >> rect

style = Qt.PenStyle(stream.readInt16())

BoxItem(position, self.scene, style, rect, matrix)

elif type == "Pixmap":

pixmap = QPixmap()

stream >> pixmap

self.createPixmapItem(pixmap, position, matrix)

This method is used both by paste() and by open() (which loads a .pgd file). It
begins by reading in the type, position, and matrix which are stored for every
type of item. Then, it adjusts the position by the offset—this is used only if the
item is being pasted. Next, the item-specific data is read and a suitable item
created using the data that has been gathered.

The TextItem and BoxItem initializers, and the createPixmapItem() method, all
create the appropriate graphics items and pass ownership to the scene.

def rotate(self):

for item in self.scene.selectedItems():

item.rotate(30)

If the user clicks Rotate, any selected items are rotated by 30°. There are no
child items used in this application, but if any of the rotated items had child
items, these too would be rotated.

def delete(self):

items = self.scene.selectedItems()

if len(items) and QMessageBox.question(self,

"Page Designer - Delete",

"Delete %d item%s?" % (len(items),

"s" if len(items) != 1 else ""),

QMessageBox.Yes|QMessageBox.No) == QMessageBox.Yes:

while items:

item = items.pop()

self.scene.removeItem(item)

del item

global Dirty

Custom and Interactive Graphics Items 361

Dirty = True

If the user clicks Delete and there is at least one selected item, they are asked
whether they want to delete the selected items, and if they do, each selected
item is deleted.

def print_(self):

dialog = QPrintDialog(self.printer)

if dialog.exec_():

painter = QPainter(self.printer)

painter.setRenderHint(QPainter.Antialiasing)

painter.setRenderHint(QPainter.TextAntialiasing)

self.scene.clearSelection()

self.removeBorders()

self.scene.render(painter)

self.addBorders()

A QPrinter is a paint device, just like a QWidget or a QImage, so we can easily paint
onto a printer. Here we have taken advantage of the QGraphicsScene.render()

convenience method, which paints the entire scene (or a selected portion of it)
onto a paint device. Before painting, we remove the borders (the yellow rect-
angles), and after painting we restore the borders. We also clear the selec-
tion before painting, since some items may be rendered differently if they are
selected. A similar QGraphicsView.render() method can be used to render the
scene (or a selected portion of it) as seen.

We will omit the code for saving and loading .pgd files, since it is very similar
to what we have seen before when working with binary files. For saving, we
create a QDataStream, call setVersion() on it, and write a magic number and a
file version. Then we iterate over all the items in the scene, calling writeIt-

emToStream() parameterized by the data stream and by the item for each call.
For loading, we also create a QDataStream. Then we read in the magic number
and file version, and if they are correct, we delete all the existing items. As
long as the file has data in it,we call readItemFromStream() parameterized by the
stream. This method reads the item data and creates the items, adding them
to the scene as it goes.

We have seen how the application works as a whole, and how to create and use
items of two of the predefined graphics item classes, namely, QGraphicsRectItem
and QGraphicsPixmapItem. Now we will turn our attention to custom graphics
view items. We will begin by looking at the TextItem subclass; this extends the
QGraphicsTextItem class with additional behavior, but leaves all the drawing to
the base class. Then we will look at the BoxItem class; this class has code for
both behavior and drawing.

class TextItem(QGraphicsTextItem):

def __init__(self, text, position, scene,

font=QFont("Times", PointSize), matrix=QMatrix()):

362 Chapter 12. Item-Based Graphics

super(TextItem, self).__init__(text)

self.setFlags(QGraphicsItem.ItemIsSelectable|

QGraphicsItem.ItemIsMovable)

self.setFont(font)

self.setPos(position)

self.setMatrix(matrix)

scene.clearSelection()

scene.addItem(self)

self.setSelected(True)

global Dirty

Dirty = True

The TextItem’s initializer is very similar to the createPixmapItem() method that
creates and initializes QGraphicsPixmapItems. We provide a default font and a
default matrix (the identity matrix) if none is supplied to the initializer.

def parentWidget(self):

return self.scene().views()[0]

An item’s parent is either another item or a scene. But sometimes we need
to know the visible widget in which the item appears, that is, the item’s view.
The scene is available to items and can return a list of the views that are
showing the scene. For convenience, we have assumed that there is always at
least one view showing our scene and that we consider the first view to be the
“parent” view.

def itemChange(self, change, variant):

if change != QGraphicsItem.ItemSelectedChange:

global Dirty

Dirty = True

return QGraphicsTextItem.itemChange(self, change, variant)

If the user interacts with an item—for example, moving or selecting it—this
method is called. If the interaction is not merely a change in selection status,
we set the global dirty flag.

Two caveats apply to itemChange() reimplementations. First, we must always
return the result of calling the base class implementation,and second,we must
never do anything inside this method that will lead to another (recursive) item-
Change() call. In particular, we must never call setPos() inside itemChange().

def mouseDoubleClickEvent(self, event):

dialog = TextItemDlg(self, self.parentWidget())

dialog.exec_()

If the user double-clicks the item, we pop up a smart dialog through which the
user can change the item’s text and font. This is the same dialog that we used
for adding a text item.

Custom and Interactive Graphics Items 363

Printing Images

Printing images in general is just as simple as printing scenes. Here is a
printImage() method that will print any QImage or QPixmap (both of which can
load .bmp, .png, .jpg, and various other graphics file types) on a single page,
assuming that printer is a QPrinter:

def printImage(image, printer, scaleToFillPage=False):

dialog = QPrintDialog(printer)

if dialog.exec_():

painter = QPainter(printer)

painter.setRenderHint(QPainter.Antialiasing)

rect = painter.viewport()

size = image.size()

size.scale(rect.size(), Qt.KeepAspectRatio)

painter.setViewport(rect.x(), rect.y(),

size.width(), size.height())

if scaleToFillPage:

painter.setWindow(image.rect())

if isinstance(image, QPixmap):

painter.drawPixmap(0, 0, image)

else:

painter.drawImage(0, 0, image)

Printing a QPicture is very similar, except that we must calculate the size
ourselves based on the picture’s bounding rectangle, and call QPainter.draw-
Picture() to do the drawing.

SVG images can also be printed. The approach is very similar to that used
for drawing QGraphicsScenes. The QSvgRenderer class can load in an SVG
image and has a render() method that can paint the image on any paint
device, including a QPrinter.And with Qt 4.3, it is now possible to create SVG
images by painting using the QSvgGenerator class, which is a paint device.★

This completes the text item class. It is quite small because we were concerned
only with changing its behavior. For the BoxItem class that we will look at next,
we provide code to govern both its behavior and its appearance.

class BoxItem(QGraphicsItem):

def __init__(self, position, scene, style=Qt.SolidLine,

rect=None, matrix=QMatrix()):

super(BoxItem, self).__init__()

self.setFlags(QGraphicsItem.ItemIsSelectable|

QGraphicsItem.ItemIsMovable|

QGraphicsItem.ItemIsFocusable)

★Printing documents, including images, is covered in the next chapter.

364 Chapter 12. Item-Based Graphics

if rect is None:

rect = QRectF(-10 * PointSize, -PointSize,

20 * PointSize, 2 * PointSize)

self.rect = rect

self.style = style

self.setPos(position)

self.setMatrix(matrix)

scene.clearSelection()

scene.addItem(self)

self.setSelected(True)

self.setFocus()

global Dirty

Dirty = True

Box items must be able to receive keyboard focus, because we want users to be
able to resize boxes by using the arrow keys. If no explicit size is given—for ex-
ample when the user clicksAdd Box, rather than when a box is being re-created
from file or being pasted from the copied item—we provide a default size which
gives a letterbox shape. We also provide a default line style of a solid line, and a
default identity matrix. The rest of the initializer is the same as we used before
for text items.

We will omit the code for parentWidget() and itemChange() because their
implementations are the same as the ones we used for the TextItem class.

def setStyle(self, style):

self.style = style

self.update()

global Dirty

Dirty = True

This method is used to set the box’s line style. It notifies the scene that the item
needs repainting, and it sets the dirty flag since we record box line styles when
we save into .pgd files.

def contextMenuEvent(self, event):

wrapped = []

menu = QMenu(self.parentWidget())

for text, param in (

("&Solid", Qt.SolidLine),

("&Dashed", Qt.DashLine),

("D&otted", Qt.DotLine),

("D&ashDotted", Qt.DashDotLine),

("DashDo&tDotted", Qt.DashDotDotLine)):

wrapper = functools.partial(self.setStyle, param)

wrapped.append(wrapper)

menu.addAction(text, wrapper)

menu.exec_(event.screenPos())

Custom and Interactive Graphics Items 365

If the user invokes the context menu on the item (for example,by right-clicking
on some platforms), this method will be called.★ This context menu uses partial
function application to wrap a method to be called, setStyle(), and a parameter
to call it with, one of PyQt’s built-in line styles. The wrappers must stay alive
long enough for the menu to finish, since it is only at that point that one of
them will be called. For this reason we keep a local list of the wrappers; the
list will go out of scope only after the menu’s exec_() call has finished, when the
contextMenuEvent() itself completes.

def keyPressEvent(self, event):

factor = PointSize / 4

changed = False

if event.modifiers() & Qt.ShiftModifier:

if event.key() == Qt.Key_Left:

self.rect.setRight(self.rect.right() - factor)

changed = True

elif event.key() == Qt.Key_Right:

self.rect.setRight(self.rect.right() + factor)

changed = True

elif event.key() == Qt.Key_Up:

self.rect.setBottom(self.rect.bottom() - factor)

changed = True

elif event.key() == Qt.Key_Down:

self.rect.setBottom(self.rect.bottom() + factor)

changed = True

if changed:

self.update()

global Dirty

Dirty = True

else:

QGraphicsItem.keyPressEvent(self, event)

If the user presses the arrow keys and the view has scrollbars, the view will
scroll appropriately. This method intercepts arrow key presses that occur with
a Shift key press when the item has the keyboard focus, to give the user a means
of resizing the box. The QRect.setRight() and QRect.setBottom() methods
change the size of the rectangle because they change the width and height. If
we handled the key press event, we call update() to schedule a paint event, and
mark the page as dirty; otherwise, we call the base class implementation.

Now that we have seen how the box’s behavior is implemented, we are ready
to turn our attention to how the box is drawn. When subclassing QGraphicsItem

we must at least provide implementations of the boundingRect() and paint()

methods. It is also common to reimplement shape(), but we will defer that to
the example in the next section.

★ Note that this method will not be called if the view has been told to handle context menu
events—for example, by having its context menu policy set to Qt.ActionsContextMenu.

366 Chapter 12. Item-Based Graphics

Table 12.2 Selected QGraphicsItem Methods #1

Syntax Description

g.boundingRect() Returns QGraphicsItem g’s bounding QRectF; subclasses
should reimplement this

g.collidesWith-

Path(pp)
Returns True if QGraphicsItem g collides with QPainter-

Path pp

g.collidingItems() Returns a (possibly empty) list of the QGraphicsItems
that QGraphicsItem g collides with

g.contains(pt) Returns True if QGraphicsItem g contains QPointF pt

g.isObscured() Returns True if QGraphicsItem g is obscured by its collid-
ing items, providing their z values are larger

g.isSelected() Returns True if QGraphicsItem g is selected
g.itemChange(c, v) Does nothing;subclassescan reimplement this method

to detect changes—for example, in selected status or
position. Do not call QGraphicsItem.setPos() directly or
indirectly in this method.

g.moveBy(dx, dy) Moves QGraphicsItem g by float dx horizontally and by
float dy vertically in scene coordinates

g.paint(p, o) Does nothing; subclasses should reimplement this to
draw themselves on QPainter p and with the option
QStyleOptionGraphicsItem o; painting is done in local
logical coordinates, by default centered at (0, 0)

g.pos() Returns QGraphicsItem g’s position as a QPointF. If g is a
child of another QGraphicsItem, the point is in terms of
the parent item’s local logical coordinates; otherwise,
it is in terms of scene coordinates.

g.resetMatrix() Resets QGraphicsItem g’s transformation matrix to
the identity matrix; for PyQt 4.3, use resetTrans-

form() instead

PyQt

4.3

g.rotate(a) Rotates QGraphicsItem g by float a°

g.scale(x, y) Scales QGraphicsItem g horizontally by float x and
vertically by float y; 1.0 is unscaled, 0.5 is half size,
and 3.0 is three times the size

g.scene() Returns QGraphicsItem g’s QGraphicsScene, or None if it
has not been added to a scene

g.sceneBounding-

Rect()
Returns QGraphicsItem g’s bounding QRectF in scene
coordinates—this accounts for transformations

g.setCursor(c) Sets g’s cursor to c, a QCursor or a Qt.CursorShape

g.setEnabled(b) Sets g to be enabled or disabled depending on b

g.setFocus() Gives the keyboard focus to QGraphicsItem g

g.setFlag(f) Sets the given QGraphicsItem.ItemFlag f on g

Custom and Interactive Graphics Items 367

Table 12.3 Selected QGraphicsItem Methods #2

Syntax Description

g.setMatrix(m) Sets QGraphicsItem g’s matrix to QMatrix m; for PyQt 4.3,
use setTransform() with a QTransform argument

PyQt

4.3

g.setPos(x, y) Sets QGraphicsItem g’s position. If g is a child of another
QGraphicsItem, the position is in the parent item’s local
logical coordinates; otherwise, it is in scene coordinates.

g.setSelect-

ed(b)
Sets QGraphicsItem g to be selected or unselected depending
on bool b

g.setZValue(z) Sets QGraphicsItem g’s z value to float z. The default is 0;
items with higher values appear in front of those with
lower values.

g.shape() Returns QGraphicsItem g’s shape as a QPainterPath. The de-
fault implementation calls boundingRect() to determine the
painter path to return; reimplementations normally create
and return the exact shape. By default, collision detection
is based on shape.

g.shear(x, y) Shears QGraphicsItem g’s coordinate system horizontally by
float x and vertically by float y

g.trans-

late(dx, dy)
Moves QGraphicsItem g’s coordinate system horizontally by
int dx and vertically by int dy

g.update() Schedules a paint event for QGraphicsItem g where it is
visible in the scene’s views

g.zValue() Returns QGraphicsItem g’s z value

def boundingRect(self):

return self.rect.adjusted(-2, -2, 2, 2)

This method should return the bounding rectangle of the item, plus half the
pen width if the item has an outline. Here we have cheated and made the
bounding rectangle a bit larger. This makes it much easier for the user to click
the box, even if they have reduced it to being a line with a height or width of
just 1 pixel.

We have not implemented the shape() method, so the base class’s shape()

method will be used, and will produce a shape that is based on the bounding
rectangle. Since we have given a larger rectangle than is really the case, the
shape will also be larger. The shape is used when determining collision detec-
tion, but it does not matter here because we don’t use collision detection in this
application; we will in the next one, though.

def paint(self, painter, option, widget):

pen = QPen(self.style)

pen.setColor(Qt.black)

pen.setWidth(1)

368 Chapter 12. Item-Based Graphics

if option.state & QStyle.State_Selected:

pen.setColor(Qt.blue)

painter.setPen(pen)

painter.drawRect(self.rect)

Painting the box is quite easy. We begin by creating a pen with the line style
the user has set, and with a fixed width of 1 logical unit. We change the pen’s
color if the rectangle is selected, and then we set the pen and draw the rect-
angle.

Using the graphics view classes and painting graphics items is often easier
than reimplementing paint events. This is because each item has its own
paint() method, and because the items use a local logical coordinate system
whose center is (0, 0), which is especially convenient for rotation.

In this section, we have seen the use of predefined graphics items, and custom
items, both of which provide custom behavior and the second of which, BoxItem,
also does custom drawing. In the example covered in the next section, we will
see more sophisticated item painting,as well as collision detection and a simple
form of animation.

Animation and Complex Shapes

In the preceding section,we looked at a graphics view application in which user
interaction was central. In this section, we will look at a very different kind
of application, one where we simulate a population of creatures, “multipedes”,
by visualizing each member of the population using a set of graphics items, as
shown in Figure 12.4. Each multipede has internal timers. At each time inter-
val the multipede moves, and if it has collisions, its coloring is changed slightly,
and eventually it disappears.

We will begin by looking at an extract from the main form’s initializer. Then we
will review the form’s populate() method, which is used to create and position
the multipedes. Next we will look at the action of the Pause/Resume button and
at the implementation of the zoom slider. Then we will look at the form’s timer
event, a kind of event handler we have not used before. Once we can see how
the application works as a whole, we will look at the implementations of the
graphics item subclasses that are used to visualize the multipedes.

class MainForm(QDialog):

def __init__(self, parent=None):

super(MainForm, self).__init__(parent)

self.scene = QGraphicsScene(self)

self.scene.setSceneRect(0, 0, SCENESIZE, SCENESIZE)

self.view = QGraphicsView()

self.view.setRenderHint(QPainter.Antialiasing)

self.view.setScene(self.scene)

Animation and Complex Shapes 369

Figure 12.4 The Multipedes application

self.view.setFocusPolicy(Qt.NoFocus)

zoomSlider = QSlider(Qt.Horizontal)

zoomSlider.setRange(5, 200)

zoomSlider.setValue(100)

self.pauseButton = QPushButton("Pa&use")

quitButton = QPushButton("&Quit")

The form begins by creating a graphics scene. As usual for nonvisual QObject
subclasses, we give the scene a parent. The SCENESIZE is a global integer
of value 500. Setting up the view is similar to what we saw in the previous
example. The zoom slider is used to zoom the scene in or out. We set its initial
value to 100 (100%), and give it a range of 5% to 200%. The Pause button is used
to pause and resume the animation.

self.connect(zoomSlider, SIGNAL("valueChanged(int)"),

self.zoom)

self.connect(self.pauseButton, SIGNAL("clicked()"),

self.pauseOrResume)

self.connect(quitButton, SIGNAL("clicked()"), self.accept)

self.populate()

self.startTimer(INTERVAL)

self.setWindowTitle("Multipedes")

370 Chapter 12. Item-Based Graphics

We have omitted the layout since we have seen it so many before, and this one
is not unusual. The connections contain no surprises, but they are shown so
that we can see how the user interaction is handled.

Every QObject subclass (which includes all QWidgets since they are QObject

subclasses) can set off a timer that causes a timer event to occur at every
time interval. Here the INTERVAL is 200 milliseconds. The accuracy of timers
depends on the underlying operating system, but it should be at least as good
as 20 milliseconds,unless the machine is very heavily loaded. The startTimer()

method returns a timer ID which is useful if we want to call the method more
than once to set up multiple timers; we ignore it here because we want just
one timer.

At the end of the initializer, we call populate() to create the multipedes, and set
the application’s window title as usual.

def pauseOrResume(self):

global Running

Running = not Running

self.pauseButton.setText("Pa&use" if Running else "Res&ume")

If the user clicks the Pause button, we set the global Running Boolean to the
opposite of what it was, and change the button’s caption. The form’s timer and
the multipede timers refer to this variable, doing nothing if it is False.

def zoom(self, value):

factor = value / 100.0

matrix = self.view.matrix()

matrix.reset()

matrix.scale(factor, factor)

self.view.setMatrix(matrix)

To zoom the scene, all that we need to do is change the scale of the view that
shows the scene. This is achieved by getting the view’s current transformation
matrix, clearing any transformations (i.e., scaling) that may be in force, and
then rescaling it to a factor that is proportional to the slider’s setting.

Figure 12.5 Multipedes at two different zoom levels

Animation and Complex Shapes 371

Zooming has a significant effect on how the multipedes are drawn. This is
because in the QGraphicsItem.paint() method, we can find out how zoomed in
or out a scene is and can use this information to determine how much detail
to draw. This means, for example, that we can draw in a faster and more sim-
plified way if the scene is zoomed out with users unable to discern the details
anyway, and that we can draw in increasing detail as users zoom in. The effect
of zooming is shown in Figure 12.5.

def populate(self):

red, green, blue = 0, 150, 0

for i in range(random.randint(6, 10)):

angle = random.randint(0, 360)

offset = random.randint(0, SCENESIZE // 2)

half = SCENESIZE / 2

x = half + (offset * math.sin(math.radians(angle)))

y = half + (offset * math.cos(math.radians(angle)))

color = QColor(red, green, blue)

head = Head(color, angle, QPointF(x, y))

color = QColor(red, green + random.randint(10, 60), blue)

offset = 25

segment = Segment(color, offset, head)

for j in range(random.randint(3, 7)):

offset += 25

segment = Segment(color, offset, segment)

head.rotate(random.randint(0, 360))

self.scene.addItem(head)

global Running

Running = True

This method is used to generate a random population of 6–10 multipedes. Each
multipede is made up of a head,and between four and eight body segments.For
each multipede, the head is created first, with a semirandom color, with a ran-
dom angle of direction, and at a random position inside a circle with its center
in the middle of the scene. Then the multipede’s first segment is created, with
the head being its parent. This means that whatever transformation is applied
to the head, for example, moving or rotating it, will also be applied to the first
segment. Next, 3–7 additional segments are created. Each one is made a child
of its preceding segment. The effect of this is that if the head is transformed,
the first segment is transformed correspondingly, and so is the first segment’s
child segment, and so on, for all the multipede’s segments.

Once the head and segments have been created, we rotate the head and add
it to the scene. Adding a graphics item to a scene automatically adds all the
item’s children recursively, so by adding just the head, the entire multipede
is added.

372 Chapter 12. Item-Based Graphics

At the end, we set the global Running Boolean to True. In addition to the form’s
timer, each multipede part has a timer, and as long as Running is True, the part
will move at each time interval.

The red color we have used is significant for head items. The red color compo-
nent is set to 0 for all multipedes when they are first created. If the red col-
or component of a multipede’s head reaches the maximum (255)—which can
occur as the result of collisions—the multipede will “die”, that is, it will be
removed. The culling is done in the timer event.

def timerEvent(self, event):

if not Running:

return

dead = set()

items = self.scene.items()

if len(items) == 0:

self.populate()

return

heads = set()

for item in items:

if isinstance(item, Head):

heads.add(item)

if item.color.red() == 255:

dead.add(item)

if len(heads) == 1:

dead = heads

del heads

while dead:

item = dead.pop()

self.scene.removeItem(item)

del item

At every time interval the form’s timerEvent() method is called. If the Running

Boolean is False, the method does nothing and returns immediately. If there
are no items in the scene (they all died), we call populate() and begin a fresh
run. Otherwise we iterate over all the items in the scene, populating two
sets: one the set of head items that have a red color component with value 255,
and the other with the set of all head items in the scene.

If there is just one head item, we overwrite the dead set with the heads set con-
taining the one remaining head. This ensures that if there is just one multi-
pede left, it will be killed off. We then delete the heads set so that there are no
references that could keep items alive. Finally, we iterate over the dead items,
removing each one from the scene at random and, since ownership passes to
us,deleting each one that we remove.Thanks to the parent–child relationships,
when we delete a multipede’s head, the head’s child (the first segment) is delet-
ed, and in turn the first segment’s child (the second segment) is deleted, and so

Animation and Complex Shapes 373

on, to the greatest grandchild so that simply by deleting a multipede’s head, we
delete all the segments too.

We have now seen how the application works, so we can turn our attention to
the implementation of the multipedes themselves. As the population() method
shows, multipedes are made up of one Head and at least four Segments—both of
these classes are QGraphicsItem subclasses, and both are smart enough to draw
only the amount of detail that makes sense for the current zoom level. We will
look at the Head first, and then at the Segment.

class Head(QGraphicsItem):

Rect = QRectF(-30, -20, 60, 40)

def __init__(self, color, angle, position):

super(Head, self).__init__()

self.color = color

self.angle = angle

self.setPos(position)

self.timer = QTimer()

QObject.connect(self.timer, SIGNAL("timeout()"), self.timeout)

self.timer.start(INTERVAL)

All heads have the same shape: an ellipse that fits inside the static Rect

rectangle.When the head is initialized we record its color and angle in instance
variables and move it to the given position in the scene.

The QGraphicsItem class is not a QObject subclass and does not provide built-in
timers. This is not a problem since we can simply use a QTimer as we have
done here.★ A QTimer’s timeouts do not result in timer events, but instead are
signified by timeout() signals being emitted. Here we create a timer which will
time out every INTERVAL (200) milliseconds, that is, five times per second. We
have connected the timer’s timeout() signal to our own timeout() method; we
will review this method shortly.

def boundingRect(self):

return Head.Rect

The bounding rectangle is easy—it is simply the static Rect rectangle that
serves as the basic shape for all multipede heads.

def shape(self):

path = QPainterPath()

path.addEllipse(Head.Rect)

return path

★C++/Qt programmers might be tempted to multiply-inherit from QGraphicsItem and QObject, but
PyQt permits inheritance only from a single Qt class.

374 Chapter 12. Item-Based Graphics

This method is the default one used for collision detection, unless we specify
a coarser-grained approach that uses just the bounding rectangle. A painter
path is a series of rectangles, ellipses, arcs, and other shapes (including painter
paths) that together completely describe an item’s shape. In this case, the path
is just one ellipse.

Using a painter path for a graphics item’s shape ensures that collisions are
detected accurately. For example, two multipede heads may cross at the
corners of their rectangles without colliding, since their ellipses don’t occupy
the corners.

def paint(self, painter, option, widget=None):

painter.setPen(Qt.NoPen)

painter.setBrush(QBrush(self.color))

painter.drawEllipse(Head.Rect)

if option.levelOfDetail > 0.5:

painter.setBrush(QBrush(Qt.yellow)) # Outer eyes

painter.drawEllipse(-12, -19, 8, 8)

painter.drawEllipse(-12, 11, 8, 8)

if option.levelOfDetail > 0.9:

painter.setBrush(QBrush(Qt.darkBlue)) # Inner eyes

painter.drawEllipse(-12, -19, 4, 4)

painter.drawEllipse(-12, 11, 4, 4)

if option.levelOfDetail > 1.3:

painter.setBrush(QBrush(Qt.white)) # Nostrils

painter.drawEllipse(-27, -5, 2, 2)

painter.drawEllipse(-27, 3, 2, 2)

The head in full detail is an ellipse, two eyes, each of which is two ellipses,
one inside the other, and two tiny nostrils, again ellipses. The paint() method
begins by getting rid of the pen and by setting a solid brush to the multipede’s
color. Then the basic head shape is drawn.

The option variable is of type QStyleOptionGraphicsItem, and it holds various
useful information, including the item’s transformation matrix, font metrics,
palette, and state (selected, “on”, “off”, and many others). It also holds the “level
of detail”, a measure of how zoomed in or out the scene is. If the scene is not
zoomed at all, the level of detail is 1.0; if it is zoomed in to be twice the size,
the level of detail will be 2.0, and if it is zoomed out to half the size, the level
of detail will be 0.5.

If the scene is being shown at 50% of its natural size or larger,we draw the mul-
tipede’s yellow outer eyes. We can hard-code the coordinates because graphics
items use their own local logical coordinate system and any externally applied
transformations are taken care of automatically for us. If the scene is being
show at 90% of its natural size or larger, we also draw the inner eyes, and if
the scene is zoomed in enough to be viewed at 130% or larger, we also draw the
multipedes’ tiny nostrils.

Animation and Complex Shapes 375

The last method we must consider is the timeout() method that is called every
INTERVAL milliseconds by the timer. We will look at the method in two parts,
since there are two aspects to what it does.

def timeout(self):

if not Running:

return

angle = self.angle

while True:

angle += random.randint(-9, 9)

offset = random.randint(3, 15)

x = self.x() + (offset * math.sin(math.radians(angle)))

y = self.y() + (offset * math.cos(math.radians(angle)))

if 0 <= x <= SCENESIZE and 0 <= y <= SCENESIZE:

break

self.angle = angle

self.rotate(random.randint(-5, 5))

self.setPos(QPointF(x, y))

If the global Running Boolean is False, we do nothing and return. Otherwise,
we calculate a new position for the head based on a small random change to its
angle of direction (±9°), and a small movement (3–15 logical units).To avoid the
multipede wandering out of the scene, we keep moving and turning it until its
new (x, y) position is within the scene’s boundaries.

Once we have the new coordinates, we record the angle that was used, rotate
the head slightly, and set the head’s position. At this point, collisions may have
occurred as a result of the movement.

for item in self.scene().collidingItems(self):

if isinstance(item, Head):

self.color.setRed(min(255, self.color.red() + 1))

else:

item.color.setBlue(min(255, item.color.blue() + 1))

We ask the scene for all the items that the head has collided with. If it has hit
another head, we make this head a bit redder, and if it has hit a segment, we
make the segment it has hit a bit bluer. If a head’s red color component reaches
255, the head (and therefore the entire multipede, including all the segments)
will be removed from the scene. The removals take place in the form’s timer
event, as we saw earlier (page 372).

Now we will look at the Segment implementation. Its initializer is a bit longer
than the Head’s initializer, but the boundingRect(), shape(), and paint() methods
are much simpler as a result.

class Segment(QGraphicsItem):

def __init__(self, color, offset, parent):

376 Chapter 12. Item-Based Graphics

super(Segment, self).__init__(parent)

self.color = color

self.rect = QRectF(offset, -20, 30, 40)

self.path = QPainterPath()

self.path.addEllipse(self.rect)

x = offset + 15

y = -20

self.path.addPolygon(QPolygonF([QPointF(x, y),

QPointF(x - 5, y - 12), QPointF(x - 5, y)]))

self.path.closeSubpath()

y = 20

self.path.addPolygon(QPolygonF([QPointF(x, y),

QPointF(x - 5, y + 12), QPointF(x - 5, y)]))

self.path.closeSubpath()

self.change = 1

self.angle = 0

self.timer = QTimer()

QObject.connect(self.timer, SIGNAL("timeout()"), self.timeout)

self.timer.start(INTERVAL)

The first thing to notice is that we accept a parent parameter and pass it on to
the base class. We did not do this for the Head because when an item is added
to a scene, the scene automatically takes ownership of the item, so there was
no need. But segments are not explicitly added to the scene since they are all
children of other items. The first segment’s parent is the multipede’s head, the
second segment’s parent is the first segment, the third segment’s parent is the
second segment, and so on. When the head is added to the scene the segments
are added too; but the scene takes ownership of only the head. Although
we could have given the segments no parent and added them directly to the
scene, it is much more convenient to make them child items. In particular,
the parent–child relationship between graphics items is used to propagate
transformations from parent to child.

The offset is an x offset relative to the head, no matter which segment we are
initializing. The rectangle is used to draw the segment’s ellipse, but unlike the
head, it does not encompass the entire shape because segments have protrud-
ing legs. Because the segment’s shape isn’t simple, we create it using a painter
path. We begin with the segment’s “body”, a simple ellipse. Then we draw one
leg (a very flat triangle),and then the other leg. The addPolygon() method takes
a QPolygonF(), which itself is constructed with a list of QPointF objects. After
each leg is added, we call closeSubpath(); alternatively, we could simply have
added an extra point at the end, a copy of the first point. The change and angle

instance variables are used for movement; we will cover them in the time-

out() event.

def boundingRect(self):

return self.path.boundingRect()

Animation and Complex Shapes 377

The bounding rectangle must account for the entire shape, including the legs,
but is it easy to obtain using QPainterPath.boundingRect().

def shape(self):

return self.path

The shape isn’t straightforward,but thanks to the path being calculated in the
initializer, this method is simple.

def paint(self, painter, option, widget=None):

painter.setPen(Qt.NoPen)

painter.setBrush(QBrush(self.color))

if option.levelOfDetail < 0.9:

painter.drawEllipse(self.rect)

else:

painter.drawPath(self.path)

Thanks to precalculating the rectangle and painter path, the paint() method
is much easier and faster than it would otherwise have been. If the scene is
zoomed in to 90% or less, we just draw an ellipse; otherwise, we draw the shape
in full detail using the painter path.

def timeout(self):

if not Running:

return

matrix = self.matrix()

matrix.reset()

self.setMatrix(matrix)

self.angle += self.change

if self.angle > 5:

self.change = -1

self.angle -= 1

elif self.angle < -5:

self.change = 1

self.angle += 1

self.rotate(self.angle)

When a multipede’s head moves, its first (child) segment moves with it, and
that segment’s child segment moves with it, and so on. This is fine, but it means
that the multipede’s shape is rigid. We want the segments to gently sway from
side to side as the multipede moves, and for this reason we have given the
segments their own timers.

We retrieve the segment’s transformation matrix, clear any transformations
(rotations) that have been applied, and then rotate the segment. The change

variable starts out as 1 and the rotation angle starts out at 0°. At every time
interval, the change is added to the angle. If the angle reaches 6 (or -6), we
make it 5 (or -5) and negate the change value. This means that the angle has

378 Chapter 12. Item-Based Graphics

the sequence 1, 2, 3, 4, 5, 4, 3, 2, 1, 0, -1, -2, -3, -4, -5, -4, -3, -2, -1, 0, 1, 2, and so
on, which produces a nice swaying effect.

This completes our review of animating complex shapes. Using painter paths,
shapes of arbitrary complexity can be created, and by storing the paths as
static or as instance variables, a lot of calculation can be done one-off rather
than in every call to a paint method. The approach we have used to achieve
animation is not the only one possible. For example, we could use QGraphics-

ItemAnimation items in conjunction with a QTimeLine. Another approach would
be to take the timers out of the items themselves and instead keep a set of ref-
erences to them. Then, a timer in the form could be used, and at each interval
each item in the set could be moved and collisions could be resolved from the
form’s timeout handler. There is no one and only right approach; rather, the
best approach will depend on the needs of the application itself.

Summary

The graphics view classes are ideal for situations where we have lots of individ-
ual items to draw, from dozens to hundreds of thousands. They are also perfect
for when we want to allow the user to interact with items—for example, click-
ing, dragging, and selecting them—as well as being ideal for doing animation.

Scenes use their own logical coordinate system and contain graphics items.
Scenes are viewed using QGraphicsView, and more than one view can be associ-
ated with a scene if we want the user to be able to view the scene using two or
more different transformations (for example, at different zoom levels or rota-
tion angles).

The graphics view classes include a number of useful predefined items that can
be used “as is”. We can also subclass QGraphicsItem or one of its subclasses to
provide custom behavior (for example context menus and key event handling)
as well as custom painting so that we can draw any shapes we like.

If we want to save and load scenes to and from files, one simple approach is to
make sure that every item has a transformation matrix, and to save an item
description, the item’s position in the scene, the item’s matrix, and any addi-
tional item-specific data that may be necessary. Doing this using QDataStream

is very easy.

Any scene can be drawn on any paint device, including a printer, a PDF file,
or a QImage (for example, to save as a .png file), by using the render() methods
provided by the scene and view classes. And from Qt 4.3, scenes can also be
rendered in SVG format using the QSvgGenerator paint device class.

Painting graphics view items is made as easy as possible because of the con-
venient local coordinate system that allows us to ignore any externally applied
transformations—for example, from parent items. The QPainter class offers
many convenient drawing methods for drawing such things as arcs, chords,
ellipses, polygons, lines, polylines, rectangles, images, and text. In addition,

Summary 379

complex shapes can be created using QPainterPath objects, and these can be
painted directly using QPainter.drawPath().

Even more complex shapes can be created by composing two or more items
together using parent–child relationships. Such relationships ensure that
transformations applied to a parent item are automatically applied to the child
items, down to the furthest grandchild. This, in conjunction with the use of
local logical coordinates, makes animating complex shapes much easier than
having to orchestrate all the transformations manually ourselves.

Simulations, games, and the visualization of time series data can be done
using the graphics view classes. One simple approach to animation is to give
each item its own timer and to move it whenever the timer times out, although
several other approaches are possible. For painting, using pre-calculated
shapes can save time in the paint methods, as can using the view’s level of
detail to decide how much detail to draw.

For graphing, creating a custom widget and reimplementing its paint event,
as described in the preceding chapter, is probably the best approach. For
general scientific and engineering applications, the PyQwt library (Qt Wid-
gets for Technical Applications) provides a lot of functionality out of the
box, including 2D plotting, whereas the PyQwt3D bindings extend PyQwt
to include 3D plotting. To get the best out of these add-ons, and for fast
numerical processing, installing the NumPy package is also recommended.
See http://pyqwt.sourceforge.net and http://numpy.scipy.org for more infor-
mation.

PyQt’s graphics view classes have even more to offer than we have had the
space to cover here. In addition to many more features offered by the graphics
view classes, it is also possible to do both 2D and 3D graphics using the QtOpenGL

module. In addition, this module can be used in conjunction with PyQt’s other
graphics classes. For example, we can use a QGLWidget instead of a QWidget for
painting on by calling QGraphicsView.setViewport(QGLWidget()), and we can use
QPainter to overlay a QGLWidget with annotations.

Exercise
Enhance the Page Designer application by adding a new button, Align, which
has a pop-up menu of Align Left, Align Right, Align Top, and Align Bottom. Provide
a single method, setAlignment(), that takes an alignment argument. Be sure
to keep an instance variable with the wrappers so they don’t get garbage-col-
lected. To perform the alignment there must be at least two items selected
(because items are aligned with respect to each other).

The algorithm in the solution has two phases: First it finds the item to align
every other item in relation to; for example, if doing Align Left, it finds the
leftmost item. Note that this must be done in terms of the sceneBoundingRect(),
not the boundingRect() (which is different if the item is rotated). Second, it
works out the x or y difference to be applied to the other items and then applies

http://pyqwt.sourceforge.net
http://numpy.scipy.org

380 Chapter 12. Item-Based Graphics

it. Adding the extra button and its menu will take less than 15 lines of code,
and setAlignment() can be written in less than 45 lines, so the whole thing can
be done in about 60 lines.

A solution is provided in chap12/pagedesigner_ans.pyw.

Rich Text and Printing

1313 ● Rich Text Editing

● Printing Documents

PyQt supports rich text, essentially a subset of HTML that also includes some
support for CSS (cascading style sheets).★ This means that in practice, we
can pass strings that contain HTML markup to many of PyQt’s text-handling
classes and rely on PyQt to render the HTML properly in the user interface.

We have already seen examplesof passing HTML to QLabels. The graphics item
class QGraphicsTextItem can also accept HTML. The QTextBrowser class supports
basic HTML display including hyperlinks, and although it is by no means a
full-blown Web browser, many developers find it sufficient for displaying help
text. For editing HTML, PyQt provides the QTextEdit class. Although this class
can render all the PyQt-supported HTML tags, it does not provide users with
the means to create or edit some of the tags—for example, it can show HTML
tables, but it does not provide a means of inserting or editing them. These defi-
ciencies can, of course, be remedied by subclassing and providing the function-
ality ourselves.

Another use case for QTextEdit is to provide source code editing, with syntax
highlighting provided by custom QSyntaxHighlighter subclasses. A dedicated
open source component, specifically designed for source code editing, is also
available. This component is called Scintilla (http://www.scintilla.org), and
the Qt port of it, QScintilla, can also be used with PyQt.

All of the widgets that can handle rich text store the text internally in a
QTextDocument. This pure data class is also available for our use.

In this chapter, we will explore some of the features of QTextEdit, including its
use as a source code editor using QSyntaxHighlighter. Although PyQt provides
a set of widgets that covers most situations, from simple labels and frames
all the way to tab widgets, tree views, and more, it does not include a one-line
HTML text-editing widget. We will create our own widget for this purpose by
subclassing QTextEdit; this will deepen our knowledge of QTextEdit and QText-

★The list of supported HTML tags and CSS properties is available at http://doc.trolltech.com/

richtext-html-subset.html.

381

http://www.scintilla.org
http://doc.trolltech.com/richtext-html-subset.html
http://doc.trolltech.com/richtext-html-subset.html

382 Chapter 13. Rich Text and Printing

Document, and it will be a useful widget in later chapters when we want to pro-
vide the ability for users to edit single lines of HTML text in database-type
applications.

This chapter’s second section is devoted to printing. We have already seen how
to print images and graphics scenes on a page, but in thisPrint-

ing
images
sidebar

363 ☞

section we will see
how to print multiple page documents, including ones with embedded images.
PyQt provides three different techniques for printing documents: one based
on composing and printing HTML, another based on creating and printing
QTextDocuments, and another based on using QPainter to paint directly onto the
printer’s pages. We will show and discuss all three approaches.

Rich Text Editing

In this section we will look at rich text editing from two different perspectives.
In the first subsection we will create a plain text editor that uses QSyntaxHigh-

lighter to provide syntax highlighting for Python source code. In the second
subsection we will create a single-line rich text editor similar to QLineEdit, that
has pop-up menus, and that supports various formatting shortcuts such as
Ctrl+B and Ctrl+I to toggle bold and italic on and off. In both cases, we use QText-

Edit as the foundation on which we build.

Using QSyntaxHighlighter

If we want a Python-savvy text editor with syntax highlighting, we need not
create one ourselves. The Tkinter-based IDLE application provides both a
“sandbox” in which we can experiment with Python code, and a perfectly good
Python code editor. And for more power, we can use Eric4, itself written in
PyQt and using QScintilla for its text editing. However, no off-the-shelf editor
will necessarily work in just the way we want, and since creating our own is
instructive and revealing of what is involved, we will create a simple Python
Editor to learn how to use QTextEdit and QSyntaxHighlighter. As the screenshot
in Figure 13.1 shows, the Python Editor is a simple main-window-style applica-
tion with two menus and toolbars. Since we have covered the creation of such
applications before, we will focus just on those parts that are relevant to rich
text editing, starting with the beginning of the main window’s initializer.

class MainWindow(QMainWindow):

def __init__(self, filename=None, parent=None):

super(MainWindow, self).__init__(parent)

font = QFont("Courier", 11)

font.setFixedPitch(True)

self.editor = TextEdit()

self.editor.setFont(font)

self.highlighter = PythonHighlighter(self.editor.document())

self.setCentralWidget(self.editor)

Rich Text Editing 383

Figure 13.1 The Python Editor editing itself

We begin by creating a fixed-pitch font (a font where every character is the
same width). Then we create a TextEdit, a custom QTextEdit class that differs
from QTextEdit in that it converts Tab key presses into insertions of four spaces.
Next we create a PythonHighlighter, a QSyntaxHighlighter subclass, passing
it the text editor’s QTextDocument—this is the object in which the editor’s text
and formatting are actually stored. We make the editor the main window’s
central widget.

The rest of the initializer is concerned with the creation of the actions, menus,
and toolbars, things that we are very familiar with and can therefore skip. The
only other methods we will look at are two of the three basic file-handling ones,
since they involve the text editor.

def fileNew(self):

if not self.okToContinue():

return

document = self.editor.document()

document.clear()

document.setModified(False)

self.filename = None

self.setWindowTitle("Python Editor - Unnamed")

self.updateUi()

This method simply retrieves and clears the QTextDocument that actually holds
the text, and sets the modified flag to False. The result is a blank QTextEdit

with no unsaved changes. The updateUi() method is used to enable and disable

384 Chapter 13. Rich Text and Printing

actions depending on the application’s state; see the Enabling and Disabling
Actions sidebar on page 385.

def loadFile(self):

fh = None

try:

fh = QFile(self.filename)

if not fh.open(QIODevice.ReadOnly):

raise IOError, unicode(fh.errorString())

stream = QTextStream(fh)

stream.setCodec("UTF-8")

self.editor.setPlainText(stream.readAll())

self.editor.document().setModified(False)

self.setWindowTitle("Python Editor - %s" % \

QFileInfo(self.filename).fileName())

except (IOError, OSError), e:

QMessageBox.warning(self, "Python Editor -- Load Error",

"Failed to load %s: %s" % (self.filename, e))

finally:

if fh is not None:

fh.close()

If a file is loaded—for example,by the user invoking the File→Openaction—this
method is called. The file-handling code is similar to what we have seen before;
the only real difference is that we set the QTextDocument’s modified flag to
False.

The code for saving (not shown) is very similar to that for loading. We get
the file handle, create a QTextStream, set the encoding to UTF-8, and output
the entire text using QTextEdit.toPlainText(). We also set the QTextDocument’s
modified flag to False.

class TextEdit(QTextEdit):

def __init__(self, parent=None):

super(TextEdit, self).__init__(parent)

def event(self, event):

if event.type() == QEvent.KeyPress and \

event.key() == Qt.Key_Tab:

cursor = self.textCursor()

cursor.insertText(" ")

return True

return QTextEdit.event(self, event)

The preceding code shows the complete TextEdit subclass. Every QTextDocument

can be manipulated through a QTextCursor object, which is the programmatic
equivalent of a user interacting with the document using key presses and
mouse actions.

Rich Text Editing 385

Enabling and Disabling Actions

Sometimes particular actions are applicable only in certain circumstances.
For example, it doesn’t make much sense to allow “file save” on a document
with no unsaved changes, or, arguably, to allow “file save as” on an empty
document. Similarly, neither “edit copy” nor “edit cut” makes sense if there
is no selected text. One way to deal with this is to leave all the actions
enabled all the time, but to make sure that they do nothing in cases where
they don’t make sense; for example, if we call QTextEdit.cut(), it will safely
do nothing if there is no selected text.

Another solution is to enable and disable actions depending on the appli-
cation’s state. This can be achieved by doing three things: First, making ac-
tions that will be enabled and disabled into instance variables so that they
can be accessed outside of the initializer; second, creating a method (e.g.,
updateUi()) that enables and disables actions depending on the application’s
state; and third, making application-specific signal–slot connections to
updateUi() so that it is called whenever the application’s state changes.

Using the Python Editor as an example, we need these connections:

self.connect(self.editor,

SIGNAL("selectionChanged()"), self.updateUi)

self.connect(self.editor.document(),

SIGNAL("modificationChanged(bool)"), self.updateUi)

self.connect(QApplication.clipboard(),

SIGNAL("dataChanged()"), self.updateUi)

These connections mean that if the editor’s selection changes, or if the
document is modified, or if the clipboard’s data changes, we can enable or
disable the relevant actions.

def updateUi(self, arg=None):

self.fileSaveAction.setEnabled(

self.editor.document().isModified())

self.fileSaveAsAction.setEnabled(

not self.editor.document().isEmpty())

enable = self.editor.textCursor().hasSelection()

self.editCopyAction.setEnabled(enable)

self.editCutAction.setEnabled(enable)

self.editPasteAction.setEnabled(self.editor.canPaste())

This method is called in response to the signal–slot connections earlier.
It is also called explicitly at the end of the initializer to set the user in-
terface’s initial state, and at Qt

4.2

the end of the fileNew() method. The QText-

Edit.canPaste() method was introduced with Qt 4.2; for earlier versions,
use not QApplication.clipboard().text().isEmpty(). The text cursor and text
document classes are covered later in this chapter.

386 Chapter 13. Rich Text and Printing

The event() handler is called before any of the specific key and mouse event
handlers, and it is the only place where we can intercept andQWidget.

event()

310 ☞

handle Tab key
presses. If the user pressed Tab we get a Insert-

ing text
with
QText-

Cursor

☞ 404

QTextCursor from the QTextEdit; this
allows us to programmatically interact with the underlying QTextDocument

that holds the text. By default, the text cursor returned by a text edit is at the
current insertion point (also called the cursor position), so we can simply insert
four spaces. Then we return True to tell the event-handling system that we
have handled the Tab key press and that no further action (such as changing
focus) should take place.

To provide syntax highlighting we must create a QSyntaxHighlighter subclass,
reimplement the highlightBlock() method, and create an instance of our
highlighter with the QTextDocument we want it to apply to as an argument.
We did the last part in the MainWindow’s initializer, so now we will turn to our
QSyntaxHighlighter subclass.

The QSyntaxHighlighter works on a line-by-line basis and provides a simple
means of keeping track of state across multiple lines.For the Python Editor we
will use regular expressions to identify the Python keywords, comments, and
strings, including triple-quoted strings that span multiple lines, so that we can
apply highlighting to them. We begin by setting up the regular expressions in
the subclass’s initializer, which we will look at in two parts.

class PythonHighlighter(QSyntaxHighlighter):

Rules = []

def __init__(self, parent=None):

super(PythonHighlighter, self).__init__(parent)

keywordFormat = QTextCharFormat()

keywordFormat.setForeground(Qt.darkBlue)

keywordFormat.setFontWeight(QFont.Bold)

for pattern in ((r"\band\b", r"\bas\b", r"\bassert\b",

···
r"\byield\b")):

PythonHighlighter.Rules.append((QRegExp(pattern),

keywordFormat))

The Rules static list holds a list of pairs. The first element of each pair is a
regular expression (a QRegExp) that is used to match a syntactic construct that
can occupy only a single line (such as a Python keyword). The second element
is a QTextCharFormat, an object that can hold information regarding how a piece
of text should be formatted, such as its font and the pen that should be used to
paint it.

We have created a rule for each Python keyword, giving each one the same
keywordFormat format. (Most of the keywords are not shown in the snippet as
indicated by the ellipsis.) Each keyword has a \b before and after it; this is a
regular expression symbol that does not match any text, but rather matches at

Rich Text Editing 387

a word boundary. This means, for example, that in the expression a and b, and
will be recognized as a keyword, whereas in the expression a = sand, the and in
sand will (correctly) not be recognized.

commentFormat = QTextCharFormat()

commentFormat.setForeground(QColor(0, 127, 0))

commentFormat.setFontItalic(True)

PythonHighlighter.Rules.append((QRegExp(r"#.*"),

commentFormat))

self.stringFormat = QTextCharFormat()

self.stringFormat.setForeground(Qt.darkYellow)

stringRe = QRegExp(r"""(?:'[^']*'|"[^"]*")""")

stringRe.setMinimal(True)

PythonHighlighter.Rules.append((stringRe, self.stringFormat))

self.stringRe = QRegExp(r"""(:?"["]".*"["]"|'''.*''')""")

self.stringRe.setMinimal(True)

PythonHighlighter.Rules.append((self.stringRe,

self.stringFormat))

self.tripleSingleRe = QRegExp(r"""'''(?!")""")

self.tripleDoubleRe = QRegExp(r'''"""(?!')''')

After the keywords, we create a format and regular expression for handling
Python comments.The regular expression is not perfect; it does not account for
quoted # characters for example.

For strings, we keep the string format as an instance variable since we will
need it in the highlightBlock() method when we handle multiline strings.
Single-line strings are handled by naive (but fast) regular expressions set up
in the initializer and added to the Rules list. At the end we create two more
regular expressions. These both use negative lookahead; for example, (?!")
means “not followed by "”. They are for use in the highlightBlock() method,
which we will review next in two parts.

def highlightBlock(self, text):

NORMAL, TRIPLESINGLE, TRIPLEDOUBLE = range(3)

for regex, format in PythonHighlighter.Rules:

i = text.indexOf(regex)

while i >= 0:

length = regex.matchedLength()

self.setFormat(i, length, format)

i = text.indexOf(regex, i + length)

The highlightBlock() method is called for every line that is displayed with the
line in the QString text argument.

We begin by setting three possible states: normal, inside a triple-quoted string,
and inside a triple double-quoted string. Then we iterate over every rule and
wherever we find a match to the rule’s regular expression, we set the text’s

388 Chapter 13. Rich Text and Printing

format to the corresponding format for the length of the regular expression’s
match. The combination of a list of regular expression and format pairs and
the for loop shown in the preceding code is sufficient for all syntax highlighting
where each syntactic component only ever occupies a single line and where
each is capable of being represented by a regular expression.

self.setCurrentBlockState(NORMAL)

if text.indexOf(self.stringRe) != -1:

return

for i, state in ((text.indexOf(self.tripleSingleRe),

TRIPLESINGLE),

(text.indexOf(self.tripleDoubleRe),

TRIPLEDOUBLE)):

if self.previousBlockState() == state:

if i == -1:

i = text.length()

self.setCurrentBlockState(state)

self.setFormat(0, i + 3, self.stringFormat)

elif i > -1:

self.setCurrentBlockState(state)

self.setFormat(i, text.length(), self.stringFormat)

Next we set the current block’s state to normal. The state is an integer of our
choice that the QSyntaxHighlighter will associate with the current line. We then
test to see whether we have a complete triple quoted string, that is, one that
begins and ends in the line; if we do, we have already formatted it, so we are
finished and can return.

In PyQt’s text-handling classes such as QTextDocument, QTextEdit, and QSyntax-

Highlighter, a block of text is essentially a sequence of characters delimited
by a newline. For word processor-type documents this equates to a paragraph
(since the text-handling class does the line wrapping), but for source code we
insert newlines manually, so in this case each block is effectively a single line
of code.

We now have three cases to deal with. We are either in a triple-quoted string
that began on a previous line and that has not finished in this line; or we have
the beginning or end of a triple-quoted string in this line.

If the previous line was in a triple-quoted string and there is no triple quote in
this line, this entire line is still in a triple-quoted string, so we set the current
block state to the same value as the previous line and format the entire line as
triple-quoted. If the previous line’s state is triple-quoted and we have a triple
quote, it must be the closing triple quote, so we format triple-quoted up to and
including the triple quote. In this case we leave the state as normal since that
will apply from the end of the triple-quoted string onward. On the other hand,
if the previous line’s state was not triple-quoted and we find triple quotes,
we set the state to triple-quoted and format from these quotes to the end of
the line.

Rich Text Editing 389

This completes our syntax highlighting example. Clearly we could use more
sophisticated regular expressions, or even avoid them altogether and use a
finite state automaton or a parser to identify which portions of each line
require particular formatting. For large texts with complex syntax, syntax
highlighting can be computationally expensive,but QSyntaxHighlighter helps to
keep the overhead down by formatting only enough lines to correctly highlight
the lines that are visible.

A Rich Text Line Edit

In some applications it is a requirement that users can enter single lines of rich
text. For example, a database application may have a “description” field where
we want the user to be able to use bold, italic, and colors for particular words if
they want. We will see examples of this in Chapter 14 and Chapter 16. Unfor-
tunately,PyQt does not provide such a widget. In this subsection we will create
a RichTextLineEdit, a subclass of QTextEdit that provides the functionality we
need; it is shown in Figure 13.2. In the process we will learn how to program-
matically format pieces of text in a QTextEdit, and how to iterate over a QTextE-

dit’s QTextDocument to extract the text and its formatting.

Figure 13.2 The Rich Text Line Edit

The rich text line edit will support the most common kinds of text formatting
that apply to single lines: bold, italic, underline, strikeout, superscript, and
subscript. In addition, three font styles will be supported—monospaced, sans
serif, and serif—and the ability to set the text’s color to a limited range of
colors. We will begin with some static constants and the initializer.

class RichTextLineEdit(QTextEdit):

(Bold, Italic, Underline, StrikeOut, Monospaced, Sans, Serif,

NoSuperOrSubscript, Subscript, Superscript) = range(10)

def __init__(self, parent=None):

super(RichTextLineEdit, self).__init__(parent)

self.monofamily = QString("courier")

self.sansfamily = QString("helvetica")

self.seriffamily = QString("times")

self.setLineWrapMode(QTextEdit.NoWrap)

self.setTabChangesFocus(True)

self.setVerticalScrollBarPolicy(Qt.ScrollBarAlwaysOff)

self.setHorizontalScrollBarPolicy(Qt.ScrollBarAlwaysOff)

fm = QFontMetrics(self.font())

h = int(fm.height() * (1.4 if platform.system() == "Windows" \

else 1.2))

390 Chapter 13. Rich Text and Printing

self.setMinimumHeight(h)

self.setMaximumHeight(int(h * 1.2))

self.setToolTip("Press Ctrl+M for the text effects "

"menu and Ctrl+K for the color menu")

We begin by setting some default font families. Nowadays, every platform can
be expected to provide Courier, Helvetica, and Times fonts (or fonts for which
these names are aliases). Since the widget is a single line, we switch off line
wrapping and scrollbars. We also ensure that Tab causes a change of focus
rather than the insertion of a Tab character. Calculating a minimum and max-
imum height will help when we implement the size hint methods, but it is com-
plicated slightly by differences in font metrics across platforms. The tooltip is
there to give users a hint that the widget has some special key presses.

Notice that the conditional expression is enclosed in parentheses. They are
essential in this case, since without them, on non-Windows platforms, h would
always be set to 1 instead of the 20 or 30 or so that we would expect.

def sizeHint(self):

return QSize(self.document().idealWidth() + 5,

self.maximumHeight())

The preferred size is the “ideal” width of the text (taking into account font
sizes and attributes like bold and italic), with a bit of Qt

4.2

padding to give a little
margin, and the maximum height.The QTextDocument.idealWidth() method was
introduced with Qt 4.2.

def minimumSizeHint(self):

fm = QFontMetrics(self.font())

return QSize(fm.width("WWWW"), self.minimumHeight())

For the minimum size, we take the width of four “W” characters in the widget’s
default font. Alternatively, we could have simply used an arbitrary amount,
say, 40 pixels.

One thing that distinguishes the RichTextLineEdit from a QLineEdit is the user’s
ability to change the format and color of words and characters. To support
this we must provide some means by which the user can apply such changes.
We have done this by providing a text effects menu and a color menu, and by
supporting some key sequences for formatting. Both menus are invoked by
particular key sequences, and the text effects menu is also popped up when a
context menu event occurs.

def contextMenuEvent(self, event):

self.textEffectMenu()

A context menu event occurs when the user right-clicks on some platforms, or
presses a particular key or key sequence on others. In this case, we simply call
the custom textEffectMenu() method, which will pop up a suitable menu. By

Rich Text Editing 391

default, QTextEdit provides its own context menu, but by reimplementing the
context menu event handler, our code takes precedence.

def keyPressEvent(self, event):

if event.modifiers() & Qt.ControlModifier:

handled = False

if event.key() == Qt.Key_B:

self.toggleBold()

handled = True

elif event.key() == Qt.Key_I:

self.toggleItalic()

handled = True

elif event.key() == Qt.Key_K:

self.colorMenu()

handled = True

elif event.key() == Qt.Key_M:

self.textEffectMenu()

handled = True

elif event.key() == Qt.Key_U:

self.toggleUnderline()

handled = True

if handled:

event.accept()

return

if event.key() in (Qt.Key_Enter, Qt.Key_Return):

self.emit(SIGNAL("returnPressed()"))

event.accept()

else:

QTextEdit.keyPressEvent(self, event)

Since users are typing in text, it is natural to provide a keyboard interface
for changing the text’s format. We have set Ctrl+B to toggle bold, Ctrl+I to tog-
gle italic, and Ctrl+U to toggle underlining. In addition, Ctrl+K invokes the color
menu, and Ctrl+M invokes the text effects menu (in addition to being invoked
by a context menu event).By calling accept() on the key presses we handle our-
selves, we are indicating that no further event handling of these key presses is
necessary.

If the user presses Return we emit a returnPressed() signal since this can be
useful; no newline is inserted into the text. Any other key presses are passed
on to the base class. The QTextEdit class supports its own key sequences—for
example, Ctrl+Left Arrow for move left one word, Ctrl+Del for delete the word to
the right,Ctrl+C to copy any selected text to the clipboard,and, of course, simple
letters, such as a, b, Shift+A, and Shift+B, that are inserted literally.

def toggleBold(self):

self.setFontWeight(QFont.Normal \

if self.fontWeight() > QFont.Normal else QFont.Bold)

392 Chapter 13. Rich Text and Printing

PyQt supports several levels of boldness, but we have chosen to take a simple
bold on or off approach. The QTextEdit.fontWeight() method returns the
font weight at the current insertion point, and similarly the setFontWeight()

method is applied at the current insertion point or to the selected text. The
QTextEdit is quite smart about formatting, at least on Linux. For example, if
text is selected the formatting is applied only to the selection, whereas if there
is no selection and the insertion point is at the end of the text, the formatting
is applied from that point onward, and if there is no selection and the insertion
point is in the middle of a word the formatting is applied to the whole word.

def toggleItalic(self):

self.setFontItalic(not self.fontItalic())

def toggleUnderline(self):

self.setFontUnderline(not self.fontUnderline())

Both italic and underline are simple on/off settings, and on Linux, toggling
them works in the same smart way as applying bold or other formatting.

def colorMenu(self):

pixmap = QPixmap(22, 22)

menu = QMenu("Colour")

for text, color in (("&Black", Qt.black), ("B&lue", Qt.blue),

("Dark Bl&ue", Qt.darkBlue), ("&Cyan", Qt.cyan),

("Dar&k Cyan", Qt.darkCyan), ("&Green", Qt.green),

("Dark Gr&een", Qt.darkGreen),

("M&agenta", Qt.magenta),

("Dark Mage&nta", Qt.darkMagenta),

("&Red", Qt.red), ("&Dark Red", Qt.darkRed)):

color = QColor(color)

pixmap.fill(color)

action = menu.addAction(QIcon(pixmap), text, self.setColor)

action.setData(QVariant(color))

self.ensureCursorVisible()

menu.exec_(self.viewport().mapToGlobal(

self.cursorRect().center()))

The color menu is invoked by Ctrl+K. To create the menu we iterate over a list
of text and color constants, adding a new menu option for each one. We set the
data for each action to be the relevant color; we use this in the setColor() im-
plementation.

We want the menu to pop up at the insertion point, that is, at the text cursor
position. This is not necessarily straightforward, because it is possible for the
RichTextLineEdit to have more text than it is wide enough to show, and the
insertion point could be outside the visible area.

We solve this problem by doing two things. First, we call the base class’s
QTextEdit.ensureCursorVisible() method; this has the effect of scrolling the ed-

Rich Text Editing 393

itor so that the insertion point is in the visible area—and it does nothing if the
insertion point is already visible. Second, we pop up the menu at the center of
the insertion point’s rectangle. The cursorRect() method returns a QRect that is
in widget coordinates, so we must convert the coordinates of the QPoint we get
from QRect.center() accordingly. We do this by calling viewport(), which effec-
tively returns a widget that has the exact dimensions of the visible area, and
that knows what region of the editor it represents. We then use the viewport
widget’s mapToGlobal() method to convert the point from the widget coordinate
system to the global (screen) coordinate system that is used by QMenu.exec_() to
position itself.

def setColor(self):

action = self.sender()

if action is not None and isinstance(action, QAction):

color = QColor(action.data())

if color.isValid():

self.setTextColor(color)

If the user chooses a color the setColor() method is called. We retrieve the
color that was stored in the calling action’s user data, and apply that color to
the text. Again, the same logic used for bold, italic, and underlining is used to
apply the color to the selected text, or to the current word, or from the end of
the text onward.

def textEffectMenu(self):

format = self.currentCharFormat()

menu = QMenu("Text Effect")

for text, shortcut, data, checked in (

("&Bold", "Ctrl+B", RichTextLineEdit.Bold,

self.fontWeight() > QFont.Normal),

("&Italic", "Ctrl+I", RichTextLineEdit.Italic,

self.fontItalic()),

···
("Subs&cript", None, RichTextLineEdit.Subscript,

format.verticalAlignment() == \

QTextCharFormat.AlignSubScript)):

action = menu.addAction(text, self.setTextEffect)

if shortcut is not None:

action.setShortcut(QKeySequence(shortcut))

action.setData(QVariant(data))

action.setCheckable(True)

action.setChecked(checked)

self.ensureCursorVisible()

menu.exec_(self.viewport().mapToGlobal(

self.cursorRect().center()))

The text effects menu method, invoked by Ctrl+M or by a context menu event,
is similar in structure to the color menu method, but slightly more involved.

394 Chapter 13. Rich Text and Printing

We begin by retrieving the text formatting that is currently in force, since
we need this information to determine whether to check the various menu
options. Then we create a menu made from a list of quadruples (text, shortcut,
constant, checked status). The menu is shown in Figure 13.3.

Figure 13.3 The text effects menu

We have set keyboard shortcuts for some of the actions—for example, Ctrl+B
for bold. We have not used standardized key sequences because we have
hard-coded the key presses in the key press event handler shown earlier and
so we must be sure to match the key presses that the handler is expecting.

In fact, these shortcuts have no effect in practice because they exist only for
the lifetime of the actions they are associated with and the actions exist only
while the menu exists, that is, for the duration of the textEffectMenu() method.
But this does not matter since we have reimplemented the key event handler
to provide these shortcuts ourselves. Shortcuts in menus are useful only for
permanent menus such as those added to a main window’s menu bar. So, why
do we bother with shortcuts in the menu at all? Because adding the shortcuts
makes them appear in the menu, which helps the user to learn them. It doesn’t
solve the problem of how the user finds out about the Ctrl+M and Ctrl+K menus
in the first place, but hopefully they will see the tooltip or read about them in
the application’s manual.

The menu itself is created and popped up in exactly the same way as the color
menu. If the user clicks any of the text effects options, the setTextEffect()

method is called. We will look at this method in two parts.

def setTextEffect(self):

action = self.sender()

if action is not None and isinstance(action, QAction):

what = action.data().toInt()[0]

if what == RichTextLineEdit.Bold:

self.toggleBold()

return

Rich Text Editing 395

if what == RichTextLineEdit.Italic:

self.toggleItalic()

return

if what == RichTextLineEdit.Underline:

self.toggleUnderline()

return

Each text effect menu action had a constant stored in its user data; this con-
stant is retrieved and held in the what variable. For the simple toggle actions,
we only need to call the appropriate toggle method and we are finished.

format = self.currentCharFormat()

if what == RichTextLineEdit.Monospaced:

format.setFontFamily(self.monofamily)

elif what == RichTextLineEdit.Serif:

format.setFontFamily(self.seriffamily)

elif what == RichTextLineEdit.Sans:

format.setFontFamily(self.sansfamily)

if what == RichTextLineEdit.StrikeOut:

format.setFontStrikeOut(not format.fontStrikeOut())

if what == RichTextLineEdit.NoSuperOrSubscript:

format.setVerticalAlignment(

QTextCharFormat.AlignNormal)

elif what == RichTextLineEdit.Superscript:

format.setVerticalAlignment(

QTextCharFormat.AlignSuperScript)

elif what == RichTextLineEdit.Subscript:

format.setVerticalAlignment(

QTextCharFormat.AlignSubScript)

self.mergeCurrentCharFormat(format)

To change the font family, strikeout format, or vertical alignment, we must
retrieve the current formatting, apply the change that the user has asked
for, and then merge the updated format with the current format to make it
take effect.

We have now covered all the formatting options that the rich text line edit
supports. Once the user has entered their rich text we will no doubt want to
retrieve it so that we can store it, search it, or manipulate it. We could use the
QTextEdit.toPlainText() method—but that will strip out all the HTML, leaving
us no better off than if we had used a QLineEdit. A more suitable alternative
is to use QTextEdit.toHtml(), but the HTML returned by this method is quite
verbose since it must be general enough to cater for all the PyQt-supported
HTML tags.

To put this in perspective, if we have the text “The bold cat.” (13 characters),
where the word “bold” is in bold and the word “cat” is colored red, the toHtml()

method returns 503 characters:

396 Chapter 13. Rich Text and Printing

<html><head><meta name="qrichtext" content="1" />

<style type="text/css"> p, li { white-space: pre-wrap; } </style>

</head>

<body style=" font-family:'Nimbus Sans L'; font-size:11pt;

font-weight:400; font-style:normal; text-decoration:none;">

<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px;

margin-right:0px; -qt-block-indent:0; text-indent:0px;">The

bold

cat

.</p></body></html>

We have added some newlines to make the output fit neatly on the page. The
text may vary slightly depending on the platform and Qt version, but it will
still be around 500 characters long.Since the rich text line edit needs to support
only a limited subset of tags, a simpler HTML could be used. For example:

The bold cat.

This is a mere 49 characters. To achieve this simpler HTML format we have
provided a toSimpleHtml() method; it is a bit long, so we will review it in
three parts.

def toSimpleHtml(self):

html = QString()

black = QColor(Qt.black)

block = self.document().begin()

We begin by creating an empty target QString and assuming that the text color
is black. The QTextDocument class, returned by QTextEdit.document(), provides a
means of iterating over the text and the formatting that it contains. Essential-
ly, each major text component, such as a paragraph or a table, is contained in a
“block”, and we can traverse the blocks using QTextDocument.begin() to retrieve
the first block, and QTextBlock.next() to retrieve each subsequent block. An
empty document will have an invalid first block.

Each text block contains one or more text “fragments”, each of which has its
own formatting characteristics. In fact, the structure of QTextDocuments is more
complicated than this, but we can ignore the additional details, such as tables,
lists, and images, since they are not used in the rich text line edit.

while block.isValid():

iterator = block.begin()

while iterator != block.end():

fragment = iterator.fragment()

if fragment.isValid():

format = fragment.charFormat()

family = format.fontFamily()

color = format.foreground().color()

text = Qt.escape(fragment.text())

Rich Text Editing 397

if format.verticalAlignment() == \

QTextCharFormat.AlignSubScript:

text = QString("_{%1}").arg(text)

elif format.verticalAlignment() == \

QTextCharFormat.AlignSuperScript:

text = QString("^{%1}").arg(text)

if format.fontUnderline():

text = QString("<u>%1</u>").arg(text)

if format.fontItalic():

text = QString("<i>%1</i>").arg(text)

if format.fontWeight() > QFont.Normal:

text = QString("%1").arg(text)

if format.fontStrikeOut():

text = QString("<s>%1</s>").arg(text)

For each text fragment in the current block, we extract the character format-
ting, font family, and text color. Then we extract the text itself with any HTML
characters (“&”, “<”, and “>”) converted to the appropriate entities (“&”,
“<”, and “>”) by the Qt.escape() function. We then check to see whether
the fragment is a subscript or superscript, surrounding the text with appropri-
ate HTML tags if necessary. Then, similar tests are done for other formatting
characteristics—specifically, underlining, italics, bold, and strikeout—and in
each case the text has the appropriate HTML tags added to it.

if color != black or not family.isEmpty():

attribs = ""

if color != black:

attribs += ' color="%s"' % color.name()

if not family.isEmpty():

attribs += ' face="%s"' % family

text = QString("<font%1>%2")\

.arg(attribs).arg(text)

html += text

iterator += 1

block = block.next()

return html

If the font family is not empty or if the color is not black, we must use a

tag with the face or color (or both) attributes. At the end of the fragment we
append the text that represents the fragment to the html string that holds the
entire line of rich text. Since each block may contain one or more fragments,
we increment the iterator, dropping out of the inner while loop when it equals
QTextBlock.end(), that is, after we have processed the last fragment in the
block. Then we call QTextBlock.next() and process the next block’s fragments,
finally dropping out of the outer while loop when we reach an invalid block
which signifies that all the blocks have been processed. And at the very end we

398 Chapter 13. Rich Text and Printing

return the html string that contains the valid (but minimal) HTML necessary
to represent the rich text line edit’s line of rich text.

This concludes the RichTextLineEdit class. We will use it in a couple of later
chapters. Although this subclass provides only a single line HTML editor, the
techniques we have seen can easily be applied to a QTextEdit subclass that is
designed to edit entire HTML documents. In such cases, we would probably
still provide some additional keyboard support, such asCtrl+B and Ctrl+I for bold
and italic, and perhaps even the text effects context menu. But the other text
effects, colors, and formatting that are more appropriate to larger documents
such as lists and tables, we would provide through menu options and toolbar
buttons like any conventional HTML editor or word processor.

Printing Documents

Getting printed output from PyQt applications can be achieved in a number
of ways. One approach is to produce output in a form that another program
can print, such as producing HTML for a Web browser to print or SVG for an
SVG-savvy drawing program to print.

From Qt 4.1, users can produce PDF documents through the Print dialog by
checking the “print to file” option. It is also possible to produce PDF Qt

4.1

documents
programmatically. For example, assuming that document is a QTextDocument:

printer = QPrinter()

printer.setPageSize(QPrinter.Letter)

printer.setOutputFormat(QPrinter.PdfFormat)

printer.setOutputFileName(filename)

document.print_(printer)

These approaches are not as convenient for users as having a printing facility
within the application itself, and to do this PyQt offers three main choices.

1. We can generate HTML, give it to a QTextDocument, and use QTextDocu-

ment.print_() passing in a QPrinter, or QTextDocument.drawContents(), pass-
ing in a QPainter to render the document.

2. We can create a QTextDocument and retrieve a QTextCursor from it through
which we can generate the document programmatically, and again using
the print_() or drawContents() methods to render it.

3. We can create a QPainter to paint directly onto a QPrinter, that is, onto
the printed pages. This is the most tedious approach, but it provides the
greatest level of control.

The example application covered in this section shows all three techniques.
It prints customer statements, with each Statement object holding a company
name, contact name, address, and list of transactions, each of which is a (QDate,
float) tuple. The Statement class also provides a balance() method that returns

Printing Documents 399

Figure 13.4 A page printed using QPainter

the sum of the transactions. We want to print the issuer’s logo and address at
the top right, below that the date, and on the left, the customer’s address, then
a form letter where the contents vary depending on whether the customer is in
credit or debit, then a table of transactions,and a closing paragraph. Naturally,
we also want each statement to begin on a fresh page. We will assume that all
the statements are held in a list called self.statements, and that our printing
is done using the methods of a form which holds these statements. The pages
will look like the one shown in Figure 13.4.

But before looking at the three general printing techniques,we will look at how
to print images, in particular showing the implementation of the filePrint()

method used by the Image Changer application that we covered in Chapter 6.

400 Chapter 13. Rich Text and Printing

Printing Images

Back in Chapter 6, we had a MainWindow.filePrint() method for printing an
image, but we did not look at its implementation at that point because we had
not covered QPainter. Now that we have seen QPainter in Chapter 11, and have
seen aPrint-

ing
Images
sidebar

363 ☞

generic “print image” function,we can look at the implementation of the
filePrint() method used by the Image Changer application. (The source code
is in chap06/imagechanger.pyw.)

def filePrint(self):

if self.image.isNull():

return

if self.printer is None:

self.printer = QPrinter(QPrinter.HighResolution)

self.printer.setPageSize(QPrinter.Letter)

form = QPrintDialog(self.printer, self)

if form.exec_():

painter = QPainter(self.printer)

rect = painter.viewport()

size = self.image.size()

size.scale(rect.size(), Qt.KeepAspectRatio)

painter.setViewport(rect.x(), rect.y(), size.width(),

size.height())

painter.drawImage(0, 0, self.image)

If this is the first time the user has tried to print an image the printer instance
variable will be None, so we instantiate it and provide a sensible default for the
page size. (The default page size is QPrinter.A4.) Once we have a printer object,
we create and pop up a modal QPrintDialog; the user can use this to choose
the printer they want to print on and various other print-related options.
This dialog varies from system to system since PyQt uses the system’s native
print dialog if one is available. If the user clicks Print, we are able to print
the image.

PyQt has a notion of a “paint device”, something on which lines, text, shapes,
and images can be painted. As we have seen in earlier chapters, a widget is
a paint device—its appearance is drawn, with the illusions of depth achieved
by drawing shadows and highlights. A QImage is a paint device, and so is a
QPrinter. All paint devices can be drawn on using a QPainter, so we create a new
QPainter primed to paint on the QPrinter.

We get the rectangle that represents the painter’s viewport. The viewport is
the painter’s drawing area, and in the case of a painterView-

port and
window
coordi-
nates

329 ☞

that is tied to a printer,
this means the area of the page that can actually be drawn on. (Many printers
cannot draw right up to the edges of the paper.) We then obtain the image’s size
as a QSize object, and then scale that object to fit inside the printer’s viewport
rectangle while preserving the size’s aspect ratio. This has no effect if the
image is already small enough to fit. Next, we change the printer’s viewport

Printing Documents 401

rectangle to match our scaled rectangle, preserving its original origin, but with
the scaled width and height. Finally we draw the image at the painter’s origin
and we are done.

If the user wants a PDF file, they can invoke the “print” action and choose the
“print to file” option. On some platforms it is also possible to get PostScript
output by changing the “print to file” filename’s extension to .ps.

Printing Documents Using HTML and QTextDocument

The first approach we will show involves creating a string containing HTML,
and using a QTextDocument to render the HTML to a QPrinter. The printVia-

Html() method is quite long, so we will look at it in three parts.

def printViaHtml(self):

html = u""

for statement in self.statements:

date = QDate.currentDate().toString(DATE_FORMAT)

address = Qt.escape(statement.address).replace(",", "
")

contact = Qt.escape(statement.contact)

balance = statement.balance()

html += ("<p align=right></p>"

"<p align=right>Greasy Hands Ltd."

"
New Lombard Street"

"
London
WC13 4PX
%s</p>"

"<p>%s</p><p>Dear %s,</p>"

"<p>The balance of your account is %s.") % (

date, address, contact,

QString("$ %L1").arg(float(balance), 0, "f", 2))

if balance < 0:

html += (" <p>Please remit the "

"amount owing immediately.")

else:

html += (" We are delighted to have done business "

"with you.")

html += ("</p><p> </p><p>"

"<table border=1 cellpadding=2 "

"cellspacing=2><tr><td colspan=3>"

"Transactions</td></tr>")

We create an empty unicode variable called html. Then we iterate over all the
statements. The contact and address contain text, so we take the precaution
of escaping any HTML characters. The address is stored as a single line with
commas separating each part; we replace commas with line breaks. The logo is
in a resource file, as indicated by the :/ prefix; it could have been any file in the
filesystem, and it could be in any of the image formats that PyQt supports.

402 Chapter 13. Rich Text and Printing

Up to now we have formatted strings using Python’s % operator. But in some
cases, using PyQt’s string formatting is advantageous. The QString class has
an arg() method that can be given an object, usually a string or a number, with
some optional parameters. Each arg() call replaces the leftmost %n item in the
QString with suitable text. For example:

QString("Copied %1 bytes to %2").arg(5387).arg("log.txt")

results in the string:

Copied 5387 bytes to log.txt

The %n items have no formatting syntax like Python’s % operator,but formatting
can be achieved by passing additional arguments to the arg() method. It is also
possible to localize the formatting by using %Ln. For example:

QString("Copied %L1 bytes to %2").arg(5387).arg("log.txt")

results in the string:

Copied 5,387 bytes to log.txt

in the United States and the United Kingdom, with the number coming out as
5.387 in some other countries.

In the case of our example, we want to print the amounts using two decimal
digits, and with the whole number part having its digits grouped in threes.
This can be achieved by using arg() with four arguments—the amount as a
float, the minimum number of characters for the number to occupy, the output
format (“f” for normal floating-point numbers and “e” or “E” for scientific
notation) and the number of digits after the decimal place. It is also possible to
give a fifth argument,a padding character, if a minimum number of characters
is specified.

In the example we have used:

QString("$ %L1").arg(float(balance), 0, "f", 2))

A balance of 64 325.852 would be output as the string $ 64,325.85 in the
United States.

Returning to the code, we add some text that varies depending on whether the
customer is in debit or credit. Then we create the head of an HTML table with
three columns, with the first row spanning all the columns and containing the
title “Transactions”. The is an HTML entity that signifies a nonbreak-
ing space.

for date, amount in statement.transactions:

color, status = "black", "Credit"

if amount < 0:

color, status = "red", "Debit"

Printing Documents 403

html += ("<tr><td align=right>%s</td>"

"<td>%s</td><td align=right>"

"%s</td></tr>" % (

date.toString(DATE_FORMAT), status, color,

QString("$ %L1").arg(

float(abs(amount)), 0, "f", 2)))

html += ("</table></p><p style='page-break-after=always;'>"

"We hope to continue doing "

"business with you,
Yours sincerely,"

"

K. Longrey, Manager</p>")

We iterate over each transaction, adding a new row to the table for each one.
Then we add the closing table tag and add the final paragraph. Qt

4.2

We want a page
break to follow the last paragraph, and this can be achieved by setting the
page-break-after style option to always. This style option was added in Qt 4.2
and is ignored in earlier versions.

dialog = QPrintDialog(self.printer, self)

if dialog.exec_():

document = QTextDocument()

document.setHtml(html)

document.print_(self.printer)

At the end we simply pop up a print dialog, and if the user clicksPrint, we create
a new QTextDocument, set its text to the HTML we have generated in the html

string, and tell the document to print itself on the printer.

Creating an HTML string and printing it using a QTextDocument is probably
the quickest and easiest way to produce printed output in PyQt. The only
downside is that it can be tricky to exercise fine control, although we can use
style attributes and set a style sheet.

Printing Documents Using QTextCursor and
QTextDocument

We will now see how to achieve the same thing by creating a QTextDocument

programmatically, rather than by creating an HTML string and using set-

Html(). The code is more than twice as long (as is the code that uses QPainter

that follows), but we should not infer from this particular example that these
techniques will necessarily require more code in general.

def printViaQCursor(self):

dialog = QPrintDialog(self.printer, self)

if not dialog.exec_():

return

logo = QPixmap(":/logo.png")

headFormat = QTextBlockFormat()

headFormat.setAlignment(Qt.AlignLeft)

404 Chapter 13. Rich Text and Printing

headFormat.setTextIndent(

self.printer.pageRect().width() - logo.width() - 216)

bodyFormat = QTextBlockFormat()

bodyFormat.setAlignment(Qt.AlignJustify)

lastParaBodyFormat = QTextBlockFormat(bodyFormat)

lastParaBodyFormat.setPageBreakPolicy(

QTextFormat.PageBreak_AlwaysAfter)

rightBodyFormat = QTextBlockFormat()

rightBodyFormat.setAlignment(Qt.AlignRight)

headCharFormat = QTextCharFormat()

headCharFormat.setFont(QFont("Helvetica", 10))

bodyCharFormat = QTextCharFormat()

bodyCharFormat.setFont(QFont("Times", 11))

redBodyCharFormat = QTextCharFormat(bodyCharFormat)

redBodyCharFormat.setForeground(Qt.red)

tableFormat = QTextTableFormat()

tableFormat.setBorder(1)

tableFormat.setCellPadding(2)

We have chosen to create the document only if the user clicks Print in the Print
dialog, rather than creating it and only asking them at the end, as we did be-
fore. We create a set of text formats—some are QTextBlockFormats that have
attributes which are applicable to entire paragraphs,and others are QTextChar-

Formats with attributes that are applicable to fragments of paragraphs, such as
phrases,words,and individual characters. We use the paragraph formats to set
up text alignments, and the character formats to set up fonts and colors. The
value, 216, is just an offset in points, 216

72 ", that is, 3 inches, by which the logo and
address text will be indented.

The programmatic equivalent of setting the page-break-after style option in an
HTML <p> tag is to use the QTextBlockFormat.setPageBreakPolicy() method on a
paragraph format, Qt

4.2

but this is available only from Qt 4.2. In addition to the text
and table formats used in this example, there are also formats for lists, frames,
and images.

document = QTextDocument()

cursor = QTextCursor(document)

mainFrame = cursor.currentFrame()

page = 1

Once we have the formats ready, we create a QTextDocument. Then we create a
QTextCursor for the document that gives us the programmatic equivalent of the
user’s insertion point in a QTextEdit.

Earlier we mentioned that QTextDocuments consist of a series of blocks; in fact,
they consist of a root frame that itself contains a series of items which can be
blocks (e.g., text blocks and table blocks), or frames, in a potentially recursive
structure. In our case, we have a document with a single root frame that

Printing Documents 405

contains a series of text blocks and tables. Each cell in our tables holds a text
block, and when we have finished inserting the cells in a table we need to go
back up the document’s hierarchy to the point that follows the table (but is not
inside the table) so that we can insert the text that follows each table. For this
reason we keep a reference to the currentFrame(), the one frame we are using,
in the mainFrame variable.

for statement in self.statements:

cursor.insertBlock(headFormat, headCharFormat)

cursor.insertImage(":/logo.png")

for text in ("Greasy Hands Ltd.", "New Lombard Street",

"London", "WC13 4PX",

QDate.currentDate().toString(DATE_FORMAT)):

cursor.insertBlock(headFormat, headCharFormat)

cursor.insertText(text)

for line in statement.address.split(", "):

cursor.insertBlock(bodyFormat, bodyCharFormat)

cursor.insertText(line)

cursor.insertBlock(bodyFormat)

cursor.insertBlock(bodyFormat, bodyCharFormat)

cursor.insertText("Dear %s," % statement.contact)

cursor.insertBlock(bodyFormat)

cursor.insertBlock(bodyFormat, bodyCharFormat)

balance = statement.balance()

cursor.insertText(QString(

"The balance of your account is $ %L1.").arg(

float(balance), 0, "f", 2))

if balance < 0:

cursor.insertBlock(bodyFormat, redBodyCharFormat)

cursor.insertText("Please remit the amount owing "

"immediately.")

else:

cursor.insertBlock(bodyFormat, bodyCharFormat)

cursor.insertText("We are delighted to have done "

"business with you.")

cursor.insertBlock(bodyFormat, bodyCharFormat)

cursor.insertText("Transactions:")

table = cursor.insertTable(len(statement.transactions), 3,

tableFormat)

Once the document is set up and we have a QTextCursor through which we
can insert items into the document, we are ready to iterate over each of the
statements.

For each paragraph we want to insert, we insert a new block with a paragraph
and a character format. We then insert the text or image we want the para-
graph to contain. We can insert empty paragraphs (to consume vertical space)
by inserting a block without inserting anything into it.

406 Chapter 13. Rich Text and Printing

To insert a table we must specify how many rows and columns it should have,
as well as its format.

row = 0

for date, amount in statement.transactions:

cellCursor = table.cellAt(row, 0).firstCursorPosition()

cellCursor.setBlockFormat(rightBodyFormat)

cellCursor.insertText(date.toString(DATE_FORMAT),

bodyCharFormat)

cellCursor = table.cellAt(row, 1).firstCursorPosition()

if amount > 0:

cellCursor.insertText("Credit", bodyCharFormat)

else:

cellCursor.insertText("Debit", bodyCharFormat)

cellCursor = table.cellAt(row, 2).firstCursorPosition()

cellCursor.setBlockFormat(rightBodyFormat)

format = bodyCharFormat

if amount < 0:

format = redBodyCharFormat

cellCursor.insertText(QString("$ %L1").arg(

float(amount), 0, "f", 2), format)

row += 1

Each row of the table represents a single transaction, with a date, some text
(“Debit” or “Credit”),and the amount, colored red in the case of debits.To insert
items into a table we must obtain a QTextCursor that gives access to a cell at
a specified row and column. We do not have to insert a new block into a cell
(unless we want more than one paragraph in a cell), so we simply set the cell’s
paragraph format and insert the text we want.

cursor.setPosition(mainFrame.lastPosition())

cursor.insertBlock(bodyFormat, bodyCharFormat)

cursor.insertText("We hope to continue doing business "

"with you,")

cursor.insertBlock(bodyFormat, bodyCharFormat)

cursor.insertText("Yours sincerely")

cursor.insertBlock(bodyFormat)

if page == len(self.statements):

cursor.insertBlock(bodyFormat, bodyCharFormat)

else:

cursor.insertBlock(lastParaBodyFormat, bodyCharFormat)

cursor.insertText("K. Longrey, Manager")

page += 1

Once we have finished populating a table and want to add items after it, we
must reset the position of our text cursor to be just after the table. If we do not
do this, the cursor will simply insert inside the table and we will end up with
the rest of the first page inside the table, and the second page inside the first,

Printing Documents 407

and so on recursively! To avoid this problem we set the text cursor to be at the
last position in the document, which is the position following the last thing we
inserted, that is, just after the table.

Finishing the page is simply a matter of inserting additional blocks with the
appropriate formats, followed by inserting the relevant texts. Qt

4.2

For all pages
except the last, we set the last block’s format to be lastParaBodyFormat, which
(using Qt 4.2) will ensure that what follows will be on a fresh page.

document.print_(self.printer)

The very last statement is where we print the document on the printer. At this
point the document is complete, so we could call toHtml() on it to get it in HTML
format if that was preferred. It also means that we can use a QTextCursor in
conjunction with a QTextDocument to create HTML pages programmatically if
we wanted.

The advantage of using QTextDocument, whether we give it an HTML string or
whether we populate it using a QTextCursor, is that we can avoid doing lots of
calculations to see where text should be placed on the page. The disadvantage
is that PyQt puts page numbers on our documents whether we like them or not,
and it does not give us fine positional control. Neither of these problems occurs
if we use a QPainter.

Printing Documents Using QPainter

We will conclude this section by looking at how to print using QPainter. Tak-
ing this approach means that we have the chore of doing all the position
calculations ourselves, but also the benefit of being able to draw anything
anywhere on the page, without being limited to what can be represented by
HTML or by a QTextDocument. In addition, the painting itself uses the same
methods and techniques that we have seen in the previous two chapters, since
PyQt has a uniform approach to painting whether on widgets, on images, or on
printed pages.

def printViaQPainter(self):

dialog = QPrintDialog(self.printer, self)

if not dialog.exec_():

return

LeftMargin = 72

sansFont = QFont("Helvetica", 10)

sansLineHeight = QFontMetrics(sansFont).height()

serifFont = QFont("Times", 11)

fm = QFontMetrics(serifFont)

DateWidth = fm.width(" September 99, 2999 ")

CreditWidth = fm.width(" Credit ")

AmountWidth = fm.width(" W999999.99 ")

serifLineHeight = fm.height()

408 Chapter 13. Rich Text and Printing

logo = QPixmap(":/logo.png")

painter = QPainter(self.printer)

pageRect = self.printer.pageRect()

page = 1

We begin by presenting the user with the Print dialog, bailing out if they
click Cancel. If the print is to go ahead, we set up some fonts, widths, and line
heights, and create a QPainter to draw directly on the printer. If the specified
fonts are not available, PyQt will use the most closely matching fonts it can
find instead.

for statement in self.statements:

painter.save()

y = 0

x = pageRect.width() - logo.width() - LeftMargin

painter.drawPixmap(x, 0, logo)

y += logo.height() + sansLineHeight

painter.setFont(sansFont)

painter.drawText(x, y, "Greasy Hands Ltd.")

y += sansLineHeight

painter.drawText(x, y, "New Lombard Street")

y += sansLineHeight

painter.drawText(x, y, "London")

y += sansLineHeight

painter.drawText(x, y, "WC13 4PX")

y += sansLineHeight

painter.drawText(x, y,

QDate.currentDate().toString(DATE_FORMAT))

y += sansLineHeight

painter.setFont(serifFont)

x = LeftMargin

for line in statement.address.split(", "):

painter.drawText(x, y, line)

y += serifLineHeight

y += serifLineHeight

For each statement we print the logo, address, date, and customer’s address.
We save the painter’s state, including its font, pen, brush, and transformation
matrix, at the beginning of each statement, and restore the state at the end
of each statement. This ensures that we always start each statement with a
clean slate.

painter.drawText(x, y, "Dear %s," % statement.contact)

y += serifLineHeight

balance = statement.balance()

painter.drawText(x, y, QString("The balance of your "

"account is $ %L1").arg(float(balance), 0, "f", 2))

y += serifLineHeight

Printing Documents 409

if balance < 0:

painter.setPen(Qt.red)

text = "Please remit the amount owing immediately."

else:

text = ("We are delighted to have done business "

"with you.")

painter.drawText(x, y, text)

After the addresses we print the form letter with its text depending on the state
of the account as usual.

painter.setPen(Qt.black)

y += int(serifLineHeight * 1.5)

painter.drawText(x, y, "Transactions:")

y += serifLineHeight

option = QTextOption(Qt.AlignRight|Qt.AlignVCenter)

For the table of transactions we begin by writing the table’s title and then we
create a QTextOption object. These objects can be used to specify a variety of
text-formatting options, including alignment and word wrapping.

for date, amount in statement.transactions:

x = LeftMargin

h = int(fm.height() * 1.3)

painter.drawRect(x, y, DateWidth, h)

painter.drawText(

QRectF(x + 3, y + 3, DateWidth - 6, h - 6),

date.toString(DATE_FORMAT), option)

x += DateWidth

painter.drawRect(x, y, CreditWidth, h)

text = "Credit"

if amount < 0:

text = "Debit"

painter.drawText(

QRectF(x + 3, y + 3, CreditWidth - 6, h - 6),

text, option)

x += CreditWidth

painter.drawRect(x, y, AmountWidth, h)

if amount < 0:

painter.setPen(Qt.red)

painter.drawText(

QRectF(x + 3, y + 3, AmountWidth - 6, h - 6),

QString("$ %L1").arg(float(amount), 0, "f", 2),

option)

painter.setPen(Qt.black)

y += h

410 Chapter 13. Rich Text and Printing

To draw the transactions table we must draw both the text and the lines
ourselves. We have cheated slightly by drawing a rectangle for each of the
table’s cells rather than just drawing the lines that separate the cells. This
means that rectangles that share common lines—for example, the right edge
of one rectangle and the left edge of the rectangle beside it—will overstrike one
another—but visually this is not noticeable.

y += serifLineHeight

x = LeftMargin

painter.drawText(x, y, "We hope to continue doing "

"business with you,")

y += serifLineHeight

painter.drawText(x, y, "Yours sincerely")

y += serifLineHeight * 3

painter.drawText(x, y, "K. Longrey, Manager")

The final paragraph is the same as the one in the previous two methods, but
this time we will add a disclaimer at the bottom of the page.

x = LeftMargin

y = pageRect.height() - 72

painter.drawLine(x, y, pageRect.width() - LeftMargin, y)

y += 2

font = QFont("Helvetica", 9)

font.setItalic(True)

painter.setFont(font)

option = QTextOption(Qt.AlignCenter)

option.setWrapMode(QTextOption.WordWrap)

painter.drawText(

QRectF(x, y,

pageRect.width() - 2 * LeftMargin, 31),

"The contents of this letter are for information "

"only and do not form part of any contract.",

option)

It is much easier adding footers when using a QPainter because we know
exactly what the page’s dimensions are and can paint at any (x, y) position
we like.

page += 1

if page <= len(self.statements):

self.printer.newPage()

painter.restore()

Finally, we switch to a new page after every statement except the last one. This
works with all Qt 4 versions, unlike the previous two approaches which can
paginate properly only with Qt 4.2 or later.

Printing Documents 411

Although printing using a QPainter requires more care and calculation than
using a QTextDocument, it does give us complete control over the output.

Summary

Using QSyntaxHighlighter to provide syntax highlighting for plain text that
has a regular syntax, such as source code, is quite straightforward. Handling
multiline constructs can also be done quite easily. The hardest part is handling
ambiguous and some special cases, such as quotes inside quoted strings or
start-of-comment symbols that are inside quotes or other constructs that cancel
their syntactic meaning. An alternative is to use the QScintilla editor.

The QTextEdit class is very powerful and versatile. Out of the box it can be
used to edit both plain text and HTML. It is not difficult to create QTextEdit

subclasses that provide key and context menu event handlers to give the user
basic formatting options, and the techniques can easily be extended to provide
menus and toolbars through which users could add, edit, and delete lists,
tables, and images, and could apply formatting whether at the character level,
such as underlining and strikeout, or at the paragraph level, such as aligning
left, right, centered, or justified.

The HTML returned by QTextEdit.toHtml() is rather verbose because it must
support a wide range of HTML tags. We can provide our own methods to tra-
verse a QTextDocument’s structure and output our own format. In the example
we output a much simpler and shorter HTML, but the same approach could be
used to output XML or other kinds of markup.

Applying most simple formatting to the underlying QTextDocument used by
QTextEdit, QTextBrowser, QLabel, and QGraphicsTextItem is quite straightforward.
Applying more advanced formatting, such as tables can be trickier because we
must be careful not to keep nesting blocks inside each other.

Printed documents can be produced indirectly by outputting HTML or SVG,
or directly by using a QPrinter to print on a physical printer, or from Qt 4.1 to
output PDF files. Printed documents can be produced by creating an HTML
string and giving it to a QTextDocument, or by programmatically inserting items
into a blank QTextDocument. In both cases, the QTextDocument can be asked to
print itself on a printer, or to draw itself on a QPainter.

Using HTML is the easiest approach for those familiar with HTML tags, and
a fair amount of control can be achieved by using style attributes and a style
sheet. Using a QTextCursor to insert into a QTextDocument makes finer control
quite easy to achieve, especially for those unfamiliar with style sheets. The
greatest control over page appearance is achieved by using a QPainter directly.
This is also the easiest approach for those who are comfortable using the
QPainter API, or who want to reuse the same code for painting and for printing.
Such code reuse can also be achieved using a QTextDocument, since they can be
rendered in QLabels and other widgets that use QTextDocuments. They can also

412 Chapter 13. Rich Text and Printing

be drawn onto arbitrary paint devices, such as widgets, using a QPainter, and
they can be printed.

Exercise
Add two new actions, Indent and Unindent, with the shortcuts Ctrl+] and Ctrl+[.
Suitable icons are provided in the images subdirectory, and are already in the
resources.qrc file. Both actions should be added to theEditmenu and to the edit
toolbar. Implement the methods editIndent() and editUnindent(). They should
indent or unindent the current line by inserting or removing four spaces at the
beginning of the line, no matter where the insertion point is in the line. At the
end, the insertion point should be at the same relative position as it was before
the indent or unindent. The actions should be instance variables and should
be enabled only if the document is not empty.

Make sure that you use QTextCursor.beginEditBlock() and QTextCursor.endEdit-

Block() so that the indent or unindent can be undone as a single action—QText-

Edit supports Ctrl+Z for undo. The two methods can be written in a total of
about 20 lines.

If you want to achieve something more ambitious, try extending the two
methods so that if there is a selection, the indent or unindent is applied to all
the lines in the selection. This will add about another 40 lines, and it is slightly
tricky. Make sure that at the end the original selection is in place.

You will need to read the documentation for QTextCursor and, especially, the
anchor(), position(), setPosition(), and movePosition() methods.

A solution is provided in chap13/pythoneditor_ans.pyw.

Model/View Programming

1414 ● Using the Convenience Item Widgets

● Creating Custom Models

● Creating Custom Delegates

Model/view programming is a technique that involves separating data from
its visual representation. It was first popularized as the MVC (model/view/
controller) paradigm used in the Smalltalk programming language.

A model is a class that provides a uniform interface through which data items
can be accessed. A view is a class that can present the data items from a model
to the user on-screen. A controller is a class that mediates between the user
interface (e.g., mouse events and key presses) to provide a means by which
users can manipulate data items.

View
Controller
or Delegate

Model Dataset

Figure 14.1 Model/view/controller and model/view/delegate

The MVC approach offers several benefits. For example, huge datasets can be
handled, because only the data that is actually displayed or edited is read or
written from or to the data source. Different views of the same dataset access
the same underlying data with no data duplication: This is useful for viewing
the same data in different ways using two or more views, or for viewing differ-
ent parts of a large dataset.Also, if we change how the dataset is stored, for ex-
ample, from a binary file to a database, only the model needs to be adapted—all
the logic in the view and the controller will continue to work because the model
fully insulates them from the data.

PyQt uses a slight variation on MVC, called model/view/delegate, that provides
all the same benefits as MVC. Both are depicted schematically in Figure 14.1.
The key difference is that some of the functionality that classic MVC reserves

413

414 Chapter 14. Model/View Programming

for the controller can be implemented either in the delegate or in the model
with the model/view/delegate approach.

Conceptually, the model/view/delegate approach works like this: The data is
read and written from and to the data source by the model. The view asks the
model for the data items that the view wants to display, that is, those items that
are visible in the user interface. For each item that the view displays, it gives
the item and a painter to the delegate, and asks the delegate to paint the item.
Similarly, if the user initiates editing, the view asks the delegate to provide a
suitable editor, and if the user accepts their edit (i.e., if the user does not press
Esc to cancel), the updated data is passed back to the model. An editor can
be any widget, and it is drawn in-place exactly on top of the item, giving the
application’s user the illusion that the item has become editable.

Every data item in the model (and therefore implicitly every item of data in
the dataset), can be identified by a unique QModelIndex. Each model index has
three important attributes: a row, a column, and a parent.

1. For one-dimensional models (e.g., lists) only the row is used.

2. For two-dimensional models (e.g., tables, including database tables) only
the row and column are used.

3. For hierarchical models (e.g., trees) all three attributes are used.

Although QModelIndexes can refer to any data item in any model, we need to
bear in mind that conceptually there are really two kinds of model. The first
kind are tables, which include lists since these are just tables with a single
column. When we work with tables we work in terms of rows and columns.
The second kind are trees. For trees we work in terms of parents and children.
(It is possible to take a rows-and-columns approach with trees, but this goes
against the grain and will lead to code that is slow and difficult to maintain.)

No matter what the underlying dataset, whether the data is in memory,
databases, or files, PyQt models provide the same uniform interface for
data access—in particular, the QAbstractItemModel.data() and QAbstractItem-

Model.setData() methods. It is also possible to create custom models that con-
tain the dataset inside themselves, such as a model that is a wrapper around
a dictionary or a list.

All data held in a model is stored as QVariants. This does not mean that all the
dataset’s data must be QVariants—the model is an interface to a dataset and in
any given session may only ever access a small portion of the entire dataset,
so only those data items that are actually used will be stored as QVariants, and
then only in the model. The model is responsible for converting from the under-
lying dataset’s data types to and from the QVariants the model uses internally.

Some PyQt widgets, including QListWidget, QTableWidget, and QTreeWidget,
are views with models and delegates aggregated inside them. These are the
convenience item view widgets and they are especially useful for small and ad
hoc datasets. We will see them in use in this chapter’s first section.

Using the Convenience Item Widgets 415

PyQt also provides some pure view widgets, including QListView, QTableView,
and QTreeView. These must be used in conjunction with external models, either
ones we create ourselves or one of the built-in models such as QStringListModel,
QDirModel, or QSqlTableModel. In the second section, we will see how to create a
custom model that can be used with a view widget.

All the convenience views and pure views use a default delegate that controls
how data items are presented and edited. In this chapter’s last section, we
will see how to create a custom delegate to exercise complete control over the
editing and presentation of data items. Custom delegates can be used with
any view, whether it is a convenience view or a pure view.

This chapter provides a foundation in using PyQt’s model/view classes. In
Chapter 15, we will see how to use the model/view classes to work with databas-
es, and in Chapter 16, we will cover more advanced uses, including the creation
of custom views, improving code reuse in delegates, and presenting tabular
data in trees.

We use the same dataset for all the examples in this chapter to make it easier to
compare and contrast the techniques used. The dataset’s items are described
in the first section.

Using the Convenience Item Widgets

The convenience item widgets are view widgets that have built-in models.
They use a default delegate for presenting and editing data, but this can be
replaced by a custom delegate if we wish.

The screenshot in Figure 14.2 shows the same dataset in three different
convenience view widgets. This means that the data is copied into each widget
separately, so there is considerable data duplication. Another issue is that if
we allow the user to edit the data, we must write code to ensure that all the
views stay in sync. These problems would not exist if we used a custom model,
as we will see in the next section.

Figure 14.2 QListWidget,QTableWidget,and QTreeWidget in action

416 Chapter 14. Model/View Programming

The dataset we are using is a set of information about container ships. Each
ship is represented by a Ship object, defined in the chap14/ships.py module.

class Ship(object):

def __init__(self, name, owner, country, teu=0, description=""):

self.name = QString(name)

self.owner = QString(owner)

self.country = QString(country)

self.teu = teu

self.description = QString(description)

def __cmp__(self, other):

return QString.localeAwareCompare(self.name.toLower(),

other.name.toLower())

The preceding code is the complete Ship class. The integer teu attribute stands
for “twenty-foot equivalent units”, that is, how many 20-foot containers the
ship can hold. (Nowadays most containers are 40 feet, so each counts as 2
TEUs.) The name, owner, and country attributes are all plain text, but the
description attribute holds one line of HTML.

The __cmp__() special method provides a means of comparison for the purpose
of sorting. The QString.localeAwareCompare() method does string comparisons
in a locale-sensitive way—for example, correctly handling accented char-
acters.

Since we are using convenience views with no custom delegates, we have only
limited control over the editing of the data items. For example, we cannot offer
drop-down comboboxes for editing owners and countries, or use spinboxes for
editing TEUs. Also, the description text is shown raw, rather than being inter-
preted as HTML. We will, of course, solve all of these problems as the chapter
progresses, but for now we will just focus on using the convenience views.

For the list, table, and tree items that are used with the convenience view wid-
gets, it is possible to set their font, text alignment, text color, and background
color, and to give them an icon or make them checkable. For the pure view wid-
gets, we can exercise similar control over the appearance of items through the
custom model; or exercise complete control over both the appearance and the
editing of items by using a custom delegate.

The code for this section’s example is in chap14/ships-dict.pyw. The data is held
in a Python dictionary that itself is wrapped in the ships.ShipContainer class.
We will discuss only the code that is relevant to model/view programming
here—the rest of the code uses ideas and idioms that we already saw earlier in
the book—for example, in Chapter 8—and is not hard to follow.

class MainForm(QDialog):

def __init__(self, parent=None):

Using the Convenience Item Widgets 417

super(MainForm, self).__init__(parent)

listLabel = QLabel("&List")

self.listWidget = QListWidget()

listLabel.setBuddy(self.listWidget)

tableLabel = QLabel("&Table")

self.tableWidget = QTableWidget()

tableLabel.setBuddy(self.tableWidget)

treeLabel = QLabel("Tre&e")

self.treeWidget = QTreeWidget()

treeLabel.setBuddy(self.treeWidget)

For each convenience view we create a label and set up a buddy to make key-
board navigation easier.The layout code is similar to what we have seen before,
so we have omitted it and will concern ourselves only with the connections and
with creating the data structure.

self.connect(self.tableWidget,

SIGNAL("itemChanged(QTableWidgetItem*)"),

self.tableItemChanged)

self.connect(addShipButton, SIGNAL("clicked()"), self.addShip)

self.connect(removeShipButton, SIGNAL("clicked()"),

self.removeShip)

self.connect(quitButton, SIGNAL("clicked()"), self.accept)

self.ships = ships.ShipContainer(QString("ships.dat"))

self.setWindowTitle("Ships (dict)")

By default, list widgets are not editable, so all users can do is select an item.
This is also true of tree widgets. But table widgets are editable by default,with
users able to initiate editing by pressing F2 or by double-clicking a cell. We can
exercise full control over whether a view widget is editable using QAbstract-

ItemView.setEditTriggers(); so, for example, we can make tables read-only or
lists editable.

This application allows users to edit ship data in the table, and to add and
remove ships. It also keeps all three views up-to-date by repopulating them
after the data is loaded, and whenever a change occurs.

def populateList(self, selectedShip=None):

selected = None

self.listWidget.clear()

for ship in self.ships.inOrder():

item = QListWidgetItem(QString("%1 of %2/%3 (%L4)") \

.arg(ship.name).arg(ship.owner).arg(ship.country) \

.arg(ship.teu))

self.listWidget.addItem(item)

if selectedShip is not None and selectedShip == id(ship):

418 Chapter 14. Model/View Programming

selected = item

if selected is not None:

selected.setSelected(True)

self.listWidget.setCurrentItem(selected)

This method, like the other populating methods, is used both to populate the
widget and to select the item that corresponds to the selectedShip—a Ship’s
id()—if one is passed in.

We begin by clearing the widget. Then we iterate over every ship in the ships
container. The inOrder() method is provided by our custom ShipContainer class.
For each ship we create a single list widgetQString

.arg()

402 ☞

item that holds a single string. We
use QString.arg() so that we can use %L to show the TEUs with the appropriate
digit separators (e.g., commas).

If we reach a list widget item that is showing the selected ship, we keep a
reference to the item in selected, and after the list widget has been populated,
we make the selected item both current and selected.

def populateTable(self, selectedShip=None):

selected = None

self.tableWidget.clear()

self.tableWidget.setSortingEnabled(False)

self.tableWidget.setRowCount(len(self.ships))

headers = ["Name", "Owner", "Country", "Description", "TEU"]

self.tableWidget.setColumnCount(len(headers))

self.tableWidget.setHorizontalHeaderLabels(headers)

The populate table method is quite similar to the populate list method. We
begin by clearing the table—this clears both the cells and the vertical and
horizontal headers (the row numbers and column titles). We then set the
number of rows and columns, as well as the column titles.

We want users to be able to click a column to have the table sort by that
column’s contents. This functionality is built into QTableWidget, but it must be
switched off before populating the table.★ We will switch sorting back on once
the table is populated.

for row, ship in enumerate(self.ships):

item = QTableWidgetItem(ship.name)

item.setData(Qt.UserRole, QVariant(long(id(ship))))

if selectedShip is not None and selectedShip == id(ship):

selected = item

self.tableWidget.setItem(row, ships.NAME, item)

self.tableWidget.setItem(row, ships.OWNER,

QTableWidgetItem(ship.owner))

★In Qt 4.0 and 4.1, forgetting to switch off sorting before repopulating a table is harmless, but from
Qt 4.2 it must be done.

Using the Convenience Item Widgets 419

self.tableWidget.setItem(row, ships.COUNTRY,

QTableWidgetItem(ship.country))

self.tableWidget.setItem(row, ships.DESCRIPTION,

QTableWidgetItem(ship.description))

item = QTableWidgetItem(QString("%L1") \

.arg(ship.teu, 8, 10, QChar(" ")))

item.setTextAlignment(Qt.AlignRight|Qt.AlignVCenter)

self.tableWidget.setItem(row, ships.TEU, item)

self.tableWidget.setSortingEnabled(True)

self.tableWidget.resizeColumnsToContents()

if selected is not None:

selected.setSelected(True)

self.tableWidget.setCurrentItem(selected)

For each ship we must create a separate table item for each cell in the row that
is used to show its data. The column indexes, NAME, OWNER, and so on, are integers
from the ships module.

In the first item of each row we set the text (the ship’s name) and, as user data,
the ship’s ID. Storing the ID gives us a means of going from a table item to the
ship that the item’s row represents. This works because the ShipContainer is a
dictionary whose keys are ship IDs and whose values are ships.

For simple text items we can usually create the item and insert it into the table
in a single statement:We have done this for the owner, country, and description
attributes. But if we want to format the item or store user data in it, we must
create the item separately, then call its methods, and finally put it in the table
with setItem(). We used this second approach to store the ships’ IDs as user
data, and to right-align the TEU values.

The TEU values are integers, and the QString.arg() method used takes four
arguments:an integer, a minimum field width, a number base, and a character
to pad with, should padding be necessary to reach the minimum field width.

Once the table is populated we switch sorting back on, resize each column
to the width of its widest cell, and make the selected item (if any) current
and selected.

Populating lists and tables is very similar because they both use a rows-and-
columns approach. Populating trees is quite different because we must use
a parents-and-children approach. The tree view of the ships data has two
columns. The first column is the tree with the root items being countries, the
next level items being owners,and the bottom-level items being the ships them-
selves. The second column shows just the TEUs. We could have added a third
column to show the descriptions, but doing so does not make any difference in
terms of understanding how the tree widget works.

def populateTree(self, selectedShip=None):

selected = None

self.treeWidget.clear()

420 Chapter 14. Model/View Programming

self.treeWidget.setColumnCount(2)

self.treeWidget.setHeaderLabels(["Country/Owner/Name", "TEU"])

self.treeWidget.setItemsExpandable(True)

parentFromCountry = {}

parentFromCountryOwner = {}

We start off in a similar way to before, clearing the tree and setting up its
columns and column titles. We also set the tree’s items to be expandable. We
will explain the two dictionaries in a moment.

for ship in self.ships.inCountryOwnerOrder():

ancestor = parentFromCountry.get(ship.country)

if ancestor is None:

ancestor = QTreeWidgetItem(self.treeWidget,

[ship.country])

parentFromCountry[ship.country] = ancestor

countryowner = ship.country + "/" + ship.owner

parent = parentFromCountryOwner.get(countryowner)

if parent is None:

parent = QTreeWidgetItem(ancestor, [ship.owner])

parentFromCountryOwner[countryowner] = parent

item = QTreeWidgetItem(parent, [ship.name,

QString("%L1").arg(ship.teu)])

item.setTextAlignment(1, Qt.AlignRight|Qt.AlignVCenter)

if selectedShip is not None and selectedShip == id(ship):

selected = item

self.treeWidget.expandItem(parent)

self.treeWidget.expandItem(ancestor)

Each ship must have an owner parent in the tree, and each owner must have
a country parent in the tree.

For each ship we check to see whether there is an item in the tree for the ship’s
country. We do this by looking in the parentFromCountry dictionary. If there is
not, we create a new country item with the tree widget as its parent, and keep
a reference to the item in the dictionary. At this point, we have either retrieved
or created the country (ancestor) item.

Then we check to see whether there is an item for the ship’s owner in the tree.
We look in the parentFromCountryOwner dictionary for this. Again, if there is not,
we create a new owner item, with a parent of the country (ancestor) item we
just found or created, and keep a reference to the owner item in the dictionary.
At this point, we have either retrieved or created the owner (parent) item. Now
we create a new item for the ship with the owner as its parent.

We have a parentFromCountryOwner rather than a parentFromOwner dictionary
because a particular owner may operate in more than one country.

Using the Convenience Item Widgets 421

Tree widget items can have multiple columns, which is why we pass them a
list in addition to their parent when we create them. We use the additional
columns for ships, just one extra column in fact, to store the ships’ TEUs. We
right align the TEU number by calling QTreeWidgetItem.setTextAlignment()

passing the column number as its first argument.

When adding items to convenience view widgets,we can either create the items
with no parent and then add them, for example, using QTableWidget.setItem(),
or we can create them with a parent, in which case PyQt will add them for us.
We have chosen this second approach for populating the tree.

We have opted to expand every item so that the tree is fully expanded from
the start. This is fine for relatively small trees, but not recommended for
large ones.

self.treeWidget.resizeColumnToContents(0)

self.treeWidget.resizeColumnToContents(1)

if selected is not None:

selected.setSelected(True)

self.treeWidget.setCurrentItem(selected)

We finish by resizing the two columns and making the selected item (if any)
current and selected.

We have left the list and tree views in their default read-only state. This means
that the data can be changed only if the user edits items in the table, or if they
add or remove ships; so in these cases, we must make sure that we keep the
views in sync. In the case of editing, the tableItemChanged() method is called
whenever an edit is completed. Users complete an edit by changing focus, for
example, clicking outside the item or by pressing Tab, or by pressing Enter; they
cancel an edit by pressing Esc.

def tableItemChanged(self, item):

ship = self.currentTableShip()

if ship is None:

return

column = self.tableWidget.currentColumn()

if column == ships.NAME:

ship.name = item.text().trimmed()

elif column == ships.OWNER:

ship.owner = item.text().trimmed()

elif column == ships.COUNTRY:

ship.country = item.text().trimmed()

elif column == ships.DESCRIPTION:

ship.description = item.text().trimmed()

elif column == ships.TEU:

ship.teu = item.text().toInt()[0]

self.ships.dirty = True

self.populateList()

422 Chapter 14. Model/View Programming

self.populateTree()

If the user edits an item in the table, we retrieve the corresponding ship and
update the appropriate attribute. We use QString.trimmed() to get rid of any
leading and trailing whitespace.★ We don’t have to do anything to the table
itself since the edit has already updated it, so we simply repopulate the list and
the tree. Repopulating like this is fine for small datasets (up to hundreds of
items),but for larger datasets it can be noticably slow. The solution is to update
only those items that have been changed and that are visible in the widget.
This is done automatically if we use a custom model with a view widget, as we
will see in the next section.

def currentTableShip(self):

item = self.tableWidget.item(self.tableWidget.currentRow(), 0)

if item is None:

return None

return self.ships.ship(item.data(Qt.UserRole).toLongLong()[0])

The QTableWidget.item() method returns the table item for the given row and
column. We always want the item for the current row and the first column
since it is in these items that we store each row’s corresponding ship ID.

We then use the ShipContainer.ship() method to retrieve the ship with the
given ID. This is fast because the ships are held in a dictionary whose keys are
their IDs.

def addShip(self):

ship = ships.Ship(" Unknown", " Unknown", " Unknown")

self.ships.addShip(ship)

self.populateList()

self.populateTree()

self.populateTable(id(ship))

self.tableWidget.setFocus()

self.tableWidget.editItem(self.tableWidget.currentItem())

Adding a new ship is comparatively easy, in part because we don’t do any val-
idation. We simply create a new ship with “unknown” values (the leading
spaces are to make the values stand out), and add the ship to the ships dictio-
nary. Then we repopulate the list, tree, and table, all of which will retrieve all
the ships, including the one we have just created. We pass the new ship’s ID to
the populate table method to make sure that its first column is the current and
selected table item, and give it the keyboard focus. The editItem() call is the
programmatic equivalent of the user pressing F2 or double-clicking to initiate
editing,and it results in the first field, the ship’s name,being editable. The user
can edit the remaining fields just by pressing Tab, since the editing state will be
preserved until they leave the row or press Enter (or cancel by pressing Esc).

★ The QString.simplified() method is also very handy. It removes whitespace from the ends and
reduces each internal sequence of one or more whitespace characters to a single space.

Using the Convenience Item Widgets 423

def removeShip(self):

ship = self.currentTableShip()

if ship is None:

return

if QMessageBox.question(self, "Ships - Remove",

QString("Remove %1 of %2/%3?").arg(ship.name) \

.arg(ship.owner).arg(ship.country),

QMessageBox.Yes|QMessageBox.No) == QMessageBox.No:

return

self.ships.removeShip(ship)

self.populateList()

self.populateTree()

self.populateTable()

Removing ships is even easier than adding them. We retrieve the current ship
and then pop up a message box asking the user if they are sure they want to
remove the ship. If they click Yes, we remove the ship from the ShipContainer

and repopulate the view widgets.

Although using three different views as we have done here is unconventional,
the techniques we have used, particularly with the QTableWidget are perfectly
general.

The convenience widgets are very useful for small and ad hoc datasets, and can
be used without necessarily having a separate dataset—showing, editing, and
storing the data themselves. We chose to separate out the data in this example
to prepare the ground for using the model/view techniques and in particular,
custom models, the subject of the next section.

Creating Custom Models

In this section, we will create a custom model to hold the ship data, and display
the same model in two different table views. An application that makes use of
the model is shown in Figure 14.3.The user can scroll the tables independently,
and can edit the data in either of them, safe in the knowledge that any changes
will be automatically reflected in both views.

We will begin by showing extracts from the application’s main form. This will
show us some of the model/view API in use. Then we will look at the implemen-
tation of the model itself. One important benefit of PyQt’s model/view archi-
tecture is that the same coding patterns are used again and again, so once we
know how to create one table model, we know how to create any table (or list)
model.

The model is provided by class ShipTableModel in chap14/ships.py and the appli-
cation is in chap14/ships-model.pyw. We have improved the appearance of the
data in the view by setting background and foreground colors, but these could
have been done in the convenience views by calling the appropriate methods on

424 Chapter 14. Model/View Programming

Figure 14.3 A custom table model in two QTableViews

the table items. The problems that existed in the previous example, in partic-
ular, no comboboxes for owners or countries, no spinbox for TEUs, and showing
the HTML description text raw, remain. These can be solved only by using a
delegate, something we will do in the next section.

Implementing the View Logic

Superficially, it would appear that there is no difference between what we can
achieve using a convenience view with its built-in model, and a pure view with
a separate model. In the preceding example,we had three views presenting the
same underlying data, and it was our responsibility to keep them in sync. In
this example, we will use two views on the same data,and can leave the work of
synchronization to PyQt since both views use the same model. Another benefit
is that the views only retrieve or store data that is actually seen or edited, and
this can give considerable performance benefits when using large datasets.

We will begin with some extracts from the form’s initializer.

class MainForm(QDialog):

def __init__(self, parent=None):

super(MainForm, self).__init__(parent)

self.model = ships.ShipTableModel(QString("ships.dat"))

tableLabel1 = QLabel("Table &1")

self.tableView1 = QTableView()

tableLabel1.setBuddy(self.tableView1)

self.tableView1.setModel(self.model)

tableLabel2 = QLabel("Table &2")

self.tableView2 = QTableView()

tableLabel2.setBuddy(self.tableView2)

self.tableView2.setModel(self.model)

Creating Custom Models 425

First we create a new model. Then we create two table views and accompany-
ing labels to ease navigation. Each table view is given the same model to work
on. We have omitted the layout code since it is not relevant.

for tableView in (self.tableView1, self.tableView2):

header = tableView.horizontalHeader()

self.connect(header, SIGNAL("sectionClicked(int)"),

self.sortTable)

self.connect(addShipButton, SIGNAL("clicked()"), self.addShip)

self.connect(removeShipButton, SIGNAL("clicked()"),

self.removeShip)

self.connect(quitButton, SIGNAL("clicked()"), self.accept)

self.setWindowTitle("Ships (model)")

When we use a custom model we must handle sorting ourselves. We connect
each table view’s horizontal (columns) header to a sortTable() method. The
other connections are similar to what we had before. But notice that we have
no connection for when a table item is edited: There is no need, since the view
will handle editing for us, automatically reflecting changes back into the
model, which in turn will keep both views up-to-date.

def accept(self):

if self.model.dirty and \

QMessageBox.question(self, "Ships - Save?",

"Save unsaved changes?",

QMessageBox.Yes|QMessageBox.No) == QMessageBox.Yes:

try:

self.model.save()

except IOError, e:

QMessageBox.warning(self, "Ships - Error",

"Failed to save: %s" % e)

QDialog.accept(self)

If the user terminates the application and there are unsaved changes, we give
them the chance to save before exiting. The model’s dirty attribute and its
save() method are our own extensions to the QAbstractTableModel’s API so that
the model can load and save its data from and to files.

The base class for models is QAbstractItemModel, but row/column-based models
normally inherit QAbstractTableModel, one of QAbstractItemModel’s subclasses.

def sortTable(self, section):

if section in (ships.OWNER, ships.COUNTRY):

self.model.sortByCountryOwner()

else:

self.model.sortByName()

self.resizeColumns()

426 Chapter 14. Model/View Programming

We have provided only two sorts, but there is no reason why more could not be
supported. Again, the sortBy*() methods are extensions that we have added
to the standard API. When the user sorts we take the opportunity to resize
the columns. We do this because editing may have changed the widths that
the columns need, and since the sort will change the view anyway, it seems a
sensible place to resize without disturbing the user.

def resizeColumns(self):

for tableView in (self.tableView1, self.tableView2):

for column in (ships.NAME, ships.OWNER, ships.COUNTRY,

ships.TEU):

tableView.resizeColumnToContents(column)

Here we have chosen to resize every column except the description column in
both table views.

def addShip(self):

row = self.model.rowCount()

self.model.insertRows(row)

index = self.model.index(row, 0)

tableView = self.tableView1

if self.tableView2.hasFocus():

tableView = self.tableView2

tableView.setFocus()

tableView.setCurrentIndex(index)

tableView.edit(index)

Adding a new ship is similar to what we did in the preceding section,but a little
neater. We insert a new row as the last row in the model. Then we retrieve a
model index that refers to the first column of the new row. We then find out
which table view has (or last had) the keyboard focus, and we set the focus back
to that view. We set the view’s index to the model index we have retrieved and
initiate editing on it.

The rowCount(), insertRows(), and index() methods are part of the standard
QAbstractTableModel’s API.

def removeShip(self):

tableView = self.tableView1

if self.tableView2.hasFocus():

tableView = self.tableView2

index = tableView.currentIndex()

if not index.isValid():

return

row = index.row()

name = self.model.data(

self.model.index(row, ships.NAME)).toString()

owner = self.model.data(

self.model.index(row, ships.OWNER)).toString()

Creating Custom Models 427

country = self.model.data(

self.model.index(row, ships.COUNTRY)).toString()

if QMessageBox.question(self, "Ships - Remove",

QString("Remove %1 of %2/%3?").arg(name).arg(owner) \

.arg(country),

QMessageBox.Yes|QMessageBox.No) == QMessageBox.No:

return

self.model.removeRows(row)

self.resizeColumns()

If the user clicks theRemove button we retrieve the model index for the current
table view’s current item. We extract the row from this model index and use it
with the QAbstractTableModel.data() method to retrieve the ship’s name, owner,
and country. The data() method takes a model index as a mandatory argument
and returns a QVariant. We use QAbstractTableModel.index() to create model
indexes for the row/column combinations we want,and use QVariant.toString()

to convert the returned values to QStrings.

If the user confirms their deletion, we simply remove the relevant row from
the model. The model will automatically notify the views, which in turn
will update themselves. We have added a call to resizeColumns() since the
maximum column widths may have changed after the deletion.

Implementing the Custom Model

We have now seen some of the QAbstractTableModel’s API in use, along with
some extensions of our own. The methods in a model subclass can be divided
into three categories:

• Methods that are necessary for implementing read-only models

• Methods that are necessary for implementing editable models

• Methods that we need to extend the API for particular circumstances

The essential methods for read-only table models are data(), rowCount(), and
columnCount(), although headerData() is almost always implemented too.

Editable models require reimplementations of the same methods as those
needed for read-only models, and in addition, flags() and setData(). If the
model is to support adding and removing rows as well as editing existing data,
insertRows() and removeRows() must also be implemented.

Other methods can be implemented as well, but those listed in the two preced-
ing paragraphs are the only essential ones.

For the ship model we store the ships in a list in memory and in a binary file on
disk. To support this functionality we have extended the model API by adding
sortByName(), sortByCountryOwner(), load(), and save().

The ShipTableModel is in chap14/ships.py.

428 Chapter 14. Model/View Programming

class ShipTableModel(QAbstractTableModel):

def __init__(self, filename=QString()):

super(ShipTableModel, self).__init__()

self.filename = filename

self.dirty = False

self.ships = []

self.owners = set()

self.countries = set()

We want to load and save the model’s data from and to a binary file, so we keep
an instance variable with the filename. The ships themselves are stored in a
list which is initially unordered. We also keep two sets, one of owners and the
other of countries: These will be used to populate comboboxes when we create
a custom delegate in the next section.

def rowCount(self, index=QModelIndex()):

return len(self.ships)

def columnCount(self, index=QModelIndex()):

return 5

The row and column counts are easy to provide. It is very common for table
models to have a fixed column count.

def data(self, index, role=Qt.DisplayRole):

if not index.isValid() or \

not (0 <= index.row() < len(self.ships)):

return QVariant()

ship = self.ships[index.row()]

column = index.column()

if role == Qt.DisplayRole:

if column == NAME:

return QVariant(ship.name)

elif column == OWNER:

return QVariant(ship.owner)

elif column == COUNTRY:

return QVariant(ship.country)

elif column == DESCRIPTION:

return QVariant(ship.description)

elif column == TEU:

return QVariant(QString("%L1").arg(ship.teu))

The data() method has one mandatory argument—the model index of the item
concerned—and one optional argument—the “role”.The role is used to indicate
what kind of information is required. The default role, Qt.DisplayRole, means
that the data as displayed is wanted.

Creating Custom Models 429

If the model index is invalid or if the row is out of range we return an invalid
QVariant. PyQt’s model/view architecture does not raise exceptions or give error
messages; it simply uses invalid QVariants. If the index is valid we retrieve the
ship at the row corresponding to the index’s row. If the role is Qt.DisplayRole we
return the data for the requested column as a QVariant. In the case of the TEU,
instead of returning an integer, we return the number as a localized string.

elif role == Qt.TextAlignmentRole:

if column == TEU:

return QVariant(int(Qt.AlignRight|Qt.AlignVCenter))

return QVariant(int(Qt.AlignLeft|Qt.AlignVCenter))

elif role == Qt.TextColorRole and column == TEU:

if ship.teu < 80000:

return QVariant(QColor(Qt.black))

elif ship.teu < 100000:

return QVariant(QColor(Qt.darkBlue))

elif ship.teu < 120000:

return QVariant(QColor(Qt.blue))

else:

return QVariant(QColor(Qt.red))

elif role == Qt.BackgroundColorRole:

if ship.country in (u"Bahamas", u"Cyprus", u"Denmark",

u"France", u"Germany", u"Greece"):

return QVariant(QColor(250, 230, 250))

elif ship.country in (u"Hong Kong", u"Japan", u"Taiwan"):

return QVariant(QColor(250, 250, 230))

elif ship.country in (u"Marshall Islands",):

return QVariant(QColor(230, 250, 250))

else:

return QVariant(QColor(210, 230, 230))

return QVariant()

If data() is being called with the Qt.TextAlignmentRole, we return a right-align-
ment for TEUs and a left-alignment for the other columns. QVariants cannot
accept alignments, so we must convert them to an integer value.

For the Qt.TextColorRole, we return a color for the TEU column and ignore oth-
er columns. This means that the non-TEU columns will have the default text
color, usually black. For the Qt.BackgroundColorRole, we provide different col-
ored backgrounds depending on which group of countries the ship belongs to.

We can handle several other roles if we wish, including Qt.DecorationRole

(the item’s icon), Qt.ToolTipRole, Qt.StatusTipRole, and Qt.WhatsThisRole. And
for controlling appearance, in addition to the alignment and color roles we
discussed earlier, there is Qt.FontRole and Qt.CheckStateRole.

We return an invalid QVariant for all the cases we choose not to handle. This
tells the model/view architecture to use a default value in these cases.

430 Chapter 14. Model/View Programming

Some developers don’t like mixing appearance-related information with the
data, as we have done here in our data() implementation. PyQt is neutral on
this issue: It gives us the flexibility to mix, but if we prefer data() to be purely
concerned with data we can do that too, and leave all appearance-related
issues to the delegate.

def headerData(self, section, orientation, role=Qt.DisplayRole):

if role == Qt.TextAlignmentRole:

if orientation == Qt.Horizontal:

return QVariant(int(Qt.AlignLeft|Qt.AlignVCenter))

return QVariant(int(Qt.AlignRight|Qt.AlignVCenter))

if role != Qt.DisplayRole:

return QVariant()

if orientation == Qt.Horizontal:

if section == NAME:

return QVariant("Name")

elif section == OWNER:

return QVariant("Owner")

elif section == COUNTRY:

return QVariant("Country")

elif section == DESCRIPTION:

return QVariant("Description")

elif section == TEU:

return QVariant("TEU")

return QVariant(int(section + 1))

Although not essential, it is a good practice to provide a headerData() implemen-
tation. The section is a row offset when the orientation is Qt.Vertical, and a
column offset when the orientation is Qt.Horizontal. Here, we provide column
headers, and number the rows from 1.

Like data(), this method accepts a role, and we use this to make the row
numbers right-aligned and the column headers left-aligned.

The methods we have looked at so far are enough to implement read-only table
models. Now we will look at the additional methods that must be implemented
to make a model editable.

def flags(self, index):

if not index.isValid():

return Qt.ItemIsEnabled

return Qt.ItemFlags(QAbstractTableModel.flags(self, index)|

Qt.ItemIsEditable)

If we have a valid model index we return a Qt.ItemFlags that combines the
existing item flags with the Qt.ItemIsEditable flag. We can use this method to
make items read-only by applying the Qt.ItemIsEditable flag only when the
model index is for a row and column that we want to be editable.

Creating Custom Models 431

def setData(self, index, value, role=Qt.EditRole):

if index.isValid() and 0 <= index.row() < len(self.ships):

ship = self.ships[index.row()]

column = index.column()

if column == NAME:

ship.name = value.toString()

elif column == OWNER:

ship.owner = value.toString()

elif column == COUNTRY:

ship.country = value.toString()

elif column == DESCRIPTION:

ship.description = value.toString()

elif column == TEU:

value, ok = value.toInt()

if ok:

ship.teu = value

self.dirty = True

self.emit(SIGNAL("dataChanged(QModelIndex,QModelIndex)"),

index, index)

return True

return False

This method is called when the user completes an edit. In this case, we ignore
the role, although it is possible to have separate display and edit data (for
example, a spreadsheet’s result and the formula behind it). If the index is valid
and the row is in range we retrieve the relevant ship and update the column
that has been edited. In the case of the TEU, we apply the change only if what
the user typed in was converted successfully to an integer.

The dataChanged() signal must be emitted if a change has taken place. The
model/view architecture depends on this signal to ensure that all the views are
kept up-to-date. We must pass the model index of the changed item twice be-
cause the signal can be used to indicate a block of changes, with the first index
being the top-left item and the second index the bottom-right item. We must
return True if the change was accepted and applied, and False otherwise.

Implementing flags() and setData() (in addition to the methods necessary
for a read-only model) is sufficient to make a model editable. But to make
it possible for users to add or delete entire rows we need to implement two
additional methods.

def insertRows(self, position, rows=1, index=QModelIndex()):

self.beginInsertRows(QModelIndex(), position,

position + rows - 1)

for row in range(rows):

self.ships.insert(position + row,

Ship(" Unknown", " Unknown", " Unknown"))

self.endInsertRows()

432 Chapter 14. Model/View Programming

self.dirty = True

return True

The call to beginInsertRows() is essential when we want to insert one or more
rows into a model. The position is the row we want to insert at. The call to
beginInsertRows() is taken straight from the PyQt documentation and should
not need to be changed for any table model insertRows() implementation. After
the insertions, we must call endInsertRows(). The model will automatically
notify the views that the changes have been made, and the views will ask for
new data if the relevant rows are visible to the user.

def removeRows(self, position, rows=1, index=QModelIndex()):

self.beginRemoveRows(QModelIndex(), position,

position + rows - 1)

self.ships = self.ships[:position] + \

self.ships[position + rows:]

self.endRemoveRows()

self.dirty = True

return True

This method is similar to the preceding one. The call to beginRemoveRows() is
taken from the documentation and is standard for table model reimplementa-
tions.After the relevant rows have been removed,we must call endRemoveRows().
The model will automatically notify the views about the changes.

We have now implemented the essential methods for an editable table model.
Some models are merely interfaces to external data sources such as database
tables (covered in the next chapter), or to external files or processes. In this
case, we have stored the data inside the model itself and for this reason we
must provide some extra methods, in particular load() and save().We have also
provided a couple of sorting methods as a convenience for the user. Sorting is
expensive forOrdered-

Dict

92 ☞

large datasets,and in such cases using an ordered data structure,
such as an OrderedDict, or using a list in conjunction with the bisect module’s
functions may prove beneficial.

def sortByName(self):

self.ships = sorted(self.ships)

self.reset()

When sort() is called on a list it uses the items’ __lt__() special method for
comparisons, falling back to use the __cmp__() special method if __lt__() has
not been implemented. We provided Ship.__cmp__() which does a locale-aware
comparison of ships’ names.

Sorting the data makes all model indexes invalid and means that the views
are now showing the wrong data. The model must notify the views that they
need to update themselves by retrieving fresh data. One way to do this is
to emit a dataChanged() signal, but for big changes it is more efficient to call

Creating Custom Models 433

Table 14.1 Selected QAbstractItemModel Methods #1

Syntax Description

m.beginInsert-

Rows(p, f, l)
Call in reimplementationsof insertRows() before insert-
ing data. The arguments are the parent QModelIndex p

and the first and last row numbers the new rows will
occupy; m is a QAbstractItemModel subclass.

m.beginRemove-

Rows(p, f, l)
Call in reimplementations of removeRows() before re-
moving data. The arguments are the parent QModel-
Index p and the first and last row numbers to be
removed; m is a QAbstractItemModel subclass.

m.columnCount(p) Subclasses must reimplement this; the parent QModel-
Index p matters only to tree models

m.create-

Index(r, c, p)
Subclasses must use this to create QModelIndexes with
row int r, column int c, and parent QModelIndex p

m.data(i, rl) Returns the data as a QVariant for QModelIndex i and
Qt.ItemDataRole rl; subclasses must reimplement this

m.endInsertRows() Call in reimplementations of insertRows() after insert-
ing new data; m is a QAbstractItemModel subclass

m.endRemoveRows() Call in reimplementations of removeRows() after remov-
ing data; m is a QAbstractItemModel subclass

m.flags(i) Returns the Qt.ItemFlags for QModelIndex i; these govern
whether the item is selectable, editable, and so on.
Editable model subclasses must reimplement this

m.hasChildren(p) Returns True if parent QModelIndex p has children;mean-
ingful only for tree models

m.header-

Data(s, o, rl)
Returns a QVariant for “section” (row or column) int s,
with Qt.Orientation o indicating row or column, and
with Qt.ItemDataRole rl. Subclasses normally reimple-
ment this; m is a QAbstractItemModel subclass.

m.index(r, c, p) Returns the QModelIndex for the given row int r, column
int c, and parent QModelIndex p; subclasses must reim-
plement this and must use createIndex()

m.insertRow(r, p) Inserts one row before row int r. In tree models, the row
is inserted as a child of parent QModelIndex p.

m.insert-

Rows(r, n, p)
Inserts int n rows before row int r. In tree mod-
els, the rows are inserted as children of parent
QModelIndex p. Editable subclasses often reimplement
this—reimplementations must call beginInsertRows()
and endInsertRows().

m.parent(i) Returns the parent QModelIndex of QModelIndex i. Tree
model subclasses must reimplement this.

434 Chapter 14. Model/View Programming

Table 14.2 Selected QAbstractItemModel Methods #2

Syntax Description

m.removeRow(r, p) Removes row int r. The parent QModelIndex p is rel-
evant only to tree models; m is a QAbstractItemModel

subclass.
m.removeRows(r, n, p) Removes int n rows from row int r. The parent

QModelIndex p is relevant only to tree models.
Editable model subclasses often reimplement this
method—reimplementations must call begin-
RemoveRows() and endRemoveRows().

m.reset() Notifies all associated views that the model’s data
has radically changed—this forces views to refetch
all their visible data

m.rowCount(p) Subclasses must reimplement this; the parent
QModelIndex p matters only to tree models

m.setData(i, v, rl) Sets QModelIndex i’s data for Qt.ItemDataRole rl to
QVariant v.Editable model subclasses must reimple-
ment this—reimplementations must emit the data-

Changed() signal if data was actually changed.
m.setHeader-

Data(s, o, v, rl)
Sets the header data for section int s with
Qt.Orientation o (i.e., for row or column), for
Qt.ItemDataRole rl to QVariant v

QAbstractTableModel.reset(); this tells all associated views that everything is
out-of-date and forces them to update themselves.

def sortByCountryOwner(self):

def compare(a, b):

if a.country != b.country:

return QString.localeAwareCompare(a.country, b.country)

if a.owner != b.owner:

return QString.localeAwareCompare(a.owner, b.owner)

return QString.localeAwareCompare(a.name, b.name)

self.ships = sorted(self.ships, compare)

self.reset()

Here we provide a custom sort method, sorting by country, by owner, and by
ship’s name.For a large dataset it might be more efficient to use DSU (decorate,
sort, undecorate). For example:

def sortByCountryOwner(self):

ships = []

for ship in self.ships:

ships.append((ship.country, ship.owner, ship.name, ship))

ships.sort()

Creating Custom Models 435

self.ships = [ship for country, owner, name, ship in ships]

self.reset()

This uses the normal QString.compare(), so it might be better to have used
unicode(ship.country), unicode(ship.owner), and unicode(ship.name). Of course,
for very large datasets it is probably better to avoid sorting altogether and to
use ordered containers instead.

The save() and load() methods are very similar to ones we haveSaving
and
Loading
Binary
Files

240 ☞

seen before for
handling binary data using QDataStream, so we will just show an extract from
the heart of each, starting with the save() method.

for ship in self.ships:

stream << ship.name << ship.owner << ship.country \

<< ship.description

stream.writeInt32(ship.teu)

Thanks to using QDataStream we don’t have to worry about how long the strings
are or about encoding issues.

The ships are loaded in correspondingly: Here is an extract from the load()

method:

self.ships = []

while not stream.atEnd():

name = QString()

owner = QString()

country = QString()

description = QString()

stream >> name >> owner >> country >> description

teu = stream.readInt32()

self.ships.append(Ship(name, owner, country, teu,

description))

self.owners.add(unicode(owner))

self.countries.add(unicode(country))

As noted earlier, we keep sets of owners and countries to make them available
in comboboxes when we add a custom delegate.

Implementing custom models, particularly list and table models, is quite
straightforward. For read-only models we need to implement only three meth-
ods, although normally we implement four. For editable models, we normally
implement a total of eight methods. Once you have created a couple of models,
creating others will become easy, because all list and table models follow the
same pattern. Implementing tree models is more challenging; the topic is cov-
ered in the last section of Chapter 16.

436 Chapter 14. Model/View Programming

Creating Custom Delegates

If we want to exercise complete control over the presentation and editing of
data items, we must create a custom delegate. A delegate can be used purely to
control appearance—for example, for read-only views—or to control editing by
providing custom editors, or both.

Figure 14.4 A custom delegate in action

Figure 14.4 looks similar to earlier screenshots, with the only noticable differ-
ence being that the description text is properly formatted rather than shown as
raw HTML. However, the differences go much deeper. For example, if we edit
the owner or country fields we will get comboboxes populated with the current
owners and countries, and if we edit the TEU we will get a spinbox. All this
control over the appearance and editing is achieved by using a delegate—and
the delegate can be used with convenience views or with pure views, although
in this case we have used the delegate with pure views.

For this section we are using the chap14/ships-delegate.pyw application. This is
almost identical to ships-model.pyw, differing only in the window title, the fact
that we resize allPyQt

4.1

columns rather than skipping the description column, and
the fact that we use a custom delegate. The delegate class, ShipDelegate, is in
chap14/ships.py. Note that this class requires PyQt 4.1 or later.

Like model subclasses,delegates follow a fixed pattern. In the case of delegates
for read-only models, the only method we must reimplement is paint(). For
editable models, we must reimplement createEditor(), setEditorData(), and
setModelData(). It is also common to reimplement commitAndCloseEditor() if we
use QLineEdits or QTextEdits for editing. Finally, it is sometimes necessary to
reimplement sizeHint(), as we will see.

Creating Custom Delegates 437

It is quite common to create delegates that handle only some of the columns,
particularly when it comes to painting, leaving the base class to handle
columns where the default behavior is sufficient.

We will begin by looking at a small extract from the main form’s constructor to
see the creation of the first table:

class MainForm(QDialog):

def __init__(self, parent=None):

super(MainForm, self).__init__(parent)

self.model = ships.ShipTableModel(QString("ships.dat"))

tableLabel1 = QLabel("Table &1")

self.tableView1 = QTableView()

tableLabel1.setBuddy(self.tableView1)

self.tableView1.setModel(self.model)

self.tableView1.setItemDelegate(ships.ShipDelegate(self))

The only difference from the preceding section is that we have called
setItemDelegate(), passing it a newly constructed ship.ShipDelegate. The del-
egate must be given the form as a parent to keep it alive while the form is in
use. The code for the second table is just the same, with the same model be-
ing set, but with its own ship.ShipDelegate. This is the only change that’s
necessary—and now all the work of presenting and editing the data will be
handled by the delegates.

class ShipDelegate(QItemDelegate):

def __init__(self, parent=None):

super(ShipDelegate, self).__init__(parent)

Quite often, a delegate’s constructor does not need to do anything, beyond
initializing the base class which is all that we do here. In fact, for cases like this
we can omit the __init__() altogether.

def paint(self, painter, option, index):

if index.column() == DESCRIPTION:

text = index.model().data(index).toString()

palette = QApplication.palette()

document = QTextDocument()

document.setDefaultFont(option.font)

if option.state & QStyle.State_Selected:

document.setHtml(QString("%2") \

.arg(palette.highlightedText().color().name())\

.arg(text))

else:

document.setHtml(text)

color = palette.highlight().color() \

if option.state & QStyle.State_Selected \

438 Chapter 14. Model/View Programming

else QColor(index.model().data(index,

Qt.BackgroundColorRole))

painter.save()

painter.fillRect(option.rect, color)

painter.translate(option.rect.x(), option.rect.y())

document.drawContents(painter)

painter.restore()

else:

QItemDelegate.paint(self, painter, option, index)

For plain text strings, numbers, dates, and so on, the base class QItemDele-

gate.paint() method works perfectly well, so it is very common not to reimple-
ment it at all. However, in this example, the description column holds HTML,
and this we must render ourselves.

The paint() method is called with a painter ready to draw on, a QStyleOption-

ViewItem which holds various pieces of information including the rectangle
in which the painting should take place, and the model index of the item to
be drawn.

We begin by retrieving the HTML text using the model’s data() method, and
relying on the Qt.DisplayRole default that we set in the model, for the second
argument. Notice that a model index can give us a reference to the model it
refers to with the QModelIndex.model() method.

We then retrieve the application’s palette—this is based on the user’s theme
color preferences. If the item is selected, we apply the palette’s highlighted
text color to the HTML; otherwise, we use the HTML “as is”. The QColor.name()

method returns the color as a hexadecimal string; for example, red would be
returned as the string "#FF0000", which is the same format used for HTML color
specifications. Similarly, we use the palette’s highlighted background color
if the item is selected; otherwise, we use the background color that the model
specifies by calling the data() method with the Qt.BackgroundColorRole.

The QTextDocument.drawContents() method draws relative to the painter’s
top-left (0, 0) coordinate. For this reason, we move (translate) the painter’s
top-left corner to the style option rectangle’s (x, y) position, and then tell the
document to paint itself on the painter.

In many cases, we don’t have to bother saving and restoring the painter’s state
between paint events,but in this case we must.Some Qt programmersconsider
it a good practice to always save and restore the painter’s state, whereas
others prefer to do so only when necessary, that is, only when they apply a
lasting change to the painter’s state, such as applying a transformation, like
translation, to it.

Unfortunately, this is not quite the end of the story for drawing HTML. When
the view asks for the size hint of an HTML column, the default behavior will
be to return a size hint based on the view’s font and the number of characters.

Creating Custom Delegates 439

Because HTML is rather verbose, the number of characters used in the calcu-
lation is likely to be far more than the number that are actually displayed.

There are two solutions to this problem, both of which require us to calculate
the size hint for the HTML text ourselves. One solution is to change the
QAbstractTableModel.data() method and to return a suitable size hint when
data() is called with the Qt.SizeHintRole. The other solution is to reimplement
the QItemDelegate.sizeHint() method. We prefer to reimplement sizeHint(),
since that keeps the problem and its solution in the same class.

def sizeHint(self, option, index):

fm = option.fontMetrics

if index.column() == TEU:

return QSize(fm.width("9,999,999"), fm.height())

if index.column() == DESCRIPTION:

text = index.model().data(index).toString()

document = QTextDocument()

document.setDefaultFont(option.font)

document.setHtml(text)

return QSize(document.idealWidth() + 5, fm.height())

return QItemDelegate.sizeHint(self, option, index)

The option argument is a QStyleOptionViewItem, a QStyleOption subclass that
has several useful properties. In this method, we have actually taken respon-
sibility for two columns’ size hints. For the TEU, we return a size hint wide
enough for the largest TEU we expect to handle. For the description, we use a
QTextDocument() to calculate the text’s “ideal” width based on its fonts and font
attributes, plus a small margin of 5 pixels. For the other columns, we pass the
work on to the base class.

Quite often, delegates don’t reimplement the paint() method at all, relying on
the perfectly good default behavior for painting, and instead just providing
custom methods for editing data items.

def createEditor(self, parent, option, index):

if index.column() == TEU:

spinbox = QSpinBox(parent)

spinbox.setRange(0, 200000)

spinbox.setSingleStep(1000)

spinbox.setAlignment(Qt.AlignRight|Qt.AlignVCenter)

return spinbox

elif index.column() == OWNER:

combobox = QComboBox(parent)

combobox.addItems(sorted(index.model().owners))

combobox.setEditable(True)

return combobox

elif index.column() == COUNTRY:

combobox = QComboBox(parent)

440 Chapter 14. Model/View Programming

combobox.addItems(sorted(index.model().countries))

combobox.setEditable(True)

return combobox

elif index.column() == NAME:

editor = QLineEdit(parent)

self.connect(editor, SIGNAL("returnPressed()"),

self.commitAndCloseEditor)

return editor

elif index.column() == DESCRIPTION:

editor = richtextlineedit.RichTextLineEdit(parent)

self.connect(editor, SIGNAL("returnPressed()"),

self.commitAndCloseEditor)

return editor

else:

return QItemDelegate.createEditor(self, parent, option,

index)

When the user initiates editing on a data item, typically by pressing F2 or
double-clicking, the view asks the delegate to provide an editor for the item.
For any items we don’t want or need to handle ourselves, we can just pass on
the work to the base class, but in this delegate we prefer to deal with every
column ourselves.

For the TEU column, we create and return a spinbox. We can use anyRich-

Text-

LineEdit

389 ☞

widget,
whether built-in like QSpinBox, or a custom editor, such as the RichTextLine-

Edit that we created in the preceding chapter. In all cases, the procedure is
the same: Create the editor with the given parent, and then set it up and re-
turn it.

We have populated the comboboxes with sorted lists and have made them ed-
itable so that users can add new entries. If we wanted users to be able to choose
only from the list we specify, we would simply omit the setEditable(True)

calls.

In the case of QLineEdit, QTextEdit, and other classes that have a return-

Pressed() signal to indicate that editing has been completed, we connect the
signal to a reimplementation of the commitAndCloseEditor() method.

def commitAndCloseEditor(self):

editor = self.sender()

if isinstance(editor, (QTextEdit, QLineEdit)):

self.emit(SIGNAL("commitData(QWidget*)"), editor)

self.emit(SIGNAL("closeEditor(QWidget*)"), editor)

Previously, we have always used the built-in isinstance() function to consider
an object in relation to a single class, but here we have provided a tuple of two
classes. This method is called when the user presses Enter and, in turn, emits
signals to the editor telling it to save its data to the model and to close itself.

Creating Custom Delegates 441

def setEditorData(self, editor, index):

text = index.model().data(index, Qt.DisplayRole).toString()

if index.column() == TEU:

value = text.replace(QRegExp("[.,]"), "").toInt()[0]

editor.setValue(value)

elif index.column() in (OWNER, COUNTRY):

i = editor.findText(text)

if i == -1:

i = 0

editor.setCurrentIndex(i)

elif index.column() == NAME:

editor.setText(text)

elif index.column() == DESCRIPTION:

editor.setHtml(text)

else:

QItemDelegate.setEditorData(self, editor, index)

Once the editor has been created and given to the view, the view calls setEditor-
Data(). This gives the delegate the opportunity to populate the editor with the
current data, ready for the user to edit. In the case of TEUs, we are showing
them as text, possibly containing spaces, commas, or periods. So for these we
strip out the unwanted characters, convert the value to an integer, and set the
spinbox’s value accordingly. An alternative approach would have been to have
separate Qt.DisplayRole and Qt.EditRole values for this column.

If the editor is a combobox, we set its current index to be the item that matches
the data value. If there isn’t a match we just make the first item the current
one. For the line edit used for ships’ names we use setText(), and for the rich
text line edit we use setHtml() (inherited from QTextEdit). As usual, we pass
on unhandled cases to the base class, although here it is a formality since we
handle all the columns ourselves.

def setModelData(self, editor, model, index):

if index.column() == TEU:

model.setData(index, QVariant(editor.value()))

elif index.column() in (OWNER, COUNTRY):

model.setData(index, QVariant(editor.currentText()))

elif index.column() == NAME:

model.setData(index, QVariant(editor.text()))

elif index.column() == DESCRIPTION:

model.setData(index, QVariant(editor.toSimpleHtml()))

else:

QItemDelegate.setModelData(self, editor, model, index)

If the user confirms their edit, the editor’s data must be written back to the
model. The model will then notify the views that the item has changed, and
those views that are showing the item will request fresh data to display.

442 Chapter 14. Model/View Programming

In each case, we simply retrieve the value from the appropriate editor and call
setData(), passing the values as QVariants.

We have now completed the delegate. Two delegates are used in the next
chapter, both of which provide editors for certain fields, and both of which
implement only createEditor(), setEditorData(), and setModelData(). In this
chapter and the next, the custom delegatesare for specific models. But in Chap-
ter 16, we have a section devoted to “generic delegates”, which can be used to
create delegates for any model without having to have model-specific custom
delegates—this can reduce code duplication and make maintenance easier.

Summary

PyQt’s convenience item view widgets, such as QListWidget, QTableWidget, and
QTreeWidget, are very useful for viewing and editing small and ad hoc datasets.
They can be used in conjunction with external datasets as we did in the first
section, or they can be used as data containers in their own right. Adding,
editing, and removing items is straightforward, but if we use more than one
view to show one dataset, we must accept the responsibility for keeping the
views and dataset in sync. This problem goes away if we use the model/view
approach with a custom model.

The convenience views do not provide any control over the editing of the items
they handle. This deficiency is easy to rectify, both for convenience views and
for pure views, by setting our own custom item delegate.

The pure views provide similar functionality to the convenience views, but do
not provide sorting or direct control over the appearance of data items. These
views must be used in conjunction with a model, whether a predefined one
provided with PyQt, or more commonly, our own custom model.

To implement a custom table model we must reimplement rowCount(), column-
Count(), and data() for both read-only and editable models; it is also usual to
reimplement headerData(). In addition, we must implement flags() and set-

Data() to make items editable, and insertRows() and removeRows() to allow users
to insert or remove rows of data. If we want the user to be able to sort the data
we can add additional sort methods, although in the case of database tables we
can simply add ORDER BY clauses. Using databases with the model/view archi-
tecture is covered in the next chapter.

Creating custom delegates allows us to exercise complete control over the
appearance and editing of data items. It is possible to share the responsibil-
ity for data appearance between the model and the delegate, or to give all of
the responsibility to either of them. But only a custom delegate can be used
to provide control over editing. For read-only delegates, and for delegates
where we are concerned only with the appearance of data, we normally need
to reimplement only the paint() method, although in some cases we must also
reimplement sizeHint() (or handle the Qt.SizeHintRole in the model’s data()

Summary 443

reimplementation). For most delegates, we don’t need to reimplement paint()
or sizeHint() at all, and only reimplement createEditor(), setEditorData(), and
setModelData().

In the next chapter we will see further examples of the model/view architec-
ture, with pure views, custom delegates, and built-in SQL database models.

Exercise
Add a new method to the ShipTableModel, sortByTEU(). Use any sorting tech-
nique you like; we have used DSU. Then use this method in MainForm.sort-

Table(). In total this should take just half a dozen lines.

Extend the ShipTableModel.data() method to provide tooltips. The tip should
simply be the text of the data item, except for TEUs, where the text should
be the (localized) number followed by “twenty foot equivalents”. Notice that
HTML is correctly formatted in the tooltip. This is easy and takes only a
dozen lines.

Modify ShipTableDelegate.setModelData() so that it will change the name,
owner, or country, only if the new text is at least three characters long. Extend
the tooltips for these columns with the text “(minimum of 3 characters)”. This
can be done in about half a dozen lines.

Add an Export button that, when pressed, prompts the user for a filename with
the suffix .txt, and saves the data using the UTF-8 encoding, one ship per line,
in the form:

name|owner|country|teu|description

with a bar “|” (pipe) as a separator. The data should be accessed through the
model’s data() method and output in country/owner order, with no HTML tags
in the description and with TEUs output with digits only (no commas, periods,
or spaces). Pop up a message box at the end, either to report an error or to
report success. Use Python or PyQt for writing the file; we have used PyQt. If
you write using a version of PyQt prior to 4.1, you will need to convert the TEU
to a QString before writing it to the text stream. The export() method can be
written in less than 50 lines.

A solution is provided in chap14/ships_ans.py and chap14/ships-delegate-

_ans.py.

This page intentionally left blank

Databases

1515 ● Connecting to the Database

● Executing SQL Queries

● Using Database Form Views

● Using Database Table Views

PyQt provides a consistent cross-platform API for database access using the
QtSql module and PyQt’s model/view architecture.★ Python also has its own
completely different database API, called DB-API, but it isn’t needed with
PyQt and is not covered here. The commercial edition of Qt comes with many
database drivers, whereas the GPL edition has fewer due to licensing restric-
tions. The drivers that are available include ones for IBM’s DB2, Borland’s
Interbase, MySQL, Oracle, ODBC (for Microsoft SQL Server), PostgreSQL,
SQLite, and Sybase. However, like any aspect of PyQt, it is possible to create
additional database drivers if one we need is not available.

When Qt is built from source we can configure it to include SQLite, a public do-
main in-process database. For binary Qt packages, such as the GPL packages
for Windows and Mac OS X, SQLite is built-in. The examples in this chapter
use SQLite, but apart from the initial connection to the database, and a couple
of aspects of raw SQL syntax that we will mention, they should work with any
SQL database.

PyQt provides access to databases at two levels. The high level involves using
QSqlTableModel or QSqlRelationalTableModel. These models provide abstractions
for handling database tables with the same API as the other QAbstractItemModel
subclasses, as well as providing some database-specific extensions. The SQL
models can be used with views such as QTableView, as we will see in this chap-
ter’s last section, or with a QDataWidgetMapper for form views, the topic of this
chapter’s second section.

The low-level approach, also the most versatile, is based on using QSqlQuery.
This class can accept any DDL (data definition language) or DML (data ma-
nipulation language) SQL statements and execute them on the database. For
example, we can use QSqlQuery to create tables, and to insert, update,and delete
records in tables. We will see QSqlQuery in action in this chapter’s first section.

★This chapter assumes a knowledge of PyQt’s model/view architecture, covered in the preceding
chapter, as well as a basic knowledge of SQL.

445

446 Chapter 15. Databases

Connecting to the Database

But before we can do any work with a database,we must establish a connection
to it. In many database applications this is done after the creation of the
QApplication object, but before the main form is created or shown. Other
applications establish their connections later on—for example, only when they
are needed.

To use PyQt’s SQL classes we must import the QtSql module:

from PyQt4.QtSql import *

A database connection is established by calling the static QSqlDatabase.addData-
base() method, with the name of the driver we want to use. Then we must set
various attributes, such as the database’s name, the username, and the pass-
word. And finally, we must call open() to make the connection.

db = QSqlDatabase.addDatabase("QSQLITE")

db.setDatabaseName(filename)

if not db.open():

QMessageBox.warning(None, "Phone Log",

QString("Database Error: %1").arg(db.lastError().text()))

sys.exit(1)

For SQLite we need to specify only the name of the database. This is normally
a filename, but it can be the special name “:memory:” for an in-memory
database. When we call QSqlDatabase.open() using the SQLite driver, if the file
does not exist it will be created, in which case it will have no tables or records.

Notice that we have passed None as the message box’s parent: This is because
we have tried to establish the connection before creating the main window, so
there is no possible parent. Since this application depends on the database, if
no connection can be made it simply tells the user the error message that was
received and terminates the application.

If the database connection was successfully opened, from now on all database
methods will apply to this connection. If we need two or more separate
connections, whether to the same database or to different databases, we must
pass a second argument to addDatabase(), giving the connection a name that we
can then use to distinguish between our different connections.

Executing SQL Queries

Now that we have a connection, we can execute some SQL statements.

query = QSqlQuery()

query.exec_("""CREATE TABLE outcomes (

id INTEGER PRIMARY KEY AUTOINCREMENT UNIQUE NOT NULL,

name VARCHAR(40) NOT NULL)""")

Executing SQL Queries 447

query.exec_("""CREATE TABLE calls (

id INTEGER PRIMARY KEY AUTOINCREMENT UNIQUE NOT NULL,

caller VARCHAR(40) NOT NULL,

starttime DATETIME NOT NULL,

endtime DATETIME NOT NULL,

topic VARCHAR(80) NOT NULL,

outcomeid INTEGER NOT NULL,

FOREIGN KEY (outcomeid) REFERENCES outcomes)""")

We have not specified a particular database connection to use, so PyQt will
use the default (unnamed) connection that we established earlier. The tables
created by the SQL calls are shown schematically in Figure 15.1.

The AUTOINCREMENT syntax tells SQLite to populate the id field automatically
with each ID being one more than the previous one, with the first being 1.
Similarly, the FOREIGN KEY syntax tells SQLite about a foreign key relationship.
SQLite 3 does not enforce foreign key relationships, merely allowing us to
express them as a documentation aid. The syntax for achieving automatic IDs
and for foreign keys may be different in other databases.

calls

id
caller
starttime
endtime
topic
outcomeid

outcomes

id
name

Figure 15.1 The Phone Log database design

Many databases have their own set of data types. For example, SQLite 3 has
what it calls “storage classes”, including, INTEGER, REAL, and TEXT. PyQt supports
the standard SQL datatypes, including VARCHAR, NUMBER, DATE, and DATETIME,
transparently converting to and from the database’s native data types behind
the scenes. For text, PyQt uses Unicode, except with databases that don’t sup-
port Unicode, in which case PyQt converts to and from the database’s native
encoding.

Now that we have created the tables, we can populate them with data.

for name in ("Resolved", "Unresolved", "Calling back", "Escalate",

"Wrong number"):

query.exec_("INSERT INTO outcomes (name) VALUES ('%s')" % name)

We did not need to provide IDs since we have asked the database to generate
them for us. Unfortunately, the preceding code is not robust: For example, it
will fail if one of the names contains a single quote. One way to deal with this

448 Chapter 15. Databases

is to ensure that we either remove or escape unacceptable characters,but PyQt
provides a better alternative: prepared queries.

There are two widely used forms of syntax for prepared queries, one based on
the ODBC place holder approach, and the other based on the Oracle named
variable approach. PyQt supports both, converting from one to the other be-
hind the scenes if necessary, so that both work no matter what the underlying
database is.

query.prepare("INSERT INTO calls (caller, starttime, endtime, "

"topic, outcomeid) VALUES (?, ?, ?, ?, ?)")

for name, start, end, topic, outcomeid in data:

query.addBindValue(QVariant(QString(name)))

query.addBindValue(QVariant(start)) # QDateTime

query.addBindValue(QVariant(end)) # QDateTime

query.addBindValue(QVariant(QString(topic)))

query.addBindValue(QVariant(outcomeid)) # int

query.exec_()

This example uses the ODBC syntax. One benefit of using place holders is that
PyQt takes care of the quoting issues, so we don’t have to worry about what our
data contains, as long as the types we pass are appropriate for the fields they
will populate.

query.prepare("INSERT INTO calls (caller, starttime, endtime, "

"topic, outcomeid) VALUES (:caller, :starttime, "

":endtime, :topic, :outcomeid)")

for name, start, end, topic, outcomeid in data:

query.bindValue(":caller", QVariant(QString(name)))

query.bindValue(":starttime", QVariant(start))

query.bindValue(":endtime", QVariant(end))

query.bindValue(":topic", QVariant(QString(topic)))

query.bindValue(":outcomeid", QVariant(outcomeid))

query.exec_()

This second example performs the same work as the first, but uses Oracle-style
named variables. PyQt also supports a couple of other variations of prepared
query syntax, but they don’t add anything to what we can do with the two
forms of syntax shown earlier. Prepared queries can improve performance on
databases that support them, and make no difference on those that don’t.

Prepared queries can also be used to call stored procedures, but we will not
cover them because support for them is neither universal nor uniform. For ex-
ample, not all databases support stored procedures, and the syntax for calling
them and for retrieving OUT values is different from database to database. Also,
stored procedures that return values are not fully supported.

We can use QSqlQuery to execute any arbitrary SQL statement. For example:

Executing SQL Queries 449

query.exec_("DELETE FROM calls WHERE id = 12")

After a query has executed we can check for errors by calling QSqlQuery.is-

Active(); if this returns False an error occurred and the error message is avail-
able as a QString by calling QSqlQuery.lastError().text().

If we perform a query that may affect a number of rows, such as a DELETE

or UPDATE whose WHERE clause might select more than one record, we can call
QSqlQuery.numRowsAffected(); it returns -1 on error.

We can find out whether the underlying database supports various features
such as transactions and BLOBs (Binary Large OBjects) by accessing the
driver and calling hasFeature(). For example:

driver = QSqlDatabase.database().driver()

if driver.hasFeature(QSqlDriver.Transactions):

print "Can commit and rollback"

When we use QSqlQuery we can initiate a transaction by calling QSqlData-

base.database().transaction(), and then either QSqlDatabase.database().com-

mit() or QSqlDatabase.database().rollback().

We will conclude our coverage of QSqlQuery by looking at how to use it to execute
SELECT statements, and how to iterate over the resultant records.

DATETIME_FORMAT = "yyyy-MM-dd hh:mm"

ID, CALLER, STARTTIME, ENDTIME, TOPIC, OUTCOMEID = range(6)

query.exec_("SELECT id, caller, starttime, endtime, topic, "

"outcomeid FROM calls ORDER by starttime")

while query.next():

id = query.value(ID).toInt()[0]

caller = unicode(query.value(CALLER).toString())

starttime = unicode(query.value(STARTTIME).toDateTime() \

.toString(DATETIME_FORMAT))

endtime = unicode(query.value(ENDTIME).toDateTime() \

.toString(DATETIME_FORMAT))

topic = unicode(query.value(TOPIC).toString())

outcomeid = query.value(OUTCOMEID).toInt()[0]

subquery = QSqlQuery("SELECT name FROM outcomes "

"WHERE id = %d" % outcomeid)

outcome = "invalid foreign key"

if subquery.next():

outcome = unicode(subquery.value(0).toString())

print "%02d: %s %s - %s %s [%s]" % (id, caller, starttime,

endtime, topic, outcome)

When we execute a SELECT statement, we can iterate over the result set using
methods such as QSqlQuery.next(), QSqlQuery.previous(), and QSqlQuery.seek().
Immediately after a successful SELECT, isActive() will return True but the inter-

450 Chapter 15. Databases

Table 15.1 Selected QSqlQuery Methods

Syntax Description

q.addBindValue(v) Adds QVariant v as the next variable when using posi-
tional value binding in QSqlQuery q

q.bindValue(p, v) Sets QVariant v as the value for the string p place holder
when using place holder value binding in QSqlQuery q

q.boundValue(p) Returns the QVariant value for the string p place holder
in QSqlQuery q

q.driver() Returns the QSqlDriver associated with QSqlQuery q. The
QSqlDriver class provides hasFeature() to report which
features the underlying database supports.

q.exec_(s) Executes the SQL query in string s on QSqlQuery q

q.first() Navigates to the first record in QSqlQuery q’s result set
after a SELECT query has been executed

q.isActive() Returns True if the query is “active”—for example, after
executing a SELECT query

q.isValid() Returns True if the query is positioned on a valid record;
after a SELECT query this will be True only if isActive()

is True and a record has been navigated to
q.last() Navigates to the last record in QSqlQuery q’s result set

after a SELECT query has been executed
q.lastError() Returns a QSqlError object; this provides an error-

String() method
q.next() Navigates to the next record in QSqlQuery q’s result set

after a SELECT query has been executed. This is the only
method needed to iterate forward over a result set.

q.numRows-

Affected()
Returns the number of rows affected by the SQL query
just executed, providing it was not a SELECT, and provid-
ing the underlying database supports this feature

q.prepare(s) Prepares the query in string s ready for q to execute it
q.previous() Navigates to the previous record in QSqlQuery q’s result

set after a SELECT query has been executed
q.record() Returns a QSqlRecord object containing QSqlQuery q’s

current record, if any; using QSqlQuery.value() with a
field index argument is usually more convenient

q.size() Returns the number of rows in the SELECT result set,
or -1 if a SELECT was not executed or if the underlying
database does not support this feature

q.value(i) Returns the QVariant value for field index int i in the
current record, if there is one

Executing SQL Queries 451

nal record pointer will not be referring to a valid record. Each of the navigation
methods returns True if the query’s internal record pointer was successfully
moved onto a valid record; this is why we call QSqlQuery.next() before accessing
the first record. They return False if an error occurred or if they pass the last
(or first) record.

When navigating large result sets, providing we only use next(), or only seek()

forward, we can call QSqlQuery.setForwardOnly(True). This can significantly im-
prove performance or reduce memory overhead, or both, with some databases.

The QSqlQuery.value() method takes an index position argument, based on the
order of the field names given in the SELECT statement. For this reason, using
SELECT * is not recommended because in that case, we don’t know what the
order of the fields is. Each field is returned as a QVariant and must therefore
be converted to the proper type. In the case of the date/times, we first convert
them from QVariant to QDateTime, then to QString, and finally to unicode, ready
to be printed on the console.

We used an additional query to look up the name of the outcome from its
ID, giving error text if the database does not have relational integrity. For a
large dataset, it would have been more efficient to use a prepared query for
the subquery.

We can use QSqlQuery to do all the database work we want, but using PyQt’s
SQL models is much easier for GUI programming, and it does not prevent us
from using QSqlQuery when the need arises.

Using Database Form Views

One of the easiest user interfaces we can provide for database data is a form
that displays the fields from a single record at a time. In this section we will
develop an application that uses such a form, initially a simplified version of
the phone log database introduced in the preceding section, and then the full
version which includes the foreign key field.

The examples presented in this section depend on the Qt

4.2

QDataWidgetMapper class
introduced with Qt 4.2. The next section’s example uses SQL table models and
QTableView, and can be used with Qt 4.1 or later.

The simplified application is shown in Figure 15.2, and its source code is in
chap15/phonelog.pyw; the full version is in chap15/phonelog-fk.pyw. When these
applications are run for the very first time they create a database of fake
records which they then use on subsequent runs. Generating these records
using Qt’s built-in SQLite is fast on Linux but very slow on some Windows
machines. (A splash screen is used to disguise the slowness.)

The simplified application has a single table, calls, and no foreign key field.
The form is represented by the PhoneLogDlg class. The initializer is quite long,

452 Chapter 15. Databases

Figure 15.2 The simplified Phone Log application

so we will look at it in parts, skipping the layout since our focus in this chapter
is on database programming.

class PhoneLogDlg(QDialog):

FIRST, PREV, NEXT, LAST = range(4)

def __init__(self, parent=None):

super(PhoneLogDlg, self).__init__(parent)

callerLabel = QLabel("&Caller:")

self.callerEdit = QLineEdit()

callerLabel.setBuddy(self.callerEdit)

today = QDate.currentDate()

startLabel = QLabel("&Start:")

self.startDateTime = QDateTimeEdit()

startLabel.setBuddy(self.startDateTime)

self.startDateTime.setDateRange(today, today)

self.startDateTime.setDisplayFormat(DATETIME_FORMAT)

endLabel = QLabel("&End:")

self.endDateTime = QDateTimeEdit()

endLabel.setBuddy(self.endDateTime)

self.endDateTime.setDateRange(today, today)

self.endDateTime.setDisplayFormat(DATETIME_FORMAT)

topicLabel = QLabel("&Topic:")

topicEdit = QLineEdit()

topicLabel.setBuddy(topicEdit)

firstButton = QPushButton()

firstButton.setIcon(QIcon(":/first.png"))

We create a label and a suitable editing widget for each field. We also create
all the form’s buttons, although we show the creation of only the first one. We
pass a string to the Add,Delete, andQuit buttons’ constructors to give them their
captions, in addition to giving them icons.

self.model = QSqlTableModel(self)

self.model.setTable("calls")

self.model.setSort(STARTTIME, Qt.AscendingOrder)

self.model.select()

Using Database Form Views 453

With the widgets in place, we create a QSqlTableModel. Since we did not specify a
particular database connection, it uses the default one.We tell the model which
table it is to work on and call select() to make it populate itself with data. We
also choose to apply a sort order to the table.

Now that we have suitable widgets and a model, we must somehow link them
together. This is achieved by using a QDataWidgetMapper.

self.mapper = QDataWidgetMapper(self)

self.mapper.setSubmitPolicy(QDataWidgetMapper.ManualSubmit)

self.mapper.setModel(self.model)

self.mapper.addMapping(self.callerEdit, CALLER)

self.mapper.addMapping(self.startDateTime, STARTTIME)

self.mapper.addMapping(self.endDateTime, ENDTIME)

self.mapper.addMapping(topicEdit, TOPIC)

self.mapper.toFirst()

To make a data widget mapper work, we must give it a model and a set of map-
pings between the widgets in the form and the corresponding columns in the
model. (The variables, ID, CALLER, STARTTIME, and so on, are set to 0, 1, 2, and so
on at the start of the file.) The mapper can be set to submit changes automati-
cally, or only when told. We prefer the latter approach because it gives us finer
control and means that when the user navigates to a different record we can
make sure that any unsaved changes are saved. Once we have set up the map-
ping, we need to make the mapper populate the widgets with a record; we have
done this by calling toFirst(), which means that at startup, the first record
is shown.

self.connect(firstButton, SIGNAL("clicked()"),

lambda: self.saveRecord(PhoneLogDlg.FIRST))

self.connect(prevButton, SIGNAL("clicked()"),

lambda: self.saveRecord(PhoneLogDlg.PREV))

self.connect(nextButton, SIGNAL("clicked()"),

lambda: self.saveRecord(PhoneLogDlg.NEXT))

self.connect(lastButton, SIGNAL("clicked()"),

lambda: self.saveRecord(PhoneLogDlg.LAST))

self.connect(addButton, SIGNAL("clicked()"), self.addRecord)

self.connect(deleteButton, SIGNAL("clicked()"),

self.deleteRecord)

self.connect(quitButton, SIGNAL("clicked()"), self.accept)

self.setWindowTitle("Phone Log")

The first four connections provide navigation. In each case, we call save-

Record(), which saves any unsaved changes, and then navigates inLambda
call-
backs

134 ☞

accordance
with the argument that has been wrapped in the lambda PyQt

4.1.1

statement. This means
that we need only a single method, saveRecord(), instead of one for each nav-
igation button. However, the connections will work only with PyQt 4.1.1 or
later. For earlier versions we must keep an instance variable (for example, a

454 Chapter 15. Databases

list) that contains references to the lambda functions to prevent them from being
garbage-collected.

def accept(self):

self.mapper.submit()

QDialog.accept(self)

If the user clicks Quit we call QDataWidgetMapper.submit(), which writes the
current record back to the underlying model, and then we close the window.

def saveRecord(self, where):

row = self.mapper.currentIndex()

self.mapper.submit()

if where == PhoneLogDlg.FIRST:

row = 0

elif where == PhoneLogDlg.PREV:

row = 0 if row <= 1 else row - 1

elif where == PhoneLogDlg.NEXT:

row += 1

if row >= self.model.rowCount():

row = self.model.rowCount() - 1

elif where == PhoneLogDlg.LAST:

row = self.model.rowCount() - 1

self.mapper.setCurrentIndex(row)

If the user navigates, we must remember the current row, since it is forgotten
after calling submit(). Then, after saving the current record, we set the row to
be the one appropriate for the navigation the user requested (but kept within
bounds), and then use setCurrentIndex() to move to the appropriate record.

def addRecord(self):

row = self.model.rowCount()

self.mapper.submit()

self.model.insertRow(row)

self.mapper.setCurrentIndex(row)

now = QDateTime.currentDateTime()

self.startDateTime.setDateTime(now)

self.endDateTime.setDateTime(now)

self.callerEdit.setFocus()

We have chosen to always add new records at the end. To do this we find the
row after the last one, save the current record, and then insert a new record at
the last row in the model. Then we set the mapper’s current index to the new
row, initialize a couple of fields, and give the caller field the focus, ready for the
user to start typing.

def deleteRecord(self):

caller = self.callerEdit.text()

Using Database Form Views 455

starttime = self.startDateTime.dateTime().toString(

DATETIME_FORMAT)

if QMessageBox.question(self,

QString("Delete"),

QString("Delete call made by
%1 on %2?") \

.arg(caller).arg(starttime),

QMessageBox.Yes|QMessageBox.No) == QMessageBox.No:

return

row = self.mapper.currentIndex()

self.model.removeRow(row)

self.model.submitAll()

if row + 1 >= self.model.rowCount():

row = self.model.rowCount() - 1

self.mapper.setCurrentIndex(row)

If the user clicks Delete we pick out some information from the current record
and use it when we ask the user to confirm the deletion. If they confirm, we
retrieve the current row, remove the row from the model, and call submitAll() to
force the model to write back the change to the underlying data source (in this
case the database). Then we finish up by navigating to the next record.

We have used submitAll() because we have performed the deletion on the
model, not the mapper, and for databases we must confirm changes to the
model by calling this method unless the view (or data widget mapper) has been
set to automatically submit. The data widget mapper’s API does not allow us
to add or delete records, only edit existing ones, and for this reason, we must
add or delete records using the underlying model.

The techniques we have used so far can be applied to any database table or
editable database view to provide users with a means of navigating, adding,
updating, and deleting records. However, in most cases, there are foreign keys
to consider, an issue we will now address as we review the phone log applica-
tion, shown in Figure 15.3.

Figure 15.3 The Phone Log application

The calls table (shown on page 447) has a foreign key outcomeid field. We want
this field to appear as a combobox in the form, showing the outcomes table’s name

456 Chapter 15. Databases

field for each corresponding ID. To do this we create a combobox in the usual
way, but we do not populate it.

Since we are now using a table that has a foreign key we must use a QSql-

RelationalTableModel rather than a QSqlTableModel.

self.model = QSqlRelationalTableModel(self)

self.model.setTable("calls")

self.model.setRelation(OUTCOMEID,

QSqlRelation("outcomes", "id", "name"))

self.model.setSort(STARTTIME, Qt.AscendingOrder)

self.model.select()

The QSqlRelationalTableModel is very similar to a QSqlTableModel, except that it
provides a few extra methods for handling relations.The setRelation() method
takes a field index in the model, and a QSqlRelation object. The relation object
is created with the name of the foreign key’s table, the field to actually store,
and the field to display.

The data widget mapper code must also be changed. In particular, we must use
a QSqlRelationalDelegate rather than the standard built-in delegate, and we
must set up the combobox that is used for the foreign key.

self.mapper = QDataWidgetMapper(self)

self.mapper.setSubmitPolicy(QDataWidgetMapper.ManualSubmit)

self.mapper.setModel(self.model)

self.mapper.setItemDelegate(QSqlRelationalDelegate(self))

self.mapper.addMapping(self.callerEdit, CALLER)

self.mapper.addMapping(self.startDateTime, STARTTIME)

self.mapper.addMapping(self.endDateTime, ENDTIME)

self.mapper.addMapping(topicEdit, TOPIC)

relationModel = self.model.relationModel(OUTCOMEID)

self.outcomeComboBox.setModel(relationModel)

self.outcomeComboBox.setModelColumn(

relationModel.fieldIndex("name"))

self.mapper.addMapping(self.outcomeComboBox, OUTCOMEID)

self.mapper.toFirst()

The code is similar to what we had before. Setting the relational delegate is
easy, but setting up the combobox is slightly subtle. First, we must retrieve the
relation model (outcomes table) used by the model (calls table) to handle the for-
eign key. A QComboBox is actually a convenience view widget with a built-in mod-
el, just like a QListWidget; but it is possible to substitute our own model, and
that’s what we have done here. However, a combobox shows a single column,
and our relation model has two columns (id, name), so we must specify which one
to display. We cannot be certain about the column indexes used by the relation
model (since it was created for us, not by us), so we use the fieldIndex() method
with a field name to specify the correct column index. Once the combobox is set
up, we can add it to the mapper like any other widget.

Using Database Form Views 457

That completes the changes for handling foreign keys. In addition, we have
taken the opportunity to make a couple of other small changes to the appli-
cation.

In the simplified version, we connected the Quit button to a custom accept()

method and, rather unintuitively, called accept() from the reject() method.
This was to ensure that the application always saved the current record’s
changes before terminating. In the foreign key version, we have taken a differ-
ent approach, and connected the Quit button to the done() method.

def done(self, result=None):

self.mapper.submit()

QDialog.done(self, True)

This method is called as a result of the Quit button connection, or if the user
closes the window by clicking the X close button or presses Esc. We save the
current record and call the base class’s done() method. The second argument
is mandatory, but it doesn’t matter what value it holds in this case: A True

value signifies accept() and a False value signifies reject(), but either way, the
window will close.

We have made one other tiny change, adding two lines to the addRecord()

method:

self.outcomeComboBox.setCurrentIndex(

self.outcomeComboBox.findText("Unresolved"))

This ensures that when the user clicks Add to add a new record, the outcome
combobox will have a sensible default, in addition to the date/time defaults we
already set.

Forms are very useful for tables with lots of fields, especially if a lot of vali-
dation needs to be done on the basis of interfield dependencies. But for tables
with fewer fields, or where users want to see multiple records, we need to use
tabular views. This is the subject of the next section.

Using Database Table Views

Probably the most natural and convenient way to present database data is to
show database tables and views in GUI tables. This allows users to see many
records at once, and it is particularly convenient for showing master–detail
relationships.

In this section, we will examine the Asset Manager application. The code is
in chap15/assetmanager.pyw. This application has four tables, created by the
following SQL statements:

query = QSqlQuery()

query.exec_("""CREATE TABLE actions (

id INTEGER PRIMARY KEY AUTOINCREMENT UNIQUE NOT NULL,

458 Chapter 15. Databases

name VARCHAR(20) NOT NULL,

description VARCHAR(40) NOT NULL)""")

query.exec_("""CREATE TABLE categories (

id INTEGER PRIMARY KEY AUTOINCREMENT UNIQUE NOT NULL,

name VARCHAR(20) NOT NULL,

description VARCHAR(40) NOT NULL)""")

query.exec_("""CREATE TABLE assets (

id INTEGER PRIMARY KEY AUTOINCREMENT UNIQUE NOT NULL,

name VARCHAR(40) NOT NULL,

categoryid INTEGER NOT NULL,

room VARCHAR(4) NOT NULL,

FOREIGN KEY (categoryid) REFERENCES categories)""")

query.exec_("""CREATE TABLE logs (

id INTEGER PRIMARY KEY AUTOINCREMENT UNIQUE NOT NULL,

assetid INTEGER NOT NULL,

date DATE NOT NULL,

actionid INTEGER NOT NULL,

FOREIGN KEY (assetid) REFERENCES assets,

FOREIGN KEY (actionid) REFERENCES actions)""")

The actions and categories tables are typical reference data tables, with an
ID, a short description (name), and a long description (description). The main
table is assets; this holds the name, category, and location of each asset in a
building. The logs table is used to keep track of what happens to an asset over
its lifetime. Figure 15.4 shows the tables schematically.

categories

id
name
description

assets

id
name
categoryid
room

logs

id
assetid
date
actionid

actions

id
name
description

Figure 15.4 The Asset Manager database design

The Asset Manager application has a dialog-style main window with two
QTableViews in a master–detail relationship. It is shown in Figure 15.5. The
top table shows the assets table and the bottom one shows the records from the
logs table that correspond to the current asset record. The user can add and
delete assets and log records, and edit both tables in-place. Users can also add,
delete, and edit the categories and actions reference tables by popping up a
suitable dialog. This dialog also uses a QTableView, although it could easily have
used a QDataWidgetMapper instead.

We will begin by looking at the creation and connection to the database, then
the main form, and then we will look at the dialog that is used with the ref-
erence data. Just as with the Phone Log application, the Asset Manager gen-
erates a set of fake records the first time it is run. As noted in the preceding

Using Database Table Views 459

Figure 15.5 The Asset Manager application

section, this is fast with SQLite on Linux and very slow on some Windows
machines.

app = QApplication(sys.argv)

db = QSqlDatabase.addDatabase("QSQLITE")

db.setDatabaseName(filename)

if not db.open():

QMessageBox.warning(None, "Asset Manager",

QString("Database Error: %1").arg(db.lastError().text()))

sys.exit(1)

form = MainForm()

form.show()

app.exec_()

We begin as usual by creating a QApplication object. Next we create the
connection; if the database file doesn’t exist, SQLite will create an empty one.
Then we create the main form, call show() on it to schedule a paint event, and
start off the event loop.

What we haven’t shown is the code that we have used to generate the fake data
the first time the application is run, and to pop up the splash screen. This code
is, of course, in the source file, chap15/assetmanager.pyw.

As we did in the preceding section, we will skip the form’s layout and concen-
trate instead on the creation of the widgets and the models. We will also skip
the code for creating the buttons, although we will show the first couple of
signal–slot connections.

460 Chapter 15. Databases

class MainForm(QDialog):

def __init__(self):

super(MainForm, self).__init__()

self.assetModel = QSqlRelationalTableModel(self)

self.assetModel.setTable("assets")

self.assetModel.setRelation(CATEGORYID,

QSqlRelation("categories", "id", "name"))

self.assetModel.setSort(ROOM, Qt.AscendingOrder)

self.assetModel.setHeaderData(ID, Qt.Horizontal,

QVariant("ID"))

self.assetModel.setHeaderData(NAME, Qt.Horizontal,

QVariant("Name"))

self.assetModel.setHeaderData(CATEGORYID, Qt.Horizontal,

QVariant("Category"))

self.assetModel.setHeaderData(ROOM, Qt.Horizontal,

QVariant("Room"))

self.assetModel.select()

The model is created in much the same way as we saw in the preceding sec-
tion. The ID, NAME, and others are integer column indexes set up earlier in the
assetmanager.pyw file. What’s different from using a QDataWidgetMapper is that
we have set the header data to give the columns titles; if we don’t do this, the
QTableView that presents the model will use the database field names for the
column titles. Since the categoryid field is a foreign key, we have used a QSql-

RelationalTableModel and called setRelation() appropriately.

self.assetView = QTableView()

self.assetView.setModel(self.assetModel)

self.assetView.setItemDelegate(AssetDelegate(self))

self.assetView.setSelectionMode(QTableView.SingleSelection)

self.assetView.setSelectionBehavior(QTableView.SelectRows)

self.assetView.setColumnHidden(ID, True)

self.assetView.resizeColumnsToContents()

The view is a standard QTableView, but instead of setting a QSqlRelational-

Delegate, we have set a custom delegate. We will detour to look at this in a mo-
ment. The selection mode is set so that users can navigate to individual fields;
the selection behavior is that the row that has the focus is highlighted. We don’t
want to show the ID field since it isn’t meaningful to the user, so we hide it.

We have not used a standard QSqlRelationalDelegate because we want to take
control of the editing of the room numbers, since they are not straightforward
to validate. We will now take a brief detour to look at the AssetDelegate class.

class AssetDelegate(QSqlRelationalDelegate):

def __init__(self, parent=None):

Using Database Table Views 461

super(AssetDelegate, self).__init__(parent)

The initializer is typical of most delegate subclasses, simply calling the
base class.

def paint(self, painter, option, index):

myoption = QStyleOptionViewItem(option)

if index.column() == ROOM:

myoption.displayAlignment |= Qt.AlignRight|Qt.AlignVCenter

QSqlRelationalDelegate.paint(self, painter, myoption, index)

We have reimplemented the paint() method only to right-align the room
numbers. We do this by changing the QStyleOptionViewItem, and we leave the
painting itself to be done by the base class.

def createEditor(self, parent, option, index):

if index.column() == ROOM:

editor = QLineEdit(parent)

regex = QRegExp(r"(?:0[1-9]|1[0124-9]|2[0-7])"

r"(?:0[1-9]|[1-5][0-9]|6[012])")

validator = QRegExpValidator(regex, parent)

editor.setValidator(validator)

editor.setInputMask("9999")

editor.setAlignment(Qt.AlignRight|Qt.AlignVCenter)

return editor

else:

return QSqlRelationalDelegate.createEditor(self, parent,

option, index)

The heart of the createEditor() method is the code that sets up the QLineEdit

for entering room numbers. Room numbers are four digits long, made up of
a floor number, in the range 01–27 (but excluding 13), and a room number on
the floor in the range 01–62. For example, 0231 is floor 2, room 31, but 0364 is
invalid. The regular expression is sufficient for specifying valid room numbers,
but it cannot set a minimum number of digits, since one, two, or three digits
may be a valid prefix for a valid four digit room number. We have solved this
by using an input mask that requires exactly four digits to be entered. For the
other fields, we pass the work on to the base class.

def setEditorData(self, editor, index):

if index.column() == ROOM:

text = index.model().data(index, Qt.DisplayRole).toString()

editor.setText(text)

else:

QSqlRelationalDelegate.setEditorData(self, editor, index)

462 Chapter 15. Databases

Once the editor has been created, the view will call setEditorData() so that it
can be populated with the current value. In this case, we care only about the
room column, passing on the work for the other fields to the base class.

def setModelData(self, editor, model, index):

if index.column() == ROOM:

model.setData(index, QVariant(editor.text()))

else:

QSqlRelationalDelegate.setModelData(self, editor, model,

index)

We have taken a similar approach to the previous method, handling the room
field and leaving the others to be handled by the base class. As a matter of
fact, we could have omitted reimplementing this method, and PyQt would have
been smart enough to retrieve the value from our QLineEdit. However, it is a
better practice to take full responsibility for our own customizations.

We have now finished the detour and can return to the MainForm.__init__()

method, beginning with the bottom table that shows the log records that are
applicable to the current asset.

self.logModel = QSqlRelationalTableModel(self)

self.logModel.setTable("logs")

self.logModel.setRelation(ACTIONID,

QSqlRelation("actions", "id", "name"))

self.logModel.setSort(DATE, Qt.AscendingOrder)

self.logModel.setHeaderData(DATE, Qt.Horizontal,

QVariant("Date"))

self.logModel.setHeaderData(ACTIONID, Qt.Horizontal,

QVariant("Action"))

self.logModel.select()

The code for creating the log model is almost the same as the code we used for
the asset model. We use a QSqlRelationalTableModel because we have a foreign
key field, and we provide our own column titles.

self.logView = QTableView()

self.logView.setModel(self.logModel)

self.logView.setItemDelegate(LogDelegate(self))

self.logView.setSelectionMode(QTableView.SingleSelection)

self.logView.setSelectionBehavior(QTableView.SelectRows)

self.logView.setColumnHidden(ID, True)

self.logView.setColumnHidden(ASSETID, True)

self.logView.resizeColumnsToContents()

self.logView.horizontalHeader().setStretchLastSection(True)

This code is also similar to what we did for the assets table, but with three dif-
ferences. Here we have used a custom LogDelegate class—we won’t review it

Using Database Table Views 463

because it is structurally very similar to the AssetDelegate. It provides custom
editing of the date field. We also hide both the log record’s ID field and the
assetid foreign key—there’s no need to show which asset the log records are for
because we are using master–detail, so the only log records that are visible are
those that apply to the current asset. (We will see how the master–detail rela-
tionship is coded shortly.) The last difference is that we have set the last col-
umn to stretch to fill all the available space. The QTableView.horizontalHeader()

method returns a QHeaderView, and this is what controls some aspects of the
table view’s columns, including their widths.

self.connect(self.assetView.selectionModel(),

SIGNAL("currentRowChanged(QModelIndex,QModelIndex)"),

self.assetChanged)

self.connect(addAssetButton, SIGNAL("clicked()"),

self.addAsset)

If the user navigates to a different row we must update the log view to show
the log records for the right asset. This is achieved by the first connection in
conjunction with the assetChanged() method that we will review in a moment.

Every view has at least one selection model that is used to keep track of
which items in the view’s model (if any) are selected. We connect the view’s
selection model’s currentRowChanged() signal so that we can update the log view
depending on the current asset.

All the other connections are button-clicked connections like the second one
shown here. We will cover all the methods the buttons connect to as we
progress through this section.

self.assetChanged(self.assetView.currentIndex())

self.setMinimumWidth(650)

self.setWindowTitle("Asset Manager")

The initializer ends by calling the assetChanged() method with the asset view’s
current model index—this will result in the log view showing the relevant
asset’s records.

def assetChanged(self, index):

if index.isValid():

record = self.assetModel.record(index.row())

id = record.value("id").toInt()[0]

self.logModel.setFilter(QString("assetid = %1").arg(id))

else:

self.logModel.setFilter("assetid = -1")

self.logModel.select()

self.logView.horizontalHeader().setVisible(

self.logModel.rowCount() > 0)

464 Chapter 15. Databases

This method is called once by the form’s initializer and then whenever the
user navigates to a different asset, that is, to a different row in the assets

table view.

If the model index of the new position in the view is valid, we retrieve the row’s
entire record from the model and set a filter on the log model that selects only
those log records which have an assetid corresponding to the asset ID of the
current row. (This is the equivalent of doing SELECT * FROM logs WHERE assetid =

id.) Then we call select() to refresh the log view with the selected log records.
If the model index is invalid, we set the ID to be one that we know does not
exist, thereby guaranteeing that no rows will be retrieved and the log view will
be empty. Finally,we hide the log view’s column titles if there are no log records
to display.

The record() method is one of the extensions that the QSqlTableModel and
QSqlRelationalTableModel classes provide in addition to the methods from their
QAbstractItemModel base class, to make them easier to use with databases.
Other extensions include setQuery(), which allows us to write our own SELECT

statement using SQL syntax, and insertRecord(), for adding records.

The connection to the assetChanged() method, and the implementation of the
method,are all we have to do to establish a master–detail relationship between
two models (and therefore, between their views).

def done(self, result=1):

query = QSqlQuery()

query.exec_("DELETE FROM logs WHERE logs.assetid NOT IN"

"(SELECT id FROM assets)")

QDialog.done(self, 1)

When the application terminates we execute one final query to delete any
log records that are present for nonexistent (deleted) assets. In theory, this
should never be needed, and therefore should do nothing. This is because, for
databases that support transactions, we use transactions to ensure that if an
asset is deleted, so are its log records.

def addAction(self):

index = self.assetView.currentIndex()

if not index.isValid():

return

QSqlDatabase.database().transaction()

record = self.assetModel.record(index.row())

assetid = record.value(ID).toInt()[0]

row = self.logModel.rowCount()

self.logModel.insertRow(row)

self.logModel.setData(self.logModel.index(row, ASSETID),

QVariant(assetid))

self.logModel.setData(self.logModel.index(row, DATE),

Using Database Table Views 465

QVariant(QDate.currentDate()))

QSqlDatabase.database().commit()

index = self.logModel.index(row, ACTIONID)

self.logView.setCurrentIndex(index)

self.logView.edit(index)

If the user asks to add an action (a new log record), this method is called. We
retrieve the assetid for the current asset, and then insert a new log record as
the last record in the logs table. We then set the record’s assetid foreign key
to the one we have retrieved and provide an initial default date. Finally, we
retrieve a model index to the new log record’s action combobox, and initiate
editing ready for the user to choose a suitable action.

Before we retrieve the assetid, we begin a transaction. This is to prevent the
theoretical possibility that having retrieved the assetid, the asset is deleted
just before the new log record is created. If this occurred, the log record would
refer to a nonexistent asset, something that might cause crashes or subtler
problems later on. Once we call commit(), we know that the asset and the new
log record exist. If someone now tries to delete the asset, they can do so—but
the asset’s log records, including this one, will correctly be deleted along
with it.

For a really defensive approach we might structure our transaction code
like this:

class DatabaseError(Exception): pass

rollback = False

try:

if not QSqlDatabase.database().transaction():

raise DatabaseError

rollback = True

execute commands that affect the database

if not QSqlDatabase.database().commit()

raise DatabaseError

rollback = False

finally:

if rollback:

if not QSqlDatabase.database().rollback():

raise DatabaseError

This tries to ensure that if some problem occurs that prevents the commit from
being reached, or from being able to execute successfully if it is called, we roll
back to the previous position and therefore preserve the database’s relational
integrity. All bets are off if the rollback fails, though. The error text can be
retrieved from QSqlDatabase.database().lastError().text(), which returns a
QString.

The scope of a transaction goes from when transaction() is called until the
transaction is either committed or rolled back. It does not matter whether the

466 Chapter 15. Databases

database has been accessed through QSqlDatabase or through a model. The con-
text of the transaction applies to all SQL statements, including those executed
by independent queries and those executed by different models, as long as they
apply to the same database within the same transaction’s context.

If we are using Python 2.6, or use from __future__ import Using a
Context
Manag-
er for
Unlock-
ing
sidebar

☞ 549

with_statement in
Python 2.5, we could simplify the code shown earlier by creating and using a
context manager.

The transaction-oriented approach tries to arrange things so that problems
cannot occur. An alternative approach is to assume that everything will
work, and rely on the database to preserve foreign key relationships and oth-
er aspects of data integrity. This won’t work with SQLite 3, since it does not
enforce relational integrity, but it does work with some other databases. With
this approach, we can often code without using transactions. Most of the time
things will work fine, and for those few occasions when a problem occurs, we
rely on the database to refuse to do any action that would break its rules, and
to provide us with an error message that we can report to the user.

Note that transactions are set on the database, accessed through the static
QSqlDatabase.database() method. The database can also be accessed by calling
the database() method on a model. Each database connection can handle one
transaction at a time, so if we want more than one transaction at the same
time, we must establish an extra connection for each extra transaction that we
want to use.

def deleteAction(self):

index = self.logView.currentIndex()

if not index.isValid():

return

record = self.logModel.record(index.row())

action = record.value(ACTIONID).toString()

if action == "Acquired":

QMessageBox.information(self, "Delete Log",

"The 'Acquired' log record cannot be deleted.
"

"You could delete the entire asset instead.")

return

when = unicode(record.value(DATE).toString())

if QMessageBox.question(self, "Delete Log",

"Delete log
%s %s?" % (when, action),

QMessageBox.Yes|QMessageBox.No) == QMessageBox.No:

return

self.logModel.removeRow(index.row())

self.logModel.submitAll()

For deleting actions, the logic that we have implemented is that users cannot
delete the “Acquired” log record, that is, the first log record. (But they can
delete an asset, and with that all its log records, as we will see shortly.) If the
log record is one that the user is allowed to delete and they confirm the deletion,

Using Database Table Views 467

we simply call removeRow() on the log model and then submitAll() to update the
underlying database.

def editActions(self):

form = ReferenceDataDlg("actions", "Action", self)

form.exec_()

def editCategories(self):

form = ReferenceDataDlg("categories", "Category", self)

form.exec_()

Since both the actions and the categories reference tables have identical
structures, we can use the same smart dialog for when we want to drill down
to add, edit, and delete their records. We give the dialog the name of the table
in the database, and the name of the reference data to be shown in the user
interface (in the dialog’s title bar, for example).

Figure 15.6 The Asset Manager Reference Data form

We won’t review the code for the ReferenceDataDlg shown in Figure 15.6,
because it does not have anything new to teach us. It uses a QTableView with
a QSqlTableModel set to the table that is passed in to its constructor. Editing is
in-place and handled automatically by the table view and table model. Adding
a record is simply a matter of inserting a new row into the model and setting
the view to it.

For reference data deletions, we execute a query to see whether the particular
reference data record is being used by one of the other tables, that is, an action
is used by any records in the logs table, or if a category is used by any records in
the assets table. If the record is in use, we pop up an informative error message
and do not permit the deletion to take place. Otherwise, we call removeRow() on
the model for the relevant row and then submitAll() to commit the change to
the database, just as we did when deleting an action.

Unlike reference data, adding and deleting assets is handled by the main
form’s methods.

def addAsset(self):

row = self.assetView.currentIndex().row() \

468 Chapter 15. Databases

if self.assetView.currentIndex().isValid() else 0

QSqlDatabase.database().transaction()

self.assetModel.insertRow(row)

index = self.assetModel.index(row, NAME)

self.assetView.setCurrentIndex(index)

assetid = 1

query = QSqlQuery()

query.exec_("SELECT MAX(id) FROM assets")

if query.next():

assetid = query.value(0).toInt()[0]

query.prepare("INSERT INTO logs (assetid, date, actionid) "

"VALUES (:assetid, :date, :actionid)")

query.bindValue(":assetid", QVariant(assetid + 1))

query.bindValue(":date", QVariant(QDate.currentDate()))

query.bindValue(":actionid", QVariant(ACQUIRED))

query.exec_()

QSqlDatabase.database().commit()

self.assetView.edit(index)

When the user adds a new asset we want to create a new log record for the
asset with its action set to “Acquired”. Naturally, we want either both of these
records created, or, if something goes wrong, neither, and to do this we must
use a transaction.

We begin by initiating a transaction. Then we insert a new row and make it
the current one in the asset view. If this is the very first asset, its ID will be
1, but if there are other assets, its ID will be one more than the highest asset
ID. We execute a query to find the current highest asset ID and then we use a
prepared query (so that we don’t have to worry about quoting), to insert a new
record into the logs table. Once the new record has gone into the logs table,
we commit the transaction. Now we will have one log record for the new asset
with an action of “Acquired”, and a new blank asset record. Finally, we initiate
editing on the new asset’s name field.

We will finish reviewing the main form by looking at the deleteAsset() method.
The method is slightly involved, so we will look at it in three parts.

def deleteAsset(self):

index = self.assetView.currentIndex()

if not index.isValid():

return

QSqlDatabase.database().transaction()

record = self.assetModel.record(index.row())

assetid = record.value(ID).toInt()[0]

logrecords = 1

query = QSqlQuery(QString("SELECT COUNT(*) FROM logs "

"WHERE assetid = %1").arg(assetid))

Using Database Table Views 469

if query.next():

logrecords = query.value(0).toInt()[0]

We begin by starting a transaction. This is because if an asset is to be deleted,
all its log records must also be deleted, and either both of these things must
happen or neither, to maintain the database’s relational integrity.

We know that there must be at least one log record, the “Acquired” record, but
we perform a query to see what the total number of log records is.

msg = QString("Delete
%1"

"
from room %2") \

.arg(record.value(NAME).toString()) \

.arg(record.value(ROOM).toString())

if logrecords > 1:

msg += QString(", along with %1 log records") \

.arg(logrecords)

msg += "?"

if QMessageBox.question(self, "Delete Asset", msg,

QMessageBox.Yes|QMessageBox.No) == QMessageBox.No:

QSqlDatabase.database().rollback()

return

Here we give the user the opportunity to confirm their deletion or to cancel it.
If they cancel, we rollback the transaction and return.

query.exec_(QString("DELETE FROM logs WHERE assetid = %1") \

.arg(assetid))

self.assetModel.removeRow(index.row())

self.assetModel.submitAll()

QSqlDatabase.database().commit()

self.assetChanged(self.assetView.currentIndex())

We have deleted the log records using a SQL query, and the asset record
using the model API. After the deletion we commit the transaction and call
assetChanged() to make sure that the master–detail view is showing the correct
log records.

We could have used the model API for both deletions. For example:

self.logModel.setFilter(QString("assetid = %1").arg(assetid))

self.logModel.select()

if self.logModel.rowCount() > 0:

self.logModel.removeRows(0, self.logModel.rowCount())

self.logModel.submitAll()

This completes our review of the Asset Manager application. Creating
master–detail relationships between tables is quite straightforward, and the
same thing can be done between tables and forms using a data widget mapper.

470 Chapter 15. Databases

The SQL table models are very easy to use and “just work” with QTableViews.
Also, we can create custom delegates to exercise complete control over the ap-
pearance and editing of fields, and where necessary we can use delegates to
provide record level validation.

One issue that we have not had to concern ourselves with is that of creating
unique keys for new records. We have solved the problem by using auto-in-
crementing ID fields in our tables. But sometimes auto-incrementing is not
appropriate—for example, when a key is more complicated than a simple in-
teger. We can handle such cases by connecting to the QSqlTableModel.before-

Insert() signal. This signal gives the method it is connected to a reference to
the record that is about to be inserted (after the user has finished editing it), so
we can populate or change any fields we like just before the data actually gets
inserted into the database.

There are also some additional SQL-specific signals that we can connect
to—for example, beforeDelete() and beforeUpdate(); these might be useful if we
wanted to record deletions or changes in a separate table. Finally, there is the
primeInsert() signal—this is emitted when a new record is created, but before
the user has had the chance to edit it. This is where we might populate the
record with helpful default values. However, in all the examples in this chapter,
we have put in default values when the user clicked an Add button. Also note
that since QSqlRelationalTableModel is a subclass of QSqlTableModel, it too has
these signals.

Summary

PyQt provides strong support for SQL databases with a consistent API provid-
ed by the QtSql module. Database drivers are provided for all the most widely
used databases, although some are available only with commercial editions of
Qt due to licensing restrictions.

If we make a single database connection, all subsequent database accesses will
use that connection by default. But if we need multiple connections, we can
simply give each one a name, and access them by name afterward to specify
which one we want to use for which particular action.

We can access the database’s driver, and through that discover whether the
database supports certain features such as BLOBs and transactions. And
no matter what the underlying database is, PyQt allows us to use prepared
queries with both ODBC and Oracle syntax, automatically handling any con-
versions and quoting that are necessary. PyQt supports all the standard SQL
data types, and performs any necessary conversions if the database itself
does not.

The QSqlQuery class allows us to execute arbitrary SQL statements using its
exec_() method. This means, for example, that we can use it to create and drop
tables, and to insert, update, and delete records. The QSqlQuery objects provide

Summary 471

methods for navigating the result set produced when a SELECT statement is
executed, and they can provide information on the number of rows affected by
a query—for example, how many were deleted or updated.

Creating GUI forms for displaying database tables (or editable views) is
straightforward using a QDataWidgetMapper. We normally use a QComboBox for
each foreign key field, giving it the appropriate relation model as its internal
model. Although it is possible to set a QDataWidgetMapper to submit changes au-
tomatically, this can lead to data loss when the user navigates, so if we provide
a means of navigation, it is best to submit all the changes ourselves.

Displaying database tables and views is very easy using QTableView in conjunc-
tion with a QSqlTableModel or a QSqlRelationalTableModel.These classes combine
to offer in-place editing of field data. Adding and deleting records can easily
be achieved by inserting or deleting rows from the model, and when we need
atomic actions we can use transactions.

All the functionality of PyQt’s model/view architecture is available to database
programmers. In addition, the SQL table models’ APIs have been extended to
make database programming easier. And when we need to execute raw SQL,
we can easily do so using the QSqlQuery class.

We have now reached the point where you should be able to create any kind
of GUI application you like, limited only by your imagination and the time
available to you. In Part IV we will look at some additional topics that can
be tricky to deal with, starting with more advanced material on model/view
programming, then internationalization, then networking, and finishing up
with multithreading.

Exercise
Create a dialog-style application for adding, editing, and deleting records in
a reference table, like the one shown in Figure 15.7. The application should
create the reference.db database the first time it is run, with a single, empty
table:

CREATE TABLE reference (

id INTEGER PRIMARY KEY AUTOINCREMENT UNIQUE NOT NULL,

category VARCHAR(30) NOT NULL,

shortdesc VARCHAR(20) NOT NULL,

longdesc VARCHAR(80))

In addition to offering Add and Delete buttons, provide a Sort button that has
a pop-up menu with three sort order options: by ID, by category, and by short
description. All three could be connected to a single method using lambda or
functools.partial. To make any new sort (or filter) take effect, you must call
select() on the model. Use a QDialogButtonBox for all the buttons.

472 Chapter 15. Databases

Figure 15.7 The Reference Data dialog

If the user clicks Delete, pop up a yes/no message box, and delete only if they
click the Yes button. The application is similar to the ReferenceDataDlg from the
Asset Manager application, and can be written in about 130 lines.

A solution is provided in chap15/referencedata.pyw.

Part IV

Advanced GUI Programming

This page intentionally left blank

Advanced Model/View
Programming

1616 ● Custom Views

● Generic Delegates

● Representing Tabular Data in Trees

In the two preceding chapters we explored the basics of PyQt model/view pro-
gramming.★ We saw how to create custom models, and how to use the prede-
fined SQL table models. We also saw how to create custom delegates to control
the appearance and editing of data items. In this chapter, we will deepen our
knowledge of PyQt model/view programming.

All of the topics covered in this chapter, and the ones that follow, are more
advanced than the ones we have seen before, at least conceptually. However,
in most cases the code is no more difficult than what we have already seen.

In the first section we will look at how to implement a custom view so that we
can see how to visualize our data in any way we want. This section is useful
for understanding more about how views work, and to see one straightforward
approach to implementing a custom view.

The second section revisits the subject of custom delegates, showing how to
minimize code duplication and how to easily create arbitrary delegates for
views. This section should prove especially useful to those who need to create
many delegates, especially for datasets such as SQL tables where each column
is of a particular type.

In the final section we will see how to reflect tabular data into a tree view. One
use of this is where we represent tables as trees when the first few columns
often contain the same values—this has the effect of reducing the number of
rows that the user must navigate to find the item they want. Another use is
to let users pick particular values that form a “path”. For example, rather than
providing two, three, or more comboboxes, each with values that depend on the
current values of its predecessors, we just provide a single tree for the user to
navigate and choose from.

★This chapter assumes a knowledge of PyQt’s model/view architecture, covered in Chapter 14.

475

476 Chapter 16. Advanced Model/View Programming

Custom Views
PyQt provides several view classes that work well out of the box, includ-
ing QListView, QTableView, and QTreeView. One thing that all these views
have in common is that they are usually used to present data items
textually—although all of them can also show icons and checkboxes if desired.
An alternative to textual representations of data are visual representations,
and for these we can use the graphics view classes covered in Chapter 12.Some-
times, though, we want to present data in a way that doesn’t really match any
of the classes that are available. In such cases we can create our own view sub-
class and use it to visualize our models.

Figure 16.1 Two views of water quality data

Figure 16.1 shows the same dataset presented by two different views. The left-
hand view is a standard QTableView, and the right-hand view is a custom Water-

QualityView. Both show the timestamps of water quality readings textually,but
the WaterQualityView shows colored circles for three key indicators, and it uses
Unicode arrow symbols to signify special flow situations. Obviously, the table
view presents the facts in a clear and accurate way, but the water quality view
makes it easier to see what the situation is at any particular time, and it makes
it easier to get an impression of any important trends, just by looking at the
colors.

The water quality dataset covers a six-month period at one small water
treatment plant—but with readings taken every 15 minutes, this adds up
to slightly more than 17500 readings. This implies that our view is going to
need a vertical scrollbar. PyQt offers three ways to get scrollbars. One way is
to create a widget that inherits QAbstractScrollArea; this approach is used by
the QGraphicsView and QTextEdit widgets. Another way is to create a composite
widget that includes a couple of QScrollBars. But PyQt’s documentation recom-
mends the third way—using the much simpler QScrollArea instead. The one
disadvantage of using QScrollArea is that it is one of the few PyQt classes not
designed to be subclassed. Instead, we must create an instance and add to it
the widget for which we want scrollbars. To put this into perspective here is
the Water Quality Data application’s initializer:

Custom Views 477

class MainForm(QDialog):

def __init__(self, parent=None):

super(MainForm, self).__init__(parent)

self.model = WaterQualityModel(os.path.join(

os.path.dirname(__file__), "waterdata.csv.gz"))

self.tableView = QTableView()

self.tableView.setAlternatingRowColors(True)

self.tableView.setModel(self.model)

self.waterView = WaterQualityView()

self.waterView.setModel(self.model)

scrollArea = QScrollArea()

scrollArea.setBackgroundRole(QPalette.Light)

scrollArea.setWidget(self.waterView)

self.waterView.scrollarea = scrollArea

splitter = QSplitter(Qt.Horizontal)

splitter.addWidget(self.tableView)

splitter.addWidget(scrollArea)

splitter.setSizes([600, 250])

layout = QHBoxLayout()

layout.addWidget(splitter)

self.setLayout(layout)

self.setWindowTitle("Water Quality Data")

QTimer.singleShot(0, self.initialLoad)

The preceding code is the whole thing. The WaterQualityModel is a QAbstract-

TableModel subclass that provides read-only access to a water quality data file.
The WaterQualityView is the class we will develop in this section. One special
thing that we have done here is to create a QScrollArea widget and add the
water quality view to it—this basically means that the water quality view can
be as wide and as tall as we like and the scroll area will take care of scrolling
issues.

We will see shortly that keyboard users can navigate in the water quality
view using the up and down arrow keys, and to ensure that the selected row is
always visible we must pass the scroll area to the water quality view so that
our key press handler can interact with it. Another thing that is special is
that we have given initial sizes to the two parts of the horizontal splitter so
that at start-up, they are roughly in the right proportions for the widgets they
are holding.

We will now review the WaterQualityView, beginning with some static data and
the initializer.

class WaterQualityView(QWidget):

FLOWCHARS = (unichr(0x21DC), unichr(0x21DD), unichr(0x21C9))

478 Chapter 16. Advanced Model/View Programming

def __init__(self, parent=None):

super(WaterQualityView, self).__init__(parent)

self.scrollarea = None

self.model = None

self.setFocusPolicy(Qt.StrongFocus)

self.selectedRow = -1

self.flowfont = self.font()

size = self.font().pointSize()

if platform.system() == "Windows":

fontDb = QFontDatabase()

for face in [face.toLower() for face in fontDb.families()]:

if face.contains("unicode"):

self.flowfont = QFont(face, size)

break

else:

self.flowfont = QFont("symbol", size)

WaterQualityView.FLOWCHARS = (

chr(0xAC), chr(0xAE), chr(0xDE))

Setting the focus policy to anything (except Qt.NoFocus) means that the widget
can accept keyboard focus. We will discuss why we have done this, and the
selectedRow instance variable, at the end of this section.

When water flow is going the wrong way, or too slowly, or too quickly, we want
to indicate the situation with a suitable character—for example, ∼→, ∼→, and
→
→.These characters are available in Unicode,but most of the default fonts sup-
plied with Windows don’t appear to include the whole Unicode character set, so
all the arrows are shown as characters. (On Linux, if a Unicode character is
not available in the current font,PyQt can usually find the character in another
font, in which case it uses the found font just for that character.)

To solve this problem on Windows we iterate over the list of available fonts
until we find one with “Unicode” in its name (e.g., “Lucida Sans Unicode”). If we
find such a font, we store it as the flow characters’ font; otherwise, we fall back
to the standard (but non-Unicode) Symbol font and use the nearest equivalent
characters in that font.

def setModel(self, model):

self.model = model

self.connect(self.model,

SIGNAL("dataChanged(QModelIndex,QModelIndex)"),

self.setNewSize)

self.connect(self.model, SIGNAL("modelReset()"),

self.setNewSize)

self.setNewSize()

Once a model is set on the view we connect to its data-changed and reset
signals so that the view can be resized to match the available data.

Custom Views 479

def setNewSize(self):

self.resize(self.sizeHint())

self.update()

self.updateGeometry()

This method resizes the view to its preferred size and calls update() to schedule
a repaint and updateGeometry() to tell any layout manager that is responsible
for the view that its size has changed.Because we put the view in a QScrollArea,
the scroll area will respond to changes in size by adjusting the scrollbars
it provides.

def minimumSizeHint(self):

size = self.sizeHint()

fm = QFontMetrics(self.font())

size.setHeight(fm.height() * 3)

return size

We calculate the view’s minimum size to be its preferred size’s width and three
characters in height. In a layout this makes sense, but since a QScrollArea is
used, the minimum size will, in practice, be whatever the scroll area decides.

def sizeHint(self):

fm = QFontMetrics(self.font())

size = fm.height()

return QSize(fm.width("9999-99-99 99:99 ") + (size * 4),

(size / 4) + (size * self.model.rowCount()))

We use the height of one character (including its interline spacing) as our unit
of size for both vertical and horizontal measurements. The view’s preferred
size is wide enough to show a timestamp plus four units of size to allow for the
colored circles and the flow character, and it’s tall enough for all the rows in the
model plus one-quarter of the unit of size to allow a tiny bit of margin.

The paint event isn’t too difficult, but we will look at it in three parts, and show
the code for only one colored circle since the code for all three is almost iden-
tical.

def paintEvent(self, event):

if self.model is None:

return

fm = QFontMetrics(self.font())

timestampWidth = fm.width("9999-99-99 99:99 ")

size = fm.height()

indicatorSize = int(size * 0.8)

offset = int(1.5 * (size - indicatorSize))

minY = event.rect().y()

maxY = minY + event.rect().height() + size

minY -= size

painter = QPainter(self)

480 Chapter 16. Advanced Model/View Programming

painter.setRenderHint(QPainter.Antialiasing)

painter.setRenderHint(QPainter.TextAntialiasing)

If there is no model we do nothing and return. Otherwise, we need to calculate
some sizes. Just like the sizeHint(), we use the height of one character as our
unit of size, setting the indicatorSize (the diameter of the colored circles) to
80% of this amount. The offset is a tiny amount of vertical spacing designed
to make the circles align vertically with the timestamp text.

Given the large size of the datasets that the view might be asked to show, it
seems sensible to paint only those items that are wholly or partially visible to
the user. For this reason, we set the minimum y coordinate to the paint event
rectangle’s y coordinate (but minus one size unit), and the maximum y coordi-
nate to be the minimum plus the paint event’s height plus one size unit. This
means that we will paint from the item above the topmost item that is wholly in
the view (i.e., the one with the lowest y coordinate in range, since point (0, 0) is
the top-left corner), down to the item below the bottommost item that is wholly
in the view (i.e., the one with the highest y coordinate in range).

A paint event’s event parameter contains the size of the region that needs
repainting. Very often we can disregard this information and simply paint
the entire widget, but sometimes, as here, we use the information to make our
painting more efficient.

y = 0

for row in range(self.model.rowCount()):

x = 0

if minY <= y <= maxY:

painter.save()

painter.setPen(self.palette().color(QPalette.Text))

if row == self.selectedRow:

painter.fillRect(x, y + (offset * 0.8),

self.width(), size,

self.palette().highlight())

painter.setPen(self.palette().color(

QPalette.HighlightedText))

timestamp = self.model.data(

self.model.index(row, TIMESTAMP)).toDateTime()

painter.drawText(x, y + size,

timestamp.toString(TIMESTAMPFORMAT))

x += timestampWidth

temperature = self.model.data(

self.model.index(row, TEMPERATURE))

temperature = temperature.toDouble()[0]

if temperature < 20:

color = QColor(0, 0,

int(255 * (20 - temperature) / 20))

elif temperature > 25:

Custom Views 481

color = QColor(int(255 * temperature / 100), 0, 0)

else:

color = QColor(0, int(255 * temperature / 100), 0)

painter.setPen(Qt.NoPen)

painter.setBrush(color)

painter.drawEllipse(x, y + offset, indicatorSize,

indicatorSize)

x += size

We iterate over every row in the model, but paint only those with a y coordinate
that is in range. Once we have a row to paint, we set the pen (used for drawing
text) to the palette’s text color. If the row is selected (something we will explain
after covering the paint event), we paint the background in the palette’s
highlight color and set the pen to the palette’s highlighted text color.

Having set up the text color, and possibly painted the background, we then
retrieve and draw the row’s timestamp. For each row we keep an x coordinate
that tells us how far across we are, and that we increment by the font metrics
timestamp width we calculated earlier.

The first colored circle is used to indicate the water’s temperature in °C. If the
water is too cool we use a color with a blue tint; if it is too warm we use a color
with a red tint; otherwise, we use a green tint. Then we switch off the pen and
set the brush to the color we have set up and paint an ellipse to the right of the
timestamp. The drawEllipse() method will draw a circle because the width and
height of the rectangle in which the ellipse is drawn are the same.

We then increment the x coordinate. Now we repeat the process for the
other two colored circle indicators, using the same tinting approach we used
for temperature. We have omitted the code for these, since it is structurally
identical to the code used for the temperature circle.

flow = self.model.data(

self.model.index(row, INLETFLOW))

flow = flow.toDouble()[0]

char = None

if flow <= 0:

char = WaterQualityView.FLOWCHARS[0]

elif flow < 3:

char = WaterQualityView.FLOWCHARS[1]

elif flow > 5.5:

char = WaterQualityView.FLOWCHARS[2]

if char is not None:

painter.setFont(self.flowfont)

painter.drawText(x, y + size, char)

painter.restore()

y += size

if y > maxY:

break

482 Chapter 16. Advanced Model/View Programming

If the water flow is in the wrong direction, or if it is too slow or too fast, we
draw a suitable character, using the font and characters that were set in
the initializer.

At the end we increment the y coordinate ready for the next row of data, but if
we have gone past the last row that is in view, we stop.

The code we have written so far is sufficient to provide a read-only view of the
dataset. But users often want to highlight an item. The easiest way to do this
is to add a mouse press event handler.

def mousePressEvent(self, event):

fm = QFontMetrics(self.font())

self.selectedRow = event.y() // fm.height()

self.update()

self.emit(SIGNAL("clicked(QModelIndex)"),

self.model.index(self.selectedRow, 0))

The unit of size used for all our calculations is the height of a character. We
divide the mouse position’s y coordinate (which is relative to the top-left corner
of the widget) by the unit of size, to find which row the user clicked. We use in-
teger division because row numbers are whole numbers. Then we call update()
to schedule a paint event. In the paintEvent() we saw that the selected row is
drawn using highlighted text and background colors. We also emit a clicked()

signal, with the model index of the first column of the row that was clicked.
The signal is not used by this application, but providing it is a good practice
when implementing custom views.

Keyboard users are catered for already by the scroll area: They can scroll using
the PageUp and PageDownkeys. But we ought to provide a means for keyboard
users to select an item. To do this we must make sure that the widget has a
suitable focus policy—we did this in the initializer—and we must provide a key
press event handler.

def keyPressEvent(self, event):

if self.model is None:

return

row = -1

if event.key() == Qt.Key_Up:

row = max(0, self.selectedRow - 1)

elif event.key() == Qt.Key_Down:

row = min(self.selectedRow + 1, self.model.rowCount() - 1)

if row != -1 and row != self.selectedRow:

self.selectedRow = row

if self.scrollarea is not None:

fm = QFontMetrics(self.font())

y = fm.height() * self.selectedRow

self.scrollarea.ensureVisible(0, y)

self.update()

Custom Views 483

self.emit(SIGNAL("clicked(QModelIndex)"),

self.model.index(self.selectedRow, 0))

else:

QWidget.keyPressEvent(self, event)

We have chosen to support just two key presses: Up Arrow and Down Arrow. If
the user presses either of these, we increment or decrement the selected row,
make sure that the selected row is in range, and then schedule a paint event.
If the user navigates to the row above the topmost visible row or below the
bottommost visible row, we tell the scroll area to make sure that the row that
has been scrolled to is visible—if necessary, the scroll area will scroll to achieve
this. We also emit a clicked() signal with the newly selected row’s model index.
It is quite conventional to use a clicked() signal in this circumstance, since in
effect, the user is “clicking” using the keyboard—after all, the signals and slots
mechanism is concerned with what the user wants rather than how they asked
for it, and here they just want to select a row.

If we do not handle the key press ourselves, that is, for all other key presses,
we pass the event on to the base class.

The water quality view widget is visually very different from the table view
shown beside it, yet it did not require that much code to implement and was not
too difficult to program. We made the widget fairly efficient by reducing the
amount of unnecessary painting. We also made the painting code as simple as
possible by ensuring that the widget was always exactly the size necessary to
display the entire dataset. The disadvantage of this approach is that it pushes
responsibility on to the programmer using our widget to use a QScrollArea,
although this saves us from having to implement scrolling ourselves.

The water quality view visualizes the data in one-to-one correspondence with
the data in the model, but we are not constrained to doing this. It is also possi-
ble to create custom views that show aggregated data. In this case, for example,
we could have shown one entry per day, or per hour, perhaps by averaging each
day or hour’s readings.

Generic Delegates

As we have seen in earlier chapters, custom delegates allow us to exercise
complete control over the appearance and behavior of the data items that
appear in views. Although it is obvious that if we have many models, we are
likely to want a custom delegate for most if not all of them, what is not so
obvious, is that the custom delegates will very likely have a lot of duplicate
code.★

★This section is partly based on ideas from the author’s whitepaper, “Qt 4’s Model/View Delegates”,
available at http://www.ics.com/developers/papers/.

http://www.ics.com/developers/papers/

484 Chapter 16. Advanced Model/View Programming

Imagine that we have just four models, each with an integer ID column, some
string columns holding plain text, and a description column holding HTML
text, and for some of the models, one or two floating-point columns. All the
models have the ID as their first column, but the other columns don’t match up,
so each one requires its own custom delegate. Providing the custom delegates
is not a big undertaking,but the code dealing with the integer IDs might be the
same in all of them; similarly for the strings, HTML strings, and floating-point
numbers.

Now imagine that we have to write custom delegates for another half dozen
new models: Much of the code will again be duplicated—and this will probably
make maintenance more difficult.

What would be better, particularly for models that have one data type per col-
umn, like database tables, is if instead of creating a custom delegate for each
model, we could compose a delegate from a set of generic components. This
would mean that the maintenance would be confined to the generic compo-
nents, and a bug fix in one would automatically benefit any view that used it.

In code, the effect we are after is something like this:

self.table1 = QTableView()

self.table1.setModel(self.model1)

delegate1 = GenericDelegate(self)

delegate1.insertColumnDelegate(1, PlainTextColumnDelegate())

delegate1.insertColumnDelegate(2, PlainTextColumnDelegate())

delegate1.insertColumnDelegate(3, RichTextColumnDelegate())

delegate1.insertColumnDelegate(4, IntegerColumnDelegate())

self.table1.setItemDelegate(delegate1)

self.table2 = QTableView()

self.table2.setModel(self.model2)

delegate2 = GenericDelegate(self)

delegate2.insertColumnDelegate(1, PlainTextColumnDelegate())

delegate2.insertColumnDelegate(2, IntegerColumnDelegate())

delegate2.insertColumnDelegate(3, FloatColumnDelegate())

delegate2.insertColumnDelegate(4, FloatColumnDelegate())

delegate2.insertColumnDelegate(5, RichTextColumnDelegate())

self.table2.setItemDelegate(delegate2)

Here we have two separate models, but both use generic delegates that are
composed of predefined column delegates that are data-type-specific.

With this approach, we only ever have to create a single plain text column dele-
gate, a single rich text column delegate,and so on, for each data type we want to
handle, such as integers, floating-point numbers, dates, times, and date/times.
In addition, we might create some project-specific column delegates to handle
custom types, but for any given data type there would be only one column dele-
gate,drastically cutting down on code duplication and ensuring that any model

Generic Delegates 485

can have a “custom” delegate simply by using a generic delegate with suitable
column delegates added.

In this section, we will see how to create a GenericDelegate class and a couple of
example column delegates. Then we will see how they are used in the context
of the application shown in Figure 16.2.

Figure 16.2 A table view using generic delegates

The GenericDelegate class is simple, because it passes almost all the work to
other classes.

class GenericDelegate(QItemDelegate):

def __init__(self, parent=None):

super(GenericDelegate, self).__init__(parent)

self.delegates = {}

The initializer calls super() as usual, and creates an empty dictionary.The keys
will be column indexes and the values will be instances of QItemDelegate sub-
classes.

def insertColumnDelegate(self, column, delegate):

delegate.setParent(self)

self.delegates[column] = delegate

When a new column delegate is inserted into the generic delegate, the generic
delegate takes ownership of it and inserts it into the dictionary.

def removeColumnDelegate(self, column):

if column in self.delegates:

del self.delegates[column]

This method is included for completeness, but it is not likely to be used. If a
column delegate is removed, the generic delegate will simply use the QItemDele-

gate base class for that column.

486 Chapter 16. Advanced Model/View Programming

def paint(self, painter, option, index):

delegate = self.delegates.get(index.column())

if delegate is not None:

delegate.paint(painter, option, index)

else:

QItemDelegate.paint(self, painter, option, index)

The structure of this method is the key to how the GenericDelegate class works.
We begin by getting the column delegate for the given column. If we get a
delegate, we pass the work to it; otherwise, we pass the work to the base class.

def createEditor(self, parent, option, index):

delegate = self.delegates.get(index.column())

if delegate is not None:

return delegate.createEditor(parent, option, index)

else:

return QItemDelegate.createEditor(self, parent, option,

index)

This method follows the same pattern as the paint() method, except that it
returns a value (the editor that was created for it).

def setEditorData(self, editor, index):

delegate = self.delegates.get(index.column())

if delegate is not None:

delegate.setEditorData(editor, index)

else:

QItemDelegate.setEditorData(self, editor, index)

def setModelData(self, editor, model, index):

delegate = self.delegates.get(index.column())

if delegate is not None:

delegate.setModelData(editor, model, index)

else:

QItemDelegate.setModelData(self, editor, model, index)

These last two GenericDelegate methods follow the same pattern as the paint()

and createEditor() methods, using the column delegate if one has been set for
the given column, and using the QItemDelegate base class otherwise.

Now that we have seen the GenericDelegate’s implementation, we can turn our
attention to the column delegates that can be inserted into it. In chap16/gen-

ericdelegates.py we provide the IntegerColumnDelegate, DateColumnDelegate,
PlainTextColumnDelegate, and RichTextColumnDelegate classes. All of them have
a similar structure, so we will look at the code for only two of them, Date-
ColumnDelegate, and RichTextColumnDelegate. Once the implementation of these
is understood (and it is easy, at least for the date column delegate), creating

Generic Delegates 487

additional column delegates, such as one for floating-point numbers, will be
straightforward.

class DateColumnDelegate(QItemDelegate):

def __init__(self, minimum=QDate(), maximum=QDate.currentDate(),

format="yyyy-MM-dd", parent=None):

super(DateColumnDelegate, self).__init__(parent)

self.minimum = minimum

self.maximum = maximum

self.format = QString(format)

For dates, we want to provide minimum and maximum values, as well as a
display format.

def createEditor(self, parent, option, index):

dateedit = QDateEdit(parent)

dateedit.setDateRange(self.minimum, self.maximum)

dateedit.setAlignment(Qt.AlignRight|Qt.AlignVCenter)

dateedit.setDisplayFormat(self.format)

dateedit.setCalendarPopup(True)

return dateedit

The code for creating the editor follows the general pattern we saw back in
Chapter 14: We create the editor with the given parent, set it up, and then
return it. Here we have used the minimum, maximum, and format values that
were passed to the initializer.

def setEditorData(self, editor, index):

value = index.model().data(index, Qt.DisplayRole).toDate()

editor.setDate(value)

We set the editor’s value to be the value of the data item at the given model
index. We do not need to check the column, since this column delegate will be
called only by the GenericDelegate for the column that the user has specified.

def setModelData(self, editor, model, index):

model.setData(index, QVariant(editor.date()))

When writing the editor’s data back to the model, again we don’t have to check
the column because that’s taken care of by the GenericDelegate.

This is the complete DateColumnDelegate. We did not need to reimplement the
paint() method because the QItemDelegate base class can draw the data perfect-
ly well. The IntegerColumnDelegate and PlainTextColumnDelegate are both very
similar to the DateColumnDelegate. The RichTextColumnDelegate is also similar,
but it also reimplements the paint() and sizeHint() methods.

class RichTextColumnDelegate(QItemDelegate):

488 Chapter 16. Advanced Model/View Programming

def __init__(self, parent=None):

super(RichTextColumnDelegate, self).__init__(parent)

The constructor is even simpler than the one used for the other column
delegates. We could even omit it, but we prefer to be explicit.

def createEditor(self, parent, option, index):

lineedit = richtextlineedit.RichTextLineEdit(parent)

return lineedit

We use the RichTextLineEdit that we created in Chapter 13. Structurally this
method is the same as for the other column delegates, except that here we don’t
need to set up the editor in any particular way.

def setEditorData(self, editor, index):

value = index.model().data(index, Qt.DisplayRole).toString()

editor.setHtml(value)

The RichTextLineEdit accepts HTML text if we use its setHtml() method. (It also
has a setPlainText() method.)

def setModelData(self, editor, model, index):

model.setData(index, QVariant(editor.toSimpleHtml()))

The RichTextLineEdit has a toHtml() method, but we use the toSimpleHtml()

method that we developed in Chapter 13. This ensures that we store the
shortest possible HTML that validly represents the text. This is important
because in the paint() method, for highlighted (i.e., selected) items, we will set
the color of the text by wrapping it in a tag—this will work for text that
uses the simple HTML format since it is just an HTML fragment, but not for
the normal HTML format which is a complete HTML document.

def paint(self, painter, option, index):

text = index.model().data(index, Qt.DisplayRole).toString()

palette = QApplication.palette()

document = QTextDocument()

document.setDefaultFont(option.font)

if option.state & QStyle.State_Selected:

document.setHtml(QString("%2") \

.arg(palette.highlightedText().color().name()) \

.arg(text))

else:

document.setHtml(text)

painter.save()

color = palette.highlight().color() \

if option.state & QStyle.State_Selected \

else QColor(index.model().data(index,

Qt.BackgroundColorRole))

painter.fillRect(option.rect, color)

Generic Delegates 489

painter.translate(option.rect.x(), option.rect.y())

document.drawContents(painter)

painter.restore()

The paint() method is almost the same as the one used with the ShipDelegate

described in Chapter 14. ThePaint-
ing rich
text in a
delegate

438 ☞

only difference is that we don’t have to check for
a particular column since we know that the column delegate is only ever called
for the column the user has specified.

One limitation of this approach is that the highlighting works only with HTML
fragments. If we want the code to work with both fragments and complete
HTML documents, we could use code like this:

if option.state & QStyle.State_Selected:

if text.startsWith("<html>"):

text = QString(text).replace("<body ",

QString("<body bgcolor=%1 ")

.arg(palette.highlightedText().color().name())

else:

text = QString("%2")\

.arg(palette.highlightedText().color().name())\

.arg(text))

document.setHtml(text)

Another approach would be to extract the text document’s style sheet, update
the background color, and set the updated style sheet back on the document.

def sizeHint(self, option, index):

text = index.model().data(index).toString()

document = QTextDocument()

document.setDefaultFont(option.font)

document.setHtml(text)

return QSize(document.idealWidth() + 5,

option.fontMetrics.height())

We must calculate the size hint for a rich text column ourselves becauseSize
hints for
rich text
in a
delegate

439 ☞

the de-
fault calculation based on the widget’s font size and the number of characters
will usually give widths that are much too wide. This is because HTML text
usually contains far more characters (such as tags and entities) than the num-
ber of characters that are actually displayed. This is easy to solve by using a
QTextDocument. The code is almost the same as that used for the ShipDelegate’s
size hint method.

We can easily create other column delegates, and we could make any column
delegate offer more functionality than the examples shown here provide.
For example, for the IntegerColumnDelegate we have minimum and maximum
values, but it would be simple to provide additional options, such as prefix and
suffix text.

490 Chapter 16. Advanced Model/View Programming

Now that we have seen how the GenericDelegate works and how to create
column delegates, we can see how they are used in practice. Figure 16.2 (on
page 485) shows a table view that uses a generic delegate with several column
delegates to provide control over the editing and appearance of its columns.
The form is in chap16/carhirelog.pyw; here is the beginning of its initializer:

class MainForm(QMainWindow):

def __init__(self, parent=None):

super(MainForm, self).__init__(parent)

model = CarHireModel(self)

self.view = QTableView()

self.view.setModel(model)

self.view.resizeColumnsToContents()

delegate = genericdelegates.GenericDelegate(self)

delegate.insertColumnDelegate(CUSTOMER,

genericdelegates.PlainTextColumnDelegate())

earliest = QDate.currentDate().addYears(-3)

delegate.insertColumnDelegate(HIRED,

HireDateColumnDelegate(earliest))

delegate.insertColumnDelegate(MILEAGEOUT,

MileageOutColumnDelegate(0, 1000000))

delegate.insertColumnDelegate(RETURNED,

ReturnDateColumnDelegate(earliest))

delegate.insertColumnDelegate(MILEAGEBACK,

MileageBackColumnDelegate(0, 1000000))

delegate.insertColumnDelegate(NOTES,

genericdelegates.RichTextColumnDelegate())

self.view.setItemDelegate(delegate)

self.setCentralWidget(self.view)

The model is a custom model similar to ones we created in Chapter 14. The
view is a standard QTableView.

The model has nine columns:a plain text read-only license number, a plain text
customer name, a hired date (a QDate), an integer starting mileage (mileage
out), a returned date (a QDate), an integer returned mileage (mileage back), and
a rich text notes column, as well as two columns that are generated rather than
stored—a mileage column (the difference between the back and out mileages),
and a days column (the difference between the returned and hired dates).

The model and the underlying data structure take care of the read-only license
column and the generated columns (as we will discuss shortly), so we only need
to provide column delegates for the editable columns. For the customer name
we use a PlainTextColumnDelegate, and for the notes we use a RichTextLineEdit.
But for the mileages and dates we have used custom column delegates that are

Generic Delegates 491

subclasses of the IntegerColumnDelegate and DateColumnDelegate. We need these
subclasses to provide cross-column validation. For example, we cannot accept
a returned date that is earlier than the hired date, or a mileage back that is
less than the starting mileage.

class HireDateColumnDelegate(genericdelegates.DateColumnDelegate):

def createEditor(self, parent, option, index):

i = index.sibling(index.row(), RETURNED)

self.maximum = i.model().data(i, Qt.DisplayRole) \

.toDate().addDays(-1)

return genericdelegates.DateColumnDelegate.createEditor(

self, parent, option, index)

This is the complete HireDateColumnDelegate subclass. We only need to reimple-
ment createEditor().We retrieve the returned date and set the maximum hired
date to be the day before the car was returned, since we have a minimum of one
day’s car hire. We actually leave the creation of the editor to the base class. We
cannot set a meaningful maximum date when the column delegate is created
because the user could edit the returned date at any time, so we must calculate
the maximum hired date when the user starts to edit it.

Using the sibling() method provides us with a more convenient alternative to
calling index.model().index(index.row(), RETURNED).

The ReturnDateColumnDelegate is almost identical, except that we retrieve
the hired date and set the minimum returned date to the day after the car
was hired. The MileageOutColumnDelegate and MileageBackColumnDelegate are
similar; they both only reimplement the createEditor() method, and both set
the maximum (or minimum) depending on the other mileage’s value.

The model’s setData() method does not allow editing of the license number,
or of the generated columns. It does this by simply returning False for those
columns, which indicates that they were not updated. For the other columns
the value passed in to the setData() method is set in the underlying data
structure.

The model’s data() method faithfully returns the value of the column it is
asked for, as provided by the underlying data structure. The data structure
returns stored values for most of the columns, but for the MILEAGE and DAYS

columns it returns values calculated from the relevant values.

Creating general data-type-specific column delegates is quite easy, and sub-
classing them when validation must take into account the whole row (record)
is not difficult either. But since it isn’t hard to create a custom delegate for
each model, why use the generic delegate approach at all? There are two main
contexts where generic delegates don’t make sense: simple applications where
only a few delegates are needed, and models that have columns which contain
heterogeneous data types. But for applications that need many delegates and

492 Chapter 16. Advanced Model/View Programming

where columns have homogeneous data types such as those used in databases,
generic delegates offer three key benefits.

• It is easy to change the delegate used for a particular column, or to add ad-
ditional column delegates if the model is changed to have more columns.

• Using column delegates means that we avoid the code duplication that
is inevitable if we create many model-specific custom delegates—for
example, we need to write only one rich text line editing delegate, one
date/time editing delegate, and so on.

• Once a data-type-specific column delegate is created, it can be reused for
every column that uses that data type, in any number of generic delegates
used with any number of models. This means that bug fixes and enhance-
ments need to be applied to only one column delegate for each data type.

Representing Tabular Data in Trees

Suppose we want the user to pick out a data item, but that the item they
pick depends on some previous item they picked, which in turn depends on
some previous item again. In concrete terms, imagine that we want the user
to choose a particular airport—first they must choose the country, then the
city, and then the airport. This could be done by providing three comboboxes,
populating the first with country names, and populating the second with the
cities in the current country, and the third with the airports in the current city.
This is not difficult to program, but the user must use three separate widgets
to specify their choice, and can’t easily see what range of choices are available
to them.

One solution to choosing dependent data items is to use a tree view. To contin-
ue the example, the roots of the tree would be the countries, and each country
would have city branches,and each city branch would have airport leaves. This
makes it much easier for the user to follow a path (and they can follow only
valid paths), and easier for us to retrieve their complete country/city/airport
choice.

Another benefit of using a tree view, compared, for example, with using a table
view, is that it is more compact and easier to navigate. For example, if we had
100 countries, with an average of 4 cities each and an average of 2 airports per
city, a table would require 100 × 4 × 2 = 800 rows—but a tree would need only
100 rows (one per country) with each row capable of being expanded to show
its cities and airports.

In this section, we will show how to represent a table of data in a tree, and
how to extract the complete “path” that the user has chosen. The example
application we will use is called Server Info. It reads a dataset that has six
columns—country, state (meaningful only in the United States), city, provider,
server, and IP address—and allows users to specify one particular 6-tuple. The
sample dataset has 163 rows, but refers to only 33 unique countries, so the user

Representing Tabular Data in Trees 493

Figure 16.3 Tabular data rendered as a tree

need only navigate 33 top-level items rather than scrolling through almost five
times that number of rows.

The heart of the application is provided by the TreeOfTableModel class, a
QAbstractItemModel subclass that can represent arbitrary tabular data in a tree.
We use a custom subclass of this model, along with a QTreeView subclass to
present the data. The application itself can create the tree using different lev-
els of nesting by running it from the console with a command-line argument of
1, 2, 3, or 4. Figure 16.3 shows the tree using the default nesting level of 3. (The
nesting level does not include the leaf at the end of a series of branches.)

We will begin by reviewing the main form since it is very short. Then we will
look at the table view subclass and the TreeOfTableModel subclass. Next, we will
review the treeoftable module, including the BranchNode and LeafNode classes,
and finally, the TreeOfTableModel class itself.

class MainForm(QMainWindow):

def __init__(self, filename, nesting, separator, parent=None):

super(MainForm, self).__init__(parent)

headers = ["Country/State (US)/City/Provider", "Server", "IP"]

self.treeWidget = TreeOfTableWidget(filename, nesting,

separator)

self.treeWidget.model().headers = headers

self.setCentralWidget(self.treeWidget)

self.connect(self.treeWidget, SIGNAL("activated"),

self.activated)

self.setWindowTitle("Server Info")

494 Chapter 16. Advanced Model/View Programming

The TreeOfTableWidget is similar to a convenience view, since it incorporates a
model inside it. The model is a ServerModel, a small TreeOfTableModel subclass
that adds the ability to show flag icons.

The filename is the name of a file that has data suitable for a TreeOfTableModel.
In particular, it must have one record per line, and each column (field) must be
separated by the specified separator.

The nesting value is the maximum number of branches that can spur off
from a root, and does not count the leaves at the end. In this case, the nesting
value passed in through the nesting parameter is 3 (unless it’s changed on the
command line), which means that we will have 3 levels of branches (country,
state, city) and 1 level of leaves (provider). Since we have 6 fields, this means
that the first 4 fields will be shown in the tree part of the tree widget, with the
remaining 2 fields shown as separate columns in the rows that have leaves.
The resultant tree view will have 3 columns, one containing the tree, and 2
more showing the extra fields. We set the model’s headers by directly accessing
the model inside the custom TreeOfTableWidget.

The activated() method is called when the user double-clicks or presses Enter
on a row in the tree widget.

def activated(self, fields):

self.statusBar().showMessage("*".join(fields), 60000)

The “path”, that is, the (country, city, state, provider, server, IP address) 6-tuple
that the user has chosen, is shown “*”-separated in the status bar for a minute
(60000 milliseconds), whenever a suitable row is activated. In this context, a
suitable row is one containing a leaf, since these are the only ones that have all
six fields.

The TreeOfTableWidget is a QTreeView subclass that contains the model it
displays. It also provides a few simple convenience methods and creates some
useful signal–slot connections.

class TreeOfTableWidget(QTreeView):

def __init__(self, filename, nesting, separator, parent=None):

super(TreeOfTableWidget, self).__init__(parent)

self.setSelectionBehavior(QTreeView.SelectItems)

self.setUniformRowHeights(True)

model = ServerModel(self)

self.setModel(model)

try:

model.load(filename, nesting, separator)

except IOError, e:

QMessageBox.warning(self, "Server Info - Error",

unicode(e))

self.connect(self, SIGNAL("activated(QModelIndex)"),

self.activated)

Representing Tabular Data in Trees 495

self.connect(self, SIGNAL("expanded(QModelIndex)"),

self.expanded)

self.expanded()

The ServerModel is a TreeOfTableModel subclass. Its only purpose is to override
the data() method so that it can provide suitable icons (country and state
flags); we will review it shortly. After loading the model’s data from the file and
making the signal–slot connections, we call the expanded() method to give the
columns suitable widths.

def expanded(self):

for column in range(self.model().columnCount(QModelIndex())):

self.resizeColumnToContents(column)

Whenever the user expands a branch—for example,by clicking one of the tree’s
+ symbols or by navigating with the arrow keys and pressing Right Arrow—this
method is called. It ensures that the columns showing the expanded item’s
texts are wide enough for the text to be readable. In tree models, every item is
either the child of another item (and therefore has a parent) or a top-level (root)
item, in which case it has no parent, which is signified by an invalid model in-
dex. Therefore, when we call columnCount() with a QModelIndex() (i.e., with an
invalid model index), we get the column count of top-level items.

def activated(self, index):

self.emit(SIGNAL("activated"), self.model().asRecord(index))

If the user activates an item by double-clicking it or by pressing Enter on it, this
method is called, and in turn it emits its own activated() signal. Its parameter
is the full path (record), as a list of field values, for the current model index.

def currentFields(self):

return self.model().asRecord(self.currentIndex())

This method provides the same information as the activated() signal,but it can
be called at any time to get the current record; again, as a list of field values.

The ServerModel is a TreeOfTableModel subclass that reimplements one method,
data(). It does so to show flags next to the names of countries and U.S. states.

class ServerModel(treeoftable.TreeOfTableModel):

def __init__(self, parent=None):

super(ServerModel, self).__init__(parent)

def data(self, index, role):

if role == Qt.DecorationRole:

node = self.nodeFromIndex(index)

if node is None:

return QVariant()

if isinstance(node, treeoftable.BranchNode):

496 Chapter 16. Advanced Model/View Programming

if index.column() != 0:

return QVariant()

filename = node.toString().replace(" ", "_")

parent = node.parent.toString()

if parent and parent != "USA":

return QVariant()

if parent == "USA":

filename = "USA_" + filename

filename = os.path.join(os.path.dirname(__file__),

"flags", filename + ".png")

pixmap = QPixmap(filename)

if pixmap.isNull():

return QVariant()

return QVariant(pixmap)

return treeoftable.TreeOfTableModel.data(self, index, role)

This data() reimplementation only handles data() requests where the role is
Qt.DecorationRole, passing on any other request to the TreeOfTableModel base
class. In list, table, and tree views, the decoration role is used to set or retrieve
icons for data items.

Tree models work in terms of parents and children. In the TreeOfTableModel

base class we have provided a method, nodeFromIndex(), that returns the node
(item) corresponding to a particular model index. We have two kinds of nodes,
branch nodes and leaf nodes. Each node can have any number of columns,
although in this case the branch nodes have only one column and leaf nodes
have at least one column. We provide icons for only the first (and only) column
of branch nodes, and then only for the branches for countries and U.S. states.

The flag icons are stored in the flags subdirectory, with country flag names
having underscores instead of spaces, and U.S. state names beginning with
“USA_”. All the flag icons are .png images. Instead of using a .qrc resource
file, we retrieve the images directly from the filesystem. The os.path.dirname()

function returns the path part of a full filename, and the os.path.join() func-
tion joins two or more strings to form a single path string with the appropri-
ate path separators. If the required image does not exist or is unreadable,
QPixmap.isNull() will return True; in this case, we return an invalid QVariant to
signify that no icon is available. Otherwise, we return the pixmap wrapped in
a QVariant.

The classes we have seen so far have been quite straightforward. This is be-
cause the real work of providing the tree model is done by the TreeOfTableModel.
This model reads in a tabular dataset and converts the row/column data into
a tree. The tree has a single branch node as its root, and then any number
of branch nodes hanging off the root, with each branch able to have its own
branches. At the end of each branch are one or more leaf nodes.

The nodes hanging off a branch are the branch’s children. The children can
be branches or leaves, and they are held in a list. Each child’s position in its

Representing Tabular Data in Trees 497

parent node’s list of children is its row number. Column numbers refer to the
items (fields) within a child (branch or leaf). A complete record (or “path”) is the
concatenation of all the fields in the root branch, all the intermediate branches,
and the leaf at the end. The relationship between branches and leaves is
shown schematically in Figure 16.4.

Branch (root)

Branch (row #0)

…

Branch (row #N)

… Branch (row #0)

… Leaf (row #0)

Leaf (row #1)
… …

Figure 16.4 Schematic of a tree model’s branches and leaves

In the tree of table model we have chosen to keep each branch’s children in
alphabetical order. To make this as fast and easy as possible, each branch’s
children list is actually a list of two-item lists, with the first item being the
order key and the second item being the child node. We access the items in
these two-item lists using the constants KEY and NODE rather than the literals 0
and 1.

We will now look at the branch node and leaf node implementations, and then
at the tree of table model itself.

The branch and leaf nodes have many methods in common because in some
contexts, they can be used interchangeably (thanks to duck typing).

class BranchNode(object):

def __init__(self, name, parent=None):

super(BranchNode, self).__init__(parent)

self.name = name

self.parent = parent

self.children = []

A branch node’s name is the text shown in its first (and only) column. In
the Server Info example, this would be the name of a country, state, or city,
depending on where the branch is in the tree’s hierarchy.

498 Chapter 16. Advanced Model/View Programming

def orderKey(self):

return self.name.lower()

def toString(self):

return self.name

def __len__(self):

return len(self.children)

The order key is a string that is used by the node’s parent to position this
branch correctly in the node’s parent’s list of children. The toString() method
returns the branch’s one field as a string. These methods are provided for
compatibility with leaf nodes to make it easier to use either kind of node
based on duck typing. The __len__() method returns how many children the
branch has.

def childAtRow(self, row):

assert 0 <= row < len(self.children)

return self.children[row][NODE]

This method returns the node for the given row. We have used an assert

statement here, and in many other places in the tree of tableassert

state-
ment

69 ☞

model’s code. The
code can be tricky to get right, but by using assertions we can at least be clear
about what we expect to be true at particular points in the code.

def rowOfChild(self, child):

for i, item in enumerate(self.children):

if item[NODE] == child:

return i

return -1

Here we return the row index of a particular child node, or -1 if the child is not
one of this node’s children.

def childWithKey(self, key):

if not self.children:

return None

i = bisect.bisect_left(self.children, (key, None))

if i < 0 or i >= len(self.children):

return None

if self.children[i][KEY] == key:

return self.children[i][NODE]

return None

We sometimes want to find the first child that has a given order key. One
approach would be to do what we did in the rowOfChild() method, iterating
through the list of children to find the right one. Here we have taken a more
efficient approach. We find the position that a node with the given key ought
to occupy, and if this is in range and has the right key, we return the child.

Representing Tabular Data in Trees 499

def insertChild(self, child):

child.parent = self

bisect.insort(self.children, (child.orderKey(), child))

This method inserts a new child node into a branch’s list of children,and makes
this branch the child’s parent. By using bisect.insort() in conjunction with
the child’s order key, we ensure that the child is put in the correct position
as quickly and efficiently as possible. The insort() function is identical to
insort_right().

def hasLeaves(self):

if not self.children:

return False

return isinstance(self.children[0], LeafNode)

In the tree of table model, a branch that has children has either branches or
leaves, but not a mixture of both. For this reason, if a branch has no children at
all, clearly it has no leaves; and similarly, if it does have children and the first
one is a leaf, all of them are leaves.

We have now seen the entire branch node class. Next, we will look at the much
shorter leaf node class.

class LeafNode(object):

def __init__(self, fields, parent=None):

super(LeafNode, self).__init__(parent)

self.parent = parent

self.fields = fields

The fields in a leaf node are the node’s columns.

def orderKey(self):

return u"\t".join(self.fields).lower()

def toString(self, separator="\t"):

return separator.join(self.fields)

def __len__(self):

return len(self.fields)

A leaf node’s order key is the tab-separated concatenation of its fields. Simi-
larly, its toString() method returns a concatenation of its fields. The __len__()

method returns the number of fields; for branches it returns the number of
children.

def field(self, column):

assert 0 <= column <= len(self.fields)

return self.fields[column]

500 Chapter 16. Advanced Model/View Programming

This method makes it easy to extract a single field’s value while having the
assertion that the field’s column is within range.

def asRecord(self):

record = []

branch = self.parent

while branch is not None:

record.insert(0, branch.toString())

branch = branch.parent

assert record and not record[0]

record = record[1:]

return record + self.fields

The notion of a record used by the tree of table model is the concatenation
of all the branches from the root to the leaf ’s parent, plus the leaf itself—in
other words, the user’s complete choice “path”. In terms of the Server Info
application, this is the country, state, city, provider, server, and IP address,
where the country, state, and city are branches, and each leaf contains three
fields: provider, server, and IP address.

To construct a record (a list of fields), we begin with the leaf node’s parent
branch, and walk up the tree of branches. Each branch’s string is prepended
to the record list. The root branch has no string, so we remove that item from
the list. The list that is returned is the concatenation of all the branch strings
plus the leaf ’s strings.

We have now completed reviewing the nodes. The tree of table model is a
QAbstractItemModel subclass and it reimplements many of the methods we
would expect, such as data(), headerData(), rowCount(), and columnCount(). In
addition, it provides the index(), parent(), and nodeFromIndex() methods which
are usually reimplemented for tree models. It also has some extra methods,
namely, load() and addRecord(); these are used to load tabular data and convert
it into a tree of branches and leaves. We will begin by looking at the initializ-
er, then the methods for loading the data, and then the standard model/view
methods.

class TreeOfTableModel(QAbstractItemModel):

def __init__(self, parent=None):

super(TreeOfTableModel, self).__init__(parent)

self.columns = 0

self.root = BranchNode("")

self.headers = []

The number of columns depends on the number of columns in the data that is
loaded and on the level of nesting requested. There is always one root branch
node that contains no text that is used purely as the parent of all the other
branches. The headers are the text used as column headers.

Representing Tabular Data in Trees 501

def load(self, filename, nesting, separator):

assert nesting > 0

self.nesting = nesting

self.root = BranchNode("")

exception = None

fh = None

try:

for line in codecs.open(unicode(filename), "rU", "utf8"):

if not line:

continue

self.addRecord(line.split(separator), False)

except IOError, e:

exception = e

finally:

if fh is not None:

fh.close()

self.reset()

for i in range(self.columns):

self.headers.append("Column #%d" % i)

if exception is not None:

raise exception

The file to be loaded must be a text file with one record per line, with each
field separated by the specified separator. The file must be encoded as UTF-8
Unicode (or ASCII, since that is a subset of UTF-8). Blank lines are ignored;
any other line is treated as a record and is added to the tree.

Once loading has finished (successfully or not), we call reset() to notify any
views that the model has dramatically changed,and create some initial column
headers. If the load failed, we then reraise the exception for the caller to
handle. The columns variable is set to 0 in the initializer, and to a meaningful
value in addRecord().

def addRecord(self, fields, callReset=True):

assert len(fields) > self.nesting

root = self.root

branch = None

for i in range(self.nesting):

key = fields[i].lower()

branch = root.childWithKey(key)

if branch is not None:

root = branch

else:

branch = BranchNode(fields[i])

root.insertChild(branch)

root = branch

assert branch is not None

items = fields[self.nesting:]

502 Chapter 16. Advanced Model/View Programming

self.columns = max(self.columns, len(items))

branch.insertChild(LeafNode(items, branch))

if callReset:

self.reset()

To add a record there must be more fields than the level of nesting. The logic
we use is similar to what we saw in Chapter 14 when we populated a QTree-

Widget’s internal model. For each field that is to be a branch we look for an
existing branch with the same key. If we find one, we make it the current root
branch; otherwise, we create a new branch, insert it as a child of the current
root branch, and make the new branch the current root branch. As the loop
progresses, we gradually walk down the tree, creating any branches that are
needed, until we reach the lowest branch.

Once the loop has gone over all the branches that are necessary, creating any
that did not previously exist, we can create a list of the non-nesting fields and
add them as a child leaf node of the current (lowest-level) branch.

To put things in concrete terms, using the Server Info application as an exam-
ple, here’s what happens. When the first record is read we have a new coun-
try, new state, new city, new provider, and so on, so no suitable branches will
exist. First a country branch will be created, then a state branch, and then a
city branch, and finally a leaf containing the remaining provider, server, and
IP address fields. If the next record read is for the same country, but for a new
state, it will find the existing country node and use it as the parent node for
the new state. Similarly, if a record has a country and state for which branches
have already been created, these will be used. But whenever a new branch is
needed the code in the loop’s body will create it.

When new records are added on an ad hoc basis, we call reset() to notify any
views that a significant change has taken place; but when loading from a file
we pass False and call reset() in the calling code once all the records have
been read.

def asRecord(self, index):

leaf = self.nodeFromIndex(index)

if leaf is not None and isinstance(leaf, LeafNode):

return leaf.asRecord()

return []

This method provides a list of the user’s chosen “path”. It makes sense only
for leaf nodes, since only a leaf node can represent a complete path. Returning
None for nonleaf nodes would have been an equally good design choice. Notice
that we use the nodeFromIndex() method to retrieve the node for a given model
index: We will discuss how this works shortly.

def rowCount(self, parent):

node = self.nodeFromIndex(parent)

if node is None or isinstance(node, LeafNode):

Representing Tabular Data in Trees 503

return 0

return len(node)

For tree models the row count is the number of children that a particular
node has. Our implementation allows only branch nodes to have children, so
when called on leaf nodes we always return 0. The len() function calls Branch-

Node.__len__(), which returns the count of the branch’s children.

def columnCount(self, parent):

return self.columns

The number of columns is the maximum number of non-nested fields. This
may appear to be one too few, but it is correct because the first non-nested field
is shown in the first (tree) column.

def data(self, index, role):

if role == Qt.TextAlignmentRole:

return QVariant(int(Qt.AlignTop|Qt.AlignLeft))

if role != Qt.DisplayRole:

return QVariant()

node = self.nodeFromIndex(index)

assert node is not None

if isinstance(node, BranchNode):

return QVariant(node.toString()) \

if index.column() == 0 else QVariant(QString(""))

return QVariant(node.field(index.column()))

If the display data is requested for a branch node, we return the node’s text for
column 0 and an empty string for the other columns.For a leaf node, we return
the field that corresponds to the requested column.

Prior to Qt 4.2, Qt

4.2

the default text alignment worked fine and did not need to be
specified, but from Qt 4.2, we must explicitly return a sensible text alignment
ourselves.

def headerData(self, section, orientation, role):

if orientation == Qt.Horizontal and \

role == Qt.DisplayRole:

assert 0 <= section <= len(self.headers)

return QVariant(self.headers[section])

return QVariant()

Tree views have only horizontal (column) headers. They don’t have row
headers (e.g., row numbers), because these don’t really make sense since each
branch has its own 0-based list of children (rows).

def index(self, row, column, parent):

assert self.root

branch = self.nodeFromIndex(parent)

assert branch is not None

504 Chapter 16. Advanced Model/View Programming

return self.createIndex(row, column,

branch.childAtRow(row))

The index() method must return the model index for the data item with the
given row and column and that is a child of the given parent. In a branches
and leaves tree model, this means that we must return the model index of the
parent item’s row-th child.

We begin by finding the branch node of the given parent model index, and
return a model index with the given row and column, and with a parent that
is the (branch) node’s row-th child node.

def parent(self, child):

node = self.nodeFromIndex(child)

if node is None:

return QModelIndex()

parent = node.parent

if parent is None:

return QModelIndex()

grandparent = parent.parent

if grandparent is None:

return QModelIndex()

row = grandparent.rowOfChild(parent)

assert row != -1

return self.createIndex(row, 0, parent)

The parent() method must return the model index of the given child’s parent.
In a branches and leaves tree model, this is the child’s grandparent’s row-
th child.

We start by finding the child node’s parent node’s parent (that is, the child’s
grandparent). Then we return a model index that has the row the parent node
occupies in the grandparent’s list of children, column 0 (since all parents are
branches and branches have only a zero-th column), and a parent that is the
child’s parent.

The reimplementations of the index() and parent() methods shown here are
rather subtle. However, they are standard for tree models that take a branch
and leaf approach, so their code can simply be copied “as is” in most cases.

def nodeFromIndex(self, index):

return index.internalPointer() \

if index.isValid() else self.root

When we call QAbstractItemModel.createIndex(), the third argument is a refer-
ence to a node. This reference is available from a model index and is returned
by the internalPointer() method. For any given model index we return a
branch or leaf node, or the branch root node.

Representing Tabular Data in Trees 505

Understanding tree models is more challenging than understanding table
models (or list models, which are just tables with a single column). However,
in many cases the difficulties can be reduced by building upon or adapting the
code presented in this section.

Summary

PyQt’s built-in view widgets, and the graphics view widgets, between them pro-
vide considerable scope for visualizing datasets. But when our requirements
don’t really match what these classes provide, we can always create our own
custom views and present our data exactly how we like.

Since a custom view could potentially be showing a portion of a very large
dataset, it is usually best to optimize the paint event handler to retrieve and
display only those data items that are actually visible. If scrollbars are going
to be required, we could require that users of our view class use a QScrollArea,
or create a composite widget with a couple of QScrollBars, or create a widget
that inherits QAbstractScrollArea. The first of these approaches adds only a few
lines to the user’s code, and makes implementing the view much easier.

Using generic delegates with data-type-specific column delegates makes it
easy to create ad hoc “custom” delegates for views. Column delegates are
easy to create and can cut down on code duplication since we need only one
column delegate for each data type we want to work with. The generic delegate
approach is ideal for datasets where each column’s data holds values of a single
data type, such as database tables.

Creating tree models can be difficult because we have to think in terms of par-
ents and children, where the children may also be parents, and so on recur-
sively to an arbitrary level of depth. This just isn’t as easy as the thinking in
terms of rows and columns necessary for tree and column models. Although
the tree of table model presented in this chapter is a specific example, some of
the methods that provide its tree functionality, such as index(), parent(), and
nodeFromIndex(), should be able to be used “as is” or with little adaptation, and
other methods, such as addRecord(), should also prove to be adaptable.

Exercise
This exercise draws together many of the model/view features that have been
covered in this and in earlier chapters.

Create an application that shows two widgets: a QListView and a custom Bar-

GraphView. The data should be held in a custom BarGraphModel. The user should
be able to edit the data through the QListView, using a custom BarGraphDelegate

to control both the presentation and the editing of data items in the list view.
The application is shown in Figure 16.5.

506 Chapter 16. Advanced Model/View Programming

The model should be a QAbstractListModel subclass, and it should hold a list
of data values (integers) and a dictionary of colors (keyed by “row”; e.g., the
color with key 6 corresponds to the seventh data value and so on). The model
should reimplement rowCount(), insertRows()—which should include calls to
beginInsertRows() and endInsertRows() where appropriate, flags() to make the
model editable, and setData() to allow the value (Qt.DisplayRole) and a value’s
color (Qt.UserRole) to be set and which should emit signals to indicate that data
has changed—and data(), which should return the value, color, and for the
Qt.DecorationRole, a 20 × 20 pixmap filled with the color. If no color has been
set for a particular row, use a default of red.

The delegate is quite simple, and it is very similar to the IntegerColumnDelegate

mentioned earlier in this chapter. The key difference is that the paint()

method must be reimplemented,but only to set the alignment to Qt.AlignRight;
the painting can still be done perfectly well by the base class.

Figure 16.5 The Bar Grapher application’s widgets

The custom view will need to reimplement setModel(), in which connections
should be made to the base class’s update() method so that repainting oc-
curs when the model’s data is changed, minimumSizeHint(), sizeHint()—which
can simply call minimumSizeHint()—and paintEvent(). The paint event can
be done in slightly more than a dozen lines—make sure that you use
QPainter.setWindow() so that the graph always fills the available space. All the
methods should work correctly even if no model has been set—for example,
with no model, the paint event should paint nothing.

Here is the code for the MainForm, to give you a feel for how the classes are
used:

class MainForm(QDialog):

def __init__(self, parent=None):

Exercise 507

super(MainForm, self).__init__(parent)

self.model = BarGraphModel()

self.barGraphView = BarGraphView()

self.barGraphView.setModel(self.model)

self.listView = QListView()

self.listView.setModel(self.model)

self.listView.setItemDelegate(BarGraphDelegate(0, 1000, self))

self.listView.setMaximumWidth(100)

self.listView.setEditTriggers(QListView.DoubleClicked|

QListView.EditKeyPressed)

layout = QHBoxLayout()

layout.addWidget(self.listView)

layout.addWidget(self.barGraphView, 1)

self.setLayout(layout)

self.setWindowTitle("Bar Grapher")

In the model solution, we added some extra code to create 20 random items
to create an initial bar graph. The whole thing can be done in less than
200 lines.

A solution is provided in chap16/bargrapher.pyw.

This page intentionally left blank

Online Help and
Internationalization

1717 ● Online Help

● Internationalization

Users may be able to use a very simple application just by reading its menu
options and button texts. Other applicationsmay require a littleTooltips

and sta-
tus tips

171 ☞

more informa-
tion, and in these cases tooltips and status tips are an easy-to-program solution.
But some applications are so complex or sophisticated that users may need
more extensive help to understand what facilities are available to them, and
how to use the applications.

One solution to giving adequate information is to supply a printed manual;
another is to provide a help system. Several possible approaches can be used
to create a suitable online help system; we will mention them all, and show
one of them. We will return to the Image Changer application introduced in
Chapter 6, and in this chapter’s first section we will show the implementation
of the application’s MainWindow.helpHelp() method, and how to provide an
online help system.

Throughout the book, the applications shown have provided menu text, button
text, labels, tips, and so on, in English. This is fine for the minority of the
world’s people who can read English, but not much use to those who speak
the world’s most widely spoken language, Mandarin Chinese, or to those who
speak other major languages such as Spanish, Arabic, Hindi, Portuguese,
Bengali, Russian, or Japanese.

For an application to be as widely useable as possible, it must be accessible to
non-English speakers. PyQt provides a toolchain for identifying user-visible
strings and for making these strings available in the easy-to-use Qt Linguist
GUI application that human translators can use to provide suitable transla-
tions. In this chapter’s second section, we will discuss the translation tools and
show how to use them. We will also present a new translation-aware version
of the Image Changer application suitable for use with the translation tools.

509

510 Chapter 17. Online Help and Internationalization

Online Help

There are three common ways to provide an online help system. One approach
is to provide the help in the form of HTML files, and to launch a Web browser
set to the relevant page. Another is to use the Qt Assistant application provided
with Qt. The third approach is to provide a help form, again using HTML, but
with the images and HTML files as resources.

Figure 17.1 The Image Changer Help form

The first approach can be achieved by launching a Web browser as a separate
process, using either Python’s subprocess module, or PyQt’s QProcess class.
Qt 4.2 introduced a new class, QDesktopServices, that makes it really easy
to launch a browser in a platform-independent way with its openUrl() static
convenience method.

The second approach is trickier, since it requires us to create an XML file
in a special format and to distribute Qt Assistant with our application. The
advantage of using Qt Assistant is that it provides automatic indexing.

The third approach,using a custom help form and with HTML files and images
as resources, is the one that we will use. We saw back in Chapter 6 when weRe-

source
files

172 ☞

looked at resource files, that we could include arbitrary files, including HTML
files, and we incorporated some demo help files in our resources.qrc file. Here
is the code for the Image Changer’s MainWindow.helpHelp() method:

def helpHelp(self):

form = helpform.HelpForm("index.html", self)

form.show()

Online Help 511

Using our help form is easy: We just give it one of the HTML files, and self

(over which the form will center itself). Notice that we use show() rather than
exec_(); this almost always means that the form shown will have the delete on
close attribute set.

The screenshot in Figure 17.1 may give the misleading impression that key-
board users are not catered to, but in fact, the class used to show the HTML
files, QTextBrowser, provides good keyboard support. For example, users can
press Tab to move the focus from hyperlink to hyperlink, and Enter to follow a
hyperlink. They can go back by pressing Alt+Left Arrow, and they can go to the
first page by pressing Home. And because the form is a QDialog subclass, they
can close the window by pressing Esc.

By now we are very familiar with creating PyQt dialogs, so we will confine
ourselves to showing just those extracts that are relevant to creating the online
help system—specifically, a couple of extracts from the HelpForm’s initializer,
and one of its methods. (The code is in chap17/helpform.py.)

class HelpForm(QDialog):

def __init__(self, page, parent=None):

super(HelpForm, self).__init__(parent)

self.setAttribute(Qt.WA_DeleteOnClose)

self.setAttribute(Qt.WA_GroupLeader)

The Qt.WA_GroupLeader attribute ensures that if the help form is invoked from
a modal dialog, the user will be able to interact with both the modal dialog and
the help form, something that would not be possible otherwise. If the help form
is invoked from a modeless dialog or main window, the attribute has no effect,
and the user can interact with both as usual.

self.textBrowser.setSearchPaths([":/"])

self.textBrowser.setSource(QUrl(page))

The QTextBrowser class is a subclass of QTextEdit that can be used to display
a large subset of HTML tags, including images, lists, and tables. We have set
its search path to the resource file’s root directory, and set its initial page to be
the page that was passed in. Because we have set a search path we are able
to pass a page without a path (e.g., simply index.html or filemenu.html). The
QTextBrowser understands resource paths, and is therefore able to find image
resources in tags such as .

self.connect(backAction, SIGNAL("triggered()"),

self.textBrowser, SLOT("backward()"))

self.connect(homeAction, SIGNAL("triggered()"),

self.textBrowser, SLOT("home()"))

self.connect(self.textBrowser, SIGNAL("sourceChanged(QUrl)"),

self.updatePageTitle)

512 Chapter 17. Online Help and Internationalization

Navigating from page to page is handled automatically by the QTextBrowser.
Nonetheless, we have provided two toolbar buttons, Back and Home, and con-
nected them to the appropriate QTextBrowser slots to get the behavior we want.
If the HTML document is changed—for example, due to the user clicking a
hyperlink—we call a custom updatePageTitle() slot.

def updatePageTitle(self):

self.pageLabel.setText(self.textBrowser.documentTitle())

This slot simply puts the HTML page’s <title> text in a QLabel that is in the
toolbar, to the right of the toolbar buttons.

Once we have a HelpForm class, we can implement our online help system
entirely in HTML, either including the files as resources, or installing them in
the filesystem and finding them using code like this:

helppath = os.path.join(os.path.dirname(__file__), "help")

This assumes that the help files are in a help directory that resides in the
directory where the application’s .pyw file is located.

Writing the code to provide an online help system is straightforward; but
designing a system that is easy to navigate, and that is understandable, can be
quite a challenge.

Internationalization
There are several issues to consider when making applications suitable for
users who speak a language that is different from the one used originally. The
largest and most obvious issue is that all user-visible strings must be translat-
ed into the target language—this includes not only the strings used for menu
options and dialog buttons, but also tooltips, status tips, and any other online
help. In addition, we must perform other localizations, such as making sure
that numbers use the appropriate decimal marker and thousands symbol, that
time and date formats are correct, and that paper sizes and systems of mea-
surement are right. For example, English is spoken by most American and
British people, but the two cultures have different date format conventions,
different currencies, different standard paper sizes, and different systems of
measurement.

Thanks to the use of Unicode, any character used by just about anyUnicode
strings

20 ☞

human
language can be displayed. We saw near the beginning of the book that any
unicode character can be included in unicode or QString strings using the
unicode escape character and the target character’s hexadecimal code point,
or using the unichr() function. As for reading and writingText

files

249 ☞

text files containing
Unicode, we can use Python’s codecs.open() function, or PyQt’s QTextStream as
we saw in an earlier chapter.

Internationalization 513

When it comes to some aspects of localization we can use QString, QDate, and
QDateTime. For example, assuming n is a number, QString("%L1").arg(n) will
produce a QString with thousandsQString

.arg()

402 ☞

and decimal separators suitable to the cur-
rent locale. Both QDate and QDateTime have toString() methods that can accept
either a custom format, or a predefined format such as Qt.SystemLocaleDate

(Qt.LocalDate in older code), or Qt.ISODate, which is “universal”. In addition, the
QLocale class providesmany methods for returning localized QStrings,and a few
methods for extracting numbers from localized QStrings. It also has methods
that return locale-specific characters, such as the character to use as a negative
sign, a percentage symbol, and so on.

Most of the work involved with internationalizing an application is concerned
with translation, so it is this topic that we will focus on for the rest of the
section.

To help translate applications, PyQt provides a tool chain of three tools: py-
lupdate4, lrelease, and Qt Linguist. For these tools to be useful, every user-
visible string must be specially marked. This is easily achieved by using the
QObject.tr() method, which is inherited by all QWidget subclasses, including all
dialogs and main windows. For example, instead of writing QString("&Save"),
we write self.tr("&Save"). The text passed to tr() should be ASCII; if charac-
ters outside the ASCII range are required, use trUtf8() instead.

For each string marked for translation, the translation tools are provided with
a pair of strings: a “context” string (the class name), and the marked string
itself. The purpose of the context is to help human translators identify which
window the string to translate is shown in, since different translations might
be needed in different windows in some languages.

For strings that need translating but are not inside classes, we must use the
QApplication.translate() method, and supply the context string ourselves. For
example, in a main() function we might translate the application’s name like
this: QApplication.translate("main", "Gradgrind"). Here, the context is “main”,
and the string to translate is “Gradgrind”.

Unfortunately, the context used by self.tr() can be different from that used
by C++/Qt’s tr() method, because PyQt determines the context dynamically,
whereas C++ does so at compile time.★ This may matter if translation files
are being shared between C++/Qt and PyQt applications. It can also be an
issue if forms are subclassed. If this is ever a problem, the solution is simply
to replace each single-argument self.tr() call with a two-argument QApplica-
tion.translate() call, explicitly giving the correct context as the first argument,
and the string to be translated as the second argument.

Once all of an application’s user-visible strings are suitably marked, we
must slightly change the way the application starts up so that it reads in the
translated strings for the locale in which it is run.

★See the PyQt pyqt4ref.html documentation, under “Differences Between PyQt and Qt”.

514 Chapter 17. Online Help and Internationalization

Here is how an internationalized application is created.

1. Create the application using QObject.tr() or QApplication.translate() for
all user-visible strings.

2. Modify the application to read in the locale-specific .qm (Qt message) files
at start-up if they are available.

3. Create a .pro file that lists the application’s .ui (Qt Designer) files, its .py

and .pyw source files, and the .ts (translation source) file that it will use.

4. Run pylupdate4 to create the .ts file.

5. Ask the translator to translate the .ts file’s strings using Qt Linguist.

6. Run lrelease to convert the updated .ts file (that contains the transla-
tions) to a .qm file.

And here is how such an application is maintained.

1. Update the application, making sure that all user-visible strings use
QObject.tr() or QApplication.translate().

2. Update the .pro file if necessary—for example, adding any new .ui or .py

files that have been added to the application.

3. Run pylupdate4 to update the .ts file with any new strings.

4. Ask the translator to translate any new strings in the .ts file.

5. Run lrelease to convert the .ts file to a .qm file.

We will cover all of the preceding steps, starting with the use of QObject.tr(),
using extracts from the translation-aware version of the Image Changer
application in the chap17 directory.

fileNewAction = self.createAction(self.tr("&New..."),

self.fileNew, QKeySequence.New, "filenew",

self.tr("Create an image file"))

The first string marked for translation is the menu option string, New…, and
the second is the string used for tooltips and status tips. (The "filenew" string
is the name of the icon file without its .png suffix.)

self.fileMenu = self.menuBar().addMenu(self.tr("&File"))

Menu strings as well as action strings must be translated.

self.statusBar().showMessage(self.tr("Ready"), 5000)

Here we have an initial status message for the user, and again we must use
tr().

It is not usually appropriate to translate the strings used as QSettings keys,
especially since these strings are not normally visible to the user.

Internationalization 515

reply = QMessageBox.question(self,

self.tr("Image Changer - Unsaved Changes"),

self.tr("Save unsaved changes?"),

QMessageBox.Yes|QMessageBox.No|

QMessageBox.Cancel)

For this message box, we have marked both the window title and the message
text for translation. We don’t have to worry about translating the buttons in
this case because we are using standard buttons and Qt has translations for
these.★ If we had used our own text we would have had to use tr() on it, like
any other user-visible string.

self.tr("Saved %1 in file %2").arg(self.dataname).arg(self.filename)

One way to provide the preceding string is to write:

self.tr("Saved %s in file %s" % (self.dataname, self.filename)) # BAD

This is not recommended. Always use QStrings, and always use QString.arg();
this makes it easier for translators. (The tr() method returns a QString, so we
can call any QString method, such as arg(), on its return value.) For example, in
some languages the translation would be phrased “Saved in file %2 the data %1”.
This is no problem using a QString with arg()s, since the translator can change
the order of the %ns in the string and the arg() methods will respect this. But
swapping one Python string’s %s for another will not change anything.

We must use tr() for every user-visible string in hand-coded .pyw and .py files.
But for .py files generated from .ui files by pyuic4 we don’t need to do anything,
since pyuic4 automatically uses QApplication.translate() on all strings anyway.
This works even for untranslated applications, because if there is no suitable
translation, the original language—for example, English—is used instead.

A PyQt application usually uses PyQt built-in dialogs; for example, the file
open dialog, or the file print dialog. These must also be translated,although for
several languages translations are already available in the .qm files provided
by Trolltech.

Having used tr() throughout, and having located an appropriate Qt transla-
tion, we are ready to modify the application’s start-up code to load in suitable
translation files if they exist.

app = QApplication(sys.argv)

locale = QLocale.system().name()

qtTranslator = QTranslator()

if qtTranslator.load("qt_" + locale, ":/"):

app.installTranslator(qtTranslator)

★Trolltech provides translations for some languages,such as French and German,and some unsup-
ported translations to various other languages. These translations are in Qt’s (not PyQt’s) trans-
lations directory; search your filesystem for qt_fr.qm, for example, to find the French translation.

516 Chapter 17. Online Help and Internationalization

appTranslator = QTranslator()

if appTranslator.load("imagechanger_" + locale, ":/"):

app.installTranslator(appTranslator)

app.setOrganizationName("Qtrac Ltd.")

app.setOrganizationDomain("qtrac.eu")

app.setApplicationName(app.translate("main", "Image Changer"))

app.setWindowIcon(QIcon(":/icon.png"))

form = MainWindow()

form.show()

app.exec_()

The QLocale.system().name() call will return a string such as “en_US” (English,
United States), or “fr_CA” (French,Canada), and so on. The QTranslator.load()

method takes a file stem and a path. In this case, we have given the path of
:/ which is the application’s resource file. If the locale were “fr_CA”, the file
stems would be qt_fr_CA and imagechanger_fr_CA. Given these, PyQt will look
for qt_fr_CA.qm, and failing that, for qt_fr.qm, and similarly for imagechang-

er_fr_CA.qm, and failing that, for imagechanger_fr.qm. If the locale was “en_US”,
no .qm files would be found, and therefore none installed—and this is fine, since
the application would then fall back to using the original strings which, are in
English anyway.

Notice that we had to use QApplication.translate() (written as app.trans-

late()), since this code is not inside a QObject subclass’s method. With no class
name, we chose to use the text “main” for the context; some programmersmight
prefer to use “global”. We are free to use any name we like—the purpose of con-
texts is purely to help human translators.

We can load only a single translation into a single QTranslator object, but we
can add as many translators as we like to the QApplication object. If there are
conflicts, that is, if the same string has different translations, the most recently
installed translator wins.

Although we have chosen to include our translations in the resource file,
there is no obligation to do so; we could just as easily have accessed them from
the filesystem.

Here is an extract from the resource.qrc file that we have used:

<qresource>

<file>qt_fr.qm</file>

<file>imagechanger_fr.qm</file>

</qresource>

<qresource>

<file alias="editmenu.html">help/editmenu.html</file>

<file alias="filemenu.html">help/filemenu.html</file>

<file alias="index.html">help/index.html</file>

</qresource>

<qresource lang="fr">

Internationalization 517

<file alias="editmenu.html">help/editmenu_fr.html</file>

<file alias="filemenu.html">help/filemenu_fr.html</file>

<file alias="index.html">help/index_fr.html</file>

</qresource>

A resource file can have any number of <qresource> tags, although up until
now we have only ever used one. If the current locale is “en_US”, the main help
file will be :/index.html; but if the locale is “fr_CA” or “fr” or any other “fr_*”,
when we seek to access file :/index.html in code, the file we will actually get is
:/index_fr.html.

Figure 17.2 Qt Linguist

The tool that is used to create and update a .ts (translation source) file is
pylupdate4. This program is run from the command line with the name of a .pro

file as a parameter. Here is the complete imagechanger.pro file:

FORMS += newimagedlg.ui

SOURCES += helpform.py

SOURCES += imagechanger.pyw

SOURCES += newimagedlg.py

SOURCES += resizedlg.py

TRANSLATIONS += imagechanger_fr.ts

518 Chapter 17. Online Help and Internationalization

The .pro file format is used primarily by C++/Qt programmers, but it makes
using pylupdate4 and lrelease easier if we use it for PyQt projects. We care
about only three kinds of entries: FORMS for .ui files, SOURCES for .py and .pyw

files, and TRANSLATIONs for .ts files. Notice that we do not list .qm files (such as
qt_fr.qm); this is because we do not generate the qt_fr.qm file, but simply copy
it from the translations directory.

We don’t have to use one line per file; instead, we can group files. For ex-
ample:

FORMS = newimagedlg.ui

SOURCES = helpform.py imagechanger.pyw newimagedlg.py resizedlg.py

TRANSLATIONS = imagechanger_fr.ts

Once we have used tr() and translate() in our source code, and created the
.pro file, we can run pylupdate4:

C:\>cd c:\pyqt\chap17

C:\pyqt\chap17>pylupdate4 -verbose imagechanger.pro

Updating 'imagechanger_fr.ts'...

 Found 96 source texts (96 new and 0 already existing)

Using the -verbose option is, of course, optional. The pylupdate4 program cre-
ates the .ts file listed in the .pro file if it doesn’t exist, and puts into it all the
contexts and strings for the strings marked using tr() and translate() that
appear in the files listed in the FORMS and SOURCES .pro file entries. If the .ts

file already exists, pylupdate4 adds any new contexts and strings that are nec-
essary, leaving intact any translations that have been added in the meantime.
Because pylupdate4 is smart, we can run it as often as we like, even if a transla-
tor has updated the .ts file by adding or changing translations, without losing
any data.

When we are ready to release (or to simply test) the translated application, we
can generate a .qm file for the .ts file by running lrelease:

C:\pyqt\chap17>lrelease -verbose imagechanger.pro

Updating 'C:/pyqt/chap17/imagechanger_fr.qm'...

 Generated 85 translations (81 finished and 4 unfinished)

 Ignored 11 untranslated source texts

Just like pylupdate4, we can run lrelease as often as we like. We don’t need to
generate the qt_fr.qm file, because we copied it.

It is possible to avoid using a .pro file entirely, and simply rely on the mkpyqt.py

or Make PyQt build tools. To do this, we must run pylupdate4 once on the
command line. For example:

C:\>cd c:\pyqt\chap17

C:\pyqt\chap17>pylupdate4 *.py *.pyw -ts imagechanger_fr.ts

Internationalization 519

From now on we can simply run mkpyqt.py with the -t (translate) option, or
run Make PyQt and check the Translate checkbox.With translation switched on,
both tools run pylupdate4 followed by lrelease.

The main piece of work left to do is the translation itself. For this, we can give
the translator the Qt Linguist application—it is written in C++/Qt and runs on
Windows, Mac OS X, and Linux—along with the .ts file, and ask them to enter
translations for the strings.The Qt Linguist application (shown in Figure 17.2),
is quite easy to use and can help minimize duplication by suggesting similar
previously translated phrases. It groups translation strings by contexts (which
are normally window class names). This is useful when a string might need to
be translated in different ways depending on which form it appears in.

To get started with Qt Linguist, run it, click File→Open, and open a .ts file.
Now click one of the + symbols in the Context dock window on the left to show
the strings in a context, and then click one of the strings. The string will ap-
pear in the top-right panel under the “Source text” heading. Click under the
“Translation” heading and type in a translation. To confirm that the transla-
tion of the string is finished, click the question mark icon in the Context dock
window beside the relevant string: Clicking the icon makes it toggle between
being a question mark or a tick. Translations that are ticked are “done” and
will be put into the .qm file by lrelease.

Summary

Creating an HTML-based online help system using QTextBrowser or QDesk-

topServices.openUrl() is straightforward, whereas creating a system that uses
Qt Assistant is trickier to set up. But no matter which approach we take to pro-
viding access to online help, the real challenge is the design and content of the
online help documentation itself.

Setting up an application for translation is quite straightforward. A .pro file
is normally used to list the .ts file and the .ui, .py, and .pyw files that have
user-visible strings in them, and we must use pylupdate4 and lrelease to
keep the .ts file up-to-date and to produce the .qm file. We can avoid using a
.pro file by generating the initial .ts file and then using either mkpyqt.py or
Make PyQt.

In terms of coding we must make sure that every user-visible string uses QOb-

ject.tr() or QApplication.translate(). Strings that have replaceable argu-
ments should always use QString.arg() with its numbered %n arguments rather
than the Python % operator.

For numbers we may need to use %Ln to get the correct thousands and decimal
separators. One trick we can use for currency symbols is to do something
like this:

currency = QApplication.translate("Currency", "$")

520 Chapter 17. Online Help and Internationalization

and translate “$” as “ ”, “£”, “¥”, or whatever else is appropriate. For dates
we can use QDate.toString(Qt.SystemLocaleDate) or QDate.toString(Qt.ISODate).
For units of measurement it is probably best either to provide a sensible
default that the user can change through a configuration dialog, or have a “first
run” dialog that asks the user to choose their units, default paper size, and
so on.

Exercise
If you are multilingual, pick one of the examples or exercises, or one of your
own PyQt applications, and translate it to your second language.

If you are monolingual, pick one of the examples or exercises, or one of your
own PyQt applications, and add online help to it, including tooltips and status
tips, as well as HTML help files.

No solutions are provided.

Networking

1818 ● Creating a TCP Client

● Creating a TCP Server

The Python standard library has many modules that provide networking
facilities. We saw one example of a standard library networking functionCurren-

cy
Con-
verter

121 ☞

back
in Chapter 4, when we used urllib2.urlopen() to provide a “file handle” to a file
on the Internet that we then read line by line using the for line in fh: idiom.
It is also possible to just “grab” an entire file from the Internet:

source = "http://www.amk.ca/files/python/crypto/" + \

"pycrypto-2.0.1.tar.gz"

target = source[source.rfind("/") + 1:]

name, message = urllib.urlretrieve(source, target)

The name holds the name that the source was saved under; it will be the same as
target in this case, but if no target is specified it will be a generated name—for
example, /tmp/tmpX-R8z3.tar.gz. For an HTTP download, the message is an
httplib.HTTPMessage instance that contains the relevant HTTP headers.

Python’s urllib and urllib2 standard library modules are very versatile.
They can use the FTP and HTTP protocols, in the latter case using GET or
POST, and they can use an HTTP proxy. The urllib2 module supports basic
authentication and can be used to set HTTP headers. And if Python has been
installed with SSL support, the urllib2 module can use the HTTPS protocol.
The standard library also includes support for many other network protocols,
including IMAP4, POP3, and SMTP for email, and NNTP for network news,
as well as libraries for handling cookies, XML-RPC, and CGI, and for creating
servers. Most of Python’s networking support is based on the socket module,
which can be used directly for low-level network programming.

In addition to Python’s standard library, PyQt4 provides its own set of net-
working classes, including QFtp for client-side FTP support and QHttp for HTTP
support. Low-level networking can be done using QAbstractSocket subclasses,
including QTcpSocket, QTcpServer, and QUdpSocket, and from Qt 4.3, QSslSocket.

521

522 Introduction

Networking support for Python can also be found in other third-party li-
braries, the most well known being the Twisted networking framework; see
http://twistedmatrix.com for further details.

In this chapter we will only concern ourselves with creating a simple client/
server application, and we will create both the client and the server using
just two of PyQt’s networking classes: QTcpSocket and QTcpServer. In the next
chapter, we will look at a multithreaded version of the server that is capable
of handling multiple simultaneous requests without having to block.

Client/server applications are normally implemented as two separate pro-
grams:a server that waits for and responds to requests, and one or more clients
that send requests to the server and read back the server’s response. For this
to work, the clients must know where to connect to the server, that is, the serv-
er’s IP address and port number. Also, both clients and server must send and
receive data using an agreed-upon socket protocol, and using data formats that
they both understand.

PyQt provides two different kinds of socket. The UDP (User Datagram
Protocol) is supported by the QUdpSocket class. UDP is lightweight, but
unreliable—there are no guarantees that data will be received. UDP is con-
nectionless, so data is just sent or received as discrete items. The TCP (Trans-
mission Control Protocol) is supported by the QTcpSocket class. TCP is a reliable
connection- and stream-oriented protocol; any amount of data can be sent and
received—the socket is responsible for breaking the data into chunks that are
small enough to send, and for reconstructing the data at the other end.

Chapter 18. Networking

UDP is often used to monitor instruments that give continuous readings, and
where the odd missed reading is not significant. Client/server applications
normally use TCP because they need reliability; this is the protocol we will use
in this chapter.

Another decision that must be made is whether to send and receive data as
lines of text, or as blocks of binary data. PyQt’s TCP sockets can use either
approach, but we have opted to work with binary data since this is the most
versatile and easiest to handle.

The example we will use is the Building Services application. The server holds
details of the rooms in a building and the dates they have been booked. The
client is used to book and unbook particular rooms for particular dates. Any
number of clients can be used, but if two clients make a request that arrives
at exactly the same time, one will be blocked until the other’s request has been
handled. This problem can be mitigated by using a threaded server, as we will
see in the next chapter.

For the sake of the example, we will run the server and clients on the same
machine; this means that we can use “localhost” as the IP address. The server
and two clients are shown in Figure 18.1. We have also chosen a port number
of 9407—this is just an arbitrary number. The port number should be greater
than 1023 and is normally between 5001 and 32767, although port numbers

http://twistedmatrix.com

Introduction 523

Figure 18.1 A server with two clients

up to 65535 are valid. The server can accept two kinds of request, “BOOK” and
“UNBOOK”, and can make three kinds of response, “BOOK”, “UNBOOK”, and
“ERROR”.All the requests and responses are sent and received as binary data;
we will look at their formats in the sections that follow.

In addition to the port number that is held in the PORT variable, we also create
the SIZEOF_UINT16 variable and set it to 2 (meaning two bytes). In addition to
the normal imports, we must also import the QtNetwork module:

from PyQt4.QtNetwork import *

The same PORT and SIZEOF_UINT16 variables, and the same QtNetwork import, are
used in both the client and the server applications. In the following section, we
will look at the implementation of the client, and in the second section we will
review the server.

Creating a TCP Client

The Building Services client is in chap18/buildingservicesclient.pyw. It allows
the user to enter a room number (with only valid room numbers being accept-
ed) and a date, and to request that the room is booked (or unbooked) for that
date. The server responds to the request and the client displays the response
for the user to read in the response label.

We will begin by looking at the initializer, but omitting the creation of the
widgets and layouts. We will look at it in three parts, and then go on to look at
the client’s methods.

class BuildingServicesClient(QWidget):

def __init__(self, parent=None):

super(BuildingServicesClient, self).__init__(parent)

self.socket = QTcpSocket()

self.nextBlockSize = 0

self.request = None

524 Chapter 18. Networking

We have subclassed QWidget rather than QDialog or QMainWindow. The only
noticeable difference is that had we subclassed QDialog, pressing Esc would
have terminated the application.

We have three objects to store. The first is the socket that the client will use to
communicate with the server. The second is the “next block size”; this is a vari-
able that we use to determine whether we have received sufficient response
data to be able to process the response. The third is a request object; this is a
QByteArray containing the request data, or None if we have no data to send.

We will skip the creation, setup, and laying out of the widgets, since all of that
should all be familiar by now, although we will look at the widget connections
after we have looked at the socket connections.

self.connect(self.socket, SIGNAL("connected()"),

self.sendRequest)

self.connect(self.socket, SIGNAL("readyRead()"),

self.readResponse)

self.connect(self.socket, SIGNAL("disconnected()"),

self.serverHasStopped)

self.connect(self.socket,

SIGNAL("error(QAbstractSocket::SocketError)"),

self.serverHasError)

The first four signals are concerned with the socket. We need to know when
the connection is established, since at that point we can send our request data.
We also need to know whether the socket has data to read, since when it does,
it will have the server’s response, which we want to read. If the connection is
terminated—for example, because the server has been shut down or an error
has occurred—we want to know so that we can inform the user.

self.connect(self.roomEdit, SIGNAL("textEdited(QString)"),

self.updateUi)

self.connect(self.dateEdit, SIGNAL("dateChanged(QDate)"),

self.updateUi)

self.connect(self.bookButton, SIGNAL("clicked()"),

self.book)

self.connect(self.unBookButton, SIGNAL("clicked()"),

self.unBook)

self.connect(quitButton, SIGNAL("clicked()"), self.close)

The other connections are concerned with the user interface. As usual, we
have an updateUi() method for doing validation and for enabling/disabling the
buttons as appropriate. We also have connections to book and unbook rooms
and to terminate the application.

def updateUi(self):

enabled = False

if not self.roomEdit.text().isEmpty() and \

Creating a TCP Client 525

self.dateEdit.date() > QDate.currentDate():

enabled = True

if self.request is not None:

enabled = False

self.bookButton.setEnabled(enabled)

self.unBookButton.setEnabled(enabled)

We enable the book and unbook buttons if the room edit has a room number
and if the date edit has a date later than today—but we disable them if there
is a pending request (i.e., if self.request is not None).

def closeEvent(self, event):

self.socket.close()

event.accept()

If the application is terminated we make sure that we close the socket and we
accept the close event. We don’t really have to do these things, but by doing
them we show that we have considered what should be done on termination.

def book(self):

self.issueRequest(QString("BOOK"), self.roomEdit.text(),

self.dateEdit.date())

def unBook(self):

self.issueRequest(QString("UNBOOK"), self.roomEdit.text(),

self.dateEdit.date())

If the user clicks Book, the book() method is called. The method simply
calls issueRequest() with the request action “BOOK”, the room number (as a
QString), and the date. The unBook() method is almost identical, except that its
request action is “UNBOOK”.

def issueRequest(self, action, room, date):

self.request = QByteArray()

stream = QDataStream(self.request, QIODevice.WriteOnly)

stream.setVersion(QDataStream.Qt_4_2)

stream.writeUInt16(0)

stream << action << room << date

stream.device().seek(0)

stream.writeUInt16(self.request.size() - SIZEOF_UINT16)

self.updateUi()

if self.socket.isOpen():

self.socket.close()

self.responseLabel.setText("Connecting to server...")

self.socket.connectToHost("localhost", PORT)

This method is used to prepare the request QByteArray and to initiate the
process whereby the request is sent to the server.

526 Chapter 18. Networking

Figure 18.2 shows the data that is written to the request QByteArray. A QByte-

Array can be read from and written to just like any other QIODevice. The first
two bytes contain an unsigned integer, initially with the value 0. This integer
is used to store the number of bytes occupied by the request (excluding the size
of the integer itself), that is, the number of bytes that follow it. We must start
by making it 0 because we do not know how many bytes will be used.

uint16 QString QString QDate

Figure 18.2 The request format

After the size integer, we write the data. The action string is the request action
(“BOOK” or “UNBOOK”), the room string holds a room number (e.g., “213”),
and the date holds a QDate. Once the data has been written to the byte array,
we use seek() to move the writing position to the beginning so that what we
write next will overwrite the start of the QByteArray. (We actually perform
the seek on the QDataStream’s underlying QIODevice, which is retrieved by the
QDataStream.device() call.) We write an unsigned 16-bit integer whose value is
the length of the QByteArray minus the size of the initial integer. The request
byte array is now ready to be sent.

We update the user interface—this will disable the Book and Unbook buttons
since the request object is not None; this is to prevent the user from making
additional requests before a response has been received. We then make sure
that the socket is closed, since it may have been opened to handle a previous
request, and set the response label to inform the user that we are attempting
to establish a connection.

Finally, we call connectToHost(). The IP address can be given as a dotted string
(e.g., “82.94.237.218”), as a hostname (e.g., “www.python.org”), or as a QHost-

Address object. Thanks to the signal–slot connections that we made in the
initializer, we know that once the connection is established our sendRequest()

method will be called, unless the connection fails, in which case either the
serverHasStopped() or the serverHasError() method will be called instead.

def sendRequest(self):

self.responseLabel.setText("Sending request...")

self.nextBlockSize = 0

self.socket.write(self.request)

self.request = None

Once the connection has been established this method is called. It updates the
response label to tell the user that the request it being sent, and sets the next
block size to be 0. This is concerned with the response we hope to get back; we
will see it in use in the readResponse() method. It then writes the request byte
array to the socket. Once the data is written, the request is set to None, ready
for a new request to be made.

Creating a TCP Client 527

If no error occurs, and providing the server has not been terminated, the
server will respond, and at that point the readResponse() method will be called.
(Otherwise, either the serverHasStopped() or the serverHasError() method will
be called.)

uint16 QString QString QDate Successful Response

uint16 QString QString Error Response

Figure 18.3 The response formats

The server has two different response formats, as shown in Figure 18.3. When
the response is received we must begin by reading its size from the unsigned
integer. Then, once we know that at least as many bytes as the size are
available to read, we read the first QString. If this contains the text “ERROR”,
we know that we have an error response, and we can simply read the second
string that contains the error message; otherwise, the text will be “BOOK” or
“UNBOOK”, that is, the request action, with the request’s details, the room in
the second QString, and the date as a QDate, to confirm that the request’s action
has succeeded.

def readResponse(self):

stream = QDataStream(self.socket)

stream.setVersion(QDataStream.Qt_4_2)

while True:

if self.nextBlockSize == 0:

if self.socket.bytesAvailable() < SIZEOF_UINT16:

break

self.nextBlockSize = stream.readUInt16()

if self.socket.bytesAvailable() < self.nextBlockSize:

break

action = QString()

room = QString()

date = QDate()

stream >> action >> room

if action != "ERROR":

stream >> date

if action == "ERROR":

msg = QString("Error: %1").arg(room)

elif action == "BOOK":

msg = QString("Booked room %1 for %2").arg(room) \

.arg(date.toString(Qt.ISODate))

elif action == "UNBOOK":

msg = QString("Unbooked room %1 for %2").arg(room) \

.arg(date.toString(Qt.ISODate))

528 Chapter 18. Networking

self.responseLabel.setText(msg)

self.updateUi()

self.nextBlockSize = 0

It is possible that the server’s response will be returned in fragments. For
this reason we use an infinite loop, first to retrieve the byte count and then
to ensure that there are at least that number of bytes available to read. This
leaves the responsibility for buffering with the server, and it means that when
we read we know that we can read a complete response in one go.

If at least two bytes are available, we read them as an unsigned 16-bit inte-
ger: This gives us the number of bytes that are to follow. Then we test to see
whether there are enough bytes to read: If there aren’t, we exit the loop and
wait for another readyRead() signal to result in the readResponse() method be-
ing called. If there are enough bytes, we read the action, and the string that
follows—this is either the room number or an error message. If the action is
not “ERROR”, we also read the date. Then, depending on which action we re-
ceived, we prepare a message string and display it in the response label.

Having read an entire response we reset the next block size since we have
read that many bytes. Now when we loop, either another response is waiting,
in which case QTcpSocket.bytesAvailable() will return a value greater than
zero, and we repeat the process of reading and displaying; or there is no other
response and we simply break out of the loop and finish.

def serverHasStopped(self):

self.responseLabel.setText(

"Error: Connection closed by server")

self.socket.close()

def serverHasError(self, error):

self.responseLabel.setText(QString("Error: %1") \

.arg(self.socket.errorString()))

self.socket.close()

If the server is terminated or if the server responds with a networking error
(rather than with our own “ERROR” response), the relevant serverHas*()

method is called. In both cases, we display the error message to the user in the
response label and close the socket.

The BuildingServicesClient class is now complete. The user can enter their
booking and unbooking requests and send them to the server by clicking the
Book and Unbook buttons, and can see the results of their requests displayed in
the response label. Requests are sent by writing a QByteArray to a suitably set
up socket. Responses are read back from the socket through a QDataStream; this
enables us to directly read QStrings, QDates, and any other data-stream-support-
ed types, into local variables.

Now that we have seen how the client is created, we can turn our attention to
the server.

Creating a TCP Server 529

Creating a TCP Server

The Building Services TCP server is in chap18/buildingservicesserver.pyw. It
has three components: a GUI that holds a TCP server instance and that pro-
vides an easy means by which the user can terminate the server, a QTcpServer

subclass that is instantiated to provide the server instance, and a QTcpSocket

subclass that is used to handle incoming connections. We will begin by looking
at the first two, since they are short, and then focus on the QTcpSocket subclass
where most of the work is done.

class BuildingServicesDlg(QPushButton):

def __init__(self, parent=None):

super(BuildingServicesDlg, self).__init__(

"&Close Server", parent)

self.setWindowFlags(Qt.WindowStaysOnTopHint)

self.loadBookings()

self.tcpServer = TcpServer(self)

if not self.tcpServer.listen(QHostAddress("0.0.0.0"), PORT):

QMessageBox.critical(self, "Building Services Server",

QString("Failed to start server: %1") \

.arg(self.tcpServer.errorString()))

self.close()

return

self.connect(self, SIGNAL("clicked()"), self.close)

Just for a change, and to remind us that any PyQt widget can be a top-level
window, we have made the dialog a QPushButton subclass. We have also set the
Qt.WindowStaysOnTopHint; most windowing systems will respect the hint and
keep the widget on top of all other windows.

We won’t cover the loadBookings() method; it is used to populate the in-memory
data structure, the Bookings default dictionary, that holds the bookings data.
The dictionary’s keys are dates stored as datetime.date objects, and the values
are ordered lists of room Python

2.5
numbers stored as unicode strings. Default dictionar-

ies were introduced with Python 2.5. They are like normal dictionaries, except
that when we use a key that isn’t in the dictionary, the key is inserted with a
default value. What default value is used depends on how we create the dictio-
nary. In the Building Services server we have created the dictionary like this:

Bookings = collections.defaultdict(list)

Here we have said that the default value for any new key is to be an empty
list; in other cases, we might have chosen an empty set. We can always replace
a default dictionary with a normal dictionary—for example, if using a Python
version older than 2.5—by using the dict.setdefault() method when accessing
possibly nonexistent keys, as we will show later.

530 Chapter 18. Networking

We will review the TcpServer class shortly. Once we have created a server,
we tell it to listen for incoming connections on the given IP address and port
number. The IP address is specified as a QHostAddress, with the special address
“0.0.0.0”, meaning “all network interfaces”; the port number is the same
arbitrary 9407 that we used for the client.

The connection ensures that if the user clicks the button, the window will close.
We don’t do any special cleanup for the TCP server; when it is destroyed any
connected clients will be notified and their sockets’ disconnected() signals will
be emitted.

There is no more to the dialog, so we can now look at the tiny TcpServer class
that inherits QTcpServer.

class TcpServer(QTcpServer):

def __init__(self, parent=None):

super(TcpServer, self).__init__(parent)

def incomingConnection(self, socketId):

socket = Socket(self)

socket.setSocketDescriptor(socketId)

This is the complete code for the TCP server. Whenever an incoming connec-
tion request occurs the incomingConnection() method is called with a socket de-
scriptor in socketId. We simply create a new Socket (a QTcpSocket subclass that
we will review next), and set it to use the socket descriptor that the server has
provided.

This TCP server depends on the PyQt event loop. If we wanted to create a
QTcpServer-based server that did not have a GUI, there are two approaches we
could take. One approach would be to use a QEventLoop, to provide an event loop
without needing a GUI, and write the code in the same way as we have done
here. The other approach is to not have an event loop, but in this case we would
have to do things slightly differently. In particular, we would have to use the
blocking QTcpServer.waitForNewConnection()method instead of reimplementing
incomingConnection(). Of course, if the server does not have a GUI, it could be
written purely using Python’sstandard librarieswithout needing the QtNetwork

module at all. Alternatively, the server could be written using Twisted.

Once a connection is established, all the work is passed on to the Socket class,
a QTcpSocket subclass that we will now review.

class Socket(QTcpSocket):

def __init__(self, parent=None):

super(Socket, self).__init__(parent)

self.connect(self, SIGNAL("readyRead()"), self.readRequest)

self.connect(self, SIGNAL("disconnected()"), self.deleteLater)

self.nextBlockSize = 0

Creating a TCP Server 531

The socket connects its readyRead() signal to our custom readRequest() method,
and its disconnected() signal to its deleteLater() slot—this ensures that the
socket is cleanly deleted when the connection is terminated. The next block
size variable is used for the same purpose and in the same way as in the client,
to ensure that we read a request only when there are at least as many bytes
available to read as are in the request.

Once the socket has been created and the connections set up, it simply waits
until its readRequest() method is called. This method is a bit long, so we will
review it in two parts.

def readRequest(self):

stream = QDataStream(self)

stream.setVersion(QDataStream.Qt_4_2)

if self.nextBlockSize == 0:

if self.bytesAvailable() < SIZEOF_UINT16:

return

self.nextBlockSize = stream.readUInt16()

if self.bytesAvailable() < self.nextBlockSize:

return

action = QString()

room = QString()

date = QDate()

We begin by seeing whether there are at least two bytes to read: If there are,
we read in the size of the next block. If there are not two bytes to read, or if
there were but there are not enough bytes available to read the entire request,
we return and wait for the readRequest() to be called again, when more bytes
have arrived.

Once there are enough bytes, we create empty action and room strings, and a
null QDate, ready to populate them from the incoming request data.

stream >> action

if action in ("BOOK", "UNBOOK"):

stream >> room >> date

bookings = Bookings.get(date.toPyDate())

uroom = unicode(room)

if action == "BOOK":

if bookings is None:

bookings = Bookings[date.toPyDate()]

if len(bookings) < MAX_BOOKINGS_PER_DAY:

if uroom in bookings:

self.sendError("Cannot accept duplicate booking")

else:

bisect.insort(bookings, uroom)

self.sendReply(action, room, date)

532 Chapter 18. Networking

else:

self.sendError(QString("%1 is fully booked") \

.arg(date.toString(Qt.ISODate)))

elif action == "UNBOOK":

if bookings is None or uroom not in bookings:

self.sendError("Cannot unbook nonexistent booking")

else:

bookings.remove(uroom)

self.sendReply(action, room, date)

else:

self.sendError("Unrecognized request")

The server recognizes only two request actions, “BOOK” and “UNBOOK”; if
it gets one of these it reads in the room and date, and retrieves the (possibly
empty) list of bookings for the given date. It also stores a unicode copy of the
room number QString, since the Bookings dictionary the server uses holds all its
data using Python types rather than PyQt types.

Next, the server attempts to book or unbook the given room for the given date.
When booking, if there are no bookings for the given date, an empty list of
bookings is created for that date. This works because we are using a default
dictionary, so when we access it with a key it does not have, it automatically
inserts a new item with the given key and with a default value; in this case,
an empty list. The code is a little bit subtle because we begin by calling get().
We do this to avoid creating an empty list for the given date if the action is to
unbook. Only when we know that the action is to book do we want to ensure
that there is a list for the given date.

If we were using a normal dictionary, we would have to use dict.setdefault()

to retrieve the list for the given date, creating a new item with the given date
as the key and an empty list as the value, if the key is not already present.
For example:

bookings = Bookings.setdefault(date.toPyDate(), [])

The QDate.toPyDate() method was introduced inPyQt

4.1

PyQt 4.1; for earlier versions
we would have to perform the conversion ourselves by writing datetime.date(

date.year(), date.month(), date.day()).

Once we have our (possibly empty) bookings list, and providing that there are
fewer than the maximum number of bookings allowed (MAX_BOOKINGS_PER_DAY,
which has a value of 5), the room number string is inserted into the list in
order, and a reply is sent to the client which simply echoes the request data. If
the room is already booked for the given date, or if the date has the maximum
number of bookings already, an error reply is sent to the client instead.

If the action is to unbook, the room is removed from the bookings for the given
date and the action echoed back to the client; or an error reply is given if the
booking did not exist in the first place. Although the rooms are stored in order,

Creating a TCP Server 533

we have simply used not in and list.remove(), which both do a linear search;
for longer lists we would use bisect.bisect_left() to find the room using a
binary chop, but that seems like overkill in this example.

If the request action is unrecognized, we simply reply with an error message.

def sendReply(self, action, room, date):

reply = QByteArray()

stream = QDataStream(reply, QIODevice.WriteOnly)

stream.setVersion(QDataStream.Qt_4_2)

stream.writeUInt16(0)

stream << action << room << date

stream.device().seek(0)

stream.writeUInt16(reply.size() - SIZEOF_UINT16)

self.write(reply)

The reply sent to the client is created in the same way as the client’s requests
are created. We write to a QByteArray using a QDataStream, beginning by writing
an unsigned 16-bit integer and ending by overwriting the integer with the size
of the reply, and then writing the reply to the socket.

def sendError(self, msg):

reply = QByteArray()

stream = QDataStream(reply, QIODevice.WriteOnly)

stream.setVersion(QDataStream.Qt_4_2)

stream.writeUInt16(0)

stream << QString("ERROR") << QString(msg)

stream.device().seek(0)

stream.writeUInt16(reply.size() - SIZEOF_UINT16)

self.write(reply)

The code for sending an error reply is almost the same as for sending a success
reply, and arguably we could have used one method for both.

The server could easily be extended to handle more request types simply by
adding more if statements to readRequest(). For example, the client might
want to know which rooms are booked on a particular day, or which days a
particular room is booked on.

Although we have used a dictionary to hold the server’s data, there is no reason
why the server could not hold its data in-process in a SQLite database or in an
out-of-process database, or in files. Nor does the server need to have a GUI; it
could have no QWidgets, and simply be run in the background as a Linux dæmon
or Windows service.

534 Chapter 18. Networking

Summary

The Python standard library, the Twisted networking engine, and the PyQt
QtNetwork module provide considerable support for networking, from low-level
sockets to various high-level protocols, including FTP and HTTP.

To write client/server applications we must ensure that the client and the
server programs can communicate. This means that the server must run
at a known IP address and listen at a specific port address. Both client and
server must communicate using an agreed-upon protocol such as UDP, or more
commonly, TCP. They must also agree on how the data is to be transmitted,
whether as lines of text or as blocks of binary data—and in both cases, they
must know what format each request and response must take.

The scenario shown in this chapter is a very common one: The server sits wait-
ing for requests, and clients send requests and then read back the server’s re-
sponses. Before a client can communicate at all it must establish a connection,
and then, once the connection has been established, it can send its data. The
server may respond with data, or some problem may have occurred. If data
is received, we must make sure that we never attempt to read more bytes (or
lines) than are available.

PyQt’s QTcpServer and QTcpSocket classes make it very easy to implement
servers. And although it is possible to read and write lines of textual data,
using binary data is much more versatile, allowing us to send and receive any
type of data and with no need to write a parser.

One theoretical problem with the TCP server we have implemented is that it
is single threaded. This means that it may have to block to handle one request
at a time if multiple requests arrive at the same moment. This can be solved
by using a threaded server, as we will see in the next chapter.

Exercise
Modify the Building Services server so that it accepts a new request action,
BOOKINGSONDATE. When such a request is received it should ignore the room, and
instead retrieve the bookings for the given date. If there are no bookings the
server should send an error reply. Otherwise, it should send as its reply not
a single room string, but rather a string containing comma-space-separated
room numbers as shown in Figure 18.4.

Modify the Building Services client so that it has a Bookings on Date? but-
ton, connected to a method that issues a suitable request. The client’s read-

Response() method will need to be modified slightly so that it can read the
server’s response to the new request.

The modifications necessary to provide “bookings on date” are quite straight-
forward. For a bit more challenge, modify the Building Services server to ac-
cept another new request action, BOOKINGSFORROOM. When one of these requests

Exercise 535

Figure 18.4 Building Services—bookings on date

is received it should ignore the date, and instead iterate over all the bookings,
accumulating a list of the dates for which the given room is booked. If there
are no bookings, it should return an error reply. Otherwise, instead of using
the sendReply() method, it should send its own byte array with its length, the
action, the room string, and then a 32-bit integer containing the number of
dates in the list, followed by each of the dates. Since the dates are stored as
datetime.date objects, they must be converted to QDates to stream them into the
QByteArray.

Figure 18.5 Building Services—bookings for room

The Building Services client must be modified to provide a Bookings for Room?
button, connected to a method that issues a suitable request. The client’s
readResponse() method will need to be modified so that if a BOOKINGSFORROOM

response is received, it reads in the dates and creates a suitable string for
display in the client user interface, as shown in Figure 18.5.

The modifications to the server can be done by adding about 30 lines, and to
the client by adding about 40 lines. However, the BOOKINGSFORROOM request/
response does require some care.

Solutions are provided in chap18/buildingservicesserver_ans.pyw and chap18/

buildingservicesclient_ans.pyw.

This page intentionally left blank

Multithreading

1919 ● Creating a Threaded Server

● Creating and Managing Secondary
Threads

● Implementing a Secondary Thread

Traditionally, applications have a single thread of execution and perform one
operation at a time. For GUI programs this can sometimes be a problem—for
example, if the user invokes a long-running operation, the user interface might
freeze up while the operation is taking place. There are a few solutions that
can be tried to eliminate this problem.

One simple solution, particularly useful in long-running loops, is to call QAp-
plication.processEvents(). This method gives the event loop the opportunity to
handle any unprocessed events, such as paint events, as well as mouse and key
press events.Another solution is to use zero-timeout timers. We have combined
both approaches in several examples, usually when loading lots of files—for
example, in Chapter 9’s Text Editor’s MainWindow.loadFiles() method.

A third solution is to farm the work out to another program entirely. This can
be done using the Python standard library’s subprocess module, or using PyQt’s
QProcess class. The makepyqt.pyw application supplied with the examples uses
QProcess to execute PyQt’s command-line tools such as pyuic4 and pyrcc4.

In some cases what we really need is a separate thread of execution within the
application itself. Applications that have more than one thread of execution
are said to be multithreaded.★ For example, we might want to create a server
that can service as many simultaneous connections as the hardware can cope
with, something relatively easily done if we devote a new thread to each
connection. And in some cases we might have a GUI application where we
want the user to be able to start off a long-running process, and then continue
interacting with the application; in such cases it may be best to pass on the
processing to a separate secondary thread and leave the primary (GUI) thread
free to respond to the user.

This chapter shows some common techniques used in multithreaded program-
ming. These are enough to get started, but the coverage is not comprehensive,

★This chapter assumes a knowledge of the fundamentals of threading. For a thorough, but not
light, introduction, see Foundations of Multithreaded,Parallel,and Distributed Programming.

537

538 Chapter 19. Multithreading

since that would take us beyond the scope of the book and would require a book
in itself.

Because several threads may access the same data concurrently, multithread-
ed applications are usually more difficult to write, maintain, and debug than
single-threadedapplications. On single-processormachines,multithreadedap-
plications can sometimes run slower than single-threaded applications (due to
the processing overhead of having the additional threads),but they are usually
perceived to run faster by users because they don’t freeze the user interface,
and because they make it much easier for progress to be reported back to the
user incrementally.

Using the right number of threads can significantly affect performance. For
example, in the Page Indexer example covered later in the chapter, we have a
primary (GUI) thread and a secondary thread. The exercise involves chang-
ing this example to use multiple secondary threads. If too many are used, the
application runs slower than the version with one secondary thread, but with
the right number, we can start up the one secondary thread version, and then
start up the multiple secondary thread version, and see the multiple secondary
thread version catch up, overtake, and finish, before the one secondary thread
version has finished. How many secondary threads should we use? The an-
swer depends on what processing must be done and on the particular machine
and operating system that the application is run on. We could experiment with
realistic datasets to fix a number, or we could make our code use more or fewer
secondary threads depending on circumstances.

Python’s standard library provides the low-level thread module and the higher-
level threading module, but for PyQt programming, we recommend using the
PyQt threading classes. PyQt’s threading classes offer a high-level API, but
under the hood some of their basic operations are implemented in assembly
language to make them as fast and fine-grained as possible, something not
done in Python’s threading modules.

PyQt applications always have at least one thread of execution, the primary
(initial) thread. In addition, they may create as many secondary threads as
they need. However, if the application has a GUI, the GUI operations, such
as executing the event loop, may only take place in the primary thread. New
threads are created by instantiating QThread subclasses that reimplement the
QThread.run() method.

It is possible to create PyQt applications that do not have a GUI, using
QCoreApplication instead of QApplication. Just like GUI PyQt applications, they
have one primary thread and may have any number of secondary threads.

Communication between secondary threads and the primary thread is often
desirable—for example, to keep the user informed of progress, to allow the
user to intervene during processing, and to let the primary thread know when
processing is complete. Traditionally, such communication has taken place by
using shared variables in conjunction with a resource protection mechanism.

Creating a Threaded Server 539

PyQt has classes to support this approach, including QMutex,QReadWriteLock, and
QSemaphore. In addition, PyQt applications can use the signal–slot mechanism
to communicate between threads; this is very convenient and useful.

In this chapter’s first section we will look at a threaded TCP server; it does the
same job as the server described in the preceding chapter’s last section, but it
can serve several clients simultaneously because it is threaded. In the second
and third sections we will look at a GUI application that has some potentially
very time-consuming processing to do, and that passes on the processing to
a secondary thread. This application uses signals and slots to keep the user
interface up-to-date regarding progress, and to provide the user with some
control over the secondary thread. This example also uses some of the resource
protection classes so that the user interface can access work in progress.

Creating a Threaded Server

Unlike some other GUI libraries, PyQt’s network socket classes are integrated
with the event loop. This means that the user interface remains responsive
during network processing, even in single-threaded PyQt applications. But if
we want to be able to handle multiple simultaneous incoming connections, we
might prefer to use a multithreaded server.

Making a multithreaded server is no more complicated than making a single-
threaded server—the difference between the two being that instead of creat-
ing a separate socket to handle incoming connections, a multithreaded server
creates a new thread for each new connection, and creates a new socket inside
each new thread. For example, here is a complete threaded server:

class TcpServer(QTcpServer):

def __init__(self, parent=None):

super(TcpServer, self).__init__(parent)

def incomingConnection(self, socketId):

thread = Thread(socketId, self)

self.connect(thread, SIGNAL("finished()"),

thread, SLOT("deleteLater()"))

thread.start()

The incomingConnection() method is reimplemented from the QTcpServer base
class. It is called whenever a new network connection is made to the server.

The signal–slot connection is necessary to ensure that the thread is deleted
when it is no longer needed, thereby keeping the server’s memory footprint as
small as possible. Although we must reimplement QThread.run() in a QThread

subclass, the thread is always started by calling QThread.start() (and never by
calling run() directly).

540 Chapter 19. Multithreading

The Thread subclass has one static variable and four methods. The sendReply()

and sendError() methods are identical to those shown in the preceding chapter,
so we will omit them.

class Thread(QThread):

lock = QReadWriteLock()

def __init__(self, socketId, parent):

super(Thread, self).__init__(parent)

self.socketId = socketId

The Thread.lock variable is static, so all the Thread instances share it. The
initializer simply takes note of the socket descriptor ready for when the thread
is started. The run() method is quite long, so we will review it in parts.

def run(self):

socket = QTcpSocket()

if not socket.setSocketDescriptor(self.socketId):

self.emit(SIGNAL("error(int)"), socket.error())

return

while socket.state() == QAbstractSocket.ConnectedState:

nextBlockSize = 0

stream = QDataStream(socket)

stream.setVersion(QDataStream.Qt_4_2)

while True:

socket.waitForReadyRead(-1)

if socket.bytesAvailable() >= SIZEOF_UINT16:

nextBlockSize = stream.readUInt16()

break

if socket.bytesAvailable() < nextBlockSize:

while True:

socket.waitForReadyRead(-1)

if socket.bytesAvailable() >= nextBlockSize:

break

We begin by creating a new socket and setting its socket descriptor to the one
we were given. We take a slightly more robust approach than before, checking
the return value of the QTcpSocket.setSocketDescriptor() call, and giving an
error message on failure. Once the run() method finishes, the finished() signal
is emitted and, thanks to our earlier signal–slot connection, the thread will
be deleted.

As long as the socket is connected, we can use it to receive requests and send
responses. Unlike the TCP server we created in the preceding chapter, rather
than running asynchronously and waiting for things to happen, such as data
being available, through signal–slot connections, here we block using wait-

ReadyRead() until there is data. (The -1 argument means “wait forever”.) It does
not matter that we block, because we are in a separate thread of execution, so

Creating a Threaded Server 541

the rest of the application, its primary thread, and any other connection-han-
dling secondary threads can continue unhindered.

Once there are two bytes available, we read the unsigned 16-bit byte count, and
once at least that number of bytes is available to read, we can continue.

action = QString()

room = QString()

date = QDate()

stream >> action

if action in ("BOOK", "UNBOOK"):

stream >> room >> date

try:

Thread.lock.lockForRead()

bookings = Bookings.get(date.toPyDate())

finally:

Thread.lock.unlock()

uroom = unicode(room)

We read in the request action, which should be “BOOK” or “UNBOOK”, and
if it is one of these, we then read in the room number string and the date. The
Bookings default dictionary holds all the bookings data, and any number of
threads could be accessing it simultaneously. For this reason we must protect
each access. Here, we only want to read,Default

dictio-
naries

529 ☞

so we call lockForRead(), extract
the data we want, and then unlock the lock. We use a try … finally block to
guarantee that the lock will be unlocked when we have finished accessing the
shared data.

Python 2.6 (and 2.5 with a suitable from __future__ statement) offers a nicer
and more compact syntax that can replace the try … finally, as the Using a
Context Manager for Unlocking sidebar on page 549 shows.

One well-known locking mechanism is a mutex (also called a binary
semaphore), provided by PyQt’s QMutex class. A mutex allows only the thread
that locks it to have access to the protected resource. PyQt also offers a more
fine-grained mechanism, the read/write lock, provided by the QReadWriteLock

class that we have used here. Whenever a lock is in force in one thread, other
threads may be blocked, waiting for access. We can minimize this problem in
two ways. First we can use read locks whenever possible—if the only locks in
force are read locks, none of the threads is blocked since it is safe for all threads
to read if no thread is writing. And second,we can minimize the amount of pro-
cessing we do when a lock is in force. We have used both of these techniques in
the run() reimplementation; the downside is that the code is much longer than
might be expected.

QMutex, QReadWriteLock, and the other protection mechanisms work because
they are all “thread-safe”. Any number of threads can simultaneously call the
methods of a thread-safe object, and can rely on the underlying system, that
is, PyQt, to automatically serialize any accesses to shared data that might

542 Chapter 19. Multithreading

occur. This means, for example, that if two or more threads attempt to lock
a QReadWriteLock for writing, only one will succeed, and all the others will be
blocked. This allows the thread that gained the lock to perform its updates on
the shared data, and when it releases the lock one of the other threads that
wants to write will be given access, and so on until no more threads require
write access.

The PyQt documentation indicates which classes, or which methods within
classes, are thread-safe. It also indicates which methods are reentrant. Reen-
trant methods are more constrained than thread-safe methods. This is because
it is safe to call reentrant methods simultaneously from multiple threads only
if each invocation results only in unique data being accessed, such as local
variables. A reentrant method can be made thread-safe by using locks for all
accesses to instance variables, and to any variables that refer to shared data.

if action == "BOOK":

newlist = False

try:

Thread.lock.lockForRead()

if bookings is None:

newlist = True

finally:

Thread.lock.unlock()

if newlist:

try:

Thread.lock.lockForWrite()

bookings = Bookings[date.toPyDate()]

finally:

Thread.lock.unlock()

If the request is to book a room we begin by examining the bookings variable.
This is either None or a reference to a list held by the shared Bookings default
dictionary, so we must use a read lock when accessing it. If bookings is None, we
insert a new empty list into the dictionary with the given date as its key; this
time we must use a write lock.

error = None

insert = False

try:

Thread.lock.lockForRead()

if len(bookings) < MAX_BOOKINGS_PER_DAY:

if uroom in bookings:

error = "Cannot accept duplicate booking"

else:

insert = True

else:

error = QString("%1 is fully booked").arg(

date.toString(Qt.ISODate))

Creating a Threaded Server 543

finally:

Thread.lock.unlock()

if insert:

try:

Thread.lock.lockForWrite()

bisect.insort(bookings, uroom)

finally:

Thread.lock.unlock()

self.sendReply(socket, action, room, date)

else:

self.sendError(socket, error)

If the room is already booked for the given date, we do not duplicate the
booking, but instead send an error response to the client. In the nonthreaded
server, we simply called sendError() in this case, but here we just assign an
error text. We do this to keep the processing that is done within the context of
the lock to a minimum.

If the booking can be made, we take a write lock, insert the room into the
bookings list, and send a response indicating success. Otherwise, we send an
error response. Neither response is sent within the context of a lock, again to
minimize the time that locks are in force.

elif action == "UNBOOK":

error = None

remove = False

try:

Thread.lock.lockForRead()

if bookings is None or uroom not in bookings:

error = "Cannot unbook nonexistent booking"

else:

remove = True

finally:

Thread.lock.unlock()

if remove:

try:

Thread.lock.lockForWrite()

bookings.remove(uroom)

finally:

Thread.lock.unlock()

self.sendReply(socket, action, room, date)

else:

self.sendError(socket, error)

The unbooking if branch follows the same pattern as the booking branch. We
begin by checking whether the booking can be made, using a read lock, and if
necessary, storing an error message rather than doing a time-consuming send
while the lock is in force. Then we either unbook the room by removing it from

544 Chapter 19. Multithreading

the Bookings dictionary’s list for the given date and send a success response,
or we send an error response. Again, the responses are sent when no lock is
in force.

else:

self.sendError(socket, "Unrecognized request")

socket.waitForDisconnected()

If the server received a request that it does not recognize, it simply sends an er-
ror response. At the end, we call QTcpSocket.waitForDisconnected(); this blocks
until the connection is closed, that is, until after the response has been sent.We
don’t need or want to keep the connection open, since our client/server applica-
tion operates in terms of pairs of independent request–response transactions.
Once the connection has been closed, the run() method finishes, and thanks to
the deleteLater() signal–slot connection, the thread will be deleted.

Creating and Managing Secondary Threads

One common use case for threads in GUI applications is to pass processing on
to a secondary thread so that the user interface can remain responsive and
can show the secondary thread’s progress. In this section, we will look at the
Page Indexer application, shown in Figure 19.1, which indexes HTML files in a
specified directory and all its subdirectories. The indexing work is passed off
to a secondary thread that communicates with the primary thread to notify it
of the progress that has been made as well as when the indexing is complete.

Figure 19.1 The Page Indexer application

The algorithm we will use for indexing is this: For each HTML file that is en-
countered, its text is read, entities are converted to the equivalent Unicode
character, and the HTML tags are stripped out. Then the text is split into

Creating and Managing Secondary Threads 545

words and each word of 3–25 characters in length inclusive that isn’t in the set
of common words isDefault

dictio-
naries

529 ☞

added to the filenamesForWords default dictionary. Each of
the dictionary’s keys is a unique word, and each associated value is a set of the
filenames where the word occurs. If any word occurs in more than 250 files, it
is deleted from the dictionary and added to the set of common words. This en-
sures that the dictionary is kept to a reasonable size and means that searches
for words like “and” and “the” won’t work—which is a good thing, since such
words are likely to match in thousands of files, far too many to be useful.

We will begin by looking at two extracts from the application’s main form,
which is in file chap19/pageindexer.pyw.

class Form(QDialog):

def __init__(self, parent=None):

super(Form, self).__init__(parent)

self.fileCount = 0

self.filenamesForWords = collections.defaultdict(set)

self.commonWords = set()

self.lock = QReadWriteLock()

self.path = QDir.homePath()

The fileCount variable is used to keep track of how many files have been in-
dexed so far. The filenamesForWords default dictionary’s keys are words and
its values are sets of filenames. The commonWords set holds words that have oc-
curred in at least 250 files. The read/write lock is used to ensure that access to
the filenamesForWords dictionary and to the commonWords set are protected since
they will be read in the primary thread and read and written in the secondary
thread. The QDir.homePath() method returns the user’s home directory; we use
it to set an initial search path.

self.walker = walker.Walker(self.lock, self)

self.connect(self.walker, SIGNAL("indexed(QString)"),

self.indexed)

self.connect(self.walker, SIGNAL("finished(bool)"),

self.finished)

self.connect(self.pathButton, SIGNAL("clicked()"),

self.setPath)

self.connect(self.findEdit, SIGNAL("returnPressed()"),

self.find)

The secondary thread is in the walker module (so named because it walks the
filesystem), and the QThread subclass is called Walker. Whenever the thread in-
dexes a new file it emits a signal with the filename. It also emits a finished()

signal when it has indexed all the files in the path it was given when it was
started.

Signals emitted in one thread that are intended for another work asyn-
chronously, that is, they don’t block. But they work only if there is an event

546 Chapter 19. Multithreading

loop at the receiving end. This means that secondary threadscan pass informa-
tion to the primary thread using signals, but not the other way around—unless
we run a separate event loop in a secondary thread (which is possible). Behind
the scenes, when cross-thread signals are emitted, instead of calling the rel-
evant method directly as is done for signals emitted and received in the same
thread, PyQt puts an event onto the receiving thread’s event queue with any
data that was passed. When the receiver’s event loop gets around to reading
the event, it responds to it by calling the relevant method with any data that
was passed.

Primary Thread

Secondary Thread Secondary Thread

Lock

Shared Data

Method Call Method Call

Signal Signal

Figure 19.2 A schematic of typical PyQt inter-thread communication

As Figure 19.2 shows, the primary thread normally passes information to
secondary threads using method calls,and secondary threads pass information
to the primary thread using signals. Another communication mechanism,
used by both primary and secondary threads, is to use shared data. Such data
must have accesses protected—for example, by mutexes or read/write locks.

If the user clicks the Set Path button, the setPath() method is called, and if the
user presses Enter in the find line edit, the find() method is called.

The Form class is a QDialog, but we have designed it so that if the user presses
Esc while the indexing is ongoing, the indexing will stop, and if the user
presses Esc when the indexing has finished (or been stopped), the application
will terminate. We will see how this is done when we look at the accept() and
reject() reimplementations.

def setPath(self):

self.pathButton.setEnabled(False)

if self.walker.isRunning():

self.walker.stop()

self.walker.wait()

path = QFileDialog.getExistingDirectory(self,

"Choose a Path to Index", self.path)

if path.isEmpty():

self.statusLabel.setText("Click the 'Set Path' "

"button to start indexing")

self.pathButton.setEnabled(True)

Creating and Managing Secondary Threads 547

return

self.path = QDir.toNativeSeparators(path)

self.findEdit.setFocus()

self.pathLabel.setText(self.path)

self.statusLabel.clear()

self.filesListWidget.clear()

self.fileCount = 0

self.filenamesForWords = collections.defaultdict(set)

self.commonWords = set()

self.walker.initialize(unicode(self.path),

self.filenamesForWords, self.commonWords)

self.walker.start()

When the user clicks Set Path, we begin by disabling the button and then
stopping the thread if it is running. The stop() method is a custom one of our
own. The wait() method is one inherited from QThread; it blocks until the thread
has finished running, that is, until the run() method returns. In the stop()

method, we indirectly ensure that the run() method finishes as soon as possible
after stop() has been called, as we will see in the next section.

Next we get the path the user chose (or return, if they canceled). We have
used QDir.toNativeSeparators() since internally PyQt always Qt

4.2

uses “/” to
separate paths, but on Windows we want to show “\”s instead. The toNa-

tiveSeparators() method was introduced with Qt 4.2; for earlier versions use
QDir.convertSeparators() instead. By default, getExistingDirectory() shows
only directories because there is an optional fourth argument with a default
value of QFileDialog.ShowDirsOnly; if we want filenames to be visible, we can
clear this flag by passing QFileDialog.Options().

The user interface is set up by moving the keyboard focus to the find line edit,
setting the path label to the chosen path, and clearing the status label that is
used to keep the user informed about progress. The files list widget lists those
files that contain the word in the find line edit. We don’t need to protect access
to the filenamesForWords default dictionary or to the commonWords set since the
only thread running at this point is the primary thread.

We finish off by initializing the walker thread with the path and references
to the data structures we want it to populate, and then we call start() to start
it executing.

def indexed(self, fname):

self.statusLabel.setText(fname)

self.fileCount += 1

if self.fileCount % 25 == 0:

self.filesIndexedLCD.display(self.fileCount)

try:

self.lock.lockForRead()

indexedWordCount = len(self.filenamesForWords)

commonWordCount = len(self.commonWords)

548 Chapter 19. Multithreading

finally:

self.lock.unlock()

self.wordsIndexedLCD.display(indexedWordCount)

self.commonWordsLCD.display(commonWordCount)

elif self.fileCount % 101 == 0:

self.commonWordsListWidget.clear()

try:

self.lock.lockForRead()

words = self.commonWords.copy()

finally:

self.lock.unlock()

self.commonWordsListWidget.addItems(sorted(words))

Whenever the walker thread finishes indexing a file, it emits an indexed()

signal with the filename; this signal is connected to the Form.indexed() method
shown earlier. We update the status label to show the name of the file that
has just been indexed, and every 25 files we also update the file count, words
indexed, and common words LCD widgets. We use a read lock to ensure that
the shared data structures are safe to read from, and we do the minimum
amount of work inside the context of the lock, updating the LCD widgets only
after the lock has been released.

For every 101st file processed we update the common words list widget. Again
we use a read lock, and we use set.copy() to ensure that we do not refer to the
shared data once the lock has been released.

def finished(self, completed):

self.statusLabel.setText("Indexing complete" \

if completed else "Stopped")

self.finishedIndexing()

When the thread has been stopped or has finished, it emits a finished()

signal, connected to this method and passing a Boolean to indicate whether it
completed. We update the status label and call our finishedIndexing() method
to update the user interface.

def finishedIndexing(self):

self.walker.wait()

self.filesIndexedLCD.display(self.fileCount)

self.wordsIndexedLCD.display(len(self.filenamesForWords))

self.commonWordsLCD.display(len(self.commonWords))

self.pathButton.setEnabled(True)

When the indexing has finished we call QThread.wait() to make sure that the
thread’s run() method has finished. Then we update the user interface based
on the current values of the shared data structures. We don’t need to protect
access to the dictionary or the set because the walker thread is not running.

Creating and Managing Secondary Threads 549

Using a Context Manager for Unlocking

In this chapter,we use try …finally blocks to ensure that locks are unlocked
after use. Python 2.6 Python

2.6
offers an alternative approach using the new with

keyword, in conjunction with a context manager. Context managers are ex-
plained in http://www.python.org/dev/peps/pep-0343; suffice it to say that we
can make a context manager by creating a class that has two special meth-
ods: __enter__() and __exit__(). Then, instead of writing code like this:

try:

self.lock.lockForRead()

found = word in self.commonWords

finally:

self.lock.unlock()

we can write something much simpler and shorter:

with ReadLocker(self.lock):

found = word in self.commonWords

This works because the semantics of the object given to the with statement
(at its simplest) are:

ContextManager.__enter__()

try:

statements, e.g., found = word in self.commonWords

finally:

ContextManager.__exit__()

The ReadLocker context manager class itself is also easy to implement,
assuming it is passed a QReadWriteLock object:

class ReadLocker:

def __init__(self, lock):

self.lock = lock

def __enter__(self):

self.lock.lockForRead()

def __exit__(self, type, value, tb):

self.lock.unlock()

If fact, since PyQt 4.1, QReadLocker and QWriteLocker can be PyQt

4.1

Python

2.5

used as context
managers, so with Python 2.6 (or Python 2.5 with a from __future__ import

with_statement), we don’t need to use try … finally to guarantee unlocking,
and can instead write code like this:

with QReadLocker(self.lock):

found = word in self.commonWords

The files pageindexer_26.pyw and walker_26.py in chap19 use this approach.

http://www.python.org/dev/peps/pep-0343

550 Chapter 19. Multithreading

At any time during the indexing, the user can interact with the user interface
with no freezing or performance degradation. In particular, they can enter
text in the find line edit and press Enter to populate the files list widget with
those files that contain the word they typed. If they pressEntermore than once
with a bit of time between presses, the list of files may change, because in the
interval more files may have been indexed. The find() method is slightly long,
so we will review it in two parts.

def find(self):

word = unicode(self.findEdit.text())

if not word:

self.statusLabel.setText("Enter a word to find in files")

return

self.statusLabel.clear()

self.filesListWidget.clear()

word = word.lower()

if " " in word:

word = word.split()[0]

try:

self.lock.lockForRead()

found = word in self.commonWords

finally:

self.lock.unlock()

if found:

self.statusLabel.setText(

"Common words like '%s' are not indexed" % word)

return

If the user enters a word to find, we clear the status label and the file list
widget and look for the word in the set of common words. If the word was
found, it is too common to be indexed, so we just give an informative message
and return.

try:

self.lock.lockForRead()

files = self.filenamesForWords.get(word, set()).copy()

finally:

self.lock.unlock()

if not files:

self.statusLabel.setText(

"No indexed file contains the word '%s'" % word)

return

files = [QDir.toNativeSeparators(name) for name in \

sorted(files, key=unicode.lower)]

self.filesListWidget.addItems(files)

self.statusLabel.setText(

"%d indexed files contain the word '%s'" % (

len(files), word))

Creating and Managing Secondary Threads 551

If the user’s word is not in the set of common words, it might be in the index.
We access the filenamesForWords default dictionary using a read lock, and copy
the set of files that match the word. The set will be empty if no files have the
word, but in either case, the set we have is a copy, so there is no risk of access-
ing shared data outside the context of a lock. If there are matching files we
add them to the files list widget, sorted and using platform-native path sepa-
rators.

The sorted() function returns its first argument (e.g., a list or set), in sorted
order. It can be given a comparison function as the second argument, but here
we have specified a “key”. This has the effect of doing a DSU (decorate, sort,
undecorate) sort that is the equivalent of:

templist = [(fname.lower(), fname) for fname in files]

templist.sort()

files = [fname for key, fname in templist]

This is more efficient than using a comparison function because each item is
lowercased just once rather than every time it is used in a comparison.

def reject(self):

if self.walker.isRunning():

self.walker.stop()

self.finishedIndexing()

else:

self.accept()

If the user pressesEsc, the reject() method is called. If indexing is in progress,
we call stop() on the thread and then call finishedIndexing(); the finishedIn-

dexing() method calls wait(). Otherwise, indexing has either been stopped by a
previousEsc key press or has finished; either way, we call accept() to terminate
the application.

def closeEvent(self, event=None):

self.walker.stop()

self.walker.wait()

When the application is terminated, either by the accept() call that occurs in
the reject() method, or by other means, such as the user clicking the close
X button, the close event is called. Here we make sure that indexing has
been stopped and that the thread has finished so that a clean termination
takes place.

All the indexing work has been done by the walker secondary thread. This
thread has been controlled by the primary thread calling its methods (e.g.,
start() and stop()), and has notified the primary thread of its status (file in-
dexed, indexing finished) through PyQt’s signals and slots mechanism. The the
shared data has been accessed—for example, when the user has asked which
files contain a particular word, or when the data has been updated by the walk-

552 Chapter 19. Multithreading

er thread, using the protection of a read/write lock. In the following section we
will see how the Walker thread is implemented,how it emits its signals,and how
it populates the data structures it is given.

Implementing a Secondary Thread

The Page Indexer’s secondary thread is implemented in the Walker class in the
file chap19/walker.py.The class is a QThread subclass that uses a QMutex to protect
accesses that it makes to its own private data, and that uses the QReadWriteLock

passed to it to protect accesses to data it shares with the primary thread.

class Walker(QThread):

COMMON_WORDS_THRESHOLD = 250

MIN_WORD_LEN = 3

MAX_WORD_LEN = 25

INVALID_FIRST_OR_LAST = frozenset("0123456789_")

STRIPHTML_RE = re.compile(r"<[^>]*?>", re.IGNORECASE|re.MULTILINE)

ENTITY_RE = re.compile(r"&(\w+?);|&#(\d+?);")

SPLIT_RE = re.compile(r"\W+", re.IGNORECASE|re.MULTILINE)

The class begins with some static variables that govern how many files a word
can occur in before it is considered to be a common word, the minimum and
maximum lengths of a word, and what characters a word may not begin or end
with. The “strip HTML” regular expression is used to strip out HTML tags, the
entity regular expression is used to pick out entities to be converted to Unicode
characters, and the split regular expression is used to split a file’s text into its
constituent words. A more realistic application might use an HTML parser
rather than regular expressions.

def __init__(self, lock, parent=None):

super(Walker, self).__init__(parent)

self.lock = lock

self.stopped = False

self.mutex = QMutex()

self.path = None

self.completed = False

The application creates one walker thread object but does not start it off
straight away. The lock is the same QReadWriteLock used by the primary
thread—the walker thread uses it to protect all accesses to the shared file-

namesForWords default dictionary and to the commonWords set. The stopped vari-
able is used inside the class to determine whether the thread has been asked to
stop (by a call to the stop() method). The mutex is used to protect access to the
stopped variable by the walker thread itself. This is necessary because while
the run() method is executing it is possible that another of the thread’s meth-

Implementing a Secondary Thread 553

ods, such as stop(), is called. The completed variable is used to indicate whether
the indexing was completed when the thread stopped.

def initialize(self, path, filenamesForWords, commonWords):

self.stopped = False

self.path = path

self.filenamesForWords = filenamesForWords

self.commonWords = commonWords

self.completed = False

This method is designed to be called just before QThread.start() is called, to set
up the thread for doing the indexing. It should not be called while the thread is
running. (If we were paranoid we could put an if not self.isStopped(): return

at the beginning.)

Although it would be harmless to use the mutex and the lock, neither is neces-
sary. When this method is called the walker thread is not running, so assigning
to stopped is no problem, and in the case of the dictionary and set passed in, we
are just taking references to them, not altering them in any way.

def run(self):

self.processFiles(self.path)

self.stop()

self.emit(SIGNAL("finished(bool)"), self.completed)

When the caller calls start(), the thread in turn calls the run() method—some-
thing we must never do ourselves. The method has only three statements,
but processFiles() can take a long time to execute since it involves recursive-
ly reading and indexing all the HTML files in the path. This isn’t a problem,
though, because the processing is taking place in the walker thread’s own
thread of execution, so the user interface remains responsive, and the pri-
mary thread can call the walker thread’s methods, and respond to the walk-
er thread’s signals, as we saw in the preceding section. At the end, the run()

method emits a finished() signal, with a Boolean flag that indicates whether
the indexing was finished; if it wasn’t, the user must have stopped it through
the user interface.

def stop(self):

try:

self.mutex.lock()

self.stopped = True

finally:

self.mutex.unlock()

This blocks until the lock is obtained and, thanks to the try …Using a
Context
Manag-
er for
Unlock-
ing side-
bar

549 ☞

finally block,
guarantees that the mutex is unlocked at the end.

If we were using Python 2.6, or Python 2.5 with a suitable from __future__

statement, we could rewrite this method as:

554 Chapter 19. Multithreading

def stop(self):

with QMutexLocker(self.mutex):

self.stopped = True

Since PyQt 4.1, the QMutexLocker class can be used as a contextPyQt

4.1

manager. It locks
the QMutex it is given as an argument (blocking until it can obtain the lock), and
unlocks the mutex when the flow of control leaves the with scope (even if the
scope is exited as the result of an exception).

def isStopped(self):

try:

self.mutex.lock()

return self.stopped

finally:

self.mutex.unlock()

Notice that the return statement is inside the try … finally block. When the
return is reached the method will attempt to return the value, but it will be
forced to enter the finally block, after which the method will return with the
return statement’s value.

If we were using Python 2.6 (or 2.5 with a suitable from __future__ statement),
we might omit this method entirely, and in some of the other methods, instead
of writing:

if self.isStopped():

return

we might write this:

with QMutexLocker(self.mutex):

if self.stopped:

return

There should not be any significant difference in the overhead of any of these
approaches, although using with with a QMutexLocker seems to be the cleanest
and clearest approach.

The processFiles() method is rather long, so we will review it in three parts.

def processFiles(self, path):

def unichrFromEntity(match):

text = match.group(match.lastindex)

if text.isdigit():

return unichr(int(text))

u = htmlentitydefs.name2codepoint.get(text)

return unichr(u) if u is not None else ""

We begin with a nested function definition. It is used in conjunction with
the entity regular expression (shown on page 552). This expression has two

Implementing a Secondary Thread 555

match groups, only one of which can match at any one time. Given a match
object matched by the regular expression, the function takes the last, that is,
the only, match group, and if it is all digits, it returns the Unicode character
for the corresponding code point. Otherwise, the function returns the Unicode
character matching the entity name, or an empty string if the name is not in
the htmlentitydefs.name2codepoint dictionary.

for root, dirs, files in os.walk(path):

if self.isStopped():

return

for name in [name for name in files \

if name.endswith((".htm", ".html"))]:

fname = os.path.join(root, name)

if self.isStopped():

return

words = set()

fh = None

try:

fh = codecs.open(fname, "r", "UTF8", "ignore")

text = fh.read()

except (IOError, OSError), e:

sys.stderr.write("Error: %s\n" % e)

continue

finally:

if fh is not None:

fh.close()

if self.isStopped():

return

text = self.STRIPHTML_RE.sub("", text)

text = self.ENTITY_RE.sub(unichrFromEntity, text)

text = text.lower()

The os.walk() method recursively walks a directory tree starting from the
given path. For each directory it finds, it returns a three-tuple of the root path,
a list of subdirectories, and a list of files in the directory.

We iterate over each of the directory’s files that has a .htm or .html suffix. The
unicode.endswith() and str.endswith() Python

2.5
methods accept either a single string or

a tuple of strings to match against. For each matching file we create a filename
with the full path and create a local empty set that will contain the unique
words found in the file.

We should really check the encoding used by the HTML files, but instead we
have just assumed that they are either UTF-8 Unicode, or ASCII (which is a
strict subset of UTF-8). We have also passed an additional parameter to indi-
cate how decoding errors should be dealt with (i.e., they should be ignored).

Once we have the file’s text, read in as a single large string, we strip out its
HTML tags, convert any entities to their Unicode equivalents, and lowercase

556 Chapter 19. Multithreading

the text that remains. The re.sub() (“substitute”) method takes the text to
work on as its second argument; its first argument is either a literal string
to replace each match, or a function to call. In the case of a function, for each
match a match object is passed to the function, and the function’s return value
(which should be a string) is used as the replacement string.

At several points we check to see whether the stopped variable is True, which
will be the case if the stop() method has been called. If this has occurred, we
do no further indexing, and simply return. If we have too few checks, the user
may experience a delay between requesting that the indexing stop and the
thread actually stopping. But on the other hand, the more checks we put in,
the slower the thread will run. So how often we check, and where we place the
checks, may require a bit of trial and error before we get it right.

for word in self.SPLIT_RE.split(text):

if self.MIN_WORD_LEN <= len(word) <= \

self.MAX_WORD_LEN and \

word[0] not in self.INVALID_FIRST_OR_LAST and \

word[-1] not in self.INVALID_FIRST_OR_LAST:

try:

self.lock.lockForRead()

new = word not in self.commonWords

finally:

self.lock.unlock()

if new:

words.add(word)

if self.isStopped():

return

for word in words:

try:

self.lock.lockForWrite()

files = self.filenamesForWords[word]

if len(files) > self.COMMON_WORDS_THRESHOLD:

del self.filenamesForWords[word]

self.commonWords.add(word)

else:

files.add(unicode(fname))

finally:

self.lock.unlock()

self.emit(SIGNAL("indexed(QString)"), fname)

self.completed = True

For each word in the file’s text that is not too long or too short and which does
not start with an unacceptable character, we first look to see whether it is in
the set of common words, and if it is not, we add it to the local set of words.

Once we have gathered all the file’s uncommon words in the words set, we it-
erate over this set. New words are added to the filenamesForWords default

Implementing a Secondary Thread 557

dictionary. If the dictionary’s set of filenames for the word is too large, we
delete the dictionary entry and add the word to the set of common words;other-
wise, we add the filename to the dictionary’s set for the current word. We must,
of course, use a write lock to ensure that no other thread (e.g., the primary
thread) can access the dictionary or the common words set while they are being
updated.

After the file has been indexed, the indexed() signal is emitted with the file’s
name as a parameter. The primary thread has a connection to this signal
and shows the filename in a label so that the user can see which file has just
been indexed.

Once the os.walk() loop finishes, the completed variable is set to True, the
method ends, and control returns to the caller, run(). It is possible that the last
statement is never executed,because if the user stops the indexing (by pressing
Esc, which causes stop() to be called, which sets stopped to True and means that
isStopped() will return True), one of the if isStopped(): statements will cause
the processFiles() method to return immediately. In this case the completed

variable will (correctly) be False.

This completes our review of the walker thread. Using with statements and
context managers instead of try … finally blocks can make the code much
shorter and easier to understand, as can be seen by comparing pageindexer.pyw

with pageindexer_26.pyw, and walker.py with walker_26.py. Having a stop()

method and a stopped variable is quite common for secondary threads that
serve a primary thread, so the Walker class, though specific in its processing, is
quite general in its structure.

Summary

Writing threaded servers using PyQt’s threading and networking classes is
relatively straightforward. For non-GUI servers, it is possible to use QCore-

Application rather than QApplication, or to avoid using PyQt classes at all, rely-
ing instead on the Python standard library threading and networking classes,
or using Twisted.

Farming out processing to secondary threads is not difficult in theory, but in
practice we must be very careful to ensure that any data that is accessible by
more than one thread uses a protection mechanism such as QMutex, QReadWrite-
Lock, or QSemaphore. Inside the context of a protection mechanism we must make
sure that we do the least amount of work possible to minimize the time that
other threads might be blocked. And in the case of reading data, especially if
the data is not too large, it is often best to copy it to avoid the risk of accessing
it outside the scope of the protection.

It is quite common for the primary thread to communicate with secondary
threads by calling the secondary threads’ methods—for example, start() to
start them and stop() to stop them. Secondary threads can communicate

558 Chapter 19. Multithreading

with the primary thread by emitting signals that the primary thread connects
to. Both primary and secondary threads can also use shared data structures
protected by QMutexes, QReadWriteLocks, or QSemaphores—with one common sce-
nario being that the primary reads and the secondary threads read and write
shared data. Threads may need to protect accesses to their own data—for
example to a secondary thread’s stopped variable—since more than one of their
methods may be active at the same time (e.g., both run() and stop() in a sec-
ondary thread).

Multithreaded programs are more difficult to write and maintain than single-
threaded programs, so it is often worthwhile to see whether simpler alterna-
tives, such as calling QApplication.processEvents() or calling external processes
using QProcess, can be used instead.

Exercise
Modify the Page Indexer application so that it uses multiple secondary threads
instead of just one. By getting the number of secondary threads right, the
application could be made to run faster than the single secondary thread
version. Although this exercise involves writing or modifying only about 100
lines of code, it is quite subtle and challenging.

The approach taken in the solution is to move os.walk() to the primary thread,
and create a list of filenames. Whenever the list has 1000 files, a secondary
thread is created to process those files. At the end, another secondary thread
is created to process whatever files remain. The Walker.initialize() method
is not required since we can pass all the parameters to the constructor. And
changes to Walker.run() and Walker.processFiles() are quite small. Most of the
changes must be made in the pageindexer.pyw file.

The setPath() method is where the filenames can be gathered and secondary
threads created to process them. In the solution we used a separate method
to create the secondary threads. Since there could be many secondary threads
we also added a stopWalkers() method and modified the finished(), accept(),
reject(), and finishedIndexing() methods. Since some of the widgets in the
user interface could potentially be accessed in response to signals from more
than one thread, we protect accesses to them with a mutex.

Make sure that the threads are deleted when they are no longer needed to
avoid creating more and more threads each time setPath() is called.

The new version of the walker module should be a bit shorter than the original,
but the new page indexer will be about 90 lines longer than the original. A
solution is provided in chap19/pageindexer_ans.pyw and chap19/walker_ans.py.

This Is Not Quite the End 559

This Is Not Quite the End

We have reached the end of the book, but by no means have we reached the
end of what Python or PyQt has to offer. Python’s standard library is very
large, and because of our focus on PyQt we have hardly used a fraction of
what is available in it. Many other libraries are also available as add-ons for
Python and PyQt, so in many cases, we can program by composing existing
components rather than having to build everything ourselves from scratch.
A good place to begin looking for add-ons is the Python Package Index at
http://pypi.python.org/pypi. And a good place to look for tricks, tips, and ideas
is the Python Cookbook at http://aspn.activestate.com/ASPN/Python/Cookbook.

Our coverage of PyQt has been extensive, and all the major features have been
shown and described. But PyQt has hundreds of classes, so we have not been
able to cover, or even mention, all of them. For example, PyQt includes more
widgets than we have used, including QCalendarWidget, QGroupBox, QProgressBar,
and QToolBox.There are also lots of useful nonwidget classes, such as QCompleter
(text completion), QFileSystemWatcher (to observe changes to files or directories
in the filesystem),and QSystemTrayIcon (to put an icon with a popup menu in the
system tray). It also has support for accessibility and an undo/redo framework.
In addition, PyQt has some platform-specific features, including ActiveX sup-
port on Windows, session management on the X Window System, and sheets
and drawers on Mac OS X. All of these are described in the extensive online
documentation. PyQt is also provided with its own set of examples—those that
cover areas similar to the ones you are interested in will be well worth look-
ing at.

This book has laid a solid foundation in GUI programming with Python and
PyQt. The principles and practices it shows should make it straightforward to
learn new PyQt classes from the documentation and examples supplied with
PyQt, and to be able to successfully create your own classes. Programming
with PyQt is both productive and enjoyable, and it leaves us free to ignore
irrelevant details. This means that we can concentrate on building great
applications that look good and that work well.

http://pypi.python.org/pypi
http://aspn.activestate.com/ASPN/Python/Cookbook

This page intentionally left blank

Installing

AA ● Installing on Windows

● Installing on Mac OS X

● Installing on Linux and Unix

All the tools described in this book are freely available for downloading
online. Note, however, that some of the packages are quite large (~50MB for
Qt, ~12MB for Python, ~6MB for PyQt, and ~0.5MB for SIP★), so they are only
really suitable for downloading with broadband connections. In this appendix
we cover both downloading and installing, on Windows, Mac OS X, and most
X11-based forms of Unix and Unix clones, including Linux and BSD.

All of the packages come with their own installation instructions, which will
probably be more up-to-date and comprehensive than those given here, so ide-
ally they are the instructions that you should follow. However, in many cas-
es, this appendix contains sufficient information to get the tools installed and
working. One approach would be to use this appendix to identify the packages
that need to be obtained (and the order in which they should be downloaded,
which matters for Windows users), as well as the order they should be installed
(which matters for all platforms). Then, once the tools are downloaded, use the
official instructions to install each one, and skim this appendix’s instructions to
help clarify what needs to be done, as well as to learn a couple of tips, one for
Windows users and one for Mac OS X users, that may prove helpful.

Installing on Windows

For Windows, there are four tools to install: a C++ compiler, the Qt C++ appli-
cation development framework, the Python interpreter and its accompanying
libraries, and PyQt4 (which includes SIP in the Windows binary package). We
assume that the GPL editions are being used, in which case the only C++ com-
piler that will work with Qt is MinGW. (Visual C++ can be used only with the
commercial editions of Qt and PyQt and the instructions for installing them
are provided when you buy them.)

★SIP is a tool used to create “bindings” that allow C++ classes to be accessible from Python.

561

562 Appendix A. Installing

At the time of this writing, an all-in-one package was under development. This
package is an executable setup file that is expected to contain all the PyQt mod-
ules (except the QtDesigner module),QScintilla, the translation and Qt Designer
support tools, the documentation and examples, the SQLite database, and sup-
port for .png, .svg, .gif, and .jpeg image formats. This package is complete and
self-contained and requires no other software to be installed apart from Python
itself. However,the package is not extensible. If you are learning or evaluating
PyQt for the first time, using this package is probably the easiest way to begin.
You can always uninstall it and install the precise set of components you need
later on when you have gained experience. When the package is available it
will be on the Web site http://riverbankcomputing.com. After intalling Python,
simply download and execute the all-in-one package to install everything else.

In the instructions that follow, we are using Windows XP Home edition and
are installing each component separately. There may be differences for other
Windows versions,but they should not be so different that they can’t be worked
out from what’s written here.

The files required for installation are MinGW-3.4.2.exe, qt-win-opensource-

4.2.3-mingw.exe, python-2.5.1.msi, and PyQt-gpl-4.2-Py2.5-Qt4.2.3.exe. The
book’s examples are in the file pyqtbook.zip.

The first item to get is PyQt itself. This is because the versions of Python and
Qt you will need depend on the version of PyQt you get. Go to http://www.

riverbankcomputing.co.uk/pyqt/download.php and download the binary package
PyQt-gpl-4.2-Py2.5-Qt4.2.3.exe. The filename has version numbers embedded
in it and these may differ from the ones shown here: The first number is the
PyQt version which must be at least 4.2 to get the most out of this book; the
second number is the Python version that you must get; and the third number
is the Qt version—you must download this precise version.

Now get Qt. Go to http://www.trolltech.com/developer/downloads/qt/index and
click the Qt/Windows Open Source Edition link; at the bottom of the page,
download qt-win-opensource-4.2.3-mingw.exe. The version number should ex-
actly match the one in the PyQt package name, so if, for example, you down-
loaded PyQt-gpl-4.3-Py2.5-Qt4.3.1.exe, you will need to get qt-win-opensource-
4.3.1-mingw.exe.

The MinGW C++ compiler is also available from Trolltech’s Web site, but from
a completely different URL.Go to ftp://ftp.trolltech.com/misc/ and download
MingGW-3.4.2.exe. (You can skip this step and let the Qt installer download the
compiler for you, but by downloading it yourself you have the package in hand,
which is more convenient for installing on other machines, or for restoring if
your Windows installation goes bad.)

Now it is time to get Python. Go to http://www.python.org/download and down-
load one of the Windows installers. (The ones at the top of the page do not
include the source code; this is fine, as you need the source only if you want to
modify Python itself.) There may be more than one Windows installer; click a

http://www.riverbankcomputing.co.uk/pyqt/download.php
http://www.riverbankcomputing.co.uk/pyqt/download.php
http://www.trolltech.com/developer/downloads/qt/index
http://www.python.org/download
http://riverbankcomputing.com

Installing on Windows 563

hardware-specific one such as the AMD64 or Itanium one if that matches your
machine’s processor; otherwise click the first one—for example, “Python 2.5.1
Windows installer”. Save the installer to disk; this will give you a Microsoft In-
staller file—for example, python-2.5.1.msi. Note that the first two parts of the
version number must match the equivalent part of the PyQt version number;
so for PyQt-gpl-4.2-Py2.5-Qt4.2.3.exe, any Python 2.5 version is acceptable,
such as Python 2.5, or Python 2.5.1, for example.

If you want to run the examples that are shown in the book or you want to
see the model answers to the exercises, you can unzip the pyqtbook.zip file
available from http://www.qtrac.eu/pyqtbook.html.

Now that all the pieces are at hand, you can perform the installation. The
order of installation is important, and is different from the downloading order.
(You needed to download PyQt first, to make sure you got the right versions
of Python and Qt; but for installing you must start with the C++ compiler,
and finish by installing PyQt.) We will assume that the versions are those
mentioned earlier, but obviously use whichever versions you downloaded and
adjust accordingly.

Figure A.1 The MinGW and Qt installers on Windows

If you did not download the MinGW installer, either because you have the com-
piler already installed or because you want the Qt installer to fetch and install
it for you, skip to the next paragraph. Otherwise, start up the MinGW installer
(e.g., double-click MinGW-3.4.2.exe), and follow the installer’s instructions. The
installer’s first screen is shown on the left in Figure A.1. The only decision that
you must make is where to install MinGW. We have assumed that you accept-
ed the default of C:\MinGW; but you can put it anywhere. If you do not use the
standard location, though, make a note of its path since you will need it when
you install Qt.

To install Qt, start up its installer by double-clicking qt-win-opensource-

4.2.3-mingw.exe (or whichever version you downloaded). The installer’s first
screen is shown on the right in Figure A.1. The instructions are easy to fol-
low, and again, we have assumed that you have accepted the default directory
(e.g., C:\Qt\4.2.3). When you get to the “MinGW Installation” screen, if you

http://www.qtrac.eu/pyqtbook.html

564 Appendix A. Installing

put MinGW in the standard location, the “Previously installed MinGW” path
should be correct. If it is not, or if you installed MinGW in a nonstandard lo-
cation, you must type in its path or use the browse button (…) to locate it. If
you did not install MinGW, check the “Download and install minimal MinGW”
checkbox so that the Qt installer can fetch and install it for you.

Unfortunately, the GPL Qt installer does not add Qt to the path; this means
that applications that depend on the Qt DLLs, such as QtCore4.dll, QtGui4.dll,
QtXml4.dll, and so on, or that depend on the MinGW DLL, mingwm10.dll, will
not find them. Since PyQt applications depend on these libraries, you must
manually add the path to them so that double-clicking a PyQt .pyw application
will work. Without this path, any PyQt program you attempt to run will not
work, and instead an error message box will pop up, such as, “pythonw.exe -
Unable To Locate Component”, that says it can’t find mingwm10.dll.

Figure A.2 Setting the Windows path

Click Start→Control Panel, then click System, to pop up the System Properties
dialog. Click the Advanced tab, then the Environment Variables button (near the
bottom of the dialog). Click the Path variable in the “System variables” section
(in the bottom half of the dialog), and then click Edit.

The Edit System Variable dialog, as shown in Figure A.2, has the Windows
path. Be very careful not to delete the existing path! If you delete it by mis-
take, click Cancel, and then try editing the path again. Press End to deselect
the path and to put the text cursor at the far right of the line edit, then add
the text “;C:\Qt\4.2.3\bin”. The leading semicolon is essential; obviously, use
the version number of the Qt you actually installed, if it’s different from the
one shown here. This path works for all the Qt DLLs and for the MinGW DLL
(since the Qt installer copies it into the Qt bin directory).

You are now ready to install Python. Start up the Python installer by double-
clicking python-2.5.1.msi or whichever other .msi file you downloaded. The
installer’s first screen is shown on the left in Figure A.3. The installer is
straightforward to use; the only information you need to type in is Python’s
path if you don’t want to use the default of C:\Python25. If you use a nonstan-
dard path, keep a note of it since you will have to type it into the PyQt installer.
If you are desperate for disk space you don’t have to install the test suite or the
utility scripts,but we assume that you keep all the other components complete,

Installing on Windows 565

including Tcl/Tk. Once Python has been installed, the installer may ask you to
reboot—you should do so before going on to install PyQt.

Figure A.3 The Python and PyQt installers on Windows

Now you can install PyQt4 itself. Start up the PyQt installer by double-clicking
PyQt-gpl-4.2-Py2.5-Qt4.2.3.exe, or whichever version of PyQt you downloaded.
The installer’s first screen is shown on the right in Figure A.3. If you installed
Python in a nonstandard location you must enter the correct location in the
Choose Install Location screen—PyQt is installed as a Python extension, so its
libraries are placed inside the Python directories. (For this reason, if you ever
want to uninstall Python, you should uninstall PyQt first, then Python.)

PyQt is the last tool that must be installed to have everything set up and
working. To test things, click Start→All Programs→PyQt GPL v4.2→Examples and
Demos. This launches a PyQt version of the standard Qt demo application.
From inside this application you can run many of the demo applications that
are supplied with PyQt. The source code to the demos, and to many other PyQt
examples, are normally installed in C:\Program Files\PyQt4\examples.

If you downloaded the book’s examples, you might like to unzip pyqtbook.zip

in C: to get a C:\pyqt directory with all the book’s examples, along with model
answers to the exercises, categorized by chapter. In the C:\pyqt directory
itself you will find mkpyqt.py and makepyqt.pyw; these utilities are explained on
page 207. If you want to try out any of the examples before reading the book,
make sure that you run makepyqt.pyw first. (When you run makepyqt.pyw, set its
path to C:\pyqt, check itsRecurse checkbox,and then click theBuildbutton. Now
all the examples will be ready to run.)

That completes the installation for Windows, and is sufficient for PyQt GUI
programming. But if you also want to write some console applications, or
to sometimes run PyQt applications in a console (which can be useful for
debugging), a few more steps will make this much more convenient.

Click Start→AllPrograms→Accessories→WindowsExplorer.Once WindowsExplorer
is running, navigate to My Computer\Local Disk (C:)\Documents and Settings, and

566 Appendix A. Installing

then to the directory that has your username,and inside that, navigate to Start

Menu\Programs\Accessories. Copy and paste the Console (or MS-DOS Prompt)
shortcut, and rename the copy “Console (PyQt)”. Right-click the new Console
(PyQt) shortcut to edit its properties. On the General page, change the Target
to cmd.exe /k C:\pyqt\pyqt.bat. Now when you want a PyQt-friendly console you
can click Start→All Programs→Accessories→Console (PyQt) and the console that
appears will automatically run C:\pyqt\pyqt.bat. This batch file contains only
two lines:

set QMAKESPEC=win32-g++

path=C:\pyqt;C:\MinGW\bin;c:\Python25;c:\Python25\lib\idlelib;%path%

You might like to edit this file (using a plain text editor) to add a third line con-
taining a cd command—for example, cd C:\pyqt—so that the console starts up
in a convenient directory. If you installed MinGW or Python in nonstandard
locations you will need to edit this file anyway, to put in their correct paths.

You are now ready to write and run PyQt applications on your Windows
machine—and they will run unchanged on Mac OS X and Linux too!

Installing on Mac OS X

To install PyQt on Mac OS X, you must already have the Xcode tools installed.
This is because a compiler and build tool are required to install PyQt. Xcode is
a very large package, normally supplied on a separate developer’s CD provid-
ed with the machine; it is also available online from http://developer.apple.

com/tools/xcode. The following instructions assume that Xcode is already
installed.

Although Macs are normally supplied with a version of Python preinstalled,
it may be an old version, in which case we recommend installing an up-to-date
version for PyQt development. To check the Python version, start up a Terminal,
and type in python -V; if this prints “Python 2.5”, or a higher version number,
there is no need to install a new version of Python.

The files required for installing PyQt are qt-mac-opensource-4.2.3.dmg, python-
2.5.1-macosx.dmg (unless you already have Python 2.5 or later installed), sip-
4.6.tar.gz, and, PyQt-mac-gpl-4.2.tar.gz. The book’s examples are in the file
pyqtbook.tar.gz.

Start by getting Qt. Go to http://www.trolltech.com/developer/downloads/qt/

index and click the Qt/Mac Open Source Edition link, and near the bottom of
the page, download qt-mac-opensource-4.2.3.dmg. A later version number, say,
4.3.1, should also be fine.

If you need to install an up-to-date version of Python, go to http://www.python.

org/download and download the Python 2.5.1 for Macintosh OS X version—for
example, python-2.5.1-macosx.dmg. A later 2.x series version, such as 2.5.2 or

http://www.trolltech.com/developer/downloads/qt/index
http://www.trolltech.com/developer/downloads/qt/index
http://www.python.org/download
http://www.python.org/download
http://developer.apple.com/tools/xcode
http://developer.apple.com/tools/xcode

Installing on Mac OS X 567

2.6.0, should also be okay, providing they are production releases (not alphas,
betas, or release candidates).

The last two tools that must be obtained are SIP and PyQt. Go to http://www.

riverbankcomputing.co.uk/sip/download.php and download the source package
sip-4.6.tar.gz, then go to, http://www.riverbankcomputing.co.uk/pyqt/download
.php and download the source package PyQt-mac-gpl-4.2.tar.gz. Again, the
version numbers may be higher—for example, 4.3—for PyQt.

If you want to run the examples that are shown in the book or to see the model
answers to the exercises, you can unpack the pyqtbook.tar.gz file available
from http://www.qtrac.eu/pyqtbook.html.

Now that all the pieces are at hand, and assuming that Xcode is already
installed, you can perform the PyQt installation. Both Qt and Python must
be installed first, then SIP, and finally PyQt itself. We will assume that the
versions are those mentioned earlier, but obviously, use whichever versions you
downloaded and adjust accordingly. We assume that all the downloaded files
are on the Desktop, and that you know the administration password (which is
normally your own password).

Figure A.4 Installing Qt on Mac OS X

First set up Qt by double-clicking qt-mac-opensource-4.2.3.dmg, or whichever
Qt package you downloaded, and following the instructions. The installer’s
first screen is shown in Figure A.4. We assume that you accept all the defaults
and install in the standard locations. Older Qt versions have an unoptimized
build tool, and this means that the setup can take a surprisingly long time.
More up-to-date versions have an optimized build tool which works much
faster.

http://www.riverbankcomputing.co.uk/sip/download.php
http://www.riverbankcomputing.co.uk/sip/download.php
http://www.riverbankcomputing.co.uk/pyqt/download.php
http://www.riverbankcomputing.co.uk/pyqt/download.php
http://www.qtrac.eu/pyqtbook.html

568 Appendix A. Installing

Figure A.5 Installing Python on Mac OS X

Once Qt is installed, it is time to install Python, if you need to. Double-
click python-2.5.1-macosx.dmg or the package you downloaded. The installer’s
first screen is shown in Figure A.5. This may pop up a new window with a
MacPython.mpkg file—just double-click this to start up the installer, and follow
the instructions. Just as for Qt, we assume that you accept the defaults and
install in the standard locations. If you already have one or more older Python
versions you will find that these remain intact, with two new Python executa-
bles added to /usr/local/bin along with their names, including the version
numbers—for example, python2.5 and pythonw2.5. The first executable is used
in Terminalwindows, and the second is used for running GUI applications and
avoids a Terminal from being needlessly popped up in the background.

The installation should make the Python version just installed the default
version. To check,close any existing Terminalwindows,and then start up a fresh
Terminalwindow, and type python -V. If the version is not the one installed, the
settings will need to be changed manually. Close theTerminal, and then in Finder,
go to Applications→MacPython 2.5, and start up the Python Launcher. Open the
Preferences dialog (shown in Figure A.6), and for each item in the Settings for file
type combobox—for Python Scripts, Python GUI Scripts, and Python Bytecode
Documents—change the version of Python. For the Python Scripts and Python
Bytecode Documents entries, change to /usr/local/bin/python2.5, and for the
Python GUI Scripts entry, change to /usr/local/bin/pythonw2.5 (note the “w” in
the executable’s name). These values may not be available in the drop-down
lists, in which case they must be typed in manually. For each entry, also be sure
to uncheck the Run in a Terminal window checkbox.

Both SIP and PyQt must be built in a Terminal. Close all open Terminals, and then
start a fresh one. Type python -V to make sure that the correct Python is be-

Installing on Mac OS X 569

Figure A.6 Setting which Python to use on Mac OS X

ing used. If it is not, see the preceding paragraph; alternatively, enter the full
name of the version of Python you want to use—for example, python2.5 con-

figure.py.

SIP must be built first, by typing the following into the Terminal:

cd $HOME/Desktop

tar xvfz sip-4.6.tar.gz

cd sip-4.6

python configure.py

make

sudo make install

You will be asked for the administration password (normally your own pass-
word) when you execute the sudo command at the end. Now, PyQt can be
installed.

cd $HOME/Desktop

tar xvfz PyQt-mac-gpl-4.2.tar.gz

cd PyQt-mac-gpl-4.2

python configure.py

make

sudo make install

570 Appendix A. Installing

Again, you will be prompted for a password when you execute the sudo com-
mand. Building PyQt can take quite a long time, so you will need to be
patient.

The Qt documentation is available through Qt Assistant, which can be
run from Finder. PyQt’s documentation is supplied in HTML format in the
$HOME/Desktop/PyQt-mac-gpl-4.2/doc directory. It is worthwhile moving this
somewhere permanent and adding a suitable bookmark to your browser. It
also comes with numerous examples; at the very least it is worth looking at the
PyQt examples and running the demo. (For example, change the directory to
$HOME/Desktop/PyQt-mac-gpl-4.2/examples/tools/qtdemo and run ./qtdemo.py.)

If you downloaded the book’s examples, you might like to unpack pyqtbook.

tar.gz in $HOME to get a $HOME/pyqt directory with all the book’s examples, and
model answers to the exercises, categorized by chapter. In the $HOME/pyqt direc-
tory itself you will find mkpyqt.py and makepyqt.pyw; you might like to move (or
soft-link) these to a directory on your $PATH—for example, $HOME/bin—to make
them more convenient to use. Some of the examples depend on Qt Designer
.ui files or on .qrc resource files. How to turn these into Python modules is
covered on page 207, but for now it might be convenient to simply perform the
conversions:

cd $HOME/pyqt

./mkpyqt.py -r

This will convert any .ui and .qrc files that are found in the pyqt directory and
in its subdirectories.★ If you prefer to use the GUI makepyqt.pyw tool, you may
have to click its More→Tool paths option and set the path to pyuic4. It may also
be necessary to set the paths to the other tools too.

This completes the installation for Mac OS X. If you unpacked the examples,
you could go to the Desktop and click the pyqt directory, then the chap12 direc-
tory, and then click multipedes.pyw to see a graphics application. If an unwant-
ed Terminalwindow pops up, right-click multipedes.pyw, and click the Info dialog;
change the Open with setting to the Python Launcher for the correct version of
Python, and apply the change to all files with the .pyw suffix.

You are now ready to write and run PyQt applications on your Mac OS X
machine—and they will run unchanged on Windows and Linux too!

Installing on Linux and Unix

If you are running Kubuntu (7.04 Fiesty Fawn and later), you already have
PyQt4 installed! So,you only need to install the book’s examples (see page 573),
and the documentation packages python-doc and python-qt4-doc.

★If mkpyqt.py does not work, you will have to edit the mkpyqt.py file and at least hard-code the path
to pyuic4.

Installing on Linux and Unix 571

For Linux and most other Unixes that don’t have PyQt4 preinstalled, there
are four tools to install: the Qt C++ application development framework, the
Python interpreter and its accompanying libraries, the SIP bindings tool, and
PyQt4 itself. The most convenient way to get everything up and running is to
install the tools using standard packages for the Linux or Unix distribution
being used.

For ArchLinux, Debian, Fedora, Gentoo, Kubuntu, Pardus, Ubuntu, and many
others, the necessary components are available as packages. These can be in-
stalled using Adept, Pirut, apt-get, yum, or whatever other package manager
the system uses. For PyQt4, the package is usually called pyqt4 or PyQt4 or
pyqt4-dev-tools. PyQt4’s documentation package is usually called pyqt4-doc or
python-qt4-doc or PyQt4-examples. Python’s documentation is usually in a pack-
age called python-doc or python-docs. IDLE is often available separately in a
package called idle or python-tools. If you want a more powerful IDE, Eric4,
itself written in PyQt, is available in a package for many popular distributions.
The package manager should be able to figure out the dependencies, but if it
cannot, you may have to also request that it install Python itself, and maybe
even Qt and the g++ compiler. The Qt Designer visual design tool and the trans-
lation support tools are often packaged separately—for example, in packages
called qt4-designer and qt4-dev-tools.

If you are fortunate enough to be able to install using standard packages, once
you have done so, you are all set for writing PyQt programs, and can skip to
installing the book’s examples, described on page 573.

For users of older distributions, for those who don’t have suitable packages
available or who have only some of the components available in packages, and
for those who want to build manually to get the most up-to-date versions,build-
ing and installing by hand is quite straightforward. However, we make two as-
sumptions if you are building from source—First, that a C++ compiler and tool
chain, such as make, are already installed and operational, and second, that you
install as root (using su or sudo), or know how to use configure’s --prefix option
to install locally.

The files required for installation are qt-x11-opensource-src-4.2.3.tar.gz,
Python-2.5.1.tgz, sip-4.6.tar.gz, and PyQt-x11-gpl-4.2.tar.gz. The book’s
examples are in the file pyqtbook.tar.gz.

Start by getting Qt. Go to http://www.trolltech.com/developer/downloads/qt/

index and click the Qt/X11 Open Source Edition link, and near the bottom
of the page, download qt-x11-opensource-src-4.2.3.tar.gz. A later version
number, say, 4.3.1, should also be fine.

Now it is time to get Python. Go to http://www.python.org/download and then
click the current production version link, and download one of the other plat-
forms source versions—for example, Python-2.5.1.tgz or Python-2.5.1.tar.bz2.
We will assume you got the .tgz version—later 2.x series versions such as 2.5.2

http://www.trolltech.com/developer/downloads/qt/index
http://www.trolltech.com/developer/downloads/qt/index
http://www.python.org/download

572 Appendix A. Installing

or 2.6.0 should be okay, providing they are production releases (not alphas, be-
tas, or release candidates).

The last two tools that must be obtained are SIP and PyQt. Go to http://www.

riverbankcomputing.co.uk/sip/download.php and download the source package
sip-4.6.tar.gz, then go to, http://www.riverbankcomputing.co.uk/pyqt/download
.php and download the source package PyQt-x11-gpl-4.2.tar.gz. Again, the
version numbers may be higher—for example, 4.3—for PyQt.

If you want to run the examples that are shown in the book or to see the model
answers to the exercises, you can unpack the pyqtbook.tar.gz file available
from http://www.qtrac.eu/pyqtbook.html.

Now that all the pieces are at hand, you can perform the installation. Both
Qt and Python must be installed first, then SIP, and finally PyQt itself. We
will assume that the versions are those mentioned earlier, but obviously, use
whichever versions you downloaded and adjust accordingly. We assume that
the downloaded tarballs are in the $HOME/packages directory,and that either you
do everything as superuser having done su, or that you do every make install

as superuser using sudo.

First you need to build Qt. The last line should be sudo make install if you are
using sudo.

cd $HOME/packages

tar xvfz qt-x11-opensource-src-4.2.3.tar.gz

cd qt-x11-opensource-src-4.2.3

./configure -fast -qt-sql-sqlite -no-qt3support

make

make install

The -qt-sql-sqlite option will build the SQLite in-process database; this is
used in Chapter 15 but can be omitted if desired. The -fast and -no-qt3support

options should reduce the build time slightly, but both can be safely omitted.
If you want to see what other options are available, including the database
drivers that can be installed, run ./configure -help. Building Qt can take
quite a while (from half an hour to more than three hours depending on the
processor), since it is more than 600000 lines of C++ code.

Python and SIP don’t take anywhere near as long. You should build Python
next, again using sudo make install if you are using sudo (We’ll take this for
granted from now on.).

cd $HOME/packages

tar xvfz Python-2.5.1.tgz

cd Python-2.5.1

./configure

make

make install

http://www.riverbankcomputing.co.uk/sip/download.php
http://www.riverbankcomputing.co.uk/sip/download.php
http://www.riverbankcomputing.co.uk/pyqt/download.php
http://www.riverbankcomputing.co.uk/pyqt/download.php
http://www.qtrac.eu/pyqtbook.html

Installing on Linux and Unix 573

This should be a lot faster than the Qt build. Once it is complete, you can
perform the last two phases, building SIP and then PyQt, doing so in a slightly
different way than you built Qt and Python.

cd $HOME/packages

tar xvfz sip-4.6.tar.gz

cd sip-4.6

python configure.py

make

make install

This assumes that (the correct version of) Python is in your $PATH. If that
is not the case (i.e., because you have two or more versions of Python in-
stalled), give the full path to the appropriate Python executable—for example,
$HOME/opt/python25/bin/python configure.py. Once SIP is installed, you can in-
stall PyQt.

cd $HOME/packages

tar xvfz PyQt-x11-gpl-4.2.tar.gz

cd PyQt-x11-gpl-4.2

python configure.py

make

make install

Just like the SIP installation, this assumes that the correct version of Python is
in your $PATH. Again, if this is not the case, give the full path to the appropriate
Python executable when running configure.py. The make phase can take a long
time (but not as long as building Qt).

Qt, Python, and PyQt are supplied with documentation in HTML format. It
is worthwhile moving this somewhere permanent and adding suitable book-
marks to your browser. All three also come with numerous examples; at the
very least it is worth looking at the PyQt examples and running the demo. (For
example, change the directory to $HOME/PyQt-x11-gpl-4.2/examples/tools/qtdemo

and run ./qtdemo.py.)

If you downloaded the book’s examples, you might like to unpack pyqtbook.

tar.gz in $HOME to get a $HOME/pyqt directory with all the book’s examples, and
model answers to the exercises, categorized by chapter. In the $HOME/pyqt

directory itself, you will find mkpyqt.py and makepyqt.pyw; you might like to move
(or soft-link) these to a directory on your $PATH—for example, $HOME/bin to make
them more convenient to use. Some of the examples depend on Qt Designer
.ui files or on .qrc resource files. How to turn these into Python modules is
covered on page 207, but for now it might be convenient to simply perform the
conversions:★

★If mkpyqt.py does not work, you will have to edit the mkpyqt.py file and at least hard-code the path
to pyuic4.

574 Appendix A. Installing

cd $HOME/pyqt

./mkpyqt.py -r

This completes the installation for X11-based forms of Unix and Unix clones,
including Linux and BSD. You are now ready to write and run PyQt applica-
tions on your Unix or Unix-like platform—and they will run unchanged on
Mac OS X and Windows too!

Selected PyQt Widgets

BB
The screenshots shown here were taken on Linux using KDE to provide an
eye-pleasing consistency. In the body of the book, screenshots are shown for
Windows, Linux, and Mac OS X, generally varying from chapter to chapter.

QCalendarWidget

This widget can be used as a display widget,
although it was designed primarily as an in-
put widget through which the user can choose
a particular date. The widget’s display is high-
ly configurable; for example, week numbers
can be displayed or not, day names can be rep-
resented by a single letter, or in short or full
forms, the colors and fonts used can be set, and
so can which day is treated as the first day of
the week. Minimum and maximum allowable
dates can also be set. Calling setCalendarPop-

up(True) on a QDateEdit or a QDateTimeEdit will
cause their spin buttons to be replaced by an
arrow button. If the user clicks the arrow but-
ton, a QCalendarWidget will pop up.

QCheckBox

A checkbox can be used to present users with
a simple yes/no choice. If QCheckBox.setTri-

state(True) is called, the checkbox will have
three states: The user checked it, the user
unchecked it, or the user did not change it
from whatever it was before. The tri-state ap-
proach may be useful for representing Boolean
database fields where IS NULL is allowed.

575

576 Introduction

QComboBox

The screenshot shows a QComboBox with
its list popped down. A combobox is used
to present the user with a list of items
where too little vertical space is available
for a QListView to be used. Calling QCombo-

Box.setEditable(True) allows the user to
either choose one of the items in the list,
or to type in their own text instead. Each
combobox item has text, an optional icon,
and optional data. We can populate a
combobox using QComboBox.addItem() or
QComboBox.addItems(), or we can use a cus-
tom or built-in QAbstractItemModel sub-
class with QComboBox.setModel().

QDateEdit,
QDateTimeEdit, and

QTimeEdit

The QDateEdit is used for displaying and
entering dates, the QDateTimeEdit is used
for dates and times, and the QTimeEdit

is used for times. By default, the wid-
gets use locale-specific date and time
formats—they are shown here using a
U.S. locale. The formats can be changed,
and minimum and maximum allowable
dates and times can be set.

Appendix B. Selected PyQt Widgets

QDialogButtonBox

This widget can be used to create a row
or column of buttons. The buttons can be
standard buttons with predefined roles
and text, or can be added with the roles
and text of our choice. This widget auto-
matically arranges the buttons according
to their roles and the underlying window-
ing system’s user interface guidelines.

QFontComboBox

PyQt provides a pop-up font dialog, us-
ing the native font dialog where avail-
able. If we want to provide font choices
ourselves—for example, in a toolbar—we
can use the QFontComboBox, shown here
popped down. For Qt 4.0 and Qt 4.1, the
nearest equivalent (but without font pre-
viewing) is to use an ordinary QComboBox,
populating it with the list returned by
QFontDatabase.families().

Introduction 577

QGroupBox and
QRadioButton

A group box can be used purely as a visu-
al grouping device, or it can be made
checkable, as shown here. If checkable,
the widgets contained in the group box
can be interacted with only when the
group box is checked. If a frame is re-
quired without a title, a QFrame can be
used instead. When QRadioButtons are
put in a group box they automatically be-
have correctly, that is, the user can choose
only one of them. QComboBoxes and QList-

Views are often more convenient than
QRadioButtons.

QGraphicsView

This widget is used to view the QGraphics-

Items in a QGraphicsScene. Any number of
QGraphicsViews can view the same scene,
each with its own transformations (e.g.,
scaling and rotation), in effect.The scroll-
bars appear automatically if they are
needed. Each QGraphicsView can provide
its own background and foreground,over-
riding those provided by the scene.

Appendix B. Selected PyQt Widgets

QLabel

The QLabel widget is a display widget that
can be used to show an image, a plain
text string, a QTextDocument, or HTML. A
label with an accelerator (a single under-
lined character) can be associated with
a “buddy” widget, passing the keyboard
focus to the buddy when the accelerator
is pressed.

QLCDNumber

This is a display widget for showing num-
bers in the style of a seven-segment
LCD.

QLineEdit

This widget can accept one line of text
from the user. The text can be con-
strained by using a validator (e.g., a QInt-

Validator or a QRegExpValidator), or by
setting an input mask, or both. The echo
mode can be set to show “*”s (or nothing)
instead of the text entered.

578 Introduction

QListView and QListWidget

Through these widgets users can choose an item,
or with a suitable selection mode, multiple items.
The widgets can be in list mode (as shown), or
icon mode, where the icons appear larger and
the text is displayed under the icons. A QList-

View must be used in conjunction with a cus-
tom or built-in QAbstractItemModel subclass using
QListView.setModel(). A QListWidget has a built-in
model, so items can be added to it directly using
QListWidget.addItem() and QListWidget.addItems().
Where vertical space is at a premium, a QComboBox

can be used instead.

QProgressBar

This widget can be used to show users the
progress of long-running operations. It is often
put in a QMainWindow’s status bar using QStatusBar.

addWidget() or addPermanentWidget(). An alterna-
tive is to pop up a QProgressDialog.

Appendix B. Selected PyQt Widgets

QPushButton

Buttons are used to invoke actions. If a button
click will lead to a dialog being popped up, we nor-
mally add an ellipsis (…) to the end of the but-
ton’s text. Buttons can also be set to have pop-up
menus (in which case, PyQt will add a little tri-
angle indicator), or they can be set as toggle but-
tons, staying down when clicked an odd number
of times and coming back up when clicked an even
number of times. Since Qt 4.2, most applications
use QDialogButtonBoxes rather than individual
QPushButtons.

QSlider

A slider is often used to show proportionality,
and is commonly used in conjunction with a QLa-

bel or QLCDNumber that shows an actual amount.
Sliders can be aligned vertically or horizontally. A
QScrollBar could be used for a similar purpose.

QDoubleSpinBox and
QSpinBox

These widgets are used to accept and display num-
bers. The number can be shown with a prefix
or suffix and with a particular alignment. (The
QDoubleSpinBox shown here has a “$” prefix.) They
can have minimum and maximum values set, and
for the QDoubleSpinBox, the number of digits shown
after the decimal point can be set. An alternative
is to use a QLineEdit in conjunction with a QInt-

Validator or a QDoubleValidator.

Introduction 579

QTableView and QTableWidget

These widgets are used to present data
in tabular form. A QTableView must
be used in conjunction with a custom
or built-in QAbstractItemModel subclass,
such as QSqlTableModel, using QTable-

View.setModel(). A QTableWidget has a
built-in model, so items can be added to
it directly—for example, using QTable-

Widget.setItem(). Both widgets can show
icons as well as text in every cell, includ-
ing in the header cells.

QTabWidget

This widget is used when space is at a
premium, or simply as a means of log-
ically grouping widgets. The tabs have
two shape settings and can appear at the
top, left, right, or bottom, with the text
rotated when shown left or right.

QTextEdit and QTextBrowser

These widgets can display HTML, in-
cluding lists, tables, and images. The
QTextEdit can also be used as an editing
widget, either for plain text or for PyQt
“rich text” (essentially HTML, although
a custom subclass would be needed to
provide table and image editing). The
QTextBrowser supports clickable links, so
it can be used as a simple Web browser.
Both widgets have support for CSS (Cas-
cading Style Sheets).

Appendix B. Selected PyQt Widgets

QTreeView and QTreeWidget

These widgets are used to present hi-
erarchical data. A QTreeView must be
used with a custom or built-in QAbstract-

ItemModel subclass using QTreeView.set-

Model(). Like all widgets that use a
model, only the data that is visible to the
user is retrieved, so even large datasets
are very fast. A QTreeWidget has a built-
in model, so items can be added to
it directly using QTreeWidget.insertTop-

LevelItem() and insertTopLevelItems(),
or by creating QTreeWidgetItems as chil-
dren of other items.

This page intentionally left blank

Selected PyQt Class Hierarchies

CC
QObject QPaintDevice

QWidget

QDialog QFrame

Figure C.1 Selected base classes

QFrame

QAbstract-

ScrollArea

QAbstract-

ItemView

QHeaderView

QListView
QListWidget

QUndoView

QTableView QTableWidget

QTreeView QTreeWidget

QGraphicsView

QScrollArea

QTextEdit QTextBrowser

QLabel

QLCDNumber

QSplitter

QStackedWidget

QToolBox

Figure C.2 Selected classes from the QFrame hierarchy

581

582 IntroductionAppendix C. Selected PyQt Class Hierarchies

QWidget

QAbstractButton

QCheckBox

QPushButton

QRadioButton

QToolButton

QAbstractSlider

QDial

QScrollBar

QSlider

QAbstractSpinBox

QDateTimeEdit
QDateEdit

QTimeEdit

QDoubleSpinBox

QSpinBox

QCalendarWidget

QComboBox QFontComboBox

QDesktopWidget

QDialog …see Figure C.5

QDialogButtonBox

QDockWidget

QFrame …see Figure C.2

QGroupBox

QLineEdit

QMainWindow

QMenu

QMenuBar

QProgressBar

QSplashScreen

QStatusBar

QTabWidget

QToolBar

QWorkspace

Figure C.3 Selected classes from the QWidget hierarchy

Introduction 583Appendix C. Selected PyQt Class Hierarchies

QAbstractItemModel

QAbstractListModel QStringListModel

QAbstractProxyModel QSortFilterProxyModel

QAbstractTableModel

QDirModel

QStandardItemModel

Figure C.4 Selected classes from the QAbstractItemModel hierarchy

QDialog

QAbstractPrintDialog QPrintDialog

QColorDialog

QFileDialog

QFontDialog

QInputDialog

QProgressDialog

Figure C.5 Selected classes from the QDialog hierarchy

QIODevice

QAbstractSocket
QTcpSocket

QUdpSocket

QBuffer

QFile QTemporaryFile

QProcess

Figure C.6 Selected classes from the QIODevice hierarchy

QPaintDevice

QImage

QPicture

QPixmap QBitmap

QPrinter

QWidget …see Figure C.3

Figure C.7 Selected classes from the QPaintDevice hierarchy

584 IntroductionAppendix C. Selected PyQt Class Hierarchies

QEvent

QCloseEvent

QDropEvent

QInputEvent

QContextMenuEvent

QKeyEvent

QMouseEvent

QWheelEvent

QMoveEvent

QPaintEvent

QResizeEvent

QTimerEvent

Figure C.8 Selected classes from the QEvent hierarchy

QGraphicsItem

QAbstractGraphicsShapeItem

QGraphicsEllipseItem

QGraphicsPathItem

QGraphicsPolygonItem

QGraphicsRectItem

QGraphicsSimpleTextItem

QGraphicsItemGroup

QGraphicsLineItem

QGraphicsPixmapItem

QGraphicsSvgItem

QGraphicsTextItem

Figure C.9 Selected classes from the QGraphicsItem hierarchy

QLayoutItem

QLayout

QBoxLayout
QHBoxLayout

QVBoxLayout

QGridLayout

QStackedLayout

QSpacerItem

QWidgetItem

Figure C.10 Selected classes from the QLayoutItem hierarchy

Index
When looking up methods for PyQt widgets, also consider looking under their
base classes, such as QFrame, QWidget, and QObject. Functions and methods are
listed in their own right, and in most cases under their module or class. Where
a method or function name is close enough to a concept, the concept is not listed.
For example, there is no entry for “splitting strings”,but there is an entry for the
split() methods.

Symbols

!= (not equal operator), 47, 81, 82
" (double quote), 21
% (modulus/remainder operator,

string formatting operator), 24,
26, 53, 84, 98

%= (modulus augmented assignment
operator), 84

& (bitwise and operator, accelerator
indicator), 38, 47, 143

' (single quote), 21
() (tuple creation operator, function

and method call operator, ex-
pression operator), 30, 51, 54,
55, 81

* (multiplication operator, replica-
tion operator, positional argu-
ment list indicator, from … im-

port operator), 19, 25, 84, 91
** (power/exponentiation operator,

keyword argument list indica-
tor), 40

*= (multiplication augmented as-
signment operator), 84, 91

+ (addition operator, concatenation
operator), 25, 33, 84, 90, 500

+= (addition augmented assignment
operator, append operator), 84,
90, 234

- (subtraction operator, negation
operator), 84

-= (subtraction augmented assign-
ment operator), 84

. (dot operator), 78
/ (division operator), 84, 91
/= (division augmented assignment

operator), 84, 91
// (“true” division operator), 84, 86,

91
//= (“true” division augmented as-

signment operator), 84, 91
: (suite follows indicator, slice index

separator), 46
:/ (resource path, root of), 173
< (less than operator), 47, 81, 82
<< (QDataStream and QTextStream

write operator, int and long

shift left operator), 242, 245,
250, 254, 359, 435, 525, 533

<= (less than or equal to operator),
38, 47, 81, 82

<> (not equal
operator—deprecated), 47

= (name binding operator, object ref-
erence creation and assignment
operator), 81, 82, 83

== (equal operator), 13, 47, 81, 82
> (greater than operator), 47, 81, 82
>= (greater than or equal to opera-

tor), 38, 47, 81, 82
>> (QDataStream and QTextStream read

operator, int and long shift
right operator), 245, 360, 435,
528, 532, 541

585

586 Index

@ (decorator operator), 85
[] (indexing operator, slicing opera-

tor), 22, 54, 93
\ (escape character), 21, 51, 220
\n (newline character), 51
^ (bitwise xor operator), 47
_ (underscore character), 76, 80
__ (double underscore), 77, 80, 82,

88
`` (repr() operator), 83
{} (braces), 46
| (bitwise or operator), 38, 47
~ (bitwise not operator), 47

(euro symbol), 21

A

about() (QMessageBox), 200
aboutToShow() signal (QMenu), 178,

187, 285, 292
abs(), 40, 84, 403
__abs__() (abs()), 84
absolute positions and sizes, 119
abstract base class, 102
accelerator; see keyboard accelera-

tor
“accept” button, 141, 188
accept()

QDialog, 151, 154, 425
QEvent, 314, 333, 391

accepted() signal (QDialogButtonBox),
145, 150

access, private and public, 76, 88
accessor methods, 79–80
action; see QAction
action group; see QActionGroup
activateWindow() (QWidget), 160, 289
activeWindow() (QWorkspace), 296
add() (set), 37, 38, 372, 556
__add__() (+), 84, 90
addAction() (QWidget), 172, 178, 180,

307, 330, 365, 392, 393
addActions() (QWidget), 178
addBindValue() (QSqlQuery), 448, 450
addButton() (QDialogButtonBox), 150

addDatabase() (QSqlDatabase), 446,
459

addDays() (QDate), 491
addDockWidget() (QMainWindow), 169,

186
addEllipse()

QGraphicsScene, 354
QPainterPath, 374, 376

addItem()

QComboBox, 276
QGraphicsScene, 354, 356, 362,

364, 371
QListWidget, 418

addItems() (QComboBox), 440
addLayout()

QBoxLayout, 146
QGridLayout, 146, 151

addLine() (QGraphicsScene), 354
addMapping() (QDataWidgetMapper),

453, 456
addMenu() (QMenu and QMenuBar), 177,

178
addPath() (QGraphicsScene), 354
addPixmap() (QGraphicsScene), 354
addPolygon()

QGraphicsScene, 354
QPainterPath, 376

addRect() (QGraphicsScene), 354, 355
addSeparator(), 178, 180, 307

QMenu, 178, 180
QToolBar, 178, 180

addSpacing() (QBoxLayout), 146
addStretch() (QBoxLayout), 146
addText() (QGraphicsScene), 354
addToolBar() (QMainWindow), 179, 186
addWidget()

QLayout, 146, 151, 273
QToolBar, 180

addYears() (QDate), 490
adjusted() (QRect/QRectF), 355, 367
aggregation, 93
Alert application, 112–116
alignment, 168, 338, 429
aliveness, of PyQt objects, 287–288,

289
all(), 38

Index 587

and operator, 47
anonymous functions; see lambda

statement
antialiasing, 337, 342, 361, 369
any(), 38
append()

list, 33
QTextEdit, 120

application modal dialogs, 140
application termination, 115, 185
applicationDirPath() (QCoreApplica-

tion), 173
applicationName() (QCoreApplica-

tion), 194
applications

lrelease, 207, 513, 518
Make PyQt (makepyqt.pyw), 174,

206, 207, 216, 519
mkpyqt.py, 174, 206, 207, 216, 519
pylupdate4, 207, 513, 517, 518
pyrcc4, 173, 174, 207
pyuic4, 206, 207, 216, 221, 515
Qt Assistant, 510
Qt Linguist, 513

arg() (QString), 402, 418, 419, 423,
427, 428, 455, 513, 515

arguments; see parameters
argv variable (sys), 114
array module, 29
as keyword, 104
ASCII, 20, 22, 250, 501, 513, 555

see also codecs, QString, and Uni-
code encodings

aspect ratio, 329, 400
assert statement, 69, 498, 500, 501,

502, 503, 504
AssertionError exception, 69
Asset Manager application,

457–469
assignment operators, 15, 83
associative array; see dict, default-

dict, and OrderedDict

atEnd() (QDataStream and
QTextStream), 245, 252, 253, 254

attribute() (QDomElement), 261
AttributeError exception, 89, 101
attributes, 75, 78, 103, 106, 125

augmented assignment operators,
15, 16, 84, 90, 91

automatic disconnection, 130
automatic garbage collection; see

garbage collection
automatic reparenting, 119
automatic signal–slot connections,

217
automatically deleting windows,

156, 284, 286

B

backslash escapes, 21, 22, 51
base class, 75, 76, 102
basename() (os.path), 189
beforeInsert() (QSqlTableModel), 470
beginInsertRows() (QAbstractItem-

Model), 432, 433
beginRemoveRows() (QAbstractItem-

Model), 433
bibliography; see books
binary chop algorithm, 93, 95, 238
binary data, 20
binary files, 240–248
binding names, 14–16

see also assignment operators
bindValue() (QSqlQuery), 448, 450,

468
bisect module, 93, 238
bisect_left() (bisect), 95, 239, 498
bitwise operators, 47
BLOBs (Binary Large OBjects), 449
block of code; see suite of code
block structure, 46
blockSignals() (QObject), 135
.bmp (image file), 193
books

Core PYTHON Programming,
27

Dive into Python, 327
Mastering Regular Expressions,

220
Python and XML, 256
Python Cookbook, 27
Python in a Nutshell, 27

588 Index

books (cont.)
XML Processing in Python, 256

bool(), 83
bool type, 16–17, 46
Boolean context, 83
Booleans, 45, 46
bounding rectangle, 338, 367, 373,

377
boundingRect()

QGraphicsItem, 365, 366, 367, 373,
377

QPainterPath, 377
boundValue() (QSqlQuery), 450
braces, no need for, 46
break statement, 49, 50, 53
buddies, 143, 206, 215, 217

see also QLabel.setBuddy()

built-ins
!= operator, 47, 81, 82
% operator, 24, 26, 53, 84
& operator, 38, 47
* operator, 19, 25, 84, 91
** operator, 40
*= operator, 84, 91
+ operator, 25, 33, 84, 90
+= operator, 84, 90
- operator, 38, 84
-= operator, 84
. operator, 78
/ operator, 84, 91
/= operator, 84, 91
// operator, 84, 86, 91
//= operator, 84, 91
< operator, 47, 81, 82
<= operator, 38, 47, 81, 82
= operator, 81, 82, 83
== operator, 13, 47, 81, 82
> operator, 47, 81, 82
>= operator, 38, 47, 81, 82
@ operator, 85
[] operator, 22, 54
^ operator, 47
| operator, 38, 47
~ operator, 47
abs(), 40, 84, 403
all(), 38

built-ins (cont.)
and operator, 47
any(), 38
as keyword, 104
assert statement, 69, 498, 500,

501, 502, 503, 504
bool(), 83
bool type, 16–17, 46
break statement, 49, 50, 53
callable(), 102
chr(), 21, 39
class statement, 69, 75, 76, 77, 85,

86, 103, 115
cmp(), 82, 89
complex type, 17–20
continue statement, 53
def statement, 55, 62–63, 77
del statement, 32, 355, 359, 361,

372, 556
dict type, 35–36, 51, 93
dir(), 39, 40
divmod(), 40
enumerate(), 87, 419, 498
eval(), 39, 81, 83, 89, 120, 247
except statement, 66–67
exceptions; see exceptions
False constant, 45
finally statement, 66, 70–71, 78,

541, 542, 543, 548, 550, 551, 553,
554, 556

float(), 40, 84, 91
float type, 17–20, 241
for loop, 50–51, 54, 59
frozenset type, 37, 552
hasattr(), 39, 102, 218, 336
help(), 37, 39
hex(), 40
id(), 13, 39, 231, 237, 418
if statement, 46–49
import statement, 18, 19
in operator, 25, 33, 36, 38, 45, 96
int(), 40, 84, 91, 256
int type, 16–17, 241
is statement, 13, 47, 57

Index 589

built-ins (cont.)
isinstance(), 39, 94, 102, 135,

289, 296, 359, 372, 375, 393, 395,
440, 496, 499, 502, 503

iter(), 97, 237
lambda statement, 61–62, 134,

453
len(), 20, 25, 33, 36, 38, 96, 237,

503
list type, 31–35, 93
long(), 40
long type, 16–17, 231, 241
max(), 38
min(), 38
None constant, 13, 57
not operator, 47
object type, 76, 77, 78
oct(), 40
open(), 39, 70
or operator, 47
ord(), 21, 39, 50
pass statement, 47
pow(), 40
print statement, 10, 26
property(), 80
range(), 39, 50–51, 54
repr(), 81, 83, 89, 90, 98
return statement, 58, 97, 554
round(), 40, 91, 333
set type, 37, 93
sorted(), 52, 53, 63, 432, 434, 551
special methods; see special

methods
staticmethod(), 85, 239, 288
str type; see str type
sum(), 38
super(), 100, 153, 217
True constant, 45
try statement, 66, 70, 78, 541,

542, 543, 548, 550, 551, 553, 554,
556

tuple type, 29–31, 30, 50, 87
type(), 18, 39, 102
unichr(), 21, 39, 236, 554
unicode type; see unicode type
while loop, 49–50

built-ins (cont.)
with statement, 549
xrange(), 51, 54
yield statement, 58, 97, 237

button()

QDialogButtonBox, 150, 158
QMouseEvent, 333

buttons; see QAbstractButton,
QDialogButtonBox, and QPush-

Button

byte array; see QByteArray
bytecode, 11, 111
bytesAvailable() (QIODevice), 528,

531, 540

C

Calculate application, 116–121
__call__(), 81
callable(), 102
callables, 63, 97, 102, 115, 128, 131
callbacks; see object references to,

under functions
calling context, 64
canPaste() (QTextEdit), 385
case statement; see if statement
center() (QRect/QRectF), 392, 393
centering, 168, 338
central widget, 168
character escapes, 21, 22
character formatting, 397
characters() (QXmlContentHandler),

263
checkable actions, 176, 177
chr(), 21, 39
class statement, 69, 75, 76, 77, 85,

86, 103, 115
clear(), 98

dict, 36
QListWidget, 418
QTableWidget, 418
QTextDocument, 383
QTreeWidget, 420
set, 38

clearMessage() (QStatusBar), 170,
232

590 Index

clearSelection() (QGraphicsScene),
356, 361, 362, 364

click; see mousePressEvent() and
mouseReleaseEvent()

clicked() signal (QPushButton), 219
client/server applications, 522
clipboard; see QClipboard
clipboard() (QApplication), 297, 311
close button, 118, 121
close()

file, 70, 555
QIODevice, 243, 259, 525, 528
QWidget, 175, 285, 289, 330

closeAllWindows() (QMainWindow), 289,
293

closeEvent() (QWidget), 175, 185, 187,
282, 285, 289, 293, 309, 551

closeSubPath() (QPainterPath), 376
closing dialogs, 118, 121
closures; see partial function appli-

cation
cmp(), 82, 89
__cmp__() (cmp()), 81, 82, 89, 416,

432
code suite, 46
codecs; see encodings
codecs module, 255–256

open(), 255, 260, 501, 555
readline(), 255

collections, 29–37, 92–98
collections module, 29

defaultdict type, 529, 532, 545
collidesWithPath() (QGraphicsItem),

366
collidingItems()

QGraphicsItem, 366
QGraphicsScene, 354, 375

collision detection, 349, 374, 375
color palette; see QPalette
column() (QModelIndex), 428, 431, 439,

461, 462, 486, 496, 503
columnCount() (QAbstractItemModel),

427, 428, 433, 503
combining comparison expressions,

47
combobox; see QComboBox

command-line arguments, 113, 114
commercial licensing, 3
commit() (QSqlDatabase), 449, 465,

468, 469
communication mechanisms; see

events and signals and slots
compare() (QString), 435
comparisons, 13, 38, 47, 57, 63, 82

cmp(), 89
__cmp__(), 89, 416, 432
creating operators for, 82
disallowing, 83
expressions, 47
operators, 47
see also == operator, != operator,
id(), and is statement

compile() (re), 220
complex type, 17–20
composite widgets, 168, 280,

325–326
composition, 93
conditional expression, 49, 390
connect() (QObject), 124, 130, 133,

145, 146, 151, 158, 453
connecting to databases, 446
connections; see signals and slots
Connections application, 132–135
connectSlotsByName() (QMetaObject),

217
connectToHost() (QAbstractSocket),

525
constructors; see initializers,

__init__(), and __new__()

containers; see collections, and dict

type, list type, and tuple type
contains()

QGraphicsItem, 366
QRect/QRectF, 357
QString, 234
QStringList, 189

__contains__() (in), 93, 96
context managers, 549, 554
context menus, 168, 180–181, 307,

365, 390
contextMenuEvent()

QGraphicsItem, 365

Index 591

contextMenuEvent() (cont.)
QWidget, 307, 309, 390

continue statement, 53
control structures; see if, for, while,

and try statements
controls; see QWidget
convenience widgets; see QList-

Widget, QTableWidget, and QTree-

Widget

conventional entry point, 62
conversions

bool() conversion, 83
float() conversion, 40, 84, 91
generator to list, 58
int() conversion, 40, 84, 91
int to float, 14, 20
int to long, 17
long() conversion, 40
str() conversion, 81, 83, 90, 98
str to unicode, 20
unicode() conversion, 81, 83
unicode to QString, 28

coordinates, 309, 328–331, 339, 342,
350, 357, 374

copy constructor, unnecessary, 83
copy(), 98

copy module, 83, 88, 89
dict, 36
set, 38, 548, 551

copy module
copy(), 83, 88, 89
deepcopy(), 34, 83

copy_reg module, 247
copying, 34, 51, 88, 89, 98
cos() (math), 371, 375
count()

list, 33
str/unicode, 25

cPickle module, 235, 246–248
see also pickle module

createActions() helper, 174–175
createEditor() (QAbstractItem-

Delegate), 436, 440, 461, 486,
487, 488, 491

createIndex() (QAbstractItemModel),
433, 504

critical() (QMessageBox), 188
cStringIO module, 23

see also StringIO module
Currency Converter application,

121–127
current mouse position, 318
currentCharFormat() (QTextEdit), 393,

395
currentColumn() (QTableWidget), 422
currentDate() (QDate), 46, 236, 401,

490
currentDateTime() (QDateTime), 454
currentFrame() (QTextCursor), 404
currentIndex()

QAbstractItemView, 427, 463, 465,
466, 468, 469

QDataWidgetMapper, 454, 455
currentIndexChanged() signal

(QComboBox), 124, 275
currentItem() (QTableWidget), 422
currentRowChanged() signal (QList-

Widget), 275
currentText() (QComboBox), 441
currying; see partial function appli-

cation
cursor, text; see insertion point
cursorRect() (QTextEdit), 392, 393
custom data containers, 235
custom delegates, 436–442
custom models, 423–435
customized message boxes, 188
cut() (QTextEdit), 385
cycles, avoiding in signal–slot con-

nections, 135

D

dangling else trap, not possible, 48
data containers, 235
data dictionary; see dict type
data()

QAbstractItemModel, 414, 427, 428,
429, 430, 433, 438, 441, 462, 481,
487, 488, 489, 491, 496, 503

QAction, 172, 393, 395
QMimeData, 315, 316

592 Index

data() (cont.)
QTableWidgetItem, 422

data stream; see QDataStream
data structures; see dict type, list

type, and tuple type
database forms; see QDataWidgetMap-

per and QSqlTableModel

database() (QSqlDatabase), 465, 468,
469

database queries; see QSqlQuery and
SQL statements

databases
connecting to, 446
data types, 447
drill-down, 467
drivers, 445
foreign keys, 455–457
in-memory, 446
master-detail forms, 458, 464,

469
prepared queries, 447
SELECT statements, 449–451
stored procedures, 448
transactions, 465–466, 468
see also SQL statements

dataChanged() signal (QAbstractItem-
Model), 431, 432, 478

date formats, 250, 258
date() (QDateTimeEdit), 487
dates; see QDate and QDateTime

dateTime() (QDateTime), 455
DB2 database, 445
Decimal class (decimal), 17–20
decorations, window, 112
decorators, 85–86, 218, 219
deepcopy() (copy), 34, 83
deeply nested loops, 69
def statement, 55, 62–63, 77
default arguments, 56
defaultdict type (collections), 529,

532, 545
base class,dict

del statement, 32, 355, 359, 361, 372,
556

__del__() (del statement), 78

delegates; see custom delegates and
QItemDelegate

deleteLater() (QObject), 287, 531,
539, 544

deleting; see del statement, delete-
Later(), garbage-collection, and
remove()

deleting windows, automatically,
156, 284, 286

__delitem__() (del statement), 93,
95

destroyed() signal (QObject), 286,
288

destructors, 78
device coordinates; see viewport co-

ordinates
device() (QDataStream), 525, 533
dial; see QDial
dialog buttons; see QDialogButtonBox

and QPushButton

dialogs, 145
closing, 118, 121
hiding, 118, 121, 160
modal, 140, 142, 511
modeless, 140, 155
showing, 160
see also QDialog

dict type, 35–36, 51–53, 93
clear(), 36, 98
__contains__() (in), 96
copy(), 36, 98
get(), 36, 95, 420, 532, 541, 551
has_key(), 96
items(), 36, 52, 97
__iter__(), 97
iterating, by keys, 50
iteritems(), 53, 97, 98
iterkeys(), 53, 97
itervalues(), 53, 97
keys(), 36, 51, 52
pop(), 36, 96
popitem(), 96
remove(), 95, 532, 543
__repr__(), 98
setdefault(), 36, 95, 532
values(), 36, 52, 96

Index 593

dict type (cont.)
see also defaultdict type and
OrderedDict example class

difference() (set), 38
dir(), 39, 40
dirname() (os.path), 173, 477, 496,

512
dirty flag, 168, 187, 192, 232, 356,

361, 362, 364, 365, 422, 425, 431
disabling widgets and actions, 219,

274, 385
discard() (set), 38
disconnect() (QObject), 130
division (/ and //), 17, 84, 86, 91
divmod(), 40
dock window; see QDockWidget
dock windows, 169–170
docstrings, 57, 77, 105
doctest module, 105–107
document() (QTextEdit), 286, 287, 383,

384, 385, 396
documentation, 27, 111
documentElement() (QDomDocument),

260
DOM parser, 259–262
done() (QDialog), 154, 457, 464
double-click; see mouseDoubleClick-

Event()

double-quoted strings, 21
drag and drop, 312–317
drag icon, 316
dragEnterEvent() (QWidget), 309, 314,

316
dragMoveEvent() (QWidget), 309, 314,

315, 316
drawArc() (QPainter), 344
drawChord() (QPainter), 344
drawContents() (QTextDocument), 438,

489
drawConvexPolygon() (QPainter), 344
drawEllipse() (QPainter), 344, 374,

377, 481
drawImage() (QPainter), 344, 363, 400
drawLine() (QPainter), 338, 344
drawPath() (QPainter), 344, 377
drawPicture() (QPainter), 363

drawPie() (QPainter), 344
drawPixmap() (QPainter), 344, 363,

408
drawPoint() (QPainter), 344
drawPolygon() (QPainter), 338, 343,

344, 345
drawPolyline() (QPainter), 344, 345
drawRect() (QPainter), 337, 344, 368,

410
drawRoundRect() (QPainter), 344
drawText() (QPainter), 306, 338, 344,

408, 410, 481
drill-down, 467
driver()

QSqlDatabase, 449
QSqlQuery, 450

drivers, for databases, 445
dropEvent() (QWidget), 309, 315, 316
DSU (decorate, sort, undecorate),

551
duck typing, 101, 222, 497
dump() (pickle/cPickle), 248
duplicated data, avoiding, 413
dynamic attributes, 78
dynamic function definitions, 62–63
dynamic menus; see menus and

QMenu

dynamic typing, 12, 13–15, 101

E

edit() (QAbstractItemView), 426, 465,
468

editing, in-place, 414, 458
editing, initiating,417, 426, 440,465,

468
editItem() (QTableWidget), 422
editor, IDLE, 10, 105, 382
editors; see IDEs
elif statement; see if statement
else statement; see if statement
emit() (QObject), 130, 131, 219, 333,

340, 391, 431, 440, 556
enabling widgets and actions, 219,

274, 385
encodings, 20, 250, 258, 501

594 Index

encodings (cont.)
ASCII, 20, 236, 250, 501, 555
Latin1, 20
UTF-8, 236, 250, 258, 501, 555
see also codecs module, QString,

and Unicode
endElement() (QXmlContentHandler),

263
endInsertRows() (QAbstractItem-

Model), 432, 433
endRemoveRows() (QAbstractItem-

Model), 432, 433
endswith() (str/unicode), 25, 31, 555
endsWith() (QString), 240
ensureCursorVisible() (QTextEdit),

392, 393
Enter keypress, 120, 145, 188, 391,

421, 422, 440, 511
entities; see HTML
entry point, no fixed, 62
enumerate(), 87, 419, 498
__eq__() (==), 81
Eric4, IDE, 2, 10, 105, 382
error handling, for files, 244
errorString() (QIODevice), 241, 243,

250, 252, 258, 259, 528
Esc keypress, 121, 161, 188, 421, 422
escape()

Qt namespace, 258, 397, 401
re, 220

escaped characters, 21, 22, 401
newlines, 51

euro symbol (), 21
eval(), 39, 81, 83, 89, 120, 247
event handlers; see events
event loop, 115–116, 184, 221, 537,

539
event() (QObject), 304, 309, 310, 384
events, 115, 303–310

see also closeEvent(), keyPress-
Event(), keyReleaseEvent(),
paintEvent(), resizeEvent(),
timerEvent(), and wheelEvent()

examples
Alert application, 112–116
Asset Manager application,

457–469

examples (cont.)
Calculate application, 116–121
Connections application,

132–135
Currency Converter application,

121–127
FractionSlider class, 331–338
frange(), 55–57
Image Changer application,

165–200
Length class, 86–91
Multipedes application, 368–377
My Movies application, 227–265
OrderedDict class, 92–98
Page Designer application,

351–368
partial(), 64–65, 133
RichTextLineEdit class, 389–398
RomanSpinBox class, 326–328
Signals and Slots application,

128–131
simplified(), 61
simplify(), 59, 61
YPipe class, 339–345

except statement, 66–67
see also finally statement and
try statement

exceptions, 52, 66–71
AssertionError, 69
AttributeError, 89, 101
Exception, 68, 69
handling, 66–71
hierarchy, 67
IOError, 243, 244
KeyError, 94
NotImplementedError, 83, 102
OSError, 243, 244
RuntimeError, 288
StopIteration, 52, 58, 59
TypeError, 56
ValueError, 68, 114
vs. testing for errors, 68

exec_()

QCoreApplication, 115, 184
QDialog, 142, 154, 511
QDrag, 316

Index 595

exec_() (cont.)
QMenu, 307, 365, 392, 393
QSqlQuery, 447, 448, 449, 450, 464,

468, 469
exists() (QFile), 294
exiting applications;seeterminating

applications
expandItem() (QTreeWidget), 421
exporting files, 229
extend() (list), 33
extension; see file extensions
extension dialogs, 276–280

F

F2 keypress, 417, 422, 440
False constant, 45
fatalError() (QXmlErrorHandler), 263
field-level validation, 140
fieldIndex() (QSqlTableModel), 456
file; see file type, open(), and QFile

file dialog; see QFileDialog
file error handling, 244
file extensions

.bmp, .jpg, .jpeg, and .png (image
files), 193

.pro (C++/Qt project file), 518

.py and .pyw (Python file), 11, 111,
207

.pyc and .pyo (Python bytecode
file), 11, 207

.qm (Qt message file), 516, 518

.qrc (PyQt resource file), 173,
207, 517

.ts (translation source file), 517,
518, 519

.ui (user interface file), 206, 207,
515

file formats, 241
file handle, generator, 70
file type

close(), 70, 555
__file__ variable, 173
fileName() (QFileInfo), 189
files, 70, 229
fill() (QPixmap), 392

fillPath() (QPainter), 344
fillRect() (QPainter), 344, 438, 481,

489
finally statement, 66, 70–71, 78,

541, 542, 543, 548, 550, 551, 553,
554, 556

see also except statement and try

statement
financial calculations, 18
find() (str/unicode), 24, 25, 68
findText() (QComboBox), 142, 441, 457
first() (QSqlQuery), 450
firstChild() (QDomNode), 260
fixed size, of widget, 277
flags() (QAbstractItemModel), 427,

430, 433
flags, window, 115
float(), 40, 84, 91
float type, 17–20, 241

%f format specifier, 26
__float__() (float()), 84, 91
floating-point division; see “true”

division
__floordiv__() (//), 84
focus; see keyboard focus
font; see QFont
font()

QGraphicsTextItem, 359
QWidget, 336, 342

for loop, 50–51, 54, 59
break statement, 53
continue statement, 53
else statement, 50, 53, 254
vs. list comprehensions, 96–97

foreign keys, 455–457
form design; see user interface de-

sign
form-level validation, 140, 158, 491
format specifiers, for %, 26
formats, of images, 193
formatting, of characters, 397
forms, previewing, 215
FractionSlider example class,

331–338
frame; see QFrame
frange() example, 55–57

596 Index

from __future__ import division, 86
from __future__ import

with_statement, 549
from … import statement; see import

statement
fromImage() (QPixmap), 199
frozenset type, 37, 552
function definitions, nested, 261
functions; see under the functions’

names,and built-ins
as closures, 64
dynamic definitions, 62–63
nested, 65, 261
object references to, 63, 64
signatures, 56
wrapping; see partial function

application
functools module

partial(), 64–65, 133, 365

G

garbage collection, 15, 78, 168, 169,
170

__ge__() (>=), 81
generating lists, 54
generators, 54–55, 58–59, 70, 92, 97
geometry() (QWidget), 357
get() (dict), 36, 95, 420, 532, 541,

551
getcwd() (os), 173
getDouble() (QInputDialog), 199
getExistingDirectory() (QFile-

Dialog), 547
getInteger() (QInputDialog), 199
getItem() (QInputDialog), 199
__getitem__() ([]), 93, 94
getOpenFileName() (QFileDialog), 193,

194, 233, 234, 287, 295, 356
getSaveFileName() (QFileDialog), 196
getText() (QInputDialog), 199
global functions; see under the func-

tions’ names,and built-ins
global scope, 55
globalPos() (QEvent), 307, 309
gradient fills; see QLinearGradient

graphics items; see QGraphicsItem
graphics scenes; see QGraphicsScene
graphic transformations; see trans-

formations
graphics item coordinates, 350
graphics, rotating, 349
graphics, scaling, 349, 370, 374
grid layout; see QGridLayout
group() (re), 554
__gt__() (>), 81

H

handling errors, reading and writ-
ing files, 244

has_key() (dict), 96
hasattr(), 39, 102, 218, 336
hasChildren() (QAbstractItemModel),

433
hasFeature() (QSqlDriver), 449
hasFocus() (QWidget), 330, 426
hasFormat() (QMimeData), 314, 316
hash, Perl; see dict type
hasHtml() (QClipboard), 312
hasMouseTracking() (QWidget), 308
hasSelection() (QTextCursor), 385
headerData() (QAbstractItemModel),

427, 430, 433, 503
height() (QWidget), 330
help(), 37, 39
hex(), 40
hide() (QWidget), 280, 330
hiding dialogs, 118, 121, 160
hiding widgets, 277, 280
high-level communication mecha-

nisms; see signals and slots
homePath() (QDir), 545
horizontal layout; see QHBoxLayout
horizontal lines; see QFrame
horizontalHeader() (QTableView), 463,

464
hotspot, icon, 316
HTML (Hyper-Text Markup Lan-

guage), 114, 117, 168, 188, 311,
349, 381, 396, 397, 401, 488, 511,
552

Index 597

html() (QMimeData), 312

I

__iadd__() (+=), 84, 90
icon; see QIcon
icon, for dragging, 316
icon, hotspot, 316
id(), 13, 39, 231, 237, 418
idealWidth() (QTextDocument), 390,

439, 489
identifiers, 36
identity

comparison of , 13, 57
operators, 47
see also id(), and is statement

IDEs (integrated development envi-
ronments)

Eric4, 2, 10, 382
IDLE, 9, 10, 60, 105, 382

if statement, 46–49
conditional expression, 49

__ifloordiv__() (//=), 84
ignore() (QEvent), 186, 314
image; see QImage
image formats, 193
Image Changer application,

165–200
images, 168, 193, 195, 196
images, printing, 363
immutable objects, 15, 16, 20, 23, 29,

34, 35, 37, 57
__imod__() (%=), 84
import statement, 18, 19

from __future__, 86, 549
paths, 60

importing files, 229
__imul__() (*=), 84, 91
in-memory databases, 446
in operator, 25, 33, 36, 38, 45, 96
in-place editing, 414, 458
incomingConnection() (QTcpServer),

530, 539
indentation, 46
index()

list, 33

index() (cont.)
QAbstractItemModel, 433, 465, 468,

504
QModelIndex, 427
str/unicode, 24, 25, 68

indexing, 22, 30, 32
indexOf() (QString), 306, 387, 388
infinite recursion, risk of , 100
information() (QMessageBox), 188
inheritance, 76, 99–103, 103
__init__.py module, 104
__init__(), 77, 78, 437
initial processing, 184
initializers, 77
inputMask property (QLineEdit), 157
insert() (list), 33, 500
insertBlock() (QTextCursor), 404
insertImage() (QTextCursor), 404
insertion point, 386, 392, 393, 404
insertPlainText() (QTextEdit), 297
insertRecord() (QSqlTableModel), 464
insertRow() (QAbstractItemModel),

433, 465, 468
insertRows() (QAbstractItemModel),

426, 427, 432, 433
insertTable() (QTextCursor), 404
insertText() (QTextCursor), 384, 404
insort() (bisect), 499, 532, 543
insort_left() (bisect), 95, 238
insort_right() (bisect), 499
installEventFilter() (QObject), 304
installTranslator() (QCoreApplica-

tion), 516
instances

callable, 97, 102
copying, 88, 89
see also objects

int(), 40, 84, 91, 256
int type, 16–17, 241

%i and %d format specifiers, 26
promotion to float, 14, 20
promotion to long, 17
see also long type

__int__() (int()), 84, 91
integer literals, 17

598 Index

integrated development environ-
ments; see IDEs

interactive, use of Python, 60
Interbase database, 445
interdependent actions;see also QAc-

tion, 176
interdependent values; see

form-level validation
interfaces, 102
internalPointer() (QModelIndex), 504
interpreter, Python, 60
intersection() (set), 38
introspection, 102, 105
invertPixels() (QImage), 197
IOError exception, 243, 244
is statement, 13, 47, 57
isActive() (QSqlQuery), 449, 450
isAlive() helper, 287–288, 289
isalpha() (str/unicode), 25
isChecked() (QAction), 172, 176
isdigit() (str/unicode), 25, 238, 554
isEmpty()

QString, 233
QTextDocument, 385

isEnabled() (QAction), 172
isFile() (QFileInfo), 294
isinstance(), 39, 94, 102, 135, 289,

296, 359, 372, 375, 393, 395, 440,
496, 499, 502, 503

isModified() (QTextDocument), 287,
385

isNull()

QDate, 45
QDateTime, 45
QDomNode, 260
QImage, 400
QPixmap, 496
QString, 45
QStringList, 45
QTime, 45

ISO date format, 250, 258
isObscured() (QGraphicsItem), 366
isOpen() (QDataStream), 525
isRunning() (QThread), 547, 551
isSelected() (QGraphicsItem), 366
issubset() (set), 38

issuperset() (set), 38
__isub__() (-=), 84
isValid()

QModelIndex, 427, 428, 504
QSqlQuery, 450

item() (QTableWidget), 422
itemChange() (QGraphicsItem), 362,

366
itemChanged() signal (QTableWidget),

417
items(), 97

dict, 36, 97
QGraphicsScene, 354, 372

iter(), 97, 237
__iter__() (iter()), 93, 97, 237
iterable, 50
iteration; see for loop, while loop,

and generators
iterator protocol, 52
iterators, 52, 54, 87, 92, 97
iteritems() (dict), 97, 98
iterkeys() (dict), 97
itervalues() (dict), 97
__itruediv__() (/=), 84, 91

J

join()

os.path module, 496, 512, 555
str/unicode, 23, 25, 61, 193, 477

.jpg and .jpeg (image file), 193

K

key() (QKeyEvent), 307, 334, 365, 384,
391, 483

key sequences, 171–172, 175, 176
see also QKeySequence

keyboard accelerator, 143, 144, 189,
299

keyboard focus, 206, 218, 304, 351,
364, 478

keyboard shortcut, 144, 394
keyboard users, support for, 149,

218, 390, 417, 482, 511

Index 599

KeyError exception, 94
keypresses, 483
Enter, 120, 145, 188, 391, 421, 422,

440, 511
Esc, 121, 161, 188, 421, 422
F2, 417, 422, 440
Shift, 365
Tab, 206, 218, 310, 421, 422, 511

keyPressEvent()

QGraphicsItem, 365
QWidget, 307, 309, 334, 391, 483

keyReleaseEvent() (QWidget), 307
keys() (dict), 36
keyword arguments, 55, 59–61
keywords, table of , 16

L

label; see QLabel
lambda statement, 61–62, 134, 453
last() (QSqlQuery), 450
lastError()

QSqlDatabase, 446, 450, 459, 465
QSqlQuery, 449

lastIndexOf() (QString), 234
Latin1 encoding, 20
layout managers, 118–120, 123,

144–146, 145, 150, 209–210,
212, 213–215, 270–271, 332

layout() (QWidget), 277
layout policies, 270–271
__le__() (<=), 81
left() (QString), 234, 306
len(), 20, 25, 33, 36, 38, 96, 237, 503
__len__() (len()), 93, 96, 237, 503
Length example class (length),

86–91
length() (QString), 388
level of detail, 374
licensing, 3
lifetime, of PyQt objects, 287
line editor; see QLineEdit
line width; see pen width
lineEdit() (QAbstractSpinBox), 327
list comprehensions, 53–54, 96–97
list type, 31–35, 33, 38, 93

list type (cont.)
+ concatenation operator, 33
append(), 33, 53
count(), 25, 33
extend(), 33
generating, 54
index(), 24, 33
indexing, 32
insert(), 33, 500
iterating, 50
pop(), 33, 355, 361
remove(), 32, 33
reverse(), 33
slicing, 32
sort(), 33, 53, 63, 95, 239
title(), 24

list widget; see QListWidget
listen() (QTcpServer), 529
literals

integer, 17
string, 20

live dialogs, 159–162
loading files, 184, 229, 240–248,

249–256, 256–265
local scope, 55
local variables, 87
locale; see QLocale and

QString.arg()

localeAwareCompare() (QString), 416,
434

lock() (QMutex), 553, 554
lockForRead() (QReadWriteLock), 541,

542, 543, 548, 550, 551, 556
lockForWrite() (QReadWriteLock), 542,

543, 556
logical coordinates; see window coor-

dinates
logical operators, 47
long(), 40
long type, 16–17, 231, 241

%i and %d format specifiers, 26
see also int type

loops; see for statement and while

statement
deeply nested, 69

600 Index

low-level communication mecha-
nisms; see events

lower() (str/unicode), 25, 238
lrelease application, 207, 513, 518
__lt__() (<), 81, 82, 432

M

Mac OS X detection, 218
magic number, 241
mailing lists, 5
main(), conventional entry point, 62
main window; see QMainWindow
__main__ module attribute value,

106
Make PyQt application

(makepyqt.pyw), 174, 206, 207,
216, 519

mangling names, 77, 88, 89
mapFromGlobal() (QWidget), 357
mapToGlobal() (QWidget), 309, 392,

393
mapToScene() (QGraphicsView), 357
master-detail forms, 458, 464, 469
math module, 40, 117, 371, 375
matrix()

QGraphicsItem, 359, 377
QGraphicsView, 370

max(), 38
maximum size, of layouts and wid-

gets, 271
maximumHeight() (QWidget), 390
MDI (Multiple Document Interface),

290–300
membership operators, 47
menu separators, 178, 180
menuBar() (QMainWindow), 186
menus, 168, 177–178

see also QMenu and QMenuBar

mergeCurrentCharFormat() (QText-
Edit), 395

message box; see QMessageBox
meta-characters

regular expression, 220
XML, 257, 258

methods, 81

methods (cont.)
static, 78
virtual, 75, 99

mid() (QString), 252
MIME (Multipurpose Internet Mail

Extensions) format, 310, 313
mimeData()

QClipboard, 312
QDropEvent, 314

min(), 38
minimizing windows, 297
minimum size, of layouts and wid-

gets, 270, 271, 335
minimumHeight() (QWidget), 390
minimumSizeHint() (QWidget), 271,

335, 340, 341, 479
mirrored() (QImage), 198
mkpyqt.py application, 174, 206, 207,

216, 519
__mod__() (%), 84
modality, 140, 142, 511
model() (QModelIndex), 438, 441, 462,

489
modeless dialogs, 140, 155, 159, 286
models; see custom models and

QAbstractItemModel

modifiers() (QInputEvent), 307, 365,
391

modules, 104
modulus (%), 53
mouse position, 318
mouse tracking; see hasMouseTrack-

ing() and setMouseTracking()

mouseDoubleClickEvent()

QGraphicsItem, 362
QWidget, 308, 309, 417, 422, 440

mouseMoveEvent() (QWidget), 309, 317
mousePressEvent() (QWidget), 309,

333, 482
mouseReleaseEvent() (QWidget), 308,

309
move() (QWidget), 183, 330, 341
moveBy() (QGraphicsItem), 366
__mul__() (*), 84, 91
multifile applications, 104
Multipedes application, 368–377

Index 601

multiple document interface; see
MDI

multiple inheritance, 76, 103, 216,
217, 373

multiway branching; see if state-
ment

mutable objects, 16, 23, 28, 29, 31, 32,
34, 35, 37, 51, 57

mutually exclusive actions, 176
see also QAction

My Movies application, 227–265
MySQL database, 445

N

name mangling, 77, 88, 89
__name__ module attribute, 106
names, of variables, 76, 80, 88
namespaces, 19
__ne__() (!=), 81
__neg__() (-), 84
negative lookahead, in regular ex-

pressions, 387
nested functions, 65, 261, 554
network protocols, 521
new-style vs. old-style classes, 76
__new__(), 77, 78, 81
newlines, escaping, 51
newlines, universal, 256
newPage() (QPrinter), 410
next()

iterator method, 52, 59, 97
QSqlQuery, 449, 450, 451, 468, 469

nextSibling() (QDomNode), 260
nodeType() (QDomNode), 261
None constant, 13, 45, 57
__nonzero__() (bool()), 81, 83
not operator, 47
notify() (QCoreApplication), 305
NotImplementedError exception, 83,

102
number() (QString), 338
numRowsAffected() (QSqlQuery), 449,

450

O

object names; see QObject.setObject-
Name()

object references, 12, 55, 57, 58, 63,
64

object type, 76, 77, 78
objects

callable, 97, 102
comparing, 13
copying, 88, 89
function references, 63, 64
immutable, 15, 16, 20, 23, 29, 34,

35, 37, 57
mutable, 16, 23, 28, 29, 31, 32, 34,

35, 37, 51, 57
ownership of , 119, 168, 170, 172,

180, 355, 357, 359, 372, 376
references, 12, 15, 55, 57, 58, 63,

64
oct(), 40
ODBC database, 445, 448
okToContinue() helper, 187
old-style vs. new-style classes, 76
open()

built-in, 39, 70
codecs, 255, 260, 501, 555
gzip, 248
QIODevice, 241, 243, 250, 252, 258,

259
QSqlDatabase, 446, 459

Open Source licensing, 3
or operator, 47
Oracle database, 445, 448
ord(), 21, 39, 50
OrderedDict example class, 92–98
orientation, 430
os module

walk(), 555
os.path module

basename(), 189
dirname(), 173, 477, 496, 512
join(), 496, 512, 555

OSError exception, 243, 244
overloading, 75
ownership, of objects, 119, 168, 170,

172, 180, 355, 357, 359, 372, 376

602 Index

P

page size, printer, 400
Page Designer application, 351–368
pageRect() (QPrinter), 408
paint devices; see QImage, QPainter,

QPicture, QPixmap, QPrinter,
QSvgGenerator, and QWidget

paint()

QAbstractItemDelegate, 436, 438,
461, 486, 489

QGraphicsItem, 366, 368, 374, 377
paintEvent() (QWidget), 306, 309, 336,

342, 480
palette; see QPalette
palette()

QApplication, 438, 489
QWidget, 337

parameters, 55, 56
default, 56
keyword, 55, 59–61
passing by value, 57
positional, 55

parent() (QObject), 433, 504
parent, of widget, 118, 119, 172, 340,

372
parenting, automatic, 119
parse() (QXmlReader), 262
parsing XML, 259–262, 262–265
partial() example, 64–65
partial() (functools), 64–65, 133,

365
partial function application, 63–65,

133, 365
pass-by-value, 57
pass statement, 47
pasteboard; see QClipboard
patents, disadvantages of, for soft-

ware, 222
path() (QFileInfo), 233, 356
path variable (sys), 60, 104
PDF (Portable Document Format),

398, 401
pen width, 144
physical coordinates; see viewport

coordinates

pickle() (copy_reg), 247
pickle module, 235, 246–248

see also cPickle module
pixmap; see QPixmap
pixmap()

QClipboard, 311
QGraphicsPixmapItem, 359

platform module
python_version(), 200
system(), 200, 217, 336, 390

.png (image file), 193
pointers; see object references
policies for

file error handling, 244
size and layout, 270–271, 335
strings, 28, 228

polymorphism, 99–103
pop(), 96

dict, 36, 96
list, 33, 355, 361
set, 372

popitem() (dict), 96
populating list widgets, 418
populating table widgets, 418
populating trees, 420, 502
portable document format; see PDF
pos()

QCursor, 318, 357
QGraphicsItem, 359, 366
QMouseEvent, 309

positional arguments, 55
post-mortem validation, 140, 150,

151
PostgreSQL database, 445
PostScript, 401
pow(), 40
preferred size, of layouts and wid-

gets, 271, 335
prepare() (QSqlQuery), 448, 450, 468
prepared queries, 447
prepend() (QStringList), 189
preserving aspect ratio, 329
preventative validation, 140, 157,

159, 162, 327
previewing forms, 215
previous() (QSqlQuery), 449, 450

Index 603

print statement, 10, 26
trailing comma, 49

print_() (QTextDocument), 403, 407
printer; see QPrinter
printImage() helper, 363
printing, 170, 363, 398–410
printing images, 363
private names, 76, 80, 88
.pro (C++/Qt project file), 518
processEvents() (QCoreApplication),

294, 537
processing, at start-up, 184
propagating hide and show calls,

280
properties, 80, 211, 322
properties, of QObjects, 157, 211
property()

built-in, 80
QObject, 322, 324

.py and .pyw (Python file), 11, 111,
207

.pyc and .pyo (Python bytecode file),
11, 207

pylupdate4 application, 207, 513,
517, 518

PyQt4 modules; see the individual
modules, QtCore, QtGui, etc.

pyqtProperty() (QtCore), 322
@pyqtSignature decorator (QtCore),

218, 219
PYQT_VERSION_STR variable, 200
pyrcc4 application, 173, 174, 207
python_version() (platform), 200
pyuic4 application, 206, 207, 216,

221, 515

Q

QAbstractButton (QtGui)
base class,QWidget
setCheckable(), 276, 278
setText(), 370
toggled() signal, 277, 280

QAbstractItemDelegate (QtGui)
base class,QObject

QAbstractItemDelegate (QtGui) (cont.)
createEditor(), 436, 440, 461,

486, 487, 488, 491
paint(), 436, 438, 461, 486, 489
setEditorData(), 436, 441, 462,

486, 487, 488
setModelData(), 436, 441, 462,

486, 487, 488
sizeHint(), 436, 439, 489

QAbstractItemModel (QtCore), 425,
433, 434, 445, 500

base class,QObject
beginInsertRows(), 432, 433
beginRemoveRows(), 433
columnCount(), 427, 428, 433, 503
createIndex(), 433, 504
data(), 414, 427, 428, 429, 430,

433, 438, 441, 462, 481, 487, 488,
489, 491, 496, 503

dataChanged() signal, 431, 432,
478

endInsertRows(), 432, 433
endRemoveRows(), 432, 433
flags(), 427, 430, 433
hasChildren(), 433
headerData(), 427, 430, 433, 503
index(), 433, 465, 468, 504
insertRow(), 433, 465, 468
insertRows(), 426, 427, 432, 433
removeRow(), 434, 466, 469
removeRows(), 427, 432, 434, 469
reset(), 432, 434, 501, 502
rowCount(), 426, 427, 428, 434,

454, 455, 479, 481, 503
setData(), 414, 427, 431, 434, 441,

462, 465, 487, 488
setHeaderData(), 434, 460, 462

QAbstractItemView (QtGui)
base class,QAbstractScrollArea
currentIndex(), 427, 463, 465,

466, 468, 469
edit(), 426, 465, 468
selectionModel(), 463
setAlternatingRowColors(), 231,

477
setCurrentIndex(), 426, 465, 468

604 Index

QAbstractItemView (QtGui) (cont.)
setDragEnabled(), 312, 313, 315
setEditTriggers(), 231
setItemDelegate(), 437, 460, 463,

490
setModel(), 425, 437, 460, 463,

477, 490
setSelectionBehavior(), 231, 460,

463, 495
setSelectionMode(), 231, 460, 463
startDrag(), 316

QAbstractScrollArea (QtGui)
base class,QFrame
viewport(), 392, 393

QAbstractSlider (QtGui)
base class,QWidget
setRange(), 369
setValue(), 128, 369

QAbstractSocket (QtNetwork), 521
base class,QIODevice
connectToHost(), 525
state(), 540
waitForDisconnected(), 544

QAbstractSpinBox (QtGui)
base class,QWidget
lineEdit(), 327
setAlignment(), 340, 487
validate(), 327, 328

QAbstractTableModel (QtCore), 425,
427

base class,QAbstractItemModel
QAction (QtGui), 171–172, 175, 194,

385
base class,QObject
data(), 172, 393, 395
editor, visual, 206
isChecked(), 172, 176
isEnabled(), 172
setCheckable(), 393
setChecked(), 172, 177, 393
setData(), 172, 189, 392, 393
setEnabled(), 172
setSeparator(), 172
setShortcut(), 171, 172
setStatusTip(), 172
setText(), 172

QAction (QtGui) (cont.)
setToolTip(), 172
setwhatsThis(), 172
toggled() signal, 172, 176, 177
triggered() signal, 172, 176

QActionGroup (QtGui), 176
QApplication (QtGui), 113, 115, 304

base class,QCoreApplication
clipboard(), 297, 311
palette(), 438, 489
setQuitOnLastWindowClosed(), 121

QBoxLayout (QtGui), 146, 326
base class,QLayout
addLayout(), 146
addSpacing(), 146
addStretch(), 146
setStretchFactor(), 146

QBrush (QtGui), 374, 377
QByteArray (QtCore), 313, 316, 358,

359, 525, 526, 533
QCalendarWidget (QtGui), 575
QCheckBox (QtGui), 575
QClipboard (QtGui), 297, 310–312

base class,QObject
hasHtml(), 312
mimeData(), 312
pixmap(), 311
setImage(), 311
setMimeData(), 311
setPixmap(), 311
setText(), 297, 311
text(), 297, 311

QCloseEvent (QtGui), 186
QColor (QtGui), 337, 345, 371, 392,

393, 438, 481, 489
QComboBox (QtGui), 440, 576

base class,QWidget
addItem(), 276
addItems(), 440
currentIndexChanged() signal,

124, 275
currentText(), 441
findText(), 142, 441, 457
setCurrentIndex(), 441, 457
setEditable(), 440
setModel(), 456

Index 605

QComboBox (QtGui) (cont.)
setModelColumn(), 456

QContextMenuEvent (QtGui), 307
base class,QInputEvent

QCoreApplication (QtCore), 538
base class,QObject
applicationDirPath(), 173
applicationName(), 194
exec_(), 115, 184
installTranslator(), 516
notify(), 305
processEvents(), 294, 537
quit(), 115
translate(), 513, 515

QCursor (QtGui), 318
pos(), 318, 357

QDataStream (QtCore), 240–246, 242,
245, 315, 316, 358, 359, 435, 525,
528, 531, 533, 540

atEnd(), 245
device(), 525, 533
isOpen(), 525
readBool(), 245
readDouble(), 241, 245
readIntn(), 243, 245, 360, 435
readUIntn(), 245, 528, 540
setVersion(), 241, 243, 245, 525,

528, 531, 533, 540
write(), 526, 533
writeBool(), 245
writeDouble(), 241, 245
writeIntn(), 241, 242, 245, 359,

435
writeUIntn(), 245, 525, 533

QDataWidgetMapper (QtGui), 453, 456
base class,QObject
addMapping(), 453, 456
currentIndex(), 454, 455
setCurrentIndex(), 454, 455
setItemDelegate(), 456
setModel(), 453, 456
setSubmitPolicy(), 453, 456
submit(), 454
toFirst(), 453, 456

QDate (QtCore), 19, 45, 253, 513
addDays(), 491

QDate (QtCore) (cont.)
addYears(), 490
currentDate(), 46, 236, 401, 490
isNull(), 45
toPyDate(), 532, 541
toString(), 258, 401

QDateEdit (QtGui), 487, 576
base class,QDateTimeEdit

QDateTime (QtCore), 45, 454, 513
currentDateTime(), 454
dateTime(), 455
isNull(), 45
setDateTime(), 454
toString(), 455

QDateTimeEdit (QtGui), 452, 576
base class,QAbstractSpinBox
date(), 487
setCalendarPopup(), 487
setDate(), 487
setDateRange(), 452, 487
setDisplayFormat(), 452, 487

QDesktopServices (QtGui), 510
QDial (QtGui), 128
QDialog (QtGui), 118, 154, 217

base class,QWidget
accept(), 151, 154, 425
done(), 154, 457, 464
exec_(), 142, 154, 511
reject(), 215
setSizeGripEnabled(), 154

QDialogButtonBox (QtGui), 145, 150,
576

base class,QWidget
accepted(), 145, 150
addButton(), 150
button(), 150, 158
default button, 145, 188
rejected(), 145, 150

QDir (QtCore)
homePath(), 545
toNativeSeparators(), 547, 551

QDockWidget (QtGui), 169
base class,QWidget
setAllowedAreas(), 169, 170
setFeatures(), 170

QDomDocument (QtXml), 257, 259–262
base class,QDomNode

606 Index

QDomDocument (QtXml) (cont.)
documentElement(), 260
setContent(), 259
toString(), 257, 260

QDomElement (QtXml)
base class,QDomNode
attribute(), 261
tagName(), 260

QDomNode (QtXml)
firstChild(), 260
isNull(), 260
nextSibling(), 260
nodeType(), 261
toElement(), 260
toText(), 261

QDoubleSpinBox (QtGui), 123, 578
base class,QAbstractSpinBox

QDrag (QtGui), 316
base class,QObject
exec_(), 316
setHotSpot(), 316
setMimeData(), 316
setPixmap(), 316
start(), 316

QDropEvent (QtGui)
base class,QEvent
mimeData() (QDropEvent), 314
setDropAction(), 314, 315, 316

QEvent (QtCore)
accept(), 314, 333, 391
globalPos(), 307, 309
ignore(), 314
type(), 384

QFile (QtCore), 241, 243, 250, 252,
258, 259, 262

base class,QIODevice
exists(), 294

QFileDialog (QtGui)
getExistingDirectory(), 547
getOpenFileName(), 193, 194, 233,

234, 287, 295, 356
getSaveFileName(), 196

QFileInfo (QtCore), 189
fileName(), 189
isFile(), 294
path(), 233, 356

QFont (QtGui), 335, 336, 408, 478
setPointSize(), 335, 336

QFontComboBox (QtGui), 576
base class,QComboBox

QFontMetrics/QFontMetricsF (QtGui),
335, 336, 340, 341, 342, 390, 408,
439

QFrame (QtGui), 277
base class,QWidget
setFrameStyle(), 170, 278

QGraphicsItem (QtGui), 349, 364, 365,
366, 367, 373, 376

boundingRect(), 365, 366, 367,
373, 377

collidesWithPath(), 366
collidingItems(), 366
contains(), 366
contextMenuEvent(), 365
isObscured(), 366
isSelected(), 366
itemChange(), 362, 366
keyPressEvent(), 365
matrix(), 359, 377
mouseDoubleClickEvent(), 362
moveBy(), 366
paint(), 366, 368, 374, 377
pos(), 359, 366
resetMatrix(), 366
rotate(), 360, 366, 371, 375, 377
scale(), 366
scene(), 366, 375
sceneBoundingRect(), 366, 379
setCursor(), 366
setEnabled(), 366
setFlag(), 366
setFlags(), 351, 356, 362, 364
setFocus(), 364, 366
setFont(), 362
setMatrix(), 362, 364, 367, 377
setPos(), 356, 362, 364, 367, 373,

375
setSelected(), 356, 362, 364, 367
setZValue(), 367
shape(), 365, 367, 374, 377
shear(), 367
translate(), 367

Index 607

QGraphicsItem (QtGui) (cont.)
update(), 365, 367
zValue(), 367

QGraphicsLineItem (QtGui), 349
base class,QGraphicsItem

QGraphicsPixmapItem (QtGui), 349,
356

base class,QGraphicsItem
pixmap(), 359

QGraphicsRectItem (QtGui), 355
base class,QAbstractGraphics-
ShapeItem

QGraphicsScene (QtGui), 349, 354, 369
base class,QObject
addEllipse(), 354
addItem(), 354, 356, 362, 364, 371
addLine(), 354
addPath(), 354
addPixmap(), 354
addPolygon(), 354
addRect(), 354, 355
addText(), 354
clearSelection(), 356, 361, 362,

364
collidingItems(), 354, 375
items(), 354, 372
removeItem(), 354, 355, 359, 361,

372
render(), 354, 361
selectedItems(), 358, 360, 361
setBackgroundBrush(), 354
setSceneRect(), 354, 369
update(), 354
views(), 354, 362

QGraphicsSceneContextMenuEvent (Qt-
Gui), 365

base class,QEvent
screenPos(), 365

QGraphicsSimpleTextItem (QtGui), 349
base class,QAbstractGraphics-
ShapeItem

QGraphicsTextItem (QtGui), 349, 362
base class,QGraphicsItem
font(), 359
toPlainText(), 359

QGraphicsView (QtGui), 349, 351–352,
369, 577

base class,QAbstractScrollArea
mapToScene(), 357
matrix(), 370
render(), 361
scale(), 352
setDragMode(), 352
setMatrix(), 370
setRenderHint(), 352, 369
setScene(), 354, 369

QGridLayout (QtGui), 123, 144, 146,
150, 270, 273

base class,QLayout
addLayout(), 146, 151
setColumnStretch(), 146
setRowStretch(), 146

QGroupBox (QtGui), 577
QHBoxLayout (QtGui), 144, 146, 270

base class,QBoxLayout
QIcon (QtGui), 173, 313, 392
QImage (QtGui), 168, 195, 197, 198,

199, 329, 400
base class,QPaintDevice
invertPixels(), 197
isNull(), 400
mirrored(), 198
rgbSwapped(), 197
save(), 196
scaled(), 199
size(), 363, 400

QImageReader, 193
QImageWriter, 196
QInputDialog (QtGui), 199
QInputEvent (QtGui)

base class,QEvent
modifiers(), 307, 365, 391

QIODevice (QtCore), 526
base class,QObject
bytesAvailable(), 528, 531, 540
close(), 243, 259, 525, 528
errorString(), 241, 243, 250, 252,

258, 259, 528
open(), 241, 243, 250, 252, 258,

259
readAll(), 254

608 Index

QIODevice (QtCore) (cont.)
waitForReadyRead(), 540

QItemDelegate (QtGui), 436, 437,
485–489

base class,QAbstractItemDelegate
QKeyEvent (QtGui), 307

base class,QInputEvent
key(), 307, 334, 365, 384, 391,

483
QKeySequence (QtGui), 171, 175, 285,

292, 393
QLabel (QtGui), 114, 168, 340, 577

base class,QFrame
setAlignment(), 168, 340
setBuddy(), 143, 425
setPixmap(), 199

QLayout (QtGui), 146
base class,QLayoutItem
addWidget(), 146, 151, 273
setSizeConstraint(), 277, 279

QLCDNumber (QtGui), 577
QLinearGradient (QtGui), 343
QLineEdit (QtGui), 117, 310, 314, 440,

461, 577
base class,QWidget
inputMask property, 157
returnPressed() signal, 440
setAlignment(), 461
setInputMask(), 461
setText(), 441, 462
setValidator(), 461
text(), 441
textEdited() signal, 161, 217,

218
QListView (QtGui), 415, 578

base class,QAbstractItemView
QListWidget (QtGui), 275, 312, 315,

414, 418, 578
base class,QListView
addItem(), 418
clear(), 418
currentRowChanged() signal, 275
populating, 418
setCurrentItem(), 418

QListWidgetItem (QtGui), 316, 418
setIcon(), 316

QListWidgetItem (QtGui) (cont.)
takeItem(), 316

QLocale (QtCore), 513, 516
.qm (Qt message file), 516, 518
QMainWindow (QtGui), 168, 186, 284,

290
base class,QWidget
addDockWidget(), 169, 186
addToolBar(), 179, 186
closeAllWindows(), 289, 293
menuBar(), 177, 186
restoreState(), 183, 186
saveState(), 183, 186
setCentralWidget(), 168, 186, 285
statusBar(), 170, 186

QMatrix and QTransform (QtGui), 356
reset(), 370, 377
scale(), 370

QMdiArea (QtGui), 290
QMenu (QtGui), 307, 365, 392, 393

base class,QWidget
aboutToShow() signal, 178, 187,

285, 292
addMenu(), 178
addSeparator(), 178, 180, 307
exec_(), 307, 365, 392, 393

QMenuBar (QtGui), 177, 178
QMessageBox (QtGui), 153, 187, 188,

200, 361, 423, 455
QMetaObject (QtCore), 217

connectSlotsByName(), 217
QMimeData (QtCore), 311, 313, 316

base class,QObject
data(), 315, 316
hasFormat(), 314, 316
html(), 312
setData(), 316
setHtml(), 311

QModelIndex (QtCore), 414, 432, 504
column(), 428, 431, 439, 461, 462,

486, 496, 503
index(), 427
internalPointer(), 504
isValid(), 427, 428, 504
model(), 438, 441, 462, 489
row(), 427, 491

Index 609

QModelIndex (QtCore) (cont.)
sibling(), 491

QMouseEvent (QtGui), 309
base class,QInputEvent
button(), 333
pos(), 309

QMutex (QtCore), 541, 552, 553, 554
QMutexLocker (QtCore), 554
QObject (QtCore), 119, 127, 304, 322,

370
blockSignals(), 135
connect(), 124, 130, 133, 145, 146,

151, 158, 453
deleteLater(), 287, 531, 539, 544
destroyed() signal, 286, 288
disconnect(), 130
emit(), 130, 131, 219, 333, 340,

391, 431, 440, 556
event(), 304, 309, 310, 384
installEventFilter(), 304
parent(), 433, 504
properties, 157, 211
property(), 322, 324
sender(), 135, 289, 393, 395, 440
setObjectName(), 169, 183, 324
setProperty(), 322, 324
startTimer(), 370
timerEvent(), 372
tr(), 513, 514, 515
trUtf8(), 513

QPainter (QtGui), 306, 328, 337, 342,
343, 344, 361, 363, 400, 407–410,
408, 480

drawArc(), 344
drawChord(), 344
drawConvexPolygon(), 344
drawEllipse(), 344, 374, 377, 481
drawImage(), 344, 363, 400
drawLine(), 338, 344
drawPath(), 344, 377
drawPicture(), 363
drawPie(), 344
drawPixmap(), 344, 363, 408
drawPoint(), 344
drawPolygon(), 338, 343, 344, 345
drawPolyline(), 344, 345

QPainter (QtGui) (cont.)
drawRect(), 337, 344, 368, 410
drawRoundRect(), 344
drawText(), 306, 338, 344, 408,

410, 481
fillPath(), 344
fillRect(), 344, 438, 481, 489
restore(), 343, 346, 410, 438, 482,

489
rotate(), 343
save(), 343, 346, 438, 481, 489
scale(), 343
setBrush(), 337, 344, 345, 374,

377, 481
setFont(), 344, 408, 482
setMatrix(), 343
setPen(), 337, 338, 343, 344, 345,

374, 377, 409, 410, 481
setRenderHint(), 306, 337, 342,

343, 363
setViewport(), 329, 342, 343, 363
setWindow(), 329, 342, 343, 363
shear(), 343
translate(), 343, 438, 489
viewport(), 363, 400

QPainterPath (QtGui), 374, 376
addEllipse(), 374, 376
addPolygon(), 376
boundingRect(), 377
closeSubPath(), 376

QPaintEvent (QtGui), 480
base class,QEvent
rect(), 480

QPalette (QtGui), 337, 481
QPen (QtGui), 368

setColor(), 368
setWidth(), 368

QPicture (QtGui), 329
base class,QPaintDevice

QPixmap (QtGui), 199, 329, 392, 404,
408, 496

base class,QPaintDevice
fill(), 392
fromImage(), 199
isNull(), 496

610 Index

QPoint/QPointF (QtCore), 309, 338,
343, 371

QPolygon/QPolygonF (QtGui), 343, 345,
376

QPrintDialog (QtGui), 361, 363, 400,
403, 404, 408

QPrinter (QtGui), 170, 329, 353, 361,
363, 398, 400, 401

base class,QPaintDevice
newPage(), 410
pageRect(), 408
setPageSize(), 353, 398, 400

QProcess (QtCore), 537
QProgressBar (QtGui), 578
QPushButton (QtGui), 276, 278, 369,

578
base class,QAbstractButton
clicked() signal, 219
default button, 145, 188
see also QDialogButtonBox

QRadioButton (QtGui), 577
.qrc (PyQt resource file), 173, 207,

517
QReadWriteLock (QtCore), 540, 541,

545, 552
lockForRead(), 541, 542, 543, 548,

550, 551, 556
lockForWrite(), 542, 543, 556
unlock(), 541, 542, 543, 548, 550,

551, 556
QRect/QRectF (QtCore), 355, 357, 364,

376, 410
adjusted(), 355, 367
center(), 392, 393
contains(), 357
setBottom(), 365
setRight(), 365
size(), 400

QRegExp (QtCore), 327, 386, 387, 461
QRegExpValidator (QtGui), 157, 327,

461
QScintilla add-on, 381, 382
QScrollArea (QtGui), 476, 477, 479
QSettings (QtCore), 182–183, 228,

282, 293, 514
base class,QObject

QSettings (QtCore) (cont.)
IniFormat constant, 228
value(), 183

QSignalMapper (QtCore), 292, 297–300
QSize (QtCore), 183, 335, 341, 390,

400, 439, 489
scale(), 363, 400

QSlider (QtGui), 369, 578
base class,QAbstractSlider

QSpacerItem (QtGui), 212
base class,QLayoutItem

QSpinBox (QtGui), 180, 326, 340, 440,
578

base class,QAbstractSpinBox
setRange(), 180, 340, 440
setSingleStep(), 440
setSuffix(), 180, 340
setValue(), 128, 180, 340, 441
textFromValue(), 327, 328
value(), 441
valueChanged(), 124, 128, 199
valueFromText(), 327, 328

QSplitter (QtGui), 280–283, 477
base class,QFrame
restoreState(), 282
saveState(), 282
setStretchFactor(), 283

QSqlDatabase (QtSql), 446
addDatabase(), 446, 459
commit(), 449, 465, 468, 469
database(), 465, 468, 469
driver(), 449
lastError(), 446, 450, 459, 465
open(), 446, 459
rollback(), 449, 465, 469
setDatabaseName(), 446, 459
transaction(), 449, 465, 468, 469

QSqlDriver (QtSql), 449
base class,QObject
hasFeature(), 449

QSqlQuery (QtSql), 445, 446–451, 450,
464, 468, 469

addBindValue(), 448, 450
bindValue(), 448, 450, 468
boundValue(), 450
driver(), 450

Index 611

QSqlQuery (QtSql) (cont.)
exec_(), 447, 448, 449, 450, 464,

468, 469
first(), 450
isActive(), 449, 450
isValid(), 450
last(), 450
lastError(), 449
next(), 449, 450, 451, 468, 469
numRowsAffected(), 449, 450
prepare(), 448, 450, 468
previous(), 449, 450
record(), 450
seek(), 449, 451
setForwardOnly(), 451
size(), 450
value(), 449, 450, 451

QSqlQueryModel (QtSql)
base class,QAbstractTableModel
record(), 464, 465, 466, 469
setQuery(), 464

QSqlRecord (QtSql)
value(), 464, 465, 466, 469

QSqlRelation (QtSql), 456, 460, 462
QSqlRelationalDelegate (QtSql), 456,

460, 461
QSqlRelationalTableModel (QtSql),

445, 456, 462
base class,QSqlTableModel
relationModel(), 456
setRelation(), 456, 460, 462

QSqlTableModel (QtSql), 445, 453
base class,QSqlQueryModel
beforeInsert(), 470
fieldIndex(), 456
insertRecord(), 464
select(), 453, 456, 460, 462, 464,

469
setFilter(), 464, 469
setSort(), 453, 456, 460, 462
setTable(), 453, 456, 460, 462
submitAll(), 455, 466, 469

QSslSocket (QtNetwork), 521
QStackedWidget (QtGui), 274–276

base class,QFrame
setCurrentIndex(), 275

QStatusBar (QtGui)

QStatusBar (QtGui) (cont.)
base class,QWidget
clearMessage(), 170, 232
setSizeGripEnabled(), 170
showMessage(), 170, 233

QString (QtCore), 19, 23, 28, 233, 234,
256, 313, 402

arg(), 402, 418, 419, 423, 427, 428,
455, 513, 515

compare(), 435
contains(), 234
endsWith(), 240
indexOf(), 306, 387, 388
isEmpty(), 233
isNull(), 45
lastIndexOf(), 234
left(), 234, 306
length(), 388
localeAwareCompare(), 416, 434
mid(), 252
number(), 338
simplified(), 61, 422
split(), 253
startsWith(), 252
toInt(), 251, 422
toUpper(), 327
trimmed(), 252, 422
see also str type and unicode

type
QStringList (QtCore), 45, 189

contains(), 189
isNull(), 45
prepend(), 189
takeLast(), 189

QStyleOptionGraphicsItem (QtGui),
374

QStyleOptionViewItem (QtGui), 438,
439, 461

QSvgGenerator (QtGui), 329, 363
base class,QPaintDevice

QSvgRenderer (QtSvg), 363
QSyntaxHighlighter (QtGui), 386–389
Qt namespace, 258

escape(), 258, 397, 401
WindowStaysOnTopHint, 529

Qt Assistant application, 510

612 Index

Qt Designer application, 205–216,
272, 274, 275, 276, 277, 280, 324,
326, 333

Qt.ItemDataRole (QtGui), 231
Qt Linguist application, 513
Qt.WidgetAttribute (QtGui)

WA_DeleteOnClose, 156, 158, 284,
286

WA_GroupLeader, 511
QTableView (QtGui), 415, 425, 437, 458,

460, 463, 477, 490, 579
base class,QAbstractItemView
horizontalHeader(), 463, 464
resizeColumnsToContents(), 232,

419, 460, 463, 490
setColumnHidden(), 460, 463
setSortingEnabled(), 418, 419

QTableWidget (QtGui), 230–232, 310,
313, 414, 418, 579

base class,QTableView
clear(), 418
currentColumn(), 422
currentItem(), 422
editItem(), 422
item(), 422
itemChanged() signal, 417
populating, 418
scrollToItem(), 232
setColumnCount(), 231, 418
setCurrentItem(), 232, 419
setHorizontalHeaderLabels(),

231, 418
setItem(), 231, 419
setRowCount(), 231, 418

QTableWidgetItem (QtGui), 231–232,
418, 419

data(), 422
setData(), 419
setSelected(), 232, 419
setTextAlignment(), 231, 419
text(), 422

QTabWidget (QtGui), 272–274, 579
base class,QWidget

QtCore module (PyQt4), 19
pyqtProperty(), 322
@pyqtSignature(), 218, 219

QtCore module (PyQt4) (cont.)
PYQT_VERSION_STR variable, 200
QT_VERSION_STR variable, 200
SIGNAL(), 131
SLOT(), 131
see also under class names

QTcpServer (QtNetwork), 529, 530, 539
incomingConnection(), 530, 539
listen(), 529

QTcpSocket (QtNetwork), 522, 524, 531,
540

base class,QAbstractSocket
QTextBlock (QtGui), 396
QTextBlockFormat (QtGui), 404
QTextBrowser (QtGui), 117, 381, 511,

579
base class,QTextEdit

QTextCharFormat (QtGui), 386, 387,
404

QTextCursor (QtGui), 297, 384,
403–407

currentFrame(), 404
hasSelection(), 385
insertBlock(), 404
insertImage(), 404
insertTable(), 404
insertText(), 384, 404
removeSelectedText(), 297
selectedText(), 297
setPosition(), 406

QTextDocument (QtGui), 381, 383, 396,
398, 401–407, 403, 438, 439,
489

base class,QObject
clear(), 383
drawContents(), 438, 489
idealWidth(), 390, 439, 489
isEmpty(), 385
isModified(), 287, 385
print_(), 403, 407
setDefaultFont(), 438, 439, 489
setHtml(), 403, 438, 439, 489
setModified(), 286, 383, 384
toHtml(), 407

QTextEdit (QtGui), 285, 310, 381, 383,
390, 392, 579

Index 613

QTextEdit (QtGui) (cont.)
base class,QAbstractScrollArea
append(), 120
canPaste(), 385
currentCharFormat(), 393, 395
cursorRect(), 392, 393
cut(), 385
document(), 286, 287, 383, 384,

385, 396
ensureCursorVisible(), 392, 393
insertPlainText(), 297
mergeCurrentCharFormat(), 395
setHtml(), 488
setLineWrapMode(), 390
setPlainText(), 384
setTabChangesFocus(), 390
setTextColor(), 393
textCursor(), 297, 384, 385
toHtml(), 395
toPlainText(), 384, 395

QTextOption (QtGui), 409
QTextStream (QtCore), 250–255, 254,

258, 384
atEnd(), 252, 253, 254
readAll(), 384
readLine(), 252, 253, 254
setCodec(), 250, 252, 254, 258,

384
QTextTableFormat (QtGui), 404
QtGui module (PyQt4), 19

see also under class names
QThread (QtCore), 538, 540

isRunning(), 547, 551
run(), 538, 540, 548, 553
start(), 539, 547, 553
wait(), 547, 548, 551

QTime (QtCore), 45
isNull(), 45
see also time module

QTimeEdit (QtGui), 576
base class,QDateTimeEdit

QTimer (QtCore), 373, 376
base class,QObject
singleShot(), 115, 306
start(), 373, 376
timeout() signal, 373, 376

QtNetwork module (PyQt4), 521, 523
see also under class names

QToolBar (QtGui), 179–180, 180
base class,QWidget
addSeparator(), 178, 180

QToolTip (QtGui), 171, 200, 514
QTransform (QtGui), 356
QTranslator (QtCore), 516
QTreeView (QtGui), 415, 495, 579

base class,QAbstractItemView
populating, 502
setItemsExpandable(), 420
setUniformRowHeights(), 495

QTreeWidget (QtGui), 414, 579
base class,QTreeView
clear(), 420
expandItem(), 421
populating, 420
setColumnCount(), 420
setCurrentItem(), 421
setHeaderLabels(), 420

QTreeWidgetItem (QtGui), 420, 421
QtSql module (PyQt4), 445, 446

see also under class names
QtSvg module (PyQt4), 363

see also under class names
QT_VERSION_STR variable, 200
QtXml module (PyQt4), 235

see also under class names
QUdpSocket (QtNetwork), 522

base class,QAbstractSocket
queries, database; see QSqlQuery and

SQL statements
question() (QMessageBox), 187, 188,

361, 423, 455
quit() (QCoreApplication), 115
quitting applications; see terminat-

ing applications
quoted strings; see string literals
QVariant (QtCore), 183, 185, 231, 323,

392, 414, 427, 428, 429, 430, 441,
448, 451, 488, 496

toBool(), 324
toDate(), 487, 491
toDateTime(), 449
toDouble(), 481

614 Index

QVariant (QtCore) (cont.)
toInt(), 395, 431, 449
toLongLong(), 422
toString(), 427, 431, 441, 449,

488
QVBoxLayout (QtGui), 146, 270

base class,QBoxLayout
QWidget (QtGui), 118, 119, 127, 168,

273, 305, 306, 309, 322–324, 324,
325–326, 328, 329, 330, 331, 370,
421

base classes,QObject and QPaint-

Device

activateWindow(), 160, 289
addAction(), 172, 178, 180, 307,

330, 365, 392, 393
addActions(), 178
close(), 175, 285, 289, 330
closeEvent(), 175, 185, 187, 282,

285, 289, 293, 309, 551
contextMenuEvent(), 307, 309, 390
dragEnterEvent(), 309, 314, 316
dragMoveEvent(), 309, 314, 315,

316
dropEvent(), 309, 315, 316
font(), 336, 342
geometry(), 357
hasFocus(), 330, 426
hasMouseTracking(), 308
height(), 330
hide(), 279, 330
keyPressEvent(), 307, 309, 334,

391, 483
keyReleaseEvent(), 307
layout(), 277
mapFromGlobal(), 357
mapToGlobal(), 309, 392, 393
maximumHeight(), 390
minimumHeight(), 390
minimumSizeHint(), 271, 335, 340,

341, 479
mouseDoubleClickEvent(), 308,

309, 417, 422, 440
mouseMoveEvent(), 309, 317
mousePressEvent(), 309, 333
mouseReleaseEvent(), 308, 309

QWidget (QtGui) (cont.)
move(), 183, 330, 341
paintEvent(), 306, 309, 336, 342,

480
palette(), 337
raise_(), 160, 289, 330
rect(), 306, 330
resize(), 183
resizeEvent(), 306, 309, 341
restoreGeometry(), 183, 186, 330
saveGeometry(), 183, 186, 330
setAcceptDrops(), 312, 313, 314,

315, 316, 330
setAttribute(), 156, 284, 330,

511
setContextMenuPolicy(), 168, 330,

365
setCursor(), 330
setEnabled(), 219, 330
setFocus(), 120, 310, 330, 422
setFocusPolicy(), 180, 217, 331,

369, 478
setFont(), 330
setLayout(), 273, 279, 330
setMaximumHeight(), 390
setMinimumHeight(), 390
setMinimumSize(), 168, 340
setMinimumWidth(), 340
setMouseTracking(), 308, 334
setSizePolicy(), 330, 331, 340
setStatusTip(), 171, 180
setStyleSheet(), 323, 330
setTabOrder(), 206
setToolTip(), 171, 180, 390
setVisible(), 277, 280
setWindowFlags(), 529
setWindowIcon(), 186, 330
setWindowModified(), 192
setWindowTitle(), 146, 151, 186,

330, 370
show(), 115, 155, 280, 286, 330,

511
showMinimized(), 297
showNormal(), 297
sizeHint(), 335, 390, 479
update(), 306, 330, 332, 479, 482

Index 615

QWidget (QtGui) (cont.)
updateGeometry(), 330, 332, 479
wheelEvent(), 352
width(), 330

QWorkspace (QtGui), 290, 297
base class,QWidget
activeWindow(), 296
setActiveWindow(), 292, 295
windowList(), 295

QXmlContentHandler (QtXml)
characters(), 263
endElement(), 263
startElement(), 263

QXmlDefaultHandler (QtXml), 263
base class,QXmlContentHandler

QXmlErrorHandler (QtXml)
fatalError(), 263

QXmlInputSource (QtXml), 262
QXmlReader (QtXml)

parse(), 262
setContentHandler(), 262
setErrorHandler(), 262

QXmlSimpleReader (QtXml), 262–265
base class,QXmlReader

gzip module, 248

R

__radd__() (+), 84
radians() (math), 371, 375
raise_() (QWidget), 160, 289, 330
raising windows, 160
randint() (random), 19, 357, 371, 375
range(), 39, 50–51, 54

see also xrange()

“raw” strings, 157, 220
re module, 219, 220, 554, 556
read-only models, 427
read-only widgets, 421
readAll()

QIODevice, 254
QTextStream, 384

readBool() (QDataStream), 245
readDouble() (QDataStream), 241, 245
readIntn() (QDataStream), 243, 245,

360, 435

readline() (codecs), 255
readLine() (QTextStream), 252, 253,

254
readUIntn() (QDataStream), 245, 528,

540
rebinding names; see binding

names
recently used files, 187–190
record-level validation, 140, 491
record()

QSqlQuery, 450
QSqlQueryModel, 464, 465, 466,

469
rect()

QPaintEvent, 480
QWidget, 306, 330

recursion, risk of infinite, 100
reentrant methods, 542
references; see object references
regression testing, 105
regular expressions, 157, 220, 327,

386, 387, 461, 552
“reject” button, 141, 188
reject() (QDialog), 215
rejected() signal (QDialogButtonBox),

145, 150
relationModel() (QSqlRelational-

TableModel), 456
remainder (%), 53
remove()

dict, 95, 532, 543
list, 32, 33
set, 38

removeItem() (QGraphicsScene), 354,
355, 359, 361, 372

removeRow() (QAbstractItemModel),
434, 466, 469

removeRows() (QAbstractItemModel),
427, 432, 434, 469

removeSelectedText() (QTextCursor),
297

render()

QGraphicsScene, 354, 361
QGraphicsView, 361
QSvgRenderer, 363

replace() (str/unicode), 25, 238

616 Index

repr(), 81, 83, 89, 90, 98
__repr__() (repr()), 81, 83, 90, 98
reset()

QAbstractItemModel, 432, 434, 501,
502

QMatrix, 370, 377
resize() (QWidget), 183
resizeColumnsToContents() (QTable-

View), 232, 419, 460, 463, 490
resizeEvent() (QWidget), 306, 309,

341
resource path, root of (:/), 173
resource files, 173–174, 206, 401,

517
restore() (QPainter), 343, 346, 410,

438, 482, 489
restoreGeometry() (QWidget), 183,

186, 330
restoreState()

QMainWindow, 183, 186
QSplitter, 282

restoring windows, 297
Return keypress; see Enter keypress
return statement, 58, 97, 554
returnPressed() signal (QLineEdit),

440
reverse() (list), 33
rfind() (str/unicode), 25
__rfloordiv__() (//), 84
rgbSwapped() (QImage), 197
rich text; see HTML
RichTextLineEdit example class,

389–398
rindex() (str/unicode), 25
__rmod__() (%), 84
__rmul__() (*), 84, 91
rollback() (QSqlDatabase), 449, 465,

469
RomanSpinBox example class,

326–328
rotate()

QGraphicsItem, 360, 366, 371, 375,
377

QPainter, 343
rotating, graphics, 349
round(), 40, 91, 333
row() (QModelIndex), 427, 491

rowCount() (QAbstractItemModel), 426,
427, 428, 434, 454, 455, 479, 481,
503

__rsub__() (-), 84
__rtruediv__() (/), 84
rubber band, 352
run() (QThread), 538, 540, 548, 553
RuntimeError exception, 288

S

save()

QImage, 196
QPainter, 343, 346, 438, 481, 489

saveGeometry() (QWidget), 183, 186,
330

saveState()

QMainWindow, 183, 186
QSplitter, 282

saving files, 229, 240–248, 249–256,
256–265

SAX parser, 262–265
scale()

QGraphicsItem, 366
QGraphicsView, 352
QMatrix, 370
QPainter, 343
QSize, 363, 400

scaled() (QImage), 199
scaling, graphics, 349, 370, 374, 400
scaling, widgets, 329, 331
scene coordinates; see window coor-

dinates
scene() (QGraphicsItem), 366, 375
sceneBoundingRect() (QGraphicsItem),

366, 379
scenes, graphic; see QGraphicsScene
Scintilla; see QScintilla add-on
scope, 55
screen coordinates, 309, 357
screenPos() (QGraphicsSceneContext-

MenuEvent), 365
scrollbars and scrolling, 393, 476,

479
scrollToItem() (QTableWidget), 232

Index 617

SDI (Single Document Interface),
283–290

search() (re), 219
seek() (QSqlQuery), 449, 451
select() (QSqlTableModel), 453, 456,

460, 462, 464, 469
SELECT statements, 449–451
selected text, 392
selectedItems() (QGraphicsScene),

358, 360, 361
selectedText() (QTextCursor), 297
selecting graphics items, 352
selectionModel() (QAbstractItem-

View), 463
self, 77, 78
sender() (QObject), 135, 289, 393, 395,

440
separators, menu, 178, 180
sequences, 22
set type, 37, 38, 93, 551

add(), 37, 38, 372, 556
clear(), 38
copy(), 38, 548, 551
discard(), 38
pop(), 372
remove(), 38

setAcceptDrops() (QWidget), 312, 313,
314, 315, 316, 330

setActiveWindow() (QWorkspace), 292,
295

setAlignment()

QAbstractSpinBox, 340, 487
QLabel, 168, 340
QLineEdit, 461

setAllowedAreas() (QDockWidget), 169,
170

setAlternatingRowColors() (QAb-
stractItemView) (QAbstractItem-
View), 231, 477

setAttribute() (QWidget), 156, 284,
330, 511

setBackgroundBrush() (QGraphics-
Scene), 354

setBottom() (QRect/QRectF), 365
setBrush() (QPainter), 337, 344, 345,

374, 377, 481

setBuddy() (QLabel), 143, 425
setCalendarPopup() (QDateTimeEdit),

487
setCentralWidget() (QMainWindow),

168, 186, 285
setCheckable()

QAbstractButton, 276, 278
QAction, 393

setChecked() (QAction), 172, 177, 393
setCodec() (QTextStream), 250, 252,

254, 258, 384
setColor() (QPen), 368
setColumnCount()

QTableWidget, 231, 418
QTreeWidget, 420

setColumnHidden() (QTableView), 460,
463

setColumnStretch() (QGridLayout),
146

setContent() (QDomDocument), 259
setContentHandler() (QXmlReader),

262
setContextMenuPolicy() (QWidget),

168, 330, 365
setCurrentIndex()

QAbstractItemView, 426, 465, 468
QComboBox, 441, 457
QDataWidgetMapper, 454, 455
QStackedWidget, 275

setCurrentItem()

QListWidget, 418
QTableWidget, 232, 419
QTreeWidget, 421

setCursor()

QGraphicsItem, 366
QWidget, 330

setData(), 189, 231
QAbstractItemModel, 414, 427, 431,

434, 441, 462, 465, 487, 488
QAction, 172, 189, 392, 393
QMimeData, 316
QTableWidgetItem, 231
QTableWidgetItem, 419

setDatabaseName() (QSqlDatabase),
446, 459

setDate() (QDateTimeEdit), 487

618 Index

setDateRange() (QDateTimeEdit), 452,
487

setDateTime() (QDateTime), 454
setdefault() (dict), 36, 95, 532

see also defaultdict type
setDefaultFont() (QTextDocument),

438, 439, 489
setDisplayFormat() (QDateTimeEdit),

452, 487
setDragEnabled() (QAbstractItemView,

312, 313, 315, 316
setDragMode() (QGraphicsView), 352
setDropAction() (QDropEvent), 314,

315, 316
setEditable() (QComboBox), 440
setEditorData() (QAbstractItem-

Delegate), 436, 441, 462, 486,
487, 488

setEditTriggers() (QAbstrac-
tItemView), 231

setEnabled()

QAction, 172
QGraphicsItem, 366
QWidget, 219, 330

setErrorHandler() (QXmlReader), 262
setFeatures() (QDockWidget), 170
setFilter() (QSqlTableModel), 464,

469
setFlag() (QGraphicsItem), 366
setFlags() (QGraphicsItem), 351, 356,

362, 364
setFocus()

QGraphicsItem, 364, 366
QWidget, 120, 310, 330, 422

setFocusPolicy() (QWidget), 180, 217,
331, 369, 478

setFont()

QGraphicsItem, 362
QPainter, 344, 408, 482
QWidget, 330

setForwardOnly() (QSqlQuery), 451
setFrameStyle() (QFrame), 170, 278
setHeaderData() (QAbstractItem-

Model), 434, 460, 462
setHeaderLabels() (QTreeWidget), 420

setHorizontalHeaderLabels()

(QTableWidget), 231, 418
setHotSpot() (QDrag), 316
setHtml()

QMimeData, 311
QTextDocument, 403, 438, 439, 489
QTextEdit, 488

setIcon() (QListWidgetItem), 316
setImage() (QClipboard), 311
setInputMask() (QLineEdit), 461
setItem() (QTableWidget), 231, 419
__setitem__() ([]), 93, 95
setItemDelegate()

QAbstractItemView, 437, 460, 463,
490

QDataWidgetMapper, 456
setItemsExpandable() (QTreeView),

420
setLayout() (QWidget), 273, 279, 330
setLineWrapMode() (QTextEdit), 390
setMatrix()

QGraphicsItem, 362, 364, 367, 377
QGraphicsView, 370
QPainter, 343

setMaximumHeight() (QWidget), 390
setMimeData()

QClipboard, 311
QDrag, 316

setMinimumHeight() (QWidget), 390
setMinimumSize() (QWidget), 168, 340
setMinimumWidth() (QWidget), 340
setModel()

QAbstractItemView, 425, 437, 460,
463, 477, 490

QComboBox, 456
QDataWidgetMapper, 453, 456

setModelColumn() (QComboBox), 456
setModelData() (QAbstractItem-

Delegate), 436, 441, 462, 486,
487, 488

setModified() (QTextDocument), 286,
383, 384

setMouseTracking() (QWidget), 308,
334

setObjectName() (QObject), 169, 183,
324

Index 619

setPageSize() (QPrinter), 353, 398,
400

setPen() (QPainter), 337, 338, 343,
344, 345, 374, 377, 409, 410,
481

setPixmap()

QClipboard, 311
QDrag, 316
QLabel, 199

setPlainText() (QTextEdit), 384
setPointSize() (QFont), 335, 336
setPos() (QGraphicsItem), 356, 362,

364, 367, 373, 375
setPosition() (QTextCursor), 406
setProperty() (QObject), 322, 324
setQuery() (QSqlQueryModel), 464
setQuitOnLastWindowClosed() (QAp-

plication), 121
setRange()

QAbstractSlider, 369
QSpinBox, 180, 340, 440

setRelation() (QSqlRelationalTable-
Model), 456, 460, 462

setRenderHint()

QGraphicsView, 352, 369
QPainter, 306, 337, 342, 343, 361,

363
setRight() (QRect/QRectF), 365
setRowCount() (QTableWidget), 231,

418
setRowStretch() (QGridLayout), 146
setScene() (QGraphicsView), 354, 369
setSceneRect() (QGraphicsScene), 354,

369
setSelected()

QGraphicsItem, 356, 362, 364, 367
QTableWidgetItem, 232, 419

setSelectionBehavior() (QAbstract-
ItemView), 231, 460, 463, 495

setSelectionMode() (QAbstractItem-
View), 231, 460, 463

setSeparator() (QAction), 172
setShortcut() (QAction), 171, 172
setSingleStep() (QSpinBox), 440
setSizeConstraint (QLayout), 277,

279

setSizeGripEnabled()

QDialog, 154
QStatusBar, 170

setSizePolicy() (QWidget), 330, 331,
340

setSort() (QSqlTableModel), 453, 456,
460, 462

setSortingEnabled() (QTableView),
418, 419

setStatusTip()

QAction, 172
QWidget, 171, 180

setStretchFactor()

QBoxLayout, 146
QSplitter, 283

setStyleSheet() (QWidget), 323, 330
setSubmitPolicy() (QDataWidget-

Mapper), 453, 456
setSuffix() (QSpinBox), 180, 340
setTabChangesFocus() (QTextEdit),

390
setTable() (QSqlTableModel), 453,

456, 460, 462
setTabOrder() (QWidget), 206
setText()

QAbstractButton, 370
QAction, 172
QClipboard, 297, 311
QLineEdit, 441, 462

setTextAlignment()

QTableWidgetItem, 231, 419
QTreeWidgetItem, 421

setTextColor() (QTextEdit), 393
setToolTip()

QAction, 172
QWidget, 171, 180, 390

setUniformRowHeights() (QTreeView),
495

setupUi() (generated by pyuic4), 217,
218

setValidator() (QLineEdit), 461
setValue()

QAbstractSlider, 128, 369
QSpinBox, 128, 180, 340, 441

setVersion() (QDataStream), 241, 243,
245, 525, 528, 531, 533, 540

620 Index

setViewport() (QPainter), 329, 342,
343, 363

setVisible() (QWidget), 277, 280
setWhatsThis() (QAction), 172
setWidth() (QPen), 368
setWindow() (QPainter), 329, 342, 343,

363
setWindowFlags() (QWidget), 529
setWindowIcon() (QWidget), 186, 330
setWindowModified() (QWidget), 192
setWindowTitle() (QWidget), 146, 151,

186, 330, 370
setZValue() (QGraphicsItem), 367
shallow copying, 34, 51, 98
shape() (QGraphicsItem), 365, 367,

374, 377
shear()

QGraphicsItem, 367
QPainter, 343

Shift keypress, 365
short-circuit logic, 47
short-circuit signals, 130–131

see also signals and slots
shortcut; see keyboard shortcut and

QKeySequence

show() (QWidget), 115, 155, 280, 286,
330, 511

showing dialogs, 160
showing images, 168
showing widgets, 277, 280
showMessage() (QStatusBar), 170, 233
showMinimized() (QWidget), 297
showNormal() (QWidget), 297
sibling() (QModelIndex), 491
SIGNAL() (QtCore), 131
signals and slots, 115, 120, 124,

127–136, 206, 215, 217, 292, 307,
333, 385, 440, 482, 539, 544

see also short-circuit signals
Signals and Slots application,

128–131
signature of, function, method, sig-

nal or slot, 56, 129
simplified() (QString), 61, 422
sin() (math), 371, 375
single click; see mousePressEvent()

and mouseReleaseEvent()

single document interface; see SDI
single-quoted strings, 21
singleShot() (QTimer), 115, 306
sip module, 288
size; see QSize
size grip, 170
size hint, 271
size()

QImage, 363, 400
QRect/QRectF, 400
QSqlQuery, 450

size of layout or widget
fixed, 277
maximum, 271
minimum, 270, 271, 335
preferred, 271

size policies, 270–271, 335
sizeHint()

QAbstractItemDelegate, 436, 439,
489

QWidget, 335, 390, 479
sleep() (time), 114, 115
slicing, 22, 30, 32
slot; see signals and slots
SLOT() (QtCore), 131
__slots__ class attribute, 103, 115
software patents, disadvantages of ,

222
sort() (list), 33, 53, 63, 95, 239
sorted(), 52, 53, 63, 432, 434, 551
sorting, 52, 418, 425, 432–435
spacer; see QSpacerItem
spacers, in layouts, 212, 214
special methods, 81

__abs__() (abs()), 84
__add__() (+), 84, 90
__call__(), 81
__cmp__() (cmp()), 81, 82, 89, 416,

432
__contains__() (in), 93
__del__() (del statement), 78
__delitem__() (del statement), 93,

95
__eq__() (==), 81
__float__() (float()), 84, 91
__floordiv__() (//), 84

Index 621

special methods (cont.)
__ge__() (>=), 81
__getitem__() ([]), 93, 94
__gt__() (>), 81
__iadd__() (+=), 84, 90
__ifloordiv__() (//=), 84
__imod__() (%=), 84
__imul__() (*=), 84, 91
__init__(), 77, 78, 437
__int__() (int()), 84, 91
__isub__() (-=), 84
__iter__() (iter()), 93, 97
__itruediv__() (/=), 84, 91
__le__() (<=), 81
__len__() (len()), 93, 96
__lt__() (<), 81, 82, 432
__mod__() (%), 84
__mul__() (*), 84, 91
__ne__() (!=), 81
__neg__() (-), 84
__new__(), 77, 78, 81
__nonzero__() (bool()), 81, 83
__radd__() (+), 84
__repr__() (repr()), 81, 83, 90
__rfloordiv__() (//), 84
__rmod__() (%), 84
__rmul__() (*), 84, 91
__rsub__() (-), 84
__rtruediv__() (/), 84
__setitem__() ([]), 93, 95
__str__() (str()), 81, 83, 90, 98,

100
__sub__() (-), 84
__truediv__() (/), 84, 91
__unicode__() (unicode()), 81, 83

spinbox; see QDoubleSpinBox and
QSpinBox

split()

QString, 253
str/unicode, 25, 114, 238, 501

splitter; see QSplitter
SQL queries; see QSqlQuery and SQL

statements
SQL Server database, 445
SQL statements, 445, 446, 447, 448,

449, 449–451, 458, 464, 468,
469

SQLite database, 445, 446, 447
stacked widgets; see QStackedWidget
standard key sequence; see key-

board shortcut and QKey-

Sequence

start()

QDrag, 316
QThread, 539, 547, 553
QTimer, 373, 376

start-up processing, 184
startDrag() (QAbstractItemView), 316
startElement() (QXmlContentHandler),

263
startswith() (str/unicode), 25, 238,

255
startsWith() (QString), 252
startTimer() (QObject), 370
state, changes; see signals and slots
state() (QAbstractSocket), 540
state, preserving using generators,

58, 97
statement separators, 51
static data, 85–86
static methods, 78, 85–86
static typing, 12
staticmethod(), 85, 239, 288
status bar; see QStatusBar
statusBar() (QMainWindow), 170, 186
StopIteration exception, 52, 58, 59
stored procedures, in databases,

448
str type, 20–28, 25

% formatting, 24, 98
%s format specifier, 26
* replication operator, 25
+ concatenation operator, 25
count(), 25
endswith(), 25, 31, 555
find(), 24, 25, 68
index(), 24, 25, 68
indexing, 22
isalpha(), 25
isdigit(), 25, 238, 554
iterating, 50
join(), 23, 25, 61, 193, 477
literals, 21

622 Index

str type (cont.)
lower(), 25, 238
promotion to unicode, 20
replace(), 25, 238
rfind(), 25
rindex(), 25
slicing, 22
split(), 25, 114, 238, 501
startswith(), 25, 238, 255
strip(), 25, 59, 255
title(), 24
upper(), 25
see also QString and unicode type

__str__() (str()), 81, 83, 90, 98, 100
stream reading and writing, 242,

245, 250, 252, 258
streams; see QDataStream and

QTextStream

stretch factors, 144, 212, 271, 283
string literals, 20
string module, 26

Template class, 26
StringIO module, 23

see also cStringIO module
strings; see QString, str type, and

unicode type
strip() (str/unicode), 25, 59, 255
style sheets, 322–324
sub() (re), 220, 556
__sub__() (-), 84
subcontrols, in widgets, 324
submit() (QDataWidgetMapper), 454
submitAll() (QSqlTableModel), 455,

466, 469
suite of code, 46, 47
sum(), 38
super(), 100, 153, 217
support for keyboard users; see key-

board users, support for
supportedImageFormats()

QImageReader, 193
QImageWriter, 196

SVG (Scalable Vector Graphics) for-
mat, 363

switch statement; see if statement
Sybase database, 445

sys module, 60, 63, 114
argv variable, 114
path variable, 60, 104
version_info tuple, 63

system() (platform), 200, 217, 336,
390

T

Tab keypress, 206, 218, 310, 386, 390,
421, 422, 511

tab order, 206, 215, 217, 310
tab widget; see QTabWidget
table widget; see QTableWidget
tagName() (QDomElement), 260
takeItem() (QListWidgetItem), 316
takeLast() (QStringList), 189
taskbar entries, 142
TCP (Transmission Control Proto-

col), 522
Template class (string), 26
terminating applications, 115, 121,

185
terminology, 13, 75
ternary operator; see conditional ex-

pression
testing for errors vs. exception han-

dling, 68
testing, user interface, 221–222
testmod() (doctest), 106
text cursor; see insertion point
text editor; see QTextEdit
text files, 249–256
text()

QClipboard, 297, 311
QLineEdit, 441
QTableWidgetItem, 422

text stream; see QTextStream
text stream reading and writing,

250, 252, 258
textCursor() (QTextEdit), 297, 384,

385
textEdited() signal (QLineEdit), 161,

217, 218
textFromValue() (QSpinBox), 327, 328
this pointer; see self

Index 623

thread safety, 541–542
time module

sleep(), 114, 115
see also QTime

timeout() signal (QTimer), 373, 376
timer; see QTimer
timerEvent() (QObject), 372
times; see QDateTime, QTime, and time

module
title bar, 115
title() (str/unicode), 24
toBool() (QVariant), 324
toDate() (QVariant), 487, 491
toDateTime() (QVariant), 449
toDouble() (QVariant), 481
toElement() (QDomNode), 260
toFirst() (QDataWidgetMapper), 453,

456
toggle actions, 176

see also QAction

toggle button, 276, 278
see also QPushButton

toggled() signal
QAbstractButton, 277, 280
QAction, 172, 176, 177

toHtml()

QTextDocument, 407
QTextEdit, 395

toInt()

QString, 251, 422
QVariant, 395, 431, 449

toLongLong() (QVariant), 422
toNativeSeparators() (QDir), 547,

551
toolbar; see QToolBar
toolbar buttons, 169
tools; see applications
tooltip; see QToolTip
top-level windows, 115, 118, 221
toPlainText()

QGraphicsTextItem, 359
QTextEdit, 384, 395

toPyDate() (QDate), 532, 541
toString()

QDate, 258, 401
QDateTime, 455

toString() (cont.)
QDomDocument, 257, 260
QVariant, 427, 431, 441, 449, 488

toText() (QDomNode), 261
toUpper() (QString), 327
tr() (QObject), 513, 514, 515
transaction() (QSqlDatabase), 449,

465, 468, 469
transactions, database, 465–466,

468
transformations, graphics, 349, 350,

356, 360, 370, 374, 376, 438
translate()

QCoreApplication, 513, 515
QGraphicsItem, 367
QPainter, 343, 438, 489

triggered() signal (QAction), 172,
176

trimmed() (QString), 252, 422
triple quoted strings, 21, 57
True constant, 45
“true” division, 17, 84, 86
__truediv__() (/), 84, 91
truncating division, 17, 84, 86, 91
trUtf8() (QObject), 513
try statement, 66, 78, 541, 542, 543,

548, 550, 551, 553, 554, 556
else statement, 70, 295
see also except statement and fi-

nally statement
.ts (translation source file), 517,

518, 519
tuple type, 29–31, 30, 50, 87
Twisted networking framework,

522
type conversions; see conversions
type(), 18, 39, 102

see also isinstance()

type() (QEvent), 384
type promotion; see conversions
type testing, 94
TypeError exception, 56
typing; see duck typing, dynamic

typing, and static typing

624 Index

U

UDP (User Datagram Protocol),
522

.ui (user interface file), 206, 207,
515

ultimate base class; see object type
underscores, leading, 77, 80, 82
unichr(), 21, 39, 236, 554
Unicode, 20, 117, 236, 250, 258, 447,

478, 512, 552, 555
characters, 22
encodings, 20, 21, 250, 258, 501
see also ASCII, codecs, and
QString

unicode type, 20–28, 25, 256, 401
% formatting, 24
%s format specifier, 26
* replication operator, 25
+ concatenation operator, 25
count(), 25
endswith(), 25, 31, 555
find(), 24, 25, 68
index(), 24, 25, 68
indexing, 22
isalpha(), 25
isdigit(), 25, 238, 554
iterating, 50
join(), 23, 25, 61, 193, 477
literals, 20, 21
lower(), 25, 238
promotion to QString, 28
replace(), 25, 238
rfind(), 25
rindex(), 25
slicing, 22
split(), 25, 114, 238, 501
startswith(), 25, 238, 255
strip(), 25, 59, 255
title(), 24
upper(), 25
see also str type and QString

__unicode__() (unicode()), 81, 83
union() (set), 38
unit testing, 105–107
universal newlines, 256
unlock()

unlock() (cont.)
QMutex, 553, 554
QReadWriteLock, 541, 542, 543,

548, 550, 551, 556
unpacking tuples, 87
unsaved changes, 168, 187, 192, 232,

293, 356, 361, 362, 364, 365, 425,
453

update()

QGraphicsItem, 365, 367
QGraphicsScene, 354
QWidget, 306, 330, 332, 479, 482

updateGeometry() (QWidget), 330, 332,
479

upper() (str/unicode), 25
urlopen() (urllib2), 126
urlretrieve() (urllib), 521
user actions; see QAction
user interface design, 205–216
user preferences; see QSettings
UTF-8 encoding, 236, 250, 258, 501,

555

V

validate() (QAbstractSpinBox), 327,
328

validation, 140, 151, 157, 327, 328,
491

value comparison, 13, 57
value()

QSettings, 183
QSpinBox, 441
QSqlQuery, 449, 450, 451
QSqlRecord, 464, 465, 466, 469

valueChanged()

QDial, 128
QSpinBox, 124, 128, 199

ValueError exception, 68, 114
valueFromText() (QSpinBox), 327, 328
values() (dict), 36, 96
variable names, 15, 76, 80, 88
version_info tuple (sys), 63
version string, application, 167
__version__, application variable,

167

Index 625

vertical layout; see QVBoxLayout
vertical lines; see QFrame
view widgets; see QGraphicsView,

QListView, QTableView, and
QTreeView

viewport coordinates, 328–331, 339,
342, 350, 400

viewport()

QAbstractScrollArea, 392, 393
QPainter, 363, 400

views() (QGraphicsScene), 354, 362
virtual methods, 75, 99
visual design tool; see Qt Designer

W

wait() (QThread), 547, 548, 551
waitForDisconnected() (QAbstract-

Socket), 544
waitForReadyRead() (QIODevice), 540
walk() (os), 555
warning() (QMessageBox), 153, 188,

293
Web browser, launching, 510
wheelEvent() (QWidget), 352
while loop, 49–50

break statement, 53
continue statement, 53
else statement, 49–50, 254

widget attributes; see
Qt.WidgetAttribute

widget coordinates, 309
widget-level validation, 140, 144
widget stack; see QStackedWidget
widgets; see QWidget
width() (QWidget), 330
window coordinates, 328–331, 339,

342, 350, 354, 357
window decorations, 112
window flags, 115
window menu, MDI, 292–293,

297–300
window menu, SDI, 285, 288–289
window modal dialogs, 140, 511
window system detection, 218, 336,

389, 390

windowList() (QWorkspace), 295
windows, 115, 118, 160

see also widgets, QWidget, QDialog,
and QMainWindow

Windows detection, 389, 390
windows, previewing, 215
WindowStaysOnTopHint (Qt name-

space), 529
with statement, 549
wrapping functions;seepartial func-

tion application
write() (QDataStream), 526, 533
writeBool() (QDataStream), 245
writeDouble() (QDataStream), 241,

245
writeIntn() (QDataStream), 241, 242,

245, 359, 435
writeUIntn() (QDataStream), 245, 525,

533
writing files; see saving files

X

X Window System detection, 336
XML files, 256–265
XML meta-characters, 257, 258
XML parser, DOM, 259–262
XML parser, SAX, 262–265
xrange(), 51, 54

see also range()

Y

yield statement, 58, 97, 237
YPipe example class, 339–345

Z

z value, 349
zoom; see scaling, graphics
zValue() (QGraphicsItem), 367

About the Author

Mark Summerfield

Mark graduated in computer science with first class honors from the Universi-
ty of Wales Swansea. He followed this with a year’s postgraduate research be-
fore going into industry. He spent many years working as a software engineer
for a variety of firms before joining Trolltech. He spent almost three years as
Trolltech’s documentation manager, during which he founded and edited Troll-
tech’s technical journal, Qt Quarterly, and co-wrote C++ GUI Programming
with Qt 3, and later C++ GUI Programming with Qt 4. Mark owns Qtrac Ltd.,
www.qtrac.eu, where he works as an independent author,editor, trainer,and con-
sultant, specializing in C++, Qt, Python, and PyQt.

Production

The text was written using gvim and marked up with the Lout typesetting lan-
guage. The index was compiled by the author, with the assistance of a PyQt
program developed for the purpose. All the diagrams were produced using
Lout. Almost all of the code snippets were extracted directly from the example
programs using Lout in conjunction with a Python script. The icons used in
the example programs are mostly from KDE (The “K” Desktop Environment),
with a few created by the author. The images used in the book’s margins are
from the Open Clip Art Library, with some other images coming from Project
Gutenberg. SVG images were converted to EPS using Inkscape. The Linux
screenshots were taken with KSnapshot, and the Windows screenshots were
captured and saved using a tiny PyQt application; in both cases, the .png im-
ages were converted to .eps using ImageMagick. The monospaced font used for
code is derived from a condensed version of DejaVu Mono and was modified us-
ing FontForge. Wikipedia proved itself to be useful in all kinds of ways, includ-
ing being the source of the flag images,and was frequently referred to for ideas,
information, and sample data. The marked-up text was previewed using gv
and evince, and converted to PostScript by Lout, then to PDF by Ghostscript.

All the editing and processing were done on Fedora and Kubuntu systems.
The cover was provided by the publisher, with the picture suggested by the
author in view of the fact that Python is used to calibrate and analyze data
from the Hubble Space Telescope. The screenshots were taken on Windows XP,
Mac OS X, and Linux/KDE. All the example programs have been tested on
Windows, Linux, and Mac OS X, using Python 2.5, Qt 4.2, and PyQt 4.2, and
additionally on Windows and Linux using Qt 4.3 and PyQt 4.3.

www.qtrac.eu

This page intentionally left blank

Visit us online for more information about these books and to read sample chapters.
www.prenhallprofesional.com

0-13-187249-4 © 2006

$59.99 560 pages

0-13-124072-2 © 2004

$49.99 464 pages

The First Official Trolltech Guide to Qt 3.2
Programming

Straight from Trolltech, this book covers all you need to
build industrial-strength applications with Qt 3.2.x and
C++—applications that run natively on Windows,
Linux/Unix, Mac OS X, and embedded Linux with no
source code changes! The book teaches solid Qt
programming practices; it is not a rehash of the
documentation. You’ll find start-to-finish coverage
packed with examples, plus a CD with the Qt 3.2 toolset
and Borland C++ compilers—including a non-commercial
Qt 3.2 for Windows available nowhere else.

The Only Official Best-Practice Guide to Qt 4.1
Programming

Using Trolltech’s Qt you can build industrial-strength C++
applications that run natively on Windows, Linux/Unix,
Mac OS X, and embedded Linux—without making source
code changes. With this book Trolltech insiders have
written a start-to-finish guide to getting great results with
the most powerful version of Qt ever created: Qt 4.1.

Using C++ GUI Programming with Qt 4 you’ll discover
the most effective Qt 4 programming patterns and
techniques as you master key technologies ranging from
Qt’s model/view architecture to Qt’s powerful new 2D
paint engine. The authors provide readers with
unparalleled insight into Qt’s event model and layout
system. Then, using realistic examples, they introduce
superior techniques for everything from basic GUI
development to advanced database and XML integration.

The accompanying CD includes the open source edition of
Qt 4.1.1 for Windows, Mac, Linux, and many Unixes, as
well as MinGW, a set of freely available development tools
that can be used to build Qt applications on Windows,
and also the source code for the book’s examples.

Also Available from Mark Summerfield and Prentice Hall

C++ GUI Programming with Qt 3
Jasmin Blanchette and Mark Summerfield

C++ GUI Programming with Qt 4
Jasmin Blanchette and Mark Summerfield

www.prenhallprofesional.com

	Rapid GUI programming with Python and Qt
	Contents
	Foreword
	Introduction
	Part I: Python Programming
	Chapter 1. Data Types and Data Structures
	Executing Python Code
	Variables and Objects
	Numbers and Strings
	Collections
	Built-in Functions
	Summary
	Exercises

	Chapter 2. Control Structures
	Conditional Branching
	Looping
	Functions
	Exception Handling
	Summary
	Exercises

	Chapter 3. Classes and Modules
	Creating Instances
	Methods and Special Methods
	Inheritance and Polymorphism
	Modules and Multifile Applications
	Summary
	Exercises

	Part II: Basic GUI Programming
	Chapter 4. Introduction to GUI Programming
	A Pop-Up Alert in 25 Lines
	An Expression Evaluator in 30 Lines
	A Currency Converter in 70 Lines
	Signals and Slots
	Summary
	Exercise

	Chapter 5. Dialogs
	Dumb Dialogs
	Standard Dialogs
	Smart Dialogs
	Summary
	Exercise

	Chapter 6. Main Windows
	Creating a Main Window
	Handling User Actions
	Summary
	Exercise

	Chapter 7. Using Qt Designer
	Designing User Interfaces
	Implementing Dialogs
	Testing Dialogs
	Summary
	Exercise

	Chapter 8. Data Handling and Custom File Formats
	Main Window Responsibilities
	Data Container Responsibilities
	Saving and Loading Binary Files
	Saving and Loading Text Files
	Saving and Loading XML Files
	Summary
	Exercise

	Part III: Intermediate GUI Programming
	Chapter 9. Layouts and Multiple Documents
	Layout Policies
	Tab Widgets and Stacked Widgets
	Splitters
	Single Document Interface (SDI)
	Multiple Document Interface (MDI)
	Summary
	Exercise

	Chapter 10. Events, the Clipboard, and Drag and Drop
	The Event-Handling Mechanism
	Reimplementing Event Handlers
	Using the Clipboard
	Drag and Drop
	Summary
	Exercise

	Chapter 11. Custom Widgets
	Using Widget Style Sheets
	Creating Composite Widgets
	Subclassing Built-in Widgets
	Subclassing QWidget
	Summary
	Exercise

	Chapter 12. Item-Based Graphics
	Custom and Interactive Graphics Items
	Animation and Complex Shapes
	Summary
	Exercise

	Chapter 13. Rich Text and Printing
	Rich Text Editing
	Printing Documents
	Summary
	Exercise

	Chapter 14. Model/View Programming
	Using the Convenience Item Widgets
	Creating Custom Models
	Creating Custom Delegates
	Summary
	Exercise

	Chapter 15. Databases
	Connecting to the Database
	Executing SQL Queries
	Using Database Form Views
	Using Database Table Views
	Summary
	Exercise

	Part IV: Advanced GUI Programming
	Chapter 16. Advanced Model/View Programming
	Custom Views
	Generic Delegates
	Representing Tabular Data in Trees
	Summary
	Exercise

	Chapter 17. Online Help and Internationalization
	Online Help
	Internationalization
	Summary
	Exercise

	Chapter 18. Networking
	Creating a TCP Client
	Creating a TCP Server
	Summary
	Exercise

	Chapter 19. Multithreading
	Creating a Threaded Server
	Creating and Managing Secondary Threads
	Implementing a Secondary Thread
	Summary
	Exercise
	This Is Not Quite the End

	Appendix A. Installing
	Installing on Windows
	Installing on Mac OS X
	Installing on Linux and Unix

	Appendix B. Selected PyQt Widgets
	Appendix C. Selected PyQt Class Hierarchies
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

