

CherryPy Essentials

Rapid Python Web Application Development

Design, develop, test, and deploy your Python
web applications easily

Sylvain Hellegouarch

 BIRMINGHAM - MUMBAI

CherryPy Essentials
Rapid Python Web Application Development

Copyright © 2007 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the author, Packt Publishing,
nor its dealers or distributors will be held liable for any damages caused or alleged to
be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: March 2007

Production Reference: 2220307

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN �����������������978-1-904811-84-8

www.packtpub.com

Cover Image by www.visionwt.com

Credits

Author

Sylvain Hellegouarch

Reviewers

Rémi Delon

Robert Brewer

Development Editor

Nanda Padmanabhan

Technical Editors

Saurabh Singh

Shayantani Chaudhuri

Ved Prakash Jha

Editorial Manager

Dipali Chittar

Project Manager

Patricia Weir

Project Coordinator

Sagara Naik

Indexer

Bhushan Pangaonkar

Proofreader

Chris Smith

Layouts and Illustrations

Shantanu Zagade

Manjiri Nadkarni

Cover Designer

Shantanu Zagade

About the Author

Sylvain Hellegouarch is an IT Software Consultant dedicated to the development
of free software projects such as CherryPy. Since 2004, he has been coordinating
and administrating the community efforts around the project providing support
for newcomers and seasoned developers, alike. In 2006, he developed 'bridge' and
'amplee', two Python-based projects centered on XML and the upcoming Atom
Publishing Protocol respectively.

He has also been deeply involved in The Viberavetions Project, a comprehensive
grassroots solution for independent artists and musicians to better connect with
consumers, as well as the nuXleus project, a platform designed for faster, more
reliable inter- and intra-application and personal communication.

Born in France, Sylvain graduated with a degree in Computer Science from South
Brittany University, Lorient, France in 2002. Since then he has been working as an IT
consultant for a variety of companies, both small and large. He currently resides in
the United Kingdom.

Acknowledgement

Throwing myself into the adventure of writing a book was a challenge I had in mind
for a while before Packt Publishing came along and I do thank them for trusting me
on the CherryPy book. Overall writing a book is a task you can't carry alone; editors
and reviewers are critical to the release of a good quality book. I thoroughly thank
Robert Brewer and Rémi Delon for undertaking the task of reviewing my work and I
much appreciate how difficult it has been. Both contributed complementary feedback
that hopefully will make you enjoy reading this book. Beyond that I want to thank
Robert for making CherryPy such a fantastic product to use; I hope this book will
show how professional CherryPy is. Of course all of this would not have been
possible if Rémi, the founder of the project, had not given the keys and his full trust
to the community for carrying the project. In addition I would like to thank Christian
Wyglendowski who has done a fantastic job at supporting the community for so
long with such indulgence and sense of humor. I would also like to give thanks to
my contacts at Packt Publishing, Nanda Padmanabhan, Patricia Weir, and Suneet
Amrute for their support and patience throughout the making of this book. They
have trusted me and listened to my concerns in a way that I can only be grateful for.

I also want to acknowledge the support I received from folks at the Viberavetions
project especially M. David Peterson who has become a close friend, without
forgetting Uche Ogbuji, Russ Miles and Kurt Cagle who have all shared their views
at times when I needed them.

I heartily want to thank all my friends who have always respected my passion for
being part of open-source projects and communities while reminding me that there is
more to life than lines of code. They have been a breath of fresh air to me throughout
these years and a great comfort when times weren't good: one person particularly
who has taken a great place in my life and who has always pushed me ahead.

Lastly I want to deeply thank my beloved family for always being discreetly there for
me and supporting my decisions even when they did not look like they were in my
best interests. You have never failed me and the work I have put into this book is a
way for me to thank you for that. Merci à vous.

This book is for the CherryPy community and beyond.

 About the Reviewers

Rémi Delon is a French software developer and entrepreneur living in London,
UK. He has been developing software for over 10 years and contributing to the
open-source community for over five years. He is the original creator of CherryPy
and is now running WebFaction, a fast growing hosting service specialized in agile
tools, including CherryPy and TurboGears.

Robert Brewer is the System Architect for Amor Ministries, a non-profit
house-building ministry that serves the poors of Mexico.

He is the lead developer of the CherryPy project, and wrote most of version 3.0. He is
also the author of the modpython gateway for WSGI, and is the creator of Dejavu, a
pure-Python Object-Relational Mapper.

Founded in 2003 by the original CherryPy creator, WebFaction is a
reliable and affordable hosting provider for your CherryPy applications.
You can get an exclusive 20% discount by using the promo code
"CHERRYPYBOOK" when you sign up with WebFaction,
visit http://www.webfaction.com for more details.

Table of Contents
Preface	 1
Chapter 1: Introduction to CherryPy	 7

Overview	 7
History of CherryPy	 8
The Community	 9
CherryPy Project Strengths	 10
Beyond CherryPy	 11
Through the Book	 11
Summary	 12

Chapter 2: Download and Install CherryPy	 13
Requirements	 13
Overview	 14
Installation from a Tarball	 16
Installation through Easy Install	 18
Installation from Subversion	 20
Testing your Installation	 23
Keeping CherryPy Up to Date	 23
Summary	 24

Chapter 3: Overview of CherryPy	 25
Vocabulary	 25
Basic Example	 26
Built-In HTTP Server	 32
Internal Engine	 32
Configuration	 33
Object Publisher Engine	 36
Library	 38

The Autoreload Feature	 39
The Caching Module	 39

Table of Contents

[ii]

The Coverage Module	 39
The Encoding/Decoding Module	 40
The HTTP Module	 40
The Httpauth Module	 40
The Profiler Module	 40
The Sessions Module	 41
The Static Module	 42
The Tidy Module	 42
The Wsgiapp Module	 42
The XML-RPC Module	 42

Tools	 43
Error and Exception Handling	 44
Summary	 49

Chapter 4: CherryPy in Depth	 51
HTTP Compliance	 51
Multiple HTTP Servers	 52
Multi-Threaded Application Server	 54
URI Dispatching	 55

HTTP Method Dispatcher	 55
Routes Dispatcher	 57
Virtual Host Dispatcher	 58

Hook into CherryPy's Core Engine	 59
CherryPy Toolbox	 61

Basic Authentication Tool	 62
Caching Tool	 63
Decoding Tool	 64
Digest Authentication Tool	 65
Encode Tool	 66
Error Redirect Tool	 67
Etag Tool	 67
Gzip Tool	 69
Ignore Headers Tool	 69
Log Headers Tool	 70
Log Tracebacks Tool	 71
Proxy Tool	 72
Referer Tool	 73
Response Headers Tool	 74
Trailing Slash Tool	 75
XML-RPC Tool	 76
Toolbox	 77
Creating a Tool	 77

Table of Contents

[iii]

Static Resource Serving	 81
Using the Staticfile Tool to Serve a Single File	 81
Using the Staticdir Tool to Serve a Complete Directory	 83
Bypassing Static Tools to Serve Static Content	 85

WSGI Support	 86
Hosting a WSGI Application within the CherryPy WSGI Server	 87
Hosting a CherryPy WSGI Application within a
Third-Party WSGI Server	 89

Summary	 90
Chapter 5: A Photoblog Application	 91

A Photoblog Application	 91
Photoblog Entities	 92
Vocabulary	 94
DBMSes Overview	 95

Relational Database Management System (RDBMS)	 95
Object-Oriented Database Management System (OODBMS)	 96
XML Database Management System (XMLDBMS)	 97

Object-Relational Mapping	 97
Python Object-Relational Mappers	 98

Photoblog Application Entity Modeling	 108
Mapping Entities	 109
Units and UnitProperties	 111
Associating Units	 112
The Sandbox Interface	 112

Querying Units	 113
Extending the Data Access Layer	 114
Summary	 117

Chapter 6: Web Services	 119
Traditional Web Development	 119

Separation of Concerns	 121
REST	 122
Uniform Resource Identifier	 123
HTTP Methods	 124
Putting it Together	 128
REST Interface through CherryPy	 130
Atom Publishing Protocol	 131
Atom XML-Document Format	 132
APP Implementation	 134
Summary	 136

Table of Contents

[iv]

Chapter 7: The Presentation Layer	 137
HTML	 137
XML	 138
XHTML	 138
CSS	 139
DHTML	 141
Templating	 142
Kid—The Templating Engine	 142

Overview	 142
Kid's Attributes	 144

XML-Based Templating Language	 144
Variable Substitution	 144
Conditional Statement	 144
Looping Mechanism	 145
Extensibility	 146
Other Attributes	 147

Photoblog Design Preparation	 147
Targetting the User Agent	 147
Tools	 148
Global Design Goals	 148
Design Directory Layout	 149
CherryPy—Encapsulating the Template Rendering Process	 149

Photoblog Design in Detail	 151
Basic Structure	 151

Mochikit	 156
Developing the Photoblog Design	 157

HTML Code	 157
Adding a Link	 158
Handling the End-User Actions	 158
Amending the Template	 159
Amending the CSS	 159
Let's be More Flexible...	 160

Summary	 161
Chapter 8: Ajax	 163

Rise of the Rich-Client Applications	 163
Ajax	 164

Ajax—Advantages and Drawbacks	 165
Behind the Scene: XMLHttpRequest	 166

Performing a GET Request	 167
Performing a Content-Negotiated GET Request 	 168
Performing a POST Request	 169
Performing PUT, HEAD, or DELETE Requests	 170

Table of Contents

[�]

Cookies	 170
Authentication using Digest or Basic Schemes	 170

JSON	 176
Applying Ajax to our Application	 178

Defining the Required Namespaces	 178
Implementing Namespaces	 179
Adding Methods to the Classes	 179
Method to Create a New Album	 183
Method to Update an Existing Album	 190
Method to Delete an Existing Album	 190

Summary	 191
Chapter 9: Testing	 193

Why Testing	 193
Planning a Test	 194
Common Testing Approach	 195
Unit Testing	 195

unittest	 196
doctest	 201

Unit Testing Web Applications	 205
Performance and Load Testing	 213
Functional Testing	 218

Application under Test	 219
Selenium Core	 222
Selenium IDE	 227
Selenium Remote Control	 231

Summary	 233
Chapter 10: Deployment	 235
Configuration	 235

CherryPy—Web and Engine Configuration System	 235
Photoblog Application Configuration System	 238

Deployment	 240
Apache with mod_rewrite Module	 241
Lighttpd with mod_proxy Module	 243
Apache with mod_python Module	 244
mod_python with WSGI Application	 246

SSL	 246
Creating a Certificate and a Private Key	 247

Using the CherryPy SSL Support	 248
Using the lighttpd SSL Support	 250
Using the Apache mod_ssl Support	 251

Summary	 251
Index	 253

Preface
Over the last few years, the boom that the World has experienced with the Internet
breakthrough has pushed almost every programming language or platform to
welcome the rise of web development toolkits, libraries, and frameworks.

The Python programming language has grown a rather large list of these
environments though apart from a few of them such as Zope and Twisted most
have a fairly small community. It is in this context that CherryPy came into existence
when Rémi Delon, its creator, decided that he needed a tool that would work as
he wanted for his own personal projects. He then released CherryPy under a free
software license so that anyone could use, distribute, and contribute to the project.

CherryPy is a Python library implementing the HTTP protocol, which is at the very
core of the Web, using common Python idioms. On top of that CherryPy offers its
own view and concepts on how to help a developer to build web applications while
being minimally intrusive through its own simple and straightforward API.

This book will guide you through the CherryPy library with the aim of giving you
the key to make the best of it in your own web applications.

The first four chapters are dedicated to CherryPy, providing information ranging
from its history to an in-depth presentation of its key features. The rest of the book
will then take you into the development of a photoblog application. Each chapter
tries to provide enough background to allow you to ponder the why and how of
each decision made. Indeed writing software applications is not a precise science and
compromises need to be undertaken for the better, however, the truth is that writing
software usually does not go quite as planned. I have written this book with the hope
that in the end you would have learnt much more than using a Python library.

Preface

[�]

What This Book Covers
Chapter 1 presents the story behind CherryPy and a high-level overview of the project.

Chapter 2 guides you through the installation and deployment of CherryPy via
common strategies like using distutils, setuptools, or subversion.

Chapter 3 gives an overview of the main and the most common aspects of CherryPy,
which will give you an understanding of what the library can do.

Chapter 4 goes into an in-depth review of the main aspects of the library such as its
support for the HTTP protocol or the WSGI interface. It also extensively discusses the
tool feature of the CherryPy API.

Chapter 5 introduces the application, which will be the unifying theme for the rest of
the book. The chapter reviews the basic entities that the application will manipulate
before moving onto explaining how we will map them into a relational database.
This will allow us to explain the concept of ORM and perform a quick comparison
between SQLAlchemy, SQLObject, and Dejavu.

Chapter 6 presents the idea behind web services by reviewing REST and the Atom
Publishing Protocol.

Chapter 7 describes how to use a templating engine such as Kid to generate web
pages dynamically. The chapter also introduces Mochikit a JavaScript toolkit to
perform client-side development.

Chapter 8 extends chapter 7 by diving into the world of Ajax, which has reminded
web developers that they can create extremely powerful applications by simply
using the browser capabilities, the JavaScript language, and the HTTP protocol.

Chapter 9 makes a strong point that any application should be reasonably well tested
and introduces some testing strategies like unit testing, functional testing, and
load testing.

Chapter 10 ends the book by reviewing some methods to deploy a CherryPy
application under a common web-server front end like Apache and lighttpd. The
chapter also explains how to enable SSL from your CherryPy application.

Preface

[�]

What You Need for This Book
Throughout this book we will assume that you have the following packages installed
and available.

Python 2.4 or above
CherryPy 3.0

You need to have a basic knowledge of the Python language.

Who is This Book for
The book is principally geared towards web developers who wish to learn how the
Python programming language can fit their requirements. Although the CherryPy
toolkit is at the core of the book, many common libraries are introduced in order to
open the book to a larger audience.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

There are three styles for code. Code words in text are shown as follows: "A
newer and more common way of deploying a package is to use the easy_install
command to install eggs."

A block of code will be set as follows:

body
{
 background-color: #663;
 color: #fff;
}
p
{
 text-align: center;
}

•

•

Preface

[�]

Any command-line input and output is written as follows:

python ez_setup.py

New terms and important words are introduced in a bold-type font. Words that you
see on the screen, in menus or dialog boxes for example, appear in our text like this:
"The next step is to run those tests by clicking the All button."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader Feedback
Feedback from our readers is always welcome. Let us know what you think about
this book, what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply drop an email to feedback@packtpub.com,
making sure to mention the book title in the subject of your message.

If there is a book that you need and would like to see us publish, please send us a
note in the SUGGEST A TITLE form on www.packtpub.com or email suggest@
packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer Support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Preface

[�]

Downloading the Example Code for the Book
Visit http://www.packtpub.com/support, and select this book from the list of titles
to download any example code or extra resources for this book. The files available
for download will then be displayed.

The downloadable files contain instructions on how to use them.

Errata
Although we have taken every care to ensure the accuracy of our contents, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in text or
code—we would be grateful if you would report this to us. By doing this you can
save other readers from frustration, and help to improve subsequent versions of
this book. If you find any errata, report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the Submit Errata link, and entering
the details of your errata. Once your errata are verified, your submission will be
accepted and the errata are added to the list of existing errata. The existing errata can
be viewed by selecting your title from http://www.packtpub.com/support.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
some aspect of the book, and we will do our best to address it.

Introduction to CherryPy
The use of the World Wide Web has grown exponentially, and has become a key
component of the way we live today. From the developer's point of view, the
Web offers great opportunities and good fun. However, the growing number of
technologies oriented towards the Web is overwhelming, and it can be difficult to
decide which one to use. The goal of this book is to present one of these, CherryPy, a
Python web-application library.

This chapter will introduce CherryPy's features and strengths, beginning with a
summary of CherryPy's history, then looking at its friendly community, which has
long been an important piece of the project's success, and finally reviewing key
principles behind the evolution of CherryPy.

Overview
CherryPy is a Python library providing a friendly interface to the HTTP protocol for
Python developers. HTTP is the backbone of the World Wide Web. Web applications
have grown exponentially in the last few years. This explosion was followed by a
large number of toolkits, libraries, and frameworks released in various programming
languages to help web developers in their task. Ultimately all of these aim at making
a web developer's life much easier. In this context CherryPy has started using
Python's strengths as a dynamic language to model and bind the HTTP protocol into
a API that follows Python idioms.

The Python community has grown a large number of web libraries and frameworks
over the years to the point where it has become some kind of a joke as much as a
worry. Even though only a handful of them have attracted most of the community,
(TurboGears, Django, or Zope) each existing library or framework has kept its niche
influence by providing its own view on how to interface Python with HTTP and the
Web in general. CherryPy was born because at that time Remi Delon, its creator,
could not find what he wanted in the existing choices. Over the years, the design of

Introduction to CherryPy

[�]

CherryPy has been tuned by new developers who liked its strengths and joined in.
Today the project has a strong community base that uses it on a daily basis in many
different contexts.

History of CherryPy
Remi Delon released the first version of CherryPy in late June 2002. This was the
starting point of a successful Python web library. Remi is a French hacker who
has trusted Python for being ultimately one of the greatest alternatives for web
application development.

The project attracted a number of developers who were interested in the approach
taken by Remi:

CherryPy classes were an extension to Python to support the separation
of concern between the data and the presentation. It was close to the
model-view-controller pattern.
A CherryPy class has to be processed and compiled by the CherryPy engine
to produce a self-contained Python module embedding the complete
application as well as its own built-in web server.

CherryPy would map a URL and its query string into a Python method call,
for example: http://somehost.net/echo?message=hello would map to
echo(message='hello').

During the following two years, the project was supported by the community and
Remi released several improved versions.

In June 2004, a discussion started about the future of the project and whether it
should continue with the same architecture. One of the main concerns was the
compilation step, which did not feel natural to Python developers. Brainstorming
and discussion by several project regulars then led to the concept of object-
publishing engine and filters, which soon became a core ingredient of CherryPy 2.

Eventually, in October 2004, the first version of CherryPy 2 alpha was released as
a proof of concept of these core ideas. Then followed six months of intense work to
release a stable version (late April 2005). Soon other developers joined the project
to improve it. CherryPy 2.0 was a real success; however, it was recognized that its
design could still be improved, and needed refactoring.

After further community feedback/discussions, CherryPy's API was further
modified to improve its elegance, leading to the release of CherryPy 2.1.0 in October
2005. This version was shipped by the popular TurboGears project—itself a stack
of projects to produce a web mega-framework. The team released CherryPy 2.2.0 in
April 2006.

•

•

Chapter 1

[�]

CherryPy's presence as a core ingredient in the increasingly widely adopted
TurboGears stack naturally meant that more and more issues were raised about
some aspects of CherryPy. For example, its WSGI support, the lack of up-to-date
documentation, or its only-average performance. It was clear that to meet these real
and important requirements, it would be extremely difficult to extend CherryPy 2
without breaking backward-compatibility constraints. As a result, the decision was
finally made to move towards CherryPy 3, which was released at the end of 2006.

The Community
CherryPy would not be where it stands without the community built over the last
few years. Remi has always been clear about the fact that he does not want CherryPy
to be his pet project, but rather to be a community one.

CherryPy has always had its followers, but the CherryPy community actually started
with version 2.0 of the product. In November 2004, an IRC channel was registered on
the Open and Free Technology Community (OFTC) network to allow developers
and users to quickly exchange ideas or to report defects. The channel gradually
attracted more and more regulars and was generally recognized to be a very friendly
place. In addition to the IRC channel, mailing-lists were created for developers and

Introduction to CherryPy

[10]

users. Eventually a feed aggregation of blog entries of regular CherryPy users was
published and has been available since then at http://planet.cherrypy.org.

CherryPy Project Strengths
Simplicity: One of the main goals has always been to keep CherryPy as
simple as possible with the aim of avoiding the library to over engineering
the project. Thanks to the narrow scope covered by the library, the developers
have been able to concentrate on the API and community feedback.
Self-contained: From the very beginning, Remi decided that the core of
CherryPy would not require any third-party Python packages to work and
would rely purely on the Python standard library.
Not intrusive: Another critical aspect of the library the developers have long
cared about was to make sure that CherryPy would stay as much as possible
out of the way of its users. The idea was to provide a set of tools to any
developer making no assumptions about the way in which he or she may
choose to use them.
Open to discussion: The developer team has always listened to the feedback
given by the community. This does not mean that every request has been
adopted, but almost all have been discussed and reviewed.

•

•

•

•

Chapter 1

[11]

Fun: When working on an open-source project, contributors should not be
made to feel it is just their day-to-day job; on the contrary there is great value
in them really enjoying what they do. Likewise, for a CherryPy user, the fun
element is also an important part, and we observe that it makes each of us
better and more creative developers.

Beyond CherryPy
In its early days, CherryPy attracted a small group of users but its design prevented
it from growing into something larger or from being used more widely. Moreover,
at that time the Python web-development field was mainly occupied by the
Zope platform. When CherryPy 2 was released, its conception was more warmly
welcomed by the community and eventually attracted more users who started to use
it for applications as well as for building their own packages based on top of it.

Indeed in late September 2005, Kevin Dangoor released TurboGears—a framework
for web development built as a stack of existing open-source products. Kevin
chose CherryPy to handle the HTTP layer of his framework, SQLObject to map
objects to the database, Kid for XHTML templating, and MochiKit for client-side
handling. This release took place just a couple of months after another Python web
framework, Django, was opened to the community. Both projects quickly gained a
lot of popularity among the Python community and thanks to a little competition
between them, they grew in a very quick fashion. The boom of TurboGears boosted
CherryPy's fame and attracted an important volume of new users.

These waves of new developers increased CherryPy's number of requested features
as well as defects being fixed, leading eventually to CherryPy 3, the most stable
version of the library, and to the writing of this book.

CherryPy's future is clear and bright; the fantastic work done by Robert Brewer
has allowed the library to reach its cruising speed. TurboGears' future version will
certainly move to CherryPy 3, which will lead to a whole new set of questions to
be brought up to the development team and will push CherryPy to its next big step.

Through the Book
This book aims at introducing the CherryPy library at a level that should make you
confident that you can use it best in your own web application. Additionally we will
try to open the discussion on the design of web applications and a perspective of the
domain at the time of writing the book. In a nutshell the book will explain how to get
and install CherryPy in a number of common ways in the Python community, such
as using setup tools and easy_install. It will also give an overview of the main and
most common aspects of CherryPy. This will gently bring you into an understanding

•

Introduction to CherryPy

[12]

of what the library can do. It then drills down into the library features such as its
HTTP capabilities, alternative URI dispatchers, and extending the library as well as
its WSGI support.

This will give you a solid understanding of CherryPy, its design, and how to make
the best use of it from within your own applications. The book then breaks down
the layers of web development by introducing techniques and tools such as
object-relational mappers, web services, and Ajax through the development of a
simple blog application.

It presents the blog application objectives and boundaries, reviews the status of
database handling in Python, and then explains Object-Relational Mapping. It
extensively presents one of the Python ORMs called Dejavu. It also talks about REST
and the Atom Publishing Protocol, both of which offer a way to design web services
that can extend your web applications beyond the simple capacity of serving HTML
pages. Then it introduces you to the presentation layer of the blog application, which
encompasses the review of the templating engine called Kid as well as the JavaScript
library called MochiKit. The book discusses Ajax and how your applications can
benefit from the principles behind it. We will also see how your application can
call the web services. Then, the book extensively inspects the field of testing a web
application. This goes from unit testing to load testing via the functional testing
aspect of it. The book finally ends by presenting different ways to deploy a web
application as a stand-alone application or via well known web servers such as
Apache and lighttpd.

Although some chapters do not extensively include discussion about CherryPy itself,
all of them will converge towards bringing an understanding of some aspects of web
application development. Hopefully this book will teach you about CherryPy and
will also give you the knowledge and the desire to learn more about the topics
it covers

Summary
After reading this introduction you should have the necessary background
understanding of where this book is going to lead you. CherryPy is a simple and yet
powerful Python library that will be a great companion to web developers who wish
to find a package that hides the difficulties of the HTTP protocol while keeping its
strengths. The CherryPy community has been working hard for the last few years to
make such a product possible; hopefully this book will give you the right directions
to make the most of it.

Download and
Install CherryPy

Like most open-source projects, CherryPy can be downloaded and installed in
various ways. Here we will discuss the following three methods:

Using a tarball
Using easy_install
Getting the latest version of the source code using Subversion

Each one brings a different value to the users of the project and it is important to
understand the contribution made by each.

Once you have read this chapter, you should be able to retrieve and deploy
CherryPy, as well as understand how to use each technique for your own software.

Requirements
Throughout this book we will assume you have the following packages installed
and available.

Python 2.4 or above
CherryPy 3.0

We will also assume you have knowledge of Python itself as we will not cover
the language.

•

•

•

•

•

Download and Install CherryPy

[14]

Overview
Installing a Python module or package is usually an easy process. First let's discuss
the most common way to build and install a new package, thanks to a standard
module, distutils, which appeared with Python 2.0.

This module provides a clean interface for specifying how a package is structured,
what are the required dependencies, and the building rules of the package. For the
user, it usually means typing the following commands:

python setup.py build
python setup.py install

The first one will simply build the package against the rules defined by the
developers, reporting errors so that the end user knows about a missing dependency
for example. The second one will install the package in the default directory used
by Python to store third-party packages or modules. Note that the latter command
will call the former by default to quickly check that nothing has changed since the
last run.

The default directories where packages and modules are stored are:

On UNIX or Linux
/usr/local/lib/python2.4/site-packages or
/usr/lib/python2.4/site-packages

On Microsoft Windows
C:\Python or C:\Python2x

On MacOS
Python:Lib:site-packages

On UNIX or Linux it will depend how your Python installation has been deployed,
but the directories given above are the most common. When importing a module,
Python will look into a list of directories, some defaults and others provided by
the user, until it finds a matching module or else an exception will be raised. The
searched list can be modified either by defining the PYTHONPATH environment
variable or by amending it from the code itself as follows:

import sys
sys.path.append(path)

•

•

•

Chapter 2

[15]

The PYTHONPATH environment variable is one of the
variables read by the Python engine when it is being
launched. It contains additional paths to append to the
searched list of paths for third-party modules and packages.

Another method is to set a file named after the package with the .pth extension. This
file should contain the full path of the package.

Notwithstanding its simplicity, this algorithm has its limitations. Since the sys.path
list is ordered you have to make sure that if two paths contain the same module with
different versions, the one your application imports is the first one to be reached.
This leads us to the following package versioning problem.

Imagine that you install CherryPy 2.2.1 in your global installation of Python;
it would be available under the directory /usr/local/lib/site-packages/
cherrypy. However, the path does not contain the version information of the
package. Therefore, if you must install CherryPy 3.0.0 as well, you have to overwrite
the existing installation.

Luckily the Python community has come up with a solution to this problem—eggs.
An egg is a compressed folder containing all the files and sub-folders of a package
with the version details of the package in its name.

An egg is a distributable bundle, by default zipped, of a
Python package or module including information such as
the author and the version of the package.

For example, CherryPy 2.2.1 built by Python 2.4 would look like the following:
Cherrypy-2.2.1-py2.4.egg. An egg by itself is not very useful; its deployment
requires easy_install, a Python module that contains the logic for handling eggs. This
means you can have multiple versions deployed in the same directory and leave it
up to easy_install to decide which one to load.

In the next sections we will see in detail how to install CherryPy using the most
common cases.

Download and Install CherryPy

[16]

Installation from a Tarball
A tarball is a compressed archive of a file or directory. The name comes from the use
of the tar utility found on UNIX and related operating systems.

Historically the compression used has usually been gzip
and the extension of a tarball is either .tar.gz or .tgz.

CherryPy provides a tarball for each release whether it is alpha, beta, release candidate,
or stable. They can all be retrieved from http://download.cherrypy.org/.

CherryPy tarballs contain the complete source code of the library.

Chapter 2

[17]

To install CherryPy from a tarball you need to go through the following steps:

1.	 Download the version that interests you from
http://download.cherrypy.org/.

2.	 Go to the directory where the tarball has been downloaded and uncompress it:
If you are using Linux, type the following command:

 tar zxvf cherrypy-x.y.z.tgz

In the given command, x.y.z is the version you have fetched.
If you are running Microsoft Windows, you can use a utility such
as 7-Zip to uncompress the archive via a graphical interface.

3.	 Move to the newly created directory and enter the following command,
which will build CherryPy:

 python setup.py build

4.	 Finally, in order to do a global installation you have to issue the following
command (you will more than likely need administrator permissions):

 python setup.py install

Note that these commands will have to be issued from a
command line. Under Microsoft Windows you will run
those from a DOS command prompt

The above steps will perform a global installation of CherryPy on your system for
the default Python environment. There are cases where this is not suitable or not
possible. For example, you may want to install CherryPy only for a given version
of Python; in that case you will have to specify the correct Python binary such as
python2.4 in steps 3 and 4 mentioned earlier.

It may also happen that you prefer not to do a global installation, in that case the
quickest way under UNIX and Linux is to replace step 4 mentioned earlier with:

python setup.py install –-home=~

This will put the files in $HOME/lib/python where $HOME represents your
home directory.

Under Microsoft Windows, which has no knowledge of HOME, you would do
the following:

python setup.py install –-prefix=c:\some\path

°

°

Download and Install CherryPy

[18]

The path you choose is not important in itself and you can use whatever suits
your environment.

Then you will have to make sure Python goes through that directory when you need
to import modules. The easiest way is to set the PYTHONPATH environment variable to
the following:

On Linux using a bash shell
		 export PYTHONPATH=~/lib/python

On Microsoft Windows using a command prompt
		 set PYTHONPATH=/some/path/

Note that this will only last while the Command window
is opened and will be dropped once you close it. To
make the changes permanent you should set the global
PYTHONPATH variable via System Properties | Advanced |
Environment Variables.

On MacOS using a csh shell
	 setenv PYTHONPATH "/some/path/"

The PYTHONPATH environment variable will be read at startup by the Python
interpreter, which will append it to its internal system path.

Installation through Easy Install
Easy_install is a Python module that can be found on the Python Enterprise
Application Kit (PEAK) website to facilitate the deployment of Python packages
and modules. From the developer's point of view, it provides an easy API to import
Python modules either for a given version or a range of versions. For instance, here
is what you would do to load the first CherryPy version greater than 2.2 found in
your environment:

>>> from pkg_resources import require
>>> require("cherrypy>=2.2")
[CherryPy 2.2.1 (/home/sylvain/lib/python/
CherryPy-2.2.1-py2.4.egg)]

From the user's point of view it simplifies the procedure of downloading, building,
and deploying Python products.

•

•

•

Chapter 2

[19]

Before installing CherryPy, we must install easy_install itself. Download the
ez_setup.py module from http://peak.telecommunity.com/dist/ez_setup.py
and run it as follows, as a user with administrative rights on the computer:
python ez_setup.py

If you do not have administrator permission, you can use the –install-dir (-d)
option as follows:
python ez_setup.py –install-dir=/some/path

Make sure that /some/path is part of the Python system path. You can set
PYTHONPATH to that directory for example.

This will set up your environment to support easy_install. Then to install a Python
product that supports easy_install, you should issue the following command:
easy_install product_name

easy_install will search the Python Package Index (PyPI) to find the given product.
PyPI is a centralized repository of information about Python products.

Download and Install CherryPy

[20]

In order to deploy the latest available version of CherryPy, you should then issue the
following command:
easy_install cherrypy

easy_install will then download CherryPy, build, and install it globally to your
Python environment. If you prefer installing it in a specific location, you will have to
enter the following command:
easy_install --install-dir=~ cherrypy

Once installed, you will have a file named cherrypy.x.y.z-py2.4.egg depending
on the latest version of CherryPy.

Installation from Subversion
Subversion is an excellent open-source revision control system that allows
developers to carry out projects in a controlled and concurrent manner.

The basic principle of such systems is to register a resource and then keep track of
every change made to it, so that any developer can retrieve any previous version,
compare two versions, or even follow the evolution over time of the said resource.
A resource can be a source code file, a binary, an image, documentation, or anything
that is expressible in machine-readable form.

Subversion is centralized, so a project is managed by a subversion server and each
client has a copy of it. The developer works on that copy and commits back any
changes he or she has made. When a conflict arises, for instance, if another developer
has modified the same file and has committed it already, the server will let you know
and forbid your commit until you resolve the issue.

Subversion is atomic, which means that if a commit fails on one file the whole
commit fails. On the other hand if it succeeds the entire project revision is
incremented, not just the files involved.

Subversion is often viewed as the successor of CVS and
is considered much friendlier. However, other revision
systems also exist such as Monotone or Darcs.

Chapter 2

[21]

Under Linux, you can either install Subversion from its sources or using a package
manager. Let's describe the procedure for the source code.

1.	 Get the latest tarball from http://subversion.tigris.org/
2.	 Then type the following command in the command console:

	 tar zxvf subversion-x.y.z.tar.gz

3.	 Enter the newly created directory and type: ./configure
4.	 Then to build the package itself type: make
5.	 You might later need the Python binding for Subversion as well:

make swig-py

6.	 To install Subversion globally, you will need to be the administrator and then
enter: make install; make install-swig-py

Most of the time, under Linux or UNIX, it is easier to use Subversion through the
command line. However, if you prefer to use a graphical interface, I would advise
you to install a fat client application such as eSvn or kdesvn.

Download and Install CherryPy

[22]

Under Microsoft Windows, it is much easier to directly use a graphical application
such as TortoiseSVN, which will install the Subversion client as well.

Getting CherryPy using Subversion is recommended in the following situations:

A feature exists or a bug has been fixed and is only available in code
under development.
You decide to work on CherryPy itself.
You need to branch from the main trunk in order to try and see a feature, a
new design, or simply backport bug fixing in a previous release.

In order to use the most recent version of the project, you will first need to check out
the trunk folder found on the Subversion repository. Enter the following command
from a shell:

svn co http://svn.cherrypy.org/trunk cherrypy

Under Microsoft Windows you can do this from a
command line or simply use TortoiseSVN. Please refer to its
documentation for more information.

This will create a cherrypy directory and download the complete source code into it.
As it is usually not recommended to deploy globally a version under development;
you would type the following command to install CherryPy into a local directory:

Under Linux and related systems using a console:
	 python setup.py install –-home=~

Under Microsoft Windows using the command prompt:
	 python setup.py install –-prefix=c:\some\path

Then simply point the PYTHONPATH environment variable to the chosen directory.

Note that this directory does not matter as long as it is reachable by the Python
process via PYTHONPATH or the standard sys module.

•

•

•

•

•

Chapter 2

[23]

Testing your Installation
Whichever way you decide to install and deploy CherryPy in your environment, you
must be able to import it from the Python shell as follows:

>>> import cherrypy
>>> cherrypy.__version__
'3.0.0'

If you do not install CherryPy globally to your Python environment, do not forget to
set the PYTHONPATH environment variable, else you will get an error as follows:

>>> import cherrypy
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
ImportError: No module named cherrypy

Keeping CherryPy Up to Date
Updating or upgrading CherryPy will depend on the approach you have taken to
install it.

Installed using a tarball
Usually the cleanest way to ensure the update goes smoothly is to first
remove the directory containing the package from its location in sys.path,
then to follow the steps described previously to install the library.
Installed using easy_install
Updating is one of the key features provided by easy_install.

	 easy_install -U cherrypy

As the eggs containing the library are named after the version they serve, you
can simply follow the steps defined in the previous section without removing
an existing egg. Be careful though, as this only holds true when the applica-
tion running specifies precisely which version it requires.
Installed using Subversion
The interesting aspect of this approach is that you can update the library
almost continuously. To update your installation, you need to enter svn
update from the top directory holding the source code and then issue the
python setup.py install command.

As always remember to take a backup of your files before
doing an update.

•

•

•

Download and Install CherryPy

[24]

Summary
We have discussed in this chapter the different ways of installing CherryPy in
your environment via three techniques. The traditional approach is to use an
archive containing all the files of the Python package to install and use the setup.
py module within that archive. A newer and more common way of deploying a
package is to use the easy_install command to install eggs. Finally, if you wish to
be synchronized with the latest development of CherryPy, you can get the package
from its Subversion repository. Whichever method you follow, they will all lead to
CherryPy being available on your system.

Overview of CherryPy
In the first chapter we briefly reviewed some aspects of CherryPy; it is now time to
dig deeper and see how the project is designed and structured. We will first
go through a basic CherryPy example. Then we will go through the CherryPy
core, the publishing-object engine, and see how it wraps the HTTP protocol in an
object-oriented library. Our next step will be to explore the concept of hooking into
the core, the CherryPy library, and the tool mechanism. We will then review how
CherryPy handles errors and exceptions and how you can benefit from it.

By the end of this chapter you will have a good overview of the CherryPy library;
however, it is likely you will need to come back to this chapter during the rest of the
book in order to fully appreciate it.

Vocabulary
In order to avoid misunderstandings, we need to define a few key words that will be
used throughout this book.

Keyword Definition
Web server A web server is the interface dealing with the HTTP protocol. Its goal

is to transform incoming HTTP requests into entities that are then
passed to the application server and also transform information from
the application server back into HTTP responses.

Application An application is a piece of software that takes a unit of information,
applies business logic to it, and returns a processed unit of information.

Application server An application server is the component hosting one or
more applications.

Web application
server

A web application server is simply the aggregation of a web server
and an application server into a single component.

CherryPy is a web application server.

Overview of CherryPy

[26]

Basic Example
To illustrate the CherryPy library we will go through a very basic web application
allowing a user to leave a note on the main page through an HTML form. The notes
will be stacked and be rendered in a reverse order of their creation date. We will use
a session object to store the name of the author of the note.

Each note will have a URI attached to itself, of the form /note/id.

Create a blank file named note.py and copy the following source code.

#!/usr/bin/python
-*- coding: utf-8 -*

Python standard library imports

Chapter 3

[27]

import os.path
import time
###
#The unique module to be imported to use cherrypy
###
import cherrypy

CherryPy needs an absolute path when dealing with static data
_curdir = os.path.join(os.getcwd(), os.path.dirname(__file__))

###
We will keep our notes into a global list
Please not that it is hazardous to use a simple list here
since we will run the application in a multi-threaded environment
which will not protect the access to this list
In a more realistic application we would need either to use a
thread safe object or to manually protect from concurrent access
to this list
###
_notes = []

###
A few HTML templates
###
_header = """
<html>
 <head>
 <title>Random notes</<title>
 <link rel="stylesheet" type="text/css" href="/style.css"></link>
 </head>
 <body>
 <div class="container">"""

_footer = """
 </div>
 </body>
</html>"""

_note_form = """
 <div class="form">
 <form method="post" action="post" class="form">
 <input type="text" value="Your note here..." name="text"
 size="60"></input>
 <input type="submit" value="Add"></input>
 </form>
 </div>"""

_author_form = """

Overview of CherryPy

[28]

 <div class="form">
 <form method="post" action="set">
 <input type="text" name="name"></input>
 <input type="submit" value="Switch"></input>
 </form>
 </div>"""

_note_view = """

<div>
 %s
 <div class="info">%s - %s (%d)</div>
</div>"""

###
Our only domain object (sometimes referred as to a Model)
###
class Note(object):
 def __init__(self, author, note):
 self.id = None
 self.author = author
 self.note = note
 self.timestamp = time.gmtime(time.time())

 def __str__(self):
 return self.note

###
The main entry point of the Note application
###
class NoteApp:
 """
 The base application which will be hosted by CherryPy
 """
 # Here we tell CherryPy we will enable the session
 # from this level of the tree of published objects
 # as well as its sub-levels
 _cp_config = { 'tools.sessions.on': True }

 def _render_note(self, note):
 """Helper to render a note into HTML"""
 return _note_view % (note, note.author,
 time.strftime("%a, %d %b %Y %H:%M:%S",
 note.timestamp),
 note.id, note.id)

Chapter 3

[29]

 @cherrypy.expose
 def index(self):
 # Retrieve the author stored in the current session
 # None if not defined
 author = cherrypy.session.get('author', None)

 page = [_header]

 if author:
 page.append("""
 <div>Hello %s, please leave us a note.
 Switch identity.</div>"""
 %(author,))
 page.append(_note_form)
 else:
 page.append("""<div>Set your
 identity</div>""")

 notes = _notes[:]
 notes.reverse()
 for note in notes:
 page.append(self._render_note(note))

 page.append(_footer)
 # Returns to the CherryPy server the page to render
 return page

 @cherrypy.expose
 def note(self, id):
 # Retrieve the note attached to the given id
 try:
 note = _notes[int(id)]
 except:
 # If the ID was not valid, let's tell the
 # client we did not find it
 raise cherrypy.NotFound
 return [_header, self._render_note(note), _footer]

 @cherrypy.expose
 def post(self, text):
 author = cherrypy.session.get('author', None)

 # Here if the author was not in the session
 # we redirect the client to the author form

Overview of CherryPy

[30]

 if not author:
 raise cherrypy.HTTPRedirect('/author')
 note = Note(author, text)
 _notes.append(note)
 note.id = _notes.index(note)
 raise cherrypy.HTTPRedirect('/')

class Author(object):
 @cherrypy.expose
 def index(self):
 return [_header, _author_form, _footer]

 @cherrypy.expose
 def set(self, name):
 cherrypy.session['author'] = name
 return [_header, """
 Hi %s. You can now leave notes.
""" % (name,), _footer]

if __name__ == '__main__':
 # Define the global configuration settings of CherryPy
 global_conf = {
 'global': { 'engine.autoreload.on': False,
 'server.socket_host': 'localhost',
 'server.socket_port': 8080,
 }}
 application_conf = {
 '/style.css': {
 'tools.staticfile.on': True,
 'tools.staticfile.filename': os.path.join(_curdir,
 'style.css'),
 }
 }
 # Update the global CherryPy configuration
 cherrypy.config.update(global_conf)

 # Create an instance of the application
 note_app = NoteApp()
 # attach an instance of the Author class to the main application
 note_app.author = Author()

 # mount the application on the '/' base path
 cherrypy.tree.mount(note_app, '/', config = application_conf)

Chapter 3

[31]

 # Start the CherryPy HTTP server
 cherrypy.server.quickstart()
 # Start the CherryPy engine
 cherrypy.engine.start()

Following is the CSS which should be saved in a file named style.css and stored in
the same directory as note.py.

html, body {
 background-color: #DEDEDE;
 padding: 0px;
 marging: 0px;
 height: 100%;
}

.container {
 border-color: #A1A1A1;
 border-style: solid;
 border-width: 1px;
 background-color: #FFF;
 margin: 10px 150px 10px 150px;
 height: 100%;
}

a:link {
 text-decoration: none;
 color: #A1A1A1;
}

a:visited {
 text-decoration: none;
 color: #A1A1A1;
}

a:hover {
 text-decoration: underline;
}

input {
 border: 1px solid #A1A1A1;
}

.form {
 margin: 5px 5px 5px 5px;
}

Overview of CherryPy

[32]

.info {
 font-size: 70%;
 color: #A1A1A1;
}

In the rest of this chapter we will refer to the application to explain
CherryPy's design.

Built-In HTTP Server
CherryPy comes with its own web (HTTP) server. The goal of this decision was to
make CherryPy self-contained and allow users to run a CherryPy application within
minutes of getting the library. As the name implies, the web server is the gateway to
a CherryPy application through which all HTTP requests and responses have to go.
It is therefore up to that layer to handle the low-level TCP sockets used to convey the
information between the client and the server.

It is not compulsory to use the built-in server though and CherryPy is quite able to
interface itself with other web servers if needed. Throughout this book, however, we
will only use the default built-in web server.

To start the web server you have to make the following call:
cherrypy.server.quickstart()

Internal Engine
The CherryPy engine is the layer in charge of the following:

Creating and managing Request and Response objects
The Request is in charge of retrieving and calling the page
handler matching the Request-URI.
The Response object constructs and validates the response
before handing it back to the underlying server.

Controlling, managing, and monitoring the CherryPy process

To start the engine you must issue the following call:
cherrypy.engine.start()

•

°

°

•

Chapter 3

[33]

Configuration
CherryPy comes with its own configuration system allowing you to parameterize
the HTTP server as well as the behavior of the CherryPy engine when processing a
Request-URI.

The settings can be stored either in a text file with syntax close to the INI format or in
a pure Python dictionary. Choosing between the two is a matter of taste as both carry
the same information.

CherryPy offers two entry points for passing configuration values—globally to
the server instance through the cherrypy.config.update() method and per
application via the cherrypy.tree.mount() method. In addition there is a third
scope where configuration settings can be applied: per path.

To configure the CherryPy server instance itself you will need to use the global
section of the settings.

In the note application we have defined the following settings:

global_conf = {
 'global': {

 'server.socket_host': 'localhost',
 'server.socket_port': 8080,

 },
}
application_conf = {
 '/style.css': {
 'tools.staticfile.on': True,
 'tools.staticfile.filename': os.path.join(_curdir,
 'style.css'),
 }
 }

This could be represented in a file like this:

[global]

server.socket_host="localhost"
server.socket_port=8080

[/style.css]
tools.staticfile.on=True
tools.staticfile.filename="/full/path/to.style.css"

Overview of CherryPy

[34]

When using a file to store the settings you must use valid
Python objects (string, integer, Boolean, etc.).

We define the host and the port on which the server will listen for
incoming connections.

Then we indicate to the CherryPy engine that the /style.css file is to be handled by
the staticfile tool and also indicate the absolute path of the physical file to be
served. We will explain in detail what tools are in the following chapters but for
now imagine them as a way to extend CherryPy's internal features and enhance
its possibilities.

To notify CherryPy of our global settings we need to make the following call:

With a dictionary
	 cherrypy.config.update(conf)

With a file

	 cherrypy.config.update('/path/to/the/config/file')

We also have to pass the configuration values to the mounted applications
as follows:

With a dictionary
	 cherrypy.tree.mount(application_instance, script_name, config=conf)

With a file
	 cherrypy.tree.mount(application_instance, script_name,

 config='/path/to/config/file')

Although in most cases choosing between a dictionary and a file will be a matter
of taste, it may happen in some cases that one is better than the other. For instance,
you may be required to pass complex data or objects to one key of the configuration,
which cannot be achieved via a text file. On the other hand if the settings are to be
amendable by the administrator of the application, using an INI file may facilitate
that task.

Remember that if you configure parts of your application
such as we do to serve the stylesheet in our Note application,
you must make a call to cherrypy.tree.mount().

•

•

•

•

Chapter 3

[35]

The last way of configuring your application is by using the _cp_config attribute on
your page handler or as a class attribute of the class containing the page handlers, in
which case the configuration will prevail for all page handlers.

In the following code sample, we indicate that all the page handlers of the Root class
will use gzip compression except the hello page handler.

import cherrypy

class Root:
 _cp_config = {'tools.gzip.on': True}

 @cherrypy.expose
 def index(self):
 return "welcome"

 @cherrypy.expose
 def default(self, *args, **kwargs):
 return "oops"

 @cherrypy.expose
 # this next line is useless because we have set the class
 # attribute _cp_config but shows you how to configure a tool
 # using its decorator. We will explain more in the next
 # chapters.
 @cherrypy.tools.gzip()
 def echo(self, msg):
 return msg

 @cherrypy.expose
 def hello(self):
 return "there"
 hello._cp_config = {'tools.gzip.on': False}

if __name__ == '__main__':
 cherrypy.quickstart(Root(), '/')

The call to quickstart above is a shortcut for:

cherrypy.tree.mount(Root(), '/')
cherrypy.server.quickstart()
cherrypy.engine.start()

You can use this call anytime you only mount one single application on a
CherryPy server.

Overview of CherryPy

[36]

The last important point is that configuration settings are independent of the prefix
on which the application is mounted. Therefore in the above example even though
the application could be mounted at /myapp instead of /, the settings would not be
different. They would not include the prefix. Therefore consider the configuration
settings to be relative to the application but independent of the prefix used to mount
the application.

The prefix where the application is mounted is referred to
the script_name.

Object Publisher Engine
HTTP servers such as Apache or lighttpd map Request-URIs to paths on the file
system making them very efficient at handling websites mainly made of static
content such as images.

CherryPy has chosen a completely different approach and uses its own internal
lookup algorithm to retrieve the handler referred to by the Request-URI. The
decision made with CherryPy 2.0 was that such a handler would be a Python-callable
object attached to a tree of published objects. That is the reason why we speak of
object publishing as the Request-URI maps to a Python object.

CherryPy defines two important concepts:

Published: A Python object is said to be published when it is attached to a
tree of objects and the root of this tree is mounted on the CherryPy engine
server via a call to cherrypy.tree.mount.
For instance:

	 root = Blog()
	 root.admin = Admin()
	 cherrypy.tree.mount(root, '/blog')

In the above example the root object is said to be published. By extension the admin
object, which is an attribute of a published object, is also published.

Exposed: A published object is said to be exposed when it has an attribute
named exposed set to True. An exposed object must be Python callable.
Being published is not sufficient for an object to be treated as being a poten-
tial handler for a URI by CherryPy. A published object must be exposed so
that it becomes visible to the CherryPy engine. For instance:

•

•

Chapter 3

[37]

 class Root:
 @cherrypy.expose
 def index(self):
 return self.dosome()

 def dosome(self):
 return "hello there"
 cherrypy.tree.mount(Root(), '/')

In this example a request to /dosome would return a Not Found error
because the method is not exposed even though it belongs to a published
object. The reason is that the dosome callable object is not exposed to the
internal engine as a potential match for a URI.

You can set the exposed attribute either manually or by using the expose decorator
provided by CherryPy as we will do throughout this book.

An exposed object is usually referred to as a page handler
by the CherryPy community. This is the term we will be
using throughout the book.

For example, in the Note application the published objects are note_app and
author. The root of the tree is note_app and is mounted on the '/' prefix. Therefore
CherryPy will use that tree of objects upon receiving a request for any path starting
with '/'. Had we used a prefix such as /postit, the Note application would have
only been served by CherryPy when getting a request starting with such a prefix.

It is therefore possible to mount several applications via distinct prefixes. CherryPy
will call the correct one based on the Request-URI. (As we will explain later in the
book, two applications mounted via cherrypy.tree.mount() are unaware of each
other. CherryPy makes sure that they don't leak.)

The following table displays the relationship between a Request-URI and the page
handler matching the path of the URI as found by CherryPy.

Request-URI Path Published Object Page Handler
/ note_app index

/author/ note_app.author index

/author/set note_app.author set

/note/1 note_app note

Overview of CherryPy

[38]

The index() and default() methods are special page handlers for CherryPy. The
former one matches Request-URIs ending with a slash, similarly to the index.html
file on the Apache server. The latter one is used by CherryPy when no explicit page
handler is found for a Request-URI. Our Note application does not define one but the
default page handler is often used to catch irregular URIs.

You can also notice that the /note/1 URI, in fact, matches note(id); this is because
CherryPy supports positional parameters. The bottom line is that CherryPy will call
the first page handler that has a signature matching the requested URI.

CherryPy treats /note/1 and /note?id=1 the same
way as long as it finds a page handler with the following
signature: note(id).

The following figure is a global overview of the process followed by an HTTP
request when reaching the CherryPy server.

CherryPy

Application

User Agent

EngineObject publishing dispatcher

HTTP server

Body content

Request-URI

HTTP request HTTP response

Page handler

Library
CherryPy comes with a set of modules covering common tasks when building a web
application such as session management, static resource service, encoding handling,
or basic caching.

Chapter 3

[39]

The Autoreload Feature
CherryPy is a long-running Python process, meaning that if we modify a Python
module of the application, it will not be propagated in the existing process. Since
stopping and restarting the server manually can be a tedious task, the CherryPy team
has included an autoreload module that restarts the process as soon as it detects
a modification to a Python module imported by the application. This feature is
handled via configuration settings.

If you need the autoreload module to be enabled while in production you will set it
up as below. Note the engine.autoreload_frequency option that sets the number
of seconds the autoreloader engine has to wait before checking for new changes. It
defaults to one second if not present.

 [global]
server.environment = "production"
engine.autoreload_on = True
engine.autoreload_frequency = 5

Autoreload is not properly a module but we mention it here as it is a common
feature offered by the library.

The Caching Module
Caching is an important side of any web application as it reduces the load and stress
of the different servers in action—HTTP, application, and database servers. In spite
of being highly correlated to the application itself, generic caching tools such as the
ones provided by this module can help in achieving decent improvements in your
application's performance.

The CherryPy caching module works at the HTTP server level in the sense that
it will cache the generated output to be sent to the user agent and will retrieve a
cached resource based on a predefined key, which defaults to the complete URL
leading to that resource. The cache is held in the server memory and is therefore lost
when stopping it. Note that you can also pass your own caching class to handle the
underlying process differently while keeping the same high-level interface.

The Coverage Module
When building an application it is often beneficial to understand the path taken by
the application based on the input it processes. This helps to determine potential
bottlenecks and also see if the application runs as expected. The coverage module
provided by CherryPy does this and provides a friendly browseable output showing
the lines of code executed during the run. The module is one of the few that rely on a
third-party package to run.

Overview of CherryPy

[40]

The Encoding/Decoding Module
Publishing over the Web means dealing with the multitude of existing character
encoding. To one extreme you may only publish your own content using US-ASCII
without asking for readers' feedback and to the other extreme you may release an
application such as bulletin board that will handle any kind of charset. To help in
this task CherryPy provides an encoding/decoding module that filters the input and
output content based on server or user-agent settings.

The HTTP Module
This module offers a set of classes and functions to handle HTTP headers and entities.

For example, to parse the HTTP request line and query string:

s = 'GET /note/1 HTTP/1.1' # no query string
r = http.parse_request_line(s) # r is now ('GET', '/note/1', '',
 'HTTP/1.1')
s = 'GET /note?id=1 HTTP/1.1' # query string is id=1
r = http.parse_request_line(s) # r is now ('GET', '/note', 'id=1',
 'HTTP/1.1')
http.parseQueryString(r[2]) # returns {'id': '1'}
Provide a clean interface to HTTP headers:
For example, say you have the following Accept header value:
accept_value = "text/xml,application/xml,application/xhtml+xml,text/
html;q=0.9,text/plain;q=0.8,image/png,*/*;q=0.5"
values = http.header_elements('accept', accept_value)
print values[0].value, values[0].qvalue # will print text/html 1.0

The Httpauth Module
This module provides an implementation of the basic and digest authentication
algorithm as defined in RFC 2617.

The Profiler Module
This module features an interface to conduct a performance check of the application.

Chapter 3

[41]

The Sessions Module
The Web is built on top of a stateless protocol, HTTP, which means that requests
are independent of each other. In spite of that, a user can navigate an e-commerce
website with the impression that the application more or less follows the way he
or she would call the store to pass an order. The session mechanism was therefore
brought to the Web to allow servers to keep track of users' information.

CherryPy's session module offers a straightforward interface to the application
developer to store, retrieve, amend, and delete chunks of data from a session object.
CherryPy comes natively with three different back-end storages for session objects:

Back-end type Advantages Drawbacks
RAM Efficient

Accepts any type of objects

No configuration needed

Information lost when
server is shutdown

Memory consumption can
grow fast

File system Persistence of the
information

Simple setup

File system locking can be
inefficient

Only serializable (via the
pickle module) objects can
be stored

Relational database
(PostgreSQL built-in
support)

Persistence of the
information

Robust

Scalable

Can be load balanced

Only serializable objects
can be stored

Setup less straightforward

The advantage is that your application will use a high-level interface independent
of the underlying back end. Therefore, while in early development you may use
RAM sessions, you can easily switch to the PostgreSQL back end if needed later on
without modifying your application. Obviously CherryPy allows you to plug and
use your own back end if needed.

Overview of CherryPy

[42]

The Static Module
Even the most dynamic application serves static resources such as images or CSS.
CherryPy provides a module to ease the process of serving those or to even serve a
complete directory structure. It will handle the underlying HTTP exchanges such as
the use of the If-Modified-Since header, which checks if a resource has changed
since a given date thus avoiding processing it again unnecessarily.

The Tidy Module
Even though as a web application developer you should make sure the content
generated by your application is clean and valid against standards it may happen
that you have to serve content over which you do not have full control. In such a case
CherryPy provides an easy way to filter the outgoing content by using tools such as
nsgml or tidy.

The Wsgiapp Module
This module allows you to wrap any WSGI application to use as a CherryPy
application. For more information on WSGI, please refer to Chapter 4.

The XML-RPC Module
XML-RPC is a remote procedure call protocol using XML to format messages,
transferred via HTTP, between an XML-RPC client and XML-RPC server. Basically,
a client creates an XML document containing the name of the remote method to
call and the values to be passed and then requests the server using an HTTP POST
message. The returned HTTP response contains the XML document, as a string, to be
processed by the client.

The CherryPy xmlrpc module allows you to transform a published object into an
XML-RPC service. CherryPy will extract, from the incoming XML document, the
name of the method as well as the values and will apply the same logic as if it was a
regular URI call, therefore looking for a matching page handler. Then when the page
handler returns CherryPy wraps the content into a valid XML-RPC response and
sends it back to the client.

The following code sample defines an XML-RPC service served by CherryPy.

import cherrypy
from cherrypy import _cptools

class Root(_cptools.XMLRPCController):
 @cherrypy.expose

Chapter 3

[43]

 def echo(self, message):
 return message

if __name__ == '__main__':
 cherrypy.quickstart(Root(), '/xmlrpc')

Your XML-RPC client could look like this:

import xmlrpclib
proxy = xmlrpclib.ServerProxy('http://localhost:8080/xmlrpc/')
proxy.echo('hello') # will return 'hello'

Tools
In the previous sections we have introduced the built-in modules. CherryPy provides
a unified interface, referred as the tool interface, to call those modules or build and
call your own modules.

Tools can be set up from three different contexts:

The configuration file or dictionary
 conf = {'/': {
 'tools.encode.on': True,
 'tools.encode.encoding': 'ISO-8859-1'
 }
 }
 cherrypy.tree.mount(Root(), '/', config=conf)

Attached to a particular page handler
It is not uncommon to decide to add extra processing to an object path match-
ing a URI. In that case you might want to use a Python decorator around the
page handler.

 @cherrypy.expose
 @cherrypy.tools.encode(encoding='ISO 8859-1')
 def index(self)
 return "Et voilà"

Making a library call with a higher-level interface

Tools can be applied as regular Python callable objects.
 def index(self):
 cherrypy.tools.accept.callable(media='text/html')

•

•

•

Overview of CherryPy

[44]

The previous line shows how to call the accept tool that looks up the provided
media type within the requested Accept HTTP header.

Thanks to that unified interface it is possible to modify the underlying code of the
tool without having to modify the application level itself.

A tool is an interface to extend CherryPy by plugging
third-party components into the CherryPy engine.

Error and Exception Handling
CherryPy tries hard to help the developer see a web application as close as a rich
application. This means that from your page handler you may raise a Python error
or exception as in any other Python application. CherryPy will catch those and
transform them into HTTP messages depending on the type of errors.

Note that when an exception is raised and not caught by
any other part of the application, CherryPy will return the
corresponding HTTP 500 error code.

For example, the following example will show the default behavior of CherryPy.

import cherrypy

class Root:
 @cherrypy.expose
 def index(self):
 raise NotImplementedError, "This is an error..."

if __name__ == '__main__':

 cherrypy.quickstart(Root(), '/')

Chapter 3

[45]

As you can see CherryPy displays the complete traceback of the Python error.
Although this is useful when developing the application, it might not be relevant in
production mode. In that case, CherryPy returns simply a default message.

In development mode you can hide the tracebacks on error
by using the request.show_tracebacks key in the
global section of the configuration settings.

Overview of CherryPy

[46]

CherryPy returns an HTTP error code 500 when it catches an error that is not
handled otherwise by the application developer. The HTTP specification defines
two sets of error codes, client errors in the 4xx range and server errors in the 5xx
range. The client errors indicate that the user agent has sent an invalid request (e.g.
missing authentication credentials, requested resource not found or gone, etc.). The
server errors inform the user agent that an event occurred that prevented the server
fulfilling the request processing.

CherryPy provides a simple interface allowing the application developer to send the
correct error code:

cherrypy.HTTPError(error_code, [error_message])

The HTTPError error will be trapped by the CherryPy
engine, which will in turn use the error code and error
message of the error as the status and body of the HTTP
response to be sent.

When raising that error, CherryPy sets the HTTP response body to the provided
message and the HTTP header matching the error code defined.

import cherrypy

class Root:
 @cherrypy.expose
 def index(self):
 raise cherrypy.HTTPError(401, 'You are not authorized to \
 access this resource')

if __name__ == '__main__':
 cherrypy.quickstart(Root(), '/')

The returned HTTP response will be:

HTTP/1.x 401 Unauthorized
Date: Wed, 14 Feb 2007 11:41:55 GMT
Content-Length: 744
Content-Type: text/html
Server: CherryPy/3.0.1alpha

Chapter 3

[47]

import cherrypy

class Root:
 @cherrypy.expose
 def index(self):
 # shortcut to cherrypy.HTTPError(404)
 raise cherrypy.NotFound

if __name__ == '__main__':
 conf = {'global':{'request.show_tracebacks':False}}

 cherrypy.config.update(conf)
 cherrypy.quickstart(Root(), '/')

Overview of CherryPy

[48]

You might wonder how to change the layout of the error page returned by CherryPy
to integrate it with your own application. The way to achieve this is by using the
configuration system.

import cherrypy

class Root:
 # Uncomment this line to use this template for this level of the
 # tree as well as its sub-levels
 #_cp_config = {'error_page.404': 'notfound.html'}
 @cherrypy.expose
 def index(self):
 raise cherrypy.NotFound

 # Uncomment this line to tell CherryPy to use that html page only
 # for this page handler. The other page handlers will use
 # the default CherryPy layout
 # index._cp_config = {'error_page.404': 'notfound.html'}

if __name__ == '__main__':
 # Globally set the new layout for an HTTP 404 error code
 cherrypy.config.update({'global':{'error_page.404':
 'notfound.html' }})
 cherrypy.quickstart(Root(), '/')

The notfound.html page:

<html>
 <head><title>Clearly not around here</title></head>
 <body>
 <p>Well sorry but couldn't find the requested resource.</p>
 </body>
</html>

Chapter 3

[49]

When catching an HTTPError error CherryPy looks for an error_page.xxx (where
xxx is the HTTP error code used) entry in the configuration for that page handler
and uses it instead of the default template.

As you can see CherryPy offers a very flexible and yet effective way to use your own
page template for displaying friendlier error messages.

Until now we have discussed the high-level handling of errors in CherryPy.
However, it is possible to modify the internal processing used through the hook API
as we will see in the next chapter.

Summary
This chapter should have introduced you to some of the core principles of CherryPy,
HTTP, and the server engine as well as its configuration system. We have also briefly
discussed the object publisher engine, which allows transparent mapping of a URI
to an exposed Python object. Finally we briefly reviewed the core modules of the
CherryPy library that enhance its capacities and the way CherryPy lets you handle
errors. The next chapter will dive into CherryPy's internal components and features
as well go into more detail about some topics already covered.

CherryPy in Depth
Chapter 3 introduced the common aspects of CherryPy without going into too
much detail. In this chapter, we will dive into what makes CherryPy such a
powerful library for the web developer by explaining key features, such as how to
run multiple HTTP servers, use additional URI dispatchers, use the built-in tools
and develop new ones, serve static contents, and finally how CherryPy and WSGI
interact. This chapter will be dense but will be a good base to allow you to be more at
ease and efficient with the product.

HTTP Compliance
CherryPy has been evolving slowly but surely to comply as much as it can with
the HTTP specifications—firstly by supporting the old HTTP/1.0 and then moving
gradually towards fully supporting HTTP/1.1, as defined in RFC 2616. CherryPy is
said to be conditionally compliant with HTTP/1.1 as it implements all the must and
required levels but not all the should levels of the specification. Therefore, CherryPy
supports the following features of HTTP/1.1:

If a client claims to support HTTP/1.1, it must send a Host header field in
any request made with that protocol version. If it is not done, CherryPy will
immediately stop the request processing with a 400 error code message
(section 14.23 of RFC 2616).
CherryPy generates a Date header field in all the configurations (section
14.18 of RFC 2616).
CherryPy does handle the Continue response status code (100) on clients
supporting it.
CherryPy's built-in HTTP server supports persistent connections that are
the default in HTTP/1.1, through the use of the Connection: Keep-Alive
header. Be aware that changing the HTTP server (for more details refer
to Chapter 10) may break this compatibility, if the chosen server does not
support such a feature.

•

•

•

•

CherryPy in Depth

[52]

CherryPy handles correctly chunked requests and responses.
CherryPy supports requests set with If-Modified-Since and
If-Unmodified-Since headers and responds accordingly to each of them.
CherryPy allows any HTTP methods.
CherryPy handles all the combinations of HTTP versions between the client
and the setting set for the server.

Request
Protocol

Server Protocol Written Response
Protocol

Response Feature Set

1.0 1.0 1.0 1.0
1.0 1.1 1.1 1.0
1.1 1.0 1.0 1.0
1.1 1.1 1.1 1.1

The server protocol can be modified via the
server.protocol_version key.
The written response protocol is the version returned in the
HTTP response to inform the user-agent what protocol the
server is supporting.
The response feature set protocol version is the one used
internally by CherryPy during the response processing. In
the second case, CherryPy only limits what it does to the
response to HTTP/1.0.

All in all CherryPy 3 offers a wide range of capabilities, thanks to its good support of
HTTP/1.1, and therefore can be safely used in a large set of scenarios.

Multiple HTTP Servers
By default, CherryPy starts a single instance of its own built-in HTTP server.
However, it may happen that:

You are required to have a different HTTP server. This will be covered
extensively in Chapter 10.
You are required to run your application on different network interfaces in
one single Python process. CherryPy provides an API to run different HTTP
server instances in one single process.

•

•

•

•

•

•

Chapter 4

[53]

First let us see how the CherryPy server is usually started:

conf = {'global': {'server.socket_port': 100100,
 'server.socket_host': 'localhost'}}
cherrypy.config.update(conf)
cherrypy.server.quickstart()

As you can see, we call the quickstart() method of the server object, which will
instantiate the built-in HTTP server and start it in its own thread.

Now imagine we have one application that we wish to run on different network
interfaces; we should do as follows:

from cherrypy import _cpwsgi

Create a server on interface 1102.168.0.12 port 100100
s1 = _cpwsgi.CPWSGIServer()
s1.bind_addr = ('1102.168.0.12', 100100)

Create a server on interface 1102.168.0.27 port 4700
s2 = _cpwsgi.CPWSGIServer()
s2.bind_addr = ('1102.168.0.27', 4700)

Inform CherryPy which servers to start and use
cherrypy.server.httpservers = {s1: ('1102.168.0.12', 100100),
 s2: ('1102.168.0.27', 4700)}
cherrypy.server.start()

As you can see, we first create two instances of the built-in HTTP server and for
each we set the binding address on which the socket should be listening for
incoming requests.

Then we attach those servers to the CherryPy pool of HTTP servers and call the
start() method, which will start each one on its interface.

Notice that we do not call cherrypy.config.update, because it would update the
global configuration settings shared by all the servers. However, this is not really
an issue because each instance of the built-in server has the attributes matching the
configuration keys. Thus:

s1.socket_port = 100100
s1.socket_host = '1102.168.0.12'
s1.socket_file = ''
s1.socket_queue_size = 5
s1.socket_timeout = 10
s1.protocol_version = 'HTTP/1.1'
s1.reverse_dns = False
s1.thread_pool = 10
s1.max_request_header_size = 500 * 1024

CherryPy in Depth

[54]

s1.max_request_body_size = 100 * 1024 * 1024
s1.ssl_certificate = None
s1.ssl_private_key = None

As you can see, you can directly set the server instance settings and avoid using the
global configuration. This technique also allows for an application to be served via
HTTP and HTTPS at the same time as we will see in Chapter 10.

Multi-Threaded Application Server
CherryPy is designed around the threaded pattern. Although it is transparent to
the developer, each time the application gets or sets a value into the CherryPy
namespace, (cherrypy.request and cherrypy.response objects mainly) it
does so in a multi-threaded environment. Both cherrypy.request and
cherrypy.response are thread-data containers, which imply that your application
calls them independently by knowing which request is proxied through them
at run time.

When using the built-in CherryPy server, a pool of threads is created to handle
incoming requests. The size of the pool is configured via the server.thread_pool
key, which defaults to 10. Although it could sound like a good idea to create a larger
pool of threads to improve the performance of the server, it is not always the case.

This value must be tuned as per application requirements. In fact if your application
has a very short average request processing time, then it is likely that each thread
will not be busy for a very long period of time. If you create a large pool of threads,
it is more likely that most of them will just sit there, consuming your memory for
very little benefit. It is therefore advisable to run performance testing against your
application in different configurations in order to determine the best number of
threads that should be created for your requirements.

Application servers using the threaded pattern are not always highly regarded
because the use of threads is seen as increasing the likelihood of problems due to
synchronization requirements. Alternatives exist, such as:

Multi-processes pattern: In this case, each request is handled by its own
Python process. It is arguable that synchronization is easier but in some
specific cases the performance and stability of the server can be better.
Asynchronous pattern: In this configuration, the operation of accepting new
connections and sending back data to the client is done asynchronously from
the request processing itself. This can be achieved, thanks to the capabilities
of underlying operating systems allowing it. This technique has proven to be
very efficient speed-wise. However, it requires a fairly different application
development approach that can perturb some developers.

•

•

Chapter 4

[55]

All in all, which solution is the best can be debated ad infinitum and such questions
will never really be answered. In fact, each scenario requires a different approach.

URI Dispatching
As we have seen in the Chapter 3, by default CherryPy maps URIs to Python
callables that have an exposed attribute set to True. Over time, it has appeared
that the CherryPy community wants to be more flexible and that other dispatchers'
solutions would be appreciated. That's why CherryPy 3 provides three other built-in
dispatchers and offers a simple way to write and use your own dispatchers.

One is set to allow applications to be developed per HTTP methods.
(GET, POST, PUT, etc.)
The second is based on a popular third-party package named Routes and
developed by Ben Bangert from the original Ruby implementation for Ruby
on Rails.

The third dispatcher is a Virtual Host one, which allows dispatching based
on the domain requested rather than the URI path.

HTTP Method Dispatcher
In some applications, URIs are independent of the action to be performed by the
server on the resource. For example, look at the following URI:

http://somehost.com/album/delete/12

As you can see, the URI contains the operation the client wishes to carry out. With
the default CherryPy dispatcher this would map to something like:

album.delete(12)

Although it's fine, you may wish to remove that operation from the URI itself and
make it more independent, so that it would look like:

http://somehost.com/album/12

You may wonder immediately how the server is supposed to know which operation
to perform. This information is carried by the HTTP request itself, thanks to the
HTTP method:

DELETE /album/12 HTTP/1.1

•

•

•

CherryPy in Depth

[56]

The page handler handling such a request would look like the following:

class Album:
 exposed = True

 def GET(self, id):

 def POST(self, title, description):

 def PUT(self, id, title, description):

 def DELETE(self, id):

When using the HTTP method dispatcher, the page handler called would be
album.DELETE(12).

If you look at the previous class definition, you will see that the methods do not
carry the exposed attribute but instead the class itself is set with that attribute. The
reason for this comes from the way the dispatcher is implemented.

When a request reaches the server, CherryPy looks for the best matching page
handler. When using the HTTP method dispatcher, the handler is in fact the
conceptual representation of the resource targeted by the URI, in our example the
instance of the album class. Then the dispatcher checks if the class has a method
matching the name of the HTTP method used for the request. If so, the dispatcher
calls it with the remaining parameters. Otherwise, it sends back immediately an HTTP
error code 405 Method Not Allowed to inform the client that it cannot use the HTTP
method and thus cannot perform that operation on that particular resource.

For example, if we did not have a definition for DELETE in the Album class, such an
error code would be returned upon the request we have used so far.

In any case, however, CherryPy will automatically add the Allow HTTP header to
the response to inform the client which methods it can use against the resource.

Note that in this case CherryPy does not look for index or
default page handlers as it would with the URI-to-object
dispatcher. This comes from a fundamental difference
between dispatching based on the URI solely as compared
to the URI+HTPP method. Chapter 6 will review this in
more detail.

Chapter 4

[57]

To enable the HTTP method dispatcher, you must set the request.dispatch key to
an instance of that dispatcher for the targeted path.

For example, if our whole application was built using that technique, we would use:

{'/' : {'request.dispatch': cherrypy.dispatch.MethodDispatcher()}}

The HTTP method dispatcher is often used in applications following REST
principles, as we will see in Chapter 6.

Routes Dispatcher
Whether in the URI-to-object or HTTP-method dispatcher, we have not explicitly
declared the URI associated with a page handler; instead we have left the
responsibility of finding the best correspondence to the CherryPy engine. Many
developers prefer the explicit approach and decide how URIs should map to
page handlers.

Therefore, when using the Routes dispatcher you must connect a pattern that
matches URIs and associates a specific page handler.

Let's review an example:

import cherrypy

class Root:
 def index(self):
 return "Not much to say"

 def hello(self, name):
 return "Hello %s" % name

if __name__ == '__main__':
 root = Root()

 # Create an instance of the dispatcher
 d = cherrypy.dispatch.RoutesDispatcher()

 # connect a route that will be handled by the 'index' handler
 d.connect('default_route', '', controller=root)

 # connect a route to the 'hello' handler
 # this will match URIs such as '/say/hello/there'
 # but not '/hello/there'
 d.connect('some_other', 'say/:action/:name',
 controller=root, action='hello')

 # set the dispatcher
 conf = {'/': {'request.dispatch': d}}
 cherrypy.quickstart(root, '/', config=conf)

CherryPy in Depth

[58]

When using the Routes dispatcher handlers, you need not
have an exposed attribute.

The connect method of the Routes dispatcher is defined as:

connect(name, route, controller, **kwargs)

Here are the parameters for the connect method:

The name parameter is the unique name for the route to connect.
The route is the pattern to match URIs.
The controller is the instance containing page handlers.
**kwargs allows you to pass on extra valid parameters for a route.

Please refer to the official Routes documentation to understand how the
package works.

By default, the CherryPy Routes dispatcher does not pass on the action and
controller values returned by the Routes mapper when matching a URI against
any of the route. These are not necessarily useful in a CherryPy application.
However, if you need them you can set the fetch_result parameter of the Routes
dispatcher constructor to True. Then both values will be passed on to page handlers
but in this case you will have to add controller and action parameters to all your
page handlers.

Virtual Host Dispatcher
It may happen that you need to host different web applications within one CherryPy
server with each application serving one given domain name. CherryPy provides an
easy way to do this, as in the following example:

import cherrypy

class Site:
 def index(self):
 return "Hello, world"
 index.exposed = True

class Forum:
 def __init__(self, name):
 self.name = name

•

•

•

•

Chapter 4

[59]

 def index(self):
 return "Welcome on the %s forum" % self.name
 index.exposed = True

if __name__ == '__main__':
 site = Site()
 site.cars = Forum('Cars')
 site.music = Forum('My Music')

 hostmap = {'www.ilovecars.com': '/cars',
 'www.mymusic.com': '/music',}

 cherrypy.config.update({'server.socket_port': 80})
 conf = {'/': {'request.dispatch':
 cherrypy.dispatch.VirtualHost(**hostmap)}}
 cherrypy.tree.mount(site, config=conf)
 cherrypy.server.quickstart()
 cherrypy.engine.start()

First, as you can see, we simply create a tree of applications. Next, we define the
hostmap dictionary, which will inform the VirtualHost dispatcher how to serve a
request based on its domain. Thus the requests coming from www.mymusic.com will
be served by the application mounted at the /music prefix. Next, we tell CherryPy
that we will be using the VirtualHost dispatcher and we finally mount the site
application and start the server as usual.

Note that this example will require that you edit your hosts file on your machine to
add the following two domains:

127.0.0.1 www.ilovecars.com
127.0.0.1 www.mymusic.com

It will automatically redirect requests to those domains to your local server instead
of looking for them on the Internet. Once you have finished with this example, you
ought to remove these lines from the hosts file.

Hook into CherryPy's Core Engine
One of the most powerful aspects of CherryPy is how its core lets you modify its
normal behavior with a very fine granularity. Indeed, CherryPy offers a mechanism
called hooking to customize the core engine.

CherryPy in Depth

[60]

A hook is an entry point for Python callables to be applied at specific points during
the request processing. CherryPy provides the following entry points:

Hook Point Description
on_start_resource Called at the beginning of the process.
before_request_body Called before CherryPy tries to read the request body. It

allows a tool to inform CherryPy whether this action should
be performed by setting the process_request_body
attribute to False within the tool.

before_handler Called before the page handler is invoked. A tool could for
instance set the handler to None to inform CherryPy that it
should not process the page handler.

before_finalize Called whether or not the page handler has been called and
before CherryPy starts processing the response.

on_end_resource Called when the resource processing is terminated.
before_error_response
after_error_response

Called when an error is trapped by the CherryPy engine to
allow the application to recover and decide what to do next.

on_end_request Called at the end of the overall processing, right after the
link with the client has been closed. This allows you to
free resources.

The following figure shows the global process followed by CherryPy when handling
a request. The black lines and arrows show the normal flow while the gray ones
indicate the path when an error occurs.

Chapter 4

[61]

Attaching a callback at one of these hook points is done via a call to:

cherrypy.request.hooks.attach(point, callback, failsafe=None,
 priority=None, **kwargs)

The first parameter is the name of the hook point as shown in the previous table. The
second parameter is the Python callable that will be applied. The third parameter
indicates to CherryPy that even if another callback may fail during the processing of
this hook point, CherryPy must run this callable. The last parameter must be a value
between 0 and 100 to indicate the weight of each callback and provide a way to order
them. Lower values will be run first.

The failsafe argument is quite helpful as it offers a way for an application to be
flexible and recover from problems that may occur. Indeed some callbacks may fail
without impacting the whole chain of the request processing.

Note that you can obviously attach as many callbacks as
required at a given hook point. Callbacks can be hooked on
the fly while the application is running as well. However,
the more callbacks you attach, the slower the processing of
that hook point will become.

The hooking mechanism is fairly close to what used to be called filters in CherryPy
2. However, it was observed over time that they were too low level and were making
users uncomfortable most of the time. That's why it is still rare for developers to
use them directly as is. Instead they are applied through a higher-level interface
named tools.

CherryPy Toolbox
The tool interface has been designed by Robert Brewer while refactoring CherryPy.
The goal was to offer ready-to-employ tools achieving common tasks with a friendly
and flexible API. Within CherryPy, built-in tools offer a single interface to call the
CherryPy library that we have reviewed in Chapter 3 using the hooking mechanism.

As we have seen in Chapter 3 tools can be used in three different ways:

From the configuration settings
As a Python decorator or via the special _cp_config attribute of a
page handler
As a Python callable that can be applied from within any function

•

•

•

CherryPy in Depth

[62]

Thanks to this flexibility, a tool can be set either globally to a path and its subset or to
a particular page handler. Let's now review the built-in tools provided by CherryPy.

Basic Authentication Tool
Purpose: The purpose of this tool is to provide basic authentication (RFC 2617) to
your application.

Arguments:

Name Default Description
realm N/A (N/A in this case

means the parameter must be
provided by the developer as
it has no default.)

String defining the realm value.

users N/A Dictionary of the form–username:password or
a Python callable returning such a dictionary.

encrypt None Python callable used to encrypt the password
returned by the client and compare it with the
encrypted password provided in the users
dictionary. If None it uses an MD5 hash.

Example:

import sha
import cherrypy

class Root:
 @cherrypy.expose
 def index(self):
 return """<html>
<head></head>
<body>
 Admin area
</body>
</html>
"""

class Admin:
 @cherrypy.expose
 def index(self):
 return "This is a private area"

if __name__ == '__main__':

Chapter 4

[63]

 def get_users():
 # 'test': 'test'
 return {'test':
 'a104a8fe5ccb110ba61c4c0873d3101e10871082fbbd3'}

 def encrypt_pwd(token):
 return sha.new(token).hexdigest()

 conf = {'/admin': {'tools.basic_auth.on': True,
 'tools.basic_auth.realm': 'Some site',
 'tools.basic_auth.users': get_users,
 'tools.basic_auth.encrypt': encrypt_pwd}}
 root = Root()
 root.admin = Admin()
 cherrypy.quickstart(root, '/', config=conf)

The get_users function returns a hard-coded dictionary but it could also fetch the
values from a database or anywhere else. Keep in mind that the basic authentication
scheme is not really secure as the password is only encoded and can be decoded
on the fly if someone captures it. This scheme is, however, often used over SSL
because it is the easiest to put in place while the Secure Socket Layer encrypts the
enclosed data.

Caching Tool
Purpose: The purpose of this tool is to provide basic in-memory caching of CherryPy
generated content.

Arguments:

Name Default Description
invalid_methods ("POST", "PUT",

"DELETE")
Tuples of strings of HTTP methods not to be
cached. These methods will also invalidate
(delete) any cached copy of the resource.

cache_class MemoryCache Class object to be used for caching.

A comprehensive example would be out of the scope of this book but if you are
interested in this tool you should first look at the CherryPy test suite as well as visit
the CherryPy users' mailing-list.

CherryPy in Depth

[64]

Decoding Tool
Purpose: The purpose of this tool is to decode the incoming request parameters.

Arguments:

Name Default Description
encoding None What encoding is to be used to decode the

incoming content? If None it looks for the
Content-Type header and if it cannot find a
suitable charset it uses default_encoding.

default_encoding "UTF-8" Default encoding to be used when none is
provided or found.

Example:

import cherrypy
from cherrypy import tools

class Root:
 @cherrypy.expose
 def index(self):
 return """<html>
<head></head>
<body>
 <form action="hello" method="post">
 <input type="text" name="name" value="" />
 </form>
</body>
</html>
"""

 @cherrypy.expose
 @tools.decode(encoding='ISO-88510-1')
 def hello(self, name):
 return "Hello %s" % (name,)

if __name__ == '__main__':
 cherrypy.quickstart(Root(), '/')

In this case when the HTML form is sent to the server, CherryPy tries to decode the
incoming data using the encoding we have set. If you look at the type of the name
parameter you will see that when using the decoding tool it is Unicode whereas
without the tool it is a string.

Chapter 4

[65]

Digest Authentication Tool
Purpose: The purpose of this tool is to provide digest authentication as defined in
RFC 2617.

Arguments:

Name Default Description
realm N/A String defining the realm value.
users N/A Dictionary of the form—username:password or a

Python callable returning such a dictionary.

Example:

import cherrypy

class Root:
 @cherrypy.expose
 def index(self):
 return """<html>
<head></head>
<body>
 Admin area
</body>
</html>
"""

class Admin:
 @cherrypy.expose
 def index(self):
 return "This is a private area"

if __name__ == '__main__':

 def get_users():
 return {'test': 'test'}

 conf = {'/admin': {'tools.digest_auth.on': True,
 'tools.digest_auth.realm': 'Some site',
 'tools.digest_auth.users': get_users}}
 root = Root()
 root.admin = Admin()
 cherrypy.quickstart(root, '/', config=conf)

CherryPy in Depth

[66]

Note that the digest tool does not provide a way to pass an encrypted password. The
reason for this is that the digest scheme is defined not to send the password across
the wire as clear text. The way it works is as follows:

1.	 The client requests to access the resource. The server returns a 401 error
code indicating it uses the digest scheme. The server provides a token for
this exchange.

2.	 The client creates a new message based on the token, the username, and the
password and generates a hash via the MD5 algorithm.

3.	 Upon receiving the new message from the client, the server tries to generate
the same values. If they all match, the authentication is allowed.

As you can see, the password never transits as clear text on the wire. Discussions
have taken place to decide how the digest tool can be evolved in order to avoid
the need to store passwords as clear text. One way would be to store one of the
intermediate steps of the digest token (step 1) and compare this value with what has
been sent by the client. This is beyond the scope of this book but you can get more
information from the CherryPy mailing lists.

Encode Tool
Purpose: The purpose of this tool is to encode the response content in a
defined encoding.

Arguments:

Name Default Description
encoding None What encoding is to be used to encode the response?

If None, it looks for the Content-Type header and
sets a suitable charset if it can.

errors "strict" Defines how the tool must react when it fails to
encode a character.

Example:

import cherrypy
from cherrypy import tools

class Root:
 @cherrypy.expose
 def index(self):
 return """<html>
<head></head>
<body>

Chapter 4

[67]

 <form action="hello" method="post">
 <input type="text" name="name" value="" />
 </form>
</body>
</html>
"""

 @cherrypy.expose
 @tools.encode(encoding='ISO-88510-15')
 def hello(self, name):
 return "Hello %s" % name

if __name__ == '__main__':
 cherrypy.quickstart(Root(), '/')

Error Redirect Tool
Purpose: The purpose of this tool is to modify the default CherryPy error handler.

Arguments:

Name Default Description
url '' The URL to which it should be redirected.
internal True When True, the redirection is hidden from the

client and happens only within the context of this
request. If False, CherryPy informs the client
that a redirection should be issued by the client
itself to the URL provided.

Etag Tool
Purpose: The purpose of this tool is to validate an Entity Tag (Etag) sent by a user
agent and generate the response accordingly as defined by RFC 2616 section 14.24.
Etags are one of the ways to cache HTTP responses and thus diminish the burden on
any parties involved.

Argument:

Name Default Description
autotags False When True the tool will generate an etag value

based on the response body set.

CherryPy in Depth

[68]

Example:

import cherrypy
from cherrypy import tools

class Root:
 @cherrypy.expose
 def index(self):
 return """<html>
<head></head>
<body>
 <form action="hello" method="post">
 <input type="text" name="name" value="" />
 </form>
</body>
</html>
"""

 @cherrypy.expose
 def hello(self, name):
 return "Hello %s" % name

if __name__ == '__main__':
 conf = {'/': {'tools.etags.on': True,
 'tools.etags.autotags': True}}
 cherrypy.quickstart(Root(), '/', config=conf)

In the previous example, we set the etags tool for the whole application. On the first
request to the index page handler, the tool will generate an etag value and insert it
in the response headers. On the next request to that URI, the client will include the
last received etag. The tool will compare it with the current one and if they match
the response will be 304 Not Modified informing the client that it can safely use its
copy of the resource.

Note that if you need the etag value to be computed in a different fashion, the best
way is to set the autotags parameter to False, the default, and then from within
your page handler add the Etag header yourself to the response headers.

Chapter 4

[69]

Gzip Tool
Purpose: The purpose of this tool is to perform content encoding on the
response body.

Arguments:

Name Default Description
compress_level 10 Level of compression to be

achieved. The lower it is, the
faster it will be.

mime_types ['text/html', 'text/plain'] List of MIME types that can
be compressed.

Example:

import cherrypy
from cherrypy import tools

class Root:
 @cherrypy.expose
 @tools.gzip()
 def index(self):
 return "this will be compressed"

if __name__ == '__main__':
 cherrypy.quickstart(Root(), '/')

Note that the gzip tool should not be used when the response is streamed via its
stream attribute. Indeed in this case CherryPy starts sending the body as soon as
it has something to send, for instance when the page handler yields the content,
instead of returning it.

Ignore Headers Tool
Purpose: The purpose of this tool is to remove the specified headers from the HTTP
request before they are processed by CherryPy.

Argument:

Name Default Description
ignore_headers headers=('Range',) Tuple of header names to be disregarded.

CherryPy in Depth

[70]

Example:

import cherrypy
from cherrypy import tools

class Root:
 @cherrypy.expose
 @tools.ignore_headers(headers=('Accept-Language',))
 def index(self):
 return "Accept-Language: %s" \
 % cherrypy.request.headers.get('Accept-Language',
 'none provided')

 @cherrypy.expose
 def other(self):
 return "Accept-Language: %s" % cherrypy.request.headers.
get('Accept-Language')

if __name__ == '__main__':
 cherrypy.quickstart(Root(), '/')

If you access http://localhost:8080/, you will get the following message whether
or not the client has indeed set that header:

Accept-Language: none provided

If you navigate to http://localhost:8080/other you will get the following
message:

Accept-Language: en-us,en;q=0.5

Log Headers Tool
Purpose: The purpose of this tool is to dump request headers into the error log file
when an error occurs on the server. This tool is disabled by default.

Argument: None

Example:

import cherrypy
from cherrypy import tools

class Root:
 @cherrypy.expose
 def index(self):
 raise StandardError, "Some sensible error message here"

Chapter 4

[71]

if __name__ == '__main__':
 cherrypy.config.update({'global': {'tools.log_headers.on':
 True}})
 cherrypy.quickstart(Root(), '/')

When you access http://localhost:8080, the error will be raised and the error log
will show the request headers. Note that in this case this tool is set at the web-server
level via the cherrypy.config.update() method but it can be applied on a per path
basis as well.

Log Tracebacks Tool
Purpose: The purpose of this tool is to dump the error's traceback into the error log
file when an exception is raised. This tool is enabled by default.

Argument: None

Example:

import cherrypy
from cherrypy import tools

class Root:
 @cherrypy.expose
 def index(self):
 raise StandardError, "Some sensible error message here"

if __name__ == '__main__':
 # This tool is applied globally to the CherryPy process
 # by using the global cherrypy.config.update method.
 cherrypy.config.update({'global': {'tools.log_tracebacks.on':
 False}})
 cherrypy.quickstart(Root(), '/')

CherryPy in Depth

[72]

Proxy Tool
Purpose: The purpose of this tool is to change the base URL of the requests. This
is especially helpful when running the application behind another server such
as Apache.

Arguments:

Name Default Description
base None If set and local is none, this will be the new base URL

available from cherrypy.request.base.
local 'X-Forwarded-Host' Which header to look at for the local hosts set for instance

by the front-end web server.
remote 'X-Forwarded-For' Header to look for the IP address of the originating client.
scheme 'X-Forwarded-Proto' Header to look for the original scheme used: http or https

for instance.

When the base is not set, the tool will build the new base URI from the values fetched
from the request headers based on the other parameters.

Example:

import cherrypy
from cherrypy import tools

class Root:
 @cherrypy.expose
 def index(self):
 return "Base URL: %s %s " % (cherrypy.request.base,
 cherrypy.url(''))

 @cherrypy.expose
 def other(self):
 raise cherrypy.HTTPRedirect(cherrypy.url(''))

if __name__ == '__main__':
 conf = {'global': {'tools.proxy.on': True,
 'tools.proxy.base': 'http://someapp.net/blog',
 'tools.proxy.local': ''}}
 cherrypy.config.update(conf)
 cherrypy.quickstart(Root(), '/')

When navigating to http://localhost:8080 you will see the following message:

Base URL: http://someapp.net/blog http://someapp.net/blog/

Chapter 4

[73]

If you navigate to http://localhost:8080/other, you will be redirected to
http://someapp.net/blog/, which shows that the proxy tools ensure in a
transparent manner that the CherryPy library stays coherent in behavior in
accordance with the settings you provide.

For more examples on using this tool behind another server please see Chapter 10.

Referer Tool
Purpose: The purpose of this tool is to allow the filtering of requests based on a
pattern. Requests can be rejected or accepted after matching the pattern.

Arguments:

Name Default Description
pattern N/A Regular expression pattern.
accept True If True any matching referer will allow the

request to proceed. Otherwise, any matching
referer will cause the request to be rejected.

accept_
missing

False Whether requests with no referer can be allowed
or not.

error 403 HTTP error code to be returned to the user agent
upon refusal.

message 'Forbidden Referer
header.'

Message to be returned to the user agent upon
refusal.

Example:

import cherrypy
from cherrypy import tools

class Root:
 @cherrypy.expose
 def index(self):
 return cherrypy.request.headers.get('Referer')

if __name__ == '__main__':
 conf = {'/': {'tools.referer.on': True,
 'tools.referer.pattern': 'http://[^/]*dodgy\.com',
 'tools.referer.accept': False}}
 cherrypy.quickstart(Root(), '/', config=conf)

In this example, we will reject all requests coming from the dodgy.com domain and
sub-domains.

CherryPy in Depth

[74]

Response Headers Tool
Purpose: The purpose of this tool is to allow some common headers to be set for all
or many page handlers at once.

Argument:

Name Default Description
headers None List of tuples: header, value

Example:

import cherrypy
from cherrypy import tools

class Root:
 @cherrypy.expose
 def index(self):
 return "Some text"

 @cherrypy.expose
 def other(self):
 return "Some other text"

if __name__ == '__main__':
 conf = {'/': {'tools.response_headers.on': True,
 'tools.response_headers.headers': [('Content-Type',
 'text/plain')]}}
 cherrypy.quickstart(Root(), '/', config=conf)

In this example, the tool sets Content-Type to text/plain for all page handlers.

Chapter 4

[75]

Trailing Slash Tool
Purpose: The purpose of this tool is to provide a flexible way to deal with the trailing
slash of requests. This tool is enabled by default.

Arguments:

Name Default Description
missing True If the page handler is the index, if the missing

parameter is True, and if the request missed a
trailing slash, CherryPy will automatically issue a
redirection towards the URI with the additional slash
at the end.

extra False If the page handler is not the index, if the extra
parameter is set to True, and if the URI has a trailing
slash, CherryPy will issue a redirection towards the
URI without the trailing slash.

Example:

import cherrypy
from cherrypy import tools

class Root:
 @cherrypy.expose
 def index(self):
 return "This should have been redirected to add the trailing
 slash"

 @cherrypy.expose
 def nothing(self):
 return "This should have NOT been redirected"
 nothing._cp_config = {'tools.trailing_slash.on': False}

 @cherrypy.expose
 def extra(self):
 return "This should have been redirected to remove the
 trailing slash"
 extra._cp_config = {'tools.trailing_slash.on': True,
 'tools.trailing_slash.missing': False,
 'tools.trailing_slash.extra': True}

if __name__ == '__main__':
 cherrypy.quickstart(Root(), '/')

CherryPy in Depth

[76]

To understand this tool, navigate to the following URLs:

http://localhost:8080

http://localhost:8080/nothing

http://localhost:8080/nothing/

http://localhost:8080/extra/

XML-RPC Tool
Purpose: The purpose of this tool is to transform CherryPy into an XML-RPC server
and make page handlers XML-RPC callables.

Argument: None

Example:

import cherrypy
from cherrypy import _cptools

class Root:
 @cherrypy.expose
 def index(self):
 return "Regular web page handler"

class XMLRPCApp(_cptools.XMLRPCController):
 @cherrypy.expose
 def echo(self, message):
 return message

if __name__ == '__main__':
 root = Root()
 root.xmlrpc = XMLRPCApp()
 cherrypy.quickstart(root, '/')

The XMLRPCController is a helper class that should be used instead of the XML-RPC
tool directly.

You can then test your XML-RPC handler as follows:

>>> import xmlrpclib
>>> s = xmlrpclib.ServerProxy('http://localhost:8080/xmlrpc')
>>> s.echo('test')
'test'

Chapter 4

[77]

Toolbox
CherryPy tools must belong to a toolbox that is to be managed by the CherryPy
engine. Toolboxes have their own namespace to avoid name collision. Although
nothing prevents you from using the default toolbox you can create one of your own
as follows:

from cherrypy._cptools import Toolbox,
mytb = Toolbox('mytb')
mytb.xml_parse = Tool('before_handler', xmlparse)
conf = {'/': {'mytb.xml_parse.on': True,
 'mytb.xml_parse.engine': 'amara'}}

Creating a Tool
Now that we have reviewed the toolbox shipped with CherryPy, we will explain
how to write a tool. Before deciding to create a tool you should ask yourself a few
questions such as:

Should the added feature be handled at the CherryPy level?
At which level of the request processing should this be applied?
Will you modify CherryPy's default behavior?

These questions simply allow you to make sure that the feature you want to add is
at the right level. Tools can sometimes look like a pattern on their own, upon which
you can design your application.

We will create a tool that will read and parse XML contained in a request body
into a page handler parameter. To do so, we will be using the ElementTree library.
(ElementTree is maintained by Fredrik Lundh and Amara by Uche Ogbuji.)

A tool is created either by sub-classing the Tool class or via an instance of that class
as shown in the following example. Instantiating the Tool class is the most common
case to consider and it is the one we will be discussing.

The class constructor declaration is as follows:

Tool(point, callable, name=None, priority=50)

The point parameter is a string indicating to which hook point this tool
should be attached.
The callable parameter is a Python callable that will be applied.

•

•

•

•

•

CherryPy in Depth

[78]

The name parameter defines what the name of the tool will be within the
toolbox. When it is not provided, it uses the name of the attribute holding the
instance of the tool within the toolbox (refer to our example).
The priority sets the order of the tools when several tools are attached at
the same hook point.

Once an instance of the tool is created, you can attach it to the built-in toolbox
as follows:

cherrypy.tools.mytool = Tool('on_start_resource', mycallable)

This tool will be available like any other built-in tools to your application.

When creating a tool, you can provide two attributes to your callable that will be
used when initializing the tool. They are as follows:

failsafe: If True, it means the tool will run even when an error is raised
before the tool's turn. It defaults to False.
priority: Relative order of this tool in regards to others at the same hook
point. It defaults to 50.

Thus you could write:

def mycallable(...):

mycallable.failsafe = True
mycallable.priority = 30
cherrypy.tools.mytool = Tool('on_start_resource', mycallable)

CherryPy provides a shortcut for tools that will be applied at the before_handler
hook point, in other words just before the page handler is called. This should be one
of the most common cases for non-built-in tools.

cherrypy.tools.mytool = Tool('before_handler', mycallable)

This is equivalent to the following:

cherrypy.tools.mytool = HandlerTool(mycallable)

The HandlerTool class provides one additional feature as it allows your callable to
be applied as a page handler itself through the handler(*args, **kwargs) method
of the HandlerTool class. Thus:

class Root:
 other = cherrypy.tools.mytool.handler()

•

•

•

•

Chapter 4

[79]

This can be useful to provide the same handler in different areas of your application
without duplicating code.

Let's now see a more elaborate example:

import cherrypy
from cherrypy import tools
from cherrypy import Tool
from xml.parsers.expat import ExpatError
from xml.sax._exceptions import SAXParseException

def xmlparse(engine='elementtree', valid_content_types=['text/xml',
 'application/xml'], param_name='doc'):
 # Transform the XML document contained in the request body into
 # an instance of the chosen XML engine.

 # Get the mime type of the entity sent by the user-agent
 ct = cherrypy.request.headers.get('Content-Type', None)

 # if it is not a mime type we can handle
 # then let's inform the user-agent
 if ct not in valid_content_types:
 raise cherrypy.HTTPError(415, 'Unsupported Media Type')

 # CherryPy will set the request.body with a file object
 # where to read the content from
 if hasattr(cherrypy.request.body, 'read'):
 content = cherrypy.request.body.read()
 doc = content
 try:
 if engine == 'elementtree':
 from elementtree import ElementTree as ETX
 doc = ETX.fromstring(content)
 elif engine == 'amara':
 import amara
 doc = amara.parse(content)
 except (ExpatError, SAXParseException):
 raise cherrypy.HTTPError(400, 'XML document not
 well-formed')

 # inject the parsed document instance into
 # the request parameters as if it had been
 # a regular URL encoded value
 cherrypy.request.params[param_name] = doc

Create a new Tool and attach it to the default CherryPy toolbox

CherryPy in Depth

[80]

tools.xml_parse = Tool('before_handler', xmlparse)

class Root:
 @cherrypy.expose
 @tools.xml_parse()
 def echoet(self, doc):
 return doc.find('.//message').text

 @cherrypy.expose
 @tools.xml_parse(engine='amara', param_name='d')
 def echoamara(self, d):
 return unicode(d.root.message)

if __name__ == '__main__':
 cherrypy.quickstart(Root(), '/')

In order to test the tool, you will need ElementTree or Amara or
both. You can install both via the easy_install command.

Our XML tool will read the HTTP body content and parse it via the specified
XML toolkit. Then it will inject back the parsed document into the request
parameters so that the new document instance is passed on to the page handler
as a regular parameter.

Launch the previous example and then run in a Python interpreter:

>>> s = '<root><message>Hello!<message></root>'
>>> headers = {'Content-Type': 'application/xml'}

>>> import httplib
>>> conn = httplib.HTTPConnection("localhost:8080")

>>> conn.request("POST", "/echoet", s, headers)
>>> r1 = conn.getresponse()
>>> print r1.status, r1.reason
200 OK
>>> r1.read()
'Hello!'

>>> conn.request("POST", "/echoamara", s, headers)
>>> r1 = conn.getresponse()
>>> print r1.status, r1.reason
200 OK
>>> r1.read()

Chapter 4

[81]

'Hello!'

>>> conn.request("POST", "/echoamara", s)
>>> r1 = conn.getresponse()
>>> print r1.status, r1.reason
415 Unsupported Media Type

>>> conn.close()

As you can see the tool interface provided by CherryPy 3 is powerful, flexible, and
yet quite intuitive and easy to reuse. However, always be careful to ponder over
your requirements before using tools. They should be used for low-level operations
that fit into the HTTP request/response model.

Static Resource Serving
CherryPy provides two simple tools to serve either a single file or an entire directory.
In either case CherryPy takes care of the HTTP caching aspect of your static
resource by automatically checking the presence of the If-Modified-Since and
If-Unmodified-Since headers in the request and returning directly the 304 Not
Modified response, if that's the case.

Using the Staticfile Tool to Serve a Single File
The staticfile tool can be used to serve a single file.

Arguments:

Name Default Description
filename N/A Absolute or relative path to the physical file.
root None If filename is relative you must provide the

root directory of the file.
match "" Regular expression to check that the URI path

matches a certain pattern.
content_types None Dictionary of the form ext: mime type.

Example:

For this purpose let's imagine we have the following directory layout:

application \
 myapp.py
 design1.css

CherryPy in Depth

[82]

design1.css is set as follows:

body {
 background-color: #86da12;
}

The myapp.py module will be defined like this:

import cherrypy

class MyApp:
 @cherrypy.expose
 def index(self):
 return """<html>
<head>
 <title>My application</title>
 <link rel="stylesheet" href="css/style.css" type="text/css"></link>
</head>
<html>
<body>
 Hello to you.
</body>
</html>"""

if __name__ == '__main__':
 import os.path
 current_dir = os.path.dirname(os.path.abspath(__file__))
 cherrypy.config.update({'environment': 'production',
 'log.screen': True})

 conf = {'/': {'tools.staticfile.root': current_dir},
 '/css/style.css': {'tools.staticfile.on': True,
 'tools.staticfile.filename':
 'design1.css'}}
 cherrypy.quickstart(MyApp(), '/my', config=conf)

Several points must be taken into consideration:

The root directory can be set globally for the entire application so that you
don't have to define it for each URI path.
When using the staticfile tool the URI and the physical resource need not
have the same name. In fact they can be entirely unrelated in their naming as
in the previous example.

•

•

Chapter 4

[83]

Note also that even though the application is mounted on the /my prefix,
meaning that requests to the CSS file will be /my/css/style.css (note
that this is the case because the path provided in the href attribute of the
link element is relative and not absolute: it does not start with a /), our
configuration settings do not include the prefix. As we have seen in Chapter
3, this is because the configuration settings are independent from where the
application is mounted.

Using the Staticdir Tool to Serve a Complete
Directory
The staticdir tool can be used to serve a complete directory.

Arguments:

Name Default Description
dir N/A Absolute or relative path to the physical

directory.
root None If dir is relative you must provide the root

directory of the file.
match "" Regular expression pattern to match files.
content_types None Dictionary of the form ext: mime type.
index "" If the URI is not directed at a file but at a

directory, you can specify the name of the
physical index file to be served.

Example:

Consider the new directory layout.

application \
 myapp.py
 data \
 design1.css
 some.js
 feeds \
 app.rss
 app.atom

•

CherryPy in Depth

[84]

Handling that structure via the static directory tool would be similar to:

import cherrypy

class MyApp:
 @cherrypy.expose
 def index(self):
 return """<html>
<head>
 <title>My application</title>
 <link rel="stylesheet" href="static/css/design1.css"
 type="text/css"></link>
 <script type="application/javascript"
 src="static/scripts/some.js"></script>
</head>
<html>
<body>
 RSS 2.0 feed
 Atom 1.0 feed
</body>
</html>"""

if __name__ == '__main__':
 import os.path
 current_dir = os.path.dirname(os.path.abspath(__file__))
 cherrypy.config.update({'environment': 'production',
 'log.screen': True})

 conf = {'/': {'tools.staticdir.root': current_dir},
 '/static/css': {'tools.gzip.on': True,
 'tools.gzip.mime_types':['text/css'],
 'tools.staticdir.on': True,
 'tools.staticdir.dir': 'data'},
 '/static/scripts': {'tools.gzip.on': True,
 'tools.gzip.mime_types':
 ['application/javascript'],
 'tools.staticdir.on': True,
 'tools.staticdir.dir': 'data'},
 '/feed': {'tools.staticdir.on': True,
 'tools.staticdir.dir': 'feeds',
 'tools.staticdir.content_types':
 {'rss':'application/xml',
 'atom': 'application/atom+xml'}}}
 cherrypy.quickstart(MyApp(), '/', config=conf)

Chapter 4

[85]

In this example, you will note that the URI paths for the CSS and the JavaScript files
match exactly their physical counterparts. Also take a close look at how we define
the appropriate Content-Type for the resource based on the file extension. This is
useful when CherryPy cannot determine the proper MIME type to be used on its
own. Finally, see how we mix the static directory tool with the gzip one so that our
static content is compressed before being served.

You may find it limitating that CherryPy requires absolute paths to
work with the different static tools. But consider the fact that CherryPy
cannot control how an application will be deployed and where it will
live. Therefore, it is up to the deployers to provide that information.
Remember, however, that the absolute path can be provided via the
root attribute or directly within the filename or dir ones.

Bypassing Static Tools to Serve Static
Content
Sometimes you may want to reuse CherryPy's internal functionalities for serving
content but without using the static tools directly. This is possible by calling the
serve_file function from your page handler. This function is actually the one called
by the built-in tools as well. Consider the following example:

import os.path
import cherrypy
from cherrypy.lib.static import serve_file

class Root:
 @cherrypy.expose
 def feed(self, name):
 accepts = cherrypy.request.headers.elements('Accept')

 for accept in accepts:
 if accept.value == 'application/atom+xml':
 return serve_file(os.path.join(current_dir, 'feeds',
 '%s.atom' % name),
 content_type='application/atom+xml')

 # Not Atom accepted? Well then send RSS instead...
 return serve_file(os.path.join(current_dir, 'feeds',
 '%s.rss' % name),
 content_type='application/xml')

CherryPy in Depth

[86]

if __name__ == '__main__':
 current_dir = os.path.dirname(os.path.abspath(__file__))
 cherrypy.config.update({'environment': 'production',
 'log.screen': True})
 cherrypy.quickstart(Root(), '/')

Here we define a feed page handler that, when called, will check what is the
preferred representation of the feed of the user-agent—it maybe RSS or Atom.

WSGI Support
Web Server Gateway Interface (WSGI) is defined in a Python Enhancement
Proposal (PEP-333) written by Phillip J. Eby to provide a loosely-coupled bridge
between the web server and web applications.

WSGI defines the following three components:

Server or gateway
Middleware
Application or framework

The following figure shows WSGI along with its layers:

The goal of WSGI is to allow components to be plugged and played at will, with the
minimum API overhead possible. This allows code reuse of common functionalities
such as session, authentication, URL dispatching, logging, etc. In fact, because the
API is minimal and unobtrusive, frameworks or libraries supporting the WSGI
specification will be able to handle these components.

•

•

•

Chapter 4

[87]

Until CherryPy 3.0, the support of WSGI within CherryPy was not welcome due to
the internal design of CherryPy and also the belief that WSGI would not necessarily
make the product a better one. When Robert Brewer undertook the refactoring of
the project, he improved the WSGI support based on the work achieved by Christian
Wyglendowski to the point of making it a first class citizen within CherryPy and
therefore fulfilling expectations from the community.

Note that CherryPy tools and WSGI middlewares are different
by design but not by capability. They aim at providing
the same functionalities in a distinct way. CherryPy tools
are mainly meaningful within CherryPy and are therefore
optimized in that context. CherryPy tools and WSGI
middlewares can coexist in a single application.

Hosting a WSGI Application within the
CherryPy WSGI Server
Let's see an example on how to use CherryPy in a WSGI environment:

import cherrypy
from paste.translogger import TransLogger

def application(environ, start_response):
 status = '200 OK'
 response_headers = [('Content-type', 'text/plain')]
 start_response(status, response_headers)
 return ['Hello world!\n']

if __name__ == '__main__':
 cherrypy.tree.graft(TransLogger(application), script_name='/')
 cherrypy.server.quickstart()
 cherrypy.engine.start()

CherryPy in Depth

[88]

Let's explain what we have done:

1.	 First we create a WSGI application respecting the WSGI specification,
hence a Python callable respecting the WSGI application signature. The
environ parameter contains values to be propagated orthogonally across
the processing from the server to the application. Middlewares can alter
this dictionary by adding new values or transforming existing values. The
start_response parameter is a Python callable provided by the outer
layer (a middleware or ultimately the WSGI server) to perform the response
processing. Our WSGI application then returns an iterable, which will be
consumed by the outer layers.

2.	 Then, we encapsulate the application into a middleware provided by the
paste package. Paste is a suite of common WSGI middlewares created
and maintained by Ian Bicking. In our example, we use the TransLogger
middleware to enable logging of incoming requests. WSGI defines
middlewares to act like a server for encapsulated WSGI applications and as
an application for the hosting WSGI server.

3.	 Finally, we graft the WSGI application into the CherryPy tree through the
cherrypy.tree.graft() method and we start the CherryPy server
and engine.

As the built-in CherryPy server is a WSGI server, it can handle the WSGI application
without any trouble. Bear in mind, however, that many aspects of CherryPy such as
tools and configuration settings will not be applied to the hosted WSGI application.
You will need to use middlewares to perform operations such as the paste.
transLogger. Alternatively, you can use the wsgiapp tool as follows:

import cherrypy
from paste.translogger import TransLogger

def application(environ, start_response):
 status = '200 OK'
 response_headers = [('Content-type', 'text/plain')]
 start_response(status, response_headers)
 return ['Hello world!\n']

class Root:
 pass

if __name__ == '__main__':
 app = TransLogger(application)
 conf = {'/': {'tools.wsgiapp.on': True,
 'tools.wsgiapp.app': app,
 'tools.gzip.on': True}}

Chapter 4

[89]

 cherrypy.tree.mount(Root(), '/', config=conf)
 cherrypy.server.quickstart()
 cherrypy.engine.start()

In this example, we wrap the WSGI application using the wsgiapp tool. Notice that
we can apply tools on the WSGI application as if it was a regular page handler.

Hosting a CherryPy WSGI Application within a
Third-Party WSGI Server
In this example, we will write a CherryPy application as we traditionally do and
host it in a WSGI server different from the built-in one. Indeed, we will be using the
default WSGI server provided by the wsgiref package.

The wsgiref package is a set of WSGI helpers that has
become part of the Python standard library as of Python 2.5.
Otherwise, you can get it via easy_install wsgiref.

import cherrypy
from cherrypy import tools
from wsgiref.simple_server import make_server
from flup.middleware.gzip import GzipMiddleware

class Root:
 @cherrypy.expose
 @tools.response_headers(headers=[('Content-Language', 'en-GB')])
 def index(self):
 return "Hello world!"

if __name__ == '__main__':
 wsgi_app = cherrypy.Application(Root(), script_name="/")
 cherrypy.engine.start(blocking=False)

 httpd = make_server('localhost', 8080, GzipMiddleware(wsgi_app))
 print "HTTP Serving HTTP on http://localhost:8080/"
 httpd.serve_forever()

CherryPy in Depth

[90]

Let's explain this example:

1.	 First we create a regular CherryPy application. Note how we can still safely
use CherryPy tools in this context.

2.	 Then we make a WSGI application from it through the
cherrypy.Application helper. This returns a WSGI-valid callable made
of the CherryPy application.

3.	 Next we start the CherryPy engine in a non-blocking mode as we still need
CherryPy to handle the request and dispatch to the correct page handler.

4.	 Then we create a WSGI server instance hosting our WSGI application, which
is encapsulated in the gzip middleware, which compresses the response
body. This middleware is provided by the flup package, which is another
WSGI set of middlewares. (Flup is maintained by Allan Saddi.)

To conclude, the level of support for WSGI within CherryPy 3 is excellent, while
being flexible enough so that you can use the best of both designs when need be.
CherryPy can be seen as a comprehensive and coherent WSGI implementation.
Moreover, CherryPy has the most comprehensive and fastest WSGI server currently
available and you have no reason to believe you should drop the library if you want
WSGI support. You can get more information about WSGI at http://wsgi.org.

Summary
In this chapter, we have reviewed key points of the CherryPy library, which will
hopefully open your mind on how to make the most of its capabilities. While being
a small package CherryPy offers an extended and yet coherent set of features all
geared towards making your life easier. Some aspects of CherryPy have been left
out, however, as they go beyond the scope of this book and the best place to gather
more detailed information is by visiting the user and developer public mailing lists.

Now that you have acquired a good background with the library, we will move on to
using it by developing a simple photoblog application.

A Photoblog Application
In this chapter, we are going to explain what the next few chapters will put in place
to develop a photoblog application. In the first half of this chapter, we will review
the goals and features of this application from a high-level perspective without
going into too much detail. In the second half, we will define the entities that our
application will manipulate and introduce the concept of object-relational mappers,
which aim at reducing the impedance mismatch between relational database and
object-oriented software design. We will briefly present the most common Python
ORMs and then develop our application data access layer based on the Dejavu ORM.

A Photoblog Application
In the previous chapters, we have reviewed CherryPy's design and features in
detail but we haven't demonstrated its use in the context of a web application. The
next few chapters will undertake this task by going through the development of a
photoblog application.

A photoblog is like a regular blog except that the principal content is not text but
photographs. The main reason for choosing a photoblog is that the range of features
to be implemented is small enough so that we can concentrate on their design and
implementation.

The goals behind going through this application are as follows:

To see how to slice the development of a web application into meaningful
layers and therefore show that a web application is not very different from a
rich application sitting on your desktop.
To show that the separation of concerns can also be applied to the web
interface itself by using principles grouped under the name of Ajax.
To introduce common Python packages for dealing with common aspects
of web development such as database access, HTML templating, JavaScript
handling, etc.

•

•

•

A Photoblog Application

[92]

Photoblog Entities
As mentioned earlier, the photoblog will try to stay as simple as possible in order to
focus on the other aspects of developing a web application. In this section, we will
briefly describe the entities our photoblog will manipulate as well as their attributes
and relations with each other.

In a nutshell our photoblog application will use the following entities and they will
be associated as shown in the following figure:

This figure is not what our application will look like but it shows the entities our
application will manipulate. One photoblog will contain several albums, which in
turn will host as many films as required, which will carry the photographs.

In other words, we will design our application with the following entity structure:

Entity: Photoblog

Role: This entity will be the root of the application.

Attributes:

name: A unique identifier for the blog
title: A public label for the blog

Relations:

One photoblog will have zero to many albums

•

•

•

Chapter 5

[93]

Entity: Album

Role: An album carries a story told by the photographs as an envelope.

Attributes:

name: A unique identifier for the album
title: A public label for the album
author: The name of the album's author
description: A simple description of the album used in feeds
story: A story attached to the album
created: A timestamp of when the album is being created
modified: A timestamp of when the album is being modified
blog_id: A reference to the blog handling the album

Relations:

One album will reference zero to several films

Entity: Film

Role: A film gathers a set of photographs.

Attributes:

name: A unique identifier for the film
title: A public label for the film
created: A timestamp of when the film is being created
modified: A timestamp of when the film is being modified
album_id: A reference to the album

Relations:

A film will reference zero to several photographs

Entity: Photo

Role: The unit of our application is a photograph.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

A Photoblog Application

[94]

Attributes:

name: A unique identifier for the photo
legend: A legend associated with the photograph
filename: The base name of the photograph on the hard-disk
filesize: The size in bytes of the photograph
width: Width of the photograph in pixels
height: Height of the photograph in pixels
created: A timestamp of when the photograph is being created
modified: A timestamp of when the photograph is being modified
film_id: A reference to the film carrying the photograph

Relations: None

Functionally, the photoblog application will provide APIs to manipulate those
entities via the traditional CRUD interface: Create, Retrieve, Update, and Delete.
We will elaborate more on this in Chapter 6.

Now that we have briefly introduced what kind of application we will be developing
throughout the following chapters we can move on to the next section and start
reviewing our options to handle the database aspect of the application. But first a
quick glossary of the terms this chapter will use.

Vocabulary
Here is a list of the terms we will be using:

Persistence: Persistence is the concept of data items outliving the execution of
programs manipulating them. Simply put, it is the process of storing data in
long lasting memory medium such as a disk.
Database: A database is a collection of organized data. There are different
organization models: hierarchical, network, relational, object-oriented, etc. A
database holds the logical representation of its data.
Database Management System (DBMS): A DBMS is a group of related
software applications to manipulate data in a database. A DBMS platform
should offer the following among other features:

Persistence of the data
A query language to manipulate data
Concurrency control

•

•

•

•

•

•

•

•

•

•

•

•

°

°

°

Chapter 5

[95]

Security control
Integrity control
Transaction capabilities

We will use DBMSes as the plural of DBMS.

DBMSes Overview
In this section, we will quickly review the different kinds of existing DBMSes. The
goal is to quickly introduce their main characteristics.

Relational Database Management System
(RDBMS)
Of all DBMSes, the RDBMS is the most common, whether it is in small applications
or multi-national infrastructure. An RDBMS comes with a database based on the
concepts of the relational model, a mathematical model that permits the logical
representation of a collection of data through relations. A relational database should
be a concrete implementation of the relational model. However, modern relational
databases follow the model only to a certain degree.

The following table shows the correlation between the terms of the relational model
and the relational database implementation.

Relational Model Relational Database
Relation Table
Attribute Column
Tuple Row

Relational databases support a set of types to define the domain of scope a column
can use. However, there are only a limited number of supported types, which can be
an issue with complex data types as allowed in objected-oriented design.

Structure Query Language more commonly known as SQL is the language used to
define, manipulate, or control data within a relational database.

°

°

°

A Photoblog Application

[96]

The following table is a quick summary of SQL keywords and their contexts.

Context Keywords
Data manipulation SELECT, INSERT, UPDATE, DELETE
Data definition CREATE, DROP, ALTER
Data control GRANT, REVOKE
Transaction START, COMMIT, ROLLBACK

A construction of these keywords is called an SQL statement. When executed,
an SQL statement returns a collection of rows of the data matching the query or
nothing.

The relational model algebra uses the relation composition to compose operations
across different sets; this is translated in the relational database context by joins.
Joining tables allows complex queries to be shaped to filter out data.

SQL provides the following three kinds of joins:

Union Type Description
INNER JOIN Intersection between two tables.
LEFT OUTER JOIN Limits the result set by the left table. So all results from

the left table will be returned with their matching result
in the right table. If no matching result is found, it will
return a NULL value.

RIGHT OUTER JOIN Same as the LEFT OUTER JOIN except that the tables
are reversed.

There is no RDBMS written in Python but most RDBMSes can be accessed via a
corresponding Python library.

Object-Oriented Database Management
System (OODBMS)
An OODBMS uses the object-oriented model to organize and store information. In
other words, an OODBMS allows objects to be stored without having to be mapped
into a different data structure like the relational database. This implies a great
consistency between the database persisting the data and the application layers
encapsulating it. In fact, the persistence mechanism is unobtrusive to the developer.

Chapter 5

[97]

XML Database Management System
(XMLDBMS)
Native XML Databases (NXDs) use XML documents as the unit of data they store
and manipulate. XMLDBMSes on top of NXDs are optimized in this sense and
provide native support for standard XML selection and querying languages such as
XPath and XQuery. Some modern RDBMSes offer XML support through transparent
conversion between the XML and relational data model leveraging the introduction
of an XML database requirement.

Object-Relational Mapping
For the last fifteen years the software industry has moved towards a generalized
use of the object-oriented modeling paradigm in the different layers of software
application development. One of the last bastions that have resisted against this
wave has been the database domain. Nonetheless, over the years quite an important
amount of work has been conducted with success in order to develop OODBMSes
for filling the gap of managing data. In spite of that OODBMSes have not taken off
enough to steal RDBMS's thunder.

There are several factors behind this:

Cost of changing the market. For decades RDBMSes have been the DBMSes
of predilection to store and organize data. Most businesses have built their
infrastructure around RDBMSes and changing that state is an immense task
and only few are ready to pay for such a risk.
Cost of migrating existing data. Even if a company is ready to step into that
direction for new projects, it is unlikely it will for the existing infrastructure
as the cost of migration and integration would be too high.
Lack of unified query language.
Lack of third-party software such as reporting tools based on OODBMS.
Lack of experts. Finding a database administrator for a RDBMS is much
easier than for an ODBMS.

Object-Relational Mappers (ORMs) succeeded because they were an efficient
and cost-effective answer to some of the enumerated issues. The principle behind
object-relational mapping is to reduce the impedance mismatch between the
two models with minimum intrusion. ORMs allow the database designer and
administrator to keep their beloved RDBMSes while proposing an objected-oriented
interface to a certain extent to the software developer. ORM is an extra layer between
the database and the application which translates an object into a database row and
vice versa.

•

•

•
•
•

A Photoblog Application

[98]

It is important to bear in mind though that ORM can alleviate the problem only
to a certain degree and that in some cases the differences between the relational
and object design cannot be met without some compromise on both sides. For
example, most ORMs correlate a database table into a class, which works fine when
the number of entities and their relationships stay at a basic level. Unfortunately,
this one-to-one relationship between a table and a class does not always work well
in more complex object-oriented design. In such cases the impedance mismatch
between the relational and object-oriented models may force designers to make
concessions that could have negative impacts in the long run in regards to extending
and maintaining the software.

Python Object-Relational Mappers
This section will introduce three ORMs in a very basic example in order to provide a
basic understanding of how they work and their differences. The purpose is not
to declare one of these ORMs the winner but to give you an idea of their design
and features.

The three ORMs we will cover are:

SQLObject from Ian Bicking
SQLAlchemy from Michael Bayer
Dejavu from Robert Brewer

Although great care has been taken in this section, it may happen that by the time
you read this chapter these products might have changed a bit. You will have to refer
to their official documentation.

In the following example we will map the following entities:

Artist: An artist is made of a name. An artist can have zero or several albums.
Album: An album is made of a title and a release year. An album is
associated to an artist and can have zero or more songs.
Song: A song is made of a name and a position within the album. A song is
associated to an album.

This example should be seen as a stripped down version of our photoblog entity set
that we defined at the start of this chapter in order to focus on the actual features of
each ORM rather than on the entities themselves.

•

•

•

•

•

•

Chapter 5

[99]

Step 1: Mapping the entities

SQLObject

from sqlobject import *

class Song(SQLObject):
 title = StringCol()
 position = IntCol()
 album = ForeignKey('Album', cascade=True)

class Album(SQLObject):
 title = StringCol()
 release_year = IntCol()
 artist = ForeignKey('Artist', cascade=True)
 songs = MultipleJoin('Song', orderBy="position")

class Artist(SQLObject):
 # Using alternateID will automatically
 # create a byName() method
 name = StringCol(alternateID=True, unique=True)
 albums = MultipleJoin('Album')

The first point to note is that SQLObject does not require a separate declaration of
the mapping that is done within the class itself. Each class must inherit from the
unobtrusive SQLObject class to be manageable by SQLObject and the attributes
will be mapped transparently by SQLObject into the table's columns. SQLObject
automatically adds an attribute id to hold the unique identifier of each object. This
means that every table mapped by SQLObject must have a primary key.

ForeignKey or MultipleJoin are examples of how to define the relationships
between entities. Note that they need the name of the class as a string and not the
class object itself. This allows the declaration of relationships without the prior
existence of each class within the scope of the module. In other words Artist
and Album could be declared in two different modules without the problem of
cross imports.

SQLObject offers a useful feature when specifying alternateID as a parameter in
one of the class attributes. By using it, SQLObject adds a new method to the class of
the form byAttributeName as shown in the example above. Note also how you can
specify at that level the way rows must be ordered when being retrieved.

A Photoblog Application

[100]

Finally bear in mind that by default SQLObject auto-commits to the database each
modification made to an attribute, which can increase the network overhead as well
as break the database integrity if an error occurs. To work around this behavior
SQLObject offers the set method on an SQLObject object that performs one single
UPDATE query for all the modifications limiting the required bandwidth. Moreover,
SQLObject supports the concept of transactions, allowing us to ensure that
operations are atomic to the database and can then be rolled back if an error occurs.
Note that the transactions have to be explicitly requested by the developer.

SQLAlchemy

from sqlalchemy import *

artist_table = Table('Artist', metadata,
 Column('id', Integer, primary_key=True),
 Column('name', String(), unique=True))

song_table = Table('Song', metadata,
 Column('id', Integer, primary_key=True),
 Column('title', String()),
 Column('position', Integer),
 Column('album_id', Integer,
 ForeignKey('Album.id')))

album_table = Table('Album', metadata,
 Column('id', Integer, primary_key=True),
 Column('title', String()),
 Column('release_year', Integer),
 Column('artist_id', Integer,
 ForeignKey('Artist.id')))

class Artist(object):
 def __init__(self, name):
 self.id = None
 self.name = name

class Album(object):
 def __init__(self, title, release_year=0):
 self.id = None
 self.title = title
 self.release_year = release_year

class Song(object):
 def __init__(self, title, position=0):
 self.id = None

Chapter 5

[101]

 self.title = title
 self.position = position

song_mapper = mapper(Song, song_table)
album_mapper = mapper(Album, album_table,
 properties = {'songs': relation(song_mapper,
 cascade="all, delete-orphan")
 })
artist_mapper = mapper(Artist, artist_table,
 properties = {'albums': relation(album_mapper,
 cascade="all, delete-orphan")
 })

SQLAlchemy uses a declarative mapping style as you can see. The first step is to
express tables into their Python syntax counterpart. Then we need to declare the
class our application will manipulate. Note how they don't need to inherit from an
SQLAlchemy class even though they must inherit from the built-in Python object
class. Eventually, we map both aspects through the mapper function, which also
allows us to inform SQLAlchemy of the relationships between entities.

You will notice how the identifier of each table is explicitly declared unlike
SQLObject and Dejavu. Similarly you do not specify at that level how fetched rows
must be ordered as this will be specified at the query level.

Dejavu

from dejavu import Unit, UnitProperty

class Song(Unit):
 title = UnitProperty(unicode)
 position = UnitProperty(int)
 album_id = UnitProperty(int, index=True)

class Album(Unit):
 title = UnitProperty(unicode)
 release_year = UnitProperty(int)
 artist_id = UnitProperty(int, index=True)

 def songs(self):
 return self.Song()
 songs = property(songs)

 def artist(self):
 return self.Artist()
 artist = property(artist)

A Photoblog Application

[102]

 def on_forget(self):
 for song in self.Song():
 song.forget()

class Artist(Unit):
 name = UnitProperty(unicode)

 def albums(self):
 return self.Album()
 albums = property(albums)

 def on_forget(self):
 for album in self.Album():
 album.forget()

Album.one_to_many('ID', Song, 'album_id')
Artist.one_to_many('ID', Album, 'artist_id')

Like SQLObject, Dejavu does lots of work under the hood. Each class participating
in the mapping must inherit from Unit. The attributes of the class represent the
columns of the table. Only the relationship between the entities is done through a
more declarative interface.

One difference between Dejavu and the other two is that it does not provide the
cascade delete feature. This means that this has to be accomplished from the class
itself by defining an on_forget() method and specifying what tasks should be done
when deleting a unit. This might look at first sight like a drawback but offers, in fact,
a fine granularity on how you propagate a cascade delete.

Step 2: Setting up the access to the database

SQLObject

Create a connection to a SQLlite 'in memory' database
sqlhub.processConnection =
connectionForURI('sqlite:/:memory:?debug=True')

SQLAlchemy

Inform SQLAlchemy of the database we will use
A SQLlite 'in memory' database
Mapped into an engine object and bound to a high
level meta data interface
engine = create_engine('sqlite:///:memory:', echo=True)
metadata = BoundMetaData(engine)

Chapter 5

[103]

Dejavu

Create the global arena object
arena = dejavu.Arena()
arena.logflags = dejavu.logflags.SQL + dejavu.logflags.IO

Add a storage to the main arena object

conf = {'Database': ":memory:"}
arena.add_store("main","sqlite", conf)

Register units the arena will be allowed to handle
This call must happen after the declaration of the units
and those must be part of the current namespace
arena.register_all(globals())

Step 3: Manipulating tables

SQLObject

def create_tables():
 Album.createTable()
 Song.createTable()
 Artist.createTable()

def drop_tables():
 Song.dropTable()
 Artist.dropTable()
 Album.dropTable()

SQLAlchemy

def create_tables():
 artist_table.create(checkfirst=True)
 album_table.create(checkfirst=True)
 song_table.create(checkfirst=True)

def drop_tables():
 artist_table.drop(checkfirst=False)
 song_table.drop(checkfirst=False)
 album_table.drop(checkfirst=False)

Dejavu

def create_tables():
 arena.create_storage(Song)
 arena.create_storage(Album)
 arena.create_storage(Artist)

A Photoblog Application

[104]

def drop_tables():
 arena.drop_storage(Song)
 arena.drop_storage(Album)
 arena.drop_storage(Artist)

Step 4: Loading data

SQLObject

Create an artist
jeff_buckley = Artist(name="Jeff Buckley")

Create an album for that artist
grace = Album(title="Grace", artist=jeff_buckley, release_year=1994)

Add songs to that album
dream_brother = Song(title="Dream Brother", position=10, album=grace)
mojo_pin = Song(title="Mojo Pin", position=1, album=grace)
lilac_wine = Song(title="Lilac Wine", position=4, album=grace)

SQLAlchemy

session = create_session(bind_to=engine)

jeff_buckley = Artist(name="Jeff Buckley")

grace = Album(title="Grace", release_year=1994)

dream_brother = Song(title="Dream Brother", position=10)
mojo_pin = Song(title="Mojo Pin", position=1)
lilac_wine = Song(title="Lilac Wine", position=4)

grace.songs.append(dream_brother)
grace.songs.append(mojo_pin)
grace.songs.append(lilac_wine)
jeff_buckley.albums.append(grace)
session.save(jeff_buckley)
session.flush()

Note the fact that each object is created independently from the other and
their relationship is fulfilled in a second step, e.g. the append() method on the
grace.songs object.

In the same declarative spirit as above SQLAlchemy does not commit automatically
by default to the database. Instead it delays the operation until you flush the current
session of work.

Chapter 5

[105]

Dejavu

sandbox = arena.new_sandbox()

Create an artist unit
jeff_buckley = Artist(name="Jeff Buckley")
sandbox.memorize(jeff_buckley)

grace = Album(title="Grace", release_year=1994)
sandbox.memorize(grace)

Add the album unit to the artist unit
jeff_buckley.add(grace)

dream_brother = Song(title="Dream Brother", position=10)
sandbox.memorize(dream_brother)

mojo_pin = Song(title="Mojo Pin", position=1)
sandbox.memorize(mojo_pin)

lilac_wine = Song(title="Lilac Wine", position=4)
sandbox.memorize(lilac_wine)

Add each song unit to the album unit
grace.add(dream_brother)
grace.add(mojo_pin)
grace.add(lilac_wine)

sandbox.flush_all()

Dejavu provides the concept of sandboxes in which you can isolate the entities you
manipulate. Also note that newly created units do not exist for their relatives until
you call the sandbox.memorize() method, which puts the unit into the sandbox.

Like SQLAlchemy, Dejavu delays the commit operation until you explicitly call the
sandbox.flush_all() method.

Step 5: Manipulating data

First we define a function that will take an artist and display the albums' songs.

def display_info(artist):
 for album in artist.albums:
 message = """
 %s released %s in %d
 It contains the following songs:\n""" % (artist.name,
 album.title,
 album.release_year)

A Photoblog Application

[106]

 for song in album.songs:
 message = message + " %s\n" % (song.title,)
 print message

SQLObject

Retrieve an artist by his name
buckley = Artist.byName('Jeff Buckley')
display_info(buckley)

Retrieve songs containing the word 'la' from the given artist
The AND() function is provided by the SQLObject namespace
songs = Song.select(AND(Artist.q.name=="Jeff Buckley",
 Song.q.title.contains("la")))
for song in songs:
 print " %s" % (song.title,)

Retrieve all songs but only display some of them
songs = Song.select()
print "Found %d songs, let's show only a few of them:" %
(songs.count(),)
for song in songs[1:-1]:
 print " %s" % (song.title,)

Retrieve an album by its ID
album = Album.get(1)
print album.title

Delete the album and all its dependencies
since we have specified cascade delete
album.destroySelf()

SQLAlchemy

session = create_session(bind_to=engine)

Retrieve an artist by his name
buckley = session.query(Artist).get_by(name='Jeff Buckley')
display_info(buckley)

Retrieve songs containing the word 'la' from the given artist
songs = session.query(Song).select(and_(artist_table.c.name=="Jeff
 Buckley",
 song_table.c.title.like
 ("%la%")))

Chapter 5

[107]

for song in songs:
 print " %s" % (song.title,)

Retrieve all songs but only display some of them
Note that we specify the order by clause at this level
songs = session.query(Song).select(order_by=[Song.c.position])
print "Found %d songs, let's show only a few of them:" % (len(songs),)
for song in songs[1:-1]:
 print " %s" % (song.title,)

Retrieve an album by its ID
album = session.query(Album).get_by(id=1)
print album.title

Delete the album and all its dependencies
since we have specified cascade delete
session.delete(album)
session.flush()

Dejavu

sandbox = arena.new_sandbox()

Retrieve an artist by his name
buckley = sandbox.Artist(name="Jeff Buckley")
display_info(buckley)

Retrieve songs containing the word 'la' from the given artist
We will explain in more details the concepts of Expressions
f = lambda ar, al, s: ar.name == "Jeff Buckley" and "la" in s.title

Note how we express the composition between the units
results = sandbox.recall(Artist & Album & Song, f)
for artist, album, song in results:
 print " %s" % (song.title,)

Retrieve all songs but only display some of them
songs = sandbox.recall(Song)
print "Found %d songs, let's show only a few of them:" % (len(songs),)
for song in songs[1:-1]:
 print " %s" % (song.title,)

Retrieve an album by its ID
album = sandbox.Album(ID=1)
print album.title

A Photoblog Application

[108]

Choosing an object-relational mapper is a difficult task as it is usually after using one
for a while that you can really measure the impact it has on the development design
and process. As previously stated, it is critical to acknowledge that ORMs do not
remove the impedance mismatch between the relational and object-oriented model.

SQLObject has a low-learning curve and quite a big community, which makes it
suitable for developers debuting in the use of ORM. The project is aiming at its next
version, which will fix a fair number of bad design decisions made in its early life
while slowly abandoning the current version.

SQLAlchemy has based its design on the Hibernate ORM from the Java world and
has thus avoided lots of pitfalls that SQLObject has not. Its declarative syntax will
not please every pythoner but its flexibility and good documentation have placed
SQLAlchemy as a very serious candidate in the field.

Dejavu is a fairly unknown ORM and thus has a small community. It is well
documented and comes with relevant example cases. Its strength resides in its
capacity to move away from the underlying relational database layer by providing a
very high-level interface using common Python idioms.

For instance, SQLObject and SQLAlchemy do use terms such as table, column, or
select while Dejavu refers to storage and unit providing a better abstraction to
the underlying mechanisms.

This is also true when it comes to the process of building queries. Unlike SQLObject
and SQLAlchemy, which stay very close to SQL by providing a Python interface
to SQL statements, Dejavu provides an interface independent of SQL. Review the
section on manipulating data for an example.

These are the reasons why our photoblog application will use Dejavu instead of
SQLObject or SQLAlchemy. However, keep in mind that they are all good and
powerful ORMs.

Photoblog Application Entity Modeling
First we define what we will call a storage module providing a simple interface to
some common operations like the connection to the database.

import dejavu
arena = dejavu.Arena()

from model import Photoblog, Album, Film, Photo

def connect():

Chapter 5

[109]

 conf = {'Connect': "host=localhost dbname=photoblog user=test
 password=test"}
 arena.add_store("main", "postgres", conf)

 arena.register_all(globals())

In this case, we import the dejavu module and we create one global instance of the
Arena class. The arena will be our interface between the underlying storage manager
and the business logic layer.

The connect function adds a storage manager to the arena object for a PostgreSQL
RDBMS and then registers all imported entities so that the arena object knows
what entities it will manage. (Please refer to the Dejavu documentation for a list of
supported database managers and how to declare them within the add_store()
method.) Once we have this module we can start mapping entities.

Mapping Entities
Mapping the entities is done through the following process:

Creating a class that inherits from Unit
Adding attributes using the UnitProperty class
Setting up the relationship between units

Entity: Photoblog

from dejavu import Unit, UnitProperty

from engine.database import arena
from album import Album

class Photoblog(Unit):
 name = UnitProperty(unicode)
 title = UnitProperty(unicode)

 def on_forget(self):
 for album in self.Album():
 album.forget()

Photoblog.one_to_many('ID', Album, 'blog_id')

Entity: Album

import datetime

from dejavu import Unit, UnitProperty
from engine.database import arena

•
•
•

A Photoblog Application

[110]

from film import Film

class Album(Unit):
 name = UnitProperty(unicode)
 title = UnitProperty(unicode)
 author = UnitProperty(unicode)
 description = UnitProperty(unicode)
 content = UnitProperty(unicode, hints={u'bytes': 0})
 created = UnitProperty(datetime.datetime)
 modified = UnitProperty(datetime.datetime)
 blog_id = UnitProperty(int, index=True)

 def on_forget(self):
 for film in self.Film():
 film.forget()

Album.one_to_many('ID', Film, 'album_id')

Entity: Film

import datetime

from dejavu import Unit, UnitProperty
from engine.database import arena

from photo import Photo

class Film(Unit):
 name = UnitProperty(unicode)
 title = UnitProperty(unicode)
 created = UnitProperty(datetime.datetime)
 modified = UnitProperty(datetime.datetime)
 album_id = UnitProperty(int, index=True)

 def on_forget(self):
 for photo in self.Photo():
 photo.forget()

Film.one_to_many('ID', Photo, 'film_id')

Entity: Photo

import datetime

from dejavu import Unit, UnitProperty
from engine.database import arena

Chapter 5

[111]

class Photo(Unit):
 name = UnitProperty(unicode)
 legend = UnitProperty(unicode)
 filename = UnitProperty(unicode)
 filesize = UnitProperty(int)
 width = UnitProperty(int)
 height = UnitProperty(int)

 created = UnitProperty(datetime.datetime)
 modified = UnitProperty(datetime.datetime)
 film_id = UnitProperty(int, index=True)

Units and UnitProperties
In the previous section, we mapped our entities into units that Dejavu will manage.
All our classes inherit from the Unit base class. This class does not provide much
apart from automatically adding an ID property to the class, which is the reason why
we do not explicitly provide one in any of our units. Nonetheless by inheriting from
the Unit class you allow Dejavu to register and handle your class.

The next step is obviously to add properties to your classes via the UnitProperty
class, which has the following signature:

UnitProperty(type=unicode, index=False,
 hints=None, key=None, default=None)

The type parameter is a Python type. Dejavu takes care of translating it into
the appropriate SQL equivalent type transparently.
The index parameter indicates whether the column should be indexed by the
RDBMS if it supports it.
The hints parameter is a dictionary to help Dejavu storage managers to
optimize the creation of the column. Dejavu has three built-in hints but you
can provide yours if you create your own storage manager:

bytes: Indicates the number of bytes to be used for a unicode
property, 0 meaning unlimited.
scale: Number of digits to the right of the decimal point in a
numeric column.
precision: Total number of digits in a numeric column.

The key parameter is the property canonical name.
The default parameter indicates the default value to be used.

Properties will map into the columns of a table in the relational database.

•

•

•

°

°

°

•

•

A Photoblog Application

[112]

Associating Units
Associating units is the means of giving a shape to your design. Entities are bricks,
relations are the mortar.

Dejavu supports the following common relationships:

One to one (1, 1)
One to many (1, n)
Many to one (n, 1)

In each case you provide the signature as follows:

nearClass(nearKey, farClass, farKey)

Therefore the relation between Film and Photo is:

Film.one_to_many('ID', Photo, 'film_id')

The nearClass is Film, the nearKey is ID (property of the nearClass), the farClass
is Photo, and the farKey is film_id (property of the farClass).

Dejavu does not provide a native many-to-many relationship but this is achievable
through a third unit class and a one-to-one relationship.

The Sandbox Interface
The sandbox object manages memory dedicated to units in a protected way. A
sandbox is where units spend their life. There are two ways to create sandboxes:

box = arena.create_sandbox()
box = dejavu.Sandbox(arena)

The former version is the most common and is the one we will use throughout
this book.

Let's review a few key methods of the sandbox interface:

memorize: When you create a new instance of a unit, it exists only in memory
and is separated from the storage manager. You need to call the memorize
method to make it part of the sandbox. This will also set the ID of the unit.
Additionally this will reserve a place in the underlying database by issuing
an INSERT INTO SQL statement.
forget: In order to tell the store manager to stop managing a unit you must
call the forget method. This will delete it from the sandbox and from the
storage manager.

•

•

•

•

•

Chapter 5

[113]

repress: In some cases you may wish to clear the unit from the sandbox
but not from the store manager. In such cases you should use the repress
method.
recall, xrecall: These two methods allow you to retrieve units based
on filters (as we will explain in the section Querying Units). The difference
between recall and xrecall is that the latter yields results in an iterating
fashion whereas the former loads everything into a list at once.
unit: Both the previous methods are powerful ones to retrieve a set of data
but they can be heavy when you simply look for one unit based on a value of
its properties. This is what the unit method provides.
flush_all: Once you have manipulated your units you have to call flush_
all in order to make those changes to the physical back end.

As you can see, the interface provided by the Sandbox class is quite simple,
straightforward, and yet powerful as the next section will demonstrate.

Querying Units
We have seen so far how to map our entities into units as well as how to manipulate
those units. This section will explain in detail how to query the storage manager for
units based on criteria.

Within Dejavu querying is done through an Expression instance. The Expression
class is a filter for units. Let's take an example to explain how this works.

Search for all photographs with a width superior to 300 pixels

f = lambda x: x.width > 300

box.recall(Photo, f)

The first step is to create a function that returns a bool. That function is usually
a lambda as there is no need to pollute the Python namespace with meaningless
names. Then we pass it to one of the sandbox methods such as recall or xrecall,
which will create a logic.Expression instance and apply it.

Expressions show their value when filtering against complex queries such as the
one involving JOIN. For example, if you want to join between units you would use
Python operators between the units themselves.

Search for all photographs of width superior to 300 pixels
within albums created by Sylvain
box.recall(Album & Photo, lambda a,
 p: a.author == "Sylvain" and p.width > 300)

•

•

•

•

A Photoblog Application

[114]

As you can see, the first parameter of the method takes an aggregation of the unit
classes that will take part in the join. Dejavu gives you the opportunity of using
Python operators to declare aggregation between units.

When composing between units, the order is important while constructing the
filter function. In the previous example the lambda function parameters will match
the order of the composed units. This behavior is mirrored by the result returned by
the recall() method, which will provide a list of Album and Photo items.

Below are the Dejavu representations of SQL JOINs.

Join Type Operator Description
Inner & or + All related pairs of both classes will be returned.
Left Outer << All related pairs of both classes will be returned. In addition,

if any Unit in class1 has no match in class2, we return a
single row with Unit1 and a null Unit (a Unit, all of whose
properties are None).

Right Outer >> All related pairs of both classes will be returned. In addition,
if any Unit in class2 has no match in class1, we return a single
row with a null Unit (a Unit, all of whose properties are
None) and Unit2.

There is no limitation from Dejavu regarding the aggregation you build. For instance
you can write:

(Film << Album) & Photo

Extending the Data Access Layer
In the previous sections, we have defined the mapping between our entities
and the classes our application will manipulate. As they stand these classes are
not very useful; in this section we will see how to extend them to provide more
functionalities. To keep this section concise, we will only discuss the Album class.

Methods to be added to the Album class:

def films(self):
 """Returns all the attached films

 album = Album()
 ...

 for film in album.films:
 ...

Chapter 5

[115]

 """
 return self.Film()
films = property(films)

def get_all(cls):
 """Returns all the existing albums

 for album in Album.albums:
 ...

 """
 sandbox = arena.new_sandbox()
 return sandbox.recall(Album)
albums = classmethod(get_all)

def fetch(cls, id):
 """Fetch one album by id"""
 sandbox = arena.new_sandbox()
 return sandbox.unit(Album, ID=int(id))
fetch = classmethod(fetch)

def fetch_range(cls, start, end):
 """Fetch a range of albums which ID falls into the
 specified range.

 # This could return up to 5 albums
 albums = Album.fetch_range(4, 9)
 for album in albums:
 ...

 """
 sandbox = arena.new_sandbox()

 # dejavu's views change the capacity of dejavu to
 # perform operations on a Unit

 # here we create a view of the Album unit so that only
 # the created and ID properties appear in the
 # result of the view. A view yields values
 # not units unlike recall or xrecall.
 v = list(sandbox.view(Album, ['created', 'ID']))
 v.sort()
 size = len(v)
 if end > size and start >= size:

A Photoblog Application

[116]

 return None
 elif end > size and start < size:
 end = size
 # row[0] is the 'created' property value
 # row[1] is the 'ID' property value
 targets = [row[1] for row in v[start:end]]
 return sandbox.recall(Album, lambda x: x.ID in targets)
fetch_range = classmethod(fetch_range)

def create(self, photoblog, name, title, slug, author, description,
 content):
 """Instanciates the Album,
 adds it to the passed photoblog and
 persists the changes into the database"""

 sandbox = photoblog.sandbox

 self.name = name
 self.title = title
 self.author = author
 self.description = description
 self.content = content
 self.created = datetime.datetime.now().replace(microsecond=0)
 self.modified = album.created
 self.blog_id = photoblog.ID
 sandbox.memorize(self)
 photoblog.add(self)

 sandbox.flush_all()

def update(self, name, title, slug, author, description, content):
 """Updates the attributes of an album and
 persists the changes into the storage"""

 self.title = title
 self.slug = slug
 self.author = author
 self.description = description
 self.content = content
 self.modified = datetime.datetime.now().replace(microsecond=0)
 self.sandbox.flush_all()

Chapter 5

[117]

def delete(self):
 """Delete the album from the storage"""
 self.sandbox.forget(album)

def to_dict(self):
 """Return an album as a Python dictionary"""
 return {'id': self.ID,
 'uuid': self.uuid,
 'title': self.title,
 'author': self.author,
 'description': self.description,
 'content': self.content,
 'created': self.created.strftime("%d %b. %Y, %H:%M"),
 'modified': self.modified.strftime("%d %b. %Y, %H:%M")}

def to_json(self):
 """JSONify an album properties"""
 return simplejson.dumps(self.to_dict())

As you can see, the Album class now contains enough methods to allow manipulation
of Album instances. The other photoblog entities share the same idea and will provide
similar interfaces.

Summary
This chapter has introduced the backbone of our photoblog application through the
description of its entities and how they are mapped in their Python counterparts.
Our next chapter will review how to manipulate those entities from our CherryPy
handlers to build the external interface of our application.

Web Services
In Chapter 5, we defined the data access layer and the entities our application
would manipulate. In this chapter, we will explain how we can articulate our
photoblog application by using web services as an API to access and operate the
entities we have defined. We will introduce the concept of web services based on the
REST principles as well as the Atom Publishing Protocol and explain how we can
implement them using CherryPy. By the end of this chapter, you should understand
how web services can enhance and extend the capacities of your web application
while providing a simple entry point for third-party applications.

Traditional Web Development
Most web applications use the same base URI to handle the serving of resources and
the manipulation of resources. For instance, it's common to find something such as
the following:

URI Request Body HTTP
Method

Operation

/album/ N/A GET Fetch all albums
/album/?id=12 N/A GET Fetch the album with the

ID 12
/album/edit?id=12 N/A GET Return a form to perform

an action on a resource
/album/create title=Friends POST Create an album
/album/delete id=12 POST Delete the album with

the ID 12
/album/update id=12&title=Family POST Update the album with

the ID 12

Web Services

[120]

Within an application hosted with CherryPy, this could be translated into:

class Album:
 @cherrypy.expose
 def index(self, id=None):
 # returns all albums as HTML or the one
 # requested by the id parameter if provided

 @cherrypy.expose
 def edit(self, id=None):
 # returns an HTML page with a form to perform
 # an action on a resource (create, update, delete)

 @cherrypy.expose
 def create(self, title):
 # create an album with a title
 # returns an HTML page stating the success

 @cherrypy.expose
 def update(self, id, title):
 # update an album with a title
 # returns an HTML page stating the success

 @cherrypy.expose
 def delete(self, id):
 # delete the album with the given id
 # returns an HTML page stating the success

Although this methodology is valid, it is not the best choice when it needs to open
itself to different kinds of user agents (browser, robot, service, etc.). For instance,
imagine we decide to provide a fat client application to manipulate albums. In such a
case, the HTML page returned by the page handlers would be useless; XML or JSON
data would be more relevant. We may also want to offer part of our application as a
service for third-party applications.

One notable example is the service provided by flickr, (http://www.flickr.com/)
the online photo-management application, which allows someone to query the flickr
service (http://www.flickr.com/services/api/) for their data in many contexts
like getting current photos, activities, blog posts, comments, etc. in different formats.
Thanks to these web services a large set of third-party applications have grown
to extend flickr users' experience from a web application or even from a fat
client application.

Chapter 6

[121]

Separation of Concerns
The issue with the previous design example is the lack of separation of concerns.
As Tim Bray said about the Web (please refer to http://www.tbray.org/ongoing/
When/200x/2006/03/26/On-REST for more details):

You have a lot of things in the system, identified by URIs.

There are two kinds of operations against a resource in the system: those that can change its
state, and those that can't.

From the first statement we put a name on anything that can pass through the system;
we call it a resource. Examples of resources could be a picture, a poem, results of
a basketball game, temperature in Australia, etc. We also learn that each resource
should be identified in a non-equivocal way. From Tim's second statement we realize
that we should logically separate in our design—operations that are read-only and
those that can change the resource.

An important corollary of these distinctions is that we would like to let the client
inform the server about the content type that it would prefer to receive. In our
example, our page handlers solely return HTML pages while it would be more
flexible to check what the client can handle and send it the best representation of
the resource.

Web application developers should consider the following principles:

Anything is a resource.
A resource has one or several identifiers but one identifier can lead to only
one resource.
A resource has one or many representations that the client can request.
Operations on resources are divided into those that alter the state of the
resource and those that do not.

Based on these elements we can redefine our design as follows:

class Album:
 @cherrypy.expose
 def index(self):
 # returns all albums as HTML

 @cherrypy.expose
 def default(self, id):
 # returns the album specified or raise a NotFound

 @cherrypy.expose

•

•

•

•

Web Services

[122]

 def edit(self, id=None):
 # returns an HTML page with a form to perform
 # an action on a resource (create, update, delete)

class AlbumManager:
 @cherrypy.expose
 def create(self, title):
 # create an album with a title
 # returns an XML/JSon/XHTML document
 # representing the resource

 @cherrypy.expose
 def update(self, id, title):
 # update an album with a title
 # returns an XML/JSon/XHTML document
 # representing the resource

 @cherrypy.expose
 def delete(self, id):
 # delete the album with the given id
 # returns nothing

By doing so we allow any kind of user agent to manipulate a resource by requesting
the AlbumManager exposed handlers. A browser would still fetch an HTML
representation of an album from the Album page handlers. You might argue that a
browser would not know what is to be done with the returned XML or JSON data
from the AlbumManager page handlers. The missing piece of information here is that
submission of the HTML form and the handling of its response would be performed
by some client-side scripting code via JavaScript that would be able to process the
XML or JSON chunk of data accordingly. We will go through this technique in more
detail in Chapter 7.

The principles defined above are the basis of what are referred to today as
web services. A web service is an API provided by a web application so that
heterogeneous user agents can interact with the application through formats other
than HTML. There are different ways to create web services via REST, SOAP, XML-
RPC, Atom, etc. For the purpose of this book we will review REST and the Atom
Publishing Protocol as web services for the photoblog application.

REST
Representational State Transfer (REST) is an architecture style for distributed
hypermedia systems described by Roy T. Fielding in his dissertation Architectural
Styles and the Design of Network-based Software Architectures in 2000.

Chapter 6

[123]

REST is based on the following elements:

Resource: A resource is the abstract concept of anything. For instance, it can
be an image, a blog entry, the current rate between two currencies, a sport
result, a mathematical equation, etc.
Resource identifier: Allows components of the distributed system to identify a
resource in a unique way.
Representation: A representation of the resource is simply data.
Representation metadata: Information about the representation itself.
Resource metadata: Information about the resource.
Control data: Information about the messages passing through the system
between components.

REST also suggests that each message flowing should be stateless meaning that it
should contain enough information for its processing by the next component within
the system and thus should not depend on previous or following messages. Each
message is self-contained. This is achieved through the use of resource metadata and
representation metadata.

These are the elements describing REST but they are not tied to any underlying
protocol. The most commonly used case of REST can be found within the Web and
is implemented using the HTTP protocol. In spite of that REST can be implemented
using other protocols in other environments.

HTTP is a good candidate to implement REST for the following reasons:

It is the base of the Web, which is a distributed hypermedia system.
It is stateless.
Each request can contain enough information to be processed independently
of the rest of the system.
The content-type and accept headers used by HTTP provide the means to
represent a single resource through different representations.
URIs are powerful and common resource identifiers.

Uniform Resource Identifier
REST is about naming resources on a network and providing a unified mechanism
to perform operations on these resources. That's why REST tells us that a resource
is identified by at least one identifier. When implementing a REST infrastructure
based on the HTTP protocol, these identifiers are defined as Uniform Resource
Identifiers (URIs).

•

•

•

•

•

•

•

•

•

•

•

Web Services

[124]

Two common subsets of the URI set are:

Uniform Resource Locator (URL), such as:
http://www.cherrypy.org/

Uniform Resource Name (URN), such as:

 urn:isbn:0-201-71088-9
 urn:uuid:13e8cf26-2a25-11db-8693-000ae4ea7d46

The interesting aspect of URLs is that they contain enough information to locate the
resource on the network. Thus in the given URL we know that to locate the resource
we need to use the HTTP protocol associated to the HTTP scheme hosted on the
host www.cherrypy.org at the path /. (Note, however, that not everyone in the Web
community thinks that this multiplexing of capabilities is a positive aspect of URLs
but this discussion is out of the scope of this book.)

HTTP Methods
If URIs offer the way to name resources, HTTP methods provide the means by which
we can operate on those resources. Let's review the most common methods (also
referred to as verbs) in HTTP 1.1.

HTTP Method Idempotent Operation
HEAD Yes Retrieves the resource metadata. The response is

the same as the one to a GET minus the body.
GET Yes Retrieves resource metadata and content.
POST No Requests the server to create a new resource

using the data enclosed in the request body.
PUT Yes Requests the server to replace an existing

resource with the one enclosed in the request
body. The server cannot apply the enclosed
resource to a resource not identified by that URI.

DELETE Yes Requests the server to remove the resource
identified by that URI.

OPTIONS Yes Requests the server to return details about
capabilities either globally or specifically
towards a resource.

The idempotent column of the table indicates whether the request using that
particular HTTP method will have the same side-effects with two consecutive
identical calls.

•

•

Chapter 6

[125]

By default CherryPy handlers reflect the path of the Request-URI and the handler
matches one element of the URI, but as we have seen CherryPy's dispatcher can be
changed not to look for the handler within the URI but from the request metadata
such as the HTTP method used.

Let's review an example applied to the photoblog application:

import cherrypy
from cherrypy.lib.cptools import accept
from models import Photoblog, Album
from lib.config import conf
from lib.tools import find_acceptable_within

class AlbumRESTService(object):
 exposed = True

 def GET(self, album_id):
 best = accept(['application/xml', 'application/atom+xml',
 'text/json', 'text/x-json'])

 album = Album.fetch(album_id)
 if not album:
 raise cherrypy.NotFound()

 if best in ['application/xml','application/atom+xml']:
 cherrypy.response.headers['Content-Type'] =
 'application/atom+xml'
 entry = album.to_atom_entry()
 return entry.xml()

 if best in ['application/json', 'text/x-json', 'text/json']:
 cherrypy.response.headers['Content-Type'] =
 'application/json'
 return album.to_json()

 raise cherrypy.HTTPError(400, 'Bad Request')

 def POST(self, title, segment, author, description, content,
 blog_id):
 photoblog = Photoblog.fetch(blog_id)
 if not photoblog:
 raise cherrypy.NotFound()

 album = Album()

Web Services

[126]

 album.create(photoblog, title, segment, author, description,
 content)
 cherrypy.response.status = '201 Created'
 cherrypy.response.headers['Location'] = '%s/album/%d' %
 (conf.app.base_url, album.ID)

 def PUT(self, album_id, title, segment, author, description,
 content):
 album = Album.fetch(album_id)
 if not album:
 raise cherrypy.NotFound()

 album.update(title, segment, author, description, content)

 def DELETE(self, album_id):
 album = Album.fetch(album_id)
 if album:
 album.delete()
 cherrypy.response.status = '204 No Content'

Let's explain what each HTTP method does in this context.

GET: This returns the representation of the requested resource depending on
the Accept header. Our application allows application/xml, application/
atom+xml, text/json, or text/x-json. We use a function called accept,
which returns the acceptable header found or raises a cherrypy.HTTPError
(406, 'Not Acceptable') error immediately to inform the user agent that
our application cannot deal with its request. Then we verify if the resource
still exists; if not, we raise a cherrypy.NotFound error, which is a shortcut to
cherrypy.HTTPError(404, 'Not Found'). Once we have our pre-conditions
checked, we return the requested representation of the resource.
Note that this is equivalent to the index() method with the default
dispatcher. Bear in mind though that there is no equivalent to the default()
method when using the method dispatcher.
POST: The HTTP POST method allows a user agent to create a new resource.
The first step is to check if the photoblog that will handle that resource
exists. Then we create the resource and we return a status code 201 Created
along with the Location header indicating the URI to retrieve the newly
created resource.
PUT: The HTTP PUT method allows the user agent to replace a resource with the
one provided in the request body. It is often considered as an update operation.
Although RFC 2616 does not forbid PUT to also create a new resource, we will
not use it that way in our application as we will explain later.

•

•

•

Chapter 6

[127]

DELETE: The DELETE method requests the server to remove the resource. A
response to this method can either be 200 OK or 204 No Content. The latter
informs the user agent that it should not change its current state since the
response has no body.

The (lack of) difference between POST and PUT has long been a source of discussion
among web developers. Some consider that having two methods is misleading. Let's
try to understand why they are distinct and why we need both.

POST request:

POST /album HTTP/1.1
Host: localhost:8080
Content-Length: 77
Content-Type: application/x-www-form-urlencoded

blog_id=1&description=Family&author=sylvain&title=My+family&content=&
segment=

POST response:

HTTP/1.1 201 Created
Content-Length: 0
Location: http://localhost:8080/album/12
Allow: DELETE, GET, HEAD, POST, PUT
Date: Sun, 21 Jan 2007 16:30:43 GMT
Server: CherryPy/3.0.0
Connection: close

PUT request:

PUT /album/12 HTTP/1.1
Host: localhost:8080
Content-Length: 69
Content-Type: application/x-www-form-urlencoded

description=Family&author=sylvain&title=Your+family&content=&segment=

PUT response:

HTTP/1.1 200 OK
Date: Sun, 21 Jan 2007 16:37:12 GMT
Content-Length: 0
Allow: DELETE, GET, HEAD, POST, PUT
Server: CherryPy/3.0.0
Connection: close

•

Web Services

[128]

At first look, two requests seem fairly similar but in fact they have a very important
difference, which is the requested URI.

One can POST data to a URI where a process may or may not create a resource
whereas in the case of PUT the URI is one of the resources itself and the content sent
is the new representation of the resource. In that case, if the resource does not exist
yet at that URI, the server can create it if it has been implemented to do so; otherwise
the server can return an HTTP error message indicating it is not fulfilling the request.
In a nutshell, client POST data to a process but PUT the new representation of the
resource identified by the request URI.

One of the root causes of the problem is the fact that many web applications rely
only on the POST method to achieve any operation on a resource, whether creating,
updating, or deleting it. This is notably the case because these applications often offer
only HTML forms, which only support GET and POST, to perform those operations.

Considering the fact that more and more web applications take advantage of
separation of concerns and handle submission through client code via JavaScript or
external services, it is likely that the use of the PUT and DELETE methods increasing,
though it might be a problem in some environments where firewall policies forbid
PUT and DELETE requests.

Putting it Together
Our photoblog application will provide a REST interface for the following entities:
Album, Film, and Entry. Because of the information they carry, their relationship,
and their design we can provide the same interface independent of the entity itself.
Therefore we refactor the Album class and create a Resource class that will centralize
the implementation of each operation. Each entity-service interface will simply pass
the information to the Resource class and let it deal with the hard work. We thus
avoid the duplication of code.

import cherrypy
from cherrypy.lib.cptools import accept

from models import Photoblog
from lib import conf
from lib.tools import find_acceptable_within

class Resource(object):

 def handle_GET(self, obj_id):
 best = accept(['application/xml', 'application/atom+xml',
 'text/json', 'text/x-json',
 'application/json'])

Chapter 6

[129]

 obj = self.__source_class.fetch(obj_id)
 if not obj:
 raise cherrypy.NotFound()

 if best in ['application/xml', 'application/atom+xml']:
 cherrypy.response.headers['Content-Type'] =
 'application/atom+xml'
 entry = obj.to_atom_entry()
 return entry.xml()

 if best in ['text/json', 'text/x-json', 'application/json']:
 cherrypy.response.headers['Content-Type'] =
 'application/json'
 return obj.to_json()

 raise cherrypy.HTTPError(400, 'Bad Request')

 def handle_POST(self container_cls, container_id,
 location_scheme, *args, **kwargs):
 container = container_cls.fetch(container_id)
 if not container:
 raise cherrypy.NotFound()

 obj = self.__source_class()
 obj.create(container, *args, **kwargs)
 cherrypy.response.status = '201 Created'
 cherrypy.response.headers['Location'] = location_scheme %
 (conf.app.base_url, obj.ID)

 def handle_PUT(cls, source_cls, obj_id, *args, **kwargs):
 obj = self.__source_class.fetch(obj_id)
 if not obj:
 raise cherrypy.NotFound()

 obj.update(obj, *args, **kwargs)

 def handle_DELETE(cls, source_cls, obj_id):
 obj = self.__source_class.fetch(obj_id)
 if obj:
 obj.delete(obj)
 cherrypy.response.status = '204 No Content'

Web Services

[130]

Then let's redefine our AlbumRESTService class to exploit the Resource class:

from models import Photoblog, Album
from _resource import Resource

class AlbumRESTService(Resource):
 exposed = True
 # The entity class that will be used by the Resource class
 _source_class = Album

 def GET(self, album_id):
 return self.handle_GET(album_id)

 def POST(self, title, segment, author, description, content,
 blog_id):
 self.handle_POST(Photoblog, blog_id, '%s/album/%d',
 title, segment, author, description,content)

 def PUT(self, album_id, title, segment, author, description,
 content):
 self.handle_PUT(album_id,
 title, segment, author, description, content)

 def DELETE(self, album_id):
 self.handle_DELETE(album_id)

We have now a RESTful interface that will handle the Album resource. Both the Film
and Photo entities will be managed the same way. This means that our application
will now support requests such as:

POST http://somehost.net/service/rest/album/
GET http://somehost.net/service/rest/album/12
PUT http://somehost.net/service/rest/album/12
DELETE http://somehost.net/service/rest/album/12

In each of these calls the URI is the unique identifier or name of a resource and the
HTTP method is the operation to carry out on that resource.

REST Interface through CherryPy
Until now, we have described services that our photoblog application will support
without detailing how to achieve it through CherryPy.

Chapter 6

[131]

As we have seen in the previous sections HTTP REST relies on HTTP methods to
inform a web application of the kind of operation a user agent wishes to carry out.
In order to implement REST through CherryPy for our photoblog application we
will use the HTTP method dispatcher as reviewed in Chapter 4 to handle incoming
requests to the service classes defined above, something along these lines:

rest_service = Service()
rest_service.album = AlbumRESTService()
conf = {'/': {'request.dispatch': cherrypy.dispatch.
MethodDispatcher()}}
cherrypy.tree.mount(rest_service, '/service/rest', config=conf)

This implies that requests applying to a URI path such as /service/rest/album/
will be applied in a REST spirit.

REST is quite a common term but building true RESTful applications can be a
difficult task. The difficulty resides in defining a sensible and meaningful URI set
associated with the application resources. In other words, the difficult part lies in
the designing of the API. This section should have introduced you to the principles
behind REST but developing the architecture of a large system around REST requires
a high-level understanding of the resources dealt with, their naming convention, and
their relationship.

Atom Publishing Protocol
In the previous section we have introduced REST and showed how it can be used as
a service for web applications. In this section we will introduce the Atom Publishing
Protocol (APP), which at the time of writing this book was on its way to becoming a
new IETF standard. This means that some aspects of this section might no longer be
up to date by the time you read them.

APP has arisen from the Atom community as an application-level protocol on top
of HTTP to allow the publishing and editing of web resources. The unit of messages
between an APP server and a client is based on the Atom XML-document format
defined in RFC 4287.

Although APP is not specified as being an implementation of the REST principles,
the protocol does follow the same ideas, which give it a RESTful aspect. Therefore,
many of the principles of the previous section will apply here; but first let's overview
the Atom XML-document format.

Web Services

[132]

Atom XML-Document Format
The Atom XML-document format describes a set of information through two top-
level elements:

Feed: A feed consists of:
metadata (sometimes referred as the head of the feed)
zero or more entries

Entry: An entry is made up of:
metadata
some content

Example of an Atom 1.0 feed document as per RFC4287:

<?xml version="1.0" encoding="utf-8"?>
<feed xmlns="http://www.w3.org/2005/Atom">
 <title>Photoblog feed</title>
 <published>2006-08-13T10:57:18Z</published>
 <updated>2006-08-13T11:18:01Z</updated>
 <link rel="self" href="http://host/blog/feed/album/"
 type="application/atom+xml" />
 <author>
 <name>Sylvain Hellegouarch</name>
 </author>
 <id>urn:uuid:13e8cf26-2a25-11db-8693-000ae4ea7d46</id>
 <entry>
 <title>This is my family album</title>
 <id>urn:uuid:25cd2014-2ab3-11db-902d-000ae4ea7d46</id>
 <link rel="self" href="http://host/blog/feed/album/12"
 type="application/atom+xml" />
 <link rel="alternate" href="http://host/blog/album/12"
 type="text/html" />
 <updated>2006-08-13T11:18:01Z</updated>
 <content type="text">Some content</content>
 </entry>
</feed>

A web application can serve Atom documents for subscription thus providing a way
for user agents to syndicate themselves to information the application developer
chooses to provide.

Our photoblog application will provide Atom feeds of the following entities:

Photoblog: Each entry of the feed will link to an album feed of the blog.
Album: Each entry of the feed will link to a film feed of the album.
Film: Each entry will relate to a photo of the film.

•
°
°

•
°
°

•
•
•

Chapter 6

[133]

We will not explain every element of an Atom document but review a few of the
most common ones.

id, title, and updated are compulsory elements in any feed or entry.
id must be an IRI as defined in RFC 3987 as a complement
to URIs
updated must follow RFC 3339. RFC 4287 says that this
element only needs to be updated when the modification is
semantically significant.

author is compulsory within an Atom feed whether in the feed element,
entry element, or both. However, entries of a feed can inherit the feed
author element if they do not provide one.
link is not mandatory but is recommended and very useful to provide the
following:

the URI of the resource associated to the entry or the feed
using rel="self"
the URI of alternative representations of the resource using
rel="alternate" and specifying the media-type of the
resource
the URI to related resources using rel="related"

content should be present at most once. Either the content of an entry is
inlined within the entry as text, escaped HTML or XHTML, or the content is
referenced by the src attribute providing the URI of the actual content.

Thus we will have for a film feed:

<?xml version="1.0" encoding="UTF-8"?>
<feed xmlns="http://www.w3.org/2005/Atom">
 <id>urn:uuid:8ed4ae87-2ac9-11db-b2c4-000ae4ea7d46</id>
 <title>Film of my holiday</title>
 <updated>2006-08-13T13:50:49Z</updated>
 <author>
 <name>Sylvain Hellegouarch</name>
 </author>
 <entry>
 <id>urn:uuid:41548439-c12d-48b5-baec-a72b1bf8576f</id>
 <published>2006-08-13T13:45:38Z</published>
 <updated>2006-08-13T13:50:49Z</updated>
 <title>At the beach</title>
 <link rel="self" href="http://host/feed/photo/at-the-beach"
 type="application/atom+xml"/>
 <link rel="alternate" href="http://host/photo/at-the-beach"
 type="text/html" />

•

°

°

•

•

°

°

°

•

Web Services

[134]

 <content src="http://host/media/IMAGE001.png"
 type="image/png" />
 </entry>
</feed>

The Atom format is commonly used in the blog environment to allow users to
subscribe to it. However, thanks to its flexibility and extensibility the Atom format is
now used in different contexts such as publishing, archiving, and exporting content.

APP Implementation
The aim of providing an Atom Publishing Protocol (APP) implementation within
the photoblog application is to introduce the protocol and to provide two different
services demonstrating the benefits of the separation of concerns. Because APP is
not yet a standard and because at the time of writing this book it was under a fairly
good amount of discussion, it is possible that by the time you read this section our
implementation will no longer be compliant. However, there is minimum risk as
the current version of the protocol draft, i.e. 13, seems stable enough regarding its
main characteristics.

The Atom Publishing Protocol defines a set of operations between an APP service
and a user-agent using HTTP and its mechanisms and the Atom XML-document
format as the unit of messages.

APP first defines a service document, which provides the user agent with the URI of
the different collections served by the APP service. It is of the form:

<?xml version="1.0" encoding="UTF-8"?>
<service xmlns="http://purl.org/atom/app#" xmlns:atom=
 "http://www.w3.org/2005/Atom">
 <workspace>
 <collection href="http://host/service/atompub/album/">
 <atom:title>Friends Albums</atom:title>
 <categories fixed="yes">
 <atom:category term="friends" />
 </categories>
 </collection>
 <collection href="http://host/service/atompub/film/">
 <atom:title>Films</atom:title>
 <accept>image/png,image/jpeg</accept>
 </collection>
 </workspace>
</service>

Chapter 6

[135]

Once a user agent has fetched that service document it knows there are two
collections available. The first collection informs the user-agent that it will only
accept Atom documents that have a category matching the one defined. The second
collection will only accept data with the image/png or image/jpeg MIME types.

Collections are the containers of what APP refers to as members. The operation of
creating a member is done against a collection but operations of retrieving, updating,
and deleting are done against that member itself and not the collection.

A collection is represented as an Atom feed in which entries are referred as to
members. The critical addition to the Atom entry is the use of an Atom link with the
rel attribute set to edit to describe the member resource. By setting this attribute to
this value we indicate that the href attribute of the link element references the URL
of the member resource that can be retrieved, edited, and deleted at that URI. An
Atom entry containing such a link element is called a member of a collection.

APP specifies how to perform the basic CRUD operations against a member of
a collection or the collection itself by using HTTP methods as described in the
following table.

Operation HTTP
Method

Status
Code

Returned Content

Retrieve GET 200 An Atom entry representing the resource
Create POST 201 An Atom entry representing the resource

The URI of the newly created resource via the
Location and Content-Location headers

Update PUT 200 An Atom entry representing the resource
Delete DELETE 200 None

When creating or updating a resource, the APP server is free to modify part of the
resource such as its id, its updated value, etc. Therefore user agents should not rely
on their version of the resource and always synchronize with the server.

Although members of a collection are Atom entries, it is not compulsory to create a
new member by submitting an Atom entry. APP supports any media type as long as
it is allowed through the app:accept element of an app:collection element. That
element takes a comma-separated list of media types specifying to the client which
content types the collection will process on POST requests.

Web Services

[136]

If you POST a PNG image to a collection that accepts it, the server will create at least
two resources.

A member resource, which can be seen as the metadata of the image
A media resource

Remember that an APP server has total control over the content sent and therefore
it is imaginable that an APP server could convert the PNG content to JPEG before
storing it. A client cannot assume that the content or resource sent will be copied, as
done by a server. In any case the server returns the member resource when creation
has succeeded (please refer to the APP specification for detailed examples) and this
is precisely what makes APP so powerful, since whichever type of resource a server
says it handles APP ensures that metadata will be generated under the form of an
Atom entry.

In addition to defining an interface to manipulate members within a collection, APP
provides support for paging when a collection gets too big. This allows the user
agent to request a given range of members within a collection. We will not explain
this feature but you can review the APP specification if you are interested in this
feature.

Furthermore, since the photoblog application will follow the REST principles as
closely as possible for implementing APP, we invite you to refer yourself to the REST
section for more specific details on how APP uses REST principles.

In this section, we have briefly presented the Atom Publishing Protocol, a protocol
based on the Atom XML-document format to allow the publishing of heterogeneous
data types. In spite of not yet being an official standard, APP already interests many
organizations and it is quite likely you will find it in more and more applications.

Summary
This chapter has introduced you to the concept of web services, which defines the
idea of offering an API via common web protocols such as HTTP. By providing such
APIs your web application becomes much more flexible, powerful, and extensible.
Web services are not a must-have feature though and not every web application
would offer them. Our photoblog application, in its spirit of demonstrating some
of the common modern web techniques, uses them as an example rather than as a
compulsory feature. However, by reviewing the code of our photoblog application
you will understand some of the interesting benefits of web services, which will
hopefully give you ideas for your own applications.

•

•

The Presentation Layer
Until now, we have developed our application from a server-side point of view. In
this chapter, we will start focusing on the client side of the photoblog. Initially, we
will introduce HTML templating via the Kid Python engine and JavaScript via the
Mochikit library. We will present briefly a few important components of the success
of the Web such as HTML, XHTML, and CSS. However, these sections do not aim at
explaining each of them deeply, as this is out of the scope of this book.

HTML
Although in our previous chapter, we introduced the separation of concerns between
layers within our application, we need to keep in mind that our primary target is
Internet browsers, so we will focus on HTML rendering.

HTML (HyperText Markup Language), used right from the beginning of the Web as
defined by Tim Berners-Lee in the early 1990s, is a light version of SGML (Standard
Generalized Markup Language) keeping only simple elements that are useful for
the Web. Due to the quick growth of the Web, further development was achieved
on HTML to improve it. Eventually HTML 4.0 was officially specified in 1997 by
the W3C with an update in 1999 leading to HTML 4.01, which is still as of today the
official version to use.

Example of an HTML 4.01 document:

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html>
 <head>
 <title>Hello World!</title>
 </head>
 <body>

The Presentation Layer

[138]

 <p>Not much to say really.</p>
 </body>
</html>

The first line of the document states the DOCTYPE declaration, specifying which
variant of a format a document follows. DOCTYPEs are specified in DTDs
(Document Type Definitions).

XML
In 1996, W3C started to work on XML (Extensible Markup Language), a generic
simpler markup language derived from SGML keeping its power while avoiding
its complexity. In the context of the Web, the goal of XML is aimed at solving a few
limitations of HTML, such as the lack of:

Extensibility: HTML did not allow new elements to be added to
the language.
Validation: HTML did not offer a language to validate against the structure
nor the semantics of a document.
Structure: HTML did not allow complex structures.

XHTML
Due to XML, expressive and flexible work was undertaken by W3C to reformulate
HTML 4 through XML, leading to specification of XHTML 1.0 in the year 2000.

XHTML 1.0 has the following features:

User agents that solely understand HTML 4 can render a document, making
it backward compatible.
Publishers can enter the XML world and its richness.

Example of an XHTML 1.0 document:

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>Hello World!</title>
 </head>
 <body>

•

•

•

•

•

Chapter 7

[139]

 <p>Not much to say really.</p>
 </body>
</html>

In this example, we also specify a DOCTYPE declaration informing consumers that
our document respects the XHTML 1.0 Strict DTD. Since XHTML is an application
of XML:

We provide the XML declaration on the very first line to give the
XML-consuming processor some hints about the document content, such
as the fact that it is encoded in UTF-8. Note that it is not compulsory.
We also explicitly mark the anonymous namespace of that document as the
XHTML namespace.

Although the syntax for both the documents is very close, they carry different
semantics and would be treated differently by user agents. Therefore, both the
documents have distinct MIME formats. An HTML document should be served
using the text/html MIME content-type, while XHTML documents should be
served via application/xhtml+xml. However, because XHTML 1.0 aims at
being backward compatible with user agents that do not understand its MIME
content-type, it is allowed to serve an XHTML 1.0 document respecting specific
guidelines as text/html. This is, however, not recommended and can lead to
unexpected rendering that depends on how user agents treat the structure of the
document; it is often referred as tag-soup.

For these reasons, serving XHTML can be cumbersome on the Internet and is the root
of extremely heated discussions. Our photoblog application will therefore keep it
simple by using HTML.

CSS
Whether you use HTML or XHTML, both formats only specify the structure and the
semantics of your pages; they do not inform user agents how they ought to render
those pages. This is achieved through CSS (Cascading Style Sheets), a language to
describe rules to apply on elements within a marked up document such as HTML or
XHTML. A rule is structured as follows:

A selector indicates the element on which the rule is to be applied. The
selector can be precise to target only one specific element within the context
of the document or applicable to all.
One or more attributes indicate which property of the element is involved.
A value or a set of values is associated to each attribute.

•

•

•

•

•

The Presentation Layer

[140]

An example applied to the previous HTML example is as follows:

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html>
 <head>
 <title>Hello World!</title>
 <style type="text/css">
 body
 {
 background-color: #666633;
 color: #fff;
 }

 p
 {
 text-align: center;
 }
 </style>
 </head>
 <body>
 <p>Not much to say really.</p>
 </body>
</html>

In this example:

body is the selector.
background-color is the attribute, whose value is #666633.

In the previous example, we have embedded the CSS within the HTML document
itself. It is advisable to externalize it into its own document and link it from the
HTML page, as follows:

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">
<html>
 <head>
 <title>Hello World!</title>
 <link rel="stylesheet" href="style.css">
 </head>
 <body>
 <p>Not much to say really.</p>
 </body>
</html>

•

•

Chapter 7

[141]

The CSS file, style.css, is as follows:

body
{
 background-color: #663;
 color: #fff;
}
p
{
 text-align: center;
}

DHTML
When Tim Berners-Lee imagined the Web, he did so to enable the exchange of
documents between researchers. Those documents were static and were not
generated by the web application. In fact, web applications did not exist at that time,
only web servers that were accepting requests and returning content. Since then, the
Web has grown much more value and web applications are a reality. Nonetheless,
for a long time the component achieving the work has been the server itself, the
client only being required to display the rendered content. Quickly enough however,
it appeared that providing much fancier interfaces would move the Web one step
further for it to attract a larger public. The Web should, could, and would be more
than presenting books or papers on a screen.

The term DHTML (Dynamic HTML) was coined to group a set of technologies to
improve client-side content handling. DHTML encompasses:

HTML defining the structure of the document to manipulate
CSS to style the web page
JavaScript to dynamically modify the Document Object Model (DOM)

A DOM is a memory representation of the (X)HTML document structure built by
the browser. By using JavaScript functions, it is possible to dynamically modify the
DOM tree and thus change its rendering from the end-user perspective.

However interesting the idea behind DHTML was, it never really took off due
to interoperability issues between browser vendors. JavaScript and CSS were not
implemented equally across navigators making it really hard for web developers
to ensure their page would act as expected in most cases. Nowadays, DHTML is
not a common term in the field but its ideas have been kept and improved in newer
techniques. This has been also possible thanks to a better interoperability between
browsers, better debugging tools, and the arrival of dedicated JavaScript toolkits
or frameworks encapsulating browser differences in a common API, as we will see
later on.

•
•
•

The Presentation Layer

[142]

Templating
In the previous sections, we have introduced the basic components that constitute
web pages—HTML or XHTML for the structure and CSS for the style. Generating
web pages can be as easy as using your favorite text editor and laying it down.
However in the context of a dynamic application, where the content is based on a
given context and generated on the fly, you need tools to ease such creation. This is
achieved through the use of templating engines. A templating engine takes a model
of the page as well as the input data and then processes both to render the final page.

When searching for a templating engine, you should look for one that offers at least
some features such as:

Variable substitution: In your template, a variable can act as place holder for
your input.
Conditional statements: It is common that a template needs to be rendered
with slight differences based on the context of the input data.
Looping mechanism: This is obviously mandatory when your template has to
render a set of data into a table for example.
Extensibility: Templates can often share aspects and diverge in some specific
contexts, for example common header and footer templates.

The Python world is anything but short in templating engines, and selecting one
for your needs will certainly be a matter of taste based on its features as well as its
syntax. For the purpose of this book, we will use a templating engine named Kid
developed by Ryan Tomayko.

Kid—The Templating Engine
Now, we will have some description of our Kid engine.

Overview
Let's start our introduction to the Kid engine by creating a template of our
previous examples:

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html xmlns:py="http://purl.org/kid/ns#">
 <head>
 <title>${title}</title>
 <link rel="stylesheet" href="style.css" />
 </head>

•

•

•

•

Chapter 7

[143]

 <body>
 <p>${message}</p>
 </body>
</html>

As you can see, a template looks very similar to the final expected rendered page.
When you save this template in a file named helloworld.kid, the next step is to
process the template via the Kid engine as follows:

import kid
params = {'title': 'Hello world', 'message': 'Not much to say.'}
t = kid.Template('helloworld.kid', **params)
print t.serialize(output='html')

Kid provides a Template function that requires the name of the template to be
processed and the input data to be passed on during the rendering of the template.
When a template is being processed for the first time, Kid creates a Python module
that serves as a cached version of the template for latter use. The kid.Template
function returns an instance of the Template class you then use to render the output
content. To do so, the Template class provides the following methods:

serialize: This returns the output content as a Python string.
generate: This returns the output content as a Python iterator.
write: This dumps the output content into a file object.

These three methods take the following parameters:

encoding: This informs Kid how to encode the output content; it defaults
to UTF-8.
fragment: This is a Boolean value asking Kid to include or not the XML
prolog or Doctype in the final result.
output: This specifies which type of serialization should be used by Kid to
render the content.

•

•

•

•

•

•

The Presentation Layer

[144]

Kid's Attributes
The attributes of Kid are as follows:

XML-Based Templating Language
Kid is an XML-based language, which means:

A Kid template must be a well-formed XML document.
Kid uses attributes within XML elements to inform the underlying engine
what action to follow when reaching an element. To avoid collision with
other existing attributes within the XML document, Kid comes with its own
namespace (http://purl.org/kid/ns#), most of the time associated with
the py prefix, for example:

 <p py:if="...">...</p>

Variable Substitution
Kid comes with a very simple variable substitution scheme: ${variable-name}.

This can be used either in attributes of elements or as the text content of an element.
Kid will evaluate the variable each time it comes across it in the template.

If you need to output a literal string such as ${something}, you can escape the
variable substitution by doubling the dollar sign such as $${something}, which will
be rendered as ${something}.

Conditional Statement
When you need to toggle between different cases in a template, you need to use the
following syntax:

<tag py:if="expression">...</tag>

Where:

tag is the name of the element, for instance DIV or SPAN.
expression is a Python expression. If as a Boolean it evaluates to True the
element will be included in the output content. Otherwise, the element will
not be part of it.

•

•

•

•

Chapter 7

[145]

Looping Mechanism
To tell Kid to loop on an element, you must use the following syntax:

<tag py:for="expression">...</tag>

Where:

tag is the name of the element.
expression is a Python expression, for example for value in [...].

The looping mechanism is as follows:

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html xmlns:py="http://purl.org/kid/ns#">
 <head>
 <title>${title}</title>
 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <table>
 <caption>A few songs</caption>
 <tr>
 <th>Artist</th>
 <th>Album</th>
 <th>Title</th>
 </tr>
 <tr py:for="info in infos">
 <td>${info['artist']}</td>
 <td>${info['album']}</td>
 <td>${info['song']}</td>
 </tr>
 </table>
 </body>
</html>

import kid

Fake object and method which suggests that we pull the data to be
rendered from a database in the form of a Python dictionary.

params = discography.retrieve_songs()

t = kid.Template('songs.kid', **params)
print t.serialize(output='html')

•

•

The Presentation Layer

[146]

Extensibility
Extending a template is done using the following syntax:

<tag py:extends="templates">...</tag>

Where:

tag is the name of the element. In this specific case however, the element can
only be the root element of the current template.
templates is a comma-separated list of Kid template filenames or instances.

First, define a Kid template named common.kid:

<html xmlns:py="http://purl.org/kid/ns#">
 <head py:match="item.tag == 'this-is-ed'">
 <title>${title}</title>
 <link rel="stylesheet" href="style.css" />
 </head>
</html>

Then, modify the template of the previous example:

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html py:extends="'common.kid'" xmlns:py="http://purl.org/kid/ns#">
...
...
 <body>
 <table>
 <caption>A few songs</caption>
 <tr>
 <th>Artist</th>
 <th>Album</th>
 <th>Title</th>
 </tr>
 <tr py:for="info in infos">
 <td>${info['artist']}</td>
 <td>${info['album']}</td>
 <td>${info['song']}</td>
 </tr>
 </table>
 </body>
</html>

When Kid processes that template, it will first compile the common.kid template.
When Kid meets the <this-is-ed /> element, it will understand that it matches the
head element of the common.kid template, and will replace its content.

•

•

Chapter 7

[147]

Other Attributes
Kid comes with more attributes to the basic ones we have reviewed before:

py:content="expression": The descendant of the element using this
attribute will be replaced by the output content of the expression.
py:strip="expression": If the expression evaluates to True, the containing
element will not be present in the result but its descendants will be there. If
the expression evaluates to False, the processing goes as normal.
py:replace="expression": This is a shortcut for py:
content="expression" py:strip="True".
py:attrs="expression": This allows dynamic insertion of new attributes
into the element.
py:def="template_name(args)": This allows creation of a temporary
template that can be referenced elsewhere in the main template.

You can get more information by navigating to the official Kid documentation
available at http://kid-templating.org/.

Photoblog Design Preparation
In the previous sections, we have introduced tools that we will use to create our
application interface. In the following sections, we will create the base of
that interface.

Targetting the User Agent
Considering the fact that the photoblog application is centered on the images to be
displayed, we will disregard user agents not supporting that feature. The application
will also heavily use client-side code through JavaScript. Thus, we will solely focus
on the modern browser engines supporting it.

Here is a brief list of our principal targets:

Engine Browsers Targeted
Gecko Mozilla Firefox 1.5 and above, Netscape 8
MSHTML Internet Explorer 6 SP1 and above
KHTML (and WebKit) Konqueror, Safari
Presto Opera 9 and above

•

•

•

•

•

The Presentation Layer

[148]

Tools
For this application you will need:

A text editor; your favorite text editor will do.
A browser providing development tools; Mozilla Firefox with the following
extensions would be a good choice:

Web developer or Firebug
LiveHTTPHeader or Tamper Data. Alternatively, CherryPy
provides the log_headers tool, which when enabled in the
global settings of CherryPy will log the request headers on the
server allowing an easy debugging per request.
DOM inspector
JavaScript debugger

Moreover, although we will be doing most of our development using one specific
browser, it is recommended to test it regularly using as many browsers as you can.

Global Design Goals
As we said, the photoblog application is focused on images. With this in mind, we
will draw a globally designed interface, as follows:

As you can see, our default design will not have the fanciest look but it provides us
with the basic structure for a blog that we are looking for, to explore web design.

•

•

°

°

°

°

Chapter 7

[149]

The topmost area will be our header. This is where you will put the catchy name
of your blog. Right under it we will have the navigation menu with a few links to
move through the base areas of the blog. Then we will have the content area where
we will only display by default photography. It means that by default no text will be
displayed and it will require user interaction to reveal it. This ensures that the focus
stays on the photography. However, the content area will stretch as requested, when
it has to display text content. Finally, there is a footer area containing information
about the copyrights of the content of this blog.

Design Directory Layout
The design that we will use for the photoblog application will reside in the following
directory structure:

default\
 commond.kid
 index.kid
 css\
 style.css
 images\
 js\

We will name this design default, as it will be the one shipped with the application
and used by default during the first access to the application.

You will note that the js directory is empty in spite of intensive use of JavaScript. The
reason is that we will define a global static directory of files that might be shared by
different templates, which could be the case with all the JavaScript files we will create.

CherryPy—Encapsulating the Template
Rendering Process
CherryPy handlers could well be fine calling Kid themselves and returning the
serialized output of a template but we will not do it that way. Instead, we will
encapsulate Kid into a CherryPy tool that our handlers will call. There are two
reasons for such a decision:

To allow you to switch from Kid to a different templating engine. Imagine
that you prefer the Cheetah templating engine to Kid. You could write
a template with Cheetah and only modify the tool without having to go
through the entire application.
To ease the maintenance. If Kid evolves and changes its syntax, it will be
easier to update just the tool rather than the entire application.

•

•

The Presentation Layer

[150]

The tool named Design is attached to the default CherryPy toolbox:

import os.path

import cherrypy
from cherrypy import Tool, tools
import kid

def transform(path=None, template=None):
 params = cherrypy.response.body
 if path and template and isinstance(params, dict):
 path = os.path.normpath(os.path.join(path, template + '.kid'))

 template = kid.Template(file=path, **params)
 cherrypy.response.body = template.generate(output='html')

Attach our Design tool to the CherryPy default toolbox
tools.design = Tool("before_finalize", transform)

Then we will use the tool like this:

@cherrypy.expose
@cherrypy.tools.design(template='index')
def index(self):
 return {...}

A page handler using that tool will be required to return a Python dictionary
containing values to be passed to the templating engine and expected by
the template.

Note also that the tool expects a path parameter that will not be passed to the
decorator call itself. That path represents the absolute base path of the folder
containing a design directory and in our example path would be the default
directory that we have already defined. We will set this value once in a configuration
file that will be attached to the CherryPy application. We will see more details about
this in Chapter 10.

Christian Wyglendowski is the maintainer of a project called
Buffet that aims at providing the core feature demonstrated
in the mentioned tool. It supports many templating languages
and offers an extended API. However, it currently supports
solely CherryPy 2 and therefore it is not used in this chapter.
CherryPy 3 support is planned and will certainly be
available soon.

Chapter 7

[151]

Photoblog Design in Detail
Now, we will have a look at the basic structure of our photoblog design.

Basic Structure
Our first step is to define the HTML structure of the page:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">
<html py:extends="'common.kid'" xmlns:py="http://purl.org/kid/ns#">
 <head />
 <body>
 <!-- main container of our content -->
 <div id="page">
 <div id="header">

 </div>
 <div id="nav">

 Home
 Albums
 Sign-In
 About

 </div>
 <!-- content area where we will display the picture
 and other content such as forms -->
 <div id="content-pane">
 <div id="photo-pane">

 </div>
 </div>
 <div id="footer">

 </div>
 </div>
 </body>
</html>

The Presentation Layer

[152]

This template, which we will name index.kid, extends the template common.kid. It
looks as follows:

<html xmlns:py="http://purl.org/kid/ns#">
 <head py:match="item.tag == 'head'">
 <title></title>
 <meta http-equiv="content-type" content="text/html;
 charset=iso-8859-1"> </meta>
 </head>
</html>

The head element of the index.kid template will be replaced by that of the Kid
template named common.kid.

We will process that template as follows:

import cherrypy
import kid

class Root:
 @cherrypy.expose
 def index(self):
 t = kid.Template('index.kid')
 return t.generate(output='html')

if __name__ == '__main__':
 import os.path
 cur_dir = os.getcwd()
 conf = {'/style.css': {'tools.staticfile.on': \
 True,'tools.staticfile.filename': os.path.join(cur_dir, \
 'style.css')}}
 cherrypy.quickstart(Root(), config=conf)

Now if you navigate to http://localhost:8080/, it should look as follows:

Chapter 7

[153]

The next step is to add the CSS stylesheet by modifying the common.kid template:

<html xmlns:py="http://purl.org/kid/ns#">
 <head py:match="item.tag == 'head'">
 <title></title>
 <meta http-equiv="content-type" content="text/html;
 charset=iso-8859-1">
 </meta>
 <link rel="stylesheet" type="text/css" href="/style.css"> </link>
 </head>
</html>

Then, we define the CSS as follows:

body
{
 background-color: #ffffff;
 font-family: sans-serif;
 font-size: small;
 line-height: 1.3em;
 text-align: center;
}

#page
{
 position:relative;
 top: 25px;
 margin: 0px auto;
 text-align:left;
 width: 600px;
 position: left;
 border: 1px #ffffff solid;
 }

#header
{
 height: 45px;
 background-color: #71896D;
 border-bottom: 2px #858A6E solid;
}

#nav
{
 height: 20px;
 background-color: #CED6AB;

The Presentation Layer

[154]

 border-bottom: 2px #858A6E solid;
 font-weight: bold;
 text-align: right;
}

#nav ul
{
 margin: 0 0 0 20px;
 padding: 0;
 list-style-type: none;
}

#nav li
{
 display: inline;
 padding: 0 10px;
}

#nav li a
{
 text-decoration: none;
 color: #858A6E;
}

#nav li a:hover
{
 text-decoration: none;
 color: #999966;
}

#content-pane
{
 background-color: #ffffff;
 border-bottom: 1px #858A6E solid;
 text-align: center;
 padding: 50px 50px 50px 50px;
}

#photo-pane img
{
 border: 1px #858A6E solid;
 padding: 3px 3px 3px 3px;
}

Chapter 7

[155]

#footer
{
 height: 20px;
 background-color: #CED6AB;
}

Now, if you reload the page, you should see something like this:

We now have the main page of our photoblog application. The following
configurations will make us understand how we will handle the other pages of
our application:

One Kid template per page: In this configuration, each time a link is followed
or a form is submitted to the application, a new page will be constructed on
the server from its template and will be sent back to the browser.

Advantage: It is easy for the web designer who can now edit
every page.
Drawback: It feels less dynamic from the end-user point of view.
It feels as if the navigation is done per page.

•

°

°

The Presentation Layer

[156]

One or two templates and a bunch of JavaScript files: In this case, only one
page would be sent to the browser but it will contain enough information
for the browser to generate and insert blocks of content depending on the
context and end-user interaction.

Advantage: It feels much more dynamic for the end-user.
Less processing is done by the server, which sends data to be
processed by the user agent.
Drawback: It is less intuitive for the web designer. It will not
work on user agents that do not support JavaScript.

One Kid template per block of content to be displayed: This is a mix between
the previous two solutions. One page will be sent to the user agent and
upon user interaction, the browser will go and fetch extra blocks of content
generated on the server from the Kid templates that will be inserted directly
within the web page. This technique is referred as AHAH (Asynchronous
HTML and HTTP), as we will see in the next chapter.

Advantage: It is easy for the web developer who works on HTML
code, as in the first solution.
Drawback: The rendering is done by the server, so more work
on its part. It does not work for browsers that do not support
JavaScript.

For the purpose of this application, we will be using mainly the second solution. We
will see the application in the upcoming sections.

Mochikit
Mochikit, created and maintained by Bob Ippolito, is a JavaScript toolkit providing
a set of functionalities to simplify the development of web applications from a
client-side perspective. Mochikit provides the following components:

Async: This allows HTTP requests from the browser that are handled either
synchronously or asynchronously. We will explain this in more detail in the
next chapter.
Base: This is a set of functions for common programming tasks.
DOM: This is an API to ease the manipulation of the DOM tree and perform
operations such as insertion or removal of nodes in the tree.
DragAndDrop: This is there to enable drag and drop handling in a
web application.

•

°

°

•

°

°

•

•

•

•

Chapter 7

[157]

Color: This provides color abstraction with support for CSS3 colors that are
not supported natively by current browsers.
DateTime: These are helpers for date and time management.
Format: These are helpers for string manipulation.
Iter: This brings good support to JavaScript for the iterator pattern over a
collection of data.
Logging and LoggingPane: These are extended logger tools.
Signal: This is an API to handle events and their dispatching in a
web application.
Style: This is a better support for CSS.
Sortable: This simplifies the way to sort collections of data.
Visual: These are effects to make a web application more attractive.

Mochikit is not the only major player in the JavaScript toolkit field; there are others
such Dojo, script.aculo.us, Rico, Yahoo UI Library, JQuery, mooh.fx, etc. All of them
allow you to write rich client-side web applications and choosing one of these is a
matter of taste as much as of functionalities.

We will use the Mochikit library extensively to provide a more dynamic feeling
experience to the end user.

For example, we could add a box displaying information about the film associated to
the current photograph displayed. This box would be hidden by default and would
show up when the user clicks on a link.

Developing the Photoblog Design
We have now all the tools to develop a web application interface and we will now
present step by step how our photoblog application will use those tools through
specific examples, reflecting the application user-interface cases.

HTML Code
Let's start first by the insertion of an HTML box that will display film information.

The HTML code of the box to be inserted into the index.kid template:

<div id="film-pane">
 <div id="film-infos-pane">
 <label class="infos-label">Title:</label>
 My last holiday

•

•

•

•

•

•

•

•

•

The Presentation Layer

[158]

 <label class="infos-label">Created on:</label>
 18th August, 2006
 <label class="infos-label">Updated on:</label>
 27th August, 2006
 <label class="infos-label">Description:</label>
 Some text here...
 </div>
</div>

As you can see, we define an inner box and an outer box because we may need
to add more content sharing the same process as the inner box. Note also that we
do provide some random data from the template itself for testing purpose while
developing the interface. Indeed, even though the application is built step by step in
this book, in real-life projects tasks are usually achieved in parallel, so the areas that
are normally interdependent have to work on their side on mock-up objects or data.
Those are hard-coded but provide realistic content to work against.

Adding a Link
As this box will be hidden by default, we need to provide the end user with a
link to toggle its visibility. To do so, we add the following HTML code to the
index.kid template:

Film information

Note that, although we call it a link, this is not an HTML <a /> element but instead a
text label that will act as a link from the end-user point of view.

Handling the End-User Actions
Assuming we have a JavaScript file named utils.js, we would define:

function toggleFilmVisibility(e)
{
 toggle($('film-pane'), 'slide');
}

function initialize(e)
{
 hideElement($('film-pane'));
 connect('toggle-film-infos', 'onclick', toggleFilmVisibility);
};

connect(window, 'onload', initialize);

Chapter 7

[159]

First, we create a simple JavaScript function that takes only one parameter, a DOM
event object containing details of the current event, the caller, and the callee. This
function performs solely two actions:

It hides the DOM element with film-pane as id. Mochikit provides the
$(name) as a shortcut to retrieve a DOM node within the DOM tree.
It attaches the onclick signal of the element with the id named
toggle-film-infos to a function named toggleFilmVisibility. That
function only toggles the state of visibility of the film box.

Then, we connect the onload signal of the window DOM object with the initialize
function. This means that initialize will be called once the window object has
been loaded.

Amending the Template
In the common.kid template, we simply need to add the following lines to the
<head /> element:

<script type="application/javascript" src="/MochiKit/MochiKit.js" />
<script type="application/javascript" src="/MochiKit/New.js" />
<script type="application/javascript" src="/utils.js" />

Amending the CSS
As we have seen in our example, our different HTML elements have either an id
attribute and/or a class attribute. Both will allow us to apply a specific style to
those elements, as we will see now:

/* will inform the end-user the text is clickable as link */
span#toggle-film-infos
{
 cursor: pointer;
 text-align: left;
}

span#toggle-film-infos:hover
{
 text-decoration: underline;
}

#film-pane
{
 border: 1px #663 solid;

•

•

The Presentation Layer

[160]

 padding: 3px 3px 3px 3px;
 background-color: #fff;
}
#film-infos-pane
{
 text-align: left;
}

/* the following rules allow the information to be
 organized and displayed as in table */
infos-content, .infos-label
{
 display: block;
 width: 170px;
 float: left;
 margin-bottom: 2px;
}

infos-label
{
 text-align: left;
 width: 95px;
 padding-right: 20px;
 font-weight: bold;
}

Let's be More Flexible...
In the example we have been through, we started with the fact that the HTML
box would be included directly within the main template. Mochikit comes with a
handy DOM toolbox, with functions named after common HTML elements such as
DIV, SPAN, INPUT, FORM, etc. It provides an extremely easy way to generate HTML
elements on the fly to insert them into the DOM tree held by the browser.

A typical use case of our application will be the presentation of existing albums.
Since their number is going to change with time, it is required to generate the
associated HTML code dynamically, as shown in the following example:

var albumInfoBlock = DIV({'class': 'albums-infos-pane', 'id':
 'album-' + album['id']},
 LABEL({'class': 'infos-label'}, 'Title:'),
 SPAN({'class': 'infos-content'}, album['title']),
 LABEL({'class': 'infos-label'}, 'Created on:'),
 SPAN({'class': 'infos-content'}, album['created']),

Chapter 7

[161]

 LABEL({'class': 'infos-label'}, 'Updated on:'),
 SPAN({'class': 'infos-content'}, album['updated']),
 LABEL({'class': 'infos-label'}, 'Description:'),
 SPAN({'class': 'infos-content'},
 album['description']));

We first create the main block containing the information and then we associate a
unique identifier using the pattern album-#id#, where #id# is the id of the album to
be displayed. Doing it that way, we provide a unique identifier for each block within
the DOM tree. This is required as we will attach mouse events to the block itself for
further processing. Then, we attach a series of inline elements, via the SPAN element,
and we insert the content of the linked attribute of the album.

Once the block is created, we connect the mouse events as follows:

connect(albumInfoBlock, 'onclick', selectAlbum);

When a user clicks on an album block selectAlbum will be called and operations
will be performed to display the selected album, as we will see in the next chapter.

Next, we attach the newly created element to an outer album box area and we
display it:

appendChildNodes(albumsPane, albumInfoBlock);
toggle(albumsPane, 'blind');

The creation of the blocks containing the album information will take place in a loop
through the albums retrieved from the server, as we will see in the next chapter.

Summary
Through this chapter, we have introduced some of the technologies and tools
that are available today to create web application interfaces with dynamic and
attractive design.

These range from the good old HTML variants that are still widely used to structure
the content, to the CSS, a web designer's best friend to style the interface, and the
resourceful Mochikit that lets us step into the world of rich web application.

There is still a missing link to put everything together between the server and the
client. This link is commonly referred today as Ajax. This is what we will explain in
the next chapter.

Ajax
In the previous chapter, we built the photoblog web interface through the use of
HTML, DOM, and JavaScript. We have shown how a web page could be modified
dynamically from the browser itself. However, we have not detailed the nature
of this dynamism, neither have we explained how to retrieve data from a web
application server without refreshing the entire web page itself. The one who can do
this for us is Ajax. So, the goal of this chapter is to introduce the concept of Ajax.

Rise of the Rich-Client Applications
Until the year 2005, the most common pattern found in web applications was one
HTTP request per page. In other words, navigation through a website was done
through links that triggered the retrieval through an HTTP request of the linked
resource. This pattern is still widely used but competes now with the pattern where
we have several HTTP requests per page. The distinction might look anecdotal, but
by allowing the browser to issue several HTTP requests to fetch more data from
one web page at one given URI, it offers a different yet powerful path to the web
developer desirous of creating a more interactive application.

For example, let's imagine a web application that shows a list of results by paging
them instead of displaying them all at once. In traditional web applications, each
time the end user went forward or backward, a new HTTP request would be sent to
the server for the entire page to be reconstructed. In that case, the URL displayed in
the browser address bar would also change, based on the current page viewed. On
the other hand, imagine that instead of fetching the entire web page, only the new set
of data to be displayed was fetched. We would still have one request made each time
the customer moves from his or her current position, but it would be done without
the replacement of the entire web page. The end user would have a lesser feeling
of being governed by web pages, which could improve the overall experience of
navigating through the set of data as well as reducing the bandwidth consumption.

Ajax

[164]

This simplistic example is in fact a seed for all kind of enhancements for modern
web applications that have led to the rise of rich-client applications.

Ajax
In the year 2005, Jesse James Garrett (http://www.adaptivepath.com/
publications/essays/archives/000385.php) coined the term Ajax to designate
a set of technology that he was about to present to one of his clients. It has since
then left its original author's hands and is today the referenced term for what we
introduced in the previous section about making web applications look more
dynamic and interactive.

Ajax stands for Asynchronous JavaScript and XML, and covers a set of technologies
applied to a web environment. Let's review each part of the acronym:

Asynchronous: In a client-server environment, there are two grand
principles; either your operation is running synchronously to the rest of
the program or not. If it is, then the program pauses until the operation
terminates, and if it is not, then the operation returns immediately and lets
the program continue. Once the operation is finished, it informs its main
program through a callback function.
In the context of a web application, the whole purpose of Ajax is to bring
more interactivity to the end user, which is why it broadly relies on
asynchronous operations. Now, nothing prevents a developer from running
specific operations synchronously to the rest of the application. This,
however, can lead to the freezing of the entire browser, if the operation is not
almost instantaneous.
JavaScript: In a traditional approach where each action from the end user
leads to a new HTTP request, this request is generated by the browser itself,
which also consumes the HTTP response. With Ajax, the HTTP request is
handled by a JavaScript call to an underlying HTTP API that we will review
later on. Therefore, the web developer is in charge of creating a valid request,
being able to handle its response, and eventually updating the end-user view
of the web page.
XML: The main purpose of Ajax is to perform actions on the Document
Object Model to either insert new content or remove parts of a web page
from the end-user view. Ajax is based on the exchange of XML documents
through HTTP. Those documents contain all the information and data
necessary to perform the requested operation. Therefore, other formats of
information can be used and XML is not compulsory. The most widespread
format is JSON, which we will introduce later on.

•

•

•

Chapter 8

[165]

Ajax—Advantages and Drawbacks
At first sight, the concepts carried by Ajax seem really promising and they certainly
are. Nonetheless, the technologies required can lead to unexpected issues. First of all,
let's review some of the advantages of Ajax:

Server and bandwidth usage reduction: In a traditional web application,
where each page is requested in its entirety from the server, there is a
resource waste from both the server and the network. This is because the
server may have to recompute the page and more data is carried on the
wire. In both cases, however, the sensible use of caching would decrease
that effect.
When using Ajax principles, only the needed data is fetched from the server.
In that case, the server and intermediates could cache it. In any case, Ajax can
reduce the load occurring on servers, as part of the processing is moved to
the client itself.
General improvement of the end-user experience: Since the web page view is
updated locally on the client side following the user's actions, he or she may
feel that the web application is more interactive and more responsive.
Separation of concerns enforced: Since the web developer is in charge of the
construction of the HTTP request to be sent, he or she can decide to actually
call different web services based on the current context of the application.
For instance, in a traditional web application an HTML form would be
posted to the web server, which would return an HTML page. Ajax lets the
developer decide which service will handle the user input. Therefore, the
developer can call an Atom Publishing Protocol service that would return an
Atom document that the developer would then handle manually. Ajax web
applications can distribute their tasks among different specific services.

Now let's review the drawbacks associated with Ajax:

One of the biggest issues for web applications, based on the principles of
Ajax, is that they by-pass the browser machinery and, therefore, the standard
behavior of the backward and forward buttons is not assured anymore.
In a more general way, Ajax breaks an end-user habit that has become the
standard way of navigating the Web. For instance, the page-to-page pattern is
a clear sign that the end-user action has triggered an operation resulting in a
modification of the current state of the web page, whereas a web application
that will modify only a part of the viewed page can confuse some users.
Ajax sometimes prevents users from bookmarking the pages.

•

•

•

•

•

Ajax

[166]

Some have raised concerns about the possible security holes brought by Ajax
and JavaScript. However, those claims are usually made against applications
that had a weak point, not because of JavaScript but because of the way they
have designed a functionality. In any case, you should always weigh the
potential security risks for your own requirements when using Ajax. For
instance, never trust client-side form validation only; make sure you validate
any incoming data on the server side and keep client-side validation to
minimize round-trip HTTP exchanges.

Generally, the pitfall regarding the use of Ajax in a web application is its overuse.
Although this is a fairly subjective topic, the abuse of Ajax is frowned upon when
it does not improve the end-user experience as compared to a more traditional
approach. Our photoblog application will use Ajax fairly heavily.

Behind the Scene: XMLHttpRequest
As we have seen, Ajax is based on the idea of sending HTTP requests using
JavaScript; more specifically Ajax relies on the XMLHttpRequest object and its API
to perform those operations. This object was first designed and implemented by
Microsoft engineers as an ActiveX control available to Outlook Express and Internet
Explorer, but it was not heavily used before the rise of Ajax and rich web applications.
XMLHttpRequest is now part of every modern browser and is so widely used that the
W3C has notably set up a working group to specify the boundaries of this object to
provide the minimum interoperability requirements across implementations.

Let's review the XMLHttpRequest interface specified by W3C, as it provides the most
common attributes and functions implemented by browser vendors:

Attributes Description
readyState Read-only attribute carrying the current status of the object:

0: Uninitialized
1: Open
2: Sent
3: Receiving
4: Loaded

onreadystatechange An EventListener is called when the readyState
attribute changes.

responseText Contains the received bytes so far from the server as a string
responseXML If the content-type of the response was one associated with

XML (text/xml, application/xml, or +xml), this contains an
instance of the received document.

status The HTTP response code
statusText The HTTP response text

•

Chapter 8

[167]

Methods Description
abort() Cancels the underlying network connection with

the server.
getAllReponseHeaders() Returns a string of all HTTP response headers

separated by a new line.
getResponseHeader(header) Returns the value of the header if present in the

response. An empty string otherwise.
setRequestHeader(header,
value)

Sets an HTTP header for the underlying request.

open(method, uri, async,
user, password)

Initializes the object:
method: the HTTP method to be used for the request
uri: the URI on which the request is applied
async: a Boolean indicating whether this request must
be synchronous with the rest of the program or not
username and password: provide the credentials to
access the resource

send(data) Realizes the HTTP connection and sets the request
body with data if provided.

The API is fairly straightforward and simple. Let's go through various examples
using the MochiKit Async module.

Performing a GET Request
The GET request is as shown:

var xmlHttpReq = getXMLHttpRequest();
xmlHttpReq.open("GET", "/", true);

var d = sendXMLHttpRequest(xmlHttpReq);
d.addCallback(function (data)
{
 alert("Success!");
});
d.addErrback(function (data)
{
 alert("An error occurred");
};

Ajax

[168]

Now, we will see what we have actually done:

1.	 As each browser has its own API for the developer who wishes to instantiate
an XMLHttpRequest, Mochikit provides the getXMLHttpRequest() function
that will return the correct object by checking which browser the end user
is using.

2.	 We then initialize the object with required values. In this case, we want
to perform a GET request against the "/" URI of the current host in an
asynchronous fashion.

3.	 Then we inform the server that it must close the connection as soon as it
finishes with our request and has sent us its response.

4.	 Then we use the Mochikit sendXMLHttpRequest() function that returns
a deferred object. This object offers the developer a clean API to handle
the different states that an XMLHttpRequest object can take during
the processing.

a.	 We add a callback that will be applied if the response status code
indicates a success (typically in the 2xx and 3xx ranges of HTTP).

b.	 We also associate an error callback that will be applied when the
response indicates an error (typically in the 4xx and 5xx ranges
of HTTP).

5.	 The data parameter that each callback must take is the entity body included
in the response, which can then be processed by the callback.

Performing a Content-Negotiated GET Request
This GET request is as shown:

var xmlHttpReq = getXMLHttpRequest();
xmlHttpReq.open("GET", "/", true);

xmlHttpReq.setRequestHeader('Accept', 'application/atom+xml');
xmlHttpReq.setRequestHeader('Accept-Language', 'fr');
var d = sendXMLHttpRequest(xmlHttpReq);
d.addCallback(function (data)
{
 alert("Success!");
});
d.addErrback(function (data)
{
 alert("An error occured");
});

Chapter 8

[169]

In this request, we inform the server that we are willing to accept content that is
represented using the Atom format and which uses the French language. A server
that is unable to handle this request could respond with 406 Not Acceptable, and
therefore the error callback would be applied.

Performing a POST Request
The POST request is as shown:

var qs = queryString(data);
var xmlHttpReq = getXMLHttpRequest();
xmlHttpReq.open("POST", "/album", true);
xmlHttpReq.setRequestHeader('Content-Type',
 'application/x-www-form-urlencoded');

var d = sendXMLHttpRequest(xmlHttpReq, qs);
d.addCallback(function (data)
{
 // do something
});
d.addErrback(function (data)
{
 // do something else
});

Now, we will see what we have actually done:

1.	 We post some data in the form of an encoded query string. The
queryString(data) function takes an associative array of key values and
returns an encoded string of the form: key1=value1?key2=value2.

2.	 We initialize the XMLHttpRequest object.
3.	 We specify the content-type of our request entity body:

application/x-www-form-urlencoded

4.	 Then we request a deferred object from sendXMLHttpRequest, but as you can
see we also pass the data we wish to send.

Let's POST an XML Document
This is how we will do it:

var entry = '<?xml version="1.0" encoding="utf-8"?>
<entry>
 <title>This is my family album</title>
 <id>urn:uuid:25cd2014-2ab3-11db-902d-000ae4ea7d46</id>
 <updated>2006-08-13T11:18:01Z</updated>

Ajax

[170]

 <content type="text">Some content</content>
</entry>';
var xmlHttpReq = getXMLHttpRequest();
xmlHttpReq.open("POST", "/album", true);
xmlHttpReq.setRequestHeader('Content-Type', 'application/atom+xml');

var d = sendXMLHttpRequest(xmlHttpReq, entry);
d.addCallback(function (data)
{
 // do something
});
d.addErrback(function (data)
{
 // do something else
});

Performing PUT, HEAD, or DELETE Requests
Unlike HTML forms, XMLHttpRequest is not limited in terms of supported HTTP
methods that it recognizes. In fact, XMLHttpRequest does not pay attention to the
method that you use and does not interpret it. The method you use is sent as it is to
the server. This is extremely important in web services based on REST or the Atom
Publishing Protocol, as we have seen in the previous chapters.

Cookies
Cookies are sent along with the request, automatically by the user agent hosting
XMLHttpRequest; therefore, there is no specific action for the developer to take.

Authentication using Digest or Basic Schemes
The open() method of XMLHttpRequest can take username and password
parameters to be sent along with the request. The authentication schemes supported
by XMLHttpRequest are defined in RFC 2617, namely basic and digest. These two
schemes are as follows:

Basic scheme: The basic scheme is simply the transfer of the username and
password encoded using the base64 algorithm. The issue with this is that,
if a third-party fetches the encoded value, nothing can be done to prevent it
from being decoded. This is why the basic is often referred as sending the
password in clear text, because the applied encoding can be decoded very
easily. It is therefore not a secure authentication scheme unless it is used on a
secured protocol such as HTTPS.

•

Chapter 8

[171]

Digest scheme: The digest scheme, on the other hand, does not send the
password as it is across the wire. Instead, both the parties apply the same
algorithm using the password and other seeds to compute a digest value
of those. The server also sends the seed value on the first request to tag that
request. The client sends back the computation of the digest algorithm to the
server, which compares it with its own computation. If the two match, the
request is allowed. This scheme is safer than the basic one, as the password
is actually never sent onto the wire in a form that can be decrypted in a
reasonable amount of time.

By default, when using those schemes, a browser would open a pop-up window
asking for a username and a password. In the context of request issued by a
JavaScript call to XMLHttpRequest, it is possible to avoid that pop up by providing
the user credentials directly to the open() method. Obviously, it is out of question
to hardcode them into the JavaScript code. Instead, it is fairly easy to integrate an
HTML form into the web application and to dynamically pass the input values to the
JavaScript call, as the following example demonstrates:

<html>
 <head>
 <script type="application/javascript" src="MochiKit/MochiKit.js">
 </script>
 <script type="application/javascript" src="MochiKit/New.js">
 </script>
 <script type="application/javascript">
 doLogin = function()
 {
 // create the XMLHttpRequest object
 var xmlHttpReq = getXMLHttpRequest();
 // initialize the object
 // the "/hello/" + username URI is protected by a password
 // the magic happens here as we pass dynamically the values
 // of the username and password entered by the user
 xmlHttpReq.open("GET", "/hello/" + $("username").value, true,
 $("username").value, $("password").value);
 // start the request
 var d = sendXMLHttpRequest(xmlHttpReq);
 // let's remove any previous displayed message from the DOM
 replaceChildNodes($("message"));
 // insert a welcome message if the authentication succeeded
 d.addCallback(function (data)
 {
 appendChildNodes($("message"), SPAN({},
 data.responseText));

•

Ajax

[172]

 });
 // insert a message if the authentication failed
 d.addErrback(function (data)
 {
 appendChildNodes($("message"), SPAN({}, "You're not
 welcome here."));
 });
 };
 </script>
 <style type="text/css">
 Body
 {
 text-align: center;
 font-family: sans-serif;
 }

 #loginBox
 {
 position:relative;
 margin: 0px auto;
 text-align:left;
 width: 250px;
 color: #2F2F2F;
 padding-top: 25px;
 }

 Fieldset
 {
 background-color: #E9F3FF;
 }

 input, label
 {
 display: block;
 float: left;
 margin-bottom: 2px;
 }

 Label
 {
 text-align: left;
 width: 70px;
 padding-right: 10px;
 }

Chapter 8

[173]

 Input
 {
 border: 1px #000 solid;
 }

 #loginButton
 {
 cursor: pointer;
 font-weight: bold;
 text-decoration: none;
 color: #2F2F2F;
 }

 #loginButton:hover
 {
 text-decoration: underline;
 }
 </style>
 </head>
 <body>
 <div id="loginBox">
 <form name="login" id="login">
 <fieldset>
 <label>Username:</label>
 <input type="text" name="username" id="username" />

 <label>Password:</label>
 <input type="password" name="password" id="password" />

 Connect
 </fieldset>
 </form>
 </div>
 <div id="message" />
 </body>
</html>

The CherryPy script that would serve the previous page could look like:

import os.path
import cherrypy

class Root:
 @cherrypy.expose
 def index(self):

Ajax

[174]

 return file('ajaxdigest.html').read()

class Hello:
 @cherrypy.expose
 def default(self, username):
 return "Hello %s" % username

if __name__ == '__main__':
 r = Root()
 r.hello = Hello()
 current_dir = os.path.abspath(os.path.dirname(__file__))

 def get_credentials():
 return {'test': 'test'}

 conf = {'/hello': {'tools.digest_auth.on': True,
 'tools.digest_auth.realm': 'localhost',
 'tools.digest_auth.users': get_credentials},
 '/MochiKit': {'tools.staticdir.on': True,
 'tools.staticdir.dir':
os.path.join(current_dir, 'MochiKit')}}

 cherrypy.quickstart(r, config=conf)

When you access http://localhost:8080/, you should get the following page:

Chapter 8

[175]

If you enter the username test and password test, you will get the following view
on your screen:

On the other hand, if you provide wrong values, you would get a screen like this:

Ajax

[176]

Unfortunately, the browser receives the message from the server about the
authentication failure with 401 HTTP error code and handles it itself. As of today,
there is no cross-browser way to avoid that issue so that the pop up does not appear.
If you hit the Cancel button of the pop up, the browser then goes back to your
JavaScript code and the error callback is applied.

Moreover, since you cannot access the underlying session through the
XMLHttpRequest object as it is handled by the browser, you cannot force a logout
by suppressing the session credentials. The user has to close down the browser to
disconnect from the application.

Consequently, although XMLHttpRequest allows you to provide a fancier way to
enable basic and digest authentication in your web application, there are still some
pitfalls that need to be acknowledged.

JSON
As we have already seen in this chapter, in spite of carrying XML in its name, Ajax
does not prevent other formats being carried. For instance, one extremely common
format that you will see is JSON (JavaScript Object Notation).

In a nutshell, JSON is a way to carry serialized JavaScript objects so that a JavaScript
application can evaluate them and transform them into JavaScript objects that the
application can manipulate.

For instance, when the user requests the server for an album object formatted with
the JSON format, the server would return the following content:

{'description': 'This is a simple demo album for you to test',
 'author': 'Sylvain'}

We then use the evalJSONRequest() function from Mochikit, as follows:

var data = evalJSONRequest(incoming);

Now the data is a JavaScript associative array and the description field can be
accessed via:

data['description'];

JSON is widely deployed because it is simple, easy to use, and efficient to construct
or evaluate. It does support all the common basic types such as numbers, Booleans,
arrays, strings, or the null object. More complex objects are translated into associative
arrays, where object attribute names serve as keys to access their associated value.

The photoblog application will mainly use the JSON format in its operations.

Chapter 8

[177]

When your CherryPy application relies heavily on JSON, it may be interesting to
write a tool to automatically perform the JSON serialization and deserialization.

import cherrypy
import simplejson

def dejsonify(encoding='utf-8'):
 if cherrypy.request.method in ['POST', 'PUT']:
 if 'content-type' in cherrypy.request.headers:
 if cherrypy.request.headers['content-type'] ==
 'application/json':
 body_as_dict = simplejson.loads(
 cherrypy.request.body.read())
 for key in body_as_dict:
 cherrypy.request.params[key.encode(encoding)] =
 body_as_dict[key]

def jsonify():
 if isinstance(cherrypy.response.body, dict):
 cherrypy.response.headers['Content-Type'] = 'application/json'
 cherrypy.response.body = simplejson.dumps(
 cherrypy.response.body)

cherrypy.tools.dejsonifier = cherrypy.Tool('before_handler',
 dejsonify)
cherrypy.tools.jsonifier = cherrypy.Tool('before_finalize', jsonify)

class Root:
 def index(self):
 return {'message': 'Hello'}
 index.exposed = True

 def process(self, name):
 # do something here
 return "Processed %s" % name
 process.exposed = True

if __name__ == '__main__':
 conf = {'/': {'tools.dejsonifier.on': True,
 'tools.jsonifier.on': True}}
 cherrypy.quickstart(Root(), config=conf)

Ajax

[178]

We create two tools using the simple JSON module to perform the conversion. The
first one deserializes the request body from JSON only on POST and PUT requests
that have the application/json content-type set. The tool loads the request
body and transforms it into a dictionary, which is thereafter injected in the params
attribute of the cherrypy.request object allowing CherryPy page handlers to expect
keys of the JSON dictionary as regular parameters, as you can see in the process page
handler. Note that we must encode those keys into Python strings from Unicode
because CherryPy page handlers expect strings.

The second tool takes the dictionary returned by a page handler and serializes it
into JSON.

Applying Ajax to our Application
Our photoblog application will use Ajax fairly extensively, and to explain this we
will review how to handle the albums of the photoblog.

Defining the Required Namespaces
Our first step will be to define the JavaScript namespaces that will allow us to reuse
common function names in different contexts while avoiding name collision. Using
the term namespace is slightly unexpected because JavaScript does not have that
notion per se, but it is possible to emulate this feature in a number of ways. In the
case of this application, we will be using JavaScript inheritance that is simple enough
to implement our requirement.

The two namespaces that the photoblog application will use are: ui and services.

The ui namespace will cover the different interactions with the end user, while
the services namespace will take care of exchanging data with the server. The ui
namespace classes and functions will therefore call the services ones to perform
operations requested by the end user.

To implement these two namespaces, we will simply define two empty JavaScript
functions as follows:

function service()
{
};

function ui()
{
};

Chapter 8

[179]

Implementing Namespaces
We now have our functions and we can add attributes to them. Here we have the
album class declaration that will handle all aspects of the album entity from a client-
side point of view:

function albums()
{
 this.visibility = false;
 this.current = null;
 this.position = 0;
 this.step = 3;
};

ui.prototype.albums = new albums();
var ui = new ui();

Here, we first create a regular JavaScript function that is used as the constructor of an
album class. We also declare a few attributes attached to that object via the JavaScript
keyword this.

Then we add an albums instance as an attribute of the ui function object prototype
and we finally create the unique instance of the ui class that we will use throughout
the life of the application within the session of the user.

From now on we can use the albums instance to call its edit method:

ui.albums.edit(...)

We then define similarly the album class within the services namespace.

function album()
{
};
service.prototype.albums = new album();
var services = new service();

Adding Methods to the Classes
The first method that we will add to our classes will be the one that toggles the
visibility state of our albums container. This container will display information about
existing albums and will fade in or fade out when the user clicks on the associated
link. Let's see how to add methods:

albums.prototype.toggle = function(event)
{
 toggle($('content-pane'), 'blind');

Ajax

[180]

 if(this.visibility == false)
 {
 this.visibility = true;
 this.forward(e);
 }
 Else
 {
 this.visibility = false;
 replaceChildNodes(albumsPane);
 }
 toggle($('albums-pane'), 'blind');
};

This method first toggles the visibility of the content panel that contains the current
photograph. Then if the toggle means to open the albums panel, we set its visibility
to true and we call the forward method. Otherwise, we set the visibility to false
and we delete any elements attached to that container so that they don't waste
memory. Finally, we request Mochikit to change the visibility state of the albums
panel. We then connect that method to the onclick signal of the associated link
as follows:

connect($('albums'), 'onclick', ui.albums, 'toggle');

The forward method is defined as follows:

albums.prototype.forward = function(event)
{
 var start = this.position;
 var end = start + this.step;
 services.albums.fetch_range(start, end, this);
 this.position = end;
};

The method first defines the range of albums we will need to fetch from the server.
Then we call the fetch_range() method of the services.albums object, and we
finally set the new starting position for the next call to that method.

Let's now review the services.albums object itself:

album.prototype.fetch_range = function(start, end, src)
{
 var xmlHttpReq = getXMLHttpRequest();
 xmlHttpReq.open("GET", albumsBaseUri.concat(start, "-", end), true);

 xmlHttpReq.setRequestHeader('Accept', 'application/json');
 var d = sendXMLHttpRequest(xmlHttpReq);

Chapter 8

[181]

 d.addCallback(function (data)
{
 var data = evalJSONRequest(data);
 src.populate(data);
 });
};

You may notice that this method takes an extra parameter named src, which is the
calling object so that our callbacks can apply methods on that object when receiving a
response from the server.

The requested URI albumsBaseUri.concat(start, "-", end). albumsBaseUri,
is a global string variable containing the base URI for performing requests against
collections of albums.

We specify that we would prefer the server to send us back a JSON content, as this is
what we will be using to populate the retrieved albums.

The request issued would look like this:

http://localhost:8080/services/rest/albums/0-3

GET /services/rest/albums/0-3 HTTP/1.1
Host: localhost:8080
Accept: application/json
Connection: close

And its response would be:

HTTP/1.x 200 OK
Connection: close
Date: Tue, 19 Sep 2006 20:29:07 GMT
Content-Length: 763
Content-Type: application/json
Allow: GET, HEAD
Server: CherryPy/3.0.0beta

The returned content would be then evaluated by the MochiKit function
evalJSONRequest() to return an instance of JavaScript objects; in this case an array
of associative arrays. Once we have received and evaluated the content, we call the
populate() method of the ui.album class to display the retrieved albums. This
method is defined as follows:

albums.prototype.populate = function(albums)
{
 // get the albums container
 var albumsPane = $('albums-pane');

Ajax

[182]

 // we remove any already displayed albums form the DOM tree
 replaceChildNodes($('albums-pane'));

 // define a set of links that we will use to move through the
 // set of albums
 var previous = SPAN({'id': 'previous-albums', 'class':
 'infos-action'}, 'Previous');
 connect(previous, 'onclick', this, 'rewind');

 var next = SPAN({'id': 'next-albums', 'class': 'infos-action'},
 'Next');
 connect(next, 'onclick', this, 'forward');

 // we also add a link that when triggered will display the
 // form to create a new Album
 var create = SPAN({'class': 'infos-action'}, 'Create');
 connect(create, 'onclick',this, 'blank');

 // in case no albums were retrieved we simply display a default
 // message
 if(albums.length == 0)
 {
 appendChildNodes(albumsPane, SPAN({'id': 'info-msg', 'class':
 'info-msg'}, 'No more album to view.'));
 appendChildNodes(albumsPane, previous);
 return;
 }

 // now we traverse the array of retrieved albums to construct
 // a tree structure of each that we will then insert into the
 // main DOM tree
 for(var album in albums)
 {
 album = albums[album];
 var albumInfoBlock = DIV({'class': 'albums-infos-pane', 'id':
 'album-' + album['id']},
 LABEL({'class': 'infos-label'}, 'Title:'),
 SPAN({'class': 'infos-content'}, album['title']), BR(),
 LABEL({'class': 'infos-label'}, 'Created on:'),
 SPAN({'class': 'infos-content'}, album['created']), BR(),
 LABEL({'class': 'infos-label'}, 'Updated on:'),
 SPAN({'class': 'infos-content'}, album['modified']), BR(),
 LABEL({'class': 'infos-label'}, 'Description:'),
 SPAN({'class': 'infos-content'}, album['description']), BR());

Chapter 8

[183]

 // we provide a link Edit and Delete to each album displayed

 var editAlbumElement = SPAN({'class': 'infos-action'}, 'Edit');
 connect(editAlbumElement, 'onclick', this, 'fetch_for_edit');
 var deleteAlbumElement = SPAN({'class': 'infos-action'},
 'Delete');
 connect(deleteAlbumElement, 'onclick', this, 'ditch');

 appendChildNodes(albumInfoBlock, editAlbumElement);
 appendChildNodes(albumInfoBlock, deleteAlbumElement);

 // we finally connect the onclick signal of the block
 // carrying the album information. When a user clicks
 // it will toggle the albums panel visibility and
 // display the selected album.
 connect(albumInfoBlock, 'onclick', this, 'select');
 appendChildNodes(albumsPane, albumInfoBlock);
 }

 // we eventually insert all those new elements into the
 // main DOM tree to be displayed.
 appendChildNodes(albumsPane, previous);
 appendChildNodes(albumsPane, next);
 appendChildNodes(albumsPane, create);
};

Method to Create a New Album
Now that we can display albums, we will review how to create a new album.
To do so, we first need a form to gather the user input. Let's explain the
ui.albums.blank() method that is in charge of displaying the form by dynamically
inserting it into the DOM tree.

albums.prototype.blank = function(e)
{
 // those two elements will be links to either submit the form
 // or canceling the process by closing the form
 var submitLink = SPAN({'id': 'form-submit', 'class': 'form-link'},
 'Submit');
 var cancelLink = SPAN({'id': 'form-cancel', 'class': 'form-link'},
 'Cancel');

 // we will insert error messages when specific fields are
 // not filled

Ajax

[184]

 var successMessage = SPAN({'id': 'form-success', 'class':
 'form-success'}, 'Album created');
 var errorMessage = SPAN({'id': 'form-error', 'class':
 'form-error'}, 'An unexpected error occured');
 var titleErrMsg = SPAN({'id': 'form-title-error', 'class':
 'form-error'}, 'You must provide a title');
 var authorErrMsg = SPAN({'id': 'form-author-error', 'class':
 'form-error'}, 'You must specify the author name');
 var descErrMsg = SPAN({'id': 'form-desc-error', 'class':
 'form-error'}, 'You must provide a description');

 // the main form
 var albumForm = DIV({'id': 'pageoverlay'},
 DIV({'id': 'outerbox'},
 DIV({'id': 'formoverlay'},
 SPAN({'class': 'form-caption'}, 'Create a new album'),
 BR(),BR(),
 FORM({'id': 'create-album', 'name':"albumForm"}, titleErrMsg,
 LABEL({'class': 'form-label'}, 'Title:'),
 INPUT({'class': 'form-input', 'name': 'title', 'id':
 'album-title', 'value': ''}),
 BR(),
 LABEL({'class': 'form-label'}, 'Segment:'),
 INPUT({'class': 'form-input', 'name': 'segment', 'id':
 'album-segment', 'value': ''}), BR(), authorErrMsg,
 LABEL({'class': 'form-label'}, 'Author:'),
 INPUT({'class': 'form-input', 'name': 'author', 'id':
 'album-author', 'value': ''}), BR(), descErrMsg,
 LABEL({'class': 'form-label'}, 'Description:'),
 TEXTAREA({'class': 'form-textarea', 'name': 'description',
 'id': 'album-desc', 'rows': '2', 'value': ''}), BR(),
 LABEL({'class': 'form-label'}, 'Content:'),
 TEXTAREA({'class': 'form-textarea', 'name': 'content', 'id':
 'album-content', 'rows': '7', 'value': ''}), BR()),
 successMessage, errorMessage,
 DIV({'id': 'form-links'},
 submitLink,
 cancelLink))));

 hideElement(titleErrMsg);
 hideElement(authorErrMsg);
 hideElement(descErrMsg);
 hideElement(errorMessage);
 hideElement(successMessage);

Chapter 8

[185]

 connect(submitLink, 'onclick', this, 'create');
 connect(cancelLink, 'onclick', closeOverlayBox);
 appendChildNodes($('photoblog'), albumForm);
};

The creation of the form block requires further explanation. In order to provide a
fancier panel carrying the form, we use the technique deployed in scripts such as
Lightbox or Thickbox. Both rely on the overlay capabilities of CSS applied to the DOM
to display elements on top of others. Overlays allow displaying elements not in a
sequential fashion but as a pile. This feature associated with a sensible use of HTML
blocks as DIVs and appropriate colors can provide an attractive way to display the
content, as the following screenshot demonstrates:

Ajax

[186]

If you do not fill the required fields and submit the form, you will end up with a
screen as displayed in the following screenshot:

Chapter 8

[187]

If you fill the required fields and submit the form, you would get a screen as shown:

In order to avoid the situation where the user tries to re-submit the form, we remove
the Submit link and the user can now safely close this screen.

The HTTP exchange will look like this:

POST /services/rest/album/ HTTP/1.1
Host: localhost:8080
Accept: application/json
Accept-Language: en-us,en;q=0.5
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7

Content-Type: application/x-www-form-urlencoded
Content-Length: 167
Pragma: no-cache

blog_id=1&title=My%20holiday%20on%20Mars&author=Sylvain&description=
My%20holiday%20on%20Mars.&content=Mars%20is%20nice%20but%20a%20little
%20quiet.

HTTP/1.x 201 Created

Ajax

[188]

Connection: close
Content-Length: 289
Server: CherryPy/3.0.0beta
Location: http://localhost:8080/album/19
Allow: DELETE, GET, HEAD, POST, PUT
Date: Wed, 20 Sep 2006 19:59:59 GMT

Note that the response gives us the URI to directly access the newly created album.

The method to handle the previous HTTP exchange is services.album.create(),
as follows:

album.prototype.create = function(data, src)
{
 var qs = queryString(data);
 var xmlHttpReq = getXMLHttpRequest();
 xmlHttpReq.open("POST", albumBaseUri, true);
 xmlHttpReq.setRequestHeader('Content-Type',
 'application/x-www-form-urlencoded');

 xmlHttpReq.setRequestHeader('Accept', 'application/json');
 var d = sendXMLHttpRequest(xmlHttpReq, qs);
 d.addCallback(function (data)
 {
 src.showSuccessMessage();
 });
 d.addErrback(function (data)
 {
 src.showErrorMessage();
 });
};

The data parameter is a JavaScript associative array of the form fields. The src
parameter is the ui.albums instance, which is extended with the following methods:

albums.prototype.create = function(event)
{
 if(this.validate())
 {
 // blogId is a global variable containing the current photoblog
 // identifier
 var data = {'blog_id': blogId, 'title': $('album-title').value,
 'author': album-author').value,
 'description': $('album-desc').value,
 'content': $('album-content').value};

Chapter 8

[189]

 services.albums.create(data, this);
 }
};

albums.prototype.validate = function()
{
 var ready = true;
 hideElement($('form-title-error'));
 hideElement($('form-author-error'));
 hideElement($('form-desc-error'));

 if($('album-title').value == '')
 {
 appear($('form-title-error'));
 ready = false;
 }

 if($('album-author').value == '')
 {
 appear($('form-author-error'));
 ready = false;
 }

 if($('album-desc').value == '')
 {
 appear($('form-desc-error'));
 ready = false;
 }

 return ready;
};

albums.prototype.showSuccessMessage = function()
{
 hideElement($('form-title-error'));
 hideElement($('form-author-error'));
 hideElement($('form-desc-error'));

 appear($('form-success'));
 fade($('form-submit'));
};
albums.prototype.showErrorMessage = function()
{
 hideElement($('form-title-error'));
 hideElement($('form-author-error'));

Ajax

[190]

 hideElement($('form-desc-error'));

 appear($('form-error'));
};

Method to Update an Existing Album
This follows the same principles as we have seen in the previous section, except that
we provide an album object to fill the form automatically with its values.

Method to Delete an Existing Album
Finally, we need a method to delete an album:

// method part of the ui namespace
albums.prototype.ditch = function(event)
{
 // stop the propagation of the click event so that
 // the select method is not applied
 event.stop();
 // shows a modal dialogbox asking the confirmation of the deletion
 var doit = confirm("Are you sure you want to delete this album?");
 if(doit)
 {
 // we retrieve the id of the album to delete from
 // the block carrying the album <div id="album-19">...</div>
 var currentAlbumId = (e.src().parentNode.id).substr(6);
 services.albums.remove(currentAlbumId);
 switchOff(e.src().parentNode);
 }
};

// method part of the services namespace
album.prototype.remove = function(id)
{
 if(id != null)
 {
 var xmlHttpReq = getXMLHttpRequest();
 xmlHttpReq.open("DELETE", albumBaseUri + id, true);

 var d = sendXMLHttpRequest(xmlHttpReq);
 }
};

Chapter 8

[191]

The HTTP exchange would look like this:

DELETE /services/rest/album/19 HTTP/1.1
Host: localhost:8080
Connection: close
Content-Length: 0

HTTP/1.x 200 OK
Connection: close
Date: Wed, 20 Sep 2006 20:39:49 GMT
Content-Length: 0
Allow: DELETE, GET, HEAD, POST, PUT
Server: CherryPy/3.0.0beta

We have explained the basic methods to manipulate albums of the photoblog
application. The same principles will be applied for the other entities of the
application: film and photo.

Summary
This chapter has introduced you to Ajax and more generally to the basics of
client-side programming using JavaScript. The possibilities are almost endless and
the near future should see extremely interesting and powerful web applications that
will slowly take the place of their rich-client counterparts.

Testing
Until now, we have reviewed the different steps involved in building the photoblog
application but we have not tested our design and implementation. This chapter will
introduce some testing techniques such as unit, functional, and load testing using
open-source products such as unittest, CherryPy webtest, FunkLoad, and Selenium.
By the end of this chapter, you should have a good understanding of how to use
these tools in their context and improve the test suite for your applications.

Why Testing
Why testing, some might wonder? Does it bring any value to the application?
You may believe that if a problem is found in your code, it will be reported and
eventually be fixed. Therefore, you may argue that testing is fairly irrelevant and is
time consuming. If you do believe this, then with the help of this chapter we will try
to show you that testing is not just the cherry on the cake but actually it is part of the
recipe for success.

Testing is a process during which the application is audited from different
perspectives in order to:

Find bugs
Find differences between the expected and real result, output, states, etc.
Understand how complete the implementation is
Exercise the application in realistic situations before its release

The goal of testing is not to put the developer at fault but to provide tools to
estimate the health of the application at a given time. Testing measures the quality of
an application.

•

•

•

•

Testing

[194]

Testing is, therefore, not just a part of the application life cycle but is actually
the true barometer of where the application stands in that cycle. Lines of code
are meaningless; but test summary and test reports are the reference points that
the different members of a project can relate to for understanding what has been
achieved, what still needs to be achieved, and how to plan it.

Planning a Test
From the previous section we can say that since testing is so critical to a project,
everything should be tested and reviewed. This is true, but it does not mean the
same amount of resources and efforts should be allocated to every part of the system
under test.

First of all, it depends on the position of the project in its life cycle. For instance,
there is little need for performance testing right at the beginning of the project. There
might not be a need for capacity testing, if the application does not require lots of
hardware or network resources. That being said some tests will be carried all along
the life cycle of the project. They will be built up by successive iterations bringing
more strength to the test each time.

To summarize, testing needs to be planned in advance in order to define:

Goals: What is it relevant to test and for what purpose?
Scope: What is in the scope of the test? What is not?
Requirements: What will the test involve in terms of resources (human,
software, hardware, etc.)?
Risks: What are the risks related to that test if it does not pass? What will be
the mitigation and action taken? Will it stop the project? What is the impact?

These are just a few points to be kept in mind while planning a test.

Another important point is that testing does not end once the application is released.
It can also be carried on later so that the production release meets the defined
requirements. In any case, since testing draws together so many different aspects it
should be seen as a long, continuous process.

•

•

•

•

Chapter 9

[195]

Common Testing Approach
Testing is a generic term for a range of aspects to be validated on a system or
application. Here is a brief list of the common ones:

Unit testing: Usually carried by the developers themselves. Unit tests aim at
checking whether a unit of code works as expected.
Usability testing: Developers may usually forget that they are writing an
application for end users who do not have knowledge of the system and
might end up making it unusable. Functional and usability tests provide a
way to make sure that applications will fulfill user expectations.
Functional/Acceptance testing: While usability testing checks whether
the application or system is usable, functional testing ensures that every
specified functionality is implemented.
Load and performance testing: Once an application or system has reached
a certain level of completeness, it may require load and performance tests
to be conducted in order to understand whether the system can cope with
its expected peak load and to find potential bottlenecks. This can lead to
changing hardware, optimizing SQL queries, etc.
Regression testing: Regression testing verifies that successive releases of a
product do not break any of the previously working functionalities. Unit
testing can be considered as a part of regression testing in some ways.
Reliability and resilience testing: Some applications or systems cannot afford
to break at any time. Reliability and resilience tests can validate how the
system application copes with the breakdown of one or several components.

The previous list is far from being exhaustive and each system or application
environment may require specific types of testing to be defined.

Unit Testing
Our photoblog application will extensively use unit tests in order to constantly check
the following:

New functionalities work correctly and as expected.
Existing functionalities are not broken by new code release.
Defects are fixed and remain fixed.

Python comes in with a standard unittest module and also provides a doctest
module offering a different approach to unit testing as we will explain later on.

•

•

•

•

•

•

•

•

•

Testing

[196]

unittest
unittest is rooted in JUnit, a Java unit test package developed by Kent Beck and
Erich Gamma, which in turn came from a Smalltalk testing framework developed by
Kent Beck. Let's now review a basic example of this module.

Unit tests can often work on mock objects that are so called because they support the
same interface as the domain objects of the applications but do not actually perform
any work. They simply return defined data. Mock objects therefore allow testing
against an interface of our design without having to rely on the overall application
to be deployed for instance. They also provide a way to run tests in isolation mode
from other tests.

First let's define a dummy class as follows:

class Dummy:
 def __init__(self, start=0, left_boundary=-10, right_boundary=10,
 allow_positive=True, allow_negative=False):
 self.current = start
 self.left_boundary = left_boundary
 self.right_boundary = right_boundary
 self.allow_positive = allow_positive
 self.allow_negative = allow_negative

 def forward(self):
 next = self.current + 1
 if (next > 0) and (not self.allow_positive):
 raise ValueError, "Positive values are not allowed"
 if next > self.right_boundary:
 raise ValueError, "Right boundary reached"
 self.current = next
 return self.current

 def backward(self):
 prev = self.current - 1
 if (prev < 0) and (not self.allow_negative):
 raise ValueError, "Negative values are not allowed"
 if prev < self.left_boundary:
 raise ValueError, "Left boundary reached"
 self.current = prev
 return self.current

 def __str__(self):
 return str(self.current)

 def __repr__(self):
 return "Dummy object at %s" % hex(id(self))

Chapter 9

[197]

This class provides an interface to get the next or previous value within a range
defined by the left and right boundaries. We could imagine it as a mock object of a
more complex class but providing dummy data.

A simple usage of this class is as follows:

>>> from dummy import Dummy
>>> dummy = Dummy()
>>> dummy.forward()
1
>>> dummy.forward()
2
>>> dummy.backward()
1
>>> dummy.backward()
0
>>> dummy.backward()
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
 File "dummy.py", line 27, in backward
 raise ValueError, "Negative values are not allowed"
ValueError: Negative values are not allowed

Let's imagine we wish to unit test this exciting module to make sure that the code
is correct.

import unittest

class DummyTest(unittest.TestCase):
 def test_01_forward(self):
 dummy = Dummy(right_boundary=3)
 self.assertEqual(dummy.forward(), 1)
 self.assertEqual(dummy.forward(), 2)
 self.assertEqual(dummy.forward(), 3)
 self.assertRaises(ValueError, dummy.forward)

 def test_02_backward(self):
 dummy = Dummy(left_boundary=-3, allow_negative=True)
 self.assertEqual(dummy.backward(), -1)
 self.assertEqual(dummy.backward(), -2)
 self.assertEqual(dummy.backward(), -3)
 self.assertRaises(ValueError, dummy.backward)

 def test_03_boundaries(self):
 dummy = Dummy(right_boundary=3, left_boundary=-3,
 allow_negative=True)

Testing

[198]

 self.assertEqual(dummy.backward(), -1)
 self.assertEqual(dummy.backward(), -2)
 self.assertEqual(dummy.forward(), -1)
 self.assertEqual(dummy.backward(), -2)
 self.assertEqual(dummy.backward(), -3)
 self.assertRaises(ValueError, dummy.backward)
 self.assertEqual(dummy.forward(), -2)
 self.assertEqual(dummy.forward(), -1)
 self.assertEqual(dummy.forward(), 0)
 self.assertEqual(dummy.backward(), -1)
 self.assertEqual(dummy.forward(), 0)
 self.assertEqual(dummy.forward(), 1)
 self.assertEqual(dummy.forward(), 2)

Let's explain this code step by step:

1.	 To provide unit test capabilities using the unittest standard module you
only need to import that specific module.

2.	 Create a class that subclasses unittest.TestCase, which is the interface
providing unit test functionalities to our code. This class is referred to as a
test case.

3.	 Create methods starting with the word test. Each method starting with it
will be called by the unittest internal handler. Notice that the methods this
class defines also use a two-digit pattern. This is not required by unittest
but it allows us to force methods to be called in the order we wish. Indeed
unittest calls methods by alpha-numeric order, which can sometimes
lead to unexpected results. Providing digits like this is a good way to work
around that limitation.

4.	 Call the different assert/fail methods provided by the TestCase class to
perform checking of values, exceptions, outputs, etc.

The next step is to run this test case as follows:

if __name__ == '__main__':
 unittest.main()

This assumes that the call to main() is done from within the same module containing
the TestCase class. The result of this test looks like the following:

...
--
Ran 3 tests in 0.000s

OK

Chapter 9

[199]

It is common to make the output a little more verbose as follows:

if __name__ == '__main__':
 unittest.main(testRunner=unittest.TextTestRunner(verbosity=2))

This will produce the following output:

test_01_forward (__main__.DummyTest) ... ok
test_02_backward (__main__.DummyTest) ... ok
test_03_boundaries (__main__.DummyTest) ... ok

--
Ran 3 tests in 0.000s

OK

Now let's provoke an error so that one of the tests fails. In test_01_forward replace
the first assertEqual with the following:

self.assertEqual(dummy.forward(), 0)

Then while running the test again you should get the following output:

test_01_forward (__main__.DummyTest) ... FAIL
test_02_backward (__main__.DummyTest) ... ok
test_03_boundaries (__main__.DummyTest) ... ok

==
FAIL: test_01_forward (__main__.DummyTest)
--
Traceback (most recent call last):
 File "dummy.py", line 54, in test_01_forward
 self.assertEqual(dummy.forward(), 0)
AssertionError: 1 != 0

--
Ran 3 tests in 0.001s

FAILED (failures=1)

As you can see, the unittest module does not stop processing any remaining test
cases when one fails. Instead, it displays the traceback of the raised assertion error.
Here the test is wrong but in the case where your assertion is a valid one, it would
point to a failure of your application.

Let's assume that we write a test that tries to go forward when the right boundary
is less than the starting point. We assume that the documentation of the method tells
us that it should raise an exception expressing the fact that the class has rejected
this case.

Testing

[200]

Let's create test_00_construct accordingly:

def test_00_construct(self):
 self.assertRaises(ValueError, Dummy, start=34)

Let's run the test now:

test_00_construct (__main__.DummyTest) ... FAIL
test_01_forward (__main__.DummyTest) ... ok
test_02_backward (__main__.DummyTest) ... ok
test_03_boundaries (__main__.DummyTest) ... ok

==
FAIL: test_00_construct (__main__.DummyTest)
--
Traceback (most recent call last):
 File "dummy.py", line 50, in test_00_construct
 self.assertRaises(ValueError, Dummy, start=34)
AssertionError: ValueError not raised

--
Ran 4 tests in 0.003s

FAILED (failures=1)

As you can see the test case does fail on the new test we have included. The reason is
that the Dummy.__init__() method does not contain any error handling for this case
unlike what the documentation told us. Let's fix this by adding the following code at
the bottom of the __init__ method:

if (start > right_boundary) or (start < left_boundary):
 raise ValueError, "Start point must belong to the boundaries"

Let's now re-run the test:

test_00_construct (__main__.DummyTest) ... ok
test_01_forward (__main__.DummyTest) ... ok
test_02_backward (__main__.DummyTest) ... ok
test_03_boundaries (__main__.DummyTest) ... ok

--
Ran 4 tests in 0.000s

OK

Chapter 9

[201]

The previous example shows that it is sometimes desirable to write the test before
implementing the functionality itself in order to avoid designing the test to match the
code behavior. This is often called test-driven development. Another way to achieve
this is to provide the API of the application or library to a third party, who will write
the test case based on that API in a neutral fashion. Either way the previous example
demonstrates that unit testing is only relevant when the tests are coherent with the
design and are there to test the implementation.

Now that we have introduced the unittest module let's present the doctest one.

doctest
The doctest module supports running Python code inlined within an object
docstring. The advantage of this technique is that test cases are close to the code they
test. The inconvenience is that some complex tests can be difficult to achieve this
way. Let's see an example on the class we have defined earlier.

class Dummy:
 def __init__(self, start=0, left_boundary=-10, right_boundary=10,
 allow_positive=True, allow_negative=False):
 """
 >>> dummy = Dummy(start=27)
 Traceback (most recent call last):
 ...
 raise ValueError, "Start point must belong to the
 boundaries"
 ValueError: Start point must belong to the boundaries
 >>> dummy = Dummy()
 >>> dummy.backward()
 Traceback (most recent call last):
 ...
 raise ValueError, "Negative values are not allowed"
 ValueError: Negative values are not allowed

 """
 self.current = start
 self.left_boundary = left_boundary
 self.right_boundary = right_boundary
 self.allow_positive = allow_positive
 self.allow_negative = allow_negative

 if (start > right_boundary) or (start < left_boundary):
 raise ValueError, "Start point must belong to the
 boundaries"

Testing

[202]

 def forward(self):
 """
 >>> dummy = Dummy(right_boundary=3)
 >>> dummy.forward()
 1
 >>> dummy.forward()
 2
 >>> dummy.forward()
 3
 >>> dummy.forward()
 Traceback (most recent call last):
 ...
 raise ValueError, "Right boundary reached"
 ValueError: Right boundary reached

 """
 next = self.current + 1
 if (next > 0) and (not self.allow_positive):
 raise ValueError, "Positive values are not allowed"
 if next > self.right_boundary:
 raise ValueError, "Right boundary reached"
 self.current = next
 return self.current
 def backward(self):
 """
 >>> dummy = Dummy(left_boundary=-3, allow_negative=True)
 >>> dummy.forward()
 1
 >>> dummy.backward()
 0
 >>> dummy.backward()
 -1
 >>> dummy.backward()
 -2
 >>> dummy.backward()
 -3
 >>> dummy.backward()
 Traceback (most recent call last):
 ...
 raise ValueError, "Left boundary reached"
 ValueError: Left boundary reached

 """
 prev = self.current - 1

Chapter 9

[203]

 if (prev < 0) and (not self.allow_negative):
 raise ValueError, "Negative values are not allowed"
 if prev < self.left_boundary:
 raise ValueError, "Left boundary reached"
 self.current = prev
 return self.current

 def __str__(self):
 return str(self.current)

 def __repr__(self):
 return "Dummy object at %s" % hex(id(self))

As you can see, each method you wish to test must have a docstring containing use
cases that will be run as-is by the doctest module.

Then you can run the test as follows:

if __name__ == '__main__':
 doctest.testmod()

sylvain@6[test]$ python dummy.py -v
Trying:
 dummy = Dummy(start=27)
Expecting:
 Traceback (most recent call last):
 ...
 raise ValueError, "Start point must belong to the boundaries"
 ValueError: Start point must belong to the boundaries
ok
Trying:
 dummy = Dummy()
Expecting nothing
ok
Trying:
 dummy.backward()
Expecting:
 Traceback (most recent call last):
 ...
 raise ValueError, "Negative values are not allowed"
 ValueError: Negative values are not allowed
ok
Trying:
 dummy = Dummy(left_boundary=-3, allow_negative=True)

Testing

[204]

Expecting nothing
ok
Trying:
 dummy.forward()
Expecting:
 1
ok

We do not reproduce the complete result trace as it is too long for the purpose of
the chapter. You may consider that mixing code and documentation will reduce the
efficiency of both, making the documentation harder to read. This concern is actually
raised by the doctest module documentation itself, which sensibly advises handling
docstring examples with care. Indeed, since the code belongs to the docstring, it will be
displayed while viewing it.

>>> from dummy import Dummy
>>> help(Dummy.forward)
Help on method forward in module dummy:

forward(self) unbound dummy.Dummy method
 >>> dummy = Dummy(right_boundary=3)
 >>> dummy.forward()
 1
 >>> dummy.forward()
 2
 >>> dummy.forward()
 3
 >>> dummy.forward()
 Traceback (most recent call last):
 ...
 raise ValueError, "Right boundary reached"
 ValueError: Right boundary reached

In such cases the tests can either be part of the documentation itself or be too
complex making the documentation unusable.

In a nutshell both the unittest and doctest modules deserve to be reviewed for your
requirements and it is common to find both being used in a single project to provide
a strong unit-test suite. In any case, we recommend you to read the documentation
of both the modules, which will demonstrate that there is much more than the brief
introduction given in this chapter. In addition a very informative mailing-list is
available at http://lists.idyll.org/listinfo/testing-in-python.

Chapter 9

[205]

Unit Testing Web Applications
In the previous section, we have presented two standard modules to perform unit
testing in Python applications and packages. Unfortunately as they stand they lack
some common features to help in specific contexts such as web applications. The
Python community has obviously come up with solutions and there are several good
extensions to unittest or completely distinct test packages to help us.

We will use an extension to unittest, provided by CherryPy, called webtest and
developed by Robert Brewer.

This module provides a transparent integration with CherryPy and also provides
a command-line helper to test different configurations of servers. It allows a test
to be stopped when a failure occurs, offers access to the HTTP stack when an error
is raised, also supports code coverage and profiling, etc. In a nutshell this module
starts a CherryPy server automatically, which each test case uses to mount CherryPy
applications as needed for the test run and to perform HTTP requests on that server.

This section will now show all the different test cases of our photoblog application
but you will find them within the source code of the application. Based on what we
have explained in the previous section we design our test cases as follows:

class TestServicesREST(PhotoblogTest):
 def test_00_REST(self):
 self.getPage("/services/rest/")
 self.assertStatus(404)

 self.getPage("/services/rest/album/", method="XYU")
 self.assertStatus(405)

 def test_02_REST_GET(self):
 # missing the ID
 self.getPage("/services/rest/album/")
 self.assertStatus(400)

 # missing the Accept header
 self.getPage("/services/rest/album/2")
 self.assertStatus(406)

 # wrong ID type
 self.getPage("/services/rest/album/st",
 headers=[("Accept", "application/json")])
 self.assertStatus(404)

Testing

[206]

 self.getPage("/services/rest/album/2",
 headers=[("Accept", "application/json")])
 self.assertStatus(200)
 self.assertHeader('Content-Type', 'application/json')
 self.assertHeader('Allow', 'DELETE, GET, HEAD, POST, PUT')

 self.getPage("/services/rest/album?album_id=2",
 headers=[("Accept", "application/json")])
 self.assertStatus(200)
 self.assertHeader('Content-Type', 'application/json')
 self.assertHeader('Allow', 'DELETE, GET, HEAD, POST, PUT')

 def test_03_REST_POST(self):
 blog = self.photoblog
 params = {'title': 'Test2',
 'author': 'Test demo', 'description': 'blah blah',
 'content': 'more blah blah bluh', 'blog_id':
 str(blog.ID)}

 # let's transform the param dictionary
 # into a valid query string
 query_string = urllib.urlencode(params)

 self.getPage("/services/rest/album/", method="POST",
 body=query_string,
 headers=[("Accept", "application/json")])
 self.assertStatus(201)
 self.assertHeader('Content-Type', 'application/json')

 # here we miss the Accept header
 self.getPage("/services/rest/album/", method="POST",
 body=query_string)
 self.assertStatus(406)

 def test_04_REST_PUT(self):
 blog = self.photoblog
 params = {'title': 'Test2',
 'author': 'Test demo', 'description': 'blah blah',
 'content': 'meh ehe eh', 'blog_id': str(blog.ID)}
 query_string = urllib.urlencode(params)

 # at this stage we don't have yet an album with that ID
 self.getPage("/services/rest/album/23", method="PUT",
 body=query_string,
 headers=[("Accept", "application/json")])

Chapter 9

[207]

 self.assertStatus(404)

 self.getPage("/services/rest/album/4", method="PUT",
 body=query_string,
 headers=[("Accept", "application/json")])
 self.assertStatus(200)
 self.assertHeader('Content-Type', 'application/json')

 def test_06_REST_DELETE(self):
 self.getPage("/services/rest/album/4", method="DELETE")
 self.assertStatus(200)

 # DELETE is idempotent and should always return 200 in case
 # of success
 self.getPage("/services/rest/album/4", method="DELETE")
 self.assertStatus(200)

 def test_05_REST_Collection_GET(self):
 self.getPage("/services/rest/albums/3")
 self.assertStatus(400, 'Invalid range')

 self.getPage("/services/rest/albums/a")
 self.assertStatus(400, 'Invalid range')

 self.getPage("/services/rest/albums/0-")
 self.assertStatus(400, 'Invalid range')

 self.getPage("/services/rest/albums/a+3")
 self.assertStatus(400, 'Invalid range')

 self.getPage("/services/rest/albums/3-a")
 self.assertStatus(400, 'Invalid range')

 self.getPage("/services/rest/albums/0+3")
 self.assertStatus(400, 'Invalid range')

 # valid range but missing Accept header
 self.getPage("/services/rest/albums/0-3")
 self.assertStatus(406)

 self.getPage("/services/rest/albums/0-3",
 headers=[("Accept", "application/json")])
 self.assertStatus(200)
 self.assertHeader('Content-Type', 'application/json')
 json = simplejson.loads(self.body)
 self.failUnless(isinstance(json, list))
 self.failUnlessEqual(len(json), 3)

Testing

[208]

The test case above is only an example of different tests we can conduct against our
application and in reality more tests would be required to ensure that the application
works as expected and to perform regression testing.

As you can see, our test case performs HTTP requests and validates the content of
the response as well as its headers. The simplicity of these validations is brought by
the unit testing extension provided by the webtest module. Let's now see in detail
how to set up that module to run the test case shown earlier.

First let's create a test.py module containing the following code:

import os.path
import sys
Tell Python where to find our application's modules.
sys.path.append(os.path.abspath('..'))

CherryPy main test module
from cherrypy.test import test as cptest

load the global application settings
current_dir = os.path.abspath(os.path.dirname(__file__))
conf.from_ini(os.path.join(current_dir, 'application.conf'))

from models import Photoblog, Album, Film, Photo

dejavu main arena object
arena = storage.arena
register our models with dejavu
storage.setup()

def initialize():

 for cls in (Photoblog, Album, Film, Photo):
 arena.create_storage(cls)

def shutdown():

 for cls in (Photoblog, Album, Film, Photo):
 if arena.has_storage(cls):
 arena.drop_storage(cls)

def run():
 """
 entry point to the test suite
 """
 try:
 initialize()

Chapter 9

[209]

 # modules name without the trailing .py
 # that this test will run. They must belong
 # to the same directory as test.py
 test_list = ['test_models', 'test_services']
 cptest.CommandLineParser(test_list).run()
 finally:
 shutdown()
 print
 raw_input('hit enter to terminate the test')

if __name__ == '__main__':
 run()

Let's inspect what the test.py module can achieve:

sylvain@[test]$ python test.py --help

CherryPy Test Program
 Usage:
 test.py --server=* --host=127.0.0.1 --port=8080 --1.0 --cover
--basedir=path --profile --validate --conquer --dumb --tests**

 * servers:
 --server=modpygw: modpygw
 --server=wsgi: cherrypy._cpwsgi.CPWSGIServer (default)
 --server=cpmodpy: cpmodpy

 --host=<name or IP addr>: use a host other than the default
 (127.0.0.1).
 Not yet available with mod_python servers.
 --port=<int>: use a port other than the default (8080)
 --1.0: use HTTP/1.0 servers instead of default HTTP/1.1
 --cover: turn on code-coverage tool
 --basedir=path: display coverage stats for some path other than
 --cherrypy.

 --profile: turn on profiling tool
 --validate: use wsgiref.validate (builtin in Python 2.5).
 --conquer: use wsgiconq (which uses pyconquer) to trace calls.
 --dumb: turn off the interactive output features.

 ** tests:
 --test_models
 --test_services

Testing

[210]

As you can see, our test supports a handful of functionalities allowing us to run
our tests in different configurations such as by using the built-in HTTP server or a
mod_python handler, as we will explain in Chapter 10.

Next we create a PhotoblogTest class, which will be the base class of our test cases.
In a module called blogtest.py we add the following code:

from cherrypy.test import helper

default blog name for the test suite
blog_name = u"photoblog"
from models import Photoblog

class PhotoblogTest(helper.CPWebCase):
 def photoblog(self):
 blog = Photoblog.find_by_name(blog_name)
 if not blog:
 self.fail("Could not find blog '%s'" % blog_name)

 return blog
 photoblog = property(photoblog, doc="Returns a blog object to
 work against")

The PhotoblogTest class inherits from the CherryPy CPWebCase class, which
provides a list of functions to perform assertions checking against a web test. For
instance, the CPWebCase class defines the following:

assertStatus(status) to verify the status of the last response
assertHeader(name, value=None) to verify whether a header is present as
well as ensure that the value, if not None, is the one provided
assertBody(value) to check the returned body is the one we expected
assertInBody(value) to verify the returned content contained a
given value

This class also comes with the getPage(uri, method, headers, body) method to
issue an HTTP request.

Our PhotoblogTest class defines the photoblog property so that tests can easily get
a reference to the blog we create by default throughout the life of the test.

The blogtest.py module also contains the following functions used to set up the
server for the life cycle of a test:

from lib import storage
import services
from models import Album, Film, Photo

def populate_storage():

•

•

•

•

Chapter 9

[211]

 photoblog = Photoblog()
 photoblog.create(blog_name, u'Yeah')
 a1 = Album()
 a1.create(photoblog, "Test album",
 "Test", "blah blah", "more blah blah")

def reset_storage():
 # here we simply remove every object a test has left
 # in the storage so that we have a clean
 # storage for the next test case run
 photoblog = Photoblog.find_by_name(blog_name)
 photoblog.delete()

def setup_photoblog_server():
 # Update the CherryPy global configuration
 cherrypy.config.update(os.path.join(current_dir, 'http.conf'))

 # fill the storage with default values for the purpose of the
 #test
 populate_storage()

 # Construct the published trees

 services_app = services.construct_app()

 # Mount the applications on the '/' prefix
 engine_conf_path = os.path.join(current_dir, 'engine.conf')

 service_app = cherrypy.tree.mount(services_app, '/services',
 config=engine_conf_path)
 service_app.merge(services.services_conf)

def teardown_photoblog_server():
 reset_storage()

The setup_photoblog_server() function is responsible for setting up the photoblog
application and loading the different configuration settings. These must be a part of
the test directory. For instance, we could provide a different database name for the
storage to be used so that we do not run the test on a production database.

Finally, we define our test cases in a module named test_services.py as follows:

import httplib
import os.path
import urllib

import cherrypy
import simplejson

from models import Photoblog, Album, Film, Photo

Testing

[212]

from blogtest import PhotoblogTest, blog_name, \
 setup_photoblog_server, teardown_photoblog_server

current_dir = os.path.abspath(os.path.dirname(__file__))

def setup_server():
 setup_photoblog_server()

def teardown_server():
 teardown_photoblog_server()

Here we insert the TestServicesREST class definition
that we have seen at the beginning of this section

Let's explain how this module is constructed:

1.	 We must import a bunch of modules to perform specific tasks for our tests.
2.	 Our test case subclasses the PhotoblogTest class that we have

described earlier.
3.	 We need to define two functions—setup_server() and teardown_server(),

which will be automatically called by the CherryPy test module each time
it starts and finishes running a test module. This allows us to initialize our
photoblog application for the test case.

4.	 Finally we add the TestServicesREST class as our test case.

Let's now run the entire test suite:

sylvain@[test]$ python test.py
Python version used to run this test script: 2.5
CherryPy version 3.0.0
HTTP server version HTTP/1.1

Running tests: cherrypy._cpwsgi.CPWSGIServer
No handlers could be found for logger "cherrypy.error"
test_00_Photoblog_unit (test_models.TestModels) ... ok
test_01_Photoblog_create (test_models.TestModels) ... ok
test_02_Photoblog_retrieve_by_name (test_models.TestModels) ... ok
test_03_Photoblog_retrieve_by_unknown_name (test_models.TestModels)
 ... ok
test_04_Photoblog_retrieve_by_unsupported_id_type
 (test_models.TestModels) ... ok
test_05_Photoblog_update (test_models.TestModels) ... ok
test_06_Photoblog_populate (test_models.TestModels) ... ok
test_10_Album_unit (test_models.TestModels) ... ok
test_99_Photoblog_delete (test_models.TestModels) ... ok
test_00_REST (test_services.TestServicesREST) ... ok

Chapter 9

[213]

test_01_REST_HEAD (test_services.TestServicesREST) ... ok
test_02_REST_GET (test_services.TestServicesREST) ... ok
test_03_REST_POST (test_services.TestServicesREST) ... ok
test_04_REST_PUT (test_services.TestServicesREST) ... ok
test_05_REST_Collection_GET (test_services.TestServicesREST) ... ok
test_06_REST_DELETE (test_services.TestServicesREST) ... ok

If on the other hand you wish to run only one module:

sylvain@[test]$ python test.py --models
Python version used to run this test script: 2.5
CherryPy version 3.0.0
HTTP server version HTTP/1.1

Running tests: cherrypy._cpwsgi.CPWSGIServer
No handlers could be found for logger "cherrypy.error"
test_00_Photoblog_unit (test_models.TestModels) ... ok
test_01_Photoblog_create (test_models.TestModels) ... ok
test_02_Photoblog_retrieve_by_name (test_models.TestModels) ... ok
test_03_Photoblog_retrieve_by_unknown_name (test_models.TestModels)
 ... ok
test_04_Photoblog_retrieve_by_unsupported_id_type (test_models.
 TestModels) ... ok
test_05_Photoblog_update (test_models.TestModels) ... ok
test_06_Photoblog_populate (test_models.TestModels) ... ok
test_10_Album_unit (test_models.TestModels) ... ok
test_99_Photoblog_delete (test_models.TestModels) ... ok

As you can see, writing unit tests using the CherryPy test module makes the task of
testing an application based on CherryPy an easy one, because CherryPy takes care
of a lot of common burdens allowing the tester to focus on what really matters.

Performance and Load Testing
Depending on the application you are writing and your expectations in terms
of volume, you may need to run load and performance testing in order to detect
potential bottlenecks in the application that are preventing it from reaching a certain
level of performance.

This section will not detail how to conduct a performance or load test as it is out of
its scope but we will review one Python solution, the FunkLoad package provided
by Nuxeo, a French company specialized in free software written in Python. You
can install FunkLoad via the easy_install command. FunkLoad is available at
http://funkload.nuxeo.org/.

Testing

[214]

FunkLoad is an extension to the webunit module, a Python module oriented
towards unit testing web application. FunkLoad comes with a fairly extensive API
and set of tools taking care of the burden of extracting metrics from a load test to
eventually generate test reports with nice-looking charts.

Let's see an extremely basic example of using FunkLoad.

from funkload.FunkLoadTestCase import FunkLoadTestCase

class LoadHomePage(FunkLoadTestCase):
 def test_homepage(self):
 server_url = self.conf_get('main', 'url')
 nb_time = self.conf_getInt('test_homepage', 'nb_time')

 home_page = "%s/" % server_url
 for i in range(nb_time):
 self.logd('Try %i' % i)
 self.get(home_page, description='Get gome page')

if __name__ in ('main', '__main__'):
 import unittest
 unittest.main()

Let's understand this example in detail:

1.	 Your test case must inherit from the FunkLoadTestCase class so that
FunkLoad can do its internal job of tracking what happens during the test.

2.	 Your class name is important as FunkLoad will look for a file named after
that name, in our case: LoadHomePage.conf in the test directory.

3.	 Your test has direct access to the configuration file and gets values as follows:
conf_get(section, key) returns a string.
conf_getInt(section, key) returns the value as an integer.
conf_getFloat(section key) returns the value as a float.
conf_getList(section, key) returns the value column
separated as a list of strings.

4.	 You then simply call the get() or post() method to issue a request against
the server and retrieve the response returned by these methods.

Internally Funkload will create a set of metrics of the test and save them in an XML file
that can be processed later.

°

°

°

°

Chapter 9

[215]

Let's analyze the LoadHomePage.conf settings:

[main]
title=Photoblog home page
description=Access the photoblog home page
url=http://localhost:8080

[test_homepage]
description=Access %(nb_time)s times the following pages:
 %(pages)s.
nb_time=3
pages=/

[ftest]
log_to = console file
log_path = logs/load_home_page.log
result_path = logs/load_home_page.xml
sleep_time_min = 0
sleep_time_max = 2

The main section contains global settings for the test, whereas the test_homepage
contains specific values for the test_homepage() method of our test case. The ftest
section is used by FunkLoad for internal processing.

After starting an instance of the photoblog application server, we run the test:

sylvain@[test]$ python test_load_home_page.py
test_homepage: Starting -----------------------------------
 Access 3 times the following pages: /.
test_homepage: Try 0
test_homepage: GET: http://localhost:8080/
 Page 1: Get gome page ...
test_homepage: Done in 0.039s
test_homepage: Load css and images...
test_homepage: Done in 0.044s
test_homepage: Try 1
test_homepage: GET: http://localhost:8080/
 Page 2: Get gome page ...
test_homepage: Done in 0.041s
test_homepage: Load css and images...
test_homepage: Done in 0.000s
test_homepage: Try 2
test_homepage: GET: http://localhost:8080/
 Page 3: Get gome page ...
test_homepage: Done in 0.051s
test_homepage: Load css and images...
test_homepage: Done in 0.000s

Testing

[216]

.
--
Ran 1 test in 2.149s

OK

The previous test is not really a load test yet. To use it as a load or performance test,
we need to use a FunkLoad tool called fl-run-bench. This command-line tool will
run a benchmark using a test like the one we have just created.

A benchmark will simulate virtual users to run concurrently to perform a realistic
use of the server. For instance, if we want to benchmark three cycles of 5, 10, and 20
virtual users during 30 seconds, we would do the following.

First add the following sections to the configuration file:

[bench]
cycles = 5:10:20
duration = 30
startup_delay = 0.05
sleep_time = 1
cycle_time = 1
log_to = file
log_path = logs/load_home_page.log
result_path = logs/load_home_page.xml
sleep_time_min = 0
sleep_time_max = 0.6

Then launch the benchmark:

sylvain@[test]$ fl-run-bench test_load_home_page.py \
 LoadHomePage.test_homepage

=======================================
Benching LoadHomePage.test_homepage
=======================================
Access 3 times the following pages: /.

Configuration
=============

* Current time: 2007-02-28T13:43:22.376339
* Configuration file: load/LoadHomePage.conf
* Log xml: logs/load_home_page.xml
* Server: http://localhost:8080
* Cycles: [5, 10, 20]

Chapter 9

[217]

* Cycle duration: 30s
* Sleeptime between request: from 0.0s to 0.6s
* Sleeptime between test case: 1.0s
* Startup delay between thread: 0.05s

Benching
========

Cycle #0 with 5 virtual users

* Current time: 2007-02-28T13:43:22.380481
* Starting threads: done.
* Logging for 30s (until 2007-02-28T13:43:52.669762): done.
* Waiting end of threads: done.
* Waiting cycle sleeptime 1s: ... done.
* End of cycle, 33.46s elapsed.
* Cycle result: **SUCCESSFUL**, 76 success, 0 failure, 0 errors.

Cycle #1 with 10 virtual users

* Current time: 2007-02-28T13:43:55.837831
* Starting threads: done.
* Logging for 30s (until 2007-02-28T13:44:26.681356): done.
* Waiting end of threads: done.
* Waiting cycle sleeptime 1s: ... done.
* End of cycle, 34.02s elapsed.
* Cycle result: **SUCCESSFUL**, 145 success, 0 failure, 0 errors.

Cycle #2 with 20 virtual users

* Current time: 2007-02-28T13:44:29.859868
* Starting threads: done.
* Logging for 30s (until 2007-02-28T13:45:01.191106):
* Waiting end of threads: done.
* Waiting cycle sleeptime 1s: ... done.
* End of cycle, 35.59s elapsed.
* Cycle result: **SUCCESSFUL**, 203 success, 0 failure, 0 errors.

Result
======

* Success: 424
* Failures: 0
* Errors: 0

Bench status: **SUCCESSFUL**

Testing

[218]

Now that we have run our benchmark we can create a report using the
fl-build-report command-line tool as follows:

sylvain@[test]$ fl-build-report --html -o reports
 logs/load_home_page.xml
Creating html report: ...done:
reports/test_homepage-2007-02-28T13-43-22/index.html

This will produce an HTML page with statistics gathered from the benchmark as
shown in the following figure:

In addition to these modules, FunkLoad offers tools to test XML-RPC servers or
record tests from a browser directly, allowing for complex tests to be developed
easily. Kindly refer the FunkLoad documentation for more details about
these features.

Overall Funkload is quite a powerful tool and yet flexible and simple to use,
providing a comprehensive load and performance-testing environment for Python
web applications.

Functional Testing
Once your application functionalities start taking shape, you may want to conduct
a set of functional testing so that you can validate your application's correctness
regarding the specification. For a web application, this would mean going through
the application from a browser for example. However, since the test would have
to be automated it would require the use of third-party products such as Selenium
(Selenium is available at http://www.openqa.org/selenium/).

Chapter 9

[219]

Selenium is a JavaScript-based open-source product, developed and maintained by
the OpenQA team to perform functional and acceptance testing. It works directly
from the browser it targets helping to ensure the portability of the client-side code of
the application.

Selenium comes in several packages:

Core: The core package allows a tester to design and run tests directly from
the browser using pure HTML and JavaScript.
Remote Control: This package allows performing tests using common
programming languages such as Python, Perl, Ruby, Java, or C#. Scripts
written in these languages drive a browser to automate actions to be
performed during the test.
IDE: The Selenium IDE is available as a Firefox extension to help the creation
of tests by recording actions carried out via the browser itself. The tests can
then be exported to be used by the Core and Remote Control packages.

Application under Test
Before we explain how Selenium components work, we must introduce an
application example. This application will simply provide one web page with two
links. One of them will replace the current page with a new one. The second link will
fetch data using Ajax. We use this example rather than our photoblog application for
the sake of simplicity. The code of the application is as follows:

import datetime
import os.path

import cherrypy
import simplejson

_header = """<html>
<head><title>Selenium test</title></head>
<script type="application/javascript" src="MochiKit/MochiKit.js">
</script>
<script type="application/javascript" src="MochiKit/New.js">
</script>
<script type="application/javascript">
var fetchReport = function() {
 var xmlHttpReq = getXMLHttpRequest();
 xmlHttpReq.open("GET", "/fetch_report", true);

 xmlHttpReq.setRequestHeader('Accept', 'application/json');
 var d = sendXMLHttpRequest(xmlHttpReq);

•

•

•

Testing

[220]

 d.addCallback(function (data) {
 var reportData = evalJSONRequest(data);
 swapDOM($('reportName'), SPAN({'id': 'reportName'},
 reportData['name']));
 swapDOM($('reportAuthor'), SPAN({'id': 'reportAuthor'},
 reportData['author']));
 swapDOM($('reportUpdated'), SPAN({'id': 'reportUpdated'},
 reportData['updated']));
 });
}
</script>
<body>
<div>
Get report via
 Ajax

Get report
</div>

"""

_footer = """
</body>
</html>
"""

class Dummy:
 @cherrypy.expose
 def index(self):
 return """%s
<div id="report">
 Name:

 Author:

 Updated:

</div>%s""" % (_header, _footer)

Chapter 9

[221]

 @cherrypy.expose
 def report(self):
 now = datetime.datetime.now().strftime("%d %b. %Y, %H:%M:%S")
 return """%s
<div id="report">
 Name:
 Music report (HTML)

 Author:
 Jon Doe

 Updated:
 %s
</div>%s""" % (_header, now, _footer)

 @cherrypy.expose
 def fetch_report(self):
 now = datetime.datetime.now().strftime("%d %b. %Y, %H:%M:%S")
 cherrypy.response.headers['Content-Type'] =
 'application/json'
 return simplejson.dumps({'name': 'Music report (Ajax)',
 'author': 'Jon Doe',
 'updated': now})

if __name__ == '__main__':
 current_dir = os.path.abspath(os.path.dirname(__file__))
 conf = {'/test': {'tools.staticdir.on': True,
 'tools.staticdir.dir': "test",
 'tools.staticdir.root': current_dir},
 '/MochiKit': {'tools.staticdir.on': True,
 'tools.staticdir.dir': "MochiKit",
 'tools.staticdir.root': current_dir},
 '/selenium': {'tools.staticdir.on': True,
 'tools.staticdir.dir': "selenium",
 'tools.staticdir.root': current_dir}}
 cherrypy.quickstart(Dummy(), config=conf)

We define three paths to be served as static directories. The first one carries our
Selenium test suite and test cases that will be detailed later. The second one
contains the MochiKit JavaScript toolkit and the last one contains the Selenium Core
package. Indeed, Selenium Core must be served by the same server under which the
tests are conducted.

Testing

[222]

The application will look like the following in the browser:

When clicking on the first link, the fetch_report() JavaScript function will be
triggered to fetch the report data via XMLHttpRequest. The result will look like
the following:

When clicking on the second link, the current page will be replaced by a new page
containing the report such as the following:

As you can see this application is not doing anything fancy but provides us with
common use cases in modern web applications. In the following sections we will
therefore describe two test cases, one for each link of our application.

Selenium Core
Selenium tests are described via HTML tables of three columns and as many rows as
needed with each row describing an action to be performed by Selenium. The three
columns are as follows:

Name of the Selenium action to be performed.
Target to be looked for by Selenium within the document object model of the
page. It can be the identifier of an element or an XPath statement leading to
an element.
Value. A value to compare to or to be used by the action.

•

•

•

Chapter 9

[223]

Let's describe for example the following test:

1.	 Fetch the home page.
2.	 Click on the Get Report link and wait for the returned page.
3.	 Verify that we can find the HTML string in the new page.

This would translate into (save this in test/test_html.html):

<html>
<head />
<body>
<table>
<thead>
<tr><td rowspan="1" colspan="3">HTML Test</td></tr>
</thead>
<tbody>
<tr>
 <td>open</td>
 <td>/</td>
 <td></td>
</tr>
<tr>
 <td>clickAndWait</td>
 <td>link=Get report</td>
 <td></td>
</tr>
<tr>
 <td>verifyTextPresent</td>
 <td></td>
 <td>HTML</td>
</tr>
</tbody>
</table>
</body>
</html>

Let's describe now our second use case to test our Ajax code:

1.	 Fetch the home page.
2.	 Click on the Get Report via Ajax link.
3.	 Pause for a few seconds.
4.	 Verify that we can find the Ajax string in the new page.

Testing

[224]

The third step is compulsory because when performing an XMLHttpRequest,
Selenium does not wait for the response. In such a case, you must pause Selenium's
execution so that it gives time for the response to come back and update the
document object model of the page. The previous use case will translate into (save
this in test/test_ajax.html):

<html>
<head />
<body>
<table cellpadding="1" cellspacing="1" border="1">
<thead>
<tr><td rowspan="1" colspan="3">Test Ajax</td></tr>
</thead>
<tbody>
<tr>
 <td>open</td>
 <td>/</td>
 <td></td>
</tr>
<tr>
 <td>click</td>
 <td>link=Get report via Ajax</td>
 <td></td>
</tr>
<tr>
 <td>pause</td>
 <td>300</td>
 <td></td>
</tr>
<tr>
 <td>verifyTextPresent</td>
 <td></td>
 <td>Ajax</td>
</tr>
</tbody>
</table>
</body>
</html>

Now that we have our test cases in our test directory, we can create a test suite
as follows:

<html>
<head>
<link rel="stylesheet" type="text/css"
 href="/selenium/core/selenium.css" />
<head>

Chapter 9

[225]

<body>
 <table class="selenium">
 <tbody>
 <tr><td>Test Suite</td></tr>
 <tr><td>Test HTML</td></tr>
 <tr><td>Test Ajax</td></tr>
 </tbody>
 </table>
</body>
</html>

We now have everything we need to run a test. To do so, we will use the test runner
provided by the Selenium Core package. In a browser open the following page:

http://localhost:8080/selenium/core/TestRunner.html

This will display a page like the following:

Testing

[226]

We can now load our test suite and get the next screen by entering the following
path: ../../test/testsuite.html in the TestSuite input box on the top left of
the page.

As you can see, the left pane lists all our test cases, the central pane displays the
current selected test case, and the right pane shows Selenium's controls and results.
Finally, the bottom of the page will display the result web page of each test case.

Chapter 9

[227]

The next step is to run these tests by clicking the All button, which will generate the
following screen:

Selenium TestRunner will use color codes to inform you of how test cases have
performed. Green means things were fine, yellow means the step is not finished, and
red shows errors during the test.

Selenium IDE
In the previous section we have written our test cases directly from a text editor,
which can become a little tedious with long use cases. Thankfully, the OpenQA team
provides an integrated development editor for Selenium available as an extension for
the Mozilla Firefox browser. The advantages of this IDE are:

No need to install Selenium core package on the server
Ability to record actions by following the business process in the browser
Ability to manually amend any generated test
Step-by-step debugging of test cases
Recorded test cases can be exported to HTML or any of the supported
languages of the Selenium Remote Control package

•
•
•
•
•

Testing

[228]

To record a test case you first need to provide the base URL of your server,
http://localhost:8080 in the following window:

Since by default when you start the IDE it runs in recording mode, you can now
go to the browser and follow your business process. Each step will be recorded
automatically by the Selenium IDE. For instance, by clicking on Get Report, the
clickAndWait step will be generated. To verify the presence of a given text, you
must highlight the targeted text, right-click to open the pop-up menu, and select
verifyTextPresent.

Chapter 9

[229]

Your IDE will then look like the following:

Testing

[230]

Now that we have a recorded test we can run it by clicking the green triangle.

As you can see, the steps to create a script are much simpler using the IDE.
Moreover, thanks to its great flexibility you can either insert new steps or remove
and modify existing ones if the IDE failed to record an action for instance. You can
also load tests created manually into the IDE and run them from there.

Finally, you can export your recorded step so that you can run it via the Test Runner
or via the Selenium Remote Control package as we will see in the next section.

Chapter 9

[231]

Selenium Remote Control
The Selenium Remote Control (RC) package offers the possibility of driving
a browser using a recorded step from several programming languages. This is
extremely interesting because your tests can therefore be run as regular unit tests.

You need to first get the Python modules from the Selenium RC package. Once
they can be found in your PYTHONPATH, you should be able to do the following:
from selenium import selenium.

Next step will be to export the previously recorded test to the Python language. The
resulting script will look like the following:

from selenium import selenium
import unittest, time, re

class TestHTML(unittest.TestCase):
 def setUp(self):
 self.verificationErrors = []
 self.selenium = selenium("localhost", 4444, "*firefox",
 "http://localhost:8080")
 self.selenium.start()

 def test_TestHTML(self):
 # Get a reference to our selenium object
 sl = self.selenium

 sl.open("/")
 sl.click("link=Get report")
 sl.wait_for_page_to_load("5000")
 try: self.failUnless(sl.is_text_present("HTML"))
 except AssertionError, e: self.verificationErrors.
append(str(e))

 def tearDown(self):
 self.selenium.stop()
 self.assertEqual([], self.verificationErrors)

if __name__ == "__main__":
 unittest.main()

As you can see, this is a pure test case from the unittest standard module.

Testing

[232]

Let's see what the script does:

1.	 The setUp() method, called before each test method, initializes a Selenium
object indicating the host and the port of the Selenium proxy as well as which
kind of browser should be used during the test.

2.	 The test_TestHTML() method performs the actual steps of our test case.
3.	 The tearDown() method, called after each test method, stops this instance of

the Selenium object.

Before running the test, you must start the Selenium proxy, which will handle the
startup of the chosen browser as well as run the test. It will then return all the results
to our test case.

The Selenium RC package comes with a default proxy server written in Java, which
is the one we will use in our example. However, nothing prevents anyone from
writing a proxy in a different language of course. To start the server, you must go to
the Selenium RC package directory and issue the following command, assuming you
have a Java virtual machine 1.4.2 or above installed on your machine:

sylvain@[selenium]$ java -jar server/selenium-server.jar

Once the server is started, you must start your application server and then you can
run the test as follows:

python test_html.py
.
--
Ran 1 test in 6.877s

OK

If you look at the Selenium proxy server logs, you should see something like
the following:

queryString =
cmd=getNewBrowserSession&1=%2Afirefox&2=http%3A%2F%2Flocalhost%3A8080
Preparing Firefox profile...
Launching Firefox...
3 oct. 2006 17:35:10 org.mortbay.util.Container start
INFO: Started HttpContext[/,/]
Got result: OK,1159893304958
queryString = cmd=open&1=%2F&sessionId=1159893304958
Got result: OK
queryString = cmd=click&1=link%3DGet+report&sessionId=1159893304958
Got result: OK
queryString = cmd=waitForPageToLoad&1=5000&sessionId=1159893304958
Got result: OK

Chapter 9

[233]

queryString = cmd=isTextPresent&1=HTML&sessionId=1159893304958
Got result: OK,true
queryString = cmd=testComplete&sessionId=1159893304958
Killing Firefox...
Got result: OK

This will launch a Firefox instance, run the test, and pass back the results to your test
case as normal input.

In this section, we have presented an open-source solution, Selenium, to perform
acceptance and functional testing in order to validate the correctness of our
application. Although this solution is not the only one, it has gained lots of support
from the community. Its flexibility and large set of features offer the tester a large
palette to build his or her tests on.

Summary
Throughout this chapter we have presented different aspects of testing an
application. Although this is not a comprehensive list of what can be achieved, it
should provide a good starting point to understand how an application can and
should be tested. It is important to note that testing should not happen at the last
stage of the application development's life but instead be a part of its building as
soon as possible.

Deployment
Our final chapter will explain in the first section how to configure CherryPy-based
applications, and then review different methods to deploy such an application
through the use of Apache and lighttpd. Finally, we will review how to make your
CherryPy-based application SSL enabled via the built-in CherryPy HTTP server, as
well as by using Apache and lighttpd capabilities.

Configuration
While developing an application, you always need to parameterize it, so that it can
be tuned as per the requirements of the hosting environment. For instance, the type
of database used, PostgreSQL or MySQL, the directory in which the application
resides, administrator contacts, etc.

There are different levels of configuration settings required in a web application like
our photoblog:

Web server: Settings linked to the HTTP server
Engine: Settings associated with the engine hosting the application
Application: Settings our application will use

CherryPy—Web and Engine Configuration
System
Since our application is using CherryPy, we will use the CherryPy configuration
capabilities for the web server and the engine. CherryPy uses a configuration based
on the syntax of the INI format defined by Microsoft.

•

•

•

Deployment

[236]

The format of a CherryPy configuration file is as follows:

[section]
key = value

The main difference between the original INI format and the format used by
CherryPy is the fact that values in the latter case are Python data types. For example:

[global]
server.socket_host = "localhost"
server.socket_port = 8080

With the exception of [global], the sections of configuration files match a requested
URI path segment, as illustrated in the following example:

[/css/style.css]
tools.staticfile.on = True
tools.staticfile.file = "app.css"
tools.staticfile.root = "/var/www/photoblog/design/default/css"

When CherryPy tries to match the /css/style.css request, it will inspect the
configuration settings for a matching section. If found, it will use the settings defined
for that section.

Before we explain how CherryPy differentiates between the web server and the
engine settings, let's see how the configuration settings can be defined in a Python
dictionary instead. The following code snippet demonstrates the same settings:

{'/css/style.css': {'tools.staticfile.on': True,

 'tools.staticfilE.file': "app.css" 'tools.staticfile.root':
 "/var/www/photoblog/design/default/css"}}

Functionally, both methods will provide the same capabilities. Using a Python
dictionary offers the advantage of residing within the code itself, and thus allows for
more complex data types to be provided as values. Eventually, it is usually a matter
of taste between the two options.

Now that we have presented how to declare configuration settings, let's see how to
pass them to their components. CherryPy API is quite straight forward in that respect:

cherrypy.config.update (file or dictionary) is used to configure the
CherryPy web server.
cherrypy.tree.mount (app, config file, or dictionary) is used to provide the
settings for the mounted application.

•

•

Chapter 10

[237]

The _cp_config attribute is bound to the page handlers, or to the class
containing the page handlers and calls a controller defined as a dictionary
(in which case, the settings are propagated by CherryPy to all the page
handlers of that controller). It is used to pass the settings directly to where
they will be needed.

We will review an example to understand how to use that API in our context:

import cherrypy
class Root:
 @cherrypy.expose
 def echo(self, some):
 repeat = cherrypy.request.config.get('repeat', 1)
 return some * repeat
 echo._cp_config = {'repeat': 3}

if __name__ == '__main__':
 http_conf = {'global': {'environment': 'production',
 'server.socket_port': 9090,
 'log.screen': True,
 'log.error_file': 'error.log',
 'log.access_file': 'access.log'}}
 cherrypy.config.update(http_conf)

 app0_conf = {'/echo': {'tools.response_headers.on': True,
 'tools.response_headers.headers':
 ('Content-Type', 'text/plain')]}}
 cherrypy.tree.mount(Root(), script_name='/app0',
 config=app0_conf)

 app1_conf = {'/echo': {'tools.gzip.on': True,
 'repeat': 2}}
 cherrypy.tree.mount(Root(), script_name='/app1',
 config=app1_conf)

 cherrypy.server.quickstart()
 cherrypy.engine.start()

Let's see what we have done in our example:

1.	 First we declare an application with a page handler named echo. The
purpose of this handler is to return the request body and repeat it as many
times as defined by the configuration setting key repeat. To do so, we use
the _cp_config attribute bound to the page handler. This value can also be
passed from the main configuration dictionary. In that case, the value coming
from the main dictionary takes precedence over the _cp_config attribute.

•

Deployment

[238]

2.	 Next we declare the web server settings in a dictionary and then we call
cherrypy.config.update() with that dictionary. Note that the use of the
key, named global, is not compulsory when using a dictionary. CherryPy
does interpret it exactly the same way; so the semantic equivalent of the
previous example can be written as follows:

 http_conf = {'environment': 'production',
 'server.socket_port': 9090,
 'log.screen': True,
 'log.error_file': 'error.log',
 'log.access_file': 'access.log'}
 cherrypy.config.update(http_conf)

3.	 Finally we mount two applications on two distinct prefixes with two
different configuration settings. It is important to notice that the key we
use is the path to the page handler relatively to where the application is
mounted. That is why we use /echo, and neither /app0/echo nor /app1/
echo. This also means that configuration settings do not leak across mounted
applications. CherryPy makes sure that each application receives only the
settings it was declared with.

It is a common mistake to pass configuration settings associated with
the application to the cherrypy.config.update() method. This
will not propagate the settings to the mounted application. You must
use the config attribute of cherrypy.tree.mount() to get the
expected behavior.

Photoblog Application Configuration System
Configuration settings of an application will not usually be passed through the
CherryPy configuration system, which is at a lower level. An application would
usually define entities from their domain level, store those values in a back-end
storage along with the rest of its data, and ultimately provide a front-end interface to
allow the administrator or a user to modify them.

The photoblog application will not go that far but will keep a fairly simple approach
to providing configuration settings by using a pure INI file. We make this choice
because in the photoblog application case the configuration settings will be simple,
defined, and editable by the administrator of the application. We will therefore avoid
the burden of developing a more complex solution than an INI file.

Chapter 10

[239]

However, in order to simplify access to those settings, we will define a specific class
that will turn the INI sections, keys, and values into a Python object:

from ConfigParser import ConfigParser

class Config(object):

 def from_ini(self, filepath, encoding='ISO-8859-1'):
 config = ConfigParser()
 config.readfp(file(filepath, 'rb'))

 for section in config.sections():
 section_prop = Config()
 section_prop.keys = []
 setattr(self, section, section_prop)
 for option in config.options(section):
 section_prop.keys.append(option)
 value = config.get(section, option).decode(encoding)
 setattr(section_prop, option, value)

This class will simply go through the INI file and add attributes to the instance of the
Config class on the fly. For instance, imagine you have the following INI file:

[app]
base_url = http://localhost:8080
copyright = Creative Commons Attribution-ShareAlike2.5 License

[storage]
host = localhost
dbname = photoblog
user = test
password = test
type = postgres

Using the above class, we can make the following modifications:

import config
c = config.Config()
c.from_ini('application.conf')

dir(c)
 ['__class__', '__delattr__', '__dict__', '__doc__',
 '__getattribute__', '__hash__', '__init__', '__module__'
 '__new__', '__reduce__', '__reduce_ex__', '__repr__',
 '__setattr__', '__str__', '__weakref__', 'app', 'storage']

c.app.copyright
u'Creative Commons Attribution-ShareAlike2.5 License'

Deployment

[240]

As you can see, we have now modified the INI file into a tree of attributes bound
to the instance of the Config class. The photoblog application will have one
global instance of that class that will therefore be accessible from everywhere in
the application.

In this section, we have briefly reviewed the ways to parameterize a CherryPy
application using its built-in configuration system. We have also introduced a simple
configuration system using an INI file format allowing application settings. This
approach hence provides an easy way to mock up the passing of parameters, before
moving towards a system-based database, which can be more demanding.

Deployment
Deploying a CherryPy-based application can be as easy as dropping the application
in an environment, where all the required packages (CherryPy, Kid, simplejson,
etc.) are available from the Python system path. However, in a shared web-hosted
environment, it is quite likely that the CherryPy web server will reside behind a
front-end server such as Apache or lighttpd, allowing the host provider to perform
some filtering operations if needed, or for instance let that front end serve the static
files in a more efficient fashion than CherryPy.

This section will present a few solutions to run a CherryPy application behind the
Apache and lighttpd web servers.

Before explaining how to use CherryPy behind Apache or lighttpd, let's define a
simple application that we will use throughout the example:

import.cherrypy
def setup_app():
 class Root:
 @cherrypy.expose
 def index(self):
 # Will return the hostname used by CherryPy and the remote
 # caller IP address
 return "Hello there %s from IP: %s " %
 (cherrypy.request.base, cherrypy.request.remote.ip)

 cherrypy.config.update({'server.socket_port': 9091,
 'environment': 'production',
 'log.screen': False,
 'show_tracebacks': False})
 cherrypy.tree.mount(Root())

if __name__ == '__main__':
 setup_app()
 cherrypy.server.quickstart()
 cherrypy.engine.start()

Chapter 10

[241]

As discussed earlier, there are several ways of deploying CherryPy-based
applications. Now, we will discuss the different approaches to deployment.

Apache with mod_rewrite Module
The first solution you can review when running behind the Apache web server is to
use the mod_rewrite module. This module allows you to define a set of rules that
the module will analyze to transform incoming HTTP requests and re-dispatch them
towards the back-end server.

In our example, we will make the following assumptions, which are in fact
the requirements:

You run Apache 2.2.
You have access to the Apache configuration that can usually be found in the
file named httpd.conf. You can also stop and restart the apache process.
These requirements imply either that you have administrator rights on the
machine or that you have a local installation of Apache to play with.
You will use the VirtualHost directive that allows encapsulating directives
targeting only one particular host. This allows distinct hosts to be handled by
one single instance of Apache.
We will also assume that you have myapp.com resolvable locally. To do so:
Under Linux, add the following line to the /etc/hosts file:
127.0.0.1 myapp.com myapp www.myapp.com

Your operating system should now resolve requests to the myapp.com host to
your local environment.

Let's now explain how we must configure Apache:

1.	 Load the required Apache modules, as follows:
 LoadModule rewrite_module modules/mod_rewrite.so

Note that you may need to provide the full path to the module itself in
some environments.

2.	 Next we declare the VirtualHost, as follows:
 # Create a virtual host in your apache configuration

 # to handle requests for the myapp.com hostname
 <VirtualHost 127.0.0.1:80>
 ServerName myapp.com
 ServerAlias www.myapp.com
 ������������������������������������ # Where our application files reside

•

•

•

•

Deployment

[242]

 DocumentRoot /home/sylvain/photoblog
 # What is our directory index by default

 DirectoryIndex index.html
 # Message to return when our CherryPy server is down and
 # apache could not forward the request.

 ErrorDocument 502 "Server down"
 # mod_proxy magic
 # First enable the mod_rewrite engine
 RewriteEngine on
 # Now we simply rewrite incoming requests URI so that they
 # are proxied to our CherryPy web server

 # http://myapp.com/archives/2006/10/12/my-article
 # would become

 # http://127.0.0.1:9091/archives/2006/10/12/my-article
 RewriteRule ^(.*) http://127.0.0.1:9091$1 [P]

 # Now define the format of the logs to be used by Apache
 ��� LogFormat "%h %l %u %t \"%r\" %>s %b \"%{Referer}i\"
 \"%{User-Agent}i\"" combined LogFormat
 "%t %a %D %I %O %s %{Content-Type}o %{Host}i
 \"%r\" \"%{Referer}i\"" host

 ����������CustomLog /home/sylvain/photoblog/access_myapp.log combined
 Errorlog /home/sylvain/photoblog/error_myapp.log
 </VirtualHost>

3.	 The next step is to stop and restart your Apache process so that these
modifications are taken into account.

4.	 Then start your CherryPy application server.

The mod_rewrite module documentation explains in detail how to build rewriting
rules. In the previous example, we defined the most generic one by mapping the
request URI path to a new hostname.

When navigating to the URL http://myapp.com, you should now see the
following message:

Hello there http://127.0.0.1:9091 from IP: 127.0.0.1

Now that we know how to map a host to our CherryPy application via Apache, we
might want to retrieve the actual hostname and remote IP address instead of the
local ones. The former is needed when generating links like:

link = "%s/%s" % (cherrypy.request.base, path)

Chapter 10

[243]

There are two options to achieve this, as they are independent from each other:

1.	 Use the mod_proxy module of Apache to forward the host.
First you need to load the module like this (consult your
documentation):

 LoadModule proxy_module modules/mod_proxy.so
 LoadModule proxy_http_module modules/mod_proxy_http.so

Add the following directive to VirtualHost:
 ProxyPreserveHost on

Restart Apache.
2.	 Use the CherryPy proxy tool as follows:

Add the following entry to your global configuration:
 'tools.proxy.on': True

Restart your CherryPy application.

In both cases, you will now see the following message in your browser:

 Hello there http://myapp.com from IP: 127.0.0.1

The IP address stays the same because the test is being done from the same machine
where the server is being hosted, on the local interface.

Let's now explain how the previous recipe works. In the first case, by using the
ProxyPreserveHost directive, we tell Apache to keep the HTTP header host field as
it is and not to overwrite it with the local IP address. This means that CherryPy will
receive the original value of the Host header.

In the second case, we tell CherryPy to look for specific headers set by Apache when
doing proxy with the original hostnames. The default header looked up by CherryPy
is X-Forwarded-Host.

Lighttpd with mod_proxy Module
Lighttpd is another popular and very efficient HTTP server. The previous section can
be translated to lighttpd in a similar fashion using mod_proxy. Here is an example on
how you can configure lighttpd to proxy incoming requests to a CherryPy server:

$HTTP["host"] == "myapp.com"
{
 proxy.server = ("" => (("host" => "127.0.0.1",
 "port" => 8080)))
}

°

°

°

°

°

Deployment

[244]

Add this to the lighttd.conf file and restart the server. When browsing to
http://myapp.com, you will see the following message:

 Hello there http://myapp.com from IP: 127.0.0.1

Apache with mod_python Module
In the year 2000, Gregory Trubetskoy released the first version of mod_python. It
is a module for Apache allowing the Python interpreter to be embedded within
the Apache server providing a bridge between the Apache web server and Python
applications. One of the strengths of mod_python is that unlike CGI where each
request requires a Python process to be launched mod_python does not have any
such requirement. Therefore, it gives the opportunity to the developer to benefit
from the persistence of the Python process started by Apache when running the
module (keeping a pool of database connections for instance).

Before seeing how to configure Apache and mod_python, let's review what are
the requirements:

Apache 2.2
mod_python 3.1.x or superior

We will assume that mod_python is properly installed in your environment.

Now let's explain how to configure mod_python to run a CherryPy-based
application:

LoadModule python_module modules/mod_python.so

<Location "/">
 PythonPath "sys.path + ['/home/sylvain/app']"
 SetHandler python-program
 PythonHandler cherrypy._cpmodpy::handler
 PythonOption cherrypy.setup my_app::setup_app
 PythonDebug On
</Location>

We will take you through the process sequentially:

1.	 First we load the mod_python module.
2.	 We define a location directive specifying what Apache should do to the

request starting with "/".

•

•

Chapter 10

[245]

3.	 Then we define several mod_python directives:
PythonPath extends the system path and makes sure that
our application modules will be found. For instance, here the
my_app.py module resides in /home/sylvain/app.
SetHandler indicates that all requests starting with the
path provided in the location directive will be handled by
mod_python.
PythonHandler sets the generic handler that will be in charge
of generating the output to return to the user agent. We use
the built-in mod_python handler provided by CherryPy.
PythonOption passes options to the generic handler. Here the
option will be named cherrypy.setup and we bind it to the
function setup_app that our application provides. We
assume the application is saved in a Python module named
my_app.py. The setup_app method must be the one
mounting the application.
PythonDebug is enabled.

4.	 Finally, we modify the application as follows:
 import cherrypy

 def setup_app():
 class Root:
 @cherrypy.expose
 def index(self):
 return "Hello there %s from IP: %s " % \
 (cherrypy.request.base,cherrypy.request.remote.ip)

 cherrypy.tree.mount(Root())
 cherrypy.engine.start(blocking=False)

The difference is that we start the CherryPy engine in a non-blocking mode
so that the Python process started via mod_python does not hang.

Now you can stop and restart the Apache process and navigate to the
http://myapp.com URL and you should see the following content:

 Hello there http://myapp.com from IP: 127.0.0.1

°

°

°

°

°

Deployment

[246]

mod_python with WSGI Application
In the previous approach, we used the built-in mod_python handler that works
fine on the applications usually hosted by CherryPy. If your application respects
the WSGI interface, you may want to use the ModPythonGateway handler
(http://projects.amor.org/misc/wiki/ModPythonGateway) developed by
Robert Brewer.

First let's see the CherryPy application in the my_app.py module:

import cherrypy

class Root:
 @cherrypy.expose
 def index(self):
 return "Hello there %s from IP: %s " % (cherrypy.request.base,
 cherrypy.request.remote.ip)

Create an application respecting the WSGI interface
wsgi_app = cherrypy.Application(Root())

This will be call on the first request
def setup_app(req):
 cherrypy.engine.start(blocking=False)

Now, let's review how to configure Apache to use the ModPythonGateway handler:

<Location "/">
 PythonPath "sys.path + ['/home/sylvain/app']"
 SetHandler python-program
 PythonHandler modpython_gateway::handler
 PythonOption wsgi.startup my_app::setup_app
 PythonOption wsgi.application my_app::wsgi_app
 PythonOption wsgi.cleanup cherrypy::engine.stop
</Location>

Thanks to the ModPythonGateway handler, you can use the richness of WSGI-based
middlewares within the power of the Apache server.

SSL
SSL (Secure Sockets Layer) can be supported in CherryPy-based applications natively
by CherryPy. To enable SSL support, you must meet the following requirements:

Have the PyOpenSSL package installed in your environment
Have an SSL certificate and private key on the server

•

•

Chapter 10

[247]

In the rest of this chapter, we will assume that you have installed PyOpenSSL
properly. Let us explain how to generate a pair of private key and certificate. To
achieve this, we will use OpenSSL, a common open-source implementation of the
SSL specification.

Creating a Certificate and a Private Key
Let's deal with the certificate and the private key:

1.	 First we need a private key:
 openssl genrsa -out server.key 2048

2.	 This key is not protected by a passphrase and therefore has a fairly weak
protection. If you prefer providing a passphrase, you should issue a
command like this:

 openssl genrsa -des3 -out server.key 2048

The program will require a passphrase. If your version of OpenSSL allows
you to provide an empty string, do so. Otherwise, enter a default passphrase
and then remove it from the generated key as follows:

 openssl rsa -in server.key -out server.key

3.	 Now we create a certificate as follows:
 openssl req -new -key server.key -out server.csr

4.	 This process will request you to input some details. The previous step has
generated a certificate but it is not yet signed by the private key. To do so,
you must issue the following command:

 openssl x509 -req -days 60 -in server.csr -signkey

 server.key -out server.crt

The newly signed certificate will be valid for 60 days.

Note that, as the certificate is not signed by a recognized authority
such as VeriSign, your browser will display a pop up when accessing
the application, so that the user can accept or reject the certificate.

Now, we can have a look at the different approaches for creating the certificate and
the key.

Deployment

[248]

Using the CherryPy SSL Support
Let's see how we can do it:

import cherrypy
import os, os.path

localDir = os.path.abspath(os.path.dirname(__file__))
CA = os.path.join(localDir, 'server.crt')
KEY = os.path.join(localDir, 'server.key')

def setup_server():
 class Root:
 @cherrypy.expose
 def index(self):
 return "Hello there!"

 cherrypy.tree.mount(Root())
if __name__ == '__main__':
 setup_server()
 cherrypy.config.update({'server.socket_port': 8443,
 'environment': 'production',
 'log.screen': True,
 'server.ssl_certificate': CA,
 'server.ssl_private_key': KEY})

 cherrypy.server.quickstart()
 cherrypy.engine.start()

The key is to provide the server.ssl_certificate and server.ssl_private_key
values to the global CherryPy configuration. The next step is to start the server; if
everything went well, you should see the following message on your screen:

 HTTP Serving HTTPS on https://localhost:8443/

Chapter 10

[249]

By navigating to the application URL, you should see a message such as:

If you accept the certificate, you will be able to continue using the web application
via HTTPS.

One caveat of the previous solution is that now your application cannot be reached
via non-secured HTTP. Luckily CherryPy provides a fairly easy way to work around
this problem by simply starting two HTTP servers at once. You can see how it is done:

import cherrypy
from cherrypy import _cpwsgi
from cherrypy import wsgiserver
import os, os.path

localDir = os.path.abspath(os.path.dirname(__file__))
CA = os.path.join(localDir, 'server.crt')
KEY = os.path.join(localDir, 'server.key')

def setup_app():
 class Root:
 @cherrypy.expose

Deployment

[250]

 def index(self):
 return "Hello there!"

 cherrypy.tree.mount(Root())

if __name__ == '__main__':
 setup_app()

 # Create a server which will accept HTTP requests
 s1 = _cpwsgi.CPWSGIServer()

 # Create a server which will accept HTTPS requests
 s2 = _cpwsgi.CPWSGIServer()
 s2.ssl_certificate = CA
 s2.ssl_private_key = KEY
 # Our first server uses the default CherryPy settings
 # localhost, 8080. We thus provide distinct ones
 # for the HTTPS server.
 s2.bind_addr = ('localhost', 8443)

 # Inform CherryPy which servers to start and use
 cherrypy.server.httpservers = {s1: ('localhost', 8080),
 s2: ('localhost', 8443)}
 cherrypy.server.start()
 cherrypy.engine.start()

Upon starting the application, you should now see the following lines on your screen:

 HTTP Serving HTTPS on https://localhost:8443/

 HTTP Serving HTTP on http://localhost:8080/

Your application will now be reachable via HTTP and HTTPS.

Using the lighttpd SSL Support
Setting SSL support for lighttpd is as simple as adding the following to the global
configuration of lighttpd:

ssl.engine = "enable"
ssl.pemfile = "/home/sylvain/application/server.pem"

The server.pem file is the concatenation of the server.key and server.crt
files that we have created before. For instance, under a UNIX System we issue the
following command:

cat server.key server.crt > server.pem

Chapter 10

[251]

By using those two lines and the proxy method, we have described in the previous
section how to support SSL for the CherryPy application.

Note, however, that the path between lighttpd and CherryPy will be
HTTP not secured. SSL support will stop at the lighttpd level.

Using the Apache mod_ssl Support
This approach consists of using the mod_ssl module of Apache based on OpenSSL to
handle the SSL exchange before forwarding the request to the CherryPy server, as we
did with lighttpd.

To do so, you need to modify your Apache configuration as follows:

LoadModule ssl_module modules/mod_ssl.so

Listen 127.0.0.1:443

The first line loads the mod_ssl module. The second line requests Apache to listen
for incoming socket connections on a given IP address on port 443 (which requires
administrator rights).

Then, we modify VirtualHost, as follows:

<VirtualHost 127.0.0.1:443>
 SSLEngine On
 SSLCertificateFile /home/sylvain/application/server.crt
 SSLCertificateKeyFile /home/sylvain/application/server.key

</VirtualHost>

Once you have restarted the Apache process, you should be able to navigate to the
URL https://myapp.com.

Summary
In this chapter, we have reviewed a few possibilities to configure and deploy the
CherryPy-based applications using common products such as Apache and lighttpd.
We have also dealt with SSL support. These should give you enough to start with
and adapt for your own environment and requirements.

However, deployment goes beyond setting up web servers and this chapter does not
cover the discussion of pushing the code into the production environment, neither
does it explain how to update the application once in production. This is out of the
scope of this chapter and hence not been discussed.

Author's View
If you have read this book, I can only assume that you are interested in the CherryPy
library as a candidate for your personal projects. However, my motive behind
writing this book was two-fold. Firstly, I wanted to provide a solid reference for
CherryPy 3 that could, well hopefully, fill the curiosity of developers using it and
this is what I have tried to achieve in the first four chapters of the book.

Secondly, I wished to introduce you, my fellow reader to some of the different
aspects of the development of web applications. I did not plan this book as a
reference for all the subjects it gets onto, since it would have required ten other
tomes. Instead, I have tried to provide you with some of the keys to make you
understand that writing a web application is not any different from any other type of
application in the process.

With that perspective in mind, Chapter 5 taught us that the persistent mechanism
like relational databases could be abstracted, thanks to object-relational mapping
like Dejavu, SQLObject, or SQLAlchemy. This is a fundamental concept that allows
you to design your application in a relaxed fashion with regards to the manipulated
data. Thereafter, Chapter 6 reminded us that a web application could not only
serve HTML pages but also expose an API referred to as a web service. This API is
precisely what transforms our web application into an actual provider of valuable
services. Does it mean we should forget about the actual user experience and be
shallow on the designing of the interface of our application? Obviously not, and
Chapters 7 and 8 review the idea behind templating before moving to the additional
feature of client-side scripting and Ajax. Eventually, Chapter 9 makes sure that
we never forget that an application that has not been tested is a broken one, while
Chapter 10 provides a few tips to deploy our application in common environments.

I hope this book will tell you a story of web application development that goes
beyond CherryPy itself or any of the products introduced. A story that reminds us
that there is no right or wrong but some paths that have already been explored might
be good and could be trusted and sometimes they should be pushed even further.

As I have said before, I have not written this book as a reference but as an
introduction. It is quite possible that you think there are alternatives or better ways
to achieve some of the topics covered. In such a case, I would be pleased to discuss
this with you on the CherryPy mailing-lists. If on the other hand you close this book
and think about parts of its content, then I will reach my goal.

Founded in 2003 by the original CherryPy creator, WebFaction is a
reliable and affordable hosting provider for your CherryPy applications.
You can get an exclusive 20% discount by using the promo code
"CHERRYPYBOOK" when you sign up with WebFaction,
visit http://www.webfaction.com for more details.

Index
A
AJAX

about 164
advantages 165
disadvantages 165, 166
photoblog, applying to 178
XMLHttpRequest 166

Asynchronous JavaScript and XML.
See AJAX

APP
about 131
Atom XML-document 132, 133
implementing 134-136

application
about 25
configuring 235
deploying 240
deploying, on Apache with mod_python

244, 245
deploying, on Apache with mod_python

WSGI 246
deploying, on Apache with mod_rewrite

241-243
deploying, on lighttpd with mod_proxy

243
application server 25
Atom Publishing Protocol. See APP
Atom XML-document 132

C
Cascading Style Sheets. See CSS
CherryPy

about 7
advantages 10

APP 131
application 25
applications, configuring 235
applications, deploying 235, 240
application server 25
approach 8
AJAX 163
basic example 26
built-in server 32
community 9, 10
configuration file 235
configuring 33-36
core engine, hooking into 59-61
deploying 235
distutils 14
downloading 13
engine 32
engine, configuring 235-238
error handling 44-49
exception handling 44-48
exposed object 36
folder structure 14
functional testing 218
history 8, 9
hook points 60
HTTP features 51, 52
HTTP methods 124
HTTP server 32
HTTP server, multiple 52
installation, testing 23
installing 13
installing, easy_install used 18-20
installing, from Subversion 20-23
installing, tarball used 16, 17
installing overview 14, 15
JSON 176

[254]

keywords used 25
library 38
library, working of 26-31
load testing 213
multi-threaded application server 54
multiple HTTP server 52
object publisher engine 36
overview 7, 8, 25
photoblog 91
photoblog, configuring 238
prerequisites 13
presentation layer 137
published object 36
Request-URI 37
REST 122
REST interface 130, 131
SSL 246
static resource serving 81
testing 193
toolbox 61
tools, creating 77-81
traditional web development 119, 120
unit testing 195
upgrading 23
URI 123
URI dispatching 55
web application server 25
web server 25
web server, configuring 235-238
web services 119
WSGI support 86

CSS 139

D
DBMS, overview

object oriented DBMS 96
relational DBMS 95
SQL joints, relational DBMS 96
SQL keywords, relational DBMS 95
XMLDBMS 97

DHTML
about 141
encompassed technologies 141

Dynamic HTML. See DHTML

E
easy_install

about 18
CherryPy, for installing 18-20
PEAK 18

F
functional testing

about 218
applications 219
Selenium 219

H
hook

about 60
hook points 60

HTML 137
HTTP methods

about 124-128
HyperText Markup Language. See HTML

J
JavaScript Object Notation. See JSON
JSON

about 176
deserialization 177
serialization 177

K
Kid engine

attributes 144-146
overview 142, 143

L
library, CherryPy

autoreload feature 39
caching module 39
coverage module 39
encoding/decoding module 40
Httpauth module 40
HTTP module 40

[255]

profiler module 40
sessions module 41
static module 42
tidy module 42
Wsgiapp module 42
XML-RPC module 42

load testing
about 213
working 214-218

M
Mochikit

about 156
components 156, 157

multi-threaded application server 54
multiple HTTP servers 52

O
object-relational mapping

about 97
object-relational mappers 97
python object-relational mappers 98-108

P
photoblog, AJAX

classes, adding methods to 179-183
method, for deleting existing album

190, 191
method, for new album 183-189
method, for updating existing album 190
namespace, implementing 179
required namespace, defining 178

photoblog
about 91
AJAX, applying 178
configuring 238, 239
data access layer, extending 114, 115
DBMS, overview 95
entities 92-94
entities, mapping 109-111
entity modeling 108
object-relational mapping 97
sandbox interface 112, 113

terminology 94, 95
UnitProperties 111
units 111
units, associating 112
units, querying 113, 114

Photoblog design
basic structure 151-156
design directory layout 149
developing 157
global design goals 148
template rendering, encapsulating 149, 150
tools 148
user agent targeted 147

Photoblog design, developing
CSS, amending 159, 160
end-user actions, handling 158, 159
HTML code 157, 158
link, adding 158
template, amending 159

presentation layer
about 137
CSS 139, 140
DHTML 141
HTML 137
Mochikit 156
Photoblog design 147
XHTML 138, 139
XML 138

python object-relational mappers
about 98
access to database, setting up 102
data, loading 104
data, manipulating 105
entities, mapping 98
tables, manipulating 103
types 98

R
Representational State Transfer. See REST
REST

about 122
advantages 123
elements 123
through CherryPy 130, 131

[256]

S
Secure Sockets Layer. See SSL
Selenium

about 219
core 222-227
IDE 227-230
packages 219
Remote Control 231, 232

SSL
about 246
Apache mod_ssl support 251
certificate, creating 247
in CherryPy 248-250
in lighttpd 250
private key, creating 247

static resource serving
about 81
directory, Staticdir tool used 83-85
single file, Staticfile tool used 81-83
static content, static tools bypased 85, 86

Subversion
about 20
basic principle 20
CherryPy, for installing 20-22

T
tarball

about 16
CherryPy, for installing 16, 17

templating engines
features 142
Kid engine 142

testing
applications 219
approach 195
functional testing 218
load testing 213
need for 193
planning 194
unit testing 195

toolbox, CherryPy
basic authentication tool 62
caching tool 63
decoding tool 64
digest authentication tool 65

encode tool 66
error redirect tool 67
Etag tool 67
Gzip tool 69
ignore headers tool 69
log headers tool 70
log tracebacks tool 71
proxy tool 72
referer tool 73
response headers tool 74
tool, creating 77-81
trailing slash tool 75
XML-RPC tool 76

tools, CherryPy
creating 77-81
setting up 43

U
Uniform Resource Identifiers. See URI
unit testing

about 195
doctest 201-204
unittest 196-201
web application 205-213

URI
about 123
subsets 124

URI dispatching
about 55
HTTP method dispatcher 55-57
Routes dispatcher 57, 58
virtual host dispatcher 58, 59

W
web application server 25
web server 25
Web Server Gateway Interface. See WSGI
web services

APP 131
HTTP methods 124
REST 122
separation of concerns 121, 122
traditional web development 119, 120
URI 123

WSGI
about 86

[257]

CherryPy WSGI application, hosting 89, 90
components 86
purpose 86
WSGI application, hosting 87

X
XMLHttpRequest

about 166
attributes 166
authenticating, basic scheme used 170-176
authenticating, digest scheme used 170-176
content negotiated GET request, performing

168, 169

cookies 170
DELETE request, performing 170
GET request, performing 167, 168
HEAD request, performing 170
methods 167
POST request, performing 169
PUT request, performing 170
XML document, POSTing 169, 170

XHTML
about 138
features 138

XML 138

	CherryPy Essentials
	Table of Contents
	Preface
	Chapter 1: Introduction to CherryPy
	Overview
	History of CherryPy
	The Community
	CherryPy Project Strengths
	Beyond CherryPy
	Through the Book
	Summary

	Chapter 2: Download and Install CherryPy
	Requirements
	Overview
	Installation from a Tarball
	Installation through Easy Install
	Installation from Subversion
	Testing your Installation
	Keeping CherryPy Up to Date
	Summary

	Chapter 3: Overview of CherryPy
	Vocabulary
	Basic Example
	Built-In HTTP Server
	Internal Engine
	Configuration
	Object Publisher Engine
	Library
	The Autoreload Feature
	The Caching Module
	The Coverage Module
	The Encoding/Decoding Module
	The HTTP Module
	The Httpauth Module
	The Profiler Module
	The Sessions Module
	The Static Module
	The Tidy Module
	The Wsgiapp Module
	The XML-RPC Module

	Tools
	Error and Exception Handling
	Summary

	Chapter 4: CherryPy in Depth
	HTTP Compliance
	Multiple HTTP Servers
	Multi-Threaded Application Server
	URI Dispatching
	HTTP Method Dispatcher
	Routes Dispatcher
	Virtual Host Dispatcher

	Hook into CherryPy's Core Engine
	CherryPy Toolbox
	Basic Authentication Tool
	Caching Tool
	Decoding Tool
	Digest Authentication Tool
	Encode Tool
	Error Redirect Tool
	Etag Tool
	Gzip Tool
	Ignore Headers Tool
	Log Headers Tool
	Log Tracebacks Tool
	Proxy Tool
	Referer Tool
	Response Headers Tool
	Trailing Slash Tool
	XML-RPC Tool
	Toolbox
	Creating a Tool

	Static Resource Serving
	Using the Staticfile Tool to Serve a Single File
	Using the Staticdir Tool to Serve a Complete Directory
	Bypassing Static Tools to Serve Static Content

	WSGI Support
	Hosting a WSGI Application within the CherryPy WSGI Server
	Hosting a CherryPy WSGI Application within a Third-Party WSGI Server

	Summary

	Chapter 5: A Photoblog Application
	A Photoblog Application
	Photoblog Entities
	Vocabulary
	DBMSes Overview
	Relational Database Management System (RDBMS)
	Object-Oriented Database Management System (OODBMS)
	XML Database Management System (XMLDBMS)

	Object-Relational Mapping
	Python Object-Relational Mappers

	Photoblog Application Entity Modeling
	Mapping Entities
	Units and UnitProperties
	Associating Units
	The Sandbox Interface

	Querying Units
	Extending the Data Access Layer
	Summary

	Chapter 6: Web Services
	Traditional Web Development
	Separation of Concerns

	REST
	Uniform Resource Identifier
	HTTP Methods
	Putting it Together
	REST Interface through CherryPy
	Atom Publishing Protocol
	Atom XML-Document Format
	APP Implementation
	Summary

	Chapter 7: The Presentation Layer
	HTML
	XML
	XHTML
	CSS
	DHTML
	Templating
	Kid—The Templating Engine
	Overview
	Kid's Attributes
	XML-Based Templating Language
	Variable Substitution
	Conditional Statement
	Looping Mechanism
	Extensibility
	Other Attributes

	Photoblog Design Preparation
	Targetting the User Agent
	Tools
	Global Design Goals
	Design Directory Layout
	CherryPy—Encapsulating the Template Rendering Process

	Photoblog Design
	Basic Structure

	Mochikit
	Developing the Photoblog Design
	HTML Code
	Adding a Link
	Handling the End-User Actions
	Amending the Template
	Amending the CSS
	Let's be More Flexible...

	Summary

	Chapter 8: Ajax
	Rise of the Rich-Client Applications
	Ajax
	Ajax—Advantages and Drawbacks
	Behind the Scene: XMLHttpRequest
	Performing a GET Request
	Performing a Content-Negotiated GET Request
	Performing a POST Request
	Performing PUT, HEAD, or DELETE Requests
	Cookies
	Authentication using Digest or Basic Schemes

	JSON
	Applying Ajax to our Application
	Defining the Required Namespaces
	Implementing Namespaces
	Adding Methods to the Classes
	Method to Create a New Album
	Method to Update an Existing Album
	Method to Delete an Existing Album

	Summary

	Chapter 9: Testing
	Why Testing
	Planning a Test
	Common Testing Approach
	Unit Testing
	unittest
	doctest

	Unit Testing Web Applications
	Performance and Load Testing
	Functional Testing
	Application under Test
	Selenium Core
	Selenium IDE
	Selenium Remote Control

	Summary

	Chapter 10: Deployment
	Configuration
	CherryPy—Web and Engine Configuration System
	Photoblog Application Configuration System

	Deployment
	Apache with mod_rewrite Module
	Lighttpd with mod_proxy Module
	Apache with mod_python Module
	mod_python with WSGI Application

	SSL
	Creating a Certificate and a Private Key
	Using the CherryPy SSL Support
	Using the lighttpd SSL Support
	Using the Apache mod_ssl Support

	Summary

	Index

