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Preface

A Note to Parents...

Dear Parental Unit or other Caregiver,

In order for your child to get started with programming, you’re going to need
to install Python (at least version 2.4 or greater) on your computer. This is a
fairly straight-forward task, but there are a few wrinkles depending upon what sort
of Operating System you’re using. If you’ve just bought a shiny new computer,
have no idea what to do with it, and that previous statement has filled you with
a severe case of the cold chills, you’ll probably want to find someone to do this for
you. Depending upon the state of your computer, and the speed of your internet
connection, this could take anything from 15 minutes to a few hours.

First of all, download and install the latest version of Python (for example, 2.5) for
your distribution. Given the large number of Linux flavours, it’s impossible to give
exact details on installation for each—but chances are, if you’re running Linux, you
already know what you’re doing anyway. In fact, you’re probably insulted by the
very idea of being told how to install. . .anything

After installation. . .

. . .You might need to sit down next to your child for the first few chapters, but
hopefully after a few examples, they should be batting your hands away from the
keyboard to do it themselves. They should, at least, know how to use a text editor
of some kind before they start (no, not a Word Processor, like Microsoft Word—a
plain, old-fashioned text editor)—they should at least able to open and close files,
create new text files and save what they’re doing. Apart from that, this book will
try to teach the basics from there.

Thanks for your time, and kind regards,
THE BOOK
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Chapter 1

Not all snakes will squish you

Chances are you were given this book for your birthday. Or possibly for Christmas.
Aunty Mildred was going to give you mismatching socks that were two sizes too
large (and you wouldn’t want to wear when you grew into them anyway). Instead,
she heard someone talking about this printable book, remembered you had one of
those computer-thingamabobs that you tried to show her how to use last Christmas
(you gave up when she started trying to talk into the mouse), and got them to print
another copy. Just be thankful you didn’t get the mouldy old socks.

I hope you’re not too disappointed that I popped out of the recycled wrap-
ping paper, instead. A not-quite-so-talkative (okay, not-talking-at-all) book, with
an ominous looking title on the front about “Learning. . .”. But take a moment to
think about how I feel. If you were the character from that novel about wizards that
is sitting on the bookshelf in your bedroom, I’d possibly have teeth... or perhaps
even eyes. I might have moving pictures inside me, or be able to make moaning
ghostly sounds when you opened my pages. Instead, I’m printed out on dog-eared
A4 sheets of paper, stapled together or perhaps bound in a folder. How would I
know—I don’t have eyes.

I’d give anything for a nice, sharp set of teeth. . .

However it’s not as bad as it sounds. Even if I can’t talk... or bite your fingers
when you’re not looking... I can tell you a little bit about what makes computers
work. Not the physical stuff, with wires and computer-chips and cables and de-
vices that would, more than likely, electrocute you as soon as you touched them (so
don’t!!)—but the hidden stuff running around inside those wires and computer-chips
and cables and bits, which make computers actually useful.

1



2 CHAPTER 1. NOT ALL SNAKES WILL SQUISH YOU

It’s a little like thoughts running around inside your head. If you didn’t have
thoughts you’d be sitting on the floor of your bedroom, staring vacantly at the
door and drooling down the front of your t-shirt. Without programs, computers
would only be useful as a doorstop—and even then they wouldn’t be very useful,
because you’d keep tripping over them in the night. And there’s nothing worse than
a stubbed toe in the dark.

I’m just a book and even I know that.

Your family may have a Playstation, Xbox or Wii sitting in the lounge—they’re
not much use without programs (Games) to make them work. Your DVD player,
possibly your fridge and even your car, all have computer programs to make them
more helpful than they would be otherwise. Your DVD player has programs to help
it figure out what to play on a DVD; your fridge might have a simple program to
make sure it doesn’t use too much electricity, but still keep your food cold; your car
might have a computer with a program to warn the driver if they’re about to bump
into something.
If you know how to write computer programs, you can do all sorts of useful things.
Perhaps write your own games. Create web pages that actually do stuff, instead of
just sitting there looking somewhat colourful. Being able to program could possibly
even help with your homework.

That said, let’s get onto something a bit more interesting.
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1.1 A Few Words About Language

Just like humans, certainly whales, possibly dolphins, and maybe even parents (al-
though that’s debatable), computers have their own language. Actually, also like
humans, they have more than one language. There are languages covering just about
all the letters of the alphabet. A, B, C, D and E are not only letters, they’re also
programming languages (which proves that adults have no imagination, and should
be made to read either a dictionary or a thesaurus before naming anything).

There are programming languages named after people, named using simple
acronyms (the capital letters of a series of words), and just a few named after a TV
show. Oh, and if you add a few pluses and hashes (+, #) after a couple of those
letters I just listed—that’s yet another couple of programming languages as well.
Making matters worse, some of the languages are almost the same, and differ only
slightly.

What did I tell you? No imagination!

Luckily, many of these languages have fallen into disuse, or vanished completely;
but the list of different ways you can ‘talk’ to a computer is still rather worryingly
large. I’m only going to discuss one of them—otherwise we might as well not even
get started.
It would be more productive to sit in your bedroom and drool down the front of
your t-shirt. . .

1.2 The Order of Non-venomous

Constricting Serpentes. . .

. . .or Pythons, for short.

Apart from being a snake, Python is also a programming language. However,
it was not named after a legless reptile; rather it is one of the few programming
languages named after a TV show. Monty Python was a British comedy show
popular during the 1970’s (and still popular now, actually), which you have to be a
certain age to find amusing. Anyone below the age of about. . . let’s say 12. . . will
wonder what all the fuss is all about1.

There are a number of things about Python (the programming language, not
the snake, nor the TV show) that make it extremely useful when you’re learning to

1Except the fish slapping dance. That’s funny no matter how old you are.
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Figure 1.1: The Python console on Linux.

program. For us, at the moment, the most important reason is that you can start
it up and do stuff really quickly.

This is the part where you hope Mum, Dad (or whomever is in charge of the
computer), has read the part at the beginning of this book labelled “A Note for
Mums and Dads”.

There’s a good way to find out if they actually have read it:

Ask Mum or Dad which terminal application you should use (it could be one
called ‘Konsole’, ‘rxvt’, ‘xterm’ or any one of a dozen different programs—which is
why you’ll probably need to ask). Start the terminal program and type ‘python’
(without the quotes), and hit enter. You should see something like Figure 1.1.

If you discover they haven’t read the section in the beginning. . .

. . .because there is something missing when you try to follow those instructions—
then turn to the front of the book, poke it under their nose while they’re trying to
read the newspaper, and look hopeful. Saying, “please please please please” over
and over again, until it becomes annoying, might work quite well, if you’re having
trouble convincing them to get off the couch. Of course, the other thing you can do,
is turn to the front of the book, and follow the instructions in the Preface to install
Python yourself.

1.3 Your first Python program

With any luck, if you’ve reached this point, you’ve managed to start up the Python
console, which is one way of running Python commands and programs. When you
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first start the console (or after entering a command), you’ll see what’s called a
‘prompt’. In the Python console, the prompt is three chevrons, or greater-than
symbols (>) pointing to the right:

>>>

If you put enough Python commands together, you have a program that you
can run in more than just the console. . . but for the moment we’re going to keep
things simple, and type our commands directly in the console, at the prompt (>>>).
So, why not start with typing the following:

print "Hello World"

Make sure you include the quotes (that’s these: ” ”), and hit enter at the end
of the line. Hopefully you’ll see something like the following:

>>> print "Hello World"

Hello World

The prompt reappears, to let you know that the Python console is ready to
accept more commands.

Congratulations! You’ve just created your first Python program.

1.4 Your Second Python program. . .the same again?

Python programs wouldn’t be all that useful if you had to type the commands every
single time you wanted to do something—or if you wrote a program for someone,
and they had to type it in before they could use it.

The Word Processor that you might be using to write your school assignments,
is probably somewhere between 10 and 100 million lines of code. Depending upon
how many lines you printed on one page (and whether or not you printed on both
sides of the paper), this could be around 400,000 printed pages. . . or a stack of paper
about 40 metres high. Just imagine when you brought that software home from the
shop, there would be quite a few trips back and forth to the car, to carry that much
paper. . .

. . .and you’d better hope there’s no big gust of wind while you’re carrying
those stacks. Luckily, there’s an alternative to all this typing—or no one would get
anything done.
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Open a text editor (again you might have to ask Mum or Dad which one to
use), then type the print command exactly as you typed it into the console:

print "Hello World"

Click on the File menu, then Save, and when prompted for a file name, call
it hello.py and save it in your Home folder (there might be an icon called ‘Home’
somewhere in the Save dialog box). Next open up the terminal application (again
Konsole, rxvt, etc... what we used earlier), and type:

python hello.py

You should see Hello World written to the window exactly as it was when you
typed the command in the Python console (see Figure 1.2).

So you can now see that the nice people who created Python, have kindly
saved you from having to type the same thing over and over and over and over and
over again. Like they did back in the 1980’s. No, I’m serious—they did. Go and
ask your Dad if he ever owned a ZX81 when he was younger?
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Figure 1.2: Running a python program from a text file on Linux.

If he did you can point at him and laugh.

Trust me on this one. You won’t get it. But he will.2

Be prepared to run away though.

The End of the Beginning

Welcome to the wonderful world of Programming. We’ve started really simply with
a “Hello World” application—everyone starts with that, when they’re learning to
program. In the next chapter we’ll start to do some more useful things with the
Python console and then look at what goes into making a program.

2The Sinclair ZX81, released in the 1980’s was one of the first affordable home computers. A
number of young boys and girls were driven completely mad, typing in the code for games printed
in popular ZX81 magazines—only to discover, after hours of typing, that the darn things never
worked properly.
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Chapter 2

8 multiplied by 3.57 equals. . .

What is 8 multiplied by 3.57? You’d have to use a calculator, wouldn’t you? Well
perhaps you’re extremely smart and can do multiplication of fractions in your head—
but that’s not the point. You can also do the same thing with the Python console.
Start up the console again (see Chapter 1 for more information, if you’ve skipped
ahead for some strange reason), and once you see the prompt, type 8∗3.57 and press
the Enter key:

Python 2.5.1 (r251:54863, May 2 2007, 16:56:35)

Type "help", "copyright", "credits" or "license" for more information.

>>> 8 * 3.57

28.559999999999999

The star (*), or asterisk key (shift 8 on some keyboards), is used for multi-
plication, instead of the normal times symbol (X) that you use at school (using the
star key is necessary, otherwise how would the computer know whether you meant
the letter x or the multiplication symbol X ?).

How about an equation that’s a bit more useful?

Suppose you do chores once a week, for which you get $5 pocket money, and
you have a paper round which you do 5 times a week and get $30—how much money
would you earn in a year?

If we were writing that on paper, we might write something like:

(5 + 30) x 52

9
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Python is broken!?!?

If you just picked up a calculator and entered 8 x 3.57 the
answer showing on the display will be:

28.56

Why is Python different? Is it broken?

Actually, no. The reason can be found in the way floating point
(fractional numbers with a decimal place) numbers are handled
by the computer. It’s a complicated and somewhat confusing
problem for beginners, so it’s best to just remember that when
you’re working with fractions (i.e. with a decimal place on a
number), sometimes the result won’t be exactly what you were
expecting. This is true for multiplication, division, addition or
subtraction.

Which is $5 + $30 multiplied by 52 weeks in a year. Of course, we’re smart,
and we know that 5 + 30 is 35, so the equation is really:

35 x 52

Which is easy enough to do in a calculator, or on paper. But we can do all of
these calculations with the console as well:

>>> (5 + 30) * 52

1820

>>> 35 * 52

1820

So, what if you spend $10 each week? How much do you have left at the end
of the year? We could write the equation on paper a couple of different ways, but
let’s just type it into the console:

>>> (5 + 30 - 10) * 52

1300

That’s $5 and $30 minus $10 multiplied by 52 weeks in the year1. And you’d
have $1300 left at the end of the year. Okay, so that’s not looking all that useful so
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far. We can do all of that with a calculator. But we’ll come back to this later and
show how to make it much more useful.

You can do multiplication and addition (obviously), and subtraction and divi-
sion in the Python console, along with a bunch of other maths operations that we
won’t go into now. For the moment the basic maths symbols for Python (actually
they’re called operators) are:

+ Addition
- Subtraction
* Multiplication
/ Division

The reason the forward-slash (/) is used for division, is that it would be rather
difficult to draw a division line (plus they didn’t bother to put a division symbol
÷ on the computer keyboard) as you’re supposed to use for written equations. For
example if you had 100 eggs and 20 boxes, you might want to know how many eggs
would go in each box, so you’d show dividing 100 into 20, by writing the following
equation:

100

200

Or if you know about long division, you might write it out fully like this:

5

20 )100
100

0

Or you might even write it like this:

100 ÷ 20

However, in Python terms you would just type it as “100 / 20”.

Which is much easier, I think. But then, I’m a book—what do I know?

2.1 Use of brackets and “Order of Operations”

We use brackets in a programming language to control what is called “Order of
Operations”. An operation is the use of an operator (one of those symbols in the
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table above). There are more operators than those basic symbols, but for that simple
list (addition, subtraction, multiplication and division), it’s enough to know that
multiplication and division both have a higher order than addition and subtraction.
Which means you do the multiplication or division part of an equation before you
do the addition or subtraction part. In the following equation, all the operators are
addition (+), the numbers are added in order:

>>> print 5 + 30 + 20

55

Similarly, in this equation, there are only addition and subtraction operators, so
again Python considers each number in the order it appears:

>>> print 5 + 30 - 20

15

But in the following equation, there is a multiplication operator, so the numbers 30
and 20 are considered first. The equation is another way of saying, “multiply 30 by
20, then add 5 to the result” (multiplication first, because it has a higher order than
addition):

>>> print 5 + 30 * 20

605

So what happens when we add brackets? The following equation shows the result:

>>> print (5 + 30) * 20

700

Why is the number different? Because brackets control the order of operations.
With brackets, Python knows to do calculate using the operators in the brackets
first, then do the operators outside. So that equation is another way of saying, “add
5 and 30, then multiply the result by 20”. The use of brackets can become more
complicated. There can be brackets inside brackets:

>>> print ((5 + 30) * 20) / 10

70

In this case, Python evaluates the inner most brackets first, then the outer brackets,
and then the other operator. So this equation is a way of saying, “add 5 and 30,
then multiply the result by 20, finally divide that result by 10”. The result without
brackets is again slightly different:
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>>> 5 + 30 * 20 / 10

65

In this case 30 is multiplied by 20 first, then the result is divided by 10, finally
5 is added to the final result.

Remember that multiplication and division always go before addition and sub-
traction, unless brackets are used to control the order of operations.

2.2 There’s nothing so fickle as a variable

A ‘variable’ is a programming term used to describe a place to store things. The
‘things’ can be numbers, or text, or lists of numbers and text—and all sorts of other
items too numerous to go into here. For the moment, let’s just think of a variable
as something a bit like a mailbox.

You can put things (such as a letter or a package) in a mailbox, just as you
can put things (numbers, text, lists of numbers and text, etc, etc, etc) in a variable.
This mailbox idea is the way many programming languages work. But not all.

In Python, variables are slightly different. Rather than being a mailbox with
things in it, a variable is more like a label which is stuck on the on the outside of the
mailbox. We can pull that label off and stick it on something else, or even tie the
label (perhaps with a piece of string) to more than one thing. We create a variable
by giving it a name, using an equals sign (=), then telling Python what we want
that name to point to. For example:
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>>> fred = 100

We’ve just created a variable called ‘fred’ and said that it points to the number
100. It’s a bit like telling Python to remember that number because we want to use
it later. To find out what a variable is pointing at, we can just type ‘print’ in the
console, followed by the variable name, and hit the Enter key. For example:

>>> fred = 100

>>> print fred

100

We can also tell Python we want the variable fred to point at something else:

>>> fred = 200

>>> print fred

200

On the first line we say we now want fred to point at the number 200. Then, in the
second line, we ask what fred is pointing at just to prove it changed. We can also
point more than one name at the same item:

>>> fred = 200

>>> john = fred

>>> print john

200

In the code above, we’re saying that we want the name (or label) john to point
at the same thing fred is pointing to. Of course, ‘fred’ isn’t a very useful name for
a variable. It doesn’t tell us anything about what it’s used for. A mailbox is easy—
you use a mailbox for mail. But a variable can have a number of different uses, and
can point at a whole bunch of different things, so we usually want something more
informative as its name.

Suppose you started up the Python console, typed ‘fred = 200’, then went
away—spent 10 years climbing Mount Everest, crossing the Sahara desert, bungy-
jumping off a bridge in New Zealand, and finally, sailing down the Amazon river—
when you came back to your computer, would you remember what that number 200
meant (and what it was for)?

I don’t think I would.

I just made it up now, and I have no idea what ‘fred = 200’ means (other than
a name pointing at the number 200 ). So after 10 years, you’ll have absolutely no
chance of remembering.

Aha! But, what if we called our variable: number of students.
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>>> number_of_students = 200

We can do that because variable names can be made up of letters, numbers
and ( ) underscores—although they cannot start with a number. If you come back
after 10 years, ‘number of students’ still makes sense. You can type:

>>> print number_of_students

200

And you’ll immediately know that we’re talking about 200 students. It’s not always
important to come up with meaningful names for variables. You can use anything
from single letters (such as ‘a’) to large sentences; and sometimes, if you’re doing
something quick, a simple and short variable name is just as useful. It depends very
much upon whether you want to be able to look at that variable name later and
figure out what on earth you were thinking at the time you typed it in.

this_is_also_a_valid_variable_name_but_perhaps_not_very_useful

2.3 Using Variable

Now we know how to create a variable, how do we use it? Remember that equation
we came up with earlier? The one to work out how much money you’d have left at
the end of the year, if you earned $5 a week doing chores, $30 a week on a paper
round, and spent $10 per week. So far we have:

>>> print (5 + 30 - 10) * 52

1300

What if we turn the first 3 numbers into variables? Try typing the following:

>>> chores = 5

>>> paper_round = 30

>>> spending = 10

We’ve just created variables named ‘chores’, ‘paper round’ and ‘spending’. We can
then re-type the equation to get:

>>> print (chores + paper_round - spending) * 52

1300
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Which gives the exact same answer. What if you get $2 more per week, for
doing extra chores. Change the ‘chores’ variable to 7, then hit the up-arrow key (↑)
on your keyboard a couple of times, until the equation re-appears, and hit the Enter
key:

>>> chores = 7

>>> print (chores + paper_round - spending) * 52

1404

That’s a lot less typing to find out that you now end up with $1404 at the
end of the year. You can try changing the other variables, then hit the up-arrow to
perform the calculation again, and see what effect it has.

If you spend twice as much money per week:

>>> spending = 20

>>> print (chores + paper_round - spending) * 52

884

You’re only left with $884 savings at the end of the year. This is still only
slightly useful. We haven’t hit really useful yet. But for the moment, it’s enough to
understand that variables are used to store things.

Think of a mailbox with a label on it!

2.4 A Piece of String?

If you’re paying attention, and not just skimming through looking for the good bits,
you might remember I mentioned that variables can be used for all sorts of things—
not just numbers. In programming, most of the time we call text a ‘string’. Which
might seem a bit weird; but if you think that text is just ‘stringing together’ (or
joining together) a bunch of letters, perhaps it might make a little more sense.

Then again, perhaps it doesn’t.

In which case, all you need to know, is that a string is just a bunch of letters and
numbers and other symbols put together in some meaningful way. All the letters,
and numbers, and symbols in this book could make up a string. Your name could
be a string. So could your home address. The first Python program we created in
Chapter 1, used a string: ‘Hello World’.

In Python, we create a string by putting quotes around the text. So we can
take our useless fred variable, and put a string inside it like this:

>>> fred = "this is a string"
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And we can see what’s inside the fred variable, by typing print fred:

>>> print fred

this is a string

We can also use single-quotes to create a string:

>>> fred = ’this is yet another string’

>>> print fred

this is yet another string

However, if you try to type more than one line of text for your string using a
single quote (’) or double quote (”), you’ll get an error message in the console. For
example, type the following line and hit Enter, and you’ll get a fairly scary error
message similar to the following:

>>> fred = "this is two

File "<stdin>", line 1

fred = "this is two

^

SyntaxError: EOL while scanning single-quoted string

We’ll talk more about errors later, but for the moment, if you want more than
one line of text, you can use 3 single quotes:

>>> fred = ’’’this is two

... lines of text in a single string’’’

Print out the contents to see if it worked:

>>> print fred

this is two

lines of text in a single string

By the way, you’ll see those 3 dots (...) quite a few times when you’re typing
something that continues onto another line (like a multi line string). In fact, you’ll
see it a lot more as we continue.

2.5 Tricks with Strings

Here’s an interesting question: what’s 10 * 5 (10 times 5)? The answer is, of course,
50.

All right, that’s not an interesting question at all.

But what is 10 * ’a’ (10 times the letter a)? It might seem like a nonsensical
question, but here’s the answer from the World of Python:
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>>> print 10 * ’a’

aaaaaaaaaa

This works with more than just single character strings:

>>> print 20 * ’abcd’

abcdabcdabcdabcdabcdabcdabcdabcdabcdabcdabcdabcdabcdabcdabcdabcdabcdabcdabcdabcd

Another trick with a string, is embedding values. You can do this by using
%s, which is like a marker (or a placeholder) for a value you want to include in a
string. It’s easier to explain with an example:

>>> mytext = ’I am %s years old’

>>> print mytext % 12

I am 12 years old

In the first line, the variable mytext is created with a string containing some
words and a placeholder (%s). The %s is a little beacon saying “replace me with
something” to the Python console. So on the next line, when we call print mytext,
we use the % symbol, to tell Python to replace the marker with the number 12. We
can reuse that string and pass in different values:

>>> mytext = ’Hello %s, how are you today?’

>>> name1 = ’Joe’

>>> name2 = ’Jane’

>>> print mytext % name1

Hello Joe, how are you today?

>>> print mytext % name2

Hello Jane, how are you today?

In the above example, 3 variables (mytext, name1 and name2) are created—the
first includes the string with the marker. Then we can print the variable ‘mytext’,
and again use the % operator to pass in variables ‘name1’ and ‘name2’. You can
use more than one placeholder:

>>> mytext = ’Hello %s and %s, how are you today?’

>>> print mytext % (name1, name2)

Hello Joe and Jane, how are you today?

When using more than one marker, you need to wrap the replacement values
with brackets—so (name1, name2) is the proper way to pass 2 variables. A set of
values surrounded by brackets (the round ones, not the square ones) is called a tuple,
and is a little bit like a list, which we’ll talk about next.
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2.6 Not quite a shopping list

Eggs, milk, cheese, celery, peanut butter, and baking soda. Which is not quite a full
shopping list, but good enough for our purposes. If you wanted to store this in a
variable you could create a string:

>>> shopping_list = ’eggs, milk, cheese, celery, peanut butter, baking soda’

>>> print shopping_list

eggs, milk, cheese, celery, peanut butter, baking soda

Another way would be to create a ‘list’, which is a special kind of object in
Python:

>>> shopping_list = [ ’eggs’, ’milk’, ’cheese’, ’celery’, ’peanut butter’, ’baking soda’ ]

>>> print shopping_list

[’eggs’, ’milk’, ’cheese’, ’celery’, ’peanut butter’, ’baking soda’]

This is more typing, but it’s also more useful. We could print the 3rd item in
the list by using its position (called its index position), inside square brackets []:

>>> print shopping_list[2]

cheese

Lists start at index position 0—so the first item in a list is 0, the second is
1, the third is 2. That doesn’t make a lot of sense to most people, but it does to
programmers. Pretty soon, when you walk up some stairs you’ll start counting with
zero rather than one. That will really confuse your little brother or sister.

We can show all the items from the 3rd item up to the 5th in the list, by using
a colon inside the square brackets:

>>> print shopping_list[2:5]

[’cheese’, ’celery’, ’peanut butter’]

[2:5] is the same as saying that we are interested in items from index position 2
up to (but not including) index position 5. And, of course, because we start counting
with 0, the 3rd item in the list is actually number 2, and the 5th item is actually
number 4. Lists can be used to store all sorts of items. They can store numbers:

>>> mylist = [ 1, 2, 5, 10, 20 ]

And strings:
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>>> mylist = [ ’a’, ’bbb’, ’ccccccc’, ’ddddddddd’ ]

And mixtures of numbers and strings:

>>> mylist = [1, 2, ’a’, ’bbb’]

>>> print mylist

[1, 2, ’a’, ’bbb’]

And even lists of lists:

>>> list1 = [ ’a’, ’b’, ’c’ ]

>>> list2 = [ 1, 2, 3 ]

>>> mylist = [ list1, list2 ]

>>> print mylist

[[’a’, ’b’, ’c’], [1, 2, 3]]

In the above example, a variable called ‘list1’ is created with 3 letters, ‘list2’
is created with a 3 numbers, and ‘mylist’ is created using list1 and list2. Things
can get rather confusing, rather quickly, if you start creating lists of lists of lists of
lists. . . but luckily there’s not usually much need for making things that complicated
in Python. Still it is handy to know that you can store all sorts of items in a Python
list.

And not just your shopping.

Replacing items

We can replace an item in the list, by setting its value in a similar way to setting
the value of a normal variable. For example, we could change celery to lettuce by
setting the value in index position 3:

>>> shopping_list[3] = ’lettuce’

>>> print shopping_list

[’eggs’, ’milk’, ’cheese’, ’lettuce’, ’peanut butter’, ’baking soda’]

Adding more items...

We can add items to a list by using a method called ‘append’. A method is an action
or command that tells Python that we want to do something. We’ll talk more about
methods later, but for the moment, to add an item to our shopping list, we can do
the following:

>>> shopping_list.append(’chocolate bar’)

>>> print shopping_list

[’eggs’, ’milk’, ’cheese’, ’lettuce’, ’peanut butter’, ’baking soda’, ’chocolate bar’]

Which, if nothing else, is certainly an improved shopping list.



2.6. NOT QUITE A SHOPPING LIST 21

. . .and removing items

We can remove items from a list by using the command ‘del’ (short for delete). For
example, to remove the 6th item in the list (baking soda):

>>> del shopping_list[5]

>>> print shopping_list

[’eggs’, ’milk’, ’cheese’, ’lettuce’, ’peanut butter’, ’chocolate bar’]

Remember that positions start at zero, so shopping list[5] actually refers to
the 6th item.

2 lists are better than 1

We can join lists together by adding them, as if we were adding two numbers:

>>> list1 = [ 1, 2, 3 ]

>>> list2 = [ 4, 5, 6 ]

>>> print list1 + list2

[1, 2, 3, 4, 5, 6]

We can also add the two lists and set the result to another variable:

>>> list1 = [ 1, 2, 3 ]

>>> list2 = [ 4, 5, 6 ]

>>> list3 = list1 + list2

>>> print list3

[1, 2, 3, 4, 5, 6]

And you can multiply a list in the same way we multiplied a string:

>>> list1 = [ 1, 2 ]

>>> print list1 * 5

[1, 2, 1, 2, 1, 2, 1, 2, 1, 2]

In the above example, multiplying list1 by five is another way of saying “repeat
list1 five times”. However, division (/) and subtraction (-) don’t make sense when
working with lists, so you’ll get errors when trying the following examples:

>>> list1 / 20

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: unsupported operand type(s) for /: ’list’ and ’int’

or:
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>>> list1 - 20

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: unsupported operand type(s) for -: ’type’ and ’int’

You’ll get a rather nasty error message.

2.7 Tuples and Lists

A tuple (mentioned earlier) is a little bit like a list, but rather than using square
brackets, you use round brackets—e.g. ‘(’ and ‘)’. You can use tuples in a similar
way to a list:

>>> t = (1, 2, 3)

>>> print t[1]

2

The main difference is that, unlike lists, tuples can’t change, once you’ve cre-
ated them. So if you try to replace a value like we did earlier with the list, you’ll
get another error message:

>>> t[0] = 4

Traceback (most recent call last):

File "<stdin>", line 1, in ?

TypeError: ’tuple’ object does not support item assignment

That doesn’t mean you can’t change the variable containing the tuple to some-
thing else. For example, this code will work fine:

>>> myvar = (1, 2, 3)

>>> myvar = [ ’a’, ’list’, ’of’, ’strings’ ]

First we create the variable myvar pointing to a tuple of 3 numbers. Then we
change myvar to point at a list of strings. This might be a bit confusing at first.
But think of it like lockers in a school. Each locker has a name tag on it. You put
something in the locker, close the door, lock it, then throw away the key. You then
peel the name tag off, wander over to another empty locker, and stick something else
in that (but this time you keep the key). A tuple is like the locked locker. You can’t
change what’s inside it. But you can take the label off and stick it on an unlocked
locker, and then put stuff inside that locker and take stuff out—that’s the list.
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2.8 Things to try

In this chapter we saw how to calculate simple mathematical equations using the
Python console. We also saw how brackets can change the result of an equation, by
controlling the order that operators are used. We found out how to tell Python to
remember values for later use—using variables—plus how Python uses ‘strings’ for
storing text, and lists and tuples, for handling more than one item.

Exercise 1

Make a list of your favourite toys and name it toys. Make a list of your favourite
foods and name it foods. Join these two lists and name the result favourites. Finally
print the variable favourites.

Exercise 2

If you have 3 boxes containing 25 chocolates, and 10 bags containing 32 sweets, how
many sweets and chocolates do you have in total? (Note: you can do this with one
equation with the Python console)

Exercise 3

Create variables for your first and last name. Now create a string and use place-
holders to add your name.
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Chapter 3

Turtles, and other slow moving
creatures

There are certain similarities between turtles in the real world and a Python turtle.
In the real world, a turtle is a (sometimes) green reptile that moves around very
slowly and carries its house on its back. In the world of Python, a turtle is a small
black arrow that moves very slowly around the screen. No mention of house-carrying
though.

In fact, considering that a Python turtle leaves a trail as it moves around the
screen, this makes it less like a real turtle, and more like a snail or a slug. However,
I suppose that a module called ‘slug’ wouldn’t be particularly attractive, so it makes
sense to stick with turtles. Just imagine the turtle is carrying a couple of marker
pens with it, and drawing as it goes.

In the deep, dark, and distant past, there was a simple programming language
called Logo. Logo was used to control a robot turtle (called Irving). Over time,
the turtle evolved from a robot that could move around the floor, to a small arrow
moving around a screen.

Which just goes to show, things don’t always improve as technology advances—
a little robot turtle would be a lot more fun.

Python’s turtle module (we’ll come to modules a bit later, but for now just
just think of a module as something we can use inside a program) is a little bit
like the Logo programming language, but while Logo was (is) fairly limited, Python
has many more capabilities. The turtle module itself, is a useful way to learn how
computers draw pictures on your computer screen.

Let’s get started and see just how it works. The first step is to tell Python we
want to use turtle, by importing the module:

25
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Figure 3.1: An arrow representing the turtle.

>>> import turtle

Then we need to display a canvas to draw on. A canvas is just like the material
an artist might use for painting; in this case it’s a blank space for drawing on:

>>> t = turtle.Pen()

In this code, we call a special function (Pen) on the module turtle, which
automatically creates a canvas we can draw on. A function is a re-useable piece
of code (again we’ll come to functions later) that does something useful—in this
case, an object which represents the turtle is returned by the Pen function—we set
that object to the variable ‘t’ (in effect we’re giving our turtle canvas the name ‘t’).
When you type the code into the Python console, you’ll see a blank box (the canvas)
appear, looking something like figure 3.1.

Yes, that little arrow in the middle of the screen really is the turtle. And, no,
it’s not very turtle-like.

You can send instructions to the turtle, by using functions on the object that
was created (by calling turtle.Pen)—since we assigned that object to the variable
t, we use t to send the instructions. One turtle instruction is forward. Forward
tells the turtle to move forward in whatever direction she is facing (I have no idea
whether it’s a boy or a girl turtle, but let’s just assume it’s a girl-turtle for the
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Figure 3.2: The turtle draws a line.

moment). Let’s tell the turtle to move forward 50 pixels (we’ll talk about pixels in
a minute):

>>> t.forward(50)

You should see something like figure 3.2.

From the turtle’s point-of-view, she has moved forward 50 steps. From our
point-of-view, she has moved 50 pixels.

So, what’s a pixel?

A pixel is a dot on the screen. When you look at your computer, everything
is made up of tiny (square) dots. The programs you use and the games you play
on the computer, or with a Playstation, or an Xbox, or a Wii; are all made up of
a whole bunch of different coloured dots, arranged on the screen. In fact, if you
look at your computer screen with a magnifying glass, you might just be able to
make out some of those dots. So if we zoom in on the canvas and the line that was
just drawn by the turtle, we can see the arrow representing the turtle, is also just a
bunch of square dots, as you can see in figure 3.3.

We’ll talk more about these dots, or pixels, in a later chapter.

Next, we can tell the turtle to turn left or right:

>>> t.left(90)
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Figure 3.3: Zooming in on the line and the arrow.

Figure 3.4: The ‘divisions’ on a clock.

This tells the turtle to turn left, 90 degrees. You may not have learned about
degrees in school so far, but the easiest way to think about them, is that they are
like the divisions on the face of a clock as seen in figure 3.4.

The difference to a clock, is that rather than 12 divisions (or 60, if you’re
counting minutes rather than hours), there are 360 divisions. So, if you count 360
divisions around the face of a clock, you get 90 where there’s normally a 3, 180
where there’s normally a 6, and 270 where there’s normally a 9; and 0 would be at
the top (at the start), where you normally see a 12. Figure 3.5 shows you the degree
divisions.

So, what does it actually mean when you call left(90)?

If you stand and face one direction, point your arm out directly away from
your shoulder, THAT is 90 degrees. If you point your left arm, that’s 90 degrees
left. If you point your right arm, that’s 90 degrees right. When Python’s turtle
turns left, she plants her nose in one spot then swivels her body around the face the
new direction (same as if you turned your body to face where your arm is pointing).
So, t.left(90) results in the arrow now pointing upwards, as shown in figure 3.6.



29

Figure 3.5: Degrees.

Figure 3.6: The turtle after turning left.
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Figure 3.7: Drawing a square.

Let’s try the same commands again a few times:

>>> t.forward(50)

>>> t.left(90)

>>> t.forward(50)

>>> t.left(90)

>>> t.forward(50)

>>> t.left(90)

Our turtle has drawn a square and is left facing the same direction as she
started (see figure 3.7).

We can erase what’s on the canvas by using clear:

>>> t.clear()

Some of the other basic functions you can use with your turtle are: reset,
which also clears the screen, but puts the turtle automatically back into her starting
position; backward, which moves the turtle backwards; right, which turns the turtle
to the right; up which tells the turtle to stop drawing as she moves (in other words
pick her pen up off the canvas); and finally down which tells the turtle to start
drawing again. You call these functions in the same way we’ve used the others:

>>> t.reset()

>>> t.backward(100)
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>>> t.right(90)

>>> t.up()

>>> t.down()

We’ll come back to the turtle module shortly.

3.1 Things to try

In this chapter we saw how to use turtle to draw simple lines, using left and right
turns. We saw that turtle uses degrees to turn, a bit like the minute divisions on a
clock face.

Exercise 1

Create a canvas using turtle’s Pen function, and draw a rectangle.

Exercise 2

Create another canvas using turtles Pen function, and draw a triangle.
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Chapter 4

How to ask a question

In programming terms, a question usually means we want to do either one thing, or
another, depending upon the answer to the question. This is called an if-statement.
For example:

How old are you? If you’re older than 20, you’re too old!

This might be written in Python as the following if-statement:

if age > 20:

print ’you are too old!’

An if-statement is made up of an ‘if’ followed by what is called a ‘condition’
(more on that in a second), followed by a colon (:). The lines following the if must
be in a block—and if the answer to the question is ‘yes’ (or True, as we call it in
programming terms) the commands in the block will be run.

A condition is a programming statement that returns ‘yes’ (True) or ‘no’
(False). There are certain symbols (or operators) used to create conditions, such as:

== equals
!= not equals
> greater than
< less than

>= greater than or equal to
<= less than or equal to

For example, if you are 10 years old, then the condition your age == 10 would
return True (yes), but if you are not 10, it would return False. Remember: don’t

33
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mix up the two equals symbols used in a condition (==), with the equals used in
assigning values (=)—if you use a single = symbol in a condition, you’ll get an error
message.

Assuming you set the variable age to your age, then if you are 12 years old,
the condition. . .

age > 10

. . . would again return True. If you are 8 years old, it would return False. If
you are 10 years old, it would also return False—because the condition is checking
for greater than (>) 10, and not greater than or equal (>=) to 10.

Let’s try a few examples:

>>> age = 10

>>> if age > 10:

... print ’got here’

If you enter the above example into the console, what might happen?

Nothing.

Because the value of the variable age is not greater than 10, the print command in
the block will not be run. How about:

>>> age = 10

>>> if age >= 10:

... print ’got here’

If you try this example, then you should see the message got here printed to
the console. The same will happen for the next example:

>>> age = 10

>>> if age == 10:

... print ’got here’

got here

4.1 Do this. . . or ELSE!!!

We can also extend an if-statement, so that it does something when a condition is
not true. For example, print ‘Hello’ if your age is 12, but print ‘Goodbye’ if it’s
not. To do this, we use an if-then-else-statement (this is another way of saying “if
something is true, then do this, otherwise do that”):
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>>> age = 12

>>> if age == 12:

... print ’Hello’

... else:

... print ’Goodbye’

Hello

Type in the above example and you should see ‘Hello’ printed to the console.
Change the value of the variable age to another number, and ‘Goodbye’ will be
printed:

>>> age = 8

>>> if age == 12:

... print ’Hello’

... else:

... print ’Goodbye’

Goodbye

4.2 Do this. . . or do this. . . or do this. . . or ELSE!!!

We can extend an if-statement even further using elif (short for else-if). For example,
we can check if your age is 10, or if it’s 11, or if it’s 12 and so on:

1. >>> age = 12

2. >>> if age == 10:

3. ... print ’you are 10’

4. ... elif age == 11:

5. ... print ’you are 11’

6. ... elif age == 12:

7. ... print ’you are 12’

8. ... elif age == 13:

9. ... print ’you are 13’

10. ... else:

11. ... print ’huh?’

12. ...

13. you are 12

In the code above, line 2 checks whether the value of the age variable is equal
to 10. It’s not, so it then jumps to line 4 to check whether the value of the age
variable is equal to 11. Again, it’s not, so it jumps to line 6 to check whether the
variable is equal to 12. In this case it is, so Python moves to the block in line 7, and
runs the print command. (Hopefully you’ve also noticed that there are 5 groups in
this code—lines 3, 5, 7, 9 and line 11)
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4.3 Combining conditions

You can combine conditions together using the keywords ‘and’ and ‘or’. We can
shrink the example above, a little, by using ‘or’ to join the conditions together:

1. >>> if age == 10 or age == 11 or age == 12 or age == 13:

2. ... print ’you are %s’ % age

3. ... else:

4. ... print ’huh?’

If any of the conditions in line 2 are true (i.e. if age is 10 or age is 11 or age
is 12 or age is 13), then the block of code in line 3 is run, otherwise Python moves
to line 4. We could shrink the example a little bit more by using the ‘and’, >= and
<= symbols:

1. >>> if age >= 10 and age <= 13:

2. ... print ’you are %s’ % age

3. ... else:

4. ... print ’huh?’

Hopefully, you’ve figured out that if both the conditions on line 1 are true
then the block of code in line 2 is run (if age is greater than or equal to 10 and age
is less than or equal to 13). So if the value of the variable age is 12, then ‘you are
12’ would be printed to the console: because 12 is greater than 10 and it is also less
than 13.

4.4 Emptiness

There is another sort of value, that can be assigned to a variable, that we didn’t
talk about in the previous chapter: Nothing.

In the same way that numbers, strings and lists are all values that can be
assigned to a variable, ‘nothing’ is also a kind of value that can be assigned. In
Python, an empty value is referred to as None (in other programming languages, it
is sometimes called null) and you can use it in the same way as other values:

>>> myval = None

>>> print myval

None

None is a way to reset a variable back to being un-used, or can be a way to
create a variable without setting its value before it is used.
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For example, if your football team were raising funds for new uniforms, and
you were adding up how much money had been raised, you might want to wait until
all the team had returned with the money before you started adding it all up. In
programming terms, we might have a variable for each member of the team, and
then set all the variables to None:

>>> player1 = None

>>> player2 = None

>>> player3 = None

We could then use an if-statement, to check these variables, to determine if all
the members of the team had returned with the money they’d raised:

>>> if player1 is None or player2 is None or player3 is None:

... print ’Please wait until all players have returned’

... else:

... print ’You have raised %s’ % (player1 + player2 + player3)

The if-statement checks whether any of the variables have a value of None,
and prints the first message if they do. If each variable has a real value, then the
second message is printed with the total money raised. If you try this code out
with all variables set to None, you’ll see the first message (don’t forget to create the
variables first or you’ll get an error message):

>>> if player1 is None or player2 is None or player3 is None:

... print ’Please wait until all players have returned’

... else:

... print ’You have raised %s’ % (player1 + player2 + player3)

Please wait until all players have returned

Even if we set one or two of the variables, we’ll still get the message:

>>> player1 = 100

>>> player3 = 300

>>> if player1 is None or player2 is None or player3 is None:

... print ’Please wait until all players have returned’

... else:

... print ’You have raised %s’ % (player1 + player2 + player3)

Please wait until all players have returned

Finally, once all variables are set, you’ll see the message in the second block:

>>> player1 = 100

>>> player3 = 300

>>> player2 = 500

>>> if player1 is None or player2 is None or player3 is None:

... print ’Please wait until all players have returned’

... else:

... print ’You have raised %s’ % (player1 + player2 + player3)

You have raised 900
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4.5 What’s the difference. . .?

What’s the difference between 10 and ‘10’?

Not much apart from the quotes, you might be thinking. Well, from reading
the earlier chapters, you know that the first is a number and the second is a string.
This makes them differ more than you might expect. Earlier we compared the value
of a variable (age) to a number in an if-statement:

>>> if age == 10:

... print ’you are 10’

If you set variable age to 10, the print statement will be called:

>>> age = 10

>>> if age == 10:

... print ’you are 10’

...

you are 10

However, if age is set to ’10’ (note the quotes), then it won’t:

>>> age = ’10’

>>> if age == 10:

... print ’you are 10’

...

Why is the code in the block not run? Because a string is different from a
number, even if they look the same:

>>> age1 = 10

>>> age2 = ’10’

>>> print age1

10

>>> print age2

10

See! They look exactly the same. Yet, because one is a string, and the other is
a number, they are different values. Therefore age == 10 (age equals 10) will never
be true, if the value of the variable is a string.

Probably the best way to think about it, is to consider 10 books and 10 bricks.
The number of items might be the same, but you couldn’t say that 10 books are
exactly the same as 10 bricks, could you? Luckily in Python we have magic functions
which can turn strings into numbers and numbers into strings (even if they won’t
quite turn bricks into books). For example, to convert the string ’10’ into a number
you would use the function int:
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>>> age = ’10’

>>> converted_age = int(age)

The variable converted age now holds the number 10, and not a string. To convert
a number into a string, you would use the function str:

>>> age = 10

>>> converted_age = str(age)

converted age now holds the string 10, and not a number. Back to that if-statement
which prints nothing:

>>> age = ’10’

>>> if age == 10:

... print ’you are 10’

...

If we convert the variable before we check, then we’ll get a different result:

>>> age = ’10’

>>> converted_age = int(age)

>>> if converted_age == 10:

... print ’you are 10’

...

you are 10
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Chapter 5

Again and again

There’s nothing worse than having to do the same thing over and over and over
again. There’s a reason your parents tell you to count sheep to try to go to sleep,
and it has got nothing to do with the amazing sleep-inducing powers of woolly
mammals. It’s all to do with the fact that endlessly repeating something is boring,
and your mind should drop off to sleep more easily, if it’s not focussing on something
interesting.

Programmers don’t particularly like repeating themselves either. It puts them
to sleep as well. Which is a good reason why all programming languages have what
is called a for-loop. For example, to print hello 5 times in Python, you could do
the following:

>>> print "hello"

hello

>>> print "hello"

hello

>>> print "hello"

hello

>>> print "hello"

hello

>>> print "hello"

hello

Which is. . . rather tedious.

Or you could use a for-loop (note: there’s 4 spaces on the second line before
the print statement—I’ve highlighted them using @ so that you can see where they
are):

>>> for x in range(0, 5):

... @@@@print ’hello’

...

hello
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hello

hello

hello

hello

range is a function and is a quick and easy way to create a list of numbers
ranging between a start and end number. For example:

>>> print range(10, 20):

[10, 11, 12, 13, 14, 15, 16, 17, 18, 19]

So in the case of the for-loop, what the code ‘for x in range(0, 5)’ is actually
telling Python, is to create a list of numbers (0, 1, 2, 3, 4) and then for each number,
store the value in the variable x. We can then use the x in our print statement if
we want to:

>>> for x in range(0, 5):

... print ’hello %s’ % x

hello 0

hello 1

hello 2

hello 3

hello 4

If we get rid of the for-loop again, it might look something like this:

x = 0

print ’hello %s’ % x

x = 1

print ’hello %s’ % x

x = 2

print ’hello %s’ % x

x = 3

print ’hello %s’ % x

x = 4

print ’hello %s’ % x

So the loop has actually saved us from writing an extra 8 lines of code. This is
extremely useful, since the average programmer is more lazy than a hippopotamus
on a hot day, when it comes to typing. Good programmers hate doing things more
than once, so the for-loop is one of the more useful statements in a programming
language.
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WARNING!!!

If you’ve been trying out the examples as you go along, you
might have got a funny error message when typing in the code
for that for-loop. If you did, it might have looked something
like this:

IndentationError: expected an indented block

If you see an error like this, then you missed typing the spaces
on the second line. Spaces in Python (either a normal space
or a tab) are extremely important. We’ll talk more about this
shortly. . .

We don’t have to stick to using range, we can also use lists we’ve already
created. Such as the shopping list we created in the last chapter:

>>> shopping_list = [ ’eggs’, ’milk’, ’cheese’, ’celery’, ’peanut butter’, ’baking soda’ ]

>>> for i in shopping_list:

... print i

eggs

milk

cheese

celery

peanut butter

baking soda

The above code is a way of saying, “for each item in the list, store the value
in the variable ‘i’ and then print the contents of that variable”. Again, if we got rid
of the for-loop, we’d have to do something like this:

>>> shopping_list = [ ’eggs’, ’milk’, ’cheese’, ’celery’, ’peanut butter’, ’baking soda’ ]

>>> print shopping_list[0]

eggs

>>> print shopping_list[1]

milk

>>> print shopping_list[2]

cheese

>>> print shopping_list[3]

celery

>>> print shopping_list[4]

peanut butter

>>> print shopping_list[5]

baking soda

So once again, the loop has saved us from a lot of typing.
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5.1 When is a block not square?

When it’s a block of code.

So what’s a ‘block of code’ then?

A block of code is a set of programming statements you want to group together.
For example, in the for-loop example above, you might want to do more than just
print out the items. Perhaps you’d want to buy each item and then print out what
it was. Supposing we had a function called ‘buy’, you might write code like this:

>>> for i in shopping_list:

... buy(i)

... print i

Don’t bother typing that example into the Python console—because we don’t
have a buy function and you’ll get an error message if you do try to run it—but it
does demonstrate a simple Python block made up of 2 commands:

buy(i)

print i

In Python, white space such as tab (when you press the tab key) and space
(when you press the space bar) is very important. Code that is at the same position
is grouped together into blocks.

this would be block 1

this would be block 1

this would be block 1

this would be block 2

this would be block 2

this would be block 2

this would still be block 1

this would still be block 1

this would be block 3

this would be block 3

this would be block 4

this would be block 4

this would be block 4

But you must be consistent with your spacing. For example:

>>> for i in shopping_list:

... buy(i)

... print i

The second line (function buy(i)) starts with 4 spaces. The third line (print i)
starts with 6 spaces. Let’s take another look at that code with visible spaces (using
@ again):
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>>> for i in shopping_list:

... @@@@buy(i)

... @@@@@@print i

This would cause an error. Once you start using 4 spaces, you need to continue
using 4 spaces. And if you want to put a block inside another block, you’ll need 8
spaces (2 x 4) at the beginning of the lines for that inner block.

So the first block has 4 spaces (I’ll highlight them again so you can see them):

@@@@here’s my first block

@@@@here’s my first block

And then the second block (which is ‘inside’ the first) needs 8 spaces:

@@@@here’s my first block

@@@@here’s my first block

@@@@@@@@here’s my second block

@@@@@@@@here’s my second block

Why do we want to put one block ‘inside’ another? Usually we do this when
the second block relies on the first in some way. Such as our for-loop. If the line
with the for-loop is the first block, then the statements we want to run over and
over again are in the second block—in a way they rely on the first block to work
properly.

In the Python console, once you start typing code in a block, Python continues
that block until you press the Enter key on a blank line (you’ll see the 3 dots at the
beginning of the line showing that you’re still inside a block.

Let’s try some real examples. Open the console and type the following (re-
member that you need to press the space bar 4 times at the beginning of the print
lines):

>>> mylist = [ ’a’, ’b’, ’c’ ]

>>> for i in mylist:

... print i

... print i

...

a

a

b

b

c

c

After the second print i, press the Enter key on the blank line—which tells the
console you want to end the block. It will then print each item in the list twice.

The next example will cause an error message to be displayed:
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>>> mylist = [ ’a’, ’b’, ’c’ ]

>>> for i in mylist:

... print i

... print i

...

File <stdin>, line 3

print i

^

Syntax Error: invalid syntax

The second print line has 6 spaces, not 4, which Python doesn’t like because
it wants spacing to stay the same.

REMEMBER

If you start your blocks of code with 4 spaces you must continue
using 4 spaces. If you start blocks with 2 spaces, you must
continue with 2 spaces. Stick to 4 spaces, because that’s what
most people use.

Here’s a more complicated example with 2 blocks of code:

>>> mylist = [ ’a’, ’b’, ’c’ ]

>>> for i in mylist:

... print i

... for j in mylist:

... print j

...

Where are the blocks in this code and what is it going to do...?

There are two blocks—number one is part of the first for-loop:

>>> mylist = [ ’a’, ’b’, ’c’ ]

>>> for i in mylist:

... print i --

... for j in mylist: |-- these lines are the FIRST block

... print j --

...

Block number two is the single print line in the second for-loop:

>>> mylist = [ ’a’, ’b’, ’c’ ]

>>> for i in mylist:

... print i

... for j in mylist:

... print j -- this line is the SECOND block

...
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Can you figure out what this little bit of code is going to do?

It’s going to print out the 3 letters from ‘mylist’, but how many times? If
we look at each line, we can probably figure out the number. We know that the
first loop statement will go through each of the items in the list, and then run the
commands in block number 1. So it will print out a letter, then start the next
loop. This loop will also go through each of the items in the list and then run the
command in block number 2. So what we should get when this code runs, is ‘a’
followed by ‘a’, ‘b’, ‘c’, then ‘b’ followed by ‘a’, ‘b’, ‘c’ and so on. Enter the code
into the Python console and see for yourself:

>>> mylist = [ ’a’, ’b’, ’c’ ]

>>> for i in mylist:

... print i

... for j in mylist:

... print j

...

a

a

b

c

b

a

b

c

c

a

b

c

How about something more useful than just printing letters? Remember that
calculation we came up with at the beginning of this book to work out how much
you might have saved at the end of the year, if you earned $5 doing chores, $30
doing a paper route and spent $10 a week?

It looked like this:

>>> (5 + 30 - 10) * 52

(That’s $5 + $30 - $10 multiplied by 52 weeks in the year).

It might be useful to see how much your savings are increasing during the year,
rather than working out what they will be at the very end. We can do this with
another for-loop. But first of all, we need to load those numbers into variables:

>>> chores = 5

>>> paper = 30

>>> spending = 10

We can perform the original calculation using the variables:
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>>> (chores + paper - spending) * 52

1300

Or we can see the savings increase over the year, by creating another variable
called savings, and then using a loop:

1. >>> savings = 0

2. >>> for week in range(1, 53):

3. ... savings = savings + chores + paper - spending

4. ... print ’Week %s = %s’ % (week, savings)

5. ...

On line 1 the variable ‘savings’ is loaded with 0 (because we haven’t saved
anything yet).
Line 2 sets up the for-loop, which will run the commands in the block (the block is
made up of lines 3 and 4). Each time it loops, the variable week is loaded with the
next number in the range 1-52.
Line 3 is a bit more complicated. Basically, each week we want to add what we’ve
saved to our total savings. Think of the variable ‘savings’ as something like a bank.
We add up the money we earn doing odd jobs and the paper route, subtract our
spending money and then take the rest to the bank. So in computer-speak, line 3
really means, “replace the contents of the variable savings with my current savings,
plus what I’ve earned this week”. Basically, the equals symbol (=) is a bossy piece
of code that is a way of saying, “work out some stuff on the right first and then save
it for later, using the name on the left”.
Line 4 is a slightly more complicated print statement, which prints the week number
and the total amount saved (for that week) to the screen. Check the section Tricks
with Strings on page 17, if this line doesn’t make a lot of sense to you. So, if you
run this program, you’ll see something like the following. . .

Week 1 = 25

Week 2 = 50

Week 3 = 75

Week 4 = 100

Week 5 = 125

Week 6 = 150

Week 7 = 175

Week 8 = 200

Week 9 = 225

Week 10 = 250

Week 11 = 275

Week 12 = 300

Week 13 = 325

Week 14 = 350

Week 15 = 375

. . .going all the way up to week 52.
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5.2 While we’re talking about looping. . .

A for-loop isn’t the only kind of looping you can do in Python. There’s also the
while-loop. If a for-loop is a loop where you know exactly when you’ll stop running,
a while-loop is a loop where you don’t necessarily know ahead of time when you’ll
stop. Imagine a staircase with 20 steps. You know you can easily climb 20 steps.
That’s a for-loop.

>>> for step in range(0,20):

... print step

Now imagine a staircase going up a mountainside. You might run out of
energy before you reach the top. Or the weather might turn bad forcing you to stop
climbing. This is a while-loop.

>>> step = 0

>>> while step < 10000:

... print step

... if tired == True:

... break

... elif badweather == True:

... break

... else:

... step = step + 1

Don’t bother running the code sample above, because we haven’t bothered
to create the variables tired and badweather. But it demonstrates the basics of a
while-loop. While the value of variable step is less than 10000 (step < 10000) the
code in the block is executed. In the block, we print the value of step, then check
whether tired or badweather is true. If tired is true, then the break statement stops
the code in the loop executing (basically we jump out of the loop to the next line of
code immediately following the block). If badweather is true, we also break out of
the loop. If not, then 1 is added to the value of step, and the condition of the while
loop (step < 10000) is checked again.

So the steps of a while loop are basically:

⊲ check the condition,

⊲ execute the code in the block,

⊲ repeat

More commonly, a while-loop might be created with a couple of conditions:
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>>> x = 45

>>> y = 80

>>> while x < 50 and y < 100:

... x = x + 1

... y = y + 1

... print x, y

In this loop, we create a variable x with the value 45, and a variable y with
the value 80. There are two conditions that are checked by the loop: whether x is
less than 50 and whether y is less than 100. While both conditions are true, the
block of code is executed, adding 1 to both variables and then printing them. The
output of this code is just:

46 81

47 82

48 83

49 84

50 85

Maybe you can figure out why these numbers are printed?1

Another common usage of a while-loop, is to create a semi-eternal loop. This
is a loop that basically goes forever, or at least until something happens in the code
to break out of it. For example:

>>> while True:

... lots of code here

... lots of code here

... lots of code here

... if some_condition == True:

... break

The condition for the while loop is just ‘True’. So it will always run the code
in the block (thus the loop is eternal or infinite). Only if the variable some condition
is true will the code break out of the loop. You can see a better example of this in
Appendix C (the section about the random module), but you might want to wait
until you’ve read the next chapter before taking a look at it.

5.3 Things to try

In this chapter we saw how to use loops to perform repetitive tasks. We used blocks
of code inside the loops for the tasks to be repeated.

1We start counting at 45 in the variable x and at 80 in the variable y, and then increment (add
one) to each variable every time the code in the loop is run. The conditions check that x must be
less than 50 and y must be less than 100. After looping five times (adding 1 to each variable) the
value in x reaches 50. Now the first condition (x < 50) is no longer true, so Python knows to stop
looping.
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Exercise 1

What do you think will happen with the following code?

>>> for x in range(0, 20):

... print ’hello %s’ % x

... if x < 9:

... break

Exercise 2

When you save money in a bank, you earn interest. ‘Interest’ is the money the bank
pays you for letting them use your money—each year you are paid a small amount
of money depending upon how much you’ve saved. This payment is usually added
back to your savings account at the bank, and it also makes you money. . . which
is a bit confusing, so you might have to ask Mum or Dad to explain. Interest is
calculated using percentages. If you don’t know what a percentage is, don’t worry,
it’s enough to know that if the bank is paying you 1% (1 percent) interest, you can
multiply the monetary amount by the number 0.01 (if your amount is $1000, then
you will do: 1000 * 0.01). If they’re paying you 2% interest, you can use the number
0.02, and so on. If you have $100 saved in a bank account, and they pay you 3%
interest every year, how much money do you think you will have each year, up to 10
years? You can write a program using a for-loop to figure it out (Hint: remember
to add the interest to the total).
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Chapter 6

Sort of like recycling. . .

Think about how much rubbish you create each day. Bottled water or bottles of
soft drink, packets of crisps, plastic sandwich wrappers, bags of vegetables, meat on
plastic trays, plastic shopping bags, newspapers, magazines, and so on and so on
and so on. . .

Now just think about what would happen if all of that trash just got dumped
in a pile at the end of your driveway.

53
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Of course, you probably recycle as much as possible. Which is fortunate,
because no one likes having to climb over a rubbish heap, on the way to school. So,
those glass bottles in the recycle bin are hopefully melted down, and then turned
into new jars and bottles; paper is pulped into recycled paper; plastic turned into
heavier plastic goods—so your front lawn doesn’t disappear under tonnes of garbage.
We get to reuse some of the goods we create, rather than eating a gaping hole in
the side of the world to manufacture the same things over and over again.

Recycling or reuse, in the programming world, is just as important. Not
because your program will disappear under a pile of garbage—but if you don’t re-use
some of what you’re doing, you’ll eventually wear your fingers down to painful stubs
through over-typing.

There are a number of different ways to reuse code in Python (and in pro-
gramming languages in general), but we’ve seen one of the ways already, back in
Chapter 3, with the function range. Functions are one way to reuse code—so you
can write the code once, then use it in your programs again and again. Let’s first
try a simple example of a function:

>>> def myfunction(myname):

... print ’hello %s’ % myname

...

The above function has a name ‘myfunction’ and has a parameter ‘myname’.
A parameter is a variable which is only available within the ‘body’ of the function
(which is the block of code immediately after the line starting with def—in case
you’re wondering, def is short for define). You can run the function by calling its
name with brackets surrounding the parameter value:

>>> myfunction(’Mary’)

hello Mary

We could change the function to take 2 parameters:

>>> def myfunction(firstname, lastname):

... print ’Hello %s %s’ % (firstname, lastname)

...

And then call it in a similar fashion to the first:

>>> myfunction(’Mary’, ’Smith’)

Hello Mary Smith

Or we could create some variables and call the function with the variables:
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>>> fn = ’Joe’

>>> ln = ’Robertson’

>>> myfunction(fn, ln)

Hello Joe Robertson

We can return values from a function using the return statement:

>>> def savings(chores, paper, spending):

... return chores + paper - spending

...

>>> print savings(10, 10, 5)

15

This function takes 3 parameters, and then adds the first two (chores and
paper) before subtracting the last one (spending). The result is then returned—this
result can be used as the value of a variable (the same way we set other values to
variables):

>>> my_savings = savings(20, 10, 5)

>>> print my_savings

25

However, a variable that we use inside the body of a function will not be accessible
(usable), when the function has finished:

>>> def variable_test():

... a = 10

... b = 20

... return a * b

...

>>> print variable_test()

200

>>> print a

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

NameError: name ’a’ is not defined

In the above example we create a function variable test, which multiplies two
variables (a and b) and returns the result. If we call this function using print, we get
the answer: 200. However if we try to print the contents of a (or b for that matter),
we get the error message “‘a’ is not defined”. This is something called ‘scope’, in
the world of programming.

Think of a function as a little island floating in the ocean—and it’s too far to
swim from the island to anywhere else. Occasionally, a plane flies over and drops
bits of paper on the island (those are parameters coming into a function) which the
inhabitants then stick together into a message, put the message into a bottle and
then toss the bottle into the sea (this is the return value). What the islanders do on
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the island, and how many of them it took to make the message, makes no difference
to the person picking up the bottle and reading the message inside. This is probably
the easiest way to think about scope—but there is one small problem with that idea.
One of the islanders has a large pair of binoculars and can see all the way to the
mainland. He can see what other people are doing there, and that can affect the
message that they’re creating:

>>> x = 100

>>> def variable_test2():

... a = 10

... b = 20

... return a * b * x

...

>>> print variable_test2()

20000

So, even though variables a and b aren’t able to be used outside of the function,
the variable x (which was created outside the function) is usable inside. Just think
about the islander with the binoculars, and hopefully it might help that idea to
make a little bit of sense.

The for-loop we created earlier to display savings over a year, could easily be
added to a function:

>>> def yearly_savings(chores, paper, spending):

... savings = 0

... for week in range(1, 53):

... savings = savings + chores + paper - spending

... print ’Week %s = %s’ % (week, savings)

...
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Try entering that function in the console, and call it with different values for
chores, paper and spending:

>>> yearly_savings(10, 10, 5)

Week 1 = 15

Week 2 = 30

Week 3 = 45

Week 4 = 60

Week 5 = 75

Week 6 = 90

Week 7 = 105

Week 8 = 120

Week 9 = 135

Week 10 = 150

(continues on...)

>>> yearly_savings(25, 15, 10)

Week 1 = 30

Week 2 = 60

Week 3 = 90

Week 4 = 120

Week 5 = 150

(continues on...)

This is a bit more useful than re-typing the for-loop every time you want to
try it with a different value. Functions can also be grouped together into something
called ‘modules’, which is where Python becomes really useful. . . as opposed to just
mildly useful.

More about modules shortly.

6.1 Bits and Pieces

When Python is installed on your computer, a whole pile of functions and modules
are also installed. Some functions are available by default. range is a function we’ve
already seen. file is another function we haven’t use yet.

To see how file is used, open a text editor, type a few words and then save the
file to your home directory, by clicking File, Save, selecting ‘Home Folder’ (or ‘Home
Directory’ or ‘Home’) and typing ‘test.txt’ in the file name box (see figure 6.1 for
an example).

Open the Python console again, and try the following:

>>> f = file(’Desktop/test.txt’)

>>> print f.read()
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Figure 6.1: The save dialog from the KEdit Text Editor.

So what does that little bit of code do? The first line calls the function file,
passing the name of the file you just created, as a parameter. The function returns
a special type of value (called an object) which represents that file. It’s not the file
itself; rather it’s a bit like a big finger pointing at the file going “HERE IT IS!!!!”
The file object is stored in the variable f.

The next line calls a special function (read) on the file object, to read in
the contents of the file, and print the result to the console. Because the variable
f contains an object, this means we need to call the read function using the dot
symbol (.).

Appendix B (at the back of this book) has more information
about the functions that are built into Python.

6.2 Modules

We’ve actually seen a couple of different ways to reuse code already. One is a
standard function, which we can create ourselves, or use the functions built into
Python (like range and file and int and str). Another is a special kind of function
on objects—which we can call using the dot symbol—and the next are modules;
which are a way of grouping lots of functions and objects together in useful ways.
An example of this is the module ‘time’:

>>> import time

The import command is used to tell Python we want to access a module. In
the above example, we’re saying we want to use the ‘time’ module. We can then
call functions and objects that are available in this module, using the dot symbol
yet again:

>>> print time.localtime()

(2006, 11, 10, 23, 49, 1, 4, 314, 1)
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localtime is a function inside the module time, that returns the current date
and time, broken up into individual parts—year, month, day, hour, minute, second,
day of the week, day of the year, and whether or not it’s daylight savings (1 if it
is, 0 if it isn’t). The individual parts are stored in a tuple (see Tuples and Lists on
page 22. You can use another function in the time module to convert the datetime
returned by localtime, into something a bit more understandable:

>>> t = time.localtime()

>>> print time.asctime(t)

Sat Nov 18 22:37:15 2006

We can do that all in a single line if we wanted to:

>>> print time.asctime(time.localtime())

Sat Nov 18 22:37:15 2006

Suppose you want to ask for someone to enter a value. You can do this using
a print statement and the module ‘sys’—imported the same way we imported the
time module:

import sys

Inside the sys module is an object called ‘stdin’ (short for standard input).
stdin has a rather useful method (or function) called readline—which is used to
read a line of text someone types on the keyboard (up until the point when they
press the Enter key). You can test readline, by entering the following command in
the Python console:

>>> print sys.stdin.readline()

If you then type some words, and press the Enter key, what you’ve typed will
be printed to the console. Think back, for a moment, to the code we wrote earlier,
using an if-statement:

if age >= 10 and age <= 13:

print ’you are %s’ % age

else:

print ’huh?’

Rather than creating the variable age beforehand, we can now ask someone to
enter the value instead. How about first turning the code into a function. . .
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>>> def your_age(age):

... if age >= 10 and age <= 13:

... print ’you are %s’ % age

... else:

... print ’huh?’

...

Which can be called, by passing a number as the parameter value. We’ll test
that it works properly, first:

>>> your_age(9)

huh?

>>> your_age(10)

you are 10

Now we know there are no problems with our function, we can change the
function to ask for a person’s age instead:

>>> def your_age():

... print ’Please enter your age’

... age = int(sys.stdin.readline())

... if age >= 10 and age <= 13:

... print ’you are %s’ % age

... else:

... print ’huh?’

...

Because readline() returns what a person typed as text (in other words, a
string), we need to use the function int to convert it to a number (this so it will
work correctly in the if-statement—check What’s the difference on page 38 for more
information about this). To try it for yourself, call the your age function without
any parameters, then type some text when ‘Please enter your age’ appears:

>>> your_age()

Please enter your age

10

you are 10

>>> your_age()

Please enter your age

15

huh?

The important thing to note here is that even though you’re typing in a number (in
the above case 10 or 15), readline always returns a string.

sys and time are just two of the many modules that are in-
cluded with Python. For more information on some (but not
all) Python modules, see Appendix C.
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6.3 Things to try

In this chapter we saw how to do recycling in Python; through the use of functions
and modules. We saw a little bit about the ‘scope’ of variable, how variables outside
of functions can be ‘seen’ inside, whereas variables inside cannot be seen outside,
and learned how to create our own functions using def

Exercise 1

In exercise 2 in Chapter 5, we created a for-loop to work out the interest we might
earn from $100 over a period of 10 years. That for-loop could easily be turned into
a function. Try creating a function which takes a starting amount, and a rate of
interest. You could call the function using code like:

calculate_interest(100, 0.03)

Exercise 2

Take the function you’ve just created, and make it calculate interest for different
periods—such as 5 years or 15 years. Perhaps you could call it using code like:

calculate_interest(100, 0.03, 5)

Exercise 3

Perhaps rather than a simple function, where we pass in the values as parame-
ters, we can make a mini-program which asks someone for the values (using the
sys.stdin.readline() function). In this case, we’ll call the function without any pa-
rameters at all:

calculate_interest()

To create this mini-program requires a function that we haven’t talked about yet:
float. The float function is a bit like the int function, except it converts strings
into what is called floating point numbers (which we discussed briefly in Chap-
ter 2). Floating point numbers are numbers with a decimal place (.), such as 20.3
or 2541.933.
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Chapter 7

A short chapter about Files

You probably know what a file is already.

If your parents have a home office, chances are they’ve got a file cabinet of some sort.
Various important papers (mostly boring adult stuff) are stored in those cabinets,
usually in cardboard folders labelled with letters of the alphabet, or months of the
year. Files on a computer are rather similar to those cardboard folders. They have
labels (the name of the file), and are used to store important information. The
drawers on a file cabinet, which might be used to organise paperwork so they are
easier to find, are similar to directories (or folders) on a computer.

We’ve already created a file object, using Python, in the previous chapter. The
example looked like this:

>>> f = file(’Desktop/test.txt’)

>>> print f.read()

A file object doesn’t just have the function read. After all, file cabinets
wouldn’t be very useful if you could only open a drawer and take papers out, but
could never put them back in. We can create a new, empty file, by passing another
parameter when we call the file function:

>>> f = file(’myfile.txt’, ’w’)

’w’ is the way we tell Python we want to write to the file object, and not read
from it. We can now add information to the file using the function write.

>>> f.write(’this is a test file’)

Then we need to tell Python when we’re finished with the file, and don’t want
to write to it any more—we use the function close to do this.
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>>> f.close()

If you open the file using your favourite editor, you will see it contains the
text: “this is a test file”. Or better yet, we can use Python to read it in again:

>>> f = file(’myfile.txt’)

>>> print f.read()

this is a test file



Chapter 8

Turtles galore

Let’s get back to the turtle module we started looking at in Chapter 5. Remember
that to setup the canvas for the turtle to draw on, we need to import the module
and the create the ‘Pen’ object:

>>> import turtle

>>> t = turtle.Pen()

We can now use basic functions to move the turtle around the canvas and draw
simple shapes, but it’s more interesting to use some of what we’ve already covered
in the previous chapters. For example, the code we used to create a square earlier
was:

>>> t.forward(50)

>>> t.left(90)

>>> t.forward(50)

>>> t.left(90)

>>> t.forward(50)

>>> t.left(90)

We can rewrite this using a for-loop:

>>> t.reset()

>>> for x in range(1,5):

... t.forward(50)

... t.left(90)

...

This is certainly less typing, but for something a bit more interesting, try the
following:
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Figure 8.1: The turtle drawing an 8-point star.

>>> t.reset()

>>> for x in range(1,9):

... t.forward(100)

... t.left(225)

...

This code produces the 8-point star shown in figure 8.1 (the turtle turns 225
degrees, each time it goes forward 100 pixels).

With a different angle (175 degrees), and a longer loop (37 times), we can make a
star with even more points (shown in figure 8.2):

>>> t.reset()

>>> for x in range(1,38):

... t.forward(100)

... t.left(175)

...

Or how about the following code, which produces the spiral-like star figure 8.3.

>>> for x in range(1,20):

... t.forward(100)

... t.left(95)

...

Here’s something a bit more complicated:
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Figure 8.2: A star with a lot more points.

Figure 8.3: A star with a lot more points.
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Figure 8.4: A 9-point star.

t.reset()

>>> for x in range(1,19):

... t.forward(100)

... if x % 2 == 0:

... t.left(175)

... else:

... t.left(225)

...

In the above code, we check to see if the variable x contains an even number.
To do this we use what is called a modulo operator (%), in the expression: x % 2
== 0.

x % 2 is equal to zero, if the number in variable x can be divided by two, with
nothing left over (no remainder)—if this doesn’t make much sense, don’t worry too
much about it, just remember you can use ‘x % 2 == 0’ to check if a number in a
variable is an even number. The result of running this code is the 9-point star in
figure 8.4.

You don’t have to just draw stars and simple geometric shapes, using a com-
bination of the functions calls, your turtle can draw many different things. For
example:

t.color(1,0,0)

t.fill(1)

t.forward(100)

t.left(90)
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t.forward(20)

t.left(90)

t.forward(20)

t.right(90)

t.forward(20)

t.left(90)

t.forward(60)

t.left(90)

t.forward(20)

t.right(90)

t.forward(20)

t.left(90)

t.forward(20)

t.fill(0)

t.color(0,0,0)

t.up()

t.forward(10)

t.down()

t.fill(1)

t.circle(10)

t.fill(0)

t.setheading(0)

t.up()

t.forward(90)

t.right(90)

t.forward(10)

t.setheading(0)

t.fill(1)

t.down()

t.circle(10)

t.fill(0)

Which is a long, long, long, drawn-out way to draw the rather ugly and primitive-
looking car in figure 8.5. But it does demonstrate a couple of other turtle functions:
color, to change the colour of the pen being used by the turtle; fill, which fills in an
area of the canvas; and circle, to draw a circle of a particular size.

8.1 Colouring in

The color function takes 3 parameters. The first parameter is a value for red, the
second is a value for green, and the last is a value for blue.

Why red, green and blue?

If you’ve ever played around with different colours of paint, you’ll already know
part of the answer to that question. When you mix two different paint colours, you
get another colour1. When you mix blue and red together, you get purple. . . and
when you mix too many colours together, you usually get a muddy brown. On
a computer you can mix colours together in a similar fashion—put red and green

1Actually, the three primary paint colours are red, yellow and blue, and not the red/green/blue
(RGB) on a computer.
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Figure 8.5: The turtle is terrible at drawing cars!

together to get yellow—except with a computer, we are combining colours of light,
not colours of paint.

Even though we’re not using paint, for a moment, think about 3 large pots of
paint. One red, one green, and one blue. Each pot is full, so we’ll say that a full
pot of paint has a value of 1 (or 100%). We then pour all of the red paint (100%)
into a vat, followed by all of the green paint (again 100%). After a bit of mixing,
we get a yellow colour. Let’s draw a yellow circle using turtle:

>>> t.color(1,1,0)

>>> t.fill(1)

>>> t.circle(50)

>>> t.fill(0)

So in the above example, we call the color function with 100% for red, 100% for
green and 0% for blue (in other words, 1, 1, and 0). To make it easier to experiment
with different colours, let’s turn that into a function:

>>> def mycircle(red, green, blue):

... t.color(red, green, blue)

... t.fill(1)

... t.circle(50)

... t.fill(0)

...

We can draw a bright green circle, by using all of the green paint (1 or 100%):
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>>> mycircle(0, 1, 0)

And we can draw a darker green circle, by using only half the green paint (0.5 or
50%):

>>> mycircle(0, 0.5, 0)

Here’s where thinking about paint doesn’t make much sense any more. In the
real world, if you’ve got a pot of green paint, it doesn’t matter how much you use,
it’s still going to look the same. With colours on a computer, because we’re playing
with light, using less of that colour generally results in a darker shade. It’s the same
as if you shine a torch at night, you get a yellowish light—when the batteries start
to run out and the light begins to fade, the yellow colour gets darker and darker.
Just to see for yourself, try drawing a circle with full red and half red (1 and 0.5),
and full blue and half blue.

>>> mycircle(1, 0, 0)

>>> mycircle(0.5, 0, 0)

>>> mycircle(0, 0, 1)

>>> mycircle(0, 0, 0.5)

Different combinations of red, green and blue will produce a huge variety of colours.
You can get a gold colour by using 100% of red, 85% of green and no blue:

>>> mycircle(1, 0.85, 0)

A light pink colour can be achieved by combining 100% red, 70% green and 75%
blue:

>>> mycircle(1, 0.70,0.75)

And you get orange by combining 100% red and 65% green; and brown by combining
60% red, 30% green and 15% blue:

>>> mycircle(1, 0.65, 0)

>>> mycircle(0.6, 0.3, 0.15)

Don’t forget, you can clear the canvas by using t.clear().
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Figure 8.6: A black hole!

8.2 Darkness

Here’s a question for you: What happens when you turn all the lights off at night?
Everything goes black.

The same thing happens with colours on a computer. No light equals no colour.
So a circle with 0 for red, 0 for green and 0 for blue:

>>> mycircle(0, 0, 0)

Produces the black spot in figure 8.6.

The opposite is true; if you use 100% red, 100% green and 100% blue, you get
white. Use the following code and the black circle will be wiped out again:

>>> mycircle(1,1,1)

8.3 Filling things

You’ve probably figured out by now that the fill function is switched on by passing
the parameter ‘1’, then switched off again with ‘0’. When you switch it off, the
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function actually fills in the area you’ve drawn—assuming you’ve drawn at least
part of a shape. So we can easily draw a filled in square by using code we created
earlier. First, let’s turn it into a function. To draw a square with turtle we do:

>>> t.forward(50)

>>> t.left(90)

>>> t.forward(50)

>>> t.left(90)

>>> t.forward(50)

>>> t.left(90)

>>> t.forward(50)

>>> t.left(90)

So as a function, we might want to pass the size of the square as a parameter.
This makes the function a little more flexible:

>>> def mysquare(size):

... t.forward(size)

... t.left(90)

... t.forward(size)

... t.left(90)

... t.forward(size)

... t.left(90)

... t.forward(size)

... t.left(90)

We can test our function by calling:

>>> mysquare(50)

That’s a start, but it’s not quite perfect. If you look at the code above, you’ll
see a pattern. We repeat: forward(size) and left(90) four times. That’s a waste of
typing. So we can use a for-loop to do it for us (pretty much the same as we did
earlier):

>>> def mysquare(size):

... for x in range(0,4):

... t.forward(size)

... t.left(90)

That’s a big improvement on the previous version. You can test the function
with different sizes:

>>> t.reset()

>>> mysquare(25)

>>> mysquare(50)

>>> mysquare(75)

>>> mysquare(100)

>>> mysquare(125)
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Figure 8.7: Lots of squares.

And the turtle should draw something like figure 8.6.

Now we can try a filled square. First of all, reset the canvas once again:

>>> t.reset()

Then, turn on filling, and call the square function again:

>>> t.fill(1)

>>> mysquare(50)

You’ll still see an empty square until you turn filling off:

>>> t.fill(0)

Which produces something like the square in figure 8.8.

How about changing the function so that we can either draw a filled or an
unfilled square? We need another parameter, and slightly more complicated code,
to do this:

>>> def mysquare(size, filled):

... if filled == True:

... t.fill(1)
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Figure 8.8: A black square.

... for x in range(0,4):

... t.forward(size)

... t.left(90)

... if filled == True:

... t.fill(0)

...

The first two lines check to see if the value of parameter ‘filled’ is set to True.
If it is, then filling is turned on. We then loop four times to draw the four sides of
the rectangle, before checking a second time whether the parameter ‘filled’ is True,
and if so, turn filling off once again. You can now draw a filled square by calling:

>>> mysquare(50, True)

And an unfilled square by calling:

>>> mysquare(150, False)

Which causes our turtle to draw the image in figure 8.9. . . . . .which, now that I think
about it, looks like a weird square eye.

You can draw all sorts of shapes and fill them with colour. Let’s turn the star,
we drew earlier, into a function. The original code looked like this:
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Figure 8.9: A square eye.

>>> for x in range(1,19):

... t.forward(100)

... if x % 2 == 0:

... t.left(175)

... else:

... t.left(225)

...

We can use the same if-statements from the mysquare function, and use the
size parameter in the forward function.

1. >>> def mystar(size, filled):

2. ... if filled:

3. ... t.fill(1)

4. ... for x in range(1,19):

5. ... t.forward(size)

6. ... if x % 2 == 0:

7. ... t.left(175)

8. ... else:

9. ... t.left(225)

10. ... if filled:

11. ... t.fill(0)

In lines 2 and 3, we switch filling on, depending upon the value of the parameter
filled (turn filling on, if the parameter is set to True, turn it off, if the parameter is
set to False). We do the reverse in lines 10 and 11 (switch filling back off again).
The other difference about this function is that we pass the size of the star in the
parameter size, and use this value in line 5.
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Figure 8.10: A gold star.

Now let’s set the colour to gold (you might remember that gold can be made
by using 100% of red, 85% of green and no blue), and then call the function:

>>> t.color(1, 0.85, 0)

>>> mystar(120, True)

The turtle should draw the gold star in figure 8.10. We can add an outline for the
star, by changing the colour again (this time to black) and redrawing the star with
filling turned off

>>> t.color(0,0,0)

>>> mystar(120, False)

Thus the star now looks like figure 8.11.

8.4 Things to try

In this chapter we learned about the turtle module, using it to draw a few basic
geometric shapes. We used functions in order to re-use some of our code, to make
it easier to draw shapes with different colours.
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Figure 8.11: A star with an outline.

Exercise 1

We’ve drawn stars, squares and rectangles. How about an octagon? An octagon is
an 8 sided shape. (Hint: try turning 45 degrees).

Exercise 2

Now convert the octagon drawing code into a function which will fill it with a colour.
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A bit graphic

The problem with using a turtle to draw, is. . . that. . .. . . turtles. . .. . .. . . are. . .. . .. . .. . .
really. . .. . .. . .. . .. . . slow.

Even when a turtle is going at top speed, it’s still not going that fast. For
turtles, this is not really a problem—they’ve got time to waste—but when you’re
talking about computer graphics, it is. If you’ve got a Nintendo DS, a Gameboy
Advance, or play games on your computer, think for a moment about the graphics
(what you see displayed on the screen). There are a number of different ways that
graphics are presented in games: there are 2d (or two-dimensional) games, where
the images are flat and the characters generally only move up and down, and left
and right—quite common in hand-held devices like the Gameboy, Nintendo DS, or
mobile phones. There are pseudo-3d (almost three-dimensional) games, where the
images look a little more real, but still the characters generally only move up and
down, left and right—again quite common in hand-held devices—and finally there
are 3d games, where the pictures drawn on the screen attempt to mimic reality.

All these kinds of graphic displays have one thing in common—the need to
draw on the computer screen very quickly. Have you ever tried your own animation?
Where you get a blank pad of paper, and in the corner of the first page you draw
something (perhaps a stick figure), on the bottom corner of the next page you draw
the same stick figure but you move its leg slightly. Then on the next page you draw
the figure again with the leg moved a little more. Gradually you go through each
page drawing on the bottom corner. When you’ve finished, you flick through the
pages, and if you flick through fast enough it appears as if the stick figure is moving.
This is the basics of how all animation is done—whether it’s the cartoons you’re
watching on TV or the games that you play on your games console or computer.
You draw something, then you draw it again but slightly changed to give the illusion
of movement. Which is why a turtle is no good for doing most graphics. In order to
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make an image look like it is moving, you have to draw each ‘frame’ of the animation
very quickly.

Three-dimensional graphics is done in a considerably different manner to two-
dimensional graphics, but still, the basic idea is the same. By the time your turtle
has finished drawing even a small portion of the picture it would be time to turn
the page and start drawing the next one. . .

9.1 Quick Draw

Each programming language has a different method to draw on the screen. Some
methods are fast and some are slow, which means that programmers who develop
games for a living have to be very careful about the language they choose to work
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in.

Python has a number of different ways to do graphics as well (including turtle,
which we’ve already used), but the best methods (from a graphics point of view)
are usually modules and libraries of code that are not included with Python itself.
You will probably have to be programming for a few years before you’ll be able to
figure out how to install and use one of those complex libraries.

Luckily, there is a module, which comes with Python, that we can use to do
basic graphics (at a slightly faster speed than a turtle). Perhaps even fast enough
to be called the Quick Draw Turtle.

The module is called Tkinter (a strange name, which stands for ‘Tk interface’)
and it can be used to create full applications (you could even create a simple Word
Processor program if you wanted to) as well as simple drawing. We could create a
simple application with a button using the following code:

1. >>> from Tkinter import *

2. >>> tk = Tk()

3. >>> btn = Button(tk, text="click me")

4. >>> btn.pack()

In line 1, we import the contents of the Tk module, so we can use them—the
most useful of these is Tk, which creates a basic window to which we can then add
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things. After you type in line 2, that window will suddenly appear on the screen.
In line 3, we create a new Button and assign it to the variable btn. The button
is created by passing the tk object as a parameter, along with a named parameter
with the words ‘click me’.

Named Parameters

This is the first time we’ve used ‘named parameters’. These
work just like normal parameters, except they can appear in
any order, so we need to provide a name.
For example, suppose we had a function rectangle which took
two parameters width and height. Normally we might call this
function using something like rectange(200, 100), meaning we
want to draw a rectangle 200 pixels wide by 100 pixels high.
But what if the parameters could appear in any order? How
do we know which is the width and which is the height?
In this case, it’s better to say exactly which is which, for ex-
ample: rectangle(height=100, width=200). In actual fact, the
whole idea of named parameters is a bit more complicated than
this, and can be used in a number of different ways to make
functions a lot more flexible—but that’s the subject of a more
advanced book than this introduction to programming.

The final line (4) is an instruction to tell the button to draw itself. At which
point, the window that was created in line 2 will shrink to the size of a small button
containing the words ‘click me’. It will look something like this:

The button doesn’t do much but you can, at least, click it. We can make it
do something by changing the previous example a little (make sure you close the
window we created earlier). First we can create a function to print out some text:

>>> def hello():

... print ’hello there’

...

Then modify the example to use this function:
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>>> from Tkinter import *

>>> tk = Tk()

>>> btn = Button(tk, text="click me", command=hello)

>>> btn.pack()

The named parameter ‘command’ says that we want to use the hello function,
when the button is clicked. If you now click the button, you’ll see “hello there”
written out to the console—printed once each time the button is clicked.

9.2 Simple Drawing

Buttons aren’t very useful when you want to draw things on the screen—so we need
to create and add a different sort of component: a Canvas. When creating a canvas,
unlike a button (which takes text and command parameters), we need to pass the
width and height (in pixels) of the canvas. Apart from that, the code is similar to
the button code:

>>> from Tkinter import *

>>> tk = Tk()

>>> canvas = Canvas(tk, width=500, height=500)

>>> canvas.pack()

Similar to the button example, a window will appear when you type line 2.
When you ‘pack’ the canvas on line 4, it will suddenly increase in size. We can
draw a line onto the canvas using pixel coordinates. Coordinates are the positions
of pixels on a canvas. On a Tk canvas, coordinates describe how far across the
canvas (from left to right) and how far down the canvas (top to bottom) to move.
The ‘left-right part’ is called the x-axis. The ‘top-bottom part’ is called the y-axis.

Since the canvas is 500 pixels wide, and 500 pixels high, the coordinates of the
bottom-right corner of the screen are 500,500. So the line in figure 9.1 can be drawn
by using start coordinates of 0,0 and end coordinates of 500,500:

>>> from Tkinter import *

>>> tk = Tk()

>>> canvas = Canvas(tk, width=500, height=500)

>>> canvas.pack()

>>> canvas.create_line(0, 0, 500, 500)

Now, to do the same thing with turtle, would have required the following code:

>>> import turtle

>>> turtle.setup(width=500, height=500)

>>> t = turtle.Pen()

>>> t.up()

>>> t.goto(-250,250)

>>> t.down()

>>> t.goto(500,-500)
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Figure 9.1: Canvas x and y axis.

So the Tkinter code is already an improvement, being shorter and less compli-
cated. There are a large number of methods available on the canvas object, some
of which aren’t very useful to us, but let’s take a look at some examples of the
interesting functions.

9.3 Drawing Boxes

In turtle, we drew a box by moving forward, turning, moving forward, turning
again and so on. Eventually you can draw a rectangular or square box, just by
changing how far you move forward. With Tkinter, drawing a square or rectangle
is considerably easier—you just need to know the coordinates for the corners.

>>> from Tkinter import *

>>> tk = Tk()

>>> canvas = Canvas(tk, width=400,height=400)

>>> canvas.pack()

>>> canvas.create_rectangle(10, 10, 50, 50)

1

In the above example, we create a canvas that is 400 pixels wide, and 400
pixels high, and then we draw a square in the top left corner (the top left corner
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is 10 pixels in from the top left, and and the bottom right corner is 50 pixels in
from the bottom right). You might be wondering what the number is that appeared
when you typed create rectangle and earlier when calling create line? That’s an
identifying number for the shape you’ve just drawn (whether a line or a square or a
circle). We’ll come back to that number later.

The parameters that are passed to create rectangle are therefore: top left x
position, top left y position, bottom right x position and bottom right y position.
To save all that typing, we’ll just refer to those as x1, y1 and x2, y2. We can draw
a rectangle by making x2 a larger number:

>>> canvas.create_rectangle(100, 100, 300, 50)

Or by making y2 a bit larger:

>>> canvas.create_rectangle(100, 200, 150, 350)

That last rectangle is basically saying: go 100 pixels across the canvas (from
the top left), and 200 pixels down, then draw a box across to 150 pixels and down
to 350 pixels. At the moment you should have something like figure 9.2 on your
canvas.

Let’s try filling the canvas with different sized rectangles. We can do this using
a module called random. First import the random module:

>>> import random

Then we can create a function using a random number for the coordinates at
the top and bottom corners. The function to use is called randrange:

>>> def random_rectangle(width, height):

... x1 = random.randrange(width)

... y1 = random.randrange(height)

... x2 = random.randrange(x1 + random.randrange(width))

... y2 = random.randrange(y1 + random.randrange(height))

... canvas.create_rectangle(x1, y1, x2, y2)

In the first two lines we create variables for the top left corner of the rectangle
using randrange, passing the width and the height. The randrange function takes
a number as an argument (actually, see Appendix C for more uses of randrange)—
so randrange(10) gives you a number between 0 and 9, randrange(100) gives you a
number between 0 and 99, and so on. The next two lines create variables for the bot-
tom right corner of the rectangle (or square!)—we use the top left coordinate (x1 or
y1) and add a random number to that variable. Finally we call the create rectangle
function using those variables. You can try out the random rectangle function by
passing the width and height of the canvas you created:
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Figure 9.2: Tkinter boxes.

>>> random_rectangle(400, 400)

Or to fill the screen, how about creating a loop to call it a number of times:

>>> for x in range(0, 100):

... random_rectangle(400, 400)

Which produces a bit of a mess (figure 9.3, but is interesting nonetheless.

Remember, back in the last chapter, we set the colour the turtle drew with
using percentages of the 3 colours: red, green and blue? With Tkinter you can
set the colour using similar ideas, but unfortunately, it’s slightly more complicated
than with turtle. First of all, let’s change the random rectangle function to pass in
a colour to fill the rectangle with:

>>> def random_rectangle(width, height, fill_colour):

... x1 = random.randrange(width)

... y1 = random.randrange(height)

... x2 = random.randrange(x1 + random.randrange(width))

... y2 = random.randrange(y1 + random.randrange(height))

... canvas.create_rectangle(x1, y1, x2, y2, fill=fill_colour)

The canvas create rectangle function can take a parameter ‘fill’ which specifies
the fill colour. We can now pass this into the function. Try the following:
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Figure 9.3: A mess of rectangles.

>>> random_rectangle(400, 400, ’green’)

>>> random_rectangle(400, 400, ’red’)

>>> random_rectangle(400, 400, ’blue’)

>>> random_rectangle(400, 400, ’orange’)

>>> random_rectangle(400, 400, ’yellow’)

>>> random_rectangle(400, 400, ’pink’)

>>> random_rectangle(400, 400, ’purple’)

>>> random_rectangle(400, 400, ’violet’)

>>> random_rectangle(400, 400, ’magenta’)

>>> random_rectangle(400, 400, ’cyan’)

Some, and maybe all, of those named colours will work. But some of them
might result in an error message (it depends on whether you’re using Windows, Mac
OS X or Linux). So far, that’s pretty easy. But what about a colour like gold? In
the turtle module, we created gold using 100% of red, 85% of green and no blue. In
Tkinter we can create gold using:

>>> random_rectangle(400, 400, ’#ffd800’)

Which, all in all, is a pretty strange way to create a colour. ‘ffd800’ is called
hexadecimal, and is another way to represent numbers. Explaining how hexadecimal
numbers work would take a few more pages than we have to spare for this book, so
for the moment, you can use the following function to create a hexadecimal colour:
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>>> def hexcolor(red, green, blue):

... red = 255*(red/100.0)

... green = 255*(green/100.0)

... blue = 255*(blue/100.0)

... return ’#%02x%02x%02x’ % (red, green, blue)

Calling hexcolor with 100% for red, 85% for green and 0% for blue, results in
the hexadecimal for a gold colour we just used:

>>> print hexcolor(100, 85, 0)

#ffd800

You can create a bright purple colour using 98% of red, 1% of green, and 77% of
blue:

>>> print hexcolor(98, 1, 77)

#f902c4

You can use that with the random rectangle function we created earlier:

>>> random_rectangle(400, 400, hexcolor(98, 1, 77))

9.4 Drawing Arcs

An arc is a part of a circle, but to draw one with Tkinter you need to draw a
rectangle. Which doesn’t make a lot of sense until you try to draw a rectangle and
then draw an arc inside it (see figure 9.5). The code to draw this arc might look
something like this:

canvas.create_arc(10, 10, 200, 100, extent=180, style=ARC)

This places the top left corner of the rectangle at the coordinates 10, 10 (that’s
10 pixels across, 10 pixels down), and the bottom right corner of the rectangle at
the coordinates 200, 100 (200 pixels across, 100 pixels down). The next parameter
(a named parameter) ‘extent’ is used to specify the degrees of the angle of the arc.
If you don’t know anything about degrees in a circle (or arc), then just remember
that if you think about a circle, 180 degrees would be half of the circle (or half the
arc), 359 degrees would be a full circle, 90 degrees is a quarter of a circle and 0
degrees is. . . well, nothing at all. Here’s some code that draws a bunch of different
arcs down the page so you can see the basic differences when we use different degrees
(you can see the examples in figure 9.6):
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Figure 9.4: A purple rectangle.

Figure 9.5: An arc fitting inside a rectangle.
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Figure 9.6: Differing degrees of arcs.

>>> canvas.create_arc(10, 10, 200, 80, extent=45, style=ARC)

>>> canvas.create_arc(10, 80, 200, 160, extent=90, style=ARC)

>>> canvas.create_arc(10, 160, 200, 240, extent=135, style=ARC)

>>> canvas.create_arc(10, 240, 200, 320, extent=180, style=ARC)

>>> canvas.create_arc(10, 320, 200, 400, extent=359, style=ARC)

9.5 Drawing Ovals

While the last statement in the above example draws an oval, you can also draw
ovals using the create oval function. Similar to drawing arcs, an oval is drawn inside
the boundaries of a rectangle. For example, the following code:

>>> tk = Tk()

>>> canvas = Canvas(tk, width=400,height=400)

>>> canvas.pack()

>>> canvas.create_oval(1, 1, 300, 200)

This example draws an oval in the (imaginary) square drawn from pixel posi-
tions 1,1 to 300,200. If we draw a red rectangle with the same coordinates, you can
properly see how the oval is drawn inside (figure 9.7):
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Figure 9.7: The outline of an oval.

Figure 9.8: The outline of an oval inside a rectangle.
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Figure 9.9: A simple circle.

>>> canvas.create_rectangle(1, 1, 300, 200, outline="#ff0000")

To draw a circle, rather than an elliptical oval, the imaginary rectangle should be a
square (which produces the circle in figure 9.9):

>>> tk = Tk()

>>> canvas = Canvas(tk, width=400,height=400)

>>> canvas.pack()

>>> canvas.create_oval(1, 1, 300, 300)

9.6 Drawing Polygons

A polygon is any shape with 3 or more sides. Triangles, squares, rectangles, pen-
tagons, hexagons, and so on are all examples of polygons. As well as these more
regular shapes, you can also create irregular shaped polygons. For example, to draw
a triangle, you need to provide 3 sets of coordinates (that’s a position across plus a
position down) for each point of the triangle (creating the triangle in figure 9.10):

>>> from Tkinter import *
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Figure 9.10: A simple triangle.

>>> tk = Tk()

>>> canvas = Canvas(tk, width=400,height=400)

>>> canvas.pack()

>>> canvas.create_polygon(10, 10, 100, 10, 100, 50, fill="", outline="black"

We can add an irregular polygon using the following code. Figure 9.11 shows
both the triangle and the oddly shaped polygon.

>>> canvas.create_polygon(200, 10, 240, 30, 120, 100, 140, 120, fill="", outline="black")

9.7 Drawing Images

You can draw an image on a canvas using Tkinter by first loading the image, then
using the create image function on the canvas object. This sounds a bit illogical,
but it works as follows:

1. >>> from Tkinter import *

2. >>> tk = Tk()

3. >>> canvas = Canvas(tk, width=400, height=400)

4. >>> canvas.pack()

5. >>> myimage = PhotoImage(file=’test.gif’)

6. >>> canvas.create_image(0, 0, image=myimage, anchor=NW)
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Figure 9.11: A simple triangle.

In lines 1 to 4 we set up the canvas the same as we have in previous examples.
In line 5, the image is loaded into the variable myimage. It’s important that the
image you want to load is in a directory that’s accessible to Python. This is usually
the directory that the Python console is running from. You can find out the name
of this directory by importing the os module and using the getcwd() function:

>>> import os

>>> print os.getcwd()

This will probably print out something like ‘/home/yourname’ldots, so if your
name is Jane Matthews, getcwd() might return ‘/home/jane’ or ‘/home/janematthews’,
depending upon how your computer has been setup.

Copy your image into that directory and then load it using the PhotoImage
function (same as line 5). You then use the create image function on the canvas to
display your image (line 6). If you’ve done all this correctly, you’ll see something
like figure 9.12.

PhotoImage can load image files with the extensions .gif, .ppm and .pgm. If
you want to load other types of images (there are lots of different ways you can create
image files—for example, digital cameras usually store images with the extension
.jpg), then you’ll need to use an extension which adds that capability to Python.
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Figure 9.12: A photo image.

The Python Imaging Library (PIL)1 adds the ability to load all kinds of images, as
well as do things like expand and shrink, change image colours, reverse images and
so on. However, installing and using the Python Imaging Library, is a bit beyond
the scope of this book.

9.8 Basic Animation

So far, we’ve seen how to do static drawing—that’s pictures that don’t move. What
about animation? Animation is not necessarily Tk’s strong suit, but you can do the
basics. For example, we can create a filled triangle and then make it move across
the screen using the following code:

1. >>> import time

2. >>> from Tkinter import *

3. >>> tk = Tk()

4. >>> canvas = Canvas(tk, width=400, height=400)

5. >>> canvas.pack()

6. >>> canvas.create_polygon(10, 10, 10, 60, 50, 35)

7. 1

8. >>> for x in range(0, 60):

1The Python Imaging Library can be found at http://www.pythonware.com/products/pil/index.htm

http://www.pythonware.com/products/pil/index.htm
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Figure 9.13: The triangle moving across the screen.

9. ... canvas.move(1, 5, 0)

10. ... tk.update()

11. ... time.sleep(0.05)

The moment you press the Enter key after typing the last line, the triangle
will start moving across the screen (you can see it half-way across in figure 9.13).

How does it work?

Lines 1 to 5 we’ve seen before—it’s just the basic setup to display a canvas—
and in line 6, we create the triangle (using the create polygon function), and in line
7 you can see the identifier (the number 1) that is returned by this function. In line
8, we setup a simple for-loop to count from 0 to 59.

The block of lines (9 to 11) is the code to move the triangle. The move function
on the canvas object will move any drawn object by adding values to the object’s x
and y coordinates. For example, in line 9 we move the object with id 1 (the identifier
for the triangle) 5 pixels across and 0 pixels down. If we wanted to move the back
again we might use canvas.move(1, -5, 0).

The function update on the tk object forces it to update (if we didn’t use
update, Tkinter would wait until the loop had finished before moving the triangle,
which means you wouldn’t see it move). Finally line 11 tells Python to sleep for
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Figure 9.14: The triangle moving down the screen.

1/20th of a second (0.05), before continuing. We can change this code, so the triangle
moves diagonally down the screen, by calling move(1, 5, 5). First, close the canvas
(by clicking on the X button on the window), then try this code:

>>> tk = Tk()

>>> canvas = Canvas(tk, width=400, height=400)

>>> canvas.pack()

>>> canvas.create_polygon(10, 10, 10, 60, 50, 35)

1

>>> for x in range(0, 60):

... canvas.move(1, 5, 5)

... tk.update()

... time.sleep(0.05)

...

Figure 9.14 shows the triangle part way down the screen. Move the triangle
diagonally back up the screen to its starting position, by using -5, -5:

>>> for x in range(0, 60):

... canvas.move(1, -5, -5)

... tk.update()

... time.sleep(0.05)
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9.9 Reacting to events. . .

We can also make the triangle react when someone hits a key, by using what are
called event bindings. Events are things that occur while a program is running,
such as someone moving the mouse, hitting a key, or even closing a window. You
can setup Tk to look out for these events, and then do something in response. To
begin handling events we need to start by creating a function. Suppose we want the
triangle to move when the enter key is pressed? We can define a function to move
the triangle:

>>> def movetriangle(event):

... canvas.move(1, 5, 0)

The function needs to have a single parameter (event), which is used by Tk to
send information to the function about what has happened. We then tell Tk that
this function should be used for a particular event, using the bind all function on
the canvas. The full code looks like this:

>>> from Tkinter import *

>>> tk = Tk()

>>> canvas = Canvas(tk, width=400, height=400)

>>> canvas.pack()

>>> canvas.create_polygon(10, 10, 10, 60, 50, 35)

>>> def movetriangle(event):

... canvas.move(1, 5, 0)

...

>>> canvas.bind_all(’<KeyPress-Return>’, movetriangle)

The first parameter in the bind all function describes the event which we want
Tk to look out for. In this case, it’s the event ¡KeyPress-Return¿ (which is a press
of the enter key). We tell Tk that the movetriangle function should be called when
this key-press event occurs. If you run this code, click on the Tk canvas with your
mouse, and then try hitting the Enter (or Return) key on your keyboard.

How about changing the direction of the triangle depending upon different key
presses, such as the arrow keys? First of all we change the move triangle function
to the following:

>>> def movetriangle(event):

... if event.keysym == ’Up’:

... canvas.move(1, 0, -3)

... elif event.keysym == ’Down’:

... canvas.move(1, 0, 3)

... elif event.keysym == ’Left’:

... canvas.move(1, -3, 0)

... else:

... canvas.move(1, 3, 0)
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The event object that is passed to movetriangle, contains a number of proper-
ties2. One of these properties is keysym, which is a string holding the value of the
actual key pressed. If keysym contains the string ‘Up’, we call canvas.move with the
parameters (1, 0, -3); if it contains down we call with the parameters (1, 0, 3), and
so on. Remember that the first parameter is the identifying number for the shape
drawn on the canvas, the second parameter is the value to add to the x (horizontal)
coordinate, and the last parameter is the value to add to the y (vertical) coordinate.
We then tell Tk that the movetriangle function should be used to handle events
from 4 different keys (up, down, left and right). So, the code now looks like this:

>>> from Tkinter import *

>>> tk = Tk()

>>> canvas = Canvas(tk, width=400, height=400)

>>> canvas.pack()

>>> canvas.create_polygon(10, 10, 10, 60, 50, 35)

1

>>> def movetriangle(event):

... if event.keysym == ’Up’:

... canvas.move(1, 0, -3)

... elif event.keysym == ’Down’:

... canvas.move(1, 0, 3)

... elif event.keysym == ’Left’:

... canvas.move(1, -3, 0)

... else:

... canvas.move(1, 3, 0)

...

>>> canvas.bind_all(’<KeyPress-Up>’, movetriangle)

>>> canvas.bind_all(’<KeyPress-Down>’, movetriangle)

>>> canvas.bind_all(’<KeyPress-Left>’, movetriangle)

>>> canvas.bind_all(’<KeyPress-Right>’, movetriangle)

With this example, the triangle now moves in the direction of the arrow key that
you press.

2Properties are named values, which describe something—for example, a property of the sky
is that it’s blue (sometimes), a property of a car is that it has wheels. In programming terms, a
property has a name and a value.
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Chapter 10

Where to go from here

Congratulations! You’ve made it to the end.

What you’ve hopefully learned from this book, are basic concepts that will
make learning other programming languages much simpler. While Python is a bril-
liant programming language, one language is not always the best tool for every task.
So don’t be afraid of looking at other ways to program your computer, if it interests
you.

For example, if you’re interested in games programming, you can perhaps look
at something like BlitzBasic (www.blitzbasic.com), which uses the Basic program-
ming language. Or perhaps Flash (which is used by many websites for animation and
games—for example, the Nickelodeon website, www.nick.com, uses a lot of Flash).

If you’re interested in programming Flash games, possibly a good place to start
would be ‘Beginning Flash Games Programming for Dummies’, a book written by
Andy Harris, or a more advanced reference such as ‘The Flash 8 Game Developing
Handbook’ by Serge Melnikov. Searching for ‘flash games’ on www.amazon.com will
find a number of books on this subject.

Some other games programming books are: ‘Beginner’s Guide to DarkBASIC
Game Programming’ by Jonathon S Harbour (also using the Basic programming
language), and ‘Game Programming for Teens’ by Maneesh Sethi (using BlitzBasic).
Be aware that BlitzBasic, DarkBasic and Flash (at least the development tools) all
cost money (unlike Python), so Mum or Dad will have to get involved before you
can even get started.

If you want to stick to Python for games programming, a couple of places to
look are: www.pygame.org, and the book ‘Game Programming With Python’ by
Sean Riley.

If you’re not specifically interested in games programming, but do want to
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learn more about Python (more advanced programming topics), then take a look
at ‘Dive into Python’ by Mark Pilgrim (www.diveintopython.org). There’s also a
free tutorial for Python available at: http://docs.python.org/tut/tut.html. There’s
a whole pile of topics we haven’t covered in this basic introduction so, at least from
the Python perspective, there’s still a lot for you to learn and play with.

Good luck and enjoy your programming efforts.

http://www.diveintopython.org
http://docs.python.org/tut/tut.html


Appendix A

Python Keywords

Keywords in Python (indeed, in most programming languages) are important words
that are used by the language itself. If you try to use these special words as variables,
or use them in the wrong way, you will get strange (sometimes funny, sometimes
confusing) error messages from the Python console. Each of the Python keywords,
and a basic description is given below.

and

The keyword and is used to join two expressions together in a statement (like an
if-statement), to say that both expressions must be true. For example:

if age > 10 and age < 20

This means that age must be greater than 10 and less than 20.

as

The keyword as is used to give another name to an imported module. For example,
if you had a module with a name like:

i_am_a_python_module_that_is_not_very_useful

It would be enormously annoying to have to type that module name every time you
want to use it:
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>>> import i_am_a_python_module_that_is_not_very_useful

>>>

>>> i_am_a_python_module_that_is_not_very_useful.do_something()

I have done something

>>> i_am_a_python_module_that_is_not_very_useful.do_something_else()

I have done something else!

Instead you can give it a new name when you import it, then just use that new
name (kind of like a nickname):

>>> import i_am_a_python_module_that_is_not_very_useful as notuseful

>>>

>>> notuseful.do_something()

I have done something

>>> notuseful.do_something_else()

I have done something else!

You probably won’t use the keyword ‘as’ that much, though.

assert

Assert is an advanced keyword that is used by programmers to say that some code
must be true. It’s another way of catching errors and problems in code—and usually
used by more advanced programs.

break

The break keyword is used to stop some code from running. You might use a break
inside a for-loop such as:

>>> for x in range(1, 100):

... print ’counting %s’ % x

... if x == age:

... print ’end counting’

... break

If the variable ‘age’ was set to 10, this would print out:

counting 1

counting 2

counting 3

counting 4

counting 5

counting 6

counting 7

counting 8

counting 9

counting 10

end counting
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Take a look at Chapter 5 to find out more information about for-loops.

class

The class keyword is used to define a type of object. This is a feature provided in
many programming languages, and is very useful when developing more complicated
programs, but is a little too advanced for this book.

del

Del is a special function used to get rid of something. For example, if you had a list
of things you wanted for your birthday in your diary, but then changed your mind
about one, you would cross it off the list, and add the new one:

If we had the same list in python:

>>> what_i_want = [’remote controlled car’,’new bike’,’computer game’]

We could remove the computer game by using del, and add the new item by using
the function append:

>>> del what_i_want[2]

>>> what_i_want.append(’roboreptile’)

And then to see the new list:

>>> print what_i_want

[’remote controlled car’, ’new bike’, ’roboreptile’]

See Chapter 2 for more information about lists.
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elif

The keyword elif is used as part of an if-statement. See if below...

else

The keyword else is also used as part of an if-statement. See if below...

except

Another keyword used for catching problems in code. Again this is used in more
complicated programs, but too advanced for this book.

exec

The exec keyword is a special function to look at a string as though it was a piece of
Python code. For example, you can create a variable with a string value as follows:

>>> myvar = ’hello there’

Then print the contents:

>>> print myvar

hello there

But you could also put some Python code in that string instead:

>>> myvar = ’print hello there’

And then you could use exec to turn that string into a mini Python program and
run it:

>>> exec myvar

hello there

It’s a bit of a weird idea, and something that might not make sense to you
until you needed it. Like assert it’s one of those advanced keywords that is used in
more sophisticated programs.
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finally

This is another advanced keyword, used to make sure that if an error occurs, some
special code runs (usually to tidy up any ’mess’ that a piece of code has left behind).

for

The for keyword is used to create a for-loop of some kind. For example:

for x in range(0,5):

print ’x is %s’ % x

The above for-loop executes the block of code (the print statement) 5 times, creating
the output:

x is 0

x is 1

x is 2

x is 3

x is 4

from

When importing a module, you can just import the part of it you need, using the
from keyword. For example, the turtle module has a function Pen(), which is used
to create a Pen object (basically a canvas on which the turtle moves)—you can
import the entire turtle module and then use the Pen function, as follows:

>>> import turtle

>>> t = turtle.Pen()

Or, you can just import the Pen function on its own, and then use it directly
(without needing to refer to the turtle module at all):

>>> from turtle import Pen

>>> t = Pen()

Of course, this does mean that you can’t use the parts of the module you
haven’t imported. For example, the time module has a functions called localtime
and gmtime. If we import localtime, then try to use gmtime, we’ll get an error:
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>>> from time import localtime

>>> print localtime()

(2007, 1, 30, 20, 53, 42, 1, 30, 0)

This works fine, but:

>>> print gmtime()

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

NameError: name ’gmtime’ is not defined

By saying “‘gmtime’ is not defined” Python is telling us that it doesn’t know
about the function gmtime. . . yet. If there are a bunch of functions in a particular
module that you want to use, and you don’t want to refer to them by using the mod-
ule name (i.e. time.localtime, or time.something-else) you can import everything in
the module using an asterisk (*):

>>> from time import *

>>> print localtime()

(2007, 1, 30, 20, 57, 7, 1, 30, 0)

>>> print gmtime()

(2007, 1, 30, 13, 57, 9, 1, 30, 0)

In this case, we import everything from the time module, and can refer to the
individual functions by name.

global

In Chapter 6, we talked about scope. Scope is the ‘visibility’ of a variable. If a
variable is defined outside of a function, usually it can be seen inside the function.
If defined inside a function, usually it can’t be seen outside of that function.

The global keyword is one exception to this rule. A variable that is defined as
global, can be seen everywhere. The definition of the word global is world-wide or
universal, so if you think of your Python console as like a mini-world, then global
truly means world-wide. For example:

>>> def test():

... global a

... a = 1

... b = 2

What do you think happens when you call print a, and then print b, after
running the function test? The first will work, and then second will cause an error
message to be displayed:
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>>> test()

>>> print a

1

>>> print b

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

NameError: name ’b’ is not defined

The variable a is now global (visible across the ‘world’), but b is still only
visible inside the function. Note that you must call global before saving a value
using in your global variable.

if

A statement making a decision about something—which is sometimes used with the
additional keywords else and elif (else if). An if-statement is a way of saying, “if
something is true, then perform an action of some kind”. For example:

if toy_price > 1000:

print ’That toy is over-priced’

elif toy_price > 100:

print ’That toy is expensive’

else:

print ’I would like that toy’

This if-statement says that if a toy price is over $1000, it is over-priced; if the
toy price is over $100, then it’s expensive.... otherwise it says (prints) “I would like
that toy”. Chapter 4 has more information about if-statements.

import

The import keyword is to tell Python to load a module so it can be used. For
example:

>>> import sys

This code tells Python you want to use the module sys.

in

The in keyword is used in expressions, to find if an item is within a collection of
items. For example, can the number 1 be found in a list (a collection) of numbers:
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>>> if 1 in [1,2,3,4]:

... print ’number is in list’

number is in list

Or can lettuce be found in a shopping list:

>>> shopping_list = [ ’eggs’, ’milk’, ’cheese’ ]

>>> if ’lettuce’ in shopping_list:

... print ’lettuce is in the shopping list’

... else:

... print ’lettuce is not in the shopping list’

...

lettuce is not in the shopping list

is

The keyword is, is sort of like the equals operator (==) which is used to tell if two
things are equal (for example 10 == 10 is true, 10 == 11 is false). However, there
is a fundamental difference between is and ==. If you are comparing two things,
== may return true, where is may not (even if you think the things are the same).

This is one of those extremely advanced programming concepts, that tends to
be enormously confusing, so for the moment just stick with using ==.

lambda

Another advanced keyword. In fact lambda is so complicated, even to write an
explanation about it would cause this book to burst into flames.

So best not to talk about it.

not

If something is true, the not keyword makes it false. For example, if we create a
variable x and set it to the value True...

>>> x = True

...and then print the value of x using not, we get:

>>> print not x

False
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Which doesn’t seem very useful, until you start using not in if-statements.
For example, if you are 12 years old, and the most important age for you is 12, you
don’t particular want to refer to all other years by saying:

“1 is not an important age” “2 is not an important age” “3 is not
an important age” “4 is not an important age” ... ... “50 is not an
important age”

And so on.

In terms of an if-statement, we could write that as. . .

if age == 1:

print 1 is not an important age

elif age == 2:

print 2 is not an important age

elif age == 3:

print 3 is not an important age

elif age == 4:

print 4 is not an important age

. . .continuing on forever. A simpler way to write the statement would be:

if age < 10 or age > 10:

print %s is not an important age % age

But one of the most simple ways to write that if-statement is by using not:

if not age == 10:

print %s is not an important age % age

Which, you’ve probably already realised, is just another way of saying, “if age is not
10”.

or

The or keyword is used to join two expressions together in a statement (such as
an if-statement), to say that at least one of the expressions should be true. For
example:

>>> if friend == ’Rachel’ or friend == ’Rob’:

... print ’The Robinsons’

... elif friend == ’Bill’ or friend == ’Bob’:

... print ’The Baxters’

In this case, if the variable friend contains ‘Rachel’ or ‘Rob’ then it prints
‘The Robinsons’. If the variable friend contains ‘Bill’ or ‘Bob’ then it prints ‘The
Baxters’.
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pass

Sometimes when you’re writing a program you only want to write bits of it, to try
things out. The problem with this is that you can’t have an if-statement without
the block of code that should be run if the expression in the if-statement is true.
You also can’t have a for-loop without the block of code that should be run in the
loop. For example:

>>> if age > 10:

... print ’older than 10’

The above code will work, but if you type:

>>> if age > 10:

...

You’ll get an error message in the console that looks something like this:

File "<stdin>", line 2

^

IndentationError: expected an indented block

This is the error message Python displays, when you should have a block of
code after a statement of some kind.

The pass keyword can be used in these cases, so you can write a statement,
but not provide the block of code that goes with it. For example, you might want to
write a for-loop, with an if-statement inside it. Perhaps you haven’t decided what
to put in the if-statement yet. Maybe you’ll put a print, maybe you’ll put a break,
maybe something else. In which case, you can use pass and the code will still work
(even if it doesn’t do exactly what you want yet). The code:

>>> for x in range(1,7):

... print ’x is %s’ % x

... if x == 5:

... pass

will print out the following:

x is 1

x is 2

x is 3

x is 4

x is 5

x is 6

Later on you can add the code in the block for the if-statement (replacing the pass
keyword).
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print

The print keyword, writes something to the Python console; such as a string, a
number or a variable:

print ’hello there’

print 10

print x

raise

Another advanced keyword. In this case, raise is used to cause an error to happen—
which might seem like a strange thing to do but, in advanced programs, is actually
quite useful.

return

The return keyword is used to return a value from a function. For example, you
might create a function to return the amount of money you’ve saved:

>>> def mymoney():

... return money_amount

When you call this function, the value returned can be assigned to another variable:

>>> money = mymoney()

or printed:

>>> print mymoney()

try

The try keyword is the beginning of a block of code that ends with the except
and/or finally keywords. All together, these try/except/finally blocks of code
are used to handle errors in a program—for example, to make sure that the program
displays a useful message to the user, rather than an ugly Python error.
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while

A bit like a for-loop, while is another way of looping code. Where a for-loop counts
through a range (of numbers), a while loop keeps running while an expression is
True. You have to be rather careful with while loops, because if the expression is
always True, the loop will never end (this is called an infinite loop). For example:

>>> x = 1

>>> while x == 1:

... print ’hello’

If you run the above code, it will loop forever. Well, at least until you either
close the Python console, or hit CTRL+C (the control key and the C key together)
to interrupt it. However the following code:

>>> x = 1

>>> while x < 10:

... print ’hello’

... x = x + 1

Will print ‘hello’ 9 times (each time adding 1 to the variable x, until x is no
longer less than 10). This is obviously a bit like a for-loop, but does have its uses
in certain situations.

with

With is a very advanced keyword.

yield

Yield is another very advanced keyword.
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Built-in Functions

Python has a number of built-in functions—functions that can be used without
needing to import them first. Some of the available built-in functions are listed
below.

abs

The abs function returns the absolute value of a number. An absolute value is a
number that is not negative. So the absolute value of 10 is 10, and the absolute
value of -20.5 is 20.5. For example:

>>> print abs(10)

10

>>> print abs(-20.5)

20.5

bool

The bool function returns either True or False based on the value passed as its
parameter. For numbers, 0 returns False, while any other number returns True:

>>> print bool(0)

False

>>> print bool(1)

True

>>> print bool(1123.23)

True

>>> print bool(-500)

True
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For other values, None returns False while anything else returns True:

>>> print bool(None)

False

>>> print bool(’a’)

True

callable

The callable function returns either True or False based on whether the parameter
passed can be ‘called’—such as a function. For example, a string is not callable:

>>> x = ’test string’

>>> print callable(x)

False

Where as a function is callable:

>>> def testfunc():

... print ’this is a test function’

...

>>> print callable(testfunc)

True

cmp

The cmp function compares two values and returns a negative number if the first
value is less than the second; returns 0 if the first value is equal to the second; and
returns a positive number if the first value is greater than the second. For example,
1 is less than 2:

>>> print cmp(1,2)

-1

And 2 is equal to 2:

>>> print cmp(2,2)

0

But 2 is greater than 1:

>>> print cmp(2,1)

1
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Compare doesn’t only work with numbers. You can use other values, such as strings:

>>> print cmp(’a’,’b’)

-1

>>> print cmp(’a’,’a’)

0

>>> print cmp(’b’,’a’)

1

But do be careful with strings; the return value may not be exactly what you
expect. . .

>>> print cmp(’a’,’A’)

1

>>> print cmp(’A’,’a’)

-1

A lower-case ’a’ is actually greater than an upper-case ’A’. Of course. . .

>>> print cmp(’aaa’,’aaaa’)

-1

>>> print cmp(’aaaa’,’aaa’)

1

. . .3 letter a’s (aaa) are less than 4 letter a’s (aaaa).

dir

The dir function returns a list of information about a value. You can use dir on
strings, numbers, functions, modules, objects, classes—pretty much anything. On
some values, the information might not be all that useful (in fact it might not make
a huge amount of sense at all). For example, calling dir on the number 1 results
in. . .

>>> dir(1)

[’__abs__’, ’__add__’, ’__and__’, ’__class__’, ’__cmp__’, ’__coerce__’, ’__delattr__’,

’__div__’, ’__divmod__’, ’__doc__’, ’__float__’, ’__floordiv__’, ’__getattribute__’,

’__getnewargs__’, ’__hash__’, ’__hex__’, ’__index__’, ’__init__’, ’__int__’, ’__invert__’,

’__long__’, ’__lshift__’, ’__mod__’, ’__mul__’, ’__neg__’, ’__new__’, ’__nonzero__’,

’__oct__’, ’__or__’, ’__pos__’, ’__pow__’, ’__radd__’, ’__rand__’, ’__rdiv__’,

’__rdivmod__’, ’__reduce__’, ’__reduce_ex__’, ’__repr__’, ’__rfloordiv__’,

’__rlshift__’, ’__rmod__’, ’__rmul__’, ’__ror__’, ’__rpow__’, ’__rrshift__’, ’__rshift__’,

’__rsub__’, ’__rtruediv__’, ’__rxor__’, ’__setattr__’, ’__str__’, ’__sub__’, ’__truediv__’,

’__xor__’]

. . .quite a large number of special functions. Whereas calling dir on the string
’a’ results in...



118 APPENDIX B. BUILT-IN FUNCTIONS

>>> dir(’a’)

[’__add__’, ’__class__’, ’__contains__’, ’__delattr__’, ’__doc__’, ’__eq__’, ’__ge__’,

’__getattribute__’, ’__getitem__’, ’__getnewargs__’, ’__getslice__’, ’__gt__’, ’__hash__’,

’__init__’, ’__le__’, ’__len__’, ’__lt__’, ’__mod__’, ’__mul__’, ’__ne__’, ’__new__’,

’__reduce__’, ’__reduce_ex__’, ’__repr__’, ’__rmod__’, ’__rmul__’, ’__setattr__’,

’__str__’, ’capitalize’, ’center’, ’count’, ’decode’, ’encode’, ’endswith’, ’expandtabs’,

’find’, ’index’, ’isalnum’, ’isalpha’, ’isdigit’, ’islower’, ’isspace’, ’istitle’,

’isupper’, ’join’, ’ljust’, ’lower’, ’lstrip’, ’partition’, ’replace’, ’rfind’, ’rindex’,

’rjust’, ’rpartition’, ’rsplit’, ’rstrip’, ’split’, ’splitlines’, ’startswith’, ’strip’,

’swapcase’, ’title’, ’translate’, ’upper’, ’zfill’]

Which shows you there are functions such as capitalize (change the first letter
in a string to a capital). . .

>>> print ’aaaaa’.capitalize()

Aaaaa

. . .isalnum (which returns True if a string is alphanumeric—contains only let-
ters and numbers), isalpha (which returns True if a string contains only letters),
and so on. Dir can be useful when you have a variable and quickly want to find out
what you can do with it.

eval

The eval function takes a string as a parameter and runs it as though it were a
Python expression. This is similar to the exec keyword, but works a little differently.
With exec you can create mini Python programs in your string, but eval only allows
simple expressions, such as:

>>> eval(’10*5’)

50

file

A function to open a file and return a file object with functions that can access
information in the file (the contents of the file, its size and so on). You can find
more information about file and file objects in Chapter 7.

float

The float function converts a string or a number into a floating point number. A
floating point number is a number with a decimal place (also called a real number).
For example, the number 10 is an ‘integer’ (also called a whole number), but 10.0,
10.1, 10.253, and so on, are all ‘floats’. You can convert a string to a float by calling:
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>>> float(’12’)

12.0

You can use a decimal place in the string as well:

>>> float(’123.456789’)

123.456789

A number can be converted to a float by calling:

>>> float(200)

200.0

Of course, converting a floating point number just returns another floating point
number:

>>> float(100.123)

100.123

Calling float with no arguments, returns 0.0.

int

The int function converts a string or a number into a whole number (or integer).
For example:

>>> int(123.456)

123

>>> int(’123’)

123

This function works a little differently from the float function. If you try to
convert a floating point number in a string, you will get an error message:

>>> int(’123.456’)

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

ValueError: invalid literal for int() with base 10: ’123.456’

However, if you call int with no argument, then 0 is returned.



120 APPENDIX B. BUILT-IN FUNCTIONS

len

The len function returns the length of an object. In this case of a string, it returns
the number of characters in the string:

>>> len(’this is a test string’)

21

For a list or a tuple, it returns the number of items:

>>> mylist = [ ’a’, ’b’, ’c’, ’d’ ]

>>> print len(mylist)

4

>>> mytuple = (1,2,3,4,5,6)

>>> print len(mytuple)

6

For a map, it also returns the number of items:

>>> mymap = { ’a’ : 100, ’b’ : 200, ’c’ : 300 }

>>> print len(mymap)

3

You might find the len function useful with loops, if you want to count through the
elements in a list. You could do this using the following code:

>>> mylist = [ ’a’, ’b’, ’c’, ’d’ ]

>>> for item in mylist:

... print item

Which would print out all the items in the list (a,b,c,d)—but what if you wanted
to print the index position of each item in the list? In this case we could find the
length of the list, then count through the items as follows:

>>> mylist = [ ’a’, ’b’, ’c’, ’d’ ]

>>> length = len(mylist)

>>> for x in range(0, length):

... print ’the item at index %s is %s’ % (x, mylist[x])

...

the item at index 0 is a

the item at index 1 is b

the item at index 2 is c

the item at index 3 is d

We store the length of the list in the variable ‘length’, and then use that variable in
the range function to create our loop.
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max

The max function returns the largest item in a list, tuple or even a string. For
example:

>>> mylist = [ 5, 4, 10, 30, 22 ]

>>> print max(mylist)

30

A string with the items are separated by commas or spaces will also work:

>>> s = ’a,b,d,h,g’

>>> print max(s)

h

And you don’t have to use lists, or tuples or strings. You can also call the max
function directly with a number of arguments:

>>> print max(10, 300, 450, 50, 90)

450

min

The min function works in the same way as max, except it returns the smallest
item in the list/tuple/string:

>>> mylist = [ 5, 4, 10, 30, 22 ]

>>> print min(mylist)

4

range

The range function is mainly used in for-loops, when you want to loop through
some code a number of times. We first saw range in Chapter 5, so we’ve seen how
to use it with two arguments, but it can also be used with three arguments. Here’s
another example of range with two arguments:

>>> for x in range(0, 5):

... print x

...

0

1

2

3

4
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What you might not have realised, is that the range function actually just returns
a list of numbers which the for-loop then works through. So if you print the return
value when calling range, you’ll see the list:

>>> print range(0, 5)

[0, 1, 2, 3, 4]

You get a list of numbers that can be assigned to variables and used elsewhere in
your program:

>>> my_list_of_numbers = range(0, 30)

>>> print my_list_of_numbers

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,

16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29]

Range also takes a third argument, called a ‘step’ (the first two arguments are called
the ‘start’ and the ‘stop’). If the step value is not passed into the function (in other
words, when you call it with only the start and stop values), by default the number
1 is used. But what happens when we pass the number 2 as the step? You can see
the result in the following example:

>>> my_list_of_numbers = range(0, 30, 2)

>>> print my_list_of_numbers

[0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28]

Each number in the list increases by 2 from the previous number. We can use larger
steps:

>>> mylist = range(0, 500, 50)

>>> print mylist

[0, 50, 100, 150, 200, 250, 300, 350, 400, 450]

This creates a list from 0 to 500 (but not including 500, of course), incrementing
the numbers by 50.

sum

The sum function adds up items in a list and returns the total number. For example:

>>> mylist = range(0, 500, 50)

>>> print mylist

[0, 50, 100, 150, 200, 250, 300, 350, 400, 450]

>>> print sum(mylist)

2250
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A Few Python Modules

Python has a large number of modules available for doing all sorts of things. If you
want to read about them, you can look at the Python documentation at the fol-
lowing address: docs.python.org/modindex.html, however, a few of the more useful
modules are explained below. A warning if you do decide to look at the Python
documentation—the list of modules is very long, and some of them are quite com-
plicated.

The ‘random’ module

If you’ve ever played the game where you ask someone to guess a number between
1 and 100, you’ll know what to do with the random module. Random contains a
number of functions useful for coming up with. . . random numbers. It’s kind of like
asking the computer to pick a number. The random module contains a number of
functions, but the most useful are randint, choice and shuffle. The first function,
random, picks a random number between a start and end number (in other words,
between 1 and 100, or between 100 and 1000, or between 1000 and 5000, and so on).
For example:

>>> import random

>>> print random.randint(1, 100)

58

>>> print random.randint(100, 1000)

861

>>> print random.randint(1000, 5000)

3795

We could use this to create a simple (and annoying) guessing game, using a
while loop:

123
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import random

import sys

num = random.randint(1, 100)

while True:

print ’Guess a number between 1 and 100’

chk = sys.stdin.readline()

i = int(chk)

if i == num:

print ’You guessed right’

break

elif i < num:

print ’Try higher’

elif i > num:

print ’Try lower’

Use choice, if you have a list and want to pick a random item from that list.
For example:

>>> import random

>>> list1 = [ ’a’, ’b’, ’c’, ’d’, ’e’, ’f’, ’g’, ’h’ ]

>>> print random.choice(list1)

c

>>> list2 = [ ’ice cream’, ’pancakes’, ’trifle’, ’pavlova’, ’sponge’ ]

>>> print random.choice(list2)

trifle

And finally, use shuffle if you want to mix up a list (like shuffling cards):

>>> import random

>>> list1 = [ ’a’, ’b’, ’c’, ’d’, ’e’, ’f’, ’g’, ’h’ ]

>>> list2 = [ ’ice cream’, ’pancakes’, ’trifle’, ’pavlova’, ’sponge’ ]

>>> random.shuffle(list1)

>>> print list1

[’h’, ’e’, ’a’, ’b’, ’c’, ’g’, ’f’, ’d’]

>>> random.shuffle(list2)

>>> print list2

[’pancakes’, ’ice cream’, ’sponge’, ’trifle’, ’pavlova’]

The ‘sys’ module

The sys module contains useful ‘system’ functions. This is just an odd way of saying
that they are very important within Python. Some of the most useful functions and
values available in sys are: exit, stdin, stdout, and version.

The exit function is another way of stopping the Python console. For example
if you type:

>>> import sys

>>> sys.exit()
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The Python console will stop. Depending upon whether you’re using Windows,
Mac or Linux, a number of different things might happen—but the end result is that
the Python console stops running.

Stdin has been used elsewhere in this book (see Chapter 6), to prompt someone
using a program to enter some values. For example:

>>> import sys

>>> myvar = sys.stdin.readline()

this is a test value

>>> print myvar

this is a test value

Stdout is the opposite—used to write messages to the console. In some ways,
it’s the same as print, but works more like a file, so sometimes it’s more useful to
use stdout than print:

>>> import sys

>>> sys.stdout.write(’this is a test’)

this is a test>>>

Notice where the prompt (>>>) reappears? It’s not a mistake in this book
that it’s at the end of the message. That’s because, unlike print, when you call
write, it doesn’t automatically move to the next line. To do the same with write we
can do the following:

>>> import sys

>>> sys.stdout.write(’this is a test\n’)

this is a test

>>>

‘
n’ is the escape character for a newline (what you get when you hit the enter key).
An escape character is a special character that you use in strings when you can’t
type it directly. For example, if you want to create a string with a newline in the
middle, but try to use the enter key, you’ll get an error:

>>> s = ’test test

File "<stdin>", line 1

s = ’test test

^

SyntaxError: EOL while scanning single-quoted string

Instead you can use the newline escape character:

>>> s = ’test test\ntest’
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Finally, version is just a way of displaying the version of Python you are running:

>>> import sys

>>> print sys.version

2.5.1c1 (release25-maint, Apr 12 2007, 21:00:25)

[GCC 4.1.2 (Ubuntu 4.1.2-0ubuntu4)]

The ‘time’ module

Python’s time module contains functions for displaying. . . well, the time, obviously.
However, if you try to call the most obvious function (time), the result won’t quite
be what you were expecting:

>>> import time

>>> print time.time()

1179918604.34

The number returned by time() is actually the number of seconds since the 1st
of January, 1970 (at 00:00:00am to be exact). You might not think this is enormously
useful, however it does, occasionally, have its purpose. For example, if you create a
program and want to know how fast bits of it run, you can record the time at the
beginning, the time at the end, and then compare the values. For example, how
long would it take to print all the numbers from 0 to 100,000? We can easily create
a function to print them out:

>>> def lots_of_numbers(max):

... for x in range(0, max):

... print x

Then call the function:

>>> lots_of_numbers(100000)

But if we want to know how long it took, we can modify the function and use the
time module:

>>> def lots_of_number(max):

... t1 = time.time()

... for x in range(0, max):

... print x

... t2 = time.time()

... print ’it took %s seconds’ % (t2-t1)

If we call it again:
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>>> lots_of_numbers(100000)

0

1

2

3

.

.

.

99997

99998

99999

it took 6.92557406425 seconds

How does it work? The first time we call the time() function, we assign the value
to the variable t1. We then loop and print out all the numbers. Again we call the
time() function and this time assign the value to the variable t2. Since it took a
few seconds for the loop to complete, the value in t2 will be higher (or later to be
exact) than t1 (the number of seconds since 1st of Jan, 1970 will have increased).
So if you subtract t2 from t1, you have the number of seconds it took to print all
those numbers.

Other functions available on the time module include: asctime, ctime, local-
time, sleep, strftime, and strptime.

The function asctime takes a date as a tuple (remember: a tuple is a list of
values that cannot be changed) and converts it into a readable form. You can also
call it without any argument and it will display the current date and time in a
readable form:

>>> import time

>>> print time.asctime()

Sun May 27 20:11:12 2007

To call it with an argument, we first need to make a tuple with the correct values
for date and time. Let’s assign the tuple to the variable t:

>>> t = (2007, 5, 27, 10, 30, 48, 6, 0, 0)

The values in the sequence are year, month, day, hours, minutes, seconds, day of the
week (0 is Monday, 1 is Tuesday, and so on, up till Sunday which is 6) and finally
the day of the year and whether or not it is daylight savings (0 is isn’t, 1 it is).
Calling asctime with the above tuple, we get:

>>> t = (2007, 5, 27, 10, 30, 48, 6, 0, 0)

>>> print time.asctime(t)

Sun May 27 10:30:48 2007
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But be careful with the values you put in a tuple. You can end up with a nonsensical
date if you put in the wrong values:

>>> t = (2007, 5, 27, 10, 30, 48, 0, 0, 0)

>>> print time.asctime(t)

Mon May 27 10:30:48 2007

Because the value for ‘day of the week’ was set to 0 (rather than 6), asctime now
thinks that May the 27th is a Monday, rather than what it actually is—a Sunday.

The function ctime is used to convert a number of seconds into a readable
form. For example, we can use the time() function explained in the beginning of
this section:

>>> t = time.time()

>>> print t

1180264952.57

>>> print time.ctime(t)

Sun May 27 23:22:32 2007

The function localtime returns the current date and time as a tuple in the same
sequence of values we’ve just used:

>>> print time.localtime()

(2007, 5, 27, 23, 25, 47, 6, 147, 0)

This value we can also pass into asctime:

>>> t = time.localtime()

>>> print time.asctime(t)

Sun May 27 23:27:22 2007

The function sleep is quite useful when you want to delay your program for a certain
period of time. For example, if you wanted to print out one number every second,
the following loop wouldn’t be very successful:

>>> for x in range(1, 61):

... print x

...

1

2

3

4

It would instantly print out all the numbers from 1 to 60. However if you tell
Python to go to sleep for a second between each print statement:
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>>> for x in range(1, 61):

... print x

... time.sleep(1)

...

There will be a short (1 second) delay between the display of each number. Telling a
computer to sleep might not seem all that useful, but there are times when it can be.
Think about your alarm clock that wakes you up in the morning. When you hit the
sleep button, it stops buzzing for a few minutes, giving you an extra few moments
of sleep (at least until someone calls you for breakfast). The sleep function is just
as useful in certain situations.

The function strftime is used to change the way a date and time value is
displayed, and strptime is used to take a string and convert it into a date/time
tuple. Let’s look at strftime first. Just before we saw how to change a tuple into a
string using asctime:

>>> t = (2007, 5, 27, 10, 30, 48, 6, 0, 0)

>>> print time.asctime(t)

Sun May 27 10:30:48 2007

That works fine for most situations, but what if you don’t like the way that string
is displayed—what if you only want to display the date and not the time? We can
do that with strftime:

>>> print time.strftime(’%d %b %Y’, t)

27 May 2007

As you can see, strftime takes 2 arguments: the first is a date/time format
(which describes how the date/time should be displayed), and the second is the
tuple containing the time values. The format, %d %b %Y is another way of saying:
‘show the day, the month and then the year’. We could also display the month as a
number, for example:

>>> print time.strftime(’%d/%m/%Y’, t)

27/05/2007

This format is a way of saying, ‘display the day, then a forward-slash, then
display the month as a number, then a forward-slash, then display the year’. There
are a number of different values you can use in a format:
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%a a shortened version of a week day (for example, Mon, Tues, Wed,
Thurs, Fri, Sat, and Sun)

%A the full weekday name (Monday, Tuesday, Wednesday, Thursday,
Friday, Saturday, Sunday)

%b a shortened version of a month name (Jan, Feb, Mar, Apr, May,
Jun, Jul, Aug, Sep, Oct , Nov, Dec)

%B the full version of a month name (January, February, March, April,
May, and so on)

%c the full date and time, in the same format the asctime uses
%d the day of the month as a number (from 01 to 31)
%H the hour of the day, in 24 hour format (from 00 to 23)
%I the hour of the day, in 12 hour format (from 01 to 12)
%j the day of the year as a number (from 001 to 366)
%m the month as a number (from 01 to 12)
%M the minute as a number (from 00 to 59)
%p morning or afternoon as either AM or PM
%S the seconds as a number
%U the week number of the year as a number (from 00 to 53)
%w the day of the week as a number. Sunday is 0, Monday is 1, up to

Saturday, which is 6
%x a simple date format (usually month/day/year—for example,

03/25/07)
%X a simple time format (usually hour:minutes:seconds—for example

10:30:53)
%y the year in 2 digits (for example, 2007 would be 07)
%Y the year in 4 digits (e.g. 2007)

The function strptime is almost the reverse of strftime—it takes a string and
converts it into a tuple containing the date and time values. It also takes the same
values in the format string. An example of using this function is:

>>> t = time.strptime(’05 Jun 2007’, ’%d %b %Y’)

>>> print t

(2007, 6, 5, 0, 0, 0, 1, 156, -1)

If the date in our string is day/month/year (for example, 01/02/2007), we might
use:

>>> t = time.strptime(’01/02/2007’, ’%d/%m/%Y’)

>>> print t

(2007, 2, 1, 0, 0, 0, 3, 32, -1)

Or if the date is month/day/year, we might use:
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>>> t = time.strptime(’03/05/2007’, ’%m/%d/%Y’)

>>> print t

(2007, 3, 5, 0, 0, 0, 0, 64, -1)

We can combine the 2 functions to convert a string in one format to another. Let’s
do it in a function:

>>> def convert_date(datestring, format1, format2):

... t = time.strptime(datestring, format1)

... return time.strftime(format2, t)

...

We can use this function by passing in the date string, the format of that string,
and then the format that we want the returned date in:

>>> print convert_date(’03/05/2007’, ’%m/%d/%Y’, ’%d %B %Y’)

05 March 2007
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Appendix D

Answers to “Things to try”

Here is where you can find the answers to the questions asked in each chapter in the
section “Things to try”.

Chapter 2

1. The answer to Exercise 1 might be something like the following:

>>> toys = [ ’car’, ’Nintendo Wii’, ’computer’, ’bike’ ]

>>> foods = [ ’pancakes’, ’chocolate’, ’ice cream’ ]

>>> favourites = toys + foods

>>> print favourites

[’car’, ’Nintendo Wii’, ’computer’, ’bike’, ’pancakes’, ’chocolate’, ’ice cream’]

2. The answer to Exercise 2 is simply adding the result of multiplying 3 by 25 and
the result of multiplying 10 by 32. The following equations shows the result of this
equation:

>>> print 3 * 25 + 10 * 32

395

However, given that we looked at the use of brackets in Chapter 2, you might have
decided that you needed to put brackets around some parts of this equation. You
might’ve done something like this:

>>> print (3 * 25) + (10 * 32)

395

The answer is the same, because multiplication is done before addition. In either
equation, the two multiplication operations are performed first, and the the results
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are added. However, the second equation is possibly slightly better than the first—
because it’s immediately obvious to the reader which operations are performed first.
A less knowledgeable programmer (who doesn’t know as much about the order of
operations) might think that, in the first equation, you multiply 3 by 25, then add
10, then multiply the result by 32 (the answer to that is 2720—completely wrong).
With the brackets, it’s a bit more obvious what gets calculated first.

3. The answer to Exercise 3 will be something like the following:

>>> first_name = ’Mary’

>>> second_name = ’Wilson’

>>> print ’My name is %s %s’ % (first_name, second_name)

My name is Mary Wilson

Chapter 3

1. A rectangle is like a square, except two of its sides are longer than the other two.
By telling the turtle to do the following operations, you can easily draw a rectangle:

• move forward a certain number of pixels

• turn left

• move forward a shorter number of pixels

• turn left

• move forward, the number of pixels in the first movement

• turn left

• move forward the shorter number of pixels in the second movement

For example, the following code will drawing the rectangle in figureD.1.

>>> import turtle

>>> t = turtle.Pen()

>>> t.forward(150)

>>> t.left(90)

>>> t.forward(50)

>>> t.left(90)

>>> t.forward(150)

>>> t.left(90)

>>> t.forward(50)
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Figure D.1: Turtle drawing a rectangle.

2. A triangle is a bit more complicated to draw, because you need to know more
about angles and line lengths. If you haven’t studied angles in school then this may
be a bit harder to do than you expect. You can draw a basic triangle (see figure D.2)
using the following code:

>>> import turtle

>>> t = turtle.Pen()

>>> t.forward(100)

>>> t.left(135)

>>> t.forward(70)

>>> t.left(90)

>>> t.forward(70)

Chapter 5

1. The loop stops after the first print. So when you run the code in the Python
console you get:

>>> for x in range(0, 20):

... print ’hello %s’ % x

... if x < 9:

... break

hello 0
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Figure D.2: Turtle drawing a triangle.

The reason it stops after the first print is that during the first run of the loop, the
value of the variable x is zero. Since zero is less than nine, the break statement stops
the loop from running any further.

2. To figure out how much money you get when you are paid 3% interest, you need
to multiply the number by 0.03. To begin with we should create a variable and
point it at the amount of our savings:

>>> amount = 100

To the amount of interest paid for 1 year would be that amount multiplied by
0.03:

>>> amount = 100

>>> print amount * 0.03

3.0

That’s $3! Not bad since we didn’t need to do anything to get it. We need to
print out this value and then add it to the total, and do it 10 times to work out the
interest that we are paid for 10 years:
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>>> amount = 100

>>> for year in range(1, 11):

... interest = amount * 0.03

... print ’interest earned for year %s is %s’ % (year, interest)

... amount = amount + interest

...

interest earned for year 1 is 3.0

interest earned for year 2 is 3.09

interest earned for year 3 is 3.1827

interest earned for year 4 is 3.278181

interest earned for year 5 is 3.37652643

interest earned for year 6 is 3.4778222229

interest earned for year 7 is 3.58215688959

interest earned for year 8 is 3.68962159627

interest earned for year 9 is 3.80031024416

interest earned for year 10 is 3.91431955149

In the first line we create a for-loop using the variable year and the function
range to count from 1 to 10. The second line calculates the interest, multiplying the
value in variable amount by 0.03. The next line is the print statement—which uses
place holders (%s) to include the values for year and interest. Finally in the last
line, we add the interest back into the amount. All the decimal places—the numbers
after the period (.) in the print lines—are a bit confusing, but you can tell that the
amount of interest each year increases a little bit as you add the interest. The code
might be a bit more helpful if we also add the total saved each year:

>>> amount = 100

>>> for year in range(1, 11):

... interest = amount * 0.03

... print ’interest earned for savings %s for year %s is %s’ % (amount, year, interest)

... amount = amount + interest

...

interest earned for savings 100 for year 1 is 3.0

interest earned for savings 103.0 for year 2 is 3.09

interest earned for savings 106.09 for year 3 is 3.1827

interest earned for savings 109.2727 for year 4 is 3.278181

interest earned for savings 112.550881 for year 5 is 3.37652643

interest earned for savings 115.92740743 for year 6 is 3.4778222229

interest earned for savings 119.405229653 for year 7 is 3.58215688959

interest earned for savings 122.987386542 for year 8 is 3.68962159627

interest earned for savings 126.677008139 for year 9 is 3.80031024416

interest earned for savings 130.477318383 for year 10 is 3.91431955149

Chapter 6

1. Turning the for-loop into a function is actually quite easy. The function will look
something like this:

>>> def calculate_interest(amount, rate):

... for year in range(1, 11):

... interest = amount * rate

... print ’interest earned for savings %s for year %s is %s’ % (amount, year, interest)

... amount = amount + interest
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If you compare the function with the code above, you might notice that, apart
from the first line, there’s only one change to the original code (0.03 is now the
parameter rate). Because amount was already a variable, there’s no change required
when it becomes a parameter. You’ll find the output is also the same when you run
the function:

>>> calculate_interest(100, 0.03)

interest earned for savings 100 for year 1 is 3.0

interest earned for savings 103.0 for year 2 is 3.09

interest earned for savings 106.09 for year 3 is 3.1827

interest earned for savings 109.2727 for year 4 is 3.278181

interest earned for savings 112.550881 for year 5 is 3.37652643

interest earned for savings 115.92740743 for year 6 is 3.4778222229

interest earned for savings 119.405229653 for year 7 is 3.58215688959

interest earned for savings 122.987386542 for year 8 is 3.68962159627

interest earned for savings 126.677008139 for year 9 is 3.80031024416

interest earned for savings 130.477318383 for year 10 is 3.91431955149

2. Changing the function to pass in the year as a parameter also involves only minor
changes:

>>> def calculate_interest(amount, rate, years):

... for year in range(1, years):

... interest = amount * rate

... print ’interest earned for savings %s for year %s is %s’ % (amount, year, interest)

... amount = amount + interest

We can now easily change the starting amount, the rate of interest and the number
of years:

>>> calculate_interest(1000, 0.05, 6)

interest earned for savings 1000 for year 1 is 50.0

interest earned for savings 1050.0 for year 2 is 52.5

interest earned for savings 1102.5 for year 3 is 55.125

interest earned for savings 1157.625 for year 4 is 57.88125

interest earned for savings 1215.50625 for year 5 is 60.7753125

3. The mini-program is a bit more complicated than the functions we’ve already
created. First we need to import the sys module so we can ask for input. Then we
need to prompt the user of our program for each of the values. Apart from that,
the function stays roughly the same:

>>> import sys

>>> def calculate_interest():

... print ’Enter the amount you have to save’

... amount = float(sys.stdin.readline())

... print ’Enter the interest rate’

... rate = float(sys.stdin.readline())

... print ’Enter the number of years’

... years = int(sys.stdin.readline())

... for year in range(1, years):

... interest = amount * rate

... print ’interest earned for savings %s for year %s is %s’ % (amount, year, interest)

... amount = amount + interest
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When we run the function, we’ll see something like the following:

>>> calculate_interest()

Enter the amount you have to save

500

Enter the interest rate

0.06

Enter the number of years

12

interest earned for savings 500.0 for year 1 is 30.0

interest earned for savings 530.0 for year 2 is 31.8

interest earned for savings 561.8 for year 3 is 33.708

interest earned for savings 595.508 for year 4 is 35.73048

interest earned for savings 631.23848 for year 5 is 37.8743088

interest earned for savings 669.1127888 for year 6 is 40.146767328

interest earned for savings 709.259556128 for year 7 is 42.5555733677

interest earned for savings 751.815129496 for year 8 is 45.1089077697

interest earned for savings 796.924037265 for year 9 is 47.8154422359

interest earned for savings 844.739479501 for year 10 is 50.6843687701

interest earned for savings 895.423848271 for year 11 is 53.7254308963

Chapter 8

1. There’s a hard way to draw an octagon, and an easy way. The hard way, isn’t
hard because it’s complicated. It’s hard because it requires more typing:

import turtle

t = turtle.Pen()

>>> t.forward(50)

>>> t.right(45)

>>> t.forward(50)

>>> t.right(45)

>>> t.forward(50)

>>> t.right(45)

>>> t.forward(50)

>>> t.right(45)

>>> t.forward(50)

>>> t.right(45)

>>> t.forward(50)

>>> t.right(45)

>>> t.forward(50)

>>> t.right(45)

>>> t.forward(50)

You can see from that code that we tell the turtle to move forward 50 pixels, then
turn right 45 degrees. We do this 8 times. Which is a lot of time. The easier way to
draw an octagon is the following code (which produces the octagon in figure D.3):

>>> for x in range(0,8):

... t.forward(50)

... t.right(45)
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Figure D.3: Turtle drawing an octagon.

2. If you take another look at the other functions in Chapter 8, you’ll already see
how to create a filled shape. We can convert the octagon code into a function that
takes a colour, but we’ll also want to reuse the hexcolour function

>>> def octagon(red, green, blue):

... t.color(red, green, blue)

... t.fill(1)

... for x in range(0,8):

... t.forward(50)

... t.right(45)

... t.fill(0)

We set the colour, then turn filling on. Then we run the for loop to draw the
octagon, finally we switch filling back off again to fill in the shape. How about a
blue octagon (see figure D.4):

>>> octagon(0, 0, 1)



141

Figure D.4: Turtle drawing a blue octagon.
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