

Spring Python 1.1

Create powerful and versatile Spring Python applications
using pragmatic libraries and useful abstractions

Greg Lee Turnquist

BIRMINGHAM - MUMBAI

Spring Python 1.1

Copyright © 2010 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the author, Packt Publishing,
nor its dealers or distributors will be held liable for any damages caused or alleged
to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: May 2010

Production Reference: 1180510

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-849510-66-0

www.packtpub.com

Cover Image by Parag Kadam (paragvkadam@gmail.com)

Credits

Author
Greg Lee Turnquist

Reviewers
Bala Sundarasamy

Russ Miles

Sylvain Hellegouarch

Acquisition Editor
Steven Wilding

Development Editor
Mehul Shetty

Technical Editor
Aditya Belpathak

Indexer
Hemangini Bari

Editorial Team Leader
Aanchal Kumar

Project Team Leader
Lata Basantani

Project Coordinator
Joel Goveya

Proofreader
Lesley Harrison

Graphics
Geetanjali Sawant

Production Coordinator
Shantanu Zagade

Cover Work
Shantanu Zagade

About the Author

Greg Lee Turnquist has worked in the software industry since 1997. He is an
active participant in the open source community, and has contributed patches to
several projects including MythTV, Spring Security, MediaWiki, and the TestNG
Eclipse plugin. As a test-bitten script junky, he has always sought the right tool
for the job. He is a firm believer in agile practices and automated testing. He has
developed distributed systems, LAMP-based setups, and supported mission critical
systems hosted on various platforms.

After graduating from Auburn University with a Master's in Computer Engineering,
Greg started working with Harris Corporation. He worked on many contracts
utilizing many types of technology. In 2006, he created the Spring Python project,
which became the first official Spring Extension to reach live status. He recently
joined SpringSource as part of their international software development team.

I would like to extend thanks to Russ Miles and Sylvain
Hellegouarch for taking the time to technically review this book
and provide valuable feedback. I also thank my father, Dr. Paul
Turnquist, for providing inspiration to write. And most importantly,
I thank my wife Sara, for the support, encouragement, and patience.

About the Reviewers

Bala Sundarasamy, graduated from the College of Engineering, Guindy. He
has an extensive experience of more than 17 years in designing and building
applications using Java and .Net technologies. He has performed various roles in
technical functions and project delivery with some of the leading software consulting
companies in India.

He has also taught numerous young developers to write good object-oriented code
using Java and C#. He has proven expertise in training fresh engineers to adopt
industry standard best practices and processes in software writing.

Russ Miles is the author of three bestselling books: AspectJ Cookbook, Learning UML
2.0, and Head First Software Development (all by O' Reilly Media). In particular, writing
for the Head First series was an incredible learning experience in how to turn dry,
technical subjects into great learning experiences; he has successfully applied these
skills to the development of several successful courses and workshops.

He is a frequent speaker on many, wide-ranging technical subjects including
the fun of being a self-proclaimed 'polyglot programmer'. A certified Scrum
Master and, alongside the more specific technical coaching, he works with many
companies as they come to terms with the fact that software development is
ultimately about people.

He is the principle consultant and founder of OpenCredo, a high level software
development consultancy based in London. As part of his daily activities, Russ
writes for several publications (when he finds the time!) on topical software
development subjects of the day.

I'd like to thank my beautiful wife, Corinne and my 'little monster',
Mali for their support, laughs and hair tugs (just Mali).

Sylvain Hellegouarch, is a senior software developer at Ubikod, a company
dedicated to innovative mobile solutions. He has a passion for open-source software
and has created many Python projects targeting social communication based on the
AtomPub and XMPP protocols. He wrote the CherryPy Essentials book, which was
published by Packt Publishing in 2007, a hands-on book about CherryPy, a popular
web framework. His interests are currently pushing him to the rich world of the
semantic web, linked data and how people interact with each other.

Table of Contents
Preface	 1
Chapter 1: Getting Started with Spring Python	 7

Spring Python for Python developers	 8
Exploring Spring Python's non-invasive nature	 8
Adding in some useful templates	 11

Spring Python for Java developers	 15
Extending Spring Python	 18
Installing Spring Python	 19

Setting up an environment for Spring Python	 19
Installing from a pre-built binary download	 20
Installing from source	 22

Spring Python community	 23
Summary	 24

Chapter 2: The Heart of Spring Python—Inversion of Control	 25
Swapping production code with test doubles	 26

More about Inversion of Control	 29
Adding Inversion of Control to our application	 30
Dependency Injection a.k.a. the Hollywood principle	 33
Adding Inversion of Control to our test	 35

Container versus Context	 36
Lazy objects	 37
Scoped objects	 38
Property driven objects	 39
Post processor objects	 39
Context aware objects	 40

Debate about IoC in dynamic languages	 40
Migrating a Spring Java application to Python	 42
Summary	 49

Table of Contents

[ii]

Chapter 3: Adding Services to APIs	 51
AOP from 10,000 feet	 52

Crosscutting versus hierarchical	 52
Crosscutting elements	 53
Weaving crosscutting behavior	 53

Adding caching to Spring Python objects	 54
Applying many advisors to a service	 65
Performance cost of AOP	 68

AOP is a paradigm, not a library	 69
Distinct features of Spring Python's AOP module	 71
The risks of AOP	 72
AOP is part of the Spring triangle	 73

Testing our aspects	 73
Decoupling the service from the advice	 74
Testing our service	 76
Confirming that our service is correctly woven into the API	 78

Summary	 79
Chapter 4: Easily Writing SQL Queries with Spring Python	 81

The classic SQL issue	 82
Parameterizing the code	 84
Replacing multiple lines of query code with one line of Spring Python	 86

The Spring triangle—Portable Service Abstractions	 86
Using DatabaseTemplate to retrieve objects	 87

Mapping queries by convention over configuration	 89
Mapping queries into dictionaries	 89

DatabaseTemplate and ORMs	 90
Solutions provided by DatabaseTemplate	 90
How DatabaseTemplate and ORMs can work together	 91

Testing our data access layer with mocks	 92
How much testing is enough?	 94
Summary	 95

Chapter 5: Adding Integrity to your Data Access with
Transactions	 97

Classic transaction issues	 98
Creating a banking application	 99
Transactions and their properties	 101
Getting transactions right is hard	 102

Simplify by using @transactional	 102
More about TransactionTemplate	 105

Table of Contents

[iii]

The Spring Triangle—Portable Service Abstractions	 107
Programmatic transactions	 108

Configuring with the IoC container	 108
Configuring without the IoC container	 109
@transactional versus programmatic	 110

Making new functions play nice with existing transactions	 110
How Spring Python lets us define a transaction's ACID properties	 113

Applying transactions to non-transactional code	 115
Testing your transactions	 117
Summary	 118

Chapter 6: Securing your Application with Spring Python	 119
Problems with coding security by hand	 120
Building web applications ignoring security	 122

Looking at our web application from 10,000 feet	 130
Handling new security requirements	 131

Authentication confirms "who you are"	 131
Authorization confirms "what you can do"	 132

Time to add security to our application	 133
Accessing security data from within the app	 141
Testing application security	 142
Configuring SQL-based security	 143
Configuring LDAP-based security	 144
Using multiple security providers is easy	 146

Migrating from an old security solution to a new one	 147
Supporting multiple user communities	 148
Providing redundant security access	 148

Coding our own security extension	 150
Coding a custom authentication provider	 150

Some of the challenges with Spring Python Security	 152
Summary	 153

Chapter 7: Scaling your Application Across Nodes with
Spring Python's Remoting	 155

Introduction to Pyro (Python Remote Objects)	 156
Converting a simple application into a distributed one on the
same machine	 157

Fetching the service from an IoC container	 158
Creating a client to call the service	 159
Making our application distributed without changing the client	 159
Is our example contrived?	 163
Spring Python is non-invasive	 163

Table of Contents

[iv]

Scaling our application	 164
Converting the single-node backend into multiple instances	 164
Creating a round-robin dispatcher	 166
Adjusting client configuration without client code knowing its talking to
multiple node backend	 167

Summary	 168
Chapter 8: Case Study I—Integrating Spring Python with
your Web Application	 171

Requirements for a good bank	 172
Building a skeleton web application	 173
Securing the application	 175
Building some basic customer functions	 182
Coding more features	 188

Updating the main page with more features	 189
Refining the ability to open an account	 191
Adding the ability to close an account	 192
Adding the ability to withdraw money	 193
Adding the ability to deposit money	 195
Adding the ability to transfer money	 196
Showing account history	 198

Issues with customer features	 199
Securing Alice's accounts 	 199
Adding overdraft protection to withdrawals	 203
Making transfers transactional	 205

Remotely accessing logs	 206
Creating audit logs	 209
Summary	 211

Chapter 9: Creating Skeleton Apps with Coily	 213
Plugin approach of Coily	 213

Key functions of coily	 214
Required parts of a plugin	 215
Creating a skeleton CherryPy app	 216
Summary	 221

Table of Contents

[˘]

Chapter 10: Case Study II—Integrating Spring Python with
your Java Application	 223

Building a flight reservation system	 224
Building a web app the fastest way	 224
Looking up existing flights	 228
Moving from sample Python data to real Java data	 232

Issues with wrapping Java code	 243
Summary	 243

Index	 245

Preface
Back in 2004, a new revolution was brewing in the Java industry: the Spring
Framework. It challenged the concept of monolithic, one-size-fits-all application
servers by offering pragmatic solutions without heavy handed requirements.
Contrary to previous frameworks, Spring did not require all-or-nothing adoption.
Instead, it offered a practical approach by providing convenient abstractions over
commonly used patterns. It also embraced the concept of dependency injection,
allowing non-intrusive adoption of powerful options.

The Spring Framework doesn't hinge on the technology that it is coded in. The
concepts and methods, known as the Spring way, work anywhere. In 2006, I created
the Spring Python project. This was to combine the non-intrusive, powerful concepts
of Spring with the nimble, dynamic flexibility of Python.

This book will guide you through the building blocks of Spring Python with the aim
of giving you the key to build better Python applications.

The first seven chapters show you how to download and get started with Spring
Python. Each of these chapters introduces a different module you can use to build
applications with. The eighth chapter shows how to use the modules in concert
to build a more powerful yet easier to maintain application. The ninth chapter
introduces a command-line utility used to rapidly create applications. The final
chapter shows how to integrate Python and Java together, quickly and easily.

I have written this book with the intention that developers can discover the
scope and beauty of the Spring way and how it can enrich development, without
complicating it. I often look at software development as more craftsmanship than
science, and believe Spring Python can make for a valuable tool in any developer's
tool box.

Preface

[˘]

What this book covers
Chapter 1: Getting Started with Spring Python gives you a quick glance at various
features of Spring Python, followed by information on how to download and
install it.

Chapter 2: The Heart of Spring Python—Inversion of Control introduces you to Spring
Python's core container which is reused through the rest of the book to empower
testing and non-intrusive features.

Chapter 3: Adding Services to APIs shows how to smoothly add cross cutting services
to your code using Spring Python's aspect oriented programming.

Chapter 4: Easily Writing SQL Queries with Spring Python shows you how to rapidly
write pure SQL queries without dealing with mind-numbing boilerplate code. It also
shows how Spring Python works nicely with ORM-based persistence.

Chapter 5: Adding Integrity to your Data Access with Transactions shows how to
seamlessly wrap business code with SQL transactions.

Chapter 6: Securing your Application with Spring Python shows how to wrap web
applications with flexible authentication and authorization services, while easily
supporting policy changes. It also shows how to code custom extensions to integrate
with security systems not currently supported.

Chapter 7: Scaling your Application Across Nodes with Spring Python's Remoting shows
how Spring Python nicely integrates with Pyro, the RPC library for Python. This
powerful combination will allow you to non-intrusively develop simple apps on
your desktop and retool them for multi-node production systems

Chapter 8: Case Study I—Integrating Spring Python with your Web Application invites
you to use all of Spring Python's components to build a strong, secured banking
application. This shows how the various parts of Spring Python work together in
concert to empower you the developer.

Chapter 9: Creating Skeleton Apps with Coily introduces Spring Python's plugin-based
Coily tool to rapidly create web applications.

Chapter 10: Case Study II – Integration Spring Python with your Java Application ends the
book by showing how easy it is to link Java and Python components together using
Jython. This allows polyglot programmers to mix together their favorite services.

Preface

[˘]

What you need for this book
You will need Python 2.4 or above and Spring Python 1.1.0.FINAL (covered in
Chapter 1).

Who this book is for
This book is for Python developers who want to take their applications to the
next level, by adding/using parts that scale their application up, without adding
unnecessary complexity. It is also helpful for Java developers who want to mix in
some Python to speed up their coding effort.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "We added closeAccount to
SpringBankView to let the customer close an existing account it its balance is zero."

A block of code is set as follows:

def get_article(self, article):
 if article in self.cache:
 return self.cache[article]
 else:
 return self.delegate.get_article(article)

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

def get_article(self, article):
 if article in self.cache:
 return self.cache[article]
 else:
 return self.delegate.get_article(article)

Any command-line input or output is written as follows:

$ svn checkout https://src.springframework.org/svn/se-springpython-py/
trunk/springpython springpython

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Let's look
at the layout of the gen-cherrypy-app plugin as an example."

Preface

[˘]

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an email to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please
send us a note in the SUGGEST A TITLE form on www.packtpub.com or
email suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book on, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code for the book
Visit https://www.packtpub.com//sites/default/files/
downloads/0660_Code.zip to directly download the example code.
The downloadable files contain instructions on how to use them.

Preface

[˘]

Errata
Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you find a mistake in one of our books—maybe a
mistake in the text or the code—we would be grateful if you would report this
to us. By doing so, you can save other readers from frustration, and help us to
improve subsequent versions of this book. If you find any errata, please report
them by visiting http://www.packtpub.com/support, selecting your book,
clicking on the let us know link, and entering the details of your errata. Once your
errata are verified, your submission will be accepted and the errata added to any
list of existing errata. Any existing errata can be viewed by selecting your title from
http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or web site name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Getting Started with
Spring Python

Spring Python takes the concepts of the Spring Framework and Spring Security,
and brings them to the world of Python. It isn't a simple line-by-line port of the code.
Instead, it takes some powerful ideas that were discovered in the realm of Java, and
pragmatically applies them in the world of Python.

Spring (Java) provides many simple, easy-to-use functional parts to assemble
applications instead of a monolithic framework to extend. Spring Python uses this
same approach. This means we can use as little or as much Spring Python as we
need to get the job done for each Python application.

In this chapter, we will learn:

About Spring Python's a non-invasive API which makes it easy to use other
libraries without having to make major changes to your own code base
How Spring Python uses inversion of control to decouple object creation
from object usage to empower the developer
How Spring Python provides the means to help professional Python
developers by offering a non-invasive API to easily access advanced services
The ways in which Spring Python offers professional Java developers an
easy way to mix Python and Java together through the combination of
Python/Jython/Java
How to install the library from both binary and source code
How extensible Spring Python is, and also some links to the Spring
Python community

•

•

•

•

•

•

Getting Started with Spring Python

[˘]

Spring Python for Python developers
You have already picked one of the most popular and technically powerful dynamic
languages to develop software, Python. Spring Python makes it even easier to solve
common problems encountered by Python developers every day.

Exploring Spring Python's non-invasive
nature
Spring Python has a non-invasive nature, which means it is easy to adopt the parts
that meet your needs, without rewriting huge blocks of code. For example, Pyro
(http://pyro.sourceforge.net) is a 3rd party library that provides an easy way
to make remote procedure calls.

In order to demonstrate the Spring way of non-invasiveness, let's code a simple
service, publish it as a web service using Pyro's API, and then publish it using Spring
Python's wrapper around Pyro. This will show the difference in how Spring Python
simplifies API access for us, and how it makes the 3rd party library easier to use
without as much rework to our own code.

1.	 First, let's write a simple service that parses out the parameters from a web
request string:
class ParamParser(object):
 def parse_web_parms(self, parm):
 return [tuple(p.split("=")) for p in parm.split("&")]

2.	 Now we can write a simple, functional piece of code that uses our service in
order to have a working version.
parser = ParamParser()
parser.parse_web_parms("pages=5&article=Spring_Python")

This is just instantiating the ParamParser and accessing the function. To
make this a useful internet service, it needs to be instantiated on a central
server and should be configured to listen for calls from clients.

3.	 The next step is to advertise it as a web service using the API of Pyro. This
will make it reachable by multiple Pyro clients. To do this, we define a
daemon which will host our service on port 9000 and initialize it.
import Pyro

daemon = Pyro.core.Daemon(host="localhost", port="9000")
Pyro.core.initServer()

Chapter 1

[˘]

4.	 Next, we create a Pyro object instance to act as proxy to our service as well
as an instance of our ParamParser. We configure the proxy to delegate all
method calls to our service.
pyro_proxy = Pyro.core.ObjBase()
parser = ParamParser()
pyro_proxy.delegateTo(parser)

5.	 Finally, we register the pyro_proxy object with the daemon, and startup a
listen-dispatch loop so that it's ready to handle requests:

daemon.connect(pyro_proxy, "mywebservice")
daemon.requestLoop(True)

When we run this server code, an instance of our ParamParser will be created and
advertised at PYROLOC://localhost:9000/mywebservice.

To make this service complete, we need to create a Pyro client that will call into our
service. The proxy seamlessly transfers Python objects over the wire using the Pyro
library, in this case the tuple of request parameters.

import Pyro

url_base = "PYROLOC://localhost:9000"
client_proxy = Pyro.core.getProxyForURI(\
 url_base + "/mywebservice")
print client_proxy.parse_web_parms(\
 "pages=5&article=Spring_Python")

The Pyro library is easy to use. One key factor is how our ParamParser never gets
tightly coupled to the Pyro machinery used to serve it to remote clients. However,
it's very invasive.

What if we had already developed a simple application on a single machine with
lots of methods making use of our utility? In order to convert our application into
a client-server application, we would have to rewrite it to use the Pyro client proxy
pattern everywhere that it was called. If we miss any instances, we will have bugs
that need to be cleaned up. If we had written automated tests, they would also have
to be rewritten as well. Converting a simple, one-machine application into a multi-
node application can quickly generate a lot of work.

That is where Spring Python comes in. It provides a different way of creating
objects which makes it easy for us to replace a local object with a remoting
mechanism such as Pyro. Later on, we will explore the concepts of Spring
Python's container in more detail.

Getting Started with Spring Python

[10]

Let's utilize Spring Python's container to create our parser and also to serve it up
with Pyro.

from springpython.config import PythonConfig
from springpython.config import Object
from springpython.remoting.pyro import PyroServiceExporter
from springpython.remoting.pyro import PyroProxyFactory

class WebServiceContainer(PythonConfig):
 def __init__(self):
 super(WebServiceContainer, self).__init__()

 @Object(lazy_init=True)
 def my_web_server(self):
 return PyroServiceExporter(service=ParamParser(),
 service_name="mywebservice",
 service_port=9000)

 @Object(lazy_init=True)
 def my_web_client(self):
 myService = PyroProxyFactory()
 myService.service_url="PYROLOC://localhost:9000/mywebservice"
 return myService

With this container definition, it is easy to write both a server application as well
as a client application. To spin up one instance of our Pyro server, we use the
following code:

 from springpython.context import ApplicationContext
 container = ApplicationContext(WebServiceContainer())
 container.get_object("my_web_server")

The client application looks very similar.

 from springpython.context import ApplicationContext
 container = ApplicationContext(WebServiceContainer())	
 myService = container.get_object("my_web_client")
 myService.parse_web_parms("pages=5&article=Spring_Python")

The Spring Python container works by containing all the definitions for creating key
objects. We create an instance of the container, ask it for a specific object, and then
use it.

This easily looks like just as much (if not more) code than using the Pyro API
directly. So why is it considered less invasive?

Chapter 1

[11]

Looking at the last block of code, we can see that we are no longer creating the parser
or the Pyro proxy. Instead, we are relying on the container to create it for us. The
Spring Python container decouples the creation of our parser, whether its for a local
application, or if it uses Pyro to join them remotely. The server application doesn't
know that it is being exported as a Pyro service, because all that information is stored
in the WebServiceContainer. Any changes made to the container definition aren't
seen by the server application code.

The same can be said for the client. By putting creation of the client inside the
container, we don't have to know whether we are getting an instance of our service
or a proxy. This means that additional changes can be made inside the definition of
the container of Spring Python, without impacting our client and server apps. This
makes it easy to split the server and client calls into separate scripts to be run in
separate instances of Python or on separate nodes in our enterprise.

This demonstrates how it is possible to mix in remoting to our existing application.
By using this pattern of delegating creation of key objects to the container, it is
easy to start with simple object creation, and then layer on useful services such as
remoting. Later in this book, we will also see how this makes it easy to add other
services like transactions and security. Due to Spring Python's open ended design,
we can easily create new services and add them on without having to alter the
original framework.

Adding in some useful templates
In addition to the non-invasive ability to mix in services, Spring Python has several
utilities that ease the usage of low level APIs through a template pattern. The
template pattern involves capturing a logical flow of steps. What occurs at each step
is customizable by the developer, while still maintaining the same overall sequence.

One example where a template would be useful is for writing a SQL query. Coding
SQL queries by hand using Python's database API (http://www.python.org/dev/
peps/pep-0249) is very tedious. We must properly handle errors and harvest the
results. The extra code involved with connecting things together and handling issues
is commonly referred to as plumbing code. Let's look at the following code to see
how Python's database API functions.

Getting Started with Spring Python

[12]

The more plumbing code we have to maintain, the higher the cost. Having an
application with dozens or hundreds of queries can become unwieldy, even cost
prohibitive to maintain.

1.	 Using Python's database API, we only have to write the following code once
for setup.

	 ### One time setup
	 import MySQLdb
	 conn = MySQLdb.connection(username="me",
	 password"secret",
	 hostname="localhost",
	 db="springpython")

2.	 Now let's use Python's database API to perform a single query.
	 ### Repeated for every query
	 cursor = conn.cursor()
	 results = []
	 try:
	 cursor.execute("""select title, air_date, episode_number, writer
	 from tv_shows where name = %s""",
	 ("Monty Python",))
	 for row in cursor.fetchall():
	 tvShow = TvShow(title=row[0],
	 airDate=row[1],
	 episodeNumber=row[2],
	 writer=row[3])
	 results.append(tvShow)
	 finally:
	 try:
	 cursor.close()
	 except Exception:
	 pass
	 conn.close()
	 return results

The specialized code we wrote to look up TV shows is contained in the
execute statement and also the part that creates an instance of TvShow. The
rest is just plumbing code needed to handle errors, manage the database
cursor, and iterate over the results.
This may not look like much, but have you ever developed an application
with just one SQL query? We could have dozens or even hundreds of queries,
and having to repeatedly code these steps can become overwhelming. Spring
Python's DatabaseTemplate lets us just inject the query string and and a row
mapper to reduce the total amount of code that we need to write.

Chapter 1

[13]

3.	 We need a slightly different setup than before.
	 """One time setup"""
	 from springpython.database.core import *
	 from springpython.database.factory import *
	 connectionFactory = MySQLConnectionFactory(username="me",
	 password="secret",
	 hostname="localhost",
	 db="springpython")

4.	 We also need to define a mapping to generate our TvShow objects.
	 class TvShowMapper(RowMapper):
	 def map_row(self, row, metadata=None):
	 return TvShow(title=row[0],
	 airDate=row[1],
	 episodeNumber=row[2],
	 writer=row[3])

5.	 With all this setup, we can now create an instance of DatabaseTemplate and
use it to execute the same query with a much lower footprint.

	 dt = DatabaseTemplate(connectionFactory)

	 """Repeated for each query"""
	 results = dt.query("""select title, air_date, episode_number,
 writer from tv_shows where name = %s""",
 ("Monty Python",), TvShowMapper())

This example shows how we can replace 19 lines of code with a single statement
using Spring Python's template solution.

Object Relational Mappers (ORMs) have sprung up in response to the low level
nature of ANSI SQL's protocol. Many applications have simple object persistence
requirements and many of us would prefer working on code, and not database
design. By having a tool to help do the schema management work, these ORMs
have been a great productivity boost.

But they are not necessarily the answer for every use case. Some queries are very
complex and involve looking up information spread between many tables, or
involve making complex calculations and involve decoding specific values. Also,
many legacy systems are denormalized and don't fit the paradigm that ORMs were
originally designed to handle. The complexity of these queries can require working
around, or even against, the ORM-based solutions, making them not worth
the effort.

Getting Started with Spring Python

[14]

To alleviate the frustration of working with SQL, Spring Python's DatabaseTemplate
greatly simplifies writing SQL, while giving you complete freedom in mapping the
results into objects, dictionaries, and tuples. DatabaseTemplate can easily augment
your application, whether or not you are already using an ORM. That way, simple
object persistence can be managed with ORM, while complex queries can be handed
over to Spring Python's DatabaseTemplate, resulting in a nice blend of productive,
functional code.

Other templates, such as TransactionTemplate, relieve you of the burden of
dealing with the low level idioms needed to code transactions that makes them
challenging to incorporate correctly. Later in this book, we will learn how easy it
is to add transactions to our code both programmatically and declaratively.

Applying the services you need and abstracting away low level APIs is a key part
of the Spring way and lets us focus our time and effort on our customer's business
requirements instead of our own technical ones.

By using the various components we just looked at, it isn't too hard to develop a
simple Pyro service that serves up TV shows from a relational database.

from springpython.database.factory import *
from springpython.config import *
from springpython.remoting.pyro import *

class TvShowMapper(RowMapper):
 def map_row(self, row, metadata=None):
 return (title=row[0],
 airDate=row[1],
 episodeNumber=row[2],
 writer=row[3])

class TvShowService(object):
 def __init__(self):
 self.connFactory = MySQLConnectionFactory(username="me",
 password="secret",
 hostname="localhost",
 db="springpython")
 self.dt = DatabaseTemplate(connFactory)

 def get_tv_shows(self):
 return dt.query("""select title, air_date, episode_number,
 writer
 from tv_shows where name = %s""",
 ("Monty Python",), TvShowMapper())

Chapter 1

[15]

class TvShowContainer(PythonConfig):
 def __init__(self):
 super(TvShowContainer, self).__init__()

 @Object(lazy_init=True)
 def web_server(self):
 return PyroServiceExporter(service=TvShowService(),
 service_name="tvshows",
 service_port=9000)

 @Object(lazy_init=True)
 def web_client(self):
 myService = PyroProxyFactory()
 myService.service_url="PYROLOC://localhost:9000/tvshows"
 return myService

if __name__ == "__main__":
 container = ApplicationContext(TvShowContainer())
 container.get_object("web_server")

By querying the database for TV shows and serving it up through Pyro, this block
of code demonstrates how easy it is to use these powerful modules without mixing
them together. It is much easier to maintain software over time when things are kept
simple and separated.

We just took a quick walk through SQL and Pyro and examined their low level APIs.
Many low level APIs require a certain sequence of steps to properly utilize them.
We just looked at a SQL query. The need for templates also exists with database
transactions and LDAP calls. By capturing the flow of the API in a Spring Python
template and allowing you to insert your custom code, you can get out of writing
plumbing code and instead work on your application's business logic.

Spring Python for Java developers
Java developers often seek ways to increase productivity. With the incredible
growth of alternative languages on the Java Virtual Machine (JVM), it is no wonder
developers are looking into Jython (http://www.jython.org) as an alternative way
to write scripts, segments, and subsystems. While it's convenient to use the Java
libraries you already know, it can sometimes be rough interacting with the Java
idioms of the library.

Getting Started with Spring Python

[16]

Spring Python is written in pure Python, which makes it easy to use inside Jython
as well. You may find it easier and more appealing to utilize the pythonic APIs of
Spring Python rather than the Java idioms of the Spring Framework. The choice
ultimately is yours, and it's not an either/or decision; you can use both libraries in
both your Java and Python segments.

The following diagram shows a combination of Python, Jython, and pure Java as
a stack.

With Spring Python, it's easy to mix Java and Python together. Let's code a simple
example, where we write a Jython client that talks to the TV service shown in the
previous section. By reusing that code, we can easily code a client. To really show
the power of Python/Jython/Java integration, let's expose our Jython client to a
pure Java consumer.

1.	 To begin, we need a pure Java interface that our Jython code can extend.
 import org.python.core.PyList;

 public interface JavaTvShowService {

 public PyList getTvShows();

 }

2.	 Next, we write our Jython class to extend this interface.
 class JythonTvShowService(JavaTvShowService):
 def __init__(self):
 self.container = ApplicationContext(TvShowContainer())
 self.client = container.get_object("web_client")

 def getTvShows(self):
 return self.client.get_tv_shows()	

Chapter 1

[17]

3.	 For Java clients to call Jython, we need to create a factory that creates an
embedded Jython interpreter.
 import org.python.core.PyObject;
 import org.python.util.PythonInterpreter;

 public class TvShowServiceFactory {

 private PyObject clazz;

 public TvShowServiceFactory() {
 PythonInterpreter interp = new PythonInterpreter();
 interp.exec("import JythonTvShowService");
 clazz = interp.get("JythonTvShowService");
 }
 public JavaTvShowService createTvShowService() {
 PyObject tvShowService = clazz.__call__();
 return (JavaTvShowService)
 tvShowService.__tojava__(JavaTvShowService.class);
 }
 }

4.	 Finally, we can write a main function that invokes the factory first, and then
the JavaTvShowService.
 public class Main {

 public static void main(String[] args) {
 TvShowServiceFactory factory =
 new TvShowServiceFactory();
 JavaTvShowService service =
 factory.createTvShowService();
 PyList tvShows = service.getTvShows();	
 for (int i = 0; i < tvShows.__len__(); i++) {
 PyObject obj = tvShows.__getitem__(i);
 PyTuple tvShow =
 (PyTuple)obj.__tojava__(PyTuple.class);
 System.out.println("Tv show title=" + tvShow.get(0) +
 " airDate=" + tvShow.get(1) +
 " episode=" + tvShow.get(2) +
 " writer=" + tvShow.get(3));
 }
 }
 }

Getting Started with Spring Python

[18]

We defined an interface, providing a good boundary to code both Java consumers
and Jython services against. Our Jython class extends the interface and when
created, creates an IoC container which requests a web_client object. This is our
PyroProxyFactory that uses Pyro to call our pure Python service over the wire. By
implementing the interface, we conveniently expose our remote procedure call to the
Java consumers. Our Java app needs a factory class to create a Jython interpreter
which in turn creates an instance of our Jython class. We use this in our application
main to get an instance of our TV service. Using the service, we call the exposed
method which makes our Pyro remote call. We iterate over the received list and
extract a tuple in order to print out results.

After taking a glance at how to expose a pure Python service to a pure Java
consumer, the options from here are endless. We could use Spring Java's
RmiServiceExporter or HessianServiceExporter to expose our Python service to
other protocols. This service could be integrated into a Spring Integration workflow
or made part of a Spring Batch job. There really is no limit. We will explore this in
more detail in Chapter 10 with our case study.

We have already looked at how easy it is to expose Python services to Java
consumers. If you are already familiar with Spring Java, hopefully as you read this
book, you will notice that the Spring way works not only in Java but in Python as
well. Spring Python uses the same concepts as Spring Java, shares some class
names with Spring Java, and even has an XML parser that can read Spring Java's
format. All of these things increase the ability to rewrite some parts in Python
while making small changes in the configuration files. All of these aspects make
it easier to incrementally move our application to the sweet spot we need for
improved productivity.

Extending Spring Python
Spring Python provides easy access to services, libraries, and APIs through its neatly
segmented set of modules. Spring Python's flexibility is due to its modular nature.
Providing you with a small set of blocks that are easy to combine is much more
reusable than a monolithic set of classes to extend. These techniques open the
door to easily integrating with current technologies and future ones as well.

In this chapter, we have already looked at various features, including remoting,
DatabaseTemplate, and integrating Python with Java. As we explore the other
features of Spring Python, I hope you can realize that using the Spring way of writing
useful abstractions and delegating object creation to the Spring Python container
makes it easy to write more modules that aren't part of this project yet.

Chapter 1

[19]

And as your needs grow, this project will grow as well. Spring Python makes it easy
to code your own templates and modules. You can code and inject your custom
services just as easily as Spring Python's pre-built ones. If you have ideas for
new features that you think belong in Spring Python, you can visit the website
at http://springpython.webfactional.com to find out how to submit ideas,
patches, and perhaps join the team to help grow Spring Python.

Installing Spring Python
Spring Python is easy to install. It comes with two installable tar balls. One is the
core library itself. The other is a set of samples you can optionally install to help get a
better understanding of Spring Python. As it is written in pure Python, the installed
files are the source code as well, so you can see how Spring Python works.

This installation section does NOT show how to install all the parts
needed to develop patches for the Spring Python project. For more
information on setting up a developer's environment, please join the
Spring Python mailing list at http://lists.springsource.com/
listmanager/listinfo/springpython-users where you can ask
about current development requirements.

Setting up an environment for Spring Python
Installing Spring Python currently requires Python 2.4, 2.5, or 2.6. It can also be run
on Jython 2.5. At the time of this writing, it hasn't been extended to support Python 3
due to lack of backwards compatibility and immaturity. However, as Python 3 gains
acceptance in the user community, Spring Python will move to support it as well.

Spring Python makes it easier to integrate with certain 3rd party libraries.
Installation of those 3rd party libraries is not covered in this book. For example,
to write queries against an Oracle database, you need to install the cxora package.

Getting Started with Spring Python

[20]

Installing from a pre-built binary download
The binaries are hosted as tar balls by SpringSource, in the community section. They
are non-OS specific and should work on any platform.

1.	 Go to http://www.springsource.org/download/community. You can
either fill out the registration information, or simply click on the link to take
you to the download site

Chapter 1

[21]

2.	 Click on Spring Python to see the latest version:

3.	 Download springpython-<release>.tar.gz to get the core library
4.	 Unpack the tarball, and go to the directory containing setup.py
5.	 Type the following command to install Spring Python

Note: This step may require admin privileges!
 $ python setup.py install

6.	 You should now be able to test the installation.
	 $ python

	 >>> import springpython

	 >>> dir()

	 ['__builtins__', '__doc__', '__name__', 'springpython']

Getting Started with Spring Python

[22]

Installing from source
Spring Python can be installed from source code like many other open source
projects. The code is hosted on a subversion repository. The following steps will
help you download the code and install it on your machine:

1.	 Type the following command to checkout the latest trunk repository:
	 $ svn checkout https://src.springframework.org/svn/
	 se-springpython-py/trunk/springpython springpython

This will create a local directory springpython containing the latest changes.
2.	 Move in to the directory where build.py is located. This script serves as

the key tool to build, package, and test Spring Python. Type the following
command to generate an installable Spring Python package:

	 $./build.py –package

3.	 Move to target/artifacts, the directory containing the newly generated
tar balls.

4.	 Unpack the tar ball springpython-<release>.tar.gz, and go to the
directory containing setup.py and type the following command to install
Spring Python:

Note: This step may require admin privileges.
 $ python setup.py install

5.	 You should now be able to test the installation.
	 $ python

	 >>> import springpython

	 >>> dir()

	 ['__builtins__', '__doc__', '__name__', 'springpython']

6.	 Using the subversion repository to fetch source code sets you up to easily
install new updates.

7.	 Type the following command to update your checkout.
	 $ svn update /path/for/springpython

8.	 Repeat the steps with build.py, target/artifacts, and setup.py.

Official releases are found in the tags section of the
subversion repository, adjacent to the trunk.

Chapter 1

[23]

You can also visually inspect the code using SpringSource's Fisheye
viewer at https://fisheye.springframework.org/browse/
se-springpython-py. This provides a way to view the code, change
sets, and change logs as well.

Spring Python community
Spring Python values its user community, and takes its cue on key features from user
requests. Many of the features currently found in Spring Python were added based
on user requests, submitted patches, and feedback.

http://springpython.webfactional.com—The project web site, including
links to reference documentation

http://forum.springsource.org/forumdisplay.php?f=45—The
community discussion forum
http://blog.springpython.webfactional.com—The author's blog site for
Spring Python

•

•

•

Getting Started with Spring Python

[24]

http://lists.springsource.com/archives/springpython-users—A
mailing list for users of Spring Python
http://www.linkedin.com/groups?gid=1525237—A LinkedIn group for
Spring Python users

Summary
We have taken a quick tour of the various parts of Spring Python. The examples
showed examples of how Spring Python can make things easier for both Python
and Java developers.

In this chapter, we learned that:

Spring Python has a non-invasive API that makes it easy to use other
libraries without having to make major changes to your own code base
Spring Python has a container that decouples object creation from object
usage to empower the developer
Spring Python provides the means to help professional Python developers by
offering a non-invasive API to easily access advanced services
Spring Python offers professional Java developers an easy way to mix Python
and Java together through the combination of Python/Jython/Java
Spring Python can be installed from both binary and source code
Spring Python is very extensible and easily lets us add new components
There is a user community where we can post questions, answers, ideas,
and patches

In the next chapter, we will go deep into the heart of Spring Python with its
Inversion of Control container.

•

•

•

•

•

•

•

•

•

The Heart of Spring Python—
Inversion of Control

Many software teams seek ways to improve productivity without sacrificing quality.
This has led to an increase in automated testing and, in turn, sparked an interest
in making applications more testable. Many automated test frameworks promote
isolating objects by swapping collaborating objects with test doubles to provide
canned responses. This generates a need for developers to plugin test doubles with
as little change as possible.

On some occasions, managers have trimmed budgets by cutting back on
development and integration hardware. This leaves developers with the quandary
of having to develop on a smaller footprint than their production environment.
Software developers need the ability to switch between different test configurations
and deployment scenarios.

Software products sold to customers often need the ability to make flexible
adjustments on site, whether its through a company representative or from
the customer.

In this chapter, we will explore how Spring Python's Inversion of Control (IoC)
container meets all these needs by making it possible to move the creation of critical
objects into a container definition, allowing flexible adjustment without impacting
the core business code.

The Heart of Spring Python—Inversion of Control

[26]

This chapter will cover:

How IoC containers make it easy to isolate objects under test in order to
work with automated testing.
A detailed explanation of IoC with high level diagrams. We will learn how
Dependency Injection is a type of IoC and uses the Hollywood principle of
Don't call us, we'll call you!
Spring Python's IoC container, which handles dependency resolution,
setting properties, and lazy initialiation. It also provides extension points
for developers to utilize as needed.
Spring Python's answer to the community debate of IoC in
dynamic languages.
How mixing Python and Java components together is easy, can be done
many ways, and provides a good way for developers to choose what best
fits their needs.

Swapping production code with test
doubles
As developers, we need the ability to exchange production objects with mocks
and stubs.

Mocks and stubs are two ways of generating canned responses used
to test our code. Mocks are used to generate canned method calls.
Stubs are used to generate canned data. Both of these are useful
tools to simulate external components our code must work with.
For more details, see http://martinfowler.com/articles/
mocksArentStubs.html

In this example, we are going to explore how an IoC container makes it easy to
exchange production objects with mock instances. We start by developing a simple
service along with some automated testing for a wiki engine.

1.	 First of all, let's define a simple service for our wiki engine. The following
WikiService has a function that looks into a MySQL database and returns
the number of hits for a page as well as the ratio of reads per edit.
class WikiService(object):

 def __init_(self):
 self.data_access = MySqlDataAccess()

•

•

•

•

•

Chapter 2

[27]

 def statistics(self, page_name):
 """Return tuple containg (num hits, hits per edit)"""
 hits = self.data_access.hits(page_name)
 return (hits, hits / len(self.data_access.edits(page_name)))

In this situation, WikiService directly defines data_access to use
MySqlDataAccess. The statistics method calls into MySqlDataAccess to
fetch some information, and returns a tuple containing the number of hits
against the page as well as the ratio of reads per edit.

It is important to point out that our current version of
WikiService has a strong dependency on MySQL as implied
by directly creating an instance of MySqlDataAccess.

2.	 Next, we will write some startup code used to run our wiki web server.
if __name__ == "__main__":
 service = WikiService()
 WikiWebApp(service).run()

The startup code creates an instance of WikiService, which in turn creates
an instance of MySqlDataAccess. We create an instance of our main web
application component, WikiWebApp, and start it up, giving it a handle on
our service.

We have not defined WikiWebApp or MySqlDataAccess.
Instead, we will be focusing on the functionality WikiService
provides, and on how to isolate and test it.

Let's look more closely at testing the code we've written. A good test case
would involve exercising statistics. Considering that it uses hits and
edits from MySqlDataAccess, it is directly dependent on connecting to
a live MySQL database. One option for testing would be pre-loading the
database with fixed content. However, the cost of set up and tear down can
quickly scale out of control. If you have multiple developers on your team,
you also don't want the contention where one developer is setting up while
another is tearing down the same tables.

The Heart of Spring Python—Inversion of Control

[28]

3.	 Since we do not want to continuously setup and tear down live database
tables, we are going to code a stubbed out version of the data access
object instead.
 class StubDataAccess(object):
 def hits(self):
 return 10.0

 def edits(self, page_name):
 return 2.0

Notice how our stub version returns canned values that are
easy to test against.

4.	 Now let's write a test case that exercises our WikiService. In order to replace
the data_access attribute with a test double, the test case must directly
override the attribute.

class WikiServiceTestCase(unittest.TestCase):
 def testHittingWikiService(self):
 service = WikiService()
 service.data_access = StubDataAccess()

 results = service.statistics("stub page")
 self.assertEquals(10.0, results[0])
 self.assertEquals(5.0, results[1])

This solution nicely removes the need to deal with the MySQL database by plugging
in a stubbed out version of our data access layer. These dependencies are depicted in
the following diagram.

WikiServiceTestCase depends on WikiService and StubDataAccess, as well
as an inherited dependency to MySqlDataAccess. Any change to any of these
dependencies could impact our test code.

Chapter 2

[29]

If we build a huge test suite involving hundreds of test methods, all using this
pattern of instantiating WikiService and then overriding data_access with a test
double, we have set ourselves up with a big risk. For example, WikiService or
StubDataAccess could have some new initializing arguments added. If we later
need to change something about this pattern of creating our testable WikiService,
we may have to update every test method! We would need to make every change
right. This is where Spring Python's Inversion of Control can help.

More about Inversion of Control
Before diving into our solution, let's look a little deeper into the meaning of Inversion
of Control.

Inversion of Control is a paradigm where we alter the way we create objects. In
simple object creation scenarios, if we have modules X and Y, and X needs an
instance of Y, we would let X directly create it. This introduces a direct dependency
between X and Y, as shown in the following diagram.

It's dependent because any changes to Y may impact X and incur required updates.
This dependency isn't just between X and Y. X is now dependent on Y and all of Y's
dependencies (as shown below). Any updates to Y or any of its dependencies run the
risk of impacting X.

The Heart of Spring Python—Inversion of Control

[30]

With Inversion of Control, we break this potential risk of impacts from Y and its
dependencies to X by delegating creation of instances of Y to a separate container,
as shown below.

This shifts the dependency between X and Y over to the container, reducing
the coupling.

It's important to note that the dependency hasn't been entirely eliminated.
Because X is still given an instance of Y, there is still some dependency
on its API, but the fact that Y and none of its dependencies have to be
imported into X makes X a smaller, more manageable block of code.

We saw in our wiki engine code how WikiService was dependent on
MySqlDataAccess. MySqlDataAccess is dependent on MySQLdb, a python library
for communicating with MySQL. Using the container and coding against a well
defined interface opens up the opportunity to change what version of data access
is being injected into WikiService.

As we continue our example in the next section, we'll see how IoC can help us make
management of test code easier, reducing long term maintenance costs.

Adding Inversion of Control to our application
We already took the first step in reducing maintenance costs by eliminating our
dependency on MySQL by using a test stub. However the mechanism we used
incurred a great risk due to violation of the DRY (Don't Repeat Yourself) principle.

Chapter 2

[31]

For our current problem, we want Spring Python to manage the creation of
WikiService in a way that allows us to make changes in one place, so we don't
have to edit every test method. To do this, we will define an IoC container and
let it handle creating the objects for us. The following code shows a simple
container definition.

1.	 First of all, let's create an IoC container using Spring Python and have it
create our instance of WikiService.
 from springpython.config import PythonConfig
 from springpython.config import Object

 class WikiProductionAppConfig(PythonConfig):	
 def __init__(self):
 super(WikiProductionAppConfig, self).__init__()

 @Object	
 def wiki_service(self):
 return WikiService()

You can spot the objects defined in the container by noting Spring Python's
@Object decorator.

2.	 Now we want to change our startup code so that it uses the container instead
of creating WikiService object directly.
 if __name__ == "__main__":
 from springpython.context import ApplicationContext
 container = ApplicationContext(WikiProductionAppConfig())
 service = container.get_object("wiki_service")
 WikiWebApp(service).run()

In this version of our wiki web application, the service object was obtained
by asking the container for wiki_service. Spring Python dispatches this
request to WikiProductionAppConfig where it invokes the wiki_service()
method. It is now up to the container to create an instance of WikiService
and return it back to us.

The Heart of Spring Python—Inversion of Control

[32]

The dependencies are shown in the following diagram:

At this intermediate stage, please note that WikiService is still dependent on
MySqlDataAccess. We have only modified how our application gets a copy
of WikiService. In later steps, we will completely remove this dependency
to MySqlDataAccess.

3.	 Let's see what our test case looks like when we use the IoC container to
retrieve WikiService.
 from springpython.context import ApplicationContext

 class WikiServiceTestCase(unittest.TestCase):
 def testHittingWikiService(self):
 container = ApplicationContext(WikiProductionAppConfig())
 service = container.get_object("wiki_service")
 service.data_access = StubDataAccess()

 results = service.statistics("stub page")
 self.assertEquals(10.0, results[0])
 self.assertEquals(5.0, results[1])

With this change, we are now getting WikiService from the container, and then
overriding it with the StubDataAccess. You may wonder "what was the point
of that?" The key point is that we shifted creation of our testable wiki_service object
to the container. To complete the transition, we need to remove all dependency
of MySqlDataAccess from WikiService. Before we do that, let's discuss
Dependency Injection.

Chapter 2

[33]

Dependency Injection a.k.a. the Hollywood
principle
So far, we have managed to delegate creation of our WikiService object to
Spring Python's Inversion of Control container. However, WikiService still
has a hard-coded dependency to MySqlDataAccess.

The nature of IoC is to push object creation into a 3rd party location. Up to this
point, we have been using the term Inversion of Control. The way that Spring Python
implements IoC, is through the mechanism of Dependency Injection. Dependency
Injection, or DI, is where dependencies are pushed into objects through either
initialization code or by letting the container directly assign attributes. This is
sometimes described by the Hollywood cliché of Don't call us, we'll call you. It
means that the object which needs a certain dependency shouldn't make it
directly, but instead wait on the external container to provide it when needed.

Because Spring Python only using Dependency Injection, the terms,
Inversion of Control, IoC, Dependency Injection, and DI may be used
interchangeably throughout this book to communicate the same idea.

The following version of WikiService shows a complete removal of dependence on
MySqlDataAccess.

class WikiService(object):
 def __init__(self, data_access):
 self.data_access = data_access

 def statistics(self, page_name):
 """Return tuple containing (num hits, hits per edit)"""
 hits = self.data_access.hits(page_name)
 return (hits, hits / len(self.data_access.edits(page_name)))

The Heart of Spring Python—Inversion of Control

[34]

With this altered version of WikiService, it is now up to WikiService's creator to
provide the concrete instance of data_access. The corresponding change to make
to our IoC container looks like this.

 from springpython.config import PythonConfig
 from springpython.config import Object

 class WikiProductionAppConfig(PythonConfig):	
 def __init__(self):
 super(WikiProductionAppConfig, self).__init__()

 @Object	
 def data_access(self):
 return MySqlDataAccess()

 @Object	
 def wiki_service(self):
 return WikiService(self.data_access())

We have added a definition for MySqlDataAccess so that we can inject this into the
instance of WikiService when it's created. Our dependency diagram now shows a
complete break of dependency between WikiService and MySqlDataAccess.

As described earlier, this is akin to the Hollywood mantra Don't call us, we'll call you.
It opens up our code to the possibility of having any variation injected, giving us
greater flexibility, without having to rewrite other parts of the system.

Chapter 2

[35]

Adding Inversion of Control to our test
With this adjustment to WikiService and WikiProductionAppConfig, we can now
code an alternative way of setting up our test case.

1.	 First, we subclass the production container configuration to create a test
version. Then we override the data_access object so that it returns our
stub alternative.
 class WikiTestAppConfig(WikiProductionAppConfig):
 def __init__(self):
 super(WikiTestAppConfig, self).__init__()

 @Object	
 def data_access(self):
 return StubDataAccess()

Using this technique, we inherit all the production definitions. Then
we simply override the parts needed for our test situation. In this case, we
return a slightly modified version of WikiService that is suitable for our
testing needs.

2.	 Now, we can alter our test suite to fetch WikiService just like the production
main code, except using our alternative container.
 from springpython.context import ApplicationContext

 class WikiServiceTestCase(unittest.TestCase):
 def testHittingWikiService(self):
 container = ApplicationContext(WikiTestAppConfig())
 service = container.get_object("wiki_service")

 results = service.statistics("stub page")
 self.assertEquals(10.0, results[0])
 self.assertEquals(5.0, results[1])

The dependencies (or lack of!) between WikiService and StubDataAccess are
shown in following diagram:

The Heart of Spring Python—Inversion of Control

[36]

This makes it easy to plug in our alternative StubDataAccess. An important thing
to note is how our test code is no longer overriding the data_access attribute, or
doing any other special steps when creating WikiService. Instead, this creation logic
has been totally turned over to the IoC container. We can now easily write as many
tests as we want with no risk of changes to WikiService or data_access, provided
we continue to rely on the IoC container to handle object creation. We just visit the
blueprints of WikiTestAppConfig to make any future alterations.

In conclusion of this example, the following diagram shows our current objects as
well as potential enhancement to our system. In this possible situation, we have
defined multiple data access components. To find out which one is being injected
into WikiService, we simply look at the relevant container's definition, whether its
production or a particular test scenario. Our current system may use MySQL, but if a
new customer wanted to use PostGreSQL, we simply create another variation of our
container, and inject the alternate data access object. The same can be said for Sqlite.
And all of this can be done with no impact to WikiService.

Container versus Context
You may have noticed in this chapter's example how we keep referring to the code
that contains our object definitions as a container, and yet, the class used to create it
is called ApplicationContext. This chapter will clarify the differences between a
context and a container.

Chapter 2

[37]

Spring Python has a base class called ObjectContainer, which is responsible
for managing the object definitions, creating instances of objects based on these
definitions, and is largely responsible for the functionality that we have looked at
so far. Any instance of this class would be a container in object oriented terms. In
fact, we could substitute that class in our previous example everywhere we see
ApplicationContext, and it would act mostly the same.

ObjectContainer has a subclass called ApplicationContext. An instance of
ApplicationContext is a context. However, from an OOP perspective, a context is
a container. So generally referring to instances of either one as an IoC container is
common practice.

An ApplicationContext has some differences in behavior from an
ObjectContainer as well as extra features involving life cycle management and
object management. These differences will first be shown in the following table of
features and will be covered in more detail later.

Class Features
ObjectContainer Lazily instantiates objects on startup with option

to override
Objects are scoped singleton by default

•

•

ApplicationContext Eagerly instantiates objects on startup with
option to override
Objects are scoped singleton by default
Supports property driven objects
Supports post processors
Supports context-aware objects

•

•
•
•
•

Lazy objects
Earlier I said that most of the behavior in this chapter's example would be the same
if we had replaced ApplicationContext with ObjectContainer. One difference
is that ObjectContainer doesn't instantiate any objects when the container is
first created. Instead, it waits until the object is requested to actually create it.
ApplicationContext automatically instantiates all objects immediately when
the container is started.

In the examples so far, this difference would have little effect, because
right after creating a container, we request the principle object. This won't
be the case with some of the examples later in this book.

The Heart of Spring Python—Inversion of Control

[38]

It is possible to override this by setting lazy_init to True in the object's definition.
This will delay object creation until first request.

 class WikiTestAppConfig(WikiProductionAppConfig):
 def __init__(self):
 super(WikiTestAppConfig, self).__init__()

 @Object(lazy_init=True)
 def data_access(self):
 return StubDataAccess()

One reason for using this is if we had some object that was only needed on certain
occasions and could incur a lot of overhead when created. Setting lazy_init to
True would defer its creation, making it behave as an on-demand service.

This override works for both ObjectContainer and ApplicationContext.

Scoped objects
Another key duty of the container is to also manage the scope of objects. This means
at what time that objects are created, where the instances are stored, and how long
before they are destroyed.

Spring Python currently supports two scopes: singleton and prototype.
A singleton-scoped object is cached in the container until shutdown. A
prototype-scoped object is never stored, thus requiring the object factory to
create a new instance every time the object is requested from the container.

When a singleton object includes a prototype object as one of its
initializing properties, it is important to realize that the prototype
isn't recreated every time the cached singleton is used.

The default policy for the container is to make everything singleton. The scope for
each object can be individually overridden as shown below.

 class WikiTestAppConfig(WikiProductionAppConfig):
 def __init__(self):
 super(WikiTestAppConfig, self).__init__()

 @Object(scope=scope.PROTOTYPE)
 def data_access(self):
 return StubDataAccess()

Each request for data_access will yield a different instance. This happens whether
the request is from outside the container, or from another container object injecting
data_access.

Chapter 2

[39]

This override works for both ObjectContainer and ApplicationContext.

Property driven objects
ApplicationContext will invoke after_properties_set() on any object that has
this method, after it has been created and all container-defined properties have been
set. Here are some examples of how this can be useful:

Including validation logic in class definitions. If some properties are optional
and others are not (or certain combinations of properties need to be set), this
is our opportunity to define it, and let the container validate that an object
was defined correctly.
Starting up background services. For example, PyroServiceExporter
launches a daemon thread in the background after all properties are set.

Post processor objects
ApplicationContext will search for post processors. These are classes
that manipulate other objects in the container. They extend Spring Python's
ObjectPostProcessor class.

 class ObjectPostProcessor(object):
 def post_process_before_initialization(self, obj, obj_name):
 return obj
 def post_process_after_initialization(self, obj, obj_name):
 return obj

When the context starts up, all non-post processors are fed one-at-a-time to each post
processor twice: before the initialization and after. By default, the object is passed
through with no change. By coding a custom post processor, we can override either
stage, and apply any changes we wish. This can include altering the object itself, or
substituting a different object.

class RemoteService(ObjectPostProcessor):
 def post_process_after_initialization(self, obj, obj_name):
 if obj_name.endswith("Service"):
 return PyroServiceExporter(service=obj,
 service_name=obj_name,
 service_port=9000)
 else:
 return obj

•

•

The Heart of Spring Python—Inversion of Control

[40]

This post processor looks at an object's name, and if its name ends with Service,
returns a proxy that exports the object as a Pyro service, using the object's name as
part of the URL. Otherwise, it simply returns the object.

This example shows how we can easily develop a convention-over-configuration
client-server mechanism, simply by using Spring Python's IoC container and some
custom post processors.

Context aware objects
We can define classes that get a copy of the ApplicationContext injected into the
attribute app_context by extending ApplicationContextAware.

This is only recommended for objects that need to manipulate the context
in some fashion. It is not a good practice to use this hook to simply fetch
objects, because it ties our code directly to the container.

Instead, use the principles of Dependency Injection as shown earlier in this chapter.

Debate about IoC in dynamic languages
There is a powerful debate in the technical community about whether or not IoC is
of any value in dynamic languages such as Python, Ruby, and others. This section
addresses several of the arguments, and shows how IoC definitely has value in any
language. If you are already sold on the idea of IoC, you can skip this section and
learn about more options to configure IoC definitions provided by Spring Python.

One argument is that IoC was invented as a paradigm to facilitate static languages,
particularly Java. In the dynamic world, where passing around objects with handles
is much more fluid, it is understandable that IoC may not solve as many problems as
it does for static languages such as Java. While it is true that many Java developers
that engaged in using IoC frameworks saw considerable leverage in productivity, it
is also credible to not leave dynamic languages out of this.

The strongest principle that transcends the dynamic/static divide and is handled
by IoC is DRY (Don't Repeat Yourself). By defining the creation of an object in one
place, and being able to use that definition repeatedly is very useful, and makes it
easy to adjust how the object is created.

Chapter 2

[41]

One keen Ruby developer went through several phases of developing a Ruby IoC
solution. The first round involved static configuration files very similar to the XML
option. Later on, he realized that coding a Ruby DSL was simpler, easier to read,
and more of the Ruby way. Finally, he realized that using Ruby directly in his
code without the framework was actually easier and more salient. In finishing his
blog article, he alludes to the fact that he uses DI every day. He just doesn't need a
framework to do it.

In response, I am the first person to say that not every object created in a system
needs to be served up by an IoC container; just the critical ones that would benefit
from being swapped with test doubles, environmental changes, and wiring up
different configurations for different customers. For example, coding small scripts
and simple apps may actually not require any IoC at all. However, as our apps grow,
the need to manage dependencies and object creation grows, and in those situations,
Spring Python's IoC container can meet those needs. IoC also provides easy solutions
for situations that need remoting, transactions, security, and other.

Opponents to dynamic IoC solutions have suggested that these solutions are simple
port jobs and are really more for people not familiar with the dynamic language
environment. In essence, people that like IoC when coding statically with C# or Java,
want the same warm comforts in Python. While Spring Python has utilized some
of the same class names as Spring Java, it is by no means a simple port job. Spring
Python has ported many of the concepts but not the code. One of the best examples
of this is Spring Python's security module. The architecture of Spring Security
(originally known as Acegi Security) has become a de facto security standard in the
Java industry. Their architectural concepts involve using a common set of interfaces
to link into countless security systems such as database, X.509, LDAP, CAS, kerberos,
OpenID, OpenSSO, and more, without having to get tied down to a specific API.
Instead, the concepts of authentication and authorization have been abstracted to
the right level, such that it is easy to add security after a system has been developed
without major rework. The credit for this strongly resides in the power of IoC and its
ability to wrap this critical service around already written business logic. It would
be foolish to pass up this powerful security architecture on the basis of simple static
versus. dynamic arguments.

The Heart of Spring Python—Inversion of Control

[42]

Another argument tends to be based on Spring Java and its historical use of XML for
configuration files. While XML is commonly used for many Java-based frameworks,
the Python community tends to avoid XML unless customer requirements dictate
otherwise. Some developers have criticized Spring Python for being an XML-based
container. However, this book has already shown pure Python container definitions.
Developers don't have to use XML at all to harness the power of Inversion of
Control. By using Python directly for container definitions, the following
powerful options are available:

We can code a switchable context where the container reads the hostname
and deduces whether it is running in development, test, or production
environment
We can code a clustered context where we vary object configurations based
on which side of a cluster we are running
We can write code that reads extra properties from an external source, like an
Apache web server's httpd.conf file, allowing us to stay nicely integrated
We can look up object properties in a database

Frankly, the options are limitless, given the power of Python and the added utilities
Spring Python provides

Migrating a Spring Java application to
Python
In the previous section, I made the point that Spring Python doesn't require us
to use XML. However, there is support for XML along with other formats we
haven't looked at yet. Other formats are provided to make it easier for Spring Java
developers to migrate to Python using what they already know.

Spring Python has two file parsers that read XML files containing object definitions.
SpringJavaConfig reads Spring Java XML configuration files, and XMLConfig reads
a format similar to that, but uniquely defined to offer Python-oriented options, such
as support for dictionaries, tuples, sets, and frozen sets.

SpringJavaConfig does not support all the features found
in Spring Java's XML specifications, including the specialized
namespaces, Spring Expression Language, nor properties. At this
point in time, it is meant to be convenient tool to demonstrate simple
integration between Python and Java.

•

•

•

•

Chapter 2

[43]

Let's explore the steps taken if our wiki engine software had originally been written
in Java, and we are exploring the option to migrate to Python. To make this as
seamless as possible, we will run the Python bits in Jython.

Jython is a Python compiler written in Java and designed to run
on the JVM. Jython scripts can access both Python and Java-based
libraries. However, Jython can not access Python extensions coded
in C. Spring Python 1.1 runs on Jython 2.5.1. Information about
download, installation, and other documentation of Jython can be
found at http://jython.org.

1.	 Let's assume that the Java code has a well defined interface for data access.
public interface DataAccess {

 public int hits(String pageName);

 public int edits(String pageName);
}

2.	 For demonstration purposes, let's create this concrete Java implementation of
that interface.
public class MySqlDataAccess implements DataAccess {

 private JdbcTemplate jt;

 public MySqlDataAccess(DataSource ds) {
 this.jt = new JdbcTemplate(ds);
 }

 public int hits(String pageName) {
 return jt.queryForInt(
 "select HITS from METRICS " +
 "where PAGE = ?", pageName);
 }

 public int edits(String pageName) {
 return jt.queryForInt(
 "select count(*) from VERSIONS " +
 "where PAGE = ?", pageName);
 }
}

The Heart of Spring Python—Inversion of Control

[44]

This Java code may appear contrived, considering
MySqlDataAccess is supposed to be dependent on
MySQL. It is for demonstration purposes that this over
simplified version was created.

3.	 Finally, let's look at a Java version of WikiService.
public class WikiService {

 private DataAccess dataAccess;

 public DataAccess getDataAccess() {
 return this.dataAccess;
 }

 public void setDataAccess(DataAccess dataAccess) {
 this.dataAccess = dataAccess;
 }

 public double[] statistics(String pageName) {
 double hits = dataAccess.hits(pageName);
 double ratio = hits / dataAccess.edits(pageName);
 return new double[]{hits, ratio};
 }
}

4.	 A common way this would have been wired with Spring Java can be found
in javaBeans.xml.
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/
beans
 http://www.springframework.org/schema/beans/spring-
beans-2.5.xsd">

 <bean id="dataAccess" class="MySqlDataAccess"/>

 <bean id="wikiService" class="WikiService">
 <property name="dataAccess" ref="dataAccess"/>
 </bean>
</beans>

Chapter 2

[45]

Note that this XML format is defined and managed by
Spring Java, not Spring Python.

5.	 Now that we can see all the parts of this pure Java application, the next step
is to start it up using Spring Python and Jython.
if __name__ == "__main__":
 from springpython.context import ApplicationContext
 from springpython.config import SpringJavaConfig
 ctx = ApplicationContext(SpringJavaConfig("javaBeans.xml"))
 service = ctx.get_object("wikiService")
 service.calculateWikiStats()

Thanks to Jython's ability to transparently create both Python and Java
objects, our Spring Python container can parse the object definitions in
javaBeans.xml.

6.	 As our development cycle continues, we find time to port MySqlDataAccess
to Python.

7.	 After doing so, we decide that we want to take advantage of more of
Python's features, like tuples, sets, and frozen sets. The Spring Java format
doesn't support these. Let's convert javaBeans.xml to Spring Python's XML
format and save it in production.xml.
<?xml version="1.0" encoding="UTF-8"?>
<objects xmlns="http://www.springframework.org/springpython/
schema/objects"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/
springpython/schema/objects
 http://springpython.webfactional.com/schema/context/
spring-python-context-1.0.xsd">

 <object id="data_access" class="Py.MySqlDataAccess"/>
 <object id="wiki_service" class="WikiService">
 <property name="dataAccess" ref="data_access"/>
 </object>
</objects>

The Heart of Spring Python—Inversion of Control

[46]

This is very similar to the Spring Java format, and that's the point. By
changing the header and replacing 'bean' with 'object', we can now use
XMLConfig.
if __name__ == "__main__":
 from springpython.context import ApplicationContext
 from springpython.config import XMLConfig
 ctx = ApplicationContext(XMLConfig("production.xml"))
 service = ctx.get_object("wiki_service")
 service.calculateWikiStats()

We now have access to more options such as the following:
 <property name="some_set">
 <set>
 <value>Hello, world!</value>
 <ref object="SingletonString"/>
 <value>Spring Python</value>
 </set>
 </property>

 <property name="some_frozen_set">
 <frozenset>
 <value>Hello, world!</value>
 <ref object="SingletonString"/>
 <value>Spring Python</value>
 </frozenset>
 </property>

 <property name="some_tuple">
 <tuple>
 <value>Hello, world!</value>
 <ref object="SingletonString"/>
 <value>Spring Python</value>
 </tuple>
 </property>

Chapter 2

[47]

8.	 Having migrated this much, we decide to start coding some tests. We want
to use the style shown at the beginning of this chapter where we swap out
MySqlDataAccess with StubDataAccess using an alternative configuration.
To avoid changing production.xml, we create an alternate configuration file
test.xml.
<?xml version="1.0" encoding="UTF-8"?>
<objects xmlns="http://www.springframework.org/springpython/
schema/objects"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/
springpython/schema/objects
 http://springpython.webfactional.com/schema/
context/spring-python-context-1.0.xsd">

 <object id="data_access" class="Py.StubDataAccess"/>
</objects>

9.	 Now let's code a test case using these two files for a specialized container. To
do that, we give ApplicationContext with a list of configurations.
import unittest
from springpython.context import ApplicationContext
from springpython.config import XMLConfig

class WikiServiceTestCase(unittest.TestCase):
 def testHittingWikiService(self):
 ctx = ApplicationContext([XMLConfig("production.xml"),
 XMLConfig("test.xml")])
 service = ctx.get_object("wiki_service")
 results = service.statistics("stub page")
 self.assertEquals(10.0, results[0])
 self.assertEquals(2.0, results[1])

The order of filenames is important. First, a list of definitions is read from
production.xml. Next, more definitions are read from test.xml. Any new
definitions with the same name as previous ones will overwrite the previous
definitions. In our case, we overwrite data_access with a reference to our
stub object.

The Heart of Spring Python—Inversion of Control

[48]

10.	 After all the success we have had with the Python platform, we decide
to migrate the container definitions to pure Python. First, let's convert
production.xml to WikiProductionAppConfig.
from springpython.config import PythonConfig, Object
from Py import MySqlDataAccess
import WikiService

class WikiProductionAppConfig(PythonConfig):
 def __init__(self):
 PythonConfig.__init__(self)

 @Object
 def data_access(self):
 return MySqlDataAccess()

 @Object
 def wiki_service(self):
 results = WikiService()
 results.dataAccess = self.data_access()
 return results

11.	 Let's mix this with test.xml.
import unittest
from springpython.context import ApplicationContext
from springpython.config import XMLConfig

class WikiServiceTestCase(unittest.TestCase):
 def testHittingWikiService(self):
 ctx = ApplicationContext([WikiProductionAppConfig(),
 XMLConfig("test.xml")])
 service = ctx.get_object("wiki_service")
 results = service.statistics("stub page")
 self.assertEquals(10.0, results[0])
 self.assertEquals(2.0, results[1])

We simply replace XMLConfig("production.xml") with
WikiProductionAppConfig(). ApplicationContext comfortably accepts any
combination of definitions stored in different formats. Spring Python's flexible
container gives us a fine grained control over how we store all our definitions.

We could continue and easily replace test.xml with something like
WikiTestAppConfig written in pure Python.

Chapter 2

[49]

This demonstrates how easy it is to convert things a piece at a time. We could have
stopped earlier based on what we wanted to keep in Java and what we wanted to
move to Python. If we move the rest of the Java parts to Python solutions, then we
may opt to use either Python or Jython. The point is that XML support makes it easy
to move from Java to Python with minimal impact.

It is important to realize that just because we were starting with
a Spring Java application doesn't mean this technique is only for
Spring-based Java projects. In the previous example, we quickly
moved past javaBeans.xml and wired the Java components
using Spring Python's XML format.

Summary
In this chapter we explored swapping test doubles using Inversion of Control (IoC).
This is not the only use case for IoC. Being able to easily reconfigure things with no
impact to the core business logic is of incredible value.

IoC allows us to move object creation to a centralized location. This empowers our
applications to be easier to inject alternatives. This makes things such as testing,
remoting, transactions, and security much easier.

Spring Python supports many formats including pure Python, Spring Python
XML, and Spring Java XML. This gives users a wide range of choices based on their
needs. By working with Jython, it is much easier to mix together Python and Java
code together.

Exchanging one object definition with another constitutes a useful service.
Throughout this book, other services will be explored. Just remember, at the
heart of those services is Spring Python's IoC container.

In this chapter, we learned:

IoC containers make it easy to isolate objects under test by swapping
production collaborators with test doubles
Detailed definitions of IoC and Dependency Injection
IoC containers positively impact our application by separating creation of
objects from their usage, and this helps modularize our applications
The Hollywood principle of Dependency Injection means that our objects
don't create their collaborators, but instead wait for the container to create
them and inject them into our object

•

•

•

•

The Heart of Spring Python—Inversion of Control

[50]

Spring Python has an ObjectContainer with the basic parts of an IoC
container. This container handles dependency resolution, setting properties,
and lazy initialiation
Spring Python has an ApplicationContext, that subclasses the container,
and provides extension points for developers to manipulate creation
of objects
While there may be debate about using IoC in dynamic languages, the
benefits of delegating object creation to a separate container is not confined
to just static languages
By using Spring Python's container with Jython, it is easy to mix Python
and Java components together. This tactic is even more productive for
applications that were already built with Spring Java

In the next chapter, we will look at adding services to existing code using Aspect
Oriented Programming (AOP).

•

•

•

•

Adding Services to APIs
In the previous chapter, we took a look at Spring Python's Inversion of Control
container, and used it to exchange production objects with test doubles. One of the
most prolific paradigms used today is Object Oriented Programming (OOP) which
uses classes. Classes serve as representations of the domain and business problems
that we solve. But this isn't enough!

We also need robust features such as caching, storage and retrieval, transactions,
security, and logging. These services are orthogonal to the business problems that
we must solve.

Mixing classes with these orthogonal services can quickly become costly to code
correctly as well as maintain. Aspect Oriented Programming (AOP) solves these
orthongal problems through a new type of modularization called an aspect.

In this chapter, we will learn:

AOP from 10,000 feet
Adding caching to Spring Python objects
Extending the example by adding performance and security advisors
How AOP is a paradigm and not just a library
The distinct features of Spring Python's AOP, compared to other libraries as
well as Python language features
The risks of AOP and how to mitigate them by showing how to test
our aspects
Some advice about applying Advice

•

•

•

•

•

•

•

Adding Services to APIs

[52]

AOP from 10,000 feet
Throughout this chapter, we will explore examples of AOP and how to use them. To
do that, it's important that we learn some basic definitions.

Crosscutting problems impact more than one hierarchy of classes. AOP
efficiently solves these problems.

Commonly cited examples of crosscutting problems include security,
transactions, tracing, auditing, and logging. What do you think makes these
concerns crosscutting?

Crosscutting versus hierarchical
A common cycle of work often starts with a single issue. How would you solve a
single, concrete, well defined issue? By coding a single, concrete solution! We usually
don't think of reuse at this time. We are more likely to think of reuse when we need
to solve a newer problem using an already-written block of code.

When we are solving another problem and trying to reuse a block of code, we start
to see how we can make adjustments and abstractions. We don't just abstract things
to reduce duplication of code. We are also adjusting our definition of the business
solution with a more refined, higher level concept. As new requirements come in,
our business solution hierarchy evolves.

As we continue solving business issues, it is not unusual to run into infrastructure
issues. For example, the need to wrap operations with transactions may arise even
though the customer may not have asked for it.

Infrastructure issues can easily crosscut hierarchies of classes. SQL transactions are
the perfect example. Manually coding the transactional pattern in every method
that needs it would lead to a lot of code duplication. And then what do we do when
the transactional requirements change? Rewrite all impacted methods? Unforeseen
changes in requirements could easily accrue a of work as we maintain the code. And
to top it off, what are the odds that we will code the transaction pattern correctly in
every method?

AOP provides another means to address this issue without using copy-and-paste
tactics. We will explore this is in more detail throughout this chapter.

Chapter 3

[53]

Crosscutting elements
The following terms describe the crosscutting elements that make up aspect
oriented programming:

Join point A Join point is an identifiable point in the execution of a
program. This is the place where crosscutting actions are
woven in.

Pointcut A Pointcut is a program construct that selects join points and
collects context at that point.

Advice Advice is code that is to be executed at a join point that has
been selected by a pointcut.

Aspect An Aspect is to AOP what a class is to OOP. It is the central
programming construct where a set of pointcuts and advice are
defined.

Advisor/
interceptor

An Advisor or interceptor is Spring Python's mechanism
for implementing an aspect.

With these terms defined, we will dig in through the rest of this chapter to explore
crosscutting problems and their solutions.

Weaving crosscutting behavior
As stated earlier, aspects contain pointcuts and their associated advice. Applying
aspects to our code is known as weaving.

Different systems provide various ways to weave. AspectJ is a Java-based AOP
solution that has both static and dynamic weaving.

AspectJ is the trail blazer of AOP and targets the Java platform. Spring
Python doesn't necessarily integrate with AspectJ, nor attempt to mimic
everything AspectJ does. Instead, Spring Python looks at AspectJ as a
mature example of implementing AOP.
For more information about AspectJ, you could read AspectJ in Action
by Ramnivas Laddad. While that book focuses on AspectJ and Java, it also
has much more detail about the concepts of AOP.

Static weaving is applied at same time that code compilation occurs. Dynamic
weaving is applied to already compiled code.

Adding Services to APIs

[54]

Spring Python provides dynamic weaving through the use of proxies. Proxies are
configured using the IoC container. Calls that are normally targeted at the object
are instead routed through the proxy. The proxy evaluates possible pointcuts and
applies Advice. This is also known as intercepting.

Adding caching to Spring Python objects
 In this example, we will enhance the wiki engine that we have been developing by
writing a service that retrieves wiki text from the database and converts it to HTML.
Then, to limit the load on our infrastructure, we will add caching support.

1.	 First, we need to code our service. The service will call a data access
component to retrieve the wiki text stored in our database. Then we will
convert it to HTML and hand it back to the caller.
class WikiService(object):
 def __init__(self, data_access):
 self.data_access = data_access

 def get_article(self, article):
 return self.data_access.retrieve_wiki_text(article)

 def store_article(self, article):
 self.data_access.store_wiki_text(article)

 def html(self, text):
 pass # return wiki text converted to HTML

 def statistics(self, article):
 hits = self.data_access.hits(article)
 return (hits, hits /
 len(self.data_access.edits(article)))

Here we have a WikiService similar to the one we used in our IoC example.
In addition to having a statistics method, this version is able to retrieve
wiki text from the database and format it into HTML. It can also store edited
wiki articles in the database. In this example we aren't particularly concerned
with the code that transforms wiki text to HTML and so we've omitted it.

Chapter 3

[55]

2.	 Let's put our WikiService in a Spring Python IoC container, so that it can be
used as part of our wiki application.
from springpython.config import PythonConfig
from springpython.config import Object

class WikiProductionAppConfig(PythonConfig):	
 def __init__(self):
 super(WikiProductionAppConfig, self).__init__()

 @Object
 def data_access(self):
 return MysqlDataAccess()

 @Object
 def wiki_service(self):
 return WikiService(self.data_access())

This should look familiar. It is the same IoC container definition we used in
the previous chapter. The following block diagram shows the components of
our application, with the Wiki's view layer calling into WikiService, which
in turn calls data_access, finally reaching the database.

Adding Services to APIs

[56]

3.	 Let's assume that our wiki engine is now being used for a very popular site
with lots of articles and users. Multiple requests for the same article between
edits are likely going to be common and will tax the database server with a
database query every time an article is retrieved. To limit that performance
hit, let's code a simple caching solution.
class WikiServiceWithCaching(object):
 def __init__(self, data_access):
 self.data_access = data_access
 self.cache = {}

 def get_article(self, article):
 if article not in self.cache:
 self.cache[article] =
 self.data_access.retrieve_wiki_text(article)
 return self.cache[article]

 def store_article(self, article):
 del self.cache[article]
 self.data_access.store_wiki_text(article)

 def html(self, text):
 pass # return wiki text converted to HTML

 def statistics(self, article):
 hits = self.data_access.hits(article)
 return (hits, hits /
 len(self.data_access.edits(article)))	

To handle multiple requests for the same article, WikiServiceWithCaching
stores the wiki text in an internal dictionary called cache. This cache is then
checked for the requested article before falling back to the database if the
article is not in the cache. The cache is cleared whenever new edits are made.
Finally the statistics don't have any caching at all.

To bring in our new caching wiki service, we just need to change the
wiki_service declaration in our IoC container definition.
class WikiProductionAppConfig(PythonConfig):
 def __init__(self):
 super(WikiProductionAppConfig, self).__init__()

 @Object
 def data_access(self):

Chapter 3

[57]

 return MysqlDataAccess()

 @Object	
 def wiki_service(self):
 return WikiServiceWithCaching(self.data_access())

This idea is pretty simple and should lessen the load on our database server.
However, by mixing caching with wiki services we have violated the Single
Responsibility Principle (SRP): a class should have one (and only one),
reason to change. Changes to one of these functions could break the other. It
is also harder to isolate these functions for testing and, ultimately, makes the
code harder to read and understand.

4.	 Let's decouple these two concerns, maintaining the wiki and caching, by
pulling our caching mechanism into a separate class and then delegating to
our original WikiService.
class CachedService(object):
 def __init__(self, delegate):
 self.cache = {}
 self.delegate = delegate

 def get_article(self, article):
 if article in self.cache:
 return self.cache[article]
 else:
 return self.delegate.get_article(article)

 def store_article(self, article):
 del self.cache[article]
 self.delegate.store_article(article)

 def html(self, text):
 return self.delegate.html(text)

 def statistics(self, article):
 return self.delegate.statistics(article)

 	Now we need to update our IoC configuration.

class WikiProductionAppConfig(PythonConfig):
 def __init__(self):
 super(WikiProductionAppConfig, self).__init__()

Adding Services to APIs

[58]

 @Object
 def data_access(self):
 return MysqlDataAccess()

 @Object
 def wiki_service(self):
 return CachedService(WikiService(self.data_access()))

Our architecture has changed slightly, with the Wiki view layer calling into
our CachedService.

Now the SRP is obeyed as each class has only one responsibility. One
class handles the caching by passing off all necessary WikiService calls to
delegate. However, it isn't very practical. While CachedService (Code in
Text) separates caching logic from WikiService, our usage of an adapter
introduces some ugly constraints. The CachedService must have the same
interface as the WikiService in order to handle its requests and we even had
to code a passthrough for statistics. CachedService is also too specialized
and wouldn't work for any generalized solution. Every time we add another
method to WikiService, we have to change CachedService, giving us a
tightly coupled pair of classes. Let's fix that now.

Chapter 3

[59]

5.	 Let's use Spring Python to code an Interceptor that not only separates
caching from wiki text management, but is also general enough to be reused
in other places.
from springpython.aop import *

class CachingInterceptor(MethodInterceptor):
 def __init__(self):
 self.cache = {}

 def invoke(self, invocation):
 if invocation.method_name.startswith("get"):
 if invocation.args not in self.cache:
 self.cache[invocation.args] =
 invocation.proceed()
 return self.cache[invocation.args]

 elif invocation.method_name.startswith("store"):
 del self.cache[invocation.args]
 invocation.proceed()

CachingInterceptor defines a Spring Python aspect
that has all the caching functionality and none of the wiki
functionality. It contains both Advice (the caching functionality)
and a pointcut (only applies to methods starting with get).

6.	 To use CachingInterceptor, we must create a Spring Python AOP proxy
with an instance of our aspect as well as an instance of WikiService.
class WikiProductionAppConfig(PythonConfig):
 def __init__(self):
 super(WikiProductionAppConfig, self).__init__()

 @Object
 def data_access(self):
 return MysqlDataAccess()

 @Object
 def wiki_service(self):
 return ProxyFactoryObject(
 target=WikiService(self.data_access()),
 interceptors=CachingInterceptor())

Adding Services to APIs

[60]

By creating a proxy and wiring it with our aspect, we have dynamically
woven the aspect into the code. In our situation, we have created an instance
of Spring Python's ProxyFactoryObject to combine WikiService with
CachingInterceptor.
By moving the Spring Python object wiki_service from WikiService to
the ProxyFactoryObject, our call sequence now flows through our new
interceptor, as shown in the following diagram.

Now, instead of having a specialized cache handler, we have a proxy that
links to our generic caching aspect. Whenever the view layer submits a
request to wiki_service, the calls get routed to CachingInterceptor.
The key difference between CachingInterceptor and the earlier
CachedService is how Spring Python bundles up all the information of the
original method call into the invocation argument and dispatches it to the
invoke method of CachingInterceptor. This allows us to manage entering
and exiting from any method on WikiService in one place. This behavior is
known as advising the target.

Chapter 3

[61]

In our example, CachingInterceptor checks if the target method
name starts with get. If so, it checks the cache, using the target method's
arguments as the key (in our case, the article name). If the arguments are
not found in the cache, CachingInterceptor calls WikiService through
invocation.proceed() as if we had called it directly. The results are
stored in the cache, and then returned to the view layer. If the target
method name starts with store, the cache entry is deleted followed by
invocation.proceed().

7.	 ProxyFactoryObject routes all method requests through our aspect.
However, CachingInterceptor can't handle a call to statistics, because it
doesn't start with get or store. To deal with this, let's insert another piece of
advice that only sends get and store calls to CachingInterceptor, and all
others directly to WikiService.
class WikiProductionAppConfig(PythonConfig):	
 def __init__(self):
 super(WikiProductionAppConfig, self).__init__()

 @Object
 def data_access(self):
 return MysqlDataAccess()

 @Object	
 def wiki_service(self):
 advisor = RegexpMethodPointcutAdvisor(
 advice=[CachingInterceptor()],
 patterns=[".*get.*", ".*store.*"])
 return ProxyFactoryObject(
 target=WikiService(self.data_access()),
 interceptors=advisor)

Spring Python's RegexpMethodPointcutAdvisor is an out-of-the-box advisor that
uses a set of regular expressions to define its pointcuts.

As mentioned earlier, an advisor is Spring Python's implementation
of an aspect. A pointcut is a definition of where to apply an aspect's
Advice. In this case, the pointcut is defined as a regular expression. But
not all pointcuts require regular expressions.

Adding Services to APIs

[62]

Each pattern is checked against the call stack's complete canonical method name
(<package>.<class>.<method>) until a match is found (or the patterns are
exhausted). If there is a match, the list of advisors is applied. Otherwise, it bypasses
the list of advisors and instead directly calls the target. The following diagrams
shows how these components are chained together; the first one depicts the
sequence of requesting a specific article for the first time:

Chapter 3

[63]

In the previous sequence of steps, the method name is checked to see if it matches the
pattern for caching. Assuming that it does, it is forwarded to the caching interceptor.
Then the cache is checked. If it hasn't been cached yet, it is fordward to WikiService.
After reaching WikiService, the results are cached and then returned. The next
diagram shows the sequence of steps when that article is requested again:

In this case, we again check the same regular expression pattern to see if the method
qualifies for caching. Since it does, we next check the cache. Because it's there, we
don't have to call WikiService, saving us from having to make a database call.

Adding Services to APIs

[64]

The final sequence shows what happens if we invoke a method that doesn't match
our caching pattern.

In this situation, we again exercise the pattern match. But because it doesn't match,
RegexpMethodPointcutAdvisor falls through to the target object, bypassing the
caching advisor. We can go straight to WikiService and find up-to-date statistics.

It is important to realize that while the caching interceptor reduces hits
to the database, there is still an overhead cost of pattern matching on
the method name. This type of overheard cost must be included in any
end-to-end performance analysis.

This solves the problem of cleanly applying a caching service to the API of our wiki
engine, without breaking the SRP. By using Spring Python's AOP module, we have
been able to code a generic, re-usable caching module and plugged it in with no
impact to our wiki API.

Chapter 3

[65]

Applying many advisors to a service
Towards the end of coding our caching solution, we used
RegexpMethodPointcutAdvisor to conditionally apply a list of advisors based on
regular expression patterns. Spring Python's AOP solution supports applying more
than one advisor to an object. This makes it easy to mix multiple services together for
different objects, such as caching, transactions, security, and logging.

Spring Python makes it easy to add a service on top of an API. There is no limit on
how many places a piece of advice can be reapplied. An example of a more complex
and realistic configuration is shown below:

class WikiProductionAppConfig(PythonConfig):	
 def __init__(self):
 super(WikiProductionAppConfig, self).__init__()

 @Object
 def data_access(self):
 return MysqlDataAccess()

 @Object
 def security_advisor(self):
 return RegexpMethodPointcutAdvisor(
 advice=[SecurityInterceptor()],
 patterns=[".*store.*"])

 @Object
 def perf_advisor(self):
 return RegexpMethodPointcutAdvisor(
 advice=[PerformanceInterceptor()],
 patterns=[".*get.*"])

 @Object
 def caching_advisor(self):
 return RegexpMethodPointcutAdvisor(
 advice=[CachingInterceptor()],
 patterns=[".*get.*", ".*store.*"])

 @Object
 def wiki_service(self):
 return ProxyFactoryObject(
 target=WikiService(self.data_access()),
 interceptors=[self.security_advisor(),
 self.perf_advisor(),
 self.caching_advisor(),
 self.perf_advisor()])

Adding Services to APIs

[66]

In this example, wiki_service has several advisors: security_advisor, perf_
advisor, and caching_advisor. They are chained together in a stack, with
perf_advisor being used twice. The following diagram shows the call stack of
advisors and their interceptors, followed by a detailed explanation of what each
advisor does.

Chapter 3

[67]

security_advisor is an instance of RegexpMethodPointcutAdvisor that applies
SecurityInterceptor against any method that begins with store.

class SecurityInterceptor(MethodInterceptor):
 def invoke(self, invocation):
 if user.has_access(invocation):
 return invocation.proceed()
 else:
 raise SecurityException("Unauthorized Access")

SecurityInterceptor checks if the user's credentials are adequate to complete this
operation. If access is granted, it calls invocation.proceed(), which flows on to
the first instance of perf_advisor. If access is denied, it raises a security exception,
breaking out of the entire call stack, leaving the caller to handle the exception. In
this example, user is assumed to be a global variable containing the current
user's profile.

Adding Services to APIs

[68]

perf_advisor is an instance of RegexpMethodPointcutAdvisor that applies
PerformanceInterceptor against any methods that begin with get. While there
is only one instance of perf_advisor, it is used twice in the chain of advisors. This
means it will be used twice during the normal flow into WikiService.

import time
class PerformanceInterceptor(MethodInterceptor):
 def invoke(self, invocation):
 start = time.time()
 results = invocation.proceed()
 stop = time.time()
 print "Method took %2f seconds" % (stop-start)

 return results

PerformanceInterceptor measures the performance of a method by capturing
system time, calling invocation.proceed(), and then capturing system time again
when the invocation is complete. It then prints out the difference in times on the
screen, and finally returns back to the calling advisor. The first time it is used is
before caching_advisor, and the second time after caching_advisor. This
allows measuring both cached and un-cached calls, measuring relief provided
by the caching.

We've already seen how the CachingInterceptor works.

While the entire flow involved in making a call to WikiService is much more
complicated than our earlier example, it was easy to quickly define extra services
and apply them to our WikiService API. Each interceptor is neat and clean, and
easy to understand. This helps lower maintenance costs. The interceptors are nicely
decoupled from each other as well as WikiService, making it easier to mix and
match aspects to suit our requirements. The exact sequence in which everything is
wired together is conveniently kept in one place, our IoC container definition. This
is shown by how we used perf_advisor twice, measuring performance with and
without caching. This collectively demonstrates how easy it is to build new services
and apply them to existing APIs.

Performance cost of AOP
AOP isn't free. There is a certain overhead cost involved with wrapping a target
object with a Spring Python AOP proxy and performing checks on method calls.
This clearly depends on how much advice you are using and what your pointcuts
are. Using lots of regular expressions can get expensive, while simply applying an
interceptor to every method with no conditional checks has a smaller cost.

Chapter 3

[69]

There is also a different impact on whether or not the advised target object is inside a
tight loop.

It is important to measure costs before optimizing. Premature
optimization can result in wasted effort with little benefit. Using
a Python profiler (or Java profiler when using Jython) is key to
identifying performance bottlenecks.

AOP is a paradigm, not a library
There are many articles about AOP. Developers have discussed whether or not
Python needs an AOP library.

Aspect oriented programming is not just a library. It's a paradigm, just
like object oriented programming and functional programming.

The key goal that AOP strives to solve is writing crosscutting solutions in places
where OOP can't. OOP solves problems where the solution can be inherited. AOP is
transversal whilst OOP is vertical. Either way, the goals are the same: "DRY (Don't
Repeat Yourself)" and "obey the SRP". This also is described by the 1:1 Principle,
which states that one requirement has one and only one manifestation in the
implemented code. This is a combination of the DRY and SRP principles.

Developers resort to copy-and-paste style coding when it comes to adding logging,
caching, transactions, etc. This code which spans across multiple service classes is
repetitive and represents a single strategy. Whenever there is a change the change
must be repeated everywhere, and this is risky and costly.

In our example, we used Spring Python to code an interceptor and applied it using
pointcuts. This allowed us to avoid repetitive code while still keeping things simple
and nicely encapsulated. This has the following benefits.

Any time a new method is added to WikiService, we can check the IoC
configuration to see if the CachingInterceptor applies. There is only one
place to check, meaning it is easy to check the pointcuts
We can easily tune the pointcuts without touching CachingInterceptor.
This demonstrates how the advice is cleanly decoupled from the pointcuts

•

•

Adding Services to APIs

[70]

In our more complex configuration we introduced
PerformanceInterceptor, where we observed which methods are taking
the longest and evaluate them for caching. This was relatively easy to add,
because it required no interference with the other interceptors or their
pointcuts. This suggests that future updates should be relatively easy
to make

With advice decoupled from pointcuts, it is easy to add new pointcuts and new
advice, thereby updating our crosscutting behavior. And all of this can be done
without impacting the core API we are enhancing.

We have shown that AOP supports loosely coupling solutions. We have also looked
at how it is easy to easily apply advice with precision, offering high cohesion. These
factors will help us by making it easy to respond to changes we know are coming.

The following diagram shows a high-level view of how the components are
wired together.

Each interceptor has its code is cleanly wrapped by an advisor with its pointcuts,
forming well defined aspects. Each aspect is also separated from the business logic of
the WikiService. With this separation of concerns, it is easy to make changes with
minimal risk. It is also easy to add new advisors and change the order of execution.

•

Chapter 3

[71]

Distinct features of Spring Python's AOP
module
Spring Python isn't the only means to code an AOP solution. There are other libraries
available, such as Aspyct and aspects.py. Python's rich feature set also provides
the ability to code in an AOP-like fashion, using things like meta-class programming
and decorators.

It is important to note what makes Spring Python's AOP solution distinct. While I
have tried to include some high-level comparison with Aspyct and aspects.py, the
reader is encouraged to visit these projects and compare the features in more detail.

Difference Description
Advice applicable to
instances of objects.

Spring Python gives the developer the option of applying
advice to individual instances of objects, without requiring
all instances to adopt the behavior. This gives the developer
maximum flexibility. The tradeoff is that if this behavior is
desired for all instances, then the developer is responsible to
apply it to all instances.
Aspyct allows you to define aspects and apply them to
functions. The behavior permanently modifies the function,
and this impacts all instances.
The ability to wrap functions around methods is offered
by aspects.py. This would apply to all instances. It also
supports wrapping a subset of instances in this fashion.

No metaclass
programming.

For certain problems, metaclass programming may
be the easiest solution. For other problems, metaclass
programming isn't what is needed. It is an alternative
paradigm from standard OOP and procedural development
practices. In OOP, classes are templates for creating objects.
Metaclasses are templates for creating classes. This means
that some crosscutting problems may easily fit metaclasses
programming, while other problems do not.
Spring Python's AOP solution doesn't require learning a
complex concept. Instead, it is based on creating classes and
using IoC to define pointcuts that apply the advice.

Adding Services to APIs

[72]

Difference Description
Don't need access to
source code.

Metaclass programming requires access to the source code.
So does applying decorators defined in an AOP library.
Both of these options make it harder to apply advice to
a 3rd party library, since developers are less likely to take
on maintaining patches.
Aspyct and aspects.py don't require altering the source
code. However, Aspyct's primary means of application
involves using decorators, which would require access to the
source code.
Considering how Spring Python leverages its IoC container to
apply advice, it is easy to utilize classes from any library and
apply independent advisors.

No monkey patching. Monkey patching is where an object's functions are added,
removed, or replaced at runtime. While some people consider
monkey patching a valuable tool, it must be used with care.
There is a certain level of associated risk with altering
the class definitions of libraries, which may result in
unpredictable bugs.
Spring Python utilizes proxies to merge target objects with
interceptors. This makes it easy to add and remove advice,
while maintaining a nice separation between services and
target APIs. Later on in this chapter, automated testing of
aspects will be discussed.

The risks of AOP
AOP carries its own risks. When some of the functionality (in our case, caching), is
moved out of our core code and into an interceptor, it may not be apparent when the
caching logic is active. We may not even be aware that there is caching in the system.
But the same could be said about OOP practices, where commonly used functionality
is moved to other classes up or down the inheritance hierarchy. All of these coding
styles are better served by the right set of tools, developer training, documentation,
automated test suites, and communication amongst the development team.
Since AOP is relatively new compared to OOP, the tool sets aren't as mature
and developers are not as familiar with the concepts.

But this doesn't mean AOP should be abandoned. Instead, it should be evaluated just
like any other technology, language, and tool suite used by the team.

Chapter 3

[73]

AOP is part of the Spring triangle
The following diagram—known as the Spring triangle—encompasses the key
principles used by Spring Python:

Using Spring Python's IoC container we have been able to take a simple
WikiService object and layer on a CachingService through AOP. By using
Dependency Injection, we have kept WikiService clear of any Spring Python
dependencies. To read the details of this, we just look up the blue prints of our IoC
container in WikiProductionAppConfig. Spring also utilized Portable Service
Abstractions, such as DatabaseTemplate, to reduce the need to work with low
level APIs. Later on in this book, we will revisit the Spring triangle to discuss this
in more detail.

Testing our aspects
If you're a professional software developer, you'll be feeling a little nervous at this
point. We've written quite a bit of code, in a number of aspects, and things have 'just
worked'. We all know this is rarely the case.

Aspects are just like any other piece of code, they need to be tested. To mitigate risks,
and to keep to best practices, we should write automated tests for our aspects. There
are different types of tests to pursue. For our caching example, it would be useful to
isolate the caching functionality to make sure it meets our requirements; commonly
referred to as unit testing. Also, ensuring that the right advice is being applied to the
right functions is critical to confirming that AOP is working and this can be exercised
using an integration test.

Adding Services to APIs

[74]

Decoupling the service from the advice
In this chapter we have developed an aspect that generalizes caching. We showed
a later enhancement with several more aspects. For the rest of this example, we are
going to revert to the earlier configuration that has only our CachingInterceptor
plugged in.

Our aspect happens to be tightly coupled with its caching service. Even though
the caching solution we have coded is simple, let's assume that we are planning
to replace it with something more sophisticated. To make it easier to code and
test enhancements to our caching service, let's go ahead and break it out into a
separate module.

1.	 First, let's rewrite the advice so that it is using a caching service, instead of
handling the caching itself.
class CachingInterceptor(MethodInterceptor):
 def __init__(self, caching_service=None):
 self.caching_service = caching_service

 def invoke(self, invocation):
 if invocation.method_name.startswith("get"):
 if invocation.args not in self.caching_service.keys():
 self.caching_service.store(invocation.args,
 invocation.proceed())
 return self.caching_service.get(invocation.args)

 elif invocation.method_name.startswith("store"):
 self.caching_service.del(invocation.args)
 invocation.proceed()

2.	 Next, let's move the caching logic into a separate class.
class CachingService(object):
 def __init__(self):
 self.cache = {}

 def keys(self):
 return self.cache.keys

 def store(self, key, value):
 self.cache[key] = value

 def get(self, key):

Chapter 3

[75]

 return self.cache[key]

 def del(self, key):
 del self.cache[key]

3.	 This requires an update to our IoC blue prints, so that we inject an instance of
CachingService into the CachingInterceptor.
class WikiProductionAppConfig(PythonConfig):	
 def __init__(self):
 super(WikiProductionAppConfig, self).__init__()

 @Object
 def data_access(self):
 return MysqlDataAccess()

 @Object
 def caching_service(self):
 return CachingService()

 @Object
 def interceptor(self):
 return CachingInterceptor(self.caching_service())

 @Object	
 def wiki_service(self):
 advisor = RegexpMethodPointcutAdvisor(
 advice=[self.interceptor()],
 patterns=[".*get.*", ".*store.*"])
 return ProxyFactoryObject(
 target=WikiService(self.data_access()),
 interceptors=advisor)

Adding Services to APIs

[76]

The following diagram shows how we have pulled CachingService into a
separate component, and promoted it along with CachingInterceptor to
fully named Spring Python objects.

Testing our service
Now that we have pulled our caching service into a separate module, it is easy to
write some automated tests.

1.	 Before we write any tests, let's create a testable version of the IoC container
that isolates us from any layers above and below WikiService and the
ProxyFactoryObject that contains our aspect.
class WikiTestAppConfig(WikiProductionAppConfig):
 def __init__(self):
 super(WikiTestAppConfig, self).__init__()

Chapter 3

[77]

 @Object
 def data_access(self):
 return StubDataAccess()

2.	 This replaces MysqlDataAccess with StubDataAccess which runs quicker,
avoids database contention with other developers, and has pre-formatted
responses for each method. With Python's unit test framework taking the
place of the view layer as the caller, we have isolated our code base
for testing.

3.	 Let's write a test that verifies the values of the caching service.
class CachedWikiTest(unittest.TestCase):
 def testCachingService(self):
 context = ApplicationContext(WikiTestAppConfig())
 caching_service = context.get_object("caching_service")
 self.assertEquals(len(caching_service.keys()), 0)
 caching_service.store("key", "value")
 self.assertEquals(len(caching_service.keys()), 1)
 self.assertEquals(caching_service.get("key"), "value")
 caching_service.del("key")
 self.assertEquals(len(caching_service.keys()), 0)

Adding Services to APIs

[78]

In this test method, we fetch a copy of caching_service from our IoC container.
Then, we verify it's empty. Next, we store a simple key/value pair, and verify the
size and content of the cache. Finally, we exercise caching_service's del() method,
and verify that the cache has been properly emptied.

I admit that CachingService is a bit over engineered, considering it's just a Python
dictionary. I normally wouldn't write unit tests for language-level structures
like this. However, the purpose of this example is to show that we can move our
solution into a separate module, free of any AOP machinery, and then enhance
it with more sophisticated features. We could modify it to be a distributed cache
that would persist across multiple nodes without impacting either WikiService or
CachingInterceptor.

Testing the caching service is valuable because it keeps bugs from creeping back into
the code base. But we also need to know that our aspect is being correctly woven
with the Wiki API that we have coded.

Confirming that our service is correctly
woven into the API
We have confirmed that the caching service works by isolating it and writing an
automated test. The final task we need to complete is verifying that we have wired
the caching service into our API correctly.

Let's add another test method to CachedWikiTest showing that WikiService is
being properly advised.

 def testWikiServiceWithCaching(self):
 context = ApplicationContext(WikiTestAppConfig())
 caching_service = context.get("caching_service")
 self.assertEquals(len(caching_service.keys()), 0)
 wiki_service = context.get_object("wiki_service")
 wiki_service.statistics("Spring Python")
 self.assertEquals(len(caching_service.keys()), 0)
 html = wiki_service.get_article("Spring Python")
 self.assertEquals(len(caching_service.keys()), 1)
 wiki_service.store_article("Spring Python")
 self.assertEquals(len(caching_service.keys()), 0)

Chapter 3

[79]

In this test, we fetch a copy of caching_service from our IoC container and verify
that it's empty. Next, we fetch a copy of wiki_service from our IoC container.
Inside our IoC container, we know that caching_service is linked to wiki_service
through some AOP advice. We call statistics, and assert that the cache is still
empty, since the advice doesn't apply to that method. Next, we call get_article,
and verify that the cache has a new entry. Finally, we call store_article, and verify
that it cleared the cache.

Combining this test with the earlier one, we clearly show that our
CachingInterceptor advice is working as expected. Having used the IoC container,
we have decoupled things nicely, and it is now easy to adjust one class with no
impact to the other.

Summary
We have explored how to solve cross cutting problems using aspect oriented
programming. These problems include things like caching, security, and
performance measuring; problems that all require ugly copy-paste solutions,
if we resort to standard OOP practices.

Spring Python's AOP module helps us to uphold the DRY and SRP principles.
This reduces maintenance costs and helps us to handle future changes that are
always coming.

In this chapter, we learned:

How to add caching to Spring Python objects
How to extend the example by adding performance and security advisors
AOP is a paradigm, and not just a library
The distinct features of Spring Python's AOP, compared to other libraries as
well as Python language features
The risks of AOP and how to mitigate them by automated testing
Some tips about applying Advice

In the next chapter, we will look at easily writing SQL queries using Spring Python's
DatabaseTemplate.

•

•

•

•

•

•

Easily Writing SQL Queries
with Spring Python

Many of our applications contain dynamic data that needs to be pulled from and
stored within a relational database. Even though key/value based data stores
exist, a huge majority of data stores in production are housed in a SQL-based
relational database.

Given this de facto requirement, it improves developer efficiency if we can focus on
the SQL queries themselves, and not spend lots of time writing plumbing code and
making every query fault tolerant.

In this chapter, we will learn:

The classic SQL query issue that affects APIs in many modern
programming languages
Using Spring Python's DatabaseTemplate to reduce query
management code
Comparing DatabaseTemplate with Object Relational Mappers (ORMs)
Combining DatabaseTemplate with an ORM to build a robust application
Testing queries with mocks

•

•

•

•

•

Easily Writing SQL Queries with Spring Python

[82]

The classic SQL issue
SQL is a long existing standard that shares a common paradigm for writing queries
with many modern programming languages (including Python). The resulting effect
is that coding queries by hand is laborious. Let's explore this dilemma by writing a
simple SQL query using Python's database API.

1.	 First, let's create a database schema for our wiki engine so that we can store
and retrieve wiki context.
DROP TABLE IF EXISTS article;

CREATE TABLE article (
 id serial PRIMARY KEY,
 title VARCHAR(11),
 wiki_text VARCHAR(10000)
);

INSERT INTO article
(id, title, wiki_text
VALUES
(1,
 'Spring Python Book',
 'Welcome to the [http://springpythonbook.com Spring Python] book,
where you can learn more about [[Spring Python]].');
INSERT INTO article
(id, title, wiki_text
VALUES
(2,
 'Spring Python',
 '\'\'\'Spring Python\'\'\' takes the concepts of Spring and

applies them to world of [http://python.org Python].');

2.	 Now, let's write a SQL statement that counts the number of wiki articles in
the system using the database's shell.
SELECT COUNT(*) FROM ARTICLE

Chapter 4

[83]

3.	 Now let's write some Python code that will run the same query
on an sqlite3 database using Python's official database API
(http://www.python.org/dev/peps/pep-0249).
import sqlite3

db = sqlite3.connect("/path/to/sqlite3db")

cursor = db.cursor()
results = None
try:
 try:
 cursor.execute("SELECT COUNT(*) FROM ARTICLE")
 results = cursor.fetchall()
 except Exception, e:
 print "execute: Trapped %s" % e
finally:
 try:
 cursor.close()
 except Exception, e:
 print "close: Trapped %s, and throwing away" % e

return results[0][0]

That is a considerable block of code to execute such a simple query. Let's
examine it in closer detail.

4.	 First, we connect to the database. For sqlite3, all we needed was a path.
Other database engines usually require a username and a password.

5.	 Next, we create a cursor in which to hold our result set.
6.	 Then we execute the query. To protect ourselves from any exceptions, we

need to wrap this with some exception handlers.
7.	 After completing the query, we fetch the results.
8.	 After pulling the results from the result set into a variable, we close

the cursor.
9.	 Finally, we can return our response. Python bundles up the results into an

array of tuples. Since we only need one row, and the first column, we do a
double index lookup.

Easily Writing SQL Queries with Spring Python

[84]

What is all this code trying to find in the database? The key statement is in a
single line.

 cursor.execute("SELECT COUNT(*) FROM ARTICLE")

What if we were writing a script? This would be a lot of work to find one piece of
information. Granted, a script that exits quickly could probably skip some of the
error handling as well as closing the cursor. But it is still is quite a bit of boiler plate
to just get a cursor for running a query.

But what if this is part of a long running application? We need to close the cursors
after every query to avoid leaking database resources. Large applications also have
a lot of different queries we need to maintain. Coding this pattern over and over can
sap a development team of its energy.

Parameterizing the code
This boiler plate block of code is a recurring pattern. Do you think we could
parameterize it and make it reusable? We've already identified that the key piece
of the SQL statement. Let's try and rewrite it as a function doing just that.

import sqlite3

def query(sql_statement):
 db = sqlite3.connect("/path/to/sqlite3db")

 cursor = db.cursor()
 results = None
 try:
 try:
 cursor.execute(sql_statement)
 results = cursor.fetchall()
 except Exception, e:
 print "execute: Trapped %s" % e
 finally:
 try:
 cursor.close()
 except Exception, e:
 print "close: Trapped %s, and throwing away" % e

 return results[0][0]

Chapter 4

[85]

Our first step nicely parameterizes the SQL statement, but that is not enough. The
return statement is hard coded to return the first entry of the first row. For counting
articles, what we have written its fine. But this isn't flexible enough for other queries.
We need the ability to plug in our own results handler.

import sqlite3

def query(sql_statement, row_handler):
 db = sqlite3.connect("/path/to/sqlite3db")

 cursor = db.cursor()
 results = None
 try:
 try:
 cursor.execute(sql_statement)
 results = cursor.fetchall()
 except Exception, e:
 print "execute: Trapped %s" % e
 finally:
 try:
 cursor.close()
 except Exception, e:
 print "close: Trapped %s, and throwing away" % e

 return row_handler(results)

We can now code a custom handler.

def count_handler(results):
 return results[0][0]

query("select COUNT(*) from ARTICLES", count_handler)

With this custom results handler, we can now invoke our query function, and feed it
both the query and the handler. The only thing left is to handle creating a connection
to the database. It is left as an exercise for the reader to wrap the sqlite3 connection
code with a factory solution.

What we have coded here is essentially the core functionality of DatabaseTemplate.
This method of taking an algorithm and parameterizing it for reuse is known as the
template pattern. There are some extra checks done to protect the query from SQL
injection attacks.

Easily Writing SQL Queries with Spring Python

[86]

Replacing multiple lines of query code with
one line of Spring Python
Spring Python has a convenient utility class called DatabaseTemplate that greatly
simplifies this problem.

1.	 Let's replace the two lines of import and connect code from the earlier
example with some Spring Python setup code.
from springpython.database.factory import Sqlite3ConnectionFactory
from springpython.database.core import DatabaseTemplate

conn_factory = Sqlite3ConnectionFactory("/path/to/sqlite3db")
dt = DatabaseTemplate(conn_factory)

At first glance, we appear to be taking a step back. We just replaced two
lines of earlier code with four lines. However, the next block should improve
things significantly.

2.	 Let's replace the earlier coded query with a call using our instance of
DatabaseTemplate.
return dt.query_for_object("SELECT COUNT(*) FROM ARTICLE")

Now we have managed to reduce a complex 14-line block of code into one line of
Spring Python code. This makes our Python code appear as simple as the original
SQL statement we typed in the database's shell. And it also reduces the noise.

The Spring triangle—Portable Service
Abstractions
We saw this diagram earlier in the book, as an illustration of the key principles
behind Spring Python.

Chapter 4

[87]

The DatabaseTemplate represents a Portable Service Abstraction because:

It is portable because it uses Python's standardized API, not tying us to
any database vendor. Instead, in our example, we injected in an instance of
Sqlite3ConnectionFactory

It provides the useful service of easily accessing information stored in a
relational database, but letting us focus on the query, not the plumbing code
It offers a nice abstraction over Python's low level database API with
reduced code noise. This allows us to avoid the cost and risk of writing
code to manage cursors and exception handling

DatabaseTemplate handles exceptions by catching and holding them,
then properly closing the cursor. It then raises it wrapped inside a Spring
Python DataAccessException. This way, database resources are
properly disposed of without losing the exception stack trace.

Using DatabaseTemplate to retrieve
objects
Our first example showed how we can easily reduce our code volume. But it was
really only for a simple case. A really useful operation would be to execute a query,
and transform the results into a list of objects.

1.	 First, let's define a simple object we want to populate with the information
retrieved from the database. As shown on the Spring triangle diagram, using
simple objects is a core facet to the 'Spring way'.
class Article(object):
 def __init__(self, id=None, title=None, wiki_text=None):
 self.id = id
 self.title = title
 self.wiki_text = wiki_text

2.	 If we wanted to code this using Python's standard API, our code would be
relatively verbose like this:
cursor = db.cursor()
results = []
try:
 try:
 cursor.execute("SELECT id, title, wiki_text FROM ARTICLE")
 temp = cursor.fetchall()

•

•

•

Easily Writing SQL Queries with Spring Python

[88]

 for row in temp:
 results.append(
 Article(id=temp[0],
 title=temp[1],
 wiki_text=temp[2]))
 except Exception, e:
 print "execute: Trapped %s" % e
finally:
 try:
 cursor.close()
 except Exception, e:
 print "close: Trapped %s, and throwing away" % e

return results

This isn't that different from the earlier example. The key difference is that
instead of assigning fetchall directly to results, we instead iterate over it,
generating a list of Article objects.

3.	 Instead, let's use DatabaseTemplate to cut down on the volume of code.
return dt.query("SELECT id, title, wiki_text FROM ARTICLE",
 ArticleMapper())

4.	 We aren't done yet. We have to code ArticleMapper, the object class used to
iterate over our result set.
from springpython.database.core import RowMapper

class ArticleMapper(RowMapper):
 def map_row(self, row, metadata=None):
 return Article(id=row[0], title=row[1], wiki_text=row[2])

RowMapper defines a single method: map_row. This method is called for each row
of data, and includes not only the information, but also the metadata provided by
the database. ArticleMapper can be re-used for every query that performs the
same mapping.

This is slightly different from the parameterized example shown earlier
where we defined a row-handling function. Here we define a class that
contains the map_row function. But the concept is the same: inject a
row-handler to convert the data.

Chapter 4

[89]

Mapping queries by convention over
configuration
Our class definition happens to have the same property names as the columns in our
database. Spring Python offers SimpleRowMapper as a convenient out-of-the-box
mapper that takes advantage of this.

Instead of writing the specialized ArticleMapper, let's use Spring Python's
SimpleRowMapper instead.

return dt.query("SELECT id, title, wiki_text FROM ARTICLE",
 SimpleRowMapper(Article))

SimpleRowMapper requires that the class has a default constructor, and also that the
class's properties match the query's.

It's important to remember that column-to-property matching is based on
the query, not the table. This means we can use SQL aliasing to link up
table columns with objects.

Mapping queries into dictionaries
Spring Python also offers the DictionaryRowMapper, which conveniently maps the
query into a Python dictionary.

Instead of using the SimpleRowMapper, let's use Spring Python's
DictionaryRowMapper instead.

return dt.query("SELECT id, title, wiki_text FROM ARTICLE",
 DictionaryRowMapper())

This last step breaks out of our original requirement to return a list
of Article objects. But it is a convenient way of providing a simple
'window on data' scenario and may perfectly match our needs.

Easily Writing SQL Queries with Spring Python

[90]

DatabaseTemplate and ORMs
 DatabaseTemplate focuses on accessing the database without writing lots of
 boiler plate code
 ORMs focus on mapping tables to objects

DatabaseTemplate does not contest with ORM. The choice we must make is
between using SQL and processing result sets or using an ORM.

Before going into detail about ORMs and DatabaseTemplate, it
may be useful to look at a quick example of a popular Python ORM:
SQLAlchemy (http://www.sqlalchemy.org). We could have
picked any number of ORMs for this demonstration.

from sqlalchemy import *

engine = create_engine("sqlite:/tmp/springpython.db", echo=True)
metadata = BoundMetaData(engine)
article_table = Table('Article', metadata,
 Column('id', Integer, primary_key=True),
 Column('title', String()),
 Column('wiki_text', String()))

article_mapper = mapper(Article, article_table)

session = create_session(bind_to=engine)
articles = session.query(Article)

This demonstrates how we would use SQLAlchemy to define the mapping between
the ARTICLE table and the Article class. ORMs also offer many other query options,
including filters and, critieria. The key purpose of ORMs is to map databases to
objects. There is boiler plate with using ORMs just as there is with raw SQL.

Solutions provided by DatabaseTemplate
If we choose DatabaseTemplate for our data needs, we would write our updates,
inserts, deletes, and queries using pure SQL. If our team was comprised of database
designers and software developers who are all familiar with SQL, this would be
of huge benefit—being a more natural fit to their skills. The whole team could
contribute to the effort of designing tables, queries, and data management by
speaking the common language of SQL.

•

•

Chapter 4

[91]

In this scenario DatabaseTemplate would definitely make things easier, as shown
earlier. This would allow our team to spend its effort on designing and managing
our application's data.

The set of operations provided by DatabaseTemplate is provided in the
following table.

Operation Description
execute(sql_statement, args=None) Execute any statement, return number

of rows affected
query(sql_query, args=None,
rowhandler=None)

Query, return list converted by
rowhandler

query_for_list(sql_query, args=None) Query, return list of Python tuples
query_for_int(sql_query, args=None) Run query for a single column of a

single row, and return an integer,
throws an exception otherwise

query_for_long(sql_query, args=None) Query for a single column of a single
row, and return a long, throws an
exception otherwise

query_for_object(sql_query,
args=None, required_type=None)

Query for a single column of a single
row, and return the object with an
optional type check

update(sql_statement, args=None) Update the database, return number of
rows affected

This may not appear like a lot of operations, but the purpose of DatabaseTemplate
is to provide easy access to writing SQL. This API provides the power to code inserts,
updates, deletes, and queries, while also being able to call stored procedures.

DatabaseTemplate also works nicely with Spring Python transactions. This cross
cutting feature will be explored in detail in the next chapter.

How DatabaseTemplate and ORMs can work
together
Often, while building our application we tend to start with one paradigm, and
discover it has its limits. Building an enterprise grade application that supports many
users with lots of complex functions from either a pure SQL perspective or from an
ORM perspective may exceed the capacity of both. This is when it may be time to use
both DatabaseTemplate and an ORM in the same application.

Easily Writing SQL Queries with Spring Python

[92]

It would be a practical solution to use an ORM to code and manage the simple
entities and straightforward relationships. We could quickly build persistence
into our application and move onto real business solutions.

But the queries needed to generate complex reports, detailed structures, and stored
procedures may be better managed using DatabaseTemplate.

If we can free up our team from coding custom SQL for the simple objects, they
could focus on writing specialized SQL for the hard queries.

Using the right tool for the right job should be a key element of our software
development process, and having both DatabaseTemplate and an ORM in our
toolbox is the pragmatic thing to do.

Testing our data access layer with mocks
In previous chapters, we have written automated tests that involved stubbing out the
data access layer. Now that we are in the heart of writing the data access layer, we
need to look at ways to test our queries. To be specific, we need to make sure we are
using DatabaseTemplate correctly, along with any custom row mapper we write.

Mocks are used to primarily record what functions are called, and provide options
of returning certain values. The idea is to create a set of expected actions, and then
call the actual API and measure if this is what happened. This is compared to stubs,
which you code yourself and provide canned answers and don't necessarily care
what methods were called. Both of these tools are useful for automated testing.

Spring Python uses pmock, a Python library inspired by the fluent API
of jMock (http://www.jmock.org/), to do some of its automated
testing. You don't have to use this particular mocking library. There are
lots of other candidates around. For our purposes we are going to use
it here to show the general idea of mocking your data access layer
for testing.
Due to lack of updates from the original developers of pmock, the
source code of this library was added to Spring Python's set of managed
code, and has some custom updates. See http://springpython.
webfactional.com for details on downloading.

Chapter 4

[93]

1.	 First, let's code a simple DataAccess class that uses DatabaseTemplate to
fetch the number of articles we have.
class DataAccess(object):
 def __init__(self, conn_factory):
 self.dt = DatabaseTemplate(conn_factory)

 def count_wiki_articles(self):
 return self.dt.query_for_object("SELECT COUNT(*) FROM
ARTICLE")

This simple data access layer has one method: count_wiki_articles. It
utilizes the code we wrote earlier involving the DatabaseTemplate. In this
example, DataAccess expects to be initialized with a connection factory.

Now, to test this out, we need DatabaseTemplate to do its job, but we want
to catch it at the right point in order to inject some pre-built values. The piece
of code that does the heavy lifting is Spring Python's cursor object, which is
supplied by a connection. This means we need to code a special stubbed out
connection factory that will hold a mocked cursor.

2.	 Let's write a specialized class to act as a mocked connection.
class MockedConnection(object):
 def __init__(self):
 self.mockCursor = None
 def cursor(self):
 return self.mockCursor

This connection will supply DatabaseTemplate with a special type of
mocked cursor. Further down, we will see how mockCursor gets populated.

3.	 In order to use this, let's code a connection factory for DatabaseTemplate
that produces this type of connection.
class MockingDBFactory(ConnectionFactory):
 def __init__(self):
 ConnectionFactory.__init__(self, [types.TupleType])
 self.mockedConnection = MockedConnection()
 def connect(self):
 return self.mockedConnection

When this connection factory is asked to connect to the database, it will
return a MockedConnection.

Easily Writing SQL Queries with Spring Python

[94]

4.	 To tie this rigging together, we need to setup a MockTestCase. This is a
special type of unit test that provides extra hooks to library calls of pmock.
from pmock import *

class DataAccessMockTestCase(MockTestCase):
 def setUp(self):
 # Create a mock instance to record events
 self.mock = self.mock()
 conn_factory = MockingDBFactory()
 conn_factory.mockedConnection.mockCursor = self.mock
 self.data_access = DataAccess(conn_factory)

Here in the setUp method for our test, we grab an instance of mock(). This
object has APIs to record expectations. The object is meant to be injected so
that function calls are then made against it, and at the end of a MockTestCase
test method, the results are compared with the expectations.

In this situation, the mockCursor is the key holder of the mock. There is also a
local copy, so that the MockTestCase has a handle to check out the results.

5.	 After setting all this up, let's define a mocked test method.

 def testCountingArticles(self):
 self.mock.expects(once()).method("execute")
 self.mock.expects(once()).method("fetchall")
 .will(return_value([(2,)]))

 count = self.data_access.count_wiki_articles()
 self.assertEquals(count, 2)

The first two steps of this test use the mock object to define expectations. The mock is
expected to receive an execute method call once, and also a fetchall method call.
The fetchall will return a value of [(2,)].

Not only do we get to check the assertions, but pmock will verify that each of these
methods was invoked by DatabaseTemplate.

How much testing is enough?
For this test scenario, we dug down deep. This type of testing can't get much closer
to the hardware of the database server without directly talking to a live database.

Chapter 4

[95]

It could be viewed that we were really testing the core of DatabaseTemplate. In
many development situations, this isn't needed. Testing a 3rd party library would
probably be out of scope.

This example test scenario is largely based on automated tests used to confirm
Spring Python's functionality. Adequate testing for your business needs may
involve stubbing or mocking out the data access layer as was shown in earlier
parts of this book.

This should introduce you to the concept of mocking, where you measure method
calls and answers. This type of testing may perfectly fit other test needs. If the SQL
queries have been well isolated in this layer, then it may be safe to say that the only
testing needed would be the queries themselves against a live database and in turn,
not require any mocking or stubbing at all.

Summary
This chapter has shown a way to write pure SQL without having to deal with the low
level cursor and connection management. This removes a lot of boiler plate and error
handling that is perfect for a framework to handle.

We have also explored how DatabaseTemplate and ORMs can work together to
make persistence management easier for developers.

We took a look at mocking, and how we were able to get inside the querying process
to verify that the right method calls were being made. Then we stepped back and
considered how much testing is enough.

In this chapter we learned:

The classic SQL query issue that affects APIs in many modern programming
languages extends into Python as well
Using Spring Python's DatabaseTemplate let's us get rid of query boiler
plate code that gets in the way of solving use cases
DatabaseTemplate is useful for writing SQL code without dealing with
cursor management
DatabaseTemplate combined with an ORM can help us build
robust applications
Mocking is a valuable tool in automated testing, but we must choose the
right tool for the right situation

In the next chapter, we will look at augmenting our data access layer with
non-invasive transactions.

•

•

•

•

•

Adding Integrity to your Data
Access with Transactions

SQL operations are used in lots of applications in order to supply data. A key
ingredient used to grow applications to enterprise scale are transactions. They
add integrity to data management by defining an atomic unit of work.

An atomic unit of work means that the whole sequence of steps when completed
must appear like a single step. If there is any failure in the chain of steps, everything
must rollback to the state before the transaction started. For SQL transactions, this
means that the state of the database must update or rollback atomically.

This chapter will inspect the pattern of coding and using SQL transactions, and how
Spring Python makes it easy to code an otherwise monotonous pattern.

In this chapter, you will learn:

The classic pattern of SQL transactions and the issues imposed when coding
transactions by hand
That it is easy to add transactions to a banking application using Spring
Python's @transactional decorator
You can choose between coding transactions programmatically or
by decorator
You can choose between using and not using the IoC container
Spring Python provides the means to non-intrusively mix in transactions to
non-transactional code without editing the source

•

•

•

•

•

Adding Integrity to your Data Access with Transactions

[98]

Classic transaction issues
Transactions have a simple pattern of execution as shown in this block of
pseudo-Python.

Start transaction
try:
 #***
 # Execute business logic that
 # that contains database operations.
 #***

 # Commit transaction
except:
 # Rollback transaction

Let's look at the steps involved in defining a transaction:

1.	 First, the transaction must be started.
2.	 Then, a block of business code is executed, which contains several database

operations, including select, update, and insert.
3.	 Finally, the transaction is committed. If any type of error occurs, an exception

handler rolls back the transaction, undoing all the changes that were made.

The problem with writing transactions manually is similar to the problem with
writing SQL operations manually. There is a lot of boilerplate code that must be
written. The boilerplate has a tangling effect because it must be written before and
after the business code in order for the transaction to be handled correctly. This
pattern must then be copied into every location where some business logic needs to
be wrapped in a transaction.

This violates the DRY (Don't Repeat Yourself) principle. It also tangles our code
with not only business logic, but transactional logic as well. And it breaks the Single
Responsibility Principle (SRP) by having our code depend on both business and
integrity requirements.

Violating these principles puts us at risk. We might introduce bugs when changes to
the transactional logic are needed, but we fail to to repeat them in all the right places.

This is a crosscutting problem because it extends beyond our class hierarchy. Steps
contained within the unit of work can quickly cut across several classes. This is a
perfect use case for aspect oriented programming that was discussed earlier in this
book. As we delve into this in more detail in this chapter, we will see how to solve it
with ease using Spring Python.

Chapter 5

[99]

Creating a banking application
Until now, the various chapters have shown sample code that involved designing a
wiki engine. For this chapter, a banking application will be used as the basis for code
examples. Banks must be able to move money around and not lose a single penny,
maintaining a high integrity. This provides a simple problem space to demonstrate
writing transactional code.

1.	 First, let's write a simple transfer operation that transfers a certain amount of
money from one account to another without any concept of a transaction.
def transfer(transfer_amt, source_act, target_act):
 cursor = conn.cursor()
 cursor.execute("""
 update ACCOUNT
 set BALANCE = BALANCE - %s
 where ACCOUNT_NUM = %s""",
 (transfer_amt, source_act))
 cursor.execute("""
 update ACCOUNT
 set BALANCE = BALANCE + %s
 where ACCOUNT_NUM = %s""",
 (transfer_amt, target_act))
 cursor.close()

Let's assume we are transferring $10,000 from the SAVINGS account to
the CHECKING account. In our business logic, we accomplish this by first
withdrawing $10,000 from the SAVINGS account and then depositing $10,000
into the CHECKING account.

Imagine if there was some system error that happened after we had
withdrawn from the SAVINGS account that caused the system to restart.
Having never deposited the transfer amount into the CHECKING account,
the bank would have leaked $10,000 to nowhere. How long would you keep
your money in a bank like that? Probably not for long!

2.	 Let's combine this operation with the transaction pattern we looked at earlier,
to give our bank some integrity.

def transfer(transfer_amt, source_act, target_act):
 conn.commit()
 try:
 cursor = conn.cursor()
 cursor.execute("""
 update ACCOUNT
 set BALANCE = BALANCE - %s
 where ACCOUNT_NUM = %s""",

Adding Integrity to your Data Access with Transactions

[100]

 (transfer_amt, source_act))
 cursor.execute("""
 update ACCOUNT
 set BALANCE = BALANCE + %s
 where ACCOUNT_NUM = %s""",
 (transfer_amt, target_act))
 cursor.close()
 conn.commit()
 except:
 conn.rollback()

In our updated example, we now start with conn.commit() in order to start a
new transaction.

If you use a Python DB API compatible database module, then
transactions are available when you connect to the database.
connection.commit() and connection.rollback() finishes
an existing transaction and implicitly starts a new one (http://www.
pubbs.net/python/200901/18953/). This is the reason this block of
code starts with a commit statement.

We enter the try/except block and start executing the same business code that
we wrote earlier. In the end, we execute conn.commit(), to commit our results to
the database.

In the event of some system error, the commit would never be executed. This means
the withdrawal from the SAVINGS account would not be written into the database.
If this was really a hard system failure, relational databases would revert to the state
before the transaction started.

For softer failures where some sort of application level exception raised would
result in conn.rollback() being called, reverting all changes back to when the
transaction started.

This solution solves the problem such that our bank doesn't leak money due to
system faults and errors. But in order to re-use this transactional pattern in other
parts of our banking application, we must repeat the coding pattern over and over,
increasing the risk of bugs.

Chapter 5

[101]

Transactions and their properties
Transactions carry four distinct properties:

Atomicity—We need to guarantee that all steps complete, or no
steps complete
Consistent—This is concept of ensuring our data maintains a consistent state
Isolated—When we withdraw money from the bank, it would be bad if our
business partner was withdrawing at the same time, and we ended up with a
negative balance
Durable—We expect completed transactions to survive hardware failures

Consistency and durability tend to be related to resources, such as the database and
the server it runs on, and typically doesn't affect the way we write code. Atomicity
and Isolation however are commonly handled by developer code.

To guarantee atomicity, we must start a transaction, and then commit or rollback.
Throughout this chapter we will explore how Spring Python makes it easy to define
atomic transactions.

Python's DB API specification (http://www.python.org/dev/peps/pep-0249/)
doesn't define Isolation levels. Instead, each vendor implements this differently. To
alter Isolation levels, we must investigate the database engine we are using, and then
access either the connection or the cursor provided with our factory in order to alter
this setting from vendor defaults.

Transactions can either be supported locally or be distributed across multiple
databases. Local transactions typically involved a single database schema. In
order to extend to other systems, the Python specification utilizes a 'two-phase
commit' mechanism.

At the time of writing, Spring Python only supports local transactions, but
is open to the possibility of expanding its capabilities in the future.

Another factor in transaction definition is propagation. When we have multiple
operations that are defining a transaction, it is important to combine them together in
the right fashion. This involves dealing with circumstances where a new transaction
is encountered while one is already in progress. We will look at this in more detail
later in this chapter.

•

•

•

•

Adding Integrity to your Data Access with Transactions

[102]

Getting transactions right is hard
The transactional pattern shown earlier above is very simplistic and incomplete.
There are many issues that can occur which requires even more detail.

The most important issue is whether or not the underlying database
engine supports transactions, and if it's been properly configured to avoid
auto commits. If this isn't set up appropriately, the code won't function
as expected. Auto commits work by committing every SQL statement as
executed, instead of waiting for conn.commit(), hence not offering any
option to rollback.
If a transaction was already in progress when the transfer is called, there
may be special handling required. In our example, we abruptly commit
previous work and then start a new transaction with the initial commit.
With a transaction in progress, this may not be the right step. It's hard
to tell considering we don't have any surrounding business context.
Exception handling isn't the only type of rollback scenario to handle. While
our transfer doesn't have any alternate return paths, more complex business
logic can easily code guard clauses and other return statements that bypass
both the commit and the rollback. Leaving the transaction hanging and not
committed to the database would be very sloppy and risky.

The result is that the pattern shown above and utilized for our simple example
isn't comprehensive enough to handle the simplest risks. A more complex pattern
has to be coded. Given that it must be repeated for every transactional point in our
application, it makes our integrity problem even harder to solve.

There is a side effect of efficiency when performing transactions. Because the same
connection is used to conduct the transaction, the cost of opening and closing
connections is avoided.

Simplify by using @transactional
Spring Python solves these problems with its TransactionTemplate. This utility
class makes it easy to wrap business methods with transactional functionality
that solves all of the problems listed earlier. Spring Python makes it easy to
wrap our existing business functions with the TransactionTemplate using its
@transactional decorator.

1.	 First, let's take our simple transfer function, and put into a Bank class.
from springpython.database.core import *
from springpython.database.factory import *

•

•

•

Chapter 5

[103]

class Bank(object):
 def __init__(self, connectionFactory):
 self.factory = connectionFactory
 self.dt = DatabaseTemplate(self.factory)

 def transfer(self, transfer_amt, source_act, target_act):
 self.dt.execute("""
 update ACCOUNT
 set BALANCE = BALANCE - %s
 where ACCOUNT_NUM = %s""",
 (transfer_amt, source_act))
 self.dt.execute("""
 update ACCOUNT
 set BALANCE = BALANCE + %s
 where ACCOUNT_NUM = %s""",
 (transfer_amt, target_act))

In this situation, we have stripped out all the hand-coded transaction
code. Instead, we have the simple, concise business logic that defines a
transfer operation.

Please note, this version of the Bank application is
NOT yet safe.

The steps are easily shown with the following sequence diagram:

Adding Integrity to your Data Access with Transactions

[104]

2.	 Now let's wrap our transfer method with transaction protection by using
Spring Python's @transactional decorator.
from springpython.database.core import *
from springpython.database.factory import *
from springpython.database.transaction import *

class Bank(object):
 def __init__(self, connectionFactory):
 self.factory = connectionFactory
 self.dt = DatabaseTemplate(self.factory)

 @transactional
 def transfer(self, transfer_amt, source_act, target_act):
 self.dt.execute("""
 update ACCOUNT
 set BALANCE = BALANCE - %s
 where ACCOUNT_NUM = %s""",
 (transfer_amt, source_act))
 self.dt.execute("""
 update ACCOUNT
 set BALANCE = BALANCE + %s
 where ACCOUNT_NUM = %s""",
 (transfer_amt, target_act))

@transactional is a decorator that uses a hidden instance of TransactionTemplate
to execute our transfer function inside a very robust version of the transaction
pattern. Our interactions are better shown in the following diagram.

Chapter 5

[105]

Because @transactional wraps our transfer function, when the user
invokes transfer, they are hitting the decorator first
@transactional passes all the context of the requested method call to its
private instance of TransactionTemplate
TransactionTemplate starts a transaction
TransactionTemplate then calls the original Bank transfer function
Bank carries out its business, totally unaware it is inside a transaction
When complete, Bank hands control back to the TransactionTemplate,
which issues a commit
TransactionTemplate hands control back to @transactional, and finally
back to the caller

This configuration totally decouples transactional logic
from our transfer operation.

Since TransactionTemplate is the caller of transfer, it can easily handle
any number of return statements. If an exception is raised anywhere inside
transfer, TransactionTemplate will rollback instead of commit.

With this clean separation of concerns, we can work on the business code without
having to worry about getting transactions right.

More about TransactionTemplate
Our first version of the transaction pattern was simple and naïve. We then examined
the list of issues with that pattern. TransactionTemplate has a much more
sophisticated pattern that handles these extra situations:

It handles the simple case of catching any exception thrown by catching it,
issuing a rollback, and then re-throwing the exception
It handles all return statements by catching the return value of the method,
issuing the necessary commit, and then finally returning the results
@transactional is coded by default to start new transactions if one isn't
currently in progress, and to join a transaction if one already exists. We will
look at the other transactional options later in this chapter

Another integrity gap exists in our transfer code. It lies somewhere between the
transaction pattern and our business logic. Can you spot it?

•

•

•

•

•

•

•

•

•

•

•

Adding Integrity to your Data Access with Transactions

[106]

There are no checks to make sure that we even have $10,000 to transfer! Also, there is
no type of security check ensuring that we own either of these two accounts. We will
address this deficiency later on, when filling in the transactional details.

We're not done yet. In order to have @transactional do its job, we need to link
it with a Transaction Manager through an AutoTransactionalObject. The
Transaction Manager provides @transactional with a handle into the database
to issue necessary commits and rollbacks. It also tracks the context of existing
transactions and make appropriate decisions about when to start new transactions.

1.	 To inject everything, let's define a pure Python IoC container that links
ConnectionFactoryTransactionManager to @transaction through an
AutoTransactionalObject.
from springpython.database.transaction import *
class BankAppConfig(PythonConfig):
 def __init__(self, factory):
 PythonConfig.__init__(self)
 self.factory = factory

 @Object
 def transactionalObject(self):
 return AutoTransactionalObject(self.tx_mgr())

 @Object
 def tx_mgr(self):
 return ConnectionFactoryTransactionManager(self.factory)

 @Object
 def bank(self):
 return Bank(self.factory)

tx_mgr defines our Transaction Manager, which uses an
injected factory in order to perform the SQL transaction APIs.
This is the same type of factory used by DatabaseTemplate.
tx_mgr tracks when transactions begin and end, providing
the necessary services for TransactionTemplate and
@transactional.
transactionalObject defines an instance of
AutoTransactionalObject, an IoC post processor. Its job is to
find all instances of @transactional and link them with the
tx_mgr. This is what empowers @transactional to do its job
of ensuring data integrity through SQL transactions.
The bank class is our business class.

°

°

°

Chapter 5

[107]

2.	 Now, let's write some startup code to perform the transfer.
if __name__ == "__main__":
 from springpython.context import ApplicationContext
 ctx = ApplicationContext(BankAppConfig(
 Sqlite3ConnectionFactory("/path/to/sqlite3db")))
 service = ctx.get_object("bank")
 bank.transfer(10000.0, "SAVINGS", "CHECKING")

The Spring Triangle—Portable Service
Abstractions
We saw this diagram earlier in the book, as an illustration of the key principles
behind Spring Python.

TransactionTemplate represents a Portable Service Abstraction.

It is portable because it uses Python's standardized API for SQL transactions,
not tying us to any database vendor or custom database connection library
It provides the useful service of letting us easily wrap methods with a
sophisticated and powerful transaction pattern
It offers a nice abstraction to writing transactional code, without requiring us
to handle the SQL transaction APIs directly

•

•

•

Adding Integrity to your Data Access with Transactions

[108]

Programmatic transactions
Our banking example has shown how to decorate some business logic with Spring
Python's @transactional in order to make the operation transactional. Throughout
the example, we have repeatedly mentioned TransactionTemplate.

In this section, we will use TransactionTemplate directly instead of @transactional.
We will also explore how to do this with and without IoC configuration.

Configuring with the IoC container
1.	 First, let's rewrite Bank, replacing @transactional with

TransactionTemplate.
class Bank(object):
 def __init__(self, connectionFactory):
 self.factory = connectionFactory:
 self.dt = DatabaseTemplate(self.factory)
 self.tx_mgr = ConnectionFactoryTransactionManager(self.
factory)
 self.tx_template = TransactionTemplate(self.tx_mgr)

 def transfer(self, transfer_amt, source_act, target_act):
 class TxDefinition(TransactionCallbackWithoutResult):
 def doInTransactionWithoutResult(s, status):
 self.dt.execute("""
 update ACCOUNT
 set BALANCE = BALANCE - %s
 where ACCOUNT_NUM = %s""",
 (transfer_amt, source_act))
 self.dt.execute("""
 update ACCOUNT
 set BALANCE = BALANCE + %s
 where ACCOUNT_NUM = %s""",
 (transfer_amt, target_act))
 self.tx_template.execute(TxDefinition())

This version of our Bank shows two more attributes: tx_mgr and
tx_template. These could be injected into our class, but we chose to
inject the connection factory only.

Chapter 5

[109]

Inside the transfer function, we have defined class TxDefinition. We then
instantiate it when calling tx_template.execute().

This inner class defines one method:
doInTransactionWithoutResult, which contains our
business logic.
To avoid confusion between self passed into
transfer and self passed into TxDefinition,
doInTransactionWithoutResult names its first argument s.
Because transfer is not expected to return anything, it uses
TransactionCallbackWithoutResult as a base class. For
return values, use TransactionCallback/doInTransaction
instead.

2.	 Next, let's adjust the IoC configuration to handle these changes.
from springpython.database.transaction import *
class BankAppConfig(PythonConfig):
 def __init__(self, factory):
 PythonConfig.__init__(self)
 self.factory = factory

 @Object
 def bank(self):
 return Bank(self.factory)

3.	 This should have no effect on the code used to run our app and execute the
same transfer.
if __name__ == "__main__":
 from springpython.context import ApplicationContext
 ctx = ApplicationContext(BankAppConfig(
 Sqlite3ConnectionFactory("/path/to/sqlite3db")))
 service = ctx.get_object("bank")
 bank.transfer(10000.0, "SAVINGS", "CHECKING")

Configuring without the IoC container
In this situation, our IoC configuration is pretty simple. We could code the
application without it. Just remember: IoC provides useful assistance in things like
testing, mocking, and being able to swap out key objects.

We begin by rewriting the startup script, so that it doesn't need any IoC container.

if __name__ == "__main__":
 service = Bank(Sqlite3ConnectionFactory("/path/to/sqlite3db"))
 bank.transfer(10000.0, "SAVINGS", "CHECKING")

°

°

°

Adding Integrity to your Data Access with Transactions

[110]

Because our Bank was written using simple constructor injection, there was no need
to alter it in order to run it without a container. Since we are programmatically using
TransactionTemplate, there is no requirement to use the IoC container. This offers
developers an opportunity to evaluate Spring Python purely for the transactional
features without having to try out the IoC container at the same time.

But it is important to remember that multiple examples of the value of IoC have
already been shown in this book, and many more are coming.

@transactional versus programmatic
The Spring way includes giving developers options. In order to choose the right
approach, here are some pros and cons:

@transactional Pros:
Defines transactions with a single line.
Clear, concise, easy-to-read.

Cons:
Requires IoC to wire
AutoTransactionalObject.
Requires editing existing code.

•
°
°

•
°

°

programmatic Pros:
Explicitly shows the transactional
behavior where it occurs.
Doesn't require IoC.

Cons:
Re-introduces code tangling.
Requires editing existing code.

•
°

°
•

°
°

If the cons for either of these solutions are not acceptable, there is a third choice:
declaring transactions from inside the IoC container. This allows easy wrapping
of business code with transactions without code tangling and without editing already
existing code. We will demonstrate this later in the chapter. But first let's look at
adding new functions.

Making new functions play nice with
existing transactions
So far, we have managed to build a bank that does one thing: transfer money. As with
any software project, we typically have to grow the functionality. As we proceed with
modifications to our Bank, we want to add new transactions without risking existing
ones. Spring Python's transaction management makes this very simple.

Chapter 5

[111]

In this section, we will go back to our @transactional Bank and add some
new functionality.

1.	 Let's extract a withdraw function and deposit function from the
transfer function.
class Bank(object):
 def __init__(self, connectionFactory):
 self.factory = connectionFactory):
 self.dt = DatabaseTemplate(self.factory)

 def withdraw(self, amt, act):
 self.dt.execute("""
 update ACCOUNT
 set BALANCE = BALANCE - %s
 where ACCOUNT_NUM = %s""",
 (amt, act))

 def deposit(self, amt, act):
 self.dt.execute("""
 update ACCOUNT
 set BALANCE = BALANCE + %s
 where ACCOUNT_NUM = %s""",
 (amt, act))

 @transactional
 def transfer(self, transfer_amt, source_act, target_act):
 self.withdraw(transfer_amt, source_act)
 self.deposit(transfer_amt, target_act)

By moving the two SQL statements into separate functions, we have nicely
defined transfer as withdraw followed by deposit. We are now ready to
offer these two new functions to our clients. Do you notice anything wrong
with this? Are the functions safe transaction-wise by themselves? What if
another banking operation tried to reuse these primitives?

2.	 Secure the withdraw and deposit methods with @transactional.
class Bank(object):
 def __init__(self, connectionFactory):
 self.factory = connectionFactory):
 self.dt = DatabaseTemplate(self.factory)

 @transactional
 def withdraw(self, amt, act):
 self.dt.execute("""

Adding Integrity to your Data Access with Transactions

[112]

 update ACCOUNT
 set BALANCE = BALANCE - %s
 where ACCOUNT_NUM = %s""",
 (amt, act))

 @transactional
 def deposit(self, amt, act):
 self.dt.execute("""
 update ACCOUNT
 set BALANCE = BALANCE + %s
 where ACCOUNT_NUM = %s""",
 (amt, act))

 @transactional
 def transfer(self, transfer_amt, source_act, target_act):
 self.withdraw(transfer_amt, source_act)
 self.deposit(transfer_amt, target_act)

The only difference in our code is marking withdraw and deposit with
@transactional.

3.	 Now let's add an extra layer of integrity to our Bank by doing some checks
before and after executing the SQL.
class Bank(object):
 def __init__(self, connectionFactory):
 self.factory = connectionFactory):
 self.dt = DatabaseTemplate(self.factory)

 @transactional(["PROPAGATION_SUPPORTS"])
 def balance(self, act):
 return self.dt.queryForObject("""
 SELECT BALANCE
 FROM ACCOUNT
 WHERE ACCOUNT_NUM = ?""",
 (act,), types.FloatType)

 @transactional
 def withdraw(self, amt, act):
 if (self.balance(act) > amt):
 rows = self.dt.execute("""
 update ACCOUNT
 set BALANCE = BALANCE - %s
 where ACCOUNT_NUM = %s""",
 (amt, act))
 if (rows == 0):

Chapter 5

[113]

 raise Exception("Account %s does not exist." % act)
 else:
 raise Exception("Account %s has insufficient funds." %
act)

 @transactional
 def deposit(self, amt, act):
 rows = self.dt.execute("""
 update ACCOUNT
 set BALANCE = BALANCE + %s
 where ACCOUNT_NUM = %s""",
 (amt, act))
 if (rows == 0) {
 raise Exception("Account %s does not exist." % act)

 @transactional
 def transfer(self, transfer_amt, source_act, target_act):
 self.withdraw(transfer_amt, source_act)
 self.deposit(transfer_amt, target_act)

We have made several changes that start to make our application look like a real
bank. They are as follows:

We created a balance function that allows us to look up the balance for
an account
The withdraw function now checks the balance to make sure there is enough
to withdraw
The withdraw function verifies that a row of data was updated, confirming
the withdrawn account is real
The deposit function verifies that a row of data was updated, confirming
that the deposited account is real

How Spring Python lets us define a
transaction's ACID properties
As discussed earlier, the ACID properties of transactions are as follows:

Atomicity—We need to guarantee that all steps complete, or no
steps complete.
Consistent—This is the concept of ensuring our data maintains a
consistent state.

•

•

•

•

•

•

Adding Integrity to your Data Access with Transactions

[114]

Isolated—When we withdraw money from the bank, it would be bad if our
business partner was withdrawing at the same time, and we ended up with a
negative balance.
Durable—We expect completed transactions to survive hardware failures

Regarding atomicity, we have already practiced defined the beginning and end
points for transactions by using @transactional and TransactionTemplate.

Spring Python supports propagation. Earlier, we stated that the default policy of
@transactional is to start a new transaction (if none existed) and join an existing
transaction (if one was already in progress). Spring Python conveniently lets us take
the safe, atomic operations of withdraw and deposit, and combine them together
into transfer, without having to interact with the SQL transaction APIs at all.

We also created another function, balance, to lookup the current balance of
accounts. Since balance performs no updates, it doesn't require a transaction when
run by itself. However, when called upon by an existing transaction, we want it
to join in as if it was part of the transaction. This is accomplished by providing
@transactional with a propagation override:

 @transactional(["PROPAGATION_SUPPORTS"])
 def balance(self, act):
 return self.dt.queryForObject("""
 SELECT BALANCE
 FROM ACCOUNT
 WHERE ACCOUNT_NUM = ?""",
 (act,), types.FloatType)

@transactional scans the list of transaction definitions. Currently, Spring Python
supports the following definitions:

Property Description
PROPAGATION_REQUIRED A transaction is required. If a current one exists,

join it. Otherwise, start a new one. This is the
default for @transactional.

PROPAGATION_SUPPORTS A transaction is not required. This code can run
inside or outside a transaction.

PROPAGATION_MANDATORY A transaction is required. If a current one exists,
join it. Otherwise, raise an exception.

PROPAGATION_NEVER A transaction is not allowed. If a current one
exists, raise an exception. Otherwise, run the code.

•

•

Chapter 5

[115]

Spring Python provides incredibly useful transaction context management,
transaction API handling, and allows us clean demarcation of transactions.

As better definitions are added to Python's database specification for things like
isolation, Spring Python will add more options to support it. This will increase our
ability to cleanly declare the exact type of transaction needed to wrap our code.

Applying transactions to
non-transactional code
An important aspect of Spring Python is its non-invasive nature. This was
demonstrated in great detail in the chapter that introduced aspect oriented
programming. Spring Python provides a convenient, non-intrusive method
interceptor that allows the demarcation of existing code.

This solves the problem mentioned earlier, where neither editing existing source
code nor tangling our business logic with transaction management are acceptable.

1.	 Let's start with an alternative version of Bank class that has no transaction
demarcation.
class Bank(object):
 def __init__(self, connectionFactory):
 self.factory = connectionFactory:
 self.dt = DatabaseTemplate(self.factory)

 def balance(self, act):
 return self.dt.queryForObject("""
 SELECT BALANCE
 FROM ACCOUNT
 WHERE ACCOUNT_NUM = ?""",
 (act,), types.FloatType)

 def withdraw(self, amt, act):
 if (self.balance(act) > amt):
 rows = self.dt.execute("""
 update ACCOUNT
 set BALANCE = BALANCE - %s
 where ACCOUNT_NUM = %s""",
 (amt, act))
 if (rows == 0):
 raise Exception("Account %s does not exist." % act)
 else:

Adding Integrity to your Data Access with Transactions

[116]

 raise Exception("Account %s has insufficient funds." % act)

 def deposit(self, amt, act):
 rows = self.dt.execute("""
 update ACCOUNT
 set BALANCE = BALANCE + %s
 where ACCOUNT_NUM = %s""",
 (amt, act))
 if (rows == 0) {
 raise Exception("Account %s does not exist." % act)

 def transfer(self, transfer_amt, source_act, target_act):
 self.withdraw(transfer_amt, source_act)
 self.deposit(transfer_amt, target_act)

This Bank class is identical to the previous one, except for the fact that there
are no @transactional decorators.

2.	 Let's define an application context that has equivalent transaction
demarcation points.
class BankAppConfig(PythonConfig):
 def __init__(self, factory):
 PythonConfig.__init__(self)
 self.factory = factory

 @Object
 def bank_target(self):
 return Bank(self.factory)

 @Object
 def tx_mgr(self):
 return ConnectionFactoryTransactionManager(self.factory)

 @Object
 def bank(self):
 tx_attrs = []
 tx_attrs.append((".*transfer", ["PROPAGATION_REQUIRED"]))
 tx_attrs.append((".*withdraw", ["PROPAGATION_REQUIRED"]))
 tx_attrs.append((".*deposit", ["PROPAGATION_REQUIRED"]))
 tx_attrs.append((".*balance", ["PROPAGATION_SUPPORTS"]))
 return TransactionProxyFactoryObject(self.tx_mgr(),
 self.bank_target(),
 tx_attrs)

Chapter 5

[117]

With this alternative configuration, we use TransactionProxyFactoryObject. This
is an out-of-the-box AOP interceptor that Spring Python offers to automatically wrap
certain functions with TransactionTemplate. It requires a transaction manager
as well as the target object, our Bank. It also needs a list of tuples, with each tuple
defining a regular expression for method matching as well as a list of transaction
properties just like we plugged into @transactional earlier in this chapter.

What is the right choice: @transactional or TransactionProxyFactoryObject?

@transactional is clear, concise, and easy-to-read. Its biggest drawback is
the requirement to edit existing code. If we own the code, then this shouldn't
be a problem.
If we are trying to wrap transactions around a 3rd party library that we don't
directly control, TransactionProxyFactoryObject is the best choice.

Testing your transactions
Transactions are intrinsically tied to databases. Attempting to mock or stub this out
would require an extreme amount of effort, and probably not be worth the effort.
This is one area where I generally agree with testing against an actual database.

It is possible to use lightweight databases such as sqlite for this effort, but it may
be risky if this isn't the target platform for production. In fact, the best testing effort
would be a properly setup test bed using the same version of database engine as
production. The important point is that it is easy to create lightweight tests against
something small such as sqlite. This can confirm to the developers that things
are working as expected. More extensive integration testing can be done with a
production grade test-bed.

Easily swapping out different database configurations is one of the major
advantages of using Spring Python.

•

•

Adding Integrity to your Data Access with Transactions

[118]

Summary
In this chapter we utilized Spring Python's convenient transactional features in
order to turn some simple banking SQL into a resilient application. Being able
to pick between the easy-to-read @transactional decorator and an AOP-based
TransactionProxyFactoryObject gives us flexible choices.

In this chapter we have learned that:

The classic transaction issue makes coding transactions by hand difficult
Spring Python lets us easily add transactions to a banking application using
the @transactional decorator
We can easily code transactions programmatically with and without the IoC
container, giving us the maximum in choices
With the power of AOP, we can non-intrusively mix in transactions to
non-transactional code without editing the source

In the next chapter, we will explore ways to secure, web applications using Spring
Python security module.

•

•

•

•

Securing your Application
with Spring Python

With the rise of the web over the last ten years, many companies have adopted
e-commerce solutions to support their business models. Retail, sales, banking,
financial, and other industries have adopted the web as a key means to generate
revenue. This has triggered a security crisis, since early web applications had little to
no security, and the ways to exploit systems were vast. This doesn't involve a small
corner of the market, but potentially compromises a huge segment of the market. It
is no wonder that companies hire security consultants to come up with the means to
protect their already built e-commerce sites.

Software development teams are starting to realize that security needs to be coded
into their applications sooner rather than later. However, competitive deadlines and
getting products to market sooner rather than later can cause security requirements
to get pushed to the back of the line. Many web applications that hit the market have
security implemented as more of an after thought. Part of this is due to the fact that
coding effective security protocols is hard. Acegi Security, a Java framework based
on the Spring Framework, was initially released in 2003. Its pluggable architecture
and non-intrusive nature took the Java world by storm. By providing support
for many security protocols including database, LDAP, OpenID, X.509, Central
Authentication Service (CAS), Kerberos, Java Authentication and Authorization
Service (JAAS), along with many others, it has become widely used in many
industries, and in both the private and public sector.

Spring Python's pythonic implementation of this powerful architecture
provides the same mechanisms to secure applications of all types simply and
effectively to the Python community. Spring Python Security currently supports
web application security. There are future plans to support method-level security
just like Spring Security.

Securing your Application with Spring Python

[120]

In this chapter, we will learn:

The security problems software developers have to deal with and the
challenge faced in effectively coding security
The requirements for an effective security solution, and the ability of Spring
Python Security to meet them
Wrapping an unsecured web application with a simple solution that cleanly
protects by delegating to a security handler
The concept of authenticating who the user is, and determining what they
are authorized to do
Testing the security of our application
Configuring a SQL-based security system, including adapting to a custom
user/role schema
Configuring an LDAP-based security system
Making your application support multiple user communities or migrating
from one security system to another with no downtime
Coding our own security extension for systems not yet supported
out-of-the-box by Spring Python Security

Problems with coding security by hand
Securing an application is hard. When coded by hand using simple tactics, security
becomes very invasive. For applications to have true access to security settings, the
following must be available:

Securing URLs based on primitive rules is a start, but is rarely adequate as
business rules and requirements are revised and updated over time.
Relying on container security tends to be inflexible and prone to lock-in.
For example, using Apache web server .htaccess files may work for
simple situations. But complex rules are hard to get right, difficult to test
automatically, and also discourage relocating to another type of container.
Making security a part of the application, and not dependent on another
container frees the application from container lock-in.
To support specialized situations, any method in the code must be able to
lookup who the current user is, and what permissions he or she has. Usually
this is only needed in a few places, but altering all the necessary APIs to get
this information passed from the logon screen to the code logic can have too
wide an impact over such an isolated need.

•

•

•

•

•

•

•

•

•

•

•

•

Chapter 6

[121]

Security code has a repeating pattern. Developers sometimes abstract this
behavior into a base class, with subclasses handling business logic. This
may appear to support the DRY (Don't Repeat Yourself) principle, but it
violates the "is-a" concept of OOP. It is important to realize that security is a
crosscutting behavior that is independent of and orthogonal to the business
logic, and must be solved using aspect-oriented concepts.
When coded by hand, the solution is often hard-wired into the application.
Upgrading from a simple username/password management system
to something more sophisticated like OpenID, LDAP, or two-factor
authentication systems can become impossible due to the ripple effect of
changes. This type of switch is often needed when moving users from one
security solution to another, or when supporting multiple user communities.
Most production systems would prefer to stay where they are rather than
spend the money to re-write the security layer of their application.

These issues shine a light on what it takes to implement a reliable security solution:

The security solution must be orthogonal to the class hierarchy.
Credential data and other security APIs must be available non-intrusively, to
avoid requiring applications to re-write existing APIs.
Usage of security by the application must be decoupled from the actual
securing resource. For example, if the system uses LDAP to store username
and password information, the application shouldn't have to make
LDAP calls.
Multiple security providers must be allowed, in order to support users from
different communities as well as the ability to transition from one system to
another while new credentials are issued to the user community.
Security policies must be flexible and easy to fine tune, in order to support
up-and-coming business requirements.
Even though there are many standard conventions, users must be able to
quickly write custom security extensions to support legacy security solutions.

The Spring Python Security module meets all these requirements. Throughout this
chapter, as we develop our example web application and then secure it, we will
point out how these requirements are being met.

•

•

•

•

•

•

•

•

Securing your Application with Spring Python

[122]

Building web applications ignoring
security
We need a simple application. For this example, we will use CherryPy
(http://cherrypy.org), a pythonic web framework that conveniently
maps URLs into Python methods.

If you want to know more about the CherryPy framework, I highly
recommend reading CherryPy Essentials by Sylvain Hellegouarch.

After building our web application, we will review some of the options people take
in securing things. Then, we will plug in Spring Python Security, showing how easy
it is to lock down an application.

First, let's build a simple web application that serves wiki pages, and allows us to
edit them.

import cherrypy

def forward(url):
 return '<META HTTP-EQUIV="Refresh" CONTENT="0; URL=' + url + '">'

class Springwiki(object):
 def __init__(self, controller = None):
 self.controller = controller

 @cherrypy.expose
 def index(self, article="Main Page"):
 page = self.controller.getPage(article)
 return page.html()

 @cherrypy.expose
 def default(self, article="Main Page"):
 return self.index(article)

 @cherrypy.expose
 def submit(self, article, wpTextbox=None, wpSummary=None):
 self.controller.updatePage(article, wpTextbox,
 wpSummary)
 return forward("/" + article)

 @cherrypy.expose
 def edit(self, article):
 page = self.controller.getEditPage(article)
 return page.html()

Chapter 6

[123]

This CherryPy application nicely maps URLs onto Python methods that are marked
with the @cherrypy.expose decorator. HTTP GET/POST parameters are translated
into named arguments. Method index maps to the web path /, submit maps to
/submit, and edit maps to /edit. As a CherryPy application, we aren't done yet.
After filling in some more details, we'll show to how to host this application inside a
CherryPy web container.

In this case, our application has an injected controller which is responsible for
handling updates to the wiki as well as returning components that generate the
HTML content sent back to the browser.

Let's code a simple controller that processes these web requests. For now, let's use
a simple Python dictionary as the place to store the information. Later on, we can
migrate it to a database server.

import time
from model import EditPage
from model import NoPage
from model import Page

wiki_db = {
 "Main Page":["""
Welcome to the Spring Python book's wiki!
""", [("Original", "Initial entry", "13:22, 24 November 2009")]]
 }

class SpringWikiController(object):
 def exists(self, article):
 return article in wiki_db

 def getPage(self, article):
 if self.exists(article):
 return Page(article=article,
 wikitext=wiki_db[article][0],
 controller=self)
 else:
 return NoPage(article=article,
 controller=self)

 def getEditPage(self, article):
 if self.exists(article):
 return EditPage(article=article,
 wikitext=wiki_db[article][0],
 controller=self)
 else:

Securing your Application with Spring Python

[124]

 return EditPage(article=article,
 wikitext="",
 controller=self)

 def create_edit_tuple(self, text, summary):
 return (text,
 summary,
 time.strftime("%H:%M:%S %d %b %Y", time.localtime()))

 def updatePage(self, article, wikitext, summary):
 if self.exists(article):
 wiki_db[article][1].append(
 self.create_edit_tuple(wiki_db[article][0],summary))
 wiki_db[article][0] = wikitext
 else:
 wiki_db[article] = [None, None]
 wiki_db[article][1] = [
 self.create_edit_tuple(wikitext,summary)]
 wiki_db[article][0] = wikitext

There is a method to retrieve a page. It checks whether or not the article exists. If
not, it returns a specialized page that will support creating a new one. Otherwise, it
returns a normal page with the retrieved wiki text.

There is another method to return an edit page, used to edit existing article entries.

Finally, there is a function to update a current page with new wiki text. If you'll
notice, when the wiki text is updated, an entry record is created in the form of a
tuple, and stored in the tail end list of the article's entry.

Let's define some simple model objects to pass around our application. First, we need
a basic representation of a page with some basic wiki formatting rules.

import re

intrawikiR = re.compile("\[\[(?P<link>.*?)(\|(?P<desc>.*?))?\]\]")
externalLinkR = re.compile("\[(?P<link>.*?)\s(?P<description>.*)\]")

class Page(object):
 def __init__(self, article, wikitext, controller):
 self.article = article
 self.wikitext = wikitext
 self.controller = controller

 def link_substitution(self, match):
 g = match.groupdict()

Chapter 6

[125]

 if self.controller.exists(g["link"]):
 str = ''
 else:
 str = ''

 if g["desc"]:
 str += g["desc"]
 else:
 str += g["link"]

 str += ""
 return str

 def header(self):
 """Standard header used for all pages"""
 return """
 <html>
 <head>
 <title>Spring Python book demo</title>
 </head>

 <body>
 <h1>""" + self.article + """</h1>
 """

 def footer(self):
 """Standard footer used for all pages."""
 footer = """

 Edit</
li>

 Spring Python book</
a>
 </body>
 """
 return footer

 def wiki_to_html(self):
 htmlText = self.wikitext
 try:
 htmlText = intrawikiR.sub('<a href="\g<link>">\g<desc></
a>', htmlText)
 except:

Securing your Application with Spring Python

[126]

 htmlText = intrawikiR.sub('<a href="\g<link>">\g<link></
a>', htmlText)
 htmlText = externalLinkR.sub('<a href="\g<link>">\
g<description>', htmlText)
 return htmlText

 def html(self):
 results = self.header()
 results += """
 <!-- BEGIN main content -->
 """
 results += self.wiki_to_html()
 results += """
 <!-- END main content -->
 """
 results += self.footer()
 return results

Page holds the title of the article, the wiki text associated with it, and a handle on the
controller. Most of the code in this class is used to support html(), a function used to
render this page in an HTML format.

Most web frameworks encourage usage of templates to avoid embedding
HTML in the application. This helps decouple the information shown on
the pages from the format it is displayed in. Since this chapter's focus is
on security and not clean Model-View-Controller (MVC) tactics, the
HTML is embedded directly into the application.

Our wiki page basically generates three parts: a header, some wiki text converted
into HTML, followed by a footer(). The wiki text rules are simple for our example:

It supports the free linking style of Wikipedia, where [[article to link
to]] maps to local web path /article_to_link_to. You can also insert a
pipe followed by an alternate block of text to be displayed [[article to
link|my alt text]].
External links [http://springpythonbook.com Spring Python book
site] map to the full URL, with the text after the first space being displayed
on the page

While it would be easy to implement more wiki format rules, we want to stick with
demonstrating security for our web application.

•

•

Chapter 6

[127]

Next we need the representation of an edit page.

class EditPage(Page):
 def __init__(self, article, wikitext, controller):
 Page.__init__(self, article, wikitext, controller)

 def header(self):
 """Standard header used for all pages"""
 return """
 <html>
 <head>
 <title>Spring Python book demo</title>
 </head>

 <body>
 <h1>Editing """ + self.article + """</h1>
 """

 def wiki_to_html(self):
 htmlText = """
 <form method="post"
 action="/submit?article=""" + \
 self.article + """" enctype="multipart/form-data">
 <textarea name="wpTextbox"
 rows='25' cols='80'>""" + \
 self.wikitext + """</textarea>

 Summary: <input type='text' value=""
 name="wpSummary" maxlength='200' size='60'/>

 <input type='submit' value="Save page"
 title="Save your changes"/>
 <a href="/""" + self.article + """" title='""" + \
 self.article + """'>Cancel
 </form>
 """
 return htmlText

An EditPage is really a Page with some special rendering. The header() block
inserts Editing in front of the article name. The main block of HTML shows a form
with the wiki text, summary input box, and a Save button.

Securing your Application with Spring Python

[128]

Let's create the final object modeling a non-existent page.

class NoPage(Page):
 def __init__(self, article, controller):
 Page.__init__(self, article,
 "This page does not yet exist.", controller)

NoPage is a Page with some hard-coded wiki text on it. It inherits the same format
rules as Page, and also has an edit button, so the user can replace the non-existent
page with a real one.

Let's create a pure Python application context to wire these components together.

import controller
import view
from springpython.config import PythonConfig
from springpython.config import Object

class SpringWikiAppContext(PythonConfig):
 def __init__(self):
 super(SpringWikiAppContext, self).__init__()

 @Object
 def view(self):
 return view.Springwiki(self.controller())

 @Object
 def controller(self):
 return controller.SpringWikiController()

With all the parts coded up, let's write a CherryPy server application to host our
web application.

import cherrypy
import os
import noxml
from springpython.context import ApplicationContext

if __name__ == '__main__':
 cherrypy.config.update({'server.socket_port': 8003})

 applicationContext = ApplicationContext(noxml.
SpringWikiAppContext())
 cherrypy.tree.mount(
 applicationContext.get_object("view"),
 '/',
 config=None)

 cherrypy.engine.start()
 cherrypy.engine.block()

Chapter 6

[129]

Assuming our controller code is in controller.py, the view code is in
view.py, and the application context is in noxml.py, we should be able to
fire up our CherryPy application.

CherryPy runs its own web server, and in this case we have configured it to run on
port 8003. It then creates an instance of our application context. Next, it grabs the
view object, and mounts it with the web path /. Finally, it starts up the CherryPy
engine and blocks for any web requests. Open up a browser and point at
http://localhost:8003, and you will see the results.

Securing your Application with Spring Python

[130]

Looking at our web application from
10,000 feet
The following diagram shows a high level view of our web application as a user
looks up an article, clicks on the Edit button, makes changes, and then submits an
update. By clicking on the Save button, the new wiki text is posted to Spring Wiki.

In our example application, we have coded a simplistic database: a Python dictionary.
However, that could easily be replaced by a relational database hosted on a separate
server. The concept is the same: save the changes submitted by the user.

Chapter 6

[131]

If we started out developing this application on the premise that anyone can read
and edit any article, this solution works. It is simple, easy to understand, and
probably the only security needed would be a firewall to protect our servers
from external attack.

Handling new security requirements
We have doubtlessly learned that new requirements are always coming, and we have
to be ready to implement them quickly. We started our application by implementing
the core functionality. Now we need to support multiple users and need to control
who edits what pages.

Authentication confirms "who you are"
The first step towards securing an application is authenticating the user. This
identifies who the user is, and is usually accomplished by the user providing
a username and a password. The following diagram shows an update to our
application's design. It includes a new component not found in the previous
diagram: a Spring Python Security agent that polices every web request combined
with a 3rd party security resource. Before allowing the user to actually touch our
wiki application or the database, our security agent checks if the user has been
authenticated. If not, Spring Python redirects the user to a login page. In the
diagram, we pick up at the point where the user submits new wiki text.

Securing your Application with Spring Python

[132]

The security agent meets one of our earlier requirements: application of security
must be decoupled from the application. The agent is a separate piece of code
charged with the responsibility of managing security between the user and our
application. Its configuration its not part of our wiki application, but instead
configured using the IoC container. We will see how to configure this agent shortly.

The following diagram shows the user submitting credentials. The security agent
checks the credentials against the 3rd party security resource to confirm the user's
identity. The most common implementation is a simple database table containing
user data.

Authorization confirms "what you can do"
It is important to point out that our security agent is not done. After confirming the
user's identity, Spring Python next looks up what authorities the user is granted. One
user may have the authority to read articles, while another has the authority to read
articles and also edit them. The last few steps of the previous diagram shows this as
authorities are looked up and stored in Spring Python Security's context holder.

The standard convention is to allow a user to have zero or more roles.
Having collected this information, our security agent stores the user's
identity, granted authorities, and authenticated status in a globally accessible
SecurityContextHolder. This is important, because it provides a way for our
application to look up information about the user's security status without modifying
the application's APIs. This meets another one of our requirements: credential data
must be available non-intrusively. After securing our application, we will see how
this is available.

Chapter 6

[133]

After authenticating and authorizing the user, the web request is allowed through
to the web application. The following diagram shows what happens when we again
submit our new wiki text, assuming we are authenticated and authorized to do so.

It is important to point out that this requires no changes in either SpringWiki or
SpringWikiController. We will quickly demonstrate that applying these changes
involves only some configuration changes.

Time to add security to our application
Now it's time to add these security features to our application.

First we need to define the Spring Python Security agent. To do this, we need to add
the following code to our SpringWikiAppContext.

 @Object
 def filterChainProxy(self):
 return CP3FilterChainProxy(filterInvocationDefinitionSource =
 [
 ("/login.*", ["httpSessionContextIntegrationFilter"]),
 ("/.*", ["httpSessionContextIntegrationFilter",
 "exception_translation_filter",
 "auth_processing_filter",
 "filter_security_interceptor"])
])

Securing your Application with Spring Python

[134]

springpython.security.cherrypy3.CP3FilterChainProxy uses CherryPy
APIs to insert itself into the chain of handlers that are called before our CherryPy
application is called. This allows the filter chain proxy to apply the security policies
we are configuring.

The filter chain proxy is configured with a list of URL patterns. On every web
request, the proxy will iterate over this list until it finds a match.

When a match is found, it applies the defined chain of filters before allowing access
to the web application itself. Each filter is configured as a string used to reflectively
look up the actual filter in the application context.

If a match is not found, the entire security stack is bypassed. This is not the
recommended solution. Instead, it is best to cover all the possible patterns by
having a catch-all pattern (/.*) to clearly show what filters are applied where.

Let's add the first filter needed to the application context:
httpSessionContextIntegrationFilter.

 @Object
 def httpSessionContextIntegrationFilter(self):
 filter = HttpSessionContextIntegrationFilter()
 filter.sessionStrategy = self.session_strategy()
 return filter

 @Object
 def session_strategy(self):
 return CP3SessionStrategy()

First, note that the method name matches the filter's string name found in
filterChainProxy.

springpython.security.web.HttpSessionContextIntegrationFilter is used
to transfer security credentials between the user's HTTP session and Spring Python's
SecurityContextHolder. The rest of the Spring Python Security components use
SecurityContextHolder to access the user's credential information.

In our application's configuration, this filter is used when accessing the login page
(which we haven't coded yet), so that the login page can store credential info. The
rest of the application has several more filters.

In order for Spring Python to support different web frameworks, the
mechanism to interact with HTTP session data is encapsulated inside
cherrypySessionStrategy(). In our case, we use CP3SessionStrategy.

Chapter 6

[135]

Let's add the exception_translation_filter to manage any security exceptions
thrown by other filters or the web application itself.

 @Object
 def exception_translation_filter(self):
 filter = ExceptionTranslationFilter()
 filter.authenticationEntryPoint = self.auth_filter_entry_pt()
 filter.accessDeniedHandler = self.accessDeniedHandler()
 return filter

 @Object
 def auth_filter_entry_pt(self):
 filter = AuthenticationProcessingFilterEntryPoint()
 filter.loginFormUrl = "/login"
 filter.redirectStrategy = self.redirectStrategy()
 return filter

 @Object
 def accessDeniedHandler(self):
 handler = SimpleAccessDeniedHandler()
 handler.errorPage = "/accessDenied"
 handler.redirectStrategy = self.redirectStrategy()
 return handler

 @Object
 def redirectStrategy(self):
 return CP3RedirectStrategy()

This filter is responsible for redirecting the user to the right page in the event of a
security exception. If the user has not been authenticated yet, he is redirected to the
login page. If he is trying to access a page without the appropriate authorization, he
is redirected to the accessDenied page.

In order for Spring Python to support different web frameworks, the mechanism to
issue a web redirect is encapsulated inside redirectStrategy(). In our case, we
uses CP3RedirectStrategy.

Let's add the authenticationProcessingFilter to confirm a user is authenticated
before proceeding.

 @Object
 def auth_processing_filter(self):
 filter = AuthenticationProcessingFilter()
 filter.auth_manager = self.auth_manager()
 filter.alwaysReauthenticate = False
 return filter

Securing your Application with Spring Python

[136]

This filter's job is to confirm the user is authenticated. If not, a security exception
is thrown, and the exception_translation_filter handles the outcome. At this
stage, it is possible to configure the system to re-authenticate on every web request,
or to avoid consuming as many resources by caching the authentication status.

The following diagram shows how the filters are nested together. A call into
this stack of filters gives each filter a chance to perform security functions on entry
and/or exit. It also shows how the entire Spring Python Security stack is neatly
staged between the caller and the application, without having to intertwine itself
into the application itself through either class hierarchy or meddling with the
application's API.

Let's define the AuthenticationManager that manages the lookup of user
credentials. For our situation, we will define a fixed list of users for test purposes.

 @Object
 def auth_manager(self):
 auth_manager = AuthenticationManager()
 auth_manager.auth_providers = [self.auth_provider()]
 return auth_manager

 @Object
 def auth_provider(self):
 provider = DaoAuthenticationProvider()
 provider.user_details_service = self.user_details_service()
 provider.password_encoder = PlaintextPasswordEncoder()
 return provider

 @Object

Chapter 6

[137]

 def user_details_service(self):
 user_details_service = InMemoryUserDetailsService()
 user_details_service.user_dict = {
 "alice": ("alicespassword",["ROLE_READ", "ROLE_EDIT"],
True),
 "bob": ("bobspassword", ["ROLE_READ"], True)
 }
 return user_details_service

auth_manager references a list of authentication providers that are used to check
credentials. When an authentication request is submitted, AuthenticationManager
goes down this list, asking each one to attempt authentication until one of them
succeeds. If no provider succeeds, AuthenticationManager throw a security
exception, denying access.

Right now, we have only one provider defined, but it is possible to have more.
This meets another one of our key requirements: multiple security providers must
be allowed.

Our provider, DaoAuthenticationProvider, taps its user_details_service
in order to lookup the user. It then runs the user-supplied password through its
password_encoder and compares it to the stored password. In our situation, we
are using an InMemoryUserDetailsService instead of an actual database, and the
password is stored in the clear instead of hashed.

It is highly recommended to not store passwords in the clear on any
production system.

As you can see, we currently have two user accounts defined:

alice has two defined roles: ROLE_READ and ROLE_EDIT. alice is an
enabled account
bob has one defined role: ROLE_READ. bob is an enabled account

Using the InMemoryUserDetailsService makes it easy to get our application
up and running from a security perspective, since we don't have to worry about
integrating with any external systems.

•

•

Securing your Application with Spring Python

[138]

With all the components nicely separated, we can later swap
InMemoryUserDetailsService with DatabaseUserDetailsService when
we are ready to go online. We can also replace PlaintextPasswordEncoder with
either ShaPasswordEncoder or Md5PasswordEncoder, to easily support different
hashing algorithms.

Let's define the last filter needed in our chain: filter_security_interceptor.

 @Object
 def filter_security_interceptor(self):
 filter = FilterSecurityInterceptor()
 filter.auth_manager = self.auth_manager()
 filter.access_decision_mgr = self.access_decision_mgr()
 filter.sessionStrategy = self.session_strategy()
 filter.obj_def_source = [
 ("edit.*", ["ROLE_EDIT"]),
 ("/.*", ["ROLE_READ"])
]
 return filter

 @Object
 def access_decision_mgr(self):
 access_decision_mgr = AffirmativeBased()
 access_decision_mgr.allow_if_all_abstain = False
 access_decision_mgr.access_decision_voters = [RoleVoter()]
 return access_decision_mgr

filter_security_interceptor is the last security check in our app. Its job is to
make sure the user is authorized to complete the request. It looks at the URL of
the web request, and then goes down its list of URL patterns until it finds a match.
When it does, it sees a list of roles. The roles along with the user's credentials are
given to the access_decision_mgr, who submits a request for a vote from each of
its access_decision_voters. In our configuration, we are using RoleVoter, which
votes on whether or not the user has the role supplied in the list.

access_decision_mgr tallies up the votes, and decides if access is granted based
on the policy. In our case, we have an AffirmativeBased policy, meaning that we
need only one up vote, i.e. we only need to have one of the roles in the list. If we
switched to a UnanimousBased policy, we would be required to have all the roles.
A ConsensusBased policy would require that we have a majority of the roles.

Chapter 6

[139]

This policy indicates that a user can only access /edit* URLs if he has ROLE_EDIT.
For any other web path, the user must have ROLE_READ. Note: don't forget that
/login* is excluded from this filter.

Let's add a login page to our view layer
 @cherrypy.expose
 def login(self, fromPage="/", login="", password="",
errorMsg=""):
 return self.controller.getLoginPage(
 fromPage, login, password, errorMgr)

Let's add the code to create and process a login page in our controller
 def getLoginPage(self,fromPage="/
",login="",password="",errorMsg=""):
 if login != "" and password != "":
 try:
 self.authenticate(login, password)
 return [self.redirector.redirect(fromPage)]
 except AuthenticationException, e:
 return [self.redirector.redirect(
 "?login=%s&errorMsg=Username/password failure" %
 login)]

 results = """
<html>
 <head>
 <title>Spring Python book demo</title>
 </head>

 <body>
 <form method="POST" action="">
 Login: <input type="text" name="login" value="%s"
size="10"/>

 Password: <input type="password" name="password" size="10"/
>

 <input type="hidden" name="fromPage" value="%s"/>

 <input type="submit"/>
 </form>
 Spring Python book
 </body>
</html>
 """ % (login, fromPage)

•

•

Securing your Application with Spring Python

[140]

 return [results]

 def authenticate(self, username, password):
 token = UsernamePasswordAuthenticationToken(username,
password)
 SecurityContextHolder.getContext().authentication =
 self.auth_manager.authenticate(token)
 self.httpContextFilter.saveContext()

We also need to initialize the controller with some of the security
components
 def __init__(self):
 self.httpContextFilter = None
 self.auth_manager = None
 self.redirector = None

These controller attributes must be injected from the IoC container

 @Object
 def controller(self):
 ctrl = controller.SpringWikiController()
 ctrl.httpContextFilter =
 self.httpSessionContextIntegrationFilter()
 ctrl.auth_manager = self.auth_manager()
 ctrl.redirector = self.redirectStrategy()
 return ctrl

With these parts injected into the controller, it now has the ability to process a login
request, store it into the context, and have the user's authenticated credentials stored
in their HTTP session data.

With all these modifications in place, Spring Python has clearly made it possible
to wrap an existing application with a layer of security. The IoC definitions
show fine grained control over what URLs require which filters, and also which
authorization roles. This meets the important requirement: 'the security solution
must be orthogonal to the class hierarchy'. At no time were we required to extend
any security-based classes. Instead, we used a series of filters and security classes, all
defined outside the hierarchy of our business model.

By keeping the policies in the centralized location of the application context, it is
easy to adjust them as necessary. For example, if we needed a /admin.* pattern
linked with ROLE_ADMIN, it is easy to adjust the access_decision_manager to easily
support this. We can also put various URL patterns underneath different policies,
all from within the application context. This supports the key requirement: 'security
policies must be flexible and easy to fine tune'.

•

•

Chapter 6

[141]

Accessing security data from within
the app
We briefly mentioned how Spring Python Security stores user credentials in the
SecurityContextHolder. This provides an easy way to lookup important security
information from within our application without having to alter our APIs.

So far, we have managed to develop a relatively simple web application, and then
wrap it with a layer of security that protects URLs based on roles. There may be
situations where that isn't enough. While protection of URLs is nice, it may be useful
to disable or hide some links based on the user's role power. This is a more fine
grained option, and is easy to implement.

In the definition of the Page object that is used to render html, the footer definition
contains this:

 def footer(self):
 """Standard footer used for all pages."""
 footer = """

 Edit

 Spring Python book

 </body>
 """
 return footer

In this situation, when viewing an article, we present the user with option to click on
the edit link. However, if the user doesn't have ROLE_EDIT, the request will redirect
him to an access denied page.

The preferred solution would be to hide this link so they don't click on it in the
first place. Reducing the opportunities for users to wander into access denied
pages not only reduces the demand on the security layer, but also improves the
user experience. But our current security solution we have put in doesn't deal with
conditionally altering HTML. Writing a filter to manage this isn't pragmatic. Instead,
it is best to put some conditional checks right here to check user credentials, and
optionally render the hyperlink.

 def footer(self):
 """Standard footer used for all pages."""
 footer = ""

Securing your Application with Spring Python

[142]

 if "ROLE_EDIT" in SecurityContextHolder.getContext().
 authentication.granted_auths:
 footer += """

 Edit

 """

 footer += """
 Spring Python book

 </body>
 """
 return footer

SecurityContextHolder is a globally accessible object. It contains a context, which
specifies where the current authentication credentials are being stored.

If SecurityContextHolder is configured with mode "GLOBAL", then there
is a single context for the entire Python VM, meaning all threads will see the
same security credentials
If SecurityContextHolder is configured with mode "THREADLOCAL", then
the context is stored in threading.local(), meaning there is a separate
context for each thread. This is useful for multi-threaded server apps
where a separate thread exists for each user

By the time this code is actually executed, SecurityContextHolder will have
been populated with user data, allowing us to do a quick check and only offer this
link of the user has the necessary role, without altering our application API. This
satisfies the requirement: 'credential data and other security APIs must be available
non-intrusively'.

Testing application security
Testing security has traditionally been a challenge, because there are many facets to
cover. Integrating with a 3rd party authentication system is one part that needs to be
checked out. Making sure the application is using the security system is also needed.
And confirming that both good and bad accounts are handled properly is important.
Often, we tend to code successful scenarios. Its important to know that our software
responds to failing scenarios as well. While this is important for general coding, it
is especially critical to test failing security scenarios. If the system doesn't properly
handle invalid or expired credentials, what is the point in securing the system?

•

•

Chapter 6

[143]

By using the InMemoryUserDetailsService in an alternative application context, it
is easy to create a whole host of user accounts that have all the permutations of roles,
privileges, good and bad passwords needed to checkout the services. CherryPy is
especially easy to test, because it doesn't require running the web container. Since
CherryPy conveniently maps URLs to methods, it is easy enough to call the methods
directly from a test harness rather than verify the web handling machinery of
CherryPy. And swapping the data access layer with either stubs or mocks makes it
easy to isolate business logic.

All these things help to build a high confidence automated test suite. With the
core of our application easily subjected to automated testing, it now becomes easy
to decide whether or not to use an automated web container test kit for the web
layer. It is also an option to test the 3rd party security system through automated
integration testing.

By removing the need to code security APIs by hand inside our business logic and
also decoupling the web layer, it becomes much easier to automate testing, leading
to a more powerful system that meets expectations.

Configuring SQL-based security
We configured our wiki application with startup security by using
InMemoryUserDetailsService. It's easy to upgrade to database-managed security
by simply swapping that component out with DatabaseUserDetailsService.

In the SpringWikiAppContext, we just need to change user_details_service to:

 @Object
 def user_details_service(self):
 service = DatabaseUserDetailsService()
 service.dataSource = self.factory()
 return service

In this example, we have left out the coding of factory(). This is simply a
connection factory used to create a DatabaseTemplate to talk to the database, as
covered in the earlier SQL chapter.

DatabaseUserDetailsService defines the following queries to look up user data
and granted authorities:

To lookup users: SELECT username,password,enabled FROM users WHERE
username = ?

To lookup authorities: SELECT username,authority FROM authorities
WHERE username = ?

•

•

Securing your Application with Spring Python

[144]

Even though these are the default settings, it is easy to support another schema. Just
override the variables as shown below.

 @Object
 def user_details_service(self):
 service = DatabaseUserDetailsService()
 service.dataSource = self.factory()
 service.DEF_USERS_BY_USERNAME_QUERY = "<alt user qry>"
 service.DEF_AUTHORITIES_BY_USERNAME_QUERY = "<alt auth qry>"
 return service

Configuring LDAP-based security
LDAP is a popular protocol used to host user accounts and group associations as
well. Spring Python provides a convenient LdapAuthenticationProvider with
flexible options to support conventional schemas as well as custom ones.

At the time of writing, Spring Python LDAP only works on CPython and
not on Jython.

LdapAuthenticationProvider has two components:

A BindAuthenticator and a PasswordComparisonAuthenticator to
perform authentication
A DefaultLdapAuthoritiesPopulator to lookup granted authorities based
on conventional LDAP group associations

LDAP supports binding, where the server confirms the user's password.
BindAuthenticator utilizes this feature to confirm the user's password.

It is also possible to fetch the password from the directory server, and
do a password comparison after properly hashing the user's password.
PasswordComparisonAuthenticator is used to perform this operation.

After confirming a user's credentials, the second step of
LdapAuthenticationProvider is to search the directory for groups
the user is associated with.

•

•

Chapter 6

[145]

The following code shows an application context where
LdapAuthenticationProvider is set up with a BindAuthenticator
and an authorities populator.

from springpython.config import PythonConfig
from springpython.config import Object

from springpython.security.providers.Ldap import *

class LdapAppContext(PythonConfig):
 def __init__(self):
 super(LdapAppContext, self).__init__()

 @Object
 def auth_manager(self):
 auth_manager = AuthenticationManager()
 auth_manager.auth_providers = [self.auth_provider()]
 return auth_manager

 @Object
 def auth_provider(self):
 provider = LdapAuthenticationProvider()
 provider.ldap_authenticator = self.authenticator()
 provider.ldap_authorities_populator =
 self.authorities_populator()
 return provider

 @Object
 def context(self):
 return DefaultSpringSecurityContextSource(
 url="ldap://localhost:53389/dc=springpythonbook,dc=com")

 @Object
 def authenticator(self):
 return BindAuthenticator(
 context_source=self.context(),
 user_dn_patterns="uid={0},ou=people")

 @Object
 def authorities_populator(self):
 return DefaultLdapAuthoritiesPopulator(
 context_source=self.context(),
 group_search_base="ou=groups")

Securing your Application with Spring Python

[146]

All the LDAP components are pointed at one directory server, with the
format ldap://<server>:<port>/<baseDN>
BindAuthenticator is configured to search recursively from the <baseDN>
with the pattern uid={0},ou=people, where {0} is where the supplied
username will be substituted. When the dn is found, a bind is performed
using the supplied password
DefaultLdapAuthoritiesPopulator will search one level below baseDN
at ou=groups, looking for any entries that have a member attribute pointed
at the user's dn. It is possible to override group_search_filter with
something else like uniqueMember={0}, if the directory schema is different.
By default, the name of the group fetched will be the group's cn. Overriding
group_role_attr allows picking another attribute. By default, the group
name will be converted to upper case, and prefixed with ROLE_. These can be
overridden with role_prefix and convert_to_upper
To do a password check instead, replace BindAuthenticator with
PasswordComparisonAuthenticator

By default it supports both plain text passwords as well as SHA hashed ones
that are base64 encoded. This can be overridden by supplying an alternative
password encoder to encoder attribute
It has the same constructor arguments as BindAuthenticator, meaning you
can specify user_dn_patterns
By default, it looks for the password stored in the userPassword attribute.
You can override this by setting the password_attr_name attribute

If you have a non-conventional usage of either password authentication, or group
management, you can plug in your own authenticator or authorities populator. I ran
into this problem myself when a legacy system stored the roles in a custom attribute
inside the user's record instead of a separate group.

With all the options to override the defaults, it should be pretty easy to get LDAP
security management underway.

Using multiple security providers is easy
Supporting multiple security providers is a valuable feature. There are several
common use cases where this is quite beneficial.

Migrating from an old security solution to a new one—This is where started
with security provider, but need to migrate to another one. For example, we
started with user accounts stored in the database, but want to move to a
two-factor authentication system.

•

•

•

•

•

•

•

Chapter 6

[147]

Supporting multiple user communities—This is where two different sites
running on two different servers are merged to run on a single server.
Instead of maintaining two different applications, we want to consolidate
the data but maintain existing roles and accounts.
Providing redundant security access—This is when we need to have multiple
security providers to handle failures and maintenance windows.

Let's explore these scenarios in more detail.

Migrating from an old security solution to a
new one
One very handy use case is where you want to migrate users from an old login
system to a new one. For example, your project may have several tools that have
all been using their own custom database solution. However, you finally want to
centralize everyone's details in a common LDAP server. With both systems keyed
up, as new users are issued new credentials, they can log in with no interruption of
service. Once everyone has been migrated, you can remove the old security provider.

It also makes it easy to have redundant security providers, such as having more than
one LDAP URL to point at.

Earlier, we saw the configuration for an AuthenticationManager that looked
like this:

 @Object
 def auth_manager(self):
 auth_manager = AuthenticationManager()
 auth_manager.auth_providers = [self.auth_provider()]
 return auth_manager

AuthenticationManager supports a list of providers. It will iterate over each one
until a successful match is made. To support the migration use case, it can be altered
to look like this:

 @Object
 def auth_manager(self):
 auth_manager = AuthenticationManager()
 auth_manager.auth_providers = [
 self.old_auth_provider(),
 self.new_auth_provider()]
 return auth_manager

•

•

Securing your Application with Spring Python

[148]

With this setup, our system will first try to use the old authentication provider.
However, if it fails, Spring Python Security will try the new authentication provider.

Supporting multiple user communities
It is possible our application may have to support multiple users. Imagine we had
developed our application and had complete Spring Python Security configuration
as well, handling users based on a DatabaseUserDetailsService. Some time
after that, our company acquires another company, bringing on board many new
employees that need access to the system. It might be too much effort to migrate
them into the new system. Or at least, it might be too expensive. Instead, it would
be much easier to configure another authentication provider to point at their current
system. The only other feature needed would be to add the extra roles from the new
users to the access decision manager.

The solution would look much like the previous use case. The company can now
easily decide whether to continue in this fashion, or start a migration of the new
users into the already existing system as shown in the previous use case.

Providing redundant security access
We just recently walked through configuring security access to an LDAP server.
In the current version of Spring Python, it only supports one URL. To handle two
LDAP servers in a redundant solution, all you have to do is configure two instances
of each and then plug them in to the AuthenticationManager.

from springpython.config import PythonConfig
from springpython.config import Object

from springpython.security.providers.Ldap import *

class LdapAppContext(PythonConfig):
 def __init__(self):
 super(LdapAppContext, self).__init__()

 @Object
 def auth_manager(self):
 auth_manager = AuthenticationManager()
 auth_manager.auth_providers = [
 self.auth_provider1(),
 self.auth_provider2()]
 return auth_manager

 @Object

Chapter 6

[149]

 def auth_provider1(self):
 provider = LdapAuthenticationProvider()
 provider.ldap_authenticator = self.authenticator1()
 provider.ldap_authorities_populator =
 self.authorities_populator1()
 return provider

 @Object
 def auth_provider2(self):
 provider = LdapAuthenticationProvider()
 provider.ldap_authenticator = self.authenticator2()
 provider.ldap_authorities_populator =
 self.authorities_populator2()
 return provider

 @Object
 def context1(self):
 return DefaultSpringSecurityContextSource(
 url="ldap://server1:53389/dc=springpythonbook,dc=com")
 @Object
 def context2(self):
 return DefaultSpringSecurityContextSource(
 url="ldap://server2:53389/dc=springpythonbook,dc=com")

 @Object
 def authenticator1(self):
 return BindAuthenticator(
 context_source=self.context1(),
 user_dn_patterns="uid={0},ou=people")

 @Object
 def authenticator2(self):
 return BindAuthenticator(
 context_source=self.context2(),
 user_dn_patterns="uid={0},ou=people")

 @Object
 def authorities_populator1(self):
 return DefaultLdapAuthoritiesPopulator(
 context_source=self.context1(),
 group_search_base="ou=groups")

 @Object
 def authorities_populator2(self):

Securing your Application with Spring Python

[150]

 return DefaultLdapAuthoritiesPopulator(
 context_source=self.context2(),
 group_search_base="ou=groups")

While it is possible Spring Python will eventually support multiple URLs, the ability
to combine existing components gives you an already working solution right now.

Coding our own security extension
While all the features shown in this chapter so far demonstrate a powerful security
framework, arguably the most important feature is the ability to write a custom
security extension that plugs into this architecture.

Earlier in the LDAP section, it was mentioned that it is possible to adjust where
searches are conducted to find groups related to the users. In the SQL section, it
was shown that custom queries can be injected. Both of these features allow flexible
adjustments, however, they can only bend so far. If our security system is highly
specialized, it may be easier to simply code our own extension, and plug it in.

This is also necessary if another security system is not yet supported by Spring
Python, such as two-factor tokens, OpenID, or X.509 certificates. While support for
these may appear in the future, our needs may not be able to wait.

Coding a custom authentication provider
For our example, let's write a custom authentication provider that is based on
logging in to a database instead of doing a password comparison.

This example matches a real situation I had to deal with. I inherited an
application that was based on logging the user into the database and
then looking up roles. This confined passwords to whatever the database
supported, and in turn not allowing us to have a unified policy for
acceptable passwords. The first step to migrate that application off of
this limited solution required a custom authentication provider just like
this example. It allowed me to utilize this framework, which provided
the ability to plug in another security provider pointed at our new user
security data.

In order to code our custom security provider, we need to write an authenticate
method with the following signature:

 def authenticate(self, authentication)

Chapter 6

[151]

Authentication providers are expected to either succeed or fail with the
following behavior:

If authentication is successful, return an authentication
object. It is recommended to create a new instance of
UsernamePasswordAuthenticationToken, copy in the username,
password, and granted_auths, and then return it. This is the same class
used by all of Spring Python Security's providers. We do not have to call
setAuthenticated(true) on the token. AuthenticationManager handles
this for us
If authentication fails, raise a BadCredentialsException

For this provider, we can use DatabaseTemplate to do most of our work. To do that,
we need an injected SQL connection factory. If we set the username and password
with the values supplied by our user, we can create a DatabaseTemplate and
attempt a query to retrieve the user's roles. Since our instance of DatabaseTemplate
will try to login to the database before doing the query, this should serve as our
authentication check. If successful, we will receive the granted authorities in a result
set. If it fails, we will get a SQL exception, which we can catch and replace with a
BadCredentialsException.

from springpython.security.providers import *
from springpython.database.core import *

class MySqlLoginAuthenticationProvider(AuthenticationProvider):

 def __init__(self, factory=None):
 self.factory = factory

 def authenticate(self, authentication):
 self.factory.username = authentication.username
 self.factory.password = authentication.password
 dt = DatabaseTemplate(self.factory)

 try:
 authorities =
 dt.query("select authority from user where username = ?",
 (authentication.username,),
 rowhandler=DictionaryRowMapper())

 return UsernamePasswordAuthenticationToken(
 authentication.username,
 authentication.getCredentials(),
 [auth["authority"] for auth in authorities])
 except:
 raise BadCredentialsException("Invalid credentials")

•

•

Securing your Application with Spring Python

[152]

Because each connection factory is slightly different, we will assume this is
a MySqlConnectionFactory being passed in. Our new provider is ready for
immediate use. It's that easy, meeting our requirement: 'users must be able to
quickly write custom security extensions to handle legacy security solutions'.

One way to make this example more sophisticated would be to make it handle the
current set of connection factories. But for now, it works as a suitable demonstration
of how easy it is to authenticate against an existing system in a way not currently
covered by Spring Python Security.

Some of the challenges with Spring
Python Security
Spring Python Security—as demonstrated throughout this chapter—is extremely
flexible, highly extensible, and non-invasive. However, there is a cost. Everything
must be configured by hand (and also configured correctly).

This was one of the major criticisms levied against Acegi Security. Since then,
Acegi Security (now branded as Spring Security) has made several updated
releases, reducing the amount of manual configuration required. They now provide
short-cuts to many industry standard security options, while still allowing us to
add customization options, making it much easier to wire up the security framework
for our needs.

As Spring Python Security develops, it will be making similar changes while also
increasing the protocols it supports. Until then, it is good practice to use as much
automated testing as possible to make sure the configuration is performing as
expected. And for issues and documentation, be sure to make use of:

Online reference manual (http://springpython.webfactional.com)
Support forum (http://forum.springsource.org/forumdisplay.
php?f=45)
Mailing list (http://lists.springsource.com/archives/springpython-
users) to get up-to-date answers

•

•

•

Chapter 6

[153]

Summary
In this chapter, we have gone into the details of the complex, yet powerful Spring
Python Security architecture, and seen how flexible and configurable it is. We looked
at the challenges of coding security into an application and came up with a list of
requirements for a useful security solution. Throughout the chapter, we saw how
Spring Python Security met those requirements.

We developed a simple application, and then applied simple, hard-coded testable
security. Later on, we saw how it was possible to easily swap this out with a
SQL-driven solution thanks to Spring Python's IoC container. We also explored
configuring an LDAP solution.

We finished be seeing how to easily add our own custom security extensions that
easily plug in to Spring Python Security.

We also frankly observed that using Spring Python Security takes some careful
configuration. Hopefully this book has lowered the bar to make it more accessible.

In this chapter, we covered:

Security problems software developers have to deal with and effectively
coding solutions is very challenging
There are many requirements involved with building a security framework,
and Spring Python meets them all
We wrapped an unsecured application with a simple solution that cleanly
protects the app by delegating to a security controller
The concept of authenticating who the user is, and determining what they
are authorized to do
Testing the security of our application is possible, practical, and necessary
We configured a SQL-based security system, including adapting to a custom
user/role schema
We configured an LDAP-based security system
We explored making our application support multiple user communities or
migrating from one security system to another with no downtime
We looked at how to code our own security extension for systems not yet
supported out-of-the-box by Spring Python Security

In the next chapter, we will explore ways to connect systems together over remote
links using the Spring way.

•

•

•

•

•

•

•

•

•

Scaling your Application
Across Nodes with Spring

Python's Remoting
With the explosion of the Internet into e-commerce in recent years, companies are
under pressure to support lots of simultaneous customers. With users wanting
richer interfaces that perform more business functions, this constantly leads to a
need for more computing power than ever before, regardless of being web-based or
thick-client. Seeing the slowdown of growth in total CPU horsepower, people are
looking to multi-core CPUs, 64-bit chips, or at adding more servers to their
enterprise in order to meet their growing needs.

Developers face the challenge of designing applications in the simple environment
of a desktop scaled back for cost savings. Then they must be able to deploy
into multi-core, multi-server environments in order to meet their companies
business demands.

Different technologies have been developed in order to support this. Different
protocols have been drafted to help communicate between nodes. The debate rages
on as to whether talking across the network should be visible in the API or abstracted
away. Different technologies to support remotely connecting client process with
server processes is under constant development.

Spring Python offers a clean cut way to take simple applications and split them
up between multiple machines using remoting techniques that can be seamlessly
injected without causing code rewrite headaches. Spring Python makes it easy to
utilize existing technologies, while also being prepared to support ones not
yet designed.

Scaling your Application Across Nodes with Spring Python’s Remoting

[156]

In this chapter we will learn how:

Pyro provides a nice Python-to-Python remoting capability to easily create
client-server applications
Spring Python seamlessly integrates with Pyro so that your application
doesn't have to learn the API
You can convert a simple application into a distributed one, all on the
same machine
It takes little effort to rewire an application by splitting it up into parts,
plugging in a round-robin queue manager, and running multiple copies of
the server with no impact to our business logic

Introduction to Pyro (Python Remote
Objects)
Pyro is an open source project (http://pyro.sourceforge.net) that provides
an object oriented form of RPC. As stated on the project's site, it resembles Java's
Remote Method Invocation (RMI). It is less similar to CORBA (http://ww.corba.
org), a technology-neutral wire protocol used to link multiple processes together,
because it doesn't require an interface definition language, nor is oriented
towards linking different languages together. Pyro supports Python-to-Python
communications. Thanks to the power of Jython, it is easy to link Java-to-Python,
and vice versa.

Python Remote Objects is not to be confused with the Python Robotics
open source project (also named Pyro).

Pyro is very easy to use out of the box with existing Python applications. The ability
to publish services isn't hard to add to existing applications. Pyro uses its own
protocol for RPC communication.

Fundamentally, a Pyro-based application involves launching a Pyro daemon thread
and then registering your server component with this thread. From that point on,
the thread along with your server code is in stand-by mode, waiting to process client
calls. The next step involves creating a Pyro client proxy that is configured to find
the daemon thread, and then forward client calls to the server. From a high level
perspective, this is similar to what Java RMI and CORBA offer. However, thanks to
the dynamic nature of Python, the configuration steps are much easier, and there are
no requirements to extend any classes or implement any interfaces.

•

•

•

•

Chapter 7

[157]

As simple as it is to use Pyro, there is still the requirement to write some minimal
code to instantiate your objects and then register them. You must also code up the
clients, making them aware of Pyro as well. Since the intent of this chapter is to dive
into using Spring Python, we will skip writing a pure Pyro application. Instead, let's
see how to use Spring Python's out-of-the-box Pyro-based components, eliminating
the need to write any Pyro glue code. This lets us delegate everything to our IoC
container so that it can do all the integration steps by itself. This reduces the cost of
making our application distributed to zero.

Converting a simple application into a
distributed one on the same machine
For this example, let's develop a simple service that processes some data and
produces a response. Then, we'll convert it to a distributed service.

First, let's create a simple service. For this example, let's create one that returns us
an array of strings representing the Happy Birthday song with someone's name
embedded in it.

class Service(object):
 def happy_birthday(self, name):
 results = []
 for i in range(4):
 if i == 2:
 results.append("Happy Birthday Dear %s!" % name)
 else:
 results.append("Happy Birthday to you!")
 return results

Scaling your Application Across Nodes with Spring Python’s Remoting

[158]

Our service isn't too elaborate. Instead of printing the data directly to screen, it
collects it together and returns it to the caller. This allows us the caller to print it, test
it, store it, or do whatever it wants with the result. In the following screen text, we
see a simple client taking the results and printing them with a little formatting inside
the Python shell.

As we can see, we have defined a simple service, and can call it directly. In our
case, we are simply joining the list together with a newline character, and printing
it to the screen.

Fetching the service from an IoC container
Let's define a simple IoC container that will create an instance of our service.

from springpython.config import *

from simple_service import *

class HappyBirthdayContext(PythonConfig):
 def __init__(self):
 PythonConfig.__init__(self)

 @Object
 def service(self):
 return Service()

Chapter 7

[159]

Creating a client to call the service
Now let's write a client script that will create an instance of this IoC container, fetch
the service, and use it.

from springpython.context import *

from simple_service_ctx import *

if __name__ == "__main__":
 ctx = ApplicationContext(HappyBirthdayContext())
 s = ctx.get_object("service")
 print "\n".join(s.happy_birthday("Greg"))

Running this client script neatly creates an instance of our IoC container, fetches the
service, and calls it with the same arguments shown earlier.

Making our application distributed without
changing the client
To make these changes, we are going to split up the application context into two
different classes: one with the parts for the server and one with parts for the client.

While there is no change to the API, we do have to slightly modify the original client
script, so that it imports our altered context file.

Scaling your Application Across Nodes with Spring Python’s Remoting

[160]

First, let's publish our service using Pyro by making some small changes to the
IoC configuration.

from springpython.config import *
from springpython.remoting.pyro import *

from simple_service import *

class HappyBirthdayContext(PythonConfig):
 def __init__(self):
 PythonConfig.__init__(self)

 @Object
 def target_service(self):
 return Service()

 @Object()
 def service_exporter(self):
 exporter = PyroServiceExporter()
 exporter.service_name = "service"
 exporter.service = self.target_service()
 return exporter

We have renamed the service method to target_service, to indicate it is the
target of our export proxy.

We then created a PyroServiceExporter. This is Spring Python's out-of-the-box
solution for advertising any Python service using Pyro. It handles all the details of
starting up Pyro daemon threads and registering our service.

Pyro requires services to be registered with a distinct name, and this is configured by
setting the exporter's service_attribute attribute to "service". We also need to
give it a handle on the actual service object with the export's service attribute. We
do this by plugging in target_service.

By default, Pyro advertises on IP address 127.0.0.1, but this can be
overridden by setting the exporter's service_host attribute
By default, Pyro advertises on port 7766, but this can be overridden by
setting the exporter's service_port attribute

•

•

Chapter 7

[161]

1.	 To finish the server side of things, let's write a server script to startup and
advertise our service.

	 from springpython.context import *

	 from simple_service_server_ctx import *
	
	 if __name__ == "__main__":
	 ctx = ApplicationContext(HappyBirthdayContext())
	 ctx.get_object("service_exporter")

Now let's start up our server process.

2.	 As you can see, it is standing by, waiting to be called.
3.	 Next, we need a client-based application context.
	 from springpython.config import *
	 from springpython.remoting.pyro import *
	
	 class HappyBirthdayContext(PythonConfig):
	 def __init__(self):
	 PythonConfig.__init__(self)
	
	 @Object
	 def service(self):
	 proxy = PyroProxyFactory()
	 proxy.service_url="PYROLOC://127.0.0.1:7766/service"
	 return proxy

Scaling your Application Across Nodes with Spring Python’s Remoting

[162]

We define Pyro client using Spring Python's PyroProxyFactory, an easy to
configure Spring Python proxy factory that handles the task of using Pyro's APIs to
find our remote service. And by using the IoC container's original name of service
service embedded in the URL (PYROLOC://127.0.0.1:7766/service), our client
script won't require any changes.

1.	 Let's create a client-side script to use this context.
	 from springpython.context import *
	
	 from simple_service_client_ctx import *
	
	 if __name__ == "__main__":
	 ctx = ApplicationContext(HappyBirthdayContext())
	 s = ctx.get_object("service")
	 print "\n".join(s.happy_birthday("Greg"))

2.	 Now let's run our client.

Unfortunately, nothing is printed on the screen from the server side. That is because
we don't have any print statements or logging. However, if we go and alter our
original service at simple_service.py, we can introduce a print statement to
verify our service is being called on the server side.

Chapter 7

[163]

Let's restart it and call the client script again.

This shows that our server code is being called from the client. And it's nicely
decoupled from the machinery of Pyro.

Is our example contrived?
Does this example appear contrived? Sure it does. However, the basic concept of
accessing a service from a client is not.

Instead of our Happy Birthday service, this could be the data access layer of an
application, an interface into an airline flight reservation system, or access to trouble
ticket data offered by an operations center.

Our example still has the same fundamental concepts of input arguments, output
results, and client-side processing after the fact.

Spring Python is non-invasive
We took a very simple service, and by serving it up through an IoC container, it was
easy to wrap it with a Pyro exporter without our application realizing it. The IoC
container, as demonstrated throughout this book, opens the door to many options.
Now, we see how it lends itself to exposing our code as a Pyro service. This concept
doesn't stop with Pyro. This same pattern can be applied to export services for other
remoting mechanisms. By being able to separate the configuration from the actual
business logic, we can yet again apply a useful and practical service without having
to rewrite the code to work with the service.

Scaling your Application Across Nodes with Spring Python’s Remoting

[164]

Scaling our application
At the beginning of this chapter, we talked about the need to scale applications. So
far, we have shown how to take a very simple client-server application and split it
between two instances of Python.

However, scaling applications typically implies running multiple copies of an
application in order to handle larger loads. Usually, some type of load balancer is
needed. Let's explore how we can use Spring Python's remoting services mixed with
some simple Python to create a multi-node version of our service.

Converting the single-node backend into
multiple instances
The first step is to create another application context. We are going to spin up a
different configuration of components, that is a different blue print, and plan to
re-use our existing business code without making any changes.

1.	 Create a two-node configuration, which creates two instances of Service,
advertised on different ports.
from springpython.config import *

from springpython.context import scope

from springpython.remoting.pyro import *

from simple_service import *

class HappyBirthdayContext(PythonConfig):

 def __init__(self):

 PythonConfig.__init__(self)

 @Object(scope.PROTOTYPE)

 def target_service(self):

 return Service()

 @Object()

 def service_exporter1(self):

 exporter = PyroServiceExporter()

 exporter.service_name = "service"

 exporter.service = self.target_service()

 exporter.service_port = 7001

 return exporter

Chapter 7

[165]

 @Object()

 def service_exporter2(self):

 exporter = PyroServiceExporter()

 exporter.service_name = "service"

 exporter.service = self.target_service()

 exporter.service_port = 7002

 return exporter

2.	 In this context, we have two different PyroServiceExporters, each
with a different port number. While it appears they are both using the
target_service, notice how we have changed the scope to PROTOTYPE.
This means each exporter gets its own instance. To run this new context,
we need a different startup script.
import logging

from springpython.context import *

from multi_server_ctx import *

if __name__ == "__main__":

 logger = logging.getLogger("springpython.remoting")

 loggingLevel = logging.DEBUG

 logger.setLevel(loggingLevel)

 ch = logging.StreamHandler()

 ch.setLevel(loggingLevel)

 formatter = logging.Formatter("%(asctime)s - %(name)s -
%(levelname)s - %(message)s")

 ch.setFormatter(formatter)

 logger.addHandler(ch)

 ctx = ApplicationContext(HappyBirthdayContext())

Scaling your Application Across Nodes with Spring Python’s Remoting

[166]

3.	 Now let's launch the script:

In this script, we turned on some of Spring Python's built in logging, so we could
see some of parts involved with starting up remoting. We can see two different Pyro
daemon threads being launched, one for each of the ports. And then we see two
instances of our Service code being registered, one with each thread.

We now have two copies of our service ready and waiting to be called.

Creating a round-robin dispatcher
There are many different ways to code a dispatcher. For our example, let's pick a
simple round robin algorithm where we cycle through a fixed list.

Let's create an application context that includes a round robin dispatcher that acts
like our service, fed with a list of PyroProxyFactory elements.

from springpython.config import *
from springpython.remoting.pyro import *

class RoundRobinDispatcher(object):
 def __init__(self, proxies):
 self.proxies = proxies
 self.counter = 0

 def happy_birthday(self, parm):
 self.counter += 1
 proxy = self.proxies[self.counter % 2]
 print "Calling %s" % proxy

Chapter 7

[167]

 return proxy.happy_birthday(parm)

class HappyBirthdayContext(PythonConfig):
 def __init__(self):
 PythonConfig.__init__(self)

 @Object
 def service_proxies(self):
 proxies = []
 for port in ["7001", "7002"]:
 proxy = PyroProxyFactory()
 proxy.service_url ="PYROLOC://127.0.0.1:%s/service" % port
 proxies.append(proxy)
 return proxies

 @Object
 def service(self):
 return RoundRobinDispatcher(self.service_proxies())

We confï»¿igured service_proxies as an array of PyroProxyFactorys. This lets us
define a static list of connections.

The RoundRobinDispatcher class is injected with the proxies, and mimics the API of
our Happy Birthday service. Every call into the dispatcher increments the counter. It
then picks one of the proxies to make the actual call.

Adjusting client configuration without client
code knowing its talking to multiple node
backend
Let's write the client script to use our round robin dispatcher.

from springpython.context import *

from multi_client_ctx import *

if __name__ == "__main__":
 ctx = ApplicationContext(HappyBirthdayContext())
 s = ctx.get_object("service")

 print "\n".join(s.happy_birthday("Greg"))
 print "\n".join(s.happy_birthday("Greg"))
 print "\n".join(s.happy_birthday("Greg"))

Scaling your Application Across Nodes with Spring Python’s Remoting

[168]

There is hardly an impact to the client. The only difference is the import statement,
and the fact that we are calling the service multiple times. If the client was actually a
GUI application with this tied to a button, there would be no difference.

Now let's run the client script.

As can be seen, each invocation shows which ProyProxyFactory was called, and
they clearly show switching back and forth between the two proxies registered. With
each call smoothly integrated with a corresponding PyroServiceExporter, we have
scaled our application into a two-node version.

Summary
This example again demonstrates how utilizing an IoC container allows
sophisticated wiring of components while not requiring either the client
or the server to know about it.

The latest example has totally rewired the original concept of the application simply
by coding a different set of blue prints, i.e. IoC configuration. It also demonstrates
how things are more powerful and sophisticated when using the pure Python IoC
configuration. We were able to mix in code as well as parameters, which is much
smoother than writing XML files.

Chapter 7

[169]

Our application started off as a simple client calling a service. By rewiring it to use
IoC, it allowed us to easily reconfigure things to run multiple copies of our service on
multiple nodes, without having to change the core logic.

Our round robin dispatcher is admittedly very simplistic. A real production solution
would require:

More sophisticated error handling to deal with things like remote
access exceptions.
We would also need a way to grow new nodes and have them added
to the list.
Perhaps by letting the dispatcher export itself, other services can latch on and
find out what services are available.

Spring Python doesn't provide dispatchers, routers, and other types
of components used to integrate systems together. Spring Integration
(http://www.springsource.org/spring-integration) is a
separate part of the Spring portfolio that brings these features to Java.
Spring Python Remoting is a building block that in the future can be
used to build a Spring Python Integration module.

We could spend countless hours refining our dispatcher. We can also focus on
adding more features to our core business logic.

The important factor in all this as that we have demonstrated how Spring Python
provides a non-invasive way to scale our original application far beyond what it was
originally designed for.

In this chapter we have learned:

How Pyro provides a nice Python-to-Python remoting capability to easily
create client-server applications
How Spring Python seamlessly integrates with Pyro so that your application
doesn't have to learn the API
That it is easy to convert a simple application into a distributed one, all on
the same machine
We rewired our application by splitting it up into parts, plugging in a
round-robin queue manager, and running multiple copies of the server
with no impact to our business logic

In the next chapter, we will use all of Spring Python's components to build a simple,
scalable, and secure application with strong integrity.

•

•

•

•

•

•

•

Case Study I—Integrating
Spring Python with your

Web Application
Throughout the earlier chapters, we have covered the building blocks of Spring
Python: dependency injection, aspect oriented programming, database template,
transaction management, security, and remoting. All of these pieces are like the
bricks used to build a house. We looked at each brick by itself, and saw how to
utilize it. In this chapter we will explore using all of them together to build a
comprehensive banking application.

In this chapter we will learn how to:

Put together a simple banking application with a nicely decoupled view and
controller layer
Apply simple authentication mechanisms to grant access to different types
of users
Apply role-based authorization, distinguishing between different groups
of users
Create custom authorization to prevent customers from seeing each
other's data
Export data over a trusted network in a raw, machine-readable format
Export data to external users, going through established security protocols to
only provide this data to authenticated and authorized clients
Seamlessly audit banking operations
Mark up multi-step operations as atomic transactions

•

•

•

•

•

•

•

•

Case Study I—Integrating Spring Python with your Web Application

[172]

Requirements for a good bank
Before we can embark on building our application, we need to establish the stories
that we will implement in our coding sprint. What do we need to do to implement a
good banking application?

A customer can open a new account with a balance of $0.00
A customer can close an account that has $0.00 balance
Opening and closing accounts written into a log visible to the owning
customer and any manager
A customer can withdraw any amount up to the total balance of the account
A customer can deposit any amount into an existing account they own
A customer can transfer from one account they own to another account they
own, up to the total balance of the source account
All withdrawals, deposits, and transfers are written into a log visible to the
owning customer and any manager
Logs will be available through a secure, machine-to-machine format,
requiring valid credentials
The action of a manager viewing a log will be logged separately. This log will
be visible by a supervisor

This isn't everything we would want from a bank, but it's a nice start. Our sprint is
focused on building some basic deposit/withdraw functionality, while logging these
transactions. This demands integrity to avoid leaking money.

We also need supervision over the managers to monitor when they inspect
transaction logs. Access for customers, managers, and supervisors will require some
fine grained security controls to be put in our banking application.

Finally, the ability to read logs through a remote connection will nicely support
integrating with other banks that our customers may work with.

Let's get started!

•

•

•

•

•

•

•

•

•

Chapter 8

[173]

Building a skeleton web application
To get underway, we need a shell of a web application where we can start filling in
the details. We previously used CherryPy (http://cherrypy.org) to build a simple
web app, so let's use that to kick things off.

1.	 First of all, let's code a main application that will bootstrap CherryPy as well
as our application context.

	 import cherrypy
	 import os
	 import ctx
	 from springpython.context import ApplicationContext
	
	 if __name__ == '__main__':
	 cherrypy.config.update({'server.socket_port': 8009})
	
	 applicationContext =
 ApplicationContext(ctx.SpringBankAppContext())
	
	 cherrypy.tree.mount(
	 applicationContext.get_object("view"),
	 '/',
	 config=None)
	
	 cherrypy.engine.start()
	 cherrypy.engine.block()

You may notice that, it is looking inside package ctx for SpringBankAppCon-
text to find the view object.

2.	 Let's write a simple, pure Python IoC container that will create the CherryPy
view object we need.

	 from springpython.config import PythonConfig, Object
	
	 from app import *
	
	 class SpringBankAppContext(PythonConfig):
	 def __init__(self):
	 PythonConfig.__init__(self)
	
	 @Object
	 def view(self):
	 return SpringBankView()

Case Study I—Integrating Spring Python with your Web Application

[174]

This is the simplest container possible. We basically have one object, view,
which returns an instance of SpringBankView. Later on, if we need other
injected objects or features, we can easily update this configuration.

3.	 Now let's write a simple view layer with a Hello, world style opening page.
	 import cherrypy
	
	 class SpringBankView(object):
	
	 @cherrypy.expose
	 def index(self, args=None):
	 return """
	 Welcome to SpringBank!
	 """

4.	 Let's start our application and see what it looks like.

5.	 Now let's visit the advertised location of http://127.0.0.1:8009.

Chapter 8

[175]

This is our starting position of a web application. From here, we will spend the rest
of the chapter tackling the features we just described.

Securing the application
Before we get going, let's go ahead and plug-in some security. In the security
chapter, we discussed how security can be conveniently added after the fact. But it's
even better if we start with it first. We will do so by adding a simple login page, and
hard wiring three accounts: a customer, a bank manager, and a bank supervisor.

1.	 Let's revise the boot strap main with some extra features to turn on security.
import cherrypy
import os
from springpython.context import ApplicationContext
from springpython.security.context import *

from ctx2 import *

if __name__ == '__main__':
 cherrypy.config.update({'server.socket_port': 8009})

 ctx = ApplicationContext(SpringBankAppContext())

 SecurityContextHolder.setStrategy(SecurityContextHolder.MODE_
GLOBAL)
 SecurityContextHolder.getContext()

 conf = {"/": {"tools.sessions.on":True,
 "tools.filterChainProxy.on":True}}

 cherrypy.tree.mount(
 ctx.get_object("view"),
 '/',
 config=conf)

 cherrypy.engine.start()
 cherrypy.engine.block()

Case Study I—Integrating Spring Python with your Web Application

[176]

First of all, we need to initialize the security context settings stored in
SecurityContextHolder. Another thing required by CherryPy is turning
on HTTP sessions. We also must activate the filterChainProxy. Spring
Python's FilterChainProxy, setup in our application context, automatically
registers itself as a CherryPy tool.

2.	 Let's add the security components to our IoC configuration.
from springpython.config import PythonConfig, Object
from springpython.security.providers import *
from springpython.security.providers.dao import *
from springpython.security.userdetails import *
from springpython.security.vote import *
from springpython.security.web import *
from springpython.security.cherrypy3 import *

from app2 import *

class SpringBankAppContext(PythonConfig):
 def __init__(self):
 PythonConfig.__init__(self)

 @Object
 def view(self):
 view = SpringBankView()
 view.auth_provider = self.auth_provider()
 view.filter = self.auth_processing_filter()
 view.http_context_filter = self.
httpSessionContextIntegrationFilter()
 return view

 @Object
 def filterChainProxy(self):
 return CP3FilterChainProxy(filterInvocationDefinitionSource =
 [
 ("/login.*", ["httpSessionContextIntegrationFilter"]),
 ("/.*", ["httpSessionContextIntegrationFilter",
 "exception_translation_filter",
 "auth_processing_filter",
 "filter_security_interceptor"])
])

Chapter 8

[177]

 @Object
 def httpSessionContextIntegrationFilter(self):
 filter = HttpSessionContextIntegrationFilter()
 filter.sessionStrategy = self.session_strategy()
 return filter

 @Object
 def session_strategy(self):
 return CP3SessionStrategy()

 @Object
 def exception_translation_filter(self):
 filter = ExceptionTranslationFilter()
 filter.authenticationEntryPoint = self.auth_filter_entry_
pt()
 filter.accessDeniedHandler = self.accessDeniedHandler()
 return filter

 @Object
 def auth_filter_entry_pt(self):
 filter = AuthenticationProcessingFilterEntryPoint()
 filter.loginFormUrl = "/login"
 filter.redirectStrategy = self.redirectStrategy()
 return filter

 @Object
 def accessDeniedHandler(self):
 handler = SimpleAccessDeniedHandler()
 handler.errorPage = "/accessDenied"
 handler.redirectStrategy = self.redirectStrategy()
 return handler

 @Object
 def redirectStrategy(self):
 return CP3RedirectStrategy()

 @Object
 def auth_processing_filter(self):
 filter = AuthenticationProcessingFilter()
 filter.auth_manager = self.auth_manager()
 filter.alwaysReauthenticate = False

Case Study I—Integrating Spring Python with your Web Application

[178]

 return filter

 @Object
 def auth_manager(self):
 auth_manager = AuthenticationManager()
 auth_manager.auth_providers = [self.auth_provider()]
 return auth_manager

 @Object
 def auth_provider(self):
 provider = DaoAuthenticationProvider()
 provider.user_details_service = self.user_details_service()
 provider.password_encoder = PlaintextPasswordEncoder()
 return provider

 @Object
 def user_details_service(self):
 user_details_service = InMemoryUserDetailsService()
 user_details_service.user_dict = {
 "alice": ("alicespassword",["ROLE_CUSTOMER"], True),
 "bob": ("bobspassword", ["ROLE_MGR"], True),
 "carol": ("carolspassword", ["ROLE_SUPERVISOR"], True)
 }
 return user_details_service

 @Object
 def filter_security_interceptor(self):
 filter = FilterSecurityInterceptor()
 filter.auth_manager = self.auth_manager()
 filter.access_decision_mgr = self.access_decision_mgr()
 filter.sessionStrategy = self.session_strategy()
 filter.obj_def_source = [
 ("/.*", ["ROLE_CUSTOMER", "ROLE_MGR", "ROLE_SUPERVISOR"])
]
 return filter

 @Object
 def access_decision_mgr(self):
 access_decision_mgr = AffirmativeBased()
 access_decision_mgr.allow_if_all_abstain = False
 access_decision_mgr.access_decision_voters = [RoleVoter()]
 return access_decision_mgr

Chapter 8

[179]

This is admittedly a lot of code to add to our application context. Spring
Python requires a lot of steps to add the security components, a fate shared
by the Spring Security project. They spent a considerable amount of effort
reducing the amount of code needed to configure security for typical
configurations. Hopefully in the future Spring Python can be improved in a
similar fashion.

In this configuration, we are using the InMemoryUserDetailsService in
order to hard code three users: alice (customer), bob (bank manager), and
carol (bank supervisor). This saves us from having to configure a database
while we develop our application.

3.	 Let's change the core app, so that it has a login page and can handle logging
in and logging out.
import cherrypy

from springpython.security import *
from springpython.security.providers import *
from springpython.security.context import *

class SpringBankView(object):

 def __init__(self):
 self.filter = None
 self.auth_provider = None
 self.http_context_filter = None

 @cherrypy.expose
 def index(self):
 return """
 Welcome to SpringBank!
 <p>
 <p>
 Logout</a href>
 """

 @cherrypy.expose
 def login(self, from_page="/", login="", password="", error_
msg=""):
 if login != "" and password != "":
 try:
 self.attempt_auth(login, password)
 raise cherrypy.HTTPRedirect(from_page)
 except AuthenticationException, e:

Case Study I—Integrating Spring Python with your Web Application

[180]

 raise cherrypy.HTTPRedirect(
 "?login=%s&error_msg=Username/password failure"
 % login)

 return """
 %s<p>
 <form method="POST" action="">
 <table>
 <tr>
 <td>Login:</td>
 <td><input type="text" name="login"
 value="%s"/></td>
 </tr>
 <tr>
 <td>Password:</td>
 <td>
 <input type="password" name="password"/>
 </td>
 </tr>
 </table>
 <input type="hidden" name="from_page"
 value="%s"/>

 <input type="submit"/>
 </form>
 """ % (error_msg, login, from_page)

 def attempt_auth(self, username, password):
 token = UsernamePasswordAuthenticationToken(username,
 password)
 SecurityContextHolder.getContext().authentication = \
 self.auth_provider.authenticate(token)
 self.http_context_filter.saveContext()

 @cherrypy.expose
 def logout(self):
 self.filter.logout()

 self.http_context_filter.saveContext()
 raise cherrypy.HTTPRedirect("/")

Chapter 8

[181]

Here we have slightly altered index, so that it prints our 'welcome' but also
offers a hyperlink to logout. We have also added a /login link that either
attempts to log the user in, or displays an HTML form so the user can
attempt to login.

4.	 With these changes in place, let's restart the app, and open up the browser.

As you can see, we are now looking at a very simple login screen. If we look
at the shell in which our updated application is running, we can see what
has happened.

We pointed our browser at the root URL, but Spring Python's security filter
noticed we had no credentials, so it redirected us to /login.

Case Study I—Integrating Spring Python with your Web Application

[182]

5.	 Let's login as Bob the bank manager.

Now we have logged in to our SpringBank web site. With the security in place, we
should easily be able to start adding more features and control who can access what.

Building some basic customer functions
To get our bank site going, we need to start lettings customers open bank accounts.
This is a feature only visible to customers.

1.	 First, we need to update the main page, so when Alice the customer logs in,
she has the option to open a bank account. We can do this by altering the
index function in SpringBankView to offer options driven by the
user's credentials.
 @cherrypy.expose
 def index(self, message=""):
 results = """
 <h1>Welcome to SpringBank!</h1>
 <p>
 %s
 <p>
 """ % message

 if "ROLE_CUSTOMER" in \
 SCH.getContext().authentication.granted_auths:
 results += """
 <h2>Customer Options</h2>

 Open Account

 """

Chapter 8

[183]

 results += """
 Logout</a href>
 """
 return results

 @cherrypy.expose
 def openAccount(self, account="", desc=""):
 if account != "" and desc != "":
 self.controller.open_account(account, desc)
 raise cherrypy.HTTPRedirect("/?message=Account created
successfully")

 return """
 <form method="POST" action="">
 <table>
 <tr>
 <td>Account Name</td>
 <td><input type="text" name="account"/><td>
 </tr>
 <tr>
 <td>Description</td>
 <td><input type="text" name="desc"/><td>
 </tr>
 </table>
 <input type="submit"/>
 </form>
 Cancel
 """

To make this work, we needed to alter one of our import statements:
from springpython.security.context import SecurityContextHolder
as SCH

Case Study I—Integrating Spring Python with your Web Application

[184]

Basically, the index function now checks the user's granted_auths, and if
they have ROLE_CUSTOMER, they are shown the customer options. The first
option provided is a link that invokes the openAccount function. As seen
below, if Alice logs in, she now sees this extra option.

Clicking on the link takes the user to a page where they can fill out the details
required to request a new account.

Chapter 8

[185]

When the page is submitted, the information gets fed to the controller. There
is one big problem with this piece of code: there is no controller! If you
click the button, it will generate an error, indicating we need to fill in the
supporting functionality.

2.	 Now let's create a controller that will process requests such as opening new
bank accounts.
class SpringBankController(object):
 def __init__(self, factory):
 self.factory = factory
 self.dt = DatabaseTemplate(self.factory)

 def open_account(self, account, desc):
 self.dt.execute("""
 INSERT INTO account
 (account, description, balance)
 VALUES
 (?, ?, 0.0)""", (account, desc))

This controller has one business function: open_account. It utilizes a
DatabaseTemplate to manage this. As you can see, we have coded it to
initialize new accounts with a balance of $0.00. It is also designed to depend
on dependency injection to supply it the necessary connection factory.

Case Study I—Integrating Spring Python with your Web Application

[186]

3.	 Let's wire up the controller from our IoC configuration by injecting it with a
connection factory.
 @Object
 def controller(self):
 return SpringBankController(self.factory())

 @Object
 def view(self):
 view = SpringBankView()
 view.auth_provider = self.auth_provider()
 view.filter = self.auth_processing_filter()
 view.http_context_filter =
 self.httpSessionContextIntegrationFilter()
 view.controller = self.controller()
 return view

 @Object
 def factory(self):
 factory = MySQLConnectionFactory()
 factory.username = "springbank"
 factory.password = "springbank"
 factory.hostname = "localhost"
 factory.db = "springbank"
 return factory

Here we have the new controller object as well as the factory object,
which allows our controller to access the database. We have slightly
revised the view object so that it gets injected with a copy of the controller.

4.	 Adjust SpringBankView so that a controller can be injected.
class SpringBankView(object):

 def __init__(self):
 self.filter = None
 self.auth_provider = None
 self.http_context_filter = None
 self.controller = None

Now our SpringBankView has a handle on the controller, arming it to make
database calls as needed. However, one piece is missing. We need to set up
a database.

Chapter 8

[187]

5.	 We can initialize a MySQL database with the following script.
DROP DATABASE IF EXISTS springbank;

CREATE DATABASE springbank;

GRANT ALL ON springbank.* TO springbank@localhost IDENTIFIED BY
'springbank';

USE springbank;

CREATE TABLE account (
 id INT(4) UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,
 description VARCHAR(30),
 balance DECIMAL(10,2)
);

If we run that using MySQL's root account, it should set up our account table.

6.	 Now let's try to create that bank account.

Case Study I—Integrating Spring Python with your Web Application

[188]

Success! If you look closely at the revised version of SpringBankView's index
method, you will notice an optional message parameter. This lets us push through
a status message while redirecting the user to the front page after completing any
operation. In our situation, we have created a bank account with $0.00 balance.

We don't yet see existing bank accounts listed, but you can still examine the database
from the command line to verify our operation worked.

Coding more features
So far, we have coded a few of our requirements from front to back. We built the
view layer using CherryPy. Next, we configured security to protect the site. Then
we fully implemented one of the customer features so that it stored new accounts in
the database.

Coding more features follows a similar pattern. The order the steps are executed
are a matter of taste. It is possible to code the entire back end using automated
testing, followed by skinning it with a web layer. In our case, we used the more
demonstrative style of building the interface first, and then fleshing out the backend
later. Either way, it is easy to iterate through and see how Spring Python's IoC
container kept the security, view, and controller logic nicely decoupled.

Now let's fast forward development to the point where all the customer features
are implemented.

Chapter 8

[189]

Updating the main page with more features
We updated the index page in SpringBankView, so that it lists the customer's current
accounts as well as listing the other functions available.

In this example, Alice already has two accounts created. In the previous version, they
weren't listed, but now they are.

 @cherrypy.expose
 def index(self, message=""):
 results = """
 <h1>Welcome to SpringBank!</h1>
 <p>
 %s
 <p>
 """ % message

 if "ROLE_CUSTOMER" in \
 SCH.getContext().authentication.granted_auths:
 results += """
 <h2>Existing Accounts</h2>

Case Study I—Integrating Spring Python with your Web Application

[190]

 <table border="1">
 <tr><th>Account</th><th>Description
 </th><th>Balance</th></tr>
 """

 for account in self.controller.get_accounts(
 SCH.getContext().authentication.username):
 results += '''
 <tr>
 <td>%s</td><td>%s
 </td><td>%s</td>
 </tr>
 ''' % (account["id"], account["id"],
 account["description"], account["balance"])

 results += """
 </table>
 <h2>Customer Options</h2>

 Open Account
 Close Account
 Withdraw Money
 Deposit Money
 Transfer

 """

 results += """
 Logout</a href>
 """
 return results

As you can see, wedged into the middle is a for-loop that generates rows in an
HTML table, listing the accounts the user owns. get_accounts is delegated to
the controller.

 def get_accounts(self, username):
 return self.dt.query("""
 SELECT id, description, balance
 FROM account
 WHERE owner = ?
 AND status = 'OPEN'""", (username,),
 DictionaryRowMapper())

Chapter 8

[191]

Each row includes a link to view the history for that account, and at the bottom of the
screen are links to the other new functions.

Refining the ability to open an account
We altered the back end of openAccount by marking new accounts with a state
of OPEN.

 def open_account(self, description):
 self.dt.execute("""
 INSERT INTO account
 (description, balance, owner, status)
 VALUES
 (?, 0.0, ?, 'OPEN')""", (description,\
 SCH.getContext().authentication.username))

 self.log("TX", self.get_latest_account(), "Opened account %s"
% description)

We also added the extra step of writing a transaction log entry. To support writing
the log entry, the controller must retrieve the latest account created for this customer.

 def get_latest_account(self):
 return self.dt.query_for_long("""
 SELECT max(id)
 FROM account
 WHERE owner = ?
 AND status = 'OPEN'""", \
 (SCH.getContext().authentication.username,))

open_account, along with several of the other controller operations uses the
following code to write log entries.

 def log(self, type, account, message):
 self.dt.execute("""
 INSERT INTO log
 (type, account, message)
 values
 (?, ?, ?)""", \
 (type, account, message))

Case Study I—Integrating Spring Python with your Web Application

[192]

Adding the ability to close an account
We added closeAccount to SpringBankView to let the customer close an existing
account if its balance is zero.

 @cherrypy.expose
 def closeAccount(self, id=""):
 if id != "":
 self.controller.close_account(id)
 raise cherrypy.HTTPRedirect("/?message=
 Account successfully closed")

 results = """
 <h2>Close an Account</h2>
 <form method="POST" action="">
 <table border="1">
 <tr><th>Account</th></tr>
 """

 for account in self.controller.closeable_accounts(
 SCH.getContext().authentication.username):
 results += """
 <tr><td>%s - %s
 </td></tr>
 """ % (account["id"], account["id"],
 account["description"])

 results += """
 </table>
 </form>
 Cancel
 """
 return results

Chapter 8

[193]

Looking up closeable_accounts as well as completing the close_account
operation is delegated to the controller.

 def closeable_accounts(self, username):
 return self.dt.query("""
 SELECT id, description
 FROM account
 WHERE owner = ?
 AND balance = 0.0
 AND status = 'OPEN'""", (username,),
 DictionaryRowMapper())

 def close_account(self, id):
 self.dt.execute("""
 UPDATE account
 SET status = 'CLOSED'
 WHERE id = ?""", (id,))
 self.log("TX", id, "Closed account")

Opening a new account causes a row to be inserted into the ACCOUNT table.
However, closing an account does not mean deleting the same row. Instead, its
status is updated to CLOSED.

Adding the ability to withdraw money
We added withdraw to SpringBankView to let the customer withdraw money from
an existing account.

Case Study I—Integrating Spring Python with your Web Application

[194]

 @cherrypy.expose
 def withdraw(self, id="", amount=""):
 if id != "" and amount != "":
 self.controller.withdraw(id, float(amount))
 raise cherrypy.HTTPRedirect("/?message=Successfully
withdrew %s" % amount)

 results = """
 <h2>Withdraw Money</h2>
 <form method="POST" action="">
 <table border="1">
 <tr>
 <td>Amount</td>
 <td><input type="text" name="amount"/></td>
 </tr>
 <tr><td colspan="2">
 """

 for account in self.controller.get_accounts(SCH.getContext().
authentication.username):
 results += """
 <input type="radio" name="id" value="%s">%s - %s</
input>

 """ % (account["id"], account["id"],
account["description"])

 results += """
 </td></tr>
 <tr><td colspan="2"><input type="submit"/></td></tr>
 </form>
 """

 return results

When the user clicks submit, withdraw is delegated to the controller.

 def withdraw(self, id, amount):
 self.dt.execute("""
 UPDATE account
 SET balance = balance - ?
 WHERE id = ?""", (amount, id))
 self.log("TX", id, "Withdrew %s" % amount)

Chapter 8

[195]

Adding the ability to deposit money
We added deposit to SpringBankView to let the customer deposit money into an
existing account.

 @cherrypy.expose
 def deposit(self, id="", amount=""):
 if id != "" and amount != "":
 self.controller.deposit(id, float(amount))
 raise cherrypy.HTTPRedirect("/?message=Successfully
deposited %s" % amount)

 results = """
 <h2>Deposit Money</h2>
 <form method="POST" action="">
 <table border="1">
 <tr>
 <td>Amount</td>
 <td><input type="text" name="amount"/></td>
 </tr>
 <tr><td colspan="2">
 """

 for account in self.controller.get_accounts(SCH.getContext().
authentication.username):
 results += """
 <input type="radio" name="id" value="%s">%s - %s</
input>

Case Study I—Integrating Spring Python with your Web Application

[196]

 """ % (account["id"], account["id"],
account["description"])

 results += """
 </td></tr>
 <tr><td colspan="2"><input type="submit"/></td></tr>
 </form>
 """

 return results

When the user clicks submit, deposit is delegated to the controller.

 def deposit(self, id, amount):
 self.dt.execute("""
 UPDATE account
 SET balance = balance + ?
 WHERE id = ?""", (amount, id))
 self.log("TX", id, "Deposited %s" % amount)

Adding the ability to transfer money
We added transfer to SpringBankView to let the customer transfer money from
one account to the other.

Chapter 8

[197]

 @cherrypy.expose
 def transfer(self, amount="", source="", target=""):
 if amount != "" and source != "" and target != "":
 self.controller.transfer(amount, source, target)
 raise cherrypy.HTTPRedirect("/?message=Successful
transfer")

 results = """
 <h2>Transfer Money</h2>
 <form method="POST" action="">
 <table border="1">
 <tr>
 <td>Amount</td>
 <td><input type="text" name="amount"/></td>
 </tr>
 """

 accounts = self.controller.get_accounts(SCH.getContext().
authentication.username)

 for param in ["source", "target"]:
 results += '<tr><td>%s</td><td>' % (param[0].upper() +
param[1:])
 for account in accounts:
 results += """
 <input type="radio" name="%s" value="%s">%s - %s</
input>

 """ % (param, account["id"], account["id"],
account["description"])
 results += "</td></tr>"

 results += """
 <tr><td colspan="2"><input type="submit"/></td></tr>
 </form>
 """

 return results

When the user clicks submit, transfer is delegated to the controller.

 def transfer(self, amount, source, target):
 self.withdraw(source, amount)
 self.deposit(target, amount)

transfer conveniently re-uses withdraw and deposit.

Case Study I—Integrating Spring Python with your Web Application

[198]

Showing account history
The last customer facing feature added was the ability to view an account's history.

 @cherrypy.expose
 def history(self, id):
 results = """
 <table border="1">
 """

 for entry in self.controller.history(id):
 results += """
 <tr><td>%s</td><td>%s</td></tr>
 """ % (entry["date"], entry["message"])

 results += """
 <table>
 """

 return results

When the user clicks submit, history is delegated to the controller.

 def history(self, id):
 return self.dt.query("""
 SELECT type, date, message
 FROM log
 WHERE log.account = ?
 AND log.type = 'TX'""", (id,),
 DictionaryRowMapper())

Chapter 8

[199]

Issues with customer features
With this version of the features, we have roughed in some useful banking features.
However, there are some things that still need to be handled.

There is not enough security preventing another customer from accessing
Alice's accounts and transferring money away.
Withdrawing money from an account has no overdraft protection. This
also impacts transfers, because they reuse the withdraw function. A simple
solution would be to fail if the requested amount exceeds the balance.
Transferring money should be transactional to avoid leaking money.

Securing Alice's accounts
If we log in as Alice, we can view the history of the Checking account.

That is alright. However, if there is another customer, then things are not as secured
as you might think. Let's adjust the context so that another customer, "Dave" exists.

 @Object
 def user_details_service(self):
 user_details_service = InMemoryUserDetailsService()
 user_details_service.user_dict = {
 "alice": ("alicespassword",["ROLE_CUSTOMER"], True),
 "bob": ("bobspassword", ["ROLE_MGR"], True),
 "carol": ("carolspassword", ["ROLE_SUPERVISOR"], True),
 "dave": ("davespassword",["ROLE_CUSTOMER"], True)
 }
 return user_details_service

•

•

•

Case Study I—Integrating Spring Python with your Web Application

[200]

After looking at Alice's account history, we can easily copy the URL from the
browser to clipboard, logout, and then log back in as Dave.

Dave has no accounts yet. However, Dave can paste in the URL and easily view
Alice's account history.

This is because both of these users have ROLE_CUSTOMER. This means we need to
write a customized AccessDecisionVoter that will decide whether or not a certain
record can be viewed by the current user.

Chapter 8

[201]

The security chapter showed us how to code a custom authenticator. In this
situation, the users are already authenticated. What we need is proper handling of
authorization. Our problem requires confirming that the currently logged in user has
permission to look at the current account.

1.	 Let's code our own AccessDecisionVoter.
	 class OwnerVoter(AccessDecisionVoter):
	 def __init__(self, controller=None):
	 self.controller = controller
	
	 def supports(self, attr):
	 """This voter will support a list."""
	 if isinstance(attr, list) or \
	 (attr is not None and attr == "OWNER"):
	 return True
	 else:
	 return False
	
	 def vote(self, authentication, invocation, config):
	 """Grant access if any of the granted
	 authorities matches any of the required roles.
	 """
	 results = self.ACCESS_ABSTAIN
	 for attribute in config:
	 if self.supports(attribute):
	 results = self.ACCESS_DENIED
	 id = cgi.parse_qs(
	 invocation.environ["QUERY_STRING"])["id"][0]
	 if self.controller.get_username(id) == \
	 authentication.username:
	 return self.ACCESS_GRANTED
	
	 return results

OwnerVoter needs a supports method to determine if
it is going to vote. In this case, it will if given security
configuration in the form of a list, and also if one of the list
values is OWNER.
In order to vote, the voter is provided with a copy of
the user's authentication credentials, and a handle on
the invocation object which includes all the web request
parameters, and what the security role configuration is.

°

°

Case Study I—Integrating Spring Python with your Web Application

[202]

The voter initializes its results to ACCESS_ABSTAIN. It
iterates over the list of roles, and checks if any of them match
OWNER. If so, it then changes the results to ACCESS_DENIED.
Then, it checks if the there are any id parameters, and if so,
retrieves the value. It requests that the controller lookup
the user associated with the account id and if it matches the
current user's username, it updates the results to
ACCESS_GRANTED.

2.	 Add a method to the controller to look up the username of an account.
 def get_username(self, id):
 return self.dt.query_for_object("""
 SELECT owner
 FROM account
 WHERE id = ?
 AND status = 'OPEN'""", (id,), str)

3.	 Now we need to plug the OwnerVoter into the context's
AccessDecisionManager configuration.

 @Object
 def access_decision_mgr(self):
 access_decision_mgr = AffirmativeBased()
 access_decision_mgr.allow_if_all_abstain = False
 access_decision_mgr.access_decision_voters = [RoleVoter(),
 OwnerVoter(self.controller())]
 return access_decision_mgr

As you can see, we just added an instance of OwnerVoter to the
access_decision_voters list. OwnerVoter needs a handle on the
controller so it can query for the username linked to the account.

4.	 Update the filter_security_interceptor so that history requests are
routed through the OwnerVoter.

 @Object
 def filter_security_interceptor(self):
 filter = FilterSecurityInterceptor()
 filter.auth_manager = self.auth_manager()
 filter.access_decision_mgr = self.access_decision_mgr()
 filter.sessionStrategy = self.session_strategy()
 filter.obj_def_source = [
 ("/history.*", ["OWNER"]),
 ("/.*", ["ROLE_CUSTOMER", "ROLE_MGR", "ROLE_SUPERVISOR"])
]
 return filter

°

Chapter 8

[203]

Notice how we added a rule for /history.*. Because OWNER doesn't start
with ROLE_, the RoleVoter will not vote on it. Only the OwnerVoter will
examine this rule to determine if the current user is authorized to access.
Because the interceptor starts with the first rule and iterates until it finds a
match, it is important to put specialized rules towards the top, with more
general ones at the bottom.

5.	 Add an accessDenied page at the view level, so that when Dave tries
to access the history of Alice's account, he is redirected due to lack of
ownership.

 @cherrypy.expose
 def accessDenied(self):
 return """
 <h2>You are trying to access
 an un-authorized page.</h2>
 """

We have now secured pages based on ownership. This way, only the account holder
can view his or her own history. It is left as an exercise to secure other pages that are
id-based using the same OwnerVoter.

Adding overdraft protection to withdrawals
One of the simplest business rules is to not allow people to draw more from an
account than exists.

1.	 Modify the withdraw operation to first retrieve the account's balance
and check it against the amount, throwing an exception if there are
insufficient funds.

 def withdraw(self, id, amount):
 balance = self.dt.query("""
 SELECT balance
 FROM account
 WHERE id = ?""", (id,),

Case Study I—Integrating Spring Python with your Web Application

[204]

 DictionaryRowMapper())[0]["balance"]
 if float(balance) < amount:
 raise BankException("Insufficient balance in acct %s" % id)
 self.dt.execute("""
 UPDATE account
 SET balance = balance - ?
 WHERE id = ?""", (amount, id))
 self.log("TX", id, "Withdrew %s" % amount)

An important point here is that there is no redirect operation happening. This
method isn't aware of the web layer above it. While it would be easy to raise
a cherrypy.HTTPRedirect message, it is best left to the view layer. This also
impacts transfer operations by causing an exception to be thrown if there are
insufficient funds.

2.	 Define a simple BankException class.
	 class BankException(Exception):
 pass

3.	 Modify the beginning of the withdraw web method by adding a try-except
block that either redirects with a success message or an error message.

 @cherrypy.expose
 def withdraw(self, id="", amount=""):
 if id != "" and amount != "":
 try:
 self.controller.withdraw(id, float(amount))
 raise cherrypy.HTTPRedirect(\
 "/?message=Successfully withdrew %s" % amount)
 except BankException, e:
 raise cherrypy.HTTPRedirect("/?message=%s" % e)

The rest of this view-level method is unchanged. This provides a
clear behavior pattern based on any exception thrown down in the
controller's withdraw operation.

4.	 Modify the beginning of the transfer web method by adding a try-except
block that either redirects with a success message or an error message.	

 @cherrypy.expose
 def transfer(self, amount="", source="", target=""):
 if amount != "" and source != "" and target != "":
 try:
 self.controller.transfer(amount, source, target)
 raise cherrypy.HTTPRedirect(\
 "/?message=Successful transfer")
 except BankException, e:
 raise cherrypy.HTTPRedirect("/?message=%s" % e)

Chapter 8

[205]

Withdrawals and transfers are now protected from overdrafts.

Making transfers transactional
The final key thing that needs to be implemented is increasing the integrity of
transfers. It is vital for any banking operation that they be performed with atomic
consistency. Otherwise, the bank will leak money.

1.	 Markup the controller's transfer operation using the @transactional
decorator.

 @transactional
 def transfer(self, amount, source, target):
 self.withdraw(source, amount)
 self.deposit(target, amount)

Case Study I—Integrating Spring Python with your Web Application

[206]

2.	 In order to have the @transactional decorator available, the following
import statement is required.

	 from springpython.database.transaction import *

3.	 In the application context, define a TransactionManager and an
AutoTransactionalObject, in order to activate the @transactional
decorator.

 @Object
 def tx_mgr(self):
 return ConnectionFactoryTransactionManager(self.factory())

 @Object
 def transactionalObject(self):
 return AutoTransactionalObject(self.tx_mgr())

4.	 This change to the application context also requires the same import
statement shown above.

5.	 This is all that is needed. The transfer method now utilizes transactions to
avoid leaking money.

Remotely accessing logs
This is a common feature found in online banking, where the user wants to
download the transaction history. It allows the importing data into another financial
tool for analysis, auditing, or double bookkeeping.

For our case study, we will export using PyroServiceExporter. However, we
only want to expose the logs and none of the other functions. You may recall that
PyroServiceExporter exposes all the methods its target object. In order to do this,
we need a separate service that can delegate to our controller, and instead expose it.

1.	 Create a public-facing service, which will contain exposes services.
class SpringBankPublic(object):
 def __init__(self, controller):
 self.controller = controller

 def history(self, id):
 return self.controller.history(id)

This class is pretty simple. The constructor call requires a copy of controller.
It has only one method, the one intended for public exposure.

Chapter 8

[207]

2.	 Export the public-facing service in the application context using Pyro.
 @Object
 def public_service(self):
 return SpringBankPublic(self.controller())

 @Object
 def spring_bank_exporter(self):
 exporter = PyroServiceExporter()
 exporter.service_name = "springbank"
 exporter.service = self.public_service()
 return exporter

In order to run this code, the following import statement must be added:
from springpython.remoting.pyro import *

3.	 Write a simple client script that will remotely connect to the public service,
and retrieve one of the accounts.
from springpython.config import *
from springpython.remoting.pyro import *

class RemoteClient(PythonConfig):
 def __init__(self):
 PythonConfig.__init__(self)

 @Object
 def client(self):
 service = PyroProxyFactory()
 service.service_url = "PYROLOC://localhost:7766/
springbank"
 return service

if __name__ == "__main__":
 from springpython.context import ApplicationContext
 ctx = ApplicationContext(RemoteClient())
 service = ctx.get_object("client")
 for row in service.history(1):
 print row

This client script connects through Pyro module. It requests the history of
Account 1, and then prints it out in raw form on the screen.

Case Study I—Integrating Spring Python with your Web Application

[208]

This easily fetches the raw data we requested. It is a perfect example of how
to pipe raw data to other machines.

This form of raw data access has no security restrictions and
would be ill advised for exposure to an untrusted network. This
type of data would also be more secure if Pyro was configured
with SSL. However, at this point in time, Spring Python does not
support configuring Pyro with SSL.

4.	 Let's create a raw version visible through the web layer.
 @cherrypy.expose
 def raw_history(self, id):
 return str(self.controller.history(id))

This basically takes the results of the history call, converts them to a string,
and returns it for display with no extra HTML formatting.

5.	 Let's secure raw_history with the same protections as history.
 @Object
 def filter_security_interceptor(self):
 filter = FilterSecurityInterceptor()
 filter.auth_manager = self.auth_manager()
 filter.access_decision_mgr = self.access_decision_mgr()
 filter.sessionStrategy = self.session_strategy()
 filter.obj_def_source = [
 ("/raw_history.*", ["OWNER"]),
 ("/history.*", ["OWNER"]),
 ("/.*", ["ROLE_CUSTOMER", "ROLE_MGR",
 "ROLE_SUPERVISOR"])
]
 return filter

Chapter 8

[209]

Now it's possible to write a web-based script that would get redirected to the login
page. It must supply login credentials. After that, it can issue the URL necessary to
retrieve Python's literal array of dictionaries. It could then convert it to a Python data
structure, and harvest the data.

Creating audit logs
The logs that our application is currently writing are banking transactions. Another
level of logging may be needed to analyze operations the controller is performing.
This can service either performance analysis, post-mortem analysis, and for
generating audit reports.

To do this, let's code an aspect that logs all of controllers (except for the log
operation itself).

1.	 Code a simple aspect that logs anything except the log method using a copy
of the controller.
class AuditInterceptor(MethodInterceptor):
 def __init__(self, controller):
 self.controller = controller

 def invoke(self, invocation):
 results = invocation.proceed()
 if invocation.method_name != "log":
 self.controller.log("AUDIT", -1,
 "Method: %s Args: %s" % (\
 invocation.method_name, invocation.args))
 return results

For this code to work, add the following import statement:
from springpython.aop import *

This interceptor requires a copy of the controller to write its log message.
All the other logging done earlier in this chapter was of type TX. These log
entries are of type AUDIT, meaning they won't appear on any user's history
or through the remote log access. Also, the account number is hard-coded -1
since not all operations have an account.

Case Study I—Integrating Spring Python with your Web Application

[210]

2.	 Update the definition of the controller in the application context in order to
embed this interceptor.
 @Object
 def controller(self):
 target = SpringBankController(self.factory())
 return ProxyFactoryObject(
 target=target,
 interceptors=AuditInterceptor(target))

This update to the application context smoothly replaces the
SpringBankController with a ProxyFactoryObject. This proxy points
at the real controller object, while also plugging in an instance of the
AuditInterceptor we just coded.

Also notice that the AuditInterceptor needs a copy of the controller.
However, using self.controller() like all the other methods would
generate a recursive stack error.

3.	 Let's use MySQL's command-line interface to look at the log table after
several operations.

This provides a nice view of what happened on a transaction level, and also on a
lower level from an auditing perspective.

It is left as an exercise for the reader to change the advice, so that only when a
manager is viewing an account history does it write an audit log entry. It is also
an exercise to build a view for the supervisor to view these audit trails.

Chapter 8

[211]

Summary
With this case study, we have examined the various building blocks of Spring
Python and utilized them to develop a simple, yet sophisticated banking site. While
it may not have all the visual appeal, that task can easily be handed over to a web
interface expert for improvement.

What is important is that key functional concepts have been implemented such as
security and integrity. Customer data cannot be seen by other customers. It also
has some simple banking protocols implemented such as overdraft prevention.
Transactions are also implemented with little impact to the code.

The use cases involving managers and supervisors were not implemented with the
intent that the reader could implement them as exercises.

With a functional banking application, the door is opened to further enhancements
and implementation or more use cases needed to meet the customers' and the
bank's needs.

In this chapter we learned how to:

Wire together the components of our banking application using
dependency injection
Easily setup user authentication
Restrict what pages a user can visit based on their role and whether or not
they own the data being viewed
Export raw data using Pyro to another trusted machine inside the enterprise
Export raw data for the customer, to be used by some external tool
Write an aspect that audits the database operations performed by
the controller
Easily mark up atomic transfer operations with the @transactional
decorator

In the next chapter, we will take a look at Spring Python's command-line application,
coily, which can help us build Spring Python applications quicker. We will also see
how to write our own plugins to add functionality as we need.

•

•

•

•

•

•

•

Creating Skeleton Apps
with Coily

Spring Python has many useful building blocks. In the last chapter we used these
features in concert to build a simple banking application. This illustrated the bottom
line task for software developers: delivering runnable applications.

To speed up the process for building apps, Spring Python provides the Python script
coily. This script is built to support extensible plugins. The first plugin provided by
the Spring Python team is gen-cherrypy-app, which is based on creating a skeleton
CherryPy application using Spring Python IoC and security.

In this chapter, we will learn:

The plugin driven approach of coily, which allows us to utilize plugins
written by other developers or to write our own
The easy-to-code requirements of creating a plugin
Building a CherryPy application from scratch, with fully configured security,
using the template-based gen-cherrypy-app plugin

Plugin approach of Coily
coily is a Python script designed from the beginning to provide a plugin based
platform for building Spring Python apps. Another important feature is version
control of the plugins. Developers should not have to worry about installing an
out-of-date plugin that was designed for an older version of Spring Python. coily
allows different users on a system to have different sets of plugins installed. It also
requires no administrative privileges to install a plugin.

•

•

•

Creating Skeleton Apps with Coily

[214]

Key functions of coily
coily is included in the standard installation of Spring Python, as documented
earlier in this book. To see the available commands, just ask for help.

The following table elaborates these commands.

--help Prints out the help menu. It is worth noting
that when plugins are installed, they will also
be listed as well.

--list-installed-plugins Lists the plug-ins already installed in this
account. Each installed plugin exists in a sub-
folder in HOME/.springpython.

--list-available-plugins Lists the plugins available for installation.
coily is currently configured to search
SpringSource's S3 site where Spring Python
downloads are found for officially supported
plugins.
It also looks in the current directory where
coily is being run, so that you can develop
plugins locally.

--install-plugin Installs a plugin by copying its files into
HOME/.springpython.

--uninstall-plugin Uninstalls the plugin by deleting its directory
from HOME/.springpython.

--reinstall-plugin Shortcut command that uninstalls a plugin
and then installs it again. This is very useful
when developing a new plugin in an iterative
fashion.

Chapter 9

[215]

Required parts of a plugin
A coily plugin closely resembles a Python package with some slight tweaks. This
doesn't mean that a plugin is meant to be installed as a Python package. It is only a
description of the folder structure.

Let's look at the layout of the gen-cherrypy-app plugin as an example.

Some parts of this layout are required, and other parts are not. The top folder is the
name of the plugin.

A plugin requires a __init__.py file inside the top directory.
__init__.py must include a __description__ variable. This description is
shown when we run the coily --help command.
__init__.py must include a command function, which is either a create or
apply function. create is used when the plugin needs one argument from
the user. apply is used when no argument is needed from the user.

Let's look at how gen-cherrypy-app meets each of these requirements.

1.	 We can already see from the diagram that the top level folder has the same
name as our plugin.

2.	 Inside __init__.py, we can see the following help message defined.
	 __description__ = "plugin to create skeleton CherryPy applications"

3.	 gen-cherrypy-app is used to create a skeleton application. It needs the user
to supply the name of the application it will create. Again, looking inside
__init__.py, the following method signature can be found.

	 def create(plugin_path, name)

4.	 plugin_path is an argument provided to gen-cherrypy-app by coily,
which points at the base directory of gen-cherrypy-app. This argument is
also provided for plug-ins that use the apply command function.

5.	 name is the name of the application provided by the user.

•

•

•

Creating Skeleton Apps with Coily

[216]

It is important to recognize that create allows one command-line
argument, but receives another one, plugin_path from coily itself
to give the plug-in enough information to do its work. apply allows no
command-line arguments, but still receives plugin_path from coily.

The rest of the files are not plug-in requirements, but instead are utilized by
gen-cherrypy-app as shown in the next section.

Creating a skeleton CherryPy app
The rest of the files listed on the diagram above form a template of an application.

app_context.py The Spring Python application context used to wire
the generated application using decorator-driven
PythonConfig

cherrypy-app.py The main portion of the application that is runnable
controller.py Contains the business logic of the application
view.py Contains some the CherryPy rendering parts of

the application
images A subdirectory containing images used by the view layer

of the application

1.	 Before we create our CherryPy application, we are missing something. In the
earlier screenshot, this plugin wasn't listed. We need to find it and install it.
First, let's see how we can look up existing plugins.

Chapter 9

[217]

2.	 Seeing gen-cherrypy-app listed, let's install it using coily without touching
a browser.

Creating Skeleton Apps with Coily

[218]

3.	 Let's use the plugin to create a CherryPy application called sample_app.
Since we just installed it, the plugin now shows up on coily's help menu.
With that in place, we can then run the command to create sample_app.

gen-cherrypy-app creates a directory named sample_app and copies the
files listed above into it. It also does some transformations of the files, based
on the argument sample_app.

It replaces all instances of ${name} in each file with
sample_app

It replaces all instances of ${properName} in each file with
Sample_app

It renames cherrypy-app.py as sample_app.py

°

°

°

Chapter 9

[219]

4.	 To run the app, switch to the sample_app directory, and run the main script.
./sample_app.py

5.	 Now we can visit our running application at http://127.0.0.1:8080.

Creating Skeleton Apps with Coily

[220]

6.	 Let's inspect app_context.py and see some of the key features wired by
gen-cherrypy-app.

This is the root object being wired. The rest of the configuration (not shown
here) is mostly security configuration steps.

In Chapter 6, Securing your Application with Spring Python,
it was pointed out that security configuration with Spring
Python requires many steps. gen-cherrypy-app helps out
by pre-wiring most of the security parts, allowing the user to
modify as needed rather than build from scratch.

Chapter 9

[221]

From here, we can log in with the hard-wired credentials to view our
expandable application.

Currently, there are no controller objects. However, it would take little effort to add
such a layer, as demonstrated in the previous chapter's case study.

This plugin is simple enough that most of the work spent in improving this plugin
can be focused on the template files. This tactic is very useful to build other templates
for other types of application.

Summary
coily was built to download, install, and utilize plugins. gen-cherrypy-app nicely
creates a Spring-ified CherryPy application using a set of templates. This pattern is
easy to replicate for other types of applications.

In this chapter, we have learned:

The basic coily commands used to install and uninstall plugins
The structure of a plug-in, including defining the description shown on
coily's help screen and the functions needed to process a command
That using template files and pattern substitution makes it easy for
gen-cherrypy-app to generate CherryPy applications

In the next chapter, we will look at how to integrate Spring Python with a
Java application.

•
•

•

Case Study II—Integrating
Spring Python with your

Java Application
In this book, we have explored the many facets of Spring Python while examining
code samples. So far, all the code we explored was created using CPython, the
original implementation of the Python language.

In this day and age, polyglot programming has attracted an ever increasing interest
in the developer community. Java developers are looking at other options to increase
developer productivity while still retaining access to the Java ecosystem. Python
developers are looking at how to run systems on scalable assets such as the Google
App Engine.

Spring Python is coded in pure Python, making it easy to run inside Jython. This
opens the door to integration, allowing developers to easily mix Java and Python
components with the lightweight power of Spring Python.

In this chapter, we will learn how to:

Build a flight reservation system front end using the pythonic CherryPy web
application framework
Build a flight reservation system back end using Java
Connect the two together using Spring Python, Jython, and Pyro

•

•

•

Case Study II—Integrating Spring Python with your Java Application

[224]

Building a flight reservation system
For this chapter, we will explore integrating Java and Python together while building
a flight reservation system. The first step towards building a system like this is to
show the customer existing flights and allow the customer to filter the data. While
many more features are needed to implement a usable system, this feature will be the
focus of this demonstration.

We have already explored using the CherryPy web application framework and will
use it again to create the front end for this system. For the back end, we will develop
a persistence layer using Java components, while wiring everything together using
Spring Python's IoC container and run everything from inside Jython. The other
key feature that we will explore is how to integrate pure Java with pure Python
components using Spring Python and Pyro.

Building a web app the fastest way
How would you look at building our Python frontend? One popular approach is to
build small, testable blocks that are easily composable. From this perspective, the
user interface would be the last step.

Another tactic is to focus on the customer's view and develop the screens, followed
by filling in the back end. Since our goal is to test drive the features of Spring Python,
let's take this more visual approach.

To speed up our application, let's use Spring Python's command-line coily tool,
which we explored earlier.

1.	 Using coily, let's create a booking application

Chapter 10

[225]

This command generates a set of files:

File name Description
booking.py Runable CherryPy application.
app_context.py Spring Python application context, that

contains the wiring for our components.
view.py Contains all the web parts, including HTML.
controller.py Contains functions that the view accesses to

generate dynamic content for the screens.

This auto-generated application contains pre-wired components, including
security, some basic links, and the bootstrapping needed to launch the
CherryPy web server engine. It just needs some minor modifications before
we start coding our features.

2.	 Remove any licensing comments embedded in the app. While the template
files themselves are marked with a license, this application may not be
released under the same license

3.	 Ease security restrictions defined in app_context.py, allowing anonymous
users access the main parts of site, while subjecting any link underneath
/customer/* to full security and requiring ROLE_CUSTOMER
 @Object
 def filterChainProxy(self):
 return CP3FilterChainProxy(filterInvocationDefinitionSource =
 [
 ("/images.*", []),
 ("/html.*", []),
 ("/accessDenied.*", []),
 ("/login.*", ["httpSessionContextIntegrationFilter"]),
 ("/customer/.*", ["httpSessionContextIntegrationFilter",
 "exceptionTranslationFilter",
 "authenticationProcessingFilter",
 "filterSecurityInterceptor"])
])

 @Object
 def filterSecurityInterceptor(self):
 filter = FilterSecurityInterceptor()
 filter.auth_manager = self.authenticationManager()
 filter.access_decision_mgr = self.accessDecisionManager()

Case Study II—Integrating Spring Python with your Java Application

[226]

 filter.sessionStrategy = self.cherrypySessionStrategy()
 filter.obj_def_source = [
 ("/customer/.*", ["ROLE_CUSTOMER"])
]
 return filter

4.	 Remove the images and CSS code and replace them with a simpler header
and footer:
def header():
 return """
 <html>
 <head>
 <title>Spring Flight Reservation System</title>
 </head>

 <body>
 """

def footer():
 return """
 <hr>
 <table style="width:100%"><tr>
 <td>Home</td>
 </tr></table>
 </body>
 """

5.	 Remove all methods from the view layers that were exposed using
@cherrypy.expose (except index, login, and logout)

6.	 Let's launch this web app using Python and then visit it by opening a
browser at http://localhost:8080

Chapter 10

[227]

We now have a clean slate from which we can start fleshing out the features of
our system.

Case Study II—Integrating Spring Python with your Java Application

[228]

Looking up existing flights
What is the first piece of data that we need for a flight reservation system? Flight
listings! Since customers usually need to search based on a date or location, let's fetch
some flight data and then build some search features.

1.	 Let's add a link on the main page to take us to a search page.
 @cherrypy.expose
 def index(self):
 """This is the root page for your booking app. Its default
includes links to all other exposed links automatically."""

 return header() + """
 <H2>Welcome to Spring Flight Reservation System</H2>
 <P>

 Search Flight
 Listings

 <P>""" + footer()

We have now created an HTML bulleted list with one entry to
Search Flight Listings.

Chapter 10

[229]

2.	 Before we try to display any flight information, let's define a simple Python
class to contain this information:
class Flight(object):
 def __init__(self, flight=None, departure=None, arrival=None):
 self.flight = flight
 self.departure = departure
 self.arrival = arrival

3.	 Now that we've created a simple model for our flight data, let's display it on
the web page. To do that, let's add a flight_listings function and expose
it using @cherrypy.expose:
 @cherrypy.expose
 def flight_listings(self):
 page = header() + """
 <H2>Search Flight Listings</H2>
 <table border="1">
 <tr><th>Flight</th><th>Departure</th>
 <th>Arrival</th></tr>
 """

 for f in self.controller.flights():
 page += "<tr><td>%s</td><td>%s</td><td>%s</td></tr>" % \
 (f.flight, f.departure, f.arrival)

 page += "</table>" + footer()

 return page

We haven't created a search box yet. Before we do, let's ask the controller to
give us all flight data.

4.	 We can't click on the link yet because there is no controller, so let's build one
and have it supply some sample data
from model import *

class BookingController(object):
 def __init__(self):
 self.data = []
 self.data.append(Flight("SpringAir 14", "9:02am
Melbourne", "10:45am Nashville"))
 self.data.append(Flight("Python Airways 28", "10:40am
Orlando", "2:15pm San Francisco"))

 def flights(self):
 return self.data

Case Study II—Integrating Spring Python with your Java Application

[230]

There isn't much there, its just a simple Python array containing one Flight
instance. But we want to build this up from small, simple parts that we can
easily visualize. With all these parts in place, let's look at the web page again.

Now we can see this small bit of sample flight data.

5.	 Let's add a search box to provide some minimal filtering capability
 @cherrypy.expose
 def flight_listings(self, criteria=""):
 page = header() + """
 <H2>Search Flight Listings</H2>
 <form method="POST" action="/flight_listings">
 Search: <input type="text"
 name="criteria"
 value="%s"
 size="10"/>
 <input type="submit"/>
 </form>
 <table border="1">
 <tr>
 <th>Flight</th>
 <th>Departure</th>
 <th>Arrival</th>
 </tr>
 """ % criteria

Chapter 10

[231]

 for f in self.controller.flights(criteria):
 page += "<tr><td>%s</td><td>%s</td><td>%s</td></tr>" % \
 (f.flight, f.departure, f.arrival)

 page += "</table>" + footer()

 return page

We added a text input with a button to the top of the screen. The search
criterion is now passed into the controller object to do any filtering.

6.	 How would you utilize the text entered by the user to filter in the controller?
Should we be case sensitive or perhaps relax that a bit? Which fields would
you want to compare against if you were using it as a customer? Here is one
way you could use it:
 def flights(self, criteria):
 return [f for f in self.data \
 if criteria.lower() in str(f).lower()]

This grabs the sample data and applies a filtering list comprehension. The
filter applies lower() to both the criteria as well as the stringified version of
the flight record.

Case Study II—Integrating Spring Python with your Java Application

[232]

7.	 One way to let the customers search is against all the data in the flight record
 def __str__(self):
 return "%s %s %s" % \
 (self.flight, self.departure, self.arrival)

With all these changes, we can now do a simple flight search.

What are some other search options you would consider to make this
more sophisticated?

Moving from sample Python data to real Java
data
So far, we are looking at a couple rows of sample data. A more realistic scenario
would be tapping some type of a live system, listing real-time flights. What would
you do if the data was stored in a backend database and a service was already coded
in Java?

Would you attempt to bypass the Java system and talk directly to the
database? What risks are involved with this approach?
Would you ditch the Python front end we just built and instead embark on a
Java-based portal? What if this had been several months of effort?

•

•

Chapter 10

[233]

Let's look at how Jython can integrate these two worlds together. Does Jython
support all the Python components that we have used so far?

Jython in late 2009 caught up to Python 2.5 and has many useful features. But
many 3rd party Python libraries still can't run on Jython despite this significant
improvement. Many libraries utilize Python's C-extension capability, but this isn't
supported in Jython. There are also platform assumptions involved with things like
threads that defer in CPython compared to the JVM which Jython runs on.

At the time of writing, CherryPy has issues running on Jython without
some small tweaks. Sqlite support also isn't available yet. It's possible to
tap Java components from Jython, but it's not realistic to assume all the
Python components we plan to use will run.

Spring Python makes it easy to bridge this gap through its integration with the Pyro
remoting library.

1.	 To move our data access controller over to Java, we will also need to move
the Flight record as well.
public class Flight {

 private long id;
 private String flight;
 private String departure;
 private String arrival;

 public long getId() {
 return this.id;
 }

 public void setId(long id) {
 this.id = id;
 }

 public String getFlight() {
 return this.flight;
 }

 public void setFlight(String flight) {
 this.flight = flight;
 }

 public String getDeparture() {

Case Study II—Integrating Spring Python with your Java Application

[234]

 return this.departure;
 }

 public void setDeparture(String departure) {
 this.departure = departure;
 }

 public String getArrival() {
 return this.arrival;
 }

 public void setArrival(String arrival) {
 this.arrival = arrival;
 }

 public String toString() {
 return flight + " " + departure + " " + arrival;
 }
}

2.	 Next, let's rewrite our controller in Java. To make things easier, we will use
the original Spring Framework to code our query
import java.sql.ResultSet;
import java.sql.SQLException;
import java.util.List;

import javax.sql.DataSource;

import org.springframework.jdbc.core.JdbcTemplate;
import org.springframework.jdbc.core.RowMapper;

public class FlightDataSystem {

 private JdbcTemplate jdbcTemplate;

 public FlightDataSystem(DataSource dataSource) {
 this.jdbcTemplate = new JdbcTemplate(dataSource);
 }

 public List<Flight flights(String criteria) {
 return jdbcTemplate.query(
 "SELECT id, flight, departure, arrival " +
 "FROM flights",
 new RowMapper<FlightData>() {

Chapter 10

[235]

 @Override
 public FlightData mapRow(final ResultSet rs, int row)
 throws SQLException {
 return new Flight() {{
 setId(rs.getLong("id"));
 setFlight(rs.getString("flight"));
 setDeparture(rs.getString("departure"));
 setArrival(rs.getString("arrival"));
 }};
 }
 });
 }
}

Notice how this Java code has double braces? This is an anonymous
subclass of Flight, with an initializing block of code. It's a
convenient way to remove some of the boilerplate of populating a
POJO (Plain Old Java Object).

3.	 In order to have our controller talk to a MySQL database as well as utilize the
Spring Framework, we will need some extra jar files. This includes:

org.springframework.beans

org.springframework.core

org.springframework.jdbc

org.springframework.transaction

commons-dbcp

commons-logging

commons-pool

mysql-connector-java

It is an exercise for the reader to write a script to re-build the Java parts,
considering the jar files.

4.	 Before we can test this code, we need to setup our database:
DROP DATABASE IF EXISTS booking;

CREATE DATABASE booking;

GRANT ALL ON booking.* TO booking@localhost IDENTIFIED BY
'booking';

°

°

°

°

°

°

°

°

Case Study II—Integrating Spring Python with your Java Application

[236]

USE booking;

CREATE TABLE flights (
 id INT(4) UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,
 flight VARCHAR(30),
 departure VARCHAR(30),
 arrival VARCHAR(30)
);

INSERT INTO flights (flight, departure, arrival) values
('SpringAir 14', '9:02am Melbourne', '10:45am Nashville');
INSERT INTO flights (flight, departure, arrival) values ('Python
Airways 28', '10:40am Orlando', '2:15pm San Francisco');

The following screenshot shows this script being run to setup and load data:

5.	 Now that we've migrated the controller code to Java and set up the schema,
let's write a simple Jython script to print out the flight data
import FlightDataSystem
from org.apache.commons.dbcp import BasicDataSource

source = BasicDataSource()
source.driverClassName = "com.mysql.jdbc.Driver"
source.url = "jdbc:mysql://localhost/booking"
source.username = "booking"
source.password = "booking"

system = FlightDataSystem(source)

for f in system.getFlightData():
 print f

Chapter 10

[237]

To run it, we need to include several jar files.

You can see the command typed, and the output of printing the flight data to
the console.

There is one other key factor to deal with before we can wire things together:
serialization of the data. When our Java code returns an array of Java objects,
it has to be serialized by Pyro, sent over the wire, and then deserialized by
CPython. For the scalars, this is not a problem. Jython handles it easily. But
moving class objects requires class definitions on both sides of the wire.
CPython doesn't have access to our Java Flight class and the Java code
doesn't have access to the CPython class. We need a thin piece of code in the
middle that can call our Java service and convert the list of Java objects into
Python objects. A Jython wrapper would be perfect.
from model import *

class JythonFlightDataSystem(object):
 def __init__(self, java_system):
 self.java_system = java_system

 def flights(self, criteria):
 return [Flight(f.flight, f.departure, f.arrival) \
 for f in self.java_system.flights(criteria)]

This wrapper class has the same signature. Running it in Jython will give it
access to the Java classes as well as our Python classes.

Case Study II—Integrating Spring Python with your Java Application

[238]

6.	 Let's wire up our service using a Spring Python IoC configuration and then
expose it using PyroServiceExporter
import logging
from springpython.config import *
from springpython.context import *
from springpython.remoting.pyro import *

import FlightDataSystem
from org.apache.commons.dbcp import BasicDataSource
from java_wrapper import *

class JavaSystemConfiguration(PythonConfig):
 def __init__(self):
 super(JavaSystemConfiguration, self).__init__()

 @Object
 def data_source(self):
 source = BasicDataSource()
 source.driverClassName = "com.mysql.jdbc.Driver"
 source.url = "jdbc:mysql://localhost/booking"
 source.username = "booking"
 source.password = "booking"
 return source

 @Object
 def exported_controller(self):
 exporter = PyroServiceExporter()
 exporter.service_name = "JavaFlightDataSystem"
 exporter.service = self.controller()
 return exporter

 @Object
 def controller(self):
 java_system = FlightDataSystem(self.data_source())
 wrapper = JythonFlightDataSystem(java_system)
 return wrapper

7.	 With this configuration, we are using the Apache Commons
BasicDataSource to create a connection pool to access the MySQL database

Chapter 10

[239]

8.	 We create an instance of our Java-based FlightDataSystem. But instead of
returning that, we inject it into our JythonFlightDataSystem, so that it can
translate between Java and Python records

9.	 We also create a PyroServiceExporter, and have it target our
controller(). It is advertised under the name JavaFlightDataSystem

10.	 We need a boot script to launch our Jython service
import logging
import os
import java_app_context
from springpython.context import ApplicationContext

if __name__ == '__main__':
 logger = logging.getLogger("springpython")
 loggingLevel = logging.DEBUG
 logger.setLevel(loggingLevel)
 ch = logging.StreamHandler()
 ch.setLevel(loggingLevel)
 formatter = logging.Formatter("%(asctime)s - %(name)s -
%(levelname)s - %(message)s")
 ch.setFormatter(formatter)
 logger.addHandler(ch)

 applicationContext = ApplicationContext(\
 java_app_context.JavaSystemConfiguration())
 controller = applicationContext.get_object("controller")

11.	 Running Jython scripts with 3rd party libraries can be a little tricky. To make
sure that the JVM can load classes from jar files, the jar files need to be
passed in to the JVM as classpath entries
jython -J-classpath org.springframework.jdbc-3.0.1.RELEASE.jar:
org.springframework.core-3.0.1.RELEASE.jar:org.springframework.
transaction-3.0.1.RELEASE.jar:org.springframework.beans-
3.0.1.RELEASE.jar:commons-logging-1.1.1.jar:commons-dbcp-1.4.jar:
commons-pool-1.5.4.jar:mysql-connector-java-5.1.12-bin.jar java_
system.py

Case Study II—Integrating Spring Python with your Java Application

[240]

12.	 The –J argument feeds parameters to the JVM. This is necessary so that the
class loaders can pull classes from the jar files

We can see that Pyro has been started and is ready to serve data to
any clients.

13.	 With our Jython data feed running, we can now replace the original
controller definition inside our application context with a PyroProxyFactory
 @Object
 def controller(self):
 java_system = PyroProxyFactory()
 java_system.service_url = \
 "PYROLOC://localhost:7766/JavaFlightDataSystem"
 return java_system

14.	 By adding the following import statement, we are now able to re-launch our
booking application in one shell, and the Jython service in another
from springpython.remoting.pyro import *

Chapter 10

[241]

15.	 Now, let's re-launch our booking.py application using CPython, and look at
the screens

If we revisit the flight data page, it looks the same:

Case Study II—Integrating Spring Python with your Java Application

[242]

However, looking closer at the console output from the Jython script, we see a
message indicating our Java code is being called.

The filtering logic has also been moved to the Java service, so we get the response.

Chapter 10

[243]

Issues with wrapping Java code
One part of this solution that wasn't very elegant was the wrapper code that
transformed between CPython and Java flight data. It is a necessary step to convert
between these types when linking these systems together. While a wrapper code
solved our immediate problem, the maintenance of that code can grow.

Since it is very likely that other classes require the same attention, whether they
are input arguments or results, a solution that is easier to maintain is needed. The
behavior involves wrapping the Java service and checking inputs and outputs. This
is exactly the type of use case that aspect oriented programming is well suited for.

It is left as an exercise for the reader to code an aspect that can scan inputs and
outputs and apply some sort of mapping between the CPython types and Java
types, and wire it up to replace the java wrapper.

Summary
We are now running the frontend web server in Python and the backend on the JVM.
While this example isn't flashy or necessarily dynamic, it shows the capability of
integrating these two systems together.

Since Jython is all about making it possible to run compiled class files, it becomes
possible to replace the Java-based database code with something more sophisticated
like a Groovy-based feed reader using its terse XmlSlurper module or a Scala-based
system that monitors RSS feeds from multiple airlines.

At the same time, we can keep coding using our favorite Python tactics in
CherryPy, or perhaps another web framework of choice. We can also write
useful command-line scripts that access the same back end information.

A key point is that we didn't have to do the wiring ourselves. Instead of managing
the low level API of Pyro, Spring Python did the work for us.

Spring Python offers many valuable features that we have visited throughout this
book. There are many useful abstractions. But the abstractions aren't one-to-one
with the ones provided by Spring Java. Instead, it focuses on Python libraries. For
example, Spring Python integrates with Pyro, while Spring Java integrates with RMI.
And this makes sense, because Python developers aren't as likely to integrate with an
RMI-based system as they are to link together Python components.

Case Study II—Integrating Spring Python with your Java Application

[244]

This book also introduces the powerful concept of dependency injection. Spring
Python and Spring Java share this philosophy. Throughout the various examples
in this book, we saw how to decouple components and wiring them together in a
container. This made it easy to test, introduce services with little impact, and allow
rewiring as needs change. This gives developers the flexibility they need to adapt to
changing requirements.

In this chapter we have learned how to:

Build a front end in CPython using CherryPy and then link it to a back end
written in Java
Create the necessary adapter code to handle serialization between CPython
and Java
Replace a Python-to-Python call with a Python-to-Java call with no impact to
the front end or the back end
Compile Java code and run it from Jython using 3rd party libraries

I hope you have enjoyed this book, and that it will inspire you in new ways to
design, code, and maintain more powerful systems.

•

•

•

•

Index
Symbols
@transactional

advantages 110
disadvantages 110

@transactional decorator 102, 104, 205

A
access_decision_mgr 138
access_decision_voters 138
AccessDecisionVoter 200
Acegi Security 119
ACID properties

defining 113
AffirmativeBased policy 138
AOP

about 51, 52, 69
crosscutting, versus hierarchical 52
crosscutting behavior, weaving 53
crosscutting elements 53
performance cost 68, 69

AOP module, Spring Python
features 71, 72

app_context.py file 216
application, scaling

about 164
client configuration, adjusting 167, 168
round-robin dispatcher, creating 166, 167
single-node backend, converting into

multiple instances 164-166
ApplicationContext

about 37
features 37

application security
testing 142, 143

Aspect Oriented Programming. SeeÂ€ AOP
AspectJ 53

aspects, testing
about 73
service, decoupling 74-76
service, testing 76-78

atomicity, ACID properties 101, 113
audit logs

creating 209, 210
auth_manager 137
authenticate method 150
authenticationProcessingFilter 135
automated testing 94
AutoTransactionalObject 206

B
BadCredentialsException 151
Bank class 115
BankException class 204
banking application

audit logs, creating 209, 210
basic customer functions, building 182-188
building 173, 174
creating 99, 100
customer features, coding 188
issues, customer features 199
logs, accessing remotely 206-208
requisites 172
securing 175-182
transactions, adding 99, 100

BindAuthenticator 146

C
CachedWikiTest method 78
caching

adding, to Spring Python objects 60-64
advisors, applying to service 65-68

[246]

caching_advisor 68
CachingInterceptor 61, 68
caching service wiring in API

confirming 78
Central Authentication Service (CAS) 119
cherrypy-app.py file 216
CherryPy framework 122
cherrypySessionStrategy() 134
classic SQL issue

about 82
code, parameterizing 84, 85
multiple lines of query code, replacing with

one line of Spring Python 86
classic transaction issue

about 98, 102
simplifying, @transactional used 102-105

close_account operation 193
closeAccount operation 192
coily

about 213
commands 214
key functions 214
parts, requirements 215
plugin approach 213

commands, coily
--help 214
--install-plugin 214
--list-available-plugins 214
--list-installed-plugins 214
--reinstall-plugin 214
--uninstall-plugin 214

connection.commit() 100
connection.rollback() 100
ConsensusBased policy 138
consistent, ACID properties 101, 113
context aware objects 40
controller.py file 216
controller object 186
convert_to_upper 146
CORBA 156
CPython 233
crosscutting elements, AOP

about 53
Advice 53
Advisor/interceptor 53
Aspect 53

Join point 53
Pointcut 53

customer features, banking application
account history, viewing 198
closeAccount operation, adding 192, 193
coding 188
deposit operation, adding 195, 196
main page, updating 189, 190
openAccount operation, redefining 191
transfer operation, adding 196, 197
withdraw operation, adding 193, 194

customer functions, banking application
building 182-188

custom security extension
coding 150
custom authentication provider, coding

150, 152

D
data access layer

testing, mocks used 92-94
DatabaseTemplate

about 87, 151
ORMs, working with 91, 92
Portable Service Abstraction 87
queries, mapping by convention 89
queries, mapping into dictionaries 89
set of operations 91
solutions 90
SQLAlchemy, using 90
tables, mapping 90
using, for retrieving objects 87, 88

DatabaseUserDetailsService 143
DefaultLdapAuthoritiesPopulator 146
Dependency Injection 33, 34
deposit function 111
deposit operation 195
DictionaryRowMapper 89
durable, ACID properties 101, 114
dynamic weaving 53

E
encoder attribute 146

[247]

F
factory object 186
filter_security_interceptor 138
FilterChainProxy 176
flight_listings function 229
flight reservation system

booking application, building 224-226
building 224
flight listings, searching 228, 229
search box, creating 229, 230
search page link, adding on main page 228

footer() function 126

G
gen-cherrypy-app 213
group_role_attr 146
group_search_filter 146

H
header() function 127
html() function 126

I
images 216
index function 182
InMemoryUserDetailsService 137
installation

Spring Python 19
intercepting 54
Inversion of Control. SeeÂ€ IoC
invocation.proceed() 68
IoC

about 25, 29, 30
adding, to application 30-32
adding, to test 35, 36
debate, in dynamic languages 40, 41
production code, swapping 26-29

isloated, ACID properties 101, 114
issues

Java code wrapping 243
issues, customer features

about 199

overdraft protection, adding to
withdrawals 203-205

transfers, making transactional 205
users accounts, securing 199-203

J
Java application

Spring Python, integrating with 232
Java Authentication and Authorization

Service (JAAS) 119
Jython 43, 233

K
Kerberos 119
key functions, coily 214

L
lazy objects 37
LDAP 144
LDAP-based security

configuring 144, 146
LdapAuthenticationProvider 144
log method 209

M
message parameter 188
mocks 26
multiple security providers

benefits 146
multiple user communities, supporting 148
redundant security access, providing 148,

150
users, migrating from old to new login

system 147
using 146

N
new security requirements

authentication, confirming 131, 132
authorization, confirming 132
handling 131

[248]

O
ObjectContainer

about 37
ApplicationContext 37
features 37

Object Oriented Programming. SeeÂ€ OOP
Object Relational Mappers (ORMs) 13
OOP 51
open_account operation 191
openAccount function 184
ORMs

about 90
DatabaseTemplate, working with 91, 92

OwnerVoter 201

P
parts, coily

__init__.py file 215
name, __init__.py file 215
plugin_path, __init__.py file 215
requisites 215

password_attr_name attribute 146
password_encoder 137
PasswordComparisonAuthenticator 146
perf_advisor 68
PerformanceInterceptor 68
post processor objects 39
programmatic transactions

about 108
advantages 110
disadvantages 110
IoC container, configuring with 108, 109
IoC container, configuring without 109

properties, transactions
atomicity 101
consistent 101
durable 101
isolated 101

property driven objects 39
prototype-scoped object 38
ProxyFactoryObject 61
Pyro 156
Pyro library 9
PyroProxyFactory 162
PyroServiceExporter 168, 206
Python Remote Objects. SeeÂ€ Pyro

R
raw_history 208
redirectStrategy() 135
RegexpMethodPointcutAdvisor 61
Remote Method Invocation (RMI) 156
ROLE_CUSTOMER 200
role_prefix 146
RoleVoter 203
RoundRobinDispatcher class 167

S
scoped objects

about 38
prototype-scoped object 38
singleton-scoped object 38

security. SeeÂ€ also Spring Python Security
authentication, confirming 131
authorization, confirming 132
issues 121
requisites 120, 121
testing 142, 143

security_advisor 67
SecurityContextHolder 132, 141, 142
security data

accessing, within app 141, 142
service_host attribute 160
service_port attribute 161
service attribute 160
service method 160
simple application, converting into

distributed application
about 157, 158
client, creating 159
service, fetching from IoC container 158
without, changing the client 159-162

SimpleRowMapper 89
simple SQL query

writing, Python's database API used 82, 84
Single Responsibility Principle (SRP) 57
singleton-scoped object 38
skeleton CherryPy app

creating 216-221
skeleton web application, banking

application
building 173

[249]

Spring Java application
migrating, to Python 42-49

SpringJavaConfig 42
Spring Python

about 7
ACID properties, defining 113-115
application security 119
aspects, testing 73
automated testing 94
context aware objects 40
Dependency Injection mechanism, using 33
dynamic weaving 53
extending 18
for Java developers 15-18
for Python developers 8
installing 19
integrating, with Java application 232-241
IoC 25
lazy objects 37
ObjectContainer 37
Portable Service Abstractions 107
post processor objects 39
property driven objects 39
scoped objects 38
user community 23, 24

Spring Python, for Java developers 15-18
Spring Python, for Python developers

about 8
non-invasive nature, exploring 8-10
templates, adding 11-15

Spring Python's AOP module
features 71, 72

Spring Python installation
about 19
environment, setting up 19
installing, from binary 20, 21
installing, from source 22

Spring Python objects
caching, adding 60-64

Spring Python Security. SeeÂ€ also security
challenges 152
references 152

Spring triangle 86
SpringWikiController 133
SQL 82
SQL-based security

configuring 143, 144

SQLAlchemy 90
statistics method 27
stubs 26

T
threading.local() 142
TransactionManager 206
transactions

about 101
applying, to non-transactional code 115,

117
new functionality, adding 110-113
propagation 101
properties 101
testing 117

TransactionTemplate 105, 106
transfer function 102
transfer method 104
transfer operation 196

U
UnanimousBased policy 138
user_details_service 137
user community, Spring Python 23, 24
userPassword attribute 146

V
view.py file 216

W
weaving 53
web application

building 122-129
high level view 130, 131
security features, adding 133-140

wiki_service
caching_advisor 66
perf_advisor 66
security_advisor 66

WikiService 26
withdraw function 111
withdraw operation 193

Thank you for buying
Spring Python 1.1

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Spring Web Flow 2
Web Development
ISBN: 978-1-847195-42-5 Paperback: 200 pages

Master Spring’s well-designed web frameworks to
develop powerful web applications

1.	 Design, develop, and test your web applications
using the Spring Web Flow 2 framework

2.	 Enhance your web applications with
progressive AJAX, Spring security integration,
and Spring Faces

3.	 Stay up-to-date with the latest version of Spring
Web Flow

4.	 Walk through the creation of a bug tracker web
application with clear explanations

Spring Persistence with Hibernate
ISBN: 978-1-849510-56-1 Paperback: 460 pages

Build robust and reliable persistence solutions for
your enterprise Java application

1.	 Get to grips with Hibernate and its
configuration manager, mappings, types,
session APIs, queries, and much more

2.	 Integrate Hibernate and Spring as part of your
enterprise Java stack development

3.	 Work with Spring IoC (Inversion of Control),
Spring AOP, transaction management, web
development, and unit testing considerations
and features

4.	 Covers advanced and useful features of
Hibernate in a practical way

Please check www.PacktPub.com for information on our titles

	Cover

	Copyright

	Credits

	About the Author

	About the Reviewers

	Table of Contents

	Preface
	Chapter 1:
Getting Started with Spring Python
	Spring Python for Python developers
	Exploring Spring Python's non-invasive nature
	Adding in some useful templates

	Spring Python for Java developers
	Extending Spring Python
	Installing Spring Python
	Setting up an environment for Spring Python
	Installing from a binary, pre-built download
	Installing from source

	Spring Python community
	Summary

	Chapter 2
: The Heart of Spring Python—Inversion of Control
	Swapping production code with test doubles
	More about Inversion of Control
	Adding Inversion of Control to our application
	Dependency Injection a.k.a. the Hollywood principle
	Adding Inversion of Control to our test

	Container versus Context
	Lazy objects
	Scoped objects
	Property driven objects
	Post processor objects
	Context aware objects

	Debate about IoC in dynamic languages
	Migrating a Spring Java application to Python
	Summary

	Chapter 3
: Adding Services to APIs
	AOP from 10,000 feet
	Crosscutting versus hierarchical
	Crosscutting elements
	Weaving crosscutting behavior

	Adding caching to Spring Python objects
	Applying many advisors to a service
	Performance cost of AOP

	AOP is a paradigm, not a library
	Distinct features of Spring Python's AOP module
	The risks of AOP
	AOP is part of the Spring triangle

	Testing our aspects
	Decoupling the service from the advice
	Testing our service
	Confirming that our service is correctly woven into the API

	Summary

	Chapter 4
: Easily Writing SQL Queries with Spring Python
	The classic SQL issue
	Parameterizing the code
	Replacing multiple lines of query code with one line of Spring Python

	The Spring triangle—Portable Service Abstractions
	Using DatabaseTemplate to retrieve objects
	Mapping queries by convention over configuration
	Mapping queries into dictionaries

	DatabaseTemplate and ORMs
	Solutions provided by DatabaseTemplate
	How DatabaseTemplate and ORMs can work together

	Testing our data access layer with mocks
	How much testing is enough?
	Summary

	Chapter 5
: Adding Integrity to your Data Access with Transactions
	Classic transaction issue
	Creating a banking application
	Transactions and their properties
	Getting transactions right is hard

	Simplify by using @transactional
	More about TransactionTemplate

	The Spring Triangle—Portable Service Abstractions
	Programmatic transactions
	Configuring with the IoC container
	Configuring without the IoC container
	@transactional versus programmatic

	Making new functions play nice with existing transactions
	How Spring Python lets us define a transaction's ACID properties

	Applying transactions to non-transactional code
	Testing your transactions
	Summary

	Chapter 6
: Securing your Application with Spring Python
	Problems with coding security by hand
	Building web applications ignoring security
	Looking at our web application from 10,000 feet

	Handling new security requirements
	Authentication confirms "who you are"
	Authorization confirms "what you can do"

	Time to add security to our application
	Accessing security data from within the app
	Testing application security
	Configuring SQL-based security
	Configuring LDAP-based security
	Using multiple security providers is easy
	Migrating from an old security solution to a new one
	Supporting multiple user communities
	Providing redundant security access

	Coding our own security extension
	Coding a custom authentication provider

	Some of the challenges with Spring Python Security
	Summary

	Chapter 7
: Scaling your Application Across Nodes with Spring Python's Remoting
	Introduction to Pyro (Python Remote Objects)
	Converting a simple application into a distributed one on the same machine
	Fetching the service from an IoC container
	Creating a client to call the service
	Making our application distributed without changing the client
	Is our example contrived?
	Spring Python is non-invasive

	Scaling our application
	Converting the single-node backend into multiple instances
	Creating a round-robin dispatcher
	Adjusting client configuration without client code knowing its talking to multiple node backend

	Summary

	Chapter 8
: Case Study I—Integrating Spring Python with your Web Application
	Requirements for a good bank
	Building a skeleton web application
	Securing the application
	Building some basic customer functions
	Coding more features
	Updating the main page with more features
	Refining the ability to open an account
	Adding the ability to close an account
	Adding the ability to withdraw money
	Adding the ability to deposit money
	Adding the ability to transfer money
	Showing account history

	Issues with customer features
	Securing Alice's accounts
	Adding overdraft protection to withdrawals
	Making transfers transactional

	Remotely accessing logs
	Creating audit logs
	Summary

	Chapter 9
: Creating Skeleton Apps with Coily
	Plugin approach of Coily
	Key functions of coily

	Required parts of a plugin
	Creating a skeleton CherryPy app
	Summary

	Chapter 10
: Case Study II—Integrating Spring Python with your Java Application
	Building a flight reservation system
	Building a web app the fastest way
	Looking up existing flights
	Moving from sample Python data to real Java data

	Issues with wrapping Java code
	Summary

	Index

