

NG OUT W

Tony Gaddis
Haywood Community College

Boston San Francisco New York
London Toronto Sydney Tokyo Singapore Madrid
Mexico City Munich Paris Cape Town Hong Kong Montreal

Executive Editor Michael Hirsch

Editorial Assistant Stephanie Sdllinger
Associate Managing Editor Jeffrey Holcomb

Text Designer Joyce Cosentino Wells
Cover Designer Beth Paguin

Photo Research Beth Anderson

Digital Assets Manager Marianne Groth
Senior Media Producer Bethany Tidd
Marketing Manager Erin Davis

Senior Author Support/
Technology Specialist Joe Vetere
Senior Manufacturing Buyer Carol Médlville

Senior Media Buyer Ginny Michaud

Production Coordination Shelley Creager, Aptara Corp.
Composition and Illustrations Aptara Corp.

Indexing Steve Rath

Photo Credits

Cover image © Getty Images/ Image Source Pink

Figure 1-3, "The ENIAC computer,” (page4)iscourtesy of US Army Historic Computer Images.

Figure 1-4, "A lab technician holds a modern microprocessor," (page4) is courtesy of Intel Corporation.

Figure 1-5, "Memory chips," (page5) is courtesy of IBM Corporation.

Rendered art and photographic imagesin Figures1-2 (page3), 1-15 (page12), 1-16 and 1-17 (pagel5),
and 1-19 and 1-20 (page19) © 2007 JUPITERIMAGES and itslicensors. All Rights Reserved.

Many of the designations used by manufacturersand sdlersto distinguish their products are claimed as trade-
marks. Where those designations appear in this book, and Addison-Wedey was aware of a trademark claim, the
designations have been printed ininitial capsor al caps.

Library of Congress Cataloging-in-Publication Data

Gaddis, Tony.
Starting out with Python / Tony Gaddis.
p. cm.
Includesindex.
ISBN-13: 978-0-321-53711-9
ISBN-10: 0-321-53711-4
1. Python (Computer program language) |. Title.

Copyright © 2009 Pearson Education, Inc. All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written permission of the publisher. Printed in the United States of
America. For information on obtaining permissionfor use of material in thiswork, please submit a written
regquest to Pearson Education, Inc., Rights and Contracts Department, 501 Boylston Street, Suite 900, Boston,
MA 02116, fax (617) 671-3447, or online at http://www.pearsoned.com/legal/permissions.htm.

Part I:

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter 5
Chapter 6

Part H:

Chapter 7
Chapter 8

Part 1H:

Chapter 9
Chapter 10

Part IV:

Chapter 11
Chapter 12

Appendix A
Appendix B
Appendix C

Student CD
Appendix D

Preface xi

Programming Fundamentals

Introduction to Computers and Programming
Input, Processing, and Output

Simple Functions

Decision Structures and Boolean Logic
Repetition Structures

Value-Returning Functions and Modules

Using Objects to Perform Tasks

Files and Exceptions
Working with Sequences: Strings and Lists

Object-Oriented Programming

Classes and Object-Oriented Programming
Inheritance

Advanced Topics

Recursion
GUI Programming

Installing Python
Introduction to IDLE
The ASCII Character Set
Index

The following appendix is on the accompanying Student CD.
Answers to Checkpoints

Preface xi

Partl: Programming Fundamentals

Chapter 1 Introduction to Computers and Programming

11 Introduction

1.2 Hardware and Software

1.3 How Computers Store Data
1.4 How aProgram Works

15 Usng Python

Chapter 2 Input, Processing, and Output
2.1 Designing a Program
2.2 Input, Processing, and Output
2.3 Displaying Output with the pri nt Statement
24 Comments
25 Vaiables
2.6 Reading Input from the Keyboard
2.7 Performing Calculations
28 More About Data Output

Chapter 3 Simple Functions

3.1 Introduction to Functions

3.2 Definingand Calling a Function

3.3 Designinga Program to Use Functions
34 Locd Variables

3.5 Passing Argumentsto Functions

3.6 Globa Variables and Globa Constants

Chapter 4 Decision Structures and Boolean Logic

41 Theif Statement

4.2 Theif -else Statement

4.3 Comparing Strings

4.4 Nested Decision Structures and the i f ~elif- el se Statement
45 Logica Operators

4.6 Boolean Variables

viii Contents
Chapter 5

51
52
53
54
55
5.6
57

Chapter 6
6.1

Part 11:
Chapter 7

Chapter 8

81
82
8.3

Part 11i:

Chapter 9

9.1
9.2
9.3
94

Chapter 10

10.1
10.2

Part 1V:

Chapter 11
111
11.2
11.3

Repetition Structures

Introduction to Repetition Structures

Thewhil e Loop: a Condition-Controlled Loop
The for Loop: a Count-Controlled Loop
Calculating a Running Total

Sentinels

Input Validation Loops

Nested Loops

Value-Returning Functions and Modules 191

Introduction to Vaue-Returning Functions:
Generating Random Numbers

Writing Your Own Functions

The math Module

Storing Functions in Modules

Using Objects to Perform Tasks

Files and Exceptions

Introduction to File Input and Output
Using Loops to Process Files
Processing Records

Exceptions

Working with Sequences: Strings and Lists

Sequences
Working with Strings
Lists

Object-Oriented Programming

Classes and Object-Oriented Programming

Procedural and Object-Oriented Programming
Classes

Working with Instances

Techniquesfor Designing Classes

Inheritance

Introduction to Inheritance
Polymorphism

Advanced Topics

Recursion

Introduction to Recursion
Problem Solving with Recursion
Examples of Recursive Algorithms

Chapter 12

Appendix A
Appendix B
Appendix C

Student CD
Appendix D

GUI Programming

Graphical User Interfaces

Using the Tkinter Module

Display Text with Label Widgets
Organizing Widgets with Frames
Button Widgets and Info Dialog Boxes
Getting Input with the Entry Widget
Using Labels as Output Fieds

Radio Buttons and Check Buttons

Installing Python
introductionto IDLE
The ASCII Character Set
Index

The following appendix is on the accompanying Student CD.

Answers to Checkpoints

Contents

ix

Welcome to Sarting Out with Python. This book uses the Python language to teach pro-
gramming concepts and problem-solving skills, without assuming any previous program-
ming experience. With easy-to-understand examples, pseudocode, flowcharts, and other
tools, the student learns how to design the logic of programs and then implement those
programs using Python. This book isideal for an introductory programming course or a
programming logic and design course using Python as the language.

As with all the books in the Sarting Out With series, the hallmark of this text is its clear,
friendly, and easy-to-understand writing. In addition, it is rich in example programs that
are concise and practical. The programs in this book include short examples that highlight
specific programming topics, as well as more involved examples that focus on problem
solving. Each chapter provides one or more case studies that provide step-by-step analysis
of a specific problem and shows the student how to solveit.

Control Structures First, Then Classes

Python isafully object-oriented programminglanguage, but studentsdo not haveto understand
object-oriented conceptsto start programmingin Python. This text first introducesthe student
to the fundamental sof data storage, input and output, control structures, functions, sequences
and ligts, file I/O, and objectsthat are created from standard library classes. Then the student
learnsto write classes, exploresthe topics o inheritance and polymorphism, and learnsto write
recursive functions. Finally, the student learnsto devel op simple event-driven GUI applications.

Brief Overview sf Each Chapter

Chapter 1. Introduction to Computers and Programming

This chapter begins by giving a very concrete and easy-to-understand explanation of how
computers work, how datais stored and manipulated, and why we write programsin high-
level languages. An introduction to Python, interactive mode, script mode, and the IDLE
environment is also given.

Chapter 2. Input, Processing, and Output

This chapter introduces the program development cycle, variables, data types, and smple
programs that are written as sequencestructures. The student learnsto write smple programs

xii

Preface

that read input from the keyboard, perform mathematical operations, and produce screen
output. Pseudocode and flowcharts are also introduced as tools for designing programs.

Chapter 3: Simple Functions

This chapter shows the benefits of modularizing programs and using the top-down design
approach. The student learns to define and call simple functions (functionsthat do not
return values), pass arguments to functions, and use local variables. Hierarchy charts are
introduced as a design tool.

Chapter 4: Decision Structures and Boolean Logic

In this chapter the student learns about relational operators and Boolean expressions and
is shown how to control the flow of a program with decisionstructures. Theif,if-else,
and i f -elif-else statementsare covered. Nested decision structures and logical opera-
tors are also discussed.

Chapter 5: Repetition Structures

This chapter shows the student how to create repetition structures using the while loop
and f or loop. Counters, accumulators, running totals, and sentinels are discussed, as well
as techniques for writing input validation loops.

Chapter 6: Value-Returning Functions and Modules

This chapter begins by discussing common library functions, such as those for generating
random numbers. After learning how to call library functions and use their return value,
the student learns to define and call hisor her own functions. Then the student learns how
to use modules to organize functions.

Chapter 7: Files and Exceptions

This chapter introduces sequential file input and output. The student learns to read and
write large sets of data and store data as fields and records. The chapter concludes by dis-
cussing exceptions and shows the student how to write exception-handling code.

Chapter 8: Working with Sequences: Strings and Lists

This chapter introduces the student to the concept of a sequencein Python and explores the
use of two common Python sequences: strings and lists. Severa programming techniques
are shown using strings with operators, built-in functions, library functions, and string
methods. The student also learns to uselists for array-like processing.

Chapter 9: Classes and Object-Oriented Programming

This chapter compares procedural and object-oriented programming practices. It coversthe
fundamental concepts of classes and abjects. Attributes, methods, encapsulation and data
hiding, _init __ functions (whichare similar to constructors), accessors, and mutators
are discussed. The student learns how to model classes with UML and how to find the
classesin a particular problem.

Preface

Chapter 10: Inheritance

The study of classes continues in this chapter with the subjects of inheritance and polymor-
phism. The topics covered include superclasses, subclasses, how —_init__ functions
work in inheritance, method overriding, and polymorphism.

Chapter 11: Recursion

This chapter discusses recursion and its use in problem solving. A visud trace of recursive
calsis provided and recursive applications are discussed. Recursive algorithms for many
tasks are presented, such as finding factorials, finding a greatest common denominator
(GCD),and summing a range o valuesin alist, and the classic Towers of Hanoi example
are presented.

Chapter 12: GUI Programming

This chapter discusses the basic aspects of designing a GUI application using the Tkinter
module in Python. Fundamental widgets, such as labels, button, entry fields, radio buttons,
check buttons, and dialog boxes, are covered. The student also learns how eventswork in
a GUI application and how to write callback functions to handle events.

Appendix A: Installing Python

This appendix explains how to install the Python interpreter from the accompanying CD
or download it from the Python Web site.

Appendix B: Introduction to IDLE

This appendix gives an overview of the IDLE integrated development environment that
comes with Python.

Appendix C The ASCIl Character Set
As a reference, this appendix lists the ASCII character set.

Appendix D: Answers to Checkpoint Questions

Thisappendix givesthe answersto the Checkpoint questionsthat appear throughout the text.

The text teaches programming in a step-by-step manner. Each chapter coversa major set of
topics and builds knowledge as students progress through the book. Although the chapters
can beeasily taught in their existing sequence, you do have someflexibility in the order that
you wish to cover them. Figure P-1 shows chapter dependencies. Each box represents a
chapter or a group of chapters. An arrow points from a chapter to the chapter that must
be covered beforeit.

Xiii

xiv

Preface

Figure P-1

Chapter dependencies

orking with Sequences:| |

Chapters 1-6
(Cover in Order)

Classes and Object-

Chapter 12

GUI Programming

' Chapter 10
Inheritance

Features of the Text

Concept
Statements
Example Programs

In the Spotlight
Case Studies

Notes

Tips

Warnings

Checkpoints

Review Questions

Programming
Exercises

Each major section of the text starts with a concept statement.
This statement concisely summarizesthe main point o the section.

Each chapter has an abundant number of complete and partial
example programs, each designed to highlight the current topic.

Each chapter has one or more In the Spotlight case studies that
provide detailed, step-by-step analysisof problems and show the
student how to solve them.

Notes appear at several places throughout the text. They are
short explanations of interesting or often misunderstood points
relevant to the topic at hand.

Tips advise the student on the best techniques for approaching
different programming problems.

Warnings caution students about programming techniques or
practices that can lead to malfunctioning programs or lost data.

Checkpoints are questions placed at intervals throughout each
chapter. They are designed to query the student's knowledge
quickly after learning a new topic.

Each chapter diverse set of review

Preface XV
Supplements

Student Resource €D
This CD includes:

s The Python Interpreter, including the IDLE programming environment
e« All of the book's example programs
« Appendix D: Answersto Checkpoint Questions

If aCD did not comewith your book or you can't locate your CD, vist http: //www. aw.
com/cssupport/ to access most of theseitems.

Instructor Resources
The following supplements are available to qualified instructors only:

« Answersto all of the Review Questions

« Solutions for the exercises

s PowerPoint presentation didesfor each chapter
e Test bank

Visit the Addison-Wed ey Instructor Resource Center (www.aw.com/irc) or send an email
to computing@aw.com for information on how to access them.

Acknowledgments

| want to thank everyone at Addison-Wedley for making the Sarting Out With series so
successful. | am extremely grateful to Michael Hirsch, executive editor, and Stephanie
Sdlinger, editorial assistant, for guiding me through the process of writing this book. | aso
want to thank Erin Davisfor al of her work as marketing manager. | had a great produc-
tion team for this book, led by Jeff Holcomb and including Shelley Creager, Brian Baker,
David Lindsay (copyeditor), Joyce Cosentino Wels (text design), Beth Paquin (cover
design), Bethany Tidd (media),Carol Melville (manufacturing), and Marianne Groth (sup-
plements). Thanks to you all!

Last, but not least, | want to thank my family for all the patience, love, and support they
have shown me throughout this and my many other projects.

About the Author

Tony Gaddis is the principal author of the Sarting Out With series of téxtbooks. Tony has
nearly two decadesof experienceteaching computer science courses, primarily at Haywood
Community College. He is a highly acclaimed instructor who was previoudy selected as the
North Carolina Community College "Teacher of the Year" and has received the Teaching
Excellence award from the National Institute for Staff and Organizational Development.
The Sarting Out With seriesincludesintroductory books covering C++, Java™, Microsoft®
Visua BasicB, Microsoft® C#®, PythonB, and Alice, al published by Addison-Wedey. More
information about all these books can be found at www.gaddisbooks .com.

{ 1.1 Introduction 1.4 How a Program Warks
1.2 Hadware and Software 1.5 Usng Python
- 1.3 How Computers Store Data

Introduction

Think about some o the different waysthat people use computers. In school, students use com-
putersfor taskssuch as writing papers, searchingfor articles, sending email, and participatingin
onlineclasses. At work, people use computersto analyze data, make presentations, conduct busi-
ness transactions, communicate with customers and coworkers, control machines in manufac-
turing facilities, and do many other things. At home, people use computersfor tasks such as pay-
ing bills, shopping online, communicatingwith friends and family, and playing computer games.
And don't forget that cdl phones, iPods®, BlackBerries®, car navigation sysems, and many
other devicesare computerstoo, The usesdf computersare almost limitlessin our everyday lives

Computerscan do such awide variety of things becausethey can be programmed. This means
that computers are not designed to do just one jaob, but to do any job that their programs tell
them to do. A program is aset of instructions that a computer followsto perform atask. For
example, Figure 1-1 shows screensfrom two commonly used programs, Microsoft Word and
Adobe Photoshop. Microsoft Word is a word processing program that allows you to create,
edit, and print documentswith your computer. Adobe Photoshop is an image editing program
that alows you to work with graphic images, such as photos taken with your digital camera.

Programs are commonly referred to as software. Software is essential to a computer because
it controls everything the computer does. All of the software that we use to make our com-
puters useful is created by individuals working as programmers or software developers. A
programmer, or software developer, is a person with the training and skills necessary to
design, create, and test computer programs. Computer programming is an exciting and
rewarding career. Today, you will find programmers' work used in business, medicine, gov-
ernment, law enforcement, agriculture, academics, entertainment, and many other fields.

Chapter 1 Introduction to Computers and Programming

Figure -1 A word processing program and an image editing program

This book introduces you to the fundamental concepts of computer programming using the
Python language. Before we begin exploring those concepts, you need to understand a few
basic things about computers and how they work. This chapter will build a solid founda-
tion of knowledge that you will continually rely on as you study computer science. First,
we will discuss the physical components that computers are commonly made of. Next, we
will look at how computers store data and execute programs. Finally, we will get a quick
introduction to the software that you will use to write Python programs.

Hardware and Software

CONCEPT: The physical devicesthat a computer is made of are referred to as the
computer's hardware. The programs that run on a computer are referred
to as software.

Hardware

Theterm hardwarerefersto al of the physical devices, or components, that acomputer is made
of. A computer is not onesingle device, but a system of devicesthat all work together. Like the
different instrumentsin a symphony orchestra, each device in a computer plays itsown part.

If you have ever shopped for a computer, you've probably seen sales literature listing com-
ponents such as microprocessors, memory, disk drives, video displays, graphics cards, and
so on. Unlessyou already know a lot about computers, or at least have a friend that does,
understanding what these different components do might be chalenging. As shown in
Figure 1-2, a typical computer system consists of the following major components:

The central processing unit (CPU)
Main memory

Secondary storage devices

Input devices

Output devices

1.2 Hardware and Software

Figure 1-2 Typical components d a computer system

Output
Devices

Input
Devices

Let's take a closer look at each of these components.

The €PU

When a computer is performingthe tasksthat a program tellsit to do, we say that the com-
puter isrunning or executing the program. The central processing unit, or CPU, is the part
of a computer that actually runs programs. The CPU is the most important component in
a computer because without it, the computer could not run software.

In the earliest computers, CPUs were huge devices made of electrica and mechanical
components such as vacuum tubes and switches. Figure 1-3 shows such a device.
The two women in the photo are working with the historic ENIAC computer. The
ENIAC, which is considered by many to be the world's first programmable electronic
computer, was built in 1345 to calculate artillery ballistic tables for the U.S. Army. This
machine, which was primarily one big CPU, was 8 feet tall, 100 feet long, and weighed
30 tons.

Today, CPUs are small chips known as microprocessors. Figure 1-4 shows a photo of alab
technician holding a modern microprocessor. In addition to being much smaller than the
old electromechanical CPUs in early computers, microprocessors are also much more
powerful.

4

Chapter 1 Introduction to Computers and Programming

Figure 1-2 The ENIAC computer (courtesy d U.S. Ammy Historic Computer Images)

Figure 1-4 A lab technician holds a modern microprocessor (photo courtesy d intel
Corporation)

You can think of main memory as the computer's work area. This is where the computer
stores a program while the program is running, as well as the data that the program is
working with. For example, suppose you are using a word processing program to write an

1.2 Hardware and Software

essay for one of your classes. While you do this, both the word processing program and the
essay are stored in main memory.

Main memory is commonly known as random-access memory, or RAM. It is called this
because the CPU is able to quickly access data stored at any random location in RAM.
RAM is usually a volatile type of memory that is used only for temporary storage while
a program is running. When the computer is turned off, the contents of RAM are
erased. Inside your computer, RAM is stored in chips, similar to the ones shown in
Figure 1-5.

Figure 1-5 Memory chips (photo courtesy d 18M Corporation)

Secondary Storage Devices

Secondary storage is a type of memory that can hold data for long periods of time, even
when there is no power to the computer. Programs are normally stored in secondary
memory and loaded into main memory as needed. | mportant data, such as word pro-
cessing documents, payroll data, and inventory records, is saved to secondary storage
as well.

The most common type o secondary storage device is the disk drive. A disk drive stores
data by magnetically encoding it onto a circular disk. Most computers have a disk drive
mounted inside their case. External disk drives, which connect to one of the computer's
communication ports, are also available. External disk drivescan be used to create backup
copies of important data or to move data to another computer.

In addition to external disk drives, many types of devices have been created for copying
data, and for moving it to other computers. For many years floppy disk driveswere popu-
lar. A floppy di sk drive records data onto a small floppy disk, which can be removed from
the drive. Floppy disks have many disadvantages, however. They hold only a small amount
of data, are low to access data, and can be unreliable. The use of floppy disk drives has
declined dramatically in recent years, in favor of superior devices such as USB drives. USB
drives are small devicesthat plug into the computer's USB (universal seria bus) port, and

Chapter 1 Introductionto Computers and Programming

appear to the system as a disk drive. These drives do not actually contain a disk, however.
They store datain a special type of memory known as flash memory. USB drives, which are
aso known as memory sticks and flash drives, are inexpensive, reliable, and small enough
to be carried in your pocket.

Optical devicessuch asthe CD (compact disc) and the DVD (digital versatile disc) are also
popular for data storage. Data is not recorded magnetically on an optical disc, but is encoded
asaseriesdf pitson the disc surface. CD and DVD drives use a laser to detect the pits and
thus read the encoded data. Optical discs hold large amounts of data, and because recordable
CD and DVD drives are now commonplace, they are good mediums for creating backup
copies of data.

Input Devices

Input is any data the computer collects from people and from other devices. The compo-
nent that collectsthe data and sendsit to the computer is called an input device. Common
input devices are the keyboard, mouse, scanner, microphone, and digital camera. Disk
drives and optical drives can aso be considered input devices because programs and data
are retrieved from them and loaded into the computer's memory.

Output Devices

Output is any data the computer produces for people or for other devices. It might be a
salesreport, alist of names, or agraphic image. The data is sent to an output device, which
formats and presents it. Common output devices are video displays and printers. Disk
drives and CD recorders can also be considered output devices because the system sends
data to them in order to be saved.

Software

If a computer is to function, software is not optional. Everything that a computer does,
from the time you turn the power switch on until you shut the system down, is under the
control of software. There are two general categories of software: system software and
application software. Most computer programs clearly fit into one of these two categories.
Let's take a closer look at each.

System Software

The programs that control and manage the basic operations of a computer are generally
referred to as system software. System software typically includes the following types of
programs:

Operating Systems An operating system is the most fundamental set of programs on a
computer. The operating system controls the internal operations of the computer's
hardware, manages all of the devicesconnected to the computer, allows data to be saved
to and retrieved from storage devices, and allows other programsto run on the computer.
Figure 1-6 shows screensfrom three popular operating systems: Windows Vista, Mac OS
X, and Linux.

1.2 Hardware ad Software

Figure 1.6 Screens From the Windows Vista, Mac OS X, and Fedora Linux operating systems

Windows Vista Mac OS X

Fedora Linux

Utidiry Programs A utility program performs a specialized task that enhances the com-
puter's operation or safeguards data. Examples of utility programs are virus scanners,
file compression programs, and data backup programs.

Software Development Tools Software development tools are the programs that pro-
grammers use to create, modify, and test software. Assemblers, compilers, and inter-
preters are examples of programs that fall into this category.

Programs that make a computer useful for everyday tasks are known as application soft-
ware. These are the programs that people normally spend most of their time running on
their computers. Figure 1-1, at the beginning of this chapter, shows screens from two
commonly used applications: Microsoft Word, a word processing program, and Adobe
Photoshop, an image editing program. Some other examples of application software are
spreadsheet programs, email programs, web browsers, and game progeams.

Checkpoint

1.1 What isa program?

1.2 What is hardware?

1.3 List the five major components of a computer system.
1.4 What part of the computer actually runs programs?

Chapter 1 Introduction to Computersand Programming

1.5 What part of the computer serves as awork area to store a program and its data
while the program is running?

1.6 What part of the computer holds data for long periods of time, even when there is
no power to the computer?

1.7 What part of the computer collects data from people and from other devices?

1.8 What part of the computer formats and presents data for people or other
devices?

1.9 What fundamental set of programs control the internal operations of the
computer's hardware?

1.10 What do you call a program that performs a specialized task, such as a virus
scanner, a file compression program, or a data backup program?

111 Word processing programs, spreadsheet programs, email programs, web browsers,
and game programs belong to what category of software?

How Computers Store Data

| CONCEPT: All datathat is stored in a computer is converted to sequences of Os
and 1s.

A computer's memory is divided into tiny storage locations known as bytes. One byte is
only enough memory to store aletter of the alphabet or asmall number. In order to do any-
thing meaningful, a computer has to have lots of bytes. Most computers today have mil-
lions, or even billions, of bytes of memory.

Each byte isdivided into eight smaller storage locations known as hits. The term bit stands
for binary digit. Computer scientistsusually think of bitsas tiny switchesthat can be either
on or off. Bitsaren't actual "switches," however, at least not in the conventional sense. In
most computer systems, bits are tiny electrical components that can hold either a positive
or a negative charge. Computer scientists think of a positive charge as a switch in the on
position, and a negative charge as a switch in the off position. Figure 1-7 shows the way
that a computer scientist might think of a byte of memory: as a collection of switchesthat
are each flipped to either the on or off position.

Figure 1-7 Think of a byte as eight switches

1.3 How Computers Store Data

When a piece of dataisstored in a byte, the computer sets the eight bitsto an on/off pat-
tern that represents the data. For example, the pattern shown on the left in Figure 1-8
shows how the number 77 would be stored in a byte, and the pattern on the right shows
how the letter A would be stored in a byte. We explain below how these patterns are
determined.

Figure 1-8 Bit patterns for the number 77 and the letter A

The number 77 stored in a byte. The letter A stored in a byte.

Storing Numbers

A bit can be used in a very limited way to represent numbers. Depending on whether the
bit is turned on or off, it can represent one of two different values. In computer systems, a
bit that is turned off represents the number 0 and a bit that isturned on represents the num-
ber 1. This corresponds perfectly to the binary numbering system. In the binary numbering
system (or binary, as it is usually called) al numeric values are written as sequences of Os
and 1s. Here is an example of a number that iswritten in binary:

The position of each digit in a binary number has a value assigned to it. Starting with the
rightmost digit and moving left, the position valuesare 2°, 21, 22, 2°_ and so forth, as shown
in Figure 1-9. Figure 1-10 shows the same diagram with the position vaues calculated.
Starting with the rightmost digit and moving left, the position values are 1, 2, 4, 8, and so
forth.

Figure 1-2 The values of binary digits as powers of 2

10 Chapter 1 Introductionto Computers and Programming

Figure 1-10 The values of binary digits

wT

To determine the value of a binary number you simply add up the position values of al the
1s. For example, in the binary number 10011101, the position valuesdf the 1s are 1, 4, 8,
16, and 128. Thisis shown in Figure1-11. The sum of all of these position valuesis 157.
So, the value of the binary number 10011101 is 157.

Figure 1-11 Determining the value of 10011101

Figure 1-12 shows how you can picture the number 157 stored in a byte of memory. Each

1 is represented by a bit in the on position, and each 0 is represented by a bit in the off
position.

Figure 1-12 The bit pattern for 157

1.3 How Computers Store Data 11

When al o the bitsin a byteare set to 0 (turned off), then the value of the byteis 0. When
al of the bitsin a byte are set to 1 (turned on), then the byte holds the largest value that
can be stored in it. The largest value that can be stored in abyteis1+2+ 4 + 8+ 16 +
32 + 64 + 128 = 255. This limit exists because there are only eight bitsin a byte.

What if you need to store a number larger than 255? The answer is simple: use more than
one byte. For example, suppose we put two bytes together. That gives us 16 bits. The posi-
tion values of those 16 bits would be 2°, 21, 22, 23, and so forth, up through 2'5. As shown
in Figure 1-13, the maximum value that can be stored in two bytesis 65,535. If you need
to store a number iarger than this, then more bytes are necessary.

Figure1-13 Two bytes used for a large number

TIP: Incaseyou're feding overwhelmed by al this, relax! You will not have to actu-
aly convert numbers to binary while programming. Knowing that this processis tak-
ing place inside the computer will help you as you learn, and in the long term this
knowledge will make you a better programmer.

Storing Characters

Any piece of data that is stored in a computer's memory must be stored as a binary num-
ber. That includes characters, such as letters and punctuation marks. When a character is
stored in memory, it is first converted to a numeric code. The numeric code is then stored
in memory as a binary number.

Over the years, different coding schemes have been developed to represent characters in
computer memory. Historically, the most important of these coding schemes is ASCII,
which stands for the American Sandard Code for Information Interchange. ASCII is a set
of 128 numeric codes that represent the English letters, various punctuation marks, and
other characters. For example, the ASCII code for the uppercase letter A is 65. When you
type an uppercase A on your computer keyboard, the number 65 is stored in memory (asa
binary number, of course). This is shown in Figure 1-14. 2

Figure 1-14 The letter A is stored in memory as the number 65

12

Chapter 1 Introduction to Computersand Programming

‘%—0

TIP: Theacronym ASCII is pronounced “askee.”

In case you are curious, the ASCII code for uppercase B is 66, for uppercase C is 67,
and so forth. Appendix C shows all of the ASCII codes and the characters they represent.

The ASCII character set was developed in the early 1960s, and was eventually adopted by
most all computer manufacturers. ASCII is limited however, because it defines codes for
only 128 characters. To remedy this, the Unicode character set was developed in the early
1990s. Unicodeis an extensiveencoding schemethat iscompatible with ASCII, but can also
represent characters for many of the languages in the world. Today, Unicode is quickly
becoming the standard character set used in the computer industry.

Advanced Number Storage

Earlier you read about numbers and how they are stored in memory. While reading that
section, perhaps it occurred to you that the binary numbering system can be used to repre-
sent only integer numbers, beginning with 0. Negative numbers and real numbers (suchas
3.14159) cannot be represented using the simple binary numbering technique we discussed.

Computers are able to store negative numbers and real numbers in memory, but to do so
they use encoding schemes along with the binary numbering system. Negative numbers are
encoded using a technique known as two's complement, and real numbers are encoded in
floating-point notation. You don't need to know how these encoding schemeswork, only
that they are used to convert negative numbers and real numbers to binary format.

Other Types of Data

Computers are often referred to as digital devices. The term digital can be used to describe
anything that uses binary numbers. Digital dataisdatathat is stored in binary, and a digital
device is any device that works with binary data. In this section we have discussed how
numbers and characters are stored in binary, but computers also work with many other
types of digital data.

For example, consider the pictures that you take with your digital camera. These images
are composed of tiny dots of color known as pixels. (The term pixel stands for picture
element.) As shown in Figure 1-15, each pixel in an image is converted to a numeric code
that represents the pixe's color. The numeric code is stored in memory as a binary number.

Figure t-15 A digital image is stored in binary format

1.4 How a Program Warks

The music that you play on your CD player, iPod or MP3 player is also digital. A digita
song is broken into small pieces known as samples. Each sample is converted to a binary
number, which can be stored in memory. The more samples that a song is divided into,
the more it sounds like the origina music when it is played back. A CD quality song is
divided into more than 44,000 samples per second!

Checkpoint

1.12 What amount of memory isenough to store aletter of the alphabet or a small number?
1.13 What do you call a tiny "switch™ that can be set to either on or off?

1.14 In what numbering system are all numeric values written as sequences of 0s and 1s?
1.15 What is the purpose of ASCII?

1.16' What encoding scheme is extensive enough to represent the characters of many of
the languages in the world?

1.17 What do the terms "digital data" and "digital device" mean?

How a Program Works

L. CONCEPT: A computer's CPU can only understand instructions that are written in

machine language. Because people find it very difficult to write entire
programs in machine language, other programming languages have been
invented.

Earlier, we stated that the CPU is the most important component in a computer because it
isthe part of the computer that runs programs. Sometimesthe CPU is called the " computer's
brain,” and is described as being "smart." Although these are common metaphors, you
should understand that the CPU is not a brain, and it is not smart. The CPU is an electronic
device that is designed to do specific things. In particular, the CPU is designed to perform
operations such as the following:

¢ Reading a piece of data from main memory

e Adding two numbers

Subtracting one number from another number

Multiplying two numbers

o Dividing one number by another number

e Moving a piece of datafrom one memory location to another
o Determining whether one valueis equal to another value

As you can see from this list, the CPU performs simple operations on pieces of data. The
CPU does nothing on its own, however. It hasto betold what to do, and that's the purpose
of a program. A program is nothing more than a list of instructions that cause the CPU to
perform operations.

Each instruction in a program is a command that tellsthe CPU to perform a specific oper-
ation. Here's an example of an instruction that might appear in a program:

13

14

Chapter 1 Introduction to Computers and Programming

To you and me, thisis only a seriesof 0s and 1s. To a CPU, however, this is an instruction
to perform an operation.! It iswritten in Os and 1s because CPUs only understand instruc-
tions that are written in machine language, and machine language instructions always have
an underlying binary structure.

A machine language instruction exists for each operation that a CPU is capable of perform-
ing. For example, thereisan instruction for adding numbers, there isan instruction for sub-
tracting one number from another, and so forth. The entire set of instructions that a CPU
can execute is known as the CPU’s instruction set.

NOTE: There are several microprocessor companies today that manufacture CPUs.
Some o the more well-known microprocessor companies are Intel, AMD, and
Motorola. If you look carefully at your computer, you might find a tag showing a logo
for its microprocessor.

Each brand of microprocessor has its own unique instruction set, which is typically
understood only by microprocessors of the same brand. For example, Intel micro-
processors understand the same instructions, but they do not understand instructions
for Motorola microprocessors.

The machine language instruction that was previously shown is an example of only one
instruction. It takes a lot more than one instruction, however, for the computer to do
anything meaningful. Because the operations that a CPU knows how to perform are so
basic in nature, a meaningful task can be accomplished only if the CPU performs many
operations. For example, if you want your computer to calculate the amount of inter-
est that you will earn from your savings account this year, the CPU will have to
perform a large number of instructions, carried out in the proper sequence. It is not
unusual for a program to contain thousands or even millions of machine language
instructions.

Programs are usually stored on a secondary storage device such as a disk drive. When you
install a program on your computer, the program is typically copied to your computer's disk
drive from a CD-ROM, or perhaps downloaded from a website.

Although a program can be stored on a secondary storage device such as a disk drive,
it has to be copied into main memory, or RAM, each time the CPU executes it. For
example, suppose you have a word processing program on your computer's disk. To
execute the program you use the mouse to double-click the program's icon. This causes
the program to be copied from the disk into main memory. Then, the computer's CPU
executes the copy of the program that is in main memory. This process is illustrated in
Figure 1-16.

! The example shown is an actual instruction for an Intel microprocessor. It tells the microprocessor to move a
value into the CPU.

1.4 How a Program works

Figure 1-16 A program is copied into main memory and then executed

The programis copied
from secondary storage
to main memory.

The CPU executes

Disk drive CPU

When a CPU executesthe instructions in a program, it isengaged in a processthat is known
as the fetch-decode-execute cycle. This cycle, which consists of three steps, is repeated for
each instruction in the program. The steps are:

1. Fetch A programisalongsequence o machinelanguageinstructions. Thefirst step of the
cydeisto fetch, or read, the next instructionfrom memory into the CPU.

2. Decode A machine language instruction is a binary number that represents a com-
mand that tells the CPU to perform an operation. In this step the CPU decodes the
instruction that was just fetched from memory, to determine which operation it
should perform.

3. Execute The last step in the cycle is to execute, or perform, the operation.

Figure 1-17 illustrates these steps.

Figure 1-17 The fetch-decode-execute cycle

100001

Fetch the next instruction

in the program.
10111000 Decode the instruction
10011110 to determine which
00011010 operation to perform.
11011100
and so forth... CPU

Execute the instruction
(perform the operation).

From Machine Language to Assembly Language

Computers can only execute programs that are written in machine language. As previoudy
mentioned, a program can have thousands or even millions of binary instructions, and writing
such aprogram would be very tediousand time consuming. Programmingin machinelanguage
would also be very difficult because putting a0 or a 1 in the wrong place will cause an error,

16

Chapter 1 Introduction to Computers and Programming

Figure

Although a computer's CPU only understands machine language, it is impractical for people
to write programsin machinelanguage. For this reason, assembly language was created in the
early days of computing? as an alternativeto machinelanguage. Instead of using binary num-
bersfor instructions, assembly language uses short words that are known as mnemonics. For
example, in assembly language, the mnemonic add typically meansto add numbers, mul typ-
ically means to multiply numbers, and mov typically meansto move a value to alocation in
memory. When a programmer uses assembly languageto write a program, he or shecan write
short mnemonicsinstead of binary numbers.

NOTE: There are many different versions of assembly language. It was mentioned
earlier that each brand of CPU has its own machine language instruction set. Each
brand of CPU typically has its own assembly language as well.

Assembly language programs cannot be executed by the CPU, however. The CPU only
understands machine language, so a special program known as an assembler is used to
translate an assembly language program to a machine language program. This process is
shown in Figure 1-18. The machine language program that is created by the assembler can
then be executed by the CPU.

1-18 An assembler translates an assembly language program to a machine
language program

Assembly language Machine language
program program
mov eax, 2 10100001
add eax, 2
mov Y, eax 10111000
and so forth.. 10011110
and so forth...

High-Level Languages

Although assembly language makes it unnecessary to write binary machine language
instructions, it is not without difficulties. Assembly language is primarily a direct substitute
for machine language, and like machine language, it requiresthat you know alot about the
CPU. Assembly language also requires that you write a large number of instructions for
even the simplest program. Because assembly language is so closein nature to machine lan-
guage, it is referred to as a low-level language.

In the 1950s, a new generation of programming languages known as high-level languages
began to appear. A high-level languageallows you to create powerful and complex programs
without knowing how the CPU works, and without writing large numbers of low-level
instructions. In addition, most high-level languages use words that are easy to understand.
For example, if a programmer were using COBOL (which was one of the early high-level

2 The first assembly language was most likely that developed in the 1940s at Cambridge University for use with
a historic computer known as the EDSAC.

1.4 How a Program Works 17

languages created in the 1950s), he or she would write the followinginstruction to display the
message Hello world on the computer screen:

DI SPLAY "Hell o world"

Python is a modern, high-level programming language that we will use in this book. In
Python you would display the message Hello world with the following instruction:

"Hello world'

Doing the same thing in assembly language would require several instructions, and an intimate
knowledged how the CPU interactswith the computer's output device. Asyou can seefrom this
example, high-level languages allow programmersto concentrateon the tasks they want to per-
form with their programsrather than the details of how the CPU will execute those programs.

Since the 1950s, thousands of high-level languages have been created. Table 1-1 lists severa
of the more well-known languages.

print

Table 1-1 Programming languages

Language Description

Ada Ada was created in the 1970s, primarily for applications used by the U.S.
Department of Defense. The language is named in honor of Countess Ada
Lovelace, an influential and historic figure in the field of computing.

BASC Beginners All-purpose Symbolic Instruction Code is a general-purpose language
that was originally designed in the early 1960s to be simple enough for begin-
nersto learn. Today, there are many different versions of BASIC.

FORTRAN FORmula TRANslator was the first high-level programming language. It was
designed in the 1950s for performing complex mathematical calculations.

COBOL Common Business-Oriented Language was created in the 1950s, and was
designed for business applications.

Pascal Pascal was created in 1970, and was originally designed for teaching program-
ming. The language was named in honor of the mathematician, physicist, and
philosopher Blaise Pascal.

Cand C++ Cand C++ (pronounced "¢ plus plus") are powerful, general-purpose lan-
guages developed at Bdl Laboratories. The C language was created in 1972
and the C++language was created in 1983.

C# Pronounced "'c sharp.” This language was created by Microsoft around the
year 2000 for developing applications based on the Microsoft .NET platform.

Java Java was created by Sun Microsystemsin the early 1990s. It can be used to develop
programsthat run on a single computer or over the Internet from a web server.

JavaScript JavaScript, created in the 1990s, can be used in web pages. Despite its name,
JavaScript is not related to Java.

Python Python, the language we use in this book, is a general-purpose language created
in the early 1990s. It has become popular in business and academic applications.

Ruby Ruby is a general-purpose language that was created in the 1990s. It is increas-
ingly becoming a popular language for programs that run on web servers.

Visual Basic Visud Basc (commonlyknown as VB) is a Microsoft programming language and

software devel opment environment that allows programmersto create Windows-
based applicationsquickly. VB was originally created in the early 1990s.

18

Chapter 1 Introduction to Computers and Programming

Key Words, Operators, and Syntax: an Overview

Each high-level language has its own set of predefined words that the programmer must
use to write a program. The words that make up a high-level programming language are
known as key words or reserved words. Each key word has a specific meaning, and can-
not be used for any other purpose. You previously saw an example of a Python statement
that usesthe key word print to print a message on the screen. Table 1-2 shows al of the
Python key words.

Table 1-2 The Python key words

and from not while
as elif global or with
assert else if pass yiel
break except import print

class exec in raise

continue finally is return

def for lambda try

In addition to key words, progranming languages have operators that perform various
operations on data. For example, all programming languages have math operators that per-
form arithmetic. In Python, as well as most other languages, the + sign is an operator that
adds two numbers. The following adds 12 and 75:

There are numerous other operators in the Python language, many of which you will learn
about as you progress through this text.

In addition to key words and operators, each language also has its own syntax, which is a
set of rulesthat must be strictly followed when writing a program. The syntax rules dictate
how key words, operators, and various punctuation characters must be used in a program.
When you are learning a programming language, you must learn the syntax rules for that
particular language.

The individual instructions that you use to write a program in a high-level programming
language are called statements. A programming statement can consist of key words, oper-
ators, punctuation, and other allowable programming elements, arranged in the proper
sequence to perform an operation.

Compilers and Interpreters

Becausethe CPU understands only machine language instructions, programs that are writ-
ten in a high-level language must be translated into machine language. Depending on the
language that a program has been written in, the programmer will use either a compiler or
an interpreter to make the translation.

1.4 How a Program Works 19

A compiler is a program that translates a high-level language program into a separate
machine language program. The machine language program can then be executed any time

it is needed. This is shown in Figure 1-19. As shown in the figure, compiling and executing
are two different processes.

Figure 1-19 Compiling a high-level program and executing it

High-level language Machine language
program program
The compiler is used | |
to translate the high-level | 10111000 ‘
language programto a | 10011110
machine language program. | and so forth...

Machine language

CPU
program
The machine language
program can be executed
at any time, without using
the compiler. and so forth... !

The Python language uses an interpreter, which is a program that both translates and
executes the instructions in a high-level language program. Asthe interpreter reads each
individual instruction in the program, it converts it to machine language instructions
and then immediately executes them. This process repeats for every instruction in
the program. This process is illustrated in Figure 1-20. Because interpreters combine

translation and execution, they typically do not create separate machine language
programs.

Figure 1-28 Executing a high-level program with an interpreter

High-level language

CPU
program — Machine language
print "Hello ' A instruction
Earthling” 10100001

and so forth... £ 3

The interpreter translates each high-level instruction to
its equivalent machine language instructions and
immediately executes them.

This process is repeated for each high-level instruction.

20 Chapter 1 Introduction to Computersand Programming

The statements that a programmer writes in a high-level language are called source code,
or simply code. Typicaly, the programmer types a program's code into a text editor and
then saves the code in a file on the computer's disk. Next, the programmer uses a compiler
to translate the code into a machine language program, or an interpreter to translate and
execute the code. If the code contains a syntax error, however, it cannot be translated. A
syntax error is a mistake such as a misspelled key word, a missing punctuation character,
or theincorrect use of an operator. When this happens the compiler or interpreter displays
an error message indicating that the program contains a syntax error. The programmer cor-
rects the error and then attempts once again to translate the program.

NOTE: Human languages also have syntax rules. Do you remember when you took
your first English class, and you learned al those rules about commas, apostrophes,
capitalization, and so forth?You were learning the syntax of the English language.

Although people commonly violate the syntax rules of their native language when
speaking and writing, other people usually understand what they mean. Unfortunately,
compilersand interpreters do not have this ahility. If even a single syntax error appears
in a program, the program cannot be compiled or executed. When an interpreter
encounters a syntax error, it stops executing the program.

| ;mgCheckpomt
1.18 A CPU understandsinstructionsthat are written only in what language?
1.19 A program hasto be copied into what type of memory each time the CPU executesit?
1.20 When a CPU executes the instructions in a program, it is engaged in what process?
1.21 What is assembly language?

1.22 What type of programming language allows you to create powerful and complex
programs without knowing how the CPU works?

1.23 Each language has a set of rulesthat must be strictly followed when writing a
program. What is this set of rules called?

1.24 What do you call a program that translates a high-level language program into a
separate machine language program?

1.25 What do you call a program that both translates and executes the instructions in a
high-level language program?

1.26 What type of mistake is usually caused by a misspelled key word, a missing
punctuation character, or the incorrect use of an operator?

L CONCEPT: The Python interpreter can run Python programs that are saved in files,
or interactively execute Python statements that are typed at the keyboard.
Python comes with a program named IDLE that smplifies the process of
writing, executing, and testing programs.

1.5 Using Python

Before you can try any of the programs shown in this book, or write any programs of your
own, you need to make sure that Python isinstalled on your computer and properly con-
figured. If you are working in a computer lab, this has probably been done already. If you
are using your own computer, you can follow the instructions in Appendix A to install
Python from the accompanying CD.

The Python Interpreter

You learned earlier that Pythonisan interpreted language. When you install the Python lan-
guage on your computer, one of the items that is installed is the Python interpreter. The
Python interpreter isa program that can read Python programming statements and execute
them. (Sometimeswe will refer to the Python interpreter ssmply as the interpreter.)

You can use the interpreter in two modes: interactive mode and script mode. In interactive
mode, the interpreter waits for you to type Python statements on the keyboard. Once you
type a statement, the interpreter executes it and then waits for you to type another state-
ment. In script mode, the interpreter reads the contents of afile that contains Python state-
ments. Such afile is known as a Python program or a Python script. The interpreter exe-
cutes each statement in the Python program as it readsiit.

Once Python has been ingtalled and set up on your system, you start the interpreter in interac-
tive mode by going to the operating sysem's command line and typing the following command:

pyt hon

If you are using Windows, you can alternatively click the Start button, then All
Programs. You should see a program group named something like Python 2.5. (The
"2.5" isthe version of Python that isinstalled. At the time this is being written, Python
2.5 is the latest version.) Inside this program group you should see an item named
Python (command line). Clicking this menu item will start the Python interpreter in
interactive mode.

When the Python interpreter starts in interactive mode, you will see something like the fol-
lowing displayed in a console window:

Python 2.5.1 (r251:54863, Apr 18 2007, 08:51:08) [MSC v.1310 32 bit
(I'ntel)] on win32

Type "hel p", "copyright", "credits" or "license" for nore infornation.
>>>

The >>> that you see is a prompt that indicates the interpreter is waitirfg for you to type a
Python statement. Let's try it out. One of the simplest statements that you can writein Python
isaprint statement, which causes a messageto be displayed on the screen. For example, the
following statement causes the message Python programming i s fun! to be displayed:

print 'Python programming is fun!

Notice that after the word print, we have written Python programming is fun!
inside a set of single-quote marks. The quote marks are necessary, but they will not be

21

22 Chapter 1 Introduction to Computers and Programming

displayed. They simply mark the beginningand the end of the text that we wish to display.
Here is an example of how you would type this print statement at the interpreter's
prompt:

>>> print 'Python programming is fun!'

After typing the statement you press the Enter key and the Python interpreter executesthe
statement, as shown here:

>>> print 'Python programmng is fun! ' [[ENTER]
Pyt hon programming is fun!
>>>

After the message is displayed, the >>> prompt appears again, indicating that the inter-
preter is waiting for you to enter another statement. Let's ook at another example. In the
following sample session we have entered two pri nt statements.

>>> print 'To be or not to be' [[ENTER]
To be or not to be
>>> print 'That is the question. '

That is the question.
>>>

If you incorrectly type a statement in interactive mode, the interpreter will display an error
message. This will make interactive mode useful to you while you learn Python. As you
learn new parts of the Python language, you can try them out in interactive mode and get
immediate feedback from the interpreter.

To quit the Python interpreter in interactive mode on a Windows computer, press Ctrl-Z
(pressing both keys together) followed by Enter. On a Mac, Linux, or UNIX computer,
press Ctrl-D.

Writing Python Programs and Running
Them in Script Mode

Although interactive mode is useful for testing code, the statements that you enter in inter-
active mode are not saved as a program. They are ssmply executed and their results dis-
played on the screen. If you want to save a set of Python statements as a program, you save
those statements in afile. Then, to execute the program, you use the Python interpreter in
script mode.

For example, suppose you want to write a Python program that displaysthe following three
linesof text:

Nudge nudge
W nk wi nk
Know what | nean?

To write the program you would use a simple text editor like Notepad (whichisinstalled
on all Windows computers) to create a file containing the following statements:

print 'Nudge nudge'
print "Wnk w nk'
print 'Know what | mean?

15 Using Python

must be sure to save the program as a plain text file. Otherwise the Python interpreter
will not be able to read its contents.

When you save a Python program, you giveit a namethat endswith the . py extension, which
identifiesit as a Python program. For example, you might savethe program previously shown
with the namet est .py. To run the program you would go to the directory in which thefile
is saved and type the following command at the operating system command line:

python test .py

This starts the Python interpreter in script mode and causesit to execute the statements in
the filet est . py. When the program finishesexecuting, the Python interpreter exits.

The IDLE Programming Environment

The previous sections described how the Python interpreter can be started in interactive
mode or script mode at the operating system command line. As an alternative, you can use
an integrated devel opment environment, which is a single program that gives you all of the
tools you need to write, execute, and test a program.

Recent versions of Python include a program named IDLE, which is automatically installed
when the Python languageisinstalled. (IDL Estandsfor Integrated DeveLopment Environment.)
When you run IDLE, the window shown in Figure 1-21 appears. Notice that the >>> prompt
appearsin the IDLE window, indicating that the interpreter is running in interactivemode. You
can type Python statements at this prompt and see them executed in the IDLE window.

IDLE also has a built-in text editor with features specifically designed to help you write
Python programs. For example, the IDLE editor "colorizes" code so that key words and
other parts of a program are displayed in their own distinct colors. This helps make pro-
grams easier to read. In IDLE you can write programs, save them to disk, and execute them.
Appendix B provides a quick introduction to IDLE, and leads you through the process of
creating, saving, and executing a Python program.

Figure 1.21 IDLE

Personal firewall software may warn about the conpection IDLE °
makes to 1ts subprocess aging (Nrs computer’s internal loopback
| Interface. Thi=s connection as oot wizikle on any external

Interface and no data 1= sent to or received from the Incerne
R RO RV R T T W W R R R W e R e W ROW W R R R e R R Ve R ROR R W RO W OR R RO R W W W W R R W RR W W R

' R R R ROE R R R R R R R R R R R R R R OROR R R R W R R R R R R N e o e R R R R R T R e R e R

23

24 Chapter 1 Introduction to Computers and Programming

2.1 Designing a Program 2.5 Variables

2.2 Input, Processing, and Output 2.6 Reading Input from the
- 2.3 Displaying Output with the pri nt Keyboard
i Statement 2.7 Performing Calculations
} 2.4 Comments 2.8 More About Data Output

Designing

— CONCEPT: Programs must be carefully designed before they are written. During the
design process, programmers use tools such as pseudocode and flow-
charts to create models of programs.

In Chapter 3 you learned that programmers typically use high-level languagessuch as Python
to create programs. There is much more to creating a program than writing code, however.
The process of creating a program that works correctly typically requires the five phases
shown in Figure 2-1. The entire processis known as the program development cycle.

Figure 2-1 The program development cycle

Design the | Write the | | Correct | Test the | Correct]
program syntax errors program logic errors ||

31

32

Chapter 2 Input, Processing, and Output

Let's take a closer ook at each stage in the cycle.

1

Design the Program All professional programmers will tell you that a program should
be carefully designed before the code is actually written. When programmers begin a
new project, they never jump right in and start writing code as the first step. They
start by creating a design of the program. There are several waysto design a program,
and later in this section we will discuss some techniques that you can use to design
your Python programs.

Write the Code After designing the program, the programmer begins writing code in a
high-level language such as Python. Recall from Chapter 1 that each language hasitsown
rules, known as syntax, that must befollowed whenwritinga program. A language's syn-
tax rules dictate things such as how key words, operators, and punctuation characters
can be used. A syntax error occursif the programmer violatesany of these rules.

. Correct Syntax Errors If the program contains a syntax error, or even a simple mis-

take such as a misspelled key word, the compiler or interpreter will display an error
message indicating what the error is. Virtually al code contains syntax errors when it
is first written, so the programmer will typically spend some time correcting these.
Once dl of the syntax errors and simple typing mistakes have been corrected, the pro-
gram can be compiled and translated into a machine language program (or executed
by an interpreter, depending on the language being used).

Test the Program Once the code is in an executable form, it is then tested to deter-
mine whether any logic errors exist. A logic error is a mistake that does not prevent
the program from running, but causesit to produce incorrect results. (Mathematical
mistakes are common causes of logic errors.)

Correct Logic Errors If the program produces incorrect results, the programmer
debugs the code. This means that the programmer finds and corrects logic errors in
the program. Sometimesduring this process, the programmer discoversthat the pro-
gram's original design must be changed. In this event, the program development cycle
starts over, and continues until no errors can be found.

More About the Design Process

The process of designing a program is arguably the most important part o the cycle. You
can think of a program's design as its foundation. If you build a house on a poorly con-
structed foundation, eventually you will find yourself doing alot of work to fix the house!
A program's design should be viewed no differently. If your program is designed poorly,
eventually you will find yourself doing a lot of work to fix the program.

The process of designing a program can be summarized in the following two steps:

1. Understand the task that the program is to perform.

2.

Determine the steps that must be taken to perform the task.

Let's take a closer look at each of these steps.

Understand the Task That the Program is to Perform

It is essential that you understand what a program is supposedto do before you can determine
the stepsthat the program will perform. Typicaly, a professional programmer gains this under-
standing by working directly with the customer. We use the term customer to describe the

2.1 Designing a Program

person, group, or organizationthat is asking you to write a program. This could be a customer
in the traditional sense of the word, meaning someone who is paying you to write a program.
It could also be your boss, or the manager of a department within your company. Regardiess
of whom it is, the customer will be relying on your program to perform an important task.

To get a sense of what a program is supposed to do, the programmer usualy interviews the
customer. During the interview, the customer will describe the task that the program should
perform, and the programmer will ask questionsto uncover as many details as possible about
the task. A follow-up interview is usually needed because customersrarely mention everything
they want during the initial meeting, and programmers often think o additional questions.

The programmer studiestheinformation that wasgathered from the customer during theinter-
viewsand createsalist o different software requirements. A software requirementissmply a
singletask that the program must performin order to satisfy the customer. Once the customer
agreesthat the list requirements is complete, the programmer can move to the next phase.

TIP: If you choose to become a professional software developer, your customer will be
anyonewho asksyou to write programs as part of your job. Aslong as you are a student,
however, your customer is your instructor! In every programming classthat you will take,
it’s practically guaranteed that your instructor will assign programming problemsfor you
to complete. For your academic success, make sure that you understand your instructor's
requirementsfor those assignments and write your programs accordingly.

Once you understand the task that the program will perform, you begin by breaking down
the task into a series of steps. Thisis similar to the way you would break down atask into
a series of steps that another person can follow. For example, suppose someone asks you
how to boil water. You might break down that task into a series of steps as follows:

1. Pour the desired amount of water into a pot.

2. Put the pot on a stove burner.

3. 'Turn the burner to high.

4. Watch the water until you see large bubbles rapidly rising. When this happens, the
water is boiling.

Thisisan example of an algorithm, which is aset of well-defined logical steps that must
be taken to perform a task. Notice that the steps in this algorithm are sequentially
ordered. Step 1 should be performed before step 2, and so on. If a person follows these
steps exactly as they appear, and in the correct order, he or she should be able to boil
water successfully.

A programmer breaks down the task that a program must perform in a similar way. An
algorithm is created, which lists al of the logical steps that must be taken. For example,
suppose you have been asked to write a program to calculate and display the gross pay for
an hourly paid employee. Here are the steps that you would take:

1. Get the number of hours worked.
2. Get the hourly pay rate.

33

34

Chapter 2 Input, Processing, and Output

3. Multiply the number of hours worked by the hourly pay rate.
4. Display the result of the calculation that was performed in steps 3.

Of course, this algorithm isn't ready to be executed on the computer. The steps in this list
haveto betranslated into code. Programmers commonly use two tools to help them accom-
plish this: pseudocode and flowcharts. Let's ook at each of thesein more detail.

Becausesmall mistakeslike misspelled words and forgotten punctuation characters can cause
syntax errors, programmers have to be mindful of such small detailswhen writing code. For
this reason, programmersfind it helpful to write a program in pseudocode (pronounced " sue
doe code™) before they writeit in the actual code of a programming languagesuch as Python.

The word "pseudo” meansfake, so pseudocode isfake code. It is an informal language that
has no syntax rules, and is not meant to be compiled or executed. Instead, programmers use
pseudocodeto create models, or ""mock-ups" of programs. Because programmersdon't have
to worry about syntax errors while writing pseudocode, they can focus al of their attention
on the program'’s design. Once a satisfactory design has been created with pseudocode, the
pseudocode can be trandated directly to actual code. Hereis an example of how you might
write pseudocodefor the pay calculating program that we discussed earlier:

Input the hours worked

Input the hourly pay rate

Calculate gross pay as hours worked multiplied by pay rate
Display the gross pay

Each statement in the pseudocode represents an operation that can be performed in Python.
For example, Python can read input that is typed on the keyboard, perform mathematical
calculations, and display messages on the screen.

Flowcharting is another tool that programmers use to design programs. A flowchart is a
diagram that graphically depicts the steps that take placein a program. Figure 2-2 shows
how you might create a flowchart for the pay calculating program.

Notice that there are three types of symbols in the flowchart: ovals, parallelograms, and a
rectangle. Each of these symbols represents a step in the program, as described here:

¢ The ovals, which appear at the top and bottom o the flowchart, are called terminal
symbols. The Start terminal symbol marks the program's starting point and the End
terminal symbol marks the program's ending point.

e Parallelograms are used as input symbols and output symbols. They represent stepsin
which the program reads input or displays output.

¢ Rectanglesare used as processing symbols. They represent stepsin which the program
performs some process on data, such as a mathematical calculation.

The symbols are connected by arrows that represent the "flow" of the program. To step
through the symbols in the proper order, you begin at the Start terminal and follow the
arrows until you reach the End terminal.

2.2 Input, Processing, and Output 35

Figure 2-2 Flowchart for the pav calculating proaram

/Input the hours worked /
/Input the hourly pay rate/

v

Calculate gross pay as
hours worked multiplied
by pay rate

l
A

/ Display the gross pay /

Checkpoint

2.1 Whois a programmer's customer?
2.2 What is a software regquirement?
2.3 What is an algorithm?

2.4 ~What is pseudocode?

25 What is aflowchart?

2.6 What do each o the following symbols mean in a flowchart?
e Ova
* Parallelogram
¢ Rectangle

Input, Processing, and Outpust

— CONCEPT: Input is data that the program receives. When a program receives data, it
usually processesit by performing some operation with it. The result of
the operation is sent out of the program as output.

36

Chapter 2 Input, Processing, and Output

Computer programs typically perform the following three-step process.

1. Input is received.
2. Some processis performed on the input.
3. Output is produced.

Input isany data that the program receiveswhileit is running. One common form of input
is data that is typed on the keyboard. Once input is received, some process, such as a math-
ematical calculation, is usually performed on it. The results of the process are then sent out
o the program as output.

Figure 2-3 illustrates these three steps in the pay calculating program that we discussed ear-
lier. The number of hoursworked and the hourly pay rate are provided as input. The pro-
gram processes this data by multiplying the hours worked by the hourly pay rate. The
results of the calculation are then displayed on the screen as output.

Figure 2-3 Theinput, processing, and output o the pay calculating program

Input Process Output

Hours worked —

Multiply hours worked #
by hourly pay rate Gross pay
|

Hourly pay rate

In this chapter we will discuss basic ways that you can perform input, processing, and out-
put using Python.

Displaying Output with the pri nt Statement

CONCEPT: Youusetheprint statement to display output in a Python program.

Perhaps the most fundamental thing that a program can do is display a message on the
computer screen. Asyou saw in Chapter 1, the pri nt statement in Python displays output
on the screen. Here is an example:

print 'Hello world'

The purpose of this statement is to display the message Hello world on the screen. Notice
that after theword print, wehavewritten Hel | o wor | d inside single-quote marks. The
quote marks will not be displayed when the statement executes. They smply mark the
beginning and the end of the text that we wish to display.

Suppose your instructor tells you to write a program that displays your name and address
on the computer screen. Program 2-1 shows an example of such a program, with the out-
put that it will produce when it runs. (Theline numbers that appear in a program listing in

2.3 Digplaying Output with the print Statement 37

this book are not part of the program. We use the line numbers in our discussion to refer
to parts o the program.)

1 oprint 'Kate Austen'
print '123 Dharma Lane'
3 print 'Asheville, NC 28899

Program Output

Kat e Aust
12
As 899

It isimportant to understand that the statementsin this program executein the order that they
appear, from the top of the program to the bottom. When you run this program, thefirst state-
ment will execute, followed by the second statement, and followed by the third statement.

Programs almost always work with data of some type. For example, Program 2-1 uses the
following three piecesof data:

' Kat e Austen'
'123 Dharma Lane'
"Ashevill e, NC 28899:

These pieces of data are sequences of characters. In programming terms, a sequence of
characters that is used as data is called a string. When a string appears in the actual code
of aprogram it iscalled a string literal. In Python code, string literals must be enclosed in
quote marks. As mentioned earlier, the quote marks ssimply mark where the string data
begins and ends.

In Python you can enclose string literalsin a set of single-quote marks(') or aset of double-
quote marks (*). The string literals in Program 2-1 are enclosed in single-quote marks, but
the program could also be written as shown in Program 2-2.

Program 2-2 (double_guotes.py)

1 print "Kate Austen"
2 print "123 Dharma Lane"
3 print "Asheville, NC 28899"

Program Output

kat e Aust
123 Dharm 2
Ashevillie, _._ 18899

33

Chapter 2 Input, Processing, and Output

If you want a string literal to contain either a single-quote or an apostrophe as part of the
string, you can enclose the string literal in double-quote marks. For example, Program 2-3
prints two strings that contain apostrophes.

Program 2-3 (apostrophe.py)

1 print "Don't fear!™"
2 print "lI'm here!"

Program Output

Don't fear!
I''m here!

Likewise, you can use single-quote marks to enclose a string literal that contains double-
quotes as part of the string. Program 2-4 shows an example.

Program 2-4 (display_quote.py)

1 print 'Your assignnent is to read "Haml et" by tonorrow. °*

Program Output

Your assignment is to read "Ham et" by tonorrow.

Python also allows you to enclosestring literalsin triple quotes (either """ or * ' *).Triple-
quoted strings can contain both single quotes and double quotes as part of the string. The
following statement shows an example:

print """lI'm reading "Ham et" tonight."""
This statement will print
I'm reading "Ham et" tonight.

Triple quotes can also be used to surround multiline strings, something for which single and
double quotes cannot be used. Here is an example:

print wuw “O’]e
Two
Thr ee "nmw

This statement will print

2.4 Comments

@acn eckpoint
27 Writeaprint statement that displays your name.
28 Writeaprint statement that displaysthe following text:

Pyt hon's the best!
29 Writeaprint statement that displaysthe following text:

The cat said "neow. "

— CONCEPT: Comments are notes of explanation that document lines or sections of a
program. Comments are part of the program, but the Python interpreter
ignores them. They are intended for people who may be reading the
source code.

Comments are short notes placed in different parts of a program, explaining how those
parts of the program work. Although comments are a critical part of a program, they are
ignored by the Python interpreter. Comments are intended for any person reading a pro-
gram's code, not the computer.

In Python you begin a comment with the # character. When the Python interpreter sees
a# character, it ignores everything from that character to the end of the line. For exam-
ple, look at Program 2-5. Lines1 and 2 are comments that briefly explain the program's
purpose.

Program 2-5 (commentl.py)

This program displays a person's
name and address.

print 'Kate Austen'

print *123 Dharma Lane'

print 'Asheville, NC 28899

a b WN -

Program Output

Kate Aust
123 Dharma Lane
Asheville, NC 28899

Programmers commonly write end-line comments in their code. An end-line comment is a
comment that appears at the end of a line of code. It usualy explains the statement that
appears in that line. Program 2-6 shows an example. Each line ends with a comment that
briefly explains what the line does.

39

40

Chapter 2 Input, Processing, and Output

2
3

print "Kate Austen" # Display the name
print "123 Dharma Lane" # Display the street address
print "Asheville, NC 28899" # Display the city, state, and ZIP

Program Output

Kat e Austen
123 Dharnmm Lane
Ashevill e, NC 28899

As a beginning programmer, you might be resistant to the idea of liberally writing com-
ments in your programs. After all, it can seem more productive to write code that actually
does something! It iscrucial that you take the extra time to write comments, however. They
will almost certainly save you and others time in the future when you have to modify or
debug the program. Large and complex programs can be almost impossible easy to read
and understand if they are not properly commented.

Variables

CONCEPT: A variableisa name that represents a value stored in the computer's
memory.

Programs usually store data in the computer's memory and perform operations on that
data. For example, consider the typical online shopping experience: you browse a website
and add the items that you want to purchase to the shopping cart. As you add itemsto the
shopping cart, data about those itemsis stored in memory. Then, when you click the check-
out button, a program running on the website's computer calculates the cost of all the items
you have in your shopping cart, applicable sales taxes, shipping costs, and the total of all
these charges. When the program performs these calculations, it stores the results in the
computer's memory.

Programs use variables to access and manipulate data that is stored in memory. A
variable is a name that represents a value in the computer's memory. For example, a pro-
gram that calculates the sales tax on a purchase might use the variable name t ax to rep-
resent that value in memory. And a program that calculates the distance between two
cities might use the variable name distance to represent that value in memory. When
a variable represents a value in the computer's memory, we say that the variable
references the value.

Creating Variables with Assignment Statements

You use an assignment statement to create a variable in Python. Here is an example of an
assignment statement:

age = 25

Figure

2.5 Variables

After this statement executes, a variable named age will be created and it will referencethe
value 25. This concept is shown in Figure 2-4. In the figure, think of the value 25 as being
stored somewhere in the computer's memory. The arrow that points from age to the value
25 indicates that the name age referencesthe value.

2-4 The age variable references the value 25

age ———— 25 |

An assignment statement is written in the following general format:
variabl e = expression

The equal sign (=) is known as the assignment operator. In the general format,
variable isthe name of a variable and expression is avalue, or any piece of code
that results in a value. After an assignment statement executes, the variable listed on
the left side of the = operator will reference the value given on the right side of the =
operator.

In an assignment statement, the variable that is receiving the assignment must appear on
the left side of the = operator. For example, the following statement will cause an error:

25 = age # This is an error!

The code in Program 2-7 demonstrates a variable. Line 2 creates a variable named room
and assigns it the value 503. The print statements in lines 3 and 4 display a message.
Notice that line 4 displaysthe valuethat is referenced by the room variable.

Program 2-7 (variable_demo.py)

1
2
3

4

This program denonstrates a variable.
room = 503

print 'l am staying in room nunber’
print room

Program Output

I
503

room nunber

- o

Notice that in line 4 there are no quotation marks around room. If quetation marks were
placed around room, it would have indicated that we want to display the word "room™
instead of the contents of the room variable. In other words, the following statement will
display the contents of the room variable:

print room
This statement, however, will display the word "age":

print 'age'

41

42

Chapter 2 Input, Processing, and Output

Program 2-8 shows a sample program that uses two variables. Line 2 creates a variable
named top_speed, assigning it the value 160. Line 3 creates a variable named distance,
assigning it the value 300. Thisisillustrated in Figure 2-5.

Create two variabl es: top-speed and di st ance.
top- speed = 160
di stance = 300

Display the values referenced by the variabl es.
print 'The top speed is'

print top- speed

print ‘The distance traveled is"

print distance

Program Output

The
160
The distance traveled is
300

Figure 2-5 Two variables

top- speed ————— | 160 |

di st ance

WARNING!?! You cannot use a variable until you have assigned a value to it. An
error will occur if you try to perform an operation on a variable, such as printing it,
before it has been assigned a value.

Sometimes a simple typing mistake will cause this error. One example is a misspelled
variable name, as shown here:

tenperature = 74.5 # (reate a variable
print tenpereture # Error! Msspelled variabl e nane

In this code, the variable temperature is created by the assignment statement. The
variable name is spelled differently in the pri nt statement, however, which will cause
an error. Another example is the inconsistent use of uppercase and lowercase lettersin
avariable name. Here is an example:

tenperature = 74.5 # (reate a variable
print Tenperature # Error! Inconsistent use of case

In thiscode the variable temperature (inall lowercase letters) iscreated by the assign-
ment statement. In the print statement, the name Temperature is spelled with an
uppercase T. Thiswill cause an error becausevariable names are case sensitivein Python.

2.5 Variables

Although you are allowed to make up your own namesfor variables, you must follow these
rules:

You cannot use one of Python's key words as a variable name. (SeeTable1-2 for alist
of the key words.)

« A variable name cannot contain spaces.

= Thefirst character must be one of the letters a through z, A through Z, or an under-
score character (-).
After the first character you may use the letters a through z or A through Z, the dig-
its O through 9, or underscores.
Uppercase and lowercase characters are distinct. This means the variable name

" ItemsOrdered isnot thesame asi t ensor der ed.

In addition to following these rules, you should always choose names for your variables
that givean indication of what they are used for. For example, a variable that holds the tem-
perature might be named t enper at ur e, and a variable that holds a car's speed might be
named speed. You may be tempted to give variables nameslike x and b2, but nameslike
these give no clue as to what the variabl€'s purpose is.

Because a variable's name should reflect the variable's purpose, programmers often find
themselves creating names that are made of multiple words. For example, consider the fol-
lowing variable names:

grosspay
payrate
hot dogssol dt oday

Unfortunately, these names are not easily read by the human eye because the words aren't
separated. Because we can't have spaces in variable names, we need to find another way
to separate the words in a multiword variable name, and make it more readable to the
human eye.

One way to do thisis to use the underscore character to represent a space. For example,
the following variable names are easier to read than those previously shown:

gross_pay
pay- rate
hot - dogs- sol d- t oday

This style of naming variables is popular among Python programmers and is the style we
will usein this book. There are other popular styles, however, such as the camelCase nam-
ing convention. camelCase names are written in the following manner: -

e The variable name begins with lowercase letters.
« Thefirst character of the second and subsequent words is written in uppercase.

For example, the following variable names are written in camelCase:

43

44 Chapter 2 Input, Processing, and Output

Table 2-1 lists several sample variable names and indicates whether each is legal or illega
in Python.

Table 2-1 Sample variable names

Variable Name Legd or lllega?
units— per—day Legd

dayOfWeek Legd

3dGraph Illegal. Variable names cannot begin with a digit.

Junel997 Legal

Mixture#3 lllegal. Variable names may only use letters, digits, or underscores.

Displaying Multiple Items with the print Statement

If you refer to Program 2-7 you will see that we used the following two print statements
inlines 3 and 4:

print 'l am staying in room number’
print room

We used two print statements because we needed to display two pieces of data. Line 3
displays the string literal *1 am staying in room number', and line 4 displaysthe
value referenced by the room variable.

This program can be simplified, however, because Pytho'ri alows us to display multiple
items with one print statement. We smply have to separate the items with commas as
shown in Program 2-9.

Program 2-9 (variable_demo3.py)

1 # This program denponstrates a vari able.
2 room = 503

3 print 'l am staying in room nunber', room

Program Output

I am staying in room nunmber 503

Theprint statement in line 4 displaystwo items. astring literal followed by the value ref-
erenced by the room variable. Notice that Python automatically printed a space between
these two items. When multiple items are printed in one line of output, they will automat-
icaly be separated by a space.

2.5 Variables

Variablesare caled "variable" because they can reference different values while a program
isrunning. When you assign avalueto avariable, the variable will referencethat value until
you assign it a different value. For example, look at Program 2-10. The statement in line 3
creates a variable named dol | ar s and assignsit the value 2.75. This is shown in the top
part of Figure 2-6. Then, the statement in line 8 assigns a different value, 99.95, to the
dol I ar s variable. The bottom part of Figure 2-6 shows how this changes the dol | ar s
variable. The old value, 2.75, is still in the computer's memory, but it can no longer be used

becauseit isn't referenced by a variable. (ThePython interpreter will eventually remove the
unusable value from memory.)

Program 2-10 (variable_demo4.py)

This program denonstrates variable reassignnment.
Assign a value to the dollars variable.
dollars = 2.75

print 'l have', dollars, 'in ny account.'

Reassign dollars so it references
a different val ue.
dollars = 99.95

print 'But now I have', dollars, 'in ny account!®

Program Output

| have 2.75 in my account.

But

now | have 99.95 in ny account!

fimure 2-6 Variable reassignmentin Program 2-10

The dollars variable after /ine 3 executes

doll ars ————— 2.75

The dollars variable after line 8 executes.

dollars—|

In Chapter 1 we discussed the way that computers store data in memory. (Seesection 1.3)
You might recall from that discussion that computers use a different technique for storing
real numbers (numberswith afractional part) than for storing integers. Not only are these

types of numbers stored differently in memory, but similar operations on them are carried
out in different ways.

45

46

Chapter 2 Input, Processing, and Output

Because different types of numbers are stored and manipulated in different ways, Python
uses data types to categorize values in memory. When an integer is stored in memory, it is
classifiedasan i nt, and when areal number isstored in memory, itisclassifiedasafloat.

Let's look at how Python determines the data type of a number. Several o the programs
that you have seen so far have numeric data written into their code. For example, the fol-
lowing statement, which appears in Program 2-9, has the number 503 written into it.

room = 503

This statement causes the value 503 to be stored in memory, and it makes the room vari-
able referenceit. The following statement, which appearsin Program 2-10, has the number
2.75 written into it.

dollars = 2.75

This statement causes the value 2.75 to be stored in memory, and it makesthe dollars
variable reference it. A number that is written into a program's code is caled a numeric
literal. When the Python interpreter reads a numeric literal in a program's code, it deter-
mines its data type according to the following rules:

» A numeric literal that is written as a whole number with no decimal point is consid-

ered an int. Examplesare 7, 124, and -9.
s A numericliteral that is written with adecimal point is considered a f1oat. Examples

are1.5, 3.14159, and 5.0.
So, the following statement causes the number 503 to be stored in memory asan int:
room = 503
And the following statement causes the number 2.75 to be stored in memory as a £1oat:
dollars = 2.75

When you store an item in memory, it is important for you to be aware of the item's
data type. As you will see, some operations behave differently depending on the type of
data involved, and some operations can only be perfornied on values of a specific data

type.

WARNING! You cannot write currency symbols, spaces, or commas in numeric lit-
erals. For example, the following statement will cause an error:

value = $4,567.99 # Error!
This statement must be written as:

val ue = 4567.99 # Correct

Storing Strings with the str Data Type

In addition to theint and £1oat datatypes, Python also has a data type named str, which
is used for storing strings in memory. The code in Program 2-11 shows how strings can be
assigned to variables.

U1l D®» WN B

2.5 Variables

Create variables to reference two strings.
first-name = ' Kathryn'
| ast name = 'Marino’

Display the values referenced by the variabl es.
print first-name, |ast- name

Program Output
Kat hryn Marino

Checkpoint

2.10

What is a variable?

2.11 Which of the following are illegal variable names in Python, and why?

212
213

2.14

2.15

2.16

X

99bottles

july2009
theSalesFigureForFiscalYear
r&d

grade- report

Is the variable name Sal es the same as sales? Why or why not?
Is the following assignment statement valid or invalid?If it isinvalid, why?

72 = anount
What will the following code display?

val = 99
print 'The value is', 'val:

. Look at the following assignment statements:

valuel = 99
val ue2 = 45.9
valued = 7.0
valued4d = 7

val ues = 'abc:

After these statements execute, what is the Python data type of the values referenced
by each variable?

What will be displayed by the following program?
ny- val ue = 99

ny-value = 0
print ny-val ue

47

48

Chapter 2 Input, Processing, and Output

L CONCEPT: Programs commonly need to read input typed by the user on the key-

board. We will use the Python functions to do this.

Most o the programsthat you will write will need to read input, and then perform an oper-
ation on that input. In this section, we will discuss a basic input operation: reading data
that has been typed on the keyboard. When a program reads data from the keyboard, usu-
dly it stores that data in a variable so it can be used later by the program.

In this book we will usetwo of Python's built-in functions to read input from the keyboard.
A functionisapiece of prewritten code that performs an operation and then returnsa value
back to the program. We will use the i nput function to read numeric data from the key-
board, and the raw — input function to read strings as input.

Python's i nput function is useful for reading numeric input from the keyboard. You nor-
mally use the i nput function in an assignment statement that follows this general format:
variable = input(pronpt)

In the general format, prompt is a string that is displayed on the screen. The string's pur-
pose is to instruct the user to enter avalue. variable isthe name of a variable that will
referencethe data that was entered on the keyboard. Here is an example of a statement that
uses the input function to read data from the keyboard:

hours = input ("How many hours did you work? ')
When this statement executes, the following things happen:

e Thestring 'Hov many hours did you work? ' isdisplayed on the screen.

= The program pauses and waits for the user to type something on the keyboard, and
then press the Enter key.

* When the Enter Itey is pressed, the data that wastyped isassigned to thehours variable.

Program 2-12 shows a sample program that usesthe i nput function.

Program 2-12 (input.py)

1
2
3

This program gets input fromthe user
age = input (*How old are you? *)
print 'You said that you are', age, 'years old."'

e you? 28 [Ente
hat you are 28 years

The statement in line 2 usesthe i nput function to read data that istyped on the keyboard.
In the sample run, the user typed 28 and then pressed Enter. As a result, the integer value
28 was assigned to the age variable.

2.6 Reading Input from the Keyboard

Take acloser look at the string we used as a prompt, in line 2
"How ol d are you?

Notice that the last character in the string, inside the quote marks, is a space. We put a
space there because the i nput function does not automatically display a space after the
prompt. When the user begins typing characters, they will appear on the screen immediately
after the prompt. Making the last character in the prompt a space visually separates the
prompt from the user's input on the screen.

When the user enters a number in response to the i nput function, Python determines the
number's data type in the same way that it determines a numeric literd's data type: If the
number contains no decimal point it is stored in memory as an i nt. If it contains a deci-
mal point it is stored in memory asafloat.

NOTE: In this section, we mentioned the user. The user is ssmply any hypothetical
person that is using a program and providing input for it. The user is sometimes called
the end user.

Although theinput function workswell for reading numbers, it is not convenient for read-
ing strings. In order for the i nput function to read data as a string, the user hasto enclose
the data in quote-marks when he or she typesit on the keyboard. Most users are not accus-
tomed to doing this, so it's best to use another function: raw — input.

The raw_input function works like the input function, with one exception: the
raw_input function retrieves al keyboard input as a string. There is no need for the user
to type quote marks around the data that is entered. Program 2-13 shows a sample pro-
gram that uses the raw — input function to read strings.

Program 2-13 (string_input.py)

o N O WA W N

Get the user's first nane.
first_name = raw- input(' Enter your first name: ')

Get the user's last nane.
| ast - nane = raw_input(' Enter your last name: ')

Print a greeting to the user.
print '"Hello', first- name, |ast- name

Program Output (with input shown in bold)

Enter your first name:
Enter your |ast name: B
Hello Vinny Brown

49

50

Chapter 2 Input, Processng, and Output

§;Checkpoint

é:

217 You need the user of a program to enter the amount of salesfor the week. Write a
statement that prompts the user to enter this data and assignsthe input to a
variable.

2.18 You need the user of a program to enter a customer's last name. Write a statement
that prompts the user to enter this data and assigns the input to a variable.

Performing Calcufations

L_ CONCEPT: Python has numerous operators that can be used to perform mathematical

calculations.

Most real-world algorithms require calculations to be performed. A programmer's toolsfor
performing calculations are math operators. Table2-2 liststhe math operators that are pro-
vided by the Python language.

Table2-2 Python math operators

Symbol Operation Description

+ Addition Adds two numbers

— Subtraction Subtracts one number from another

* Multiplication Multiplies one number by another

/ Division Divides one number by another and gives the quotient
% Remainder Divides one number by another and gives the remainder
* % Exponent Raises a number to a power

Programmers use the operators shown in Table 2-2 to create math expressions. A math
expression performs a calculation and gives a value. The following is an example of asim-
ple math expression:

The valueson the right and left of the + operator are called operands. These are valuesthat
the + operator adds together. The value that is given by this expression is 14.

Variablesmay aso be used in a math expression. For example, suppose we have two vari-
ables named hours and pay_rate. The following math expression uses the * operator
to multiply the value referenced by the hours variable by the value referenced by the
pay—_r at e variable:

hours * pay-rate

When we use a math expression to calculate a value, normally we want to save that value
in memory so we can useit again in the program. We do this with an assignment statement.
Program 2-14 shows an example.

2.7 Performing Calculations

Assign a value to the salary variable.
salary = 2500.0

Assign a value to the bonus variable.
bonus = 1200.0

Calculate the total pay by adding salary
and bonus. Assign the result to pay.
pay = salary + bonus

Display the pay.
print *Your pay is', pay

Program Output
Your pay is 3700.0

Line 2 assigns 2500.0 to the salary variable, and line 5 assigns 1200.0 to the bonus vari-
able. Line 9 assigns the result of the expression salary + bonustothe pay variable. As
you can see from the program output, the pay variable holds the value 3700.0.

nt would be writt

Be careful when dividing an integer by another integer. In Python, as well as many
other languages, when an integer is divided by an integer the result will also be an inte-
ger. This behavior is known as integer dzvision. For example, look at the following

statement:

nunber = 3 / 2

2.7 Performing Caculations

What value will the number reference after this statement executes?You would proba-
bly assume that number would reference the value 1.5 because that's the result your
calculator shows when you divide 3 by 2. However, that's not what will happen.
Because the numbers 3 and 2 are both treated as integers, Python will throw away the
fractional part of the result. (Throwing away the fractional part of a number is called
truncation.) As a result, the statement will assign the value 1 to the number variable,
not 1.5.

If you want to make sure that a division operation yields a real number, at least one of the
operands must be a number with a decimal point or a £loat variable. For example, we
could rewrite the statement as follows:

nunber = 3.0 / 2.0

Operator Precedence

You can write statements that use complex mathematical expressions involving several
operators. The following statement assignsthe sum of 17, the variable x, 21, and the vari-
abley to the variable answer.

answer = 17 + x + 21 +y
Some expressions are not that straightforward, however. Consider the following statement:
outcone = 12.0 *+ 6.0 / 3.0

What value will be assigned to outcome? The number 6.0 might be used as an operand
for either the addition or division operator. The outcome variable could be assigned
either 6.0 or 14.0, depending on when the division takes place. Fortunately, the answer
can be predicted because Python follows the same order of operations that you learned
in math class.

First, operationsthat are enclosed in parentheses are performed first. Then, when two oper-
ators share an operand, the operator with the higher precedenceis applied first. The prece-
dence of the math operators, from highest to lowest, are:

* %

1. Exponentiation:
2. Multiplication, division, and remainder: * / %
3. Addition and subtraction: + —

Notice that the multiplication (*), division (/}, and remainder (%) operators have the same
precedence. The addition (+) and subtraction (-) operators also have the same precedence.
When two operands with the same precedence share an operand, theigoperators execute
from left to right.

Now, let's go back to the previous math expression:

outcone = 12.0 + 6.0 / 3.0

The valuethat will be assigned to outcome is 14.0 because the division operator has a higher
precedence than the addition operator. As a result, the division takes place before the
addition. The expression can be diagrammed as shown in Figure 2-7.

54 Chapter 2 Input, Processng, and Output

Figure 2-7 QOperator precedence

outcone = 12.0 + 2.0

out cone = 14.0

Table 2-3 shows some other sample expressionswith their values.

Taklie 2-3 Some expressions

Expression Vaue

Parts of a mathematical expression may be grouped with parentheses to force some opera-
tions to be performed before others. In the following statement, the variables a and b are
added together, and their sum is divided by 4:

result = (a + b) / 4

Without the parentheses, however, b would be divided by 4 and the result added to a
Table 2-4 shows more expressions and their values.

Table 2-4 More expressions and their values

Expression Vaue

2.7 Performing Calculations 55

In addition to the basic math operators for addition, subtraction, multiplication, and divi-
sion, Python also provides an exponent operator and a remainder operator. Two asterisks
written together (*+*) 1s the exponent operator, and its purpose it to raise a number to a
power. For example, the following statement raises the length variable to the power of 2
and assignsthe result to the area variable:

area = length*=*2

In Python, the % symbol is the remainder operator. (Thisis aso known as the modulus
operator.) The remainder operator performs division, but instead of returning the quotient,
it returns the remainder. The following statement assigns 2 to leftover:

| eftover = 17 % 3

This statement assigns2 to leftover because 17 divided by 3 is5 with aremainder of 2.
You will not use the remainder operator frequently, but it is useful in some situations. It is
commonly used in calculations that detect odd or even numbers, determine the day of the
week, measure the passage of time, and other specialized operations.

You probably remember from algebra class that the expression 2xy is understood to mean
2 timesx timesy. In math, you do not always use an operator for multiplication. Python,
as wdl as other programming languages, requires an operator for any mathematical oper-
ation. Table 2-5 shows some algebraic expressions that perform multiplication and the
equivalent programming expressions.

ble 2-5 Algebraic expressions

Algebraic Expression Operation Being Performed Programming Expression
68 6 times B 6 * B

(3)(12) 3 times 12 3% 12

4xy 4 timesx timesy 4 % x * y

When converting some algebraic expressions to programming expressions, you may have
to insert parentheses that do not appear in the algebraic expression. For example, look at
the following formula:

2.7 Performing Calculations

To convert this to a programming statement, a + b will have to be enclosed in parentheses:
x = (a+b) /c

Table 2-6 shows additional algebraic expressions and their Python equivalents.

Table 2-6 Algebraic and programming expressions

Algebraic Expression Python Statement

ma would

akethat I

amber of
the amoz

Lo o (o

le named rate, a

57

Data Type Conversion

When you perform a math operation on two operands, the data type of the result will
depend on the data type of the operands. Python follows these ruleswhen evaluating math-
ematical expressions:

o When an operation is performed on two i nt values, the result will beani nt.

o When an operation is performed on two f | oat values, the result will beaf | oat .

2.7 Peforming Caculations

When an operation is performed onan i nt and a £lcat, thei nt value will be tem-
porarily converted to a £loat and the result of the operation will be a £1oat. (An
expression that usesan i nt and afloat iscalled a mixed-type expression.)

The first two situations are straightforward: operations on i nts produce i nts, and oper-
ationson fl oats produce £1oats. Let's look at an example o the third situation, which
involves mixed-type expressions:

ny-nunber = 5 * 2.0

When this statement executes, the value 5 will be converted to a £1oat (5.0)and then mul-
tiplied by 2.0. The result, 10.0, will be assigned to my—number.

Theint to float conversion that takes placein the previous statement happens implicitly.
In some situations, you want to explicitly make sure that a value is converted to a specific
type. For example, look at Program 2-18.

Program 2-18 (books-per-monthl.py)

Get the nunber of books the user plans to read.
books = input('How many books do you want to read? ')

$# Get the nunber of nmonths it will take to read them
months = input('How many nonths will it take? ')

Cal cul ate the nunber of books per nonth.
per- month = books / nonths

Display the result.
print "Youwll read', per-nonth, 'books per nonth.'

Proaram Output (with input shown in bold)

How 0 [Enter]
How many nmontns wzii 1t taker o [Enter]
You will read 2 books per montt

This program asks the user for the number of books he or she plans to read, and the num-
ber of months it will take to read them. Line 8 divides books by months to calculate the
number of books that the user must read per month. However, if the user has entered inte-
ger values for both books and months, this statement will perform integer division. This
was what happened in the sample output. If you want the result to be completely accurate,
you need to make sure that at least one of the operandsin the division operationisa f1oat.
We can do that with Python's built-inf 1 oat () function, as shown in Program 2-19.

Program 2-19 (books_per_month2.py)

1 # Get the nunber of books the user plans to read.
2 books = input('How nany books do you want to read? ')

(program continues)

59

60

Chapter 2 Input, Processing, and Output

© oo NOoO 0o~ w

10

(continued)

Get the nunber of nonths it will take to read them
nonths = input('How many nonths will it take? ')

$ Calculate the nunber of books per nonth.
per- nmonth = float(books) / nonths

Display the result.
print '"You will read , per-nmonth, 'books per nonth.

In line 8 the expression float (books) converts the value referenced by books to a
float. This ensures that when the division takes place, one of the operands will be a
float, thus preventing integer division.

WARNING! Noticethat inline 8 of Program 2-19, we did not put the entire expres-
sion books / months inside the parentheses of the £1loat function, as shown here:

per- month = float(books / nonths)

This statement does not convert the value in books or months to a £leoat, but con-
vertsthe result of the expression books / months. If this statement were used in the
program, an integer division operation would still have been performed. Here's why:
The result of the expression books / months is 2 (because integer division takes
place). The value 2 converted to a £1oat is 2.0. To prevent the integer division from
taking place, one of the operands must be converted to a float.

Python also has a built-ini nt() function that convertsavaluetoanint. When a float
isconvertedtoanint, any fractional part isthrown away, or truncated. Hereisan example:

After this code executes, the variable y will be assigned 27. Here is an example showing the
int function converting a negative £1oat vaue:

X =-12.9
y = int(x)

After this code executes, y will be assigned -12.

2.7 Peforming Cdculaions

Most programming statements are written on one line. If a programming statement is too
long, however, you will not be able to view al of it in your editor window without scroll-
ing horizontally. In addition, if you print your program code on paper and one of the state-
ments is too long to fit on one ling, it will wrap around to the next line and make the code
difficult to read.

Python allows you to break a statement into multiple lines by using the line continuation
character, which is a backslash (\). You simply type the backslash character at the point
you want to break the statement, and then press the Enter key. Hereisaprint statement
that is broken into two lines with the line continuation character:

print 'We sold', units-sold, \
"for a total of', sales- anount

The line continuation character that appears at the end of the first line tells the interpreter
that the statement is continued on the next line. Here is a statement that performs a math-
ematical calculation and has been broken up to fit on two lines:

result = varl * 2 + var2 * 3 + \
var3 * 4 + var4a * 5

Here is one last example:

print "Monday's sales are", nonday, \
"and Tuesday's sales are", tuesday, \
"and Wednesday's sales are", wednesday

This long print statement is broken into three lines. Notice that the first two lines end
with a backdlash.

’ Checkpoint

ta/’ J

2.19 Complete the following table by writing the value of each expression in the
Value column.

Expression Value
6 + 3 * 5

12 / 2 - 4

9 + 14 * 2 - 6
(6 +2) *3

14 / (11 - 4)

9 + 12 * (8 - 3)
float(9) / 2
float(9 / 2)
int(9.0 / 3.0)

61

62

Chapter 2 Input, Processing, and Output

2.20 What value will be assignedto result after the following statement executes?
result =9 / 2
2.21 What value will be assigned to resul t after the following statement executes?

result = 9 % 2

More About Data Output

So far we have discussed only basic waysto display data. Eventualy, you will want to exer-
cise more control over the way data appear on the screen. In this section, you will learn
more details about the Python print statement, and you'll see techniques for formatting
output in specific ways.

Suppressing the print Statement' Newline

Theprint statement normally displays aline of output. For example, the following three
print statements will produce three lines of output:

print 'One
print 'Two'
print 'Three’

Each of the pri nt statements shown here displays a string and then prints a newline char-
acter. You do not see the newline character, but when it is displayed, it causes the output
to advance to the next line. (Youcan think of the newline character as a special command
that causes the computer to start a new line of output.)

If you do not want the pri nt statement to start a new line of output when it finishes display-
ing its output, you can write atrailingcomma at the end of the statement, as shown here:

print *‘Cne',
print ‘Two',
print 'Three!
Notice that the first two print statementsend with a comma. The trailing commas prevent

these two print statements from displaying a newline character at the end of their output.
Instead, they display a space at the end of their output. Here is the output o these statements:

One Two Three

Escape Characters

An escape character is a special character that is preceded with a backsash (\), appearing
inside a string literal. When a string literal that contains escape characters is printed, the
escape characters are treated as special commands that are embedded in the string.

For example, \n is the newline escape character. When the \n escape character is printed,
it isn't displayed on the screen. Instead, it causes output to advance to the next line. For
example, look at the following statement:

print 'One\nTwo\nThree'

2.8 More About Daa Output

When this statement executes, it displays

One
Two
Three

Python recognizes several escape characters, some of which are listed in Table 2-7.

Table 227 Some of Python’s escape characters

Escape Character Effect

\n Causes output to be advanced to the next line.

\t Causes output to skip over to the next horizontal tab position.
\! Causes a single quote mark to be printed.

Causes a double quote mark to be printed.
Causes a backslash character to be printed.

The \t escapecharacter advancesthe output to the next horizontal tab position. (A tab posi-
tion normally appears after every eighth character.) Thefollowing statements areillustrative:

print ‘Mon\tTues\tWed'
print ‘Thur\tFriltSat’

This statement prints Monday, then advances the output to the next tab position, then
prints Tuesday, then advances the output to the next tab position, then prints Wednesday .
The output will look like this:

Mon Tues Wed
Thur Fri Sat

You can use the * and \ " escape characters to display quotation marks. The following
statements are illustrative:

print "Your assignment is to read \"Haml et\" by tonorrow. "
print *lI\'m ready to begin. '

These statements display the following:

Your assignnent is to read "Haml et" by tonorrow.
| 'm ready to begin.

You can use the \\ escape character to display a backslash, as shown in the following:
print 'The path is C:\\temp\\data.'
This statement will display

The path is C:\temp\data.

Displaying Muitiple ltems with the + Operator

Earlier in this chapter, you saw that the + operator is used to add two numbers. When
the + operator is used with two strings, however, it performs string concatenation.

63

64

Chapter 2 Input, Processing, and Output

This means that it appends one string to another. For example, look at the following
statement:

print '"Thisis ' + 'onestring.’
This statement will print
This is one string.

String concatenation can be useful for breaking up a string literal so along print state-
ment can span multiple lines. Here is an example:

print 'Enter the anount of ' + \
'sales for each day and ' + \
'press Enter.

This statement will display the following:

Enter the amount of sales for each day and press Enter.

Formatting Numbers

You might not always be happy with the way that numbers, especially floating-point num-
bers, are displayed on the screen. When afloating-point number is displayed by the print
statement, it can appear with up to 12 significant digits. This is shown in the output of
Program 2-20.

Program 2-20 (no_formatting.py)

1
2
3
4

5

This programdenonstrates how a floating-point
nunber is displayed with no formatting.

anmount - due = 5000. 0

nmont hl y- paynment = anount - due / 12.0

print ' The nonthly paynment is', nonthly- payment

Program Output
The monthly paynent is 416.666666667

Because this program displays a dollar amount, it would be nice to see that amount rounded
to two decimal places. Fortunately, Python gives us a way to do just that with the string
format operator.

You previoudy learned that the % symbol is the' remainder operator. That's true when both of
its operands are numbers. When the operand on the left side of the $ symbol is a string, how-
ever, it becomesthe string format operator. Here is the general format of how we can use the
string format operator with the pri nt statement to format the way a number is displayed:

print string % nunber

In the general format, st ri ng is a string that contains text and/or a formatting specifier.
A formatting specifier is a special set of characters that specify how a value should be

2.8 More About Data Output

formatted. In the generd format, number is avariable or expressionthat givesa numeric value.
The value of number will be formatted according to the formatting specifier in the string.
Hereisan example:

ny- value = 7.23456
print 'The value is o@f' % ny- value

Figure 2-8 points out the important parts of the print statement. Inthe pri nt statement,
the formatting specifier is % . 2£. When the statement executes, %.2£ will not be displayed.
Instead, the value referenced by my_val ue will be displayed in place of ¢.2£f. Hereisthe
way the output will appear:

The value is 7.23

Thef inthe formatting specifier indicates that we want to display a floating-point number.
The . 2 that appears beforethe £ indicates that the number should be rounded to two dec-
imal places. Program 2-21 shows how we can modify Program 2-20 so that it formats its
output using this technique.

Figure 2-8 Using the string format operator

String format operator

The number to

' be formatted

print 'The value is

Format specifier

Program 2-21 (formatting.py)

|

2
3
4
5

This program denonstrates how a floating- point

nunber can be fornatted.

anmount - due = 5000.0

nmont hl y- paynment = anount - due / 12.0

print 'The nonthly payment is %.2f£* % monthl ypayment

Program Output

The nonthly paynent is 416.67

|
2

You can round valuesto other numbers of decimal places. For example, the formatting spec-
ifier w. 3£ specifiesthree decimal places, and %. 6f specifiessix decimabplaces. In Program
2-22, avaueis displayed rounded to one, two, three, four, five, and six decimal places.

This program denonstrates how a value can be
formatted, rounded to different nunbers of
(program continues)

65

66 Chapter 2 Input, Processing, and Output

(continued)

deci mal pl aces.
123456789

ny- val ue = 1.
print *%.1f’
print 'g.2f"

print '%.3f"
print '%.4f"
print ‘% 5f"
print '%. 6f'

Program Output

11

1.12
1.123

1. 1235
1.12346
1. 123457

Formatting Multiple Values

The previous examples show how to format one value with the string formatting operator.

%

oo

%
%
%
%

ny- val ue
ny- val ue
ny- val ue
ny- val ue
ny- val ue
ny- val ue

H OH K B H

Rounded
Rounded
Rounded
Rounded
Rounded
Rounded

to
to
to
to
to
to

OO~ WNBR

deci nal
deci nal
deci nal
deci nal
deci nal
deci nal

pl ace
pl aces
pl aces
pl aces
pl aces
pl aces

You can format several values, using the following general format:

print string % (nunber,

valuel = 6.7891234
val ue2 = 1.2345678

print ' The val ues are

Inthe print statement, the %.1£f formatting specifier corresponds to the valuel vari-
able and the % . 3£ formatting specifier correspondsto the value2 variable. When the code
runs, it will produce the following output:

nunber ,

% 1f and

The values are 6.8 and 1.235

Specifying a Minimum Field Width

A formatting specifier can also include a minimum field width, which is the minimum num-

-)

In the general format, string is a string that contains multiple formatting specifiers.
(number, number, ...)isalist of variablesor expressions enclosedin parentheses and sep-
arated by commas. The first value or expression in this list will be formatted according to
the first formatting specifier in string, the second value or expression will be formatted
according to the second formatting specifier in string, and so forth. Here is an example:

oxsf"

% (val uel

ber of spacesthat should be used to display the value.

ny_val ue =

1. 123456789
print 'The value is:%6.2f"

% ny- val ue

value2)

2.8 More About Data Output

Inthe print statement, the formatting specifieris 6. 2f. The 6 specifiesthat the number
of spaces reserved on the screen for the value should be a minimum of 6. The output of the
statement will be

The val ue is: 1.12

In this case, the number that is displayed is shorter than the field that it is displayed in. The
number 1.12 uses only four spaces on the screen, but it isdisplayed in afidd that issix spaces
wide. When thisis the case, the number will beright justified in thefidd. If avalueistoo large
tofit in the specified fidd width, the field is automatically enlarged to accommodateit.

Field widths can help when you need to print valuesaligned in columns. For example, look
at Program 2-23. Each of the variablesis displayed in afield that is seven spaces wide,

Program'2-23 (columns.py)

This program di splays the follow ng
floating-point nunbers in a colum
with their decinmal points aligned.
num = 127.899

num2 = 3465. 148

nun8 = 3.776

numd = 264. 821

nund = 88. 081

numé = 799. 999

Display each nunber in a field of 7 spaces
with 2 decimal places.

print '$7.2f' % num
print '%7.2f' % num2
print *$7.2f' % num3
print '$7.2f' % nund
print '$7.2f' % numb5
18 print '27.2f' % numé

Program Output

127. 90
3465. 15
3.78
264. 82
88. 08
800. 00

Formatting Integers and Strings

In addition to floating-point values, Python provides formatting specifiersfor integers and
strings. For example, the following code shows how to use the ¢4 formatting specifier to
format an integer:

hours = 40
print 'l worked %d hours this week.' % hours

67

68

Chapter 2 Input, Processing, and Output

w O No O A WN R

e <=
o WN = O

This code will display the following:
I worked 40 hours this week.
Here is an example that formats two integer values:

dogs = 2
cats = 3
print 'W have %d dogs and %d cats.' % (dogs, cats)

This code will display
W have 2 dogs and 3 cats.
Here is an example of how the %s formatting specifier can be used to format a string:

name = 'R ngo'
print '"Hello %s. Good to see you! ' % nane

This code will display the following:
Hel | o R ngo. Good to see you!

The following example shows how a string and a floating-point number can be formatted
in the same statement:

day = ' Monday
sal es = 8450.55
print 'The sales on %s were $%2f.' % (day, sales)

The output is
The sal es on Monday were $8450. 55.

You can also apply minimum field widthsto the $d and %s formatting specifiers. For exam-
ple, Program 2-24 prints a series of salesperson names and unitssold in two columns. Each
column uses a field width of 15 spaces.

This program di spl ays a set of sal esperson
names and units sold in two col ums.

4 Assign the names to variabl es.

sal espersonl = ' G aves'
sal esperson2 = ' Harri son'
sal esperson3 = 'Hoyle'
sal esperson4 = 'Kramer’
sal esperson5 = ' Snmith'

Assign the units sold to variabl es.
unitsl = 1456.78

uni ts2 2890. 55

uni ts3 946. 77

units4 = 2678.91

16 units5 = 1287.87

17

18 4 Display the data

19 print '%15s
20 print '%15s
21 print '%15s
22 print '%15s
23 print '%l5s
24 print '%15s

Program Output

$15s"
%154
$15d"
%154’
%154’
%154

Sal espersc

Gre

Hai

Hoy -

Kr ¢

Smi
educein(
syntax
hardwar
L)
k.
logarithn
logic schi

agorithn

%
%
%
%
%
%

(" Sal esperson'
(sal espersonl
(salesperson2,
(salesperson3,
(salesperson4,
(salesperson5,

Units Sold
1456
2890
946
2678
1287

"Units Sold')
unitsl)
units2)
units3)
units4)
units5)

2.8 More About Data Output

69

+ 31 Introduction to Functions 34 Lod Vaiddes
3.2 Defining and Cdling a Function 35 Pasang Argumentsto Functions
' 3.3 Dedigning a Program to Use Functions 36 Globd Vaiddesand Globd Congants

| CONCEPT: A function isagroup of statements that exist within a program for the
purpose of performing a specific task.

In Chapter 2 we described a simple algorithm for calculating an employee's pay. In the algo-
rithm, the number of hours worked is multiplied by an hourly pay rate. A more redlistic
payroll algorithm, however, would do much more than this. In area-world application, the
overall task of calculating an employee's pay would consist of several subtasks, such as the
following:

= Getting the employee's hourly pay rate

= Getting the number of hours worked

s Calculating the employee's gross pay
Calculating overtime pay

e Calculating withholdings for taxes and benefits
Calculating the net pay

= Printing the paycheck

Most programs perform tasks that are large enough to be broken down into several sub-
tasks. For this reason, programnmers usually break down their programsinto small manage-
able piecesknown asfunctions. A function is agroup of statementsthat exist within a pro-
gram for the purpose of performing a specific task. Instead of writing a large program as
one long sequence o statements, it can be written as several small functions, each one per-
forming a specific part of the task. These small functions can then be executed in the desired
order to perform the overall task.

78 Chapter 3 Simple Functions

This approach is sometimes called divide and conquer because a large task is divided into
several smaller tasks that are easily performed. Figure 3-1 illustrates this idea by compar-
ing two programs. one that uses a long complex sequence of statements to perform a task,
and another that dividesa task into smaller tasks, each of which is performed by a sepa-
rate function.

When using functionsin a program, you generally isolate each task within the program in
its own function. For example, a realistic pay calculating program might have the foll ow-
ing functions:

A function that gets the employee's hourly pay rate

¢ A function that gets the number of hours worked

A function that calculates the employee's gross pay

A function that calculates the overtime pay

A function that calculates the withholdings for taxes and benefits
A function that calculates the net pay

¢ A function that prints the paycheck

Figure 3-1 Using functionsto divide and conquer a large task

.) In this program the task has been
This program is one long, complex divided into smaller tasks, each d which
sequence d statements. is performed by a separate function.

l

st at enent
st at enent
st at enent
st at enent
st at enent
st at enent
st at enent
st at enent
st at enent
st at enent
st at enent
st at enent
st at enent
st at enent
st at enent
st at enent
st at enent
st at enent
st at enent
st at enent
st at enent
st at enent
st at enent
st at enent

Benefits of Using Functions

A program benefitsin the following ways when it is broken down into functions:

3.2 Defining and Cdling a Function

Simpler Code

A program's code tends to be simpler and easier to understand when it is broken down into
functions. Severd small functionsare much easier to read than onelong sequence of statements.

Code Reuse

Functions also reduce the duplication of code within a program. If a specific operation is
performed in several placesin a program, a function can be written once to perform that
operation, and then be executed any time it is needed. This benefit of using functions is
known as code reuse because you are writing the code to perform a task once and then
reusing it each time you need to perform the task.

Better Testing

When each task within a program is contained in its own function, testing and debugging
becomes smpler. Programmers can test each function in a program individually, to deter-
mine whether it correctly performs its operation. This makes it easier to isolate and fix
errors.

Faster Development

Suppose a programmer or a team of programmers is developing multiple programs. They
discover that each of the programs perform severa common tasks, such as asking for a
username and a password, displaying the current time, and so on. It doesn't make sense
to write the code for these tasks multiple times. Instead, functions can be written for the
commonly needed tasks, and those functions can be incorporated into each program that
needs them.

Easier Facilitation of Teamwork

Functions also make it easier for programmersto work in teams. When a program is devel-
oped as a set of functions that each performs an individual task, then different program-
mers can be assigned the job of writing different functions.

Checkpoint
3.1 What isafunction?
3.2 What is meant by the phrase "divide and conquer?"
3.3 How do functions help you reuse code in a program?
3.4 How can functions make the development of multiple programs faster?

3.5 How can functions make it easier for programs to be developed by teams of
programmers? ‘

L CONCEPT: The codefor afunction is known as a function definition. To execute the
function, you write a statement that callsit.

80

Chapter 3 Simple Functions

Function Names

Before we discuss the process of creating and using functions, we should mention a few
things about function names. Just as you name the variables that you usein a program, you
also name the functions. A function's name should be descriptive enough so that anyone
reading your code can reasonably guess what the function does.

Python requires that you follow the same rules that you follow when naming variables,
which we recap here:

e You cannot use one of Python's key words as a function name. (SeeTable 1-2 for a
list of the key words.)

¢ A function name cannot contain spaces.

e Thefirst character must be one of the letters a through z, A through Z, or an under-
score character (-).

o After the first character you may use the letters a through z or A through Z, the dig-
its 0 through 9, or underscores.

e Uppercase and lowercase characters are distinct.

Because functions perform actions, most programmers prefer to use verbs in function
names. For example, a function that calculates gross pay might be named calculate
gross pay. This name would make it evident to anyone reading the code that the
function calculates something. What does it calculate? The gross pay, of course. Other
examples of good function names would be get— hours, get— pay — rate,calculate
overtime, print_check, and so on. Each function name describes what the function
does.

Defining and Calling a Function

To create a function you write its definition. Here is the general format of a function defi-
nition in Python:

def function- nane():
st at enent
st at enent
etc.

Thefirst line is known as the function header. It marks the beginning of the function defi-
nition. The function header begins with the key word def, followed by the name of the
function, followed by a set of parentheses, followed by a colon.

Beginning at the next lineis a set of statements known as a block. A block is simply a set
of statements that belong together as a group. These statements are performed any time the
function is executed. Notice in the general format that all of the statements in the block are
indented. This indentation is required because the Python interpreter uses it to tell where
the block beginsand ends.

Let's look at an example of afunction. Keep in mind that this is not a complete program.
We will show the entire program in a moment.

3.2 Defining and Cdling a Function

def nmessage():
print I am Arthur, '
print 'King of the Britons.'

This code defines a function named message. The message function contains a block
with two print statements. Executing the function will cause these print statements
to execute.

Calling a Function

A function definition specifieswhat a function does, but it does not cause the function to
execute. To execute a function, you must call it. This is how we would call the message
function:

message ()

When a function is caled, the interpreter jumps to that function and executes the state-
ments in its block. Then, when the end of the block is reached, the interpreter jumps back
to the part of the program that called the function, and the program resumes execution at
that point. When this happens, we say that the function returns. To fully demonstrate how
function calling works, we will look at Program 3-1.

Program 3-1 (function_demo.py)

00 ~N & O DN W N w=

This program denonstrates a function.
#First, we define a function namedmessage.
def nessage():

print 'l am Arthur,"’

print 'King of the Britons.'

Call the message function.
message()

Program Output

am Art hur,

King of the Britons.

Let's step through this program and examine what happens when it runs. First, the inter-
preter ignores the comments that appear in lines1 and 2. Then, it reed: the def statement
in line 3. This causes a function named message to be created in memory, containing the
block of statements in lines 4 and 5. (Remember, a function definition creates a function,
but it does not cause the function to execute.) Next, the interpreter encounters the comment
inline 7, which isignored. Then it executesthe statement in line 8, which isafunction call.
This causes the message function to execute, which prints the two lines of output.
Figure 3-2 illustrates the parts of this program.

81

82 Chapter 3 Simple Functions

Figure 3-2 The function definition and the function call

These statements cause

the message function to) .
be created. # This programdenonstrates a function.

| # First, we define a function naned nmessage.

print ‘1 amArthur,"’
i print 'King of the Britons.'

Call the nessage function.

(——>nessage()

This statement calls
the message function,
causing it to execute.

Program 3-1 has only one function, but it is possible to define many functionsin a program. In
fact, it iscommon for a programto have amain functionthat iscaled when the program starts.
The main function then cdls other functionsin the program as they are needed. It is often said
that the mai n function containsa program'smai nl i ne | ogi ¢, whichisthe overal logic o the pro-
gram. Program 3-2 shows an example o a program with two functions: mai n and message.

Program 3-2 (two_functions.py)

This program has two functions. First we
define the nain function.
def main():
print 'l have a nessage for you.'
nessage()
print ' Goodbye!'

Next we define the nessage function.
def nessage():

print 'l am Arthur,’

print 'King of the Britons. '

Call the main function.

Program Output

I have a nessage for you.
| am Art hur,

King of the Britons.
Coodbye?!

The definition of the main function appears in lines 3 through 6, and the definition of the
message function appears in lines 9 through 11. The statement in line 14 calls the main

function, as shown in Figure 3-3

3.2 Ddiining and Cdling a Function

The first statement in the main function is the print statement in line 4. It displays the
string 'T have a message for you:.Then, the statement inline 5 callsthe message
function. This causes the interpreter to jump to the message function, as shown in Fig-
ure 3-4 After the statements in the message function have executed, the interpreter returns
to the mai n function and resumes with the statement that immediately followsthe function
call. Asshown in Figure 3-5, thisisthe print statement that displaysthe string ' Goodbye! ' .

Figure 3-3 Calking the main function

This program has two functions. First we
define the main function.
— def main():
print 'l have a message for you.
nessage (}
print ' Goodbye!
The interpreter jumps to

the mai n function and # Next we define the nessage function.
begins executing the def nessage():
statements in its block. print 'I am Arthur, *

print 'King of the Britons.'

Call the main function.
mai n ()

Figure 3-4 Calling the message function

This program has two functions. First we
define the main function.
def main():

print 'l have a nmessage for you.'

)) nessage ()
The |nterpreter]umps to print ' Goodbye! "
the nessaae function and |

begins executing the # Next we define the message function.
statements in its block. [, def message():
print 'l am Arthur,’

print 'King of the Britons.'

Call the main function.
mai n ()

Figure 3-5 The message function returns

This program has two functions. First we
define the main function.
def main():
print 'l have a message for you.
nessage ()

When the nessage Gaar Print ° Goodbyel®

function ends, the
interpreter jumps back to
the part of the program that
called it, and resumes
execution from that point. [

Next we define the nessage function
def message():
print 'l am Arthur, '
print 'King of the Britons.'
Call the main function.
mai n ()

83

84

Chapter 3 Simple Functions

That is the end of the main function, so the function returns as shown in Figure 3-6. There
are no more statements to execute, so the program ends.

Figure 3-6 The main function returns

This programhas two functions. First we
define the main function.
def main():
print 'l have a nessage for you.'
nessage ()
print ' CGoodbye! '

When the mai n function # Next we define the nmessage function.

ends, the interpreter jumps def Srelsﬁfg'el()ém Arthur
back to the part of the print 'King of the Britons."'

program that called it. There
are no more statements, so

the program ends. Cal()l the main function.

#
mai n

_———

NOTE: When a program calls a function, programmers commonly say that the
control o the program transfers to that function. This simply means that the function
takes control o the program's execution.

In Python, each linein a block must be indented. As shown in Figure 3-7, the last indented
line after a function header is the last line in the function's block.

Figure 3-7 All of the statements in a block are indented

The last indented line is
the last line in the block.

' def efi i .
c Brrleﬁt ln%&)d nor ni ng!"’
print 'Today we will |earn about functions.'

These statements call the greeting function.'
are not in the block. L

When you indent the linesin a block, make sure each line begins with the same number of
spaces. Otherwise an error will occur. For example, the following function definition will
cause an error because the lines are all indented with different numbers of spaces.

def ny-function():
print 'And now for'

print 'sonething conpletely'
print 'different.’

3.3 Designing a Program to Use Functions

In an editor there are two ways to indent a line: (1)by pressing the Tab key at the begin-
ning of the line, or (2)by using the spacebar to insert spaces at the beginning of the line.
You can use either tabs or spaces when indenting the lines in a block, but don't use both.
Doing so may confuse the Python interpreter and cause an error.

IDLE, as well as most other Python editors, automatically indents the lines in a block.
When you type the colon at the end of a function header, all of the lines typed afterward
will automatically be indented. After you have typed the last line of the block you pressthe
Backspacekey to get out of the automatic indentation.

block. You can use any number of spaces you wish, as long as al the linesin the

Checkpoint
3.6 A function definition has what two parts?
3.7 What does the phrase "calling a function" mean?

3.8 When afunction is executing, what happens when the end of the function's block
is reached?

39 Why must you indent the statementsin a block?

Designing a Program 1O Use Functions

'— CONCEPT: Programmers commonly use a technique known as top-down design to
break down an algorithm into functions.

In Chapter 2 we introduced flowcharts as a tool for designing programs. In a flowchart, a
function call is shown with a rectangle that has vertical bars at each side, as shown in Fig-
ure 3-8. The name of the function that is being called is written on the symbol. The example
shown in Figure 2-8 shows how we would represent a call to the message function.

Figure 3-8 Function call symbol

86

Chapter 3 Simple Functions

Programmerstypically draw a separate flowchart for each function in a program. For exam-
ple, Figure 3-9 shows how the main function and the message function in Program 3-2
would be flowcharted. When drawing aflowchart for a function, the starting terminal sym-
bol usually shows the name o the function and the ending terminal symbol usualy reads
Return.

.t for Program 3-2

| message() |

/ message for you." / Display 'l am Arthur' /

I Display 'King of the /
/ Britons' /
/

v \

Return
Display 'Goodbye!'

A

In this section, we have discussed and demonstrated how functions work. Y ou've seen how
control of a program is transferred to a function when it is called, and then returns to the
part of the program that called the function when the function ends. It is important that
you understand these mechanical aspects of functions.

Just as important as understanding how functions work is understanding how to design a
program that uses functions. Programmers commonly use a technique known as top-down
design to break down an algorithm into functions. The process of top-down design is per-
formed in the following manner:

The overall task that the program is to perform is broken down into a series of
subtasks.
Each of the subtasks is examined to determine whether it can be further broken
down into more subtasks. This step is repeated until no more subtasks can be
identified.

e Once al of the subtasks have been identified, they are written in code.

3.3 Designing a Program to Use Functions

This process is called top-down design because the programmer begins by looking at the
topmost level of tasks that must be performed, and then breaks down those tasks into lower
levels of subtasks.

Flowcharts are good tools for graphically depicting the flow of logic inside a function, but
they do not give avisual representation of the relationships between functions. Programmers
commonly use hierarchy chartsfor this purpose. A hierarchy chart, which is also known as
a structure chart, shows boxes that represent each function in a program. The boxes are
connected in away that illustrates the functions called by each function. Figure 3-10 shows
an example of a hierarchy chart for a hypothetical pay calculating program.

Figure 3-312 A hierarchy chart

main()

The chart shown in Figure 3-9 showsthe main function as the topmost function in the hierar-
chy. The main function calsfive other functions: get_input, calc_gross_pay, calc_
overtime, calc withholdings, and calc net_pay. The get_input function
calls two additionalfunctions: get_hours worked and get_hourly rate. The calc_
withholdings function also cals two functions: calc_taxes and calc_benefits.

Notice that the hierarchy chart does not show the steps that are taken inside a function.
Because they do not reveal any details about how functions work, they do not replaceflow-
charts or pseudocode.

89

ecution Unti! the User Presses Enter

Sometimes you want a program to pause so the user can read information that has been
displayed on the screen. When the user is ready for the program to continue execution, he
or she pressesthe Enter key and the program resumes. In Python you can usethe raw — input
function to cause a program to pause until the user presses the Enter key. Line 7 in Program
3-3 isan example:

raw- i nput (' Press Enter to see Step 1. ')

This statement displays the prompt 'Press Enter t 0 see Step 1.' and pauses until
the user to presses the Enter key. The program also uses this technique in lines 10, 13,
and 16.

3.4 Locd Variables
Locd Variables

CONCEPT: A loca variableis created inside a function and cannot be accessed by
statements that are outside the function. Different functions can have
local variables with the same names because the functions cannot see
each other's local variables.

Anytime you assign a value to a variable inside a function, you create a local variable. A
local variable belongsto the function in which it is created, and only statements inside that
function can access the variable. (Theterm local is meant to indicate that the variable can
be used only locally, within the function in which it is created.)

An error will occur if astatement in one function triesto accessalocal variable that belongs
to another function. For example, look at Program 3-4.

Program 3-4 (bad_local.py)

W 00 J O U WN

fd
oo

Definition of the main function.
def main():
get - name()
print '"Hello', name # This causes an error!

Definition of the get- nane function.
def get- nane():
name = raw- i nput (‘Enter your name: ')

Call the main function.
main{)

This program has two functions: main and get name. In line 8 the name variable is
assigned a value that is entered by the user. This statement is inside the g et_name func-
tion, SO the name variableislocal to that function. This means that the name variable can-
not be accessed by statements outside the get— name function.

The main function calls the get— name function in line 3. Then, the print statement in
line 4 tries to access the name variable. This results in an error because the name vari-
able is local to the get—name function, and statements in the main function cannot
access it.

Scope and Leocal Variables

A variable's scope is the part of a program in which the variable may be accessed. A vari-
able isvisibleonly to statements in the variable's scope. A local variable's scope is the func-
tion in which the variable is created. As you saw demonstrated in Program 3-4, no state-
ment outside the function may access the variable.

91

92

Chapter 3 Simple Functions

g b~ W N R

In addition, alocal variable cannot be accessed by code that appears inside the function at
a point before the variable has been created. For example, ook at the following function.
It will cause an error becausethe print statement tries to accessthe val variable, but this
statement appears before the val variable has been created. Moving the assignment state-
ment to aline beforethe print statement will fix this error.

def bad- function():
print 'The value is', val # This will cause an error!
val = 99

Because a function's local variables are hidden from other functions, the other functions
may have their own local variables with the same name. For example, look at the
Program 3-5. In addition to the main function, this program has two other functions:
texas and california. These two functions each have a local variable named
birds.

This program denonstrates two functions that
have | ocal variables with the sane nane.

def main():
Call the texas function.
texas()
Call the california function.
californial()

Definition of the texas function. It creates
a local variable naned birds.
def texas():

birds = 5000

print 'texas has', birds, 'birds.'

Definition of the california function. It also
creates a |local variable naned birds.
def california():

birds = 8000

print 'californiahas', birds, 'birds.'

Call the main function.
mai n()

Program Output

texas has 5000 birds.
california has 8000 birds.

3.5 Pasang Arguments to Functions

Although there are two separate variables named birds in this program, only one o
them is visible at a time because they are in different functions. This is illustrated in
Figure 3-12. When the texas function is executing, the birds variable that is created
in line 13 is visible. When the california function is executing, the birds variable
that is created in line 19 is visible.

sve 2-12 Each function has its own birds variable

Checkpoint
3.10 What isalocal variable?How is accessto a local variable restricted?
3.11 What is a variabl€e's scope?

3.12 Isit permissiblefor alocal variable in one function to have the same name as a
local variable in a different function?

CONCEPT: An argument is any piece of data that is passed into a function when the
function is caled. A parameter is a variable that receives an argument
that is passed into a function.

Sometimesit is useful not only to call a function, but also to send one or more pieces o
data into the function. Piecesdof data that are sent into afunction are known as arguments.
The function can use its arguments in calculations or other operations.

93

94

Chapter 3 Simple Functions

If you want a function to receive arguments when it is called, you must equip the function
with one or more parameter variables. A parameter variable, often ssmply caled a
parameter, is a special variable that is assigned the value of an argument when a function
iscalled. Here is an example of afunction that has a parameter variable:

def show double(number):
result = nunber * 2
print result

This function's name is show_double. Its purpose is to accept a number as an argument
and display the value of that number doubled. Look at the function header and notice the
word number that appear inside the parentheses. This is the name of a parameter variable.
This variable will be assigned the value of an argument when the function is called.
Program 3-6 demonstrates the function in a complete program.

Program 3-6 (pass-arg.py)

Thi s program denonstrates an argunent bei ng
passed to a function.

def main():
value = 5
show_double(value)

The show- doubl e function accepts an ar gunent
and di spl ays doubl e its val ue.
def show _double(number):

result = nunber * 2

print result

Call the main function.
mai n()

Program Output

10

When this program runs, the main function is called in line 15. Inside the main function,
line 5 creates alocal variable named val ue, assigned the value 5. Then the following state-
ment in line 6 calls the show_double function:

Notice that value appears inside the parentheses. This means that value is being
passed as an argument to the show_double function, as shown in Figure 3-13 When
this statement executes, the show_doubl e function will be called and the number
parameter will be assigned the same value as the value variable. This is shown in
Figure 3-14.

3.5 Pasang Argumentsto Functions

sure 3-13 The value variable is passed as an argument

def main():
value = 5
show- doubl e(val ue)
|

def show- doubl e(nunber) :
result = nunmber * 2
print result

Fteure 3-14 The value variable and the number parameter reference the same value

def main():
value = 5 vaue
show_double(val ue)

def show doubl e(nunber) :
result = nunber * 2
print result number

Let's step through the show_double function. As we do, remember that the number
parameter variable will be assigned the value that was passed to it as an argument. In this
program, that number is 5.

Line 11 assignsthe vaue of the expression number * 2 to alocal variablenamed result.
Because number referencesthe value 5, thisstatement assigns10to result. Linel2 displays
the result variable.

The following statement shows how the show_double function can be called with a
numeric literal passed as an argument:

This statement executes the show_doubl e function, assigning 50 to the number parame-
ter. The function will print 100.

Parameter Variable Scope

Earlier in this chapter, you learned that a variable's scope is the part of the program in
which the variable may be accessed. A variable is visible only to statements inside the
variable's scope. A parameter variable's scope is the function in which the parameter is
used. All of the statements inside the function can access the parameter variable, but no
statement outside the function can accessit.

WA W N e

Often it's useful to write functions that can accept multiple arguments. Program 3-8 shows
afunction named show—sum, that accepts two arguments. Thefunction adds the two argu-
ments and displays their sum.

This program denonstrates a function that accepts
two argunents.

def main():
print 'The sum of 12 and 45 is'
(program continues)

98

Chapter 3 Simple Functions

Program 3-8 (continued)

The show- sum function accepts two argunents
and displays their sum
def show sum(numl, num2):

result = num + nunP

print result

Call the main function.
mai n()

Program Output
The sum of 12 and 45 is

Notice that two parameter variable names, numl and num2, appear inside the parentheses
in the show_sum function header. Thisis often referred to as a parameter list. Also notice
that a comma separates the variable names.

The statement in line 6 cals the show_sum function and passes two arguments. 12 and 45.
These arguments are passed by position to the corresponding parameter variablesin the func-
tion. In other words, the first argumentis passed to thefirst parameter variable, and the second
argument is passed to the second parameter variable. So, this statement causes 12 to be assigned
to the num1 parameter and 45 to be assgned to the num2 parameter, asshownin Figure 3-16.

Two arguments passed to two parameters

def main():
print 'The sum of 12 and 45 is’

def show—sum(numl, num2):
result = numl + num2
print result

numl —-——-——————-»I 12 |

Suppose we were to reverse the order in which the arguments are listed in the function call,
as shown here:

This would cause 45 to be passed to the numl parameter and 12 to be passed to the num2
parameter. The following code shows another example. This time we are passing variables
as arguments.

3.5 Passing Arguments to Functions

When the show—sumfunction executes as a result of this code, the num1 parameter will be
assigned the value 2 and the num2 parameter will be assigned the value 3.

Program 3-9 shows one more example. This program passes two strings as arguments to a
function.

This program denonstrates passing two string
arguments to a function.

def main():
first name = rawinput('Enter your first name: ')
| ast - nane = raw_input('Enter your |ast name: ')
print 'Your nane reversed is'
reverse name(first name, |ast- nane)

def reverse name(first, last):
print last, first

Call the main function.
mai n()

Program Output (with input shown in bold)

Enter your first name: Matt [Enter]
En ter]
Yo
Ho

Making Changes to Parameters

-When an argument is passed to a function in Python, the function parameter variable will
referencethe argument's value. However, any changes that are made to the parameter vari-
able will not affect the argument. To demonstrate this look at Program 3-10.

k4

Program 3-10 (change_me.py)

1 # This program denonstrates what happens when you
2 # change the value of a paraneter.
3
(program continues)

99

100 Chapter 3 Simple Functions

Program 3-10 (continued)

def main():
val ue = 99
print 'The value is', value
change me(value)
print 'Back in main the value is', value

def change me(arg):
print 'l amchanging the val ue.'
arg = 0
print 'Nowthe value is', arg

Call the mamin function.
mai n()

Program Output

The is 99
[ying the val ue.
Nov slue is O

Back zn main the value is 99

The main function creates a local variable named value in line 5, assigned the value 99.
Theprint statementinline 6 displays ' The value is 99'. Thevalue variableisthen
passed as an argument to the change—me function in line 7. This means that in the

change_me function the ar g parameter will aso referencethe value 99. Thisis shown in
Figure 3-17.

Flewure 3-87 The value variable is passed to the change— me function

def main():
val ue = 99
print 'The value is', value
change me(val ue) value
print 'Back in main the value is', value

def change- ne(arg) :
print 'l am changing the val ue."'
arg = 0
print 'Now the value is', arg

arg

Inside the change_me function, in line 12, the ar g parameter is assigned the value 0.
This reassignment changes arg, but it does not affect the value variable in main.
As shown in Figure 3-18, the two variables now reference different values in memory.

The print statement in line 13 displays 'Now the value is 0' and thefunction
ends.

3.5 Pasang Argumentsto Functions

Figure 3-18 The val ue variable is passed to the change me function

def main():
val ue = 99
print 'The value is', value
change me (value) value
print 'Back in main the value is', value

def change me(arg):

print 'l amchangi ng the val ue.' arg B
arg = 0
print 'Now the value is', arg

Control of the program then returns to the main function. The next statement to execute
isthe print statement in line 8. This statement displays 'Back in main the value
is 99'. This proves that even though the parameter variable arg was changed in the
change_me function, the argument (thev al ue variable in main) was not modified.

The form of argument passing that is used in Python, where a function cannot change the
valueof an argument that was passed to it, is commonly called passby value. Thisis away
that one function can communicate with another function. The communication channel
worksin only one direction, however. The calling function can communicate with the called
function, but the called function cannot use the argument to communicate with the calling
function. In Chapter 6 you will learn how to write a function that can communicate with
the part of the program that called it by returning a value.

Keyword Arguments

Programs 3-8 and 3-9 demonstrate how arguments are passed by position to parameter
variables in a function. Most programming languages match function arguments and
parameters this way. In addition to this conventional form of argument passing, the Python
language allows you to write an argument in the following format, to specify which param-
eter variable the argument should be passed to:

In this format, par anet er - nane is the name of a parameter variable and val ue isthe
value being passed to that parameter. An argument that is written in accordance with this
syntax is known as a keyword argument.

Program 3-11 demonstrates keyword arguments. This program uses a function named
show_i nterest that displays the amount of simple interest earned by a bank account for
anumber of periods. The functionacceptsthe argumentsprincipal (for the account prin-
cipal), rate (for the interest rate per period), and periods (for the number of periods).
When the function is called in line 7, the arguments are passed as keYWO’;Si arguments.

Program 3-11 (keyword_args.py)

N w N o=

Thi s program denonstrates keyword arguments.

def main():

Show t he amount of sinple interest, using 0.01 .
(program continues)

101

102

Chapter 3 Simple Functions

Program 3-11 (continued)

interest rate per period, 10 as the nunber of peri ods,
and $10,000 as the principal.
show_interest(rate=0.01, periods=10, principal=10000.0)

The show- interest function displays the amount of
sinple interest for a given principal, interest rate
per period, and nunber of periods.

def show_interest(principal, rate, periods):
interest = principal * rate * periods
print 'The sinple interest will be $%.2f.* % interest

Call the main function.
mai n()

Program Output
The sinple interest will be $1000. 00.

Notice in line 7 that the order o the keyword arguments does not match the order o the
parameters in the function header in line 13. Because a keyword argument specifies which
parameter the argument should be passed into, its positionin the function cal doesnot matter.

Program 3-12 shows another example. Thisisavariationdf thestring— argsprogramshown
in Program 3-9. This version uses keyword argumentsto call the reverse— name function.

Program 3-12 (keyword_string_args.py)

1
2
3
4
5
6
7
8
9

10
11
12
13
14

Thi s program denonstrates passing two strings as
keyword arguments to a function.

def nain():
first-nane = raw_input('Enter your first nane: ')
| ast - name = raw_input('Enter your |ast name: ')
print ‘'Your nane reversed is'
reverse_name(last=last_name, first=first name)

def reverse name(first, |ast):
print last, first

Call the main function.
mai n()

3.6 Globd Vaiddes and Globd Constants

Mixing Keyword Arguments with Positional Arguments

It is possible to mix positional arguments and keyword arguments in a function call, but
the positional arguments must appear first, followed by the keyword arguments. Otherwise
an error will occur. Here is an example of how we might call the show_interest func-
tion of Program 3-10 using both positional and keyword arguments:

show_i nterest (10000. 0, rate=0.01, periods=10)

In this statement, the first argument, 10000. 0, is passed by its position to the principal
parameter. The second and third arguments are passed as keyword arguments. The follow-
ing function call will cause an error, however, because a non-keyword argument follows a
keyword argument:

This will cause an ERROR!
show_interest(1000.0, rate=0.01, 10)

Checkpoint

3.13 What are the pieces of data that are passed into a function called?
3.14 What are the variables that receive pieces of data in a function called?
3.15 What is a parameter variable's scope?

3.16 When a parameter is changed, does this affect the argument that was passed into
the parameter?

3.17 The following statements call a function named show — data. Which of the
statements passes arguments by position, and which passes keyword arguments?

Global Variables and Global Constants

- CONCEPT: A global variable is accessible to all the functions in a program file.

You've learned that when a variable is created by an assignment statement inside a func-
tion, the variableislocd to that function. Consequently, it can be accessed only by statements
inside the function that created it. When a variable is created by an assignment statement
that is written outside al the functions in a program file, the variable is global. A global
'variable can be accessed by any statement in the program file, including the statements in
any function. For example, look at Program 3-13.

Program 3-13 (globall.py)

W 0N

Create a global variable.
ny- value = 10

The show- value function prints
the value of the global variable.
(program continues)

103

104

Chapter 3 Simple Functions

(continued)

def show- val ue():
print ny- val ue

Call the show value function.
show- val ue()

Program Output

10

The assignment statement in line 2 creates a variable named my_value. Becausethis state-
ment is outside any function, it is global. When the show_value function executes, the
statement in line 7 prints the value referenced by my value.

An additional step is required if you want a statement in a function to assign a valueto a
global variable. In the function you must declarethe globa variable, as shownin Program 3-14.

Program 3-14 (global2.py)

Create a global variable.

nunber = 0
def main():
gl obal nunber
nunmber = input (‘Enter a nunber: ')

show- nunber ()

def show- nunber():
print 'The nunmber you entered is', nunber,

Call the main function.
mai n()

Program Output (with input shown in bold)

Enter a nunber: SH [Enter]
The nunber you entered is 55

The assignment statement in line 2 createsa global variable named number. Noticethat insde
themain function, line 5 usesthe global key word to declare the number variable. This state-
ment tellsthe interpreter that the main functionintendsto assign a valueto the global number
variable. That's just what happensinline6. The vaue entered by the user isassigned to number.

Most programmers agree that you should restrict the use of global variables, or not use
them at all. The reasons are as follows:

e Global variables make debugging difficult. Any statement in a program file can
change the value of a global variable. If you find that the wrong value is being

3.6 Globd Vaidhles and Globd Constants

stored in a global variable, you have to track down every statement that accessesit
to determine where the bad value is coming from. In a program with thousands of
lines of code, this can be difficult.

e Functions that use global variables are usually dependent on those variables. If you
want to use such a function in a different program, most likely you will have to
redesign it so it does not rely on the global variable.

« Global variables make a program hard to understand. A global variable can be mod-
ified by any statement in the program. If you are to understand any part of the pro-
gram that uses a global variable, you have to be aware of all the other parts of the
program that accessthe global variable.

In most cases, you should create variables locally and pass them as arguments to the func-
tions that need to access them.

Although you should try to avoid the use of global variables, it is permissible to use global
constants in a program. A global constant is a global name that references a value that
cannot be changed. Because a global constant's value cannot be changed during the pro-
gram's execution, you do not have to worry about many of the potential hazards that are
associated with the use of global variables.

Although the Python language does not allow you to create true global constants, you
can simulate them with global variables. If you do not declare a global variable with the
global key word inside a function, then you cannot change the variable's assignment
inside that function. The following In the Spotlight section demonstrates how global
variables can be used in Python to simulate global constants.

loyees. Another benefit is, employee. The company con-

i 5 percent of each emplo ses to their retirement pla
waruyn wants to write a program tnat wiir calculate the company s contribution to an
employess retirt count for a year. 'She wants the prc show the amount
contribution for dyee’s gross pay and for the bonusess .Hereisan algorit
for the program:

Get the employee’s
Get the amount of
the conzribution for the bo

1isshown in Program 3-1:

105

Checkpoint

3.18 What is the scope of a global variable?

3.19. Give one good reason that you should not use global variablesin a program.
3.20 What isaglobal constant?ls it permissibleto use global constantsin a program?

Ic task is
block

function

expressio

lesign technique t

v benefit o using 1

code reuse

divide and conquer
debugging

facilitation of tearnwork

iction de

initialization
header
fl’\n i

1 design
slificatior

41 Theif Statement 45 Logcd Operators
42 Theif-el se Statement 4.6 Bodemn Vaiddes
4.3 Comparing Strings
4.4 Nedsted Decison Structuresand

theif -elif- el se Statement

L. CONCEPT: Thei f statement is used to create a decision structure, which alows a pro-
gram to have more than one path of execution. Thei f statement causes
one or more statementsto execute only when a Boolean expression is true.

A control structure is a logical design that controls the order in which a set of statements
execute. So far in this book we have used only the simplest type of control structure: the
sequencestructure. A sequencestructure is aset of statementsthat execute in the order that
they appear. For example, the following code is a sequence structure because the statements
execute from top to bottom.

name = raw-input (' What is your nanme? ')

age = input (' Wiat is your age? ')
print "Here is the data you entered:
print 'Nane: ', name

print 'Age:', age

Even in Chapter 3, where you learned about functions, each function contained a block of
statements that are executed in the order that they appear. For example, the following func-
tion is a sequencestructure because the statements in its block execute in the order that they
appear, from the beginning of the function to the end.

def show double(value):
result = value * 2
print result

114

Chapter 4 Dedison Structuresand Booleen Logic

Although the sequence structure is heavily used in programming, it cannot handle every
type of task. This is because some problems simply cannot be solved by performing a set of
ordered steps, one after the other. For example, consider a pay calculating program that
determines whether an employee has worked overtime. If the employee has worked more
than 40 hours, he or she gets paid extra for al the hours over 40. Otherwise, the overtime
calculation should be skipped. Programs like this require a different type of control struc-
ture: one that can execute a set of statements only under certain circumstances. This can be
accomplished with a decision structure. (Decision structures are also known as selection
structures.)

In a decision structure's simplest form, a specific action is performed only if a certain con-
dition exists. If the condition does not exist, the action is not performed. The flowchart
shown in Figure 4-1 shows how the logic of an everyday decision can be diagrammed as a
decision structure. The diamond symbol represents a true/false condition. If the condition
is true, we follow one path, which leads to an action being performed. If the condition is
false, we follow another path, which skips the action.

Figure 4-1 A sSimple decision structure

In the flowchart, the diamond symbol indicates some condition that must be tested. In this
case, we are determining whether the condition Cold out si de istrue or false. If this con-
dition is true, the action wear a coat is performed. If the condition is fase, the action
is skipped. The action is conditionally executed becauseit is performed only when a certain
condition is true.

Programmers call the type of decision structure shown in Figure 4-1 a single alternative
decision structure. Thisis because it provides only one alternative path of execution. If the
condition in the diamond symboal is true, we take the alternative path. Otherwise, we exit
the structure. Figure 4-2 shows a more elaborate example, where three actions are taken
only when it is cold outside. It is still a single aternative decision structure, because there
is one dternative path of execution.

41 Theif Statement 115

ms three actions if it is cold outside

Figure 4-2 A decision structure

-

FalseI

In Python we use the i f statement to write a single alternative decision structure. Here is
the general format of thei f statement:

if condition:
st at ement
st at ement
etc.

For simplicity, we will refer to the first line asthe i £ clause. Thei f clause beginswith the
wordi f, followed by a condition, whichisan expression that will be evaluated as either
true or false. A colon appears after the condition. Beginning at the next line is a block
of statements. (Recall from Chapter 3 that al of the statementsin a block must be consis-
_tently indented. This indentation is required because the Python interpreter uses it to tell
where the block begins and ends.)

When the i f statement executes, the condition istested. If the condition istrue, the
statements that appear in the block following the i f clause are executéd. If the condition
is false, the statements in the block are skipped.

As previously mentioned, the i f statement tests an expression to determine whether it is
true or false. The expressions that are tested by the i f statement are caled Boolean

116

Chapter 4 Dedison Structuresand Bodleen Logic

expressions, named in honor of the English mathematician George Boole. In the 1800s
Boole invented a system of mathematics in which the abstract concepts of true and false
can be used in computations.

Typically, the Boolean expression that is tested by an i f statement is formed with a
relational operator. A relational operator determines whether a specific relationship
exists between two values. For example, the greater than operator (>) determines
whether one value is greater than another. The equal to operator (==) determines
whether two values are equal. Table 4-1 lists the relational operators that are available
in Python.

Table 4-T Relationa operators

Operator Meaning

> Greater than

< Lessthan

>= Greater than or equal to
<= Less than or equal to

== Equal to

1= Not equal to

The following is an example of an expression that uses the greater than (>) operator to
compare two variables, length and width:

length > width

This expression determines whether the value referenced by length is greater than the
value referenced by width. If length is greater than width, the value of the expression
is true. Otherwise, the value of the expression is fase. The following expression uses the
less than operator to determine whether Length islessthan width:

length < width

Table 4-2 shows examples of several Boolean expressions that compare the variables x
and y.

Table 4-2 Boolean expressions using relational operators

Expression M eaning
Is x greater than y?
x <Y Isx lessthan y?
X >= vy Is x greater than or equal toy?
X <=y Is x less than or equal toy?
x ==Y Isx equal toy?
X 1=y Is x not equal to y?

4.1 Theif Statement

The >= and <= Operators

Two of the operators, >= and <=, test for more than one relationship. The >= operator
determines whether the operand on its left is greater than or equal to the operand on its
right. The <= operator determines whether the operand on its left is less than or equal to
the operand on its right.

For example, assume the following:

* aisassigned 4
e bisassigned 6
e cisassigned 4

These expressions are true:

And these expressions are fase:

The == Operator

The == operator determines whether the operand on its left is equal to the operand on its
right. If the values referenced by both operands are the same, the expression is true.
Assuming that a is 4, the expression a == 4 istrue and the expressiona == 2 isfase

The '= Operator

The ! = operator is the not-equal-to operator. It determines whether the operand on its left
is not'equal to the operand on its right, which is the opposite of the == operator. As before,
assuming a is4, b is6,and cis4, botha t= bandb 1= c are true because a is not
equal to b and b is not equal to c. However,a 1= c isfalse because aisequal to c.

Let's look at the following example of the i f statement:

if sales > 50000:
bonus = 500.0

This statement uses the > operator to determine whether sal es is greater than 50,000. If
theexpressionsal es > 50000 istrue, the variable bonus isassigned 500.0. If the expres-
sion isfase, however, the assignment statement is skipped. Figure 4-3 shows a flowchart for
this section of code.

117

118

Chapter 4 Decision Structures and Boolean Logic

Figure 4-3 Example decision structure

The following example conditionally executes three statements
chart for this section of code.

if sales > 50000:
bonus = 500.0
conmm ssion-rate = 0.12
print 'You net your sales quotal!’

Figure 4-4 Example decision structure

. Figure 4-4 shows a flow-

{ sales > 50000

commission-rate

print "'You met
your sales quota!'

4.1 Theif Statement

The following code uses the == operator to determine whether two values are equal. The
expression balance == 0 will be trueif the balance variable is assigned 0. Otherwise
the expression will be false.

if balance ==
Statenents appearing here will
be executed only if balance is
equal to O.

The following code uses the 1= operator to determine whether two values are not equal.
The expression choice !'= 5 will betrueif the choice variable does not reference the
value 5. Otherwise the expression will be false.

if choice 1= b5
Statements appearing here will
be executed only if choice is
not equal to 5.

119

Program 4-1 is an example of a program that has a block inside a block. The main func-
tion has a block (inlines 7 through 22), and insidethat block the i f statement has a block

(inlines 21 through 22). Thisis shown in Figure 4-5.

Asyou learned in Chapter 3, Python requires you to indent the statements in a block. When
you have a block nested inside a block, the inner block must be further indented. As you
can seein Figure 4-5, four spaces are used to indent the main function's block, and eight
spacesare used to indent the i f statement's block.

4.2 Thei f - el se Statement 121

re 4.5 Nested blocks

This is the mai n
function'sblock.

Thisis thei f
statement'sblock.

Call the main function.
mai n ()

Checkpoint

4.1 What is acontrol structure?

4.2 What is a decision structure?

4.3 What is asingle aternative decision structure?

4.4 What is a Boolean expression?

4.5 What types of relationships between values can you test with relational operators?
46 Writeanif statement that assigns 0 to x if y isequal to 20.

4.7 Writean i f statement that assigns 0.2 to commission if sales is greater than or
equal to 10000.

The

CONCEPT: Anif -else statement will execute one block of statements if its condi-
tion is true, or another block if its condition is false.

The previous section introduced the single alternative decision structure (thei f statement),
which has one alternative path of execution. Now we will look at the dual alternative deci-
sion structure, which has two possible paths of execution—one path is taken if a condition
is true, and the other path is taken if the condition is false. Figure 4-6 shows a flowchart
for adual aternative decision structure.

The decision structure in the flowchart teststhe condition temperature < 40. If thiscon-
ditionistrue, the statement print "A little cold,isn't it?, isperformed. If the
conditionisfase, the statement print "Nice weather we're having.” isperformed.

122 Chapter 4 Deddon Structuresand Bodlean Logc

| alternative decision structure

; print "Nice weather N ; print "A little cold, /

In code we write adual alternative decision structureas an i f —else statement. Hereis the
genera format of the i f - el se statement:

if condition:
st at enent
st at ement
etc.

el se:
st at ement
st at enent
etc.

When this statement executes, the condi ti on is tested. If it is true, the block of indented
statements following the i f clause is executed, and then control of the program jumps to
the statement that follows the i f - el se statement. If the condition is false, the block of
indented statements following the el se clauseis executed, and then control of the program
jumps to the statement that follows the i f - el se statement. This action is described in
Figure 4-7.

Figure 4-7 Conditional execution in an i f - el se statement

if condition: if condition:
If the condition is true, statement statement
block of statementsis statement statement
executed. etc. elc.
else: else:
statement If the condition is false, this statement
. statement block of statements is statement
Then, control jumps here, etc. executed. otc.

to the statement following
! —)
the i f -else statement. Then, control jumps here, ===
to the statement following
the i f - el sestatement.

4.2Theif- el se Statement

The following code shows an example of an i f ~else statement. This code matches the
flowchart that was shown in Figure 4-5.

if tenperature < 40:

print "Alittle cold, isn't it?"
el se:

print "N ce weather we're having."

Indentation in the if-else Statement
When you write an i f - el se statement, follow these guidelinesfor indentation:

Make sure the i F clause and the el se clause are aligned.
Thei f clause and the el se clause are each followed by a block of statements. Make
" sure the statements in the blocks are consistently indented.

This is shown in Figure 4-8.

Figure £-8 Indentation with an i f - el se statement

if tenmperature < 40:
Alignthe i f and PTIME ATITEEIE T8I, TIEH Y E-TERY Y

el se clauses. / prl nt "Turn up the heat!" : The statements in each
elser I —— > block must be indented
e T T s oA e e consistentlv.
{print "Pass the Suhséreen. »o 19
[gorithm:
en call eii

1tocalcu

123

i@

-/ Checkpoint use the word filer as manuscript

4.8 How does a dual alternative decision structure work?
49 What statement do you use in Python to write a dual alternative decision
structure?

4.10 When you write an i f - el se statement, under what circumstancesdo the
statements that appear after the el se clause execute?

126

Chapter 4 Decision Structuresand Boolean Logic

— CONCEPT: Python alows you to compare strings. This allows you to create decision

© 00N O WDN R

e e =
o~ WN PO

16

structures that test the value of a string.

You saw in the preceding examples how numbers can be compared in a decision structure.
You can also compare strings. For example, look at the following code:

namel = 'Mary'
nane2 = ' Mark'
if namel == name2:
print 'The names are the sane. '
el se:
print ' The names are NOT the sane. '

The == operator compares namel and name2 to determine whether they are equal.
Because the strings '"Mary' and 'Mark' are not equal, the else clause will display the
message ' The names are NOT the same.'

Let's look at another example. Assume the month variable references a string. The follow-
ing code uses the 1= operator to determine whether the value referenced by month is not
equal to 'October’.

if month 1= rCctober::
print 'This is the wong time for Cctoberfest!’

Program 4-3 is a complete program demonstrating how two strings can be compared. The
program prompts the user to enter a password and then determines whether the string
entered is equal to 'prospero’.

(password.py)

Thi s program denonstrates how t he == operator can
be used to conpare strings.

def main():
Get a password fromthe user.
password = raw_input('Enter the password: ')

Det erm ne whet her the correct password
was entered.
if password == 'prospero':
print 'Password accepted.'
el se:
print "Sorry, that is the wong password."'

Call the main function.
main()

4.3 Comparing Strings

sor ong passw

ter the passwo
ssword accepte

String comparisons are case sensitive. For example, the strings 'saturday' and
*Saturday' are not equal becausethe "s™ islowercase in the first string, but uppercase
in the second string. The following sample session with Program 4-3 shows what happens
when the user enters Prospero as the password (with an uppercase P).

Program Output (with input shown in bold)

Enter the password: Prospero [Enter]
Sorry, that is the wong password.

TIP: In Chapter 6 you will learn how to manipulate strings so that case-insensitive
comparisons can be performed.

In addition to determining whether strings are equal or not equal, you can also determine
whether one string is greater than or less than another string. This is a useful capability
because programmers commonly need to design programs that sort strings in some order.

Recall from Chapter 1 that computers do not actually store characters, such asA, B, C, and
SO on, in memory. Instead, they store numeric codes that represent the characters. Chapter 1
mentioned that ASCII (the American Standard Code for Information Interchange) is a
commonly used character coding system. You can seethe set of ASCII codesin Appendix C,
but here are some facts about it:

= The uppercase characters A through Z are represented by the numbers 65 through 90.

e The lowercase characters athrough z are represented by the numbers 97 through 122.

« When the digits 0 through 9 are stored in memory as characters, they are represented
by the numbers 48 through 57. (For example, the string *abc123' would be stored
in memory as the codes 97, 98, 99, 49, 50, and 51.)

e A blank space is represented by the number 32.

In addition to establishing a set of numeric codes to represent characters in memory, ASCII
also establishesan order for characters. The character "A"™ comes before the character "B",
which comes before the character *C", and so on.

When a program compares characters, it actually compares the codes for the characters.
For example, look at the following i f statement:
if 'a’ < 'b':
print 'The letter a is less than the letter b.

127

128

Chapter 4 Dedison Structures and Bodean Logic

This code determines whether the ASCII code for the character 'a' is less than the ASCII
code for the character 'b'. The expression 'a* < 'b’' istrue because the code for *a’ is
less than the code for 'b'. So, if thiswere part of an actual program it would display the
message 'The letter a is less than the letter b.

Let's look at how strings containing more than one character are typically compared.
Suppose a program uses the strings *Mary* and 'Mark* asfollows:

namel = ' Mary'

nane2 = ' Mark’

Figure4-10 shows how the individual charactersin the strings 'Mary' and 'Mark* would
actually be stored in memory, using ASCII codes.

1-10 Character codes for the strings ¥ary® and 'Mark'

Mar vy Mar k

When you use relational operators to compare these strings, the strings are compared
character-by-character. For example, look at the following code:

namel = 'Mary'
name2 = ' Mark'
if namel > name2:
print 'Mary is greater than Mark'
el se:
print 'Mary is not greater than Mark'

The > operator compares each character in the strings *Mary' and 'Mark', beginning
with the first, or leftmost, characters. This isshown in Figure 4-11.

Figure 4-17 Comparing each character in a string

Mar k

Here is how the comparison takes place:

1. The 'M' in 'Mary" iscompared with the 'M' in *M ark'. Since these are the same,
the next characters are compared.

2. The'a'in ‘Mary" iscompared withthe "a’ in *M ark'. Since these are the same,
the next characters are compared.

3. The 'r'in 'Mary* iscompared with the "'r* in "M ark"'. Since these are the same,
the next characters are compared.

4. The'y'in 'Mary' iscompared withthe 'k’ in ‘M ark'. Sincethese are not the same,
the two strings are not equal. The character 'y ' has a higher ASCII code (121)than
"k' (107), soit is determined that the string ' M ary ' isgreater than thestring 'Mark .

If one d the stringsin a comparison is shorter than the other, only the corresponding charac-
ters will be compared. If the corresponding characters are identical, then the shorter string is

4.3 Conparing Srings 129

considered less than the longer string. For example, suppose the strings 'Hi gh® and 'Hi
were being compared. The string ' Hi * would be considered lessthan 'H gh' becauseit is
shorter.

Program 4-4 shows a simple demonstration of how two strings can be compared with the
< operator. The user is prompted to enter two names and the program displays those two
names in alphabetical order.

This programdenonstrates how t he < operator can
be used to conpare strings.

def’

main():
Get two nanes fromthe user.

narmel = raw- input (' Enter a nane (| ast

nane first): ')

nane2 = raw_input('Enter another nane (last name first): *)

4# Display the names in al phabeti cal

order.

print 'Here are the nanes, l|listed al phabetically.'

if nanel < name2:
print nanel
print nane2
el se:
print nane2
print nanel

Call the main function.
mai n()

Enter a nane (last nane first): jones,
Enter another name (last nanme first)

Here are the names, 1listed al phabetically:
Costa, Joan

Jones, Richard

Checkpoint

4.11 What would the following code display?

4.12

if 'z <A
print 'z is less than a.
el se:
print 'zis not less than a.’

What would the following code display?
s1 = "' New York'
s2 = 'Boston'

130 Chapter 4 Decision Structures and Boolean Logic

if sl > s2:
print s2
print sl
el se:
print sl
print s2

Nested Decisior
if-elif-else St

. CONCEPT: To test more than one condition, a decision structure can be nested
inside another decision structure.

In Section 4.1, we mentioned that a control structure determines the order in which a set
of statements execute. Programs are usually designed as combinations of different control
structures. For example, Figure 4-12 shows a flowchart that combines a decision structure
with two sequence structures.

Figure 4-42 Combinina seauence structures with a decision structure

Sequence Structure ... *
Cold True
’ outside
Decision structure ===+
Y | Wear a coat. |

Sequence SruCtUre wue.

4.4 Nesed Decison Structuresand the i f —elif- el se Statement 131

Theflowchart in the figure starts with a sequence structure. Assuming you have an outdoor
thermometer in your window, thefirststepisGo t o t he wi ndow, and the next stepisRead
t her nomet er . A decision structure appears next, testing the condition Col d out si de.
If thisistrue, the action wear a coat isperformed. Another sequence structure appears
next. The step Open t he door is performed, followed by Go out si de.

Quite often, structures must be nested inside other structures. For example, look at the
partial flowchart in Figure 4-13. It shows a decision structure with a sequence structure
nested inside it. The decision structure tests the condition Col d out si de. If that condition
istrue, the stepsin the sequence structure are executed.

Figure 4-13 A seguence structure nested inside a decision structure

Decision
structure

Sequence
structure

You can aso nest decision structures inside other decision structures. In fact, this is a
common requirement in programs that need to test more than one cohdition. For exam-
ple, consider a program that determines whether a bank customer qualifies for a loan.
To qualify, two conditions must exist: (1)the customer must earn at least $30,000 per
year, and (2)the customer must have been employed at his or her current job for at least
two years. Figure 4-14 shows a flowchart for an algorithm that could be used in such a
program. Assumethat the sal ary variableis assigned the customer's annual salary, and
the years_on_j ob variable is assigned the number of years that the customer has
worked on his or her current job.

132 Chapter 4 Decision Structures and Boolean Logic

Figure 4-84 A nested decision structure

If we follow the flow of execution, we see that the condition salary >= 30000 is tested.
If this condition is false, there is no need to perform further tests; we know that the cus-
tomer does not qualify for the loan. If the condition is true, however, we need to test the
second condition. This is done with a nested decision structure that tests the condition
years on_job >= 2. If this condition is true, then the customer qualifiesfor the loan.
If this condition is false, then the customer does not qualify. Program 4-5 shows the code
for the complete program.

Program 4-5 (loan_qualifier.py)

This program determ nes whether a bank customner
qualifies for a |oan.

def main():
CGet the custoner's annual salary.
salary = input (' Enter your annual salary: ')

CGet the nunber of years on the current job.
years- on- job = input('Enter the number of ' + \
‘years on your current job: ")

4.4 Negsted Decison Structuresand thei f - el i f - el se Statement

Determ ne whether the customer qualifies.
if salary == 30000.0:
if years-on-job >= 2
print 'You qualify for the loan.
el se:
print 'You nust have been on your current'
print 'job for at least two years to qualify. '
el se:
print 'You nmust earn at |east $30,000 per year'
print 'to qualify. '

Call the main function.
nain' ()

on your cu

our cur

Look at the i f - el sestatement that beginsin line 13. It tests the condition salary >=
30000.0. If this condition is true, the i f —else statement that beginsin line 14 is exe-
cuted. Otherwise the program jumps to the el se clause in line 19 and executes the two
print statementsin lines 20 and 21. The program then leaves the decision structure and
the main function ends.

It's important to use proper indentation in a nested decision structure. Not only is proper
indentation required by the Python interpreter, but it also makes it easier for you, the
human reader of your code, to see which actions are performed by eac¢h part of the struc-
ture. Follow these rules when writing nested i f statements:

e Make sure each el se clause is aligned with its matching i f clause. Thisis shown in
Figure 4-15.

= Make sure the statements in each block are consistently indented. The shaded parts
of Figure4-16 show the nested blocksin the decision structure. Notice that each state-
ment in each block is indented the same amount.

133

134 Chapter 4 Dedson Structures and Booleen Logic

Figure 4-15 Alignment d i f and el se clauses

if salary >= 30000.0:

This if —= i f years—on—job >= 2:
Thisi f and else—] print 'You qualify for the loan.'
andelse— gotogether. L—»
go together. print 'You must have been on your current’
elsePrint 'job for at least two years to qualify.’
L w»else:

print 'You must earn at least $30,000 per year'
print 'to qualify.'

Figure 4-16 Nested blocks

if salary >= 30000.0:
If years
br

clse:

=

s

BE

CAEIE BE |
DN
el se:
print 'You must earn at least $30,000 per year'
orint 'to qualify..’

Testing a Series of Conditions

In the previous example you saw how a program can use nested decision structures to test
more than one condition. It is not uncommon for a program to have a series of conditions
to test, and then perform an action depending on which condition is true. One way to
accomplish this it to have a decision structure with numerous other decision structures
nested inside it. For example, consider the program presented in the following In the

Sootlight section.

Even though Program 4-6 is a simple example, the logic of the nested decision structure is
fairly complex. Python provides a special version of the decision structure known as the
if-elif-else statement, which makes this type of logic simpler to write. Here is the

general format of thei f -elif- el se statement:

if condition-1:
st at ement
st at ement
et c.

elif condition-2:
st at ement
st at ement
et c.

4.4 Nesed Decison Structuresand the i f —elif- el se Statement

Insert as many elif clauses as necessary

else:
statement
statement
etc.

When the statement executes, condition 1 istested. If condition_1 istrue, the block
of statements that immediately follow is executed, up to the elif clause. The rest of the
structureisignored. If condition 1 isfase, however, the program jumpsto the very next
elif clauseand testscondition_2. If it istrue, the block of statements that immediately
follow is executed, up to the next e1if clause. The rest the structure is then ignored. This
process continues until a condition is found to be true, or no more elif clauses are l€ft. If
no condition is true, the block of statements following the el se clause is executed.

The following is an example of the i f ~elif- el sestatement. This code works the same
as the nested decision structure in lines 9 through 21 of Program 4-6.

if score < 60:

print 'Your grade is F.-’
elif score < 70:

print 'Your grade is D.'
elif score < 80:

print 'Your grade is C.'
elif score < 90:

print 'Your grade is B.'
el se:

print 'Your grade is A. "'

Notice the dignment and indentationthat is used with thei f ~elif-else statement: Thei f ,
elif, and el seclauses are all aligned, and the conditionally executed blocks are indented.

Thei f -elif- el sestatement is never required because itslogic can be coded with nested
i f - el sestatements. However, along series of nested i f - el se statements has two par-
ticular disadvantages when you are debugging code:

¢ The code can grow complex and become difficult to understand.

¢ Because of the required indentation, a long series of nested i f -else statements can
become too long to be displayed on the computer screen without horizontal scrolling.
Also, long statements tend to "wrap around" when printed on paper, making the code
even more difficult to read.

The logicd anif-elif- el sestatement is usualy easier to follow than a long series of
nested i f - el sestatements. And, becauseal of theclausesarealignedinan i f-elif-else
statement, the lengths of the lines in the statement tend to be shorter.

heckpoint
4.13 Convert the followingcodetoanif - elif-else statement:

i f number ==
print 'One’

137

138 Chapter 4 Decdson Structuresand Booeen Logic

Logical

el se:
if number == 2:
print 'Two'
el se:
i f number ==
print 'Three'
el se:
print 'Unknown'

perators

L CONCEPT: Thelogical and operator and the logical or operator alow you to con-

nect multiple Boolean expressions to create a compound expression. The
logical not operator reverses the truth of a Boolean expression.

Python provides a set of operators known as logical operators, which you can use to cre-
ate complex Boolean expressions. Table 4-3 describes these operators.

Tabl e 4-3

Logical operators

Operator

Meaning

and

or

not

The and operator connects two Boolean expressions into one compound expres-
sion. Both subexpressions must be true for the compound expression to be true.

The o r operator connects two Boolean expressions into one compound expres-

sion. One or both subexpressions must be true for the compound expression to

be true. It is only necessary for one of the subexpressions to be true, and it does
not matter which.

The not operator is a unary operator, meaning it works with only one operand.
The operand must be a Boolean expression. The not operator reverses the truth
of its operand. If itis applied to an expression that is true, the operator returns
false. If it is applied to an expression that isfase, the operator returns true.

Table 4-4 shows examples of several compound Boolean expressions that use logical
operators.

Table4-4 Compound Boolean expressions using logical operators

Expression Meaning
x >y and a < b Is x greater than y AND is a lessthan b?
X == Yy OF X == 7 Isx equal toy OR isx equal to z?

not (x > y) Isthe expression x > y NOT true?

45 Logcd Operators

The and operator takes two Boolean expressions as operands and creates a compound
Boolean expression that is true only when both subexpressions are true. The following is
an example of an i f statement that uses the and operator:

if tenperature < 20 and minutes > 12:
print 'The tenperature is in the danger zone. -

In this statement, the two Boolean expressionstemperature < 20 and minutes > 12
are combined into a compound expression. The print statement will be executed only if
temperature isless than 20 and minutes is greater than 12. If either of the Boolean
subexpressions is false, the compound expression is false and the messageis not displayed.

Table 4-5 shows a truth table for the and operator. The truth table lists expressions show-
ing ill the possible combinations of true and false connected with the and operator. The
resulting values of the expressions are also shown.

Truth table for the and operator

Expression Vdue of the Expression
true and false false
false and true false
false and fase fase
true and true true

As the table shows, both sides of the and operator must be true for the operator to return
atrue value.

The or operator takes two Boolean expressions as operands and creates a compound
Boolean expression that is true when either of the subexpressions is true. The following is
an example of an i f statement that uses the or operator:

i f,tenperature < 20 or tenperature > 100:
print 'The tenperature i s too extreneg'

Theprint statement will executeonly if temperatureislessthan 20 or temperature
is greater than 100. If either subexpression is true, the compound expressionistrue. Table 4-6
shows a truth table for the o r operator.

e 4-6 Truth table forthe or operator

Expression Vdue of the Expression
trueor false true
falseor true true
faseor fase false

true or true true

139

140

Tohle 4.7

Chepter 4 Dedson Structuresand Booleen Logic

All it takes for an or expression to be true is for one side of the o r operator to be true. It
doesn't matter if the other sideis false or true.

Both the and and o r operators perform short-circuit evaluation. Here's how it works with
the and operator: If the expression on the left side of the and operator isfase, the expres-
sion on the right side will not be checked. Because the compound expression will be false
if only one of the subexpressions isfase, it would waste CPU time to check the remaining
expression. So, when the and operator finds that the expression on itsleft is false, it short-
circuitsand does not evaluate the expression on its right.

Here's how short-circuit evaluation works with the or operator: If the expression on the
left side of the or operator is true, the expression on the right side will not be checked.
Becauseit is only necessary for one o the expressionsto be true, it would waste CPU time
to check the remaining expression.

The no

The not operator is a unary operator that takes a Boolean expression as its operand and
reversesitslogical value. In other words, if the expression is true, the not operator returns
false, and if the expression is fase, the not operator returns true. The followingisan i f
statement using the not operator:

o
o
=

if not(tenperature > 100):
print 'This is bel ow the nmaxi numtenperature.'

First, the expression (temperature > 100) istested and avaue o either true or faseis
the result. Thenthe not operator is applied to that value. If the expression (temperature >
100) istrue, the not operator returns false. If the expression (temperature > 100) is
fase, the not operator returns true. The previous code is equivalent to asking: "'Is the tem-
perature not greater than 1002~

NOTE: Inthisexample, we have put parenthesesaround the expressiontemperature
> 100. Thisisto make it clear that we are applying the not operator to the value of

| theexpressiontemperature > 100, not jus to the temperature variable.
i

Table 4-7 shows a truth table for the not operator.

ith table for the not operator

Expression Vdue of the Expression
not true false

not false true

4.5 Logical Operators

In some situations the and operator can be used to simplify nested decision structures. For
example, recall that the loan qualifier program in Program 4-5 uses the following nested
i f-el se statements:

if salary >= 30000.0:
if years-on-job >= 2
print 'You qualify for the loan.
el se:
print 'You nmust have been on your current'
print 'job for at least two years to qualify.
el se:
print 'You nmust earn at |east $30,000 per year'
print 'to qualify."

The purpose of this decision structure is to determine that a person's saary is at least
$30,000 and that he or she has been at their current job for at least two years. Program 4-7
shows a way to perform a similar task with ssimpler code.

Program 4-7 (loan_qualifier2.py)

Thi s program det erm nes whet her a bank cust orer
qualifies for a |oan.

def main():
Get the custoner's annual sal ary.
salary = input (' Enter your annual salary: ')

Get the nunber of years on the current job.
years-on-job = input('Enter the nunber of ' + \
‘years on your current job: ')

Determ ne whet her the custoner qualifies.

if salary >= 30000.0 and years-on-job >= 2
print 'You qualify for the loan.

el se:
print 'You do not qualify for this |oan."

Call the main function.
mai n()

Program Output (with input shown in bold)

Enter your annual sal ary: 35000 [Enter]
Enter the nunber of years on your current job: 1 [Enter]
You do not qualify for this |oan.

141

142

Chapter 4 Dedison Structuresand Booleen Logic

iter the nunber
»u do rc

The i f -then-else statement in lines 13 through 16 tests the compound expression
salary >= 30000 and years—on-—job >= 2. If both subexpressions are true, the
compound expression is true and the message "You qualify for the loan" is displayed. If
either of the subexpressions is false, the compound expression is false and the message
"You do not qualify for thisloan" is displayed.

itis not equivaent. If the user does not qualify for the loan, Program 4-7 displaysonly
the message "You do not qualify for this loan" whereas Program 4-5 displays one of

Suppose the bank is losing customers to a competing bank that isn't as strict about whom
it loans money to. In response, the bank decides to change itsloan requirements. Now, cus-
tomers have to meet only one of the previous conditions, not both. Program 4-8 shows the

code for the new loan qualifier program. The compound expression that is tested by the
i f-else statement in line 13 now uses the o r operator.

Thi s program det erm nes whet her a bank cust oner
qualifies for a |oan.

def nain():
CGet the customer's annual sal ary.
salary = input('Enter your annual salary: ')

Get the nunber of years on the current job.
years-on-job = input('Enter the nunber of ' + \
'years on your current job: ')

Det erm ne whet her the custoner qualifies.
if salary >= 30000.0 or years-on-job >= 2

14
15
16
17
18
19

4.5 Logical Operators

print 'You qualify for the loan. "
el se:
print 'You do not qualify for this loan."

Call the main function.
main()

Sometimes you will need to design an algorithm that determines whether a numeric value is
withinaspecificrange o vaduesor outside aspecificrange of vaues. When determiningwhether
a number isinsgde a range, it is best to use the and operator. For example, the following i f

statement checksthe valuein x to determine whether it isin the range d 20 through 40:

if X > 20 and X = 40:
print 'The value is in the acceptable range. '

The compound Boolean expression being tested by this statement will be true only when x
is greater than or equal to 20 and less than or equal to 40. The valuein x must be within
the range of 20 through 40 for this compound expression to betrue.

When determining whether a number is outside a range, it is best to use the or operator.
The following statement determines whether X is outside the range of 20 through 40:

if x < 20 or x > 40:
print 'The value is outside the acceptable range.

It isimportant not to get the logicd the logical operatorsconfused whett testing for arange
of numbers. For example, the compound Boolean expression in the following code would
never test true:

This is an error!
if X < 20 and x > 40:
print 'The value is outside the acceptable range.

Obvioudly, x cannot be lessthan 20 and at the same time be greater than 40.

143

144 Chapter 4 Dedson Structuresand Booleen Logic

4.14
4.15

4.16

4.17
4.18

4.19

4 Checkpoint

What is a compound Boolean expression?

The following truth table shows various combinations of the values true and false
connected by alogical operator. Complete the table by circling T or Fto indicate
whether the result of such a combination is true or false.

Logical Expression Result (circleT or F)
True and False
True and True

Fdse and True
Fdse and Fdse
Trueor Fase
Trueor True
Faseor True
Fdseor Fase
not True

not Fase

Assumethe variablesa =2, b = 4, and c = 6. Circlethe T or F for each of the
following conditions to indicate whether its value s true or false.

a == 4 or b > 2 T F
6 <= c and a > 3 T F
1'!'= band c !I= 3 T F
a>> -1or a<=2Db T F
not (a > 2) il F

Explain how short-circuit evaluation works with the and and o r operators.

Writean i f statement that displays the message “The number is valid" if the
value referenced by speed is within the range 0 through 200.

Writean i f statement that displaysthe message “The number is not valid" if the
value referenced by speed is outside the range 0 through 200.

Boolean Variables

L_ CONCEPT: A Boolean variable can reference one of two values: Tr ue or Fal se.

Boolean variables are commonly used as flags, which indicate whether
specific conditions exist.

So far in this book we have worked with int, £loat, and str (string) variables. In addi-
tion to these data types, Python also providesabool datatype. Thebool datatype alows
you to create variablesthat may referenceone of two possiblevalues: True or False. Here
are examples of how we assign valuesto a bool variable:

hungry

True

sleepy = False

Review Questions

Boolean variables are most commonly used as flags. A flagis a variable that signals when
some condition existsin the program. When the flag variable is set to False, it indicates
the condition does not exist. When the flag variable is set to True, it means the condition
does exist.

For example, suppose a salesperson has a quota of $50,000. Assuming sal es references
the amount that the salesperson has sold, the following code determines whether the quota
has been met:

if sales >= 50000. 0:
sal es- quot a- net
el se:
sal es- quot a- met = Fal se

True

As aresult o this code, the sal es_quota— met variable can be used as aflag to indicate
whether the sales quota has been met. Later in the program we might test the flag in the
following way:

i f sal es- quota- net:
print 'You have net your sales quota!

This code displays 'You have met your sales quota! ' if the bool variable
sales_quota— metis True. Notice that wedid not have to use the == operator to explic-
itly compare the sales— quota— metvariable with the value True. This code is equiva-
lent to the following:

if sal es_quota- net == True:
print 'You have net your sales quota! '

Checkpoint
420 What valuescan you assign to a bool variable?
4.21 What isaflag variable?

ances.
sequenc
circumst

ternative decision
= ive
ingle execution

145

51 Introduction to Repetition Structures 5.4 Cdculaing a Running Totd
. 5.2 Thewhi | e Loop: a Condition- 55 Sentinds
Controlled Loop 5.6 Input Vdidation Loops
- 5.3 Thefor Loop: aCount-Controlled Loop 5.7 Nested Loops

ig

‘o Repetition Structures

i

§

L_ CONCEPT: A repetition structure causes a statement or set of statements to execute
repeatedly.

Programmers commonly have to write code that performs the same task over and over. For
example, suppose you have been asked to write a program that calculates a10 percent sales
commission for several sales people. Although it would not be a good design, one approach
would beto write the code to calculate one sales person’'s commission, and then repeat that
code for each sales person. For example, look at the following:

Get a sal esperson's sal es and conmi ssion rate.
sales = input (' Enter the anmount of sales: ')
comm rate = input{'Enter the conm ssion rate: ')

Cal cul ate t he comm ssi on.

commi ssion = sales * comm rate

Display the comm ssion.
print 'The commssion is $%.2f.* % comm Ssion

Get anot her sal esperson's sal es and conmi ssion rate.
sales = input('Enter the anount of sales: ')
comm_rate = input('Enter the conmi ssionrate: ')

Cal cul ate the conm ssion.
commi ssion = sales » conmmrate

152

Chapter 5 Repdition Structures

Display the conm ssion.
print 'The commi ssion is $%2f.' % conm ssion

Get another sal esperson's sales and conmi ssion rate.
sales = input (' Enter the ampbunt of sales: ')
comm _rate = input('Enter the conmi ssion rate: ')

Calcul ate the comm ssion.
comm ssion = sales * comm rate

Display the conm ssion.
print 'The commi ssion is $%.2f.' % conm Ssion

And this code goesonand on. . .

As you can see, this code is one long sequence structure containing a lot of duplicated code.
There are several disadvantages to this approach, including the following:

« The duplicated code makes the program large.
Writing a long sequence of statements can be time consuming.
If part of the duplicated code hasto be corrected or changed then the correction or
change has to be done many times.

Instead of writing the same sequence of statements over and over, a better way to
repeatedly perform an operation is to write the code for the operation once, and then
place that code in a structure that makes the computer repeat it as many times as nec-
essary. This can be done with a repetition structure, which is more commonly known
as a loop.

In this chapter, we will look at two broad categories of loops: condition-controlled and
count-controlled. A condition-controlled loop uses a true/false condition to control the
number of timesthat it repeats. A count-controlled loop repeats a specific number of times.
In Python you use thew hi | e statement to write a condition-controlled loop, and you use
the f or statement to write a count-controlled loop. In this chapter, we will demonstrate
how to write both types of loops.

Checkpoint

5.1 What is arepetition structure?

5.2 What is a condition-controlled 1oop?
5.3 What is a count-controlled 1oop?

L CONCEPT: A condition-controlled |oop causes a statement or set of statements to

repeat as long as a condition is true. In Python you use thewhi | e state-
ment to write a condition-controlled loop.

5.2 Thewhi | e Loop: a Condition-ControlledLoop 153

The while loop gets its name from the way it works: while a condition is true, do some
task. Theloop has two parts: (1) a condition that is tested for a true or false value, and (2)
astatement or set of statements that is repeated as long as the condition is true. Figure 5-1
shows the logic o awhile loop.

Figure 5-7 The logic of awhile loop

The diamond symbol represents the condition that is tested. Notice what happens if the
condition is true: one or more statements are executed and the program's execution flows
back to the point just above the diamond symbol. The condition is tested again, and if it is
true, the processrepeats. If the condition isfalse, the program exitsthe loop. In aflowchart,
you will always recognize a loop when you see aflow line going back to a previous part of
the flowchart.

Here is the general format of the while loop in Python:

whil e condition:
st at enent
st at ement
etc.

For smplicity, we will refer to the first line as the while clause. Thewhile clause begins
with the word while, followed by a Boolean condition that will be evaluated as either
true or false. A colon appears after the condition. Beginning at the next line is a block
of statements. (Recall from Chapter 3 that all of the statementsin a block must be consis-
tently indented. This indentation is required because the Python interpreter usesit to tell
where the block begins and ends.)

When the while loop executes, the condition istested. If the condition istrue, the
statements that appear in the block following the while clause are executed, and then the
loop starts over. If the condition isfalse, the program exitsthe loop. Program 5-1 shows
how we might use a while loop to write the commission calculating program that was
described at the beginning of this chapter.

154 Chapter 5 Rypetition Sructures

1 # This programcal cul ates sal es commissions.

2 def main():

3 # Create a variable to control the | oop.

4 keep-going = 'y’

5

6 # Cal cul ate a series of commi ssions.

7 whi |l e keep-going == 'y':

8 # Get a sal esperson' s sales and conm ssion rate.
9 sales = input (' Enter the anount of sales: ')

10 comm_rate = input('Enter the commission rate: ')
13

12 # Cal cul ate the conm ssi on.

13 conmi ssion = sales * comm rate

14

15 # D splay the comm ssion.

16 print 'The commission is $%.2f.' % comm SSion
17

18 # See if the user wants to do anot her one.

19 keep- going = rawinput (' Do you want to cal cul ate another ' + \
20 'comm ssion (Enter y for yes): ')
21

22 # Call the main function.
23 main()

In line 4 we use an assignment statement to create a variable named keep goi ng. Notice
that the variable is assigned the value 'y '. This initialization value is important, and in a
moment you will see why.

Line 7 is the beginning of aw hil e loop, which starts like this:

while keep going == 'y':

5.2 Thewhile Loop: a Condition-ControlledLoogp 155

Notice the condition that is being tested: keep_goi ng == 'y'. Theloop tests this con-
dition, and if it is true, the statements in lines 8 through 20 are executed. Then, the loop
starts over at line 7. It teststhe expression keep- goi ng == 'y ' andif it istrue, the state-
ments in lines 8 through 20 are executed again. This cycle repeats until the expression
keepgoi ng == 'y istestedinline 7 and found to be false. When that happens, the
program exits the loop. Thisisillustrated in Figure 5-2.

The whi | e loop

This condition s tested.

whi |l e keep-going == 'y':
—
$# Get a sal esperson's sal es and conmission rate.
sal es = input('Enter the anount of sales: ')

If the conditionis true, comm rate = input ('Enter the conmission rate: ')
these statements are -

executed, and then the # Cal cul ate the commi ssion.

loop starts over. conmmi ssion = sales * corn-rate

If the condition is false, # Display the commission

these statements are print ' The conmmission is $%.2f£.' % conmi ssion
skipped and the

program exits the loop. # See if the user wants to do another one.

xeep_goi ng = raw_input ('Do you want to cal cul ate another ' *
"conmi ssion (Enter y for yes): ")

In order for thisloop to stop executing, something has to happen inside the loop to make
the expression keep- goi ng == 'y ' false. The statement in lines 19 through 20 take
care of this. This statement displays the prompt " Do you want to calculate another com-
mission (Enter y for yes)." The vaue that is read from the keyboard is assigned to the
keep- goi ng variable. If the user enters y (and it must be a lowercase y), then the
expressionkeep- goi ng == 'y will be true when the loop starts over. This will cause
the statements in the body of the loop to execute again. But if the user enters anything
other than lowercase y, the expression will be false when the loop starts over, and the pro-
gram will exit the loop.

Now that you have examined the code, look at the program output in the sample run. First,
the user entered 10000.00 for the sales and 0.10 for the commission rate. Then, the pro-
gram displayed the commission for that amount, which is $1000.00. Next the user is
prompted "Do you want to calculate another commission? (Enter y far yes)." The user
entered y, and the loop started the steps over. In the sample run, the user went through this
process three times. Each execution of the body of aloop is known as an iteration. In the
sample run, the loop iterated three times.

Figure 5-3 shows a flowchart for the mai n function. In the flowchart we have a repetition
structure, which isthewhi | e loop. The condition keep- goi ng == 'y ' istested, and if
it istrue a series of statements are executed and the flow of execution returns to the point
just above the conditional test.

156 Chapter 5 Repetition Structures

Figure5-3 Flowchart for Program 5-1

1 main() 1

Assign 'y' to keep—-going

T
keep-going=="y' > e *

/ the amount of sales and /

the commission rate and

Prompt the user to enter
assign it to comm-rate.

commission = sales *
comm-rate

/ commission /

want to calculate another
commission? (Enter y for
yes)' and assign the input

The whi | e Loop is a Pretest Loop

Thewhil eloop is known as a pretest loop, which meansiit tests its condition before per-
forming an iteration. Because the test isdone at the beginning of the loop, you usualy have

5.2 Thewhi | e Loop: a Condition-Controlled Loop

to perform some steps prior to the loop to make sure that the loop executes at least once.
For example, the loop in Program 5-1 starts like this:

whi | e keep-going == 'y':

The loop will perform an iteration only if the expression keep going == ry' is
true. This means that (a)the keep going variable has to exist, and (b) it has to
reference the value 'y'. To make sure the expression is true the first time that the
loop executes, we assigned the value 'y* to the keep going variable in line 4 as
follows:

keep- going = 'y:

By performing this step we know that the condition keep going == 'y’ will be true
the first time the loop executes. This is an important characteristic of the while loop: it
will never execute if its condition is false to start with. In some programs, this is exactly
what you want. The following In the Spozlight section gives an example.

157

substaln ce's Ce
cature i

Inall but rare cases, loops must contain within themselvesa way to terminate. This means
that something inside the loop must eventually make the test condition false. The loop in
Program 5-1 stops when the expression keepgoing == 'y’ isfase. If aloop does not
have a way of stopping, it is called an infinite loop. Aninfinite loop continues to repeat
until the program is interrupted. Infinite loops usually occur when the programmer forgets
to write code inside the loop that makes the test condition false. In most circumstances you
should avoid writing infinite loops.

Program 5-3 demonstrates an infinite loop. This is a modified version of the commission
calculating program shown in Program 5-1. In this version, we have removed the code that
modifies the keep_going variable in the body of the loop. Each time the expression
keep—going == 'y’ istested inline 7, keep_going will referencethe string 'y'. Asa
consequence, the loop has no way of stopping.

Program 5-3 (infinite.py)

15
16
17
18

This program denonstrates an infinite | oop.
def main():
Create a variable to control the I oop.
keep- going = 'y’

Warning! Infinite Ioop!

whi |l e keep-going == 'y':
Get a sal esperson's sal es and conm ssion rate.
sales = input('Enter the anount of sales: ')

cormrate = input('Enter the conm ssion rate: ")

Cal cul ate the comm ssi on.

conmi ssion = sales * comm rate

Display the comm ssion.
print ' The conmssionis $%.2f.' % conmmi ssion

Call the main function.

160

Chapter 5 Reptition Structures

Functions can be caled from statementsin the body of aloop. In fact, such code in aloop
often improvesthe design. For example, in Program 5-1, the statementsthat get the amount
o sdes, caculate the commission, and display the commission can easily be placed in afunc-
tion. That function can then be called in the loop. Program 5-4 shows how this might be done.

This program bas a main function, which is called when the program runs, and a
show_commission function that handles all of the steps related to calculating and
displaying acommission. Figure 5-4 showsflowchartsfor themain and show_commission
functions.

Program 5-4 (commission2.py)

1
2
3
4
5
6

30

This programcal cul ates sal es commi ssi ons.
def main():
Create a variable to control the |oop.
keep-going = 'y

Calcul ate a series of commi ssions.

whi | e keep-going == 'y':
Call the show-comm ssionfunction to
display a sal esperson's conm ssi on.
show_commission()

See if the user wants to do another one.
keep-going = rawinput (‘Do you want to cal cul ate another ' + \
‘commission(Enter y for yes): ')

The show-conmm ssi onfunction gets the amount of

sales and the comm ssion rate, and then displays

4 the amount of commi ssion.

def show commission():
Get a sal esperson's sales and conm ssion rate.
sales = input (' Enter the amount of sales: ')
comm rate = input('Enter the commission rate:)

Cal cul ate the comm ssion.

comm ssion = sales * comm_rate

Display the comm ssion.
print 'The commission is $%2f.' % conm ssion

Call the main function.

The output of this programis the same asthat of Program 5-1

5.3 Thefor Loop: a Count-ControlledLoop 161

‘e 5-4 Flowcharts for the main and show conm ssi onfunctions

Prompt the user to enter

| Assign 'y' to keep—going | the amount of sales and
assign it to sales.

Prompt the user to enter
the commission rate and

assign it to comm-rate.

commission = sales *

True ‘
comm-rate

< keep-going ==y’

commission

v

| | show_commission()] | Display the /

False

54 What is aloop iteration?
55 Doesthewhileloop test its condition before or after it performs an iteration?
56 How many timeswill 'Hello World'b e printed in the following program?

count = 10
while count < 1:
print 'Hello World

.5.7 What is an infinite loop?

The for Loomn:

|

L CONCEPT: A count-controlled loop iterates a specific number of times. In Python
you use the f or statement to write a count-controlled loop.

As mentioned at the beginning of this chapter, a count-controlled loop iterates a specific
number of times. Count-controlled loops are commonly used in programs. For example,

162

Chapter 5 Repetition Structures

suppose a business is open six days per week, and you are going to write a program that
calculates the total sales for a week. You will need a loop that iterates exactly six times.
Each time the loop iterates, it will prompt the user to enter the sales for one day.

You use the for statement to write a count-controlled loop. In Python, the for statement
is designed to work with a sequence of data items. When the statement executes, it iterates
once for each item in the sequence. Here is the general format:

for variable in [valuel, value2, etc.]:
st at enent
st at enent
etc.

We will refer to the first line asthe for clause. In the for clause, variabl eisthe name
of a variable. Inside the brackets a sequence of values appears, with a comma separating
each value. (InPython, acomma-separated sequenceof dataitemsthat are enclosed in a set
of bracketsis caled alist. In Chapter 8 you will learn more about lists.) Beginning at the
next lineis a block of statements that is executed each time the loop iterates.

The for statement executesin the following manner: Thevariabl e is assigned the first
value in the list, and then the statements that appear in the block are executed. Then,
variable is assigned the next valuein the list, and the statements in the block are exe-
cuted again. This continues until variable has been assigned the last value in the list.

Program 5-5 shows a simple example that uses a for loop to display the numbers 1
through 5.

Program 5-5 (simple-loopl.py)

This program denonstrates a sinple for |oop
that uses a l|ist of numnbers.

def main():

print *I will display the nunmbers 1 throhgh 5.
for numin [1, 2, 3, 4, 57:
print num

Call the main function.
mai n()

Program Output

g >~ w

di splay the numbers 1 through 5.

The first time the for loop iterates, the num variable is assigned the value 1 and then the
print statement in line 7 executes (displayingthe value 1) .The next timethe loop iterates,

nurn is assigned the value 2, and the print statement executes (displaying the value 2).
This process continues, as shown in Figure 5-5, until num has been assigned the last value
in the list. Becausethe list contains five values, the loop will iterate five times.

Python programmers commonly refer to the variable that is used in the f or clause as the
target variable because it is the target of an assignment at the beginning of each loop

iteration.

Figure 5-5 The for loop

1st iteration:

2nd iteration:

3rd iteration:

4th iteration:

5th iteration:

The values that appear in the list do not have to be a consecutively ordered series of num-
bers. For example, Program 5-6 usesafor loop to display alist of odd numbers. There are

for nunin [1,
print nurn

for num in [1,
print nurn

for num in (1,
print nurn

for num jn (1,
print numn

for num in [1,
print numn

2,

five numbers in the list, so the loop iterates five times.

Program 5-6 (simple_loop2.py)

This program al so denonstrates a sinple for

loop that uses a |list of nunbers.

def main():

print "I will display the odd nunbers 1 through 9.
7,

for unin [1, 3, 5,
print num

Call the main function.
mai n()

91:

5.3 The f or Loop: a Count-Controlled Loop

5l :

51:

5| :

i

163

164 Chapter 5 Repition Structures

Program Output
I will display the odd nunbers 1 through 9.

© N o W -

Program 5-7 shows another example. In this program the f or loop iterates over alist of
strings. Notice that the ligt (inline 5) contains the three strings 'Winken', 'Blinken', and
‘Nod'. As aresult, the loop iterates three times.

Program 5-7 (simple_loop3.py)

This program al so denonstrates a sinple for
loop that uses a list of nunbers.

1

2

3

4 def main():
5 for name in ['"Wnken', '"Blinken', 'Nod']:
6 print name

7

8 # Call the main function.

9 main()

Program Output

w
Blinken

Nod

Using the range Function with the for Loop

Python provides a built-in function named range that simplifies the process of writ-
ing acount-controlled f or loop. Hereisan example of af or loop that usesthe range
function:

for numin range(5):
print num

Notice that instead of using alist of values, we call to the range function passing 5 as an
argument. In this statement the range function will generate a list of integersin the range
of 0 up to (butnot including) 5. This code works the same as the following:

for numin [0, 1, 2, 3, 4}:
print num

5.3 The f or Loop: a Count-Controlled Loop

As you can se¢, the list containsfive numbers, so the loop will iterate five times. Program 5-8
uses the range function with a f or loop to display "Hello world" five times.

This program denonstrates how t he range
function can be used with a for |oop.

def main():
Print a nessage five tinmes.
for x in range(5):
print 'Hello world!"

call the main function.
mai n()

Program Output

Hell 0 world
Hell o wor.
Hello wor
Hello world

He.

1d

If you pass one argument to the range function, as demonstrated in Program 5-8, that
argument is used as the ending limit of the list. If you pass two arguments to the range
function, the first argument is used as the starting value of the list and the second argument
is used as the ending limit. Here is an example:

for numin range(l, 5):
print num

This code will display the following:

By default, the range function produces a list of numbers that increase by 1 for each suc-
cessive number in the list. If you pass a third argument to the range function, that argu-
ment isused as step value. Instead of increasing by 1, each successive number in the list will
increase by the step value. Here is an example: 2

for numin range(l, 10, 2):
print num

In this f or statement, three arguments are passed to the range function:

e Thefirst argument, 1, is the starting valuefor the list.
e Thesecond argument, 10, isthe ending limit of the list. This means that the last num-
ber in the list will be 9.

165

s The third argument, 2, is the step value. This means that 2 will be added to each suc-
cessive number in the list.

This code will display the following:

In a for loop, the purpose of the target variableis to reference each item in a sequence of
items as the loop iterates. In many situationsit is helpful to use the target variable in a cal-
culation or other task within the body of the loop. For example, suppose you need to write
4 program that displaysthe numbers 1 through 10 and their squares, in a table similar to
the following:

Number Square

This can be accomplished by writing af or loop that iterates over the values 1 through 10.
During the first iteration, the target variable will be assigned the value 1, during the second
iteration it will be assgned the value 2, and so forth. Because the target variable will refer-
ence the vaues 1 through 10 during the loop’s execution, you can useit in the calculation
inside the loop. Program 5-9 shows how this is done.

Program 5-9 (squares.py)

1 # This program uses a loop to display a
2 # table showing the numbers 1 through 10
3 # and their Squares.
4

5.3 Thefor Loop: a Count-Controlled Loap

def main():
Print the table headings.
print 'Number\tSquare'
print o

Print the numbers 1 through 10
and their squares.
for number in range(l, 11):
square = number**2
print number, *\t', square

Call the main function.
mai n()

First, take a closer ook at line 7, which displays the table headings:
print ‘'Number\tSquare'

Notice that inside the string literal the \t escape sequence between the words Number
and Square. Recall from Chapter 2 that the \t escape sequence is like pressing the
Tab key; it causes the output cursor to move over to the next tab position. This
causes the spaces that you see between the words Number and Square in the sample
output.

The for loop that beginsin line 12 uses the range function to produce a list containing
the numbers 1 through 10. During the first iteration, number will reference 1, during the
second iteration number will reference 2, and so forth, up to 10. Inside the loop, the state-
ment in line 13 raises number to the power of 2 (recall from Chapter 2 that ** is the expo-
nent operator), and assigns the result to the square variable. The statement in line 14
prints the value referenced by number, tabs over, and then prints the value referenced by
square. (Tabbing over with the \t escape sequence causes the numbers to be aligned in
two columns in the output.)

Figure 5-6 shows how we might draw a flowchart for this program.

167

168 Chapter 5 Repetition Structures

Figure 5-6 Flowchart for Program 5-9

Display Table Headings

/

(Is there another
value in the list?

No (False)

e
square = number 2

1 I |

1ir values convertec
les per hour is:

per hot

© 00 ~NO U~ WNPE

PR R R PR RP =P R
0N O WN R O

18
20

In many cases, the programmer knows the exact number of iterations that aloop must per-
form. For example, recall Program 5-9, which displays a table showing the numbers 1
through 10 and their squares. When the code was written, the programmer knew that the
loop had to iterate over the values 1 through 10.

Sometimes the programmer needs to let the user control the number of times that a loop
iterates. For example, what if you want Program 5-9 to be a bit more versatile by alowing
the user to specify the maximum value displayed by the loop? Program 5-11 shows how
you can accomplish this.

This programuses a loop to display a
tabl e of nunbers and their squares.

def main():
Get the ending limt.
print 'This programdisplays a |list of nunbers'
print ‘(starting at 1) and their squares. '
end = input('How high should | go? ')

Print the tabl e headings.
print 'Number\tSquare'

Print the nunbers and their squares.
for nunber in range(i, end + 1):
squar e = number**2
print nunber, '\t', square

Call the main function.
mai n()

5.3 Thefor Loop: a Count-Controlled Loop 171

is program disj
tarting at 1)
hi gh shoul d
nber

This program asks the user to enter a value that can be used as the ending limit for the list.
Thisvalueis assigned to the end variable in line 8. Then, the expression end + 1isused in
line 15 as the second argument for the range function. (We have to add one to end
because otherwise the list would go up to, but not include, the value entered by the user.)

Program 5-12 shows an example that allows the user to specify both the starting value and
the ending limit of thelist.

This programuses a loop to display a
table of nunbers and their squares.

def main():
Get the starting val ue
print 'This programdisplays a |list of nunbers
print ‘and their squares.
start = input (' Enter the starting nunber:)

Get the ending limt.
end = input(°'How high should | go? ')

Print the tabl e headings.
print

print ‘Number\tSquare'
print '~--ecsemmmmeao- '

Print the nunbers and their squares.
for nunber in range(start, end + 1):
squar e = number#**2
print nunber, ‘“\t', square

Call the main function
mai n()

172 Chepter 5 Repdition Structures

This program d
and their squa
Enter the star

In the examples you have seen so far, the range function was used to generate a list with
numbers that go from lowest to highest. Alternatively, you can use the range function to
generate lists of numbers that go from highest to lowest. Here is an example:

In this function call, the starting value is 10, the list's ending limit is 0, and the step value
is —1. This expression will produce the following list:

Here is an example of a f or loop that prints the numbers 5 down to 1.

for numin range(5, 0, -1):
print num

“ Checkpoint
5.8 Rewrite the following code so it callsthe range function instead of using the list
[0, 1, 2, 3, 41 57.
for x in [0, 1, 2, 3, 4, 5]:
print 'I love to program '
59 What will the following code display?
for nunber in range(6):
print nunber
5.10 What will the following code display?
for number in range(2, 6):
print nunber
5.11 What will the following code display?
for nunber in range(0, 501, 100):
print nunber
5.12 What will the following code display?
for nunber in range(10, 5, -1):
print nunber

5.4 Calculating a Running Totd

CONCEPT: A running total is a sum of numbers that accumulates with each itera-
tion of aloop. The variable used to keep the running total is called an
accumul ator.

Many programming tasks require you to calculate the total of a series of numbers. For
example, suppose you are writing a program that calculates a businesss total sales for a
week. The program would read the sales for each day as input and calculate the total of
those numbers.

Programs that calculate the total of a series of numbers typically use two elements:

e A loop that reads each number in the series.
e A variable that accumulates the total of the numbers as they are read.

The variable that is used to accumulate the total o the numbersis caled an accumulator. It is
often said that the loop keeps a running total because it accumulates the total as it reads each
number in the series. Figure5-7 showsthe general logic o aloop that calculatesa runningtotal .

: 5-7 Logic for calculating a running total

.

Set accumulator to 0

Is there another ™ *'''t=! ‘ Add the number to the
Read the next number
number to read? accumulator

When the loop finishes, the accumulator will contain the total of the numbers that were
read by the loop. Notice that the first step in the flowchart is to set the accumulator vari-
ableto 0. Thisis acritical step. Each time the loop reads a number, it adds it to the accu-
mulator. If the accumulator starts with any value other than 0, it will not contain the cor-
rect total when the loop finishes.

Let's look at a program that calculates a running total. Program 5-13 allows the user to
enter five numbers, and it displaysthe total of the numbers entered.

173

This program cal cul ates the sum of
five nunbers entered by the user.

def main():
Initialize an accunul ator vari abl e.
total = 0.0

Expl ai n what we are doi ng.
print 'This program cal cul ates the sum of"'
print ‘five nunbers you will enter.

Get five nunbers and accumul ate them
for counter in range(5):
nunber = input ('Enter a nunber: ')
total = total + nunber

Display the total of the nunbers.
print 'Thetotal is', total

Call the main function.
mai n()

i ve nunbers you wil |
nter a nunber: 1 [Ente:
nter a number: 2 [Emter

nunber : 4 [Enter
nunber : 5 [Enter

The total variable, created by the assignment statement in line 6, is the accumulator.
Notice that it isinitialized with the value 0.0. The for loop, in lines 13 through 15, does
the work of getting the numbers from the user and calculating their total. Line 14 prompts
the user to enter a number, and then assigns the input to the number variable. Then, the
following statement in line 15 adds number to total:

total = total + nunber

After this statement executes, the value referenced by the number variable will be added to
the value in the total variable. It's important that you understand how this statement
works. First, the interpreter gets the value of the expression on the right side of the =
operator, whichistotal + number. Then, that valueis assigned by the = operator to
the total variable. The effect of the statement is that the value of the number variable is

5.4 Calculating a Running Total 175

added to the total variable. When the loop finishes, the total variable will hold the sum
of all the numbers that were added to it. This value is displayed in line 18.

w?

The Augmented Assignment

Quite often, programs have assignment statements in which the variable that is on the left
side o the = operator also appears on the right side o the = operator. Here is an example:

On the right side of the assignment operator, 1 is added to x. The result is then assigned to
X, replacing the value that x previously referenced. Effectively, this statement adds 1 to x.
You saw another example of this type of statement in Program 5-14:

total = total + nunber

This statement assignsthe value of total + number to total. As mentioned before, the
effect of this statement is that number is added to the value of total. Here is one more
example:

bal ance = bal ance - wi t hdr awal

This statement assignsthe value of the expression balance - withdrawal tobalance.
The effect of this statement is that withdrawal is subtracted from balance.

Table 5-1 shows other examples of statements written this way.

Table 5-1 Various assignment statements (assume x = 6 in each statement)

Statement What It Does Vdue of x after the Statement
= x + 4 Add 4 to x 10

X =x -3 Subtracts 3 from x 3

x = x * 10 Multiplies x by 10 60

x=x/2 Dividesx by 2 3

X =x % 4 Assignsthe remainder of X / 4 tox 2

These types of operations are common in programming. For convenience, Python offers a
special set of operators designed specifically for these jobs. Table 5-2 shows the augmented
assignment operators.

Table 5-2 Augmented assignment operators

Operator Example Usage Equivalent To
+= x += 5 Xx =x+5

176

Chapter 5 Repdtition Structures

Asyou can see, the augmented assignment operators do not require the programmer to type
the variable name twice. The following statement:

total = total + nunber
could be rewritten as

total += nunber
Similarly, the statement

bal ance = bal ance — wi t hdr awal
could be rewritten as

bal ance —= wi t hdr awal ;

heckpoint
5.13 What is an accumulator?
5.14 Should an accumulator be initialized to any specific value?Why or why not?
5.15 What will the following code display?
total = 0
for count in range(l, 6):

total = total + count
print total

5.16 What will the following code display?

nunberl = 10
nunber2 = 5
nunber! = nunberl <+ nunber2

print numberl
print nunmber?2

5.17 Rewrite the following statements using augmented assignment operators:
a) quantity = quantity + 1
b) days_left = days_left — 5
c) price = price * 10
d) price = price / 2

Sentinels

CONCEPT: A sentinel is a specia value that marks the end of a sequence df values.

Consider the following scenario: You are designing a program that will use a loop to
process a long sequence of values. At the time you are designing the program, you do not
know the number of valuesthat will bein the sequence. In fact, the number of valuesin the
sequence could be different each time the program is executed. What is the best way to
design such a loop? Here are some techniques that you have seen already in this chapter,
along with the disadvantages of using them when processing a long list of values:

5.5 Sentinels

= Simply ask the user, at the end of each loop iteration, if there is another value to
process. If the sequence of valuesis long, however, asking this question at the end of
each loop iteration might make the program cumbersome for the user.

¢ AsK the user at the beginning of the program how many items are in the sequence. This
might also inconvenience the user, however. If the sequenceis very long, and the user
does not know the number of itemsit contains, it will require the user to count them.

When processing a long sequence of values with a loop, perhaps a better techniqueis to use a
sentinel. A sentinel isa specid valuethat markstheend of asequenced items. When a program
reads the sentinel vaue, it knows it has reached the end of the sequence, so the loop terminates.

For example, suppose a doctor wants a program to calculate the average weight of all her
patients. The program might work like this: A loop prompts the user to enter either a
patient's weight, or 0 if there are no more weights. When the program reads 0 as a weight,
it interpretsthis as asignal that there are no more weights. The loop ends and the program
displays the average weight.

A sentinel value must be distinctive enough that it will not be mistaken as a regular value
in the sequence. In the example cited above, the doctor (or her medical assistant) enters 0
to signal the end of the sequence of weights. Because no patient's weight will be 0, thisis a
good value to use as a sentingl.

177

5.6 Input Vdidation Loops

Checkpoint
5.18 What is a sentinel?
5.19 Why should you take care to choose a distinctive value as a sentinel ?

- CONCEPT: Input validation is the process of inspecting data that has been input to

a program, to make sureit is valid before it is used in a computation.
Input validation is commonly done with aloop that iterates as long as an
input variable referencesbad data.

One of the most famous sayings among computer programmers is "garbage in, garbage
out." This saying, sometimes abbreviated as GIGO, refersto the fact that computers can-
not tell the difference between good data and bad data. If a user provides bad data as input
to a program, the program will processthat bad data and, as a result, will produce bad data
as output. For example, look at the payroll program in Program 5-15 and notice what hap-
pens in the sample run when the user gives bad data as input.

This program di spl ays gross pay.

def nmain():
4 Get the nunber of hours worked.
hours = input('Enter the hours worked this week: ')

Get the hourly pay rate.
pay-rate = input('Enter the hourly pay rate: ')

Cal cul ate the gross pay.
gross- pay = hours * pay-rate

Display the gross pay.
print 'The gross pay is $%.2f.' % Qross- pay

Call the main function.
mai n()

Program Output (with input shown in bold)

Enter the hours worked this week: 400 [Enter]
Enter the hourly pay rate: 20

The gross pay is $8000.00

Did you spot the bad data that was provided as input?The person receiving the paycheck
will be pleasantly surprised, becausein the sample run the payroll clerk entered 400 as the

179

180

Chapter 5 Repstition Structures

number of hours worked. The clerk probably meant to enter 40, because there are not 400
hoursin aweek. The computer, however, is unaware of thisfact, and the program processed
the bad data just asif it were good data. Can you think of other typesdf input that can be
given to this program that will result in bad output? One example is a negative number
entered for the hours worked; another is an invalid hourly pay rate.

Sometimes stories are reported in the news about computer errors that mistakenly cause
people to be charged thousands of dollarsfor small purchases or to receive largetax refunds
that they were not entitled to. These " computer errors" are rarely caused by the computer,
however; they are more commonly caused by bad data that was read into a program as
input.

Theintegrity of a program's output isonly as good asthe integrity of itsinput. For this rea-
son, you should design your programsin such away that bad input is never accepted. When
input is given to a program, it should be inspected before it is processed. If the input is
invalid, the program should discard it and prompt the user to enter the correct data. This
process is known as input validation.

Figure 5-8 shows a common technique for validating an item of input. In this technique,
the input is read, and then aloop is executed. If the input data is bad, the loop executesits
block of statements. The loop displaysan error message so the user will know that the input
was invalid, and then it reads the new input. The loop repeats as long as the input is bad.

Figure 5-8 Logic containing an input validation loop

Get the input again

(False)

Notice that the flowchart in Figure 5-8 reads input in two places: first just before the
loop and then inside the loop. Thefirst input operation— just before the loop—iscalled
a priming read, and its purpose is to get the first input value that will be tested by
the validation loop. If that value is invalid, the loop will perform subsequent input
operations.

5.6 Input Vdidation Loops

Let's consider an example. Suppose you are designing a program that reads a test score and
you want to make sure the user does not enter a value less than 0. The following code shows
how you can use an input validation loop to reject any input value that is less than 0.

Get a test score.
score = input{'Enter a test score: ')

Make sure it is not less than 0.

whil e score < O:
print 'ERROR. The score cannot be negative.
score = input ('Enter the correct score: ‘)

This code first prompts the user to enter a test score (thisis the priming read), and then the
whi | e loop executes. Recall that the whi | e loop is a pretest loop, which meansit tests the
expression score < 0 beforeperforming aniteration. If the user entered a valid test score,
this expression will be false and the loop will not iterate. If the test scoreis invalid, however,
the expression will be true and the loop's block of statements will execute. The loop dis-
plays an error message and prompts the user to enter the correct test score. The loop will
continue to iterate until the user enters a valid test score.

This code regjects only negative test scores. What if you also want to reject any test scores
that are greater than 100? You can modify the input validation loop so it uses a compound
Boolean expression, as shown next.

Get a test score.
score = input ("Enter a test score: ')

Make sure it is not less than 0 or greater than 100.
while score < 0 or score > 100:

print 'ERROR The score cannot be negative'

print 'or greater than 100.

score = input ('Enter the correct score: ")

The loop in this code determines whether scor e islessthan 0 or greater than 100. If either
is true, an error message is displayed and the user is prompted to enter a correct score.

181

nter the items whol esal e cost: -.50
RRCR the cost cannot be negati ve.

SN

he retail price is $1.25.
o you have another iten? (Enter y for yes)

Checkpoint
5.20 What does the phrase "garbage in, garbage out" mean?
5.21 Giveagenera description of the input validation process.

5.22 Describe the steps that are generally taken when an input validation loop is used
to validate data.

5.23 What isa priming read? What is its purpose?
5.24 If the input that is read by the priming read is valid, how many times will the
input validation loop iterate?

Nested Loops

CONCEPT: A loop that isinside another loop is called a nested |oop.

A nested loop is aloop that is inside another loop. A clock is a good example of something
that works like a nested loop. The second hand, minute hand, and hour hand all spin
around the face of the clock. The hour hand, however; only makes 1 revolution for every

12 of the minute hand's revolutions. And it takes 60 revolutions of the second hand for the
minute hand to make 1 revolution. This means that for every complete revolution of the
hour hand, the second hand has revolved 720 times. Here is aloop that partially simulates

adigital clock. It displaysthe seconds from 0 to 59:

for seconds in range(60):
print seconds

We can add a minutes variable and nest the loop above inside another loop that cycles

through 60 minutes:

for mnutes in range(60):
for seconds in range(60):
print mnutes, ':', seconds

To makethesmulated clock complete, another variable and loop can be added to count the hours:

for hours in rangg24):
for mnutes in range(60):
for seconds in range(60):
print hours, ':', mnutes, ':', seconds

5.7 Nested Loops 185

This code's output would be:
0:0:0
0:0:1
0:0:2
(The program will count through each second of 24 hours.)
23:59:59

The innermost loop will iterate 60 timesfor each iteration of the middle loop. The middle
loop will iterate 60 timesfor each iteration o the outermost loop. When the outermost loop
has iterated 24 times, the middlieloop will have iterated 1440 times and the innermost 1oop
will have iterated 86,400 times! Figure 5-9 shows a flowchart for the complete clock sim-
ulation program previously shown.

e 5-9 Flowchart for a clock simulator

186 Chapter 5 Repstition Structures

The simulated clock example brings up a few points about nested loops:

An inner loop goes through all of its iterations for every single iteration of an outer
loop.

Inner loops complete their iterations faster than outer loops.

To get the total number of iterations of a nested loop, multiply the number of itera-
tions of dl the loops.

, decisior
. count

. count

ach repet
. cycle

. revoluti
. orbit
. iteratic

'hewhil

. ho-test
. prequal
. bost ite

. intermi
. infinite

el A=
'he -= op

. relation

; 6.1 introduction to VdueReurning 6.2 Writing Yar Own Functions
Functions Generating Random 6.3 The math Module
g Numbers 6.4 Storing Functionsin Modules

CONCEPT: A vaue-returning function is a function that returns a value back to the
part of the program that called it. Python, as well as most other pro-
gramming languages, provides a library of prewritten functions that per-
form commonly needed tasks. These libraries typically contain a function
that generates random numbers.

In Chapter 3 you learned about simplefunctions. A simplefunction isagroup o statements
that exist within a program for the purpose of performing a specific task. When you need
the function to perform itstask, you call the function. This causesthe statements inside the
function to execute. When the function is finished, control of the program returns to the
statement appearing immediately after the function call.

A valuereturning function is a specia type o function. It is like a ssimple function in the
following ways.

s [tisagroup of statements that perform a specific task.
= When you want to execute the function, you call it.

When a value-returning function finishes, however, it returns a value back to the part of the
program that called it. The valuethat is returned from a function can be used like any other
value: it can be assigned to a variable, displayed on the screen, used in a mathematical
expression (ifit isa number), and so on.

192

Chapter 6 Vdue-Returning Functions and Modules

Standard Library Functions

Python, as well as most other programming languages, comes with a standard library of
functions that have already been written for you. These functions, known as library func-
tions, make a programmer's job easier because they perform many o the tasks that pro-
grammers commonly need to perform. In fact, you have aready used several of Python's
library functions. Some o the functions that you have used are input, raw— input, and
range. Python has many other library functions. Although we won't cover them al in this
book, we will discusslibrary functions that perform fundamental operations.

Some of Python's library functions are built into the Python interpreter. If you want to use
one of these built-in functions in a program, you simply call the function. This is the case
with the input, raw— input, range, and other functions that you have already learned
about. Many o the functions in the standard library, however, are stored in files that are
known as modules. These modules, which are copied to your computer when you install
Python, help organize the standard library functions. For example, functions for performing
math operations are stored together in a module, functions for working with files are stored
together in another module, and so on. In order to call afunction that is stored in a module,
you have to write an import statement at the top of your program. An i mport statement
tellsthe interpreter the name of the module that contains the function.

Because you do not seethe internal workings of library functions, many programmers think
of them as black boxes. The term "black box" is used to describe any mechanism that
acceptsinput, performs some operation (thatcannot be seen) using the input, and produces
output. Figure 6-1 illustrates this idea.

Figure 6-1 A library function viewed as a black box

Input Output

This section demonstrates how functions work by looking at standard library functions
that generate random numbers, and some interesting programs that can be written with
them. Then you will learn to write your own vaue-returning functions and how to create
your own modules. The last section in this chapter comes back to the topic of library func-
tions and looks at several other useful functions in the Python standard library.

Generating Random Numbers

Random numbers are useful for lots of different programming tasks. Thefollowing are just
a few examples.

* Random numbers are commonly used in games. For example, computer games that
let the player roll dice use random numbers to represent the vaues of the dice.
Programs that show cards being drawn from a shuffled deck use random numbersto
represent the face values of the cards.

¢ Random numbers are useful in simulation programs. In some simulations, the com-
puter must randomly decide how a person, animal, insect, or other living being will

6.1 Introduction to Vaue-Returning Functions: Generating Random Numbers

behave. Formulas can be constructed in which a random number is used to determine

various actions and events that take place in the program.
e Random numbers are useful in statistical programs that must randomly select datafor

analysis.
¢ Random numbers are commonly used in computer security to encrypt sensitive data.

Python provides several library functions for working with random numbers. These func-
tions are stored in a module named random in the standard library. To use any of these
functions you first need to write thisi mport statement at the top of your program:

i nport random

This statement causes the interpreter to load the contents of the random module into
memory. This makes all of the functions in the random module available to your program'

The' first random-number generating function that we will discuss is named randint.
Because the randint function is in the random module, we will need to use dot notation
to refer to it in our program. In dot notation, the function's name is random. randint.
On the l€eft side of the dot (period)is the name of the module, and on the right side of the
dot is the name o the function.

The following statement shows an example of how you might call the randint function.
nunber = random.randint(1l, 100)

The part o the statement that reads random. randint (1, 100) isacal tothe randint
function. Notice that two arguments appear inside the parentheses: 1 and 100. These argu-
mentstell the function to give an integer random number in the range o 1 through 100. (The
values 1 and 100 are included in the range.) Figure 6-2 illustrates this part of the statement.

Figure 6-2 A statement that calls the random function

Arguments

nunber = random randint (1, 100)

Functioncall

Notice that the call to the randint function appears on the right side of an = operator.
When the function iscalled, it will generate a random number in the range of 1 through 100
and then return that number. The number that is returned will be assigned to the number
variable, as shown in Figure 6-3.

Program 6-1 shows a complete program that uses the randint function. The state-
ment in line 2 generates a random number in the range of 1 through 10 and assignsiit
to the number variable. (The program output shows that the number 7 was generat-
ed, but this value is arbitrary. If thiswere an actual program, it could display any num-
ber from 1to 10.)

‘There are several ways to write an import statement in Python, and each variation works a little differently.
Many Python programmers agree that the preferred way to import a module is the way shown in this boolc.

193

194

Chapter 6 Vaue-Returning Functions and Modules

The random function returns a value

number = random. randint (1, 100)

A random number in the range of
1 through 100 will be assignedto
the number variable.

This program di spl ays a random nunber
in the range of 1 through 10.
i mport random

def main():
Get a random nunber.
nunber = random.randint(1l, 10)
Di splay the nunber.
print ' The nunber is', nunber

Call the main function.
mai n()

Program Output
The nunber is 7

Program 6-2 shows another example. This program usesaf or loop that iterates fivetimes.
Inside the loop, the statement in line 8 callsthe randint function to generate a random
number in the range of 1 through 100.

(random-numbers2.py)

This programdisplays five random
nunbers in the range of 1 through 100.
i mport random

def main():
for count in range(5):
Get a random nunber.
nunber = random.randint{1l, 100)
D splay the nunber.
print nunber

Call the main function.
mai n()

6.1 Introduction to Vaue-Returning Functions: Generating Random Numbers

Program Output

89
7

i6
41
12

Both Programs 6-1 and 6-2 call the randint function and assign its return value to the
number variable. If you just want to display a random number, it is not necessary to assign
the random number to a variable. You can send the random function's return value directly
to the print statement, as shown here:

print random.randint(1l, 10)

When this statement executes, the randint function is called. The function generates a
random number in the range o 1 through 10. That value is returned and then sent to the
print statement. As a result, a random number in the range of 1 through 10 will be dis-
played. Figure 6-4 illustrates this.

5y

igure 6.4 Displaying a random number

print random. randint (1, 10)

A random number in the range of
1 through 10 will be displayed.

Program 6-3 shows how you could simplify Program 6-2. This program also displays five
random numbers, but this program does not use a variable to hold those numbers. The
randint function's return valueis sent directly to the print statement in line 7.

Program 6-3 (random-numbers3.py)

1
2
3
4
5
6
7

9
10

This program displays five random
numbers in the range of 1 through 100.
i mport random

def main():
for count in range(5):
print random.randint(l, 100)

Call the main function.
main()

Program Output

89
7

16
41
12

195

The randint function returns an integer value, so you can writeacall to the function any-
where that you can write an integer value. You have already seen examples where the func-
tion's return value is assigned to a variable and where the function's return valueis sent to
the print statement. To further illustrate the point, here is a statement that uses the
randint function in a math expression:

In this statement, a random number in the range of 1 through 10 is generated and then mul-
tiplied by 2. Theresult isa random integer from 2 to 20 assigned to the x variable. You can
aso test the return value of the function with ani f statement, as demonstrated in the fol-
lowing In the Spotlight section.

The standard library's random module contains numerous functions for working with
random numbers. In addition to the randint function, you might find the randrange,
random, and uniform functions useful. (To use any of these functions you need to write
import random at the top of your program.)

If you remember how to use the range function (whichwe discussed in Chapter 5) then
you will immediately be comfortable with the randrange function. The randrange
function takes the same arguments as the range function. The difference is that the
randrange function does not return alist of values. Instead, it returns a randomly selected
value from a sequence of values. For example, the following statement assigns a random
number in the range of 0 through 9 to the number variable:

nunber = random.randrange(10)

The argument, in this case 10, specifiesthe ending limit of the sequence of values. The func-
tion will return a randomly-selected number from the sequence of values 0 up to, but not

5.1 Introduction to Vdue-Returning Functions: Generating Random Numbers

including, the ending limit. The following statement specifies both a starting value and an
ending limit for the sequence:

number = random.randrange(5, 10)

When this statement executes, a random number in the range of 5 through 9 will be
assigned to number. The following statement specifiesa starting value, an ending limit, and
a step vaue:

nunmber = random.randrange(0, 101, 10)

In this statement the randrange function returns a randomly selected value from the fol-
lowing sequence of numbers:

[0, 10, 20, 30, 40, 50, 60, 70, 80, 920, 100]

Both the randint and the randrange functions return an integer number. The random
function returns, however, returns a random floating-point number. You do not pass any
arguments to the random function. When you call it, it returns a random floating point
number in the range of 0.0 up to 1.0 (butnot including 1.0). Here is an example:

nunber = random.random()

The uniform function aso returns a random floating-point number, but allows you to
specify the range of values to select from. Here is an example:

number = randomuniform(l.0, 10.0)

In this statement the uniform function returns a random floating-point number in the
range of 1.0 through 10.0 and assignsit to the number variable.

Checkpoint
6.1 How does a value-returning function differ from the ssmple functions we discussed
in Chapter 3?

6.2 What is alibrary function?

6.3 .Why arelibrary functions like "black boxes"?

6.4 What does the following statement do?
X = random.randint(l, 100)

6.5 What does the following statement do?
print random.randint(1i, 20)

6.6 What does the following statement do?
print random.randrange(10, 20)

6.7 What does the following statement do?
print random.random()

6.8 What does the following statement do?
print random.uniform(0.1, 0.5)

199

200

Chapter 6 Vdue-Returning Functions and Modules

— CONCEPT: A vaue-returning function has a return statement that returns a value

back to the part of the program that called it.

You write avalue-returning function in the same way that you write a simplefunction, with
one exception: a value-returning function must have a return statement. Here is the gen-
eral format of a value-returning function definition in Python:

def function- name():
st at enent
st at enent
etc.
return expression

One of the statements in the function must bea r et ur n statement, which takes the follow-
ing form:

return expr essi on

The value of the expr essi on that follows the key word return will be sent back to the
part of the program that called the function. This can be any value, variable, or expression
that has a value (such as a math expression).

Here is a simple example of a value-returning function:

def sum(numi, nun®):
result = num + nun®
return result

Figure 6-5 illustrates various parts o the function.

-8 Pasts d the function

The name of this num and num?2 are
function is sum parameters.

def sum(num, num2):
result = numl + num2 This function returns
return result the value referenced by
the r esul t variable.

The purpose o this function is to accept two integer values as arguments and return their
sum. Let's take a closer look at how it works. The first statement in the function's block
assigns the value of numl + num?2 to the result variable. Next, the retur n statement
executes, which causesthe function to end execution and sends the value referenced by the
result variable back to the part of the program that caled the function. Program 6-6
demonstrates the function.

6.2 Writing Your Own Value-Returning Functions

Program 6-6 (total_ages.py)

This program uses the return value of a function.

def nmain():
Get the user's age.
first age = input (‘Enter your age: ')

Get the user's best friend s age.
second- age = input("Enter your best friend s age: ")

Get the sumof both ages.
‘total = sum(first age, second- age)

Display the total age.
print 'Together you are*, total, 'years old.

The sum function accepts two nuneric arguments and
returns the sumof those arguments.
def sum(numl, nun®):

result = num + num2

return result

Call the main function.
mai n()

Program Output (with input shown in bold)

Eni]
Eni 3 age: 24 [Enter]
Toget ner you are 4o years ol d.

In the mai n function, the program gets two values from the user and stores them in the
first_age and second- age variables. The statement in line 11 calls the sumfunction,
passing f i rst - age and second- age as arguments. The value that is returned from the
sumfunction is assigned to the t ot al variable. In this case, the function will return 46.
Figure 6-6 shows how the arguments are passed into the function, and how a value is
'returned back from the function.

Figure 66 Arguments ate passed to the sumfunction and a value is returned

total = sum(first_age, second- age)

def sum(numl, num2):
result = num + nun?
return result

201

202

Chapter 6 Vdue-Returning Functions and Modules

aking the Most of the return Statement
Look again at the sum function presented in Program 6-6:

def sum(num , num?2):
result = numM + num2
return result

Notice that two things happen inside this function: (1)the value of the expression numl +
num2 is assigned to the result variable, and (2) the value of the result variable is
returned. Although this function does what it sets out to do, it can be simplified. Because
the r et ur n statement can return the value of an expression, you can eliminatethe result
variable and rewrite the function as:

def sun{ num , num2):
return num + nun?

Thisversgon o the function does not store the value of numl + num2 in avariable. Instead,
it takesadvantaged thefact that the r et ur n statement can return the value of an expression.
This version of the function does the same thing as the previous version, but in only one step.

Value-returning functions provide many o the same benefits as simplefunctions: they sm-
plify code, reduce duplication, enhance your ability to test code, increasethe speed o devel-
opment, and ease the facilitation of teamwork.

Because value-returning functions return a value, they can be useful in specific situations.
For example, you can use avalue-returning function to prompt the user for input, and then
it can return the value entered by the user. Suppose you've been asked to design a program
that calculates the sale price of an itemin aretail business. To do that, the program would
need to get the item's regular price from the user. Here is a function you could define for
that purpose:

def get-regul ar-price():
price = input("Enter the itenl s regular price: ")
return price

Then, elsewhere in the program, you could call that function, as shown here:

Get the itemis regular price.
reg- price = get-regular-price()

When this statement executes, the get_regular—_price function is called, which gets a
value from the user and returnsit. That valueisthen assigned tothereg_price variable.

You can also use functions to smplify complex mathematical expressions. For example,
calculating the sale price of an item seems like it would be a simple task: you calculate the
discount and subtract it from the regular price. In a program, however, a statement that per-
forms this calculation is not that straightforward, as shown in the following example.
(AssumeDl SCOUNT PERCENTAGEis aglobal constant that is defined in the program, and
it specifies the percentage of the discount.)

sale-price = reg-price — (reg- price * DI SCOUNT_PERCENTAGE)

Ww o N O 0D WN e

W R RERPRPPPRPRER =R
N 0 WNRERO

19
20
21
22
23
24
25
26
27
28
29

6.2 Writing Yaur Own Vdue-Returning Functions

This statement isn't easy to understand because it performs so many steps: it calculates
the discount amount, subtracts that value from reg— price, and assigns the result to
sal e_price. You could smplify the statement by breaking out part o the math expres-
sion and placing it in afunction. Here is afunction named discount that acceptsan item's
price as an argument and returns the amount of the discount:

def discount(price):
return price = DI SCOUNT PERCENTAGE

You could then call the function in your calculation:
sale-price = reg-price - discount(reg price)

Thisstatement is easier to read than the one previously shown, and it is clearer that the dis-
count is being subtracted from the regular price. Program 6-7 shows the complete sale price
calculating program using the functions just described.

This programcal culates a retail items
sal e price.

DI SOOUNT- PERCENTAGE i s used as a gl obal
constant for the di scount percentage.
DI SCOUNT- PERCENTACE = 0. 20

The main function.

def main():
CGet the item s regular price.
reg- price = get-regul ar-price()

Calculate the sale price.
sale-price = reg-price — discount(reg price)

Display the sal e price.
print 'The sale price is $%.2f. * % sale-price

The get-regular-price function pronpts the

4 user to enter an items regular price and it

returns that val ue.

def get-regular-price():
price = input("Enter the item s regular price: ")
return price

The di scount function accepts an itenis price
as an argunent and returns the amount of the
di scount, specified by D SOOUNT- PERCENTAGE
def discount(price):
(program continues)

203

204 Chapter 6 VdueReurning Functions and Modules

Program 6-7 (continued)

30 return price * DI SCOUNT_PERCENTAGE
31

32 # Call the main function.

33 main()

Program Output (with input shown in bold)

Enter the item s regular price: 100.00
The s&le price is $80.00

An IPO chart is a simple but effectivetool that programmers sometimes use for designing
and documenting functions. PO stands for input, processing, and output, and an IPO
chart describesthe input, processing, and output of afunction. Theseitemsare usually laid
out in columns: the input column shows a description of the data that is passed to the func-
tion as arguments, the processing column shows a description of the process that the func-
tion performs, and the output column describesthe data that is returned from the function.
For example, Figure6-7 shows |PO chartsfor the get_regul ar - price and discount
functions that you saw in Program 6-7.

re &7 PO chartsfor the getRegularPrice and di scount functions

item's regular price

DI SOCOUNT- PERCENTAGE.

6.2 Writing Yaur Own Vdue-Returning Functions

Notice that the IPO charts provide only brief descriptions of afunction's input, processing,
and output, but do not show the specific steps taken in a function. In many cases, however,
PO charts include sufficient information so that they can be used instead of a flowchart.
The decision of whether to use an IPO chart, a flowchart, or both is often left to the pro-

grammer's personal preference.

205

So far you've seen examples of functions that return numbers. You can also write functions

that return strings. For example, the following function prompts the user to enter hisor her
name, and then returns the string that the user entered.

def get- name():
Get the user's nane.

6.2 Writing Yar Own VdueReturning Functions

name = raw- i nput (' Enter your nane: ‘')
Return the nare.
return name

Returning Boolean Values

Python allows you to write Boolean functions, which return either True or Fal se. You
can use a Boolean function to test a condition, and then return either True or False to
indicate whether the condition exists. Boolean functions are useful for simplifyingcomplex
conditions that are tested in decision and repetition structures.

For example, suppose you are designing a program that will ask the user to enter a num-
ber, and then determine whether that number is even or odd. The following code shows
how you can make that determination.

nunber = input (‘Enter a nunber: ')
if (number % 2) ==

print 'The nunber is even.
el se:

print ' The nunber is odd.

Let's take a closer look at the Boolean expression being tested by this if-else
statement:

(nunber % 2) ==

This expression uses the % operator, which was introduced in Chapter 2. Thisis called the
remainder operator. It divides two numbers and returns the remainder of the division. So
this code is saying, "If the remainder of number divided by 2 is equal to 0, then display a
message indicating the number is even, or ese display a message indicating the number is
odd."

Because dividing an even number by 2 will always give a remainder of 0, this logic will
work. The code would be easier to understand, however, if you could somehow rewrite it
to say, "If the number iseven, then display a messageindicating it is even, or else display a
messageindicating it isodd." Asit turns out, this can be done with a Boolean function. In
this example, you could write a Boolean function named i s—even that accepts a number
as an argument and returns True if the number is even, or False otherwise. The follow-
ing is the code for such a function.

def is even(number):
Determ ne whether nunber is even. If it is,
set status to true. Otherw se, set status
to false
if (nunmber % 2) == o0:
status = True
el se
status = Fal se
Return the value of the status variable
return status

209

210

Chapter 6 Vaue-Returning Functions and Modules

Then you can rewrite the i f - el se statement so it calls the is— even function to deter-
mine whether number is even:

nunber = input (' Enter a nunber: ')
if is_even(number):

print 'The nunber is even. '
el se:

print 'The nunber is odd. "

Not only is this logic easier to understand, but now you have a function that you can call
in the program anytime you need to test a number to determine whether it is even.

Using Boolean Functions in Validation Code

You can also use Boolean functions to simplify complex input validation code. For instance,
suppose you are writing a program that prompts the user to enter a product model num-
ber and should only accept the values 100,200, and 300. You could design the input algo-
rithm as follows:

Get the nodel nunber.
nodel = input (' Enter the nodel nunber: ')

Val i date t he nodel nunber.

whi | e nodel 1= 100 and nodel !'= 200 and nodel '= 300:
print 'The valid nodel nunbers are 100, 200 and 300.
nodel = input ('Enter a valid nodel nunber: ')

The validation loop uses a long compound Boolean expression that will iterate as long as
model does not equal 100 and model does not equal 200 and model does not equal 300.
Although this logic will work, you can ssimplify the validation loop by writing a Boolean
function to test the model variable and then calling that function in the loop. For exam-
ple, suppose you pass the model variable to a function you write named is_invalid.
The function returns True if model is invalid, or False otherwise. You could rewrite the
validation loop as follows:

Val i date the nodel nunber.

while is_invalid(model):
print 'The valid nodel nunbers are 100, 200 and 300.
nodel = input (' Enter a valid nodel nunber: ')

This makesthe loop easier to read. It is evident now that the loop iterates aslong asmodel
isinvalid. The following code shows how you might write the is_invalid function. It
accepts a model number as an argument, and if the argument is not 100 and the argument
is not 200 and the argument is not 300, the function returns True to indicate that it is
invalid. Otherwise, the function returns False.

def is_invalid(mod num):
if nod- num 1= 100 and nmod- num !'= 200 and nod- num 1= 300:
status = True
el se:
status = Fal se
return status

6. 3 The mat h Module 211

The examplesof value-returning functionsthat we have looked at so far return asingle value.
In Python, however, you are not limited to returning only one value. You can specify multiple
expressionsseparated by commas after the r et ur n statement, as shown in thisgenera format:

return expressionl, expression2, etc.

As an example, look at the following definition for afunction named g et_name. The func-
rion prompts the user to enter hisor her first and last names. These names are stored in two
local variables: first and last. Thereturn statement returns both of the variables.

def get - name():
Get the user's first and | ast nanes.
first = ranwinput('Enter your first name: ')
last = rawinput(' Enter your |ast nane: ')

Return both nanes.
return first, |ast

When you call this function in an assignment statement, you need to use two variables on
the left side of the = operator. Here is an example:

first-name, |ast-name = get- name()

The vaueslisted in the retur n statement are assigned, in the order that they appear, to the
variables on the left side o the = operator. After this statement executes, the value d the
firstvariablewill beassignedto first— nameand the value of the last variablewill be
assignedto | ast_name. Note that the number of variableson the left side of the = operator
must match the number of valuesreturned by the function. Otherwise an error will occur.

“ Checkpoint
6.9 What isthe purpose of the return statement in a function?
6.10 Look at the following function definition:

def do_something(number):
return nunber * 2

a. What is the name of the function?
b. What does the function do?
c. Given the function definition, what will the following statement display?
print do something(10)
6.11 What is a Boolean function?

. CONCEPT: The Python standard library's mat h module contains numerous func-
tions that can be used in mathematical calculations.

The math module in the Python standard library contains several functions that are useful
for performing mathematical operations. Table 6-2 lists many of the functions in the math

212

Chepter 6 Vaue-Returning Functions and Modules

module. These functionstypically accept one or more valuesas arguments, perform a math-
ematical operation using the arguments, and return the result. For example, one of the func-
tionsis named sqrt. The sqrt function accepts an argument and returns the square root
of the argument. Here is an example of how it is used:

result = math.sqrt(16)

This statement calls the sqrt function, passing 16 as an argument. The function returns
the square root of 16, which is then assigned to the resul t variable. Program 6-9 demon-
strates the sqrt function. Notice the import math statement in line 2. You need to write
thisin any program that uses the math module.

Program 6-9 (square_root.py)

This program denonstrates the sqrt function.
i mport math

def main():
Get a nunber.
nunber = input('Enter a nunber: ')

CGet the square root of the nunber.
square-root = math.sgrt(number)

D splay the square root.
print ' The square root of', nunber, 'is', square-root

Call the main function.
mai n()

Program Output (with input shown in bold)
Enter a nunber: 25 [Enter]

he

square root. of 25 is 50

Program 6-10 shows another example that uses the math module. This program uses the
hypot function to calculate the length of aright triangle's hypotenuse.

Program 6-10 (hypotenuse.py)

© 00N O g WN PP

This programcal cul ates the length of a right
triangle' s hypotenuse.
i mport math

def main():
CGet the length of the triangle' s two sides.
a = input('Enter the length of side A ')
b = input('Enter the length of side B ')

6.3 The mat h Module

10 # Calculate the |length of the hypotenuse.
11 ¢ = math.hypot(a, b)

12

13 # Display the length of the hypotenuse

14 print 'The |ength of the hypotenuse is', ¢
15

16 # Call the main function.

17 main()

6-2 Many d thefunctions in the mat h module

math Module Function

Description

acos (X)

atan(x)
ceil(Xx)
cos(x)

exp(x)
floor (X)
hypot (%, y)
log(x)
logl0(x)

radians(x)

Returns the arc cosine of x, in radians.

Returns the arc sine of x, in radians.

Returns the arc tangent o x, in radians.

Returns the smallest integer that is greater than or equal to x.
Returns the cosine of x in radians.

Assuming x is an angle in radians, the function returns the angle
converted to degrees.

Returns e*

Returns the largest integer that is less than or equal to x.

Returns the length of a hypotenuse that extends from (0, 0) to (X, y).
Returns the natural logarithm of x.

Returns the base-10 logarithm of x.

Assuming X is an angle in degrees, the function returns the angle
converted to radians.

Returns the sine of x in radians.
Returns the square root o x.
Returns the tangent of x in radians.

and math.e Values

The math module aso defines two variables, pi and e, which are assigned mathematical
valuesfor pi and e. You can use these variables in equations that require their values. For
example, the following statement, which calculates the area of a circle, uses pi. (Notice
that we use dot notation to refer to the variable.)

area

*

radiusg*=*2

213

214

Chapter 6 Vaue-Returning Functions and Modules

Checkpoint
6.12 What import statement do you need to writein a program that usesthe math module.

6.13 Write a statement that uses a math module function to get the square root of 100
and assignsit to a variable.

6.14 Write a statement that uses a math module function to convert 45 degreesto
radians and assigns the value to a variable.

Storing Functions in Modules

CONCEPT: A moduleis afile that contains Python code. Large programs are easier
to debug and maintain when they are divided into modules.

Asyour programs become larger and more complex, the need to organizeyour code becomes
greater. You have aready learned that a large and complex program should be divided into
functionsthat each performs a specific task. As you write more and more functionsin a pro-
gram, you should consider organizing the functions by storing them in modules.

A module issimply afile that contains Python code. When you break a program into mod-
ules, each module should contain functions that perform related tasks. For example, sup-
pose you are writing an accounting system. You would store all of the account receivable
functions in their own module, al o the account payable functions in their own module,
and al of the payroll functions in their own module. This approach, which is called
modularization, makes the program easier to understand, test, and maintain.

Modules also make it easier to reuse the same code in more than one program. If you have
written a set of functions that are needed in several different programs, you can place those
functions in a module. Then, you can import the module in each program that needsto call
one of the functions.

Let's look at a simple example. Suppose your instructor has asked you to write a program
that calculates the following:

e Thearea of acircle

e The circumference of acircle
e The area of arectangle

e The perimeter of a rectangle

There are obviously two categories of calculations required in this program: those related
to circles, and those related to rectangles. You could write all of the circle-related func-
tionsin one module, and the rectangle-related functionsin another module. Program 6-11
shows the circl e module. The module contains two function definitions: area (which
returns the area of acircle) and circumference (which returns the circumference of a
circle).

Program 611 (circle.py)

1
2

The circle module has functions that perform
calculations related to circles.

=Y
o

b

6.4 Storing Functionsin Modules
i mport math

The area function accepts a circle's radius as an
argument and returns the area of the circle.
def area(radius):

return math.pi * radius**2

The circunference function accepts a circle's
radius and returns the circle's circunference.
def circumference(radius):

Program 6-12 shows the rectangl e module. The module contains two function defini-
tions: area (which returns the area o a rectangle) and perimeter (which returns the
perimeter of arectangle.)

Program 6-12 (rectangle.py)

The rectangl e nodul e has functions that perform
calculations related to rectangl es.

The area function accepts a rectangle's wi dth and
length as argunents and returns the rectangle's area.
def area(width, length):

return width * length

The perineter function accepts a rectangle's width
and length as argunments and returns the rectangle's
peri meter.
def perimeter(width, length):

return 2 * (width + [ength)

Notice that both of these files contain function definitions, but they do not contain code
that calls the functions. That will be done by the program or programs that import these
modules.

Before continuing, we should mention the following things about module names:

A modul€e'sfilename should end in . py. If the modul€'s file name does not end in . py
you will not be ableto import it into other programs.

A modul€'s name cannot be the same as a Python key word. An error would occur,
for example, if you named a module for.

To use these modulesin a program, you import them with the import statement. Here is
an example of how we would import the circle module:

import circle

215

216

Chapter 6 Value-Returning Functions and Mdul es

© 00 N O U1 = W N ==

-
= O

12
13
14
15
16
17
18

When the Python interpreter reads this statement it will ook for the filecircle. py inthe
same folder as the program that is trying to import it. If it finds the file it will load it into
memory. If it does not find the file, an error occurs.”

Once a module is imported you can call its functions. Assuming that radius isa variable
that is assigned the radius of acircle, here is an example of how we would call the area
and circumference functions:

ny_area = circle.area(radius)
ny- circum = circle.circumference(radius)

Program 6-13 shows a complete program that uses these modules.

This programal |l ows the user to choose various
geometry cal culations froma menu. This program
inports the circle and rectangl e nodul es.

import circle
i mport rectangl e

The main function

def main():
The choi ce variable controls the | oop
and holds the user's menu choice
choice = 0

whil e choice '= 5:
di splay the menu.
display menu()

Get the user's choice
choice = input (‘Enter your choice:)

Performthe selected action.

if choice ==
radi us = input("Enter the circle's radius: ")
print 'The area is', circle.area(radius)

elif choice == 2
radius = input("Enter the circle's radius: ")
print 'The circunference is', \

circle.circumference(radius)

elif choice ==
width = input("Enter the rectangle's width: ")
length = input("Enter the rectangle's length: ")
print 'The area is', rectangle.area(width, | ength)

2Actually the Python interpreter isset up to look in various other predefined locationsin your system when it does
not find @ module in the program's folder. If you choose to learn about the advanced features of Python, you can
learn how to specify where the interpreter looks for modules.

6.4 Storing Functions in Modules

elif choice == 4
width = input("Enter the rectangle' swdth:)
length = input("Enter the rectangle's length: ")
print 'The perimeter is', \

rectangle.perimeter(width, |ength)

elif choice == 5
print 'Exiting the program. ..

el se:
print '"Error: invalid selection.'

The display- menu function displays a nenu.
def display- menu():
print MENU"
"print '1) Area of a circle'
print '2) Grcunference of a circle
print '3) Area of a rectangl e
print '4) Perimeter of a rectangle'
print '5) Qit"

Call the main function.
mai n()

217

218

Chapter 6 Vdue-Returning Functionsand Modules

—

(continued)

Program 6-13 is an example of a menu-driven program. A menu-driven program displays
alist of the operations on the screen, and allows the user to select the operation that he or
she wants the program to perform. The list of operations that is displayed on the screenis
called a menu. When Program 6-13 is running, the user enters 1 to calculate the area of a
circle, 2 to calculate the circumference of acircle, and so forth.

Once the user types a menu selection, the program uses a decision structure to determine
which menu item the user selected. An i f —~elif-else statement is used in Program 6-13
(inlines 22 through 41) to carry out the user's desired action. The entire process of display-
ing a menu, getting the user's selection, and carrying out that selectionisrepeated by awhile
loop (which beginsin line 14). The loop repeats until the user selects 5 (Quit)from the menu.

} 71 Introduction to Fle input and Output 7.3 Processng Records
7.2 Usng Loopsto Process FHles 7.4 Exceptions

. CONCEPT: When a program needs to save data for later use, it writes the datain a
file. The data can be read from the file at a later time.

The programs you have written so far require the user to reenter data each time the pro-
gram runs, because data that is stored in RAM (referenced by variables) disappears once
the program stops running. If a program isto retain data between the timesit runs, it must
have away of savingit. Dataissaved in afile, which is usually stored on a computer's disk.
Once the data is saved in afile, it will remain there after the program stops running. Data
that is stored in afile can be retrieved and used at a later time.

Most of the commercial software packages that you use on a day-to-day basisstore datain
files. The following are a few examples.

e Word processors. Word processing programs are used to write letters, memos, reports,
and other documents. The documents are then saved in files so they can be edited and
printed.

* Image editors. Imageediting programs are used to draw graphics and edit imagessuch
as the ones that you take with a digital camera. The images that you create or edit
with an image editor are saved in files.

Spreadsheets. Spreadsheet programs are used to work with numerical data. Numbers
and mathematical formulas can be inserted into the rows and columns of the spread-
sheet. The spreadsheet can then be saved in afilefor use later.

Games. Many computer games keep data stored in files. For example, some games
keep alist of player names with their scores stored in a file. These games typically

226 Chapter 7 Hlesand Exceptions

display the players names in order of their scores, from highest to lowest. Some
games also allow you to save your current game status in a file so you can quit
the game and then resume playing it later without having to start from the
beginning.

* Web browers. Sometimeswhen you visit a Web page, the browser stores a small file
known as a cookie on your computer. Cookies typically contain information about
the browsing session, such as the contents of a shopping cart.

Programs that are used in daily business operations rely extensively on files. Payroll pro-
grams keep employee data in files, inventory programs keep data about a company's prod-
uctsin files, accounting systems keep data about a company's financial operationsin files,
and so on.

Programmers usually refer to the process of saving datain afile as "writing data to" the
file. When a piece of data is written to afile, it is copied from a variable in RAM to
the file. Thisis illustrated in Figure 7-1. The term output file is used to describe a file
that data is written to. It is called an output file because the program stores output
init.

7-1 Writing data to a file

Data is copied from
RAM to the file.

Variable I:
18.65

Variable

employee id 7451Z ‘

\e/zg??;eeﬂname ICII’]dy Chandler’—L ’
_ |

o _andEr/ 74_‘:>1Z/

A file on the disk

The process of retrieving data from a file is known as "reading data from" the file.
When a piece of dataisread from afile, it is copied from the fileinto RAM, and refer-
enced by a variable. Figure 7-2 illustrates this. The term input fileis used to describe a
file that datais read from. It is called an input file because the program gets input from
the file.

7.1 Introduction to Fle Input and Output 227

Fioure 7-2 Reading data from a file

Data is copied from
the file to RAM, and

Variable —— referenced by variables.
pay-rate

Variable

employee id 74517 (= ‘
Variable

enpl oyee- nane !Ciﬂdy Chandier’*—-“}
1

handler [74512

L Afile on the disk __)

This chapter discusses how to write data to files and read data from files. There are always
three steps that must be taken when afileis used by a program.

1. Open the file—Opening a file creates a connection between the file and the program.
Opening an output file usualy creates the file on the disk and allows the program to
write data to it. Opening an input file allows the program to read data from the file.

2. Processthe file—In this step data is either written to the file (if it is an output file) or
read from thefile (if it is an input file).

3. Close the file—When the program is finished using the file, the file must be closed.
Closing afile disconnects the file from the program.

Types of Files

In general, there are two types o files text and binary. A text filecontains data that has been
encoded as text, using a scheme such as ASCII or Unicode. Even if the file contains numbers,
those numbers are stored in the file as a seriesd characters. As aresult, thefile may be opened
. and viewed in a text editor such as Notepad. A binay filecontains data that has not been con-
verted to text. Asaconsequence, you cannot view the contentsof a binary filewith atext editor.

Although Python allows you to work both text files and binary files, we will work only
with text filesin this book. That way, you will be able to use an editor §uch as Notepad to
inspect the files that your programs create.

File Access Methods

Most programming languages provide two different ways to access data stored in a file:
sequential accessand direct access. When you work with a sequential accessfile, you access

228

Chapter 7 Files and Exceptions

o]

data from the beginning of the fileto the end of thefile. If you want to read a piece of data
that is stored at the very end of the file, you have to read all of the data that comes before
it—you cannot jump directly to the desired data. This is similar to the way cassette tape
players work. If you want to listen to the last song on a cassette tape, you have to either
fast-forward over al of the songs that come beforeit or listen to them. There is no way to
jump directly to a specific song.

When you work with a direct accessfile (whichis also known as a random accessfile),you
can jump directly to any pieced datain the file without reading the data that comes before
it. Thisis similar to the way a CD player or an MP3 player works. You can jump directly
to any song that you want to listen to.

In this book we will use sequential accessfiles, Sequential accessfiles are easy to work with,
and you can use them to gain an understanding of basic file operations.

Most computer users are accustomed to the fact that files are identified by a filename. For
example, when you create a document with a word processor and then save the document
in afile, you have to specify a filename. When you use a utility such as Windows Explorer
to examine the contents of your disk, you see a list of filenames. Figure 7-3 shows
how three files named cat. jpg, notes. txt, and resume. doc might be represented in
Windows Explorer.

re 7-3 Three files

Each operating system hasits own rules for naming files. Many systems support the use
of filename extensions, which are short sequences of characters that appear at the end
of afilename preceded by a period (whichis known as a "dot"). For example, the files
depicted in Figure 7-3 have the extensions . jpg, .txt, and. doc. The extension usually
indicates the type of data stored in the file. For example, the . jpg extension usually
indicates that the file contains a graphic image that is compressed according to the
JPEG image standard. The .txt extension usualy indicates that the file contains
text. The .doc extension usudly indicates that the file contains a Microsoft Word
document.

In order for a program to work with afile on the computer's disk, the program must cre-
ate a file object in memory. A file object is an object that is associated with a specificfile,
and provides a way for the program to work with that file. In the program, a variable ref-
erences the file object. This variable is used to carry out any operations that are performed
on the file. This concept is shown in Figure 7-4.

7.1 Introduction to Fle Input and Output 229

Figure 7-4 A variable name references a file object that is associated with a file

variable-name ——————| File object
|

A file on the disk

You use the open function in Python to open afile. The open function creates afile object
and associatesit with afile on the disk. Here is the general format of how the open func-

tion is used:
file-variable = open(filename, mode)

In the general format:

filevariableisthe name of the variable that will referencethe file object.

« filename is a string specifying the name of the file.

@ mode is a string specifying the mode (reading, writing, etc.) in which the file will be
opened. Table 7-1 shows three of the strings that you can use to specify a mode.
(Thereare other, more complex modes. The modes shown in Table 7-1 are the ones

we will usein this book.)

Table 721 Some of the Python file modes

Mode Description

"r! Open afilefor reading only. The file cannot be changed or written to.
Open afilefor writing. If the file already exists, erase its contents. If it
does not exist, create it.

‘a' Open afileto be written to. All data written to the file will be appended
toitsend. If the file does not exist, create it. #

Wt

For example, suppose the file customers. t x t contains customer data, and we want to
open for reading. Here is an example of how we would call the open function:

custormer-file = open('cusomters.txt', ‘r')

230

Chapter 7 Flesand Exceptions

After this statement executes, the file named customers. t x t will be opened, and the
variablecustomer_f i | ewill referenceafile object that we can use to read data from the
file

Suppose we want to create afilenamed sales.t x t and write datato it. Here is an exam-
ple of how we would call the open function:

sales-file = open('sales.txt', 'W)

After this statement executes, the file named sales.t x t will be created, and the variable
sal es_f il ewill referenceafile object that we can use to write data to the file.

contents of the existing file will be erased.

So far in this book you have worked with several of Python's library functions, and you
have even written your own functions. Now we will introduce you to another type of func-
tion, which is known as a method. A method is a function that belongs to an object, and
performs some operation using that object. Once you have opened afile, you use the file
object's methods to perform operations on thefile.

For example, file objects have a method named wri t e that can be used to write data to a
file. Here is the general format of how you call the wri t e method:

Intheformat, file variableisavariablethat referencesafile object, and stringisa
string that will be written to the file. The file must be opened for writing (usingthe 'w* or
‘a' mode) or an error will occur.

Let's assume that customer—f i | e references a file object, and the file was opened for
writing with the 'w' mode. Here is an example of how we would write the string 'Charles
Pace' to the file:

customer file.write('Charles Pace')
The following code shows another example:

name = 'Charles Pace’
customer_ file.write(name)

The second statement writes the value referericed by the name variable to the file associated
with customer_file. In this case, it would write the string 'Charles Pace' to the file.
(Theseexamplesshow a string being written to afile, but you can also write numeric values.)

Once a program is finished working with afile, it should close the file. Closing a file discon-
nectsthe program from thefile. In some systems, failureto close an output file can causealoss
of data. This happens because the data that iswritten to afileisfirst written to a buffer, which
isasmal "holding section” in memory. When the bufferisfull, the system writes the buffer's
contentsto thefile. This technique increasesthe system's performance, because writing data to

7.1 Introduction to Fle Input and Output 232

memory is faster than writing it to a disk. The process o closing an output file forces any
unsaved data that remainsin the buffer to be written to thefile.

In Python you use the file object's c1lose method to close afile. For example, the follow-
ing statement closes the file that is associated with customer — file:

Program 7-1 shows a complete Python program that opens an output file, writes data to it,
and then closesiit.

1 # This program wites three lines of data
2 #toafile.

3 def main():

4 # Open a file named philosophers.txt.
5 outfile = open('philosophers.txt', 'w')
6

7 # Wite the names of three philosphers
8 # to the file.

9 outfile.write('John Locke\n')

10 outfile.write('David Hume\n')

11 outfile.write('Edmund Burke\n')

12

13 # Close the file.

i4 outfile.close()

15

16 # Call the main function.

17 main()

Line 5 opensthe filephilosophers.t x t usingthe 'w' mode. (Thiscausesthefileto be
created, and opens it for writing.) It also creates a file object in memory and assigns that
object to the outfile variable.

The statements in lines 9 through 11 write three strings to the file. Line 9 writes the string

'John Locke\n', line 10 writes the string ' David Hume\n', and line 11 writes the
string ‘Edmund Burke\n'. Line 14 closes the file. After this program runs, the three
items shown in Figure 7-5 will be written to the philosophers.txt file

Figure 7-5 Contents of thefile philosophers.txt

Beginning End of
of thefile thefile

232

(hapter 7 Hles and Exceptions

Notice that each of the strings written to the file end with \n, which you will recall is the
newline escape sequence. The \n not only separates the items that are in the file, but also
causes each of them to appear in a separate line when viewed in a text editor. For example,
Figure 7-6 shows the phi | osopher s.t xt fileasit appearsin Notepad.

= 7-6 Contentsd phi | osophers.txt in Notepad

~NOoO oA WN P

[mile Edit Format view Help i

If afile has been opened for reading (usingthe 'r ' mode) you can use the file object'sr ead
method to read its entire contentsinto memory. When you call ther ead method, it returns
the files contents as a string. For example, Program 7-2 shows how we can use the r ead
method to read the contents of the phi | osopher s.t xt file that we created earlier.

This program reads and di splays the contents
of the philosophers.txt file.

def main():
pen a file naned phil osophers.txt.
infile = open(‘'philosophers.txt’, 'r')

Read the file's contents.
file-contents = infile.read()

Close the file.
infile.close()

Print the data that was read into
menory.
print file-contents

Call the main function.
mai n()

Program Output

John Lock
David Hin
Edmund Bt

7.1 Introduction to Fle Input and Output

The statement in line 5 opens the philosophers.txt file for reading, using the 'r
mode. It also creates a file object and assigns the aobject to the infile variable. Line 8
calsthe infile.read method to read the file's contents. The fil€'s contents are read
into memory as a string and assigned to the file_contents variable. This is shown in
Figure 7-7. Then the statement in line 15 prints the string that is referenced by the variable.

: 7-7 The fil e contents variable references the string that was read from the file

me—comems—————~————~—>4John Locke\nDavid Hume\nEdmund Burke\n

Although the read method allows you to easily read the entire contents of afilewith one
statement, many programs need to read and process the items that are stored in afile one
at a time. For example, suppose a file contains a series of sales amounts, and you need to
write a program that calculates the total of the amounts in the file. The program would
read each sale amount from the file and add it to an accumulator.

In Python you can use the readline method to read a line from afile. (A lineissimply a
string of charactersthat are terminated with a \n.) The method returns the line as a string,
including the \n. Program 7-3 shows how we can use the readline method to read the
contents of the philosophers.t xt file one Linreat atime.

This programreads the contents of the
philosophers.txt file one line at a tinme.
def main():
(pen a file named phil osophers-t xt.
infile = open('philosophers.txt', 'r')

Read three lines fromthe file.
linel = infile.readline()
i ne2 i nfilereadline()
line3 = infile.readline()

Aose the file.
infile.close()

Print the data that was read into
nmenory.

print linel

print |ine2

print line3

Call the main function.
mai n()

233

234 Chapter 7 Hlesand Exceptions

Figure

Program Output

John Lock

David Bun

Edmund Burke

Before we examine the code, notice that a blank line is displayed after each line in the out-
put. This is because each item that is read from the file ends with a newline character (\n).
Later you will learn how to remove the newline character.

The statement in line 5 opens the philosophers.t xt file for reading, using the 'r'
mode. It also creates a file object and assigns the object to the infile variable. When a
fileis opened for reading, a special value known as a read posi ti on is internally maintained
for that file. A file's read position marks the location of the next item that will be read from
the file. Initially, the read position is set to the beginning of the file. After the statement in
line 5 executes, the read position for the philosophers.t xt file will be positioned as
shown in Figure 7-8.

7-8 Initial read position

Read position

The statement in line 8 callsthe infile.readline method to read the first line from the
file. The line, which isreturned as a string, is assigned to the 1inel variable. After this state-
ment executesthe 1 inel variablewill be assigned the string ' John Locke\n'. In addition,
the files read position will be advanced to the next linein the file, as shown in Figure 7-9.

1d position advanced to the next line

|John Locke\nDavid Hume\nEdmund Burke\nl

Read hosition

Then the statement in line 9 reads the next line from the file and assigns it to the 1ine2
variable. After this statement executesthe 1ine2 variable will referencethe string ' David
Hume\n'. Thefiles read position will be advanced to the next line in the file, as shown in
Figure 7-10.

Figure 7-12 Read position advanced to the next line

Read position

7.1 Introduction to Fle Input and Output 235

Then the statement in line 10 reads the next line from the file and assignsit to the 1ine3
variable. After this statement executesthe 1ine3 variable will referencethe string ' Edmund
Burke\n'. After this statement executes, the read position will be advanced to the end of
the file, as shown in Figure 7-11. Figure 7-12 shows the 1inel, 1ine2, and line3 vari-
ables and the strings they reference after these statements have executed.

Flgure 7-17 Read position advanced to the end of the file

|John Locke\nDavid Hume\nEdmund Burke\nl
[}

Read position

Figure 7-82 The strings referenced by the 1inel, 1ine2, and line3 variables

linel ————————|John Locke\n

The statement in line 13 closesthe file. The print statementsin lines 17 through 19 dis-
play the contents of the 1inel, line2, and line3 variables.

Concatenating a Newline 1O a String

Program 7-1 wrote three string literals to a file, and each string literal ended with a \n
escape sequence. In most cases, the data items that are written to a file are not string liter-
as, but valuesin memory that are referenced by variables. This would be the casein a pro-
gram that prompts the user to enter data, and then writes that data to afile.

When a program writes data that has been entered by the user to afilg, it is usually necessary
to concatenate a \n escape sequenceto the data beforewriting it. Thisensuresthat each piece
of data iswritten to a separate linein the file. Program 7-4 demonstrates how thisis done.

This program gets three nanes fromthe user
and wites themto a file.

def main():
Get three nanes.
print 'Enter the names of three friends.
namel = raw- input ('Friend #1: ')

- O oA WN -

(program continues)

236

Chapter 7 Hlesand Exceptions

Program 7-4 (continued)

name2 = raw_input('Friend #2: ')
name3 = raw- input (' Friend #3: *)

Open a file named friends.txt.
myfile = open('friends.txt', 'W)

Wite the names to the file.
myfile.write(namel + *\n')
myfile.write(name2 + '\n')
myfile.write(name3 + *\n')

Close the file.
myfile.close()
print 'The names were written to friends-txt.'

Call the main function.
mai n()

Program Output(Wth input shown in bold)

Enter the names of three friends.
Friend #1: joe [Enter]

Friend #2: rose [Enter]

Friend #3: Geri [Enter]

“ghe nanes were written to friends-txt.

Lines 7 though 9 prompt the user to enter three names, and those names are assigned to the
variablesnamel, name2, and name3. Line12 opensafilenamed friends.txt for writing.
Then, lines15 through 17 write the namesentered by the user, each with " \n"* concatenatedto
it. Asaresult, each name will have the \n escape sequence added to it when written to thefile.
Figure 7-13 shows the contents of the filewith the namesentered by the user in the samplerun.

Is.txt file

Sometimes complications are caused by the \n that appears at the end o the strings that
are returned from the readline method. For example, did you notice in the sample out-
put of Program 7-3 that a blank line is printed after each line of output? This is because
each of the strings that are printed in lines 17 through 19 end with a \n escape sequence.
When the strings are printed, the \n causes an extra blank line to appear.

The \n serves a necessary purpose inside afile: it separates the items that are stored in the
file. However, in many cases you want to remove the \n from a string after it isread from

7.1 Introduction to Fle Input and Output

afile. Each string in Python has a method named r stri p that removes, or "strips," spe-
cific characters from the end of astring. (Itis named rstrip because it strips characters
from the right side o a string.) The following code shows an example o how therstrip
method can be used.

nane = 'Joanne Manchester\n'
nane = name.rstrip('\n'")

The first statement assigns the string 'Joanne Manchester\n’' to the name variable.
(Noticethat the string ends with the \n escape sequence.) The second statement calls the
name. rstrip('\n') method. The method returns a copy of the name string without the
trailing \n. This string is assigned back to the name variable. The result is that the trailing
\n is stripped away from the name string.

Program 7-5 is another program that reads and displays the contents of the philoso-
phers.txt file. This program uses the r st ri p method to strip the \n from the strings
that are read from the file before they are displayed on the screen. As a result, the extra
blank lines do not appear in the output.

This programreads the contents of the
philosophers.txt file one line at a tinmne.

def main():
Qpen a file named phil osophers.txt.
infile = open('philosophers.txt’', 'r')

Read three lines fromthe file.
linel = infile.readline()
line2 = infile.readline()
line3 = infile.readline()

Strip the \n fromeach string.
linel = linel.rstrip('\n')
Pine2 = line2.rstrip('\n")

line3 = line3.rstrip('\n'")

Aose the file.

infile.close()

Print the data that was read into
nenory.

print |inel

print line2

print line3

$# Call the main function.
mai n()

237

238 Chapter 7 Hlesand Exceptions

Program Output

John Locl
Davi d Hu
Edmund B

When you use the 'w' mode to open an output file and a file with the specified filename
dready existson the disk, the existing file will be erased and a new empty file with the same
name will be created. Sometimes you want to preserve an existing file and append new data
to its current contents. Appending data to a file means writing new data to the end of the
data that already existsin thefile.

In Python you can use the ' a' mode to open an output file in append mode, which means

the following.
« If the file already exists, it will not be erased. If the file does not exist, it will be
created.
e When data is written to the file, it will be written at the end of the fileés current
contents.

For example, assumethe filefriends.t x t contains the following names, each in a sepa
rate line:

Joe
Rose
Ger

The following code opens the file and appends additional data to its existing contents.

myfile = open('friends.txt', 'a')
myfile.write('Matt\n')
myfile.write('Chris\n"')
myfile.write('Suze\n"')
myfile.close()

After this program runs, thefilefriends.t x t will contain the following data:

Joe
Rose
Ger
Mat t
Chris
Suze

Stringscan be written directly to afilewith thew ri t e method, but numbers must be con-
verted to strings before they can be written. Python has a built-in function named str that
converts a value to a string. For example, assuming the variable num is assigned the value
99, the expression st r (num) will return the string ' 99'.

7.1 Introduction to Fle Input and Output

Program 7-6 shows an example of how you can use the str function to convert a number
to a string, and write the resulting string to afile.

Thi s program denonstrates how nunbers
must be converted to strings before they
are wittento a text file.

def nmain():
Qpen a file for witing.
outfile = open('numbers.txt', 'W)

Get three nunbers fromthe user.
num i nput (" Enter a nunber: ')

nung i nput ('Enter another number: ')
nun8 = input ('Enter another nunber: ')

Wite the nunbers to the file.
outfile.write(str(numl) *+ '\n*)
outfile.write(str(num2) + '\n')
outfile.write(str(num3) + '\n")

Cose the file.
outfile.close()
print 'Data witten to numbers.txt'

Call the main function.
mai n()

Proaram Output (with input shown in bold)

Ent

22 [Enter]

Ent er anot ner number: %4 [Enter]
Ent:er anot:her nur r]
Data written to 1

The statement in line 7 opens the file numbers. t x t for writing. Then the statements in
lines 10 through 12 prompt the user to enter three numbers, which are assignedto the vari-
ables num1, num2, and num3.

Take a closer look at the statement in line 15, which writes the value réferenced by numl
to thefile:

The expression str(numl) + '\n' converts the value referenced by numl to a string
and concatenates the \n escape sequence to the string. In the program's sample run, the
user entered 22 as the first number, so this expression produces the string ' 22\n'. As a
result, the string ' 22\n" iswritten to the file.

239

240

Chapter 7 Hlesand Exceptions

Lines16 and 17 perform the similar operations, writing the vaues referenced by num2 and
num3 to the file. After these statements execute, the values shown in Figure 7-14 will be
written to the file. Figure 7-15 shows the file viewed in Notepad.

7-714 Contents d the numbers. txt file

e 7-15 The numbers. t x t file viewed in Notepad

When you read numbers from atext file, they are always read as strings. For example, sup-
pose a program uses the following code to read the first line from the numbers. t x t file
that was created by Program 7-6:

1 infile = open{'numbers.txt',6 'r')
2 value = infile. readline()
3 infile.close()

The statement in line 2 uses the readline method to read a line from the file. After this
statement executes, the v al ue variable will referencethe string ' 22\n'. This can cause a
problem if weintend to perform math with the value variable, because you cannot perform
math on strings. In such a case you must convert the string to a numeric type.

Recall from Chapter 2 that Python providesthe built-in function i nt to convert a string to
an integer, and the built-in function f | o at to convert a string to a floating-point number.
For example, we could modify the code previously shown as follows:

1 infile = open('numbers.txt', 'r')
2 string-input = infile.readline()
3 value = int(string-input)

4 infile.close()

The statement in line 2 reads a line from the file and assignsit tothestring_input vari-
able. Asaresult, string— inputwill referencethe string ' 22\n'. Then the statement in
line 3 usesthei nt function to convert string— i nputto an integer, and assigns the result
to value. After this statement executes, the value variable will reference the integer 22.
(Boththe i nt and f | oat functions ignore any \n at the end of the string that is passed as
an argument.)

7.1 Introductionto File I nput and Qut put 241

This code demonstrates the stepsinvolved in reading a string from afilewith the readline
method, and then converting that string to an integer with the i nt function. In many sit-
uations, however, the code can be simplified. A better way isto read the string from the file
and convert it in one statement, as shown here:

1l infile = open('numbers.txt', 'r')
2 value = int(infile.readline())
3 infile.close()

Notice in line 2 that a cal to the readline method is used as the argument to the i nt
function. Here's how the code works: the readline method is caled, and it returns a

string. That string is passed to the i n t function, which converts it to an integer. The result
is assigned to the value variable.

Program 7-7 shows a more complete demonstration. The contents of the numbers. t x t
file are read, converted to integers, and added together.

Program 7-7 (read_numbers.py)

Thi s program denonstrates how nunbers that are
read froma file nust be converted fromstrings
before they are used in a nmath operation.

def main():
Qpen a file for reading.

infile = open(‘'numbers.txt', 'r')

Read three nunbers fromthe file.

num = int(infile.readline())
num2 = int(infile.readline())
num3 = int(infile.readline())

dose the file.
infile.close()

Add the three nunbers.
total = num + num2 + num3

Display the nunbers and their total.
print 'The nunbers are: ', num, num2, num3

print 'Their total is:', total

Call the main function.

srs are:
:al is:

242

Chapter 7 Files and Exceptions

Checkpoint

7.1 What isan output file?

7.2 What isan input file?

7.3 What three steps must be taken by a program when it uses a file?

74 Ingenera, what are the two types of files?What is the difference between these
two types o files?

7.5 What are the two types o file access?What is the difference between these two?

7.6 When writing a program that performs an operation on afile, what two file-
associated names do you have to work with in your code?

7.7 If afileaready exists what happens to it if you try to open it as an output file
(usingthe 'w* mode)?

7.8 What isthe purpose of opening afile?

7.9 What isthe purpose of closing afile?

7.10 What is afile's read position? Initially, where is the read position when an input
file is opened?

7.11 In what mode do you open afileif you want to write data to it, but you do not

Although some programs use files to store only small amounts of data, files are typically
to hold large collections of data. When a program uses a file to write or read a large

used

want to erase the file's existing contents?When you write data to such afile, to
what part of the file isthe data written?

- CONCEPT: Filesusualy hold large amounts o data, and programs typically use a

loop to process the datain afile.

amount of data, aloop istypicaly involved. For example, look at the code in Program 7-8.

This

program gets sales amounts for a series of days from the user and writes those
amounts to afile named sales. txt. The user specifiesthe number of days of sales data
he or she needs to enter. In the sample run o the program, the user enters sales amounts
for five days. Figure 7-16 shows the contents of the sal es.t x t file containing the data

entered by the user in the sample run.

Program 7-8 (write_sales.py)

1

0o N oy o WN

Th

is program pronpts the user for sal es amounts

and wites those ampbunts to the sales.txt file.

def

mai n() :

Get the nunber of days.
num days = input('For how many days do * + \

"you have sales? ')

7.2 Udng Loopsto Process Fles 243

Qpen a new file named sales.txt.
sales-file = open('sales.txt', 'W)

Get the amount of sales for each day and wite
it to the file.
for count in range(1, num days + 1):
Get the sales for a day.
sales = input('Enter the sales for day #' + \
str(count) + ': ')

4 Wite the sales anount to the file.
sales file.write(str(sales) + '\n')

't dose the file.
sales_file.close()
print '"Data witten to sales.txt.'

Call the main function.
mai n()

For how many day!
Enzer the sal es
Tr-mnv +ha

Enzer the sales
Enter the sales

Figure 7-16 ontents d the sal es. t xt file

Reading a File with a LooOp and Detecting
the End d the File

“Quite often a program must read the contents of a file without knowing the number o1
items that are stored in the file. For example, the sal es. t x t file that was created by
Program 7-8 can have any number of items stored in it, because the program asks the
user for the number of days that he or she has sales amounts for. If the user enters 5 as
the number of days, the program gets 5 sales amounts and writes them to the file. If the
user enters 100 as the number of days, the program gets 100 sales amounts and writes
them to the file.

This presents a problem if you want to write a program that processesall of the itemsin
the file, however many there are. For example, suppose you need to write a program that
reads al of the amounts in the sal es. t xt fileand calculates their total. You can use a

244 Chapter 7 Files and Exceptions

loop to read the itemsin the file, but you need a way of knowing when the end of the file
has been reached.

In Python, the readline method returns an empty string (' ') when it has attempted to
read beyond the end of afile. This makesit possibleto write awhile loop that determines
when the end of afile has been reached. Here is the general algorithm, in pseudocode:

Open the file

Use readline to read the first line fromthe file

While the value returned from readline isnotanempty string:
Process the item that was just read from the file
Use readline toread the next line from the file.

Close the file

- NOTE: In this agorithm we call the readline method just before entering the
| while loop. The purpose of this method call isto get the first line in the file, so it can
be tested by the loop. Thisinitial read operation is called a priming read.

Figure 7-17 shows this algorithm in a flowchart.

Figure 7-17 General logic for detecting the end of a file

| Open the file.

'

7
Use readline to read the
first line from the file.

Yes (True)l

l Close the file. |

7.2 Using Loops to Process Files

Program 7-9 demonstrates how this can be done in code. The program reads and displays
al of the valuesin thesal es. txt file.

This programreads all of the values in
the sales-txt file.

def main():
(pen the sales.txt file for reading.
sales-file = open('sales.txt', 'r'")

o Ol A W DN P

Read the first line fromthe file, but
don't convert to a nunber yet. W still
need to test for an enpty string.

line = sales file.readline()

As long as an enpty string is not returned
fromreadline, continue processing.
while line 1= '':

Convert line to a float.

anmount = float (line)

Format and di splay the amount.
print '$%.2f' % anount

Read the next Iline.
line = sales-filereadline()

Aose the file.
sales_file.close()

Call the main function.
mai n()

Program Output

$1000. 00
$2000. 00
$3000. 00
$4000. 00
$5000. 00

In the previous example you saw how the readline method returns an empty string
when the end of the file has been reached. Most programming languages provide a
similar technique for detecting the end of a file. If you plan to learn programming

245

246

Chapter 7 Hlesand Exceptions

languages other than Python, it is important for you to know how to construct this
type of logic.

The Python language also allows you to write a f or loop that automaticaly reads linein
afilewithout testing for any special condition that signalsthe end of thefile. The loop does
not require a priming read operation, and it automatically stops when the end of the file
has been reached. When you simply want to read the lines in afile, one after the other, this
technique is simpler and more elegant than writing aw hi | e loop that explicitly tests for
an end of the file condition. Here is the general format o the loop:

for variable in file-object:
st at errent
st at errent
etc.

In the general format, variable isthe name of avariableand file— objectis a vari-
able that referencesafile object. The loop will iterate once for each line in the file. The first
timetheloop iterates, variabl e will reference the first linein thefile (asastring), the second
timethe loop iterates, variabl e will reference the second line, and so forth. Program 7-10
provides a demonstration. It reads and displaysall of the itemsin the sales. t x t file.

This programuses the for |oop to read
all of the values in the sales-txt file.

def main():
Qpen the sales.txt file for reading.
sales-file = open('sales.txt', 'r")

Read all the lines fromthe file.
for line in sales-file:
Convert line to a float.
anmount = float (line)
Format and di splay the anount.
print '$s.2f' % anount

Close the file.
sales file.close()

Call the main function.
mai n()

Proaram Output

$3000.00

0
0

7.2 Using Loops to Process Files 247

Checkpoint

7.12 Write a short program that uses a f or loop to write the numbers 1 through 10 to
afile.

7.13 What doesit mean when the readline method returns an empty string?

7.14 Assumethat the filedat a. t x t existsand contains several lines of text. Write a
short program using the whi | e loop that displays each line in the file.

7.15 Revise the program that you wrote for Checkpoint 7.14 so to use the f or loop
instead of the whi | e loop.

o

CONCEPT: Thedatathat is stored in afileis frequently organized in records. A record
is a completeset of data about an item, and a field is an individual piece of
data within a record.

250 Chapter 7 Hlesand Exceptions

When data is written to afile, it is often organized into records and fields. A record is a
complete set of data that describes one item, and a field is a single piece of data within a
record. For example, suppose we want to store data about employeesin afile. The file will
contain arecord for each employee. Each record will be acollection of fields, such as name,
ID number, and department. Thisisillustrated in Figure 7-18.

e 7-T82 Fields in a record

Record

| |

|‘Ingrid Virgo\n'| 4587\n‘|'Engineering\n'

Name Department
field field

ID number
field

Each time you write arecord to afile, you write the complete set of fields that make up the
record. For example, Figure 7-19 shows a file that contains three employee records. Each
record consists of the employee's name, ID number, and department.

- 7-12 Recordsin afile

Record Record Record

]'Ingrid Virgo\n'!'4587\n'"Engineering\n'| ‘Julia Rich\n']‘4588\n‘| '‘Research\n’ |'Greg Young\n'|’4589\n‘i ‘Marketing\n' |

Program 7-13 shows a simple example of how employee records can be written to afile.

Program 7-13 (save_emp_records.py)

This program gets enpl oyee data fromthe user and
saves it as records in the enpl oyee-txt file.

def main():
Get the nunber of enployee records to create.
num_emps = input (' How many enpl oyee records ' + \

‘do you want to create? ')

Qpen a file for witing.
emp file = open('employees.txt', 'W)

Get each enpl oyee's data and wite it to
the file.
for count in range(l, num emps + 1):

7.3 Processing Records

CGet the data for an enpl oyee.

print 'Enter data for enployee #' + str{(count)
name = raw input (‘' Nane: ')

id-num = raw_input('ID number: ')

dept = raw_input('Department: ')

Wite the data as a record to the file.
emp file.write(name * '\n')

emp file.write(id num + '\n")

emp file.write(dept t '\n')

Display a blank |ine.
print

dose the file.
emp file.close()
print 'Enmpl oyee records witten to employvees.txt.'

Call the main function.
mai n()

data for enplo
e i I'n'_j.-er]

-

aata ro yee #3
Youmng [t
4589 [E

Depar vuenc

Enpl oyee r | oyees.

The statement in lines 6 and 7 prompts the user for the number of emgl oyee records that
he or she wants to create. Inside the loop, in lines 17 through 19, the program gets an
employee's name, ID number, and department. These three items, which together make an
employee record, are written to the file in lines 22 through 24. The loop iterates once for
each employee record.

When we read the data from afile that contains records, we read a completerecord. Program
7-14 demonstrates how we can read the employee recordsin the employee. t x t file.

251

252 Chapter 7 Files and Exceptions

This program di splays the records that are
in the employees.txt file

def main():
pen the employees.txt file
emp file = open('employees.txt', 'r')

Read the first line fromthe file, which is
the nane field of the first record.
nane = emp file.readline()

If a field was read, continue processing.
while nane 1= 'r:

Read the ID nunber field.

id-num = emp file.readline()

Read the departrent field.
dept = emp file.readline()

Strip the newlines fromthe fields.
21 nane = name.rstrip('\n')
22 id-num = id num.rstrip('\n')

dept = dept.rstrip('\n')

Display the record.

print 'Narme:', name
print 'ID:', id-num
print 'Dept:', dept
print

Read the nane field of the next record.
nane = emp file.readline()

dose the file.
emp file.close()

Call the main function.
mai n()

Program Output

Nanme: Ingrid virgo
ID 4587
Dept: Engineering

7.3 Processing Records

Name: Julia Rich
ID: 4588

Dept: Research
Nanme: G eg Young
I D 4589

Dept : Marketing

This program opensthefilein line 6, and then in line 10 reads thefirst field of thefirst record.
Thiswill be thefirst employegs name. Thew hi | e loop in line 13 tests the value to determine
whether it is an empty string. If it is not, then the loop iterates. Inside the loop, the program
readsthe record's second and third fields (theemployee's ID number and department), and dis-
playsthem. Then, in line 32 thefirst fidld of the next record (thenext employee's name) is read.
The loop starts over and this process continues until there are no more records to read.

Programs that store records in afile typically require more capabilities than simply writing
and reading records. In the following In the Spotlight sections we will examine agorithms
for adding records to a file, searching a file for specific records, modifying a record, and
deleting a record.

253

itra Mec

262

Chapter 7 Files and Exceptions

Checkpoint
7.16 What is a record?What is a field?

7.17 Describethe way that you use a temporary file in a program that modifies a
record in a sequential accessfile.

7.18 Describe the way that you use a temporary file in a program that deletes a record
from a sequential file.

— CONCEPT: An exception is an error that occurs while a program is running, causing

the program to abruptly halt. You can use the try/except statement to
gracefully handle exceptions.

An exception is an error that occurs while a program is running. In most cases, an excep-
tion causes a program to abruptly halt. For example, look at Program 7-20. This program
gets two numbers from the user and then divides the first number by the second number.
In the sample running of the program, however, an exception occurred because the user
entered 0 as the second number. (Divisionby O causes an exception becauseit is mathemat-
icaly impossible.)

This program divides a nunber by another nunber.

def main():
Get two nunbers.
numM = input (' Enter a nunber:)
nun? = input (' Enter anot her nunber: ')

Divide num by nunR and display the result.
result = num / nunt
print num, ‘'divided by', num2, ‘'is', result

Call the main function.
mai n()

Program Output (with input shown in bold)

nunber : 10 [Ent
1other 1 unber : [

liacewack (most —~~== * Last) :
File "C /pytl e line 13, it Le>
mai n(

~

) cy” line 9, 1IN main
ult = num / n
_sionError: int Vi si on lero

7.4 Exceptions 263

The lengthy error message that is shown in the samplerun is caled a traceback. The traceback
gives information regarding the line number(s) that caused the exception. (Whenan exception
occws, programmerssay that an exception wasraised.) Thelast lineof the error message shows
the name of the exception that wasraised (ZeroDivisionError) and a brief description of
the error that caused the exceptionto beraised (integerdivision O0r modulo by zero).

You can prevent many exceptions from being raised by carefully coding your program. For
example, Program 7-21 shows how division by 0 can be prevented withasmplei f statement.
Rather than alowing the exception to be raised, the program teststhe value of num2, and dis-
plays an error message if the valueis 0. Thisis an exampled gracefully avoiding an exception.

1 # This program divides a nunber by another nunber.
£

3 def main():

4 # Get two nunbers

5 num = input (' Enter a nunber:)

6 nun? = input ('Enter another number: *)

7

8 # If nun2 is not 0, divide num by nun2

9 # and display the result

10 if nun2 1= 0

1 result = num / nun

12 print num , 'divided by', num2, 'is', result
13 el se:

14 print 'Cannot divide by zero.'

15

16 # Call the main function.

mai n()

Some exceptions cannot be avoided regardless of how carefully you write your program.
For example, look at Program 7-22. This program getsthe name of afile from the user and
then displays the contents of the file. The program works as long as the user enters the
name of an existingfile. An exception will be raised, however, if the file specified by the user
does not exist. Thisis what happened in the sample run. (Noticein theserror message that
the name of the exception that occurred is IOError.)

Program 7-22 (display_file.py)

1 # This program displays the contents
2 # of afile.
(program continues)

264 eptions

(continued)

def main():
Get the name of a file.
filenane = raw input('Enter a filenane: *)

Qpen the file.
infile = open(filename, 'r')

Read the file's contents.
contents = infile.read()

Display the file's contents.
print contents

Cose the file.
infile.close()

Call the main function.
mai n()

Program Output (with input shown in bold)
Enter a fil enane: bad_file.txt [Enter]

t call last):

play file.py," line 21, in <module>
uy)
"C:/Python/display file.py," line 9, in main
ile = open(filename, 'r')

IOError: [Errno 2] No such file or directory: 'bad file.txt"

Python, like most modern programming languages, alows you to write code that responds
to exceptions when they are raised, and prevents the program from abruptly crashing. Such
code is called an exception handler, and is written with the try/except statement. There
are several ways to write a try/except statement, but the following general format
shows the simplest variation:

try:
st at enent
st at enent
etc.
except ExceptionName:
st at enent
st at enent
etc.

First the key word t r y appears, followed by acolon. Next, a code block appears which we
will refer to asthe try block. The try block is one or more statements that can potentially
raise an exception.

After the try block, an except clause appears. The except clause begins with the key
word except, optionaly followed by the name of an exception, and ending with a
colon. Beginning on the next line is a block of statements that we will refer to as a

handler.

When the try/except statement executes, the statements in the try block begin to exe-

cute. The following describeswhat happens next:

o If a statement in the try block raises an exception that is specified by the
ExceptionName in an except clause, then the handler that immediately follows
the except clause executes. Then, the program resumes execution with the statement

immediately following the try/except statement.

If a statement in the try block raises an exception that is not specified by the
ExceptionName in an except clause, then the program will halt with a traceback

error message.

o If the statements in the try block execute without raising an exception, then any
except clausesand handlers in the statement are skipped and the program resumes
execution with the statement immediately following thet ry/ except statement.

Program 7-22 shows how we can write a try/except statement to gracefully respond to

an | OErr or exception.

Program 7-22 (display_file.py)

This program displays the contents
of a file.

def main():
Get the name of a file.

filename = raw_input('Enter a filenane:

try:

Open the file.
infile = open(filename, 'r')

Read the file's contents.
contents = infile.read()

Display the file's contents.
print contents

Close the file.
infile.close()

except | OError:

Call
mai n()

print '"An error occurred trying to read'

print "the file', filenane

the main function.

7.4 Exceptions

265

266 Chapter 7 Files and Exceptions

Program Output (with input shown in bold)

Enter a filename: bad file.txt [Enter]
r occurred trying to
ile.t xt

Let's look at what happened in the sample run. When line 6 executed, the user entered
bad_fil e.txt, which was assigned to the f i | enane variable. Inside the try block, line
10 attempts to open thefilebad_f i | e.t xt. Becausethisfile does not exist, the statement
raises an | CEr r or exception. When this happens, the program exits the try block, skip-
ping lines 11 through 19. Because the except clause in line 20 specifies the | CEr r or
exception, the program jumpsto the handler that beginson line 21. Figure 7-20 illustrates
this sequence of events.

e7-23 Sequence of events in the try/except statement

try:
Open the file.
When this statement —————— s infile = open(filename, 'r')
raises an lOError
exception....

™ Read the file's contents.
contents = infile.read()

Display the file's contents.

...these statements print contents

are skipped...
Close the file.
off ibgrghose O

print 'An error occurred trying to read'
print "the file', filename

ex

... and the statements
in this handler are
executed.

In many cases, the code in a try block will be capable of throwing more than one type of
exception. In such a case, you need to write an except clause for each type of exception
that you want to handle. For example, Program 7-23 reads the contents of a file named
sal es_dat a. t xt . Each line in the file contains the sales amount for one month, and the
file has severa lines. Here are the contents of the file:

Program 7-23 readsall o the numbersfrom thefile and adds them to an accumulator variable.

This programdi splays the total of the
amounts in the sales data.txt file.

def nain():
Initialize an accumul ator.
total = 0.0
try:

pen the sales data.txt file.
infile = open('sales data.txt',K6 'r')

Read the values fromthe file and
accumnul ate t hem
for line in infile:

anmount = float (line)

total += anount

dose the file.
infile.close()

Print the total.
print 'Total: $%.2f' % total

except |1 Cerror:

print "An error occured trying to read the file.'

except Val ueError:

print 'Non-numeric data found in the file."

print 'An error occured. '

33 # Call the main function.

7.4 Exceptions

The try block contains code that can raise different types of exceptions.. For example:

e The statement in line 10 can raise an | CEr r or exception if the sal es- dat a. t xt
filedoes not exist. Thef or loop inline14 can also raisean | OEr r or exception if it

encounters a problem reading data from the file.

¢« Thefl oat functioninlinel5 can raiseavalueError exceptionif thel i ne variable

references a string that cannot be converted to a floating-point number (an aphabetic

string, for example).

267

268

Chapter 7 Hlesand Exceptions

Notice that the try/except statement has three except clauses:

¢ The except clausein line 24 specifies the | OError exception. Its handler inline2s

will execute if an | OError exception is raised.
e Theexcept clausein line 27 specifies the ValueError exception. Itshandler in line

28 will executeif a valueError exception is raised.
e« Theexcept clausein line 30 does not list a specific exception. Its handler in line 31
will executeif an exception that is not handled by the other except clausesis raised.

In this section you've seen examples of programs that can raise ZerobivisionError
exceptions, | OError exceptions, and valueError exceptions. There are many different
types of exceptions that can occur in a Python program. When you are designing
try/except Statements, one way you can learn about the exceptions that you need to
handle is to consult the Python documentation. It gives detailed information about each
possible exception, and the types of errors that can cause them to occur.

Another way that you can learn about the exceptionsthat can occur in a program is through
experimentation. You can run a program and deliberately perform actions that will cause
errors. By watching the traceback error messages that are displayed you will see the names o
the exceptionsthat are raised. You can then write ex cept clausesto handle these exceptions.

Checkpoint
7.16 Briefly describe what an exception is.

7.17 If an exception is raised and the program does not handle it with a try/except
statement, what happens?

7.18 What type df exception does a program raise when it triesto open a non-existent file?

7.19 What type of exception does a program raise when it usesthe £loat function to
convert a non-numeric string to a number?

a input

b. outpt

. seane
. binary file
 file that data is

P i I

. seque
Ty iue
file can
itted

81 Sequences 8.3 Ligs
8.2 Working with Strings

L. CONCEPT: A sequenceis an object that holds multiple items of data, stored one
after the other. You can perform operations on a sequence, to examine
and manipulate the items stored in it.

A sequence is an object that contains multiple items of data. The items that are in a
sequence are stored one after the other. Python provides various ways to perform opera-
tions on the items that are stored in a sequence.

There are several different types of sequence objectsin Python. In this chapter we will 1ook
at two o the fundamental sequence types: strings and lists. Youve worked with strings
aready, and you know that astring is a sequence of characters. Listsare sequencesthat can
hold various types of data. We will explore some of the operations that you may perform
on these sequences, including ways to access and manipulate their contents.

L. CONCEPT: Python providessevera ways to access the individual charactersin a
string. Strings also have methods that allow you to perform operations
on them.

Many o the programs that you have written so far have worked with strings, but only in
a limited way. The operations that you have performed with strings so far have primarily
involved only input and output. For example, you have read strings as input from the key-

board and fromfiles, and sent strings as output to the screen and to files.
273

274

Chapter 8 Working with Sequences: Strings and Lists

There are many types of programs that not only read strings as input and write strings
as output, but also perform operations on strings. Word processing programs, for exam-
ple, manipulate large amounts of text, and thus work extensively with strings. Email
programs and search engines are other examples of programs that perform operations
on strings.

Python provides a wide variety of tools and programming techniques that you can use to
examine and manipulate strings. We will look at many of thesein this section.

Some programming tasks require that you access the individual characters in a string. For
example, you are probably familiar with websites that require you to set up a password.
For security reasons, many sitesrequire that your password have at least one uppercase | et-
ter, at least one lowercase letter, and at least one digit. When you set up your password, a
program examines each character to ensure that the password meets these qualifications.
(Later in this chapter you will see an example of a program that does this sort of thing.) In
this section we will look at two techniques that you can use in Python to access the indi-
vidual charactersin a string: using the f or loop, and indexing.

Iterating Over a String with the for Loop

One o the easiest waysto accessthe individual characters in astring isto usethef or loop.
Here is the general format:

for variable in string:
statement
statement
etc.

In the general format, variable isthe name of avariable and stringis either a string
literal or avariable that referencesastring. Each timethe loop iterates, variable will ref-
erenceacopy of acharacter in string, beginningwith the first character. We say that the
loop iterates over the charactersin the string. Here is an example:

name = 'Juliet:
for ch in name:
print ch

The name variable referencesa string with six characters, so thisloop will iterate six times.
Thefirst timethe loop iterates, the ch variable will reference * 3', the second time the loop
iterates the ch variable will reference 'u', and so forth. Thisis illustrated in Figure 8-1.
When the code executes, it will display the following:

lterating over the string ‘Juliet’

8.2 Working with Strings

for ch in name:
print ch

1st lteration

for ch in name:
print ch

3rd iteration

name ——= 'Juliet’

ch —>

for ch in name:
print ch

5th Iteration

name ——|'Juliet’

ch

for ch in name:
print ch

2nd iteration

name

on—=fe]

for ch in name:
print ch

4th Heration

name — | ' Juliet’
el |

for ch in name:
print ch

name ———=|'Juliet’

6th iteration

NOTE: Figure8-1illustrates how the ch variable referencesa copy of a character from
the string as the loop iterates. If we change the value that ch referencesin the loop, it
has no effect on the string referenced by name. To demonstrate, ook at the following:

1 nane = 'Juliet’
2 for ch in nane:
3 ch = 'xr

4 print nane

The statement in line 3 merely reassignsthe ch variable to a different value each time
the loop iterates. It has no effect on the string *Juliet' that is referenced by name,
and it has no effect on the number of timesthe loop iterates. When this code executes,

the statement in line 4 will print:

Jul i et

Program 8-1 shows another example. This program asks the user to enter a string. It then
uses a for loop to iterate over the string, counting the number of times that the letter T

(uppercaseor lowercase) appears.

275

276 Chapter 8 Working with Sequences: Strings and Lists

(cou nt_Ts.py)

1 # This programcounts the nunber timnes

2 # the letter T (uppercase or |owercase)

3 # appears in a string.

4

5 def main():

6 # Create a variable to use to hold the count.
7 # The variable nust start with o.

8 count = 0

9

10 # Get a string fromthe user.

ny-string = raw_input('Enter a sentence: ')

Count the Ts.
for ch in ny-string:
if ¢ch == 'T'" or ch == 't':
count += 1

Print the result.
print 'The letter T appears', count, 'tines.'

Call the main function.
mai n()

Indexing

Another way that you can access the individual charactersin a string is with an index.
Each character in a string has an index which specifies its position in the string.
Indexing starts at 0, so the index of the first character is O, the index of the second char-
acter is1, and so forth. The index of the last character in astring is1 lessthan the num-
ber of characters in the string. Figure 8-2 shows the indexes for each character in the
string 'Roses are red'. Thestring has 13 characters, so the character indexes range
from O through 12.

Figure 8-2 String indexes

'"Roses are red'
LTI LI LIS

8.2 Working with Strings

You can use an index to retrieve acopy o an individual character in astring, as shown here:

ny-string = ' Roses are red'
ch = my string[6]

Theexpressionmy string[6] in the second statement returns a copy o the character at
index 6 in my — string. After this statement executes, ch will reference 'z ' as shown in
Figure 8-3.

Getting a copy of a character from a string

my String ———— | Roses are red'

Here is another example:

ny-string = ' Roses are red'
print my string{0}], my string[6], my string[10]

This code will print the following:

You can a'so use negative numbers as indexes, to identify character positions relativeto the
end of the string. The Python interpreter adds negative indexes to the length of the string
to determinethe character position. Theindex — 1 identifiesthelast character in astring, —2
identifiesthe next to last character, and so forth. The following code shows an example:

ny-string = 'Roses are red'
print ny-string[-11, ny-string[-21, ny-string[-131

This code will print the following:

| ndexEr r or Exceptions

An IndexError exception will occur if you try to use an index that is out of range for a
particular string. For example, the string ' Boston' has 6 characters, so the valid indexes
are 0 through 5. (Thevalid negative indexes are —1 through —6.) The following is an
example of code that causesan | ndexError exception.

city = 'Boston'
print city[6]

This type of error is most likely to happen when a loop incorrectly iterates beyond the end
of astring, as shown here:

city = 'Boston'

index = 0

while index < 7:
print city[index]
index += 1

277

278

Chapter 8 Working with Sequences. Strings and Ligs

The last time that this loop iterates, the index variable will be assigned the value 6, which
is an invalid index for the string 'Boston'. As aresult, the print statement will cause
an IndexError exception to be raised.

The 1en Function

Python has a built-in function named len that returns the length of a sequence, such as a
string. The following code demonstrates:

city = 'Boston'
size = len(city)

The second statement calls the 1en function, passing the city variable as an argument.
The function returns the value 6, which is the length of the string * Boston'. Thisvaueis
assigned to the si ze variable.

The len function is especialy useful to prevent loops from iterating beyond the end of a
string, as shown here:

city = 'Boston'

index = 0

while index < len(city):
print city[index]
index += 1

Notice that the loop iterates as long as index is less than the length of the string. This is
becausethe index of the last character in astring isalways1 lessthan the length of the string.

In Python, strings are immutable, which means that once they are created, they cannot be
changed. Some operations, such as concatenation, give the impression that they modify
strings, but in reality they do not. For example, look at Program 8-2.

Program 8-2 (concatenate.py)

This program concatenates strings.

def main():
name = 'Carnmen'
print 'The name is', nane
name = nanme + ' Brown'
print 'Now the name is', nanme

Call the main function.
mai n()

Program Output

The nanme is Carnen
Now t he nanme is Carmen Brown

8.2 Working with Strings

The statement in line 4 assigns the string ' Carmen’ to the name variable, as shown in
Figure 8-4. The statement in line 6 concatenatesthestring ' Brown' tothestring * Carmen:
and assigns the result to the name variable, as shown in Figure 8-5. As you can see
from the figure, the origina string ' Carmen* is not modified. Instead, a new string con-
taining 'Carmen Brown' is created and assigned to the name variable. (The origina
string, ' Carmen' is no longer usable because no variable referencesit. The Python inter-
preter will eventually remove the unusable string from memory.)

2-4 The string 'Carmen' assigned to name
name = 'Carmen'’

name —— | Carmen

The string 'Carmen Brown' assigned to name

name = name + ' Brown'

e
\—> Carmen Brown

Because strings are immutable, you cannot use an expression in the form string[index]
on theleft side of an assignment operator. For example, thefollowing code will causean error:

Assign 'Bill' to friend.

friend = "Bill"

Can we change the first character to 'J'?
friend[0] = 'J° # No, this will cause an error!

The last statement in this code will raise an exception because it attempts to change the
value o the first character in the string 'Bill'.

A dice is a span of items that are taken from a sequence. When you take a dice from a
string, you get a span o characters from within the string. String dices are aso called
substrings.

To get adice of astring, you write an expression in the following general format:
stringfstart := end]

In the general format, start istheindex of the first character in the dice, and end is the
index marking the end of the dice. The expression will return a string containing a copy of
the charactersfrom start up to (but not including) end. For example, suppose we have
the following:

full name = ‘Patty Lynn Smith:®
m ddl e- name = full name[6:10]

279

280

Chepter 8 Working with Sequences: Stringsand Ligts

The second statement assignsthestring ' Lynn ' tothemiddl e_namevariable. If you leave out
the start indexin adicingexpression, Python uses 0 as the startingindex. Here is an example:

full-name = 'Patty Lynn Smth'
first-nanme = full name[:5]

The second statement assignsthe string ' Lynn* tof i r st_name. If you leave out the end
index in adlicing expression, Python uses the length of the string asthe end index. Here is
an example:

full-name = 'Patty Lynn Smith'
| ast- name = full namef11l:]

The second statement assignsthe string * Smith' to f i r st_name. What do you think the
following code will assign to the my_string variable?

full name = 'Patty Lynn Smth:

ny_string = full-name[:]
The second statement assigns the entire string 'Patty Lynn Smith' to ny_string.
The statement is equivalent to:

ny-string = full name[0 : len(full name)]

The dicing examples we have seen so far get dices of consecutive characters from strings.
Slicing expressions can also have step value, which can cause characters to be skipped in
the string. Here is an example of code that uses a dicing expression with a step value:

letters = ' ABCDEFGH JKLMNOPQRSTUWKYZ'
print letters[0:26:2]

The third number inside the brackets is the step value. A step value of 2, as used in this
example, causes the dice to contain every second character from the specified range in the
string. The code will print the following:

ACEG KMOQBUWY

You can also use negative numbers as indexes in dicing expressions to reference positions
relativeto the end of the string. Here is an example:

full name = 'Patty Lynn Smth'
last-name = full - nane[-5:]

Recall that Python adds a negativeindex to the length of a string to get the position refer-
enced by that index. The second statement in this code assigns the string 'Smith' to the
| ast_name variable.

e |f the end index specifies a position beyond the end of the string, Python will use
the length of the string instead.

e |f the start index specifiesa position before the beginning of the string, Python
will use O instead.

e |f thestart index isgreater than the end index, the dicing expression will return

8.2 Working with Strings 281

2L yuur

ar your |ast n: defts [Ent
ar your studenl nber: €
~ cxvratroam lTamin

5ad899

gram vith inpu

er your first name: Jo [Enter]
er your |ast name: Cusimano [

er your student |D nunber: BIO4497 jenter]

: system | ogi n name i:
15497 ,

In Python you can use the i n operator to determine whether one string is contained in
another string. Here is the general format of an expression using the i n operator with two
strings:

stringl in string2
stringl and string2 can be either string literals or variables referencing strings. The
expression returns true if stringl isfoundin string2. For example, look at the follow-
ing code:

text = 'Four score and seven years ago'

if 'seven' in text:

print 'The string "seven" was found.'

el se:
print 'The string "seven" was not found.'

This code determines whether the string ' Four score and seven years ago' con-
tains the string 'seven'. If we run this code it will display:

The string "seven" was found.

You can use the not i n operator to determine whether one string is hot contained in another
string. Here is an example:

nanes = 'Bill Joanne Susan Chris Juan Katie'
if "Pierre' not in nanes:
print 'Pierrewas not found. *

el se:
print 'Pierre was found. -

If we run this code it will display:

Pierre was not found.

284

Chapter 8 Working with Sequences. Stringsand Lids

Recall from Chapter 7 that a method is a function that belongs to an object, and per-
forms some operation on that object. Strings in Python have numerous methods.! In this
section we will discuss severa string methods for performing the following types of
operations:

e Testing the values of strings
e Performing various modifications
= Searching for substrings and replacing sequences of characters

Hereis the general format of a string method call:

In the general format, stringvar is a variable that references a string, method is the
name of the method that is being called, and arguments is one or more arguments being
passed to the method. Let's look at some examples.

String Testing Methods

The string methods shown in Table 8-1 test a string for specific characteristics. For exam-
ple, the isdigit method returnstrueif the string contains only numeric digits. Otherwise,
it returns fase. Here is an example:

stringl = 1200
if stringl.isdigit():
print stringl, 'contains only digits.'
el se:
print stringl, 'contains characters other than digits.'

This code will display
1200 contains only digits.
Here is another example:

string2 = '123abc’
if string2.isdigit():
print string2, 'contains only digits.'
el se:
print string2, 'contains characters other than digits.'

This code will display
123abc contains characters other 'thandigits.

Program 8-5 demonstrates severa of the string testing methods. It asks the user to enter a
string, and then displays various messages about the string, depending on the return value
of the methods.

¥ We do not cover al of the string methods in this book. For acomprehensive list of string methods, see the Python
documentation at www.python.org.

o 1

8.2 Working with Strings

®-7 Some string testing methods

Method Description

isalnum() Returnstrueif the string contains only alphabetic letters or digitsand is at |east
one character in length. Returns false otherwise.

isalpha() Returnstrueif the string contains only alphabetic letters, and is at least one
character in length. Returns false otherwise.

isdigit() Returnstrueif the string contains only numeric digitsand is at least one character
in length. Returns false otherwise.

islower () Returnstrueif al of the aphabetic letters in the string are lowercase, and the
string contains at least one alphabetic letter. Returns false otherwise.

isspace() Returnstrue if the string contains only whitespace characters, and is at least one

* character in length. Returns false otherwise. (Whitespace characters are spaces,

newlines (\n), and tabs (\t).

isupper() Returnstrue if all of the alphabetic letters in the string are uppercase, and the
string contains at least one alphabetic letter. Returns false otherwise.

Program 8-5 (string_test.py)

This program denonstrates several

string testing methods.

def main():

#

Cet a string fromthe user.

user_string = raw_input('Enter a string:)

print '"This is what |

#
if

Call
mai n()

found about that string:

Test the string.

user_string.isalnum():

print 'The string is al phanuneric.'
user_string.isdigit():

print 'The string contains only digits."'

user string.isalpha():

print 'The string contains only al phabetic characters."
user_ string.isspace():

print 'The string contains only whitespace characters.'
user string.islower():

print 'The letters in the string are all |owercase. '
user_string.isupper():

print 'The letters in the string are all uppercase. '
the string.

285

286

Chapter 8 Working with Sequences: Strings and Lists

Modification Methods

Although stringsare immutabl e, meaning they cannot be modified, they do have a number of
methods that return modified versonsd themselves. Table 8-2 lists severd of these methods.

= .2 String Modification Methods

Method Description

| ower () Returnsacopy o thestring with all al phabeticletters converted to lowercase. Any
character that is already lowercase, or is not an a phabetic letter, is unchanged.

lstrip() Returns a copy of the string with all leading whitespace characters removed.

rstrip(char)

strip()

strip{(char)

upper ()

L eading whitespace characters are spaces, newlines (\n), and tabs (\t) that
appear at the beginning of the string.

Thechar argument isastring containing acharacter. Returns a copy of thestring
with al instances of char that appear at the beginning of the string removed.

Returns a copy o the string with al trailing whitespace characters removed.
Trailing whitespace characters are spaces, newlines (\n), and tabs (\t) that
appear at the end of the string.

Thechar argument is a string containing a character. The method returns a copy o
the string with al instances o char .that appear at the end o the string removed.

Returns a copy o the string with all leading and trailing whitespace characters
removed.

Returns a copy o the string with all instances of char that appear at the
beginning and the end o the string removed.

Returnsacopy o thestringwith al a phabeticlettersconverted to uppercase. Any
character that is aready uppercase, or is not an a phabetic letter, is unchanged.

8.2 Working with Strings 287

For example, the | ower method returns a copy of a string with all of its alphabetic letters
converted to lowercase. Here is an example:

letters = ' WKYZ'
print letters, letters.lower()

This code will print:
WKYZ wxyz

Theupper method returns acopy of astring with al of its alphabetic letters converted to
uppercase. Here is an example:

letters = 'abed:
print letters, letters.upper()

This'code will print:
abed ABCD

The | ower and upper methods are useful for making case-insensitive string compar-
isons. String comparisons are case-sensitive, which means that the uppercase characters
are distinguished from the lowercase characters. For example, in a case-sensitive corn-
parison, the string 'abc' is not considered the same as the string 'ABC' or the string
'Abc ' because the case of the characters are different. Sometimes it is more convenient
to perform a case-insensitive comparison, in which the case of the characters is ignored.
In a case-insensitive comparison, the string 'abc* isconsidered the same as 'ABC' and
‘Abc'.

For example, look at the following code:

again = 'y
while again.lower () == 'y':
print 'Hello

print 'Do you want to see that again?'
again = rawinput('y = yes, anything else = no: ')

Notice that the last statement in the loop asks the user to enter y to see the message dis-
played again. Theloop iterates aslong asthe expression again. | ower () == 'y’ istrue.
The expression will betrueif the again variable referenceseither 'y or 'v .

Similar results can be achieved by using the upper method, as shown here:

again = 'y
whi | e agai n-upper () == 'Y':
print 'Hello
print 'Do you want to see that again?' 5

again = rawinput('y = yes, anything else = no: ')

Sear ching and Replacing

Programs commonly need to search for substrings, or strings that appear within other
strings. For example, suppose you have a document opened in your word processor, and
you need to search for aword that appears somewherein it. The word that you are search-
ing for is a substring that appears inside a larger string, the document.

288 Chapter 8

Working with Sequences: Stringsand Lids

Table 8-3 lists some o the Python string methods that search for substrings, as well as a
method that replaces the occurrences of a substring with another string.

Method Description

endswi t If substri ng) The subst ri ng argument is a string. The method returns true if
the string ends with subst ri ng.

find(substring) The subst ri ng argument is a string. The method returns the
lowest index in the string where subst ri ng is found. If
subst ri ngis not found, the method returns —1.

replace(old, new) The o1d and newarguments are both strings. The method returns
acopy o the string with al instancesdf o1d replaced by new.

startsw t h(substring) The subst ri ng argument is a string. The method returns true if

the string starts with subst ri ng.

The endswith method determines whether a string ends with a specified substring. Here
is an example:

filename = raw input('Enter the filenanme: ')
if filename.endswith('.txt'):

print 'That is the name of a text file."
elif filename.endswith('.py'):

print 'That is the nane of a Python source file."
elif filename.endswith('.doc'):

print 'That is the nane of a word processi ng docunent
el se:

print 'Unknown file type. "

The startswith method works like the endswith method, but determines whether a
string begins with a specified substring.

Thefind method searchesfor a specified substring within a string. The method returnsthe
lowest index of the substring, if it isfound. If the substring is not found, the method returns
—1. Hereis an example:

string = 'Four score and seven years ago'
position = string.find('seven')
if position 1= -1:

print 'The word "seven" was found at index', position
el se:
print 'The word "seven" was not found.

This code will display:

The word "seven" was found at index 15

8.2 Working with Strings

The repl ace method returns a copy of astring, where every occurrence of a specified sub-
string has been replaced with another string. For example, look at the following code:

string = 'Four score and seven years ago'
new- string = string.replace('years’', 'days')
print new string

This code will display:

Four score and seven days ago

289

SO A WN—

You learned in Chapter 2 that the * symbol multiplies two numbers. However, when the
operand on the l€eft side of the * symbol is a string and the operand on the right side is an
integer, it becomes the repetition operator. Here is the general format:

string-to-copy * n

The repetition operator creates astring that contains n repeated copiesof string-t o_copy.
Mereis an example:

ny-string = 'w' * 5

After this statement executes, my_string will reference the string 'wwwww'. Here is
another example:

print 'Hello * 5
This statement will print:

Program 8-8 demonstrates the repetition operator.

This program denonstrates the repetition operator.

def main():
Print 9 rows increasing in |ength.
for count in range(l, 10):
print 'z * count

10
11

12
13

Print 9 rows decreasing in |ength.

for count in range(8, 0, -1):

*

8.2 Working with Strings

print 'z count
Call the main function.
main()
Checkpoint
8.1 Assumethe variable name referencesa string. Write af or loop that prints each
character in the string.
8.2 What isthe index o the first character in a string?
8.3 If astring has 10 characters, what is the index of the last character?
84 What happens if you try to use an invalid index to access a character in a string?
85 How do you find the length of astring?
8.6 What is wrong with the following code?
animal = 'Tiger:®
animal[0] = 'L’
87 What will the following code display?
mystring = 'abcdefg’
print mystring[2:5]
8.8 What will the following code display?

mystring = 'abcdefg’
print mystring[3:]

293

294 Chapter 8 Working with Sequences: Strings and Lists

8.9 What will the following code display?

mystring = 'abcdef g’
print mystring[:3]

8.10 What will the following code display?

mystring = 'abcdefg'
print mystringf:]

8.11 Write code using the i n operator that determines whether *d* isin mystring.

8.12 Assumethe variable big referencesa string. Write a statement that converts the
string it referencesto lowercase, and assigns the converted string to the variable
little.

8.13 Writean i f statement that displays "Digit" if the string referenced by the variable
ch contains a numeric digit. Otherwise, it should display " No digit."

8.14 What isthe output of the following code?

ch ='a'
ch2 = ch.upper()
print ch, ch2

8.15 Writealoop that asks the user Do you want to repeat the program or quit?
(R/Q)”. The loop should repeat until the user has entered an R or Q (either
uppercase or lowercase).

8.16 What will the following code display?

var = '$*
print var.upper()

8.17 Write aloop that counts the number of uppercase characters that appear in the
string referenced by the variable mystring.

- CONCEPT: A listisan object that contains multiple data items. Lists are mutable,
which means that their contents can be changed during a program's
execution. Lists are dynamic data structures, meaning that items may be
added to them or removed from them. You can useindexing, dicing, and
various methods to work with lists in a program.

Alist isan object that contains multiple dataitems. Each item that isstoredin alistiscalled
an element. Here is a statement that creates a list of integers:

even- nunbers = [2, 4, 6, 8, 10]

Theitemsthat are enclosedin brackets and separated by commas are the list elements. After
this statement executes, the variable even— numbers will reference the list, as shown in
Figure 8-6.

8.3 Lists

re 26 A Aistd integers

even- nunbers —— | 2 | 4 | 6 8 | 10

The following is another example:

names = ["Mlly', 'Steven', "WII', "Alicia', 'Adriana'j]
This statement creates a list of five strings. After the statement executes, the name variable
will referencethe list as shown in Figure 8-7.

A list of strings

names —— = | Mily | Steven | W Aida | Adriana

You can usethe print statement to display an entire list, as shown here:

numbers = [5, 10, 15, 20]
print nunbers

When the print statement executes, it will display the elements of the list like this:
[5, 10, 15, 20}

You can use the range function, which was introduced in Chapter 5, to generate a list of
integers. Here is an example:

nunbers = range(5)

In this statement the range function will return a list of integersin the range of 0 up
to (but not including) 5. This statement will assign the list [0, 1, 2, 3, 4] tothe
numbers variable. Here is another example:

nunmbers = range(l, 10, 2)

Recall from Chapter 5 that when you pass three arguments to the range function, the first
argument is the ligt's starting value, the second argument is the list's ending limit, and the
third argument is the step value. This statement will assignthelist 1, 3, 5, 7, 9]to
the numbers variable.

You can use the repetition operator (*) to easily create a list with a specific number of
elements, each with the same value. Here is an example:

numbers = [0] * 5

This statement will create a list with five elements, with each element holding the value 0.
This statement will assignthelist [0, 0, 0, 0, 0] tothe numbersvariable.

295

296

Chapter 8 Working with Sequences. Stringsand Lids

In Section 8.1 we discussed techniques for accessing the individual characters in a string.
Many of the same programming techniques also apply to lists. For example, you can iter-
ate over alist with the f or loop, as shown here:

numbers = [99, 100, 101, 102}
for n in nunbers:
print n

If we run this code, it will print:

Indexing works with lists just as it does with strings. Each element in a list has an index
which specifiesits position in the list. Indexing starts at 0, so the index of the first element
is 0, the index of the second element is 1, and so forth. The index of the last element in a
listis 1 less than the number of elementsin the list.

For example, the following statement creates a list with 4 elements:
ny-list = [10, 20, 30, 40]

The indexes of the elementsin thislist are 0, 1, 2, and 3. We can print the elements of the
list with the following statement:

print my list[0], my_list{1], my list[2], my list[3]
The following loop also prints the elements of the list:

index = 0

whil e index < 4

print my list[index]
index += 1

You can also use negativeindexeswith lists, to identify element positions relativeto the end
o the list. The Python interpreter adds negative indexes to the length of the list to deter-
mine the element position. The index —1 identifiesthe last element in a list, —2 identifies
the next to last element, and so forth. The following code shows an example:

ny-list = [10, 20, 30, 40}
print ny-1list[-11, ny-1list[-21, ny-list[-31, ny-list[-41

This print statement will display:

An IndexError exception will beraised if you use an invalid index with alist. For exam-
ple, look at the following code:

This code will cause an |IndexError exception.
ny-list = [10, 20, 30, 40]

8.3 Lists 297

index = ¢

whil e i ndex < 5
print my list[index]
index += 1

The last time that thisloop iterates, the index variable will be assigned the value 5, which
isan invalidindex for thelist. Asaresult, the print statement will causean | ndexError
exception to be raised.

The len function that you learned about in the previous section can be used with lists as
well as strings. When you pass a list as an argument, the 1en function returns the number
of elementsin the list. The previously shown code, which raisesan IndexError excep-
tion, can be modified as follows to prevent the exception:

my. list = [10, 20, 30, 40)

index = 0

while index < len(my list):
print my list[index]
index += 1

Slicing operations work with lists just as they do with strings. For example, suppose we
create the following list:

days = [' Sunday', 'Monday', 'Tuesday', 'Wednesday',
' Thursday', 'Friday', 'Saturday']

The following statement uses a dicing expression to get the elementsfrom indexes 2 up to,
but not including, 5:

md- days = days[2:5]
After this statement executes the mid_day s variable will referencethe following list:

[' Tuesday', 'Wednesday', ' Thursday'].

Finding Items in a List with in and not in

You can usethe i n operator to determine whether an item is contained in a list. Program 8-9
shows an example.

Program 8-9 (in_fist.py)

This program denonstrates the in operator
used with a list.

Oeate a list of product nunbers.

|
2
3
4 def main():
5
6 prod- nuns = ['V475', 'F987', 'Q143', 'R688']

(program continues)

298

Chapter 8 Working with Sequences: Strings and Lists

Program 8-9 (continued)

Get a product nunber to search for.
search = raw_input('Enter a product nunber: ‘)

Determ ne whether the product nunber is in the list.
if search in prod- nuns:

print search, "was found in the list.'
el se:

print search, 'was not found in the list."

Call the main function.
mai n()

s found

n Outp

The program gets a product number from the user in line 9 and assigns it to the search
variable. Thei f statement in line 12 determines whether searchisin the prod—numslist.

You can use the not i n operator to determine whether an itemisnot in alist. Hereis an
example:

if search not in prod- nuns:

print search, 'was not found in the list.'
el se:

print search, 'was found in the list."

Unlike strings, lists in Python are mutable, which means their elements can be changed.
Consequently, an expression in the form | i st[index] can appear on the left side of an
assignment operator. The following code shows an example:

1 numbers = [1, 2, 3, 4, 5]
2 print numbers

3 numbers[0] = 99

4 print numbers

The statement in line 2 will display:

The statement in line 3 assigns 99 to numbers{ 0]. This changes the first value in the list
to 99. When the statement in line 4 executes it will display:

8.3 Lids 299

When you use an indexing expression to assign a value to a list element, you must use a
valid index for an existing element, or an IndexErroxr exception will occur. For example,
look at the following code:

nunbers = (1, 2, 3, 4, 5] # Ceate a list with 5 el enents.
nunber s[5] = 99 # This rai ses an exception!

The numbers list that is created in the first statement has five elements, with the indexes
0 through 4. The second statement will raise an IndexError exception because the
numbers list has no element at index 5.

If you want to use indexing expressions to fill alist with values, you haveto create the list
first, as shown here:

1. 4 Ceate alist with 5 el enents.
2 nunbers = [0] * 5

3

4 # Fill the list with the val ue 99.
5 index = 0

6 while index < len(numbers):

7 numbers{index] = 99

8 index += 1

The statement in line 2 creates a list with five elements, each element assigned the value 0.
Theloop in lines 6 through 8 then steps through the list elements, assigning 99 to each one.

Program 8-10 shows an example of how user input can be assigned to the elementsof alist.
This program gets sales amounts from the user and assigns them to alist.

Program 8-10 (sales_list.py)

1 # The NUM DAYS constant hol ds the number of
2 # days that we will gather sales data for.
NUM DAYS = 5

def main():
Oeate a list to hold the sales
for each day.
sales = [0] * NUM DAYS

Create a variable to hold an index.
index = 0

print 'Enter the sales for each day.
Get the sales for each day.
whi | e i ndex < NUM DAYS
sales[index] = input('Day #' *+ str(index+1l) + *': ')

index += 1

(program continues)

300

Chapter 8 Working with Sequences. Stringsand Ligs

20
21
22
23
24
25
26

(continued)

Display the val ues entered.
print 'Here are the values you entered: '
for value in sales:

print val ue

Call the main function.
main()

The statement in line 3 creates the variable NUM_DAYS, which is used as a constant for
the number of days. The statement in line 8 creates a list with five elements, with each
element assigned the value 0. Line 11 creates a variable named index and assigns the
value 0 to it.

The loop in lines 16 through 18 iterates 5 times. The first time it iterates, index will ref-
erence the value 0, so the statement in line 17 assigns the usar's input to sales [0]. The
second time the loop iterates, index will reference the value 1, so the statement in line 17
assigns the user's input to sal es[13. This continues until input vaues have been assigned
to all of the elementsin the list.

Lists have numerous methods that allow you to add elements, remove elements, change the
ordering of elements, and so forth. We will look at a few o these methods which are listed
in Table 8-4.

The append Method

The append method is commonly used to add itemsto alist. The item that is passed as an
argument is appended to the end of the list's existing elements. Program 8-11 shows an
example,

* We do not cover all of the list methods in this book. For a description o al of the list methods, see the Python
documentation at www.python.org.

8.3 Lists

8-24 Afew d the lig methods

Method Description

append (i t em) Addsi t emto the end of thelist.

Returns the index of the first element whose valueis equal to item.
A valueError exception is raised if item is not found in the list.

i nsert(index, iten Insertsi t eminto theligt at the specifiedi ndex. When an itemis

inserted into a list, the ligt is expanded in Size to accommodate the
new item. The item that was previoudy at the specifiedindex, and al
the items after it, are shifted by one position toward the end o thelist.
No exceptionswill occur if you specify an invalid index. If you
specify an index beyond the end of the list, the item will be added to
the end of thelist. If you use a negativeindex that specifies an
invalid position, the item will be inserted at the beginning of thelist.

sort () Sorts the itemsin the list so they appear in ascending order (from

the lowest value to the highest value).

remove (item) Removes the first occurrence of i t emfrom thelist. A valueError

exception israised if item is not found in the list.

reverse() Reversesthe order of the itemsin the list.

23

Thi s program denonstrates how t he append
method can be used to add itens to a list.

def main():
First, create an enpty list.
nane-list = []

Create a variable to control the | oop.
again = 'y

Add some names to the list.
whil e again.upper() == 'Y':
Get a nanme fromthe user.
nane = raw- input ('Enter a name: ‘)

Append the nane to the |ist.
name_list.append(name)

Add anot her one?

print 'Do you want to add anot her nane?

again = raw-input('Y = yes, anything else = no: ')
print

(program continues)

301

302

Chapter 8 Working with Sequences: Strings and Lists

(continued)

24 # D splay the names that were entered.
25 print 'Here are the nanes you entered.'
26

27 for name in name-1list:

28 print nane

29

30 # Call the main function.

31 main()

E name: ¢

’ = yes, anythj

iter a nane: &
o you want to add anc

r

yes, anything else

vant to add anc
, anything else

1Cat hryn

Notice the statement in line 6:
nane-list = []

This statement creates an empty list (alist with no elements) and assigns it to the
name list variable. Inside the loop, the append method is called to build the list. The
first time the method is called, the argument passed to it will become element 0. The sec-
ond time the method is called, the argument passed to it will become element 1. This con-
tinues until the user exits the loop.

The i ndex Method

Earlier you saw how the i n operator can be used to determine whether an itemisin alist.
Sometimes you need to know not only whether an itemisin alist, but where it is located.
The index method is useful in these cases. You pass an argument to the index method
and it returns the index of thefirst element in thelist containing that item. If the item is not
found in the list, the method raises a valueError exception. Program 5-12 demonstrates
the index method.

1
2

14
i5
16
17
18
19
20
21
22
23
24
25
26
27
28
29
3¢
31
32
33

8.3 Lists

This programdenonstrates how to get the
index of an itemin a list and then repl ace
that itemwith a newitem

def main():

$# Ceate a list with sone itens.
food =['Pizza', 'Burgers', 'Chips']

Display the list.
print 'Here are the items in the food list:"
print food

Get the itemto change.
item = raw_input('Which itemshould | change? ')

try:
Get the items index in the |ist.
item index = food.index(item)

Get the value to replace it with.
new-item = raw_input(' Enter the new val ue:)

Replace the old itemwith the newitem
food[item index] = new item

Display the list.
print '"Here is the revised list:'
print food
except valueError:
print 'That itemwas not found in the list."

Call the main function.
main()

The elementsd the food list are displayed in line 11, and in line 14 the user is asked which
item he or she wants to change. Line 18 calls the index method to get the index of the

304 Chapter 8 Working with Sequences: Stringsand Ligs

item. Line 21 getsthe new valuefrom the user, and line 24 assigns the new valueto the de-
ment holding the old value.

Theinsert Method

Theinsert method allows you toinsert an item into alist at a specific position. You pass
two arguments to the i nsert method: an index specifying where the item should be
inserted and the item that you want to insert. Program 8-13 shows an example.

Thi s programdenonstrates the insert method.

def main():
Create a list with some nanes.
names = ['Janes', 'Kathryn', "Bill"]

Display the list.
print 'The list before the insert:
print nanes

Insert a new nane at el enent 0.
names.insert (0, 'Joe')

Display the |ist again.
print 'The list after the insert:
print nanes

Call the main function.
mai n()

Program Output

T before the insert:

[‘Kathiyn', 'Bill"]

The list after the insert:

['Joe', "Janes', "Kathryn', "Bill"]

The sort Method

The sort method rearranges the elementsof alist so they appear in ascending order (from
the lowest value to the highest value). Here is an example:

my-list=7g19, 1, 0, 2, 8, 6, 7, 4, 5, 3}
print 'Original order:', ny-list
my_list.sort()

print 'Sorted order:', ny-Ilist

8.3 Lists

When this code runs it will display the following:

Oiginal order: (9, 1, 0, 2, 8, 6, 7, 4, 5, 3]
Sorted order: (o, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Here is another example:
ny-list =["beta', 'alpha, 'delta', 'gamm']
print 'Original order:', ny-Ilist
my_list.sort()
print 'Sorted order:', ny-Ilist

When this code runs it will display the following:

Oiginal order: ['beta', '"alpha', 'delta, 'gamma']
Sorted order: ['alpha', 'beta', 'delta', 'gamm']

The r enove Method

Ther emove method removes an item from the list. You pass an item to the method as an
argument and the first element containing that item is removed. This reducesthe size of the
list by one element. All of the elements after the removed element are shifted one position
toward the beginning of thelist. A valueError exception israised if theitemis not found
in the list. Program 8-14 demonstrates the method.

Program 8-14 (remove-item.py)

1
2
3
4
5
6
7
8
9

10
11
12
13

This programdenonstrates how to use the renove
method to renove an itemfroma |ist.

def main():
Ceate a list with sone itens.
food =['Pizza', 'Burgers', 'Chips']

Display the list.
print '"Here are the itenms in the food list:
print food

Get the itemto change.
item= raw input (' Wiich itemshould | renove? ')

try:
Renove the item
food.remove(item)

Display the list.
print 'Here is the revised list:
print food

except Val ueError:
(program continues)

305

306 Chapter 8 Working with Sequences: Stringsand Lids

Program 8-14 (continued)

24 print 'That item was not found in the list.
25

26 # Call the nmin function.

27 main()

The rever se Method
Thereverse method smply reversesthe order of theitemsin thelist. Here is an example:

ny-list = [1, 2, 3, 4, 5]

print 'Original order:', ny-list
my list.reverse()
print 'Reversed:', ny-Ilist

This code will display the following:
Original order: [1, 2, 3, 4, 5)
Reversed: 1[5, 4, 3, 2, 1]

The del Statement

The remove method that you saw earlier removesa specific item from alist, if that itemis
in the list. Some situations might require that you remove an element from a specific index,
regardiess of the item that is stored at that index. This can be accomplished with the del
statement. Here is an example of how to use the del statement:

ny-list = [1, 2, 3, 4, 5]

print 'Before deletion:', ny-list
del ny-1list[2]
print 'After deletion:', ny-1list

This code will display the following:
Before deletion: [1, 2, 3, 4, 5]
After deletion: [1, 2, 4, 5]

The min and max Functions

Python has two built-in functions named min and max that work with sequences. The min
function accepts a sequence, such as alist or a string, as an argument and returns the item
that has the lowest valuein the sequence. Here is an example:

ny-list = [5, 4, 3, 2, 50, 40, 30}
print 'The |lowest value is', min(my_ list)

8.3 Lists

This code will display the following:
The | owest value is 2

The max function accepts a sequence, such as alist or a string, as an argument and returns
the item that has the highest value in the sequence. Here is an example:

ny-list = (5, 4, 3, 2, 50, 40, 30]
print ' The highest value is', max(my list)

This code will display the following:
The highest value is 50

Concatenating Lists

You can use the + operator to concatenate two lists. Here is an example:

listl =11, 2, 3, 4]
list2 = [5, 6, 7, 8]
list3 =1listl + list2

After this code executes, | i st 3 will referencethe following list:

Copying Lists

Recall that in Python, assigning one variable to another variable simply makes both vari-
ables reference the same object in memory. For example, look at the following code:

Ceate a list.

listl =11, 2, 3, 4}
Assign the list to the list2 variable.
list2 = listl

After this code executes, both variables | i st and 1ist2 will reference the same list in
memory. Thisis shown in Figure 8-8.

Figure 88 listl andli st2 reference the same list

listl

list2
E]

Suppose you wish to make a copy of the list, so that 1istl and list2 reference two
separate but identical lists. One way to do this is with a loop that copies each element of
the list. Here is an example:

Geate a list wth val ues.
listl = [1, 2, 3, 4]
Oreate an enpty list.

307

308

Chapter 8 Working with Sequences: Stringsand Lids

list2 =[]
Copy the elements of listl to list2.
for itemin listl:

list2.append(item)

After this code executes, 1ist1 and 1ist2 will referencetwo separate but identical lists.
A simpler and more elegant way to accomplish the same task is to use the concatenation
operator, as shown here:

Create a list with val ues.
listl =11, 2, 3, 4]

Create a copy of listl.
list2 = 1 *+ listl

The last statement in this code concatenates an empty list with 1i stl and assigns the
resultinglist to 1ist2. Asaresult, | i st 1 and 1ist2 will referencetwo separate but iden-
tical lists.

So far you've learned awide variety of techniques for working with lists. Now we will ook
at a number of waysthat programs can processthe data held in alist. For example, the fol-
lowing I n the Spotlight section shows how list elementscan be used in calculations.

NOTE: Suppose Megan's businessincreasesand she hirestwo additional baristas. This
would require you to change the program so it processeseight employeesinstead of six.
Because you used a constant for the list size, this is a smple modification—you just
change the statement in line 6 to read:

NUM_EMPLOYEES = 8

(continued)

310

Chapter 8 Working with Sequences. Stringsand Ligs

Because the NUM_BEMPLOYEES constant is used in line 10 to create the list, the size of
the hours list will automatically become eight. Also, because you used the
NUM_EMPLOYEES constant to control the loop iterations in lines 13 and 21, the loops
will automatically iterate eight times, once for each employee.

Imagine how much more difficult this modification would beif you had not used a con-
stant to determine the list size. You would have to change each individual statement in
the program that refers to the list size. Not only would this require more work, but it
would open the possibility for errors. If you overloolzed any one of the statements that
refer to the list size, a bug would occur.

Totaung the Values in a List

<

Assuming a list contains numeric values, to calculate the total of those values you use aloop
with an accumulator variable. The loop steps through the list, adding the value o each element
to the accumulator. Program 8-16 demonstratesthe algorithm with a list named numbers.

Program 8-16 (total_list.py)

This programcal cul ates the total of the val ues
#in alist.

def main():
Create a list.
nunbers = (2, 4, 6, 8, 10]

Create a variable to use as an accunul ator.
total = 0

Calculate the total of the list elenments.
for value in nunbers:
total += val ue

Display the total of the list elenents.
print 'The total of the elements is', total

Call the main function.
mai n()

Program Output
The total of the elenents is 30

Averaging the Values |n a List

The first step in calculating the average of the values in a list is to get the total of the
values. You saw how to do that with aloop in the preceding section. The second step is

8.3 Lids

to divide the total by the number of elementsin the list. Program 8-17 demonstrates the
agorithm.

Program 8-17 (average_list.py)

This program cal cul ates the average of the val ues
#1inalist.

def main():
Ceate a list.
scores = [2.5, 8.3, 6.5, 4.0, 5.21

Create a variable to use as an accunul ator.
total = 0.0

Calculate the total of the |ist el enents.
for value in scores:
total += val ue

Cal cul ate the average of the el enents.
average = total / len(scores)

Display the total of the Iist elenents.
print ' The average of the elenents is', average

Call the main function.
mai n()

Program Output
The average of the elenents is 5.3

Passing a List as an Argument {0 a Function

'Recall from Chapter 3 that as a program grows larger and more complex, it should be bro-
ken down into functions that each performs a specific task. This makes the program easier
to understand and to maintain.

ES

You can easily pass a list as an argument to a function. This gives you the ability to put
many of the operations that you perform on a list in their own functions. When you need
to call these functions, you can pass the list as an argument.

Program 8-18 shows an example of a program that uses such a function. The func-
tion in this program accepts a list as an argument and returns the total of the list's
elements.

311

312 (hapter 8 Wir ki ng with Sequences: Srings and Lists

Program 8-18 (total_function.py)

This programuses a function to calcul ate the
total of the values in a list.

def main():
Ceate a list.
nunbers = [2, 4, 6, 8, 10}

Display the total of the list elenents.
print 'Thetotal is', get total(numbers)

The get-total function accepts a list as an

argunent returns the total of the values in

the list.

def get total(value_ list):
Create a variable to use as an accumul ator.
total =0

Calculate the total of the list elenents.
for num in value-1list:
total += num

Return the total
return total

Call the main function.

Program Output
The total is 30

A function can return areferenceto alist. This gives you the ability to write afunction that
creates alist and adds elementsto it, and then returns a referenceto the list so other parts
of the program can work with it. The code in Program 8-19 shows an example. It uses a
function named get_val ues that gets a series of values from the user, stores them in a
list, and then returns a referenceto the list.

Program 8-19 (return_list.py)

1 # This programuses a function to create a |ist.

2 # The function returns a reference to the list.
3

8.3 Lists

def main():
Get a list with values stored in it.
nunbers = get-val ues()

Display the values in the list.
print 'The nunbers in the list are: '
print nunbers

The get-values function gets a series of nunbers
fromthe user and stores themin a list. The
function returns a reference to the list.
def get-val ues():
Oeate an enpty list.
values = []

reate a variable to control the | oop.
again = 'y

Get values fromthe user and add themto

the list.

whi | e again. upper () == 'yY':
Get a nunber and add it to the list.
num = i nput (‘Enter a nunber:)
values.append(num)

Want to do this again?

print 'Do you want to add anot her nunber ?'

again = rawinput('y = yes, anything else = no: ')
print

Return the list.
return val ues

Call the main function.
. main()

313

314 Chapter 8 Working with Sequences: Strings and Lists

(continued)

wmber: 5 [Enter
int to add anot

. numbe :he list
I 2’ 3'

= no y

[Enter]
you want to a
= yes, anythin

Some tasks may require you to save the contentsof alist to afile so the data can be used at a
later time. Likewise, somesituationsmay require you to read the data from afileinto alist. For
example, suppose you have afile that containsaset of valuesthat appear in random order and
you want to sort the values. One technique for sorting the values in the file would be to read
theminto aligt, cal thelist's sort method, and then write the valuesin thelist back to thefile.

Saving the contents of a list to a file is a straightforward procedure. In fact, Python file
objects have a method named writelines that writes an entire list to afile. A drawback
to the writelines method, however, is that it does not automatically write a newline
("\n"') at the end of each item. Consequently, each item is written to one long line in the
file. Program 8-21 demonstrates the method.

Program 8-21 (writelines.py)

1 # This programuses the witelines nethod to save

2 # alist of strings to a file.

3

4 def main():

5 # reate a list of strings.

6 cities =["New York', 'Boston', "Atlanta', 'Dallas']
7

8 # Qpen a file for witing.

9 outfile = open('cities.txt', ‘'w')

10

11 # Wite the list to the file. o
12 outfile.writelines(cities)

13

14 # dose the file.

15 outfile.close()

16

17 # Call the main function.
18 main()

318 Chapter 8 Working with Sequences: Stringsand Ligts

After this program executes, the ci ti es. t x t filewill contain the following line:

New YorkBostonAtlantabDallas

An dternative approach isto use the f or loop to iterate through the list, writing each ele-
ment with a terminating newline character. Program 8-22 shows an example.

Program 8-22 (write_list.py)

1
2
3

17

This programsaves a list of strings to a file.

def main():

Create a list of strings.

cities =["New York', '"Boston', "Atlanta', 'Dallas']

Qpen a file for witing.
outfile = open('cities.txt', "W)

Wite the list to the file.
for itemin cities:
outfile.write(item + '\n')

Cose the file.
outfile.close()

Call the main function.

After this program executes, the ci ti es. t x t filewill contain the following lines:

New Yor k
Bost on
Atl ant a
Dal | as

File objects in Python have a method named readlines that returns afileés contents as a
list of strings. Eachlinein thefilewill bean itemin thelist. Theitemsin the list will include
their terminating newline character, which in many cases you will want to strip. Program
8-23 shows an example. The statement in line 8 reads the files contentsinto alist, and the
loop in lines 15 through 17 steps through the list, stripping the ' \n* character from each
element.

Program 8-23 (read_list.py)

1
2
3
4

This programreads a file's contents into a list.

def main():

Qpen a file for reading.

8.3 Lists

5 infile = open(‘'cities.txt', 'r')

6

7 # Read the contents of the file into a list.
8 cities = infile.readlines()

9

10 # dose the file.

11 infile.close()

12

13 # Strip the \n fromeach el erent.

14 index = 0

15 whil e index < len(cities):

16 cities[index] = cities(index}.rstrip('\n')
17 index += 1

18

19 # Print the contents of the list.

20 print cities

21

22 # Call the main function.

23 main()

Proaram Output
[k', 'BOston', 'Atlanta', 'Dallas']

Program 8-24 shows another example of how a list can be written to afile. In this exam-
ple, alist of numbersis written. Notice that in line 12, each item is converted to a string
with the st r function, and then a ' \n" is concatenated to it.

Program 8-24 (write_number_list.py)

1 # This programsaves a list of nunbers to a file.
2

3 def main():

4 # Oeate a |list of nunbers.

5 nunbers = [1, 2, 3, 4, 5, 6, 7]

&

7 # pen a file for witing.

8 outfile = open('numberlist.txt', 'w')
9

10 # wite the list to the file.

11 for itemin nunbers:

12 outfile.write(str(item) + '\n')
13

14 # Aose the file.

15 outfile.close()

16

17 # Call the main function.
18 main()

319

320 Chapter 8 Working with Sequences: Strings and Lists

When you read numbers from afileinto alist, the numbers will have to be converted from
strings to a numeric type. Program 8-25 shows an example.

Program 8-25 (read-number-list. py)

16
17
18
19
20
21
22

This programreads nunbers froma file into a |ist.
def main():
Qpen a file for reading.

infile = open('numberlist.txt’', 'r')

Read the contents of the file into a list.
nunbers = infilereadlines()

Close the file.
infile.close()

Convert each elenent to an int.

index = 0

whil e index < len(numbers):
numbers{index] = int(numbers|[index])
index += 1

Print the contents of the |ist.
print nunbers

Call the main function.

Splitting a String

Strings in Python have a method named sp i t that returnsalist of the wordsin the string.
Program 8-26 shows an example.

Program 8-26 (string_split.py)

1
2
3
4
5
6

This programdenonstrates the split nethod.

def nain():
Create a string with multiple words.
ny-string = 'One two three four'

© = N

10
11
12
13
14

8.3 Lids

Split the string.
word-list = my string.split()

Print the list of words.
print word-list

Call the main function.
mai n()

Program Output

[*One', "two', "three', '"four']

By default, the split method uses spaces as separators (that is, it returns a list of the
words in the string that are separated by spaces). You can specify a different separator by
passing it as an argument to the spl i t method. For example, suppose a string contains a
date, as shown here:

date-string = '3/26/2008"

If you want break out the month, day, and year asitemsin alist, you can call the split
method using the ' /' character as a separator, as shown here:

date-list = date string.split('/")

After this statement executes, the date_l i st variable will reference this list:

Program 8-27 demonstrates this.

Program 8-27 (split_date.py)

This programcalls the split nethod, using the
'/' character as a separator.

def main():
Oreate a string with a date.
date-string = '11/26/2008"'

Split the date.
date-list = date string.split('/"')

D splay each piece of the date.
print 'Mnth:', date list[0]
print 'Day:', date list[1]

print 'Year:', date list[2]

(program continues)

321

322 Chapter 8 Working with Sequences. Stringsand Lids

Program 8-27 (continued)

16 # Call the main function
15 main()

8.18 What will the following code display?

nunbers = [1, 2, 3, 4, 5]
nunbers[2] = 99
print nunbers

What will the following code display?

numbers = [1, 2, 3, 4, 5]
ny- list = numbers[1:3]
print ny-list

How do you find the number of elementsin alist?

What is the difference between caling a list's remove method and using the del
statement to remove an element?

How do you find the lowest and highest valuesin a list?
Assume the following statement appears in a program:
nanes = []

Which of the following statements would you use to add the string *Wendy * to
the list at index 0? Why would you select this statement instead of the other?

a names{0] = 'Wendy'
b. names.append('Wendy"')

Describe the following list methods:

a index

b. insert
C. sort

d. reverse

Assume the following statement appears in a program:

days = 'Monday Tuesday Wednesday'

Write a statement that splits the string, creating the following list:
['Monday', 'Tuesday', 'Wednesday']

Briefly describe how you calculate the total of the valuesin alist.
Briefly describe how you get the average of the valuesin alist.

91 Procedurd and Object-Oriented 9.3 Working with Instances
| Programming 9.4 Techniquesfor Designing Classes
9.2 C(Classs

CONCEPT: Procedural programmingis a method of writing software. It is a pro-
gramming practice centered on the procedures or actions that take place
in a program. Object-oriented programming is centered on objects.
Objects are created from abstract data typesthat encapsulate data and
functions together.

There are primarily two methods of programming in use today: procedural and object-
oriented. The earliest programming languages were procedural, meaning a program was
made of one or more procedures. You can think of a procedure ssimply as a function that
performs a specific task such as gathering input from the user, performing calculations,
reading or writing files, displaying output, and so on. The programs that you have written
so far have been procedural in nature.

Typicaly, procedures operate on data items that are separate from the procedures. In a
procedural program, the data items are commonly passed from one procedure to another.
As you might imagine, the focus of procedural programming is on the creation of pro-
cedures that operate on the program's data. The separation of data and the code that
operates on the data can lead to problems, however, as the program becomes larger and
more complex.

For example, suppose you are part of a programming team that has written an extensive
customer database program. The program was initially designed so that a customer's

330

Chapter 9 Classss and Object-Oriented Programming

name, address, and phone number were referenced by three variables. Your job was to
design several functions that accept those three variables as arguments and perform oper-
ations on them. The software has been operating successfully for some time, but your
team has been asked to update it by adding several new features. During the revision
process, the senior programmer informs you that the customer's name, address, and
phone number will no longer be stored in variables. Instead, they will be stored in a list.
This means that you will have to modify al of the functions that you have designed so
that they accept and work with a list instead of the three variables. Malting these exten-
sive modifications not only is a great deal of work, but also opens the opportunity for
errors to appear in your code.

Whereas procedural programming is centered on creating procedures (functions), object-
oriented programming (OOP)is centered on creating objects. An object is a software entity
that contains both data and procedures. The data contained in an object is known as the
object's data attributes. An object's data attributes are ssmply variables that reference data.
The procedures that an object performs are known as methods. An object's methods are
functions that perform operations on the object's data attributes. The object is, conceptu-
dly, a self-contained unit that consists of data attributes and methods that operate on the
data attributes. Thisisillustrated in Figure 9-1.

- 2.7 An object contains data attributes and methods

Object

OOP addresses the problem of code and data separation through encapsulation and data
hiding. Encapsulation refersto the combining of data and code into a single object. Data
hiding refers to an object's ability to hide its data attributes from code that is outside the
object. Only the object's methods may directly access and make changesto the object's data
attributes.

An object typically hidesits data, but alows outside code to accessits methods. As shown
in Figure 9-2, the object's methods provide programming statements outside the object with
indirect accessto the object's data attributes.

9.1 Procedurd and Object-Oriented Programming

e 2-2 Code outside the object interacts with the object's methods

Code
outside th
object

When an object's data attributes are hidden from outside code, and accessto the data attrib-
utes is restricted to the object's methods, the data attributes are protected from accidental
corruption. In addition, the code outside the object does not need to know about the format
or internal structure o the object's data. The code only needs to interact with the object's
methods. When a programmer changes the structure of an object's internal data attributes,
he or she also modifies the object's methods so that they may properly operate on the data.
The way in which outside code interacts with the methods, however, does not change.

In addition to solving the problems of code and data separation, the use of OOP has also
been encouraged by the trend of object reusability. An object is not a stand-alone program,
but is used by programs that need its services. For example, Sharon is a programmer who
has developed a set of objectsfor rendering 3D images. She is a math whiz and knows a lot
about computer graphics, so her abjects are coded to perform al of the necessary 3D math-
ematical operations and handle the computer's video hardware. Tom, who iswriting a pro-
gram for an architectural firm, needs his application to display 3D images of buildings.
Because he is working under a tight deadline and does not possess a great deal of knowl-
edge about computer graphics, he can use Sharon's objects to perform the 3D rendering (for
asmall fee, of course!).

Imagine that your alarm clock is actually a software object. If it weres it would have the
following data attributes:

e current— second (avauein the range of 0-59)
current— minute (avauein the range of 0-59)
current— hour (avauein the range of 1-12)
alarm—ti me (avalid hour and minute)
alarm _is set (Trueor False)

® @& & o

331

332

Chapter 9 Classss and Object-Oriented Programming

As you can see, the data attributes are merely values that define the state that the alarm
clock is currently in. You, the user of the alarm clock object, cannot directly manipulate
these data attributes because they are private. To change a data attribute's value, you
must use one of the object's methods. The following are some of the alarm clock object's
methods:

¢ set time

e set_alarm—time
e set_alarm—on

« set_alarm— off

Each method manipulates one or more of the data attributes. For example, the set _time
method allowsyou to set the alarm clock's time. You activate the method by pressing a but-
ton on top of the clock. By using another button, you can activate the set— alarm-ti me
method.

In addition, another button allows you to executethe set— alarm— onand set_alarm off
methods. Notice that all of these methods can be activated by you, who are outside the
alarm cloclc. Methods that can be accessed by entities outside the object are known as
public methods.

The alarm clock also has private methods, which are part o the object's private, internal
workings. External entities (such as you, the user of the alarm clock) do not have direct
access to the alarm clock's private methods. The object is designed to execute these meth-
ods automatically and hide the details from you. Thefollowing are the alarm clock object's
private methods:

increment_current— second
increment_current— minute
e increment_current— hour
° sound_alarm

Every second the increment— current_second method executes. This changes the
value of the current_second data attribute. If the current— seconddata attribute is
set to 59 when this method executes, the method is programmed to reset current — second
to 0, and then cause the increment— current— minute method to execute. This
method adds 1. to the current_minute data attribute, unlessit is set to 59. In that case,
it resetscurrent_minuteto 0 and causesthe increment— current— hourmethod to
execute. The increment_current— minute method compares the new time to the
alarm_time. If the two times match and the alarm is turned on, the sound_alarm
method is executed.

4 Checkpoint

9.1 What is an object?

9.2 What is encapsulation?

9.3 Why isan object's internal data usualy hidden from outside code?
9.4 What are public methods?What are private methods?

9.2 Classes

CONCEPT: A dassis codethat specifiesthe data attributes and methodsfor a particular
type o object.

Now, let's discuss how objects are created in software. Before an object can be created, it
must be designed by a programmer. The programmer determines the data attributes and
methods that are necessary, and then creates a class. A classis code that specifies the data
attributes and methods of a particular type of object. Think of aclassas a'blueprint" that
objects may be created from. It serves a similar purpose as the blueprint for a house. The
blueprint itself is not a house, but is a detailed description of a house. When we use the
blueprint to build an actual house, we could say we are building an instance of the house
described by the blueprint. If we so desire, we can build several identical houses from the
same blueprint. Each house is a separate instance of the house described by the blueprint.
Thisideaisillustrated in Figure 9-3.

re 22 Ablueprint and houses built from the blueprint

Blueprint that describes a house

Instances of the house described by the blueprint

Another way of thinking about the difference between a class and an object is to think of
the difference between a cookie cutter and a cookie. While a cookie catter itsalf is not a
cookie, it describes a cookie. The cookie cutter can be used to make several cookies, as
shown in Figure 9-4. Think of a class as a cookie cutter and the objects created from the
class as cookies.

So, aclass is a description of an object's characteristics. When the program is running, it
can use the class to create, in memory, as many objects of a specific type as needed. Each
object that is created from a classis called an instance of the class.

333

334

Chapter 9 Classes and Object-Oriented Programming

2.4 The cookie cutter metanhor

Cookies

For example, Jessica is an entomologist (someonewho studies insects) and she also enjoys
writing computer programs. She designs a program to catal og different types of insects. As
part of the program, she creates a class named | nsect, which specifiescharacteristics that
arecommon to al types of insects. The | nsect classis a specification that objects may be
created from. Next, she writes programming statements that create an object named
housef 1y, which is an instance of the | nsect class. The housefly object is an entity
that occupiescomputer memory and stores data about a housefly. It has the data attributes
and methods specified by the I nsect class. Then she writes programming statements that
create an object named mosquito. The mosquito object is aso an instance of the
I nsect class. It hasits own area in memory, and stores data about a mosquito. Although
the housefly and mosquito objects are separate entities in the computer's memory, they
were both created from the | nsect class. This means that each of the objects has the data
attributes and methods described by the I nsect class. Thisisillustrated in Figure 9-5.

Tiere @-5 The bousef 1y and mosquito objects are instances of the | nsect class

The housef | y object 1s an
instance of the | nsect class It
has the data attributes and methods
described by the | nsect class

The | nsect class describes : |
the data attributes and [
methods that a particular
type of object may have

The mosquito objectis an
instance of the | nsect class It
has the data attributes and methods
described by the | nsect class

Insect = nosqui t o
| object

To create a class, you write a class definition. A class definition is a set of statements that
define a classs methods and data attributes. Let's look at a simple example. Suppose we are
writing a program to simulate the tossing of a coin. In the program we need to repeatedly

o U AW N e

9.2 Classes

toss the coin and each time determine whether it landed heads up or tails up. Taking an
object-oriented approach, we will write a class named Coin that can perform the behav-
iors of the coin.

Program 9-1 shows the class definition, which we will explain shortly. Note that thisis not
a complete program. We will add to it as we go along.

(Coin dass, not a complete program)
i mport random

The Coin class sinulates a coin that can
be flipped.

cl ass Coin:

The _ _init__ nethod initializes the
sideup data attribute with 'Heads'

def _ init (self):
sel f .sideup = ' Heads

The toss method generates a random nunber
in the range of 0 through 1. If the nunber
is 0, then sideup is set to 'Heads'.

G herwi se, sideup is set to 'Tails'.

def toss(self):

if random.randint(0, 1) == O:
sel f. sideup = ' Heads

el se:
self. sideup = 'Tail s’

The get- sideup nmethod returns the val ue
referenced by sideup.

In line 1 we import the random module. This is necessary because we use the randint
function to generate a random number. Line 6 is the beginning of the class definition. It
begins with the keyword class, followed by the class name, which is coin, followed by
acolon.

Thesame rulesthat apply to variable names also apply to class names. However, notice that
we started the class name, Coin, with an uppercase letter. Thisis not a requirement, but it
is a widely used convention among programmers. This helps to easily distinguish class
names from variable names when reading code.

335

336

Chapter 9 Classes and Object-Oriented Programming

The coi n class has three methods:

e The init _ method appearsin lines 11 through 12.
e The toss method appearsin lines 19 through 23.
The get_sideup method appears in lines 28 through 29.

Except for the fact that they appear inside a class, notice that these method definitions ook
like any other function definition in Python. They start with a header line, which is fol-
lowed by an indented block of statements.

Take a closer ook at the header for each of the method definitions (lines11, 19, and 28)
and notice that each method has a parameter variable named sel¢:

Line 11: def _ init (self):
Line 19: def toss(self):
Line 28: def get sideup(self):

The self parameter! isrequired in every method of aclass. Recall from our earlier discus-
sion on object-oriented programming that a method operates on a specific object's data
attributes. When a method executes, it must have a way of knowing which object's data
attributes it is supposed to operate on. That's where the self parameter comesin. When
amethod is called, Python makes the se1£ parameter referencethe specific object that the
method is supposed to operate on.

Let's look at each of the methods. Thefirst method, whichisnamed __init , isdefined
in lines 11 through 12:

def _ init (self):
sel f. sideup = 'Heads'

Most Python classes have a special method named —_init__, whichisautomatically exe-
cuted when an instance of the classis created in memory. The __init__ method is com-
monly known as an initializer method becauseit initializesthe object's data attributes. (The
name o the method starts with two underscore characters, followed by theword init, fol-
lowed by two more underscore characters.)

Immediately after an object iscreated in memory, the _init__ method executes, and the
sel f parameter is automatically assigned the object that was just created. Inside the
method, the statement in line 12 executes:

sel f. sideup = ' Heads"

This statement assigns the string ' Heads'® to the sideup data attribute belonging to the
object that was just created. Asaresult of this__init__ method, each object that wecre-
ate from the Coin classwill initially have'a sideup attribute that is setto 'Heads'.

! The parameter must be present in a method. You are not required to name it sel f, but this is strongly recom:
mended to conform with standard practice.

9.2 Classes

Thetoss method appearsin lines 19 through 23:
def toss(self):

if random.randint(0, 1) == O
sel f. sideup = ' Heads'

el se:

self. sideup = 'Tail s’

This method aso has the required self parameter variable. When the t oss method is
called, sel£ will automatically reference the object that the method is to operate on.

The toss method simulates the tossing of the coin. When the method is called, the i f
statement in line 20 calls the random. randint function to get a random integer in the
range o O through 1. If the number is 0, then the statement in line 21 assigns ' Heads' to
self.sideup. Otherwise, the statement in line 23 assigns 'Tails' to self.sideup.

The get_sideup method appears in lines 28 through 29:

def get sideup(self):
return self.sideup

Once again, the method has the required self parameter variable. This method smply
returnsthe value of self.sideup. We call this method any time we want to know which
side of the coin is facing up.

To demonstrate the Coin class, we need to write a complete program that usesit to cre-
ate an object. Program 9-2 shows an example. The Coin class definition appearsin lines
6 through 29. The program has a main function, which appears in lines 32 through 44.

i mport random

The Coin class simulates a coin that can
be flipped.

cl ass Coin:

The __init method initializes the
sideup data attribute with 'Heads'.

def _ init (self):
sel f. sideup = ' Heads’

The toss nethod generates a random nunber
in the range of 0 through 1 [If the nunber
is 0, then sideup is set to 'Heads'.

G herw se, sideup is set to 'Tails'.

def toss(self):
i f random.randint(0, 1) ==
(program continues)

337

Chapter 9 Classes and Object-Oriented Pr ogr amm ng

(continued)

sel f. sideup = 'Heads'
el se:
sel f. sideup = 'Tails'

The get- sideup nmethod returns the val ue
referenced by sideup.

def get sideup(self):
return self.sideup

The main function.

def main():
Oreate an object fromthe Coin class.
ny-coin = Coin()

Display the side of the coin that is facing up.
print 'This side is up:', my coin.get sideup()

Toss the coin.
print 'l amtossing the coin.. .
my coin.toss()

Display the side of the coin that is facing up.
print 'This side is up:', my coin.get_sideup()

Call the main function.
mai n()

Talte a closer look at the statement in line 34:

ny-coin = Coi n{)

9.2 Classes 339

The expression Coin{() that appears on the right side of the = operator causes two things
to happen:

1. An object is created in memory from the Coin class.

2. TheCoindasss __init__ method isexecuted, and the sel£ parameter is automat-
ically set to the object that was just created. As a result, that object's sideup attrib-
ute is assigned the string ' Heads".

Figure 9-6 illustrates these steps.

Actions caused by the coin() expression

A Coi n object
An object is created in memory
from the coi n class.
The Coi nclass's __init t
@ method is called, and the sel f def — init— (self) :
parameter is set to the newly self.sideup = ' Heads'
created object
A Coi n object

After these steps take place,
a Coi n object will exist with its
sideup attribute setto' Heads'.

After this, the = operator assigns the Coin object that was just created to the my_coin
variable. Figure 9-7 shows that after the statement in line 12 executes, the my —coin vari-
able will reference a Coin object, and that object's sideup attribute will be assigned the
string 'Heads'.

e 9-7 The nmy_coin variable references a Coin object

A coin object

ny_coin —————#| sideup ——» 'Heads'

The next statement to execute is line 37:
print 'This side is up:', my coin.get sideup()

This statement prints a messageindicating the side of the coin that isfacing up. Notice that
the following expression appears in the statement:

This expression uses the object referenced by my—coin to call the get sideup method.
When the method executes, the sel f parameter will referencethe my_c oi n object. As a
result, the method returns the string * Heads'.

340

Chapter 9 Classesand Object-Oriented Programming

Notice that we did not have to pass an argument to the sideup method, despite the fact
that it has the self parameter variable. When a method is called, Python automatically
passes a reference to the calling object into the method's first parameter. As a result, the
self parameter will automatically reference the object that the method is to operate on.

Lines 40 and 41 are the next statements to execute:

print 'l amtossing the coin..,"'
my_coin.toss()

The statement in line 41 uses the object referenced by my_coin to call the t o ss method.
When the method executes, the sel f parameter will reference the my_coin object. The
method will randomly generate a number and use that number to change the value of the
object's sideup attribute.

Line 44 executes next. Thisisanother pri nt statement that callsmy_—coin. get_sideup()
to display the side of the coin that is facing up.

Earlier in this chapter we mentioned that an object's data attributes should be private, so
that only the object's methods can directly access them. This protects the object's data
attributes from accidental corruption. However, in the Coin class that was shown in the
previous example, the sideup attribute is not private. It can be directly accessed by state-
ments that are not in a Coin class method. Program 9-3 shows an example. Note that lines
1 through 30 are not shown to conservespace. Those lines contain the Coin class, and they
are the same as lines 1 through 30 in Program 9-2.

Program 9-3 (coin_demo2.py)

Lines 1 through 30 are omitted. These lines are the same as lines 1 through 30 in Program 9-2.

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

The main function.

def main():
Create an object fromthe Coin class.
ny- coin = Coin()

Display the side of the coin that is facing up.
print 'This side is up:', my coin.get sideup()

Toss the coin.
print 'l amtossing the coin. .."*
my_coin.toss()

But now | 'm going to cheat! I'm going to
directly change the value of the object's
sideup attribute to 'Heads'.

my coin.sideup = ' Heads'

Display the side of the coin that is facing up.

9.2 Classes

print 'This side is up:', my coin.get sideup()

Call the main function.
main()

Line 34 creates a Coin object in memory and assigns it to the my_coin variable. The
printstatementin line 37 displaysthe side of the coin that isfacing up, and then line41 calls
the object's t 0 ss method. Then the statement in line 46 directly assigns the string * Heads®
to the object's sideup attribute:

my coin.sideup = ' Heads'

Regardless of the outcome of the t 0ss method, this statement will change the my_coin
object's sideup attribute to 'Heads'. As you can see from the three sample runs o the
program, the coin always lands heads up!

If we truly want to simulate a coin that is being tossed, then we don't want code outside
the class to be able to change the result of the t 0 ss method. To prevent this from happen-
ing, we need to make the sideup attribute private. In Python you can hide an attribute by
starting its name with two underscore characters. If we change the name of the sideup
attribute to __sideup, then code outside the Coin class will not be able to access it.
Program 9-4 shows a new version of the Coin class, with this change made.

Program 9-4 (coin.. demo3.py)

1
2
3
4
5
6
7
8

i nport random

The Coin class sinulates a coin that can
be flipped.

cl ass Coin:

The __init nmethod initializes the
(program continues)

341

342

(hapter 9 Qasses and (yj ect-Qi ent ed Pr ogr anmi ng

Program 9-4 (continued)
_ sideup data attribute with 'Heads'.

def __init--(self) :
self.--sideup = ' Heads'

The toss method generates a random numnber
in the range of 0 through 1. If the nunber

is 0, then sideup is set to 'Heads'.
G herwise, sideup is set to 'Tails'.

def tosgself):
if random.randint(0, 1) ==
self. sideup = 'Heads'
el se:
self. sideup = 'Tails'

The get- sideup method returns the val ue

referenced by sideup.

def get sideup(self):
return self. sideup

The main function.

def main():
Create an object fromthe Coin class.
ny-coin = Qoin()

Display the side of the coin that is facing up.
print 'This side is up: ', my coin.get sideup()

Toss the coin.

print 'l amgoing to toss the coin ten times: "

for count in range(10):
my coin.toss()
print ny- coi n-get - si deup()

Call the main function.
mai n()

Program Output

This side _: Heads

| am goi 0ss the coin ten tines:
Tails

Heads

Heads

9.2 Classes 343

Storing Classes in Modules

The programs you have seen so far in this chapter have the Coin class definition in the
same file as the programming statements that use the Coi n class. This approach worksfine
with small programs that use only one or two classes. As programs use more classes, how-
ever, the need to organize those classes becomes greater.

Programmers commonly organize their class definitions by storing them in modules. Then the
modulescan beimportedinto any programsthat need to use the dlasses they contain. For exam-
ple, suppose we decideto storethe Coin classin a module named simulation. Program 9-5
shows the contents o the simulation.py file Then, when we need to use the Coin dassin
a program, we can import the simulation module. Thisis demonstratedin Program 9-6.

Program9-5 (simulation.py)
i nport random

The Coin class sinulates a coin that can
be flipped.

class Qoin:

The __init__ method initializes the
_ sideup data attribute with 'Heads'.

def __init--(self):
self. sideup = 'Heads:

The toss nethod generates a random nunber
in the range of 0 through 1 [If the nunber
#is 0, then sideup is set to 'Heads'.

G herwi se, sideup is set to 'Tails'.

def toss(self):
if random.randint(0, 1) ==
self. sideup = 'Heads:'
el se:
self. sideup = 'Tails’

(program continues)

344 Chapter9 Classes and (bj ect-Q'i ent ed Pr ogr anmi ng

Program 9-5 (continued)

24
25 # The get- sideup nmethod returns the val ue
26 # referenced by sideup.

def get sideup(self):
return self. sideup

1 # This programinports the sinmulation nodul e and
2 # creates an instance of the Coin class.

i nport simulation

def main():
Oeate an object fromthe Coin class.
ny-coin = simulation.Coin()

Dsplay the side of the coin that is facing up.
print "This side is up:', my coin.get_sideup()

Toss the coin.
print 'l amgoing to toss the coin ten tines:'
for count in range(10):

my_coin.toss()

print my coin.get sideup()

Call the main function.
mai n()

W0 O Ut WN R

el el el S =
g b~ WN = O

9.2 Classes
Line 4 imports the simulation module. Notice that in line 8 we had to qualify the name
of theCircleclass by prefixing it with the name of the module, followed by a dot:

ny-coin = simulation.Coin()

The BankAccount Class

Let'slook at another example. Program 9-7 shows a BankA ccount class, stored in a module
named account. Objectsthat are created from this classwill smulate bank accounts, allowing
usto have a starting balance, make deposits, make withdrawals, and get the current balance.

The BankAccount cl ass sinmul ates a bank account.
cl ass BankAccount:
The __init _ method accepts an argunent for

the account's balance. It is assigned to
the __bal ance attribute.

H

def __init--(self, bal):
sel f. - - bal ance = bal

The deposit method nakes a deposit into the
account.

def deposit(self, anount):
sel f.- - bal ance += anount

The wi t hdraw net hod wi t hdraws an anount
fromthe account.

def withdraw(self, anount):
if self.--balance >= anount:
sel f. - - bal ance -= anobunt
el se:
print "Error: Insufficient funds'

The get- bal ance nethod returns the
account bal ance. »

Noticethatthe __init__ method hastwo parameter variables: self and bal. Thebal
parameter will accept the account's starting balance as an argument. In line 10 the bal
parameter amount is assigned to the object's _ balance attribute.

345

346

Chapter 9 Classesand Object-Oriented Programming

The deposit method isin lines 15 through 16. This method has two parameter variables:
self and amount. When the method is called, the amount that isto be deposited into the
account is passed into the amount parameter. The value of the parameter is then added to
the __balance attribute in line 16.

The withdraw method is in lines 21 through 25. This method has two parameter vari-
ables: self and amount. When the method is called, the amount that is to be withdrawn
from the account is passed into the amount parameter. Thei f statement that beginsin line
22 determines whether there is enough in the account balance to make the withdrawal. If
so, amount issubtracted from __balance in line 23. Otherwiseline 25 displays the message
'Error: Insufficient funds'.

The get_balance method isin lines 30 through 31. This method returns the value of the
—_balance attribute.

Program 9-8 demonstrates how to use the class.

This program denonstrates t he BankAccount cl ass.

i mport account

def nmain():
Get the starting bal ance.
start-bal = input('Enter your starting bal ance:)

(reate a BankAccount object.
savi ngs = account.BankAccount (start_bal)

Deposit the user's paycheck.

pay = input ('How much were you paid this week? ')
print 'l will deposit that into your account. '
savings.deposit(pay)

Display the bal ance.
print 'Your account balance is $%.2f.' 8 savings.get balance()

Get the amount to w thdraw. .

cash = input (' How much woul d you like to withdraw? ')
print ‘I will withdrawthat fromyour account.
savings.withdraw(cash)

D splay the bal ance.
print 'Your account balance is $%.2f.' % savings.get balance()

Call the main function.
mai n()

9.2 Classes

Line 7 gets the starting account balance from the user and assigns it to the start_bal
variable. Line10 createsan instance of the BankA ccount classand assignsittothe savings
variable. Take a closer look at the statement:

savi ngs = account.BankAccount(start_bal)

Notice that the start_bal variable is lisged insde the parentheses. This causes the
start bal variableto bepassed asan argumenttothe__init _ method. Inthe __init
method, it will be passed into the bal parameter.

Line 13 gets the amount of the user's pay and assignsit to the pay variable. In line 15 the
savings.deposit method is called, passing the pay variable as an argument. In the
deposit method, it will be passed into the amount parameter.

Line 18 displays the account balance. The print statement displays the value returned
from the savings. get_bal ance method.

Line 21 gets the amount that the user wants to withdraw and assignsit to the cas

able. In line 23 the savings.withdraw method is called, passing the cash variable as
an argument. In the withdraw method, it will be passed into the amount param

26 displays the ending account balance.

The str method

Quite often we need to display a message that indicates an object'
issimply the values of the object's attributes at any given momen
the BankAccount class has one data attribute: __balance.
BankAccount object's —_bal ance attribute will reference

—-bal ance attribute represents the object's state at that mo
an example of code that displays a BankAccount object's stat

account = BankAccount (1500.0)
print 'Your account balance is $%.2f. * % saving

347

348

Chapter 9 Classes and Object-Oriented Programming

Thefirst statement createsa Bank A ccount object, passing the value1500.0 tothe __init
method. After thisstatement executes, the account variablewill referencethe BankAccount
object. In the second line, the print statement displays a string showing the value d the
object's —_bal ance attribute. The output of this statement will look like this:

Your account bal ance is $1500.00.

Displaying an object's state isa common task. It is so common that many programmers equip
their classes with a method that returns a string containing the object's state. In Python, you
give this method the special name __str . Program 9-9 shows the BankAccount class
witha _str method addedtoit. The str method appearsin lines 36 through 39.
It creates a string containing the account balance, and returns that string.

Program 9-9 (account2.py)

1
2
3
4
5
6
7
2
9
10

12
13
14
15
16
17
18
19
20
2|

22
23
24
25
26
27
28
29
30
31

33
34

The BankAccount cl ass sinmul ates a bank account.
cl ass BankAccount :

The __init _ nmethod accepts an argunent for
the account's balance. It is assigned to
the - - balance attribute.

def _ init _(self, bal):
sel f.--balance = bal

The deposit nethod makes a deposit into the
account.

def deposit(self, anount):
sel f.--bal ance += anount

The wi t hdraw et hod wi t hdraws an anount
fromthe account.

def withdraw(self, amount):
if self.--balance >= anount:
sel f. __bal ance -= anount
el se:
print '"Error: Insufficient funds'

The get - bal ance method returns the
account bal ance.

def get balance(self):
return self.- - bal ance

The str nethod returns a string
indicating the object's state.

9.2 Classes

35
36 def _ str (self):
37 state-string = ' The account balance is $%.2f£.' \

% sel f.- - bal ance
return state strin

You do not directly call the —_str__ method. Instead, it is automatically called when you
pass the object's name to the print statement. Program 9-10 shows an example.

Program 9-10 (account_test2.py)

Thi s program denonstrates the BankAccount cl ass
wWith the str method added to it.

i mport account?2

def main():
Get the starting bal ance.
start-bal = input('Enter your starting bal ance: ')

Create a BankAccount object.
savings = account2.BankAccount (start_bal)

Deposit the user's paycheck.

pay = input (*How much were you paid this week? ")
print 'l will deposit that into your account.
savings.deposit(pay)

Display the bal ance.
print savi ngs

Get the anmount to withdraw

cash = input('How much would you like to w thdraw? ')
print 'l will withdrawthat fromyour account.’
savings.withdraw(cash)

Display the bal ance.
print savi ngs

Call the main function.
mai n()

Program Output (with input shown in bold)

Enter your starting bal ance: 1000 QO[Enter]
How much were you paid this week? 500.07 [Enter]
I will deposit that imte your account.
(program output continues)

349

350

Chapter

T he

How much woulc

9 Classs and Object-Oriented Programming

accotint b:

* from ye

The name of the object, savings, is passed to the print statements in lines 19 and 27.
This causes the BankAccount classs str _ method to be called. The string that is
returned from the str _ method is then displayed.

The__str—_ method is aso called automatically when an object is passed as an argument
to the built-in str function. Here is an example:

account = BankAccount (1500. 0)
nmessage = str{account)
print nessage

In the second statement, the account object is passed as an argument to the str function. This
causesthe BankAccount dasss str method to be called. The string that is returned is
assigned to the message variable and then displayed by the pri nt statementin the third line.

Checkpoint

9.5 You hear someone make the following comment: " A blueprint is a design for a
house. A carpenter can use the blueprint to build the house. If the carpenter
wishes, he or she can build several identical houses from the same blueprint.”
Think of this as a metaphor for classes and objects. Does the blueprint represent a
class, or does it represent an object?

9.6 In this chapter, we use the metaphor of a cookie cutter and cookies that are made
from the cookie cutter to describe classes and objects. In this metaphor, are objects
the cookie cutter, or the cookies?

9.7 What is the purpose of the __init__ method?When does it execute?

9.8 What isthe purpose of the self parameter in a method?

9.9 InaPython class, how do you hide an attribute from code outside the class?

9.10 What is the purpose of the __str__ method?

9.11 How doyoucalthe str__ method?

- .

Workina with instances

CONCEPT: Eachinstance of a class hasits own set of data attributes.

When a method usesthe self parameter to create an attribute, the attribute belongsto the
specific object that self references. We call these attributes instance attributes, because
they belong to a specific instance of the class.

It is possible to create many instances of the same classin a program. Each instance will
then have its own set of attributes. For example, look at Program 9-11. This program cre-
ates three instances of the Coin class. Each instance hasitsown __sideup attribute.

9.3 Working with Instances 351

Program 9-11 (coin_demo5.py)

This programinports the sinmulation nodul e and
creates three instances of the Coin class.

i mport simulation

def main():
Oreate three objects fromthe Coin class.
coinl = simulation.Coin()
C0i N2 = simulation.Coin()
coi N3 = simulation.Coin()

Display the side of each coin that is facing up.
print 'l have three coins with these sides up:'
print coinl.get sideup()

print coin2.get sideup()

print coin3.get sideup()

print

Toss the coin.

print 'l amtossing all three coins. ..
print

coinl.toss()

coin2.toss()

coin3.toss()

Display the side of each coin that is facing up.
print 'Now here are the sides that are up:'

print coinl.get sideup()

print coin2.get sideup()

print coin3.get sideup()

print

Call the main function.
mai n()

352 Chapter 9 Classesand Object-Oriented Programming

In lines 8 through 10, the following statements create three objects, each an instance of the

Coin class:
coinl = simulation.Coin()
Coi N2 = simulation.Coin()
C0i N3 = simulation.Coin()

Figure 9-8 illustrates how the coinl, coin2, and coin3 variables reference the three
objects after these statements execute. Notice that each object hasitsown __sideup attrib-
ute. Lines 14 through 16 display the values returned from each object's get sideup
method.

i 2.2 The coinl, coin2, and coin3 variables reference three Coin objects

A coin object

coinl ————*»t ~ sideup ——» 'Heade'
A Coi n object

coi n2 —-—-——»1 _ sideup —» 'Head5'1
A Coi n object

coi N3 ——— | _ sideup —= (Heads'

Then, the statements in lines 22 through 24 call each object's t 0 ss method:

Figure 9-9 shows how these statements changed each object's __sideup attribute in the
program's sample run.

2-2 The objects after the toss method

A Coi n object
coin|] ———» _sideup — = 'Tails!’

A Coi n object
coin2 —— | _ sideup ——»"'Tail s’

A Coi n object
coin3 ————— | sideup —— 'Heads'

_\ 93 Working with Instances

Assessor and Mutator Methods

As mentioned earlier, it is acommon practice to make all of aclasss data attributes private
and to provide public methods for accessing and changing those attributes. This ensures
that the object owning those attributes isin control of al the changes being made to them.

A method that returns a value from a classs attribute but does not change it is known as
an accessor method. Accessor methods provide a safe way for code outside the class to
retrieve the values of attributes, without exposing the attributes in a way that they could be
changed by the code outside the method. In the Ce11Phone classthat you saw in Program
9-12 (in the previous In the Spotlight section), the get_manuf act, get model, and
get_retail_price methods are accessor methods.

A method that storesa vauein a data attribute or changesthe value o a data attribute in some
other way is known as a mutator method. Mutator methods can control the way that a dasss
data attributesare modified. When code outside the class needsto changethe value of an object's
dataattribute, it typicaly cdls amutator and passesthe new valueas an argument. If necessary,
the mutator can validatethe value beforeit assignsit to the data attribute. In Program 9-12, the
set_manuf act, set_model, and set_retail_pricemethodsare mutator methods.

NOTE: Mutator methods are sometimes called "setters" and accessor methods are
sometimes called " getters."

Checkpoint
9.12 What is an instance attribute?

9.13 A program creates10 instancesdf the Coin class. How many __sideup attributes
exist in memory?
9.14 What is an accessor method?What is a mutator method?

When designingaclass, it is often helpful to draw a UML diagram. UML stands for Unified
Modeling Language. It providesa set of standard diagrams for graphically depicting object-
oriented systems. Figure 9-10 shows the general layout of a UML diagram for a class.
Notice that the diagram is a box that is divided into three sections. The top section iswhere
you write the name of the class. The middle section holds a list of the classs data attrib-
utes. The bottom section holds a list of the class's methods.

9.4 Techniques for Designing Classes

Figure 2-10 General layout d a UML « m for a class

Class name goes here ——

Data attributesare listed here —»

Methods are listed here —

Following this layout, Figure 9-11 and 9-12 show UML diagrams for the Coin class and
the CellPhone class that you saw previoudly in this chapter. Notice that we did not show
the sel£f parameter in any of the methods, sinceit is understood that the self parameter
is required.

Figure 2-11 UML diagram for the Coin class

!
| Coin

| __sideup

init__()
toss()
get—sideup()

Figure 2-312 UML diagram for the CellPhone class

CeliPhone

__manufact
__model
__retail—price

__init=—(manufact, model, price)
set_manufact(manufact)
set_model(model)
set_retail_price(price)
get_manufact()

get—-model()

get-retail—price()

Finding the Classes in 2 Problem

When developing an object-oriented program, one of your first tasksis to identify the classes
that you will need to create. Typicaly, your goal isto identify the different typesof real-world
objects that are present in the problem, and then create classes for those types of objects
within your application.

Over the years, software professionals have devel oped numerous techniaues for finding the
classesin a given problem. One simple and popular technique involves the following steps.

1. Get awritten description of the problem domain.

2. ldentify all the nouns (including pronouns and noun phrases) in the description. Each
of theseis a potential class.

3. Refinethe list to include only the classes that are relevant to the problem.

Let's take acloser ook at each of these steps.

359

360

Chapter 9 Classesand Object-Oriented Programming

Writing a Description of the Problem Domain

The problem domain is the set of real-world objects, parties, and major events related to the
problem. If you adequately understand the nature of the problem you are trying to solve, you
can writea description of the problem domain yoursdf. If you do not thoroughly understand
the nature of the problem, you should have an expert write the description for you.

For example, suppose we are writing a program that the manager of Joe's Automotive Shop
will use to print service quotes for customers. Here is a description that an expert, perhaps
Joe himself, might have written:

Joe's Automotive Shop services foreign cars and speciadizes in servicing cars made by
Mercedes, Porsche, and BMW. When a customer brings a car to the shop, the manager gets
the customer's name, address, and tel ephone number. The manager then determines the make,
model, and year of the car, and gives the customer a service quote. The service quote shows
the estimated parts charges, estimated labor charges, sales tax, and total estimated charges.

The problem domain description should include any of the following:

« Physical objects such as vehicles, machines, or products

e Any roleplayed by a person, such as manager, employee, customer, teacher, student, etc.
¢ Theresults of a businessevent, such as acustomer order, or in this case a service quote
¢ Recordkeeping items, such as customer histories and payroll records

identify All of the Nouns

The next step is to identify all of the nouns and noun phrases. (If the description contains
pronouns, include them too.) Here's another look at the previous problem domain descrip-
tion. This time the nouns and noun phrases appear in bold.

Joes Automotive Shop services foreign cars, and specializes in servicing cars made by
Mercedes, Porsche, and BMW. When a customer brings a car to the shop, the manager gets
the customer's name, address, and telephone number. The manager then determinesthe make,
model, and year of the car, and gives the customer a service quote. The service quote shows
the estimated parts charges, estimated labor charges, salestax, and total estimated charges.

Notice that some of the nouns are repeated. The following list shows al of the nouns with-
out duplicating any of them.

address

BMW

car

cars

customer

estimated labor charges
estimated parts charges
foreign cars

Joe's Automotive Shop
make

manager

Mercedes

model

name

9.4 Techniques for Designing Classes

Porsche

sales tax,

service quote

shop

telephone number

total estimated charges
year

Refining the List of Nouns

The nouns that appear in the problem description are merely candidates to become classes. It
might not be necessary to make classesfor them all. The next stepisto refinethelist to include
only the classesthat are necessary to solvethe particular problem at hand. We will look at the
common reasonsthat a noun can be eliminated from the list of potential classes.

1. Some of the nouns really mean the same thing.
In this example, the following sets of nouns refer to the same thing:

cars and foreign cars
These all refer to the general concept of acar.
= Joes Automotive Shop and shop
Both of these refer to the company "Joe's Automotive Shop."

We can settle on asingle classfor each of these. In this example we will arbitrarily eliminate
foreign carsfrom thelist, and use the word cars. Likewisewe will eliminateJoes Automotive
Shop from the list and use the word shop. The updated list of potential classesis.

address
BMW
car

cars
customer

estimated labor charges Because cars and foreign cars mean the
estimated parts charges same thing in this problem, we have
eliminated foreign cars. Also, because
Jods Automotive Shop and shop mean
the same thing, we have eliminated Joe's
make Automotive Shop.

manager
Mercedes
model
name
Porsche
sales tax

service quote
(continued)

361

362

shop

telephone number

total estimated charges
year

Chapter 9 Classes and Object-Oriented Programming

2. Some nouns might represent items that we do not need to be concerned with in order
to solvethe problem.

A quick review of the problem description reminds us of what our application should do:
print a service quote. In thisexample we can eliminatetwo unnecessary classesfrom the list:

¢ \We can cross shop off the list because our application only needs to be concerned
with individual service quotes. It doesn't need to work with or determine any com-
pany-wide information. If the problem description asked us to keep atotal of al the

service quotes, then it would make sense to have a class for the shop.

« Wewill not need aclassfor the manager because the problem statement does not direct
us to process any information about the manager. If there were multiple shop man-
agers, and the problem description had asked us to record which manager generated
each service quote, then it would make sense to have a class for the manager.

The updated list of potential classes at this point is:

address

BMW

car

cars

customer

estimated labor charges
estimated parts charges

Mercedes

model

name

Porsche

sales tax

service quote

shop

telephone number

total estimated charges
year

Our problem description does not direct us to
process any information about the shop, or
any information about the manager, so we
have eliminated those from the list.

9.4 Techniques for Designing Classes 363

3. Some of the nouns might represent objects, not classes.

We can éiminate Mercedes, Porsche, and BMW as classes because, in this example, they
al represent specific cars, and can be considered instances of a cars class. Also, we can elim-
inate the word car from the list. In the description it refers to a specific car brought to the
shop by a customer. Therefore, it would aso represent an instance of a cars class. At this
point the updated list of potential classesis

address

BRASY

<ar

cars

customer

estimated labor charges
estimated parts charges

Joes L ——
manager

make

Mereedes

model

name

Porsche

sales tax

service quote
shop

telephone number

total estimated charges
year

We have eliminated Mercedes, Porsche, BMW,
and car becausethey are all instances of a cars
class. That means that these nouns identify
objects, not classes.

4. Some of the nouns might represent simple values that can be assigned to a variable
and do not require a class.

Remember, a class contains data attributes and methods. Data attributes are related items
that are stored in an object o the class, and define the object’s state. M ethods are actions
or behaviorsthat can be performed by an object of the class. If a noun represents a type of
item that would not have any identifiable data attributes or methods, then it can probably
be eliminated from the list. To help determine whether a noun represents an item that
would have data attributes and methods, ask the following questions about it:

e Would you use agroup of related valuesto represent the item's state?
e Arethere any obvious actions to be performed by the item?

364

Chapter 9 Classes and Object-Oriented Programming

If the answers to both of these questions are no, then the noun probably represents a
value that can be stored in a simple variable. If we apply this test to each of the nouns
that remain in our list, we can conclude that the following are probably not classes:
address, estimated |abor charges, estimated parts charges, make, model, name, sales tax,
telephone number, total estimated charges and year. These are all simple string or
numeric values that can be stored in variables. Here is the updated list of potential
classes:

€ar
cars

customer
We have eliminated address, estimated
labor charges, estimated parts charges,
make, model, name, sales tax, telephone

, _ number, total estimated charges, and
e Sl year as classes because they represent

make simple values that can be stored in
manager variables.
service quote

As you can see from the list, we have eliminated everything except cars, customer, and
service quote. This means that in our application, we will need classes to represent cars,
customers, and service quotes. Ultimately, we will write a Car class, a Customer class,
and a ServiceQuote class.

Once the classes have been identified, the next task 1s to identify each classs responsibili-
ties. A classs responsibilities are

e the things that the classis responsible for knowing
* the actions that the class s responsible for doing

9.4 Techniques for Designing Classes 365

When you have identified the things that a classis responsible for knowing, then you have
identified the classs data attributes. Likewise, when you have identified the actions that a
classis responsible for doing, you have identified its methods.

It is often helpful to ask the questions "In the context of this problem, what must the
class know? What must the class do?" The first place to look for the answers is in the
description of the problem domain. Many of the things that a class must know and do
will be mentioned. Some class responsibilities, however, might not be directly mentioned
in the problem domain, so further consideration is often required. Let's apply this
inethodology to the classes we previously identified from our problem domain.

The Cust oner Class

In the context of our problem domain, what must the customer class know?The description
directly mentions the following items, which are all data attributes of a customer:

e the customer's name
¢ the customer's address
¢ the customer's telephone number

These are al values that can be represented as strings and stored as data attributes. The
customer class can potentially know many other things. One mistake that can be made at
this point is to identify too many things that an object is responsiblefor knowing. In some
applications, a Customer class might know the customer's email address. This particular
problem domain does not mention that the customer's emai! addressis used for any purpose,
so we should not includeit as a responsibility.

Now let's identify the classs methods. In the context of our problem domain, what must
the customer class do?The only obvious actions are:

s initialize an object of the customer class
set and return the customer's name
e sat and return the customer's address
e set and return the customer's telephone number

From this list we can seethat the customer classwill havean __init _ method, aswell
as accessors and mutators for the data attributes. Figure 9-13 shows a UML diagram for
the customer class.

Figure 2-13 UML diagram for the Customer class

Customer

__name
__address
__phone

366

Chapter 9 Classes and Object-Oriented Programming

The car Class

In the context of our problem domain, what must an object of the Car class know?The
following items are al data attributes of a car, and are mentioned in the problem
domain:

¢ the car's make
the car's model
s the car's year

Now let's identify the classs methods. In the context of our problem domain, what must
the car classdo?Once again, the only obvious actions are the standard set of methods that
we will find in most classes (an__init__ method, accessors, and mutators). Specifically,
the actions are:

e initialize an object of the Car class
set and get the car's make

« set and get the car's model

e set and get the car's year

L]

Figure 9-14 shows a UML diagram for the Car class at this point.

UML diagram for the Car class

Car

__make
__model
__year

__init__()
set_make(make)
set_model(make)
set_year(y)
get—make()
get—model()

The Servi ceQuot e Class

In the context of our problem domain, what must an object of the Ser vi ceQuot e class
know? The problem domain mentions the following items:

the estimated parts charges
the estimated labor charges
the sales tax

the total estimated charges

The methods that we will need for thisclassarean __init__ method and the accessors
and mutators for the estimated parts charges and estimated labor charges attributes. In
addition, the class will need methods that calculate and return the sales tax and the total
estimated charges. Figure 9-15 shows a UML diagram for the Ser vi ceQuot e class.

Figura 8-15

Review Questions

UML diagram for the ServiceQuote class

ServiceQuote

e

You should look at the process that we have discussed in this section merely as a start-
ing point. It's important to realize that designing an object-oriented application is an iter-
ative process. It may take you several attempts to identify all of the classes that you will
need and determine all of their responsibilities. As the design process unfolds, you will
gain a deeper understanding of the problem, and consequently you will see ways to
improve the design.

heckpoint

9.15 The typical UML diagram for a class has three sections. What appears in these
three sections?

9.16 What is a problem domain?

9.17 When designing an object-oriented application, who should write a description of
the problem domain?

9.18 How do you identify the potential classesin a problem domain description?

9.19 What are a classs responsibilities?

9.20 What two questions should you ask to determine a classs responsibilities?

9.21. Will al of a classes actions always be directly mentioned in the problem domain

description?

367

10.1 Introduction to Inheritance
z 10.2 Polymorphism

CONCEPT: Inheritance alows a new class to extend an existing class. The new class
inherits the members o the classit extends.

In the real world, you can find many objects that are specialized versions of other more
general objects. For example, the term "insect" describes a general type of creature with
various characteristics. Because grasshoppers and bumblebees are insects, they have al the
general characteristics o an insect. In addition, they have special characteristics of their
own. For example, the grasshopper has its jumping ability, and the bumblebee has its
stinger. Grasshoppers and bumblebees are specialized versions of an insect. Thisisillustrated
in Figure10-1.

374

Chapter 10 Inheritance

Bumblebees and grasshoppers are speciaized versions of an insect

All insects have

Insect certain characteristics.
In addition to the common In addition to the common
insect characteristics, the insect characteristics, the
bumblebee has its own unique grasshopper has its own unique
characteristics such as the characteristics such as the
ability to sting. ability to jump.

When one object is a specialized version of another object, there is an "isa" relationship
between them. For example, a grasshopper is an insect. Here are a few other examples of
the "isa" relationship:

A poodle is a dog.
A car is a vehicle.
* A flower is a plant.
* A rectangleis a shape.

= A football player is an athlete.

When an "is a" relationship exists between objects, it means that the specialized object has
al of the characteristics of the general object, plus additional characteristics that make it
special. In object-oriented programming, inheritance is used to create an "isa" relationship
among classes. This allows you to extend the capabilities of aclass by creating another class
that is a specidized version of it.

Inheritance involves a superclass and a subclass. The superclass is the general classand the
subclass is the specialized class. You can think of the subclass as an extended version of the
superclass. The subclassinherits attributes and methods from the superclasswithout any of
them having to be rewritten. Furthermore, new attributes and methods may be added to the
subclass, and that is what makes it a specialized version of the superclass.

class and subclass.

Let's look at an example of how inheritance can be used. Suppose we are developing a
program that a car dealership can use to manage its inventory of used cars. The dealer-
ship's inventory includes three types of automobiles: cars, pickup trucks, and sport-utility

10.1 Introduction to inheritance

vehicles (SUVs). Regardless of the type, the dealership keeps the following data about
each automobile:

s Make

¢ Year modd

« Mileage

« Price
Each type of vehiclethat is kept in inventory has these general characteristics, plusits own
specialized characteristics. For cars, the dealership keeps the following additional data:

¢ Number of doors (2or 4)
For pickup trucks, the dealership keepsthe following additional data:
-Drive type (two-wheel drive or four-wheel drive)
And for SUVs, the dealership keeps the following additional data:
® Passenger capacity
In designing this program, one approach would be to write the following three classes:

« A car class with data attributes for the make, year model, mileage, price, and the
number of doors.

A Truck classwith data attributes for the make, year model, mileage, price, and the
drive type.

¢ An SUV class with data attributes for the make, year model, mileage, price, and the
passenger capacity.

Thiswould be an inefficient approach, however, because al three o the classes have alarge
number of common data attributes. As a result, the classes would contain alot of duplicated
code. In addition, if we discover later that we need to add more common attributes, we
would have to modify al three classes.

A better approach would be to write an Aut onobi | e superclass to hold al the genera
data about an automobile and then write subclasses for each specific type of automobile.
Program 10-1 shows the Aut onobi | e classs code, which appears in a module named
vehi cl es.

Program 10-1 (Lines 1 through 44 of vehicles.py)

© 0 -2 & O B w N e

ey
<

‘# The Autonobile class holds general data
about an automobile in inventory.

cl ass Aut onobil e:
The __init__method accepts argunents for the
make, nodel, mileage, and price. It initializes
the data attributes with these val ues.

def _ init__ (self, make, nodel, mnileage, price):
self . make = make
(program continues)

375

376

Chapter 10 Inheritance

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

(continued)

self . _model = nodel
self.--mleage = m | eage
self. price = price

The foll owi ng methods are nutators for the
class's data attributes.

def set make(self, nake):
self . make = make

def set model(self, nodel):
self. model = nodel

def set mileage(self, nileage):
self.--nmleage = m | eage

def set price(self, price):
self._ price = price

The foll owi ng nethods are the accessors
for the class's data attributes.

def get make(self):
return self. make

def get model(self):
return self. - - nodel

def get mileage(self):
return self.--nileage

def get price(self):
return self. price

The Automobile classs __init__ method accepts arguments for the vehicle's make,
model, mileage, and price. It uses those valuesto initialize the following data attributes:

s __make

¢ __model

» __mileage
® __price

(Recall from Chapter 9 that a data attribute becomes hidden when its name begins with
two underscores.) The methods that appear in lines 18 through 28 are mutators for each of
the data attributes, and the methods in lines 33 through 43 are the accessors.

10.1 Introductionto Inheritance 377

The Automobile classis a complete classthat we can create objects from. If we wish, we
can write a program that imports the vehicle module and creates instances of the
Automobile class. However, the Automobile class holds only general data about an
automobile. It does not hold any of the specific pieces of data that the dealership wants to
keep about cars, pickup trucks, and SUVs. To hold data about those specific types of auto-
mobiles we will write subclasses that inherit from the Automobile class. Program 10-2
shows the code for the Car class, which isaso in the vehicles module.

Program 10-2 (Lines45 through 72 o vehicles.py)

45 # The Car class represents a car. It is a subclass
46 # of the Autonobile class.

47

48 cl ass Car(Automobile):

49 # The init__ method accepts argunents for the

50 # car's make, nodel, mleage, price, and doors.

51

52 def __init--(self, make, nodel, nileage, price, doors):
53 # Call the superclass's _init_ _ nethod and pass
54 # the required argunents. Note that we al so have
55 # to pass self as an argument.

56 Autonobile.--init--(self, make, nodel, mleage, price)
57

58 # Initialize the __doors attribute.

59 self.__doors = doors

63 # The set-doors nmethod is the mutator for the

62 # doors attribute.

63

64 def set doors(self, doors):

65 self. doors = doors

66

67 # The get-doors nmethod is the accessor for the

68 # _doors attribute

69

70 def get doors(self):

7 return self. doors

72

Take a closer look at the first line of the class declaration, in line 48:"
cl ass Car(Automobile):

This line indicates that we are defining a class named Car, and it inherits from the
Automobile class. The Car classis the subclassand the Automobile classisthe superclass.
If we want to express the relationship between the Car class and the Automobile class, we
can say that a car isan Automobile. Becausethe Car classextendsthe Automobile class,
it inheritsall of the methods and data attributes of the Automobile class.

378

Chapter 10 Inheritance

Look at the header for the —_init__ method in line 52:
def __init--(self, make, nodel, nileage, price, doors):

Notice that in addition to the required self parameter, the method has parameters named
make, model, mileage, price, and doors. This makes sense because a Car aobject will
have data attributes for the car's make, model, mileage, price, and number of doors. Some
of these attributes are created by the Automobile class, however, so we need to cal the
Automobiledasss __init__ method and passthosevauesto it. That happensin line 56:

Autonobile. - -init--(self, nmake, nodel, m | eage, price)

This statement calls the Automobile dasss __init__ method. Notice that the state-
ment passes the self variable, as well as the make, model, mileage, and price vari-
ables as arguments. When that method executes, it initializes the __make, __model,
__mileage,and __price dataattributes. Then, inline59, the __doors attribute is ini-
tialized with the value passed into the door s parameter:

sel f. __doors = doors

The set_doors method, in lines 64 through 65, isthe mutator for the doors attribute,
and the get_doors method, in lines 70 through 71 is the accessor for the _ _doors attrib-
ute. Before going any further, let's demonstrate the Car class, as shown in Program 10-3.

Program 10-3 (car_demo.py)

This program denonstrates the Car cl ass.
i mport vehicles

def main():
Create an object fromthe Car class.
The car is a 2007 Audi with 12,500 niles, priced
at $21,500.00, and has 4 doors.
used- car = vehicles.Car('Audi', 2007, 12500, 21500.00, 4)

Display the car's data.
print 'Make:', used car.get make()

print 'Mdel:', used car.get model()

print 'Mleage:', used car.get mileage()

print 'Price:', used car.get price()

print 'Nunmber of doors:', used car.get doors()

Call the main function.
mai n()

Program Output

Al

Yodel :

10.1 Introduction to Inheritance 379

Mileage: 12500
price: 21500.0
Nunber of doors: 4

73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
39
100

Line 3 imports the vehicles module, which contains the class definitions for the
Automobile and Car classes. Line 9 creates an instance of the Car class, passing 'audi’
as the car's make, 2007 as the car's model, 12500 as the mileage, 21500.00 as the car's price,
and 4 as the number of doors. The resulting object is assigned to the used_car variable.

The print statement in lines 12 through 15 calls the object's get_make, get model,
get mileage, and get_price methods. Even though the Car class does not have any
of these methods, it inherits them from the Automobile class. Line 16 cdls the
get._doors method, which is defined in the car class.

Now let'slook at the Truck class, which aso inheritsfrom the Automobile class. The code
for the Truck class, which isaso in the vehicles module, is shown in Program 10-4.

(Lines 73 through 100 of vehicles.py)

The Truck class represents a pickup truck. It is a
subcl ass of the Autonobile class.

cl ass Truck(Automobile):
The _ init nethod accepts argunents for the
Truck's make, nodel, mleage, price, and drive type.

def __init--(self, make, nodel, mleage, price, drive-type):
Call the superclass's __init _ method and pass
the required arguments. Note that we al so have
to pass self as an argunent.
Autonmobile. - -init--(self, nmake, nmodel, nileage, price)

Initialize the __drive type attribute.
self.--drive-type = drive-type

The set-drive-type nethod is the mutator for the
drive type attribute.

def set drive type(self, drive-type):
self. drive = drive-type

The get-drive-type nethod is the accessor for the
drive type attribute.

def get drive type(self):
return self.--drive-type

380

Chapter 10 Inheritance

101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128

TheTruckclasss _init method beginsin line 80. Notice that it takes arguments for
the truck's make, model, mileage, price, and drivetype. Just asthe Car classdid, the Truck
class calls the Automobile classs —_init__ method (in line 84) passing the make,
model, mileage, and price as arguments. Line 87 createsthe —_drive_type attribute, ini-
tializing it to the value of the drive— type parameter.

Theset_drive typemethodinlines92 through 93 isthemutator for the__drive type
attribute, and the get_drive_type method in lines 98 through 99 is the accessor for the
attribute.

Now let's look at the sUV class, which also inherits from the Automobile class. The code
for the suv class, which isaso in the vehicles module, is shown in Program 10-5.

(Lines 101 through 128 of vehicles.py)

The SWV class represents a sport utility vehicle. It
is a subclass of the Autonobile class.

cl ass suv(Automobile):
The __init _ nmethod accepts argunents for the
suv's make, nodel, mleage, price, and passenger
capacity.

def _ init (self, nake, nodel, mleage, price, pass-cap):
Call the superclass's _init method and pass
the required arguments. Note that we al so have
to pass self as an argunent.
Autonobile.--init--(self, nake, nodel, nileage, price)

Initialize the pass_cap attribute.
sel f. - - pass- cap = pass- cap

The set-pass-cap nethod is the mutator for the
_pass_cap attribute.

def set pass cap(self, pass-cap):
sel f.--pass_cap = pass- cap

The get- pass-cap method is the accessor for the
__pass_cap attribute.

def get pass cap(self):
return self.- - pass- cap

The suv classs —_init__ method beginsin line 109. It takes arguments for the vehicle's
make, model, mileage, price, and passenger capacity. Just asthe Car and Truck classesdid,
the suv class callsthe Automobile cdlasss __init__ method (inline 113) passing the

O Bh WO N

2%
30
31
32
33
34
35

10 11 ntroducti on to inheritance

make, model, mileage, and price as arguments. Line 116 createsthe pass_cap attrib-
ute, initializing it to the value of the pass- cap parameter.

Theset pass_cap method inlines121 through 122 isthe mutator for the___pass- cap
attribute, and the get _pass_cap method in lines127 through 128 is the accessor for the
attribute.

Program 10-6 demonstrates each of the classes we have discussed so far. It creates a Car
object, a Tr uck object, and an suv abject.

This programcreates a Car object, a Truck object,
and an SWV obj ect.

i mport vehicles

def main():
Create a Car object for a used 2001 BMN
wWith 70,000 niles, priced at $15,000, with
4 doors.
car = vehicles.Car('BMW', 2001, 70000, 15000.0, 4)

reate a Truck object for a used 2002

Toyota pickup with 40,000 niles, priced

at $12, 000, with 4-wheel drive.

truck = vehicles.Truck('Toyota', 2002, 40000, 12000.0, r'4wD')

Create an SW object for a used 2000

Volvo with 30,000 mles, priced

at $18,500, with 5 passenger capacity.

suv = vehicles.SUV({'Volvo', 2000, 30000, 18500.0, 5)

print ' USED CAR | NVENTCRY'

print 'm=mmsssssssssss——e-s !

Display the car's data.

print 'The following car is in inventory:'
print 'Make:', car.get make()

print 'Model:', car.get model()

print 'Mleage:', car-get_mleage()

print 'Price:', car-get_price()

print 'Nunber of doors:', car.get doors()
print

Display the truck's data.
print 'The follow ng pickup truck is in inventory.'
(program continues)

381

382 Chapter 10 Inheritance

(continued)
36 print 'Make:', truck-get- make()
37 print 'Mdel:', truck-get- nodel ()
38 print 'Mleage:', truck.get mileage()
39 print "Price:', truck-get- price()
49 print "Drive type:', truck.get drive type()
41 print
42
43 # Display the suv's data.
44 print 'The following SW is in inventory.'
45 print 'Make:', suv.get make()
46 print 'Mdel:', suv.get model()
47 print 'Mleage:', suv.get mileage()
48 print 'Price:', suv.get_price()
43 print 'Passenger Capacity:', suv.get pass cap()
50
51 # Call the main function.
52 main()

JSED (AR | NVEN

You show inheritancein a UML diagram by drawing a line with an open arrowhead from the
subclassto the superclass. (Thearrowhead points to the superclass.) Figure 10-2 is a UML
diagram showing the rel ationship between the Automobile, Car, Truck, and SUV classes.

g inheritance
Automobile

model
mileage
price

__init-—(make, model,

mileage, price)
set_make(make)
set_model(model)
set_mileage(mileage)
set_price(price)
get—-make()
get_model()
get_mileage()
get—price()

10.1 Introduction to Inheritance

Truck

SUvV

__init——(make, model,

mileage, price, doors)
set_doors(doors)
get—doors()

__init——(make,model,
mileage, price, drive—type)

set_drive_type(drive_type)

get-drive-type()

__init——(make, model,
mileage, price, pass—cap)

set_pass_cap(pass_cap)

get—pass—cap0

383

“ 101

10.2
10.3
104

| Checkpoint

In this section we discussed superclasses and subclasses. Which is the general class
and which is the specidized class?

What does it mean to say there isan "is a" relationship between two objects?
What does a subclass inherit from its superclass?

Look at the following code, which is the first line of a class definition. What is the
name of the superclass? What is the name of the subclass?

cl ass Canary(Bird):

388

Chapter 10 Inheritance

© o N O 0 w N -

PR R R R R TR e
0NN WNER O

— CONCEPT: Polymorphism allows subclassesto have methods with the same names

as methods in their superclasses. it gives the ability for a program to call
the correct method depending on the type of object that is used to call it.

The term polymorphism refers to an object’s ability to take different forms. It is a power-
ful feature of object-oriented programming. In this section, we will look at two essential
ingredients of polymorphic behavior:

1. The ability to define a method in a superclass, and then define a method with the same
name in a subclass. When a subclass method has the same name as a superclass
method, it is often said that the subclass method overridesthe superclass method.

2. Theability to call the correct version of an overridden method, depending on the type
of object that is used to cal it. If a subclass object is used to call an overridden
method, then the subclasss version of the method is the one that will execute. If a
superclass object is used to call an overridden method, then the superclasssversion of
the method is the one that will execute.

Actudly, youve aready seen method overriding at work. Each subclass that we have exam-
ined in this chapter has a method named init _ that overrides the superclasss
——init _ method. When aninstancedf the subclass iscreated, itisthesubclasss —_init
method that automatically gets called.

Method overriding works for other class methods too. Perhaps the best way to describe
polymorphism is to demonstrate it, so let's look at a simple example. Program 10-9 shows
the code for a class named Mammal, which isin a module named animals.

(Lines1 through 22 of animals.py)
The Mammal cl ass represents a generic nmamal .

cl ass Mammal :

The __init _ nethod accepts an argument for
the mammal 's speci es.

def __init--(self, species):
sel f.- - species = species

The show speci es nethod di spl ays a nmessage
indicating the manmal ' s speci es.

def show species(self):
print 'l ama', self.--species

The nake- sound nethod is the manmal's
way of making a generic sound.

10.2 Polymorphism

def make sound(self):
print 'QGrrrr:

TheMammal classhasthreemethods. _init_, show— speciesand make—sound. Here
isan exampledf code that createsan instance of the class and calls the uses these methods:

i nport aninals

mamral = animals.Mammal('regular nmammal ')
mammal.show_species()

mammal.make sound()

This code will display the following:

I ama regul ar rmamal
Qrrrr

The next part of Program 10-9 shows the Dog class. The Dog class, which is aso in the
animals module, is a subclass of the Mammal class.

Program 10-9 (Lines 23 through 38 of animals.py)

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

The Dog class is a subclass of the Mammal cl ass.
cl ass Dog(Mammal):

The __init nethod calls the superclass's
init method passing 'Dog' as the species.

def _ init (self):
Mammal . -init--(self, 'Dog')

The nake- sound mnet hod overrides the superclass's
make- sound et hod.

def make sound(self):
print 'Wof1 Wof 1

Even though the Dog class inherits the —_init__ and make_sound methods that are in
the Mammal class, those methods are not adequate for the Dog class. So, the Dog class has
itsown __init__ and make_sound methods, which perform actions that are more
appropriate for a dog. We say that the _init__ and make_sound methods in the Dog
classoverridethe __init__ and make sound methods in the Mamma class. Here is an
example of code that creates an instance of the D o class and calls the methods:

i mport ani mal s
dog = aninmal s. Dog()

389

390 Chapter 10 Inheritance

This code will display the following:

I am a Dog
Vof ! Whof !

When we use a bog object to call the show_species and make— sound methods, the ver-
sions of these methods that are in the Dog class are the ones that execute. Next, ook at
Program 10-10, which shows the Cat class. The cat class, which is dso in the animals
module, is another subclass o the Mammal class.

(Lines 39 through 53 of animals.py)
39 # The Cat class is a subclass of the Mammal cl ass.
41 class Cat(Mammal):

The __init _ method calls the superclass's
init method passing 'Cat' as the species.

def __init _(self):
Mammal . - -init--(self, ‘'cat')

The make- sound met hod overrides the superclass's
make- sound net hod.

The cat classaso overrides the Mammd classs __init _ and make_sound methods.
Here is an example of code that creates an instance of the cat class and calls these
methods:

i nport ani mal s

cat = animals.Dog()
cat.show_species()
cat.make sound()

This code will display the following:

| ama Cat
Meow

When we use a cat aobject to call the show_species and make— sound methods, the
versions of these methods that are in the C at class are the ones that execute.

10.2 Polymorphisn =~ 391

Polymorphism gives us a great deal of flexibility when designing programs. For example,
look at the following function:

def show mammal info(creature):
creature.show _species()
creat ur e-make- sound()

We can pass any object as an argument to this function, and as long as it has a
show_speci es method and amake_sound method, the function will call those methods.
In essence, we can pass any object that "is a"' Mammal (or a subclass of Mammal) to the
function. Program 10-10 demonstrates.

Program 10-10 (polymorphism_demo.py)
Thi s programdenonstrates pol ynor phi sm
i mport aninals

def main():
Oreate a Mammal object, a Dog object, and
a Cat object.
manmal = animals.Mammal('regular ani mal')
dog = ani nmal s. Dog()
cat = animals.Cat()

D splay information about each one.
print 'Here are some ani nals and'
print 'the sounds they make. '

print e
show mammal_info(mammal)

print

show mammal info(dog)

print

show_mammal info(cat)

The show mammal - i nfo function accepts an obj ect
as an argument, and calls its show species
and make- sound net hods.

def show mammal_info(creature):
creature.show_species()
creat ur e-make- sound()

Call the main function.
mai n()

392 Chapter 10 Inheritance

But what happens if we pass an object that is not a Mammal, and not of a subclass of
Mammal to the function?For example, what will happen when Program 10-11 runs?

Program 10-11 (wrong_type.py)

def main() :
Pass a string to show nammal -info. ..
show _mammal info('I ama string')

The show mammal - i nfo function accepts an obj ect
as an argunent, and calls its show species
and nake- sound et hods.

def show _mammal info(creature):
creature.show_species()
cr eat ur e-make- sound()

Call the main function.
mai n()

In line 3 we call the show_mammal —inf o function passing a string as an argument. When
the interpreter attempts to execute line 10, however, an AttributeErroxr exception will
be raised because strings do not have a method named show_species.

We can prevent this exception from occurring,by using the built-in function i sinstance.
You can use the i sinstance function to determine whether an object is an instance of a
specific class, or a subclass of that class. Here is the general format of the function call:

isinstance(object, O assNane)

In the general format, object isa referenceto an object and C1assName is the name of
aclass. If the object referenced by object isan instance of ClassName Or is an instance
of asubclassof c1assName, the function returns true. Otherwise it returns false. Program
10-12 shows how we can use it in the show—mammal _i nf o function.

i

3

5

24
25
26

28

10.2 Polymorphism

Thi s program denonstrates pol ynor phi sm
i mport ani mal s
def main():

Oreate an Mammal object, a Dog object, and
a Cat object.

mamral = animals.Mammal('regular aninmal')
dog = ani nal s. Dog()
cat = animals.Cat()

Display information about each one.
print 'Here axe sone ani mals and'
print 'the sounds they nake.'
print '--—mm—m e
show mammal_ info(mammal)

show_mammal info(dog)
show mammal_ info(cat)
show_mammal_info('I ama string')
The show mammal - i nfo function accepts an obj ect
as an argunent, and calls its show species
and make- sound et hods.
def show mammal_info(creature):
if isinstance(creature, animals.Mammal):
creature.show_species()

creature.make_sound()

print 'That is not a Nammal! '

393

394 Chapter 10 Inheritance

am a Dog

oof !

| am

at

Woof !

a Cat
is not a Manmal !

Inlines 16, 18, and 20 we call the show_mammal inf o function, passing references to a
Mammal object, a Dog object, and a Cat object. In line 22, however, we call the function
and pass a string as an argument. Inside the show_mammal info function, the i f state-
ment in line 29 callsthe i sinstance function to determine whether the argument is an
instance of Mammal (or a subclass). If it is not, an error message is displayed.

heckpoint
6.25 Look at the following class definitions:

cl ass Veget abl e:
def __init--(self, vegtype):
self. vegtype = vegtype

def message(self):
print "lI'ma vegetable. "

cl ass Potato(Vegetable):
def __init (self):
Vegetable.--init--(self, 'potato')

def message(self):
print "l 'm a potato. *

Given these class definitions, what will the following statements display?

- isthe gt

. superclass
c. daveclass
d. child class

| 11.1 Introduction to Recurdon 11.3 Examplesd Recursve Algorithms
11.2 Problem Solving with Recurdon

L_ CONCEPT: A recursivefunction isa function that calsitself.

You have seen instances of functionscalling other functions. In a program, the main func-
tion might call function A, which then might call function B. It's aso possible for a func-
tion to cal itself. A function that callsitsdlf is known as a recursive function. For example,
look at the message function shown in Program 11-1.

Program 11-1 (endless_recursion.py)

This program has a recursive function.

def main():
nmessage()

def nessage():
print *This is a recursive function. '
nmessage()

Call the main function.
mai n()

400

Chapter 11 Recurson

Themessage function displaysthe string 'This is arecursivefunction' and then callsitself.
Each time it calls itsdlf, the cycle is repeated. Can you see a problem with the function?
There's no way to stop the recursivecalls. Thisfunction islike an infiniteloop because there
is no code to stop it from repeating.

Like a loop, a recursive function must have some way to control the number o times it
repeats. The code in Program 11-2 shows a modified version of the message function. In
this program, the message function receives an argument that specifies the number of
times the function should display the message.

This program has a recursive function

def main():
By passing the argunment 5 to the message
function we are telling it to display the
message five tinmes.
message(5)

def message(times):
if (times > 0):
print '"This is a recursive function. '
message(times - 1)

Call the main function
mai n()

The message function in this program containsan i f statement in line 10 that controlsthe
repetition. Aslong asthet i mes parameter is greater than zero, the message 'This is a recur-
svefunction' isdisplayed, and then the function callsitself again, but with a smaller argument.

11.1 Introduction to Recursion

In line 7 the mai n function calls the message function passing the argument 5. The first

time the function is called the i f statement displays the message and then callsitsaf with
4 as the argument. Figure 11-1 illustrates this.

e 11-7 Hrg two calls of the function

‘ First call of the function !

l Value of ti mes: 5 ‘

The diagram shown in Figure 11-1 illustrates two separate calls of the nessage function.
Each time the function is called, a new instance of thet i nes parameter is created in mem-
ory. The first time the function iscaled, thet i mes parameter is set to 5. When the func-
tion callsitself, a new instance of thet i nes parameter is created, and the value 4 is passed

into it. This cycle repeats until finally, zero is passed as an argument to the function. This
isillustrated in Figure 11-2.

Figure 17-2 Six cdlsto the message function

The functioniis first called
from the mai n function.

Second call of the function'
The second through sixth

calls are recursive. | Valueof tinmes: 4

Third call of the function

——

‘ Fourth call of the function :
I
| Valueof times: 2

401

402

Chapter 11 Recurson

Asyou can seein the figure, the function iscalled six times. Thefirst timeit iscaled from
the mai n function, and the other five times it cals itself. The number of times that a
function calls itself is known as the depth of recursion. In this example, the depth of
recursion is five. When the function reaches its sixth call, thet i nes parameter is set
to 0. At that point, the i f statement's conditional expression is false, so the function
returns. Control of the program returns from the sixth instance of the function to the
point in the fifth instance directly after the recursive function call. This is illustrated in
Figure 11-3.

! returns to the point after the recursive function call

Recursive function call def message (times) :
bk (times > 0):
print 'This is a recursive function.'
g message (times - 1)

Control returns here from the recursive call.
There are no more statements to execute
in this function. so the function returns.

Because there are no more statements to be executed after the function call, the fifth
instance of the function returns control of the program back to the fourth instance. This
repeats until al instances of the function return.

CONCEPT: A problem can be solved with recursion if it can be broken down into
smaller problems that areidentical in structure to the overall problem.

The code shown in Program 11-2 demonstrates the mechanics of a recursive function.
Recursion can be a powerful tool for solving repetitive problems and is commonly studied
in upper-level computer science courses. It may not yet be clear to you how to use recur-
sion to solve a problem.

First, note that recursion is never required to solve a problem. Any problem that can be
solved recursively can also be solved with aloop. In fact, recursive algorithms are usually
less efficient than iterative algorithms. This is because the process of calling a function
requires several actions to be performed by the computer. These actions include allocating
memory for parameters and local variables, and storing the address of the program loca-
tion where control returns after the function terminates. These actions, which are some-
times referred to as overbead, take place with each function call. Such overhead is not
necessary with a loop.

Some repetitive problems, however, are more easily solved with recursion than with
a loop. Where a loop might result in faster execution time, the programmer might be

11.2 Problem Solving with Recursion

able to design a recursive algorithm faster. In general, a recursive function works as
follows:

« If the problem can be solved now, without recursion, then the function solvesit and
returns
If the problem cannot be solved now, then the function reducesit to a smaller but sm-
ilar problem and callsitsaf to solve the smaller problem

In order to apply this approach, first, weidentify at least one casein which the problem can
be solved without recursion. This is known as the base case. Second, we determine a way
to solve the problem in all other circumstances using recursion. Thisis called the recursive
case. In the recursive case, we must always reduce the problem to a smaller version of the
original problem. By reducing the problem with each recursivecall, the base case will even-
tually be reached and the recursion will stop.

Using Recursion to Calculate
the Factorial of a Number

Let's take an example from mathematics to examine an application of recursive functions.
In mathematics, the notation n! represents the factorial of the number n. The factorial of a
nonnegative number can be defined by the following rules:

If # = 0 then n=1
If » > 0 then nl=1X2X3X...Xmn

Let's replace the notation n! with factorial(z), which looks a bit more like computer code,
and rewrite these rules as follows:

If » = 0 then factorial(n) = 1
If = > 0 then factorial(n) = 1 X 2 X 3 X ... X n

These rules state that when # is 0, its factorial is 1. When = is greater than O, its factoria
isthe product of al the positiveintegersfrom 1 up to n. For instance, factorial(6) is calcu-
lated as1 X 2 X 3 X 4 X5 X 6.

When designing a recursive algorithm to calculate thefactorial of any number, first we iden-
tify the base case, which is the part of the calculation that we can solve without recursion.
That is the case where 7 is equal to 0 as follows:

If » =0 then factorial(n) = 1

This tells how to solve the problem when # is equal to O, but what do we do when = is
greater than 0? That is the recursivecase, or the part of the problem that we use recursion
to solve. Thisis how we expressit: 3

If 2> 0 then factorial(n) = n X factorial(n — 1)

This states that if » is greater than 0, the factorial of # is = times the factorial of =z — 1.
Notice how the recursive call works on a reduced version of the problem, » — 1. So, our
recursiverule for calculating the factorial of a number might look like this:

If » = 0 then factorial{n) = 1
If » > 0 then factorial{n) = n X factorial(z — 1)

404 Chapter 11 Recurson

The code in Program 11-3 shows how we might design a factorial function in a
program.

This program uses recursion to cal cul ate
the factorial of a nunber.

def main():
Get a nunber fromthe user.
nunber = input('Enter a nonnegative integer: ')

CGet the factorial of the nunber.
fact = factorial(number)

Display the factorial.
print 'The factorial of*, nunber, 'is', fact

The factorial function uses recursion to
calculate the factorial of its argunent,
which is assumed to be nonnegati ve.
def factorial(num):
if num ==
return 1
el se:
return num?* factorial(num - 1)

Call the main function.
mai n()

Program Output (with input shown in bold)

Enter a nonnegative integer: 4 [Enter]
The factorial of 4 is 24

In the sample run of the program, the factorial function is called with the argument 4
passed to num. Because numis not equal to 0, the i f statement's else clause executes the
following statement:

return num * factorial(num - 1)

Although this is a return statement, it does not immediately return. Before the return
value can be determined, the value of factorial (num - 1) must be determined. The
factorial function is called recursively until the fifth call, in which the num parameter
will be set to zero. Figure11-4 illustrates the value of num and the return value during each
call o the function.

11.2 Problem Solving with Recurson 405

Figure 11-4 The value d numn and the return value during each call of the function

The functionis first called
from the main function. ——

I Value of num: 4 |

I Return value: 24 |

The second through fifth
calls are recursive.

Return value: 6

L] Fourth call of the function

Value of num: 1

Return value: 1

I Return value: 1

The figure illustrates why a recursive algorithm must reduce the problem with each
recursive call. Eventually, the recursion has to stop in order for a solution to be

reached.

If each recursive call works on a smaller version of the problem, then. the recursive calls
work toward the base case. The base case does not require recursion, so it stops the chain
of recursivecalls.

Usually, a problem is reduced by making the value of one or more parameters smaller with
each recursivecall. Inour f act ori al function, the value of the parameter num gets closer
to O with each recursive call. When the parameter reaches O, the function returns a value
without making another recursivecall.

406

Chapter 11 Recurson

Direct and Indirect Recursion

The examples we have discussed so far show recursive functions or functions that directly
call themselves. This is known as direct recursion. There is also the possibility of creat-
ing indirect recursion in a program. This occurs when function 2 calls function B, which
in turn calls function A. There can even be several functions involved in the recursion.
For example, function A could call function B, which could call function ¢, which calls
function A.

Checkpoint

11.1 |Itissaid that a recursive algorithm has more overhead than an iterative algorithm.
What does this mean?

11.2 What is a base case?

11.3 What is a recursive case?

11.4 What causes a recursivealgorithm to stop calling itself?
11.5 What isdirect recursion?What is indirect recursion?

Examples of Recursive Algorithms

Summing a Range of List Elements with Recursion

In this example, we look at a function named range_sum that uses recursion to sum a
range of itemsin a list. The function takes the following arguments: a list that contains the
range of elementsto be summed, an integer specifying the index of the starting item in the
range, and an integer specifying the index of the ending item in the range. Here is an exam-
ple of how the function might be used:

numbers= [1, 2, 3, 4, 5 6, 7, 8, 9]
ny- sum = range_sum(numbers, 3, 7)
print ny-sum

The second statement in this code specifies that the ranye sum function should return the
sum o the items at indexes 3 through 7 in the numbers list. The return value, which in
this case would be 30, is assigned to the my_sum variable. Here is the definition of the
range— sum function:

def range sum(num list, start, end):
if start > end:
return o
el se:
return num list[start] + range sum(num list, start + 1, end)

This function's base case is when the st art parameter is greater than the end parameter.
If thisistrue, the function returns the value 0. Otherwise, the function executes the follow-
ing statement:

return num list{start] * range_sum(num list, start + 1, end)

11. 3 Examples of Recursive Algorithms

This statement returns the sum of num | i st{start] plus the return value of a recursive
call. Notice that in the recursive call, the starting item in the range is start + 1. 1In
essence, this statement says "return the value of the first item in the range plus the sum of
the rest of the itemsin the range." Program 11-4 demonstrates the function.

Program 11-4

1
2
3
3
5
&
7
8

9
¢
|1

This program denonstrates the range- sumfuncti on.

def nmain():
Oreate a |list of nunbers.
‘numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9]

Get the sumof the itens at indexes 2
through 5.
ny_sum = range_sum(numbers, 2, 5)

D splay the sum
print 'The sumof itens 2 through 5 is', ny-sum

The range- sum function returns the sumof a specified
range of itens in num list. The start paraneter
specifies the index of the starting item The end
parameter specifies the index of the ending item
def range sum(num list, start, end):
if start > end:
return 0
el se:
return num list[start] + range_ sum(num_list, start + 1, end)

Call the main function.
mai n()

Program Output

The sum of elenents 2 through 5 is 18

The Fibonacci Series

Some mathematical problems are designed to be solved recursively? One well-known
example is the calculation of Fibonacci numbers. The Fibonacci numbers, named after
the Italian mathematician Leonardo Fibonacci (born circa 1170), are the following
sequence:

Notice that after the second number, each number in the seriesis the sum of the two previ-
ous numbers. The Fibonacci series can be defined as follows:

407

408 Chapter 11 Recurson

If #» = 0 then Fib(n) = 0
If n = 1then Fib(n) = 1
If # > 1 then Fib(n) = Fib(n — 1)+ Fib(z — 2)

A recursivefunction to calculate the nth number in the Fibonacci series is shown here:

def fib(n):
if n==
return 0
elif n ==
return 1
el se:
return f£ib(n - 1) + fib(n - 2)

Notice that this function actually has two base cases: when n is equal to O, and when # is
equal to 1. In either case, the function returns a value without making a recursive cal. The
code in Program 11-5 demonstrates this function by displaying the first 10 numbersin the
Fibonacci series.

Program 11-5 (fibonacci.py)

This programuses recursion to print nunbers
fromthe Fibonacci series.

def nmain():
print 'The first 10 nunbers in the'
print 'Fi bonacci series are:'

for nunber in range(i, 11):
print fib(number)

The fib function returns the nth nunber
in the Fibonacci series.
def £ib(n):
if n==
return 0
elif n ==
return 1
el se:
return fib(n - 1) + fib(n - 2)

Call the main function.
mai n()

Program Output

The first 10 nunbers in the
Fi bonacci series are:

0

PO A W N

w00

10
11
12
13
14
15
16
17
18
19
20
21
22

11. 3 Bxanpl es of Recursive A gorithns

Our next example of recursion is the calculation of the greatest common divisor (GCD) dof
two numbers. The GCD o two positiveintegersx and y is determined as follows:

If x can be evenly divided by y, then ged(x, y) =y
Otherwise, ged{x, y) = ged(y, remainder of x/y)

This definition statesthat the GCD of x and y isy if x/y has no remainder. Thisisthe base case.
Otherwise, the answer is the GCD o y and the remainder of x/y. The code in Program 11-6
shows a recursive method for calculating the GCD.

This programuses recursion to find the GCD
of two nunbers.

def nmain():
Get two nunbers.
numM = input (‘Enter an integer:)
num2 = input ('Enter another integer: ')

D splay the QD
print ' The greatest comon divi sor of'
print 'the two nunbers is', gcd(numl, num2)

The gcd function returns the greatest common
divisor of two nunbers.
def ged(x, y):
if x vy ==
returny
el se:
return ged(x, X % Yy)

Call the main function.

main()

409

410

Chapter 11 Recursion

Program Output (with input shown in bold)

Enttzr an i
Entter anotl
The greate:
these two |

The Towers of Hanoi

The Towersof Hanoi isa mathematical game that is often used in computer scienceto illus
trate the power o recursion. The game usesthree pegsand a set of discs with holes through
their centers. The discs are stacked on one of the pegs as shown in Figure 11-5.

» 2%-5 The pegs and discs in the Tower of Hanoi game

Notice that the discs are stacked on the leftmost peg, in order of size with the largest disc
at the bottom. The game is based on a legend where a group of monks in atemplein Hanoi
have asimilar set of pegswith 64 discs. The job of the monksis to move the discs from the
first peg to the third peg. The middle peg can be used as a temporary holder. Furthermore,
the monks must follow these rules while moving the discs:

Only one disk may be moved at atime
e A disk cannot be placed on top of a smaller disc

All discs must be stored on a peg except while being moved

According to the legend, when the monks have moved al of the discs from the first peg to
the last peg, the world will come to an end.!

To play the game, you must move all of the discs from the first peg to the third peg,
following the same rules as the monks. Let's look at some example solutions to this game,
for different numbers of discs. If you only have one disc, the solution to the game is

1In case you're worried about the monks finishing their job and causing the world to end anytime soon, you can
relax. If the monks move the discs at a rate of 1 per second, it will take them approximately 585 billion years to
move all 64 discs!

11.3 Examples of Recursive Algorithms

simple: move the disc from peg 1 to peg 3. If you have two discs, me sotution requires
three moves:

e Movedisc1topeg 2
e Movedisc2topeg 3
e Movedisc1topeg3

Notice that this approach uses peg 2 as a temporary location. The complexity o the moves
continues to increase as the number of discs increases. To move three discs requires the
seven moves shown in Figure 11-6.

Figure 11-6 Steps for moving three pegs

Original setup. First move: Move disc 1 to peg 3.
Second move: Move disc 2 to peg 2. Third move: Move disc 1 to peg 2.
Fourth move: Move disc 3 to peg 3. Fifth move: Move disc 1 to peg 1.
: I - |
Sixth move: Move disc 2 to peg 3. Seventh move: Move disc 1 to peg 3.

The following statement describes the overall solution to the problem:

Move » discsfrom peg 1 to peg 3 using peg 2 as a temporary peg.

The following summary describes a recursive algorithm that simulates the solution to the
game. Notice that in this algorithm we use the variables A, B, and C to hold peg numbers.

411

412

Chapter 11 Recurdgon

0 - O WL B~ WN P

To moue # discs from peg Ato peg C, using peg B asa temporary peg, do the following.
If 2> 0O:

Move» — 1 discs from peg Ato peg B, using peg C asa temporary peg.

Move the remaining disc from peg Ato peg C.

Move ~ — 1 discs from peg B to peg C, using peg A as a temporary peg.

The base case for the algorithm is reached when there are no more discsto move. The fol-
lowing code is for a function that implements this algorithm. Note that the function doe:
not actually move anything, but displays instructions indicating al of the disc moves t¢
make.

def move_discs(num, from peg, to_peg, tenp- peg):
if num > O
move discs(num - 1, from peg, tenp- peg, to- peg)
print 'Move a disc from peg', from peg, 'to peg', to- peg
move discs(num - 1, tenp- peg, to- peg, from peg)

This function accepts arguments into the following parameters:

num The number of discsto move.
from peg The peg to move the discs from.
to peg The peg to move the discsto.
temp peg The peg to use as a temporary peg.

If num is greater than 0, then there are discsto move. Thefirst recursive call is as follows:
move discs(num - 1, from- peg, tenp- peg, to- peg)

This statement is an instruction to move al but one disc from from— peg to temp— peg,
using to— peg as a temporary peg. The next statement is as follows:

print 'Mve a disc from peg', from peg, 'to peg' , to peg

This simply displays a message indicating that a disc should be moved from from_peg to
to— peg. Next, another recursivecall is executed as follows:

move-discs(num - 1, temp_peg, to- peg, from peg)

Thisstatement is an instruction to move all but one discfrom temp— pegto to— peg, using
from_peg as a temporary peg. The code in Program 11-7 demonstrates the function by
displaying a solution for the Tower of Hanoi game.

This program simulates the Towers of Hanoi gane.

def main():
Set up some initial values.
num discs = 3
from peg = 1
to peg = 3

tenp- peg =2

11.3 Examples d Recursive Algorithms

Play the gare.
move_discs(num discs, from peg, to-peg, tenp- peg)
print "All the pegs are noved! '

The moveDiscs function displays a disc nmove in
the Towers of Hanoi gane.
The paraneters are:

numnt The nunber of discs to nove.
from peg: The peg to nove from
to_peg: The peg to nove to.

tenp- peg: The tenporary peg.
def move discs(num, from peg, to-peg, tenp-peg):
if num > O:
move_discs(num - 1, fron+ peg, tenp- peg, to- peg)
print 'Mve a disc frompeg' , from peg, 'to peg' , to-peg
move_discs(num - 1, tenp- peg, to-peg, from peg)

Call the main function.
mai n()

Recursion versus Looping

Any algorithm that can be coded with recursion can also be coded with a loop. Both
approaches achieve repetition, but which is best to use?

There are several reasons not to use recursion. Recursive function calls are certainly less
efficient than loops. Each time a function is called, the system incurs overhead that is not
necessary with a loop. Also, in many cases, a solution using a loop is more evident than a
recursivesolution. In fact, the majority of repetitive programming tasks:are best done with
loops.

Some problems, however, are more easily solved with recursion than with aloop. For exam-
ple, the mathematical definition of the GCD formulaiswell suited to a recursiveapproach.
If a recursive solution is evident for a particular problem, and the recursive algorithm does
not slow system performance an intolerable amount, then recursion would be a good design
choice. If a problem is more easily solved with a loop, however, you should take that
approach.

413

| 12.1 Graphicad User Interfaces 12.5 Button Widgasand info Didog Boxes

12.2 Udng the Tki nt er Module 12.6 Getting Input with the Ent ry Widget
12.3 Display Text with Label Widgets 12.7 Using Labdsas Output Fdds _
12.4 Organizing Widgets with Frames 12.8 Radio Buttonsand Check Buttons |

Graphical User Interfaces

L. CONCEPT: A graphical user interface allows the user to interact with the operating
system and other programs using graphical e ements such asicons, buttons,
and dialog boxes.

A computer's user interface is the part of the computer that the user interacts with. One
part of the user interface consists of hardware devices, such as the keyboard and the video
display. Another part of the user interface lies in the way that the computer's operating sys-
tem accepts commands from the user. For many years, the only way that the user could
interact with an operating system was through a command line interface, such as the one
shown in Figure 12-1. A command line interface typically displays a prompt, and the user
types a command, which is then executed.

Figure 12-1 A command line interface

420

Chapter 12 GUI Programming

Many computer users, especialy beginners, find command line interfaces difficult to use.
This is because there are many commands to be learned, and each command has its own
syntax, much like a programming statement. If a command isn't entered correctly, it will
not work.

In the 1980s, a new type of interface known as a graphical user interface came into usein
commercia operating systems. A graphical user interface (GUI) (pronounced " gooey"),
alows the user to interact with the operating system and other programs through graphi-
cal elements on the screen. GUIs also popularized the use of the mouse as an input device.
Instead of requiring the user to type commands on the keyboard, GUIs allow the user to
point at graphical elements and click the mouse button to activate them.

Much of the interaction with a GUI is done through dialog boxes, which are small windows
that display information and allow the user to perform actions. Figure 12-2 shows an
example of adialog box from the Windows operating system that allows the user to change
the system's Internet settings. Instead of typing commands according to a specified syntax,
the user interacts with graphical elements such asicons, buttons, and slider bars.

Figure 12-2 A dialog box

Selecta zome to new or dhiznge security settings. l

| internet Local imfranet Trustedsites Restricted
! sites

Internet

This zone is far Internet websites,
except those listed in trusted and
restricted zones,

Serurity level for this zone
Alowed levelsfor this zene: Medium to High | l

- Approprigte far most websites

coptent
-Unsigned ActiveX controls will notbe downloaded .

12.2 Using the Tkinter Module

In a text-based environment, such as a command line interface, programs determine the
order in which things happen. For example, consider a program that calculates the area of
a rectangle. First, the program prompts the user to enter the rectangl€e's width. The user
enters the width and then the program prompts the user to enter the rectangle's length. The
user enters the length and then the program calculates the area. The user has no choice but
to enter the data in the order that it is requested.

In a GUI environment, however, the user determines the order in which things happen. For
example, Figure 12-3 shows a GUI program (writtenin Python) that calculates the area of
arectangle. The user can enter the length and the width in any order he or she wishes. If a
mistake is made, the user can erase the data that was entered and retype it. When the user
is ready to calculate the area, he or she clicks the Calculate Area button and the program
performs the calculation. Because GUI programs must respond to the actions of the user, it
is said that they are event-driven. The user causes events to take place, such as the clicking
of a button, and the program must respond to the events.

Figure 12-3 A GUI program

heckpoint
12.1 What is a user interface?
12.2 How does a command line interface work?

12.3 When the user runs a program in a text-based environment, such as the command
line, what determines the order in which things happen?

12.4 What is an event-driven program?

Using the Tki nt er Module

- CONCEPT: In Python you can use the Tkinter moduleto create smple GUI programs.

Python does not have GUI programming features built into the language itself. However, it
comeswith amodule named T ki nter that allows you to create smple GUI programs. The
name "Tkinter" is short for " Tk interface." It is named this because it provides a way for
Python programmers to use a GUI library named Tk. Many other programming languages
use the Tk library as well.

421

422

Chapter 12 GUI Programming

A GUI program presents a window with various graphical w dgets that the user can inter-
act with or view. The Tki nter module provides 15 widgets, which are described in Table 12-1.
We won't cover all of the Tkinter widgetsin this chapter, but we will demonstrate how
to create simple GUI programs that gather input and display data.

Widget Description

Button A button that can cause an action to occur when it is clicked.

Canvas A rectangular area that can be used to display graphics.

Checkbutton A button that may bein either the "on™ or "off" position.

Entry An area in which the user may type a single line of input from the keyboard.
Frame A container that can hold other widgets.

L abel An area that displays one line of text or an image.

Listbox A list from which the user may select an item

Menu A list of menu choicesthat are displayed when the user clicksa

Menubutton
M essage
Radiobutton

Scale

Scrollbar
Text
Toplevel

M enubutton widget.
A menu that is displayed on the screen and may be clicked by the user
Displays multiple lines of text.

A widget that can be either selected or deselected. Radiobuttons usually
appear in groups and alow the user to select one of several options.

A widget that allows the user to select a value by moving a slider along a
track.

Can be used with some other types of widgetsto provide scrolling ability.
A widget that allows the user to enter multiple lines of text input.
A container, like a Frame, but displayed in its own window.

The simplest GUI program that we can demonstrate is one that displays an empty window.
Program 12-1 shows how we can do this using the Tkinter module. When the program
runs, the window shown in Figure 12-4 is displayed. To exit the program, simply click the
standard Windows close button (%) in the upper right corner of the window.

NOTE: Programsthat use Tkinter do not always run reliably under IDLE. Thisis
because IDLE itself uses Tkinter. You can aways use IDLE’s editor to write GUI
programs, but for the best results, run them from your operating system's command

prompt.

1 4 This program displays an enpty w ndow.

12.2 Using the Tki nt er Module 423

3 inmport TKinter

5 def main():

6 # Create the mai n wi ndow wi dget .

7 mai n- W ndow = Tkinter.Tk{)

8

9 # Enter the Tkinter main | oop.
10 Tkinter.mainloop()

12 # Call the main function.

Figure 12-4 Window displayed by Program 12-1

Line 3 imports the Tkinter module. Inside the main function, line 7 creates an instance
o the Tkinter module€'s Tk class, and assigns it to the main window variable. This
object is the root widget, which is the main window in the program. Line 10 calls the
Tkinter module's mainloop function. This function runs like an infinite loop until you
close the main window.

Most programmers prefer to take an object-oriented approach when writing a GUI pro-
gram. Rather than writing a function to create the on-screen elements of a program, it isa
common practice to write a class with an ——init__ method that builds the GUI. When
an instance of the classis created, the GUI appears on the screen. To demonstrate, Program
12-2 shows an object-oriented version of our program that displays an empty window.
When this program runs it displays the window shown in Figure 12-4.

Program 12-2 (empty_window?2.py)
1 # This programdisplays an enpty w ndow.
3 inport TKinter

(program continues)

424

Chapter 12 GUI Programming

Program 12-2 (continued)

5
6
7
8
3

10

L

class MQU :
def —_init--(self):
Create the main w ndow wi dget.
self.main window = Tkinter.Tk()

Enter the Tkinter main |oop.
Tkinter.mainloop()

Create an instance of the M/GU cl ass.
my gui = MyGU ()

Lines 5 through 11 are the class definition for the MyGUT class. The classs __init
method beginsin line 6. Line 8 creates the root widget and assigns it to the class attribute
main_window. Line 11 executes the T kinter module's mainloop function. The state-
ment in line 14 creates an instance of the MyGUT class. Thiscausesthe classs __init _
method to execute, displaying the empty window on the screen.

Checkpoint
12.5 Briefly describe each of the following Tkinter widgets:

a) Label
b) Entry
c) Button
d) Frame
12.6 How do you create a root widget?

12.7 What doesthe Tkinter modul€smainloop function do?

Display Text with Label Widgets

CONCEPT: Youuse the Label widget to display text in awindow.

You can use a Label widget to display a singleline o text in awindow. To make aL.abel
widget you create an instance of the Tkinter modul€s Label class. Program 12-3 creates
a window containing a Label widget that displays the text "Hello World!"™ The window
is shown in Figure 12-5.

Program 12-3 (hello_world.py)

1
2
3
4

This program displays a label with text.

i mport TKkinter

5
6
7

9
10
1l
12
13
14
15
16
17
18
19
20
21

Figure

12.3 Display Text with Label Widgets

class MWQU :
def __init__(self):
Create the main wi ndow wi dget.
self.main_window = Tkinter.Tk()

Create a Label wi dget containing the
text "Hello World!
self.label = Tkinter.Label(self.main _window, \

text='Hello World! *)

Call the Label widget's pack method.
self.label.pack()

Enter the Tkinter main |oop.
Tkinter.mainloop()

Create an instance of the MyGU cl ass.

12-5 Window displayed by Program 12-3

The MyGUT classin this program is very similar to the one you saw previously in Program
12-2. Its__init__ method builds the GUI when an instance of the class is created. Line 8
creates aroot widget and assignsit to self.main_window. Thefollowing statement appears
inlines12 and 13:

sel f-label = Tkinter.Label(self.main window, \
text="Hello World! ')

This statement creates a Label widget and assignsit to self.label. The first argument
inside the parentheses is self.main_window, which is a reference to the root widget.
This smply specifiesthat we want the Label widget to belongto the root widget. The sec-
ond argument is text='Hello World! '. This specifies the text that we want displayed
in the label.

]
The statement in line 16 callsthe Label widget's pack method. The pack method deter-
mines where a widget should be positioned, and makes the widget visible when the main
window is displayed. (Youcall the pack method for each widget in a window.) Line 19
callsthe Tkinter module's mainloop method which displays the program's main win-
dow, shown in Figure 12-5.

Let's look at another example. Program 12-4 displays a window with two Label widgets,
shown in Figure 12-6.

425

426 Chapter 12 GUI Programming

Program 12-4 (hello_world2.py)
This program di splays two labels with text.
3 inport TKinter

5 class MQAJ:
def __init_(self):
Create the main wi ndow wi dget .
self.main_window = Tkinter.Tk()

Create two Label wi dget.
self.labell = Tkinter.Label(self.main window, \
text="Hello Wrld!'")
self.label2 = Tkinter.Label(self.main window, \
text='This is ny GJ program ')

Call both Label wi dgets' pack nethod.
self.labell.pack()
self.label2.pack()

Enter the Tkinter main |oop.
Tkinter.mainloop()

23 # Oreate an instance of the M/GQJ cl ass.

Figure 12-6 Window displayed by Program 12-4

Notice that the two L abel widgets are displayed with one stacked on top o the other. We
can change thislayout by specifyingan argument to pack method, as shown in Program 12-5.
When the program runs it displays the window shown in Figure 12-7.

This programuses the side='left' argument with
the pack method to change the | ayout of the w dgets.

i mport Tkinter

class M/QAJ:
def __init (self):

- OO WN -

21
22
23

12.4 Organizing Widgets with Frames

Create the main wi ndow w dget.
self.main window = Tkinter.Tk()

Create two Label wi dgets.
self.labell = Tkinter.Label(self.main window, \
text="Hello World! ')
self.label2 = Tkinter.Label(self.main window, \
text='This is my GU program ')

Call both Label widgets' pack method.
self.labell.pack(side="'left")
self.label2.pack(side='left")

$# Enter the Tkinter main |oop.
Tkinter.mainloop()

24 # Create an instance of the MyGUl cl ass.

25 ny- gui

= MGU ()

Figure 12-7 Window displayed by Program 12-5

In lines 18 and 19 we call each Label widget's pack method passing the argument
side='left'. This specifies that the widget should be positioned as far left as possible
inside the parent widget. Because the 1abell widget was added to the main_window
first, it will appear at the leftmost edge. The 1abel2 widget was added next, so it appears
next tothe labe11 widget. Asaresult, the labelsappear side by side. Thevalid side argu-
ments that you can pass to the pack method are side='top', side='bottom’,
side='left',and side="right"'.

12.8
12.9

12.10

¢ Checkpoint
What does a widget's pack method do?

If you create two Label widgets and call their pack methods with no
arguments, how will the Zabel widgets be arranged inside their parent widget?

What argument would you pass to a widget's pack method to gpecify that it
should be positioned as far left as possible inside the parent widget?

Organizing Widgets with Frames

L- CONCEPT: A Frameisacontainer that can hold other widgets. You can use Frames

to organize the widgetsin a window.

427

428 Chapter 12 GUI Programming

A Frame is a container. It is a widget that can hold other widgets. Frames are useful for
organizing and arranging groups of widgetsin awindow. For example, you can place a set
of widgetsin one Frame and arrange them in a particular way, then place a set of widgets
in another Frame and arrange them in a different way. Program 12-6 demonstrates this.
When the program runs it displays the window shown in Figure 12-8.

Program 12:6 (frame_demo.py)
This programcreates |labels in tw different franes.
i mport Tkinter

cl ass MyGUI:
def __init--(self):
Create the mai n wi ndow wi dget .
sel f-mai n- wi ndow = Tkinter.Tk()

Create two frames, one for the top of the

wi ndow, and one for the bottom

sel f-top-frame = Tkinter.Frame(self.main_window)
self.bottom frame = Tkinter.Frame(self.main_window)

Create three Label widgets for the

top frame.

self.labell = Tkinter.Label(self.top frame, \
text='Winken')

self.label2 = Tkinter.Label(self.top frame, \
text='Blinken’)

self.label3 = Tkinter.Label(self.top_ frame, \
text="Nod')

Pack the labels that are in the top frane.
Use the side='top' argument to stack them
one on top of the other.
self.labell.pack{side="top")
self.label2.pack(side="top")
self.label3.pack(side="'top')

Create three Label widgets .for the

bottom frarme.

self.label4 = Tkinter.Label(self.top frame, \
text='Winken')

self.label5 = Tkinter.Label(self.top_ frame, \
text='Blinken"')

self.label6 = Tkinter.Label(self.top_frame, \
text='Nod"')

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

12.4 Organizing Widgets with Frames

Pack the labels that are in the bottom frane.
Use the side='left' argument to arrange them
horizontally fromthe left of the frane.
self.labeld.pack(side="'left"')
self.label5.pack(side="'left")
self.label6.pack(side="left")

Yes, we have to pack the frames tool!
self.top frame.pack()
self.bottom frame.pack()

Enter the Tkinter main |oop.
Tkinter.mainloop()

Create an instance of the MyGUI class.
ny gui = MyGUI()

Figure 72-2 window displayed by Program 12-6

Take acloser loolc at lines 12 and 13:

self-top- frame = Tkinter.Frame(self.main window)
self.bottom_frame = Tkinter.Frame(self.main window)

These, lines create two Frame objects. The sel f. main wi ndow argument that
appears inside the parentheses cause the Fr ames to be added to the mai n_wi ndow
widget.

Lines 17 through 22 create three Label widgets. Notice that these widgets are added to
the sel f. t op—f r ame widget. Then, lines 27 through 29 call each of the Label widgets
pack method, passing si de='top' as an argument. As shown in Figure 12-6, this
causes the three widgetsto be stacked one on top o the other inside the Fr ane.

Lines 23 through 28 create three more Label widgets. These Label widgetsare added to
thesel f. bottom- fr ame widget. Then, lines43 through 45 cdl each of theLabel widgets
pack method, passingsi de='l eft' asan argument. As shown in Figure 12-9, this causes
the three widgetsto appear horizontally inside the Fr ane.

Lines 48 and 49 call the Fr ame widgets pack method, which makes the Fr ame widgets
visible. Line 52 executesthe Tki nt er module's mainloop function.

429

430 Chapter 12 GU! Programming

= 12-2 Arrangement of widgets

labelt
label2 top—frame
label3

bottom-frame

— CONCEPT: You usethe But t on widget to create a standard button in a window.
When the user clicks a button, a specified function or method is called.

Aninfo dialog box is a smple window that displays a messageto the
user and has an OK button that dismissesthe dialog box. You can use
the tkMessageBox module's showinfo function to display an info
dialog box.

A Button is awidget that the user can click to cause an action to take place. When you
create a Button widget you can specify the text that is to appear on the face of the but-
ton, and the name of a callback function. A callback function is a function or method that
executes when the user clicks the button.

To demonstrate, we will look at Program 12-7. This program displays the window shown
in Figure 12-10. When the user clicks the button, the program displays a separate info
dialog box, shown in Figure 12-11. We use a function named showinfo, which isin the
tkMessageBox module, to display the info dialog box. (To use the showinfo function
you will need to import the tkMessageBox module.) This is the general format o the
showinfo function cal:

tkMessageBox.showinfo(title, nessage)

In the general format, ti tl eisa string that is displayed in the dialog box's title bar, and
message is an informational string that is displayed in the main part of the dialog box.

1 # This program denonstrates a Button wi dget.
2 # Wen the user clicks the Button, an
3 # info dialog box is displayed.

12.5 But t on Widgets and info Didlog Boxes 431

i mport Tkinter
i mport tkMessageBox

class MQAJ:
def __init__(self):
Create the mai n wi ndow wi dget .
self.main_window = Tkinter.Tk()

Create a Button widget. The text 'Cdick M! '

shoul d appear on the face of the Button. The

do- somet hi ng nmet hod shoul d be executed when

the user clicks the Button.

self.my button = Tkinter.Button(self.main window, \
text='Click M!', command=self.do_something)

Pack the Button.

21 self.my button.pack()

22

23 # Enter the Tkinter main | oop.

24 Tkinter.mainloop()

25

26 # The do- sonething method is a call back function
27 # for the Button w dget.

28

29 def do something(self):

30 # Display an info dial og box.

31 tkMessageBox.showinfo('Response’, \

32 " Thanks for clicking the button.')

33
34 # Oeate an instance of the M/GQJ cl ass.
3% ny-gui = MyGUI()

Figure 12-10 The main window displayed by Program 12-7

2-11 The info dialog box displayed by Program 12-7 ®

432

Chapter 12 GUI Programming

Line 5 imports the Tkinter module and line 6 imports the tkMessageBox module.
Line 11 creates the root widget and assignsit to the mai n—window variable.

The statement in lines 17 through 18 creates the Button widget. The first argument inside
the parentheses is self.main _window, which is the parent widget. Thetext='Click
Me! ' argument specifiesthat the string 'Click Me!' should appear on the face of the but-
ton. The command="'self.do_something' argument specifiesthe classs do_something
method as the callback function. When the user clicks the button, the do_something
method will execute.

Thedo_something method appears in lines 29 through 32. The method simply callsthe
tkMessageBox.showinfo function to display the info box shown in Figure 12-11. To
dismiss the dialog box the user can click the OK button.

GUI programs usually have a Quit button (or an Exit button) that closesthe program when
the user clicksit. To create a Quit button in a Python program you smply create a Button
widget that calls the root widget's quit method as a callback function. Program 12-8
demonstrates how to do this. It is a modified version of Program 12-7, with a second
Button widget added as shown in Figure12-12.

This program has a Quit button that calls
the Tk class's quit method when clicked.

i mport TKinter
i nport tkMessageBox

cl ass MyGUI:
def __init--(self):
Create the main wi ndow wi dget.
sel f-mai n- wi ndow = Tkinter.Tk()

Create a Button widget. The text 'Click M!'

shoul d appear on the face of the Button. The

do- somet hing method shoul d be executed when

the user clicks the Button.

self.my button = Tkinter.Button(self.main window, \
text="Click M!', command=self.do something)

12.6 Getting Input with the Ent ry Widget 433

19 # Ceate a Quit button. Wen this button is clicked

20 # the root widget's quit nethod is called.

21 # (The nai n- wi ndow vari abl e references the root wi dget,
22 # so the callback function is self.main window.quit.)

23 sel f-quit- button = Tkinter.Button(self.main window, \

24 text='Quit’, command=self.main window.quit)
25

26 # Pack the Buttons.

Enter the Tkinter nain |oop.
Tkinter.mainloop()

The do- something nmethod is a call back function
for the Button widget.

def do_ something(self):
Display an info dial og box.

38 tkMessageBox.showinfo('Response’, \
39 " Thanks for clicking the button.")
45

41 # Oeate an instance of the MyGUI cl ass.

Figure 12-12 The info dialog box displayed by Program 12-7

The statement in lines 23 through 24 creates the Quit button. Notice that the
self .main_w ndow. quit method is used as the callback function. When the user clicks
the button, this method is called and the program ends.

Getting Input with the Entry Wid

=
@

L CONCEPT: An Entry widget is a rectangular area that the user can typeinput into.
You use the Entry widget's get method to retrieve the data that has been
typed into the widget.

An Ent ry widget is a rectangular area that the user can type text into. Entry widgets are
used to gather input in a GUI program. Typicaly, a program will have one or more Entry

434

Chapter 12 GUI Programming

Figure

Figure

widgetsin a window, along with a button that the user clicks to submit the data that he or
she has typed into the Entry widgets. The button's callback function retrieves data from
the window's Entry widgets and processesit.

You use an Entry widget's get method to retrieve the data that the user has typed into
the widget. The get method returns a string, so it will have to be converted to the appro-
priate data typeif the Entry widget is used for numeric input.

To demonstrate we will ook at a program that allows the user to enter a distance in kilo-
meters into an Entry widget, and then click a button to see that distance converted to
miles. The formula for converting kilometersto milesis

Miles = Kilometers x 0.6214

Figure 12-13 shows the window that the program displays. To arrange the widgetsin the
positionsshown in the figure, we will organize them in two frames, as shown in Figure 12-14.
Thelabel that displaysthe prompt and the Entry widget will be stored in the top— frame,
and their pack methods will be called with the side='1eft' argument. This will cause
them to appear horizontally in the frame. The Convert button and the Quit button will be
stored in the bottom_frame, and their pack methods will aso be caled with the
side='left' argument.

Program 12-9 shows the code for the program. Figure 12-15 shows what happens when the
user enters 1000 into the Entry widget and then clicks the Convert button.

12-13 The kilo_converter program's window

12-14 The window organized with frames

D 01 &» w N -

This program converts distances in kiloneters
to mles. The result is displayed in an info
dial og box.

i nport Tkinter
i nport tkMessageBox

12.6 Getting Input with the Ent ry Widget 435

cl ass KiloConverterGUI:
def — init— (self):

Oreate the mai n w ndow.
sel f-mai n- Wi ndow = Tkinter.Tk()

Create two franes to group w dgets.
self.top frame = Tkinter.Frame(self.main_window)
self.bottom frame = Tkinter.Frame(self.main_window)

Create the widgets for the top frane.
sel f-pronpt - | abel = Tkinter.Label(self.top frame, \
text='Enter a distance in kilonmeters:")
self.kilo _entry = Tkinter.Entry(self.top_ frame, \
width=10)

Pack the top franme's w dgets.
self.prompt_label.pack(side="left')
self.kilo_entry.pack(side='left")

Create the button wi dgets for the bottom frame.
self.calc_button = Tkinter,Button(self.bottom_ frame, \
text='Convert', \
command=self.convert)
self.quit button = Tkinter.Button(self.bottom_ frame, \
text="Quit', \
command=self.main window.quit)
Pack the buttons.
self.calc_button.pack(side='left’')
self.quit button.pack(side='left')

Pack the frames.
self.top_frame.pack()
self.bottom frame.pack()

Enter the Tkinter nmain |oop.
Tkinter.mainloop()

The convert nethod is a callback function for
the Cal cul ate button.

def convert(self):
Get the value entered by the user into the
kilo-entry w dget.
kilo = float(self,.kilo_entry.get())

(program continues)

436 Chapter 12 GUI Programming

(continued)

54 # Convert kiloneters to mles.
mles = kilo * 0.6214

Display the results in an info dial og box.
tkMessageBox.showinfo('Results', \
str(kilo) + ' kiloneters is equal to ' + \

str(mles) + ' nles.)

62 # Create an instance of the KiloConverterGUI cl ass.

Figure 12-15 The info dialog box

The user enters 1000 into
@ the Entry widget and clicks
the Convert button.

This info dialog box
is displayed.

FErtsr a distance n | lemeters f1o0”

Theconvert method, shown in lines 49 through 60 is the Convert button's callback func-
tion. The statement in line 52 callsthe kilo entry widget's get method to retrieve the
data that has been typed into the widget. The value is converted to a £loat and then
assigned to the kilo variable. The calculation in line 55 performs the conversion and
assigns the results to the miles variable. Then, the statement in lines 58 through 60 dis-
playsthe info dialog box with a message that gives the converted value.

Using babels as Qutput Fields

L CONCEPT: When astringVar object is associated with aLabel widget, the
Label widget displays any datathat is stored in the StringVar object.

Previously you saw how to use an info dialog box to display output. If you don't want to
display a separate dialog box for your program's output, you can use Label widgetsin the
program's main window to dynamically display output. You simply create empty Label
widgets in your main window, and then write code that displays the desired data in those
labels when a button is clicked.

The Tkinter module provides a class named StringVar that can be used along with a
Label widget to display data. First you create a StringVvar object. Then, you create a

12.7 Using Labels as Output Fields 437

Label widget and associate it with the Stringvar aobject. From that point on, any value
that is then stored in the stringvar object will automatically be displayed in the Label
widget.

Program 12-10 demonstrates how to do this. It is a modified version of the ki | o_
converter program that you saw in Program 12-9. Instead of popping up an info
dialog box, this version of the program displays the number of milesin a label in the
main window.

Program 12-10 (kilo_converter2.py)

This programconverts di stances in kilometers
to mles. The result is displayed in a | abel
on the main w ndow.

i mport Tkinter

cl ass KiloConverterGUI:
def init (self):

Oreate the nmai n w ndow.
self.main window = Tkinter.Tk()

Greate three franes to group w dgets.
self.top_frame = Tkinter.Frame()
self.mid frame = Tkinter.Frame()
self.bottom frame = Tkinter.Frame()

Create the widgets for the top frarme.
self.prompt label = Tkinter.Label(self.top frame, \
text='"Enter a distance in kilometers:")
self.kilo entry = Tkinter.Entry(self.top frame, \
width=10)

Pack the top frame's wi dgets.
self.prompt_label.pack(side='left")
self.kilo_entry.pack(side='left"')

Create the widgets for the mddle frane.
self.descr label = Tkinter.Label(self.mid frame, \
text='Converted to mile%:"')

W need a StringVar object to associate with
an output |abel. Use the object's set nethod
to store a string of blank characters.
self.value = Tkinter.StringVar()

(program continues)

438

Chapter 12 GU! Progr amm ng

Program 12-10 (continued)

Oeate a | abel and associate it with the

StringVar object. Any value stored in the

StringVar object will automatically be displayed

in the |abel.

self.miles label = Tkinter.Label(self.mid_frame, \
textvariable=self.value)

Pack the mddle frane's w dgets.
self.descr_ label.pack(side='left"')
self.miles label.pack(side='left')

Oreate the button widgets for the bottom frane.
self.calc_button = Tkinter.Button(self.bottom frame, \
text='Convert', \
command=self.convert)
self.quit button = Tkinter.Button(self.bottom frame, \
text="Quit', \
command=self.main window.quit)

Pack the buttons.
self.calc_button.pack(side='left')
self.quit_button.pack(side='left')

Pack the franes.
self.top frame.pack()
self.mid frame.pack()
self.bottom frame.pack()

Enter the Tkinter main | oop.
Tkinter.mainloop()

The convert nethod is a call back function for
the Cal cul ate button.

def convert(self):

Get the value entered by the user into the
kilo-entry w dget.
kilo = float(self.kilo entry.get())

Convert kiloneters to mles.
mles = kilo * 0.6214

Convert niles to a string and store it
in the StringVar object. This will automatically
update the mles-Iabel w dget.

84

Figure

12.7 Usng Labels as Output Fields
self.value.set(miles)

Create an instance of the KiloConverterGUI cl ass.

When this program runsit displaysthe window shown in Figure12-16. Figure 12-17 shows
what happens when the user enters 1000 for the kilometers and clicks the Convert button.
The number of milesis displayedin alabel in the main window.

12-16 The window initially displayed

Figure

[Enter a diztance in kilometssz: |]

12-17 The window showing 1000 kilometers converted to miles

i Erter 3 diztance i kilometer:: {1000

Let's look at the code. Lines 14 through 16 create three frames: top frame, mid_frame,
and bottom_frame. Lines 19 through 26 create the widgets for the top frame and calls
their pack method.

Lines 29 through 30 create the Label widget with the text *Converted to miles: '
that you see on the main window in Figure 12-16. Then, line 35 creates a Stringvar
object and assigns it to the value variable. Line 41 creates a Label widget named
miles_label that we will use to display the number of miles. Notice that in line 42
we use the argument textvariable=self.value. This creates an association
between the L.abel widget and the stringVar object that is referenced by the value
variable. Any value that we store in the sStringVar object will be displayed in the
label.

Lines45 and 46 pack the two Label widgetsthat areinthemid_frame, Lines 49 through
58 create the Button widgets and pack them. Lines 61 through 63 pack the Frame
objects. Figure 12-18 shows how the various widgets in this window are organized in the
three frames.

Theconvert method, shown in lines 71 through 82 is the Convert button's callback func-
tion. The statement in line 74 callsthe kilo entry widget's get method to retrieve the
data that has been typed into the widget. The value is converted to a £loat and then
assigned to the kilo variable. The calculation in line 77 performs the conversion and

439

440 Chapter 12 GUI Programming

assigns the results to the m | es variable. Then the statement in line 82 calls the
StringVar object's set method, passingmi | es as an argument. This stores the value ref-
erenced by m | es in the stringvar object, and also causes it to be displayed in the
m | es_I| abel widget.

Figure12-18 Layout of the ki | o_convert er 2 program's mai n window

top—frame
mid_frame miles_label

invisible
bottom-frame ()

hat cause

Checkpoint

12.11 How do you retrieve data from an Entry widget?

12.12 When you retrieve a valuefrom an Entry widget, of what data typeisit?
12.13 What module isthe stringVvar classin?

12.14 What can you accomplish by associating a stringvar object with a L abel
widget?

Radio Buttons and Check Butions

L CONCEPT: Radio buttons normally appear in groups of two or more and allow the
user to select one of several possible options. Check buttons, which may
appear alone or in groups, allow the user to make yes/no or on/off
selections.

Radio buttons are useful when you want the user to select one choicefrom severa possible
options. Figure 12-22 shows a group of radio buttons. A radio button may be selected or
deselected. Each radio button has a small circle that appears filled in when the radio but-
ton is selected and appears empty when the radio button is deselected.

e 12-22 A group of radio buttons

You use the Tkinter module's Radiobutton class to create Radiobutton widgets.
Only one o the Radiobutton widgetsin acontainer, such as aframe, may be selected at

12. 8 Radi 0 Butt ons Check Buttons

any time. Clicking a Radiobutton sdects it and automatically deselects any other
Radiobutton in the same container. Because only one Radiobutton in a container can
be selected at any given time, they are said to be mutually exclusive.

NOTE: The name "radio button" refers to the old car radios that had push buttons
for selecting stations. Only one o the buttons could be pushed in at a time. When
you pushed a button in, it automatically popped out any other button that was
pushed in.

The Tkinter module provides a class named Intvar that can be used along with
Radiobutton widgets. When you create a group of Radiobuttons, you associate them all
with the same IntVar object. You also assign a unique integer value to each Radiobutton
widget. When one o the Radiobutton widgetsis selected, it stores its unique integer value
in the Intvar object.

Program 12-12 demonstrates how to create and use Radiobuttons. Figure12-23. shows
the window that the program displays. When the user clicks the OK button an info dialog
box appears indicating which of the Radiobuttons is selected.

This program denonstrates a group of Radi obutton widgets.

i mport Tkinter
i mport tkMessageBox

cl ass MyGUI:
def __init--(self):
Create the mai n w ndow.
self.main window = Tkinter.Tk()

Create two frames. One for the Radiobuttons

and another for the regular Button w dgets.
self.top_frame = Tkinter.Frame(self.main window)
sel f. bottom frame = Tki nter.Frane(sel f .main_window)

Oeate an Intvar object to use with
the Radi obuttons.
self.radio_var = Tkinter.IntVar()

Set the intvar object to 1
(program continues)

446 Chapter 12 GUI Programming

Program 12-12 (continued)

reate the Radi obutton wi dgets in the top-frane.

self.rbl = Tkinter.Radiobutton(self.top_ frame, \
text='Option 1', variable=self.radio var, \
value=1)

self.rb2 = Tkinter.Radiobutton(self.top frame, \
text='0Option 2', variable=self.radio_var, \
value=2)

self.rb3 = Tkinter.Radiobutton(self.top frame, \
text='Option 3', variable=self.radio var, \
value=3)

Pack the Radi obuttons.
self.rbl.pack()
self.rb2.pack()
self.rb3.pack()

Oeate an K button and a Quit button.

self.ok button = Tkinter.Button(self.bottom_ frame, \
text='0K', command=self.show_choice)

self-quit-button = Tkinter.Button(self.bottom frame, \
text='Quit"', command=self.main_window.quit)

Pack the Buttons.
self.ok button.pack(side='left')
self.quit_button.pack(side='left')

Pack the frames.
self.top frame.pack()
self.bottom frame.pack()

Start the mainl oop.
Tkinter.mainloop()

The show- choice nethod is the call back function for the
K button.

def show choice(self):
tkMessageBox.showinfo(‘Selection', 'You sel ected option * +\

str(self.radio var.get()))

63 # Create an instance of the MyGUI cl ass.

12.8 Radio Buttons Check Buttons 447

ow displayed by Program 12-12

Line 18 creates an IntVar object named radio var. Line 21 cdls the radio var
object's set method to store the integer value 1 in the object. (Youwill see the significance
of thisin a moment.)

Lines 24, 25, and 26 create the first Radiobutton widget. The argument variable
=self.radio var (in line 25) associates the Radiobutton with the radio var
object. The argument value=1 (inline 26) assignsthe integer 1 to thisRadiobutton. As
a result, any time this Radiobutton is selected, the value 1 will be stored in the
radio_var object.

Lines 27, 28, and 29 create the second Radiobutton widget. Notice that this
Radiobutton is also associated with the radio_var object. The argument value=2 (in
line 29) assigns the integer 2 to this Radiobutton. As a result, any time this
Radiobutton isselected, the value 2 will be stored in the radio_var object.

Lines 30, 31, and 32 create the third Radiobutton widget. This Radiobutton is aso
associated with the radio_var object. The argument value=3 (inline 32) assigns the
integer 3 to this Radiobutton. As aresult, any time this Radiobutton is selected, the
value 3 will be stored inthe radio var object.

The show_choice method in lines 59 through 61 is the callback function for the OK but-
ton. When the method executesit callsthe radio var object's get method to retrievethe
value stored in the object. The value is displayed in an info dialog box.

Did you notice that when the program runs the first Radiobutton isinitially selected?
This is because we set the radio var object to the value 1 in line 21. Not only can the
radio_var object be used to determine which Radiobutton was selected, but it can
also be used to select a specific Radiobutton. When we store a particular
Radiobutton’s value in the radio var object, that Radiobutton will become
selected.

Program 12-12 waits for the user to click the OK button before it determines which
Radiobutton was selected. If you prefer, you can aso specify a callback function with
Radiobutton widgets. Here is an example:

448

Chapter 12 GUI Programming

Figure

This code uses the argument command=self.my method to specify that my method is
the callback function. The method nmy_method will be executed immediately when the
Radiobutton is selected.

Check Buttons

A check button appears as a small box with a label appearing next to it. The window
shown in Figure 12-24 has three check buttons.

12-24 A group of check buttons

Like radio buttons, check buttons may be selected or deselected. When a check button is
selected, a small check mark appears inside its box. Although check buttons are often dis-
played in groups, they are not used to make mutually exclusive selections. Instead, the user
is allowed to select any or al of the check buttons that are displayed in a group.

You use the Tkinter module's Checkbutton classto create Checkbutton widgets. As
with Radiobuttons, you can use an Intvar object along with a Checkbutton widget.
Unlike Radiobuttons, however, you associate a different Intvar object with each
Checkbutton. When a Checkbutton is selected, its associated 1ntvar object will hold
the value 1. When a Checkbutton is selected, its associated Intvar object will hold the
value 0.

Program 12-13 demonstrates how to create and use Checkbuttons. Figure 12-25 shows
the window that the program displays. When the user clicks the OK button an info dialog
box appears indicating which of the Checkbuttons is selected.

Program 12-13 (checkbutton_demo.py)

This program denonstrates a group of Checkbutton wi dgets.

i nport Tkinter
i nport tkMessageBox

cl ass MyGUI:

def __init- - (self):
Create the main w ndow.

Create two frames. One for the checkbuttons

12.8 Radio Buttons Check Buttons

and another for the regular Button wi dgets.
sel f-top-frame = Tkinter.Frame(self.main window)
self.bottom frame = Tkinter,Frame(self.main_window)

Create three Intvar objects to use with
the Checkbuttons.

self.cb varl = Tkinter.IntVar()
self.cb_var2 = Tkinter.IntVar()

self.cb var3 = Tkinter.IntVar()

Set the intvar objects to 0.
self.cb _varl.set(0)
self.cb var2.set(0)
self.cb var3.set(0)

Create the Checkbutton wi dgets in the top-framne.
self.cbl = Tkinter.Checkbutton(self.top frame, \
text='Option 1', variable=self.cb varl)
self.cb2 = Tkinter.Checkbutton(self.top frame, \
text='Option 2', variable=self.cb var2)
self.cb3 = Tkinter.Checkbutton(self.top frame, \
text='0Option 3', variable=self.cb var3)

Pack the Checkbuttons.
self.cbl.pack()
self.cb2.pack()
self.cb3.pack()

Oeate an K button and a Quit button.

self.ok button = Tkinter.Button(self,bottom frame, \
text='0K', command=self.show_choice)

self.quit button = Tkinter.Button(self.bottom_ frame, \
text='Quit', command=self.main_window.quit)

Pack the Buttons.
self.ok_button.pack(side='left"')
self.quit button.pack(side='left')

Pack the frames.
self.top_frame.pack()
self.bottom frame.pack()

Start the nainl oop.
Tkinter.mainloop()

The show- choice nethod is the call back function for the

(program continues)

450 Chapter 12 GUI! Programming

Program 12-13 (continued)

58 # OK button.

59

60 def show choice(self):
Oreate a nessage string.
self.message = ' YOU selected:\n'

Determ ne whi ch Checkbuttons are sel ected and
build the message string accordingly.

if self.cb varl.get() == L
self.message = self.message + '1\n’
if self.cb var2.get () == L
sel f-nessage = self.message + '2\n’'
if self.cb var3.get () == L

sel f-message = self.message *+ '3\n’

D splay the nessage in an info dial og box.
tkMessageBox.showinfo('Selection', self.message)

76 # Create an instance of the MyGUI cl ass.

‘e 12-25 Window displayed by Program 12-13

Checkpoint

12.15 You want the user to be able to select only one item from a group o items.
Which type of component would you use for the items, radio buttons or check
boxes?

12.16 You want the user to be able to sdect any number o itemsfrom a group of
items. Which type of component would you use for the items, radio buttons or
check boxes?

12.17 How can you use an IntVar object to determine which Radiobutton has been
selected in a group of Radiobuttons?

12.18 How can you use an IntVar object to determine whether a Checkbutton has
been selected?

Before you can run Python programs on your computer you will need to install the Python
interpreter. A version of Python for Windows isincluded on the Student CD that accompa-
nies this book. If you can't locate the Student CD, you can download the latest version of
the Python Windows installer from www . python.org/download. The website also pro-
vides downloadable versions of Python for several other operating systems.

When you execute the Python Windows installer, it's best to accept all of the default set-
tings by clicking the Next button on each screen. (Answer "Yes' if you are prompted
with any Yes/No questions.) As you perform the installation, take note of the directory
where Python is being installed. It will be something similar to C: \Python25. (The25
in the path name represents the Python version. At the time of this writing Python 2.5
is the most recent version.) You will need to remember this location after finishing the
installation.

When the installer isfinished, the Python interpreter, the IDLE programming environment,
and the Python documentation will be installed on your system. When you click the Start
button and look at your All Programs list you should see a program group named some-
thing like Python 2.5. The program group will contain the following items:

« JDLE (Python GUI)—When you click this item the IDLE programming environment
will execute. IDLE is an integrated development environment that you can use to cre-
ate, edit, and execute Python programs. See Appendix B for a brief introduction to
IDLE.

« Module Docs—This item launches a utility program that alows y$ou to browse doc-
umentation for the modules in the Python standard library.

e Python Command Line—Clicking this item launches the Python interpreter in inter-
active mode.

« Python Manuals—This item opens the Python Manuals in your web browser. The
manuals include tutorials, a reference section for the Python standard library, an in-
depth referencefor the Python language, and information on many advanced topics.
Uninstall Python—This item removes Python from your system.

458 AppendixA Ingdling Python

If you plan to execute the Python interpreter from a command prompt window, you will
probably want to add the Python directory to the existing contents of your system's Path
variable. (Yousaw the name of the Python directory whileinstalling Python. It is something
similar to c: \Python25.) Doing this will allow your system to find the Python interpreter
from any directory when you run it at the command-line.

Use the following instructionsto edit the Path variable under Windows XP and Windows
Vida

Windows XP

e Open the Control Panel.

» Double-click the System icon. (If you are running Windows XP in Category View,
click Performance and Maintenance in the Control Panel, and then click the System
icon.)

¢ Click the Advanced tab.

o Click the Environment Variables button. In the System Variables list, scroll to the
Path variable.

» Sdect the Path variable and click the Edit button. Add a semicolon to the end of the
existing contents, and then add the Python directory path.

¢ Click the OK button.

Windows Vista

e Open the Control Pandl.

¢ Sdect System and Maintenance.

e Sdect System.

e Sdect Advanced System Settings.

o Click the Environment Variables button.
In the System Variables list, scroll to the Path variable.

¢ Sdect the Path variable and click the Edit button. Add a semicolon to the end of the
existing contents, and then add the Python directory path.

« Click the OK button.

IDLE is an integrated development environment that combines several development tools
into one program, including the following:

¢ A Python shell running in interactive mode. You can type Python statements at
the shdl prompt and immediately execute them. You can also run complete Python
programs.

e A text editor that color codes Python keywords and other parts of programs.

° A “check module” tool that checks a Python program for syntax errors without run-
ning the program.

e Search tools that allow you to find text in one or more files.

e Text formatting tools that help you maintain consistent indentation levelsin a Python
program.

= A debugger that allows you to single-step through a Python program and watch the
values of variables change as each statement executes.

e Severa other advanced tools for developers.

The IDLE software is bundled with Python. When you install the Python interpreter,
IDLE is automatically installed as well. This appendix provides a quick introduction to
IDLE, and describes the basic steps of creating, saving, and executing a Python
program.

After Python is installed on your system a Python program group will appear in your
Start menu's program list. One of the items in the program group will be titled IDLE
(Python GUI). Click this item to start IDLE and you will see the Python Shell window
shown in Figure B-1. Inside this window the Python interpreter isrunning in interactive
mode, and at the top of the window is a menu bar that provides access to al of IDLE’s
tools.

460 Appendix B Introductionto IDLE

shell window

{Intel}] an win32
Tvps Tocopvright®, "credits™ or "license{}" £on mors information.

R R RO R R e R e W W W e R W R R W e R S e R W RO W W W T TR WOROR R TR W R W R W ROR W R W R R R RO R R
Personal firewall software may warn zkbout the conpectian IDLE
makes to its subprocess using thisz computer's internal loopback
interface. This connpection 13 not visikle on any external
interface and no data z= sent to or received from the Internet.

IDLE 1.2.1

The >>> prompt indicates that the interpreter iswaiting for you to type a Python statement.
When you type a statement at the >>> prompt and press the Enter key, the statement is
immediately executed. For example, Figure B-2 shows the Python Shell window after three
statements have been entered and executed.

3-Z Statements executed by the Python interpreter

[Intel)] ON wWiniZ

Type "copyright', "oredits" or "licenss{}" for more anformation.

Parsonal firewall software mag warn zbwout the connection IDLE
mekes to its subprocess using this computer's internal loopbhack
interface. This connection is Not visibklie on any external
interface and no date i2 =ent to Or received from the Internet.

IDLE 1.2.1

>>> pame = Bl s
>>> favorite food = TheTh:
>>> mraint *%; , mame, ‘oo | like’, favorite food]
as Rebecca and I 1ike spaghetti.

Writing a Python Program in the IDLE Editor 461

When you type the beginning of a multiline statement, such as an i f statement or a
loop, each subsequent line is automatically indented. Pressing the Enter key on an empty
line indicates the end of the multiline statement and causes the interpreter to execute it.

Figure B-3 shows the Python Shell window after a for loop has been entered and
executed.

A multiline statement executed by the Python interpreter

f File

yrhon 2.5.% [(z251:548
=1} on W n32
Ve

Edit Shell Debug Opliors Windows Help

- B e i T 3 Ers
"copyright™, "credits® or "1

icense (1" for NOre information.

e R R e Y R R R RROROR R RO R R R R R W R W R W OROR R R W R R R R R R R R R W R R e R R R R R R R R

Persconal firewall software mav Warn about the connection InLE
makes ta itsS subprocess wsing this computer’'s internal loopback
interface. This connection IS NOt wisikle on any sxternal

interface and no data i= ==zt to or received from the Internet.

To write a new Python program in IDLE you open a new editing window. As shown in
Figure B-4 you click File on the menu bar, then click New Window. (Alternatively you can
press Cerl+N.) This opens a text editing window like the one shown in Figure B-5.

B

462

Appendix B Introduction to IDLE

= B-42 The File menu

Path Browser pess using this computer's internal loopback
TUmnection 13 not visible on any external
Save Crl4s ta is sent to or received from the Internet.

Save As... Cirl+5hift+5 AR AR AR AR R R R AR R AR R AR AR R R R R R R R R R R

A text editing window

To open a program that aready exists, click File on the menu bar, then Open. Simply
browse to the file's location and select it, and it will be opened in an editor window.

Automatic Indentation 463

Code that 1s typed into the editor window, as well as in the Python Shell window, 1s col-
orized as follows:

Python Iceywords are displayed in orange.
Comments are displayed in red.

String literals are displayed in green.

Defined names, such as the names of functions and classes, are displayed in blue.
Built-in functions are displayed in purple.

Figure B-6 shows an example of the editing window containing colorized Python code.

7-6 Colorized code in the editing window

£ C=t a password from the user.
password = raw input

raw-—input {*Entey tne DasSSWODC

whether the corrsct password

cerad.
password ==
-] %
s WO Dasswors
= Call the nain function.

you can specify colors for each element o a Python program.

The IDLE editor has features that help you to maintain consistent indentation in your
Python programs. Perhaps the most helpful of these features is automatic indentation.
When you type a line that ends with acolon, such asan i f clause, thefirst line of aloop,
or afunction header, and then pressthe Enter key, the editor automatically indents the lines

464

Appendix B Introduction to IDLE

that are entered next. For example, suppose you are typing the code shown in Figure B-7.
After you pressthe Enter key at the end of the line marked (D, the editor will automatically
indent the linesthat you type next. Then, after you pressthe Enter key at the end of the line
marked (2), the editor indents again. Pressing the Backspace key at the beginning o an
indented line cancels one level of indentation.

e B-7 Lines that cause automatic indentation

Saving a Pro

=2 L £ Print a message five times.
for ®» o range (5):

% Call the main function.

By default, IDLE indents four spacesfor each leve of indentation. It is possibleto change
the number of spaces by clicking Options on the menu bar, then clicking Configure IDLE.
Make sure Fonts/Tabs is selected at the top of the dialog box, and you will see adlider bar
that allows you to change the number of spaces used for indentation width. However,
because four spacesis the standard width for indentation in Python, it is recommended that
you keep this setting.

In the editor window you can save the current program by performing any o these opera
tions from the File menu:

s Save
e SaveAs
e Save Copy As

The Save and Save As operations work just as they do in any Windows application. The
Save Copy As operation works like Save As, but it leaves the original program in the edi-
tor window.

Running a Program 465

Once you have typed a program into the editor, you can run it by pressing the F5 key, or
as shown in Figure B-8, by clicking Run on the editor window's menu bar, then Run
Module. If the program has not been saved since the last modification was made, you will
see the dialog box shown in Figure B-9. Click OK to save the program. When the pro-
gram runs you will see its output displayed in IDLE’s Python Shell window, as shown in
Figure B-10.

Figure B-8 The editor window's Run menu

Figure B-2 Save confirmation dialog box

466

Appendix B Introduction to IDLE

QCutput displayad in the Python Shell

Eython 2.5.1 (z25%
o windd
Typs "copyvright”, "credits' or "iicense{)})™ for nore information.

Personal firewail software mawv warn about the connectron IDLE
makes to itas subprocess wsina thas computer’s internal loopback
anterface. This comnection 13 not wisible on any external
anterface and no data as sent to or rxeceived fromthe Internet.

IDLE 1.2.1
.- S —
>>>
Heila world'
Bello world!
Program Hello worl d'
Hello worl d'
Heilo world'
>>> |

If a program contains a syntax error, when you run the program you will see the dialog box
shown in Figure B-11. After you click the OK button the editor will highlight the location
of the error in the code. If you want to check the syntax of a program without trying to run
it, you can click Run on the menu bar, then Check Module. Any syntax errors that are
found will be reported.

®-17 Dialog box reporting a syntax error

This appendix has provided an overview for using IDLE to create, save, and execute pro-
grams. IDLE provides many more advanced features. To read about additional capabilities,
see the official IDLE documentation at www.python.org/idle.

Code

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

The following table liststhe ASCIl (American Standard Code for Information Interchange)
character set, which is the same as the first 127 Unicode character codes. This group of
character codes is known as the Latin Subset of Unicode. The code columns show charac-
ter codes and the character columns show the corresponding characters. For example, the
code 65 represents the letter A. Note that the first 31 codes, and code 127, represent con-
trol charactersthat are not printable.

Character Code Character Code Character Code Character Code Character

Backspace 34

Line Feed 36 $ 62 > 88 X 114 r
VTab 37 % 63 ? 89 Y 115 S
Form Feed 38 & 64 @ 90 4 116 t
CR 39 65 A 91 [117 u
SO 40 (66 B 92 \ 118 \%
Sl 41) 67 C 93] 119 w
DLE 42 * 68 D 94 . 120 X
DC1 43 + 69 E 95 — 121 Y
DC2 44 70 F 96 122 z
DC3 45 - 71 G 97 a 123 o
D4 46 72 H 98 b 124 |
NAK 47 / 73 | 99 c 125 }
SYN 48 0 74 J 100 d 126 ~
ETB 49 1 75 K 101 e 127 DEL
CAN 50 2 76 L 102 f

EM 51 3 77 M 103 g

Symbols
character, 39
% operator, 175
*= operator, 175
* operator
multiplication, 53
repetition, 292-293
+= operator, 175
+ operator
for addition, 53
for stringconcatenation, 63—-64
<= operator
defined, 116
relationship testing, 117
< operator
defined, 116
in string comparisons, 129
== operator
assignment operator
versus, 117
defined, 116
in string comparisons, 126
use example, 119
value comparison, 117
= (assignment operator), 41
-= operator, 175
/= operator, 175
1= operator
defined, 116
example use, 119
value determination, 117
/ (division operator), 53
>= operator
defined, 116
relationship testing, 117
>>> prompt, 21, 22, 460
> operator
defined, 116
example use, 117

flowchart, 118
in stringcomparisons, 128-129
/ separator, 321

A
Accessor methods, 355
Accumulators, 173, 266
acos () function, 213
Actions
class, 365
conditionally executed, 114
Ada programming language, 17
Addition (+) operator
in concatenating lists, 307
precedence, 53
Algebraic expressions
conversion example, 57-58
converting to programming
statements, 56-58
examples, 56
Algorithms
defined, 33
example, 33
recursive, 406-413
and operator
defined, 138
short-circuit evaluation, 140
truth table, 139
use example, 139
append() method
defined, 300, 301
first call, 302
program example, 301-302
Append mode, 238
Appending, data to files, 238
Application software, 7
Arguments
defined, 23
keyword, 101-103

listing order, 98-99
multiple, passing, 97-99
parameter changes and,
99-101
passed to rangefunction, 165
passing lists as, 311-312
passing to functions, 93-103
passing variables as, 95
positional, mixing with
keyword arguments, 103
as step values, 165
Arrays, 295
ASCIl (American Standard Code
for Information
Interchange) code,
11-12,127
ASCII character set, 467
asin() function, 213
Assemblers, 16
Assembly language, 15-16
Assignment operator (=)
augmented, 175-176
defined, 41
equality operator (==)
versus, 117
Assignment statements
example, 40
format, 41
global variable creation, 104
math expression, 50-51
moving, 92
variable creation with,
40-43
atan() function, 213
AttributeError exception, 392
Augmented assignment operators
defined, 175
list of, 175
using, 176

469

470 Index

Automobile class
dassesinheritingfrom, 377-378
code, 375-376
as complete class, 377
general data, 377
get— doorsmethod, 379
get— make method, 379
get_mileage method, 379
get_model method, 379
get— pricemethod, 379
——init _ method, 376,

378
set — doorsmethod, 378
subclassesinheritingfrom, 377
superclass, 375
in UML diagram, 383

Averages
calculating, 55-56
list value, 310-311

B
Badcdash (\). See Escapecharacters
BankAccount class example
get_ balance method, 347
——init__ method, 345,
347
object creation, 343
program, 345
use program, 346—-347
withdraw method, 347
Base case. See also Recursion
defined, 403
Towers of Hanoi
agorithm, 412
Base classes, 374. See also
Superclasses
BASIC, 17
Binary digits
vaues, 9-10
values, determining, 10
Binary files, 227
Binary numbering system, 9
Bits
al setto 0, 11
dl settol, 11
defined, 8
patterns, 9-10
Blocks
blank linesin, 85
defined, 80
last linein, 84
line indentations, 84-85
nested, 120-121, 134
bool data type, 144

Boolean expressions
compound, 138, 143
defined, 115-116
with logical operators, 138
with relational operators, 116
tested by i f statements, 116

Boolean functions
defined, 209
in testing conditions, 209
in validation code, 210

Boolean variables
defined, 144
example use, 145
False, 144
asflags, 145
True, 144

Buffers, 230

Button widgets, 430

Buttons
Convert, 434
Quit, 432-434
text, 430
use click, 432

Bytes
data storagein, 9
defined, 8
for large numbers, 11

C
C# programming language, 17
Calculations
averages, 55-56
data type conversion, 58-60
evaluation rules, 58-59
formula conversions, 56-58
grouping with parentheses, 54
integer division, 52-53
math expressions, 50-51
math formula conversion,
56-58
math operators, 50, 53, 56
operator precedence, 53-54
percentages, 51-52
performing, 50-62
rounding, 58
running total, 173-176
Cadlback functions
defined, 430
as event handlers, 430
with Radiobuttons,
447448
Calling functions. See also
Functions
defined, 81

examples, 83, 87-90

illustrated, 82

m loops, 160-161
CamelCase variable names, 43-44
Car class, 366

defined, 375

inheriting from Automobi 1

class, 377

in UML diagram, 383
Cat class, 390
C/C++ programmung languages, 17
CD drives, 6
CDs (compact discs), 6
ceil() function, 213
CellPhone class example

attributes, 353

creating, 353-355

mporting, 354

methods, 353

object storage in lists, 356—358

programs, 353-355

UML diagram, 359
Central processing unit (CPU)

defined, 3

as electronic device, 13

rnstruction set, 14

microprocessors, 3, 4

operations, 13

program mnstructions,

understanding, 13-14

Characters

comment, 39

escape, 62-63

line contrnuation, 61

newline, 62

storing; 11-12

string, accessing, 274-278

string, comparing, 128-129

string, extractrng, 281-283

string, validating, 289-292
Check buttons

defined, 444, 448

illustrated, 448

selection, 448
Checkbutton class, 448
Class definitions

defined, 334

headers, 336

orgamzation, 343

program example, 335
Class responsibilities

defined, 365

identifying, 364-367

problem domain and, 365

Classes. See also Inheritance;
Instances
actions, 365
Automobile, 375-381
BankAccount, 345-347
Car, 366,375, 377-378
Cat, 390
CellPhone, 353-355
Checkbutton, 448
Coin, 337-343
Customer, 365
defined, 333
definition example, 334
design techniques, 358-367
Dog, 389-390
finding, 359-364
IntVar, 445
Mammal, 388-394
methods, 336
names, 335
objects versus, 333
RadioButton, 444-448
ServiceQuote, 366-367
storing . modules,
343-345
Stringvar, 436
subclass, 374, 377, 388
superclass, 374, 388
suv, 375, 380-381
Truck, 375, 379-380
UML diagrams, 358-359
close method, 231
COBOL, 17
Code reuse
as function benefit, 79
modules in, 214
Coin class example
definition, 343
expression actions, 339
get — sideupmethod, 337,
339,352
my coin object, 339-340

program example, 337-338,

341-343

sideup attribute, 340, 341,
352

t 0ss method, 337,
341,352

UML diagram, 359

Command line interface. See also

User interfaces
defined, 419
difficulty of use, 420
illustrated, 419

Comments
character, 39
defined, 39
end-line, 39-40
writing resistance, 40
Comparisons, string
== operator in, 126
case-insensitive, 127
case-sensitive, 127, 287
character, 128-129
example, 126
greater than/less than, 127
relational operators, 128
Compilers, 19
Compound Boolean operators,
138, 143
Computers
component illustration, 3
components, 2
CPU, 3-4
data storage, 8-13
ENIAC, 3-4
function of, 1
input devices, 6
main memory, 4-5
output devices, 6
secondary storage, 5-6
useof, 1
user interfaces, 419
Concatenating lists, 307
Condition-controlled loops. See
also Loops
beginning of, 154
conditions tested by,
153, 155
defined, 152
flowchart, 153, 156
function calls, 160-161
infinite, 159
logic, 153
parts, 153
as pretest loop, 156-157
program design with,
157-159
while statement, 152-161
Conditions
series, testing, 134-136
testing with Boolean
functions, 209
Constants, global, 105-107
Control structures, 113
Convert button, 434
convert method, 436
Cookies, 226

Index

Copying
lists, 307-308
records, 257, 260
cos () function, 213
Count-controlled loops. See also
Loops
defined, 152, 161
designing, 168-170
examples, 163-164
first iteration, 162, 166
f or statemelilts, 152,
161-172
functioning, 163
iterations, 162—-163
list generation, 172-173
range function with,
164-166
target variables, 163,
166-168
user control, 170-172
uses, 161-162
Customer class, 365
Customers, programmer
interview with, 33

D
Data
appending to existing
files, 238
digital, 12
numeric, writing/reading,
238-241
output, 62-69
reading from files, 227,
232-235
writing to files, 226,
230-232
Data attributes
defined, 330
hiding, 340-343
manipulation, 332
private, 355
public method access, 355
values, 332
values, changing, 332
values, retrgfeving with
accessor methods, 355
Data hiding, 330
Data storage, 8-13
characters, 11-12
music, 13
numbers, 9-11
numbers, advanced, 12
pictures, 12

471

Index

Data types
bool, 144
conversion, 58-60
defined, 46
float, 46
int, 46
numeric, 45-46
str, 46-47
Decision structures
conditional execution, 114
defined, 114
dual alternative, 121
examples, 118
flow chart, 114
nested, 130-138
nested blocks, 120-121
seguence structures with,
130-131
single alternative, 114
string comparison, 126-130
three actions, 115
degrees() function, 213
del statement, 306
Depth of recursion, 402
Derived classes. See Subclasses
Dialog boxes. See also Graphical
user interface (GUI)
defined, 420
illustrated, 420
info, 430, 431
Digital data, 12
Direct accessfiles, 228
Direct recursion, 406
Disk drives
defined, 5
for program storage, 14
display_list function, 358
Divide and conquer, 78
Division
integer, 52-53
truncation, 53
Division (/) operator, 53
Document types, 225
Documentation exceptions, 268
Dog class, 389-390
Dot notation, 193
Double-quotes, 37-38
Dual alternative decision
structure
defined, 121
flowchart, 122
writing, 122
DVD drives, 6
DVDs (digital versatile discs), 6

E
Encapsulation, 330
End of file
detection, 243-245
detection logic, 244
End users, 49
End-line comments, 39-40
endswith () method, 288
ENIAC computer, 3-4
Entry widgets
defined, 433
get method, 434
program example, 434-436
Error traps. See Input validation
loops
Escape characters
backslash (\), 62
defined, 62
newline (\n), 232-238
types of, 63
Event handlers. See Callback
functions
Event-driven programs, 421
Exception handlers, 264
Exceptions
AttributeError, 392
avoidance example, 263
defined, 262
experimentation, 268
IndexError, 277-278,
296,299
I0Error, 263,266,267,
268
multiple, handling, 266-268
name, 263
preventing, 263
resources, 268
traceback, 263
ValueError, 267,268
ZeroDivisionError, 268
Execution
i f statement, 115
pausing, 90
Exercises
classes and OOP
programming, 370-372
computers and programming
introduction, 28
decision structures, 148—150
files and exceptions, 272
functions, 110-111
GUI programming,
454-455
inheritance, 396-397

input, processing, and
output, 73-75
repetition structures, 188-189
strings and lists, 326-328
value-returning functionsang
modules, 221-223
exp() function, 213
Exponent (**) operator
defined, 56
precedence, 53
using, 56

F
factorial function, 404-405
Factorials
calculating, 403-405
definition rules, 403
Fal se variable, 144
Fetch-decode-execute cycle, 15
Fibonacci numbers, 407
Fibonacci series, 407-409
defined, 407—-408
recursive function, 408
Field widths
benefits, 67
minimum, specifying, 66—67
Fields, 250
File objects
defined, 228
methods, 230
variable name reference, 229
Filename extensions, 228
Files
access methods, 227-228
appending data to, 238
binary, 227
closing, 227, 230
cookie, 226
direct access, 228
document, 225
end of, detecting, 243-245
game data, 225-226
image, 225
input, 226
lists and, 317-320
with loops, reading, 243-245
modes, 229
opening, 227,229-230
output, 226
processing, 227
processing with loops,
242-249
reading data from, 227,
232-235

sequential access, 227-228
software packages storing
data in, 225-226
spreadsheet, 225
temporary, 257, 260
text, 227
types of, 227
use steps, 227
working with, 247-249
writing data to, 226,
230-232
find() method, 288
Flags, 145
Flash drives, 6
Flash memory, 6
float() function, 59-60,
240,267
fl oat data type. See also Data
types
defined, 46
in mixed-type expressions, 59
operations on, 58
Floating-point numbers, 64
£loox () function, 213
Floppy disk drives, 5
Flowcharts
decision structure, 114
defined, 34
diamond symbol, 114
dual alternative decision
structure, 122
function, 85-86
function call in loops, 161
function call symbol, 85
illustrated, 35, 86
input symbols, 34
input validation loop, 180
nested decision structure, 132
nested loop, 185
output symbols, 34
processing symbols, 34
running total calculation, 173
sequence structures nested in
decision structure, 131
sequence structures with
decision structure, 130
symbols, 34
terminal symbols, 34
while loops, 153
for loops
defined, 161
designing, 168-170
examples, 163-164
first iteration, 162, 166

functioning, 163
iterating over listswith, 296
iterating through lists
with, 318
iterations, 162-163
list generation, 172-173
range function with,
164-166
to read lines, 245-246
for string character access,
274-276
target variables, 163,
166-168
user control, 170-172
uses, 161-162
f or statements
in count-controlled loops, 152
designing count-controlled
loops with, 168-170
execution, 162
genera format, 162
Formatting
integers, 67-69
multiple values, 66
numbers, 64-69
strings, 67-69
Formatting specifiers
defined, 64-65
minimum field width, 66—-67
multiple values, 66
same number as values, 66
singlevalue, 65
FORTRAN, 17
Frame
defined, 427, 428
organizing widgets with,
427-430
pack method, 429
placing widgets in, 428
program example, 428-429
Frames, widget organization
with, 441
Function calls
in loops, 160-161
symbol, 85
Function definitions
block, 80
defined, 79
example, 87-88
function header, 80
genera format, 80
multiple, 82
writing, 80-81
Function headers, 80

Index

Functions
acos (), 213
asin(), 213
atan(), 213
benefits, 78-79
Boolean, 209-210
built-in, 192
callback, 430
calling, 81-84, 101
ceil(), 213
cos(), 213
defined, 48, 77
degrees(), 213
display list, 358
for divide and conquer, 78
exp(), 213
factorial, 404-405
float(), 59-60,240,267
floor(), 213
flowcharts, 85-86
global variables, 105
hypot (), 213
indentation, 84—-85
input, 48-49
int(), 60,240,241
introduction to, 77-79
isinstance, 391-394
len, 278,297
library, 192-193
local variables, 91-93
logl0(), 213
log(), 213
make list, 358
math module, 211-212,213
max, 306-307
message, 400-401
method, 230
min, 306-307,315
modularizing with, 205-208
names, 80
open, 229-230
passing arguments to, 93-103
program control transfer to, 84
program design for using,

85-90

radiansy(), 213
randint, 193-195,335
random, 199
randrange, 198-199
range, 164-166
raw_input, 48,49
recursive, 399-402
rename, 258
returning listsfrom, 312-314

473

474 Index

Functions (continued)
returns, 81, 84
showinfo, 430,432
simple, 191
sin(), 213
sqrt, 212,213
standard library of, 192
storing in modules, 214-218
str, 238-239
sum-—range, 406-407
tan(), 213
uniform, 199
value-returning, 191-211

G
Game data files, 225-226
Generalization, 373
GIGO, 179
Global constants
defined, 105
using, 105-107
values, 105
global key word, 105
Global variables. See also
Variables
access, 103
defined, 103
drawbacks, 104-105
examples, 103-104
functions using, 105
program understanding
and, 105
use, restricting, 104
using, 105-107
values, assigning, 104
Graphical user interface (GUI).
See also GUI programs
defined, 419, 420
dialog boxes, 420
as event-driven, 421
graphical elements, 420
libraries, 421
programming, 419-450
Greatest common divisor (GCD)
determination, 409
program example, 409-410
Grouping, with parentheses, 54
GUI programs. See also Graphical
user interface (GUI)
buttons, 430-433
check buttons, 448-450
creating, 440-444
creating with Tkinter
module, 421-424

as event-driven, 421
exiting, 422
illustrated, 421

info dialog boxes, 430-433

input, 433-436

main window display, 425
output fields, 436-440
radio buttons, 444-448
text display, 424-427
widgets, 422

H
Hardware, 2
Hiding attributes, 340-343
Hierarchy charts
defined, 87
i f ~else statements, 124
illustrated, 87, 88
passing arguments to
functions, 96
High-level languages, 16-17
hypot() function, 213

i
IDLE, 459-466
automatic indentation,
463-464
color coding, 463
defined, 23, 459
File menu, 462
illustrated, 23
installation, 459
introduction to, 459-466
resources, 466
running, 23
running programs from,
465-466
saving programs, 464
shell window, 460
starting, 459

Syntax error dialog box, 466

text editing window, 462
text editor, 23

writing Python programs in,

461-462
if statement
with and operator, 139
Boolean expressions,
115-116
defined, 113
execution, 115
general format, 115
with not operator, 140
with or operator, 139

relational operators,
116-117
uses, 115
if-elif-else statement. See
also Nested decision
structures
aignment, 137
defined, 136
example, 137
general format, 136
indentation, 137
logic, 137
if-else Statements
clause aignment, 123, 134
condition, testing, 122
conditional execution, 122
defined, 121
general format, 122
hierarchy chart, 124
indentation, 123-125
nested, 133-134, 137, 141
tests, 133
using, 123-125
if-then statements, 119-120
Images
asfiles, 225
storage, 12
import statements
defined, 192
in importing modules, 215
writing, 193
i n operator
finding list items with,
297-298
testing strings with, 283
Indentation
automatic, 85
in blocks, 84
as four spaces, 85
IDLE editor, 463-464
if-elif-else
statement, 137
if-else statement,
123-125
line, methods, 85

index () method

calling, 303-304

defined, 301

passing arguments to, 302

program example, 302-303
IndexError exceptions

defined, 277

examples, 277-278

with lists, 296, 299

Indexes
defined, 276
invalid, 280
list, 296-297
negative, 296
negativenumbersin, 277, 280
string, 276
string length as, 280
use examples, 277
Indirect recursion, 406
Infinite loops, 159
Info dialog boxes. See aso
Dialog boxes
defined, 430
illustrated, 431, 433, 436
Inheritance. See aso Classes
defined, 373
“is @" relationships and,
374-382
subclass, 374
superclass, 374
in UML diagrams, 382-387
using, 383-387
Initializer methods, 336
__init method, 336,345,
347,376,378
Input
defined, 6
flowchart symbols, 34
program, 35-36
reading from keyboard,
48-50
Input devices, 6
Input files, 226
input function
defined, 48
genera format, 48
reading numbers with, 48-49
sample use, 48
Input validation, 179, 180
Input validation loops
defined, 179
error message display, 180
as error trap, 181
flowchart, 180
logic, 180
priming read, 180
writing, 181-184
insert() method
defined, 301
passing argumentsto, 304
program example, 304
Instances. See also Classes
attributes, 350

creation in memory, 336
defined, 333
determining, 392
working with, 350-352
int () function, 60
defined, 240
readline method
argument, 241
i nt data type
defined, 46
in mixed-type expressions, 59
operations on, 58
Integer division
defined, 52
float function and, 60
truncation, 53
Integers, 45
formatting, 67-69
list, 295
string conversion to, 241
Integrated development
environment, 23
Interactive mode
defined, 21
error messages, 22
interpreter start in, 21
using, 21-22
Interpreters
defined, 19
Python, 20, 21
IntVar class, 445, 448
IOExrror exception, 263, 266,
267,268
IPO charts
defined, 204
descriptions, 205
illustrated, 204
use decision, 205
“Is &" relationship
defined, 374
examples, 374
inheritance and, 374-382
isalnum() method, 285
isalpha() method, 285
isdigit () method, 285
isinstance function,
391-394
calling, 394
genera format, 392

in instance determination, 392

islower () method, 285
isspace () method, 285
isupper () method, 285
Iterating over lists, 296

Index

Iterating over strings
with for loop, 274-276
genera format, 274
illustrated, 275
program example, 276

J
Java, 17
JavaScript, 17

Key words
defined, 18
function names and, 80
variable names and, 43
Keyboard, reading input from,
48-50
Keyword arguments. See also
Arguments
arguments passed to, 101
defined, 101
example use, 101-102
mixing with positional
arguments, 103
order, 102

L
L abel widget
creating, 424
defined, 424
pack method, 425,427
program examples, 424-427
StringVar object with,
436-440
len function, 278
defined, 278
with lists, 297
Libraries, 421
Library functions
as black boxes, 192
built-in, 192
defined, 192
modules, 192
randint, 193-195
random, 199
for random number
generation, 193
randrange, 198-199
uniform, 199
Line continuation character ('), 63
Lists, 294-322
concatenating, 307
copying, 307-308
creating with repetition (*)
function, 295

475

Index

Lists (continued)
creation example, 294
defined, 294
displaying, 295
as dynamic data
structures, 294
filesand, 317-320
generating, highest to
lowest, 172
generating with range
function, 295
indexing, 296-297
integers, 295
item range, summing, 406-407
items, adding, 300-302
items, determining, 302-304
items, finding, 297-298
items, in math expression,
308-309
items, inserting, 304
items, rearranging, 304-305
items, removing, 305-306
items, reversing order, 306
iterating over, 296
len function with, 297
methods, 300-306
as mutable, 294, 298-300
negative indexes with, 296
passing as arguments,
311-312
processing, 308-309
processing example, 314-317
returning from functions,
312-314
size, 310
dicing, 297
storing objects in, 356-358
string, 295
values, averaging, 310-311
values, totaling, 310
working with, 294, 317-320
Literals
numeric, 46
string, 37-38
Loan qualifier example programs,
141-142
Local variables. See also
Functions; Variables
creating, 91
defined, 91
errors, 91
hidden, 92
scope and, 91-93
use example, 92-93

logl0() function, 213
log () function, 213
Logic
end of file detection, 244
if-elif-else statement,
137
input validation loops, 180
mainline, 82
running total calculation, 173
while loop, 153
Logic errors, 32
Logical operators. Seealso
Operators
and, 138,139
compound Boolean
expressions using, 138
defined, 138
not, 138, 139-140
numeric ranges with, 143
or, 138,139-140
Long statements, breaking,
61-62
Loops
condition-controlled,
152-161
count-controlled, 152
defined, 152
in file processing, 242-249
for, 161-172,245-246
infinite, 159
input validation, 179-184
nested, 184-186
pretest, 156-157
recursion versus, 413
sentinels and, 176-179
validation, 210
while, 152-161
lower () method, 286,287
Low-level languages, 16
1strip() method, 286

M
Machine language, 13, 14, 15
Main memory
defined, 4
illustrated, 5
programs in, 14-15
as random-access memory
(RAM), §
Mainline logic, 82
make list function, 358
Mammal class
code, 388-389
__init__ method, 389

make sound method,
389, 391
show — species method, 389
Math expressions
assignment statements, 50-51
defined, 50
example, 50
mixed-type, 59
operands, 50
using list elementsin, 308—-309
value-returning functions
in, 202
variables, 50
math module
contents, 211
evariable, 213
functions, 211-212, 213
pi variable, 213
Math operators. Seea so Operators
defined, 50
precedence, 53-54
max function, 306-307
Memory
flash, 6
main, 4-5
secondary storage, 5-6
volatile, 5
Memory sticks, 6
Menu-driven programs, 218
message function
cdls, 401
main function calling, 401
string display, 400
Methods
accessor, 355
append(), 300-302
cal format, 284
class, 336
close, 231
convert, 436
defined, 230, 330
endwith(), 288
£ind(), 288
index(), 301,302-304
initializer, 336
__init . 336,345,
347,376,378
insert(), 301,304
isalnum(), 285
isalpha(), 285
isdigit(), 285
islower(), 285
isspace(), 285
isupper(), 285

list, 300-306
lower (), 286,287
lstrip(), 286
modification, 286-287
mutator, 355
outside code interaction, 331
overriding, 388
private, 332
public, 332
quit, 432
read, 232,233
readline, 233-234,236,
240,241,244
readlines, 318
remove(), 301,305-306
replace(), 288,289
reverse(), 301,306
rstrip, 237,286
searching and replacing,
287-289
self parameter, 350
sort(), 301,304-305
split(), 320-321
startswith(), 288
string, 284-289
strip(), 286
__str , 347-350
subclass, 388
superclass, 388
testing, 284286
upper(), 286-287
write, 230
writelines(), 317
Microprocessors, 3, 4
companies, 14
defined, 3
illustrated, 14
min function, 306-307, 315
Minimum field .widths
applying, 68
defined, 66
number display and, 67
specifying, 66—67
Mixed-type expressions, 59
Mnemonics, 16
Modification methods. See also
Methods
defined, 286
example use, 287
list of, 286
Modularization, 214
Modules
in code reuse, 214
defined, 192, 214

importing, 215, 343
math, 211-214

names, 215

0s, 258

random, 193

storing classesin, 343-345

storing functions in, 214-218

Tkinter, 421-424
tkMessageBox, 430-433
Multiple items
displaying with + operator,
63-64
displaying with print
statement, 44
Multiplication (*) operator, 53
Music storage, 13
Mutator methods, 355

N
Negative indexes, 296
Nested blocks. See also Blocks;
Decision structures
defined, 120
illustrated, 121
Nested decision structures
defined, 130
flowchart, 132
grade determination
example, 135
identification, 133
multiple, 134-136
sequence structuresin, 131
Nested i f - el se statements
clause alignment, 133-134
example use, 141
long series of, 137
Nested loops. See also Loops
defined, 184
example, 184-185
flowchart, 185
intermost loop, 185, 186
iteration total, 186
outer loop, 186
Newline (\n) character
complications, 236
concatenating to strings,
235-236
defined, 62, 232
functions, 232
purpose inside files, 236
readline method and, 233
rstrip method and, 237
stripping from strings,
236-238

Index

not i n operator
finding list items with,
297-298
testing strings with, 283
not operator
defined, 138
truth table, 140
use example, 140
Nouns
elimination, 361-363
identical meanings, 361-362
identifying, 360-361
list, refining, 361-364
non-essential item
representation, 362
object-represented, 363
value-represented, 363-364
Numbers
advanced storage, 12
data types, 45-46
factorial, calculating, 403—-405
floating-point, 64
formatting, 64—69
integers, 45
negative, in indexes, 277, 280
nonnegative, factorial, 403
random, 192-199
ranges, changing, 143
reading with input
function, 48—-49
real, 45
storage, 9-11
Numeric data
reading, 240-241
writing, 238-240
Numeric literals, 46

o
Object-oriented programming
(OOP)
data hiding, 330
defined, 329
encapsulation, 330
premise, 330
Objects. See also Methods
classes versus, 333
data attributes, 330,
340-343
defined, 330
elements, 330
everyday example, 331-332
reusability, 331
state, 347
storing in lists, 356—-358

477

478

Index

Open function
call example, 229-230
defined, 229
genera format, 229
Operands, 50
Operation systems, 6
Operators
addition (+), 53, 307
and, 138-140
assignment, 175-176
defined, 18
division (/}, 53
in, 283,297-298
logical, 138-144
math, 50
multiplication (*}, 53
not, 138,140
not in, 283,298
or, 138-140
precedence, 53-54
relational, 116, 128
remainder (%), 53, 56
repetition (*), 292-293
string format, 64, 65
subtraction (-), 53
or operator
defined, 138
short-circuit evaluation, 140
truth table, 139
use example, 139
0Ss module, 258
Output
data, 62-69
defined, 6
devices, 6
displaying, 36—39
flowchart symbols, 34
program, 35, 36
Output files
closing, 231
defined, 226
opening, 231

P

Parameter lists, 98

Parameters
changes, 99-101
defined, 93, 94
example, 94
passing by position to, 98
scope, 95

Parentheses (()), 54

Pascal, 17

Pass by value, 101

Passing arguments. See also
Arguments
defined, 93
example, 96—97
multiple, 97-99
parameter variables, 94-95
by position, 98
by value, 101
Passing lists, 311-312
Pausing program execution, 90
Percentages, calculating, 51-52
Pixels, 12
Polymorphism
behavior elements, 388
defined, 388
program design flexibility, 391
Precedence, operator, 53-54
Pretest |oops
defined, 156
while loop as, 156-157
Priming read, 180, 244
print statement
example, 36
in list display, 295
in multiple item display, 44
newline suppression, 62
output display with, 36-39
string literals, 37-38
Private methods, 332
Problem domain
class responsibilities and, 365
defined, 360
description, 360
example, 360
noun identification, 360-361
noun list, refining, 361-364
Problem solving with recursion,
402-406
defined, 402
number factorial calculation,
403-405
overhead, 402
repetitive, 402
Procedural programming, 329
Procedures
creation, 330
operation, 329
Process, program, 35, 36
Processing symbols, 34
Program design, 31-35
flowcharts, 34-35, 85-86
for function use, 85-90
hierarchy charts, 87
polymorphism and, 391

process, 32

pseudocode, 34

steps determination, 33-34

top-down, 86-87

with while loops, 157-159
Program development cycle

defined, 31

elements, 32

illustrated, 31
Programmers

customer interview, 33

defined, 1

task breakdown, 33-34
Programming

object-oriented, 329, 330-332

procedural, 329-330
Programming languages. See also

Python

Ada, 17

assembly, 15-16

BASIC, 17

C#, 17

C/Cw+, 17

COBOL, 17

compilers/interpreters, 18—-20

FORTRAN, 17

high-level, 16-17

Java, 17

JavaScript, 17

key words/reserved words, 18

low-level, 16

operators, 18

Pascal, 17

Ruby, 17

source code, 20

statements, 18

syntax, 18

Visua Basc, 17
Programs. See also Python

programs

defined, 1

event-driven, 421

exceptions, 262-268

execution, pausing, 90

functioning of, 13-20

GUI, 421

image editing, 2

input, 35-36

line numbers, 37

in main memory, 14-15

mainline logic, 82

menu-driven, 218

output, 35, 36

process, 35, 36

storage, 14
task, steps, 33-34
task, understanding, 32-33
testing, 32
three-step process, 36
utility, 7
word processing, 2
Pseudocode, 34
Public methods. See also Methods
attribute access, 355
defined, 332
Python 2.5, 457
Python
defined, 17
directory,. adding to Path
variable, 458
documentation, 457
IDLE, 23-24
installing, 21, 457
interactive mode, 21-22
key words, 18
operators, 18
quitting, 22
script mode, 21, 22-23
Shell window, 460, 461, 466
using, 20-24
Windows installer, 457
Python interpreter, 20, 21, 457
interactive mode, 459
multiline statement
execution, 461
statements executed by, 460
wait prompt (>>>), 460
Python programs
defined, 21
naming, 23
running, 23, 465-466
saving, 23, 464
writing, 22

Quit button, 432-433, 434

quit method, 432

Quote marks, for string literals,
37-38

R
radians () function, 213
Radio buttons, 444
Radiobutton widgets
callback functions with,
447-448
clicking, 445
selection, 444-445

randint function
call example, 193
defined, 193
integer value return, 197
program example, 194-195
in random number
generation, 335
valuesreturned by, 194
Random access files. See Direct
access files
random function, 199
random module, 193
Random numbers
displaying, 195
generating, 192-199
library functions, 193
to represent other values,
197-198
uses, 192-193
using, 196-197
Random-access memory (RAM),S
randrange function
defined, 198
example uses, 198-199
range function
arguments passed to, 165
defined, 164
with for loop, 164-166
in list generation, 295
raw — input function, 48, 49
read method, 232
Read position
advanced to end of file, 235
advanced to next line, 234
defined, 234
initial, 234
Reading
data from files, 227,
232-235
fileswith loops, 243-245
input from keyboard, 48-50
numbers, 48-49
numeric data, 240-241
records, 251
strings, 49
readline method, 233-234,
236,240,241
empty string return, 244
readlines () method, 318
Real numbers, 45
Records
adding, 253-255
copying, 260
defined, 249, 250

deleting, 260-261
displaying, 253-255
modifying, 257-259
processing, 249-262
reading, 253
searching for, 255-257
writing, 250
Recursion
depth of, 402
direct, 406
indirect, 406
introduction to, 399-402
in number factorial
calculation, 403-405
problem solving with,
402-406
Recursive algorithms
designing, 403
Fibonacci series, 407-409
GCD, 409-410
looping versus, 413
summing list elements range,
406-407
Towers of Hanoi, 410-413
Recursive case, 403
Recursive functions
controlling, 400,402
defined, 399
Fibonacci series
calculation, 408
functioning of, 403
program example, 399-400
Relational operators
Boolean expressionswith, 116
defined, 116
list of, 116
in string comparisons, 128
Remainder (%) operator. See
also Operators
defined, 56
precedence, 53
using, 56
remove() method, 301
rename function, 258
Repetition operator (")
defined, .92
in list creation, 295
program example, 292-293
use example, 292
Repetition structures. See also
Loops
defined, 151
example, 151-152
introduction to, 151-152

480

Index

replace() method, 288,289
Reserved words, 18
return statement. See also
Vaue-returning functions
defined, 200
using, 202
vaues, 211
Reverse() method
defined, 301
use example, 306
Review questions
classesand OOP
programming, 367-370
computers and programming
introduction, 24-27
decision structures, 145-148
files and exceptions, 268-271
functions, 107-110
GUI programming, 451-453
inheritance, 394-396
input, processing, and
output, 69-73
repetition structures, 186-188
strings and lists, 323-326
value-returning functions and
modules, 218-220
Rounding, dollar amounts, 58
rstrip() method, 237,286
Ruby programming language, 17
Running totals
accumulator, 173
calculating, 173-176
defined, 173
example, 174
logic, 173

s
Samples, 13
Scope. See also Variables
defined, 91
local variable, 91-93
parameter, 95
Script mode
defined, 21
using, 22-23
Scripts, 21
Searching
methods, 287-289
for records, 255-257
Secondary storage
defined, 5
types of, 5-6
Selection structures. See Decision
structures

sel f parameter, 350
Sentinels
defined, 176, 177
using, 177-179
values, 177
Separators, 321
Sequences
arrays, 295
with decision structure, 130
defined, 113, 273
itemsin, 273
lists, 294-322
strings, 273-294
types of, 273
Sequential accessfiles. See also
Files
defined, 227-228
record modification, 257
working with, 228
ServiceQuote class, 366-367
Short-circuit evaluation, 140
showinfo function, 430, 432
sin() function, 213
Single alternative decision
structure, 114
Single-quotes, 38
Slices
defined, 279
examples, 280
expression format for, 279
list, 297
Software. See also Programs
application, 7
defined, 1
developers. See Programmers
requirement, 33
system, 6-7
Software development tools, 7
sort() method
defined, 301
use examples, 304-305
Source code
defined, 20
functions and, 79
writing, 32
Speciadization, 373-374
split () method
calling, 321
defined, 320
program examples, 320-322
Splitting strings
program examples, 320-322
with split method,
320-322

Spreadsheets, as files, 225
sqrt function, 212, 213
Standard library functions, 192
startswith() method, 288
Statements
converting math formulas to,
56-58
defined, 18
del, 306
for, 152
if, 113-121
if-elif-else, 136-138
if-else, 121-125
if-then, 119-120
import, 192,193
line continuation character
("), 61
long, breaking, 61
return, 200,202
saving, 22
try/except, 264-265
while, 152
Step values, 165
str data type, 46
str function, 238-239
String concatenation
+ operator, 63
defined, 63-64
uses, 64
String format operator
defined, 64
formatting one value with, 65
formatting several values
with, 66
use example, 65
String literals
apostrophes, 38
defined, 37
examples, 37, 38
quote marks, 37-38
single-quotes, 38
Strings
character access, 274-278
character copies, getting, 277
characters, extracting,
281-283
characters, validating,
289-292
comparing, 126-130
concatenating newlines to,
235-236
defined, 37
formatting, 67-69
as immutable, 278—-279

indexing, 276-278

iterating over with f or loop,

274276

list, 295

methods, 273, 284-289

reading, 274

reading with raw — input
function, 49

readinglstripping newline
from, 236-238

returning, 208-209

dicing, 279-280

splitting, 320-322

storing with str data type,
46-42

testing, 283

variable assignment, 46-47

working with, 273-294

writing, 274

Stringvar object
defined, 436

with Label widget, 436-440

reference storage, 440
set method, 440
Strip() method, 286
_str__ method, 347-350
automatic calling, 350
defined, 348
program example, 348-350
Structure charts. See Hierarchy
charts
Subclasses
defined, 374
inheriting from classes, 377
method overriding, 388
methods, 388
Substrings
defined, 279
examples, 280
expression format for, 279
Subtraction (-) operator, 53
sum-— range function, 406-407
Superclasses
defined, 374
methods, 388
SUV class
code, 380
defined, 375
get— pass_cap method,
381
—_init _ method, 380
setpass— capmethod,
381
in UML diagram, 383

Syntax
defined, 18
rules, 20
Syntax errors
correcting, 32
defined, 20
System software, 6-7

T
tan() function, 213
Target variables
defined, 163
inside loops, 166-168
purpose, 166
Temporary files
copying records to,
257,260
creating, 257
renaming, 257, 260
Termina symbols, 34
Testing
functions and, 79
string methods, 284-286
strings, 283
Testing programs, 32
Text
button, 430
displaying in window,
424-427
editor, 23
files, 227
Tk library, 421
Tkinter module. See aso GUI
programs
Checkbutton class, 448
defined, 421
in GUI program creation,
421-424
IDLE use, 422
importing, 423
IntVar, 445,448
mainloop function,
424,425

program examples, 422—-424

program use, 422

Radiobutton class, 444-448

StringVar class, 436
widgets, 422
TkMessageBox module,
430-433
Top-down design. See also
Program design
defined, 86
process, 86-87

Index

Totals
list value, 310
running, 173-176
Towersof Hanoi
agorithm summary,
411-412
defined, 410
game play, 410-411
overall solution, 411
peg-moving steps, 411
pegs and discs, 410
program example,
412-413
Tracebacks, 263
Triple-quotes, 38
Truck class
code, 379
defined, 375
get_drive method, 380
—_1init__ method, 380
set_drive method, 380
in UML diagram, 383
True variable, 144
Truth tables
and operator, 139
not operator, 140
or operator, 139
try/except Statements
defined, 264
event sequence, 266
except clauses, 265, 268
execution, 265
genera format, 264
try block, 264—-265
use example, 265-266

U
UML diagrams
Car class, 366
CellPhone class, 359
Coin class, 359
Customer ciass, 365
defined, 358
examples, 359
general layout for classes,
359
inheritance in, 382-383
ServiceQuote class, 367
Unicode, 12
Unified Modeling Language. See
UML diagrams
Uniform function, 199
upper () method, 286,287
USB drives, 5-6

Index

User interfaces
command line, 419-420
defined, 419
graphical (GUI),419-450
Users, 49
Utility programs, 7

v
Validation code, 210
Validation loops, 210
valueError exception,
267,268
Vaue-returning functions
benefits, 202
defined, 191
example, 200
in mathematical
expressions, 202

modularizing with, 205-208

parts of, 200

return statement, 200, 202

returning Boolean values,
209-210

returning multiple
values, 212

returning strings, 208—209

as simple functions, 191

using, 202-204

vaues, 191, 200

writing, 200-211

Vaues

value-returning functions,
191,200

Variables

accumulator, 173, 266

Boolean, 144—-145

camelCase, 43-44

creating inside functions, 103

creating outside functions, 103

creating with assignment
statements, 40-42

defined, 40

errors, 42

examples, 40, 41, 42

first letter, 43

global, 103-105

key words and, 43

local, 91-93

in math expressions, 50

names, sample, 43, 44

names, selecting, 43

naming rules, 43-44

parameter, 93-94

Print statement and, 44

program use, 40

reassignment, 45

scope, 91

string assignment, 46-47

target, 163

upper/lowercase letters, 42

use warning, 42

value representation, 40

Boolean, returning, 209-210

different per execution, 176

long list, processing, 177

multiple, returning, 211

passing by, 101

random number to represent,
197-198

return statement, 211

returned by randint, 194

sentinel, 177

step, 165

Verbs, in function names, 80
Visual Basc, 17

w

while loops, 253
beginning of, 154
condition tested by, 153, 155
defined, 152
flowchart, 153, 156
function calls, 160-161
infinite, 159

logic, 153
parts, 153
as pretest loop, 156-157
program design with,
157-159
while statement, in condition-
controlled loops, 152
Widgets
arrangement of, 430
Button, 430-433
defined, 422
Entry, 433-436
Frames, 428
Label, 424-427
organizing with Frames,
427-430,441
quit method, 432
Radiobutton, 444-448
root, 424, 432
Tkinter, 422
Windows Explorer, 228
Windows Vista, 458
Windows XP, 458
Writelines () method, 317
Writing
comments, 40
data to files, 226, 230-232
dual alternative decision
structures, 122
function definitions,
80-81
input validation loops,
181-184
numeric data, 238-240
records, 250
source code, 32
value-returning functions,
200-201

z

ZeroDivisionError
exception, 268

PLEASE SEE REVERSE SIDE FOR INSTRUCTIONS TO OPEN

