Enrerprise Web Framework
Jruel Edini)

WEB2PY
Enterprise Web Framework /2nd Ed.

Massimo Di Pierro

Copyright(©)2009 by Massimo Di Pierro. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as
permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to
the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400,

fax (978) 646-8600, or on the web at www.copyright.com. Requests to the Copyright owner for permission should
be addressed to:

Massimo Di Pierro

School of Computing

DePaul University

243 S Wabash Ave

Chicago, IL 60604 (USA)

Email: mdipierro@cs.depaul.edu

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in
preparing this book, they make no representations or warranties with respect to the accuracy or
completeness of the contents of this book and specifically disclaim any implied warranties of
merchantability or fitness for a particular purpose. No warranty may be created ore extended by sales
representatives or written sales materials. The advice and strategies contained herein may not be
suitable for your situation. You should consult with a professional where appropriate. Neither the
publisher nor author shall be liable for any loss of profit or any other commercial damages, including
but not limited to special, incidental, consequential, or other damages.

Library of Congress Cataloging-in-Publication Data:

WEB2PY: Enterprise Web Framework
Printed in the United States of America.

to my family

CONTENTS

Preface
1 Introduction
1.1 Principles
1.2 Web Frameworks
1.3 Model-View-Controller
1.4 Why web2py
1.5 Security
1.6 Inthe box
1.7 License
1.8 License Commercial Exception
1.9 Acknowledgments
1.10 About this Book
1.11 Elements of Style

XV

© 0o o~ w

12
13
14
15
16
18

Vii

viii

CONTENTS

The Python Language

2.1 About Python
2.2 Starting up

2.3 help, dir

2.4 Types

2.5 About Indentation
2.6 for..in

2.7 while

2.8 def...return
2.9 if...elif...else

2.10 try... except...else...finally

2.11 class

2.12 Special Attributes, Methods and Operators

2.13 File Input/Output
2.14 lambda

2.15 exec,eval

2.16 import

Overview

3.1 Startup

3.2 SayHello

3.3 Let's Count
3.4 Say My Name

3.5 Form self-submission

3.6 AnlImage Blog
3.7 Adding CRUD

3.8 Adding Authentication

3.9 AWiki

3.10 More oradmin
[site]
[about]
[EDIT]
[errors]
[mercurial]

3.11 More orappadmin

The Core

4.1 Command Line Options

21

21
22
23
24
28
28
29
29
31
31
33
34
34
35
36
37

41

41
45
50
51
53
56
69
70
71
81
81
84
85
87
91
91

93
93

4.2 URL Mapping
4.3 Libraries
4.4 Applications
45 API
4.6 request
4.7 response
4.8 session
4.9 cache
410 URL
4.11 HTTP and redirect
4.12 T and Internationalization
4.13 Cookies
4.14 init Application
4.15 URL Rewrite
4.16 Routes on Error
4.17 Cron
4.18 Import Other Modules
4.19 Execution Environment
4.20 Cooperation
The Views
5.1 Basic Syntax
for...in
while
if...elif...else
try...except...else...finally
def...return
5.2 HTML Helpers
XML
Built-in Helpers
Custom Helpers
5.3 BEAUTIFY
54 Page Layout
5.5 Using the Template System to Generate Emails
5.6 Layout Builder

The Database Abstraction Layer

6.1

Dependencies

CONTENTS

ix

96

99
103
104
105
107
110
111
113
115
116
117
118
118
120
121
124
124
126

127

129
129
130
130
131
131
132
133
134
142
143
143
146
147

149
149

X

CONTENTS

6.2

6.3
6.4

6.5

6.6

6.7
6.8

6.9
6.10

6.11
6.12
6.13

Connection Strings

Connection Pooling

DAL, Table, Field

Migrations

insert

commit and rollback

executesq|

_lastsql

drop

Indexes

Legacy Databases

Distributed Transaction

Query, Set, Rows

select

Serializing Rows in Views
orderby, groupby, limitby, distinct
Logical Operators

count, delete, update
Expressions

updaterecord

One to Many Relation

Inner Joins

Left Outer Join

Grouping and Counting

How to see SQL

Exporting and Importing Data
CSV (one table at a time)

CSV (all tables at once)

CSV and remote Database Synchronization
HTML/XML (one table at a time)
Many to Many

Other Operators

like, upper, lower

year, month, day, hour, minutes, seconds
belongs

Caching Selects

Shortcuts

Self-Reference and Aliases

151
152
153
154
158
159
160
160
160
160
161
161
162
162
164
164
165
166
166
166
167
168
168
169
169
170
170
170
171
173
173
175
175
175
176
176
177
177

CONTENTS

6.14 Table Inheritance

Forms and Validators

7.1

7.2

7.3
7.4

7.5
7.6

7.7

FORM

Hidden fields

keepvalues

onvalidation

Forms and redirection
Multiple forms per page

No self-submission
SQLFORM
Insert/Update/Delete SQLFORM
SQLFORM in HTML
SQLFORM and uploads
Storing the original filename
Removing the action file
Links to referencing records
Prepopulating the form
SQLFORM without database 10
SQLFORM.factory
Validators

Basic Validators

Database Validators

Custom Validators

Validators with Dependencies
Widgets

CRUD

Attributes

Messages

Methods

Custom form

CSS Conventions

Switch off errors

Access Control

8.1

Authentication
Email verification
Restrictions on registration

Xi

179

181

182
185
186
186
187
188
189
189
193
194
195
197
198
198
200
200
201
202
203
210
211
212
213
214
215
216
217
218
220
220

223

225
227
228

Xii

10

CONTENTS

CAPTCHA and reCAPTCHA
Customizing Auth
Renaming Auth tables
Alternate Login Methods

8.2 Authorization
Decorators
Combining requirements
Authorization and CRUD
Authorization and Downloads
Access control and Basic authentication
Settings and Messages

8.3 Central Authentication Service

Services

9.1 Rendering a dictionary
HTML, XML, and JSON
How it works
Rendering Rows
Custom Formats
RSS
CsVv

9.2 Remote Procedure Calls
XMLRPC
JSONRPC
AMFRPC

9.3 Low Level APl and Other Recipes
simplejson
PYyRTF
ReportLab and PDF

9.4 Services and Authentication

Ajax Recipes

10.1 web2pyajax.html
10.2 jQuery Effects
Conditional Fields in Forms
Confirmation on Delete
10.3 The ajax Function
Eval target

228
229
230
230
233
234
235
235
236
237
237
241

245

246
246
246
247
248
248
250
251
253
253
257
259
259
260
260
261

263

263
268
271
272
274
274

11

12

CONTENTS

Auto-completion

Form Submission
Voting and Rating

Deployment Recipes

111
11.2

11.3
114
115
116
11.7
11.8
119
11.10
11.11
11.12

11.13

Setup Apache on Linux

Setup mogvsgi on Linux

mod_wsgi and SSL

Setup mogbroxy on Linux

Start as Linux Daemon

Setup Apache and madsgi on Windows
Start as Windows Service

Setup Lighttpd

Apache2 and mapython in a shared hosting environment
Setup Cherokee with FastGGlI

Setup PostgreSQL

Security Issues

Scalability Issues

Sessions in Database

Pound, a High Availability Load Balancer
Cleanup Sessions

Upload Files in Database

Collecting Tickets

Memcache

Sessions in Memcache

Removing Applications

Google App Engine

Other Recipes

12.1
12.2
12.3
12.4
12.5
12.6
12.7
12.8
12.9

UpgradingvEB2PY

Fetching a URL

Geocoding

Pagination

Streaming Virtual Files
httpserver.log and the log file format
Send an SMS

Twitter API

Jython

Xiii

275
277
278

281

284
285
287
288
290
291
293
294
295
296
297
298
299
300
301
301
302
303
304
305
305
305

309

309
310
310
310
311
312
313
314
314

Xiv CONTENTS

References 317

Preface

| am guilty! After publicly complaining about the existencetob many
Python based web frameworks, after praising the merits of Django, Pylons,
TurboGears, CherryPy, and web.py, after having used them professionally
and taught them in University level courses, | could not resist and created one
more: WEB2PY.

Why did | commit such a crime? | did it because | felt trapped by existing
choices and tempted by the beautiful features of the Python language. It all
started with the need to convince my father to move away from Visual Basic
and embrace Python as a development language for the Web. At the same
time | was teaching a course on Python and Django at DePaul University.
These two experiences made me realize how the beautiful features of those
systems were hidden behind a steep learning curve. At the University for
example we teach introductory programming using languages like Java and
C++ but we do not get into networking issues until later courses. In many
Universities students can graduate in Computer Science without ever seeing
a Unix Bash Shell or editing an Apache configuration file. And yet these
days to be an effective web developer you must know shell scripting, Apache,
SQL, HTML, CSS, JavaScript, and Ajax. Knowing how to program in one

XV

XVi PREFACE

language is not enough to understand the intricacy and subtleties of the APIs
exposed by the existing frameworks. Not to mention security.

WEB2PY started with the goal to drastically reduce the learning curve,
incorporating everything needed into a single tool that is accessible via the
web browser, collapsing the API to a minimum (only 12 core objects and
functions), delegating all the security issues to the framework, and forcing
developers to follow modern software engineering practices.

Most of the development work was done in the summer of 2007 while |
was on vacation. Sinc€EB2PY was released many people have contributed
by submitting patches to fix bugs and to add featuresB2pPy has evolved
steadily since and yet it never broke backward compatibility. In faeg2pry
has a top-down design vs the bottom-up design of other frameworks. It is
not built by adding layer upon layer. It is built from the user perspective
and it has been constantly optimized inside in order to become faster and
leaner, while always keeping backward compatibility. | am happy to say that
today wEB2PY is one of the fastest web frameworks and also one of the
the smallest (the core libraries including the Database Abstraction Layer, the
template language, and all the helpers amounts to about 300KB, the entire
source code including sample applications and images amounts to less than
2.0MB).

Yes, | am guilty, but so are the growing number of users and contributors.
Nevertheless, | feel, | am no more guilty than the creators of the other
frameworks | have mentioned.

Finally, I would like to point out, | have already paid a price for my crime,
since | have been condemned to spend my 2008 summer vacation writing this
book and my 2009 summer vacations revising it.

This second edition describes many features added after the release of the
first edition, including CRUD, Access Control, and Services.

I hope you, dear reader, understand | have done it for you: to free you from
current web programming difficulties, and to allow you to express yourself
more and better on the Web.

CHAPTER 1

INTRODUCTION

WEB2PY [1] is a free, open-source web framework for agile development
of secure database-driven web applications; it is written in Python[2] and
programmable in PythomwEB2PY is a full-stack framework, meaning that

it contains all the components you need to build fully functional web appli-
cations.

WEB2PY is designed to guide a web developer to follow good software
engineering practices, such as using the Model View Controller (MVC) pat-
tern. WEB2PY separates the data representation (the model) from the data
presentation (the view) and also from the application logic and workflow (the
controller). weB2pY provides libraries to help the developer design, imple-
ment, and test each of these three parts separately, and makes them work
together.

WEB2PY Iis built for security. This means that it automatically addresses
many of the issues that can lead to security vulnerabilities, by following well
established practices. For example, it validates all input (to prevent injec-
tions), escapes all output (to prevent cross-site scripting), renames uploaded
files (to preventdirectory traversal attacks), and stores all session information

WEBZ2PY: Enterprise Web Framework / 2nd Bl.Massimo Di Pierro 1
Copyright(©) 2009

1
2
3

2 INTRODUCTION

server side wEB2PY leaves little choice to application developers in matters
related to security.

WEB2PY includes a Database Abstraction Layer (DAL) that writes SQL [3]
dynamically so that the developer does not have to. The DAL knows how
to generate SQL transparently for SQLite [4], MySQL [6], PostgreSQL [5],
MSSQL [7], FireBird [8], Oracle [9], IBM DB2 [10] and Informix [11]. The
DAL can also generate function calls for Google BigTable when running
on the Google App Engine (GAE) [12]. Once one or more database tables
are definedweEB2PY also generates a fully functional web-based database
administration interface to access the database and the tables.

wWEB2PY differs from other web frameworks in thatitis the only framework
to fully embrace the Web 2.0 paradigm, where the web is the computer.
In fact, weB2py does not require installation or configuration; it runs on
any architecture that can run Python (Windows, Windows CE, Mac OS X,
iPhone, and Unix/Linux), and the development, deployment, and maintenance
phases for the applications can be done via a local or remote web interface.
WEB2PY runs with CPython (the C implementation) and/or Jython (the Java
implementation), versions 2.4, 2.5 and 2.6 although "officially" only support
2.5 else we cannot guarantee backward compatibility for applications.

WEB2PY provides a ticketing system. If an error occurs, a ticket is issued
to the user, and the error is logged for the administrator.

WEB2PY is open source and released under the GPL2.0 license, but
WEB2PY developed applications are not subject to any license constraint.
As long as applications do not explicitly contaireB2pY source code, they
are not considered "derivative worksVEB2pPY also allows the developer to
bytecode-compile applications and distribute them as closed source, although
they will requirewEB2PY to run. ThewEB2PY license includes an exception
that allows web developers to ship their products with original pre-compiled
WEB2PY binaries, without the accompanying source code.

Another feature ofvEB2PY, is that we, its developers, commit to maintain
backward compatibility in future versions. We have done so since the first
release ofvEB2PY in October, 2007. New features have been added and bugs
have been fixed, but if a program worked withes2py 1.0, that program
will still work today.

Here are some examples ofeB2prY statements that illustrate its power
and simplicity. The following code:

db.define_table('person’
Fi el d('name' , ‘'string'),
Fi el d('image' , ‘upload"))

i

Noe

PRINCIPLES 3

creates a database table called "person” with two fields: "name", a string; and

"image", something that needs to be uploaded (the actual image). If the table

already exists but does not match this definition, it is altered appropriately.
Given the table defined above, the following code:

form = SQLFORM db.person)

creates an insert form for this table that allows users to upilvages.

The following statement:
if form.accepts(request .vars, session):

pass

validates a submitted form, renames the uploaded image inuaesa@y,
stores the image in a file, inserts the corresponding record in the database,
prevents double submission, and eventually modifies the form itself by adding
error messages if the data submitted by the user does not pass validation.

1.1 Principles

Python programming typically follows these basic principles:
e Don't repeat yourself (DRY).

e There should be only one way of doing things.

e Explicit is better than implicit.

WEB2PY fully embraces the first two principles by forcing the developer to
use sound software engineering practices that discourage repetition of code.
WEB2PY guides the developer through almost all the tasks common in web
application development (creating and processing forms, managing sessions,
cookies, errors, etc.).

WEB2PY differs from other frameworks with regard to the third principle,
which sometimes conflicts with the other two. In particuleiB2PY auto-
matically imports its own modules and instantiates its global objects (request,
response, session, cache, T) and this is done "under the hood". To some this
may appear as magic, but it should n®EB2PY is trying to avoid the an-
noying characteristic of other frameworks that force the developer to import
the same modules at the top of every model and controller.

WEB2PY, by importing its own modules, saves time and prevents mistakes,
thus following the spirit of "don’t repeat yourself' and "there should be only
one way of doing things".

Ifthe developer wishes to use other Python modules or third-party modules,
those modules must be imported explicitly, as in any other Python program.

4 INTRODUCTION

1.2 Web Frameworks

At its most fundamental level, a web application consists of a set of programs
(or functions) that are executed when a URL is visited. The output of the
program is returned to the visitor and rendered by the browser.

The two classic approaches for developing web applications are:

e Generating HTML [13, 14] programmatically and embedding HTML
as strings into computer code.

e Embedding pieces of code into HTML pages.

The first model is the one followed, for example, by early CGl scripts. The
second model is followed, for example, by PHP [15] (where the code is in
PHP, a C-like language), ASP (where the code is in Visual Basic), and JSP
(where the code is in Java).

Here we present an example of a PHP program that, when executed,
retrieves data from a database and returns an HTML page showing the selected
records:

1 <html><body><h1>Records</h1><?

2 mysql_connect(localhost,username,password);

3 @mysql_select_db(database) or die("Unable to select database");
4 $query= "SELECT * FROM contacts" ;

s $result=mysql_query($query);

6 mysql_close();

7

8

9

$i=0;
while ($i < mysql_numrows($result)) {
$name=mysql_result($result,$i, "name");
10 $phone=mysql_result($result,$i, "phone");
1 echo "$name
Phone:$phone

<hr />
"
12 $i++;

14 ?></body></html>

The problem with this approach is that code is embedded into HTM
but this very same code also needs to generate additional HTML and to
generate SQL statements to query the database, entangling multiple layers of
the application and making it difficult to read and maintain. The situation is
even worse for Ajax applications, and the complexity grows with the number
of pages (files) that make up the application.

The functionality of the above example can be expressadiB2py with
two lines of Python code:

1 def index():
2 return HTM_(BODY(H1('Records'), db().select(db.contacts.ALL)))

MODEL-VIEW-CONTROLLER 5

In this simple example, the HTML page structure is represented program-
matically by thest™l, Boby andH1 objects; the database! is queried by the
select command; finally, everything is serialized into HTML.

This is just one example of the powerwis2pPy and its built-in libraries.
WEB2PY does even more for the developer by automatically handling cookies,
sessions, creation of database tables, database modifications, form validation,
SQL injection prevention, cross-site scripting (XSS) prevention, and many
other indispensable web application tasks.

Web frameworks are typically categorized as one of two types: A "glued"
framework is built by assembling (gluing together) several third-party com-
ponents. A "full-stack" framework is built by creating components designed
specifically to work together and be tightly integrated.

WEB2PY is a full-stack framework. Almost all of its components are
built from scratch and designed to work together, but they function just as
well outside of the complete EB2PY framework. For example, the Database
Abstraction Layer (DAL) or the template language can be used independently
of the weB2pPY framework by importinggluon.sql O gluon.template into
your own Python applicationsgiuon is the name of theves2py folder
that contains system libraries. Somes2prY libraries, such as building and
processing forms from database tables, have dependencies on other portions
of WEB2PY. WEB2PY can also work with third-party Python libraries,
including other template languages and DALSs, but they will not be as tightly
integrated as the original components.

1.3 Model-View-Controller

WEB2PY forces the developer to separate data representation (the model),
data presentation (the view) and the application workflow (the controller).
Let's consider again the previous example and see how to bwildE2pPy
application around it.

web2py appliance
[Models J[Controllers][Views J

Data Representation Logic and Workflow Dara Presentation

1There is nothing special about the nadte it is just a variable holding your database connection.

6 INTRODUCTION

The typical workflow of a request weB2pY is described in the following
diagram:

http:/f...faction l
HTTP Request
' request »

map url, validate input, dispatch, start session, start transaction I

reverse map urls, save session, close transaction, start cron tasks I

esponse
HTTF Response
render response '
IUID(IEI

In the diagram:

e The Server can be thees2py built-in web server or a third-party
server, such as Apache. The Server handles multi-threading.

e Mainis the mainweB2prYy WSGI application. It performs all common
tasks and wraps user applications. It deals with cookies, sessions,
transactions, url mapping and reverse mapping, dispatching (deciding
which function to call based on the URL). It can serve and stream static
files if the web server is not doing it already.

e The Models, Views and Controller components make up the user appli-
cation. There can be multiple applications hosted in the ssrE2PY
instance.

e The dashed arrows represent communication with the database engine
(or engines). The database queries can be written in raw SQL (discour-
aged) or by using thevEB2pPY Database Abstraction Layer (recom-
mended), so that thatEB2pY application code is not dependent on
the specific database engine.

e The dispatcher maps the requested URL into a function call in the
controller. The output of the function can be a string or a dictionary

MODEL-VIEW-CONTROLLER 7

of symbols (a hash table). The data in the dictionary is rendered by a
view. If the visitor requests an HTML page (the default), the dictionary
is rendered into an HTML page. If the visitor requests the same page
in XML, weEB2PY tries to find a view that can render the dictionary
in XML. The developer can create views to render pages in any of the
already supported protocols (HTML, XML, JSON, RSS, CSV, RTF) or
additional custom protocols.

All calls are wrapped into a transaction, and any uncaught exception
causes the transaction to roll back. If the request succeeds, the trans-
action is committed.

WEB2PY also handles sessions and session cookies automatically, and
when a transaction is committed, the session is also stored.

It is possible to register recurrent tasks (cron) to run at scheduled times
and/or after the completion of certain actions. In this way it is possible

to run long and compute-intensive tasks in the background without
slowing down navigation.

Here is a minimal and complete MVC application consisting of three files:

1
2
3
4

1
2

"db.py" is the model:

db = DAL(' sqlite://storage.sqlite’)
db.define_table(‘contacts'

Fi el d('name'),

Fi el d('phone’)

It connects to the database (in this example a SQLite databasel s

in the storage.sqlite file) and defines a table calleéhtacts . If the

table does not existyEB2PY creates it and, transparently and in the
background, generates SQL code in the appropriate SQL dialect for the
specific database engine used. The developer can see the generated SQL
but does not need to change the code if the database back-end, which
defaults to SQLite, is replaced with MySQL, PostgreSQL, MSSQL,
FireBird, Oracle, DB2, Informix, or Google Big Tables in the Google
App Engine.

Once a table is defined and creat&d;B2PY also generates a fully
functional web-based database administration interface to access the
database and the tables. It is cali@ghdmin .

"default.py" is the controller:

def contacts():
return dict(records=db().select(db.contacts.ALL))

8

oA W N e

INTRODUCTION

In weB2prY, URLs are mapped to Python modules and function calls.
In this case, the controller contains a single function (or "action")
calledcontacts . An action may return a string (the returned website)
or a Python dictionary (a set of key:value pairs). If the function returns
a dictionary, it is passed to a view with the same name as the con-
troller/function, which in turn renders it. In this example, the function
contacts ~ performs a databaseect and returns the resulting records
as a value associated with the dictionary keyrds .

"default/contacts.html" is the view:

{{extend ‘layout.html' B
<h1>Records</h1>

{{for record in records:}}
{{=record.name}}: {{=record.phone}}

{{pass}}

This view is called automatically bywes2py after the associated
controller function (action) is executed. The purpose of this view is to
render the variables in the returned dictionagyrds=... into HTML.

The view file is written in HTML, but it embeds Python code delimited
by the special{ and}} delimiters. This is quite different from the
PHP code example, because the only code embedded into the HTML is
"presentation layer" code. The "layout.html" file referenced at the top
of the view is provided bywEB2pPY and constitutes the basic layout
for all weB2PY applications. The layout file can easily be modified or
replaced.

1.4 Why web2py

WEB2PY is one of many web application framewaorks, but it has compelling
and unique featuresweB2pPYy was originally developed as a teaching tool,
with the following primary motivations:

e Easy for users to learn server-side web development without compro-

mising on functionality. For this reasomEB2PY requires no installa-
tion, no configuration, has no dependengiend exposes most of its
functionality via a web interface.

e WEB2PY has been stable from day one because it follows a top-down

design; i.e., its APl was designed before it was implemented. Even

2except for the source code distribution, which requires Python 2.5 and its standard library modules

SECURITY 9

asnew functionality has been addedreB2pPy has never broken back-
wards compatibility, and it will not break compatibility when additional
functionality is added in the future.

e WEB2PY proactively addresses the most important security issues that
plague many modern web applications, as determined by OWASP[19]
below.

e WEB2PY is light. Its core libraries, including the Database Abstraction
Layer, the template language, and all the helpers amount to 300KB. The
entire source code including sample applications and images amounts
to 2.0MB.

e WEB2PY has asmallfootprintand is very fast. Ituses the CherryPy [16]
WSGI-compliant web server that is 30% faster than Apache with
mod_proxy and four times faster than the Paste http server. Ow test
also indicate that, on an average PC, it serves an average dynamic
page without database access in about 10ms. The DAL has very low
overhead, typically less than 3%.

1.5 Security

The Open Web Application Security Project[19] (OWASP) is a free and
open worldwide community focused on improving the security of application
software.

OWASP has listed the top ten security issues that put web applications at
risk. That list is reproduced here, along with a description of how each issue
is addressed bwEB2PY:

e "Cross Site Scripting (XSS): XSS flaws occur whenever an application
takes user supplied data and sends it to a web browser without first
validating or encoding that content. XSS allows attackers to execute
scripts in the victim’s browser which can hijack user sessions, deface
web sites, possibly introduce worms, etc."

WEB2PY, by default, escapes all variables rendered in the view, pre-
venting XSS.

¢ "Injection Flaws: Injection flaws, particularly SQL injection, are com-
mon in web applications. Injection occurs when user-supplied data is

3The Web Server Gateway Interface [17, 18] (WSGI) is an emerging Python standard for communication
between a web server and Python applications.

10

INTRODUCTION

sent to an interpreter as part of a command or query. The attacker’s
hostile data tricks the interpreter into executing unintended commands
or changing data."

WEB2PY includes a Database Abstraction Layer that makes SQL in-
jection impossible. Normally, SQL statements are not written by the
developer. Instead, SQL is generated dynamically by the DAL, ensur-
ing that all inserted data is properly escaped.

"Malicious File Execution: Code vulnerable to remote file inclusion
(RFI) allows attackers to include hostile code and data, resulting in
devastating attacks, such as total server compromise."

WEB2PY allows only exposed functions to be executed, preventing
malicious file execution. Imported functions are never exposed; only
actions are exposedweB2pPY’s web-based administration interface
makes it very easy to keep track of what is exposed and what is not.

"Insecure Direct Object Reference: A direct object reference occurs
when a developer exposes a reference to an internal implementation
object, such as a file, directory, database record, or key, as a URL or
form parameter. Attackers can manipulate those references to access
other objects without authorization."

WEB2PY does not expose any internal objects; moreoven2pry val-

idates all URLs, thus preventing directory traversal attasksB2py

also provides a simple mechanism to create forms that automatically
validate all input values.

"Cross Site Request Forgery (CSRF): A CSRF attack forces a logged-
on victim’'s browser to send a pre- authenticated request to a vulnerable
web application, which then forces the victim’s browser to perform a
hostile action to the benefit of the attacker. CSRF can be as powerful
as the web application that it attacks."

WEB2PY stores all session information server side, and storing only
the session id in a browser-side cookie; moreowatB2pPY prevents
double submission of forms by assigning a one-time random token to
each form.

"Information Leakage and Improper Error Handling: Applications
can unintentionally leak information about their configuration, internal
workings, or violate privacy through a variety of application problems.
Attackers use this weakness to steal sensitive data, or conduct more
serious attacks."

WEB2PY includes a ticketing system. No error can result in code being
exposed to the users. All errors are logged and a ticket is issued to the

SECURITY 11

user that allows error tracking. Errors and source code are accessible
only to the administrator.

"Broken Authentication and Session Management: Account creden-
tials and session tokens are often not properly protected. Attackers
compromise passwords, keys, or authentication tokens to assume other
users’ identities."

WEB2PY provides a built-in mechanism for administrator authentica-
tion, and it manages sessions independently for each application. The
administrative interface also forces the use of secure session cook-
ies when the client is not "localhost". For applications, it includes a
powerful Role Based Access Control API.

"Insecure Cryptographic Storage: Web applications rarely use crypto-
graphic functions properly to protect data and credentials. Attackers
use weakly protected data to conduct identity theft and other crimes,
such as credit card fraud.”

WEB2PY uses the MD5 or the HMAC+SHA-512 hash algorithms to
protect stored passwords. Other algorithms are also available.

"Insecure Communications: Applications frequently fail to encrypt

network traffic when it is necessary to protect sensitive communica-
tions."

WEB2PY includes the SSL-enabled [20] CherryPy WSGI server, but it

can also use Apache or Lighttpd and megl to provide SSL encryption

of communications.

"Failure to Restrict URL Access: Frequently an application only pro-
tects sensitive functionality by preventing the display of links or URLs
to unauthorized users. Attackers can use this weakness to access and
perform unauthorized operations by accessing those URLs directly."
WEB2PY maps URL requests to Python modules and functionss2py
provides a mechanism for declaring which functions are public and
which require authentication and authorization. The included Role
Based Access Control API allow developers to restcrict access to any
function based on login, group membership or group based permis-
sions. The permissions are very granular and can be combined with
CRUD to allow, for example, to give access to specific tables and/or
records.

12 INTRODUCTION

1.6 In the box

You can downloadvEB2PY from the official web site:
http://www.web2py.com

WEB2PY is composed of the following components:

e libraries: provide core functionality ofvEB2PY and are accessible
programmatically.

e web server the CherryPy WSGI web server.

e the admin application: used to create, design, and manage other
WEB2PY applications. admin provide a complete web-based Inte-
grated Development Environment (IDE) for buildimgeB2PY appli-
cations. It also includes other functionality, such as web-based testing
and a web-based shell.

e theexamplesapplication: contains documentation and interactive ex-
amples. examplesis a clone of the officiaWweEB2py web site, and
includes epydoc and Sphinx documentation.

e thewelcomeapplication: the basic scaffolding template for any other
application. By default it includes a pure CSS cascading menu and
user authentication (discussed in Chapter 8).

WEB2PY is distributed in source code and binary form for Microsoft
Windows and for Mac OS X.

The source code distribution can be used in any platform where Python
or Jython run, and includes the above-mentioned components. To run the
source code, you need Python 2.5 pre-installed on the system. You also need
one of the supported database engines installed. For testing and light-demand
applications, you can use the SQLite database, included with Python 2.5.

The binary versions oWveB2prY (for Windows and Mac OS X) include
a Python 2.5 interpreter and the SQLite database. Technically, these two
are not components ofEB2prY. Including them in the binary distributions
enables you to ruwEeB2pPY out of the box.

The following image depicts the overalleB2pY structure:

LICENSE 13

welcome other
app user
(scaffolding) apps

admin examples
app app

admin

gluon (session, request, response, cookies, security, template
language, database abstraction layer, caching, errors, routes,
upload/download streaming, internationalization, etc.)

WWW mod_proxy cgi, fegi, mod_python, mod_wsgi

1.7 License

WEB2PY is licensed under the GPL version 2 License. The full text of the
license if available in ref. [30].

The license includes but it is not limited to the following articles:

1. You may copy and distribute verbatim copies of the Program’s source
code as you receive it, in any medium, provided that you conspicuously
and appropriately publish on each copy an appropriate copyright notice and
disclaimer of warranty; keep intact all the notices that refer to this License and
to the absence of any warranty; and give any other recipients of the Program
a copy of this License along with the Program.

[-]

4. You may not copy, modify, sublicense, or distribute the Program except
as expressly provided under this License. Any attempt otherwise to copy,
modify, sublicense or distribute the Program is void, and will automatically
terminate your rights under this License.

[...]

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE,
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT
PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE
STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER

14 INTRODUCTION

PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABIL-
ITY AND FITNESS FOR APARTICULAR PURPOSE. THE ENTIRE RISK
AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS
WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU AS-
SUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR COR-
RECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW
OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR
ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR
DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR IN-
ABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE
OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF
THE POSSIBILITY OF SUCH DAMAGES.

e WEB2PY includes some third-party code (for example the Python in-
terpreter, the CherryPy web server, and some JavaScript libraries).
Their respective authors and licenses are acknowledged in the official
website [1] and in the code itself.

e Applications developed witweEB2pPY, as long as they do not include
WEB2PY source code, are not considered derivative works. This means
they are not bound by the GPLV2 license, and you can distribute the
applications you developed under any license you choose, including a
closed-source and/or commercial license.

1.8 License Commercial Exception

ThewEeB2PY license also includes a commercial exception:

You may distribute an application you developed withkB2PY together
with an unmodified official binary distribution ofEB2PY, as downloaded
from the official website[1], as long as you make it clear in the license of
your application which files belong to the application and which files belong
to WEB2PY.

ACKNOWLEDGMENTS 15

1.9 Acknowledgments

WEB2PY was originally developed by and copyrighted by Massimo Di Pierro.
The first version (1.0) was released in October, 2007. Since then it has been
adopted by many users, some of whom have also contributed bug reports,
testing, debugging, patches, and proofreading of this book.

Some of the major contributors are, in alphabetical order by first name:

Alexandre Andrade, Alexey Nezhdanov (GAE and database performance),
Alvaro Justen (dynamical translations), Andre Berthiaume, Andre Bossard,
Attila Csipa (cron job), Bill Ferrett (modular DAL design), Boris Manojlovic
(Ajax edit), Carsten Haese (Informix), Chris Baron, Christopher Smiga (In-
formix), Clifford John Lazell (tester and JS), David H. Lee (OpenlID), Denes
Lengyel (validators, DB2 support), Douglas Soares de Andrade (2.4 and 2.6
compliance, docstrings), Felipe Barousse, Fran Boon (authorization and au-
thentication), Francisco Gama (bug fixing), Fred Yankowski (XHTML com-
pliance), Gabriele Carrettoni, Graham Dumpleton, Gregor Jovanovich, Hans
Christian v. Stockhausen (OpenlID), Hans Donner (GAE support, Google
login, widgets, Sphinx documentation), lvan Valev, Joe Barnhart, Jonathan
Benn (validators and tests), Jonathan Lundell, Jose Jachuf (Firebird sup-
port), Kacper Krupa, Kyle Smith (JavaScript), Limodou (winservice), Lucas
Geiger,Marcel Leuthi (Oracle support), Mark Larsen (taskbar widget), Mark
Moore (databases and daemon scripts), Markus Gritsch (bug fixing), Martin
Hufsky (expressions in DAL), Mateusz Banach (stickers, validators, content-
type), Michael Willis (shell), Milan Andric, Minor Gordon, Nathan Freeze
(admin design, validators), Niall Sweeny (MSSQL support), Niccolo Polo
(epydoc), Nicolas Bruxer (memcache support), Ondrej Such (MSSQL sup-
port), Pai (internationalization), Phyo Arkar Lwin (web hosting and Jython
tester), Ricardo Cardenes, Richard Gordon, Richard Baron Penman, Robin
Bhattacharyya (Google App Engine support), Roman Goldmann, Ruijun Luo
(windows binary), Scott Santarromana, Sergey Podlesnyi (Oracle and migra-
tions tester), Shane McChesney, Sharriff Aina (tester and PyAMF integra-
tion), Sterling Hankins (tester), Stuart Rackham (MSSQL support), Telman
Yusupov (Oracle support), Tim Farrell, Tim Michelsen (Sphinx documen-
tation), Timothy Farrell (Python 2.6 compliance, windows support), Tito
Garrido, Yair Eshel (internationalizaiton), Yarko Tymciurak (design, Sphinx
documentation), Ygao, Younghyun Jo (internationalization), Zoom Quiet

| am sure | forgot somebody, so | apologize.

| particularly thank Alvaro, Denes, Felipe, Graham, Jonathan, Hans, Kyle,
Mark, Richard, Robin, Roman, Scott, Shane, Sharriff, Sterling, Stuart and
Yarko for proofreading various chapters of this book. Their contribution was
invaluable. If you find any errors in this book, they are exclusively my fault,

16 INTRODUCTION

probably introduced by a last-minute edit. | also thank Ryan Steffen of Wiley
Custom Learning Solutions for help with publishing the first edition of this
book.

WEB2PY contains code from the following authors, whom | would like to
thank:

Guido van Rossum for Python [2], Peter Hunt, Richard Gordon, Robert
Brewer for the CherryPy [21] web server, Christopher Dolivet for EditArea[22],
Brian Kirchoff for nicEdit [23], Bob Ippolito for simplejson [24], Simon
Cusack and Grant Edwards for pyRTF [25], Dalke Scientific Software for
pyRSS2Gen [26], Mark Pilgrim for feedparser [27], Trent Mick for mark-
down2 [28], Allan Saddi for fcgi.py, Evan Martin for the Python memcache
module [29], John Resig for jQuery [31].

The logo used on the cover of this book was designed by Peter Kirchner at
Young Designers.

| thank Helmut Epp (provost of DePaul University), David Miller (Dean
of the College of Computing and Digital Media of DePaul University), and
Estia Eichten (Member of MetaCryption LLC), for their continuous trust and
support.

Finally, I wish to thank my wife, Claudia, and my son, Marco, for putting up
with me during the many hours | have spent developimg 2Py, exchanging
emails with users and collaborators, and writing this book. This book is
dedicated to them.

1.10 About this Book

This book includes the following chapters, besides this introduction:

e Chapter 2 is a minimalist introduction to Python. It assumes knowl-
edge of both procedural and object-oriented programming concepts
such as loops, conditions, function calls and classes, and covers basic
Python syntax. It also covers examples of Python modules that are
used throughout the book. If you already know Python, you may skip
Chapter 2.

e Chapter 3 shows how to stasteB2pPY, discusses the administrative
interface, and guides the reader through various examples of increasing
complexity: an application that returns a string, a counter application,
an image blog, and a full blown wiki application that allows image
uploads and comments, provides authentication, authorization, web
services and an RSS feed. While reading this chapter, you may need

ABOUT THIS BOOK 17

to refer to Chapter 2 for general Python syntax and to the following
chapters for a more detailed reference about the functions that are used.

e Chapter 4 covers more systematically the core structure and libraries:
URL mapping, request, response, sessions, cacheint, CRON, interna-
tionalization and general workflow.

e Chapter 5 is a reference for the template language used to build views.
It shows how to embed Python code into HTML, and demonstrates the
use of helpers (objects that can generate HTML).

e Chapter 6 covers the Database Abstraction Layer, or DAL. The syntax
of the DAL is presented through a series of examples.

e Chapter 7 covers forms, form validation and form processing. FORM
is the low level helper for form building. SQLFORM is the high level
form builder. In Chapter 7 we also discuss the new Create/Read/Up-
date/Delete (CRUD) API.

e Chapter 8 covers authentication, authorization and the extensible Role-
Based Access Control mechanism available/ieB2pry. Mail config-
uration and CAPTCHA are also discussed here, since they are used by
authentication.

e Chapter 9 is about creating web servicesnep2pry. We provide
examples of integration with the Google Web Toolkit via Pyjamas, and
with Adobe Flash via PyAMF.

e Chapter 10is aboutEB2PY and jQuery recipeswEB2PY is designed
mainly for server-side programming, but it includes jQuery, since we
have found it to be the best open-source JavaScript library available
for effects and Ajax. In this chapter, we discuss how to effectively use
jQuery withweEB2PY.

e Chapter 11 is about production deploymentafB2pry applications.
We mainly address three possible production scenarios: on a Linux
web server or a set of servers (which we consider the main deployment
alternative), running as a service on a Microsoft Windows environment,
and deployment on the Google Applications Engine (GAE). In this
chapter, we also discuss security and scalability issues.

e Chapter 12 contains a variety of other recipes to solve specific tasks,
inlcuding upgrades, gecoding, pagination, Twitter API, and more.

This book only covers basiweB2pY functionalities and the API that
ships withweB2pry. This book does not coveveEB2PY appliances, for

18 INTRODUCTION

example KPAX, theweB2pY Content Management System. The appliance
for Central Authentication Service is briefly discussed in Chapter 8.
You can downloa@&vEB2PY appliances from the corresponding web site [33].
You can find additional topics discussed on AlterEgo [34], the interactive
WEB2PY FAQ.

1.11 Elements of Style

Ref. [35] contains good style practices when programming with Python. You
will find that wEB2PY does not always follow these rules. This is not because
of omissions or negligence; it is our belief that the usersraB2py should
follow these rules and we encourage it. We chose not to follow some of
those rules when defininges2pry helper objects in order to minimize the
probability of name conflict with objects defined by the user.

For example, the class that represenisa is calledoiv, while according
to the Python style reference it should have been calledWe believe that,
for this specific example that using an all-upper-case "DIV" is a more natural
choice. Moreover, this approach leaves programmers free to create a class
called "Div" if they choose to do so. Our syntax also maps naturally into the
DOM notation of most browsers (including, for example, Firefox).

According to the Python style guide, all-upper-case strings should be used
for constants and not variables. Continuing with our example, even consid-
ering thablv is a class, it is a special class that should never be redefined by
the user because doing so would break othies2py applications. Hence,
we believe this qualifies thewv class as something that should be treated as
a constant, further justifying our choice of notation.

In summary, the following conventions are followed:

e HTML helpers and validators are all upper case for the reasons dis-
cussed above (for exampbes, A, FORMURL).

e The translator objeatis upper case despite the fact that it is an instance
of a class and not a class itself. Logically the translator object performs
an action similar to the HTML helpers — it affects rendering part of
the presentation. Alsa,needs to be easy to locate in the code and has
to have a short name.

e DAL classes follow the Python style guide (first letter capitalized),
sometimes with the addition of a clarifying DAL prefix (for example
Table , Field , DALQuery, €tc.).

ELEMENTS OF STYLE 19

In all other cases we believe we have followed, as much as possible, the
Python Style Guide (PEP8). For example all instance objects are lower-case
(request, response, session, cache), and all internal classes are capitalized.

In all the examples of this bookyEB2pPY keywords are shown in bold,
while strings and comments are shown in italic.

CHAPTER 2

THE PYTHON LANGUAGE

2.1 About Python

Python is a general-purpose and very high-level programming language. Its
design philosophy emphasizes programmer productivity and code readability.
It has a minimalist core syntax with very few basic commands and simple
semantics, but it also has a large and comprehensive standard library, includ-
ing an Application Programming Interface (API) to many of the underlying
Operating System (OS) functions. The Python code, while minimalist, de-
fines objects such as linked listst(), tuples fuple), hash tablesict), and
arbitrarily long integersidng).

Python supports multiple programming paradigms. These are object-
oriented §lass), imperative {ef), and functional 1émbda) programming.
Python has a dynamic type system and automatic memory management using
reference counting (similar to Perl, Ruby, and Scheme).

Python was first released by Guido van Rossumin 1991. The language has
an open, community-based development model managed by the non-profit
Python Software Foundation. There are many interpreters and compilers that

WEBZ2PY: Enterprise Web Framework / 2nd Bl.Massimo Di Pierro 21
Copyright(C) 2009

i

i

i

i

22 THE PYTHON LANGUAGE

implement the Python language, including one in Java (Jython) but, in this
brief review, we refer to the reference C implementation created by Guido.

You can find many tutorials, the official documentation and library refer-
ences of the language on the official Python website [2]

For additional Python references, we can recommend the books in ref. [36]
and ref. [37].

You may skip this chapter if you are already familiar with the Python
language.

2.2 Starting up

The binary distributions ofvEB2pY for Microsoft Windows or Apple OS
X come packaged with the Python interpreter built into the distribution file
itself.

You can start it on Windows with the following command (type at the DOS
prompt):

web2py.exe -S welcome

On Apple OS X, enter the following command type in a Terminaldoww
(assuming you're in the same folder as web2py.app):

.;web2py.app/Contents/MacOS/web2py -S welcome

On a Linux or other Unix box, chances are that you have Pyth@adyr
installed. If so, at a shell prompt type:

python web2py.py -S welcome

If you do not have Python 2.5 already installed, you will havédanload
and install it before runningyEB2PY.

The-s welcome command line option instruct§ EB2PY to run the inter-
active shell as if the commands were executed in a controller favéhesome
application, theweB2py scaffolding application. This exposes almost all
WEB2PY classes, objects and functions to you. This is the only difference
between thevEB2PY interactive command line and the normal Python com-
mand line.

The admin interface also provides a web-based shell for each application.
You can access the one for the "welcome" application at.

http://127.0.0.1:8000/admin/shell/index/welcome

You can try all the examples in this chapter using the normadl sh¢he
web-based shell.

2.3 help, dir

HELP, DIR 23

The Python language provides two commands to obtain documentation about
objects defined in the current scope, both builtins and user defined.

We can ask forelp about an object, for example “1":

1 >>> help(2)
> Help on int object:

3

4 class int(object)

5

6
7

10
11

12
13
14
15
16
17

18 ...

int(x[, base]) -> integer

Convert a string or number to an integer, if possible.
floating point

argument will be truncated towards zero (this does not includ
string

representation of a floating point number!) When converting
string, use

the optional base. It is an error to supply a base when
converting a

non-string. If the argument is outside the integer range a lon
object

will be returned instead.

Methods defined here:

abs (...)
X.__abs_ () <==> abs(x)

and, since "1" is an integer, we get a description abouithelass and all
its methods. Here the output has been truncated because it is very long and

detailed.
Similarly, we can obtain a list of methods of the object "1" with the

commandhir :

1 >>> dir(1)

2['_abs_' , ' add_"' , '_and_' , '_class_' , ' _cmp_' ' _coerce___
', ' delattr_' , ' div_" , ' divmod_' , ' doc_ ' ' float '
, ' floordiv__' , ' getattribute__ ' , '__getnewargs_ ' , '__hash__
', ' hex_ ' , ' _index_ ' , '_init_"' , _int_ ' , invert_ ' ,
long" , ' Ishift_"' , "~ mod_ ', ' _mul_' , ' neg_' ,
new', ' nonzero_' , '_oct ' , ' _or ' , ' pos_' , ' pow__
', '_radd_' , ' _rand_' , '_rdiv_' , '__rdivmod__" ' _reduce__
', ' _reduce_ex_' , '_repr_' , ' rfloordiv__' , '__rishift_" ,
rmod ", '_rmul_" , ' _ror_"' , ' rpow__' , ' rrshift ' ,
__rshift__* , '_rsub_ " , ' rtruediv_' , _rxor_' ' _setattr

Y, '_str ', ' sub ' , ' truediv_ ' , ' xor_

]

© o N e g A W N R

w N e

L N

N

24 THE PYTHON LANGUAGE

2.4 Types

Python is a dynamically typed language, meaning that variables do not have
a type and therefore do not have to be declared. Values, on the other hand,
do have a type. You can query a variable for the type of value it contains:

>>> g = 3

>>> print type(a)
<type 'int' >

>>> a = 3.14

>>> print type(a)
<type ‘float' >

>>> a = 'hello python'
>>> print type(a)
<type 'str' >

Python also includes, natively, data structures such agligtglictionaries.

str

Python supports the use of two different types of strings: ASCII strings and

[T nom

Unicode strings. ASCII strings are delimited by '..., "..." or by ™. or
LM Triple quotes delimit multiline strings. Unicode strings start with
au followed by the string containing Unicode characters. A Unicode string

can be converted into an ASCII string by choosing an encoding for example:

>>> a = 'this is an ASCII string'
>>> b = u'This is a Unicode string'
>>> a = b.encode('utf8')

After executing these three commands, the resultiegan ASCII string
storing UTF8 encoded characters. By desigmp2pry uses UTF8 encoded
strings internally.

It is also possible to write variables into strings in various ways:

>>> print 'number is ' + str(3)

number is 3

>>> print 'number is %s' % (3)

number is 3

>>> print ‘'number is %(number)s' % dict(number=3)
number is 3

The last notation is more explicitand less error prone, aralis preferred.

Many Python objects, for example numbers, can be serialized into strings
usingstr Orrepr . These two commands are very similar but produce slightly
different output. For example:
>>> for i in [3, ‘hello’ [

print str(i), repr(i)

33
hello ‘hello’

N I T N
O —— o=

© o N o O A W N R

N L N

o g A W N R

WN -

TYPES 25

For user-defined classes, andrepr can be defined/redefined using the
special operatorsstr __ and _repr . These are briefly described later on;
for more, refer to the official Python documentation [38hr always has a
default value.

Another important characteristic of a Python string is that, like a list, it is
an iterable object.

>>> for i in ‘hello’
print i

list

The main methods of a Python list are append, insert, and delete:

>>> a = [1, 2, 3]
>>> print type(a)
<type 'list' >

>>> a.append(8)

>>> a.insert(2, 7)
>>> del a[0]

>>> print a

2, 7, 3, 8]

>>> print len(a)

Lists can be sliced:

>>> print af:3]
[2, 7, 3]

>>> print a[l:]
[7, 3, 8]

>>> print a[-2:]
3. 8]

and concatenated:

>>> a = [2, 3]
>>> b = [5, 6]
>>> print a + b
[2, 3, 5, 6]

A listis iterable; you can loop over it:

>>> a = [1, 2, 3]
>>> for i in a:
print i

B oW N R

L N ~N o o A W NP

o g A W N e

26 THE PYTHON LANGUAGE

The elements of a list do not have to be of the same type; they can be any
type of Python object.

tuple

A tuple is like a list, but its size and elements are immutable, while in a list
they are mutable. If a tuple element is an object, the object attributes are
mutable. A tuple is delimited by round brackets.
>>>a = (1, 2, 3)

So while this works for a list:
>>>a = [1, 2, 3]
>>> a[]_] =5

>>> print a
[1, 5, 3]

the element assignment does not work for a tuple:

>>> a = (1, 2, 3)
>>> print a[l]
>>> g[1] = 5
Traceback (most recent call last):
File ‘"<stdin>" , line 1, in <module>
TypeError: ‘tuple’ object does not support item assignment

The tuple, like the list, is an iterable object. Notice thatglewconsisting
of a single element must include a trailing comma, as shown below:

>>> a = (1)

>>> print type(a)
<type 'int >
>>> a = (1,)
>>> print type(a)
<type ‘tuple’ >

Tuples are very useful for efficient packing of objects becafsieir
immutability, and the brackets are often optional:

>>> a = 2, 3, ‘'hello’
>>> X, Y,z = a

>>> print X

2

>>> print z

hello

dict

A Pythondict ionary is a hash table that maps a key object to a value object.
For example:

© o N e g A W N R

[N

~N o o~ W N R

© N e oA W N R

i

2

TYPES 27

>>>a = {'k v , 'k2' :3}
>>> g['k']

v

>>> g 'k2']

8

>>> a.has_key('k')

True

>>> a.has_key(V')

False

Keys can be of any hashable type (int, string, or any object w/lubesss
implements the_hash __ method). Values can be of any type. Different keys
and values in the same dictionary do not have to be of the same type. If the
keys are alphanumeric characters, a dictionary can also be declared with the
alternative syntax:

>>> a = dictk= V' , h2=3)

>>> g 'k']

\'

>>> print a
{'k" :'v' , 'h2" 3}

Useful methods areas key, keys , values anditems :

>>> a = dict(k= 'v' , k2= '3)
>>> print a.keys()

[k', " k21
>>> print a.values()
[v, 3

>>> print a.items()
[k. " v) (k2, 3)]
Theitems method produces a list of tuples, each containing a key and its
associated value.

Dictionary elements and list elements can be deleted with the command
del :

>>> a = [1, 2, 3]

>>> del a[1]
>>> print a
(1, 3]

>>> a = dict(k= 'v' , h2=3)
>>> del a['h2']

>>> print a

{'k Vv }

Internally, Python uses thesh operator to convert objects into integers,
and uses that integer to determine where to store the value.

>>> hash("hello world")
-1500746465

® N g A W N e

~N o o A W N R

= L N

~N o o~ W N R

28 THE PYTHON LANGUAGE

2.5 About Indentation

Python uses indentation to delimit blocks of code. A block starts with a
line ending in colon, and continues for all lines that have a similar or higher
indentation as the next line. For example:

>>> | =0

>>> while i < 3:

>>> print i

>>> i=i+1

>>>

0

1
2

It is common to use 4 spaces for each level of indentation. Itgead
policy not to mix tabs with spaces, or you may run into trouble.

2.6 for...in

In Python, you can loop over iterable objects:

>>> a = [0, 1, ‘hello’ , 'python']
>>> for i in a:
print i
0
1
hello
python

One common shortcut ig ange , which generates an iterable range without
storing the entire list of elements.

>>> for i in xrange(0, 4):
print i

0

1

2

4

This is equivalent to the C/C++/C#/Java syntax:
for(int i=0; i<4; i=i+1) { print(i); }

Another useful command isumerate , Which counts while looping:

>>> a = [0, 1, ‘hello’ , ‘python']
>>> for i, j in enumerate(a):
print i, j

B oW N R

N o o~ ®w N P

[N

N

WHILE 29

Thereis also a keyworghge(a, b, c) thatreturnsalistofintegers starting
with the valuea, incrementing by, and ending with the last value smaller
thanb, a defaults to 0 and defaults to 1. xrange is similar but does not
actually generate the list, only an iterator over the list; thus it is better for
looping.

You can jump out of a loop usingeak

>>> for i in [1, 2, 3]:
print i
break

1

You can jump to the next loop iteration without executing theérercode
block with continue

>>> for i in [1, 2, 3]:

print i
continue
print ‘test'

1

2

8

2.7 while

Thewhile loop in Python works much as it does in many other programming
languages, by looping an indefinite number of times and testing a condition
before each iteration. If the conditionrssse , the loop ends.

>>> | =0

>>> while i < 10:
i=i+1

>>> print i

10

There is nao op...until construct in Python.

2.8 def...return

Here is a typical Python function:

>>> def f(a, b=2):
return a + b

>>> print f(4)

6

~N o g s W N R N o g s W N R

~N o o » W N P

[N N

[N R

30 THE PYTHON LANGUAGE

There is no need (or way) to specify types of the arguments or the return

type(s).
Function arguments can have default values and can return multiple objects:

>>> def f(a, b=2):
return a + b, a - b
>>> X, y = (5)
>>> print x
7
>>> print y
B

Function arguments can be passed explicitly by name:

>>> def f(a, b=2):
return a + b, a - b
>>> x, y = f(b=5, a=2)
>>> print x
7
>>> print y
-3

Functions can take a variable number of arguments:

>>> def f(+a, **b):

return a, b
>>> x, y = f(3, 'hello' |, c=4, test= ‘'world")
>>> print x
(3, ‘'hello’)
>>> print y
{'c 4, ‘'test :'world" }

Here arguments not passed by name (3, 'hello’) are storedtin, lsnd
arguments passed by nameafidtest) are stored in the dictionasy

In the opposite case, a list or tuple can be passed to a function that requires
individual positional arguments by unpacking them:

>>> def f(a, b):
return a + b
>>> ¢ = (1, 2)
>>> print f(*c)
3

and a dictionary can be unpacked to deliver keyword arguments:

>>> def f(a, b):

return a + b
>>>c¢c = {'a :1, b :2}
>>> print f(** c)
3

© o N e g A W N R

© ©® N o O N w N F .

~N o o A W N R

IF...ELIF...ELSE 31

2.9 if...elif...else

The use of conditionals in Python is intuitive:

>>> for i in range(3):

>>> if i ==

>>> print ‘'zero'
>>> elif i ==

>>> print ‘one'
>>> else:

>>> print ‘other'
zero

one

other

"elif" means "else if". Bothel if andelse clauses are optional. There can
be more than oneit but only onesise statement. Complex conditions can
be created using thet , and andor operators.

>>> for i in range(3):
>>> ifi=0or (i==1and i+ 1 == 2):
>>> print 'O or 1'

2.10 try... except...else...finally

Python can throw - pardon, raise - Exceptions:

>>> try:

>>> a=11/0

>>> except Exception, e

>>> print ‘error' , e, ‘occurred'
>>> else:

>>> print 'no problem here'

>>> finally:

>>> print ‘done’

error 3 occurred

done

If the exception is raised, it is caught by theept clause, which is executed,

while theelse clause is not. If no exception is raised, teept clause is not

executed, butthese oneis. Theainaly clause is always executed.
There can be multiplexcept clauses for different possible exceptions:

>>> try:

>>> raise SyntaxError
>>> except ValueError:

>>> print ‘value error'
>>> except SyntaxError:

>>> print ‘'syntax error'
syntax error

1
2
3
4
5
6
7
8
9

32 THE PYTHON LANGUAGE

Theelse andfinally clauses are optional.
Here is a list of built-in Python exceptions + HTTP (definedviboys2pY)

BaseException
+-- HTTP (defined by web2py)
+-- SystemExit
+-- KeyboardInterrupt
+-- Exception
+-- GeneratorExit
+-- Stoplteration
+-- StandardError
| +-- ArithmeticError
| | +-- FloatingPointError
| | +-- OverflowError
| | +-- ZeroDivisionError
| +-- AssertionError
| +-- AttributeError
| +-- EnvironmentError
| | +-- 1OError
| | +-- OSError
| | +-- WindowsError (Windows)
| | +-- VMSError (VMS)
| +-- EOFError
| +-- ImportError
| +-- LookupError
| | +-- IndexError
| | +-- KeyError
| +-- MemoryError
| +-- NameError
| | +-- UnboundLocalError
| +-- ReferenceError
| +-- RuntimeError
| | +-- NotlmplementedError
| +-- SyntaxError
| | +-- IndentationError
| | +-- TabError
| +-- SystemError
| +-- TypeError
| +-- ValueError
| | +-- UnicodeError
| | +-- UnicodeDecodeError
| | +-- UnicodeEncodeError
| | +-- UnicodeTranslateError
+-- Warning
+-- DeprecationWarning
+-- PendingDeprecationWarning
+-- RuntimeWarning
+-- SyntaxWarning
+-- UserWarning
+-- FutureWarning
+-- ImportWarning
+-- UnicodeWarning

For a detailed description of each of them, refer to the offiighon
documentation.

[I N R

© ©® N o O s W NP

CLASS 33

WEB2PY exposes only one new exception, calledr. When raised, it
causes the program to return an HTTP error page (for more on this refer to
Chapter 4).

Any object can be raised as an exception, but it is good practice to raise
objects that extend one of the built-in exceptions.

2.11 class

Because Python is dynamically typed, Python classes and objects may seem
odd. In fact, you do not need to define the member variables (attributes)
when declaring a class, and different instances of the same class can have
different attributes. Attributes are generally associated with the instance, not
the class (except when declared as "class attributes"”, which is the same as
"static member variables" in C++/Java).

Here is an example:

>>> class MyClass(object): pass
>>> myinstance = MyClass()
>>> myinstance.myvariable = 3
>>> print myinstance.myvariable
8

Notice thatpass is a do-nothing command. In this case it is used to define
a clasawyclass that contains nothingmyclass() calls the constructor of the
class (in this case the default constructor) and returns an object, an instance of
the class. Thewbjecty In the class definition indicates that our class extends
the built-inobject class. This is not required, but it is good practice.

Here is a more complex class:

>>> class MyClass(object):

>>> z =2

>>> def __init_ (self, a, b):

>>> selfx = a, selfy = b

>>> def add(self):

>>> return self.x + selfy + self.z

>>> myinstance = MyClass(3, 4)
>>> print myinstance.add()
9

Functions declared inside the class are methods. Some métaeelspecial
reserved names. For examplajt __ is the constructor. All variables are
local variables of the method except variables declared outside methods. For
examplez is aclass variable equivalent to a C+tatic member variable
that holds the same value for all instances of the class.

Notice that_init _ takes 3 arguments ardd takes one, and yet we call
them with 2 and 0 arguments respectively. The first argument represents,

34 THE PYTHON LANGUAGE

by convention, the local name used inside the method to refer to the current
object. Here we usexif to refer to the current object, but we could have
used any other nameself plays the same role asis in C++ orthis in
Java, butelf is not a reserved keyword.

This syntax is necessary to avoid ambiguity when declaring nested classes,
such as a class that is local to a method inside another class.

2.12 Special Attributes, Methods and Operators

Class attributes, methods, and operators starting with a double underscore
are usually intended to be private, although this is a convention that is not
enforced by the interpreter.

Some of them are reserved keywords and have a special meaning.

Here, as an example, are three of them:

® _len _
® _ getitem __

® _setitem __

They can be used, for example, to create a container objecatkatike a
list:

>>> class MyList(object)

>>> def __init_ (self, *xa): selfa = a
>>> def __len__(self): return len(self.a)

>>> def _ getitem__(self, i): return self.a[i]
>>> def __ setitem__(self, i, j): self.ali] = j
>>> b = MylList(3, 4, 5)

>>> print b[1]

4

>>> g[l] = 7
>>> print b.a
[3, 7, 5]

Other special operators includgetattr _ and _setattr __, which define
the get and set attributes for the class, andh._ and_sub _, which overload
alithmetic operators. For the use of these operators we refer the reader to
more advanced books on this topic. We have already mentioned the special
operators.str __and_repr __.

2.13 File Input/Output

In Python you can open and write in a file with:

N

w N e

w N e

i

N

LAMBDA 35

>>> file = open('myfile.txt’ , W)
>>> file.write(‘hello world')
Similarly, you can read back from the file with:
>>> file = open(‘'myfile.txt' , T)
>>> print file.read()
hello world
Alternatively, you can read in binary mode with "rb", write imary mode
with "wb", and open the file in append mode "a", using standard C notation.
Theread command takes an optional argument, which is the number of
bytes. You can also jump to any location in a file usieg .
You can read back from the file witbad

>>> print file.seek(6)
>>> print file.read()
world

and you can close the file with:

>>> file.close()

although often this is not necessary, because a file is clogedatically
when the variable that refers to it goes out of scope.

When usingvEB2PY, you do not know where the current direc-
tory is, because it depends on heweB2PY is configured. The
variablerequestfolder ~ contains the path to the current applica-
tion. Paths can be concatenated with the comnvapéth.join
discussed below.

2.14 lambda

There are cases when you may need to dynamically generate an unnamed
function. This can be done with thenbda keyword:

>>> a = lambda b: b + 2
>>> print a(3)

The expressiona mbda [a]:[b]" literally reads as "a function with arguments
[a] that returns [b]". Even if the function is unnamed, it can be stored into a
variable, and thus it acquires a name. Technically this is different than using
def , because it is the variable referring to the function that has a name, not
the function itself.

Who needs lambdas? Actually they are very useful because they allow to
refactor a function into another function by setting default arguments, without
defining an actual new function but a temporary one. For example:

AW N e

[N

i

[I N

36 THE PYTHON LANGUAGE

>>> def f(a, b): return a + b
>>> g = lambda a: f(a, 3)
>>> g(2)

5

Here is a more complex and more compelling application. Suppos
have a function that checks whether its argument is prime:
def isprime(number):
for p in range(2, number):
if number % p:
return False
return True

This function is obviously time consuming.
Suppose you have a caching functieaneram that takes three arguments:
a key, a function and a number of seconds.

value = cache.ram('key' , f, 60)

The first time it is called, it calls the function), stores the output in a
dictionary in memory (let’s say "d"), and returns it so that value is:

value = d[‘'key']=f()
The second time it is called, if the key is in the dictionary aod sider

than the number of seconds specified (60), it returns the corresponding value
without performing the function call.

value = d[‘'key']
How would you cache the output of the functimprime for any input?
Here is how:

>>> number = 7

>>> print cache.ram(str(number), lambda: isprime(number), seconds)

True

>>> print cache.ram(str(number), lambda: isprime(number), seconds)

True

The output is always the same, but the first tica@e.ram is called,isprime

is called; the second time it is not.

The existence odmbda allows refactoring an existing function
in terms of a different set of arguments.

cacheram andcache.disk are WEB2PY caching functions.

2.15 exec, eval

Unlike Java, Python is a truly interpreted language. This means it has the
ability to execute Python statements stored in strings. For example:

w N e

B oW N R

EN I

Noe

N

Noe

IMPORT 37

>>> a = "print 'hello world™
>>> exec(a)
‘hello world'

What just happened? The functierec tells the interpreter to call itself and
execute the content of the string passed as argument. It is also possible to
execute the content of a string within a context defined by the symbols in a
dictionary:

>>> a = "print b"

>>> ¢ = dict(b=3)

>>> exec(a, {}, ©)
B

Here the interpreter, when executing the stdngees the symbols defined in
¢ (b in the example), but does not seer a themselves. This is different than
a restricted environment, sinegc does not limit what the inner code can
do; it just defines the set of variables visible to the code.

A related function isval , which works very much likexec except that it
expects the argument to evaluate to a value, and it returns that value.

>>> a = "3x4"
>>> b = eval(a)

>>> print b
12
2.16 import

The real power of Python is in its library modules. They provide a large and
consistent set of Application Programming Interfaces (APIs) to many system
libraries (often in a way independent of the operating system).

For example, if you need to use a random number generator, you can do:

>>> import random
>>> print random.randint(0, 9)
5

This prints a random integer between 0 and 9 (including 9), Shen t
example. The functiorandint is defined in the modulendom. It is also
possible to import an object from a module into the current namespace:
>>> from random import randint
>>> print randint(0, 9)

or import all objects from a module into the current namespace:
>>> from random import *
>>> print randint(0, 9)

or import everything in a newly defined namespace:

38 THE PYTHON LANGUAGE

[

>>> jmport random as myrand
>>> print myrand.randint(0, 9)

N

In the rest of this book, we will mainly use objects defined in oiedos,
sys , datetime , time andcpickle

All of the wEB2PY Objects are accessible via a module called
gluon , and that is the subject of later chapters. Internally,
WEB2PY uses many Python modules (for exampied), but
you rarely need to access them directly.

In the following subsections we consider those modules that are most
useful.

0s

This module provides an interface to the operating system API. For example:

>>> import 0s
>>> os.chdir(.)
>>> os.unlink(‘filename_to_be_deleted')

w N e

Some of thes functions, such aadir , MUST NOT be used in
WEB2PY because they are not thread-safe.

os.path.join is very useful; it allows the concatenation of paths in an
OS-independent way:

>>> import 0s

>>> a = os.path.join(‘path’ , 'sub_path')
>>> print a

path/sub_path

N

System environment variables can be accessed via:

>>> print 0s.environ

i

which is a read-only dictionary.

sys

Thesys module contains many variables and functions, but the one we use
the most issys.path . It contains a list of paths where Python searches for
modules. When we try to import a module, Python looks for it in all the
folders listed insys.path . If you install additional modules in some location
and want Python to find them, you need to append the path to that location to
sys.path

1 >>> import sys
2 >>> sys.path.append('path/to/my/modules’)

N

o B W N R

w N e

o A W NP

w N e

IMPORT 39

When runningvEB2PY, Python stays residentin memory, and there is only
Onesys.path , While there are many threads servicing the HTTP requests. To
avoid a memory leak, it is best to check if a path is already present before
appending:
>>> path = ‘path/to/my/modules'

>>> if not path in sys.path:
sys.path.append(path)

datetime

The use of the datetime module is best illustrated by some examples:

>>> import datetime

>>> print datetime.datetime.today()
2008-07-04 14:03:90

>>> print datetime.date.today()
2008-07-04

Occasionally you may need to timestamp data based on the UTeCasm
opposed to local time. In this case you can use the following function:
>>> import datetime

>>> print datetime.datetime.utcnow()
2008-07-04 14:03:90

The datetime modules contains various classes: date, dafdime and
timedelta. The difference between two date or two datetime or two time
objects is a timedelta:
>>> g = datetime.datetime(2008, 1, 1, 20, 30)
>>> b = datetime.datetime(2008, 1, 2, 20, 30)
>>> ¢ = b - a

>>> print c.days
1

In weEB2PY, date and datetime are used to store the corresponding SQL
types when passed to or returned from the database.

time

The time module differs from date and datetime because it represents time as
seconds from the epoch (beginning of 1970).
>>> import time

>>> t = time.time()
1215138737.571

Refer to the Python documentation for conversion functionsd®en time in
seconds and time asiaetime

AW NP

w N e

N

40 THE PYTHON LANGUAGE

cPickle

This is a very powerful module. It provides functions that can serialize almost
any Python object, including self-referential objects. For example, let’s build
a weird object:

>>> class MyClass(object): pass
>>> myinstance = MyClass()

>>> myinstance.x = 'something’
>>>a = [1,2, { ‘'hellot :'world 1}, [3, 4, [myinstance]]]
and now:

>>> jmport cPickle
>>> b = cPickle.dumps(a)
>>> ¢ = cPickle.loads(b)

In this exampley is a string representation ef andc is a copy o generated
by deserializing.
cPickle can also serialize to and deserialize from a file:

>>> cPickle.dumps(a, open(‘myfile.pickle’ , 'wb'))
>>> ¢ = cPickle.loads(open(‘myfile.pickle’ , 'th')

i

CHAPTER 3

OVERVIEW

3.1 Startup

WEB2PY comes in binary packages for Windows and Mac OS X. There is
also a source code version that runs on Windows, Mac, Linux, and other
Unix systems. The Windows and OS X binary versions include the necessary
Python interpreter. The source code package assumes that Python is already
installed on the computer.

WEB2PY requires no installation. To get started, unzip the downloaded zip
file for your specific operating system and execute the corresponeingy
file.

On Windows, run:

web2py.exe

On OS X, run:
web2py.app

On Unix and Linux, run from source by typing:

WEB2PY: Enterprise Web Framework / 2nd EBy. Massimo Di Pierro 41
Copyright(C) 2009

42 OVERVIEW

1 python2.5 web2py.py
The weB2pY program accepts various command line options which are

discussed later.
By default, at startupyEB2PY displays a startup window:

Welcome fo ..

Created by Massimo Di Fierro, Copyright 2007-2009

Version 1.66.1 (2009-08-18 00:07:57)

and then displays a GUI widget that asks you to choose a onedtithe
ministrator password, the IP address of the network interface to be used for
the web server, and a port number from which to serve requests. By default,
WEB2PY runs its web server on 127.0.0.1:8000 (port 8000 on localhost), but
you can run it on any available IP address and port. You can query the IP
address of your network interface by opening a command line and typing
ipconfig on Windows orifconfig on OS X and Linux. From now on we
assumevEB2PY is running on localhost (127.0.0.1:8000). Use 0.0.0.0:80to
run weB2pY publicly on any of your network interfaces.

N ™M web2py server

Choose a password: [|
[127.004

[B000 |

Running from host:

Running from port:

4 o
start server)| stop server

If you do not provide an administrator password, the admattistn inter-
face is disabled. This is a security measure to prevent publicly exposing the
admin interface.

STARTUP 43

The administration interface is only accessible from localhost unless you
run Wes2py behind Apache with magbroxy. If admin detects a proxy, the
session cookie is set to secure aadmin login does not work unless the
communication between the client and the proxy goes over HTTPS. This is
another security measure. All communications between the client and the
admin must always be local or encrypted; otherwise an attacker would be
able to perform a man-in-the middle attack or a replay attack and execute
arbitrary code on the server.

After the administration password has beenseip2py starts up the web
browser at the page:

1 http://127.0.0.1:8000/

If the computer does not have a default browser, open a web braavsl
enter the URL.

‘ano welcome =5
@r (G) (%) () ([[hitp://127.0.0.1:8000/ welcome/default/index 70 v R Google Q)
e et]
welcome

customize mel
Jwelcome/default/index

Authentication Hello World

| Login

he admil

Main Menu
| Index

Edit This App

| Edit

Copyright @ 2009 - Powered by webzpy

Clicking on "administrative interface" takes you to the logege for the
administration interface.

44 OVERVIEW

index:

) o)

| (http://127.0.0.1:8000/admin/default/index

web2py™ Enterprise Web Framework

Login to the Administrative Interface
ATTENTION: Login requires a secure (HTTPS) connection or running on localhost

Administrator Password: :}

Powered by webzpy (TM) created by Massimo Di Pierro @ 2007, 2008, 2009

T

The administrator password is the same as the password yoe ahos
startup. Notice that there is only one administrator, and therefore only one
administrator password. For security reasons, the developer is asked to choose
a new password every time@EB2pPY starts unless the <recycle> option is
specified. This is distinct from the authentication mechaniswiB2py
applications.

After the administrator logs intavEB2PY, the browser is redirected to the
"site" page.

800 site

http://127.0.0.1:8000/admin/default/site

’ i

Installed applications
admin Version
[errors | clean | pack all | compile] ‘webzpy Version 1.66.1 (2009-08-18 00:07:57)
examp]es webzpy is up to date
[EDIT | about | errors | clean | pack all | compile | uninstall]
welcome Create new application
[EDIT | about | errors | clean | pack all | compile | uninstall] create new application:
Uploed existi Ticati
uplosd Corovae)
sebeity |
or provide
application
url:
and rename
it
(required):
f <ot} 9
A
—— 7|

This page lists all installedEB2pry applications and allows the adminis-
trator to manage thenweB2pY comes with three applications:

SAY HELLO 45

e Anadmin application, the one you are using right now.

e An examplesapplication, with the online interactive documentation
and a replica of thevEB2PY official website.

e A welcome application. This is the basic template for any other
WEB2PY application. It is referred to as the scaffolding application.
This is also the application that welcomes a user at startup.

Ready-to-us&EB2PY applications are referred toaxB2PY appliances
You can download many freely available appliances from [38EB2PY
users are encouraged to submit new appliances, either in open-source or
closed-source (compiled and packed) form.

From the admin application’s [site] page, you can perform the following
operations:

e install an application by completing the form on the bottom right of
the page. Give a name to the application, select the file containing a
packaged application or the URL where the application is located, and
click "submit".

e uninstall an application by clicking the corresponding button. There
is a confirmation page.

e createa new application by choosing a name and clicking "submit".

e packagean application for distribution by clicking on the correspond-
ing button. A downloaded application is a tar file containing everything,
including the database. You should never untar this file; it is automati-
cally unpackaged bywEB2PY when one installs it usingdmin.

e clean upan application’s temporary files, such as sessions, errors and
cache files.

e EDIT an application.

3.2 Say Hello

Here, as an example, we create a simple web app that displays the message
"Hello from MyApp" to the user. We will call this application "myapp". We
will also add a counter that counts how many times the same user visits the

page.

46 OVERVIEW

You can create a new application simply by typing its name in the form on
the top right of thesite page inadmin.

'gge - site

http://127.0.0.1:8000/admin/default/site

Installed applications

admin Version

[errors | clean | pack all | compile] webapy Version 1.66.1 (2009-08-18 00:07:57)
EXBIHD]ES web2py is up to date

[EDIT | about | errors | clean | pack all | eompile | uninstall]

welcome Create new application

[EDIT | about | errors | clean | pack all | compile | uninstall] create new application: | myapp

After you press [submit], the application is created as a cdgyaobuilt-in
welcome application.

800 3

http://127.0.0.1:8000/admin/default/site

Installed applications
admin Version
[errors | clean | pack all | compile] webzpy Version 1.66.1 (2009-08-18 00:07:57)
mp]es click to check for upgrades
[EDIT | about | errors | clean | packall | compile | uninstall]

Create new application
[EDIT | about | errors | clean | pack all | compile | uninstall] create new application:
welcome

(submit)

[EDIT | about | errors | clean | pack all | compile | uninstall] -

To run the new application, visit:

1 http://127.0.0.1:8000/myapp

Now you have a copy of the welcome application.

To edit an application, click on the [EDIT] button for the newly created
application.

SAY HELLO 47

[ann design myapp = |

Edit application "myapp"
[models | controllers | views | languages | static | modules]

Models
Controllers

the application logic, each URL path is mapped in one exposed function in the controller

[shell | test | crontab]
* appadmin.py [edit | delete | test] exposes index, insert, download, csv, select, update, state
= defauit.py [edit | delete | test] exposes first, second, index, user, download, call

» create file with filename: { submit
Views
Languages
Static files
Modules

Powered by webapy (TM) created by Massimo Di Pierro ® 2007, 2008, 2009

Boses

TheEDIT page tells you what is inside the application. Evergs2py
application consists of certain files, most of which fall into one of five cate-
gories:

e models describe the data representation.
e controllers: describe the application logic and workflow.
e views describe the data presentation.

e languages describe how to translate the application presentation to
other languages.

e modules Python modules that belong to the application.

e static files static images, CSS files [39, 40, 41], JavaScript files [42,
43], etc.

Everything is neatly organized following the Model-View-Controller de-
sign pattern. Each section in the [EDIT] page corresponds to a subfolder in
the application folder.

Notice that section headings will toggle their content. Folder names under
static files are also collapsible.

Each file listed in the section corresponds to a file physically
located in the subfolder. Any operation performed on a file
via the admin interface (create, edit, delete) can be performed
directly from the shell using your favorite editor.

48 OVERVIEW

The application contains other types of files (database, session files, error
files, etc.), but they are not listed on the [EDIT] page because they are not
created or modified by the administrator. They are created and modified by
the application itself.

The controllers contain the logic and workflow of the application. Every
URL gets mapped into a call to one of the functions in the controllers (ac-
tions). There are two default controllers: "appadmin.py" and "default.py".
appadmin provides the database administrative interface; we do not need
it now. "default.py" is the controller that you need to edit, the one that is
called by default when no controller is specified in the URL. Edit the "index"
function as follows:

def index():
2 return "Hello from MyApp"

[

Here is what the online editor looks like:

ano adit myapp/controllers dafault. py =

htp://127.0.0,1 it myapp)

Editing file "myapp/controllers/default. py"

exposes first, second, indox, user, download, call [does |

(Csawe) Saved file hash: 147017482923023 209 319€ Last saved on: Tue Asg 18 15:32:53 2009

ROD o o [em o J2le
def index(): i P
roturn "Balle from MyApp®

Position. Ln2,Ch30 Total Ln2.Chdt

MAToggle editar .
(_restors) currently saved or (revert) to previous version

Powared by webapy (TM) created by Massimo Di Plerro € 2007, 2008, 2009

Dose.

Save it and go back to the [EDIT] page. Click on the index linkittthe
newly created page.
When you visit the URL

1 http://127.0.0.1:8000/myapp/default/index

the index action in the default controller of the myapp appicais called.
It returns a string that the browser displays for us. It should look like this:

1

L N

SAY HELLO 49

Q800 Shiretoko =\
@r (e) (%) () () htp//127.0.0.1:8000/myapp/default/index 17 ¥ 1=

Hello from MyApp

| o i

Now, edit the "index" function as follows:

def index():
return dict(message= "Hello from MyApp")

Also from the [EDIT] page, edit the view default/index (the néile
associated with the action) and, in this file, write:
<html|>

<head></head>

<body>

<h1>{{=message}}</h1>

</body>

</html>

Now the action returns a dictionary definingm@sage . When an ac-
tion returns a dictionarywEeEB2pPY looks for a view with the name "[con-
troller]/[function].[extension]" and executes it. Here [extension] is the re-
quested extension. If no extension is specified, it defaults to "html", and that
is what we will assume here. Under this assumption, the view is an HTML
file that embeds Python code using spe€ial} } tags. In particular, in the
example, the{{=messagg} instructswes2pY to replace the tagged code
with the value of thenessage returned by the action. Notice thassage here
is not aweB2PY keyword but is defined in the action. So far we have not
used anywEB2PY keywords.

If weEB2PY does not find the requested view, it uses the "generic.html"
view that comes with every application.

If an extension other than "html" is specified ("json" for exam-
ple), and the view file "[controller]/[function].json" is not found,
WEB2PY looks for the view "generic.jsontWEB2PY comes with
generic.html, generic.json, generic.xml, and generic.rss. These
generic views can be modified for each application individually,
and additional views can be added easily.

Read more on this topic in Chapter 9.

L N

1
2
3

50 OVERVIEW

If you go back to [EDIT] and click on index, you will now see the following
HTML page:

‘ano Shiretoko =
@, @@ ([hitp://127.0.0.1:8000/myapp /default/index 17 v 1= (29 Google Q)
Hello from MyApp
Done A

3.3 Let’s Count

Let's now add a counter to this page that will count how many times the same
visitor displays the page.

WEB2PY automatically and transparently tracks visitors using sessions
and cookies. For each new visitor, it creates a session and assigns a unique
"sessionid”. The session is a container for variables that are storaeise
side. The unique id is sent to the browser via a cookie. When the visitor
requests another page from the same application, the browser sends the cookie
back, it is retrieved bywEB2PY, and the corresponding session is restored.

To use the session, modify the default controller:

def index():
if not sessi on. counter:
sessi on.counter = 1
else:
sessi on.counter += 1
return dict(message= "Hello from MyApp" , counter= sessi on.counter)

Notice that counter is not EB2PY keyword butsession iS. We are
askingweB2PY to check whether there is a counter variable in the session
and, if not, to create one and setitto 1. If the counteris there, weraskpry
to increase the counter by 1. Finally we pass the value of the counter to the
view.

A more compact way to code the same function is this:

def index():
sessi on.counter = (sessi on.counter or 0) + 1
return dict(message= "Hello from MyApp" , counter= sessi on.counter)

Now modify the view to add a line that displays the value of thenter:

SAY MY NAME 51

1 <html>

2 <head></head>

3 <body>

4 <h1>{{=message}}</h1>

5 <h2>Number of visits: {{=counter}}</h2>
6 </body>
7 </html>

When you visit the index page again (and again) you should gefolkh
lowing HTML page:

@00 Shiretoko =]
@- @@ ([hrtp://127.0.0.1:8000/myapp/default/index 77 v J&(#:(Coogle Q]
Hello from MyApp

Number of visits: 2

The counter is associated to each visitor, and is incremeatttane the
visitor reloads the page. Different visitors see different counters.

3.4 Say My Name

Now create two pages (first and second), where the first page creates a form,
asks the visitor's name, and redirects to the second page, which greets the
visitor by name.

first M second

Write the corresponding actions in the default controller:

def first():
return dict()

def second():
return dict()

[I N

Then create a view "default/first.html" for the first action:

L N

NoR

52 OVERVIEW

800 desian myapp o

http://127.0.0.1:8000/admin/default/design/myapp 7 ¥ |

Edit application "myapp"

[models | controllers | views | languages | static | modules]

Models
Controllers

Views
the presentations layer, views are also knoum as templates

* appadmin html [edit | htmledit | delete] extends layout.himl

» default/index.html [edit | htmledit | delete]

o default/user.html [edit | htmledit | delete] extends layout.html

» generic.htmi [edit | htmiedit | delete] extends layout.htmi

n [edit | htmledit | delete]

o generic.rss [edit | htmledit | delete]

o genericxml [edit | himledit | delete]

® layout.htmi [edit | htmledit | delete] includes web2py_ajax.html
o webapy_ajax.himl [edit | htmledit | delete]

* create file with filename:
Static files
Modules

Powered by webzpy (TM) created by Massimo Di Pierro @ 2007, 2008, 2009

and enter:

{{extend 'layout.html' B
What is your name?
<form action= "second" >
<input name= "visitor_name" />
<input type= ‘“submit" />
</form>

Finally, create a view "default/second.html" for the secoctiba:

{{extend 'layout.html' B
<hl>Hello {{= request .vars.visitor_name}}</h1>

In both views we have extended the basic "layout.html" view tioenes
with weB2pY. The layout view keeps the look and feel of the two pages
coherent. The layout file can be edited and replaced easily, since it mainly
contains HTML code.

If you now visit the first page, type your name:

FORM SELF-SUBMISSION 53

myapp. =/
[hutp://127.0.0.1:8000/ myapp/default/first

myapp
customize me!
/myapp/default/first
. . What is your name?
Authentication | iisime |[Submit Query]
[Login |
Main Menu
| Index |
Edit This App
| Edit |
Copyright © 2009 - Powered by webzpy

and submit the form, you will receive a greeting:

} _ I hnp:,';'lZ?.O‘U.1:BIJUO[myapp,’defﬂull]se(und?\«isilci’,',?'

myapp
customize me!

/myapp/default/second

T%m] Hello Massimo

Main Menu

| Index |

Edit This App
|

[it

Copyright © 2000 - Powered by webzpy

e :

3.5 Form self-submission

The above mechanism for form submission is very common, but it is not
good programming practice. All input should be validated and, in the above
example, the burden of validation would fall on the second action. Thus the
action that performs the validation is different from the action that generated
the form. This may cause redundancy in the code.

A better pattern for form submission is to submit forms to the same action
that generated them, in our example the “first". The "first" action should
receive the variables, process them, store them server side, and redirect the
visitor to the "second" page, which retrieves the variables.

©® N o O b w N P

L N

Noe

Ne

54 OVERVIEW

redirect

first ——"second

You can modify the default controller as follows to implement self-submission:

def first():
if request . vars.visitor_name:
sessi on.visitor_name = request .vars.visitor_name
redi rect (URL(r= request, f= 'second"))
return dict()

def second():
return dict()

Accordingly, you need to modify the "default/first.html" view

{{extend ‘layout.html’ B
What is your name?
<form>
<input name= "visitor_name" />
<input type= ‘“submit" />
</form>

and the "default/second.html" view needs to retrieve the ftata the
session instead of from theequest.vars

{{extend 'layout.html' B
<hl>Hello {{= sessi on.visitor_name or "anonymous" }}</h1>

From the point of view of the visitor, the self-submission bedsexactly
the same as the previous implementation. We have not added validation yet,
but it is now clear that validation should be performed by the first action.

This approach is better also because the name of the visitor stays in the
session, and can be accessed by all actions and views in the applications
without having to be passed around explicitly.

Note that if the "second" action is ever called before a visitor name is set, it
will display "Hello anonymous" becausession.visitor _name returnsone.
Alternatively we could have added the following code in the controller (inside
or outside theecond function:

if not request. function=='first' and not sessi on.visitor_name:
redi rect (URL(r= request, f= ‘first)

This is a general mechanism that you can use to enforce audtiorion
controllers, although see Chapter 8 for a more powerful method.

With wEB2PY we can move one step further and asks2pry to generate
the form for us, including validationweEB2py provides helpers (FORM,
INPUT, TEXTAREA, and SELECT/OPTION) with the same names as the
equivalentHTML tags. They can be used to build forms eitherin the controller
orin the view.

For example, here is one possible way to rewrite the first action:

FORM SELF-SUBMISSION 55

1 def first():

2 form = FORM | NPUT(_name= 'visitor_name' , requires= | S_NOT_EMPTY()),
3 I NPUT(_type= ' submit'))

4 if form.accepts(request.vars, session):

5 sessi on.visitor_name = form.vars.visitor_name

6 redirect (URL(r= request, f= 'second))

7 return dict(form=form)

where we are saying that the FORM tag contains two INPUT tage Th
attributes of the input tags are specified by the named arguments starting with
underscore. Thequires argument is not a tag attribute (because it does not
start by underscore) but it sets a validator for the value of visitome.

Theform object can be easily serialized in HTML by embedding it in the
"default/first.ntml" view.

1 {{extend 'layout.html' B
> What is your name?
3 {{=form}}

Theform.accepts ~method applies the validators. If the self-submitted form
passes validation, it stores the variables in the session and redirects as before.
If the form does not pass validation, error messages are inserted in the form
and shown to the user, shown below:

800 myapp =
”.. (@) (¢) () () hitp://127.0.0.1:8000/myapp/default/first 77 v B0 Googe Q)

myapp
| customize me!

[myapp/default/first

. . What i ?

Authentication

Login il cannot be empty!

Main Menu

Index
Edit This App

| Edit

Copyright © 2000 - Powered by webzpy

Done

In the next section we will show how forms can be generated aatioaily
from a model.

56 OVERVIEW

3.6 AnImage Blog

Here, as another example, we wish to create a web application that allows the
administrator to postimages and give them a name, and allows the visitors of
the web site to view the images and submit comments.

As before, create the new application from gite page inadmin and
navigate to the [EDIT] page:

Edit application "images"

Models
Controllers

the application logic, each URL path is mapped in one exposed function in the controller

[shell | test | crontab]

* appadmin.py [edit | delete

o default.py [edit | delete | test] exposes index, user, download, call

design images =

| { [} [http://127.0.0.1:8000/admin/default/design/images 1y v |

[models | controllers | views | languages | static | modules]

st] exposes index, insert, download, csv, select, update, state

* create file with filename: (_submit
Views
Languages
Static files
Modules
Powered by webzpy (TM) created by Massimo Di Pierro © 2007, 2008, 2009 .
-
Baneg

We start by creating a model, a representation of the persisigs in the
application (the images to upload, their names, and the comments). First,
you need to create/edit a model file which, for lack of imagination, we call
"db.py". Models and controllers must havepa extension since they are
Python code. If the extension is not provided, it is appended/hp2pry.
Views instead have ami extension since they mainly contain HTML code.

Edit the "db.py" file by clicking the corresponding "edit" button:

=
=3

AN IMAGE BLOG

800 edit images/models /db.py

o - (|| [http://127.0.0.1:8000/admin/default/edit/images /models/cb.py 17 ¥

Editing file "images/models/db.py"
[does]
save) Saved file hash: 6alf6695bb3323e468f40et Last saved on: Tue Aug 18 15:53:06 2009

e on i J2 e
coding: utff -

T

I i

af

con t as needed

Position: Lnt,Ch1 ‘ Total: Ln 84, Ch 3067 A

MToggle editor
restore) currently saved or (revert) to previous version.

Powered by webzpy (TM) created by Massimo Di Pierro @ 2007, 2008, 2009

\.Done,

and enter the following:

db = DAL(" sqlite://storage.db")
db.define_table('image’

Fi el d('title’),

Fi el d('file' , 'upload’))
db.define_table(‘comment’

Fi el d('image_id" , db.image),

Fi el d('author'),

Fi el d('email'),
Fi el d('body’ , ‘text'))
db.image.title.requires = [I'S_NOT_EMPTY(),

I'S_NOT_I N_DB(d b, db.image.title)]
db.comment.image_id.requires = I'S_|I N_DB(db, db.image.id, 'Y(title)s'
db.comment.author.requires = 1'S_NOT_EMPTY()
db.comment.email.requires = I'S_EMAI L()
db.comment.body.requires = 1'S_NOT_EMPTY()
db.comment.image_id.writable = db.comment.image_id.read able = False

Let’s analyze this line by line.

e Line 1 defines a global variable calledthat represents the database
connection. In this case it is a connection to a SQLite database stored

57

58

OVERVIEW

in the file "applications/images/databases/storage.db". In the SQLite
case, if the database does not exist, it is created.

You can change the name of the file, as well as the name of the global
variabledb, but it is convenient to give them the same name, to make it
easy to remember.

Lines 3-5 define a table "image'tefine _table is a method of theb
object. The first argument, "image", is the name of the table we are
defining. The other arguments are the fields belonging to that table.
This table has a field called "title", a field called “file", and a field called
"id" that serves as the table primary key ("id" is not explicitly declared
because all tables have an id field by default). The field "title" is a
string, and the field "file" is of type "upload". "upload" is a special type
of field used by thevEB2py Data Abstraction Layer (DAL) to store
the names of uploaded filesvEB2PY knows how to upload files (via

streaming if they are large), rename them safely, and store them.

When atable is definesyEB2pPY takes one of several possible actions:

a) if the table does not exist, the table is created,; b) if the table exists and
does not correspond to the definition, the table is altered accordingly,
and if a field has a different typg;EB2PY tries to convert its contents;

c) if the table exists and corresponds to the definitwrp2pPY does
nothing.

This behavior is called "migration”. IwEB2PY migrations are auto-
matic, but can be disabled for each table by passifigte=Faise ~ as
the last argument afefine table .

Lines 7-11 define another table called "comment”. A comment has an
"author", an "email" (we intend to store the email address of the author
of the comment), a "body" of type "text" (we intend to use it to store
the actual comment posted by the author), and an "imabgeld of

type reference that points #.image Vvia the "id" field.

In lines 13-14db.image.title represents the field "title" of table "im-
age". The attributequires allows you to set requirements/constraints
that will be enforced byweB2pPY forms. Here we require that the "ti-
tle" is not empty s _NOTEMPTY()) and that it is unique 6 NOTIN DB(db,
db.image.title)). The objects representing these constraints are called
validators. Multiple validators can be grouped in a list. Validators
are executed in the order they appearNOTIN DB, b) IS a special
validator that checks that the value of a fieltbr a new record is not
already ina.

AN IMAGE BLOG 59

e Line 16 requires that the field "imagé" of table "comment" is in
db.image.id . As far as the database is concerned, we had already
declared this when we defined the table "comment". Now we are
explicitly telling the model that this condition should be enforced by
WEB2PY, t00, at the form processing level when a new comment is
posted, so that invalid values do not propagate from input forms to the
database. We also require that the "imadjebe represented by the
"title", '%(title)s’ , of the corresponding record.

e Line 18 indicates that the field "imagd" of table "comment" should
not be shown in formsyritable=rFalse ~ and not even in readonly forms,
readable=False

The meaning of the validators in lines 17-19 should be obvious.

Once a model is defined, if there are no errovgg2prY creates an appli-
cation administration interface to manage the database. You access it via the
"database administration" link in the [EDIT] page or directly:

1 http://127.0.0.1:8000/images/appadmin

Here is a screenshot of tlagpadmin interface:

| ann images (]]

S 4 http://127.0.0.1:8000/images fappadmin f{index '{‘"1' S M
o — T - —

images
customize me!
/images/appadmin/index

Main Menu__ | Available databases and tables
& | | db.image

state | | [insert new image]

Edit This App

Edit

db.comment

| | [insert new comment]

Copyright © 2009 - Powered by webzpy

This interface is coded in the controller called "appadmihayd the
corresponding view "appadmin.html". From now on, we will refer to this
interface simply asappadmin. It allows the administrator to insert new
database records, edit and delete existing records, browse tables, and perform
database joins.

The first timeappadmin is accessed, the model is executed and the tables
are created. TheeB2pry DAL translates Python code into SQL statements
that are specific to the selected database back-end (SQLite in this example).

60 OVERVIEW

You can see the generated SQL from the [EDIT] page by clicking on the
"sqgl.log" link under "models". Notice that the link is not present until the
tables have been created.

peek -imaggsfdatm#:sql.lug

http://127.0.0.1:8000/admin/default/peek/images /dal .7 ¥ ‘EZ’:'V {

Peeking at file "images/databases/sql.log"

. timestamp: 2009-D8-18T15:58:32.663226
CREATE TABLE image(
id TNTEGER PRIMARY KEY AUTOINCHEMENT,
title CHAR(32}),
file CHAR(12B)
Y
. successl
8. timestamp: 2009-08-18T15:59:32.666450
. CREATE TABLE comment(
id TNTEGER PRTMARY KEY AUTOTNCREMENT,
image_id REFERENCES image(id) ON DELETE CASCADE,
u e

yi
success!

Powered by webzpy (TM) created by Massimo Di Pierro © 2007, 2008, 2009

If you were to edit the model and accegpadmin again,wEB2rPY would
generate SQL to alter the existing tables. The generated SQL is logged into
"sql.log".

Now go back taeappadmin and try to insert a new image record:

images =)

http://127.0.0.1:8000/images/appadmin/insert/db/im ﬁ

images
customize me!

/images/appadmin/insert/db/image

MainMenu | qatabase db table image

design
db New Record
state
" i Title: [web2py logo
Edit This App

File: k/images,iwehlpyjngn.png Browse...)

Copyright @ 2009 - Powered by webzpy

[Bai \

WEB2PY has translated thev.image.fle ~ "upload” field into an upload
form for the file. When the form is submitted and an image file is uploaded,
the file is renamed in a secure way that preserves the extension, it is saved
with the new name under the application "uploads" folder, and the new name

is stored in theaib.image file
directory traversal attacks.

AN IMAGE BLOG 61

field. This process is designed to prevent

When you click on a table name appadmin, weB2pY performs a select
of all records on the current table, identified by the DAL query

1 db.image.id > 0

and renders the result.

images

 http://127.0.0.1:83000/images/appadmin/select/db {,?V)

images

customize me!

/images/appadmin/select/db

Main Menu | database db select

The “query" is

results of a JOIN

1selected

Import/Export

[export as csv file]

ey [insert new image]
db
tat A

= Rows in table

Edit This App

[Eat || Quew [@b.image.id>o0 |
Update: O | |
Delete: [

“db.table1.field1==db.tablez.field2" results in a SQL JOIN.
Use (...)&(...) for AND, (...)|(...) for OR, and ~{...} for NOT to build more complex queries.
"update” is an optional expression like "fieldi="newvalue™. You cannot update or delete the

image.id image.title image.file

1 webapy logo file

a condition like "db.tableifieldi=='value"". Something like

or import from csv ﬁlel

(‘Browse....)[import]

Copyright © 2009 - Powered by web2py

o

You can select a different set of records by editing the SQL yqaed

pressing "apply".

To edit or delete a single record, click on the record id number.

62 OVERVIEW

[@eoo - images

A) (|| http://127.0.0.1:8000/images/appadmin finsert/db 17 ¥ _

images

customize me!

Jimages/appadmin/insert/db/comment

i{?};‘l Menu ' database db table comment
db New Record
state
5 N ImageId: webzpylogo ~|
Edit ThiSAPP \iinor (ot \
1““7' Email: [mdipierro@cs.depaul.edu]
Body: Is this real?|

Submit

Copyright © 2009 - Powered by webapy

Because of thes iN _bevalidator, the reference field "imagé" is rendered
by a drop-down menu. The items in the drop-down are stored as keys
(db.image.id), but are represented by theirimagetite , as specified by
the validator.

Validators are powerful objects that know how to represent fields, filter
field values, generate errors, and format values extracted from the field.

The following figure shows what happens when you submit a form that
does not pass validation:

AN IMAGE BLOG 63

| ean0n images =
)) (L) http://127.0.0.1:8000/images /appadmin finsert/dk 17 v J=(I

images
customize mel

/images/appadmin/insert/ ab[mmmmt

Main Menu ' gatahase db table comment

design
| db | | New Record

state

Image Id: web2pylogo j

Edit ThisApp | , .
Email: junk email
invalid email!

Body:

cannot be empty!
Copyright © 2009 - Powered by webzpy
TDene. “

The same forms that are automatically generatedgpadmin can also
be generated programmatically via thg Fornnelper and embedded in user
applications. These forms are CSS-friendly, and can be customized.

Every application has its owappadmin; therefore appadmin itself can
be modified without affecting other applications.

So far, the application knows how to store data, and we have seen how
to access the database via appadmin. Accesppadmin is restricted to
the administrator, and it is not intended as a production web interface for the
application; hence the next part of this walk-through. Specifically we want
to create:

e An "index" page that lists all available images sorted by title and links
to detail pages for the images.

e A "show/[id]" page that shows the visitor the requested image and
allows the visitor to view and post comments.

e A "download/[name]" action to download uploaded images.

This is represented schematically here:

index — show/ [id] — ~Hownload/ [name]

w N e

64 OVERVIEW

Go back to the [EDIT] page and edit the "default.py" controller, replacing
its contents with the following:
def index():

images = db().select(db.image.ALL, orderby=db.image.titl e)
return dict(images=images)

This action returns a dictionary. The keys of the items in ticéa@hary are
interpreted as variables passed to the view associated to the action. If there
is no view, the action is rendered by the "generic.html" view that is provided
with everywEB2PY application.

The index action performs a select of all fieldsifiage.ALL) from table
image, ordered byb.image title . The result of the select isrows object
containing the records. Assign it to a local variable calledes returned by
the action to the viewmages is iterable and its elements are the selected rows.
For each rowthe columns can be accessed as dictionaEgsio][title’]
or equivalently asnages|o].title

Ifyou do notwrite a view, the dictionary is rendered by "views/generic.html"
and a call to the index action would look like this:

| 800 images =

@- (e JC A I hreo://127.0.0.1:8000/images/default/index 1y v JS(*F:(Gocgle Q

i

1mages

customize me!

Jimages/default/index

Main Menu images : jmage.id image.title image.file

Index 1 webzpy logo file

Edit This App

Edit

Copyright © 2009 - Powered by webzpy

hitp://127.0.0.1:8000/images/default/user 4

You have not created a view for this action yetyses2pPY renders the set
of records in plain tabular form.

Proceed to create a view for the index action. Return to admin, edit
"default/index.html" and replace its content with the following:

{{extend ‘layout.html’ B
<h1>Current Images</h1>

{{for image in images:}}

[N

{{= LI (A(image.title, _href= URL(r= request, f= "show" , args=image.id)))

B
{{pass}}

~ o

i

i

i

i

AN IMAGE BLOG 65

The first thing to notice is that a view is pure HTML with spedfdl..} }
tags. The code embedded{#...}} is pure Python code with one caveat:
indentation is irrelevant. Blocks of code start with lines ending in colon (:)
and end in lines beginning with the keywargs . In some cases the end of
a block is obvious from context and the use&s is not required.

Lines 5-7 loop over the image rows and for each row image display:

LI (A(image.title, _href= URL(r= request, f= 'show' , args=image.id))

This is a«<l i>.. tag that contains agn href="...">... tag which
contains thenageite . The value of the hypertext reference (href attribute)
is:

URL(r= request, f= 'show' , args=image.id)

i.e., the URL within the same application and controller ativeent request
r=request , calling the function called "showt;'show" , and passing a single
argument to the functionrygs=image.id

L, A, etc. areweB2pY helpers that map to the corresponding HTML
tags. Their unnamed arguments are interpreted as objects to be serialized
and inserted in the tag’s innerHTML. Named arguments starting with an
underscore (for examplaref) are interpreted as tag attributes but without
the underscore. For exampleef is thenref attribute, class is theclass
attribute, etc.

As an example, the following statement:

{{= LI (A(' something" , _href= URL(r= request, f= 'show' , args=123))}}
is rendered as:

something

A handful of helpersi{ PuT, TEXTAREAOPTIONANdSELECT) also support some
special named attributes not starting with undersceie:(, andrequires).
They are important for building custom forms and will be discussed later.

Go back to the [EDIT] page. It now indicates that "default.py exposes
index". By clicking on "index", you can visit the newly created page:

http://127.0.0.1:8000/images/default/index

which looks like:

66 OVERVIEW

| a0 images =]

| | {) { [][http//127.0.0.1:8000/images/default/index w7 ¥ IS0 Google Q

1mages

customize me!

Jimages/default/index

Main Menu
Index

Edit This App

Current Images

» webapy logo

Copyright © 2009 - Powered by web2py

If you click on the image name link, you are directed to:
1 http://127.0.0.1:8000/images/default/show/1
and this results in an error, since you have not yet createdtmm aalled

"show" in controller "default.py".
Let’s edit the "default.py” controller and replace its content with:

1 def index():

2 images = db().select(db.image.ALL, orderby=db.image.titl e)
3 return dict(images=images)

4

s def show():

6 image = db(db.image.id== r equest .args(0)).select()[0]
7 form = SQLFORM db.comment)

8 form.vars.image_id = image.id

9 if form.accepts(request .vars, session):

10 response.f lash = ‘'your comment is posted'

1 comments = db(db.comment.image_id==image.id).select()
12 return dict(image=image, comments=comments, form=form)

14 def download():
15 return response. download(request, db)

The controller contains two actions: "show" and "downloadie Tshow"
action selects the image with the parsed from the request args and all
comments related to the image. "show" then passes everything to the view
"default/show.html".

The image id referenced by:

1 URL(r= request, f= 'show' , args=image.id)}

in "default/index.html", can be accessed asuuest.args(0) from the
"show" action.

The "download" action expects a filenameréfuestargs(0) , builds a
path to the location where that file is supposed to be, and sends it back to the
client. If the file is too large, it streams the file without incurring any memory
overhead.

AN IMAGE BLOG 67

Notice the following statements:

e Line 7 creates an insert form SQLFORM for iveomment table using
only the specified fields.

e Line 8 sets the value for the reference field, which is not part of the
input form because it is not in the list of fields specified above.

e Line 9 processes the submitted form (the submitted form variables are in
requestvars) Within the current session (the session is used to prevent
double submissions, and to enforce navigation). If the submitted form
variables are validated, the new comment is inserted idstb@nment
table; otherwise the form is modified to include error messages (for
example, if the author's email address is invalid). This is all done in
line 9.

e Line 10 is only executed if the form is accepted, after the record is
inserted into the database tablesponse.flash iS a WEB2PY vari-
able that is displayed in the views and used to notify the visitor that
something happened.

e Line 11 selects all comments that reference the current image.

The "download" action is already defined in the "default.py"”
controller of the scaffolding application.

The "download" action does not return a dictionary, so it does not need a
view. The "show" action, though, should have a view, so retuedtain and
create a new view called "default/show.html" by typing "default/show" in the
create view form:

68 OVERVIEW

design images .

'_ | | [http//127.0.0.1:8000/admin/default/design/images

Edit application "images"

[models | controllers | views | languages | static | modules]

Models
Controllers

Views
the presentations layer, views are also known as templates

appadmin html [edit | htmledit | delete] extends layout.html

» default/index.html [edit | htmledit | delete] extends layout.html
iser.itml [edit | htmledit | delete] extends layout.html
tmi [edit | htmledit | delete] extends layout.html

json [edit | htmledit | delete]

ss [edit | htmledit | delete]

neric.xml [edit | himledit | delete]

avout.html [edit | htmledit | delete] includes webzpy._ajax.html
* webzpy_ajax.himl [edit | htmledit | delete]

= create file with filename: | default/show|

Languages
Static files
Modules

® defaul

Powered by webzpy (TM) ereated by Massimo Di Pierro © 2007, 2008, 2000

Edit this new file and replace its content with the following:

1 {{extend ‘'layout.html' B

2 <hl>Image: {{=image.title}}</h1>

3 <center>

4 <img width= "200px"

5 src= "{{=URL(r=request, f="download', args=image.file)}}" />
6 </center>

7 {{if len(comments):}}

s <h2>Comments</h2>
<p>

9 {{for comment in comments:}}

10 <p>{{=comment.author}} says <i>{{=comment.body}}</i></p >
u {{pass}}</p>
12 {{else:}}

13 <h2>No comments posted yet</h2>

14 {{pass}}
15 <h2>Post a comment</h2>

16 {{=form}}

This view displays thémage.fileby calling the "download" action inside
an tag. If there are comments, it loops over them and displays

each one.

Here is how everything will appear to a visitor.

ADDING CRUD 69

images =)

.| [http://127.0.0.1:8000/images/default/show/1 _— !’!" Google Q i

images

customize me!

/images[deﬁaull,’shuw!'}

MainMenu__ | Tmage: webz2py logo

Index

Edit This App
[Eai : PL’\ I.I.ll!bng

Comments

br/>

Massimo says Is this real?

Post a comment
Author: | |
Email: | |
Body:

Submit

Copyright © 2009 - Powered by web2py
|.Dene;.

When a visitor submits a comment via this page, the commertriedin
the database and appended at the bottom of the page.

3.7 Adding CRUD

WEB2PY also provides a CRUD (Create/Read/Update/Delete) API that sim-
plifies forms even more. To use CRUD it is necessary to define it somewhere,
such as in module "db.py":

1 from gluon.tools import Crud
2 crud = Crud(globals(), db)

These two lines are already in the scaffolding application.

Thecrud object provides high-level methods, for example:

1 form = crud.create(...)

that can be used to replace the programming pattern:

1 form = SQLFORM ...)

2 if form.accepts(...):

3 sessi on.flash = ...
4 redirect(. ..

N o g s W N R

1

1

70 OVERVIEW

Here, we rewrite the previous "show" action using crud:

def show():
image = db(db.image.id== r equest .args(0)).select()[0]
db.comment.image_id.default = image.id
form = crud.create(db.image, next= URL(r= r equest, args=image.id),

message='your comment is posted')
comments = db(db.comment.image_id==image.id).select()
return dict(image=image, comments=comments, form=form)

Thenext argumentotrud.create isthe URL to redirect to after the formis
accepted. Theessage argument is the one to be displayed upon acceptance.
You can read more about CRUD in Chapter 7.

3.8 Adding Authentication

ThewEeB2pPY API for Role-Based Access Control is quite sophisticated, but
for now we will limit ourselves to restricting access to the show action to
authenticated users, deferring a more detailed discussion to Chapter 8.

To limit access to authenticated users, we need to complete three steps. In
a model, for example "db.py", we need to add:
from gluon.tools import Auth

auth = Auth(globals(), db)
auth.define_tables()

In our controller, we need to add one action:

def user():
return dict(form=auth())

Finally, we decorate the functions that we want to restriatef@mmple:

@auth.requires_login()

def show():
image = db(db.image.id== r equest .args(0)).select()[0]
db.comment.image_id.default = image.id
form = crud.create(db.image, next= URL(r= r equest, args=image.id),

message='your comment is posted')
comments = db(db.comment.image_id==image.id).select()
return dict(image=image, comments=comments, form=form)

Any attempt to access

http://127.0.0.1:8000/images/default/show/[image_id]

will require login. If the user is not logged it, the user will tedirected to

http://127.0.0.1:8000/images/default/user/login

A WIKI 71

(4]0 (& M) (0 ttp://127.0.0. 18000 images /defing ¥) = (ol webZpy q

images

customize me!

Jimages/default fuser/login

Authentication Login
Logi E-mail:

Password:

Main Menu
. Submit

Edit This App

Copyright © 2009 - Powered by :

Do &

Theuser function also exposes, among others, the following actions:

http://127.0.0.1:8000/images/default/user/logout
http://127.0.0.1:8000/images/default/user/register
http://127.0.0.1:8000/images/default/user/profile
http://127.0.0.1:8000/images/default/user/change_pass word

Now, afirsttime user needs to register in order to be able ta il read/post
comments.

Both theauth object and theser function are already defined in
the scaffolding application. Theaith object is highly customiz-
able and can deal with email verification, registration approvals,
CAPTCHA, and alternate login methods via plugins.

3.9 A Wiki

In this section, we build a wiki. The visitor will be able to create pages,
search them (by title), and edit them. The visitor will also be able to post
comments (exactly as in the previous applications), and also post documents
(as attachments to the pages) and link them from the pages. As a convention,
we adopt the Markdown syntax for our wiki syntax. We will also implement
a search page with Ajax, an RSS feed for the pages, and a handler to search
the pages via XML-RPC [44].

The following diagram lists the actions that we need to implement and the
links we intend to build among them.

72 OVERVIEW

index ——— create

| T

search show/ [id] — = Hownload /[name]

l/ -

bg_find edit/ [id] documents/ [id]

Start by creating a new scaffolding app, naming it "mywiki".

The model must contain three tables: page, comment, and document.
Both comment and document reference page because they belong to page.
A document contains a file field of type upload as in the previous images

application.
Here is the complete model:

1 db = DAL(' sqlite://storage.db’)
2

3 from gluon.tools import *

4 auth = Auth(globals(),db)

s auth.define_tables()

6 crud = Crud(globals(),db)

7

s if auth.is_logged_in():

9 user_id = auth.user .id
10 else:
1 user_id = None

13 db.define_table('‘page’

14 Fi el d('itle'),

15 Fi el d('body' , ‘text'),

16 Fi el d('created_on' , 'datetime' , default="request .now),

17 Fi el d('created_by' , db.auth_user, default=user_id))

18

19 db.define_table(‘comment'

20 Fi el d('page_id" , db.page),

21 Fi el d('body’ , ‘'text'),

22 Fi el d('created_on' , 'datetime’ , default="request .now),

23 Fi el d('created_by' , db.auth_user, default=user_id))

24

25 db.define_table(‘document’

26 Fi el d('page_id" , db.page),

27 Fi el d('name'),

28 Fi el d('file' , 'upload'),

29 Fi el d('created_on' , 'datetime’ , default="request .now),

30 Fi el d('created_by' , db.auth_user, default=user_id))

31

32 db.page.title.requires = [I'S NOT_EMPTY(), | S _NOT_I N _DB(db,
title')]

33 db.page.body.requires = 1'S_NOT_EMPTY()

32 db.page.created_by.readable = False

'‘page.

35
36
3
38
39
40

Q

2
42
43
44
45
46
47
48
49

50
51
52
53
54
55

1
2
3
4
5
6
7
8
9

A WIKI 73

db.page.created_by.writable = False
db.page.created_on.readable = False
db.page.created_on.writable = False

db.comment.page_id.requires = IS | N DB(db, ‘page.id , '%(title)s')
db.comment.body.requires = I'S_NOT_EMPTY()

db.comment.page_id.readable = False

db.comment.page_id.writable = False

db.comment.created_by.readable = False

db.comment.created_by.writable = False

db.comment.created_on.readable = False

db.comment.created_on.writable = False

db.document.page_id.requires

IS | N DB(db, ‘page.id" , '%f(title)s)

db.document.name.requires = [IS NOT_EMPTY(), | S _NOT_I N _DB(db,
document.name')]

db.document.page_id.readable = False

db.document.page_id.writable = False

db.document.created_by.readable = False

db.document.created_by.writable = False

db.document.created_on.readable = False

db.document.created_on.writable = False

Edit the controller "default.py" and create the followingians:

index: list all wiki pages

create: post another wiki page

show: show a wiki page and its comments, and append comments
edit: edit an existing page

documents: manage the documents attached to a page
download: download a document (as in the images example)

search: display a search box and, via an Ajax callback, return all
matching titles as the visitor types

bg find: the Ajax callback function. It returns the HTML that gets
embedded in the search page while the visitor types.

Here is the "default.py"” controller:

def index():

this controller returns a dictionary rendered by the view
it lists all wiki pages
>>> index().has_key(‘pages’)
True
pages = db().select(db.page.id, db.page.title,
orderby=db.page.title)
return dict(pages=pages)

OVERVIEW

@auth.requires_login()
def create():

"creates a new empty wiki page"

target_div= DI V(_id= ‘'target')

def bg_find():

"an ajax callback that returns a of links to wiki pages"

form = crud.create(db.page, next = URL(r= request, f= 'index'))
return dict(form=form)
def show():
"shows a wiki page"
thispage = db.page[r equest .args(0)]
if not thispage:
redi rect (URL(r= request, f= 'index'))
db.comment.page_id.default = thispage.id
if user_id:
form = crud.create(db.comment)
else:
form = None
pagecomments = db(db.comment.page_id==thispage.id).sele ct()
return dict(page=thispage, comments=pagecomments, form=f orm)
@auth.requires_login()
def edit():
"edit an existing wiki page"
thispage = db.page[r equest .args(0)]
if not thispage:
redirect (URL(r= request, f= 'index'))
form = crud.update(db.page, thispage,
next = URL(r=request, f= 'show' , args= request. args))
return dict(form=form)
@auth.requires_login()
def documents():
"lists all documents attached to a certain page"
thispage = db.page[r equest .args(0)]
if not thispage:
redi rect (URL(r= request, f= 'index'))
db.document.page_id.default = thispage.id
form = crud.create(db.document)
pagedocuments = db(db.document.page_id==thispage.id).se lect()
return dict(page=thispage, documents=pagedocuments, form =form)
def user():
return dict(form=auth())
def download():
"allows downloading of documents"
return response. download(request, db)
def search():
"an ajax wiki search page"
return dict(form= FORM | NPUT(_id= 'keyword"
_onkeyup= "ajax('bg_find', [keyword], 'target’);"),

66
67
68
69

70
71

i

1
2
3

A WIKI 75

pattern = '%' + request. vars.keyword.lower() + ‘%'
pages = db(db.page.title.lower().like(pattern))\
.select(orderby=db.page.title)
items = [A(r ow.title, _href= URL(r= r equest, f=show, args=row.id))

for row in pages]
return UL(*i tems).xml()

Lines 2-6 provide a comment for the index action. Lines 4-5dieghe
comment are interpreted by python as test code (doctest). Tests can be run
via the admin interface. In this case the tests verify that the index action runs
without errors.

Lines 19, 33, and 43 try fetchpage record with the id inequest.args(0)

Line 14, 24 and 47 define and process create forms, for a new page and a
new comment and a new document respectively.

Line 36 defines and process an update form for a wiki page.

Some magic happens in line 59. Teyup attribute of the INPUT tag
"keyword" is set. Every time the visitor presses a key or releases a key, the
JavaScript code inside thekeyup attribute is executed, client-side. Here is
the JavaScript code:

ajax('bg_find' , ['keyword"], ‘target);

ajax is a JavaScript function defined in the file "web2ggx.html" which is
included by the default "layout.html". It takes three parameters: the URL of
the action that performs the synchronous callback _fthd"), a list of the

IDs of variables to be sent to the callback (["keyword"]), and the ID where
the response has to be inserted ("target").

As soon as you type something in the search box and release a key, the
client calls the server and sends the content of the 'keyword’ field, and,
when the sever responds, the response is embedded in the page itself as the
innerHTML of the 'target’ tag.

The 'target’ tag is a DIV defined in line 75. It could have been defined in
the view as well.

Here is the code for the view "default/create.html":

{{extend ‘layout.html' B
<hl1>Create new wiki page</hl>

{{=form}}

If you visit thecreatepage, you see the following:

76

OVERVIEW

Nalala)

mywiki

=

(a)rim (e () () (0] hrp://127.0.0.1:8000/mywiki/default/create ¢ ¥) = ([Glx Google Q)

mywiki

customize me!

/mywiki/default/create

Authentication

[Gserim |
Main Menu
‘ Index |
Edit This App
[Edit |

Create new wiki page

Title:

Body:

Submit

Copyright € 2009 - Powered by wehzpy

uBons;

Here is the code for the view "default/index.html";
B

2 <hl>Available wiki pages</h1l>

1 {{extend

s [{{= A('search’

'layout.html'

, _href= URL(r= r equest, f= 'search’

4 {{for page in pages:}}

5 {{= LI (A(page.title, _href=

i

s {{pass}i
7 [{{= A('create page'

It generates the following page:

URL(r= request, f= 'show'

href= URL(r= r equest, f= 'create’'

N} I

, args=page.id)

N}]

anon mywiki =
()75 (@) () (M) (L1 hitp://127.0.0.1:8000 /mywiki/default/index 17 v 1= (G GoogQ)

mywiki

customize me!

/mywiki/default/index

Authentication | Av4i]able wiki pages

[User: m i

[search]

Main Menu * Thisisa test

‘Ed“il [create page]

Edit This App

[it |

Copyright @ 2009 - Powered by webzpy
Done. i

Here is the code for the view "default/show.html":

1 {{extend

'layout.html'

2 <hl1>{{=page.title}}</h1>

B

A WIKI 77

s [= A('edit’ , _href= URL(r= request, f= 'edit’ , args= request. args))}}

4 | {{= A('documents' , _href= URL(r= request, f= 'documents’ , args= request.
args))}} I

s {{import gluon.contrib.markdown}}

6 {{=gluon.contrib.markdown.WIKI(page.body)}}

7 <h2>Comments</h2>

g {{for comment in comments:}}

o <p>{{=db.auth_user[comment.created_by].first_name}} on {{=comment.
created_on}}
10 says <I>{{=comment.body}}</i></p>

1 {{pass}}
12 <h2>Post a comment</h2>

13 {{=form}}

WEB2PY includesyluon.contrib.markdown.WIKI , which knows how to con-
vert Markdown syntax to HTML. Alternatively, you could have chosen to
accept raw HTML instead of Markdown syntax. In this case you would have
to replace:

1 {{=gluon.contrib.markdown.WIKI(page.body)}}

with:

1 {{= XM(page.body)}}

(so that the XML does not get escaped, as by defsait2pry behavior).
This can be done better with:

1 {{= XM_(page.body, sanitize=True)}}

By settingsanitize=True , you tell WEB2PY to escape unsafe XML tags such
as "<script>", and thus prevent XSS vulnerabilities.

Now if, from the index page, you click on a page title, you can see the page
that you have created:

78 OVERVIEW

mywiki —
‘r“Z' § () i ([htt://127.0.0.1:8000/ mywiki/default/show/1 1y ¥) » ([Clt Google Q)
mywiki
customize me!
fmywiki/default/show/1
Authentication -
TIIEIE This is a test
User: m 5
2 ! | [edit | documents]
Main Menu This is the text of my wiki page!!!
Index Comments
Edit This App Post a comment
Edit Body:
Submit
Copyright © 2009 - Powered by webzpy
Dane. & %

Here is the code for the view "default/edit.html";

1 {{extend ‘'layout.html' B

2 <hl1>Edit wiki page</h1>

3 [{{= A('show' , _href= URL(r= request, f= 'show' , args= request. args))}}
I

4 {{=form}}

It generates a page that looks almost identical to the cregt pa
Here is the code for the view "default/documents.html":

1 {{extend ‘'layout.html' B

2 <hl>Documents for page: {{=page.title}}</h1>

s [{{= A('show' , _href= URL(r= request, f= 'show' , args= request. args))}}
I

4 <h2>Documents</h2>

s {{for document in documents:}}

6 {{= A(document.name, _href= URL(r= request, f= 'download" , args=
document.file))}}

7

s {{pass}}

9 <h2>Post a document</h2>
10 {{=form}}

If, from the "show" page, you click on documents, you can now agan
the documents attached to the page.

AWIKI 79

‘200 mywiki

(4) e (&) (52) (A) ([hup://127.0.0.1:8000/ mywiki/defauttjdocuments/1 1 v) = ([Gl GoQ)

mywiki
customize me!
| /mywiki/default/documents /1

Authentication | 1yooyyments for page: This is a test

User: m A
E ! | [show]
Main Menu Documents

Index

> . Post a document

Ed]'t This APP | Name: [

Edi

S File: Browse...)

Copyright © 2009 - Powered by webzpy

Done #* 4

Finally here is the code for the view "default/search.html":

1 {{extend 'layout.html' B

> <hl>Search wiki pages</hl>

s [f= A('listall’ , _href=" URL(r= request, f= ‘index'))}}I

4 {{=form}}
{{=target_div}}

which generates the following Ajax search form:

‘Dm0 mmywiki

(4]0 (@) (520 () ([0 hwp://127.0.0.1:8000 mywiki/default/search ve v) = ([Qif Goog)

mywiki
customize me!

| Jmywili/default/search

Authentication | goqrch wiki pages

._Lsm’: m 1| [listal]

i est
Main Menu st]
| Index

Edit This App

Edit

» Thisisa test

Copyright © 2009 - Powered by webzpy

Done * 4

You can also try to call the callback action directly by vigitiior example,
the following URL.:
1 http://127.0.0.1:8000/mywiki/default/search/keyword=w iki
If you look at the page source you see the HTML returned by tHbaek:
1 | made a Wiki
Generating an RSS feed from the stored pages using2ry is easy
becausevEB2PY includesgluon.contrib.rss2 . Just append the following
action to the default controller:

1
2
3
4
5
6
7
8
9

80

OVERVIEW

def news():

"generates rss feed form the wiki pages"
import gluon.contrib.markdown as md
pages = db().select(db.page.ALL, orderby=db.page.title)
return dict(
title = 'mywiki rss feed' ,
link = ‘'http://127.0.0.1:8000/mywiki/default/index’
description = 'mywiki news'
created_on = request.now,
items = [
dict(title = row.title,
link = URL(r=request, f= 'show' , args=row.id),
description = md.WIKI(row.body).xml(),
created_on = row.created_on
) for row in pages]

16)
and when you visit the page
1 http://127.0.0.1:8000/mywiki/default/news.rss
you see the feed (the exact output depends on the feed read#ige that

the dict is automatically converted to RSS, thanks to the .rss extension in the
URL.

mywiki rss feed =
R, N e

(Lo (8 (XD E (L1 http://127.0.0.1:8000/ mywiki /default/news.rss ve v) = ([Gli GooglQ
1o mywiki rss feed @ [[] ticket mywiki/127.0.0.1.2009-0... €) || |_| ticket mywiki/127.0.0.1.2009-0... 0T|-,
m
Subscribe to this feed using g Live Bookmarks 52
"] Always use Live Bookmarks to subscribe to feeds.
Subscribe Now
mywiki rss feed
This is a test
Tue, Aug 11, 2009 5:20 AM
This is the text of my wiki page!!! ')
a
v
Done # 4

WEB2PY also includes feedparser to read third-party feeds.
Finally, let's add an XML-RPC handler that allows searching the wiki
programmatically:

service=Service(globals())

1
2
3 @service.xmlrpc()

4 def find_by(keyword):

5 "finds pages that contain keyword for XML-RPC"

6 return db(db.page.title.lower().like(‘%' + keyword + ‘%")\
7 .select().as_list()

8

9

def call():

10
11

[N

i

MORE ON ADMIN 81

"exposes all registered services, including XML-RPC"
return service()

Here, the handler action simply publishes (via XML-RPC), tinections
specified in the list. In this cased by. find by iS not an action (because it
takes an argument). It queries the database wd#t) and then extracts
the records as a list witkesponse and returns the list.

Here is an example of how to access the XML-RPC handler from an
external Python program.

>>> import xmirpclib
>>> server = xmirpclib.ServerProxy(
'http://127.0.0.1:8000/mywiki/default/call/xmlrpc')
>>> for item in server.find_by(‘wiki')z
print item.created_on, item.title

The handler can be accessed from many other programming lgegtrat
understand XML-RPC, including C, C++, C# and Java.

3.10 More on admin

The administrative interface provides additional functionality that we briefly
review here.

[site]

This page lists all installed applications. There are two forms at the bottom.
The first of them allows creating a new application by specifying its name.
The second form allows uploading an existing application from either a

local file or a remote URL. When you upload an application, you need to

specify a name for it. This can be its original name, but does not need to be.

This allows installing multiple copies of the same application. You can try,

for example, to upload the KPAX content management system from:

http://web2py.com/appliances/default/download/app.sou rce
.221663266939.tar

Uploaded applications can be ar files (old convention) andw2p files

(new convention). The latter ones are gzipped tar files. They can be uncom-
pressed manually witar zxvf [filename] although this is never
necessary.

82

OVERVIEW

Installed applications

admin

[errors | clean | pack all | compile]

examples

[EDIT | about | errors | clean | pack all | compile | uninstall]

[EDIT | about | errors | clean | pack all | compile | uninstall]
myapp

[EDIT | about | errors | clean | pack all | compile | uninstall]
welcome

[EDIT | about | errors | clean | pack all | compile | uninstall]

[EDIT | about | errors | clean | pack all | compile | uninstall]

QQ (C.) g () ([[hup://127.0.0.1:3000/admin/default/site w ﬂ

site

Version
web2py Version 1.66.1 (2009-08-18 00:07:57)
click to check for upgrades

e .'. B

e (Browse)

orprovide [hetp:/ fweb2py.com/applian

url:

‘;‘t‘?ﬂ’m“ LT

(’M quired): B

1. web2py 1.66.0 s out. S itior bug fis
‘You ean try the new proposed logo-11:08 AM
Aug 16th from web

2. 165

Upon successful uploadyes2pry displays the MD5 checksum of the
uploaded file. You can use it to verify that the file was not corrupted during
upload.

site

e =
Op O O O DRI C NG

admin

Installed applications

admin

[errors | clean | pack all | compile]

examples

[EDIT | about | errors | clean | pack all | compile | uninstall]

[EDIT | about | errors | clean | pack all | compile | uninstall]
KPAX

[EDIT | about | errors | clean | pack all | compile | uninstall]
myapp

[EDIT | about | errors | clean | pack all | compile | uninstall]
welcome

[EDIT | about | errars | clean | pack all | compile | uninstall J

[EDIT | ahout | errors | clean | pack all | compile | uninstall]

‘Version
webz2py Version 1.66.1 (2009-08-18 00:07:57)
elick to check for upgrades

Create new application

- ey FINNC A 3

g

MORE ON ADMIN 83

Click on the KPAX name on admin to get it up and running.

800 [KPAX/news findex =

OB@ o ([[hittp://127.0.0.1:8000/KPAX /news/index v r‘,, Coogle 0. 5
% News Folders Surveys Chats Groups.

Hi Massimo [profile][logout]

News

Filter by Group You received these Announcements

W [G1] Everybody [post announcement]

™ [G2] Massimo No pending announcements ,

Filter by Keyword

KPAX is powered by web2py (TM) © 2007, 2008

[2o

Application files are stored as w2p files (tar gzipped), but you
are not intended to tar or untar them manualkyEB2pPY does
it for you.

For each application the [site] page allows you to:

e Uninstall the application.

e Jump to the [about] page (read below).

e Jump to the [EDIT] page (read below).

e Jump to the [errors] page (read below).

e Clean up temporary files (sessions, errors, and cache.disk files).

e Pack all. This returns a tar file containing a complete copy of the ap-
plication. We suggest that you clean up temporary files before packing
an application.

e Compile the application. If there are no errors, this option will
bytecode-compile all models, controllers and views. Because views
can extend and include other views in a tree, before bytecode compi-
lation, the view tree for every controller is collapsed into a single file.
The net effect is that a bytecode-compiled application is faster, because
there is no more parsing of templates or string substitutions occurring
at runtime.

e Pack compiled. This option is only present for bytecode-compiled ap-
plications. It allows packing the application without source code for

84

OVERVIEW

distribution as closed source. Note that Python (as any other program-
ming language) can technically be decompiled; therefore compilation
does not provide complete protection of the source code. Nevertheless,
decompilation can be difficult and can be illegal.

Remove compiled. It simply removes the byte-code compiled models,
views and controllers from the application. If the application was
packaged with source code or designed locally, there is no harm in
removing the bytecode-compiled files, and the application will continue
to work. If the application was installed form a packed compiled file,
then this is not safe, because there is no source code to revert to, and
the application will no longer work.

All the functionality available from the'EB2PY admin site page

is also accessible programmatically via the API defined in the
modulegluon/admin.py . Simply open a python shell and import
this module.

[about]

The [about] tab allows editing the description of the application and its license.
These are written respectively in the ABOUT and LICENSE files in the
application folder.

800 about welcome =
-';u (A) ([hicp://127.0.0.1:8000/admin/default/about/welcome 1y v \a(*F: coogle Q)1

About application "welcome"

About welcome

[edit]
Write something about this app. Developed with webzpy.

License for welcome

[edit]

This is a sample license. You can write here anything you want as long as you do not violate webapy copyright, traderark and

license.

Powered by webzpy (TM) created by Massimo Di Pierro © 2007, 2008, 2009

B

You can use Markdown syntax for these files as described in2&. [

MORE ON ADMIN 85

[EDIT]

You have used the [EDIT] page already in this chapter. Here we want to point
out a few more functionalities of the [EDIT] page.

If you click on any file name, you can see the content of the file with
syntax highlighting.

If you click on edit, you can edit the file via a web interface.
If you click on delete, you can delete the file (permanently).

If you click on test,wEB2PY will run tests. Tests are written by the
developer using Python doctests, and each function should have its own
tests.

View files have an htmledit link that allows editing the view using a
web-based WYSIWYG editor.

You can add language files, scan the app to discover all strings, and
edit string translations via the web interface.

If the static files are organized in folders and subfolders, the folder
hierarchy can be toggled by clicking on a folder name.

The image below shows the output of the test page for the welcome appli-
cation.

800 test welcome =

9‘ Qﬁ,@uﬂ L, L] [http://127.0.0.1:8000/admin/default/test/welcome 15 ¥ LGl

admin
Testing application "welcome"

Testing controller "appadmin.py” ... done.
Functioneval in_global env [nodoctests]

Function insert [no doctests]

Function get._table [no doctests]
Function download [no dociests]

Function index [no doctests]

Function get_database [no doctests]
Function state [no doctests]
Function select [no doctests]
Function get_query [no doctests]

Funetion esv [no doctests]
| Bone.

RiEr

The image below show the languages tab for the welcome appficat

86 OVERVIEW

Edit application "welcome"

[models | controllers | views | languages | static | modules]

Models
Controllers
Views

=3
translation strings for the application

[update all languages]

s fr-fr.py [edit | delete]
it-it.py [edit | delete J
it.py [edit | delete]
pl-pl.py [edit | delete]
pl.py [edit | delete]
pt-br.py [edit | delete]
pt-pt.py [edit | delete]
pt.py [edit | delete]
ru-npy [edit | delete]
create file with filename: |

(something like "it-it")

Static files
Modules

Powered by webzpy (TM) created by Massimo Di Pierro © 2007, 2008, 2009

The image below shows how to edit a language file, in this casétthe
(Italian) language for the welcome application.

Editing Language file "welcome/languages /it.py"

Original/Translation
"update"” is an optional expression like "fieldi="newvalue'. You cannot update or delete the results of a
JOIN

"update” is an optional expression like "fieldl='newvalue
cannot update or delete the results of a JOIN

)

. You

MORE ON ADMIN 87

shell If you click on the "shell" link under the controllers tab in [EDIT],
WEB2PY Will open a web based Python shell and will execute the models
for the current application. This allows you to interactively talk to your
application.

web2py shell for welcome 3
5)

))) () hitp://127.0.0.1:8000/admin/shell/inde 77 v) =(*qz Gocgle

crontab Also under the controllers tab in [EDIT] there is a "crontab” link.

By clicking on this link you will be able to edit theveB2pY crontab file.

This follows the same syntax as the unix crontab but does not rely on unix.
In fact, it only requiresves2pyY and it works on Windows too. It allows you

to register actions that need to be executed in background as scheduled times.
For more information about this we refer to the next chapter.

[errors]

When programmingvEB2pPY, you will inevitably make mistakes and intro-
duce bugs.weB2pPY helps in two ways: 1) it allows you to create tests for
every function that can be run in the browser from the [EDIT] page; and 2)
when an error manifests itself, a ticket is issued to the visitor and the error is

logged.
Purposely introduce an error in the images application as shown below:

1 def index():
2 images = db().select(db.image.ALL,orderby=db.image.titl e)

88 OVERVIEW

1/0
return dict(images=images)

When you access the index action, you get the following ticket:

oD OO (33 oose Q)
Internal error

Ticket issued: welcome/127.0.0.1.2009-08-18.16-45-09.2881d 1e0-bbf1-4fad-ab88-0bB030f 1ec56

Only the administrator can access the ticket:

QD (@) (%) (A) () hup://127.0.0.1:8000/admin/default/ticket/welcome 17 v J=(*§ Cocgle Q|

admin B

Error ticket for "welcome"

Ticket 127.0.0.1.2009-08-18.16-45-09.2881d1e0-bbf1-4fad-ab88-0b80o30f1ec56

ted.py", line 178, in restricted

welcome/sontrollers/default.py’, line 56, in <module>
-v", line 101, in <lambda>

self. caller = lambda f: £
File */Dsers/ssantarr/sre/wab2py/applications/weloome/controllers/default.py", line 17, im index

BeroDivisionError: integer division or modulo by zero

In file: /Users/ssantarr/src/web2py/applications/welcome/controllers/default py

coding: utfa

This is a samples controller
~ index is the default action of any application

5. R

6. ## - user is required for authentication and autherization

7. ## - download is for downloading files uploaded in the db (does streaming)
9. ## - call exposes all registered services (none by default)

9.

10.

1. def index():

12. "

13.

The ticket shows the traceback, and the content of the file theted the
problem. If the error occurs in a viewEB2PY shows the view converted

MORE ON ADMIN 89

from HTML into Python code. This allows to easily identify the logical
structure of the file.

Notice that everywheradmin shows syntax-highlighted code (for exam-
ple, in error reportsweEB2pPY keywords are shown in orange). If you click
on aweB2prY keyword, you are redirected to a documentation page about
the keyword.

If you fix the 1/0 bug in the index action and introduce one in the index
view:

1 {{extend ‘layout.html' B

2

3 <h1>Current Images</h1>

4

s {{for image in images:}}

s {{1/0}}

7 {{= LI (A(image.title, _href= URL(r= request, f= "show" , args=image.id)))
B

s {{pass}}
9

you get the following ticket:

8 O @ ticket welcﬂme}ll? 00.1.2099—08—18 16-47-08.d7a7d167-8c99-46db-84ai-86390e93389e =

Error ticket for "welcome"

Ticket 127.0.0.1.2009-08-18.16-47-08.d7a7d167-8c09-46db-84af-86390e93380e

Errortraceback

Trageback (most recent call last)s
I , line 178, in restricted
exec ccnde in environment
File = o = ! , line 56, in <modul
R ibbe s oz Tore. Amtiger, AirdaLon o madals byizacs

Infile: [Usms/marﬁaﬂ/ﬂcfwe&py/apph@m/wdmmﬂ/w&w&/dﬂfmﬂtfmdﬂ(hﬁnl

onse.write(

ite(r accepteu laanaqe or 'en')

ite(.le> ', escape=False)
(respense. title or ; L

response.copyright or ')

il

,escape=False}

i e e doa] N — i

Note thatweB2pPY has converted the view from HTML into a Python file,
and thus, the error described in the ticket refers to the generated Python code
and NOT to the original view file.

you get the following ticket:

90 OVERVIEW

response. xlteﬁ‘BNU(response.

response.write{ \n ,escape=False)
& pass
47. response.write('\n ' ,escape=Falsa)
if response.menu_edit:
response.vrite(rhie Apps/n2>\n ! ,escape=False)
response.vrite(MENU(response.menu_sdit))
response.write{'\n ,escape=False)
pass
response.write('\r
\n </td>\n <td class olum2*>%n
response.write(response.flash or
response.write('</div>\n \n' escape=False)
1/0

response.write('\n',escape=Falsa)
o

response.write{ ', escape=Falsa)
respanse.vrite(d? (message))
response.write{ ',escape=False)
except:
response.write{ ', escape=False)
response.vrite(BEAUTIFY (response._vars))
response.write{ ', escape=False)
pass
response.write('\nin ,Bacape-rnllu}
response.write (B (A(T(ik
respense.write('\n',escap ?l_lnn)
respcnse.wr1tz(!‘(l\("‘(eli
response.write('\nin

Powered by webzpy (TM) created by Massimo Di Pierro © 2007, 2008, 2009

- ——————————————5
Bome

This may seem confusing at first, but in practice it makes delhgggasier,
because the Python indentation highlights the logical structure of the code
that you embedded in the views.

The code is shown at the bottom of the same page.

All tickets are listed under admin in the [errors] page for each application:

Qn @ ﬂ ﬂ Pinp //127.0.0.1:8000/admin/default /errors fwelcome i}v ﬂ-!

Error logs for "welcome"

(“check all) ((uncheck all) (Gelete all checked)

Delete Ticket Date and Time

127.0.0.1.2009-08-18.16-47-34.11b86661-b73e-4350-g4df-5fb78eesec1e 2009-08-18 16:47:34
127.0.0.1.2009-08-18.16-47-08.d7a7d167-Begy-46db-B4af-86390e9338092 2009-08-18 16:47:08
127.0.0.1.2009-08-18.16-46-35. daz-4941-geb2-16316d 2009-08-18 16:46:35
127.0.0.1.2009-08-18.16-46-21.ef1054d9-6779-4977-b253-a5e58c086e3d 2009-08-18 16:46:21
127.0.0.1.2009-08-18.16-46-07.c4bgbB59-f2bo-4613-8Bbes-e6b8f6ho7iay 2009-08-18 16:46:07
127.0.0.1.2009-08-18.16-45-09.2881d1e0-bbfi-4fad-ab88-0bBogofiecs6 2009-08-18 16:45:09

i o I

Powered by webapy (TM) created by Massimo Di Pierro © 2007, 2008, 2009

i

i

MORE ON APPADMIN 91

[mercurial]

If you are running from source and you have the Mercurial version control
libraries installed:

easy_install mercurial

then the administrative interface shows one more menu iteledcahercu-

rial". It automatically creates a local Mercurial repository for the application.

Pressing the "commit” button in the page will commit the current application.
This feature is experimental and will be improved in the future.

3.11 More on appadmin

appadminis not intended to be exposed to the public. It is designed to help
you by providing an easy access to the database. It consists of only two files:
a controller "appadmin.py" and a view "appadmin.html" which are used by
all actions in the controller.

Theappadmin controller is relatively small and readable; it provides an
example on designing a database interface.

appadmin shows which databases are available and which tables exist
in each database. You can insert records and list all records for each table
individually. appadmin paginates output 100 records at a time.

Once a set of records is selected, the header of the pages changes, allowing
you to update or delete the selected records.

To update the records, enter an SQL assignment in the Query string field:

title = 'test’

where string values must be enclosed in single quotes. Meifiiglds can be
separated by commas.

To delete a record, click the corresponding checkbox and confirm that you
are sure.

appadmin can also perform joins if the SQL FILTER contains a SQL
condition that involves two or more tables. For example, try:

db.image.id == db.comment.image_id

WEB2PY passes this along to the DAL, and it understands that the query
links two tables; hence, both tables are selected with an INNER JOIN. Here
is the output:

92 OVERVIEW

anc images
Q]_, (G)) () ([hitp://127.0.0.1:8000/images/appadmin/select/db

images
customize me!
JIDAges/
ﬁf:;f Menu ' database db select
db Rows selected
stats
_E . Query: [db.image.id==db. image id]
Edit This App Update: B | ‘
L Delete: [

The "query” is a condition like "db.tabler.fieldi=="value". Something like "db.table1.fieldi==db.table2.field
Use {...)&(...) for AND, (...)|(...) for OR, and ~{...) for NOT to build more complex queries.
"update” is an optional expression like "field1="newvalue". You cannot update or delete the results of a JOIN:

2 selected
id image_id author cor .email commentbody im
1 1 Massimo mdipierro@cs.... Is this real? 1
2 1 Massimo mdipierro@es.... Of course it is! 1
Import/Export

[uﬁl‘t as esv file] i
Dere ...

&

If you click on the number of an id field, you get an edit page ferréecord
with the corresponding id.

If you click on the number of a reference field, you get an edit page for the
referenced record.

You cannot update or delete rows selected by a join because they involve
records from multiple tables and this would be ambiguous.

CHAPTER 4

THE CORE

4.1 Command Line Options

It is possible to skip the GUI and stasteB2pPY directly from the command
line by typing something like:

1 python web2py.py -a 'your password' -i 127.0.0.1 -p 8000

WhenwEgB2prY starts, it creates a file called "paramet@300.py" where
it stores the hashed password. If you use "<ask>" as the passwor@py
prompts you for it.

For additional security, you can stavtEB2pY with:

1 python web2py.py -a '<recycle>' -i 127.0.0.1 -p 8000

In this casewEB2pPY reuses the previously stored hashed password. If
no password is provided, or if the "paramet8@90.py" file is deleted, the
web-based administrative interface is disabled.

WEBZ2PY: Enterprise Web Framework / 2nd Bl.Massimo Di Pierro 93
Copyright(C) 2009

94

THE CORE

WEB2PY normally runs with CPython (the C implementation of
the Python interpreter created by Guido van Rossum), but it can
also run with Jython (the Javaimplementation of the interpreter).
The latter possibility allows the use ofEB2PY in the context

of a J2EE infrastructure. To use Jython, simply replace "python
web2py.py ..." with "jython web2py.py". Details about installing
Jython, zxJDBC modules required to access the databases can
be found in Chapter 12.

The "web2py.py" script can take many command-line arguments specify-

ing the maximum number of threads, enabling of SSL, etc. For a complete

list type:
>>> python web2py.py -h
Usage: python web2py.py
web2py Web Framework startup script. ATTENTION: unless a pass word
is specified (-a '‘passwd’), web2py will attempt to run a GUL.
In this case command line options are ignored.
Options:
--version show program 's version number and exit
-h, --help show this help message and exit
-i 1P, --ip=IP ip address of the server (127.0.0.1)

-p PORT, --port=PORT port of server (8000)
-a PASSWORD, --password=PASSWORD
password to be used for administration
use -a "<recycle>" to reuse the last
password
-u UPGRADE, --upgrade=UPGRADE
-u yes: upgrade applications and exit
-c SSL_CERTIFICATE, --ssl_certificate=SSL_CERTIFICATE
fi le that contains ssl certificate
-k SSL_PRIVATE_KEY, --ssl_private_key=SSL_PRIVATE_KEY
fi le that contains ssl private key
-d PID_FILENAME, --pid_filename=PID_FILENAME
fi le to store the pid of the server
-| LOG_FILENAME, --log_filename=LOG_FILENAME
fi le to log connections
-n NUMTHREADS, --numthreads=NUMTHREADS
number of threads
- SERVER_NAME, --server_name=SERVER_NAME
server name for the web server
-0 REQUEST_QUEUE_SIZE, --request_queue_size=REQUEST_QUEUE_SIZE
max number of queued requests when server
unavailable
-0 TIMEOUT, --timeout=TIMEOUT
ti meout for individual request (10 seconds)
-z SHUTDOWN_TIMEQOUT, --shutdown_timeout=SHUTDOWN_TIMEOUT
ti meout on shutdown of server (5 seconds)
-f FOLDER, --folder=FOLDER
fo Ider from which to run web2py
-v, --verbose i ncrease --test verbosity
-Q, --quiet disable all output

a1
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

© ©® N o oA W N e

1

e

1

N)

1

w

14

COMMAND LINE OPTIONS 95

-D DEBUGLEVEL, --debug=DEBUGLEVEL
set debug output level (0-100, 0 means all,
100 means none; default is 30)

-S APPNAME, --shel=APPNAME
run web2py in interactive shell or IPython
(i f installed) with specified appname

-P, --plain only use plain python shell; should be used
wi th --shell option

-M, --import_models auto import model files; default is False;
should be used with --shell option

-R PYTHON_FILE, --run=PYTHON_FILE
run PYTHON_FILE in web2py environment;
should be used with --shell option

-T TEST_PATH, --test=TEST_PATH
ru n doctests in web2py environment;
TEST_PATH like a/c/f (c,f optional)

-W WINSERVICE, --winservice=WINSERVICE
-W install|start|stop as Windows service

-C, --cron trigger a cron run manually; usually invoked
fr om a system crontab

-N, --no-cron do not start cron automatically

-L CONFIG, --config=CONFIG
config file

-F PROFILER_FILENAME, --profiler=PROFILER_FILENAME
pr ofiler filename

-t, --taskbar use web2py gui and run in taskbar
(s ystem tray)

Lower-case options are used to configure the web server. Tdpdion tells
WEB2PY to read configuration options from a filey installsweB2py as a
windows service, whiles, -p and-m options start an interactive Python shell.
The -1 option finds and runs controller doctests inv&B2pPY execution
environment. For example, the following example runs doctests from all
controllers in the "welcome" application:

python web2py.py -vT welcome

InthewEB2PY folder there is a sample "optiorssd.py" configuration file
for the internal web server:

import socket, os

ip = '127.0.0.1'

port = 8000

password = '<recycle>' ### <recycle> means use the previous password
pid_filename = ‘httpserver.pid'

log_filename = ‘httpserver.log'

ssl_certificate = " ### path to certificate file

ssl_private_key = " ### path to private key file

numthreads = 10

server_name = socket.gethostname()
request_queue_size = 5

timeout = 10

shutdown_timeout = 5

folder = os.getcwd()

96 THE CORE

This file contains theves2py defaults. If you edit this file, you need to
import it explicitly with the-L. command-line option.

4.2 URL Mapping

WEB2PY maps a URL of the form:
http://127.0.0.1:8000/a/c/f.html

i

to the functior¥() in controller "c.py" in application "a". If is not present,
WEB2PY defaults to thendex controller function. It is not presentwes2pry

defaults to the "default.py"” controller, andiis not presentweB2prY defaults
to theinit application. If there is n@it application,wEB2PY tries to run
thewelcome application. This is shown schematically in the image below:

http:/fhostname/application/controllerffunction/args?vars

j run application
resg (dict)
i on()
in o
controller.py
page body as string
redirect
session HTTP error
- exception (ticket issued)

5QLice, PostgreSQL. ecc.

request(env,args,vars) html to browser

By default, any new request also creates a new session. Iricaxdit
session cookie is returned to the client browser to keep track of the session.
The extensiomtmi is optional;htmi is assumed as default. The extension
determines the extension of the view that renders the output of the controller
functionf) . It allows the same content to be served in multiple formats

(html, xml, json, rss, etc.).
There is an exception made for URLs of the form:

1 http://127.0.0.1:8000/a/static/filename

i

i

[

i

URL MAPPING 97

There is no controller called "staticWwEB2PY interprets this as a request
for the file called "filename" in the subfolder "static" of the application "a".
When static files are downloadedegB2PY does not create a session, nor
does it issue a cookie or execute the modelsB2pry always streams static
files in chunks of 1MB, and sends PARTIAL CONTENT when the client
sends a RANGE request for a subset of the fileesB2pry also supports
the IFMODIFIED_SINCE protocol, and does not send the file if it is already
stored in the browser’s cache and if the file has not changed since that version.

Functions that take arguments or start with a double underscore
are not publicly exposed and can only be called by other func-
tions.

WEB2PY maps GET/POST requests of the form:
http://127.0.0.1:8000/a/c/f.html/x/y/z?p=1&q=2

to functiont in controller "c.py" in applicatiors, and it stores the URL
parameters in thequest Vvariable as follows:

request.args = ['x, Vv , 'z]
and:
request.vars = { 'p':1, ‘g :2}

and:
r equest .application = ‘a'
r equest .controller = G
r equest .function = 'f
In the above example, both quest.argsli] and request.args(i) can be

used to retrieve the i-th element of thguestargs , but while the former
raises an exception if the list does not have such an index, the latter returns
None in this case.

request .url

stores the full URL of the current request (not including GETiahles). It
is the same as:

URL(r= r equest ,args= request .args)

If the HTTP request is a GET, the¿env.request _method IS Set to
"GET"; if it is @ POST request.env.request _method IS set to "POST". URL
query variables are stored in thquestvars ~ Storage dictionary; they are also
stored inrequestget vars (following a GET request) Orequest.post _vars
(following a POST request).

WEB2PY stores WSGIl antEB2PY environment variables aquest.env
for example:

[

i

98 THE CORE

r equest .env.path_info = " alclf!

and HTTP headers into environment variables, for example:
request .env.http_host = '127.0.0.1:8000

Notice thatweB2pPY validates all URLs to prevent directory
traversal attacks.

URLs are only allowed to contain alphanumeric characters, underscores,
slashes; thargs may contain non-consecutive dots. Speces are replaced by
underscores before validation. If the URL syntax is invaubB2pPY returns
an HTTP 400 error message [45, 46].

If the URL corresponds to a request for a static fless2py simply reads
and returns (streams) the requested file.

If the URL does not request a static fikeB2PY processes the request in
the following order:

e Parses cookies.

e Creates an environment in which to execute the function.

[|I’]itia|izeSrequest , response , cache .

e Opens the existingession Or creates a new one.

e Executes the models belonging to the requested application.

e Executes the requested controller action function.

e If the function returns a dictionary, executes the associated view.
e On success, commits all open transactions.

e Saves the session.

e Returns an HTTP response.

Notice that the controller and the view are executed in different copies of
the same environment; therefore, the view does not see the controller, but
it sees the models and it sees the variables returned by the controller action
function.

If an exception (other than HTTP) is raisedes2pY does the following:

e Stores the traceback in an error file and assigns a ticket number to it.
¢ Rolls back all open transactions.

e Returns an error page reporting the ticket number.

© ©® N o g A W N P

[
1S)

1

i

1

)

1

w

1

=

1!

o

1

=

1

]

1i

©

1

©

2

o

2

=

2

N

2

w0

24
2

a

2

o

2

]

2

@

2

©

3
3
3

N B O

3
34

@

i

LIBRARIES 99

If the exception is amTTP exception, this is assumed to be the intended
behavior (for example, aarte redirect), and all open database transactions
are committed. The behavior after that is specified byHte exception
itself. TheHTtTP exception class is not a standard Python exception; it is
defined bywEB2PY.

4.3 Libraries

ThewEB2PY libraries are exposed to the user applications as global objects.
For exampleréquest , response , session , cache), classes (helpers, validators,
DAL API), and functions { andredirect).

These objects are defined in the following core files:

web2py.py
gluon/__init__.py
gluon/admin.py
gluon/cache.py
gluon/compileapp.py
gluon/contenttype.py
gluonffileutils.py
gluon/globals.py
gluon/highlight.py
gluon/html.py
gluon/http.py
gluon/import_all.py
gluon/languages.py
gluon/main.py
gluon/myregex.py
gluon/portalocker.py
gluon/restricted.py
gluon/rewrite.py
gluon/sanitizer.py
gluon/serializers.py
gluon/settings.py
gluon/shell.py
gluon/sql.py
gluon/sglhtml.py
gluon/storage.py
gluon/streamer.py
gluon/template.py
gluon/tools.py
gluon/utils.py
gluon/validators.py
gluon/widget.py
gluon/winservice.py
gluon/wsgiserver.py
gluon/xmirpc.py

The tar gzipped apps that ship witteB2pPY are in

admin.w2p

2
3

i

N o o s ®w N P

N

N

Noe

Noe

Noe

100 THE CORE

examples.w2p
welcome.w2p

The first time you startvEB2PY, two new folders are created:
deposit and applications. The three w2p files above are unzipped
in the applications folder. The depositfolderis used as temporary
storage for installing and uninstalling applications.

WEB2PY unittests are in

gluon/tests/

Handlers for connecting with various web servers:

cgihandler.py

gaehandler.py

fcgihandler.py

wsgihandler.py
modpythonhandler.py
gluon/contrib/gateways/__init__.py
gluon/contrib/gateways/fcgi.py

(fcgi.py was developed by Allan Saddi)
Two example files:
options_std.py
routes.example.py
The former is an optional configuration file that can be passedb®2py.py
with the-L option. The second is an example of a URL mapping file. Itis
loaded automatically when renamed "routes.py".
The files
app.yaml
index.yaml
are configuration files necessary for deployment on the GoogfeEngine.
You probably do not need to modify them, but you can read more about them
on the Google Documentation pages.
There are also additional libraries, usually developed by a third party:
feedparser[27] by Mark Pilgrim for reading RSS and Atom feeds:

gluon/contrib/__init__.py
gluon/contrib/feedparser.py

markdown?2 [28] by Trent Mick for wiki markup:

gluon/contrib/markdown/__init__.py
gluon/contrib/markdown/markdown2.py

memcache29] Python API by Evan Martin:

gluon/contrib/memcache/__init__.py
gluon/contrib/memcache/memcache.py

= =

© N o O s ®w NP =

a s w N e -

Ne

i

o g A W N e

LIBRARIES 101

gql, a port of the DAL to the Google App Engine:
gluon/contrib/ggl.py

memdb, a port of the DAL on top of memcache:
gluon/contrib/memdb.py

gaememcaches an API to use memcache on the Google App Engine:

gluon/contrib/gae_memcache.py

pyrtf [25] for generating Rich Text Format (RTF) documents, developed
by Simon Cusack and revised by Grant Edwards:

gluon/contrib/pyrtf
gluon/contrib/pyrtf/__init__.py
gluon/contrib/pyrtf/Constants.py
gluon/contrib/pyrtf/Elements.py
gluon/contrib/pyrtf/PropertySets.py
gluon/contrib/pyrtf/README
gluon/contrib/pyrtf/Renderer.py
gluon/contrib/pyrtf/Styles.py

PyRSS2Gerj26] developed by Dalke Scientific Software, to generate RSS
feeds:

gluon/contrib/rss2.py

simplejson [24] by Bob Ippolito, the standard library for parsing and
writing JSON objects:
gluon/contrib/simplejson/__init__.py
gluon/contrib/simplejson/decoder.py
gluon/contrib/simplejson/encoder.py

gluon/contrib/simplejson/jsonfilter.py
gluon/contrib/simplejson/scanner.py

cron andwsgihooksare required for executing cron jobs and tasks that
must be executed after a page is served.
gluon/contrib/cron.py
gluon/contrib/wsgihooks.py

A file that allows interaction with the taskbar in windows, whens2py
iS running as a service:

gluon/contrib/taskbar_widget.py

Optionallogin_methodsto be used for authentication:

gluon/contrib/login_methods/__init__.py
gluon/contrib/login_methods/basic_auth.py
gluon/contrib/login_methods/cas_auth.py
gluon/contrib/login_methods/email_auth.py
gluon/contrib/login_methods/gae_google_account.py
gluon/contrib/login_methods/Idap_auth.py

WEB2PY also contains a folder with useful scripts:

© o N o oA W N e

w N e

102

THE CORE

scripts/cleancss.py
scripts/cleanhtml.py
scripts/contentparser.py
scripts/repair.py
scripts/sessions2trash.py
scripts/sync_languages.py
scripts/tickets2db.py
scripts/web2py.archlinux.sh
scripts/web2py.fedora.sh
scripts/web2py.ubuntu.sh
scripts/web2py-wsgi.conf

These are discussed in Chapter 12, butthey are more or lesoselinenting.
Finally weB2pY includes these files required to build the binary distribu-

tions.

Makefile
setup_exe.py
setup_app.py

These are setup scripts fpy2exeandpy2app respectively and they are
only required to build the binary distributions ofEB2PY.
In summarywgeB2PY libraries provide the following functionality:

Map URLs into function calls.

Handle passing and returning parameters via HTTP.

Perform validation of those parameters.

Protect the applications from most security issues.

Handle data persistence (database, session, cache, cookies).
Perform string translations for various supported languages.
Generate HTML programmatically (e.g. from database tables).

Generate SQL and add a powerful Python abstraction layer above the
specified database (SQLite, MySQL, MS SQL, Firebird, PostgreSQL,
or Oracle). This abstraction layer is referred to as the Database Ab-
straction Layer (DAL).

Generate Rich Text Format (RTF) output.
Generate Comma-Separated Value (CSV) output from database tables.
Generate Really Simple Syndication (RSS) feeds.

Generate JavaScript Object Notation (JSON) serialization strings for
Ajax.

APPLICATIONS 103

e Translate wiki markup (Markdown) to HTML.
e Expose XML-RPC web services.
e Upload and download large files via streaming.

WEB2PY applications contain additional files, particularly third-party JavaScript
libraries, such as jQuery, calendar, EditArea and nicEdit. Their authors are
acknowledged in the files themselves.

4.4 Applications

Applications developed iweB2prY are composed of the following parts:

e modelsdescribe a representation of the data as database tables and
relations between tables.

e controllers describe the application logic and workflow.

e viewsdescribe how data should be presented to the user using HTML
and JavaScript.

e languagesdescribe how to translate strings in the application into
various supported languages.

e static files do not require processing (e.g. images, CSS stylesheets,
etc).

e ABOUT andREADME documents are self-explanatory.

e errors store error reports generated by the application.

e sessionstore information related to each particular user.

e databasesstore SQLite databases and additional table information.
e cachestore cached application items.

e modulesare other optional Python modules.

e private files are accessed by the controllers but not directly by the
developer.

e uploadsfiles are accessed by the models but not directly by the devel-
oper (e.g., files uploaded by users of the application).

e testsis a directory for storing test scripts, fixtures and mocks.

w N e

i

i

1

104 THE CORE

Models, views, controllers, languages, and static files are accessible via the
web administration [design] interface. ABOUT, README, and errors are
also accessible via the administration interface through the corresponding
menu items. Sessions, cache, modules and private files are accessible to the
applications but not via the administration interface.

Everything is neatly organized in a clear directory structure that is repli-
cated for every installedEs2pY application, although the user never needs
to access the filesystem directly:

ABOUT databases languages modules static views
cache er rors LICENSE private tests cron
controllers __init__.py models sessions uploads

"__init__.py" is an empty file which is required in order to allow Pythonda
WEB2PY) to import the modules in th@odules directory.

Notice that theadmin application simply provides a web interface to
WEB2PY applications on the server file systewEB2PY applications can
also be created and developed from the command-line; you don’t have to use
the browseadmin interface. A new application can be created manually by
replicating the above directory structure under ,e.g., "applications/newapp/"
(or simply untar thewvelcome.w2p file into your new application directory).
Application files can also be created and edited from the command-line
without having to use the weddmin interface.

45 API

Models, controllers, and views are executed in an environment where the
following objects are already imported for us:

Global Objects

request, response, session, cache

Navigation

redirect, HITP

Internationalization

T

N o o0 s w N P

[N R

i

i

i

REQUEST 105

Helpers

XML, URL, BEAUTIFY

A, B, BODY, BR, CENTER, CODE, DIV, EM EMBED, FIELDSET, FORM
Hl, H3, H3, H4, H5, H6, HEAD, HR HIM, |FRAME, | M5 | NPUT,
LABEL, LI, LINK OL, UL, MENU, META, OBJECT, ON, OPTION, P, PRE,
SCRI PT, SELECT, SPAN, STYLE, TABLE, TD, TAG TBODY,

TEXTAREA, TFOOT, TH, THEAD, TITLE, TR TT, XHTML

Validators

I'S_ALPHANUMERI C, |'S_DATE, |S_DATETIME, |S_EMAIL,
I'S EXPR | S_FLOAT_IN_RANGE, IS IMAGE, IS INT_IN RANGE, |S_IN_SET,
IS IPV4, IS LENGTH, |S LOAER IS _MATCH 1S NULL_OR, |S_NOT_EMPTY,
IS TIME, IS URL, |'S UPLOAD FILENAME, |S LIST OF, |S UPPER

IS STRONG, CLEANUP, CRYPT, IS IN DB, |S NOT_IN DB

Database

DAL, Field

For backward compatibilitysq bB=DAL and sQLField=Field . \We encourage
you to use the new syntaraL andrield , instead of the old syntax.

Other objects and modules are defined in the libraries, but they are not
automatically imported since they are not used as often.

The core API entities in thevEB2PY execution environment areguest
response , session , cache , URL, HTTP, redirect andT and are discussed below.

A few objects and functions, includinguth, Crud and Service are
defined in "gluon/tools.py" and they need to be imported is necessary:

from gluon.tools import Auth, Crud, Service

4.6 request

The request Object is an instance of the ubiquitousEB2pPY class that is
called gluon.storage.Storage , which extends the Pythoact class. It is
basically a dictionary, but the item values can also be accessed as attributes:

request .vars
is the same as:
request|['vars' |

Unlike a dictionary, if an attribute (or key) does not existjées not raise an
exception. Instead, it returmsne.

106

THE CORE

request has the following items/attributes, some of which are also an
instance of thetorage class:

request.cookies a cookie.SimpleCookie() object containing the cook-
ies passed with the HTTP request. It acts like a dictionary of cookies.
Each cookie is a Morsel object.

request.env a storage Object containing the environment variables
passed to the controller, including HTTP header variables from the
HTTP request and standard WSGI parameters. The environment vari-
ables are all converted to lower case, and dots are converted to under-
scores for easier memorization.

request.application the name of the requested application (parsed
from request.env.path _info)

request.controller. the name of the requested controller (parsed from
the request.env.path Jinfo)

request.function the name of the requested function (parsed from the
request.env.path _Jinfo)

request.extension the extension of the requested action. It defaults
to "html". If the controller function returns a dictionary and does not
specify a view, this is used to determine the extension of the view file
that will render the dictionary (parsed from tlaguest.env.path _info).

request.folder the application directory. For example if the applica-
tion is "welcome" request.folder is set to the absolute path "/path/-
to/welcome". In your programs, you should always use this variable
and theos.path.join function to build paths to the files you need to
access. AlthougivEB2PY always uses absolute paths, itis a good rule
never to explicitly change the current working folder (whatever that is)
since this is not a thread-safe practice.

request.nOW a datetime.datetime object storing the timestamp of the
current request.

request.args A list of the URL path components following the con-
troller function name; equivalent to
request.env.path dnfo.split('/")[3:]

request.vars a gluon.storage.Storage object containing the HTTP
GET and HTTP POST query variables.

request.getvars: agluon.storage.Storage object containing only the
HTTP GET query variables.

RESPONSE 107

e request.postvars: a gluon.storage.Storage object containing only
the HTTP POST query variables.

e request.client The ip address of the client as determined by
request.env.remote _addr Ol r equest.env.http x_forwarded _for ifpresent.
While this is useful it should not be trusted becausethex_forwarded _for
can be spoofed.

e request.body a readonly file stream that contains the body of the
HTTP request. Thisis automatically parsed to getdfi@st.post vars
and then rewinded. It can be read witquest.body.read()

As an example, the following call on a typical system:
1 http://127.0.0.1:8000/examples/default/status/x/y/z?p =1&0=2

results in table 4.1

Which environment variables are actually defined depends on the web
server. Here we are assuming the built-in cherrypy wsgi server. The set of
variables is not much different when using the Apache web server.

Therequest.env.http » variables are parsed fromthe requestHTTP header.

Therequestenv.web2py » variables. These are not parsed from the web
server environment, but are createdWwyB2PY in case your applications
need to know about thevEB2pY location and version, and whether it is
running on the Google App Engine (because specific optimizations may be
necessary).

Also notice theequestenv.wsgi + variables. They are specific to the wsgi
adaptor.

4.7 response

response IS another instance of thsorage class. It contains the following:

e response.author optional parameter that may be included in the
views. It should contain the name of the author of the page being
displayed and should be rendered by the HTML meta tag.

e response.bodyastringio object into whichwEB2PY writes the out-
put page body. NEVER CHANGE THIS VARIABLE.

e response.cookiessimilar torequest.cookiesbut while the latter con-
tains the cookies sent from the client to the server, the former contains
cookies sent by the server to the client. The session cookie is handled
automatically.

108

THE CORE
variable value
request.application examples
request.controller default
request.function index
request.extension html

request.view status

request.folder applications/examples/
request.args [x,'y, 2]

request.vars

request.gevars
request.posvars
request.env.conteténgth
request.env.conternype
request.env.httccept
request.env.httcceptencoding
request.env.httcceptlanguage
request.env.httgookie
request.env.httjost
request.env.httpnax forwards
request.env.httpeferer
request.env.httpuiseragent
request.env.httpia
request.env.httpx_forwardedfor
request.env.httpx_forwardedhost
request.env.httpx_forwardedserver
request.env.patinfo
request.env.quergtring
request.env.requestethod
request.env.scrippbame
request.env.servarame
request.env.serveyort
request.env.serverotocol
request.env.web2pgath
request.env.we2bpyersion
request.env.web2psuntime.gae
request.env.wsgerrors
request.env.wsgnput
request.env.wsginultiprocess
request.env.wsginultithread
request.env.wsgiun.once
request.env.wsgirl_scheme
request.env.wsgiersion

(Storage{’p”: 1,’q": 2})
(Storage{’p” 1,’q": 2})
(Storage{})
0

text/xml,text/html;

gzip, deflate

en
sessionid_examples=127.0.0.1.119725
127.0.0.1:8000

10

http://web2py.com/

Mozilla/5.0

1.1 web2py.com

76.224.34.5

web2py.com

127.0.0.1
/examples/simplexamples/status
remoteaddr:127.0.0.1

GET

127.0.0.1

8000

HTTP/1.1

/Users/mdipierro/web2py

Version 1.65.1 (2009-07-05 10:19:29)
(optional, defined only if GAE detected
(open file (stdern ’, mode 'w’ at)

False
True
False
http
10

Figure 4.1 Example of system variables storedréjuest

RESPONSE 109

response.description optional parameter that may be included in the
views, normally used to set the meta description in the HTML header.
It should be rendered by the corresponding meta tag.

response.download(request, db)a method used to implement the
controller function that allows downloading of uploaded files.

response.flashoptional parameter that may be included in the views.
Normally used to notify the user about something that happened.

response.headersadict for HTTP response headers.

response.keywords optional parameter that may be included in the
views. It should be rendered by the corresponding HTML meta tag.

response.menuoptional parameter that may be included in the views,
normally used to pass a navigation menu tree to the view. It can be
rendered by the MENU helper.

response.postprocessinghis is a list of functions, empty by default.
These functions are used to filter the response object at the output of
an action, before the output is rendered by the view. It can be used to
implement support for other template languages.

response.render(view, vars)a method used to call the view explicitly
inside the controllerview is an optional parameter which is the name
of the view file,vars is a dictionary of named values passed to the view.

response.sessiafile: file stream containing the session.

response.sessidile_name name of the file where the session will be
saved.

response.sessiaid: the id of the current session. It is determined
automatically. NEVER CHANGE THIS VARIABLE.

response.sessiaidl_name the name of the session cookie for this
application. NEVER CHANGE THIS VARIABLE.

response.status the HTTP status code integer to be passed to the
response. Defaultis 200 (OK).

response.stream(file, chunksize} when a controllerreturns fyEB2PY
streams the file content back to the client in blocks of sigex size .

response.subtitle optional parameter that may be included in the
views. It should contain the subtitle of the page.

~N o o A W N R

110 THE CORE

e response.title optional parameter that may be included in the views.
It should contain the title of the page and should be rendered by the
HTML title TAG in the header.

e response.vars: this variable is accessible only in a view, not in the
action. It contains the value returned by the action to the view.

e response.view the name of the view template that must render the
page. This is set by default to:

"%s/%s.%s" % (request . controller, r equest .function, request.
extension)

[N

or, if the above file cannot be located, to

"generic.%s" % (request . extension)

[

Change the value of this variable to modify the view file asdedia
with a particular action.

e response.xmlrpc(request, methods) when a controller returns it,
this function exposes the methods via XML-RPC [44]. This function
is deprecated since a better mechanism is available and described in
Chapter 9.

e response.write(text) a method to write text into the output page body.

Sinceresponseis a gluon.storage. Storage object it can be used to store
other attributes that you may want to pass to the view. While there is no
technical restriction our recommendation is to store only variables that are to
be rendered by all pages in the overall layout ("layout.html").

Anyway, we strongly suggest to stick to the variables listed here:

response.t itle

response.s ubtitle

response.a uthor

r esponse.k eywords

response.d escription

response.f lash

response.menu

because this will make it easier to replace the standard "tayonl" file that
comes withwEB2PY with another layout file, one that uses the same set of

variables.

4.8 session

session IS another instance of thaworage class. Whatever is stored into
session for example:

1

N o g s W N R

Noe

CACHE 111

sessi on.myvariable = " hello"

can be retrieved at a later time:

a = sessi on. myvariable

as long as the code is executed within the same session by theeussEn
(provided the user has not deleted session cookies and the session did not
expire). Becausession is astorage Object, trying to access an attribute/key
that has not been set does not raise an exception; it retbastead.

The session object has two important methods. Of@get:

sessi on.forget()

It tells WEB2PY not to save the session. This should be used in those
controllers whose actions are called often and do not need to track user
activity.

The other method isonnect

sessi on.connect(request, response, db, masterapp=None)

wheredb is the name of an open database connection (as returned by the
DAL). It tells weB2PY that you want to store the sessions in the database and
not on the filesystenwEeB2PY creates a table:

db.define_table(‘web2py_session' ,
Fi el d('locked" , 'boolean' , default=False),
Fi el d(‘client_ip'),
Fi el d('created_datetime' , 'datetime’ , default=now),
Fi el d('modified_datetime' , 'datetime’),
Fi el d('unique_key'),
Fi el d('session_data' , text’)

and stores cPickled sessions in thesion data field.

The optionmasterapp=None , by default, tellsweB2pY to try to retrieve an
existing session for the application with nameeijuest.application ,inthe
running application.

If you want two or more applications to share sessionsmsgérapp to
the name of the master application.

You can check the state of your application at any time by printing the
request ,session andresponse System variables. One way to doitis to create
a dedicated action:

def status():
return dict(request =r equest, sessi on=sessi on, response=response)

4.9 cache

B oW N R EN O

L N

[I N R

112 THE CORE

cache a global object also available in tveeB2pPY execution environment.
It has two attributes:

e cache.ram the application cache in main memory.
e cache.disk the application cache on disk.

cache is callable, this allows it to be used as a decorator for caching actions
and views.
The following example caches thge.ctime() ~ function in RAM:

def cache_in_ram():

import time
t = cache. ram('time' , lambda: time.ctime(), time_expire=5)
return dict(time=t, link= A('click me' , _href= request .url))

The output ofa mbda: time.ctime() is cached in RAM for 5 seconds. The
string'tme’ is used as cache key.
The following example caches thge.ctime() function on disk:

def cache_on_disk():

import time
t = cache. disk(‘'time' , lambda: time.ctime(), time_expire=5)
return dict(time=t, link= A('click me' , _href= request .url))

The output ofia mbda: time.ctime() is cached on disk (using the shelve
module) for 5 seconds.

The next example caches thve.ctime() function to both RAM and disk:
def cache_in_ram_and_disk():

import time

t = cache.ram('time' , lambda: cache.disk(‘time'
lambda: time.ctime(), time_expire=5),
time_expire=5)

return dict(time=t, link= A('click me' , _href= request .url))

The output ofia mbda: time.ctime() is cached on disk (using the shelve
module) and then in RAM for 5 secondsweEB2pPY looks in RAM first
and if not there it looks on disk. If it is not in RAM or on dislgnbda:
time.ctime() IS executed and the cache is updated. This technique is useful
in a multiprocess environment. The two times do not have to be the same.

The following example is caching in RAM the output of the controller
function (but not the view):

@cache(r equest . env.path_info, time_expire=5, cache_model= cache.ram)
def cache_controller_in_ram():

import time

t = time.ctime()

return dict(time=t, link= A('click me' , _href= request .url))

The dictionary returned baache controller _in ram is cached in RAM for
5 seconds. Note that the result of a database select cannot be cached without

L N

L N

URL 113

first being serialized. A better way is to cache the database directly using the
select Methodcache argument.

The following example is caching the output of the controller function on
disk (but not the view):

@cache(r equest . env.path_info, time_expire=5, cache_model= cache.disk)
def cache_controller_on_disk():

import time

t = time.ctime()

return dict(time=t, link= A('click to reload'

_href= request . url))

The dictionary returned byache controller _on_disk is cached on disk for
5 seconds. Remember tha@EB2PY cannot cache a dictionary that contains
unpickleable objects.

It is also possible to cache the view. The trick is to render the view in the
controller function, so that the controller returns a string. This is done by
returningresponse.render(d) whered is the dictionary we intended to pass
to the view:

The following example caches the output of the controller function in RAM
(including the rendered view):

@cache(r equest . env.path_info, time_expire=5, cache_model= cache.ram)
def cache_controller_and_view():

import time

t = time.ctime()

d = dict(time=t, link= A('click to reload' , _href= request .url))

return response. render(d)

response.render(d) returns the rendered view as a string which is now
cached for 5 seconds. This is the best and fastest way of caching.

It is also possible to define other caching mechanisms such as memcache.
Memcache is available viguon.contrib.memcache and is discussed in more
details in Chapter 11.

410 URL
The urL function is one of the most important functions Wes2py. It
generates internal URL paths for the actions and the static files.

Here is an example:

URL(r=request, f='F)

| [application]/ [controller]/F

114 THE CORE

Notice that the output of therLfunction depends on the name of the current
application, the calling controller and other parameterss2pPY supports
URL mapping and reverse URL mapping. URL mapping allows to redefine
the format of external URLs. If you use th&L function to generate all
the internal URLSs, then additions or changes to URL mappings will prevent
broken links within theveB2pY application.

You can pass additional parameters totRefunction, i.e., extra terms in
the URL path (args) and URL query variables (vars):

URL(r=request, f="F', args=['x’, 'y’], vars=dict(z="t"))

| [application]/ [controller]/F/x/y?z=t

Theargs attributes are automatically parsed, decoded, and finally stored in
requestargs by WEB2PY. Similarly, thevars are parsed, decoded, and then
stored inrequest.vars

args andvars provide the basic mechanism by whisleB2pPy exchanges
information with the client’'s browser.

If args contains only one element, there is no need to pass it in a list.

You can also use therL function to generate URLSs to actions in other
controllers and other applications:

URL(a’, 'c’, 'f, args=['x, 'y, vars=dict(z='t"))

lalclfIxly?z=t

For the reasons mentioned above, you should always usgtifienction to
generate URLSs of static files for your applications. Static files are stored in the
application’sstatic subfolder (that's where they go when uploaded using the
administrative interface)wEB2PY provides a virtual 'static’ controller whose
jobis to retrieve files from theatic subfolder, determine their content-type,
and stream the file to the client. The following example generates the URL
for the static file "image.png":

URL(r=request, c='static’, f="image.png’)
| [application]/ static/image.png

You do not need to encode/escapedthe andvars arguments;
this is done automatically for you.

HTTP AND REDIRECT 115

4.11 HTTP and redirect

WEB2PY defines only one new exception calledrr. This exception can be
raised anywhere in a model, a controller, or a view with the command:

1 raise HTTP(400, "my message")

It causes the control flow to jump away from the user's code, lack
WEB2PY, and return an HTTP response like:

HTTP/1.1 400 BAD REQUEST

Date: Sat, 05 Jul 2008 19:36:22 GMT
Server: CherryPy/3.1.0beta3 WSGI Server
Content-Type: text/html

Via: 1.1 127.0.0.1:8000

Connection: close

Transfer-Encoding: chunked

© ©® N o s W N P

my message

The first argument ofitte is the HTTP status code. The second argument
is the string that will be returned as the body of the response. Additional
optional named arguments are used to build the response HTTP header. For
example:

raise HTTP(400, 'my message' , test= ‘'hello’)

i

generates:

HTTP/1.1 400 BAD REQUEST

Date: Sat, 05 Jul 2008 19:36:22 GMT
Server: CherryPy/3.1.0beta3 WSGI Server
Content-Type: text/html

Via: 1.1 127.0.0.1:8000

Connection: close

Transfer-Encoding: chunked

test: hello

© o N e g A W N R

10 my message

If you do not wantto commit the open database transactiohacl before
raising the exception.

Any exception other thamtTP causesweB2prY to roll back any open
database transaction, log the error traceback, issue a ticket to the visitor, and
return a standard error page.

This means that onlytTe can be used for cross-page control flow. Other
exceptions must be caught by the application, otherwise they are ticketed by
WEB2PY.

The command:

1 redirect ('http://www.web2py.com’)

is simply a shortcut for:

[

i

116 THE CORE

raise HTTP(303,

'Y ou are being redirected here' %
location,
Location= ‘http://www.web2py.com')

The named arguments of thatp initializer method are translated into
HTTP header directives, in this case, the redirection target locatioact
takes an optional second argument, which is the HTTP status code for the
redirection (303 by default). Change this number to 307 for a temporary
redirect or to 301 for a permanent redirect.

4.12 T and Internationalization

The objectr is the language translator. It constitutes a single global instance

of the WEB2PY classgluon.language.translator . All string constants (and
only string constants) should be markedmyor example:
a = T("hello world")

Strings that are marked withare identified byweB2pPY as needing language
translation and they will be translated when the code (in the model, controller,
or view) is executed. If the string to be translated is not a constant but a
variable, it will be added to the translation file at runtime (except on GAE) to
be translated later.

TheT object can also contain interpolated variables, for example:

a = T("hello %(name)s" , dict(hame= "Massimo"))

The first string is translated according to the requested kggile and the
name Variable is replaced independently of the language.

Concatenating translation strings is not a good idea; this iswuty2py
does not allow you to do:

T("blah ") + name + T(" blah") # invalid!

but it does allow:
T("blah %(name)s blah" , dictthame= 'Tim'))

The requested language is determined by the "Accept-Langtialgein
the HTTP header, but this selection can be overwritten programmatically by
requesting a specific file, for example:

T.force(' it-it')
which reads the "languages/it-it.py" language file. Langu@ge can be
created and edited via the administrative interface.

Normally, string translation is evaluated lazily when the view is rendered;
hence, the translatasice method should not be called inside a view.

COOKIES 117

It is possible to disable lazy evaluation via

1 T.lazy = False

In this way, strings are translated immediately by the T opeksised on the
currently accepted or forced language.

A common issue is the following. The original application is in English.
Suppose that there is a translation file (for example Italian, "it-it.py") and the
HTTP client declares that it accepts both English (en) and Italian (it-it) in that
order. The following unwanted situation occuvgeB2pPY does not know the
default is written in English (en). Therefore, it prefers translating everything
into Italian (it-it) because it only found the Italian translation file. If it had
not found the "it-it.py" file, it would have used the default language strings
(English).

There are two solutions for this problem: create a translation language for
English, which would be redundant and unnecessary, or bettewis2py
which languages should use the default language strings (the strings coded
into the application). This can be done with:

i

T.current_languages = ["en', 'en-en']

T.current _anguages IS a list of languages that do not require translation.
Notice that 'it' and 'it-it’ are different languages from the point of view
of wEB2PY. To support both of them, one would need two translation files,
always lower case. The same is true for all other languages.

The currently accepted language is stored in

i

T.accepted_language

4.13 Cookies

WEB2PY uses the Python cookies modules for handling cookies. Cookies
from the browser are irquest.cookies ~ and cookies sent by the server are in
response.cookies . YOU can set a cookie as follows:

1 response.c ookies['mycookie’] = ‘'somevalue'
2 response.c ookies['mycookie’]['expires’] = 24 * 3600
3 response.c ookies['‘mycookie’]['path®] = '/

The second line tells the browser to keep the cookie for 24 hotire
third line tells the browser to send the cookie back to any application (URL
path) at the current domain.

The cookie can be made secure with:

1 response.c ookies| 'mycookie’]['secure’] = True

Noe

N

i

118 THE CORE

A secure cookie is only sent back over HTTPS and not over HTTP.
The cookie can be retrieved with:

if request. cookies.has_key('mycookie’):
value = request.cookies['mycookie’].value

Unless sessions are disabled;B2pPY, under the hood, sets the following
cookie and uses it to handle sessions:

response.c ookies[response.session_id_name] = r esponse.session_id
response.c ookies[response.session_id_name]['‘path®] = "/

4.14 init Application

When you deploywEB2pPY, you will want to set a default application, i.e.,
the application that starts when there is an empty path in the URL, as in:

http://127.0.0.1:8000

By default, when confronted with an empty pathgs2py looks for an
application calledhit . If there is no init application it looks for an application
calledwelcome

Here are three ways to set the default application:

e Call your default application "init".

e Make a symbolic link from "applications/init" to your application’s
folder.

e Use URL rewrite as discussed in the next section.

4.15 URL Rewrite

WEB2PY has the ability to rewrite the URL path of incoming requests prior
to calling the controller action (URL mapping), and converseilyp2py can
rewrite the URL path generated by theL function (reverse URL mapping).
One reason to do this is for handling legacy URLSs, another is to simplify
paths and make them shorter.

To usethis feature, create a new file in the "web2py" folder called "routes.py"
and define two lists (or tuples) of 2-tuplestes in androutes out . Each
tuple contains two elements: the pattern to be replaced and the string that
replaces it. For example:

i

i

N o o h w N R

[N

o g s W N R
~

o g s W N R
~

URL REWRITE 119

routes_in = (
('/testme' , 'lexamples/default/index'),

routes_out = (
('/examples/default/index' , 'ltestme'),
)

With these routes, the URL:
http://127.0.0.1:8000/testme

is mapped into:
http://127.0.0.1:8000/examples/default/index

To the visitor, all links to the page URL looks likeestme .

The patterns have the same syntax as Python regular expressions. For
example:

(. *\.php' , '/init/default/index'),

maps all URLs ending into ".php" to the index page.

Sametimes you want to get rid of the application prefix from the URLs
because you plan to expose only one application. This can be achieved with:
routes_in = (

('/(?P<any>.)" , '/init\g<any>'),

routes_out = (
('/init/(?P<any>. *) , ' /\g<any>'),
)

There is also an alternative syntax that can be mixed with thelae ex-
pression notation above. It consists of usifigne instead of?P<name>[\w]+)
or \g<name>. For example:

routes_in = (
('/$c/$t ,init/$c/$f'),
)

routes_out = (
(/init/$c/$f , [$c/$f)
)
would also eliminate the "/example" application prefix in aRLks.
Using thes notation, you can automatically maftes .in tOroutes _out,
provided you don’t use any regular expressions. For example:

routes_in = (
('/$c/$f , linit/$c/$f)
)

routes_out = [(x, y) for (y, x) in routes_in]

If there are multiple routes, the first to match the URL is exedutf no
pattern matches, the path is left unchanged.
Here is a minimal "routes.py" for handling favicon and robots requests:

aos W N e

B oW N R

i

i

120 THE CORE

routes_in = (
('/favicon.ico' , 'lexamples/static/favicon.ico'),
(/robots.txt' , 'lexamples/static/robots.txt'),

routes_out = ()

The general syntax for routes is more complex than the sim@mples
we have seen so far. Here is a more general and representative example:
routes_in = (

('140\.192\.\d+\.\d+:https://www.web2py.com:POST /(?P<a ny>. *)\.php'
'ltest/default/index?vars=\g<any>"'),

)

It mapshnttps POST requests to hostww.web2py.com from a remote IP
matching the regular expression

140\.191\.\d+\.\d+

requesting a page matching the regular expression
/(? P<any>. *)\.php!

into

[test/default/index?vars=\g<any>

whereg<any> is replaced by the matching regular expression.
The general syntax is

[remote address]:[protocol]://[host]:[method] [path]

The entire expression is matched as a regular expression; sbduld
always be escaped and any matching subexpression can be captured using
"(?P<...>...)" according to Python regex syntax.

This allows to reroute requests based on the client IP address or domain,
based on the type of the request, on the method, and the path. It also
allows to map different virtual hosts into different applications. Any matched
subexpression can be used to built the target URL and, eventually, passed as
a GET variable.

All major web servers, such as Apache and lighttpd, also have the ability
to rewrite URLs. In a production environment we suggest having the web
server perform URL rewriting.

4.16 Routes on Error

You can also use "routes.py" to redirect the visitor to special actions in case
there is an error on server. You can specify this mapping globally, for each
app, for each error code, for each app and error code. Here is an example:

o g s W N R

N

i

[N

CRON 121

routes_onerror = [

('init/400' , ‘linit/default/login’),
('init/ ' 'finit/static/fail.html'),

(' */404' |, ' linit/static/cantfind.html'),
(" =/ ", ‘linit/error/index')

]

For each tuple the first string is matched against "[appnaeredff code]". If
a match is found the user is redirected to the URL in the second string of the
matching tuple. In case a ticket was issued, the ticket is passed to the new
URL as a GET variable called ticket.

Unmatched errors display a default error page. This default error page can
also be customized here:
error_message = '<html><body><h1>Invalid request</h1></body></html>'
error_message_ticket = '<html><body><h1>Internal error</h1>Ticket

issued: <a href="/admin/default/ticket/%(ticket)s" targe t="_blank
">0p(ticket)s</body></html>'

The first variable contains the error message when an invafiticagion
is requested. The second variable contains the error message when a ticket is
issued.

417 Cron

The weB2PY cron provides the ability for applications to execute tasks at
preset times, in a platform independent manner.

For each application, cron functionality is defined by a crontab file "ap-
p/cron/crontab”, following the syntax defined here (with some extensions that
WaswEB2PY specific):

http://en.wikipedia.org/wiki/Cron #crontab_syntax

This means that every application can have a separate croggraifon
and that cron config can be changed from within2pPYy without affecting
the host OS itself.

Here is an example:

0-59/1 * * x * root python /path/to/python/script.py

30 3 * * * root =applications/admin/cron/db_vacuum.py
*/30 O root *+ applications/admin/cron/something.py
@reboot root * mycontroller/myfunction

@hourly root * applications/admin/cron/expire_sessions.py

The last two lines in this example, use extensions to regubar €yntax to
provide additionalvEB2pPY functionality.

Web2py cron has a some extra syntax to supparB2py application
specifics.

122 THE CORE

If the task/script is prefixed with an asterisk (*) and ends with ".py", it will
be executed in thevEB2PY environment. This means you will have all the
controllers and models at your disposal. If you use two asterisks (**), the
MODELSs will not be executed. This is the recommended way of calling as it
has less overhead and avoids potential locking problems.

Notice that scripts/functions executed in theB2pPY environment require
a manuakb.commity) at the end of the function or the transaction will be
reverted.

WEB2PY does not generate tickets or meaningful tracebacks in shell mode
(inwhich cronis run). Make sure that yow=EB2PY code runs without errors
before you set it up as a cron task, as you will likely not be able to see them
when run from cron.

Moreover, be careful how you use models. While the execution happens
in a separate process, database locks have to be taken into accountin order to
avoid pages waiting for cron tasks that be blocking the database. Use the **
syntax if you don't need to use the database in your cron task.

You can also call a controller function. There is no need to specify a path.
The controller and function will be that of the invoking application. Take
special care about the caveats listed above. Example:

1 %30 * * % % root *mycontroller/myfunction
If you specify @reboot in the first field in the crontab file, theayi task
will be executed only once, oweB2PY startup. You can use this feature if
you want to precache, check or initialize data for an applicatiowan2py
startup. Note that cron tasks are executed in parallel with the application —

if the application is not ready to serve requests until the cron task is finished,
you should implement checks to reflect this. Example:

1 @reboot * * * * root *mycontrolle/myfunction

Depending on how you are invokinges2pry, there are four modes of
operation forweB2pPY cron.

e Soft cron: available under all execution modes

e Hard cron: available if using the built-in web server (either directly or
via Apache modoroxy)

e External cron: available if you have access to the system’s own cron
service

e Nocron

The defaultis hard cron if you are using the built-in web server; in all other
cases the default is soft cron.

CRON 123

Soft cron is the default if you are using CGIl, FASTCGI or WSGI. Your
tasks will be executed in the first call (page loadtas2pry after the time
specified in crontab (but after processing the page, so no delay to the user
is visible). Obviously, there is some uncertainty exactly when the task will
be executed depending on the traffic the site receives. Also, the cron task
may get interrupted if the web server has a page load timeout set. If these
limitations are not acceptable, see "external cron". Soft cron is a reasonable
last resort, but if your web server allows other cron methods, they should be
preferred over soft cron.

Hard cron is the default if you are using the built-in web server (either
directly or via Apache magbroxy). Hard cron is executed in a parallel
thread, so unlike soft cron there are no limitations with regard to run time or
execution time precision.

External cron is not default in any scenario, but requires you to have access
to the system cron facilities. It runs in a parallel process, so none of the
limitations of soft cron apply. This is the recommended way of using cron
under WSGI or FASTCGI.

Example of line to add to the system crontab, (usually /etc/crontab):

0-59/1 * = * x web2py cd /var/www/web2py/ && python web2py.py -C -D 1
>> [tmp/cron.output 2>&1

If you are running external cron, make sure you add the -N cordrtiae
parameter to youwEB2PY startup script or config so there is no collision of
multiple types of cron.

In case you do not need any cron functionality within a particular process,
you can use the -N command line parameter to disable it. Note that this might
disable some maintenance tasks (like the automatic cleaning of session dirs).
The most common use of this function:

e You already have set up external cron triggered from the system (most
common with WSGI setups)

¢ If you want to debug your application without cron interfering either
with actions or with output

i

i

i

N

[N

124 THE CORE

4.18 Import Other Modules

WEB2PY is written in Python, so it can import and use any Python module,
including third party modules. It just needs to be able to find them.

Modules can be installed in the official Python "site-packages" directory
or anywhere your application can find them. Modules in "site-packages" di-
rectory are, as the name suggests, site-level packages. Applications requiring
site-packages are not portable unless these modules are installed separately.
The advantage of having modules in "site-packages" is that multiple applica-
tions can share them. Let's consider, for example, the plotting package called
"matplotlib”. You can install it from the shell using the PEAKsy _install
command:

easy_install py-matplotlib

and then you can import it into any model/controller/view with

import matplotlib

You can also install packages manually in the application 'itest folder.
The advantage is that the module will be automatically copied and distributed
with the application. If the application is called "test", you can import
"mymodule" with:

import applications.test. modules.mymodule as mymodule

Since the application "test" may be renamed, we suggest toa/fol two
approaches:

exec('import applications.%s.modules.mymodule as mymodule' % \
r equest .application)

or:

import sys, 0s
path = os.path.join(r equest .folder, ‘modules’)
if not path in sys.path:
sys.path.append(path)
import mymodule

The first approach usingxec is slower than the second, but it avoids
conflicts. The second approach is faster but it may import the wrong modules
if different applications contain modules with the same name.

4.19 Execution Environment

WEB2PY model and controller files are not Python modules in that they cannot
be imported using the Pythamport statement. The reason for this is that

w N e

N

N

w

EXECUTION ENVIRONMENT 125

models and controllers are designed to be executed in a prepared environment
that has been prepopulated witteB2pPY global objects (request, response,
session, cache and T) and helper functions. This is necessary because Python
is a statically (lexically) scoped language, whereastke2pry environment
is created dynamically.

WEB2PY provides theesxec environment function to allow you to access
models and controllers directlyexec environment ~Creates avEB2PY exe-
cution environment, loads the file into it and then returns a Storage object
containing the environment. The Storage object also serves as a namespacing
mechanism. Any Python file designed to be executed in the execution en-
vironment can be loaded usiiaggc _environment . Uses fOrexec _environment
include:

e Accessing data (models) from other applications.
e Accessing global objects from other models or controllers.
e Executing controller functions from other controllers.

e Loading site-wide helper libraries.

This example reads rows from ther table in thecas application:

from gluon.shell import exec_environment
cas = exec_environment(‘applications/cas/models/db.py")
rows = cas.db().select(cas.db.user.ALL)

Another example: suppose you have a controller "other.pyt'ciiatains:

def some_action():
return dict(remote_addr= r equest .env.remote_addr)

Here is how you can call this action from another controllerf(om the
WEB2PY shell):
from gluon.shell import exec_environment
other = exec_environment(‘applications/app/controllers/other.py’ ,

request =r equest)
result = other.some_action()

In line 2, re quest=request IS optional. It has the effect of passing the
current request to the environment of "other". Without this argument, the
environment would contain a new and empty (apart frefaest.folder)
request object. It is also possible to pass a response and a session object
to exec _environment . Be careful when passing request, response and session
objects — modification by the called action or coding dependencies in the
called action could lead to unexpected side effects.

The function call in line 3 does not execute the view; it simply returns the
dictionary unlessgesponse.render is called explicitly by "someaction”.

126 THE CORE

One final caution: don't use&ec environment inappropriately. If you want
the results of actions in another application, you probably should implement
an XML-RPC API (implementing an XML-RPC API withEB2PY is almost
trivial). Don’t useexec environment asa redirection mechanism; use the
redirect ~ helper.

4.20 Cooperation

There are many ways applications can cooperate:

e Applications can connect to the same database and thus share tables.
It is not necessary that all tables in the database are defined by all
applications, but they must be defined by those applications that use
them. All applications that use the same table, bar one, must define the
table withmigrate=False

e Applications can share sessions with the command:

1 sessi on.connect(request, response, masterapp= ‘appname' , db=db)

Here "appname" is the name of the master application, the anedts
the initial sessiond in the cookie.db is a database connection to the
database that contains the session tatlegy session). All apps that
share sessions must use the same database for session storage.

e Applications can call each other’s actions remotely via XML-RPC.

e Applications can access each other’s files via the filesystem (assuming
they share the same filesystem).

e Applications can call each other’s actions locally usifg environment
asdiscussed above.

e Applications can import each other’s modules using the syntax:

1 import applications.otherapp.modules.othermodule as mymo dule.

e Applications can import any module in theTHONPATHSEArch path,
sys.path

If a module function needs access to one of the core objects
(request, response, session, cache, and T), the objects must be
passed explicitly to the function. Do not let the module create
another instance of the core objects. Otherwise, the function will
not behave as expected.

CHAPTER 5

THE VIEWS

WEB2PY uses Python for its models, controllers, and views, although it uses
a slightly modified Python syntax in the views to allow more readable code
without imposing any restrictions on proper Python usage.

The purpose of a view is to embed code (Python) in an HTML document.
In general, this poses some problems:

e How should embedded code be escaped?
e Should indenting be based on Python or HTML rules?

WEB2PY uUses{{ .. }} to escape Python code embedded in HTML.
The advantage of using curly brackets instead of angle brackets is that it's
transparent to all common HTML editors. This allows the developer to use
those editors to creat€EB2PY Vviews.

Since the developer is embedding Python code into HTML, the document
should be indented according to HTML rules, and not Python rules. There-
fore, we allow unindented Python inside the. }} tags. Since Python
normally uses indentation to delimit blocks of code, we need a different way

WEB2PY: Enterprise Web Framework / 2nd Bl.Massimo Di Pierro 127
Copyright(C) 2009

~N o o A W N R

w N e

o A W NP

i

128 THE VIEWS

to delimit them; this is why thevEB2pPY template language makes use of the
Python keywordass .

A code block starts with a line ending with a colon and ends with
a line beginning withpass . The keyworghass is not necessary
when the end of the block is obvious from the context.

Here is an example:
{

if i == 0:

response.write(‘i is 0°)
else:

response.write(i is not 0)
pass

B

Note thapass is a Python keyword, notaEB2pPY keyword. Some Python
editors, such as Emacs, use the keywasel to signify the division of blocks
and use it to re-indent code automatically.

The weEB2PY template language does exactly the same. When it finds
something like:

<html><body>
{{for x in range(10):}}{{=x}}hello
{{pass}}
</body></html>

it translates it into a program:

response.write(" <html><body>"" , escape=False)
for x in range(10):

r esponse.w rite(x)

response.write("™ hello
"*" , escape=False)
response.write("™ </body></htm|>"" , escape=False)

response.write writes to theresponse.body

When there is an error in wEB2PY Vview, the error report shows the
generated view code, not the actual view as written by the developer. This
helps the developer debug the code by highlighting the actual code that is
executed (which is something that can be debugged with an HTML editor or
the DOM inspector of the browser).

Also note that:

=3}
generates

r esponse.w rite(x)

Variables injected into the HTML in this way are escaped by alefarhe
escaping is ignored if is anxmLobject, even if escape is settie .
Here is an example that introduces théhelper:

BASIC SYNTAX 129

1 {{= HL(D}}
which is translated to:

response.write(HL(i))

i

upon evaluation, the1 object and its components are recursively serialized,
escaped and written to the response body. The tags generatedtyinner
HTML are not escaped. This mechanism guarantees that all text — and only
text — displayed on the web page is always escaped, thus preventing XSS
vulnerabilities. At the same time, the code is simple and easy to debug.

The methodesponse.write(obj, escape=True) takes two arguments, the
object to be written and whether it has to be escaped (seistdy default).
If obj has anxmi) method, itis called and the result written to the response
body (theescape argument is ignored). Otherwise it uses the objectis
method to serialize it and, if the escape argumerttis, escapesit. All built-
in helper objectsHz1 in the example) are objects that know how to serialize
themselves via themi) method.

This is all done transparently. You never need to (and never should) call
theresponse.write method explicitly.

5.1 Basic Syntax

ThewEB2PY template language supports all Python control structures. Here
we provide some examples of each of them. They can be nested according to
usual programming practice.

for...in

In templates you can loop over any iterable object:
{items = [& , b, ¢ I}

{{for item in items:}}{{=item}}{{pass}}

N

which produces:

a
b
c

[N

Hereitem is any iterable object such as a Python list, Python tuple, or
Rows object, or any object that is implemented as an iterator. The elements
displayed are first serialized and escaped.

B oW N R

o A W N R

® N a s W N e

[

130 THE VIEWS

while

You can create a loop using the while keyword:
{tk = 3}

{fwhile k > O0:}{{=k}{{k = k - 1}{{pass}}

which produces:

3
2
1

if...elif...else

You can use conditional clauses:
{

import random

k = random.randint(0, 100)

1

<h2>

{{=k}}

{if k % 2:}}is odd{{else:}}is even{{pass}}
</h2>

which produces:

<h2>
45 is odd
</h2>

Since itis obvious thai se closes the first block, there is no need fompass
statement, and using one would be incorrect. However, you must explicitly
close the:ise block with apass .

Recall that in Python "else if" is writtesit as in the following example:

{

import random

k = random.randint(0, 100)

b3

<h2>

{{=K}

{{if kK % 4 == 0:}}is divisible by 4
{{elif k % 2 == 0:}}is even
{{else:}}is odd

{{pass}}
</h2>

It produces:

w N e

© ©® N o s W NP

w N e

N

w N e

BASIC SYNTAX 131

<h2>
64 is divisible by 4
</h2>

try...except...else...finally

It is also possible to use...except statements in views with one caveat.
Consider the following example:

{{try:}}
Hello {{= 1 / O}

{{except:}}
division by zero

{{else:}}

no division by zero

{finally}}

{{pass}}

It will produce the following output:

Hello
division by zero

This example illustrates that all output generated beforexaamion oc-
curs is rendered (including output that preceded the exception) inside the try
block. "Hello" is written because it precedes the exception.

def...return

TheweB2pPY template language allows the developer to define and implement
functions that can return any Python object or a text/html string. Here we
consider two examples:

{{def itemizel(link): return LI (A(link, _href= "http://" + link))}}

{{=itemizel(‘www.google.com')}

produces the following output:

www.google.com

The functionit emize1 returns a helper object that is inserted at the location
where the function is called.
Consider now the following code:

o g s W N R

1

132 THE VIEWS

{{def itemize2(link):}}

{{=link}}
{{return}}

{{itemize2('www.google.com')}

It produces exactly the same output as above. In this caseutiotidn
itemize2 represents a piece of HTML that is going to replacewms2pry
tag where the function is called. Notice that there is no '="in front of the call
toitemize2 , Since the function does not return the text, but it writes it directly
into the response.

There is one caveat: functions defined inside a view must terminate with a
return statement, or the automatic indentation will fail.

5.2 HTML Helpers

Consider the following code in a view:
{= D V(' this" , 'is'" , 'a , 'test , _id= '123'" , _class= ‘myclass')}}

it is rendered as:

<div id= "123" class= "myclass" >thisisatest</div>

piv is a helper class, i.e., something that can be used to build HTML
programmatically. It corresponds to the HTMkiv> tag.

Positional arguments are interpreted as objects contained between the open
and close tags. Named arguments that start with an underscore are interpreted
as HTML tag attributes (without the underscore). Some helpers also have
named arguments that do not start with underscore; these arguments are
tag-specific.

The following set of helpers

5mmaA, B, BODY BR, CENTERDIV, EM EMBED FORMH1, H2, H3, H4, H5, H6, HEAD
HR HTML, IMG, INPUT, LABEL, LI, LINK, OL, UL, META MENY OBJECT, ON OPTION,

P, PRE SCRIPT, SELECT, SPAN STYLE, TABLE, THEADQ TBODY TFOOT TD, TEXTAREA
TH,TITLE , TR, TT

5mm can be used to build complex expressions that can then be serialized
to XML [47, 48]. For example:

{{= DIV(B(I("hello " , "<world>"))), _class= "myclass")}

is rendered:

<div class= "myclass" ><i>hello <world></i></div>

© N o oA W N R

[I N A

B oW N R

Noe

Noe

HTML HELPERS 133

The helpers mechanism WEB2pPY is more than a system to generate
HTML without concatenating strings. It provides a server-side representation
of the Document Object Model (DOM).

Components’ objects can be referenced via their position, and helpers act
as lists with respect to their components:
>>>a = DIV(SPAN(a" , b), ‘¢)
>>> print a
<div>abc</div>

>>> del a[l]
>>> a.append(B('x'))
>>> a[0][0] = '

>>> print a
<div>ybx</div>

Attributes of helpers can be referenced by name, and helpeas dictio-
naries with respect to their attributes:
>>> a = DIV(SPAN('a' , b), ¢)
>>> g[' class'] = 's'
>>> g[0]['class'] = 't
>>> print a
<div class= "s" >abc</div>

Helpers can be located and updated:

>>> a = DIV(D V(D V('a'" , _id= 'target'))
>>> g.element(_id= ‘'target)[0] = ‘changed'
>>> print a
<div><div><div>changed</div></div></div>

Any attribute can be used to locate an element (not jugt including
multiple attributes (the function element can take multiple named arguments)
but only the first matching element will be returned.

XML

XMLIiS an object used to encapsulate text that should not be escaped. The text
may or may not contain valid XML. For example, it could contain JavaScript.
The text in this example is escaped:

>>> print DI V("hello")
hello

by usingxm you can prevent escaping:

>>> print Dl V(XM_("hello")
hello

Sometimes you want to render HTML stored in a variable, but thisH
may contain unsafe tags such as scripts:

N

N

o A W N R

i

w

Noe

Noe

i

w

134 THE VIEWS

>>> print XM_('<script>alert("unsafe!")</script>")
<script>alert("unsafe!")</script>

Unescaped executable input such as this (for example, eritetteelbody
of a comment in a blog) is unsafe, because it can be used to generate Cross
Site Scripting (XSS) attacks against other visitors to the page.

The weB2pPY xmL helper can sanitize our text to prevent injections and
escape all tags except those that you explicitly allow. Here is an example:

>>> print XM_('<script>alert("unsafe!")</script>" , sanitize=True)
<script>alert("unsafe!")</script&g t;

The xmL constructors, by default, consider the content of some tags and
some of their attributes safe. You can override the defaults using the optional
permitted _tags andallowed _attributes arguments. Here are the default values
of the optional arguments of theaLhelper.

XM_(text, sanitize=False,

permitted_tags=['a’ , 'b' , 'blockquote’ , brto
ol , ' , 'p', ‘cite' , ‘code’ , 'pre’ , 'img/'],
allowed_attributes={ ‘a' [‘href , Ctitle! 1,
i mg':['srct , ‘altt], ‘'blockquote' I 'type' 1))

Built-in Helpers

A This helper is used to build links.

>>> print A('<click>' , XM_(' me"),
_href=""http://www.web2py.com’
<click>me/b>

B This helper makes its contents bold.

>>> print B('<hello>' | XM (' <i>world</i>'), _class= ‘'test' , _id=0)
<b id= "0" class= "test" ><hello><i>world</i>

BODY This helper makes the body of a page.

>>> print BODY('<hello>' , XM (' world"), _bgcolor= ‘red")
<body bgcolor=‘"red" ><hello>world</body>

CENTER This helper centers its content.

>>> print CENTER('<hello>' , XM (' world"),
>>> _class= 'test , _id=0)
<center id= "0" class= "test" ><hello>world</center>

HTML HELPERS 135

CODE This helper performs syntax highlighting for Python, C, C++,
HTML and weB2pPY code, and is preferable trefor code listings. cobe
also has the ability to create links to theeB2Py APl documentation.

Here is an example of highlighting sections of Python code.

1 >>> print CODE('print "hello™ , language= ‘python').xml()
2> <table><tr valign= "top" ><td style= "width:40px; text-align: right;" ><
pre style=

3 fo nt-size: 11px;

4 fo nt-family: Bitstream Vera Sans Mono,monospace;

5 background-color: transparent;

6 magin: 0;

7 padding: 5px;

8 border: none;

9 background-color: #EOEOEQ;

10 color: #A0AOQAO;

11 " >1.</pre></td><td><pre style=

12 fo nt-size: 11px;

13 fo nt-family: Bitstream Vera Sans Mono,monospace;

14 background-color: transparent;

15 magin: 0;

16 padding: 5px;

17 border: none;

18 overflow: auto;

19 ">print <
span style= ‘"color: #FF9966" >"hello" </pre></td></tr></
table>

Here is a similar example for HTML

1 >>> print CODE(

2 >>> '<html><body>{{=request.env.remote_add}}</body></html e

3 >>> language= ‘html'")

4 <table><tr valign= "top" ><td style= "width:40px; text-align: right;" ><

pre style=

5 luad

6 "><htmli<span style=
font-weight: bold" >> <body<span style= "font-
weight: bold" >>{{=<span style= "text-decoration:None
;color:#FF5C1F;" >r equest <span style= “font-weight: bold
">.env.
remote_addH</body<
span style= "font-weight: bold" >> </html></pre></td></tr></table>

These are the default arguments for taee helper:
1 CODE("print 'hello world™ , language= ‘python' , link=None, counter=1,

styles={})

Supported values for the nguage argument are "python", "htiplain”,
"c", "cpp", "web2py", and "html". The "html" language interprétsand}}
tags as "web2py" code, while "htmplain” doesn't.
If alink value is specified, for example "/examples/global/vasstp2pry
API references in the code are linked to documentation at the link URL. For

N

Ne

Noe

[

w N e

Noe

136 THE VIEWS

example "request" would be linked to "/examples/global/vars/request". In the
above example, the link URL is handled by the "var" action in the "global.py"
controller that is distributed as part of theeB2PY "examples" application.

Thecounter argument is used for line numbering. It can be set to any of
three different values. It can b&ne for no line numbers, a numerical value
specifying the start number, or a string. If the counter is set to a string, it is
interpreted as a prompt, and there are no line numbers.

DIV All helpers apart fromxmLare derived fronpiv and inherit its basic
methods.

>>> print DI V('<hello> , XM (' world"), _class= ‘'test , _id=0)
<div id= "0" class= "test" ><hello>world</div>

EM Emphasizes its content.

>>> print EM' <hello>' , XM (' world"), _class= ‘'test' , _id=0)
<em id="0" class= "test" ><hello>world

FIELDSET This is used to create an input field together with its label.

>>> print Fl ELDSET('Height:' , I NPUT(_name=height'), _class= ‘'test')
<fieldset class= "test" >Height:<input name= "height" [><[fieldset>

FORM This is one of the most important helpers. In its simple form,

it just makes aforms...</form> tag, but because helpers are objects and
have knowledge of what they contain, they can process submitted forms (for
example, perform validation of the fields). This will be discussed in detail in
Chapter 7.

>>> print FORM | NPUT(_type= ‘'submit’), _action= " , _method= 'post')
<form enctype= "multipart/form-data" action= " method="post" >
<input type= ‘“"submit" /></form>

The "enctype" is "multipart/form-data" by default.

The constructor of aorvand ofsqgLForpcan also take a special argument
callednidden . When a dictionary is passediagien , its items are translated
into "hidden" INPUT fields. For example:
>>> print FORMhidden=dict(a= b)

<form enctype= "multipart/form-data" action= " method="post" >
<input value= "b" type= "hidden" name="a" /></form>

H1, H2, H3, H4, H5, H6 These helpers are for paragraph headings and
subheadings:

>>> print HL(' <hello>' , XM (' world"), _class= ‘'test , _id=0)
<hl id= "0" class= "test" ><hello>world</h1>

Noe

N

w

i

N

N

i

(SN

HTML HELPERS 137

HEAD For tagging the HEAD of an HTML page.

>>> print HEAD(Tl TLE('<hello>' , XM (' world")))
<head><title>&lIt;hello>world</title></head>

HTML This helper is a little different. In addition to making themi>
tags, it prepends the tag with a doctype string [49, 50, 51].

>>> print HTM_(BODY('<hello>' , XM (' world")))
<IDOCTYPE HTM. PUBLIC "-//W3C//DTD HTML 4.01 Transitional/EN" "http
lwww.w3.0rg/TR/html4/loose.dtd" >

<html><body><hello>world</body></htmI>

The HTML helper also takes some additional optional argunteathave
the following default:
HTM.(..., lang= 'en' , doctype= ‘transitional’)

where doctype can be ’strict’, 'transitional’, 'framesethtml|5’, or a full
doctype string.

XHTML XHTML is similar to HTML but it creates an XHTML doctype
instead.

XHTML(..., lang= ‘'en' , doctype= ‘transitional , xmins=‘http://www.w3.
org/1999/xhtml’)

where doctype can be ’strict’, 'transitional’, 'framesett, a full doctype
string.

INPUT Creates aRinput.../> tag. An input tag may not contain other
tags, and is closed by instead of-. The input tag has an optional attribute
type that can be setto "text" (the default), "submit", "checkbox", or "radio".

>>> print | NPUT(_name='"test , _value= 'a')
<input value= "a" name="test" />

It also takes an optional special argument called "value'tjndisfrom
"_value". The latter sets the default value for the input field;fibrmer sets
its current value. For an input of type "text", the former overrides the latter:
>>> print | NPUT(_name='testt , _value= 'a' , value= 'b')
<input value= "b" name="test" />

For radio buttonsy putselectively sets the "checked" attribute:

>>> forvin['a , b, ¢ I

>>> print | NPUT(_type= 'radio' , _name='test , _value=v, value= ‘b)
, Vv

<input value= "a" type= "radio" name="test" /> a

<input value= "b" type= "radio" checked= "checked" name='test" /> b

<input value= "c" type= "radio" name="test" /> c

and similarly for checkboxes:

[

w N

~

Noe

N

N

Noe

N

w N e

Noe

Noe

138 THE VIEWS

>>> print | NPUT(_type= 'checkbox' , _name='test , _value= 'a' , value=
True)

<input value= "a" type= "checkbox" checked= "checked® name="test" />

>>> print | NPUT(_type= ‘checkbox' , _name='test , _value= 'a'’ , value=
False)

<input value= "a" type= "checkbox" name="test" />

IFRAME This helper includes another web page in the current page. The
url of the other page is specified via therc" attribute.

>>> print | FRAME(_src= ‘http://www.web2py.com')
<iframe src= "http://www.web2py.com" ></iframe>

LABEL Itis usedto create a LABEL tag for an INPUT field.

>>> print LABEL('<hello>' , XM.(' world"), _class= ‘'test' , _id=0)
<label id= "0" class= "test" ><hello>world</label>

LI It makes a list item and should be contained in a UL or OL tag.

>>> print LI (' <hello>' , XM ('world"), _class= ‘'test , _id=0)
<li id= "0" class= "test" ><hello>world

LEGEND Itis used to create a legend tag for a field in a form.

>>> print LEGEND(‘Name' , _for= ‘somefield')
<legend for= ‘“"somefield" >Name</legend>

META To be used for building META tags in the HTML head. For example:

>>> print META(_name= 'security' , _content= ‘'high')
<meta name="security" content= "high" />

OBJECT Usedtoembed objects (for example, a flash player) in the HTML.

>>> print OBJECT('<hello>' , XM_(' world"),
>>> _src="http://www.web2py.com’
<object src= "http://www.web2py.com"” ><hello>world</object

>

OL Itstandsfor Ordered List. The list should contain LI tagsarguments

that are noti objects are automatically enclosedkin... tags.
>>> print OL(' <hello>' , XM ('world"), _class= ‘'test , _id=0)
<ol id= "0" class= "test" ><hello>world</

ol>

ON This is here for backward compatibility and it is simply an alias for
True . Itis used exclusively for checkboxes and deprecated sineds more
Pythonic.

>>> print | NPUT(_type= ‘checkbox’ , _name='test , _checked= ON)
<input checked= “"checked" type= "checkbox" name="test" />

N

o B W N R

Noe

Noe

B oW N R

N

HTML HELPERS 139

OPTION This should only be used as part of a SELECT/OPTION combi-
nation.

>>> print OPTI O\('<hello>' |, XM_(' world"), _value= 'a')
<option value= "a" ><hello>world</option>

As in the case ofi puT, WEB2PY make a distinction betweenvalue" (the
value of the OPTION), and "value" (the current value of the enclosing select).
If they are equal, the option is "selected".

>>> print SELECT('a’ , 'b' , value= 'b'):

<select>

<option value= "a" >a</option>

<option value= "b" selected= “selected" >b</option>
</select>

P This is for tagging a paragraph.

>>> print P('<hello>" | XM (' world"), _class= ‘'test' , _id=0)
<p id= "0" class= "test" >&It;hello>world</p>

PRE Generates gre>..<ipre> tag for displaying preformatted text. The
cobehelper is generally preferable for code listings.

>>> print PRE('<hello>' |, XM (' world"), _class= ‘'test' , _id=0)
<pre id= "0" class= "test" ><hello>world</pre>

SCRIPT This is include or link a script, such as JavaScript. The content
between the tags is rendered as an HTML comment, for the benefit of really
old browsers.

>>> print SCRI PT(‘alert("hello world");' , _language= ‘javascript')
<script language= "javascript" ><I--
alert("hello world");

[I--></script>

SELECT Makes a<select>...</select> tag. This is used with theprTioN
helper. ThoseeLEcTarguments that are nobTionobjects are automatically
converted to options.

>>> print SELECT('<hello>' , XM (' world"), _class= ‘'test' , _id
:O)

<select id= "0" class= "test" ><option value= "<hello>" ><hello&
gt;</option><option value= "world" >world</option></select>

SPAN Similar tooiv but used to tag inline (rather than block) content.

>>> print SPAN('<hello>' , XM_(' world'), _class= ‘'test , _id=0)
<hello>world

B oW N R

w N e

Noe

Noe

w N e

[

N

140 THE VIEWS

STYLE Similar to script, but used to either include or link CSS code. Here
the CSSis included:

>>> print STYLE(XM_('body {color: white}')

<style><!--

body { color: white }
[l--></style>

and here it is linked:

>>> print STYLE(_src= 'style.css')
<style src= ‘"style.css" ><I--
[l--></style>

TABLE, TR, TD These tags (along with the optionaean TBODYand
TrooTerhelpers) are used to build HTML tables.
>>> print TABLE(TR(TD('a'), TD('b')), TR(TD('c), TD('d'))

<table><tr><td>a</td><td>b</td></tr><tr><td>c</td><td >d</td></tr></
table>

TR expectstp content; arguments that are nat objects are converted
automatically.
>>> print TABLE(TR('a" , 'b"), TR('c' , 'd"))
<table><tr><td>a</td><td>b</td></tr><tr><td>c</td><td >d</td></tr></
table>

It is easy to convert a Python array into an HTML table using Byth*
function arguments notation, which maps list elements to positional function
arguments.

Here, we will do it line by line:

>>> table = [['a , b], [‘¢ , d]

>>> print TABLE(TR(* table[0]), TR(*table[1]))
<table><tr><td>a</td><td>b</td></tr><tr><td>c</td><td >d</td></tr></
table>

Here we do all lines at once:

>>> table = [[& , b], [‘¢ , 'd]

>>> print TABLE(*[TR(*rows) for rows in table])

<table><tr><td>a</td><td>b</td></tr><tr><td>c</td><td >d</td></tr></
table>

TBODY Thisis used to tag rows contained in the table body, as opposed to
header or footer rows. It is optional.

>>> print TBODY(TR('<hello>'), _class= ‘'testt , _id=0)
<tbody id= "0" class= "test" ><tr><td><hello></td></tr></tbody>

Noe

Noe

N

N

N

Ne

Noe

N

N

HTML HELPERS 141

TEXTAREA This helper makes aextarea>...</textarea> tag.

>>> print TEXTAREA('<hello>' | XM (' world"), _class= ‘test')

<textarea class= "test" cols= "40" rows="10" ><hello>world</textarea>

The only caveat is that its optional "value" overrides its eont(inner
HTML)

>>> print TEXTAREA(value= “<hello world>" , _Class= ‘"test")
<textarea class= "test” cols= "40" rows= "10" ><hello world></
textarea>

TFOOT This is used to tag table footer rows.

>>> print TFOOT(TR(TD('<hello>')), _class= ‘'test , _id=0)
<tfoot id= "0" class= "test" ><tr><td><hello></td></tr></tfoot>

TH Thisis used instead abin table headers.

>>> print TH(' <hello>' , XM (' world"), _class= ‘'test , _id=0)
<th id= "0" class= "test" >&It;hello>world</th>

THEAD This is used to tag table header rows.

>>> print THEAD(TR(TD('<hello>')), _class= ‘test , _id=0)
<thead id= "0" class= "test" ><tr><td><hello></td></tr></thead>

TITLE This is used to tag the title of a page in an HTML header.

>>> print Tl TLE('<hello>' , XM (' world"))
<title><hello>world</title>

TR Tags a table row. It should be rendered inside a table and contain
<td>..</td> tags.TRarguments that are nob objects will be automatically
converted.

>>> print TR(' <hello>' , XM (' world"), _class= ‘'test' , _id=0)
<tr id= "0" class= "test" ><td><hello></td><td>world</td></
tr>

TT Tags text as typewriter (monospaced) text.

>>> print TT(' <hello>' , XM (' world"), _class= ‘'test , _id=0)
<tt id= "0" class= "test" >&It;hello>world</tt>

UL Signifies an Unordered List and should contain LI items. If its content
is not tagged as LI, UL does it automatically.

>>> print UL(' <hello>' , XM (' world"), _class= ‘'test , _id=0)
<ul id= "0" class= "test" ><hello>world</
ul>

1

1

1

1

1
2

142 THE VIEWS

Custom Helpers

Sometimes you need to generate custom XML tagseB2pry providestag
a universal tag generator.

{{= TAG name('a’ , 'b" , _c='d)}
generates the following XML

<name c="d" >ab</name>

Arguments "a" and "b" and "d" are automatically escaped; usgmbhelper
to suppress this behavior. Usimgeyou can generate HTML/XML tags not
already provided by the API. TAGs can be nested, and are serialized with
str().

An equivalent syntax is:
{= TAG ' name']('a* , b , c='d)}

Notice thatracis an object, andac.name Or TAGname’] is a function that
returns a temporary helper class.

MENU The MENU helper takes a list of lists of the form rédponse.menu
(as described in Chapter 4) and generates a tree-like structure using unordered
lists representing the menu. For example:

>>> print MENY(['One' , False, ‘'link1'"], ['Two' , False, 'link2" 1]
<ul class= "web2py-menu web2py-menu-vertical" ><Ji>One
<la><a _href= "link2" >Two
Each menu item can have a fourth argument that is a nested sul{areh
SO on recursively):

>>> print MENUY(['One' , False, link1" , [['Two' , False, ‘'link2" NI

<ul class= "web2py-menu web2py-menu-vertical" ><Ji class= "web2py-menu-
expand” >One<ul class= “"web2py-menu-vertical" ><
li>Two

The MENU helper takes the following optional arguments:

e _class : defaults to "web2py-menu web2py-menu-vertical" and sets the
class of the outer UL elements.

e ul class : defaults to "web2py-menu-vertical" and sets the class of the
inner UL elements.

e li class : defaults to "web2py-menu-expand" and sets the class of the
inner LI elements.

The "base.css" of the scaffolding application understands the following
basic types of menus: "web2py-menu web2py-menu-vertical" and "web2py-
menu web2py-menu-horizontal".

i

B oW N R

1
2
3

BEAUTIFY 143

5.3 BEAUTIFY

BEAUTIFY IS used to build HTML representations of compound objects, in-
cluding lists, tuples and dictionaries:

{{= BEAUTI FY({"a" ["hello" , XM_(“world")], "b" :(1, 2)}

BEAUTIFY returns an XML-like object serializable to XML, with a nice looking
representation of its constructor argument. In this case, the XML representa-
tion of:

{*a" i "hello" , XML("world")], “b" (1, 2)}

will render as:

<table>

<tr><td>a</td><td>:</td><td>hello
world</td></tr>
<tr><td>b</td><td>:</td><td>1
2</td></tr>
</table>

5.4 Page Layout

Views can extend and include other views in a tree-like structure, as in the
following example (an upward arrow means extend, while a downward arrow
means include):

layout.html

i S

header.html index.hitml stdebar.hitml footer.html

|

body.html

In this example, the view "index.html" extends "layout.html" and includes
"body.html". "layout.html"includes "header.html", "sidebar.html" and "footer.htm|"
Theroot of the tree is what we call a layout view. Just like any other HTML
template file, you can edit it using tveeB2PY administrative interface. The
file name "layout.html" is just a convention.
Here is a minimalist page that extends the "layout.html" view and includes
the "page.html" view:
{{extend ‘layout.html' I

<h1>Hello World</h1>
{{include 'page.html' }}

[N R

~N o o~ W N R

i

i

1

2

144 THE VIEWS

The extended layout file must containgmciude }} directive, something
like:
<html><head><title>Page Title</title></head>
<body>
{{include}}

</body>
</head>

When the view is called, the extended (layout) view is loadedl, the
calling view replaces the{include }} directive inside the layout. Process-
ing continues recursively until all extend and include directives have been
processed. The resulting template is then translated into Python code.

extend andinclude are special template directives, not Python
commands.

Layouts are used to encapsulate page commonality (headers, footers,
menus), and though they are not mandatory, they will make your applica-
tion easier to write and maintain. In particular, we suggest writing layouts
that take advantage of the following variables that can be set in the controller.
Using these well known variables will help make your layouts interchange-
able:
response.t itle
response.s ubtitle
response.a uthor
response.k eywords
response.d escription

response.f lash
response.menu

These are all strings and their meaning should be obvious pefoe
response.menu . Theresponse.menu menu is a list of three-element tuples. The
three elements are: the link name, a boolean representing whether the link is
active (is the current link), and the URL of the linked page. For example:

response.menu = [['Google’ , False ', ' http://www.google.com 1,
[' I'ndex', True, URL(r=request, f=' index "]

We also recommend that you use:
{{include ‘web2py_ajax.html' I

in the HTML head, since this will include the jQuery librariesdadefine

some backward-compatible JavaScript functions for special effects and Ajax.
Here is a minimal "layout.html" page based on the preceding recommen-

dations:

<IDOCTYPE htm| PUBLIC "-//W3C//DTD XHTML 1.0 Strict/EN" "http://www.

w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd" >
<html xmlns= "http://www.w3.0rg/1999/xhtml" xml:lang= "en" lang= "en" >

3
4
5

w
o

I
piry

PAGE LAYOUT 145

<head>
<l-- define the meta tags -->
<meta http-equiv= "content-type" content= "text/html; charset=utf-8"
/>
<meta name="keywords" content= "{{=response.keywords}}" />
<meta name="description" content= "{{=response.description}}" />
<meta name="author" content= "{{=response.author}}" />
<l-- choose a title or use the application name -->
<title>{{= response.title or r equest .application)}}</title>
<l-- include jQuery and other ajax functions -->
{{include ‘web2py_ajax.html' B
<l-- include a style.css file and optional js files -->
<link href= "{{=URL(r=request, c='static', f='style.css’)}}"
rel= "stylesheet" type= "text/css" />
</head>
<body>

<l-- build your header -->
<div class= "header" >[Here goes the header]</div>

<I-- here is the menu -->
{{if response. menu}}
<div id= "menu" >

<l-- loop over menu items -->

{{=for _name, _active, _link in response.menu:}}

<a href= "{{=_link}}" class= "{{='active' if _active else '
inactive'}}" >{{=_name}}

{{pass}}

</div>
{{pass}}

<l-- here is the flash message -->
<div id= "flash" >{{= response. flash or " }}</div>

<l-- here the extending view is included -->
{{include}}

<l-- here is the footer -->

<div class= “footer" >[created by {{= r esponse.author}} with web2py]</
div>

</body>

</html>

In the layout, it may sometimes be necessary to display vasahht are
defined in the extending view. This will not be a problem as long as the
variables are defined before the "extend" directive. This behavior can be used
to extend a layout in more than one place (a standard layout is extended at
the point where the{include }} directive occurs). The idea is to define view
functions that generate separate portions of the page (for example: sidebar,

® N O A W N e

N o o s W N R

i

Noe

~N o o~ W N R

146 THE VIEWS

maincontent) and render them in different parts of the layout. The view
functions are called in the layout at the points we want them rendered.
For example in the following layout:

<html><body>

{{include}} <!-- must come before the two blocks below -->
whatever html

{{maincontent()}}

whatever html

{{ift 'sidebar' in globals(): sidebar()}}

whatever html

</body></html>

The functions "maincontent" and "sidebar" are defined in theraling
view, although in this example we allowed for the possibility that view does
not define "sidebar" function. Here is the corresponding view:

{{def sidebar():}}

<h1>This is the sidebar</h1>
{{return}}

{{def maincontent():}}

<h1>This is the maincontent</h1>
{{return}}

{{extend 'layout.html' I

Notice that the functions are defined in HTML (although they atso
contain Python code) so thakponsewrite IS used to write their content
(the functions do not return the content). This is why the layout calls the view
function using{{maincontent() }} rather than{=maincontent() }}.

5.5 Using the Template System to Generate Emails

It is possible to use the template system to generate emails. For example,
consider the database table

db.define_table('‘person’ , Field(' name'))
where you want to send to every person in the database the fiofow
message, stored in a view file "message.html":

Dear {{=person.name}},
You have won the second prize, a set of steak knives.

You can achieve this in the following way

>>> from gluon.tool import Mail
>>> mail = Mail(globals())

>>> mail.settings.server = ‘'smtp.gmail.com:587
>>> mail.settings.sender = '...@somewhere.com'
>>> mail.settings.login = None or ‘'username:password'

>>> for person in db(db.person.id>0).select():
>>> context = dict(person=person)

LAYOUT BUILDER 147

g >>> message = response.render('message.html' , context)
9 >>> mail.send(to=[‘who@example.com'],

10 >>> subject= 'None' ,

u >>> message=message)

Most of the work is done in the statement

1 response.r ender('message.html’ , context)

It renders the view "file.html" with the variables defined in thetionary
"context", and it returns a string with the rendered email text. The context is
a dictionary that contains variables that will be visible to the template file.

The same mechanism that is used to generate email text can also be used
to generate SMS or any other type of message based on a template.

5.6 Layout Builder

ThewEB2PY web site provides a layout builder to help us design new layout
pages. Here is a screenshot:

[allalls] {layouts /default/index =

@- S 4% 4 heep://mdp.cti.depaul.edu/layouts v|p

[webzpy™] layout

This Header

This is a SubHeader

This is a SubSubHeader

This is a SubSubSubHeader

This app is based on the work of

From Wikipedia: In the mid 1900's, Johannes Itten developed a new kind of color |
changed the way color was seen, influencing artists and designers right up to t.

moment. The Bauhaus in Weimar, Germany was home to many artists whose influe

felt today in the worlds of art and design. It was there that Itten developed his boo;;

st —_ A
- e S

This service is in a beta stage and has limited functionalitis hased on
the work of Johannes Itten, an exponent of the Bauhaus, and creator of the
modern "theory of color".

The website lets you select a base color and a few parameters of your
layout, such as the height of the header, and it generates a sample layout (in

148 THE VIEWS

HTML with embedded CSS) with matching colors and a coherent look and
feel. To use the layout, simply download it, and save it over the existing
layout.html of your application.

CHAPTER 6

THE DATABASE ABSTRACTION LAYER

6.1 Dependencies

WEB2PY comes with a Database Abstraction Layer (DAL), an API that maps
Python objects into database objects such as queries, tables, and records.
The DAL dynamically generates the SQL in real time using the specified
dialect for the database back end, so that you do not have to write SQL code
or learn different SQL dialects (the term SQL is used generically), and the
application will be portable among different types of databases. At the time
of this writing, the supported databases are SQLite (which comes with Python
and thusweB2prY), PostgreSQL, MySQL, Oracle, MSSQL, FireBird, DB2,
Informix and (partially) the Google App Engine (GAE). GAE is treated as a
particular case in Chapter 11.

The Windows binary distribution works out of the box with SQLite and
MySQL. The Mac binary distribution works out of the box with SQLite. To

WEB2PY: Enterprise Web Framework / 2nd Bl.Massimo Di Pierro 149
Copyright(C) 2009

150

THE DATABASE ABSTRACTION LAYER

use any other database back-end, run from the source distribution and install
the appropriate driver for the required back end.

Once the proper driver is installed, startB2pY from source, and it will
find the driver. Here is a list of drivers:

database driver (source)

SQLite sqlite3 or pysqlite2 or zxJDBC [53] (on Jython)
PostgreSQL| psycopg?2 [54] or zxJDBC [53] (on Jython)
MySQL MySQLdb [55]

Oracle cx_Oracle [56]

MSSQL pyodbc [57]
FireBird kinterbasdb [58]
DB2 pyodbc [57]
Informix informixdb [59]

WEB2PY defines the following classes that make up the DAL:

[

[

N

DAL represents a database connection. For example:
db = DAL(' sqlite://storage.db’)

Tablerepresents a database table. You do not directly instantiate Table;
insteadpAL.define _table instantiates it.

db.define_table('mytable’ , Fiel d(' myfield'))

The most important methods of a Table arert |, truncate , drop , and
import _from _csv _file

DAL Field represents a database field. It can be instantiated and passed
as an argument tbAL.define _table .

DAL Rows is the object returned by a database select. It can be
thought of as a list obALstorage rows:

rows = db(db.mytable.myfield!=None).select()

DAL Storage contains field values.

for row in rows:
print row.myfield

DAL Query is an object that represents an SQL "where" clause:

myquery = (db.mytable.myfield != None) & (db.mytable.myfiel d>"
A)

DAL Setis an objectthat represents a set of records. Its mostimportant
methods areount , select , update , anddelete .

CONNECTION STRINGS 151

myset = db(myquery)

rows = myset.select()
myset.update(myfield= ‘'somevalue')
myset.delete()

B oW N e

e DAL Expression is something that can be ORed, for example in
orderby and groupby expressions. The Field class is derived from
Expression. Here is an example.

myorder = db.mytable.myfield.upper() | db.mytable.id
db().select(db.table.ALL, orderby=myorder)

Noe

6.2 Connection Strings

A connection with the database is established by creating an instance of the
DAL object:

1 >>> db = DAL('sqlite://storage.db’ , pool_size=0)

db is not a keyword; it is a local variable that stores the connection object
DAL. You are free to give it a different name. The constructasafrequires
a single argument, the connection string. The connection string is the only
WEB2PY code that depends on a specific back-end database. Here are exam-
ples of connection strings for specific types of supported back-end databases
(in all cases, we assume the database is running from localhost on its default
port and is named "test"):

e SQLite
1 'sglite://storage.db’

e MySQL

1 'mysql://lusername:password@Ilocalhost/test'

e PostgreSQL

1 'postgres://username:password@Iocalhost/test'

e MSSQL

1 'mssql://lusername:password@Ilocalhost/test'

e FireBird

152 THE DATABASE ABSTRACTION LAYER

1 'firebird://username:password@localhost/test'

e Oracle

1 ‘oracle://lusername:password@test’

e DB2

1 'db2://lusername:password@test’

e Informix

1 'informix://Jusername:password@test'

e Google BigTable on Google App Engine

1 'gae’

Notice that in SQLite the database consists of a single file.t dioes
not exist, it is created. This file is locked every time it is accessed. In the
case of MySQL, PostgreSQL, MSSQL, FireBird, Oracle, DB2, Informix the
database "test" must be created outsidez2py. Once the connection is
establishedwEB2PY will create, alter, and drop tables appropriately.

It is also possible to set the connection stringiéee. In this case DAL
will not connect to any back-end database, but the API can still be accessed
for testing. Examples of this will be discussed in Chapter 7.

Connection Pooling

The second argument of the DAL constructor is jib# size ; it defaults to
0.

For databases other than SQLite and GAE, it is slow to establish a new
database connection for each request. To avoid Wig2pPyY implements a
mechanism of connection pooling. When a connection is established, after
the page has been served and the transaction completed, the connection is
not closed, but it goes into a pool. When the next http request arrives,
WEB2PY tries to pick a connection from the pool and use that one for a
new transaction. If there are no available connections from the pool, a new
connection is established.

Connections in the pools are shared sequentially among threads, in the
sense that they may be used by two different but not simultaneous threads.
There is only one pool for eachEB2PY process.

WhenwEgB2pY starts, the pool is always empty. The pool grows up to the
minimum between the value ¢fol size and the max number of concurrent

N

N

i

DAL, TABLE, FIELD 153

requests. This means thabibl size=10 but our server never receives more
than 5 concurrent requests, then the actual pool size will only grow to 5. If
pool size=0 then connection pooling is not used.

Connection pooling is ignored for SQLite, since it would not yield any
benefit.

6.3 DAL, Table, Field

The best way to understand the DAL API is to try each function yourself.
This can be done interactively via tiveeB2py shell, although ultimately,
DAL code goes in the models and controllers.

Start by creating a connection. For the sake of example, you can use
SQLite. Nothing in this discussion changes when you change the back-end
engine.
>>> db = DAL('sqlite://storage.db’)

The database is now connected and the connection is storeel ghotbal
variabledb.

At any time you can retrieve the connection string.

>>> print db._uri
sqlite://storage.db

and the database name

>>> print db._dbname
sqlite

The connection string is calleda because itis an instance of a Uniform
Resource Identifier.

The DAL allows multiple connections with the same database or with
different databases, even databases of different types. For now, we will
assume the presence of a single database since this is the most common
situation.

The most important method of a DAL dgfine _table :

>>> db.define_table('‘person’ , Field(' name'))

It defines, stores and returnsrale object called "person” containing a
field (column) "name". This object can also be accessedwsarson , SO
you do not need to catch the return vala€ine _table checks whether or not
the corresponding table exists. If it does not, it generates the SQL to create it
and executes the SQL. If the table does exist but differs from the one being
defined, it generates the SQL to alter the table and executes it. If a field has

L N

154 THE DATABASE ABSTRACTION LAYER

changed type but not name, it will try to convert the datéthe table exists
and matches the current definition, it will leave it alone. In all cases it will
create theb.person 0bject that represents the table.

6.4 Migrations

We refer to this behavior as a "migrationtEB2pPY logs all migrations and
migration attempts in the file "databases/sql.log".

The first argument ofiefine _table is always the table name. The other
unnamed arguments are the fields (Field). The function also takes an optional
last argument called "migrate" which must be referred to explicitly by name
asin:

>>> db.define_table('person’ , Field('name'), migrate= ‘person.table’)

The value of migrate is the filename (in the "databases" foldettte
application) whereweB2pPY stores internal migration information for this
table. These files are very important and should never be removed except
when the entire database is dropped. In this case, the ".table" files have to be
removed manually. By default, migrate is set to True. This causeg®py
to generate the filename from a hash of the connection string. If migrate is set
to False, the migration is not performed, andB2pPy assumes that the table
exists in the datastore and it contains (at least) the fields listeéhifn table .

The best practice is to give an explicit name to the migrate table.

There may not be two tables in the same application with the same migrate
filename.

These are the default values of a Field constructor:

Fi el d(name, °'string’ , length=None, default=None,
required=False, requires= '<default>'
ondelete= 'CASCADE', notnull=False, unique=False,
uploadfield=True, widget=None, label=None, comment=None,

writable=True, readable=True, update=None, authorize=Non e,
autodelete=False, represent=None)

Not all of them are relevant for every field. "length" is relevamly
for fields of type "string". "uploadfield" and "authorize" are relevant only

for fields of type "upload”. "ondelete" is relevant only for fields of type
"reference" and "upload".

e length Sets the maximum length of a "string", "password" or "upload"
field. If length is not specified a default value is used but the default

4If you do not want this, you need to redefine the table twice, the first time, laitirg2py drop the field
by removing it, and the second time adding the newly defined field savtha2ry can create it.

MIGRATIONS 155

value is notguanarteed to be backward compatiievoind unwanted
migrations on upgrades, we reccommend that you always specify the
length for string, password and upload fields.

e default Sets the default value for the field. The default value is used
when performing an insert if a value is not explicitly specified. It is
also used to prepopulate forms built from the table using SQLFORM.

e required tells the DAL that no insert should be allowed on this table if
a value for this field is not explicitly specified.

e requires IS a validator or a list of validators. This is not used by the
DAL, butitis used by SQLFORM. The default validators for the given
types are shown in the following table:

field type | default field validators
string IS_LENGTH(length)
blob
boolean
integer IS.INT_IN_RANGE(-1e100, 1e100)
double IS_.FLOAT_IN_RANGE(-1e100, 1e100

date IS_DATE()
time IS_TIME()
datetime | IS.DATETIME()
password
upload
reference
Notice thatre quires=... is enforced at the level of forms,

required=True IS enforced at the level of the DAL (insert),
whilenotnull , unique andondelete are enforced at the level

of the database. While they sometimes may seem redundant,
it is important to maintain the distinction when program-
ming with the DAL.

e ondelete translates into the "ON DELETE" SQL statement. By default
"CASCADE" tells the database that when it deletes a record, it should
also delete all records that refer to it.

e notnull=True translates into the "NOT NULL" SQL statement. It asks
the database to prevent null values for the field.

e unique=True translates into the "UNIQUE" SQL statement. It asks the
database to make sure that values of this field are unique within the
table.

156

[N

oA W N e

THE DATABASE ABSTRACTION LAYER

uploadfield applies only to fields of type "upload”. A field of type
"upload" stores the name of a file saved somewhere else, by default on
the filesystem under the application "uploads/" folderupidadfield

is set, then the file is stored in a blob field within the same table and
the value ofuploadfield is the name of the blob field. This will be
discussed in more detail later in the context of SQLFORM.

widget Must be one of the available widget objects, including custom
widgets, for example

db.mytable.myfield.widget = SQ.FORMwidgets.string.widget

A list of available widgets will be discussed later. Each figide has
a default widget.

label IS a string (or something that can be serialized to a string) that
contains the label to be used for this field in autogenerated forms.

comment iS a string (or something that can be serialized to a string) that
contains a comment associated with this field, and will be displayed to
the right of the input field in the autogenerated forms.

writable if @ field is writable, it can be edited in autogenerated create
and update forms.

readable if @ field is readable, it will be visible in readonly forms. If a
field is neither readable nor writable, it will not be displayed in create
and update forms.

update contains the default value for this field when the record is up-
dated.

authorize can be used to require access control on the corresponding
field, for "upload" fields only. It will be discussed more in detail in the
context of Authentication and Authorization.

autodelete determines if the corresponding uploaded file should be
deleted when the record referencing the file is deleted. For "upload"
fields only.

represent can be None or can point to a function that takes a field value
and returns an alternate representation for the field value. Examples:

db.mytable.name.represent = lambda name: name.capitalize()
db.mytable.other_id.represent = lambda id:

db.other[id].somefield
db.mytable.some_uploadfield.represent = lambda value: \

A('get it' , _href= URL(r= request, f= 'download’" , args=value))

N

N

N

N

o g A W N e

© N o O h W N R

MIGRATIONS 157

"blob" fields are also special. By default, binary data is encoded in base64
before being stored into the actual database field, and it is decoded when
extracted. This has the negative effect of using 25% more storage space than
necessary in blob fields, but has two advantages. On average it reduces the
amount of data communicated betweernB2rPY and the database server,
and it makes the communication independent of back-end-specific escaping
conventions.

You can query the database for existing tables:

>>> print db.tables
['person’]

You can also query a table for existing fields:

>>> print db.person.fields
['id" , 'name']

Do not declare a field called "id", because one is createdvhg2pry
anyway. Every table has a field called "id" by default. It is an auto-increment
integer field (starting at 1) used for cross-reference and for making every
record unique, so "id" is a primary key. (Note: the id’s starting at 1 is back-
end specific. For example, this does not apply to the Google App Engine
(GAE).)

You can query for the type of a table:

>>> print type(db.person)
<class 'gluon.sgl.Table' >

and you can access a table from the DAL connection using:

>>> print type(db['‘person’)
<class 'gluon.sgl.Table' >

Similarly you can access fields from their name in multiple egjeint
ways:

>>> print type(db.person.name)

<class 'gluon.sql.Field' >

>>> print type(db.person[‘name’)
<class 'gluon.sql.Field' >

>>> print type(db['‘person’]['name’])
<class 'gluon.sql.Field' >

Given a field, you can access the attributes set in its definition

>>> print db.person.name.type
string

>>> print db.person.name.unique
False

>>> print db.person.name.notnull
False

>>> print db.person.name.length
32

L N

N

158 THE DATABASE ABSTRACTION LAYER

including its parent table, tablename, and parent connection:

>>> db.person.name._table == db.person

True

>>> db.person.name._tablename == '‘person’
True

>>> db.person.name._db == db

True

The weB2PY web site provides resources to help in the early stages of
development via an online SQL designer that allows you to design a model

visually and download the corresponding:s2rPy model [60]. Here is a
screenshot:

lalala] 5QL Designer (=]
@ - e 74 % hup://mdp.cti.depaul.edu/sqldesigner /default/sgldesigner v
TABLE Name: .I\m- row selected] FIELD
Name: [address Type: I“””J :l' () Method: I"E
Default
[Mew table | | | [g riele | [vetete Feta | [T

__Align tables _ Clear tables

[SRR s mcw SRR

user

email
address

state

zi

e Bl

country
v
v

(] FaTol 2

This service is currently a beta version. It only works witheffdx, does
not allow re-loading of models, and does not always define tables in the right
order.

Once you define a table with references, it can only reference tables previ-
ously defined.

insert

Given a table, you can insert records

>>> db.person.insert(name= "Alex")
1
>>> db.person.insert(name= "Bob")
2

i

i

i

i

© ©® N o s W N P

MIGRATIONS 159

Insert returns the unique "id" value of each record inserted.
You can truncate the table, i.e., delete all records and reset the counter of
the id.

>>> db.person.truncate()

Now, if you insert a record again, the counter starts again ahi% {s
back-end specific and does not apply to GAE):

>>> db.person.insert(name= "Alex")
1

commit and rollback

No create, drop, insert, truncate, delete, or update operation is actually com-
mitted until you issue the commit command

>>> db.commit()

To check it let's insert a new record:

>>> db.person.insert(name= "Bob")
2

and roll back, i.e., ignore all operations since the last cammi
>>> db.rollback()

If you now insert again, the counter will again be setto 2, sthegrevious
insert was rolled back.

>>> db.person.insert(name= "Bob")
2

Code in models, views and controllers is encloseditB2PY code that
looks like this:

try:

execute models, controller function and view
except:

rollback all connections

log the traceback

send a ticket to the visitor
else:

commit all connections

save cookies, sessions and return the page

There is no need to ever callmmit or rolback explicitly in WEB2pPY
unless one needs more granular control.

Noe

w N e

i

1
2
3

160 THE DATABASE ABSTRACTION LAYER

executesq|

The DAL allows you to explicitly issue SQL statements.
>>> print db.executesq|('SELECT * FROM person;')
[, u 'Massimo'), (2, u ‘'Massimo')]
In this case, the return values are not parsed or transforméuelyAL,
and the format depends on the specific database driver. This usage with
selects is normally not needed, but it is more common with indexes.

_lastsql

Whether SQL was executed manually using executesql or was SQL generated
by the DAL, you can always find the SQL codedin Jastsql . This is useful
for debugging purposes:

>>> rows = db().select(db.person.ALL)
>>> print db._lastsq|
SELECT person.id, person.name FROM person;

WEB2PY never generates queries using the "*" operatoeB2pY
is always explicit when selecting fields.

drop

Finally, you can drop tables and all data will be lost:

>>> db.person.drop()

Indexes

Currently the DAL API does not provide a command to create indexes on
tables, but this can be done using theecutesgcommand. This is because
the existence of indexes can make migrations complex, and it is better to deal
with them explicitly. Indexes may be needed for those fields that are used in
recurrent queries.

Here is an example of how to create an index using SQL in SQLite:

>>> db = DAL('sqlite://storage.db’)
>>> db.define_table('‘person’ , Fiel d(' name'))
>>> db.executesql('CREATE INDEX IF NOT EXISTS myidx ON person name;)

i

MIGRATIONS 161

Other database dialects have very similar syntaxes but may not support the
optional “IF NOT EXISTS” directive.

Legacy Databases

WEB2PY can connect to legacy databases under some conditions:
e Each table must have a unique auto-increment integer field called “id”
e Records must be referenced exclusively using the “id” field.

If these conditions are not met, it is necessary to manually ALTER TA-
BLE to conform them to these requirements, or they cannot be accessed by
WEB2PY.

This should not be thought of as a limitation, but rather, as one of the many
waySWEB2PY encourages you to follow good practices.

When accessing an existing table, i.e., a table not created by
WEB2PY in the current application, always selgrate=False

Distributed Transaction

This feature is only supported with PostgreSQL, because it provides an API
for two-phase commits.

Assuming you have two (or more) connections to distinct PostgreSQL
databases, for example:

DAL("' postgres://...')
DAL(' postgres:/....)

o

er

o
1

In your models or controllers, you can commit them concuryenith:

DAL .distributed_transaction_commit(db_a, db_b)

On failure, this function rolls back and raisesmdeption

In controllers, when one action returns, if you have two distinct connections
and you do not call the above functiongs2pPy commits them separately.
This means there is a possibility that one of the commits succeeds and one
fails. The distributed transaction prevents this from happening.

~N o o A W N R

i

162 THE DATABASE ABSTRACTION LAYER

6.5 Query, Set, Rows

Let's consider again the table defined (and dropped) previously and insert
three records:

>>> db.define_table('‘person’ , Fi el d(' name'))
>>> db.person.insert(name= "Alex")

1

>>> db.person.insert(name= "Bob")

2

>>> db.person.insert(name= "Carl")

3

You can store the table in a variable. For example, with vagigddon ,
you could do:

>>> person = db.person

You can also store a field in a variable suchhase. For example, you
could also do:
>>> name = person.name

You can even build a query (using operators like ==, 1=, <, > > like,
belongs) and store the query in a variapkich as in:
>>> g = name=='Alex’

When you calbb with a query, you define a set of records. You can store
it in a variables and write:
>>> s = db(q)

Notice that no database query has been performed so far. DALetyQu
simply define a set of records in this db that match the quergs2pPY

determines from the query which table (or tables) are involved and, in fact,
there is no need to specify that.

select

Given a Sets, you can fetch the records with the commasiekt :

>>> rows = s.select()

It returns an iterable object of clagsuon.sq.Rows Whose elements are
gluon.sql.DALStorage . DALStorage objects act like dictionaries, but their
elements can also be accessed as attributesgidi¢estorage.Storage .The
former differ from the latter vecause its values are readonly.

The Rows object allows looping over the result of the select and printing
the selected field values for each row:

i

w

i

[N w

[N [N

N

QUERY, SET, ROWS 163

>>> for row in rows:
print row.id, row.name
1 Alex
You can do all the steps in one statement:

>>> for row in db(db.person.name== '‘Alex').select():
print row.name
Alex
The select command can take arguments. All unnamed arguments a
interpreted as the names of the fields that you want to fetch. For example,
you can be explicit on fetching field "id" and field "name":

>>> for row in db().select(db.person.id, db.person.name):
print row.name
Alex
Bob
Carl
The table attribute ALL allows you to specify all fields:

>>> for row in db().select(db.person.ALL):
print row.name

Alex
Bob
Carl

Notice that there is no query string passed to éxB2pryY understands
that if you want all fields of the table person without additional information
then you want all records of the table person.

An equivalent alternative syntax is the following:

>>> for row in db(db.person.id > 0).select():
print row.name

Alex
Bob
Carl
andwgB2pPY understands that if you ask for all records of the table person
(id > 0) without additional information, then you want all the fields of table
person.

A Rows object is a container for:
rows.colnames
rows.response

colnames IS a list of the column names returned by the raw selegponse
is a list of tuples which contains the raw response of select, before being
parsed and converted to the propers2pY format.

While a Rows object cannot be pickled nor serialized by XML-RPC,
colnames andresponse can.

Again, many of these options are back-end-specific. In this case, field
selection works differently on the Google App Engine.

w N e

o A W N R

[S R N

o oA w0 N

i

164 THE DATABASE ABSTRACTION LAYER

Serializing Rows in Views

The result of a select can be displayed in a view with the following syntax:

{{extend ‘layout.html’ B
<h1>Records</h2>
{{=db().select(db.person.ALL)}}

and it is automatically converted into an HTML table with a heracbn-
taining the column names and one row per record. The rows are marked as
alternating class "even" and class "odd". Under the hood, the Rows is first
converted into a SQLTABLE object (not to be confused with Table) and then
serialized. The values extracted from the database are also formatted by the
validators associated to the field and then escaped. (Note: Using a db in this
way in a view is usually not considered good MVC practice.)

orderby, groupby, limitby, distinct

Theselect command takes five optional arguments: orderby, groupby, lim-
itby, left and cache. Here we discuss the first three.
You can fetch the records sorted by name:
>>> for row in db().select(db.person.ALL, orderby=db.perso n.name):
print row.name
Alex

Bob
Carl

You can fetch the records sorted by name in reverse order énibic):

>>> for row in db().select(db.person.ALL, orderby="db.pers on.name):
print row.name

Carl

Bob

Alex

And you can sort the records according to multiple fields by aterwating
them with a "|":

>>> for row in db().select(db.person.ALL, orderby="db.pers on.name|db.
person.id):
print row.name
Carl
Bob
Alex

Using groupby together with orderby, you can group records tliid same
value for the specified field (this is backend specific, and is not on the GAE):
>>> for row in db().select(db.person.ALL, orderby=db.perso n.name,

groupby=db.person.name):
print row.name

o o »

[I N

B oW N R

w N e

w N e

EN I

QUERY, SET, ROWS 165

Alex
Bob
Carl

With the argumentii stinct=True , you can specify that you only want
to select distinct records. This has the same effect as grouping using all
specified fields except that it does not require sorting. When using distinct it
is important not to select ALL fields, and in particular not to select the "id"
field, else all records will always be distinct.

Here is an example:

>>> for row in db().select(db.person.name, distinct=True):
print row.name

Alex

Bob

Carl

With limitby, you can select a subset of the records (in thigctse first
two starting at zero):

>>> for row in db().select(db.person.ALL, limitby=(0, 2)):
print row.name

Alex

Bob

Currently, "limitby" is only partially supported on MSSQL siethe Mi-
crosoft database does not provide a mechanism to fetch a subset of records
not starting at 0.

Logical Operators

Queries can be combined using the binary AND operator "&":

>>> rows = db((db.person.name== '‘Alex') & (db.person.id>3)).select()
>>> for row in rows: print row.id, row.name
4 Alex

and the binary OR operator "|":

>>> rows = db((db.person.name== '‘Alex') | (db.person.id>3)).select()
>>> for row in rows: print row.id, row.name
1 Alex

You can negate a query (or sub-query) with thebinary operator:

>>> rows = db((db.person.name!= ‘Alex') | (db.person.id>3)).select()
>>> for row in rows: print row.id, row.name

2 Bob

3 Carl

or by explicit negation with thé& unary operator:

AW N e

i

i

i

[N

[N R

166 THE DATABASE ABSTRACTION LAYER

>>> rows = db("(db.person.name== '‘Alex') | (db.person.id>3)).select()
>>> for row in rows: print row.id, row.name

2 Bob

3 Carl

Due to Python restrictions in overloading "AND" and "OR" opera,
these cannot be used in forming queries. The binary operators must be used
instead.

count, delete, update

You can count records in a set:

>>> print db(db.person.id > 0).count()
3

You can delete records in a set;
>>> db(db.person.id > 3).delete()

And you can update all records in a set by passing named argsiment
corresponding to the fields that need to be updated:

>>> db(db.person.id > 3).update(name= 'Ken')

Expressions

The value assigned an update statement can be an expression. For example
consider this model

>>> db.define_table('person’
Fi el d('name'),
Fi el d('visits' , 'integer' , default=0))
>>> db(db.person.name == ‘Massimo').update(
visits = db.person.visits + 1)
The values used in queries can also be expressions
>>> db.define_table('‘person’
Fi el d('name'),
Fi el d('visits' , 'integer' , default=0),
Fi el d(‘clicks’ , 'integer' , default=0))
>>> db(db.person.visits == db.person.clicks + 1).delete()

update _record

WEB2PY also allows updating a single record that is already in memory using
update _record

w N e

[I N

N

L N

B oW N R

ONE TO MANY RELATION 167

>>> rows = db(db.person.id > 2).select()
>>> row = rows[0]
>>> row.update_record(name= ‘Curt’)

6.6 One to Many Relation

Toillustrate how to implement one to many relations with Wes2py DAL,
define another table "dog" that refers to the table "person" which we redefine
here:

>>> db.define_table('‘person’
Fi el d('name'))
>>> db.define_table('dog’ ,
Fi el d('name'),
Fi el d('owner' , db.person))

Table "dog" has two fields, the name of the dog and the owner afdge
When a field type is another table, it is intended that the field reference the
other table by its id. In fact, you can print the actual type value and get:

>>> print db.dog.owner.type
reference person

Now, insert three dogs, two owned by Alex and one by Bob:

>>> db.dog.insert(name= ‘Skipper' , owner=1)
1

>>> db.dog.insert(hame= 'Snoopy' , owner=1)
2

>>> db.dog.insert(hame= 'Puppy’ , owner=2)
8

You can select as you did for any other table:

>>> for row in db(db.dog.owner==1).select():
print row.name

Skipper

Snoopy

Because a dog has a reference to a person, a person can haveagsny d
so a record of table person now acquires a new attribute dog, which is a Set,
that defines the dogs of that person. This allows looping over all persons and
fetching their dogs easily:

>>> for person in db().select(db.person.ALL):
print person.name
for dog in person.dog.select():
print ' ', dog.name
Alex
Skipper

~

©

L N

i

i

i

i

~N o o o~ W N

168 THE DATABASE ABSTRACTION LAYER

Snoopy
Bob

Puppy
Carl

Inner Joins

Another way to achieve a similar result is by using a join, specifically an
INNER JOIN.wWEB2PY performs joins automatically and transparently when
the query links two or more tables as in the following example:

>>> rows = db(db.person.id==db.dog.owner).select()
>>> for row in rows:
print row.person.name, 'has' , row.dog.name
Alex has Skipper
Alex has Snoopy
Bob has Puppy

Observe thatvEB2pPY did a join, so the rows now contain two records, one
from each table, linked together. Because the two records may have fields

with conflicting names, you need to specify the table when extracting a field
value from a row. This means that while before you could do:

row.name

and it was obvious whether this was the name of a person or a ldige i
result of a join you have to be more explicit and say:

row.person.name

or:

row.dog.name

Left Outer Join

Notice that Carl did not appear in the list above because he has no dogs. If
you intend to select on persons (whether they have dogs or not) and their dogs
(if they have any), then you need to perform a LEFT OUTER JOIN. This is
done using the argument "left" of the select command. Here is an example:

>>> rows=db().select(db.person.ALL, db.dog.ALL, left=db. dog.on(db.
person.id==db.dog.owner))
>>> for row in rows:
print row.person.name, 'has' , row.dog.name
Alex has Skipper
Alex has Snoopy
Bob has Puppy
Carl has None

HOW TO SEE SQL 169

where:
1 left = db.dog.on(...)

does the left join query. Here the argumentdeliog.on is the condition
required for the join (the same used above for the inner join). In the case of
a left join, it is necessary to be explicit about which fields to select.

Grouping and Counting

When doing joins, sometimes you want to group rows according to certain
criteria and count them. For example, count the number of dogs owned by
every personweB2PY allows this as well. First, you need a count operator.
Second, you want to join the person table with the dog table by owner. Third,
you want to select all rows (person + dog), group them by person, and count
them while grouping:

i

>>> count = db.person.id.count()

>>> for row in db(db.person.id==db.dog.owner).select(db.p erson.name,
count, groupby=db.person.id):

3 print row.person.name, row._extrajcount]

Alex 2

Bob 1

N

LN

Notice the count operator (which is built-in) is used as a fidltle only
issue here is in how to retrieve the information. Each row clearly contains a
person and the count, but the count is not a field of a person nor is it a table.
So where does it go? It goes into a dictionary calleea . This dictionary
exists for every row returned by a select when you fetch special objects from
the database that are not table fields.

6.7 How to see SQL

Sometimes you need to generate the SQL but not execute it. This is easy
to do withwEB2PY since every command that performs database 10 has an
equivalent command that does not, and simply returns the SQL that would
have been executed. These commands have the same names and syntax as
the functional ones, but they start with an underscore:

Here is.insert

1 >>> print db.person._insert(name= ‘Alex')
2 INSERT INTO person(hname) VALUES ('Alex');

Here is_count

N

N

N

N

L N

170 THE DATABASE ABSTRACTION LAYER

>>> print db(db.person.name== '‘Alex')._count()
SELECT count(*) FROM person WHERE person.name="Alex' ;

Here is_select

>>> print db(db.person.name== '‘Alex')._select()
SELECT person.id, person.name FROM person WHERE person.name= " Alex' ;

Here is_delete

>>> print db(db.person.name== '‘Alex')._delete()
DELETE FROM person WHERE person.name=Alex' ;

And finally, here isupdate

>>> print db(db.person.name== '‘Alex')._update()
UPDATE person SET WHERE person.name="Alex' ;

6.8 Exporting and Importing Data

CSV (one table at a time)

When a DALRows object is converted to a string it is automatically serialized
in CSV:

>>> rows = db(db.person.id==db.dog.owner).select()
>>> print rows
person.id,person.name,dog.id,dog.name,dog.owner
1,Alex,1,Skipper,1
1,Alex,2,Snoopy,1
2,Bob,3,Puppy,2
You can serialize a single table in CSV and store it in a file :¢tsst':

>>> open('test.csv' , ‘W').write(str(db(db.person.id).select()))

and you can easily read it back with:
>>> db.person.import_from_csv_file(open(‘test.csv' ,)
When importing,wEB2PY looks for the field names in the CSV header.

In this example, it finds two columns: "person.id" and "person.name". It
ignores the "person." prefix, and it ignores the "id" fields. Then all records

are appended and assigned new ids. Both of these operations can be performed

via the appadmin web interface.

CSV (all tables at once)

In WEB2PY, you can backup/restore an entire database with two commands:
To export:

1

1

N

© ©® N o O s W N R

11

EXPORTING AND IMPORTING DATA 171

>>> db.export_to_csv_file(open('somefile.csv' , 'wb')
To import:
>>> db.import_from_csv_file(open('somefile.csv' , 'th')

This mechanism can be used even if the importing database diftdie@nt
type than the exporting database. The data is stored in "somefile.csv" as a
CSV file where each table starts with one line that indicates the tablename,
and another line with the fieldnames:

TABLE tablename
fieldl, field2, field3, ...

Two tables are separated By \n\n\n . The file ends with the line
END

The file does not include uploaded files if these are not storettidn
database. In any case itis easy enough to zip the "uploads" folder separately.
When importing, the new records will be appended to the database if it is
not empty. In general the new imported records will not have the same record

id as the original (saved) records butB2pPY will restore references so they
are not broken, even if the id values may change.

If a table contains a field called "uuid", this field will be used to identify
duplicates. Also, if an imported record has the same "uuid" as an existing
record, the previous record will be updated.

CSV and remote Database Synchronization

Consider the following model:

db = DAL(' sglite:memory:')
db.define_table('person'

Fi el d('name'))
db.define_table(‘dog' ,

Fi el d('owner' , db.person),

Fi el d('name'))

db.dog.owner.requires = I'S | N_DB(db, ‘person.id' , '%(name)s')
if not db(db.person.id>0).count():

id = db.person.insert(name= "Massimo")

db.dog.insert(owner=id, name= "Snoopy")

Each record is identified by an ID and referenced by that ID. if have
two copies of the database used by distwetB2pPY installations, the ID is
unique only within each database and not across the databases. This is a
problem when merging records from different databases.

172 THE DATABASE ABSTRACTION LAYER

In order to make a record uniquely identifiable across databases, they must:
e have a unique id (UUID),

e have a timestamp (to figure out which one is more recent if multiple
copies),

e reference the UUID instead of the id.

This can be achieved without modifyivgeB2pPY. Here is what to do:

e Change the above model into:

1 db.define_table(‘person’
2 Fi el d('uuid" , length=64, default=uuid.uuid4()),

3 Fi el d('modified_on' , 'datetime’ , default=now),

4 Fi el d('name'))

s db.define_table('dog’ ,

6 Fi el d('uuid" , length=64, default=uuid.uuid4()),

7 Fi el d('modified_on' , 'datetime’ , default=now),

8 Fi el d('owner' , length=64),

9 Fi el d('name'))

10

11 db.dog.owner.requires = I'S_| N_DB(db, 'person.uuid’ , '%(name)s')
12

13 if not db(db.person.id).count():

14 id = uuid.uuid4()
15 db.person.insert(name= "Massimo" , uuid=id)
16 db.dog.insert(owner=id, name= "Snoopy")

e Create a controller action to export the database:

1 def export():

2 s = StringlO.StringlO()

3 db.export_to_csv_file(s)

4 response.h eaders['Content-Type'] = 'text/csv'
5 return s.getvalue()

e Create a controller action to import a saved copy of the other database
and sync records:

1 def import_and_sync():

2 form = FORM | NPUT(_type= file' , _nhame='data’),

3 I NPUT(_type= ' submit’))

4 if form.accepts(r equest .vars):

5 db.import_from_csv_file(form.vars.data.file,unique=Fa Ise
6 # for every table

7 for table in db.tables:

8 # for every uuid, delete all but the latest

9 items = db(db[table].id>0).select(db[table].id,

10 db[table].uuid,

1 orderby="db[table].modified_on,

12 groupby=db[table].uuid)

w N e

Noe

w

MANY TO MANY 173

13 for item in items:

14 db((db[table].uuid==item.uuid)&\
15 (db[table].id!=item.id)).delete()
16 return dict(form=form)

e Create an index manually to make the search by uuid faster.

Notice that steps 2 and 3 work for every database model; they are not
specific for this example.

Alternatively, you can use XML-RPC to export/import the file.

If the records reference uploaded files, you also need to export/import the
content of the uploads folder. Notice that files therein are already labeled by
UUIDs so you do not need to worry about naming conflicts and references.

HTML/XML (one table at a time)

DALRows objects also have am method (like helpers) that serializes it to
XML/HTML:

>>> rows = db(db.person.id > 0).select()

>>> print rows.xml()

<table><thead><tr><th>person.id</th><th>person.name</ th><th>dog.id</
th><th>dog.name</th><th>dog.owner</th></tr></thead><t body><tr
class= "even" ><td>1</td><td>Alex</td><td>1</td><td>Skipper</td><td
>1</td></tr><tr class= "odd" ><td>1</td><td>Alex</td><td>2</td><td>
Snoopy</td><td>1</td></tr><tr class= "even" ><td>2</td><td>Bob</td
><td>3</td><td>Puppy</td><td>2</td></tr></tbody></tab le>

If you need to serialize the DALRows in any other XML format with
custom tags, you can easily do that using the universal TAG helper and the *
notation:

>>> rows = db(db.person.id > 0).select()
>>> print TAGresult(*[TAGrow(*[TAGfield(r[f], _name=f) for f in db
.person.fields]) for r in rows])

<result><row><field name= "id" >1</field><field name= "name" >Alex</field
></row><row><field name= "id" >2</field><field name= "name" >Bob</
field></row><row><field name= "id* >3</field><field name= "name" >

Carl</field></row></result>

6.9 Many to Many

In the previous examples, we allowed a dog to have one owner but one person
could have many dogs. What if Skipper was owned by Alex and Curt? This
requires a many-to-many relation, and it is realized via an intermediate table
that links a person to a dog via an ownership relation.

N~ o o r w N R

w N e

B oW N R L N

B oW N R

174 THE DATABASE ABSTRACTION LAYER

Here is how to do it:

>>> db.define_table('person’
Fi el d('name'))
>>> db.define_table('dog' ,
Fi el d('name'))
>>> db.define_table(‘'ownership'
Fi el d('person' , db.person),
Fi el d('dog’ , db.dog))

the existing ownership relationship can now be rewritten as:

>>> db.ownership.insert(person=1, dog=1) # Alex owns Skipper
>>> db.ownership.insert(person=1, dog=2) # Alex owns Snoopy
>>> db.ownership.insert(person=2, dog=3) # Bob owns Puppy

Now you can add the new relation that Curt co-owns Skipper:

>>> db.ownership.insert(person=3, dog=1) # Curt owns Skipper too

Because you now have a three-way relation between tables,yitbma
convenient to define a new set on which to perform operations:

>>> persons_and_dogs = db((db.person.id==db.ownership.pe rson) & (db.
dog.id==db.ownership.dog))

Now it is easy to select all persons and their dogs from the néw Se

>>> for row in persons_and_dogs.select():
print row.person.name, row.dog.name

Alex Skipper

Alex Snoopy

Bob Puppy

Curt Skipper

Similarly, you can search for all dogs owned by Alex:

>>> for row in persons_and_dogs(db.person.name== '‘Alex").select():
print row.dog.name

Skipper

Snoopy

and all owners of Skipper:

>>> for row in persons_and_dogs(db.dog.name== 'Skipper').select():
print row.owner.name

Alex

Curt

A lighter alternative to Many 2 Many relations is a tagging. Jag is
discussed in the context of the N psvalidator. Tagging works even on
database backends that does not support JOINs like the Google App Engine.

i

[N

~

i

w

i

w

OTHER OPERATORS 175

6.10 Other Operators

WEB2PY has other operators that provide an API to access equivalent SQL
operators. Let's define another table "log" to store security events, their
timestamp and severity, where the severity is an integer number.

>>> db.define_table(log , Field('event),
Fi el d('timestamp' , ‘'datetime’),
Fi el d('severity' , 'integer')

As before, insert a few events, a "port scan”, an "xss injettiomd an
"unauthorized login". For the sake of the example, you can log events with
the same timestamp but with different severities (1, 2, 3 respectively).

>>> import datetime
>>> now = datetime.datetime.now()

>>> print db.log.insert(event= ‘port scan' , timestamp=now, severity=1)

1

>>> print db.log.insert(event= 'xss injection' , timestamp=now,
severity=2)

2

>>> print db.log.insert(event= ‘unauthorized login' , timestamp=now,
severity=3)

8

like, upper, lower

Fields have a like operator that you can use to match strings:

>>> for row in db(db.log.event.like('‘port%')).select():
print row.event
port scan

Here "port%" indicates a string starting with "port". The gartsign char-
acter, "%", is a wild-card character that means "any sequence of characters".

Similarly, you can usepper andiower methods to convert the value of the
field to upper or lower case, and you can also combine them with the like
operator.

>>> for row in db(db.log.event.upper().like('PORT%")).select():
print row.event
port scan

year, month, day, hour, minutes, seconds

The date and datetime fields have day, month and year methods. The datetime
and time fields have hour, minutes and seconds methods. Here is an example:

aos W N e

L N EN O

Noe

176 THE DATABASE ABSTRACTION LAYER

>>> for row in db(db.log.timestamp.year()==2009).select()
print row.event

port scan

Xss injection

unauthorized login

belongs

The SQL IN operator is realized via the belongs method which returns true
when the field value belongs to the specified set (list of tuples):
>>> for row in db(db.log.severity.belongs((1, 2))).select():

print row.event

port scan
XSS injection

The DAL also allows a nested select as the argument of the betpeya-
tor. The only caveat is that the nested select has to&ea , not aselect ,
and only one field has to be selected explicitly, the one that defines the set.

>>> bad_days = db(db.log.severity==3)._select(db.log.tim estamp)

>>> for row in db(db.log.timestamp.belongs(bad_days)).sel ect():
print row.event

port scan

XSS injection

unauthorized login

Previously, you have used the count operator to count rec&idslarly,
you can use the sum operator to add (sum) the values of a specific field from
a group of records. As in the case of count, the result of a sum is retrieved
via the_extra dictionary.

>>> sum = db.log.severity.sum()
>>> print db().select(sum)[0]._extra[sum]

6.11 Caching Selects

The select method also takes a cache argument, which defaults to None. For
caching purposes, it should be set to a tuple where the first element is the
cache model (cache.ram, cache.disk, etc.), and the second element is the
expiration time in seconds.

In the following example, you see a controller that caches a select on the
previously defined db.log table. The actual select fetches data from the back-
end database no more frequently than once every 60 seconds and stores the

w N e

i

i

i

i

1
2
3
4

SHORTCUTS 177

result in cache.ram. If the next call to this controller occurs in less than 60
seconds since the last database 10, it simply fetches the previous data from
cache.ram.

def cache_db_select():
logs = db().select(db.log.ALL, cache=(cache.ram, 60))
return dict(logs=logs)

The results of a select are complex, unpickleable objecty; the
cannot be stored in a session and cannot be cached in any other
way than the one explained here.

6.12 Shortcuts

The DAL supports various code-simplifying shortcuts. In particular:
db.mytable[id]

returns the record with the givem if it exists. If theid does not exist, it
returnsnone.

del db.mytable[id]

deletes the record with the given, if it exists.
db.mytable[0] = dict(myfield= ‘'somevalue')

creates a new record with field values specified by the dictjooiathe right
hand side.

db.mytable[id] = dict(myfield= 'somevalue')

updates an existing record with field values specified by thteodiary on the
right hand side.

6.13 Self-Reference and Aliases

It is possible to define tables with fields that refer to themselves although the
usual notation may fail. The following code would be wrong because it uses
a variabledb.person before it is defined:

db.define_table('person'
Fi el d('name'),
Fi el d('father_id' , db.person),
Fi el d('mother_id" , db.person))

The solution consists of using an alternate notation

AW N e

178 THE DATABASE ABSTRACTION LAYER

db.define_table('‘person’
Fi el d('name'),
Fi el d(‘father_id' , 'reference person'),
Fi el d('mother_id" , ‘reference person')
In factdb.tablename ~ andreference tablename” are equivalent field types.

If the table refers to itself, then it is not possible to perform a JOIN to
select a person and its parents without use of the SQL "AS" keyword. This is
achieved irwEB2PY using thewith _alias . Here is an example:

>>> Father = db.person.with_alias(‘father')

>>> Mother = db.person.with_alias('mother’)

>>> db.person.insert(name= ‘Massimo')

1

>>> db.person.insert(name= ‘Claudia’)

2

>>> db.person.insert(name= ‘Marco' , father_id=1, mother_id=2)

3]

>>> rows = db().select(db.person.name, Father.name, Mother .name,

left=(Father.on(Father.id==db.person.father_id),
Mother.on(Mother.id==db.person.mother_id)))
>>> for row in rows:
print row.person.name, row.father.name, row.mother.name
Massimo None None
Claudia None None
Marco Massimo Claudia

Notice that we have chosen to make a distinction between:
¢ "fatherid": the field name used in the table "person”;

o "father": the alias we want to use for the table referenced by the above
field; this is communicated to the database;

e "Father": the variable used byEB2prY to refer to that alias.

The difference is subtle, and there is nothing wrong in using the same name
for the three of them:

db.define_table('‘person’
Fi el d('name'),
Fi el d(‘father' , 'reference person'),
Fi el d('mother’ , 'reference person')
>>> father = db.person.with_alias(father')
>>> mother = db.person.with_alias('mother’)
>>> db.person.insert(name= ‘Massimo')
1
>>> db.person.insert(name= ‘Claudia’)
2
>>> db.person.insert(name= ‘Marco' , father=1, mother=2)
8
>>> rows = db().select(db.person.name, father.name, mother .name,

left=(father.on(father.id==db.person.father),
mother.on(mother.id==db.person.mother)))
>>> for row in rows:

17
1i

©

1
20

©

i

w

© o N o g A W N R

TABLE INHERITANCE 179

print row.person.name, row.father.name, row.mother.name
Massimo None None
Claudia None None
Marco Massimo Claudia

But it is important to have the distinction clear in order tolthudorrect
queries.

6.14 Table Inheritance

It is possible to create a table that contains all the fields from another table.
It is sufficient to pass the other table in place of a fieldiéfine_table
For example

db.define_table(‘person’ , Fiel d(' name'))
db.define_table(‘doctor' , db.person, Fi el d('specialization’)

It is also possible to define a dummy table that is not stored imtabdise
in order to reuse it in multiple other places. For example:

current_user_id = (auth.user and auth.user.id) or O
timestamp = db.Table(db, ‘timestamp_table' ,

Fi el d('created_on' , 'datetime' , default="r equest .now),

Fi el d('created_by' , db.auth_user, default=current_user_id),

Fi el d('updated_on' , ‘'datetime' , default="r equest .now),

Fi el d('updated_by' , db.auth_user, update=current_user_id))
db.define_table(‘payment’ , timestamp, Fi el d('amount’ , ‘'double’))

This example assumes that standami2py authentication is enabled.

CHAPTER 7

FORMS AND VALIDATORS

There are four distinct ways to build formsweB2pPY:

e ForMprovides a low-level implementation in terms of HTML helpers.
A Formobject can be serialized into HTML and is aware of the fields it
contains. AFormobject knows how to validate submitted form values.

e sqLForNprovides a high-level API for building create, update and delete
forms from an existing database table.

e SQLFORM.factory IS an abstraction layer ontopsfLrForin order to take
advantage of the form generation features even if there is no database
present. It generates a form very similast@arorMrom the description
of a table but without the need to create the database table.

e crubmethods. These are functionally equivalentto SQLFORM and are
based on SQLFORM, but provide a simpler notation.

All these forms are self-aware and, if the input does not pass validation,
they can modify themselves and add error messages. The forms can be

WEB2PY: Enterprise Web Framework / 2nd Bl.Massimo Di Pierro 181
Copyright(C) 2009

N

© ©® N o o s W N P

1
2
3
4
5

182 FORMS AND VALIDATORS

queried for the validated variables and for error messages that have been
generated by validation.

Arbitrary HTML code can be inserted into or extracted from the form using
helpers.

7.1 FORM

Consider as an exampletast application with the following "default.py"
controller:

def display_form():
return dict()

and the associated "default/displayrm.html" view:

{{extend 'layout.html' B

<h2>Input form</h2>

<form enctype= ‘"multipart/form-data"
action="{{=request.url}}" method= "post* >

Your name:

<input name= "name" />

<input type= ‘"submit" />

</form>

<h2>Submitted variables</h2>

{{= BEAUTI FY(r equest .vars)}}

This is a regular HTML form that asks for the user's name. Whanfilb
the form and click the submit button, the form self-submits, and the variable
requestvars.name and its value is displayed at the bottom.

You can generate the same form using helpers. This can be done in the
view or in the action. Sinc&EB2pPY processed the form in the action, it is
OK to define the form in the action.

Here is the new controller:

def display_form():
form= FORM ' Your name:' ,
I NPUT(_name="' name'),
I NPUT(_type= ' submit'))
return dict(form=form)

and the associated "default/displapym.html" view:

{{extend 'layout.html' B
<h2>Input form</h2>

{{=form}}

<h2>Submitted variables</h2>
{{= BEAUTI FY(r equest .vars)}}

The code so far is equivalent to the previous code, but the fogererated
by the statement{=form }} which serializes theorvobject.

1
2
3
4
5
6
7
8
9

10
11

1
2
3
4
5
6
7
8
9

1

1

FORM 183

Now we add one level of complexity by adding form validation and pro-
cessing.
Change the controller as follows:

def display_form():
form= FORM ' Your name:' ,
I NPUT(_name=" name', requires= | S_NOT_EMPTY()),
I NPUT(_type= ' submit'))
if form.accepts(request .vars, session):
response.f lash = ‘form accepted'
elif form.errors:
response.f lash = ‘form has errors'
else:
response.f lash = ‘please fill the form'
return dict(form=form)
and the associated "default/displapym.html" view:
{{extend ‘layout.html' B
<h2>Input form</h2>
{{=form}}

<h2>Submitted variables</h2>
{{= BEAUTI FY(r equest .vars)}}
<h2>Accepted variables</h2>
{{= BEAUTI FY(form.vars)}}
<h2>Errors in form</h2>

{{= BEAUTI FY(form.errors)}}

Notice that:

e In the action, we added thequires=is _NOTEMPTY() validator for the
input field "name".

e |n the action, we added a call f®m.accepts(...)

e In the view, we are printingprm.vars andform.errors ~ as well as the
form andrequest.vars

All the work is done by thaccepts method of thaorm object. It filters the
requestvars according to the declared requirements (expressed by valida-
tors). accepts Stores those variables that pass validation isttovars . If a
field value does not meet a requirement, the failing validator returns an error
and the error is stored idarm.errors . Bothformvars andform.errors are
gluon.storage.Storage objects similar taequestvars . The former contains
the values that passed validation, for example:

form.vars.name = "Max"

The latter contains the errors, for example:

form.errors.name = "Cannot be empty!"

184 FORMS AND VALIDATORS

Theaccepts function returngrue if the form is accepted andise otherwise.
A form is not accepted if it has errors or when it has not been submitted (for

example, the first time it is shown).
Here is how this page looks the first time it is displayed:

r.. 5 iR =
(<) =)= (@I %) A) (L[hiep:/1127.0.0.1:8000 testiefauttscisplay_form 77 v J&(*hs coogie Q)
test
customize me!

ftest/default/display_form

Authentication | Input form
Login | Your name:| |Submit Query|

Main Menu Submitted variables

dmdes || Accepted variables

Edit

Copyright © 2009 - Powered by webzpy

Here is how it looks upon invalid submission:

]

QD (G) (%) (#) ([hitp://127.0.0.1:8000test/default/display_form 77 v J=(*9: Coogle Q }

test

customize me!

ftest/default/display_form

Authentication | Input form
Login | ‘Your name:|

i cannot be empty!

Main Menu Submit Query

ex - -
£ Submitted variables
Edit This App | name -
Edit

Accepted variables

Errors in form
name : cannot be empty!

Copyright © 2009 - Powered by webzpy

Here is how it looks upon a valid submission:

~N o o A W N R

FORM 185

‘800 test =7

v@@@ [) [htp://127.0.0.1:8000/testdefaultydisplay_form 13 v J=(#f: Google

test

customize me!
Jtest/default/display_form

Authentication | Input form

| Login Your name:| |Submit Query|

Main Menu Submitted variables
| Index name : Massimo

Edit This App | Accepted variables
Edit : name : Massimo

Errors in form
Copyright © 2009 - Powered by webzapy

Hidden fields

When the above form object is serialized byform }}, and because of the
previous call to theccepts method, it now looks like this:

<form enctype= "multipart/form-data" action= "' method= "post" >
your name:
<input name= "name" />
<input type= ‘"submit" />
<input value= "783531473471" type= "hidden" name="_formkey" />
<input value= “default" type= "hidden" name="_formname" />
</form>
Notice the presence of two hidden fieldsfotmkey" and "formname".
Their presence is triggered by the calldt@epts and they play two different

and important roles:

e The hidden field called_formkey" is a one-time token thates2pry
uses to prevent double submission of forms. The value of this key is
generated when the form is serialized and stored irddsen . When
the form is submitted this value must match, or elsepts returns
False without errors as if the form was not submitted at all. This is
becausevEB2PY cannot determine whether the form was submitted
correctly.

e The hidden field called_formname" is generated byEB2PY as a
name for the form, but the name can be overridden. This field is neces-
sary to allow pages that contain and process multiple fommss2pryY
distinguishes the different submitted forms by their names.

L N S B N R

i

186 FORMS AND VALIDATORS

The role of these hidden fields and their usage in custom forms and pages
with multiple forms is discussed in more detail later in the chapter.

If the form above is submitted with an empty "name" field, the form does
not pass validation. When the form is serialized again it appears as:

<form enctype= "multipart/form-data" action= " method= "post" >
your name:
<input value= " name="name" />

<div class= ‘error" >cannot be empty!</div>
<input type= ‘"submit" />
<input value= "783531473471" type= "hidden" name='_formkey"' />
<input value= "default" type= "hidden" name='_formname" />
</form>

Notice the presence of a DIV of class "error" in the serializednt
WEB2PY inserts this error message in the form to notify the visitor about
the field that did not pass validation. Thagepts method, upon submission,
determines that the form is submitted, checks whether the field "name" is
empty and whether it is required, and eventually inserts the error message
from the validator into the form.

The base "layout.html" view is expected to handle DIVs of class "error".
The default layout uses jQuery effects to make errors appear and slide down
with a red background. See Chapter 10 for more details.

keepvalues

The full signature of thaccepts method is the following:

form.accepts(vars, sessi on=None, formname= ‘default'
keepvalues=False, onvalidation=None):

The optional argumentepvalues tells WeEB2pY what to do when a form
is accepted and there is no redirection, so the same form is displayed again.
By default the form is cleared. Meepvalues is set toTrue, the form is
prepopulated with the previously inserted values. This is useful when you
have a form that is supposed to be used repeatedly to insert multiple similar
records.

onvalidation

Theonvalidation ~ argument can b&one or can be a function that takes the
form and returns nothing. Such a function would be called and passed the
form, immediately after validation (if validation passes) and before anything
else happens. The purpose of this function is multifold. It can be used, for
example, to perform additional checks on the form and eventually add errors

© o N e g AN W N R

11
12
1

w

14
15
16
17
18
1

©

© ©® N o O A W N P

14

FORM 187

to the form. It can also be used to compute the values of some fields based on
the values of other fields. It can be used to trigger some action (like sending
an email) before a record is created/updated.

Here is an example:
db.define_table(‘numbers'
Field('a" , ‘integer),
Fi el d('b" , 'integer),
Field('d , ‘integer , readable=False, writable=False))

def my_form_processing(form):

¢ = form.vars.a * fo rm.vars.b
if ¢ < O0:

form.errors.b = '‘a *b cannot be negative'
else:

form.vars.c = ¢

def insert_numbers():
form = SQLFORM db.numbers)

if form.accepts(request .vars, session,
onvalidation=my_form_processing)
sessi on.flash = ' record inserted'

redi rect (request .url)
return dict(form=form)

Forms and redirection

The most common way to use forms is via self-submission, so that the
submitted field variables are processed by the same action that generated the
form. Once the form is accepted, it is unusual to display the current page
again (something we are doing here only to keep things simple). It is more
common to redirect the visitor to a "next" page.

Here is the new example controller:

def display_form():
form = FORM' Your name:'
I NPUT(_name="' name', requires= | S_NOT_EMPTY()),
I NPUT(_type= ' submit'))
if form.accepts(request .vars, session):
sessi on.flash = ' form accepted'
redi rect (URL(r= request, f= 'next’))
elif form.errors:
response.f lash = ‘form has errors'
else:
response.f lash = ‘please fill the form'
return dict(form=form)

def next():
return dict()

188 FORMS AND VALIDATORS

In order to set a flash on the next page instead of the current page you must

uSe session.flash instead ofresponse.flash

into the latter after redirection. Note that usiggsion.flash

you do notsession.forget()

Multiple forms per page

WEB2PY moves the former

requires that

The content of this section applies to betirvandsqLrFornobjects.

Itis possible to have multiple forms per page, but you must allow2py
to distinguish them. If these are derivedday Forfrom different tables, then
WEB2PY gives them different names automatically; otherwise you need to
explicitly give them differentform names. Moreover, when multiple forms are
present on the same page, the mechanism for preventing double submission

breaks, and you must omit thession
method. Here is an example:

1 def two_forms():
forml = FORM | NPUT(_name='name' , requires=
I NPUT(_type= ' submit'))
FORM | NPUT(_name='name' , requires=
I NPUT(_type= ' submit'))
if forml.accepts(request .vars, formname=
response.f lash = ‘form one accepted'
if form2.accepts(request .vars, formname=
response.f lash = ‘form two accepted'
10 return dict(form1l=form1, form2=form?2)

form2 =
‘form_one'

‘form_two'

© ® N o O~ W N

and here is the output it produces:

800

test

argument when calling th&cepts

I S_NOT_EMPTY()),

I S_NOT_EMPTY()),

):
):

B et s £ ——

@v@@@ () http://127.0.0.1:8000/test/default/two_forms g ¥ |
i e e A — —

test

customize me!
Jtest/default/two_forms

form1 : | |SubmitQum}'|

Authentication

| Login

formz : | | Submit Query|

i | admin request session response
Main Menu

Index

Edit This App

Edit

Copyright © 2009 - Powered by webzpy

When the visitor submits an empty form1, only form1 displaysaor; if
the visitor submits an empty form2, only form2 displays an error message.

© ©® N o g A W N R

11
12

1
2
3

1
2
3
4
5
6
7

SQLFORM 189

No self-submission

The content of this section applies to betbrvand sqLForMbjects. What
we discuss here is possible but not recommended, since it is always good
practice to have forms that self-submit. Sometimes, though, you don’t have
a choice, because the action that sends the form and the action that receives
it belong to different applications.

It is possible to generate a form that submits to a different action. This is
done by specifying the URL of the processing action in the attributes of the
FORMDI SQLFORNMObject. For example:

form = FORM | NPUT(_name='name' , requires= | S_NOT_EMPTY()),
I NPUT(_type= ' submit’), _action= URL(r= request, f= 'page_two'))

def page_one():
return dict(form=form)

def page_two():

if form.accepts(request .vars, formname=None):
response.f lash = ‘form accepted'

else:
response.f lash = ‘there was an error in the form'

return dict()

Notice that since both "pagene" and "pagdwo" use the sam® rm, we
have defined it only once by placing it outside of all the actions, in order
not to repeat ourselves. The common portion of code at the beginning of a
controller gets executed every time before giving control to the called action.
Since "pageone" does not callccepts , the form has no name and no key,
SO you must not pass thession and setormname=None in accepts , Or the
form will not validate when "pagéwo" receives it.

7.2 SQLFORM

We now move to the nextlevel by providing the application with a model file:

db = DAL(' sqlite://db.db’)
db.define_table('‘person’
Fi el d('name' , requires= | S_NOT_EMPTY()))

Modify the controller as follows:

def display_form():
form = SQLFORM db.person)

if form.accepts(request .vars, session):
response.f lash = ‘form accepted'
elif form.errors:
response.f lash = ‘form has errors'
else:

©

190 FORMS AND VALIDATORS

response.f lash = 'please fill out the form'
return dict(form=form)

The view does not need to be changed.

In the new controller, you do not need to buildc@rn since thesQLFORM
constructor built one from the tabde.person defined in the model. This new
form, when serialized, appears as:

<form enctype= "multipart/form-data" action= " method="post" >
<table>
<tr id= ‘"person_name__row" >
<td><label id= "person_name__label"
for= "person_name" >Your name: </label></td>
<td><input type= “text" class= "string"
name="name" value= "' id= "person_name" /></td>
<td></td>
</tr>
<tr id= "submit_record__row" >
<td></td>
<td><input value= "Submit® type= "submit" = /></td>
<td></td>
</tr>
</table>
<input value= "9038845529" type= "hidden" name="_formkey" />
<input value= ‘"person" type= "hidden" name="_formname" />
</form>

The automatically generated form is more complex than thaquievow-
level form. First of all, it contains a table of rows, and each row has three
columns. The first column contains the field labels (as determined from the
db.person), the second column contains the input fields (and eventually error
messages), and the third column is optional and therefore empty (it can be
populated with the fields in thegLForRM ONStructor).

All tags in the form have names derived from the table and field name.
This allows easy customization of the form using CSS and JavaScript. This
capability is discussed in more detail in Chapter 10.

More important is that now theccepts method does a lot more work
for you. As in the previous case, it performs validation of the input, but
additionally, if the input passes validation, it also performs a database insert
ofthe newrecord and storesiiim.vars.id ~ the unique "id" of the new record.

A sqLForwobject also deals automatically with "upload" fields by saving
uploaded files in the "uploads" folder (after having them renamed safely to
avoid conflicts and prevent directory traversal attacks) and stores their names
(their new names) into the appropriate field in the database.

A sqLrorndisplays "boolean” values with checkboxes, "text" values with
textareas, values required to be in a definite set or a database with dropboxes,
and "upload" fields with links that allow users to download the uploaded files.

SQLFORM 191

It hides "blob" fields, since they are supposed to be handled differently, as
discussed later.
For example, consider the following model:

1 db.define_table(‘person’

2 Fi el d('name' , requires= | S_NOT_EMPTY()),

3 Fi el d('married" , 'boolean'),

4 Fi el d('gender' , requires= | S I N _SET('Male' , 'Female' , 'Other' 1)),
5 Fi el d('profile’ , text'),

6 Fi el d('image' , ‘upload"))

In this casesq@ FoRM(db.person) generates the form shown below:

800 test =
,‘t (& (¢ (e) (L (huag://127.0.0.1:8000/test/default/display_form 7 v J&(C all

*§:(Google

test

customize me!
Jtest/default/display_form

Authentication Input form

| Login Name: [
Married: [
Gender: Male =|
Profile:

Main Menu
| Index

Edit This App

| Edit

Image: | (Browse...)
Submitted variables
Accepted variables

Errors in form
Copyright € 2009 - Powered by webzpy

|.Bone.

ThesqLrFornconstructor allows various customizations, such as displaying
only a subset of the fields, changing the labels, adding values to the op-
tional third column, or creating UPDATE and DELETE forms, as opposed to
INSERT forms like the current one.

SQLFORNS the single biggest time-saver objeCWEB2PY.

The classsqLrorns defined in "gluon/sglhtml.py"”. It can be easily ex-
tended by overloading itenl method, the method that serializes the objects,
to change its output.

The signature for theqLFornconstructor is the following:

SQ.FORMtable, record=None, deletable=False,
linkto=None, upload=None, fields=None, labels=None, col3= {.

Noe

o o o~ ow

192

[

[N

FORMS AND VALIDATORS

submit_button= 'Submit’ , delete_label= '‘Check to delete:
id_label= 'Record id: ' , showid=True,

readonly=False, comments=True, keepopts=[],

ignore_rw=False, *+ attributes)

The optional second argument turns the INSERT form into an UPDATE
form for the specified record (see next subsection).

If deletable is set toTrue , the UPDATE form displays a "Check to
delete" checkbox. The value of the label if this field is set via the
delete _label argument.

submit _button Sets the value of the submit button.
i dJlabel sets the label of the record "id"
The "id" of the record is not shown showid IS set toralse .

fields is an optional list of field names that you want to display. If a
list is provided, only fields in the list are displayed. For example:

fields = ['name']

labels is a dictionary of field labels. The dictionary key is a field name
and the corresponding value is what gets displayed as its label. If a
label is not providedweB2pPY derives the label from the field name (it
capitalizes the field name and replaces underscores with spaces). For
example:

labels = { 'name' :'Your Full Name:' }

col3 is a dictionary of values for the third column. For example:

col3 = { 'mname' : A('what is this?'
_href=‘http://www.google.com/search?g=define:name’)}

linkko and upload are optional URLs to user-defined controllers that
allow the form to deal with reference fields. This is discussed in more
detail later in the section.

readonly . If setto True, displays the form as readonly
comments . If set to False, does not display the col3 comments

ignore _rw. Normally, for a create/update form, only fields marked as
writable=True are shown, and for readonly forms, only fields marked
as readable=True are shown. Setiijpgre rw=True causes those con-
straints to be ignored, and all fields are displayed. This is mostly used

SQLFORM 193

in the appadmin interface to display all fields for each table, overriding
what the model indicates.

e Optionalattributes ~ are arguments starting with underscore that you
want to pass to theorMag that renders thegLFornobject. Examples
are:

1 _action = .
2 _method = 'POST'

There is a speciali dden attribute. When a dictionary is passed as
hidden , its items are translated into "hidden" INPUT fields (see the
example for theornvhelper in Chapter 5).

Insert/Update/Delete SQLFORM

If you pass a record as optional second argument tegheornconstructor,

the form becomes an UPDATE form for that record. This means that when
the form is submitted the existing record is updated and no new record is
inserted. If you set the argumeftetable=True , the UPDATE form displays

a "check to delete" checkbox. If checked, the record is deleted.

You can, for example, modify the controller of the previous example so

that when we pass an additional integer argument in the URL path, as in:

1 [test/default/display_form/2

1
2
3
4
5
6
7
8
9

10
11
12

and if there is a record with the corresponding id, skirFormMgenerates an
UPDATE/DELETE form for the record:

def display_form():

if len(request. args):

records = db(db.person.id== r equest .args[0]).select()
if len(request.args) and len(records):

form = SQLFORM db.person, records[0], deletable=True)
else:

form = SQLFORM db.person)
if form.accepts(request .vars, session):

response.f lash = ‘form accepted'
elif form.errors:

response.f lash = ‘form has errors'
return dict(form=form)

Line 3 finds the record, line 5 makes an UPDATE/DELETE form, amel |

7 makes an INSERT form. Line 8 does all the corresponding form processing.

Here is the final page:

194 FORMS AND VALIDATORS

@800 test =
v@@@ [.[http://127.0.0.1:8000/test/default/display_form/2 7¢ v I8 (M Coogle Q)

test

customize me!
[test/default/display_form/2

Authentication | Input form

Login Id: 2

Name: [Max
Image:

Main Menu
Index

Edlt This App . Check to delete: [J

Eai Submit

(Browse...)

Submitted variables

Accepted variables

Errors in form
Copyright © 2009 - Powered by webzpy

| 2o

By defaultdeletable=False

Edit forms also contain a hidden INPUT field withine="id" which is used
to identify the record. This id is also stored server-side for additional security
and, if the visitor tampers with the value of this field, the UPDATE is not
performed andvEB2PY raises a SyntaxError, "user is tampering with form".

When a Field is marked withritable=Faise ~ , the field is not shown in
create forms, and it is is shown readonly in update forms. If a field is marked
aswritable=False ~ andreadable=False , then the field is not shown at all, not
even in update forms.

Forms created with

1 form = SQLFORM ...,ignore_rw=True)
ignore there adable andwritable ~ attributes and always show all fields.

Forms inappadmin ignore them by default.
Forms created with

1 form = SQLFORM table,record_id,readonly=True)

always show all fields in readonly mode, and they cannot be &adep

SQLFORM in HTML

There are times when you want to useLForMto benefit from its form
generation and processing, but you need a level of customization of the form
in HTML that you cannot achieve with the parameters ofd¢berornobject,
so you have to design the form using HTML.

Now, edit the previous controller and add a new action:

[

i

SQLFORM 195

def display_manual_form():
form = SQLFORM db.person)

if form.accepts(request .vars, formname= ‘'test’):
response.f lash = ‘form accepted'

elif form.errors:
response.f lash = ‘form has errors'

else:
response.f lash = ‘'please fill the form'

return dict()

and insert the form in the associated "default/disptanualform.htm|"
view:

{{extend ‘'layout.html' B

<form>

Your name is <input name= "name" />

<input type= ‘"submit" />

<input type= “hidden" name="_formname" value= "test" />
</form>

Notice that the action does not return the form because it doaseed to
pass it to the view. The view contains a form created manually in HTML.
The form contains a hidden fieldfdSrmname” that must be the same form-
name specified as an argumentaéepts in the action. weB2py uses the
form name in case there are multiple forms on the same page, to determine
which one was submitted. If the page contains a single form, you can set
formname=None and omit the hidden field in the view.

SQLFORM and uploads

Fields of type "upload" are special. They are rendered as INPUT fields of
type="file” . Unless otherwise specified, the uploaded file is streamed in
using a buffer, and stored under the "uploads" folder of the application using
a new safe name, assigned automatically. The name of this file is then saved
into the field of type uploads.

As an example, consider the following model:

db.define_table(‘person’
Fi el d('name' , requires= | S_NOT_EMPTY()),
Fi el d('image' , ‘upload"))
You can use the same controller action "displagm" shown above.
When you insert a new record, the form allows you to browse for a file.
Choose, for example, a jpg image. The file is uploaded and stored as:

applications/test/uploads/person.image. XXXXX.jpg

"XXXXXX" is a random identifier for the file assigned byeEB2py.

196 FORMS AND VALIDATORS

Notice that, by default, the original flename of an uploaded file
is bl6encoded and used to build the new name for the file. This
name is retrieved by the default "download" action and used to
set the content disposition header to the original filename.

Only its extension is preserved. This is a security requirement since the
filename may contain special characters that could allow a visitor to perform
directory traversal attacks or other malicious operations.

The new filename is also storedfbfm.vars.image _newfilename

When editing the record using an UPDATE form, it would be nice to
display a link to the existing uploaded file, and:B2PY provides a way to
doiit.

If you pass a URL to theqLForvconstructor via the upload argument,
WEB2PY uses the action at that URL to download the file. Consider the
following actions:

1 def display_form():

2 if len(request. args):

3 records = db(db.person.id== r equest .args[0]).select()

4 if len(request. args) and len(records):

5 url = URL(r=request, f= 'download")

6 form = SQLFORM db.person, records[0], deletable=True, upload=
url)

7 else:

8 form = SQLFORM db.person)

9 if form.accepts(request .vars, session):

10 response.f lash = ‘form accepted'

1 elif form.errors:

12 response.f lash = 'form has errors'

13 return dict(form=form)

15 def download():
16 return response. download(request, db)

Now, insert a new record at the URL:

1 http://127.0.0.1:8000/test/default/display_form

Upload an image, submit the form, and then edit the newly cdeatord
by visiting:

1 http://127.0.0.1:8000/test/default/display_form/3

(here we assume the latestrecord has id=3). The form lookbEdellowing:

1

1
2
3
4

SQLFORM 197

‘800 test =

() () () ([[hitp://127.0.0.1:8000/test/default/display_form/3 1 *q:(Coogle

test

customize me!

Jtest/default/display_form/3

Authentication | Input form

Login 1d: 3
. N: 2 M:

Main Menu ame Max

Index Jj | Tmage | (Browse...)
. . Check to delete: [

Edit This App SR

[Eai Submit
. Submitted variables
Accepted variables
Errors in form
| Copyright ® 2000 - Powered by webzpy

This form, when serialized, generates the following HTML:

<td><label id= "person_image__label" for= "person_image" >Ilmage: </label
></td><td><div><input type= "file" id= "person_image" class= "upload
' name='image" />[<a href= "/test/default/download/person.image
.0246683463831.jpg" >file|<input type= "checkbox" name="
image__delete" />delete]</div></td><td></td></tr><tr id= "
delete_record__row" ><td><label id= "delete_record__label" for= "
delete_record" >Check to delete:</label></td><td><input type= "
checkbox" id= "delete_record" class= "delete" name="
delete_this_record" /></td>
which contains a link to allow downloading of the uploaded filled a check-
box to remove the file from the database record, thus storing NULL in the
"image" field.
Why is this mechanism exposed? Why do you need to write the download
function? Because you may want to enforce some authorization mechanism

in the download function. See Chapter 8 for an example.

Storing the original filename

WEB2PY automatically stores the original flename inside the new UUID
filename and retrieves it when the file is downloaded. Upon download, the
original filename is stored in the content-disposition header of the HTTP
response. This is all done transparently without the need for programming.
Occasionally you may want to store the original filename in a database
field. In this case, you need to modify the model and add a field to store it in:

db.define_table('‘person’
Fi el d('name' , requires= | S_NOT_EMPTY()),
Fi el d('image_filename'),

Fi el d('image' , 'upload"))

1
2
3
4
5
6
7
8
9

w N e

198 FORMS AND VALIDATORS

then you need to modify the controller to handle it:

def display_form():
if len(request. args):

records = db(db.person.id== r equest .args[0]).select()
if len(request.args) and len(records):

url = URL(r=request, f= 'download")

form = SQLFORM db.person, records[0], deletable=True,

upload=url, fields=[‘name' , 'image'])

else:

form = SQLFORM db.person, fields=[‘name' , 'image')
if request. vars.image:

form.vars.image_filename = r equest .vars.image.filename
if form.accepts(request .vars, session):

response.f lash = ‘form accepted'
elif form.errors:

response.f lash = ‘form has errors'

return dict(form=form)

Notice that thesqgrormdoes not display the "imag@ename” field. The
"display form" action moves the filename of theguestvars.image into the
form.vars.image filename , SO that it gets processed laycepts and stored
in the database. The download function, before serving the file, checks in
the database for the original filename and uses it in the content-disposition
header.

Removing the action file

The sqLForpupon deleting a record, does not delete the physical uploaded
file(s) referenced by the record. The reason is thas2pry does not know
whether the same file is used/linked by other tables or used for other purpose.
If you know it is safe to delete the actual file when the corresponding record
is deleted, you can do the following:

db.define_table('image'
Fi el d('name'),
Fi el d(file' , 'upload’ ,autodelete=True))

The autodelete ~ attribute isFalse by default. When set torue is makes
sure the file is deleted when the record is deleted.

Links to referencing records

Now consider the case of two tables linked by a reference field. For example:

db.define_table('‘person’

Fi el d('name' , requires= | S_NOT_EMPTY()))
db.define_table('dog’ ,

Fi el d('owner' , db.person),

5
6

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

1

SQLFORM 199

Fi el d('name' , requires= | S_NOT_EMPTY()))
db.dog.owner.requires = 1'S_| N_DB(db,db.person.id, '%(name)s’)

A person has dogs, and each dog belongs to an owner, which is@nper
The dog owner is required to reference a valigersonid by '%(name)s’

Let's use theappadmin interface for this application to add a few persons
and their dogs.

When editing an existing person, tappadmin UPDATE form shows a
link to a page that lists the dogs that belong to the person. This behavior can
be replicated using thekto argument of thesQLFoRrRMiinkto has to point
to the URL of a new action that receives a query string fromsthi&ornand
lists the corresponding records. Here is an example:

def display_form():
if len(request. args):

records = db(db.person.id== r equest .args[0]).select()
if len(request.args) and len(records):

url = URL(r=request, f= 'download')

link = URL(r=request, f= 'list_records')

form = SQLFORM db.person, records[0], deletable=True,
upload=url, linkto=link)
else:
form = SQLFORM db.person)
if form.accepts(request .vars, session):
response.f lash = ‘form accepted'
elif form.errors:
response.f lash = ‘form has errors'
return dict(form=form)

Here is the page:

800 test =
= i ; 7 < v 120 *8 Coogle 8y
@;} @@ () [htp://127.0.0.1:8000/test/default/display_form/5 1y v) ﬁ Google Q)
test
customize me!
Jtest/default/display_form/5
. . e § : &
Authentication | ™ °© Id: 5
Login Name: \Max
4 dog.owner
Main Menu Check to a
Index delete:
Edit This App Submit
Edit admin request session response
Copyright @ 2009 - Powered by webapy

There is a link called "dog.owner". The name of this link can benged
via thelabels argument of theqQLrorpfor example:

labels = { ‘'dog.owner' :"This person's dogs" }

i

o A W N R

Noe

i

200 FORMS AND VALIDATORS

If you click on the link you get directed to:

[test/default/list_records/dog?query=dog.owner%3D5

"list_records" is the specified action, withquest.args[0] set to the name
of the referencing table anehuest.vars.query set to the SQL query string.
The query string in the URL contains the value "dog.owner=5" appropriately
url-encoded WEB2PY decodes this automatically when the URL is parsed).
You can easily implement a very general "lisicords" action as follows:
def list_records():
table = request .args[0]
query = request .vars.query

records = db(query).select(db[table].ALL)
return dict(records=records)

with the associated "default/lisecords.html" view:

{{extend ‘layout.html' I
{{=records}}

When a set of records is returned by a select and serialized iewa i
is first converted into a SQLTABLE object (not the same as a Table) and
then serialized into an HTML table, where each field corresponds to a table
column.

Prepopulating the form

It is always possible to prepopulate a form using the syntax:

form.vars.name = 'fieldvalue'

Statements like the one above must be inserted after the fartardéon and
before the form is accepted, whether or not the field ("name" in the example)
is explicitly visualized in the form.

SQLFORM without database 10

There are times when you want to generate a form from a database table using
sQLForRMaNd you want to validate a submitted form accordingly, but you do
not want any automatic INSERT/UPDATE/DELETE in the database. This is
the case, for example, when one of the fields needs to be computed from the
value of other input fields. This is also the case when you need to perform
additional validation on the inserted data that cannot be achieved via standard
validators.

This can be done easily by breaking:

w N e

[N N

w N e

N o g s W N R

i

~N o o s W N R

SQLFORM.FACTORY 201

form = SQLFORM db.person)
if form.accepts(request .vars, session):
response.f lash = ‘'record inserted'

into:

form = SQLFORM db.person)

if form.accepts(request .vars, sessi on, dbio=False):
deal with uploads explicitly
form.vars.id = db.person.insert(++ dict(form.vars))
response.f lash = ‘'record inserted'

The same can be done for UPDATE/DELETE forms by breaking:

form = SQLFORM db.person,record)
if form.accepts(request .vars, session):
response.f lash = ‘record updated'

into:

form = SQLFORM db.person,record)
if form.accepts(request .vars, session, dbio=False):
if form.vars.get('delete_this_record' , False):
db(db.person.id==record.id).delete()
else:
record.update_record(++ dict(form.vars))
response.f lash = ‘record updated'

In both cases web2py deals with the storage and renaming optbaded
file as ifdbio=True , the defaul scenario. The uploaded filename is in:

form.vars['%s_newfilename' % fieldname]

For more details, refer to the source code in "gluon/sqglhgil.p

7.3 SQLFORM.factory

There are cases when you want to generate fasiifyou had a database table
but you do not want the database table. You simply want to take advantage
of the sqLForMcapability to generate a nice looking CSS-friendly form and
perhaps perform file upload and renaming.

This can be done via @m factory . Here is an example where you
generate the form, perform validation, upload a file and store everything in
the session
def form_from_factory()

form = SQLFORM factory(
Fi el d('your_name' , requires= | S_NOT_EMPTY()),
Fi el d('your_image'))

if form.accepts(request .vars, session):

response.f lash = ‘form accepted'
sessi on.your_name = form.vars.your_name

1
2

N

i

i

202 FORMS AND VALIDATORS

sessi on.filename = form.vars.your_image
elif form.errors:

response.f lash = ‘form has errors'
return dict(form=form)

Here is the "default/fornfrom_factory.html" view:

{{extend ‘layout.html’ B
{{=form}}

You need to use an underscore instead of a space for field lairels,
explicitly pass a dictionary ofbels to form factory , as you would for a
SQLFORM

7.4 Validators

Validators are classes used to validate input fields (including forms generated
from database tables).
Here is an example of using a validator witharm

I NPUT(_name="a', requires= | S_| NT_I N_RANGE(0, 10))

Here is an example of how to require a validator for a table field:

db.define_table('‘person’ , Field(' name'))
db.person.name.requires = 1'S_NOT_EMPTY()

Validators are always assigned using tkeuires attribute of a field. A
field can have a single validator or multiple validators. Multiple validators
are made part of a list:

db.person.name.requires = [I'S_NOT_EMPTY(),
I'S NOT_I N_DB(d b, ‘person.name')]

Validators are called by the functicfacepts on arormor other HTML
helper object that contains a form. They are called in the order in which they
are listed.

Built-in validators have constructors that take the optional argument
error _message, Which allows you to override the default error message.

Here is an example of a validator on a database table:

db.person.name.requires = I'S_NOT_EMPTY(error_message= T('fill this!')

where we have used the translation operatogllow for internationalization.
Notice that default error messages are not translated.

i

i

i

© ©® N o g A W N R

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

VALIDATORS 203

Basic Validators

IS.ALPHANUMERIC This validator checks that a field value contains only
characters in the ranges a-z, A-Z, or 0-9.

requires = | S_ALPHANUMERI C(error_message= T('must be alphanumeric!')

IS.DATE This validator checks that a field value contains a valid date in the
specified format. Itis good practice to specify the format using the translation
operator, in order to support different formats in different locales.

requires = | S_DATE(format= T('%Y-%m-%d"),
error_message= T('must be YYYY-MM-DD!"))

For the full description on % directives look under theDBTETIME val-
idator.

IS.DATETIME This validator checks that a field value contains a valid
datetime in the specified format. It is good practice to specify the format
using the translation operator, in order to support different formats in different
locales.

requires = | S_DATETI ME(format= T('%Y-%m-%d %H:%M:%S),
error_message= T('must be YYYY-MM-DD HH:MM:SS!
)

The following symbols can be used for the format string:

%a Locale 's abbreviated weekday name.

%A Locale' s full weekday name.

%b Locale 's abbreviated month name.

%B Locale' s full month name.

%c Locale 's appropriate date and time representation.

%d Day of the month as a decimal number [01,31].

%H Hour (24-hour clock) as a decimal number [00,23].

%! Hour (12-hour clock) as a decimal number [01,12].

%j Day of the year as a decimal number [001,366].

%m Month as a decimal number [01,12].

%M Minute as a decimal number [00,59].

%p Locale' s equivalent of either AM or PM.

%S Second as a decimal number [00,61].

%U Week number of the year (Sunday as the first day of the week)
as a decimal number [00,53]. All days in a new year preceding
the first Sunday are considered to be in week O.

%w Weekday as a decimal number [0(Sunday),6].

%W Week number of the year (Monday as the first day of the week)
as a decimal number [00,53]. All days in a new year preceding
the first Monday are considered to be in week 0.

%x Locale 's appropriate date representation.

%X Locale' s appropriate time representation.

%y Year without century as a decimal number [00,99].

%Y Year with century as a decimal number.

%Z Time zone name (no characters if no time zone exists).

%% A literal " %" character.

i

i

i

i

i

i

204 FORMS AND VALIDATORS

IS.EMAIL It checks that the field value looks like an email address. It does
not try to send email to confirm.

requires = I'S_EMAI L(error_message= T('invalid email!’)

IS.EXPR lts first argument is a string containing a logical expression in
terms of a variable value. It validates a field value if the expression evaluates
to True . For example:
requires = I S_EXPR('int(value)%3==0'

error_message= T('not divisible by 3')
One should first check that the value is an integer so that ampganevill
not occur.

requires = [|'S_INT_IN_RANGE(D, 100), IS EXPR('value%3==0')]

IS.FLOAT_IN_.RANGE Checksthatthe field value is a floating point number
within a definite rangd) < value < 100 in the following example:

requires = I'S_ FLOAT_| N_RANGE(O, 100,
error_message= T('too small or too large!)

IS.INT_IN.RANGE Checks that the field value is an integer number within
adefinite range) < value < 100 in the following example:

requires = | S_I NT_I N_RANGE(0, 100,
error_message= T('too small or too large!')

ISIIN_.SET Checks that the field values are in a set:
requires = IS INSET(a , b, 'c],
error_message= T('must be a or b or ¢)
The elements of the set must always be strings unless thist@lis pre-
ceded bys _INT N _RANGHWhich converts the value to int) 05_FLOAT.IN RANGE
(which converts the value to float). For example:

requires = [| S_I NT_I N_RANGE(O, 8), I S_IN_SET([2, 3, 5, 7],
error_message= T('must be prime and less than 10)]

IS.IN_SET and Tagging Thes_N_seT validator has an optional attribute
mitiple=False . If set to True, multiple values can be stored in a field.
The field in this case must be a string field. The multiple values are stored
separated by a "|".

muliple references are handled automatically in create and update forms,
but they are transparent to the DAL. We strongly suggest using the jQuery
multiselect plugin to render multiple fields.

i

i

i

i

i

i

i

VALIDATORS 205

ISLENGTH Checksiflength of field’s value fits between given boundaries.
Works for both text and file inputs.
Its arguments are:

e maxsize: the maximum allowed length / size
e minsize: the minimum allowed length / size

Examples: Check if text string is shorter than 33 characters:
I NPUT(_type= 'text" , _name='name' , requires= | S_LENGTH32))

Check if password string is longer than 5 characters:

I NPUT(_type= ' password' , _name='name' , requires= | S_LENGTH(minsize=6))
Check if uploaded file has size between 1KB and 1MB:
I NPUT(_type= ' file' , _name='name' , requires= | S _LENGTH1048576, 1024))

For all field types except for files, it checks the length of thie@aln the
case of files, the value iscaokie.FieldStorage , SO it validates the length of
the data in the file, which is the behavior one might intuitively expect.

IS.LIST_.OF This is not properly a validator. Its intended use is to allow
validations of fields that return multiple values. It is used in those rare
cases when a form contains multiple fields with the same name or a multiple
selection box. Its only argumentis another validator, and all it does is to apply
the other validator to each element of the list. For example, the following
expression checks that every item in a list is an integer in the range 0-10:

requires = 1'S_LIST_OF(1S_| NT_I N_RANGE(0, 10))

It never returns an error and does not contain an error mes$hgenner
validator controls the error generation.

IS.LOWER This validator never returns an error. It just converts the value
to lower case.

requires = IS LOVER()

ISSMATCH This validator matches the value against a regular expression
and returns an error if it does not match. Here is an example of usage to
validate a US zip code:

requires = | S_MATCH("\d{5}(-\d{4})?$'
error_message= 'not a zip code')

Here is an example of usage to validate an IPv4 address:

requires = | S_MATCH("\d{1,3}(\.\d{1,3}){3}$'
error_message= 'not an IP address')

i

i

206 FORMS AND VALIDATORS

Here is an example of usage to validate a US phone number:

requires = | S_MATCH("1?((-)\d{3}-?|\(\d{3}\))\d{3}-?\d{4}$'
error_message= 'not a phone number')

For more information on Python regular expressions, refeneoofficial
Python documentation.

IS.NOT_EMPTY This validator checks that the content of the field value is
not an empty string.

requires = I'S_NOT_EMPTY(error_message= ‘'cannot be empty!)

IS_-TIME This validator checks that a field value contains a valid time in the
specified format.

requires = I'S_TI ME(error_message= T('must be HH:MM:SS!"))

IS.JURL Rejects a URL string if any of the following is true:
e The string is empty or None
e The string uses characters that are not allowed in a URL
e The string breaks any of the HTTP syntactic rules
e The URL scheme specified (if one is specified) is not ’http’ or 'https’
e The top-level domain (if a host name is specified) does not exist

(These rules are based on RFC 2616[61])

This function only checks the URL's syntax. It does not check thatthe URL
points to a real document, for example, or that it otherwise makes semantic
sense. This function does automatically prepend ’http://’ in front of a URL
in the case of an abbreviated URL (e.g. 'google.ca’).

If the parameter mode='generic’ is used, then this function’s behavior
changes. It then rejects a URL string if any of the following is true:

e The string is empty or None
e The string uses characters that are not allowed in a URL
e The URL scheme specified (if one is specified) is not valid

(These rules are based on RFC 2396[62])

The list of allowed schemes is customizable with the allawekemes
parameter. If you exclude None from the list, then abbreviated URLSs (lacking
a scheme such as ’http’) will be rejected.

o B W NP

i

VALIDATORS 207

The default prepended scheme is customizable with the prepgmne
paameter. If you set prepergtheme to None, then prepending will be
disabled. URLs that require prepending to parse will still be accepted, but
the return value will not be modified.

IS_URL is compatible with the Internationalized Domain Name (IDN
standard specified in RFC 3490[63]). As a result, URLs can be regular
strings or unicode strings. If the URL's domain component (e.g. google.ca)
contains non-US-ASCII letters, then the domain will be converted into Pun-
ycode (defined in RFC 3492[64]). ISRL goes a bit beyond the standards,
and allows non-US-ASCII characters to be present in the path and query
components of the URL as well. These non-US-ASCII characters will be en-
coded. For example, space will be encoded as’%20’. The unicode character
with hex code 0x4e86 will become "%4e%86'.

Examples:
requires = | S_URL())
requires = I S_URL(mode="'generic')
requires = | S_URL(allowed_schemes=[‘'https’)
requires = I S_URL(prepend_scheme= ‘https’)
requires = I S_URL(mode='generic' , allowed_schemes=[‘'ftps' , ‘'https’],

prepend_scheme= ‘https')

ISSSTRONG Enforces complexity requirements on a field (usually a pass-
word field)
Example:

requires = I S_STRONG(min=10, special=2, upper=2)
where
e min is minimum length of the value
e special is the minimum number of required special characters

e is the minimum number of upper case characters

IS.IMAGE This validator checks if file uploaded through file input was
saved in one of selected image formats and has dimensions (width and height)
within given limits.

It does not check for maximum file size (useUlENGTH for that). It
returns a validation failure if no data was uploaded. It supports the file
formats BMP, GIF, JPEG, PNG, and it does not requires the Python Imaging
Library.

Code parts taken from http://mail.python.org/pipermail/python-list/2007-
June/617126.html

It takes the following arguments:

208 FORMS AND VALIDATORS
e extensions: iterable containing allowed image file extensions in lower-
case ('jpg’ extension of uploaded file counts as ’jpeg’)
e maxsize: iterable containing maximum width and height of the image
e minsize: iterable containing minimum width and height of the image

Use (-1, -1) as minsize to bypass the image-size check.
Here are some Examples:

e Check if uploaded file is in any of supported image formats:
1 requires = I'S_| MAGE()

e Check if uploaded file is either JPEG or PNG:
1 requires = I S_| MAGE(extensions=(‘jpeg’ , 'png’))

e Check if uploaded file is PNG with maximum size of 200x200 pixels:
1 requires = I S_| MAGE(extensions=(‘png'), maxsize=(200, 200))

IS.UPLOAD _FILENAME This validator checks if name and extension of
file uploaded through file input matches given criteria.
It does not ensure the file type in any way. Returns validation failure if no
data was uploaded.
Its arguments are:

¢ filename: filename (before dot) regex
e extension: extension (after dot) regex

¢ lastdot: which dot should be used as a filename / extension separator:
True means last dot, e.g., file.png -> file / prgse means first dot,
e.g., file.tar.gz -> file / tar.gz

e case: 0 - keepthe case, 1 - transform the string into lowercase (default),
2 - transform the string into uppercase

If there is no dot present, extension checks will be done against empty
string and filename checks against whole value.

Examples:
Check if file has a pdf extension (case insensitive):
1 requires = I'S_UPLOAD FI LENAME(extension= ‘'pdf')

Check if file has a tar.gz extension and name starting with gacku

1 requires = | S _UPLOAD FI LENAMVE(filename= ‘backup. *', extension= ‘'tar.gz'
, lastdot=False)

VALIDATORS 209

Check if file has no extension and name matching README (case sensi-
tive):

1 requires = | S_UPLOAD FI LENAME(filename= "README$' , extension= “$'
case=0)

IS_IPV4 This validator checks if a field's value is an IP version 4 address
in decimal form. Can be set to force addresses from a certain range.

IPv4 regex taken frontittp://regexlib.com/REDetails.aspx?regexp id=1411

Its arguments are

e minip: lowest allowed address; accepts: str, e.g., 192.168.0.1; iterable
of numbers, e.g., [192, 168, 0, 1]; int, e.g., 3232235521

e maxip: highest allowed address; same as above

Allthree example values are equal, since addresses are converted to integers
for inclusion check with following function:

1 number = 16777216 = IP[0] + 65536 * IP[1] + 256 = IP[2] + IP[3]

Examples:
Check for valid IPv4 address:
1 requires = | S_| PV4()

Check for valid private network IPv4 address:
1 requires = | S_| PV4(minip= '192.168.0.1' , maxip= '192.168.255.255')

ISLOWER This validator never returns an error. It converts the value to
lower case.

IS.UPPER This validator never returns an error. It converts the value to
upper case.

1 requires = I S_UPPER()

IS.NULL_.OR Sometimes you need to allow empty values on a field along
with other requirements. For example a field may be a date but it can also be
empty. Thas NuLLorvalidator allows this:

1 requires = | S _NULL_OR(| S_DATE())

CLEANUP This is a filter. It never fails. It just removes all characters
whose decimal ASCII codes are not in the list [10, 13, 32-127].

1 requires = CLEANUP()

i

Noe

Noe

N o o0 s w N P

210 FORMS AND VALIDATORS

CRYPT Thisis also afilter. It performs a secure hash on the input and it is
used to prevent passwords from being passed in the clear to the database.

requires = CRYPT(key=None)

If the key is None, it uses the MD5 algorithm. If a key is speciftagses
the HMAC+SHA512 with the provided key. The key has to be a unique string
associated to the database used. The key can never be changed. If you lose
the key the previously hashed values become useless.

Database Validators

IS.NOT_IN.DB Consider the following example:

db.define_table('‘person’ , Fiel d(' name'))
db.person.name.requires = I'S NOT_I N DB(db, 'person.name')

It requires that when you insert a new person, his/her namet islready
in the databaseayp, in the fieldperson.name . As with all other validators
this requirement is enforced at the form processing level, not at the database
level. This means that there is a small probability that, if two visitors try to
concurrently insert records with the same person.name, this results in a race
condition and both records are accepted. It is therefore safer to also inform
the database that this field should have a unique value:

db.define_table('‘person’ , Fiel d(' name', unique=True))
db.person.name.requires = I'S NOT_I N DB(db, 'person.name')

Now if a race condition occurs, the database raises an Opeafiwor
and one of the two inserts is rejected.

The first argument ok _NoTIN DB Can be a database connection or a DAL
SSet. In the latter case, you would be checking only the set defined by the
Set.

The following code, for example, does not allow registration of two persons
with the same name within 10 days of each other:

import datetime
now = datetime.datetime.today()

db.define_table('person’

Fi el d('name'),

Fi el d('registration_stamp' , 'datetime’ , default=now))
recent = db(db.person.registration_stamp>now-datetime.t imedelta(10))
db.person.name.requires = I'S_NOT_I N_DB(recent, '‘person.name’)

IS.IN.DB Consider the following tables and requirement:

db.define_table('‘person’ , Field(' name', unique=True))
db.define_table(‘dog' , Field('name'), Field(' owner , db.person)
db.dog.owner.requires = I'S | N_DB(db, ‘person.id' , '%(name)s')

© o N o O s W N R

VALIDATORS 211

It is enforced at the level of dog INSERT/UPDATE/DELETE forms. It
requires that @og.owner be a valid id in the fielgerson.id in the database
db. Because of this validator, thieg.owner field is represented as a dropbox.
The third argument of the validator is a string that describes the elements in
the dropbox. In the example you want to see the pevgame)s instead of
the persome(id)s . %(...)s is replaced by the value of the field in brackets for
each record.

If you want the field validated, but you do not want a dropbox, you must
put the validator in a list.
db.dog.owner.requires = [I'S_ | N _DB(db, ‘person.id' , '%(name)s')]

The first argument of the validator can be a database connextanbAL
Set, as ins NOTIN DB.

IS.IN.DB and Tagging The is_N_DB validator has an optional attribute
miltiple=False . If set to true multiple values can be stored in a field. The
field in this case cannot be a reference but it must be a string field. The
multiple values are stored separated by a "|".

muliple references are handled automatically in create and update forms,
but they are transparent to the DAL. We strongly suggest using the jQuery
multiselect plugin to render multiple fields.

Custom Validators

All validators follow the prototype below:

class sample_validator:
def __init_ (self, *a, error_message= ‘error'):
selfa = a
self.e = error_message
def _ call__(value):
if validate(value):
return (parsed(value), None)
return (value, self.e)
def formatter(self, value):
return format(value)
i.e., when called to validate a value, a validator returns &etepy) . If y
is None, then the value passed validation andontains a parsed value. For
example, if the validator requires the value to be an integér,converted
tointvalue) . If the value did not pass validation, therontains the input
value ang contains an error message that explains the failed validation. This
error message is used to report the error in forms that do not validate.
The validator may also containf@amatter ~method. It must perform the
opposite conversion to the one theun __ does. For example, consider the

saurce code fors .DATE

1
2

~ o o & w

~N o o A W N R

212 FORMS AND VALIDATORS

class | S_DATE(object):
def __init_ (self, format= '%Y-%m-%d', error_message= ‘must be YYYY
-MM-DD!"):
self.format = format
self.error_message = error_message
def _ call__(self, value):

try:

y, m, d, hh, mm, ss, t0, t1, t2 = time.strptime(value,
str(self.format))

value = datetime.date(y, m, d)
return (value, None)

except:
return (value, self.error_message)

def formatter(self, value):
return value.strftime(str(self.format))

On success, thecal .. method reads a date string from the form and
converts it into a datetime.date object using the format string specified in the
constructor. Theormatter ~ Object takes a datetime.date object and converts
it to a string representation using the same format. fdhater is called
automatically in forms, but you can also call it explicitly to convert objects
into their proper representation. For example:

>>> db = DAL()
>>> db.define_table(‘atable’
Fi el d('birth’ , 'date’ , requires= | S_DATE('%m/%d/%Y")))
>>> id = db.atable.insert(birth=datetime.date(2008, 1, 1))
>>> rows = db(db.atable.id==id).select()
>>> print db.atable.formatter(rows[0].birth)
01/01/2008

When multiple validators are required (and stored in a lisgytare exe-
cuted in order and the output of one is passed as input to the next. The chain
breaks when one of the validators fails.

Conversely, when we call thermatter method of a field, the formatters
of the associated validators are also chained, but in reverse order.

Validators with Dependencies

Occasionally, you need to validate a field and the validator depends on the
value of another field. This can be done, but it requires setting the validator
in the controller, when the value of the other field is known. For example,
here is a page that generates a registration form that asks for username and
password twice. None of the fields can be empty, and both passwords must
match:

def index():
match_it = | S_EXPR('value==%s' % repr(request . vars.password),
error_message= 'passwords do not match')
form = SQLFORM factory(

© © N o O

WIDGETS 213

Fi el d('username' , requires= | S_NOT_EMPTY()),
Fi el d('password' , requires= | S_NOT_EMPTY()),
Fi el d('password_again' , requires=match_it))

if form.accepts(request .vars, session):
pass # or take some action

return dict(form=form)

The same mechanism can be applied to FORM and SQLFORM objects.
7.5 Widgets

Here is a list of availablevEB2pPY widgets:

SQLFORMwidgets.string.widget
SQLFORMwidgets.text.widget
SQ.FORMwidgets.password.widget
SQLFORMwidgets.integer.widget
SQLFORMwidgets.double.widget
SQLFORMwidgets.time.widget
SQLFORMwidgets.date.widget
SQ.FORMwidgets.datetime.widget
SQLFORMwidgets.upload.widget
SQ.FORMwidgets.boolean.widget
SQLFORMwidgets.options.widget
SQ.FORMwidgets.multiple.widget
SQ.FORMwidgets.radio.widget
SQLFORMwidgets.checkboxes.widget

The first ten of them are the defaults for the corresponding figlés.
The "options" widget is used when a field’s requiressisn _SET Or I SIN DB
with muttiple=Faise ~ (default behavior). The "multiple” widget is used when
a field’s requires iss IN _SETOr | SIN_DBWiIth multiple=True . The "radio" and
"checkboxes" widgets are never used by default, but can be set manually.

For example, to have a "string" field represented by a textarea:

Fi el d('comment' , 'string' , widget= SQLFORMwidgets.text.widget)

You can create new widgets or extend existing widgets; in fact,
SQLFORM.widgets[type] IS a class andQLFORM.widgets[type].widget is a static

o g A W N R

member function of the corresponding class. Each widget function takes two
arguments: the field object, and the current value of that field. It returns
a representation of the widget. As an example, the string widget could be
recoded as follows:

def my_string_widget(field, value):
return | NPUT(_name=field.name,
id= "%s%s\" % (field._tablename, field.name),
_class=field.type,
_value=value,
re quires=field.requires)

©

N

214 FORMS AND VALIDATORS

Field('comment', 'string’, widget=my_string_widget)

The id and class values must follow the convention descrilted ila this
chapter. A widget may contain its own validators, but it is good practice to
associate the validators to the "requires" attribute of the field and have the
widget get them from there.

7.6 CRUD

One of the recent additions WEB2PY is the Create/Read/Update/Delete
(CRUD) API on top of SQLFORM. CRUD creates an SQLFORM, but it
simplifies the coding because it incorporates the creation of the form, the
processing of the form, the notification, and the redirection, all in one single
function. What that function is depends on what you want to do.

The first thing to notice is that CRUD differs from the otlvers2pPY APIS
we have used so far because it is not already exposed. It must be imported.
It also must be linked to a specific database. For example:
from gluon.tools import Crud
crud = Crud(globals(), db)

The first argument of the constructor is the current congestials() SO
that CRUD can access the local request, response, and session. The second
argument is a database connection object,

Thecrud object defined above provides the following API:

e crud.tables() returns a list of tables defined in the database.

e crud.create(db.tablename) returns a create form for table tablename.

e crud.read(db.tablename, id) returns a readonly form for tablename
and record id.

e crud.update(db.tablename, id) returns an update form for tablename
and record id.

e crud.delete(db.tablename, id) deletes the record.

e crud.select(db.tablename, query) returns a list of records selected

from the table.
e crud() returns one of the above based on#agest.args()

For example, the following action:

N [I N =

i

N

i

= = = =

i

CRUD 215

def data: return dict(form=crud())

would expose the following URLSs:

http://.../[app]/[controller]/data/tables
http://.../[app]/[controller]/data/create/[tablename]
http://.../[app]/[controller])/data/read/[tablename]/[id]
http://.../[app]/[controller]/data/delete/[tablename]
http://.../[app]/[controller]/data/select/[tablename]

However, the following action:

def create_tablename:
return dict(form=crud.create(db.tablename))

would only expose the create method

http://.../[app]/[controller]/create_tablename

While the following action:

def update_tablename:
return dict(form=crud.update(db.tablename, r equest .args(0)))

would only expose the update method
http://.../[app])/[controller]/update_tablename

and so on.

The behavior of CRUD can be customized in two ways: by setting some
attributes of thecrud Object or by passing extra parameters to each of its
methods.

Attributes

Here is a complete list of current CRUD attributes, their default values, and
meaning:

crud.settings.create_next = r equest .url

specifies the URL to redirect to after a successful "creatadrdec

crud.settings.update_next = request .url

specifies the URL to redirect to after a successful "updateircec

crud.settings.delete_next = r equest .url

specifies the URL to redirect to after a successful "deletedrec

crud.settings.download_url = URL(r= request, f= ‘download')

specifies the URL to be used for linking uploaded files.

crud.settings.create_onvalidation = lambda form: None

i

i

i

i

i

i

i

i

i

i

216 FORMS AND VALIDATORS

is an optional function to be calledvalidaton ~ of "create” forms (see SQL-
FORM onvalidation)

crud.settings.update_onvalidation = lambda form: None

is an optional function to be calleghvaiidation ~ of "update" forms (see
SQLFORM onvalidation)

crud.settings.create_onaccept = lambda form: None

is an optional function to be called before redirect after egstul "create"
record. This function takes the form as its only argument.

crud.settings.update_onaccept = lambda form: None

is an optional function to be called before redirect after sgstul "update"
record. This function takes the form as its only argument.

crud.settings.update_ondelete = lambda form: None

is an optional function to be called before redirect after sgstully deleting

a record using an "update" form. This function takes the form as its only

argument.

crud.settings.delete_onaccept = lambda record: None

is an optional function to be called before redirect after sastully deleting

a record using the "delete" method. This function takes the form as its only

argument.

crud.settings.update_deletable = True
determines whether the "update” forms should have a "delet&drb

crud.settings.showid = False

determines whether the "update" forms should show the id ofethited
record.

crud.settings.keepvalues = False

determines whether forms should keep the previously insediees or reset
to default after successful submission.

Messages
Here is a list of customizable messages:
crud.messages.submit_button = 'Submit’

sets the text of the "submit" button for both create and upaatad.

crud.messages.delete_label = 'Check to delete:'

sets the label of the "delete" button in "update” forms.

= = =

i

i

i

B oW N R

o o

CRUD 217

crud.messages.record_created = 'Record Created'

sets the flash message on successful record creation.

crud.messages.record_updated = 'Record Updated'

sets the flash message on successful record update.

crud.messages.record_deleted = 'Record Deleted'

sets the flash message on successful record deletion.

crud.messages.update_log = 'Record %(id)s updated'

sets the log message on successful record update.

crud.messages.create_log = 'Record %(id)s created'

sets the log message on successful record creation.

crud.messages.read_log = 'Record %(id)s read'

sets the log message on successful record read access.

crud.messages.delete_log = 'Record %(id)s deleted'

sets the log message on successful record deletion.

Notice thatcrud.messages belongs to the clasgiuon.storage.Message
which is similar togluon.storage.Storage but it automatically translates its
values, without need for theoperator.

Log messages are used if and only if CRUD is connected to Auth as
discussedin Chapter 8. The events are logged in the Auth table zatits".

Methods

The behavior of CRUD methods can also be customized on a per call basis.
Here are their signatures:

crud.tables()

crud.create(table, next, onvalidation, onaccept, log, mess age)
crud.read(table, record)
crud.update(table, record, next, onvalidation, onaccept, o ndelete,

log, message, deletable)
crud.delete(table, record_id, next, message)
crud.select(table, query, fields, orderby, limitby, header s, ** aftr)

e table IS a DAL table or a tablename the method should act on.
e record andrecord _id are the id of the record the method should act on.

e next is the URL to redirect to after success. If the URL contains the
substring "[id]" this will be replaced by the id of the record currently
created/updated.

218

FORMS AND VALIDATORS

onvalidation ~ has the same function as SQLFORM(..., onvalidation)

onaccept IS a function to be called after the form submission is accepted
and acted upon, but before redirection.

log is the log message. Log messages in CRUD see variables in the
formvars ~ dictionary such as "%(id)s".

message iS the flash message upon form acceptance.

ondelete IS called in place obnaccept When a record is deleted via an
"update" form.

deletable determines whether the "update” form should have a delete
option.

query is the query to be used to select records.
fields is a list of fields to be selected.

orderby determines the order in which records should be selected (see
Chapter 6).

limitoy ~ determines the range of selected records that should be dis-
played (see Chapter 6).

headers iS a dictionary with the table header names.

Here is an example of usage in a single controller function:

assuming db.define_table('person’, Field('name'))
def people():

form = crud.create(db.person, next= request .url,
message=T("record created")

persons = crud.select(db.person, fields=[‘name’],
headers={ 'person.name' , 'Name'})

return dict(form=form, persons=persons)

7.7 Custom form

If a form is created with SQLFORM, SQLFORM.factory or CRUD, there
are multiple ways it can be embedded in a view allowing multiple degrees of
customization. Consider for example the following model:

1 db.define_table('image’
Fi el d('name'),
Fi el d('file' , 'upload'))

2
3

CUSTOM FORM 219

and upload action
1 def upload_image():
2 return dict(form=crud.create(db.image))

The simplest way to embed the form in the view fipoad _image iS
1 {{=form}}

This results in a standard table layout. If you wish to use &ufiit layout,
you can break the form into components

1 {{=form.custom.begin}}

2 Image name: <div>{{=form.custom.widget.name}}</div>
3 Image file: <div>{{=form.custom.widget.file}}</div>

4 Click here to upload: {{=form.custom.submit}}

s {{=form.custom.end}}

Whereform.custom.widget[fieldname] gets serialized into the proper wid-
get for the field. If the form is submitted and it contains errors, they are
appended below the widgets, as usual.

The above sample form is show in the image below.

images

(«4)r0® (&) () () (10 mip://127.0.0.1:8000/ images/defauit/create 17 ¥) = (Gl 62)
1mages
customize me!
Jimages/default/create
" " Image name:
Authentication | |
Login Image file:
i Browse... |

Main Menu Click here to upload:

Index

Edit This App

Edit

Copyright © 2009 - Powered by webzpy

Dane + 4

If you do not wish to use the widgets serialized WgB2PY, you can
replace them with HTML. There are some variables that will be useful for
this:

e form.custom.labels[fieldname] contains the label for the field.

e form.custom.dspval[fieldname] form-type and field-type dependent dis-
play representation of the field.

e form.custom.inpval[fieldname] form-type and field-type dependentval-
ues to be used in field code.

It is important to follow the conventions described below.

220 FORMS AND VALIDATORS

CSS Conventions

Tags in forms generated by SQLFORM, SQLFORM.factory and CRUD fol-
low a strict CSS naming convention that can be used to further customize the
forms.

Given a table "mytable", a field "myfield" of type "string", it is rendered
by default by a

1 SQLFORMwidgets.string.widget

that looks like this:

1 <input type= ‘“text" name="myfield" id= "mytable_myfield"
2 class= "string" />
Notice that:

e the class of the INPUT tag is the same as the type of the field. This is
very important for the jQuery code in "web2pyax.html" to work. It
makes sure that you can only have numbers in "integer" and "double"
fields, and that "time", "date" and "datetime" fields display the popup
calendar.

e the id is the name of the class plus the name of the field, joined by
one underscore. This allows you to uniquely refer to the field via
jQueryC#mytable myfield) and manipulate, forexample, the stylesheet
of the field or bind actions associated to the field events (focus, blur,
keyup, etc.).

e the name is, as you would expect, the field name.

Switch off errors

Occasionally, you may want to disable the automatic error placement and
display form error messages in some place other than the default. That can
be done in two steps:

e display the error messages where desired

e form.error.clear() before the form is rendered so that error messages
are not displayed in the default locations.

Here is an example where the errors are displayed above the form and not in
the form.

1 {{if form.errors:}}
2 Your submitted form contains the following errors:

~ o o &> w

8

CUSTOM FORM 221

{{for fieldname in form.errors:}}
{{=fieldname}} error: {{=form.errors[fieldname]}}</ li>

{{pass}}

{{form.errors.clear()}}

o {{pass}}
10 {{=form}}

The errors will displayed as in the image shown below.

B OO T—
ﬂn (G I () () [hup://127.0.0.1:8000/images/default/upload_image 77 ¥ J& (" Coogle Q]

ey ,.. .'. R e
Ag{;hentmatmn « title error: cannot be empty!
Tie: |
Main Menu File: |

Edit This App

| Copyright ® 2009 - Powered by webzpy

CHAPTER 8

ACCESS CONTROL

WEB2PY includes a powerful and customizable Role-Based Access Control
(RBAC) mechanism.

Here is a definition from Wikipedia:

“Role-Based Access Control (RBAC) is an approach to restricting system
access to authorized users. It is a newer alternative approach to mandatory
access control (MAC) and discretionary access control (DAC). RBAC is
sometimes referred to as role-based security.

RBAC is a policy neutral and flexible access control technology sufficiently
powerful to simulate DAC and MAC. Conversely, MAC can simulate RBAC
if the role graph is restricted to a tree rather than a partially ordered set.

Prior to the development of RBAC, MAC and DAC were considered to be
the only known models for access control: if a model was not MAC, it was
considered to be a DAC model, and vice versa. Research in the late 1990s
demonstrated that RBAC falls in neither category.

Within an organization, roles are created for various job functions. The
permissions to perform certain operations are assigned to specific roles. Mem-
bers of staff (or other system users) are assigned particular roles, and through

WEB2PY: Enterprise Web Framework / 2nd Bl.Massimo Di Pierro 223
Copyright(C) 2009

224 ACCESS CONTROL

those role assignments acquire the permissions to perform particular system
functions. Unlike context-based access control (CBAC), RBAC does not look
at the message context (such as a connection’s source).

Since users are not assigned permissions directly, but only acquire them
through their role (or roles), management of individual user rights becomes
a matter of simply assigning appropriate roles to the user; this simplifies
common operations, such as adding a user, or changing a user’s department.

RBAC differs from access control lists (ACLs) used in traditional dis-
cretionary access control systems in that it assigns permissions to specific
operations with meaning in the organization, rather than to low level data
objects. For example, an access control list could be used to grant or deny
write access to a particular system file, but it would not dictate how that file
could be changed.”

ThewEeB2pPY class that implements RBAC is callédith.

Auth needs (and defines) the following tables:

e auth user Stores users’ name, email address, password, and status (reg-
istration pending, accepted, blocked)

e auth group Stores groups or roles for users in a many-to-many structure.
By default, each user is in its own group, but a user can be in multiple
groups, and each group can contain multiple users. A group is identified
by a role and a description.

e auth _membership links users and groups in a many-to-many structure.

e auth permission links groups and permissions. A permission is iden-
tified by a name and, optionally, a table and a record. For example,
members of a certain group can have "update” permissions on a specific
record of a specific table.

e auth event logs changes in the other tables and successful access via
CRUD to objects controlled by the RBAC.

In principle, there is no restriction on the names of the roles and the
names of the permissions; the developer can create them to fix the roles
and permissions in the organization. Once they have been createdpy
provides an APl to check if a useris logged in, if a user is a member of a given
group, and/or if the user is a member of any group that has a given required
permission.

WEB2PY also provides decorators to restrict access to any function based
on login, membership and permissions.

WEB2PY also understands some specific permissions, i.e., those that have
a name that correspond to the CRUD methods (create, read, update, delete)
and can enforce them automatically without the need to use decorators.

[

i

L N

o A W NP

AUTHENTICATION 225

In this chapter, we are going to discuss different parts of RBAC one by
one.

8.1 Authentication

In order to use RBAC, users need to be identified. This means that they need
to register (or be registered) and log in.

Auth provides multiple login methods. The default one consists of iden-
tifying users based on the locakh user table. Alternatively, it can log in
users against third-party basic authentication systems (for example a Twit-
ter account), SMTP servers (for example Gmail), or LDAP (your corporate
account). It can also use third-party single-sign-on systems, for example
Google. This is achieved via plugins, and new plugins are added all the time.

To start usingauth , you need at least this code in a model file, which is
also provided with theveB2pPY "welcome" application and assumesia
connection object:

from gluon.tools import Auth
auth = Auth(globals(), db)
auth.define_tables()
To exposeAuth, you also need the following function in a controller (for
example in "default.py"):

def user(): return dict(form=auth())

Theauth object and theuser action are already defined in the
scaffolding application.

WEB2PY also includes a sample view "default/user.html" to render this
function properly that looks like this:

{{extend 'layout.html' B

<h2>{{= request . args(0)}}</h2>

{{=form}}

{{if request. args(0)== ‘'login' :}}

register

lost
password

{{pass}}

The controller above exposes multiple actions:

http://.../[app]/default/user/register
http://.../[app]/default/user/login
http://.../[app]/default/user/logout
http://.../[app]/default/user/profile
http://.../[app]/default/user/change_password

226

http://..
http://..
http://..
http://.
http://.
http://..

ACCESS CONTROL

[[app]/default/user/verify_email
[app]/default/user/retrieve_username
.[[app]/default/user/retrieve_password
../[app]/default/user/impersonate
../[app]/default/user/groups
.[app]/default/user/not_authorized

register allows users to register. It is integrated with CAPTCHA,
although this is disabled by default.

login allows users who are registered to log in (if the registration is
verified or does not require verification, if it has been approved or does
not require approval, and if it has not been blocked).

logoutdoes what you would expect but also, as the other methods, logs
the event and can be used to trigger some event.

profile allows users to edit their profile, i.e. the content ofdlie _user
table. Notice that this table does not have a fixed structure and can be
customized.

changepasswordallows users to change their password in a fail-safe
way.

verify _email. If email verification is turned on, then visitors, upon reg-
istration, receive an email with a link to verify their email information.
The link points to this action.

retrieve_username By default, Auth uses email and password for
login, butit can, optionally, use username instead of email. In this latter
case, if a user forgets his/her usernameydtiere _usemame method
allows the user to type the email address and retrieve the username by
email.

retrieve_password Allows users who forgot their password to receive
anew one by email. The name here can be misleading because this
function does not retrieve the current password (that would be impos-
sible since the password is only stored encrypted/hashed) but generates
anew one.

impersonate allows a user to "impersonate" another user. This is

important for debugging and for support purposegest.args[0] is
the id of the user to be impersonated. This is only allowed if the logged
iN USErhas _permission(impersonate’, db.auth _user, user _d) .

groupslists the groups the current logged in user is a member of.

w N e

© o N e g AN W N R

i

1
2

AUTHENTICATION 227

e not_authorized displays an error message when the visitor tried to do
something that he/she is not authorized to do.

Logout, profile, changpassword, impersonate, and groups require login.

By default they are all exposed, but it is possible to restrict access to only
some of these actions.

All of the methods above can be extended or replaced by subclassimg

To restrict access to functions to only logged in visitors, decorate the
function as in the following example
@auth.requires_login()
def hello():

return dict(message= 'hello logged in visitor')

Any function can be decorated, not just exposed actions. Qbedhis is
still only a very simple example of access control. More complex examples
will be discussed later.

Email verification

By default, email verification is disabled. To enable email, append the fol-
lowing lines in the model wheraith is defined:

from gluon.tools import Mail
mail = Mail(globals())

mail.settings.server = 'smtp.example.com:25'

mail.settings.sender = 'you@example.com'

mail.settings.login = ‘'username:password'

auth.settings.mailer = mail

auth.settings.registration_requires_verification = Fals e
auth.messages.verify_email_subject = 'Email verification'

auth.messages.verify_email = \

'Click on the link http://...verify_email/%(key)s to verify your

email'

You need to replace the mail.settings with the proper paramgieyour
SMTP server. Sehail.settings.login=False if the SMTP server does not
require authentication.

You also need to replace the string
'Click on the link ...

iN auth.messages.verify email with the proper complete URL of the action

verify _email . This is necessary becauseB2pry may be installed behind a

proxy, and it cannot determine its own public URLs with absolute certainty.
Oncemail is defined, it can also be used to send email explicitly via

mail.send(to=[‘'somebody@example.com'],
subject= 'hello’ , message= 'hi there')

228 ACCESS CONTROL

Restrictions on registration

If you want to allow visitors to register but not to log in until registration has
been approved by the administrator:

i

auth.settings.registration_requires_approval = True

You can approve a registration via the appadmin interfacek oo the
tableauth user . Pending registrations haveragistration ~ key field set to
"pending". A registration is approved when this field is set to blank.

Via the appadmin interface, you can also block a user from logging in. Lo-
cate the user in the tabdeth user and set theegistraton key to "blocked".
"blocked" users are not allowed to log in. Notice that this will prevent a
visitor from logging in but it will not force a visitor who is already logged in
to log out.

You can also block access to the "register" page completely with this
statement:

i

auth.settings.actions_disabled.append(‘register')

Other methods ofuth can be restricted in the same way.

CAPTCHA and reCAPTCHA

To prevent spammers and bots registering on your site, you may require a
registration CAPTCHAwWEB2PY supports reCAPTCHA [65] out of the box.
This is because reCAPTCHA is very well designed, free, accessible (it can
read the words to the visitors), easy to set up, and does not require installing
any third-party libraries.

This is what you need to do to use reCAPTCHA:

e Register with reCAPTCHA [65] and obtain a (PUBLIKKEY, PRI-
VATE_KEY) couple for your account. These are just two strings.

e Append the following code to your model after th@h object is

defined:
1 from gluon.tools import Recaptcha
2 auth.settings.captcha = Recaptcha(request,
3 'PUBLIC_KEY' , ' PRIVATE_KEY')

reCAPTCHA may not work if you access the web site as ’localhost’
'127.0.0.1’, because it is registered to work with publicly visible web sites
only.

TheRrecaptcha constructor takes some optional arguments:

1 Recaptcha(..., use_ssI=True, error_message= 'invalid')

i

© o N e O A W N R

AUTHENTICATION 229

Notice thatuse ssl=Faise by default.

If you do not want to use reCAPTCHA, look into the definition of the
Recaptcha Class in "gluon/tools.py", since it is easy to use other CAPTCHA
systems.

Customizing Auth

The call to
auth.define_tables()

defines allAuth tables that have not been defined already. This means that if
you wish to do so, you can define your owuth user table. Using a similar
syntax to the one show below, you can customize any oduén table.

Here is the proper way to define a user table:

after
auth = Auth(globals(),db)

auth_table = db.define_table(

auth.settings.table_user_name,

Fi el d('first_name' , length=128, default= "),

Fi el d('last_name' , length=128, default= "),

Fi el d('email' , length=128, default= ", unigue=True),

Fi el d('password’ , ‘password" , length=256,
readable=False, label= 'Password'),

Fi el d('registration_key' , length=128, default= "

12
13
14
15
1

=)

17
1i

©

1
20
21

©

2
23
24

N

2

a

writable=False, readable=False))

auth_table.first_name.requires = \

I'S_NOT_EMPTY(e rror_message=auth.messages.is_empty)
auth_table.last_name.requires = \

I'S_NOT_EMPTY(e rror_message=auth.messages.is_empty)
auth_table.password.requires = [I S_STRONE), CRYPT()]
auth_table.email.requires = [

| S_EMAI L(e rror_message=auth.messages.invalid_email),

I'S_NOT_I N _DB(d b, auth_table.email)]
auth.settings.table_user = auth_table

before
auth.define_tables()

You can add any field you wish, but you cannot remove the reqtigtts
shown in this example.

Itisimportantto make "password" and "registratiey" fieldsre adable=False
and make the "registratiokey" fieldwritable=False , Since a visitor must not
be allowed to tamper with them.

If you add a field called "username”, it will be used in place of "email” for
login. If you do, you will need to add a validator as well:

auth_table.username.requires = I'S_NOT_I N_DB(db, auth_table.username)

[N

AW NP

[N R

i

230 ACCESS CONTROL

Renaming Auth tables

The actual names of theth tables are stored in

auth.settings.table_user_name = ‘auth_user'
auth.settings.table_group_name = ‘auth_group'
auth.settings.table_membership_name = ‘auth_membership'
auth.settings.table_permission_name = ‘auth_permission'
auth.settings.table_event_name = ‘auth_event'

The names of the table can be changed by reassigning the ab@des
after theauth object is defined and before the Auth tables are defined. For
example:
auth = Auth(globals(),db)
auth.settings.table_user_name = 'person’

#...
auth.define_tables()

The actual tables can also be referenced, independently iofatieal
names, by
auth.settings.table_user
auth.settings.table_group
auth.settings.table_membership

auth.settings.table_permission
auth.settings.table_event

Alternate Login Methods

Auth provides multiple login methods and hooks to create new login methods.
Each supported login method corresponds to a file in the folder

gluon/contrib/login_methods/
Refer to the documentation in the files themselves for each logithod, but
here we provide some examples.

First of all we need to make a distinction between two types of alternate
login methods:

¢ login methods that use wreB2pry form (although the credentials are
verified outsidevEB2PY). An example is LDAP.

¢ login methods that require an external sign-srEg2rY never gets to
see the credentials).

Let's consider examples of the first case:

AUTHENTICATION 231

Basic Let’s say you have an authentication service, for example at the url
https://basic.example.com , that accepts basic access authentication. That
means the server accepts HTTP requests with a header of the form:

GET findex.html ~ HTTP/1.0

Host: basic.example.com
Authorization: Basic QWxhZGRpbjpvcGVulHNIc2FtZQ==

[

where the latter string is the base64 encoding of the stringasee:password.
The service responds 200 OK if the user is authorized and 400, 401, 402, 403
or 404 otherwise.

You want to enter username and password using the staadartbgin
form and verify the credentials against such a service. All you need to do is
add the following code to your application

1 from gluon.contrib.login_methods.basic_auth import basic _auth
2 auth.settings.login_methods.append(
3 basic_auth('https://basic.example.com’)
Notice thatuth.settings.login _methods IS a list of authentication methods

that are executed sequentially. By default it is set to

auth.settings.login_methods = [auth]

i

When an alternate method is appended, for examapie auth , Auth first
tries to log in the visitor based on the contenta@h user , and when this
fails, it tries the next method in the list. If a method succeeds in logging
in the visitor, and ifauth.settings.login _methods[0]==auth , Auth takes the
following actions:

e if the user does not exist isuth _user , @ new user is created and the
username/email and passwords are stored.

o if the user does exist iauth user but the new accepted password does
not match the old stored password, the old password is replaced with
the new one (notice that passwords are always stored hashed unless
specified otherwise).

If you do not wish to store the new passwordim _user , then it is sufficient
to change the order of login methods, or remawve from the list. For
example:

1 from gluon.contrib.login_methods.basic_auth import basic _auth
2 auth.settings.login_methods = \
3 [basic_auth(‘https://basic.example.com’)

The same applies for any other login method described here.

[

EN I

N

N

Ne

N

232 ACCESS CONTROL

SMTP and Gmail You can verify the login credentials using a remote
SMTP server, for example Gmail; i.e., you log the user in if the email and
password they provide are valid credentials to access the Gmail SMTP server
(smtp.gmail.com:587). All that is needed is the following code:

from gluon.contrib.login_methods.email_auth import email _auth
auth.settings.login_methods.append(
email_auth("smtp.gmail.com:587" , "@gmail.com"))

The first argument oénail _auth is the address:port of the SMTP server.
The second argument is the email domain.
This works with any SMTP server that requires TLS authentication.

LDAP Authentication using LDAP works very much as in the previous
cases.

To use LDAP login with MS Active Directory:
from gluon.contrib.login_methods.ldap_auth import Idap_a uth
auth.settings.login_methods.append(ldap_auth(mode= ‘ad'

server= 'my.domain.controller' ,
base_dn= 'ou=Users,dc=domain,dc=com’)

To use LDAP login with Lotus Notes and Domino:

auth.settings.login_methods.append(ldap_auth(mode= ‘domino’
server= 'my.domino.server')

To use LDAP login with OpenLDAP (with UID):

auth.settings.login_methods.append(ldap_auth(server= 'my.ldap.server' ,
base_dn= 'ou=Users,dc=domain,dc=com')

To use LDAP login with OpenLDAP (with CN):

auth.settings.login_methods.append(ldap_auth(mode= ‘cn'
server= 'my.ldap.server' , base_dn= 'ou=Users,dc=domain,dc=com’)

Google on GAE Authentication using Google when running on Google
App Engine requires skipping thveEB2PY login form, being redirected to the
Google login page, and back upon success. Because the behavior is different
than in the previous examples, the APl is a little different.
from gluon.contrib.login_methods.gae_google_login impor t

GaeGoogleAccount
auth.settings.login_form = GaeGoogleAccount()

i

i

i

i

i

i

i

i

i

AUTHORIZATION 233

8.2 Authorization

Once a new user is registered, a new group is created to contain the user. The
role of the new user is conventionally "ud@t]" where [id] is the id of the
newly created id. The creation of the group can be disabled with

auth.settings.create_user_groups = False

although we do not suggest doing so.

Users have membership in groups. Each group is identified by a name/role.
Groups have permissions. Users have permissions because of the groups they
belong to.

You can create groups, give membership and permissiorspgadmin
or programmatically using the following methods:

auth.add_group('role’ , ‘description’)

returns the id of the newly created group.
auth.del_group(group_id)

deletes the group withr oup id .

auth.del_group(auth.id_group(‘user_7' 1))

deletes the group with role "usét, i.e., the group uniquely associated to
user number 7.

auth.user_group(user_id)

returns the id of the group uniquely associated to the usetifibehbyuser _id .

auth.add_membership(group_id, user_id)

givesuser id membership of the growpoup _id . Iftheuser [id is not specified,
thenwEB2PY assumes the current logged-in user.

auth.del_membership(group_id, user_id)

revokesuser id membership of the grougroup [id . If the user .id is not
specified, therwEB2PY assumes the current logged-in user.

auth.has_membership(group_id, user_id)

checks whethesser id has membership of the groggpup _id . If the user _id
is not specified, thewEB2PY assumes the current logged-in user.

auth.add_permission(group_id, ‘name' , 'object’ , record_id)

gives permission "name" (user defined) on the object "objesdso(user
defined) to members of the grogpup _id . If "object” is a tablename then the
permission can refer to the entire tabledrd _id==0) or to a specific record
(record [id>0). When giving permissions on tables, it is common to use a
permission name in the set (‘create’, read’, 'update’, 'delete’, 'select’) since
these permissions are understood and can be enforced by CRUD.

[

Noe

L N

® N oA W N e

© ©® N o b W NP

234 ACCESS CONTROL

auth.del_permission(group_id, 'name' , ‘object' , record_id)

revokes the permission.

auth.has_permission(‘name' , ‘object’ , record_id, user_id)

checks whether the user identifieddyr .id has membership in a group with
the requested permission.

rows = db(accessible_query(‘read’ , db.sometable, user_id))\
.select(db.mytable.ALL)

returns all rows of table "sometable" that usedsr .id has "read" permission

on. Iftheuser _id is not specified, thewEB2PY assumes the current logged-

in user. Theaccessible _query(...) can be combined with other queries to

make more complex onegccessible _query(...) is the onlyAuth method

to require a JOIN, so it does not work on the Google App Engine.
Assuming the following definitions:

>>> from gluon.tools import Auth
>>> auth = Auth(globals(), db)
>>> auth.define_tables()
>>> secrets = db.define_table(‘document’ , Fi el d(' body'))
>>> james_bond = db.auth_user.insert(first_name= ‘James' ,
last_name= 'Bond')
Here is an example:
>>> doc_id = db.document.insert(body = 'top secret')
>>> agents = auth.add_group(role = 'Secret Agent')
>>> auth.add_membership(agents, james_bond)
>>> auth.add_permission(agents, read’ , secrets)
>>> print auth.has_permission(‘read’ , secrets, doc_id, james_bond)
True
>>> print auth.has_permission('update' , secrets, doc_id, james_bond)
False
Decorators

The most common way to check permission is not by explicit calls to the
above methods, but by decorating functions so that permissions are checked
relative to the logged-in visitor. Here are some examples:

def function_one():
return 'this is a public function’

@auth.requires_login()
def function_two():
return 'this requires login'

@auth.requires_membership(‘agents')
def function_three():

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

26

N

7

N

B oW N R

AUTHORIZATION 235

return 'you are a secret agent'

@auth.requires_permission(‘read’ , secrets)
def function_four():
return 'you can read secret documents'

@auth.requires_permission(‘delete’ , ‘'any file')
def function_five():

import os

for file in os.listdir()

os.unlink(file)
return ‘'all files deleted'

@auth.requires_permission(‘add' , ‘number’)
def add(a, b):
return a + b

def function_six():
return add(3, 4)

Note that access to all functions apart from the first one isicésti based
on permissions that the visitor may or may not have.

If the visitor is not logged in, then the permission cannot be checked; the
visitor is redirected to the login page and then back to the page that requires
permissions.

If the visitor does not have permission to access a given function, the visitor
is redirect to the URL defined by

auth.settings.on_failed_authorization = \
URL(r= request, f= 'user/on_failed_authorization')

You can change this variable and redirect the user elsewhere.

Combining requirements

Occasionally, it is necessary to combine requirements. This can be done via
a generiaequires decorator which takes a single argument, a true or false
condition. For example, to give access to agents, but only on Tuesday:

@auth.requires(auth.has_membership(agents) \
and request . now.weekday()==1)
def function_seven():
return 'Hello agent, it must be Tuesday!

Authorization and CRUD

Using decorators and/or explicit checks provides one way to implement access
control.

i

[N N

i

236 ACCESS CONTROL

Another way to implement access control is to always use CRUD (as
opposed to SQLFORM) to access the database and to ask CRUD to enforce
access control on database tables and records. This is done by lsking
and CRUD with the following statement:

crud.settings.auth = auth

This will prevent the visitor from accessing any of the CRUDdtions
unless the visitor is logged in and has explicit access. For example, to allow
a visitor to post comments, but only update their own comments (assuming
crud, auth and db.comment are defined):

def give_create_permission(form):
group_id = auth.id_group(‘'user_%s' % auth.user.id)
auth.add_permission(group_id, 'read’ , db.comment)
auth.add_permission(group_id, ‘create’ , db.comment)
auth.add_permission(group_id, 'select’ , db.comment)
def give_update_permission(form):
comment_id = form.vars.id
group_id = auth.id_group(‘'user_%s' % auth.user.id)
auth.add_permission(group_id, ‘'update' , db.comment, comment_id)
auth.add_permission(group_id, 'delete’ , db.comment, comment_id)
auth.settings.register_onaccept = give_create_permissio n

crud.settings.auth = auth

def post_comment():
form = crud.create(db.comment, onaccept=give_update_perm ission)
comments = db(db.comment.id>0).select()
return dict(form=form, comments=comments)

def update_comment():
form = crud.update(db.comment, r equest .args(0))
return dict(form=form)

You can also select specific records (those you have 'readsatog

def post_comment():
form = crud.create(db.comment, onaccept=give_update_perm ission)
query = auth.accessible_query(read’ , db.comment, auth.user.id)
comments = db(query).select(db.comment.ALL)
return dict(form=form, comments=comments)

Authorization and Downloads

The use of decorators and the usecafi.settings.auth do not enforce
authorization on files downloaded by the usual download function
def download(): return response.download(request, db)

If one wishes to do so, one must declare explicitly which "ugidélds
contain files that need access control upon download. For example:

AW N e -

N

i

i

AUTHORIZATION 237

db.define_table(‘dog' ,
Fi el d('small_image' , 'upload")
Fi el d('large_image' , 'upload'))

db.dog.large_image.authorization = lambda record: \
auth.is_logged_in() and \
auth.has_permission(‘read" , db.dog, record.id, auth.user.id)

The attributeauthorization ~ of upload field can be None (the default) or a
function that decides whether the userislogged in and has permission to read’
the current record. In this example, there is no restriction on downloading
images linked by the "smalimage" field, but we require access control on
images linked by the "larganage" field.

Access control and Basic authentication

Occasionally, it may be necessary to expose actions that have decorators that
require access control as services; i.e., to call them from a program or script
and still be able to use authentication to check for authorization.

Auth enables login via basic authentication:

auth.settings.allow_basic_authentication = True

With this set, an action like

@auth.requires_login()

def give_me_time():
import time
return time.ctime()

can be called, for example, from a shell command:

wget --user=[username] --password=[password]
http://.../[app]/[controller])/give_me_time

Basic login is often the only option for services (describedhia next
chapter), but it is disabled by default.

Settings and Messages

Here is a list of all parameters that can be customizediibhn

auth.settings.actions_disabled = []
The actions that should be disabled, for example [register’]

auth.settings.registration_requires_verification = Fals e

SettoTrue SO that registrants receive a verification email and are required to
click a link to complete registration.

[

i

i

i

i

i

i

i

N

i

i

i

238 ACCESS CONTROL

auth.settings.registration_requires_approval = False

SettoTrue to preventlogin of newly registered users until they are approved
(this is done by settinggistraton ~ key=="Vvia appadmin or programmati-
cally).

auth.settings.create_user_groups = True

Set to False if you do not want to automatically create a groupdoh newly
registered user.

auth.settings.login_url = URL(r= request, f= 'user' , args= 'login')
TellsweB2pPY the URL of the login page

auth.settings.logged_url = URL(r= request, f= 'user' , args= 'profile')

If the user tried to access the register page but is alreadyetbgg he is
redirected to this URL.

auth.settings.download_url = URL(r= request, f= 'download)

Tells weB2pry the URL to download uploaded documents. It is necessary
to create the profile page in case it contains uploaded files, such as the user
image.

auth.settings.mailer = None

Must point to an object with a send method with the same sigeadsr
gluon.tools.Mail.send

auth.settings.captcha = None

Must point to an object with signature similardiuon.tools.Recaptcha

auth.settings.expiration = 3600 # seconds

The expiration time of a login session, in seconds.

auth.settings.on_failed_authorization = \
URL(r= r equest ,f= 'user/on_failed_authorization')

The URL to redirect to after a failed authorization.
auth.settings.password_field = '‘password'
The name of the password field as stored in the db. The only réasbange

this is when 'password’ is a reserved keyword for the db and so cannot be
used as a field name. This is the case, for example, for FireBird.

auth.settings.showid = False
Determines whether the profile page should show the id of the use
auth.settings.login_next = URL(r= request, f= 'index')

By default, the login page, after successful login, rediréosvisitor to the
referrer page (if and only if the referrer required login). If there is no referrer,
it redirects the visitor to the page pointed to by this variable.

i

i

i

i

i

i

i

i

i

AUTHORIZATION 239

auth.settings.login_onvalidation = None

Function to be called after login validation, but before actagin. The
function must take a single argument, the form object.

auth.settings.login_onaccept = None

Function to be called after login, but before redirection. Tumection must
take a single argument, the form object.

auth.settings.login_methods = [auth]

Determines alternative login methods, as discussed prdyious

auth.settings.login_form = auth

Sets an alternative login form for single sign-on as discupsexdously.

auth.settings.allows_basic_auth = False

If set to True allows calling actions that have access contriareed through
decorators using basic access authentication.

auth.settings.logout_next = URL(r= request, f= 'index')

The URL redirected to after logout.

auth.settings.register_next = URL(r= request, f= 'user' , args= 'login')
The URL redirected to after registration.

auth.settings.register_onvalidation = None

Function to be called after registration form validation, before actual
registration, and before any email verification email is sent. The function
must take a single argument, the form object.

auth.settings.register_onaccept = None

Function to be called after registration, but before redioact The function
must take a single argument, the form object.

auth.settings.verify_email_next = \
URL(r= request, f= 'user' , args= ‘login')

The URL to redirect a visitor to after email address verifiaatio

auth.settings.verify_email_onaccept = None

Function to be called after completed email verification, lfoke redirec-
tion. The function must take a single argument, the form object.

auth.settings.profile_next = URL(r= request, f= ‘index')
The URL to redirect visitors to after they edit their profile.

auth.settings.retrieve_username_next = URL(r= request, f= 'index')

The URL to redirect visitors to after they request to retridva@rtusername.

[

i

GO F B N B O © o N e a &

240 ACCESS CONTROL

auth.settings.retrieve_password_next = URL(r= request, f= 'index')

The URL to redirect visitors to after they request to retridvatrt password.
auth.settings.change_password_next = URL(r= request, f= 'index')
The URL to redirect visitors to after they request a new pasgwgremail.

You can also customize the following messages whose use and context
should be obvious:

1 auth.messages.submit_button = 'Submit’

2 auth.messages.verify_password = ‘Verify Password'

3 auth.messages.delete_label = '‘Check to delete:'

4 auth.messages.function_disabled = 'Function disabled'

5 auth.messages.access_denied = 'Insufficient privileges'

6 auth.messages.registration_verifying = 'Registration needs
verification'

7 auth.messages.registration_pending = 'Registration is pending
approval'

s auth.messages.login_disabled = 'Login disabled by administrator'

9 auth.messages.logged_in = ‘Logged in'

o auth.messages.email_sent = ‘Email sent'

1 auth.messages.unable_to_send_email = ‘Unable to send email'

> auth.messages.email_verified = 'Email verified'

3 auth.messages.logged_out = ‘Logged out'

4 auth.messages.registration_successful = 'Registration successful'

s auth.messages.invalid_email = 'Invalid email'

s auth.messages.invalid_login = ‘Invalid login'

7 auth.messages.invalid_user = 'Invalid user'

s auth.messages.is_empty = "Cannot be empty"

9 auth.messages.mismatched_password = "Password fields don't match"

o auth.messages.verify_email = ...

1 auth.messages.verify_email_subject = ‘Password verify'

> auth.messages.username_sent = 'Your username was emailed to you'

3 auth.messages.new_password_sent = ...

4 auth.messages.password_changed = 'Password changed'

s auth.messages.retrieve_username = ...

s auth.messages.retrieve_username_subject = 'Username retrieve'

7 auth.messages.retrieve_password = ...

s auth.messages.retrieve_password_subject = 'Password retrieve'

9 auth.messages.profile_updated = 'Profile updated'

o auth.messages.new_password = ‘New password'

1 auth.messages.old_password = 'Old password'

> auth.messages.register_log = 'User %(id)s Registered'

3 auth.messages.login_log = ‘User %(id)s Logged-in'

‘User %(id)s Logged-out'
‘User %(id)s Profile updated'

auth.messages.logout_log
auth.messages.profile_log
auth.messages.verify_email_log = ...
auth.messages.retrieve_username_log
auth.messages.retrieve_password_log
auth.messages.change_password_log
auth.messages.add_group_log = 'Group %(group_id)s created'
auth.messages.del_group_log = '‘Group %(group_id)s deleted'
auth.messages.add_membership_log = None
auth.messages.del_membership_log = None
auth.messages.has_membership_log = None
auth.messages.add_permission_log = None

46
47

i

1
2

CENTRAL AUTHENTICATION SERVICE 241

auth.messages.del_permission_log = None
auth.messages.has_permission_log = None

addldelhas membership logs allow the use of "%(usdjs" and "%(groupd)s".
add|dellhas permission logs allow the use of "%(usd)s”, "%(name)s",
"%(table name)s”, and "%(recoritl)s".

8.3 Central Authentication Service

WEB2PY provides support for authentication and authorization via appli-
ances. Here we discuss tbasappliance for Central Authentication Service
(CAS). Notice that at the time of writing CAS is distict and does not work
with Auth. This will change in the future.

CAS is an open protocol for distributed authentication and it works in
the following way: When a visitor arrives at our web site, our application
check in the session if the user is already authenticated (for example via a
session.token Object). If the user is not authenticated, the controller redirects
the visitor from the CAS appliance, where the user can log in, register, and
manage his credentials (name, email and password). If the user registers,
he receives an email, and registration is not complete until he responds to
the email. Once the user has successfully registered and logged in, the CAS
appliance redirects the user to our application together with a key. Our
application uses the key to get the credentials of the user viaan HTTP request
in the background to the CAS server.

Using this mechanism, multiple applications can use the a single sign-
on via a single CAS server. The server providing authentication is called
a service provider. Applications seeking to authenticate visitors are called
service consumers.

CAS is similar to OpenlID, with one main difference. In the the case of
OpenlD, the visitor chooses the service provider. In the case of CAS, our
application makes this choice, making CAS more secure.

You can run only the consumer, only the provider, or both (in a single or
separate applications).

To run CAS as consumer you must download the file:

https://www.web2py.com/cas/static/cas.py
and store it as a model file called "cas.py". Then you must edit th

controllers that need authentication (for example "default.py") and, at the top,
add the following code:

CAS.login_url= ‘https://www.web2py.com/cas/cas/login'
CAS.check_url='https://www.web2py.com/cas/cas/check’

242 ACCESS CONTROL

CAS.logout_url= 'https://www.web2py.com/cas/cas/logout'

3

4 CAS.my_url= ‘http://127.0.0.1:8000/myapp/default/login’
5

6 if not session.token and not request .function== ‘login'
7 redi rect (URL(r= r equest ,f= ‘login')

s def login():

9 sessi on.token=CAS.login(request)

10 id,email,name= sessi on.token

1 return dict()

12 def logout():

13 sessi on.token=None

14 CAS.logout()

You must edit the attributes of the CAS object above. By defthéty point
to the CAS provider that runs on "https://mdp.cti.depaul.edu”. We provide
this service mainly for testing purposes. Téws.myur has to be the full
URL to the login action defined in your application and shown in the code.
The CAS provider needs to redirect your browser to this action.

Our CAS provider returns a token containing a tuple (id, email, name),
where id is the unique record id of the visitor (as assigned by the provider's
database), email is the email address of the visitor (as declared by the visitor
to the provider and verified by the provider), and name is the name of the
visitor (itis chosen by the visitor and there is no guarantee this is a real name).

If you visit the local url:

/myapp/default/login
you get redirected to the CAS login page:

https://mdp.cti.depaul.edu/cas/cas/login

which looks like this:

lallalls) Central Authentication Service (CAS) (=]

i

i

@ - e 4% @ hup://127.0.0.1:8000/cas /cas [login vlE 2

W Central Authentication Service (CAS) login s . . I

%

You may also use third-party CAS services, but you may need ito ed
line 10 above, since different CAS providers may return tokens containing
different values. Check the documentation of the CAS service you need to
access for details. Most services only return (id, username).

CENTRAL AUTHENTICATION SERVICE 243

After a successful login, you are redirected to the local login action. The
view of the local login action is executed only after a successful CAS login.

You can download the CAS provider appliance from ref. [32] and run it
yourself. If you choose to do so, you must also edit the first lines of the
"email.py" model in the appliance, so that it points to your SMPT server.

You can also merge the files of the CAS provider appliance provider with
those of your application (models under models, etc.) as long there is no
filename conflict.

CHAPTER 9

SERVICES

The W3C defines a web service as “a software system designepgorsin-
teroperable machine-to-machine interaction over a network”. This is a broad
definition, and it encompass a large number of protocols not designed for
machine-to-human communication, but for machine-to-machine communi-
cation such as XML, JSON, RSS, etc.

WEB2PY provides, out of the box, support for the many protocols, includ-
ing XML, JSON, RSS, CSV, XMLRPC, JSONRPC, AMFRREEB2PY can
also be extended to support additional protocols.

Each of those protocols is supported in multiple ways, and we make a
distinction between:

e Rendering the output of a function in a given format (for example XML,
JSON, RSS, CSV)

e Remote Procedure Calls (for example XMLRPC, JSONRPC, AM-
FRPC)

WEB2PY: Enterprise Web Framework / 2nd Bl.Massimo Di Pierro 245
Copyright(C) 2009

w N e

i

w N e

B oW N R

246 SERVICES

9.1 Rendering a dictionary

HTML, XML, and JSON

Consider the following action:
def count():
sessi on.counter = (sessi on.counter or 0) + 1
return dict(counter= sessi on.counter, now= request .now)
This action returns a counter that is increased by one wheitarvisloads
the page, and the timestamp of the current page request.
Normally this page would be requested via:
http://127.0.0.1:8000/app/default/count

and rendered in HTML. Without writing one line of code, we cak as
WEB2PY to render this page using a different protocols by adding an extension
to the URL:

http://127.0.0.1:8000/app/default/count.html
http://127.0.0.1:8000/app/default/count.xml
http://127.0.0.1:8000/app/default/count.json
The dictionary returned by the action will be rendered in HTNIML
and JSON, respectively.
Here is the XML output:

<document>
<counter>3</counter>
<now>2009-08-01 13:00:00</now>
</document>

Here is the JSON output:
{ 'counter' :3, ‘'now' :'2009-08-01 13:00:00' }

Notice that date, time, and datetime objects are renderediagssin ISO
format. This is not part of the JSON standard bst@B2PY convention.

How it works

When, for example, the ".xml" extension is calledgB2pY looks for a tem-
plate file called "default/count.xml", and if it does not finditEB2PY looks
for a template called "generic.xml". The files "generic.html, "generic.xml",
"generic.json" are provided with the current scaffolding application.

Other extensions can be easily defined by the user.

Nothing needs to be done to enable this Ww@sB2PY app. To useitin an
olderweEB2PY app, you may need to copy the "generic.*" files from a later
scaffolding app (after version 1.60).

RENDERING A DICTIONARY 247

Here is the code for "generic.html"
{{extend ‘'layout.html' B

1
2
3 {{= BEAUTI FY(response._vars)}}
4
5

<button onclick= "document.location="{{=URL(" admin"," default "," design "

,args=request.application)}}"" >admin</button>

6 <button onclick= "|Query(‘#request’).slideToggle()" >r equest </button>

7 <div class= "hidden" id= "request" ><h2>request</h2>{{= BEAUTI FY(request)
B</div>

s <button onclick= "jQuery(‘#session').slideToggle()" >sessi on</button>

9 <div class= "hidden" id= "session" ><h2>sessi on</h2>{{= BEAUTI FY(sessi on)
H</div>

10 <button onclick= "|Query(‘#response’).slideToggle()" >r esponse</button>

1

e

<div class= "hidden" id= "response" ><h2>response</h2>{{= BEAUTI FY(
response)} }</div>
<script>jQuery("hidden").hide();</script>

1

)

Here is the code for "generic.xml"

1 {f
2 try:
3 from gluon.serializers import xml
4 response.write(xml(response._vars),escape=False)
5 response.h eaders['Content-Type' = 'text/xml’
6 except:
7 raise HTTP(405, no xml')
s }}
And here is the code for "generic.json"
L {f
2 try:
3 from gluon.serializers import json
4 r esponse.w rite(json(r esponse._vars),escape=False)
5 response.h eaders['Content-Type' = 'text/json’
6 except:
7 raise HTTP(405, 'no json')
s J}

Every dictionary can be rendered in HTML, XML and JSON as long as
only contains python primitive types (int, float, string, list, tuple, dictionary).
response. _vars contains the dictionary returned by the action.

If the dictionary contains other user-definedwrB2pPY-specific objects,
they must be rendered by a custom view.

Rendering Rows

If you need to render a set of Rows as returned by a select in XML or JSON
or another format, first transform the Rows object into a list of dictionaries
using theas list) method.

Consider for example the following mode:

[

w N e

w N e

i

[N

1

o A W N

248 SERVICES

db.define_table('‘person’ , Field(' name'))

The following action can be rendered in HTML but not in XML or JSO

def everybody():
people = db().select(db.person.ALL)
return dict(people=people)

While the following action can rendered in XML and JSON.

def everybody():
people = db().select(db.person.ALL).as_list()
return dict(people=people)

Custom Formats

If, for example, you want to render an action as a Python pickle:
http://127.0.0.1:8000/app/default/count.pickle

you just need to create a new view file "default/count.pickielt tontains:
{{

import cPickle
response.h eaders['Content-Type'] = ‘application/python.pickle’
r esponse.w rite(cPickle.dumps(r esponse._vars),escape=False)

B

If you want to be able to render as a picked file any action, yoy neéd
to save the above file with the name "generic.pickle".

Not all objects are pickleable, and not all pickled objects can be unpickled.
It is safe to stick to primitive Python files and combinations of them. Objects
that do not contain references to file streams or database connections are are
usually pickleable, but they can only be unpickled in an environment where
the classes of all pickled objects are already defined.

RSS

WEB2PY includes a "generic.rss" view that can render the dictionary returned
by the action as an RSS feed.

Because the RSS feeds have a fixed structure (title, link, description, items,
etc.) then for this to work, the dictionary returned by the action must have
the proper structure:

{ title’ D
link’
‘description’

‘created_on' ,
‘entries’ [}

© ® N o O A W N P EN O

i

[I N R

o B W NP

© N o O A~ w N R

RENDERING A DICTIONARY 249

end each entry in entries must have the same similar structure:

{ title’ : ,
'link' R
‘description’ Y,
‘created_on' Uy
For example the following action can be rendered as an RSS feed:
def feed():
return dict(title= "my feed" ,
link="http://feed.example.com" ,
description= "my first feed" ,
entries=[
dict(title= "my feed" ,
link="http://feed.example.com” ,
description= "my first feed")
D

by simply visiting the URL:
http://127.0.0.1:8000/app/default/feed.rss

Alternatively, assuming the following model:

db.define_table('rss_entry' ,
Fi el d('title'),
Fi el d('link"),
Fi el d('created_on' , 'datetime’),
Fi el d('description')

the following action can also be rendered as an RSS feed:

def feed():
return dict(title= " my feed" ,
link= " http://feed.example.com "
description= " my first feed " ,
entries=db().select(db.rss_entry.ALL).as_list())
Theas.list) method of a Rows object converts the rows into a list of
dictionaries.

If additional dictionary items are found with key names not explicitly listed

here, they are ignored.
Here is the "generic.rss" view provided byeB2PY:

{{
try:
from gluon.serializers import rss
response.w rite(rss(r esponse._vars),escape=False)
response.h eaders['Content-Type' = 'application/rss+xml'
except:
raise HTTP(405, no rss')
B3

As one more example of an RSS application, we consider an RS8-agg

gator that collects data from the "slashdot" feed and returns aves2pry
feed.

1
2
3
4
5
6
7
8
9

i

B oW N R

w N e

N o 0 h W N P

250 SERVICES

def aggregator():
import gluon.contrib.feedparser as feedparser
d = feedparser.parse(
"h ttp://rss.slashdot.org/Slashdot/slashdot/to")
return dict(title=d.channel.title,
link = d.channel.link,
description = d.channel.description,
created_on = request .now,
entries = [
dict(title = entry.title,
link = entry.link,
description = entry.description,
created_on = request.now) for entry in d.entries])

It can be accessed at:
http://127.0.0.1:8000/app/default/aggregator.rss

Csv

The Comma Separated Values (CSV) format is a protocol to represent tabular
data.
Consider the following model:
db.define_model(‘animal'
Fi el d('species'),
Fi el d('genus'),
Fi el d(‘family’)

and the following action:

def animals():
animals = db().select(db.animal. ALL)
return dict(animals=animals)

WEB2PY does not provide a "generic.csv"; you must define a custom view
"default/animals.csv" that serializes the animals into CSV. Here is a possible
implementation:

{

import cStringlO
stream=cStringlO.StringlO()
animals.export_to_csv_file(stream)

response.h eaders['Content-Type' = 'application/vnd.ms-excel'
r esponse.w rite(stream.getvalue(), escape=False)

B

Notice that for CSV one could also define a "generic.csv" fild, dne
would have to specify the name of the object to be serialized ("animals"” in
the example). This is why we do not provide a "generic.csv" file.

Ne

w N e

© N o oA W N R

REMOTE PROCEDURE CALLS 251

9.2 Remote Procedure Calls

WEB2PY provides a mechanism to turn any function into a web service.
The mechanism described here differs from the mechanism described before
because:

e The function may take arguments

The function may be defined in amodel ora module instead of controller

You may want to specify in detail which RPC method should be sup-
ported

It enforces a more strict URL naming convention

It is smarter then the previous methods because it works for a fixed set
of protocols. For the same reason it is not as easily extensible.

To use this feature:
First, you must import and instantiate a service object.

from gluon.tools import Service
service = Service(globals())

This is already done in the "db.py" model file in the scaffolding
application.

Second, you must expose the service handler in the controller:

def call():
sessi on.forget()
return service()

This already done in the "default.py" controller of the sclafilng
application. Removession.forget() is you plan to use session
cookies with the services.

Third, you must decorate those functions you want to expose as a setrvice.
Here is a list of currently supported decorators:

@service.run

@service.xml

@service.json

@service.rss

@service.csv

@service.xmlrpc
@service.jsonrpc
@service.amfrpc3(‘domain’)

As an example consider the following decorated function:

w N e

Noe

i

N

w N e

N

w N e

Noe

i

252 SERVICES

@service.run
def concat(a,b):
return a+b

This function can be defined in a model or in a controller. Thigfion
can now be called remotely in two ways:
http://127.0.0.1:8000/app/default/call/run/concat?a=h ello&b=world
http://127.0.0.1:8000/app/default/call/run/concat/hel lo/world

In both cases the http request returns:
helloworld

If the @servicexml decorator is used, the function can be called via
http://127.0.0.1:8000/app/default/call/xml/concat?a=h ello&b=world
http://127.0.0.1:8000/app/default/call/xml/concat/hel lo/world
and the output is returned as XML
<document>

<result>helloworld</result>
</document>
It can serialize the output of the function even if this is a DAGWS object.

In this case, in fact, it will calks_ist) — automatically.

If the @service.json decorator is used, the function can be called via
http://127.0.0.1:8000/app/default/call/json/concat?a= hello&b=world
http://127.0.0.1:8000/app/default/call/json/concat/he llo/world
and the output returned as JSON.

If the@senvice.csv decoratoris used, the service handler requires, as return
value, an iterable object of iterable objects, such as a list of lists. Here is an
example:

@service.csv
def tablel(a,b):

return [[a,b],[1,2]]
This service can be called by visiting one of the following URLs
http://127.0.0.1:8000/app/default/call/csv/table1?a=h ello&b=world
http://127.0.0.1:8000/app/default/call/csv/tablel/hel lo/world
and it returns:
hello,world
1,2

The @servicerss decorator expects a return value in the same format as
the "generic.rss" view discussed in the previous section.

Multiple decorators are allowed for each function.

So far, everything discussed in this section is simply an alternative to the
method described in the previous section. The real power of the service object
comes with XMLRPC, JSONRPC and AMFRPC, as discussed below.

1

N o o s W N R

© o N e A W N R

= o

Noe

REMOTE PROCEDURE CALLS 253

XMLRPC

Consider the following code, for example, in the "default.py" controller:

@service.xmlrpc
def add(a,b):
return a+b

@service.xmlrpc
def div(a,b):
return a+b

Now in a python shell you can do

>>> from xmlrpclib import ServerProxy
>>> server = ServerProxy(
'h ttp://127.0.0.1:8000/app/default/call/xmlrpc’)
>>> print server.add(3,4)
7
>>> print server.add('hello’ , 'world")
‘helloworld’
>>> print server.div(12,4)
8
>>> print server.div(1,0)
ZeroDivisionError: integer division or modulo by zero

The Python xmlirpclib module provides a client for the XMLRPGtpicol.
WEB2PY acts as the server.

The client connects to the server via ServerProxy and can remotely call
decorated functions in the server. The data (a,b) is passed to the function(s),
not via GET/POST variables, but properly encoded in the request body using
the XMLPRC protocol, and thus it carries with itself type information (int
or string or other). The same is true for the return value(s). Moreover, any
exception that happens on the server propagates back to the client.

There are XMLRPC libraries for many programming languages (including
C, C++, Java, C#, Ruby, and Perl), and they can interoperate with each other.
This is one the best methods to create applications that talk to each other,
independent of the programming language.

The XMLRPC client can also be implemented insideveB2py action
so that one action can talk to anothees2py application (even within the
same installation) using XMLRPC. Beware of session deadlocks in this case.
If an action calls via XMLRPC a function in the same app, the caller must
release the session lock before the call:

sessi on.forget()
sessi on._unlock(response)

JSONRPC

[N

1
2

254 SERVICES

JSONRPC is very similar to XMLRPC, but uses the JSON based protocol
to encode the data instead of XML. As an example of application here, we
discuss its usage with Pyjamas. Pyjamas is a Python port of the Google
Web Toolkit (originally written in Java). Pyjamas allows to write a client
application in Python. Pyjamas translates this code into JavaSenim2pry
serves the javascript and communicates with it via AJAX requests originating
from the client and triggered by user actions.

Here we describe how to make Pyjamas work withs2py. It does not
require any additional libraries other thames2pPyY and Pyjamas.

We are going to build a simple "todo" application with a Pyjamas client
(all JavaScript) that talks to the server exclusively via JSONRPC.

Here is how to do it:

First, create a new application called "todo".

Second, in "models/db.py", enter the following code:

db=SQLDB(' sqlite://storage.sqlite’)
db.define_table('todo’ , Field('task'))

from gluon.tools import Service # 1 mport rpc services
service = Service(globals())

Third, in "controllers/default.py”, enter the following c&d

def index():
redirect (URL(r= request ,f= 'todoApp'))

@service.jsonrpc
def getTasks():
todos = db(db.todo.id>0).select()
return [(todo.task,todo.id) for todo in todos]

@service.jsonrpc

def addTask(taskFromJson):
db.todo.insert(task= taskFromJson)
return getTasks()

@service.jsonrpc

def deleteTask (idFromJson):
del db.todo[idFromJson]
return getTasks()

def call():
sessi on.forget()
return service()

def todoApp():
return dict()
The purpose of each function should be obvious.
Fourth, in "views/default/todoApp.html", enter the following code:

<htmlI>
<head>

© © N o O » W

11
12
13
14
15
16
17

i
©

20
2

=

REMOTE PROCEDURE CALLS 255

<meta name="pygwt:module"
content= "{{=URL(r=request,c="static',f="output/todoapp')}}" />
<title>
simple todo application
<ftitle>
</head>
<body bgcolor="white" >
<h1>
simple todo application
</h1>
<i>
type a new task to insert in db,
click on existing task to delete it
<[i>
<script language= "javascript"
src= "{{=URL(r=request,c='static',f="output/pygwt.js')}}" >
</script>
</body>
</html>

This view just executes the Pyjamas code in "static/outpladpp”. Code
that we have not yet created.

Fifth, in "static/TodoApp.py" (notice it is TodoApp, not todoApp!), enter
the following client code:

from pyjamas.ui.RootPanel import RootPanel
from pyjamas.ui.Label import Label

from pyjamas.ui.VerticalPanel import VerticalPanel
from pyjamas.ui.TextBox import TextBox

import pyjamas.ui.KeyboardListener

from pyjamas.ui.ListBox import ListBox

from pyjamas.ui. HTM. import HTM.

from pyjamas.JSONService import JSONProxy

class TodoApp:
def onModuleLoad(self):
self.remote = DataService()
panel = VerticalPanel()

self.todoTextBox = TextBox()
self.todoTextBox.addKeyboardListener(self)

self.todoList = ListBox()
self.todoList.setVisibleltemCount(7)

self.todoList.setWidth("200px")
self.todoList.addClickListener(self)
self.Status = Label(")

panel.add(Label("Add New Todo:"))
panel.add(self.todoTextBox)

panel.add(Label("Click to Remove:")
panel.add(self.todoList)

panel.add(self.Status)
self.remote.getTasks(self)

RootPanel().add(panel)

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78

Noe

256 SERVICES

def onKeyUp(self, sender, keyCode, modifiers):
pass

def onKeyDown(self, sender, keyCode, modifiers):
pass

def onKeyPress(self, sender, keyCode, modifiers):

This function handles the onKeyPress event, and will add the
item in the text box to the list when the user presses the
enter key. In the future, this method will also handle the

auto complete feature.

if keyCode == KeyboardListener.KEY_ENTER and \
sender == self.todoTextBox:
id = self.remote.addTask(sender.getText(),self)
sender.setText(")
if id<0:

RootPanel().add(HTM_("Server Error or Invalid

Response"))

def onClick(self, sender):
id = self.remote.deleteTask(
sender.getValue(sender.getSelectedindex()),self)
if id<0:
RootPanel().add(
HTM_("Server Error or Invalid Response"

def onRemoteResponse(self, response, request_info):
self.todoList.clear()
for task in response:
self.todoList.addltem(task[O])
self.todoList.setValue(self.todoList.getltemCount()-1

task[1])
def onRemoteError(self, code, message, request_info):
self.Status.setText("Server Error or Invalid Response: "
+ "ERROR " + code + " - " + message)
class DataService(JSONProxy):
def __init_ (self):
JSONProxy.__init__ (self, "../../default/call/jsonrpc" ,
["getTasks" , "addTask" , "deleteTask" 1)
if _name__ == ' main_'

app = TodoApp()
app.onModuleLoad()

Sixth, run Pyjamas before serving the application:

cd /path/to/todo/static/
python “/python/pyjamas-0.5p1/bin/pyjsbuild TodoApp.py

This will translate the Python code into JavaScript so thairitlme executed

in the browser.
To access this application, visit the URL

1

i

i

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

REMOTE PROCEDURE CALLS 257

http://127.0.0.1:8000/todo/default/todoApp

Credits This subsection was created by Chris Prinos with help form Luke
Kenneth Casson Leighton (creators of Pyjamas) and updated by Alexei Vini-
diktov. It has been tested by Pyjamas 0.5p1. The example was inspired by
this Django page:

http://gdwarner.blogspot.com/2008/10/brief-pyjamas-dj ango-tutorial.
html

AMFRPC

AMFRPC is the Remote Procedure Call protocol used by Flash clients to
communicate with a serveweB2pY supports AMFRPC but it requires that
you run weB2pY from source and that you preinstall the PyAMF library.
This can be installed from the Linux or Windows shell by typing

easy_install pyamf

(please consult the PyAMF documentation for more details).

In this subsection we assume that you are already familiar with Action-
Script programming.

We will create a simple service that takes two numerical values, adds
them together, and returns the sum. We will call erB2pY application
"pyamf_test”, and we will call the servicgidNumbers .

First, using Adobe Flash (any version starting from MX 2004), create the
Flash client application by starting with a new Flash FLA file. In the first
frame of the file, add these lines:
import mx.remoting.Service;
import mx.rpc.RelayResponder;
import mx.rpc.FaultEvent;

import mx.rpc.ResultEvent;
import mx.remoting.PendingCall;

var vall
var val2

23;
86;

service = new Service(
"http://127.0.0.1:8000/pyamf_test/default/call/amfrpc3" ,
null, "mydomain” , null, null);

var pc:PendingCall = service.addNumbers(vall, val2);
pc.responder = new RelayRespondert(this, "onResult" , "onFault");

function onResult(re:ResultEvent):Void {
trace(“"Result : " + re.result);
txt_result.text = re.result;

20
21
22
23
24
25
26

[N N

i

i

258 SERVICES

}

function onFault(fault:FaultEvent):Void {
trace("Fault: " + fault.fault.faultstring);
}

stop();

This code allows the Flash client to connect to a service thaésponds
to a function called "addNumbers" in the file "/pyanekt/default/gateway".
You must also import ActionScript version 2 MX remoting classes to enable
Remoting in Flash. Add the path to these classes to the classpath settings in
the Adobe Flash IDE, or just place the "mx" folder next to the newly created
file.

Notice the arguments of the Service constructor. The first argument is the
URL corresponding to the service that we want will create. The third argument
is the domain of the service. We choose to call this domain "mydomain”.

Second, create a dynamic text field called ‘x$ult" and place it on the
stage.

Third, you need to set upWEB2PY gateway that can communicate with
the Flash client defined above.

Proceed by creating a neweB2PY app callegyamt test that will host the
new service and the AMF gateway for the flash client. Edit the "default.py"
controller and make sure it contains
@service.amfrpc3('mydomain’)

def addNumbers(vall, val2):
return vall + val2

def call(): return service()

Fourth, compile and export/publish the SWF flash cliepyasf_testswf
place the "pyamtest.amf”, "pyamftest.html", "AC RunActiveContent.js",
and "crossdomain.xml" files in the "static" folder of the newly created appli-
ance that is hosting the gateway, "pyareét".

You can now test the client by visiting:

http://127.0.0.1:8000/pyamf_test/static/pyamf_test.ht ml

The gateway is called in the background when the client coanect
addNumbers.
If you are suing AMFO instead of AMF3 you can also use the decorator:

@service.amfrpc
instead of:

@service.amfrpc3('mydomain’)

In this case you also need to change the service URL to:

1

[I N R

[I N R

LOW LEVEL APl AND OTHER RECIPES 259

http://127.0.0.1:8000/pyamf_test/default/call/amfrpc

9.3 Low Level APl and Other Recipes

simplejson

WEB2PY includes gluon.contrib.simplejson, developed by Bob Ippolito. This
module provides the most standard Python-JSON encoder-decoder.
SimpleJSON consists of two functions:

® gluon.contrib.simplesjson.dumps(a) encodes a Python objegtinto
JSON.
e gluon.contrib.simplejson.loads(b) decodes a JavaScript objedhto

a Python object.

Object types that can be serialized include primitive types, lists, and dictio-
naries. Compound objects can be serialized with the exception of user defined
classes.
Here is a sample action (for example in controller "default.py") that seri-

alizes the Python list containing weekdays using this low level API:
def weekdays():

names=['Sunday’ , 'Monday' , 'Tuesday' , 'Wednesday' |,

‘T hursday' , 'Friday' ,'Saturday’]
import gluon.contrib.simplejson
return gluon.contrib.simplejson.dumps(names)

Below is a sample HTML page that sends an Ajax request to theeabov
action, receives the JSON message, and stores the list in a corresponding
JavaScript variable:

{{extend ‘layout.html' B
<script>
$.9etJISON(‘/application/default/weekdays'

function(data){ alert(data); });
</script>

The code uses the jQuery functigretison, which performs the Ajax call
and, on response, stores the weekdays names in a local JavaScript variable
data and passes the variable to the callback function. In the example the
callback function simply alerts the visitor that the data has been received.

© o N e g AN W N R

i

N

260 SERVICES

PYRTF

Another common need of web sites is that of generating Word-readable text
documents. The simplest way to do so is using the Rich Text Format (RTF)
document format. This format was invented by Microsoft and it has since
become a standard.

WEB2PY includes gluon.contrib.pyrtf, developed by Simon Cusack and re-
vised by Grant Edwards. This module allows you to generate RTF documents
programmatically including colored formatted text and pictures.

In the following example we instantiate two basic RTF classes, Document
and Section, append the latter to the former and insert some dummy text in
the latter:

def makertf():
import gluon.contrib.pyrtf as q
doc=qg.Document()
section=q.Section()
doc.Sections.append(section)

section.append('Section Title')
section.append('web2py is great. ' *100)
response.h eaders['Content-Type' = 'text/rtf'

return g.dumps(doc)

In the end the Document is serialized dylumps(doc) . Notice that before
returning an RTF document it is necessary to specify the content-type in the
header else the browser does not know how to handle the file.

Depending on the configuration, the browser may ask you whether to save
this file or open it using a text editor.

ReportLab and PDF

WEB2PY can also generate PDF documents, with an additional library called
"ReportLab"[66].

If you are runningveB2pPY from source, it is sufficient to have ReportLab
installed. If you are running the Windows binary distribution, you need to
unzip ReportLab in the "web2py/" folder. If you are running the Mac binary
distribution, you need to unzip ReportLab in the folder:

web2py.app/Contents/Resources/

From now on we assume ReportLab is installed andwhat2py can find
it. We will create a simple action called "gete a_pdf" that generates a PDF
document.

from reportlab.platypus import *

from reportlab.lib.styles import getSampleStyleSheet
from reportlab.rl_config import defaultPageSize
from reportlab.lib.units import inch, mm

5

6

7

8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

SERVICES AND AUTHENTICATION 261

from reportlab.lib.enums import TA_LEFT, TA_RIGHT, TA_CENT ER,
TA_JUSTIFY

from reportlab.lib import colors

from uuid import uuid4

from cgi import escape

import os

def get_me_a_pdf():
title = "This The Doc Title"
heading = "First Paragraph"
text = ‘'bla ' * 10000

styles = getSampleStyleSheet()

tmpfilename=os.path.join(request .folder, ‘private’ ,str(uuid4()))
doc = SimpleDocTemplate(tmpfilename)

story = []

story.append(Paragraph(escape(title),styles| "Title" 1))
story.append(Paragraph(escape(heading),styles| "Heading2" 1))
story.append(Paragraph(escape(text),styles| "Normal" 1))

story.append(Spacer(1,2 *in ch))

doc.build(story)

data = open(tmpfilename, "rb").read()
os.unlink(tmpfilename)

response.h eaders['Content-Type' = 'application/pdf'
return data

Notice how we generate the PDF into a unique temporatytfit@iename
we read the generated PDF from the file, then we deletedthe file.

For more information about the ReportLab API, refer to the ReportLab
documentation. We strongly recomment using the Platypus API of Report-
Lab, such a®aragraph , Spacer , etc.

9.4 Services and Authentication

In the previous chapter we have discussed the use of the following decorators:

@auth.requires_login()
@auth.requires_memebrship(...)
@auth.requires_permission(...)

For normal actions (not decorated as services), these decoin be
used even if the output is rendered in a format other than HTML.

For functions defined as services and decorated usingébeice...
decorators, th@auth.. decorators should not be used. The two types of
decorators cannot be mixed. If authenticaiton is to be performed, it is the
call actions that needs to be decorated:

@auth.requires_login()
def call(): return service()

262 SERVICES

Notice that it also possible to instantiate multiple service objects, regis-
ter the same different functions with them, and expose some of them with
authentication and some not:
public_services=Service(globals())
private_services=Service(globals())

@public_service.jsonrpc
@private_service.jsonrpc
def f(): return 'public’

@private_service.jsonrpc
def g(): return 'private’

def public_call(): return public_service()

@auth.requires_login()
def private_call(): return private_service()
This assumes that the caller is passing credentials in the HiE&Ber (a
valid session cookie or using basic authentication, as discussed in the previous
section). The client must support it; not all clients do.

i

CHAPTER 10

AJAX RECIPES

While weB2pY is mainly for server-side development, it comes with the base
jQuery library [31], jQuery calendars (date picker, datetime picker and clock)
and some additional JavaScript functions based on jQuery.

Nothing in WEB2PY prevents you from using other Ajax [67] libraries
such as Prototype, Scriptaculous or ExtJS but we decided to package jQuery
because we find it to be easier to use and more powerful than any other
equivalent libraries. We also find it captures twes2pry spirit of being
functional and concise.

10.1 web2py _ajax.html

The scaffoldingweB2pPY application "welcome" includes a file called
views/web2py_ajax.html

This file is included in the HEAD of the default "layout.htmlI"dit provides
the following services:

WEB2PY: Enterprise Web Framework / 2nd Bl.Massimo Di Pierro 263
Copyright(C) 2009

L N

264

AJAX RECIPES

Includesstaticijquery.js

Includesstatic/calendar.js andstatic/calendar.css , if they exist.
Defines aopup function.

Defines aollapse function (based on jQuery slideToggle).
Defines aade function (based on jQuery fade).

Defines anjax function (based on jQuery.ajax).

Makes any DIV of class "error" or any tag object of class "flash" slide
down.

Prevents typing invalid integers in INPUT fields of class "integer".
Prevents typing invalid floats in INPUT fields of class "double".
Connects INPUT fields of type "date" with a popup date picker.
Connects INPUT fields of type "datetime" with a popup datetime picker.

Connects INPUT fields of type "time" with a popup time picker.

popup, collapse , andfade are included only for backward compatibility,
and are not discussed here.

Here is an an example of how the other effects play well together.

Consider aestapp with the following model:

db = DAL(" sqlite://db.db")
db.define_table('mytable’
Fi el d('field_integer' , 'integer'),
Fi el d('field_date' , 'date’),
Fi el d('field_datetime' , 'datetime'),
Fi el d('field_time' , 'time')
with this "default.py" controller:
def index():
form = SQLFORM db.mytable)
if form.accepts(request .vars, session):
response.f lash = ‘'record inserted'
return dict(form=form)

and the following "default/index.html" view:

1 {{extend ‘'layout.html}}
2 {{=form}}

WEB2PY_AJAX.HTML 265

The "index" action generates the following form:

allalla) ({test/default/index =
@ - @ 4% @ http://127.0.0.1:8000 /test v Pl 5
Field integer: |
Field date: l
Field datetime: |
Field time: |
Submitl

Powered by webzpy (TM) created by Massimo Di Pierro © 2oo7, 2008

P4

If an invalid form is submitted, the server returns the paga wimodified
form containing error messages. The error messages are DIVs of class
"error", and because of the above web2jgx code, the errors appears with
a dide-down effect:

(alala) [test/default/index (]
@ - @ @Y @ htp://127.0.0.1:8000 /test vl £
Field integer:
Field date:
must be YYYY-MM-DD!
Field datetime:
must be YYYY-MM-DD HH:MM:SS!
Field time: |
must be HH:MM:SS!
Submit |

Powered by webzpy (TM) created by Massimo Di Pierro € zoo7, 2008
P

The color of the errors is given in the CSS code in "layout.html"

266 AJAX RECIPES

The web2pyajax code prevents you from typing an invalid value in the
input field. This is done before and in addition to, not as a substitute for, the
server-side validation.

The web2pyajax code displays a date picker when you enter an INPUT
field of class "date", and it displays a datetime picker when you enter an
INPUT field of class "datetime". Here is an example:

a6 Jtest/default/index =
- [4% @ hup://127.0.0.1:8000 /test v | 3
Field integer: |
Field date: |
Field datetime: |

Fiddtime: | 7 |ETT TR ~ |
wk | Sun Mon Tue Wed Thu Fri Sat
26| i 3 3 4 &
Powereds| 22| 6 7 8 © 10 11 12 h@ 2007, 2008
28| 13 14 15 16 17 18 19
28] 20 21 22[23 24 25 26
30/ 27 28 29 30 31

Time: :

The web2pyajax code also displays the following time picker when you
try to edit an INPUT field of class "time™:

WEB2PY_AJAX.HTML 267

806 Jtest/default/index
@ - e 2% @ htp://127.0.0.1:8000/test v p 2
Field integer: | ________
Wi
Field date: I— 12

1
2
Fie]ddateﬁme:l :i :g
Fieldtime: [g5 ¢
GREI 71w
Submit 645 3]
2]
1

oo
Powered by webzpy (TM) creatéd by Massimo Di Pierro € 2007, 2008

P

Upon submission, the controller action sets the responsettiable mes-
sage "record inserted". The default layout renders this message in a DIV with
id="flash". The web2pyjax code is responsible for making this DIV slide
down and making it disappear when you click on it:

[alalla) {test/default/index

- (e @t @ hip://127.0.0.1:8000/test v

Field integer: |
Field date: |
Field datetime: |

2

Field time: |

Submitl

Powered by webzpy (TM) created by Massimo Di Pierro © zoo7, 2008

P4

These and other effects are accessible programmatically ivi¢ghwvs and
via helpers in controllers.

i

268 AJAX RECIPES

10.2 jQuery Effects

Using jQuery effects is very easy. Here we describe how to do it.

The basic effects described here do not require any additional files; every-
thing you need is already included for you by webZyjsx.html.

HTML/XHTML objects can be identified by their type (for example a
DIV), their classes, or their id. For example:

<div class= "one" id= "a" >Hello</div>

2 <div class= "two" id="b" >World</div>

B oW N R

- W ON e

i

N

[N R

They belong to class "one" and "two" respectively. They haseglal to
"a" and "b" respectively.

In jQuery you can refer to the former with the following a CSS-like equiv-
alent notations

jQuery(‘.one') /I address object by class "one"

jQuery(‘#a') /I address object by id "a"

jQuery('DIV.one') // address by object of type "DIV" with class "one"
jQuery('DIV #a') /I address by object of type "DIV" with id "a"

and to the latter with

jQuery(“two')
jQuery(#b")
jQuery('DIV.two')
jQuery(DIV #b')

or you can refer to both with
jQuery('DIV')

Tag objects are associated to events, such as "onclick". yQallews
linking these events to effects, for example "slideToggle":
<div class= "one" id="a" onclick=""jQuery('.two').slideToggle()" >Hello

</div>
<div class= “two" id= "b" >World</div>

Now if you click on "Hello", "World" disappears. If you click ain,
"World" reappears.

You can also link actions to events outside the tag itself. The previous code
can be rewritten as follows:
<div class= "one" id= "a" >Hello</div>
<div class= "two" id= "b" >World</div>
<script>

jQuery(‘.one').click(function(){jQuery("two').slideToggle()});
</script>

Effects return the calling object, so they can be chained.
When theciick sets the callback function to be called on click. Similarly
for change , keyup , keydown , mouseover , €tc.

N o o w NP

JQUERY EFFECTS 269

A common situation is the need to execute some JavaScript code only
after the entire document has been loaded. This is usually done by the onload
attribute of BODY but jQuery provides an alternative way that does not require
editing the layout:

<div class= "one" id="a" >Hello</div>
<div class= "two" id= "b" >World</div>
<script>
jQuery(document).ready(function(){
jQuery(‘.one').click(function(){jQuery("two').slideToggle()});
i

</script>

The body of the unnamed function is executed only when the denti®
ready, after it has been fully loaded.
Here is a list of useful event names:

Form Events
e onchange: Script to be run when the element changes
e onsubmit: Script to be run when the form is submitted
e onreset: Script to be run when the form is reset
e onselect: Scriptto be run when the element is selected
e onblur: Script to be run when the element loses focus

e onfocus: Script to be run when the element gets focus

Keyboard Events
e onkeydown: Script to be run when key is pressed
e onkeypress: Script to be run when key is pressed and released

e onkeyup: Script to be run when key is released

Mouse Events
e onclick: Script to be run on a mouse click
e ondbilclick: Scriptto be run on a mouse double-click
e onmousedown: Script to be run when mouse button is pressed
e onmousemove: Script to be run when mouse pointer moves

e onmouseout: Script to be run when mouse pointer moves out of an
element

270 AJAX RECIPES

e onmouseover: Script to be run when mouse pointer moves over an
element

e onmouseup: Script to be run when mouse button is released

Here is a list of useful effects defined by jQuery:

Effects

e jQuery(...).attr(name): Returns the name of the attribute value
e jQuery(...).attr(name, value): Sets the attribute name to value
e jQuery(...).show(): Makes the object visible
e jQuery(...).hide(): Makes the object hidden

e jQuery(...).slideToggle(speed, callback): Makes the object slide up or
down

e jQuery(...).slideUp(speed, callback): Makes the object slide up
e jQuery(...).slideDown(speed, callback): Makes the object slide down
e jQuery(...).fadeln(speed, callback): Makes the object fade in

e jQuery(...).fadeOut(speed, callback): Makes the object fade out

The speed argument is usually "slow", "fast" or omitted (the default). The
callback is an optional function that is called when the effect is completed.

jQuery effects can also easily be embedded in helpers, for example, in a
view:

1 {{= DI V(' click me!" , _onclick= "jQuery(this).fadeOut()" Ny

jQuery is a very compact and concise Ajax library; therefares2py
does not need an additional abstraction layer on top of jQuery (except for the
ajax function discussed below). The jQuery APIs are accessible and readily
available in their native form when needed.

Consult the documentation for more information about these effects and
other jQuery APIs.

The jQuery library can also be extended using plugins and User Interface
Widgets. This topic is not covered here; see ref. [69] for details.

JQUERY EFFECTS 271

Conditional Fields in Forms

A typical application of jQuery effects is a form that changes its appearance
based on the value of its fields.

This is easy i'weEB2PY because the SQLFORM helper generates forms
that are "CSS friendly". The form contains a table with rows. Each row
contains a label, an input field, and an optional third column. The items have
ids derived strictly from the name of the table and names of the fields.

The convention is that every INPUT field has a name equahlxe-
namefieldnameand is contained in a row call¢dblenamefieldname_row.

As an example, create an input form that asks for a taxpayer's name and
for the name of the taxpayer’s spouse, but only if he/she is married.

Create a test application with the following model:

1 db = DAL(' sqlite://db.db’)
2> db.define_table(‘taxpayer'

3 Fi el d('name'),

4 Fi el d('married’ , ‘'boolean’),
5 Fi el d('spouse_name'))

the following "default.py" controller:

1 def index():

2 form = SQLFORM db.taxpayer)

3 if form.accepts(request .vars, session):
4 response.f lash = ‘record inserted'

5 return dict(form=form)

and the following "default/index.html" view:

1 {{extend ‘layout.html' B

2 {{=form}}

3 <script>

4 jQuery(document).ready(function(){

5 jQuery(‘#taxpayer_spouse_name__row').hide();

6 jQuery(‘#taxpayer_married').change(function(){

7 if(iQuery(‘#taxpayer_married').attr(‘checked')
8 jQuery(‘#taxpayer_spouse_name__row').show();
9 else jQuery(‘'#taxpayer_spouse_name__row)-hide();});
10 });

1 </script>

The script in the view has the effect of hiding the row containihe
spouse’s name:

272 AJAX RECIPES

(alals) [test/default/index =
& - (e} % @ hrp://127.0.0.1:8000/test v |
Name: |
Married: []
Submitl

Powered by webzpy (TM) created by Massimo Di Pierro © 2007, 2008

R

When the taxpayer checks the "married" checkbox, the sponaeis field
reappears:

606 Jtest/default/index (=)
@ - & 4% @ htp://127.0.0.1:8000 /test v B 3
Name: |
Married: [
Spouse name: |
Submitl

Powered by webzpy (TM) created by Massimao Di Pierro © 2007, 2008

R

Here "taxpayemarried" is the checkbox associated to the "boolean" field

"married" of table "taxpayer". "taxpayespousename_row" it the row con-
taining the input field for "spousaame" of table "taxpayer".

Confirmation on Delete

Another useful application is requiring confirmation when checking a "delete"

checkbox such as the delete checkbox that appears in edit forms.
Consider the above example and add the following controller action:
def edit():

2 row = db(db.taxpayer.id== r equest .args[0]).select()[0]
3 form = SQLFORM db.taxpayer, row, deletable=True)

i

JQUERY EFFECTS 273

4 if form.accepts(request.vars, session):
5 response.f lash = ‘record updated'
6 return dict(form=form)

and the corresponding view "default/edit.html"

1 {{extend ‘layout.html' B
2 {{=form}}

Thedeletable=True ~ argumentin the SQLFORM constructor instrustsB2pPY
to display a "delete" checkbox in the edit form.
WEB2PY’S "web2pyajax.html" includes the following code:

1 jQuery(document).ready(function(){

2 jQuery('input.delete’).attr(‘onclick’ ,

3 'if(this.checked) if(!confirm(

4 "{ {=T(" Sure you want to delete this object? M)
5 th is.checked=false;');

s I

By convention this checkbox has a class equal to "delete". Query
code above connects the onclick event of this checkbox with a confirmation
dialog (standard in JavaScript) and unchecks the checkbox if the taxpayer
does not confirm:

[8) /test/default/edit e |
“ 9 The page at http://127.0.0.1:8000 says: =~
e h“F You want to delete this record? 0| i
(Cancel) € 0K)
Recon
Name: Massimo
b

Married: v

Wife name: ICIaudia

Check to delete: [«

Submitl

Powered by webzpy (TM) ereated by Massimo Di Pierro © 2007, 2008

£

i

[N N

[N N

274 AJAX RECIPES

10.3 The ajax Function

In web2pyajax.html,weB2pPY defines a function callegax which is based
on, but should not be confused with, the jQuery funciaax . The latter
is much more powerful than the former, and for its usage, we refer you to
ref. [31] and ref. [68]. However, the former function is sufficient for many
complex tasks, and is easier to use.

Theajax function is a JavaScript function that has the following syntax:

ajax(url, [id1, id2, ...], target)

It asynchronously calls the url (first argument), passes theeseof the
fields with the id equal to one of the ids in the list (second argument), then
stores the response in the innerHTML of the tag with the id equal to target
(the third argument).

Here is an example of @fault controller:

def one():
return dict()

def echo():
return request . vars.name

and the associated "default/one.html" view:

{{extend ‘layout.html’ B
<form>

<input id= "name" onkeyup= "ajax(‘echo’, ['name], 'target’)" />
</form>

<div id= "target" ></div>

When you type something in the INPUT field, as soon as you rekekeg
(onkeyup), thesjax function is called, and the value of themame" field is
passed to the action "echo”, which sends the text back to the viewsjakhe
function receives the response and displays the echo response in the "target"
DIV.

Eval target

The thrid argument of the ajax function can be the string ":eval". This means
that the string returned by server will not be embedded in the document but
it will be evaluated instead.

Here is an example of @fault controller:

def one():
return dict()

def echo():
return "jQuery(‘#target’).html(%s);" % repr(request. vars.name)

THE AJAX FUNCTION 275

and the associated "default/one.html" view:

1 {{extend ‘layout.html' B
2 <form>

3 <input id= "name" onkeyup= "ajax(‘echo’, ['name’], "eval’)" />
4 <[form>

5 <div id= "target" ></div>

This allows for more articulated responses than simple string

Auto-completion

Another application of the abowgx function is auto-completion. Here we
wish to create an input field that expects a month name and, when the visitor
types an incomplete name, performs auto-completion via an Ajax request. In
response, an auto-completion drop-box appears below the input field.

This can be achieved via the followimgfauit controller:

def month_input():
return dict()

def month_selector():
if not request. vars.month:
return
months = [‘January’ , ‘'February’ , 'March' , 'April , 'May' ,
‘J une' , ‘July’ , ‘'August , 'September , '‘October’
‘N ovember' , 'December']
10 selected = [m for m in months \
1 if m.startswith(r equest .vars.month.capitalize())]
12 return " join([DI V(k,
13 _onclick=" "jQuery(#month').val('%s")" % kK,
14 _onmouseover= "this.style.backgroundColor="yellow" ,
15 _onmouseout= “this.style.backgroundColor='white™"
16).xml() for k in selected])

© ©® N o O s W NP

and the corresponding "default/montiput.html” view:

{{extend 'layout.html' B

<style>

#suggestions { position: relative; }

.suggestions { background: white; border: solid 1px #55A6C8; }
.suggestions DIV { padding: 2px 4px 2px 4px; }

</style>

<form>

<input type= “text" id= "month" style= "width: 250px" [>

10 <div style= "position: absolute;" id= "suggestions"

1 class= "suggestions" ></div>

</form>

13 <script>

14 jQuery("#month").keyup(function(){

15 ajax('complete’ , ['month'], 'suggestions' ;i

16 </script>

© ©® N o s W NP

1

w N

=

276 AJAX RECIPES

The jQuery script in the view triggers the Ajax request each time the
visitor types something in the "month" input field. The value of the input
field is submitted with the Ajax request to the "morglector” action. This
adion finds a list of month names that start with the submitted text (selected),
builds a list of DIVs (each one containing a suggested month name), and
returns a string with the serialized DIVs. The view displays the response
HTML in the "suggestions" DIV. The "montkelector" action generates both
the suggestions and the JavaScript code embedded in the DIVs that must be
executed when the visitor clicks on each suggestion. For example when the
visitor types "Ma" the callback action returns:

1 <div onclick= "jQuery(‘#month').val('February')"
2 onmouseout= "this.style.backgroundColor='white"
3 onmouseover= "this.style.backgroundColor="yellow" >February</div>

Here is the final effect:

ee8 [test/default/ month_input =)

e ;_ =N : -) T
@: @ w X O http://127.0.0.1:8000/test/default/mo EI’

March
March

d by Massimo Di Pierro © zoo7, 2008

If the months are stored in a database table such as:
1 db.define_table('month’ , Fi el d(' name'))

then simply replace th@mth selector ~ action with:

def month_input():
return dict()

1

2

3

4 def month_selector():
5 it not request. vars.month:
6

7

8

return
pattern = request .vars.month.capitalize() + %'
selected = [row.name for row in db(db.month.name.like(patte mn)).
select()]
9 return " join([DI V(k,
10 _onclick=" "jQuery(#month").val('%s")" % k,
11 _onmouseover= "this.style.backgroundColor="yellow" ,
12 _onmouseout= "this.style.backgroundColor="white"
13).xml() for k in selected])

jQuery provides an optional Auto-complete Plugin with addhisil func-
tionalities, but that is not discussed here.

w N e

© ©® N o g A W N R

© ©® N o O A W NP

[
15

1
13
14
15
1

)

=

THE AJAX FUNCTION 277

Form Submission

Here we consider a page that allows the visitor to submit messages using
Ajax without reloading the entire page. It contains a form "myform" and
a "target" DIV. When the form is submitted, the server may accept it (and
perform a database insert) or reject it (because it did not pass validation). The
corresponding notification is returned with the Ajax response and displayed
in the "target” DIV.

Build atest application with the following model:

db = DAL(' sqlite://db.db’)
db.define_table('post’ , Field('your_message' , 'text))
db.post.your_message.requires = I'S_NOT_EMPTY()

Notice that each post has a single field "yooessage" that is required to
benot-empty.
Edit thedefault.py ~ controller and write two actions:

def index():
return dict()

def new_post():
form = SQLFORM db.post)
if form.accepts(request .vars, formname=None):
return Dl V(" Message posted")
elif form.errors:
return TABLE(*[TR(k, v) for k, v in form.errors.items()])

The first action does nothing other than return a view.

The second action is the Ajax callback. It expects the form variables
in requestvars , processes them and returns/("Message posted) upon
success or aaBLE Of error messages upon failure.

Now edit the "default/index.html" view:

{{extend 'layout.html' B
<div id= "target" ></div>
<form id= "myform" >
<input name= "your_message" id= "your_message" />
<input type= ‘"submit" />
</form>
<script>
jQuery(‘#myform').submit(function() {
ajax('{{=URL(r=request, f=' new_post)}
['your_message'], ‘target');
return false;
bk
</script>

Notice how in this example the form is created manually usingViHT
but it is processed by the SQLFORM in a different action than the one that

278 AJAX RECIPES

displays the form. The SQLFORM object is never serialized in HTML.
SQLFORM.accepts N this case does not take a session andf&@igme=None ,
because we chose not to set the form name and a form key in the manual
HTML form.

The script at the bottom of the view connects the "myform" submit button
to an inline function which submits the INPUT wiid"your _message” using
the WEB2PY ajax function, and displays the answer inside the DIV with
id="target"

Voting and Rating

Another Ajax application is voting or rating items in a page. Here we consider
an application that allows visitors to vote on posted images. The application
consists of a single page that displays the images sorted according to their vote.
We will allow visitors to vote multiple times, although it is easy to change
this behavior if visitors are authenticated, by keeping track of the individual
votes in the database and associating them with the request.env.ahdote
of the voter.
Here is a sample model:
1 db = DAL(' sqlite://images.db’)
2> db.define_table('item'

3 Fi el d('image' , ‘upload),
4 Fi el d('votes' , ‘integer' , default=0))

Here is thedefaut controller:

1 def list_items():

2 items = db().select(db.item.ALL, orderby="db.item.votes)
3 return dict(items=items)

4

s def download():

6 return response. download(request, db)

7

s def vote():

9 item = db(db.item.id== r equest .vars.id).select()[0]
10 new_votes = item.votes + 1

1 item.update_record(votes=new_votes)

12 return str(new_votes)

The download action is necessary to allow theiliems view to download
images stored in the "uploads" folder. The votes action is used for the Ajax
callback.

Here is the "default/listtems.html" view:

1 {{extend ‘layout.html' B

3 <form><input type= "hidden" id= "id" value= "™ /[></form>
4 {{for item in items:}}

1
1
1

© © N o O

1
2

w

THE AJAX FUNCTION 279

<p>
<img src= "{{=URL(r=request, f="download', args=item.image)}}"
width= "200px" />

Votes={{=item.votes}}
[<span onclick= "jQuery(*#id").val('{{=item.id}}");
aj ax('vote', [id], ‘item{{=item.id}}");" >vote up]
</p>
{{pass}}

When the visitor clicks on "[vote up]" the JavaScript codeesdhe item.id
in the hidden "id" INPUT field and submits this value to the server via an
Ajax request. The server increases the votes counter for the corresponding
record and returns the new vote count as a string. This value is then inserted
in the targetitem {{=item.id }}" SPAN.

Ajax callbacks can be used to perform computations in the back-
ground, but we reccomment using CRON instead (discussed in
chapter 4), since the web server enforces a timeout on threads.
If the computation takes too long, the web server Kills it. Refer
to your web server parameters to set the timeout value.

CHAPTER 11

DEPLOYMENT RECIPES

There are multiple ways to deployeB2PY in a production environment; the
details depend on the configuration and the services provided by the host.
In this chapter we consider the following issues:

e Configuration of production-quality web servers (Apache, Lighttpd,
Cherokee)

e Security Issues
e Scalability issues

e Deployment on the Google App Engine (GAE [12])

WEB2PY comes with an SSL [20] enabled web server, the CherryPy ws-
giserver [21]. While this is a fast web server, it has limited configuration
capabilities. For this reason itis best to deploys2pry behind Apache [71],
Lighttpd [75] or Cherokee [76]. These are free and open-source web servers
that are customizable and have been proven to be reliable in high traffic pro-
duction environments. They can be configured to serve static files directly,
deal with HTTPS, and pass controlweEs2py for dynamic content.

WEB2PY: Enterprise Web Framework / 2nd Bl.Massimo Di Pierro 281
Copyright(C) 2009

282 DEPLOYMENT RECIPES

Until a few years ago, the standard interface for communication be-
tween web servers and web applications was the Common Gateway Interface
(CGI) [70]. The main problem with CGI is that it creates a new process
for each HTTP request. If the web application is written in an interpreted
language, each HTTP request served by the CGI scripts starts a new instance
of the interpreter. This is slow, and it should be avoided in a production
environment. Moreover, CGI can only handle simple responses. It cannot
handle, for example, file streaming.

WEB2PY provides a filenodpythonhandler.py to interface to CGl.

One solution to this problem is to use the magthon module for Apache.
mod_python starts one instance of the Python interpreter whentgstarts,
and serves each HTTP request in its own thread without having to restart
Python each time. This is a better solution than CGlI, but it is not an op-
timal solution, since magbython uses its own interface for communication
between the web server and the web application. In mython, all hosted
aplications run under the same user-id/group-id, which presents security
issues.

WEB2PY provides a filexgihandlerpy to interface to mogoython.

In the last few years, the Python community has come together behind
a new standard interface for communication between web servers and web
applications written in Python. It is called Web Server Gateway Interface
(WSGI) [17, 18]. wEB2PY was built on WSGI, and it provides handlers for
using other interfaces when WSGI is not available.

Apache supports WSGI via the module madgi [74] developed by Gra-
ham Dumpleton.

WEB2PY provides a filavsgihandlerpy to interface to WSGI.

Some web hosting services do not support madi. In this case, we must
use Apache as a proxy and forward all incoming requests towthe2pry
built-in web server (running for example on localhost:8000).

In both cases, with mad/sgi and/or modproxy, Apache can be configured
to serve static files and deal with SSL encryption directly, taking the burden
off WEB2PY.

The Lighttpd web server does not currently support the WSGI interface,
but it does support the FastCGlI [77] interface, which is an improvement over
CGI. FastCGl's main aim s to reduce the overhead associated with interfacing
the web server and CGI programs, allowing a server to handle more HTTP
requests at once.

According to the Lighttpd web site, "Lighttpd powers several popular Web
2.0 sites such as YouTube and Wikipedia. Its high speed IO-infrastructure
allows them to scale several times better with the same hardware than with

283

alternative web-servers". Lighttpd with FastCGl s, in fact, faster than Apache
with mod wsgi.

WEB2PY provides a filecgihandler.py to interface to FastCGl.

WEB2PY also includes @aehandierpy to interface with the Google App
Engine (GAE). On GAE, web applications run "in the cloud". This means
that the framework completely abstracts any hardware details. The web
application is automatically replicated as many times as necessary to serve
all concurrent requests. Replication in this case means more than multiple
threads on a single server; it also means multiple processes on different
servers. GAE achieves this level of scalability by blocking write access to
the file system and all persistent information must be stored in the Google
BigTable datastore or in memcache.

On non-GAE platforms, scalability is an issue that needs to be addressed,
and it may require some tweaks in tme&B2PY applications. The most
common way to achieve scalability is by using multiple web servers behind
a load-balancer (a simple round robin, or something more sophisticated,
receiving heartbeat feedback from the servers).

Even if there are multiple web servers, there must be one, and only one,
database server. By defaultEB2pPY uses the file system for storing sessions,
error tickets, uploaded files, and the cache. This means that in the default
configuration, the corresponding folders have to be shared folders:

CE
\

Shared Folder

Samba or NFS
(sessions, errors, cache, uploads)

In the rest of the chapter, we consider various recipes thafarmgde an
improvement over this naive approach, including:

e Store sessions in the database, in cache or do not store sessions at all.

= B oW N R ~N o g~ W N P

i

i

284 DEPLOYMENT RECIPES

e Store tickets on local filesystems and move them into the database in
batches.

e Use memcache instead of cache.ram and cache.disk.
e Store uploaded files in the database instead of the shared filesystem.

While we recommend following the first three recipes, the fourth recipe
may provide an advantage mainly in the case of small files, but may be
counterproductive for large files.

11.1 Setup Apache on Linux

In this section, we use Ubuntu 8.04 Server Edition as the reference platform.
The configuration commands are very similar on other Debian-based Linux
distribution, but they may differ for Red Hat-based systems.

First, make sure all the necessary Python and Apache packages are installed
by typing the following shell commands:

sudo apt-get update

sudo apt-get -y upgrade

sudo apt-get -y install openssh-server

sudo apt-get -y install python

sudo apt-get -y install python-dev

sudo apt-get -y install apache2

sudo apt-get -y install libapache2-mod-wsgi
Then, enable the SSL module, the proxy module, and the WSGI imodu

in Apache:

sudo a2enmod ssl

sudo a2enmod proxy

sudo a2enmod proxy_http
sudo a2enmod wsgi

Create the SSL folder, and put the SSL certificates inside it:
sudo mkdir /etc/apache2/ssl
You should obtain your SSL certificates from a trusted Certiiéauthority
such as verisign.com, but, for testing purposes, you can generate your own

self-signed certificates following the instructions in ref. [73]
Then restart the web server:

sudo /etc/init.d/apache2 restart

The Apache configuration file is:

letc/apache?2/sites-available/default

i

EN I

i

© o N e g A W N R

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

SETUP MOD_WSGI ON LINUX 285

The Apache logs are in:
Ivar/log/apache2/

11.2 Setup mod _wsgi on Linux

Download and unzipvEB2pPY source on the machine where you installed the
web server above.

InstallWEB2PY underusersmww-data/ , for example, and give ownership
to user www-data and group www-data. These steps can be performed with
the following shell commands:

cd /users/www-data/

sudo wget http://web2py.com/examples/static/web2py_src. zip
sudo unzip web2py_src.zip

sudo chown -R www-data:www-data /user/www-data/web2py

To set upwEB2PY with mod.wsgi, create a new Apache configuration file:

letc/lapache?2/sites-available/web2py

and include the following code:

<VirtualHost *:8 0>
ServerName web2py.example.com
WSGIDaemonProcess web2py user=www-data group=www-data
display-name=%{GROUP}
WSGIProcessGroup web2py
WSGIScriptAlias / /users/www-data/web2py/wsgihandler.py

<Directory /users/www-data/web2py>
AllowOverride None
Order Allow,Deny
Deny from all
<Files wsgihandler.py>
Allow from all
<[Files>
</Directory>

AliasMatch “/(["/]+)/static/(. *)
lusers/www-data/web2py/applications/$1/static/$2
<Directory /users/www-data/web2py/applications/ * /s tatic/>

Order Allow,Deny
Allow from all
</Directory>

<Location /admin>
Deny from all
</Location>

<LocationMatch “/([*/]+)/appadmin>
Deny from all

30
31
32
33
34

i

i

i

286 DEPLOYMENT RECIPES

</LocationMatch>

CustomLog /private/var/log/apache2/access.log common

ErrorLog /private/var/log/apache2/error.log
</VirtualHost>

When you restart Apache, it should pass all the requests toyweiti2out
going through the CherryPy wsgiserver.

Here are some explanations:

WSGIDaemonProcess web2py user=www-data group=www-data

display-name=%{GROUP}
defines a daemon process group in context of "web2py.exarapié.cBy
defining this inside of the virtual host, only this virtual host, including any
virtual host for same server name but on a different port, can access this using
WSGIProcessGroup. The "user"and "group” options should be set to the user
who has write access to the directory wheres2py was setup. You do not
need to set "user" and "group” if you made thes2py installation directory
writable to the user that Apache runs as by default. The "display-name"
option is so that process name appears in "ps" output as "(wsgi:web2py)"
instead of as name of Apache web server executable. As no "processes"
or "threads" options specified, the daemon process group will have a single
process with 15 threads running within that process. This is usually more
than adequate for most sites and should be left as is. If overriding it, do not
use "processes=1" as doing so will disable any in browser WSGI debugging
tools that check the "wsgi.multiprocess" flag. This is because any use of
the "processes" option will cause that flag to be set to true, even if a single
process and such tools expect that it be set to false. Note that if your own
application code or some third party extension module you are using with
Python is not thread safe, instead use options "processes=5 threads=1". This
will create five processes in the daemon process group where each process
is single threaded. You might consider using "maximum-requests=1000" if
your application leaks Python objects through inability for them to be garbage
collected properly.

WSGIProcessGroup web2py

delegates running of all WSGI applications to the daemon gogeup that
was configured using the WSGIDaemonProcess directive.

WSGlIScriptAlias / /users/www-data/web2py/wsgihandler.py

mounts theweB2pPy application. In this case it is mounted at the root of the
web site. Not known how to getEB2pY to mount at a sub URL as doesn"t
appear to be agood WSGI citizen and work out where itis mounted from value
of SCRIPTNAME and then automatically adjust everything appropriately
without further manual user configuration.

SETUP MOD_WSGI ON LINUX 287

1 <Directory /users/www-data/web2py>
2
3 </Directory>

gives Apache permission to access the WSGI script file.

<Directory /users/www-data/web2py/applications/ * /s tatic/>
Order Allow,Deny
Allow from all

</Directory>

AW N R

Instructs Apache to bypass web2py when sering static files.

1 <Location /admin>
> Deny from all
3 </Location>

and

1 <LocationMatch “/([*/]+)/appadmin>
> Deny from all
3 </LocationMatch>

block public access tadmin andappadmin

Normally would just allow permission to the whole directory the WSGI
script file is located in, but cant do that withes2PY, as it places the WSGI
script file in a directory which contains other source code, including the file
containing the admin interface password. Opening up the whole directory
would cause security issues, because technically Apache would be given
permission to serve all the files up to a user if there was any way of traversing
to that directory via a mapped URL. To avoid security problems, explicitly
deny access to the contents of the directory, except for the WSGI script file
and prohibit a user from doing any overrides from a .htaccess file to be extra
safe.

You can find a completed, commented, Apache wsgi configuration file in:

i

scripts/web2py-wsgi.conf

This section was created with help from Graham Dumpleton,ldpee of
mod wsgi.

mod_wsgi and SSL

To force some applications (for exam@dmin andappadmin) to go over
HTTPS, store the SSL certificate and key files:

1 /etc/apache?2/ssl/server.crt
2 [etc/apache2/ssl/server.key

and edit the Apache configuration fileb2py.conf and append:

288 DEPLOYMENT RECIPES

1 <VirtualHost *:4 43>

2 ServerName web2py.example.com

3 SSLEngine on

4+ SSLCertificateFile /etc/apache2/ssl/server.crt

s SSLCertificateKeyFile /etc/apache2/ssl/server.key
6

7

8

9

WSGIProcessGroup web2py
WSGIScriptAlias / /users/www-data/web2py/wsgihandler.py

11 <Directory /users/www-data/web2py>

12 AllowOverride None
13 Order Allow,Deny

14 Deny from all

15 <Files wsgihandler.py>
16 Allow from all

17 </Files>

18 </Directory>

20 AliasMatch “/([/]+)/static/(. *) | users/www-data/web2py/
applications/$1/static/$2

21

22 <Directory /users/www-data/web2py/applications/ *[s tatic/>

23 Order Allow,Deny

24 Allow from all

25 </Directory>

27 CustomLog /private/var/log/apache2/access.log common
28 ErrorLog /private/var/log/apache2/error.log

30 </VirtualHost>

Restart Apache and you should be able to access:

https://www.example.com/admin
https://www.example.com/examples/appadmin
http://www.example.com/examples

w N e

but not;

http://www.example.com/admin
http://www.example.com/examples/appadmin

Noe

11.3 Setup mod _proxy on Linux

Same Unix/Linux distributions can run Apache, but do not support msdi.
In this case, the simplest solution is to run Apache as a proxy and have Apache
deal with static files only.

Here is a minimalist Apache configuration:

NameVirtualHost *:80
deal with requests on port 80

Noe

SETUP MOD_PROXY ON LINUX 289

3 <VirtualHost *:8 0>

4 Alias / /users/www-data/web2py/applications

5 ## serve static files directly

6 <LocationMatch "“lwelcome/static/. x>
7 Order Allow, Deny

8 Allow from all

9 </LocationMatch>

10 ### proxy all the other requests

1 <Location "/welcome" >

12 Order deny,allow

13 Allow from all

14 ProxyPass http://localhost:8000/welcome

15 ProxyPassReverse http://localhost:8000/

16 </Location>

17 LogFormat "%h %l %u %t "%r" %>s %b" common
18 CustomLog /var/log/apache2/access.log common

19 </VirtualHost>

The above script exposes only the "welcome" application. pos& other
applications, you need to add the corresponding <Location>...</Location>
with the same syntax as done for the "welcome" app.

The script assumes there isv&@B2PY server running on port 8000. Before
restarting Apache, make sure this is the case:

1 nohup python web2py.py -a '<recycle>' -i 127.0.0.1 -p 8000 &

You can specify a password with the option or use the "<recycle>"
parameter instead of a password. In the latter case, the previously stored
password is reused and the password is not stored in the shell history.

You can also use the parameter "<ask>", to be prompted for a password.

Thenohup commands makes sure the server does not die when you close
the shell.nohup logs all output intahohup.out

To force admin and appadmin over HTTPS use the following Apache
configuration file instead:

1 NameVirtualHost *:80
2 NameVirtualHost *:4 43

3 ### deal with requests on port 80
4 <VirtualHost *:8 0>

5 Alias / /usres/www-data/web2py/applications

6 ### admin requires SSL

7 <LocationMatch ““ladmin" >

8 SSLRequireSSL

9 </LocationMatch>

10 ### appadmin requires SSL

1 <LocationMatch "“lwelcome/appadmin/. x>
12 SSLRequireSSL

13 </LocationMatch>

14 ### serve static files directly

15 <LocationMatch "“lwelcome/static/. x>
16 Order Allow,Deny

17 Allow from all

18 </LocationMatch>

290 DEPLOYMENT RECIPES

19 ### proxy all the other requests

20 <Location "/welcome" >

21 Order deny,allow

22 Allow from all

23 ProxyPass http://localhost:8000/welcome

24 ProxyPassReverse http://localhost:8000/

25 </Location>

26 LogFormat "%h %l %u %t "%r" %>s %b" common
27 CustomLog /var/log/apache2/access.log common

28 </VirtualHost>
29 <VirtualHost *:4 43>
30 SSLEngine On

31 SSL CertificateFile /etc/apache2/ssl/server.crt

32 SSL CertificateKeyFile /etc/apache2/ssl/server.key

33 <Location "/* >

34 Order deny,allow

35 Allow from all

36 ProxyPass http://localhost:8000/

a7 ProxyPassReverse http://localhost:8000/

38 </Location>

39 LogFormat "%h %l %u %t \"%r\" %>s %b" common
40 CustomLog /var/log/apache2/access.log common

41 </VirtualHost>

The administrative interface must be disabled wherB2pry
runs on a shared host with mgatoxy, or it will be exposed to
other users.

11.4 Start as Linux Daemon

Unless you are using mogsgi, you should setup theEB2PY server so that
it can be started/stopped/restarted as any other Linux daemon, and so it can
start automatically at the computer boot stage.
The process to set this up is specific to various Linux/Unix distributions.
In the wEB2PY folder, there are two scripts which can be used for this
purpose:
1 scripts/iweb2py.ubuntu.sh
2 scripts/web2py.fedora.sh
On Ubuntu and other Debian-based Linux distributions, editgbript
"web2py.ubuntu.sh" and replace the "/usr/lib/web2py" path with the path of
your wEB2PY installation, then type the following shell commands to move
the file into the proper folder, register it as a startup service, and start it:

1 sudo cp scripts/iweb2py.ubuntu.sh /etc/init.d/web2py
> sudo update-rc.d web2py defaults
3 sudo /etc/init.d/web2py start

SETUP APACHE AND MOD_WSGI ON WINDOWS 291

On Fedora and other distributions based on Red Hat, edit the script
"web2py.fedora.sh" and replace the "/usr/lib/web2py" path with the path of
your wEB2PY installation, then type the following shell commands to move
the file into the proper folder, register it as a startup service and start it:

sudo cp scripts/web2py.fedora.sh /etc/rc.d/init.d/web2py d
sudo chkconfig --add web2pyd
sudo service web2py start

w N e

11.5 Setup Apache and mod _wsgi on Windows

Installing Apache, and mad/sgi under Windows requires a different proce-
dure. Here are assuming Python 2.5 is installed, you are running from source
andwEB2PY is located at:web2py

First download the requires packages:

° ApaCheapache 2.2.11-win32-x86-openssl-0.9.8i.msi from
1 http://httpd.apache.org/download.cgi

e modwsgi from

1+ http://adal.chiriliuc.com/mod_wsgi/revision_1018_2.3/
mod_wsgi_py25_apache22/mod_wsgi.so

Second, rumpache..msi and follow the wizard screens. On the server
information screen

1 Apache HTTP Server 2.2 - Installation Wizard n

Server Information
Flease enter wour server's information.

Metwark Domain (e.g. somenet, conm)

Server Mame-(e.g, wanw,somenet, com):

Adminiskrator's Email Address (e.q. webmaster@somenet.com}:

1

Install dpache HTTP Server 2,2 programs and shortcuts For;

* Far gll Users, on Part &0, as a Service - Recommended,

(" only For the Current User, on Part 3080, when skarted Manually,

< Back | Mext = | Cancel

292 DEPLOYMENT RECIPES

enter all requested values:

e Network Domain: enter the DNS domain in which your server is or
will be registered in. For example, if your server’s full DNS name is
server.mydomain.net, you would type mydomain.net here

e ServerName Your server’s full DNS name. From the example above,
you would type server.mydomain.net here. Enter a fully qualified do-
main name or IP address from thesp2pPY install, not a shortcut, for
more information setp:/httpd.apache.org/docs/2.2/mod/core.html

e Administrator's Email Address. Enter the server administrator’s or
webmaster’s email address here. This address will be displayed along
with error messages to the client by default.

Continue with a typical install to the end unless otherwise required
The wizard, by default, installed Apache in the folder:

1 C:/Program Files/Apache Software Foundation/Apache2.2/

From now on we refer to this folder simply agache2.2 .
Third, copy the downloaded mogasgi.So toapache2.2/modules
The following information about SSL certificates was found in

http://port25.technet.com/videos/images/
TechnicalAnalysisiInstallingApacheonWindo_C21A/
InstallingApacheonWindows.pdf

written by Chris Travers, published by the Open Source Soéviab at
Microsoft, December 2007.

Fourth, create and place tReverct andserverkey certificates (as
created in the previous section) intgache2.2iconf . Notice the cnf file is in
Apache?2.2/conf/openssl.cnf

Fifth, edit Apache2.2/conf/httpd.conf , remove the comment mark (the #
character) from the line

i

LoadModule ssl_module modules/mod_ssl.so

i

add the following line after all the other LoadModule lines

LoadModule wsgi_module modules/mod_wsgi.so

i

look for "Listen 80" and add this line after it
Listen 443

i

append the following lines at the end changing drive lettert pamber,
ServerName according to your values
NameVirtualHost *:4 43

<VirtualHost *:4 43>
3 DocumentRoot "C:/web2py/applications"

N

© © N o G« &

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
2

©

w N e

START AS WINDOWS SERVICE 293

ServerName serverl

<Directory "C:lweb2py" >
Order allow,deny
Deny from all

</Directory>

<Location "/" >
Order deny,allow
Allow from all

</Location>

<LocationMatch "(M\w_] * /s tatic/. *) >
Order Allow,Deny
Allow from all

</LocationMatch>

WSGIScriptAlias / "C:/web2py/wsgihandler.py"

SSLEngine On
SSL CertificateFile conf/server.crt
SSLCertificateKeyFile conf/server.key

LogFormat "%h %l %u %t \"%r\" %>s %b" common
CustomLog logs/access.log common
</VirtualHost>

Save and check the config using: [Start > Program > Apache HTIWSe
2.2 > Configure Apache Server > Test Configuration]

If there are no problems you will see a command screen open and close.
Now you can start Apache:

[Start > Program > Apache HTTP Server 2.2 > Control Apache Server >
Start]

or better yet start the taskbar monitor

[Start > Program > Apache HTTP Server 2.2 > Control Apache Server]

Now you can right click on the red feather like taskbar icon to Open Apache
Monitor and from it start, stop and restart Apache as required.

This section was created by Jonathan Lundell.

11.6 Start as Windows Service

What Linux calls a daemon, Windows calls a service. WB2PY server
can easily be installed/started/stopped as a Windows service.

In order to usewEB2PY as a Windows service, you must create a file
"options.py" with startup parameters:

import socket, os
ip = socket.gethostname()
port = 80

294 DEPLOYMENT RECIPES

password = ‘'<recycle>'
pid_filename = 'httpserver.pid'
log_filename = 'httpserver.log'

ssl_certificate =

ssl_private_key = "

numthreads = 10

server_name = socket.gethostname()
request_queue_size = 5

timeout = 10

shutdown_timeout = 5

folder = os.getcwd()

You don’t need to create "options.py" from scratch since tiesdready
an "optionsstd.py" in thewreB2pyY folder that you can use as a model.
After creating "options.py" in theveB2pYy installation folder, you can

i

Noe

i

i

install WEB2PY as a service with:
python web2py.py -W install
and start/stop the service with:

python web2py.py -W start
python web2py.py -W stop

11.7 Setup Lighttpd

You can install Lighttpd on a Ubuntu or other Debian-based Linux distribution

with the following shell command:
apt-get -y install lighttpd

Once installed, you need to edit the Lighttpd configuration file

[etc/lighttpd/lighttpd.conf
and, in it, write something like:

server.port = 80
server.bind = "0.0.0.0"
server.event-handler = "freebsd-kqueue"
server.modules = ("mod_rewrite" , "mod_fastcgi")
server.error-handler-404 = "/test.fcgi"
server.document-root = "lusers/www-data/web2py/"
server.errorlog = "tmplerror.log"
fastcgi.server = (" fcgi =>
("localhost" =>
("min-procs" => 1,
"s ocket" => "/tmpl/fcgi.sock"
)
)
)

Start theweB2pPY fcgihandler before the web-server is started, with:

APACHE2 AND MOD_PYTHON IN A SHARED HOSTING ENVIRONMENT 295

1 nohup python fcgihandler.py &

Then, (re)start the web server with:
1 /etc/init.d/lighttpd restart

Notice that FastCGl binds theEB2PY server to a Unix socket, not to an
IP socket:

1 [/tmpl/fcgi.sock

This is where Lighttpd forwards the HTTP requests to and resa®sponses
from. Unix sockets are lighter than Internet sockets, and this is one of the
reasons Lighttpd+FastCGl+web2py is fast. As in the case of Apache, it is
possible to setup Lighttpd to deal with static files directly, and to force some
applications over HTTPS. Refer to the Lighttpd documentation for details.

The administrative interface must be disabled wherB2pry
runs on a shared host with FastCGl, or it will be exposed to the
other users.

11.8 Apache2 and mod _python in a shared hosting environment

There are times, specifically on shared hosts, when one does not have the
permission to configure the Apache config files directly. You can still run
WEB2PY. Here we show an example of how to set it up using rpgthor?

e Place contents oVEB2PY into the "htdocs" folder.

e InthewEB2PY folder, create a file "web2pgnodpython.py" file with
the following contents:

from mod_python import apache
import modpythonhandler

def handler(req):
reg.subprocess_env['PATH_INFO'] =\
req.subprocess_env| 'SCRIPT_URL"]
return modpythonhandler.handler(req)

~N o oA W N e

e Create/update the file ".htaccess" with the following contents:

1 SetHandler python-program
2 PythonHandler web2py modpython
3 ##PythonDebug On

6Examples provided by Niktar

296

11.9

DEPLOYMENT RECIPES

Setup Cherokee with FastGGI

Cherokee is a very fast web server and, WkeB2pv, it provides an AJAX-

enabled web-based interface for its configuration. Its web interface is written

in Python. In addition, there is no restart required for most of the changes.
Here are the steps required to setups2pry with Cherokee:

S

w N e

Noe

Noe

[

Download Cherokee [76]

Untar, build, and install:

tar -xzf cherokee-0.9.4.tar.gz

cd cherokee-0.9.4

Jconfigure --enable-fcgi && make
make install

StartweB2pPY normally at least once to make sure it creates the "ap-
plications" folder.

Write a shell script named "startweb2py.sh" with the following code:

#!/bin/bash
cd /var/lweb2py
python /var/web2py/fcgihandler.py &

and give the script execute privileges and run it. This willtsteeB2pPY
under FastCGI handler.

Start Cherokee and cherokee-admin:
sudo nohup cherokee &
sudo nohup cherokee-admin &

By default, cherokee-admin only listens at local interfaceoirt 9090.

This is not a problem if you have full, physical access on that machine.
If this is not the case, you can force it to bind to an IP address and port
by using the following options:

-b, --bind[=IP]

-p, --port=NUM

or do an SSH port-forward (more secure, recommended):
ssh -L 9090:localhost:9090 remotehost

Open "http://localhost:9090" in your browser. If everything is ok, you
will get cherokee-admin.

In cherokee-admin web interface, click "info sources". Choose "Local
Interpreter”. Write in the following code, then click "Add New".

N

i

SETUP POSTGRESQL 297

[

Nick: web2py
Connection: /tmp/fcgi.sock
Interpreter: /var/web2py/startweb2py.sh

w N

e Click "Virtual Servers", then click "Default".

e Click "Behavior", then, under that, click "default".

e Choose "FastCGI" instead of "List and Send" from the list box.
e At the bottom, select "web2py" as "Application Server"

e Put a check in all the checkboxes (you can leave Allow-x-sendfile).
If there is a warning displayed, disable and enable one of the check-
boxes. (Itwillautomatically re-submit the application server parameter.
Sometimes it doesn'’t, which is a bug).

e Point your browser to "http://ipaddressofyoursite”, and "Welcome to
web2py" will appear.

11.10 Setup PostgreSQL

PostgreSQL is a free and open source database which is used in demand-
ing production environments, for example, to store the .org domain name
database, and has been proven to scale well into hundreds of terabytes of
data. It has very fast and solid transaction support, and provides an auto-
vacuum feature that frees the administrator from most database maintenance
tasks.

On an Ubuntu or other Debian-based Linux distribution, it is easy to install
PostgreSQL and its Python API with:
sudo apt-get -y install postgresql
sudo apt-get -y install python-psycopg2

It is wise to run the web server(s) and the database server famedit
machines. In this case, the machines running the web servers should be
connected with a secure internal (physical) network, or should establish SSL
tunnels to securely connect with the database server.

Start the database server with:

sudo /etc/init.d/postgresql restart
When restarting the PostgreSQL server, it should notify wipicft it is

running on. Unless you have multiple database servers, it should be 5432.
The PostgreSQL configuration file is:

298 DEPLOYMENT RECIPES

/etc/postgresql/x.x/main/postgresgl.conf

[

(wherex.x is the version number).
The PostgreSQL logs are in:

i

Ivar/log/postgresql/

Once the database server is up and running, create a user atabasda
so thatwEB2PY applications can use it:

sudo -u postgres createuser -P -s myuser
createdb mydb

echo 'The following databases have been created:'
psql -l

psql mydb

[N N

The first of the commands will grant superuser-access to theusew
calledmyuser . It will prompt you for a password.
Any WEB2PY application can connect to this database with the command:

1 db = DAL("postgres://myuser:mypassword@localhost:5432/mydb")

wheremypassword is the password you entered when prompted, and 5432 is
the port where the database server is running.

Normally you use one database for each application, and multiple instances
of the same application connect to the same database. It is also possible for
different applications to share the same database.

For database backup details, read the PostgreSQL documentation; specifi-
cally the commandgg _dump andpg_restore

11.11 Security Issues

It is very dangerous to publicly expose thdmin application and thep-
padmin controllers unless they run over HTTPS. Moreover, your password
and credentials should never be transmitted unencrypted. This is true for
WEB2PY and any other web application.

In your applications, if they require authentication, you should make the
session cookies secure with:

i

sessi on.secure()

An easy way to setup a secure production environment on a gerter
first stopwEB2PY and then remove all thgarameters +.py files from the
WEB2PY installation folder. Then stawEeEB2pPY without a password. This
will completely disable admin and appadmin.

Next, start a second Python instance accessible only from localhost:

1 nohup python web2py -p 8001 -i 127.0.0.1 -a '<ask>' &

i

N

SCALABILITY ISSUES 299

and create an SSH tunnel from the local machine (the one from which you
wish to access the administrative interface) to the server (the one where
WEB2PY iS running, example.com), using:

ssh -L 8001:127.0.0.1:8001 username@example.com

Now you can access the administrative interface locally \eankb browser
atlocalhost:8001

This configuration is secure becaus#min is not reachable when the
tunnel is closed (the user is logged out).

This solution is secure on shared hosts if and only if other users
do not have read access to the folder that containss2pry;
otherwise users may be able to steal session cookies directly
from the server.

11.12 Scalability Issues

WEB2PY is designed to be easy to deploy and to setup. This does not mean
that it compromises on efficiency or scalability, but it means you may need
to tweak it to make it scalable.

In this section we assume multipleeB2py installations behind a NAT
server that provides local load-balancing.

In this casewEB2pPY works out-of-the-box if some conditions are met. In
particular, all instances of eashEB2PY application must access the same
database server and must see the same files. This latter condition can be
implemented by making the following folders shared:
applications/myapp/sessions
applications/myapp/errors

applications/myapp/uploads
applications/myapp/cache

The shared folders must support file locking. Possible salatare ZF3,
NFS’, or Samba (SMB).

It is possible, but not a good idea, to share the entirs2py folder or
the entire applications folder, because this would cause a needless increase
of network bandwidth usage.

We believe the configuration discussed above to be very scalable because it
reduces the database load by moving to the shared filesystems those resources

7ZFS was developed by Sun Microsystems and is the preferred choice.
8with NFS you may need to run the nlockmgr daemon to allow file locking.

1

1

300 DEPLOYMENT RECIPES

that need to be shared but do not need transactional safety (only one client at
atime is supposed to access a session file, cache always needs a global lock,
uploads and errors are write once/read many files).

Ideally, both the database and the shared storage should have RAID capa-
bility. Do not make the mistake of storing the database on the same storage
as the shared folders, or you will create a new bottle neck there.

On a case-by-case basis, you may need to perform additional optimizations
and we will discuss them below. In particular, we will discuss how to get
rid of these shared folders one-by-one, and how to store the associated data
in the database instead. While this is possible, it is not necessarily a good
solution. Nevertheless, there may be reasons to do so. One such reason is
that sometimes we do not have the freedom to set up shared folders.

Sessions in Database

It is possible to instructvEB2PY to store sessions in a database instead of

in the sessions folder. This has to be done for each individuat2py

application although they may all use the same database to store sessions.
Given a database connection

db = DAL(..)
you can store the sessions in this database (db) by simplygthé following,
in the same model file that establishes the connection:

sessi on.connect(request, response, db)

If it does not exist alreadywEB2PY creates a table in the database called
web2py _session _appnamecontaining the following fields:

Fi el d('locked" , 'boolean' , default=False),

Fi el d(‘client_ip'),

Fi el d('created_datetime' , 'datetime’ , default=now),
Fi el d('modified_datetime' , 'datetime’),

Fi el d('unique_key'),

Fi el d('session_data' , 'textt)

"uniquekey" is a uuid key used to identify the session in the cookies-"se
sion.data" is the cPickled session data.

To minimize database access, you should avoid storing sessions when they
are not needed with:

sessi on.forget()
With this tweak the "sessions" folder does not need to be a dHalder
because it will no longer be accessed.

Notice that, if sessions are disabled, you must not passdien
to form.accepts ~and you cannot usssion.flash nor CRUD.

i

i

L N =

i

1

SCALABILITY ISSUES 301

Pound, a High Availability Load Balancer

If you need multipleweB2PY processes running on multiple machines, in-
stead of storing sessions in the database or in cache, you have the option to
use a load balancer with sticky sessions.

Pound [78] is an HTTP load balancer and Reverse proxy that provides
sticky sessions.

By sticky sessions, we mean that once a session cookie has been issued,
the load balancer will always route requests from the client associated to the
session, to the same server. This allows you to store the session in the local
filesystem.

To use Pound:

First, install Pound, on out Ubuntu test machine:

sudo apt-get -y install pound
Second editthe configuration file "/etc/pound/pound.cfg"emrable Pound
at startup:

startup=1

Bind it to a socket (IP, Port):

ListenHTTP 123.123.123.123,80

Specify the IP addresses and ports of the machines in the famning
WEB2PY:

UrlGroup ". "

BackEnd 192.168.1.1,80,1

BackEnd 192.168.1.2,80,1

BackEnd 192.168.1.3,80,1

Session IP 3600
EndGroup

The ",1" indicates the relative strength of the machines. akeline will
maintain sessions by client IP for 3600 seconds.
Third, enable this config file and start Pound:

/etc/default/pound

Cleanup Sessions

If you choose to keep your sessions in the filesystem, you should be aware
that on a production environment they pile up fases2pY provides a script
called:

scripts/sessions2trash.py

i

w N e

B oW N R

302 DEPLOYMENT RECIPES

that when run in the background, periodically deletes all sessions that have
not been accessed for a certain amount of time. This is the content of the
script:
SLEEP_MINUTES = 5
EXPIRATION_MINUTES = 60
import os, time, stat
path = os.path.join(r equest .folder, 'sessions’)
while 1:
now = time.time()
for file in os.listdir(path):
filename = os.path.join(path, file)
t = os.stat(filename)[stat.ST_MTIME]
if now - t > EXPIRATION_MINUTES * 60:
unlink(filename)
time.sleep(SLEEP_MINUTES * 60)

You can run the script with the following command:
nohup python web2py.py -S yourapp -R scripts/sessions2trash .py &

where yourapp is the name of your application.

Upload Files in Database

By default, all uploaded files handled by SQLFORMSs are safely renamed and
stored in the filesystem under the "uploads" folder. It is possible to instruct
WEB2PY to store uploaded files in the database instead.

Consider the following table:

db.define_table(‘dog’
Fi el d('name')
Fi el d('image' , 'upload"))
wheredog.image is of type upload. To make the uploaded image go in the
same record as the name of the dog, you must modify the table definition by
adding a blob field and link it to the upload field:

db.define_table('dog’
Fi el d('name')
Fi el d('image’ , ‘'upload" , uploadfield= 'image_data’),
Fi el d('image_data’ , 'blob'))

Here "imagedata" is just an arbitrary name for the new blob field.

Line 3instructsvEB2PY to safely rename uploaded images as usual, store
the new name in the image field, and store the data in the uploadfield called
"imagedata” instead of storing the data on the filesystem. All of thibe
done automatically by SQLFORMs and no other code needs to be changed.

With this tweak, the "uploads" folder is no longer needed.

No Google App Engine files are stored by default in the database without
need to define an uploadfield, one is created by default.

i

© o N e g A W N R

11
1

N)

13
14
15
16
1

]

18

19

20
2

=

22
23
24
25
26
27
28
29
30
31
32
33
34

SCALABILITY ISSUES 303

Collecting Tickets

By default,weB2pPY stores tickets (errors) on the local file system. It would
not make sense to store tickets directly in the database, because the most
common origin of error in a production environment is database failure.

Storing tickets is never a bottleneck, because this is ordinarily a rare event,
hence, in a production environment with multiple concurrent servers, it is
more than adequate to store them in a shared folder. Nevertheless, since only
the administrator needs to retrieve tickets, it is also OK to store tickets in
a non-shared local "errors" folder and periodically collect them and/or clear
them.

One possibility is to periodically move all local tickets to a database.

For this purposewEB2pPY provides the following script:

scripts/tickets2db.py
which contains:

import sys
import os
import time
import stat
import datetime

from gluon.utils import md5_hash
from gluon.restricted import RestrictedError

SLEEP_MINUTES = 5

DB_URI = 'sqlite://tickets.db’

ALLOW_DUPLICATES = True

path = os.path.join(r equest .folder, ‘errors')

db = SQLDB(DB_URI)

db.define_table(‘ticket' , SQLField('app'), SQLField(' name"),
SQLFi el d('date_saved' , 'datetime'), SQ.Field('layer)
SQLFi el d('traceback’ , 'text), SQLField('code' , 'text
)
hashes = {}
while 1:

for file in os.listdir(path):
filename = os.path.join(path, file)

if not ALLOW_DUPLICATES:
file_data = open(filename, ™).read()
key = md5_hash(file_data)

if key in hashes:
continue

hashes[key] = 1

35
36
37
38
39
40

41
42
43
44
45
46
47
48
49
50
51
52

1

1
2
3

304 DEPLOYMENT RECIPES

error = RestrictedError()
error.load(request, request.application, filename)

modified_time = os.stat(filename)[stat.ST_MTIME]

modified_time datetime.datetime.fromtimestamp(modifie d_time
)
db.ticket.insert(app= r equest .application,
date_saved=modified_time,
name=file,

layer=error.layer,
traceback=error.traceback,
code=error.code)

os.unlink(filename)

db.commit()
time.sleep(SLEEP_MINUTES * 60)

This script should be edited. Change the DRI string so that it connects
to your database server and run it with the command:

nohup python web2py.py -S yourapp -M -R scripts/tickets2db.p y &

where yourapp is the name of your application.

This script runs in the background and every 5 minutes moves all tickets
to the database server in a table called "ticket" and removes the local tickets.
If ALLOW DUPLICATES is set to False, it will only store tickets that cor-
respond to different types of errors. With this tweak, the "errors" folder does
not need to be a shared folder any more, since it will only be accessed locally.

Memcache

We have shown thavEB2PY provides two types of cacheacheram and
cachedisk . They both work on a distributed environment with multiple
concurrent servers, but they do not work as expected. In partieatiasyam
will only cache at the server level; thus it becomes uselegse.disk will
also cache at the server level unless the "cache" folder is a shared folder that
supports locking; thus, instead of speeding things up, it becomes a major
bottleneck.

The solution is not to use them, but to use memcache insteas2pry
comes with a memcache API.

To use memcache, create a new model file, for examijpbgncache.py , and
in this file write (or append) the following code:
from gluon.contrib.memcache import MemcacheClient

memcache_servers = ['127.0.0.1:11211']
cache.memcache = MemcacheClient(request, memcache_servers)

4

Noe

GOOGLE APP ENGINE 305

cache.ram = cache.disk = cache.memcache

The first line imports memcache. The second line has to be & lisem-
cache sockets (server:port). The third line redefia@s.ram andcache.disk
in terms of memcache.

You could choose to redefine only one of them to define a totally new cache
object pointing to the Memcache object.

With this tweak the "cache" folder does not need to be a shared folder any
more, since it will no longer be accessed.

This code requires having memcache servers running on the local network.
You should consult the memcache documentation for information on how to
setup those servers.

Sessions in Memcache

If you do need sessions and you do not want to use a load balancer with sticky
sessions, you have the option to store sessions in memcache:

from gluon.contrib.memdb import MEMDB
sessi on.connect(request, response,db=MEMDB(cache.memcache))

Removing Applications

In a production setting, it may be better not to install the default applications:
admin, examplesandwelcome Although these applications are quite small,
they are not necessary.

Removing these applications is as easy as deleting the corresponding fold-
ers under the applications folder.

11.13 Google App Engine

It is possible to runweB2PY code on Google App Engine (GAE) [12],
including DAL code, with some limitations. The GAE platform provides
several advantages over normal hosting solutions:

e Ease of deployment. Google completely abstracts the underlying ar-
chitecture.

e Scalability. Google will replicate your app as many times as it takes to
serve all concurrent requests

N o o s w N P

306 DEPLOYMENT RECIPES

e BigTable. On GAE, instead of a normal relational database, you store
persistent information in BigTable, the datastore Google is famous for.

The limitations are:

e You have no read or write access to the file system.
e No transactions

e You cannot perform complex queries on the datastore, in particular
there are no JOIN, OR, LIKE, IN, and DATE/DATETIME operators.

This means thatvEB2PY cannot stores sessions, error tickets, cache files
and uploaded files on disk; they must be stored somewhere else. Therefore,
on GAE, wEB2PY automatically stores all uploaded files in the datastore,
whether or not "upload” Field(s) haveupoadfield attribute. You have to
be explicit about where to store sessions and tickets:

You can store them in the datastore too:

db = DAL(' gae')
sessi on.connect(request, response,db)

Or, you can store them in memcache:

from gluon.contrib.gae_memcache import MemcacheClient
from gluon.contrib.memdb import MEMDB
cache.memcache = MemcacheClient(request)
cache.ram = cache.disk = cache.memcache

db = DAL(' gae')
sessi on.connect(request, r esponse,MEMDB(cache.memcache))

The absence oftransactions and typical functionalitiedaficmal databases
are what sets GAE apart from other hosting environment. This is the price
to pay for high scalability. If you can leave with these limitations, then GAE
is an excellent platform. If you cannot, then you should consider a regular
hosting platform with a relational database.

If a wEB2PY application does not run on GAE, it is because of one of the
limitations discussed above. Most issues can be resolved by removing JOINs
from wEB2PY queries and denormalizing the database.

To upload your app in GA,E we recommend using the Google App Engine
Launcher. You can download the software from ref. [12].

Choose [File][Add Existing Application], set the path to the path of the
top-levelwEB2pY folder, and press the [Run] button in the toolbar. After you
have tested that it works locally, you can deploy it on GAE by simply clicking
on the [Deploy] button on the toolbar (assuming you have an account).

GOOGLE APP ENGINE 307

&8 GoogleAppEngineLauncher {
wO@E' A o [
Stop Hrowss ftogs SDK Console Edit Deploy Dushhnaﬂl‘]
!‘dgme Path Part |
© web2py [Users/massimodipierro/Current/Python Programs/web2py... BOB0

GI- 7

On Windows and Linux systems, you can also deploy using thé shel

1cd ..
2 [usr/local/bin/dev_appserver.py web2py

When deployingweB2PY ignores theadmin, examples andwelcome
applications since they are not needed. You may want to ediptham
file and ignore other applications as well.

On GAE, thewEB2PY tickets/errors are also logged into the GAE admin-
istration console where logs can be accessed and searched online.

lalals] Logs e

@- e @Y La hitp://appengine.google.com/logs?app_id=web2py hal |-

¥

mdipierro@cs.depaul.edu | My Account | Help |
GOUSIG’ App Engine Sign out
Application: web2py Version: 1.18 « Show All Applications
Dashboard Filter Logs @
Vi Minimum Severity: |Error | [+ Options
Datastore Tip:ICIick a log line to show or hide its Expand logs
lidesas details.
S 1-10 Next 10 »
Datz Viewer 07-05 12:13PM 54.970 /bookmark/151 303 1639ms O kb ...
Administration Bl 07-05 12:13PM 55.662 unable to import wsgiserver
Application Settings 07-05 12:13PM 48.708 /reddish/staticidesign/aside.gif 400 448ms 0
Developers 5 0705 12:13PM 48.920 unable to import wsgiserver
Versions 0705 12:13PM 48.355 Havicon.ico 400 44dms O kb ..
[E 07-05 12:13PM 48.558 unable to import wsgiserver
Resourcas 07-05 11:04AM 58.133 Jindexitechnology 200 1766ms B kb ...
Documentation E 07-06 11:04AM 58.833 unable to import wsgiserver
Levebper ot B 07.05 11:04AM 30.383 Mavicon.ico 400 1042ms 0 kb ... “/
Frsumlanade . o

You can detect whethevEB2PY is running on GAE using the variable

308 DEPLOYMENT RECIPES

1 request .env.web2py runtime_gae

CHAPTER 12

OTHER RECIPES

12.1 Upgrading WEB2PY

In the near futurevEB2pPY will be able to upgrade itself but this has not yet
been implemented at the time of publishing.
UpgradingweB2pPY manually is very easy.

Simply unzip the latest version ®fEB2PY over the old instal-
lation.

This will upgrade all the libraries but none of the applications, not even
the standard applicationadmin, examples welcome, because you may
have changed them arndeB2PY does not want to mess with them. The new
standard applications will be in the corresponding .w2p files inthe2pry
root folder. After the upgrade, the new "welcome.w2p" will be used as a
scaffolding application.

You can upgrade the existing standard applications with the shell command:

python web2py.py --upgrade yes

WEB2PY: Enterprise Web Framework / 2nd Bl.Massimo Di Pierro 309
Copyright(C) 2009

310 OTHER RECIPES

This will upgradeadmin, exampleg andwelcome

12.2 Fetching a URL

Python includes therin library for fetching urls:

i

import urllib
page = urllib.urlopen(‘http:/lwww.web2py.com'’).read()

N

This is often fine, but therib module does not work on the Google App
Engine. Google provides a different API for downloading URL that works on
GAE only. In order to make your code portableEs2prY includes &etch
function that works on GAE as well as other Python installations:

from google.tools import fetch
page = fetch(‘http://www.web2py.com')

N

12.3 Geocoding

If you need to convert an address (for example: "243 S Wabash Ave, Chicago,
IL, USA") into geographical coordinates (latitude and longitudeyB2py
provides a function to do so.

from gluon.tools import geocode

address = '243 S Wabash Ave, Chicago, IL, USA'
(latitude, longitude) = geocode(address)

N

w

The functiongeocode requires a network connection and it connect to the
Google geocoding service for the geocoding. The function retams in
case of failure. Notice that the Google geocoding service caps the number of
requests and you should check their service agreemengeddoge function
is built on top of theetch function and thus it works on GAE.

12.4 Pagination

This recipe is a useful trick to minimize database access in case of pagination,
e.g., when you need to display a list of rows from a database but you want to
distribute the rows over multiple pages.

Start by creating @rimes application that stores the first 1000 prime
numbers in a database.

Here is the modelb.py :

1 db=DAL(" sqlite://primes.db’)
2> db.define_table('‘prime' |, Fi el d(' value' |, 'integer’)

STREAMING VIRTUAL FILES 311

3 def isprime(p):

4
5
6
7
8
9

10

11

1

N o o h W N

for i in range(2,p):
if p%i==0: return False
return True
if len(db().select(db.prime.id))==0:
p=2
for i in range(1000):
while not isprime(p): p+=1
db.prime.insert(value=p)
p+:1
Now create an action st items in the "default.py” controller that reads
like this:
def list_items():
if len(request. args): page=int(r equest .args[0])
else: page=0
items_per_page=20
limitby=(page *it ems_per_page,(page+l) =*items_per_page+1)
rows=db().select(db.prime.ALL,limitby=limitby)
return dict(rows=rows,page=page,items_per_page=items_p er_page)

Notice that this code selects one more item than is neéfled,1. The
reason is that the extra element tells the view whether there is a next page.
Here is the "default/listtems.html" view:

1 {{extend ‘layout.html' B

2

3 {{for i,row in enumerate(rows):}}
4 {{if i==items_per_page: break}}
s {{=row.value}}

s {{pass}}

7

s {{if page:}}

9

previous

w0 {{pass}}

11

12 {{if len(rows)>items_per_page:}}

13

next

14 {{pass}}

In this way we have obtained pagination with one single seleicaption,
and that one select only selects one row more then we need.

12.5 Streaming Virtual Files

It is common for malicious attackers to scan web sites for vulnerabilities.
They use security scanners like Nessus to explore the target web sites for
scripts that are known to have vulnerabilities. An analysis of web server
logs from a scanned machine or directly of the Nessus database reveals that
most of the known vulnerabilities are in PHP scripts and ASP scripts. Since

w N e

Noe

i

1

1

312 OTHER RECIPES

we are runningvEB2pY, we do not have those vulnerabilities, but we will
still be scanned for them. This annoying, so we like to like to respond to
those vulnerability scans and make the attacker understand their time is being
wasted.

One possibility is to redirect all requests for .php, .asp, and anything
suspicious to a dummy action that will respond to the attack by keeping the
attacker busy for a large amount of time. Eventually the attacker will give up
and will not scan us again.

This recipe requires two parts.

A dedicated application callgammer with a "default.py" controller as
follows:

class Jammer():
def read(self,n): return X' *n
def jam(): return r esponse.stream(Jammer(),40000)

When this action is called, it responds with an infinite dateastr full of
"X"-es. 40000 characters at a time.

The second ingredient is a "route.py" file that redirects any request ending
in .php, .asp, etc. (both upper case and lower case) to this controller.

route_in=(
(. *\.(php|PHP|asp|ASP|jsp|JSP)' , ' jammer/default/jam’),

The first time you are attacked you may incur a small overheatdyuou
experience is that the same attacker will not try twice.

12.6 httpserver.log and the log file format

ThewEeB2pPY web server logs all requests to a file called:

httpserver.log

in the rootwEB2PY directory. An alternative filename and location can be
specified viasweEB2PY command-line options.

New entries are appended to the end of the file each time a requestis made.
Each line looks like this:

127.0.0.1, 2008-01-12 10:41:20, GET, /admin/default/site, HTTP/1.1,
200, 0.270000

The format is:

ip, timestamp, method, path, protocol, status, time_taken

Where

e ip is the IP address of the client who made the request

© ©® N o O B~ w N

11
1

)

1

w

SEND AN SMS 313

e timestamp is the date and time of the request in ISO 8601 format,
YYYY-MM-DDT HH:MM:SS

e methodis either GET or POST
e path is the path requested by the client

e protocol is the HTTP protocol used to send to the client, usually
HTTP/1.1

e statusis the one of the HTTP status codes [80]

e time_takenis the amount of time the server took to process the request,
in seconds, not including upload/download time.

Inthe appliances repository[33], you will find an appliance for log analysis.
This logging is disabled by default when using mwedgi since it would
bethe same as the Apache log.

12.7 Send an SMS

Sending SMS messages fromna&B2pPY application requires a third party
service that can relay the messages to the receiver. Usually this is not a free
service, but it differs from country to country.

In the US aspsms.com is one of these services. They require signing up for
the service and the deposit of an amount of money to cover the cost of the
SMS messages that will be sent. They will assign a userkey and a password.

Once you have these parameters you need to define a function that can
send SMS messages through the service. For this purpose you can define
a model file in the application called "ms.py" and in this file include the
following code:

def send_sms(recipient,text,userkey,password,host= "xmll.aspsms.com"
port=5061,action= "/xmlsvr.asp"):
import socket, cgi
content= " "<?xml version="1.0" encoding="1SO-8859-1"?>
<aspsms>
<Userkey>%s</Userkey>
<Password>%s</Password>
<Originator>"%s</QOriginator>
<Recipient>
<PhoneNumber>%s</PhoneNumber>
</Recipient>
<MessageData>%s</MessageData>
<Action>SendTextSMS</Action>
</aspsms>"" % (userkey,password,originator,recipient,cgi.escape(text

)

1
2
3
4
5
6

314

OTHER RECIPES

length=len(content)

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.connect((host.port))

s.send("POST %s HTTP/1.0\r\n" ,action)

s.send("Content-Type: text/xml\r\n"

s.send("Content-Length: " +str(length)+ “\\n\r\n")
s.send(CONTENT)

datarecv=s.recv(1024)

reply=str(datarecv)

s.close()

return reply

You can call the function from any controller in the applicatio
Notice that the service is ASP-based, but it communicates via XML, so
you can call it from a PythowEB2pPY program.

12.8 Twitter API

Here are some quick examples on how to post/get tweets. No third-party
libraries are required, since Twitter uses simple RESTful APIs.
Here is an example of how to post a tweet:

def post_tweet(username,password,message):

import urllib, urlib2, base64
import gluon.contrib.simplejson as sj

args=urllib.urlencode([('status' ,message)])

headers={}

headers['Authorization’] = 'Basic ' +base64.b64encode(username+
+password)

request = urllib2.Request('http://twitter.com/statuses/update.

json' , args, headers)
return sj.loads(urllib2.urlopen(req).read())

Here is an example of how to receive tweets:
def get_tweets():

user= 'web2py’

import urllib

import gluon.contrib.simplejson as sj

page = urllib.urlopen(‘http://twitter.com/%s?format=json' % user)
.read()

tweets= XM_(sj.loads(page)[‘#timeline' D
return dict(tweets=tweets)

For more complex operations, refer to the Twitter API docuraiéon.

12.9 Jython

WEB2PY normally runs on CPython (the Python interpreter coded in C), but
it can also run on Jython (the Python interpreter coded in Java). This allows
WEB2PY t0 run in a Java infrastructure.

JYTHON 315

Even thoughwEeB2pPY runs with Jython out of the box, there is some
trickery involved in setting up Jython and in setting up zxJDBC (the Jython
database adaptor). Here are the instructions:

e Download thefile "jythodnstaller-2.5.0.jar" (or 2.5.x) frony thon.org

e Install it:

1 java -jar jython_installer-2.5.0.jar

e Download and install "zxJDBC.jar" from
http://sourceforge.net/projects/zxjdbc/

e Download and install the file "sqlitejdbc-v056.jar" from
http://lwww.zentus.com/sglitejdbc/

e Add zxJDBC and sqlitejdbc to the java CLASSPATH

e StartweB2pPY with Jython
1 /path/to/jython web2py.py

You will be able to useaL¢sqiite:/...") andDAL(postgres:/i...")
only.

References

http://www.web2py.com
http://www.python.org
http://en.wikipedia.org/wiki/SQL
http://www.sqlite.org/
http://www.postgresqgl.org/
http://www.mysql.com/
http://www.microsoft.com/sqlserver

http://www firebirdsgl.org/

© © N o gk~ wDdPE

http://www.oracle.com/database/index.html

[EnY
©

http://www-01.ibm.com/software/data/db2/

[EnY
=

http://www-01.ibm.com/software/data/informix/

[En
N

http://code.google.com/appengine/
http://en.wikipedia.org/wiki/HTML
http://www.w3.0rg/TR/REC-html|40/

e
a > w

http://www.php.net/

[EnY
o

http://www.cherrypy.org/browser/trunk/cherrypy/wsgiserver/ _init __.py

17. http://en.wikipedia.org/wiki/Web _Server _Gateway _Interface

WEB2PY: Enterprise Web Framework / 2nd EBly. Massimo Di Pierro 317
Copyright(C) 2009

318 REFERENCES

18. http://www.python.org/dev/peps/pep-0333/

19. http://www.owasp.org

20. http://en.wikipedia.org/wiki/Secure _Sockets _Layer
21. http://www.cherrypy.org

22. http://www.cdolivet.net/editarea/

23. http://nicedit.com/

24. http://pypi.python.org/pypi/simplejson

25. http://pyrtf.sourceforge.net/

26. http://www.dalkescientific.com/Python/PyRSS2Gen.html

27. http://lwww.feedparser.org/

28. http://code.google.com/p/python-markdown2/

29. http://iwww.tummy.com/Community/software/python-memcached/
30. http://www.fsf.org/licensing/licenses/info/GPLv2.html

31. http://jquery.com/

32. https://lwww.web2py.com/cas

33. http:/lwww.web2py.com/appliances

34. http:/lwww.web2py.com/AlterEgo

35. http://www.python.org/dev/peps/pep-0008/

36. Guido van Rossum, and Fred L. Drake,Introduction to Python (version 2,3 etwork
Theory Ltd, 164 pages (November 2006)

37. Mark Lutz,Learning PythonO’Reilly & Associates, 701 pages (October 2007)
38. http://www.python.org/doc/

39. http://en.wikipedia.org/wiki/Cascading Style _Sheets

40. http:/lwww.w3.0rg/Style/CSS/

41. http:/lwww.w3schools.com/css/

42. http://en.wikipedia.org/wiki/JavaScript

43. David FlanaganjavaScript: The Definitive Guide JavaScript: The Definitive Guide
O'Reilly Media, Inc.; 5 edition (August 17, 2006)

44, http:/lwww.xmlrpc.com/

45, http://en.wikipedia.org/wiki/Hypertext _Transfer _Protocol
46. http://www.w3.0rg/Protocols/rfc2616/rfc2616.html

47. http://en.wikipedia.org/wiki/ XML

48. http:/lwww.w3.0rg/XML/

49. http://en.wikipedia.org/wiki/XHTML

50. http://iwww.w3.org/TR/xhtml1/

51. http://iwww.w3schools.com/xhtml/

52. http://lwww.web2py.com/layouts

53.
54.
55.
56.

57.

58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.

71

72.

73.

74.
75.
76.
77.
78.
79.
80.

REFERENCES

http://sourceforge.net/projects/zxjdbc/
http://pypi.python.org/pypi/psycopg2
http://sourceforge.net/projects/mysql-python
http://python.net/crew/atuining/cx Oracle/
http://pyodbc.sourceforge.net/

http://kinterbasdb.sourceforge.net/
http://informixdb.sourceforge.net/
http://www.web2py.com/sgldesigner
http://www.fags.org/rfcs/rfc2616.html
http://www.fags.org/rfcs/rfc2396.html
http://tools.ietf.org/html/rfc3490

http://tools.ietf.org/html/rfc3492

http://www.recaptcha.net

http://www.reportlab.org

http://en.wikipedia.org/wiki/AJAX

Karl Swedberg and Jonathan Chaffezarning jQuery Packt Publishing
http://ui.jquery.com/

http://en.wikipedia.org/wiki/Common _Gateway _Interface
http://www.apache.org/

http://httpd.apache.org/docs/2.0/mod/mod _proxy.html
http://sial.org/howto/openssl/self-signed
http://code.google.com/p/modwsgi/

http://www.lighttpd.net/
http://www.cherokee-project.com/download/”
http://www.fastcgi.com/

http://www.apsis.ch/pound/

http://pyamf.org/

http://en.wikipedia.org/wiki/List of HTTP.status _codes

319

Index

A

A, 134

about, 84, 104
accepts, 54, 66, 182
Access Control, 223
access restriction, 11
Active Directory, 232
admin, 44, 81, 298
admin.py, 84

Adobe Flash, 257
ajax, 71, 263

ALL, 163

and, 165

Apache, 281
appadmin, 59, 91
appliances, 45
ASCII, 24

ASP, 4
asynchronous submission, 277
aslist, 247

Auth, 223
authentication, 241
Authentication, 261

autodelete, 198

B

B, 134
belongs, 176
blob, 157
BODY, 134

C

cache, 104, 111
controller, 112
disk, 111
memcache, 304
ram, 111
select, 177
view, 113

CAPTCHA, 228

CAS, 241

CENTER, 134

CGl, 281

checkbox, 137

Cherokee, 296

class, 33

CLEANUP, 209

CODE, 135

321

322 INDEX

command line options, 94
commit, 159
confirmation, 272
connection pooling, 152
connection strings, 151
content-disposition, 195
controllers, 104
cookies, 117
cooperation, 126
count, 166
cPickle, 40
cron, 121
cross site request forgery, 10
cross site scripting, 9
CRUD, 214

create, 214

delete, 214

read, 214

select, 214

tables, 214

update, 214
CRYPT, 210
cryptographic storage, 11
csv, 170
CSV, 250
custom validator, 211

D

DAC, 223

DAL, 105, 149, 153
DALStorage, 150, 162
DAL|shortcuts, 177
Database Abstraction Layer, 149
database drivers, 150
databases, 104

date, 39, 175

datetime, 39, 175

day, 175

DB2, 153

def, 29, 131

default, 153

definetable, 150, 153
deletable, 273

delete, 166

deletelabel, 192

dict, 26

dir, 23

distinct, 165

distributed transactions, 161
DIV, 136

Document Object Model (DOM), 133
Domino, 232

drop, 160

E
EDIT, 85

effects, 268
elif, 31, 130
else, 31, 130-131
EM, 136
emails

template, 146
encode, 24
errors, 87, 104
escape, 128
eval, 36
examples, 44
except, 31, 131
Exception, 31
exec, 36
executesql, 160
execenvironment, 124
export, 170
Expression

DAL, 151
extent, 143

F

FastCGl, 294, 296
favicon, 119
fcgihandler, 294
fetch, 310
Field constructor, 154
Field, 153, 162

DAL, 150
fields, 157, 191
FIELDSET, 136
file.read, 34
file.seek, 35
file.write, 34
finally, 31, 131
FireBird, 153
for, 28, 129
form self submission, 53
form, 51
FORM, 54, 136
form, 182
formname, 182

G

GAE
login, 232
geocode, 310
GET, 97
Gmail, 232
Google App Engine, 305
grouping, 169

H

H1, 136

HEAD, 137

help, 23

helpers, 105, 132
hidden, 136

hour, 175

HTML, 137

html, 173

HTTP, 104, 115
httpserver.log, 312

id_label, 192

if, 31, 130

IFRAME, 138
IF_.MODIFIED_SINCE, 97
import, 37, 124, 170
improper error handling, 10
include, 143

index, 45

information leakage, 10
Informix, 153

inheritance, 179

init, 118

injection flaws, 9

inner join, 168

INPUT, 54, 137

insecure object reference, 10
insert, 158
internationalization, 104, 116
IS.ALPHANUMERIC, 203
IS_DATE, 203
IS_DATETIME, 203
IS.EMAIL, 57, 204
IS.EEXPR, 204
IS_FLOAT._IN_RANGE, 204
IS.IMAGE, 207
ISIINT_IN_.RANGE, 204
ISIIN_DB, 57, 210
ISIIN_SET, 204

IS_IPV4, 209

IS.LENGTH, 205
IS_LIST_OF, 205
IS_.LOWER, 205, 209
IS.MATCH, 205
IS.NOT_EMPTY, 54, 57, 206
IS.NOT_IN_DB, 210
IS.NULL _OR, 209
IS.STRONG, 207

IS_TIME, 206
IS_.UPLOAD.FILENAME, 208
IS_.UPPER, 209

IS_URL, 206

J

join, 168
JSON, 246, 259

INDEX

JSONRPC, 253
JSP, 4
Jython, 314

323

K

keepvalues, 186
KPAX, 81

L

LABEL, 138
labels, 191
lambda, 35
languages, 104
Layout Builder, 147
layout, 52
layout.html, 143
LDAP, 230, 232
left outer join, 168
LEGEND, 138
length, 153

LI, 138

license, 13, 84, 104
Lighttpd, 294

like, 175

limitby, 165

list, 25

Lotus Notes, 232
lower, 175

M

MAC, 223
malicious file execution, 10
many-to-many relation, 173
markdown, 76
MENU, 142
menu

response, 144
Mercurial, 91
META, 138
migrate, 153
migrations, 154
minutes, 175
Model-View-Controller, 5
models, 104
modules, 104
mod.proxy, 281
mod_python, 281
mod_wsgi, 281
month, 175
MSSQL, 153
MySQL, 153

N

nested select, 176

324 INDEX

not, 165
notnull, 153

o

OBJECT, 138
OL, 138

ON, 138
ondelete, 153
one to many, 167
onvalidation, 186
OpenLDAP, 232
OPTION, 139
or, 165

Oracle, 153
orderby, 164

0s, 38
o0s.path.join, 38
os.unlink, 38
outer join, 168

args, 66, 97
controller, 97
cookies, 105
env, 108
function, 97
getvars, 97
postvars, 97
url, 97
vars, 51, 97
required, 153
requires, 54, 153
response, 104, 107
author, 107
body, 107
cookies, 107
description, 107
download, 107
flash, 66, 107
headers, 107
keywords, 107

menu, 107
P postprocessing, 107
P,139 render, 107
page layout, 143 status, 107
pagination, 310 strea_lm, 66, 107
PARTIAL CONTENT, 97 subtitle, 107
password, 93 t|_t|e, 107
PDF, 260 view, 107
PHP, 4 write, 107
PIL, 228 response.menu, 144
POST, 97 response.write, 128
PostgresSQL, 153 return, 29, 131
pound, 301 robots, 119
PRE, 139 Role-Based Access Control, 223
private, 104 rollback, 159
PyAMF, 257 routesin, 118
Pyjamas, 253 routeson_error, 120
PYRTF, 260 routesout, 118
Python, 21 Rows, 162-163, 168

DAL, 150
Q RPC, 251

rss, 71, 79
Query, 162 RSS, 248
DAL, 150 RTF, 260

R s
radio, 137 sanitize, 77, 134
random, 37 scaffolding, 44
RBAC, 223 scalability, 299
reCAPTCHA, 228 SCRIPT, 139

redirect, 53, 104, 115

referencing, 167

removing application, 305

ReportLab, 260

request, 3, 104-105
application, 97

seconds, 175

secure communications, 11

security, 9, 298
select, 64
SELECT, 139
select, 162

selected, 139
session, 50, 104, 110
session.connect, 110
session.forget, 110
session.secure, 110
Set, 162

DAL, 150
shell, 22
showid, 192
simplejson, 259
site, 81
SMS, 313
SMTP, 232
SPAN, 139
SQL designer, 158
SQL

generate, 169
sql.log, 153
SQLFORM, 66
SQLite, 153
SQLRows, 168
SQLTABLE, 164
static files, 96
static, 104
Storage, 105

DAL, 150
str, 24
streaming virtual file, 311
STYLE, 140
submitbutton, 192
sum, 176
sys, 38
sys.path, 38

T

T, 104, 116
TABLE, 140
Table, 157, 162
tables, 157
TAG, 142
TBODY, 140
TD, 140
template language, 127
tests, 104
TEXTAREA, 141
TFOOT, 141
TH, 141
THEAD, 141
time, 39, 175
TITLE, 141

INDEX

TLS, 232
TR, 140-141
truncate, 159
try, 31, 131
TT, 141
tuple, 26
type, 24, 153

325

U

UL, 141
Unicode, 24
unique, 153
update, 166
updaterecord, 166
upgrades, 309
upload, 56
uploadfield, 153
uploads, 104
upper, 175

url mapping, 96
url rewrite, 118
URL, 53, 113
UTFS, 24

\Y

validators, 105, 202
views, 104, 127

w

Web Services, 245
welcome, 44

while, 29, 130

wiki, 71

Windows service, 293
WSGI, 281

X

XHTML, 137
XML, 133
xml, 173
XML, 246
xmlrpc, 71, 80
XMLRPC, 253

Y

year, 175

	Contents

	Preface

	1 Introduction

	1.1 Principles

	1.2 Web Frameworks

	1.3 Model-View-Controller

	1.4 Why web2py

	1.5 Security

	1.6 In the box

	1.7 License

	1.8 License Commercial Exception

	1.9 Acknowledgments

	1.10 About this Book

	1.11 Elements of Style

	2 The Python Language

	2.1 About Python

	2.2 Starting up

	2.3 help, dir

	2.4 Types

	2.5 About Indentation

	2.6 for...in

	2.7 while

	2.8 def...return

	2.9 if...elif...else

	2.10 try... except...else...finally

	2.11 class

	2.12 Special Attributes, Methods and Operators

	2.13 File Input/Output

	2.14 lambda

	2.15 exec, eval

	2.16 import

	3 Overview

	3.1 Startup

	3.2 Say Hello

	3.3 Let’s Count

	3.4 Say My Name

	3.5 Form self-submission

	3.6 An Image Blog

	3.7 Adding CRUD

	3.8 Adding Authentication

	3.9 A Wiki

	3.10 More on admin

	3.11 More on appadmin

	4 The Core

	4.1 Command Line Options

	4.2 URL Mapping

	4.3 Libraries

	4.4 Applications

	4.5 API

	4.6 request

	4.7 response

	4.8 session

	4.9 cache

	4.10 URL

	4.11 HTTP and redirect

	4.12 T and Internationalization

	4.13 Cookies

	4.14 init Application

	4.15 URL Rewrite

	4.16 Routes on Error

	4.17 Cron

	4.18 Import Other Modules

	4.19 Execution Environment

	4.20 Cooperation

	5 The Views

	5.1 Basic Syntax

	5.2 HTML Helpers

	5.3 BEAUTIFY

	5.4 Page Layout

	5.5 Using the Template System to Generate Emails

	5.6 Layout Builder

	6 The Database Abstraction Layer

	6.1 Dependencies

	6.2 Connection Strings

	6.3 DAL, Table, Field

	6.4 Migrations

	6.5 Query, Set, Rows

	6.6 One to Many Relation

	6.7 How to see SQL

	6.8 Exporting and Importing Data

	6.9 Many to Many

	6.10 Other Operators

	6.11 Caching Selects

	6.12 Shortcuts

	6.13 Self-Reference and Aliases

	6.14 Table Inheritance

	7 Forms and Validators

	7.1 FORM

	7.2 SQLFORM

	7.3 SQLFORM.factory

	7.4 Validators

	7.5 Widgets

	7.6 CRUD

	7.7 Custom form

	8 Access Control

	8.1 Authentication

	8.2 Authorization

	8.3 Central Authentication Service

	9 Services

	9.1 Rendering a dictionary

	9.2 Remote Procedure Calls

	9.3 Low Level API and Other Recipes

	9.4 Services and Authentication

	10 Ajax Recipes

	10.1 web2py_ajax.html

	10.2 jQuery Effects

	10.3 The ajax Function

	11 Deployment Recipes

	11.1 Setup Apache on Linux

	11.2 Setup mod_wsgi on Linux

	11.3 Setup mod_proxy on Linux

	11.4 Start as Linux Daemon

	11.5 Setup Apache and mod_wsgi on Windows

	11.6 Start as Windows Service

	11.7 Setup Lighttpd

	11.8 Apache2 and mod_python in a shared hosting environment

	11.9 Setup Cherokee with FastGGI

	11.10 Setup PostgreSQL

	11.11 Security Issues

	11.12 Scalability Issues

	11.13 Google App Engine

	12 Other Recipes

	12.1 Upgrading web2py

	12.2 Fetching a URL

	12.3 Geocoding

	12.4 Pagination

	12.5 Streaming Virtual Files

	12.6 httpserver.log and the log file format

	12.7 Send an SMS

	12.8 Twitter API

	12.9 Jython

	References

	Index

	A

	B

	C

	D

	E

	F

	G

	H

	I

	J

	K

	L

	M

	N

	O

	P

	Q

	R

	S

	T

	U

	V

	W

	X

	Y

