
XML Processing with
Perl™, Python, and PHP

Martin C. Brown

SYBEX®

XML Processing with
Perl, Python, and PHP

4021fm.qxd 11/2/01 4:27 PM Page i

This page intentionally left blank

San Francisco • London

XML Processing with
Perl, Python, and PHP

Martin C. Brown

™

4021fm.qxd 11/2/01 4:27 PM Page iii

Associate Publisher: Richard Mills
Acquisitions and Developmental Editor: Tom Cirtin
Editor: Gene Redding
Production Editor: Jennifer Campbell
Technical Editor: Charles Hornberger
Graphic Illustrator: Tony Jonick
Compositor: Franz Baumhackl
Proofreaders: Emily Hsuan, Nancy Riddiough
Indexer: Nancy Guenther
Cover Designer: Caryl Gorska, Gorska Design
Cover Photograph: Tony Stone

Copyright © 2002 SYBEX Inc., 1151 Marina Village Parkway,
Alameda, CA 94501. World rights reserved. No part of this pub-
lication may be stored in a retrieval system, transmitted, or
reproduced in any way, including but not limited to photocopy,
photograph, magnetic, or other record, without the prior agree-
ment and written permission of the publisher.

Library of Congress Card Number: 2001094603
ISBN: 0-7821-4021-1

SYBEX and the SYBEX logo are either registered trademarks or
trademarks of SYBEX Inc. in the United States and/or other
countries.

Screen reproductions produced with xv. xv © 1994 John Bradley.
All rights reserved.

Netscape Communications, the Netscape Communications logo,
Netscape, and Netscape Navigator are trademarks of Netscape
Communications Corporation.

Netscape Communications Corporation has not authorized, spon-
sored, endorsed, or approved this publication and is not responsible
for its content. Netscape and the Netscape Communications Cor-
porate Logos are trademarks and trade names of Netscape Com-
munications Corporation. All other product names and/or logos
are trademarks of their respective owners.

Internet screen shot(s) using Microsoft Internet Explorer 5
reprinted by permission from Microsoft Corporation.

TRADEMARKS: SYBEX has attempted throughout this book to
distinguish proprietary trademarks from descriptive terms by fol-
lowing the capitalization style used by the manufacturer.

The author and publisher have made their best efforts to prepare
this book, and the content is based upon final release software
whenever possible. Portions of the manuscript may be based upon
pre-release versions supplied by software manufacturer(s). The
author and the publisher make no representation or warranties of
any kind with regard to the completeness or accuracy of the con-
tents herein and accept no liability of any kind including but not
limited to performance, merchantability, fitness for any particular
purpose, or any losses or damages of any kind caused or alleged to
be caused directly or indirectly from this book.

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

4021fm.qxd 11/2/01 4:27 PM Page iv

To Sharon, always.

4021fm.qxd 11/2/01 4:27 PM Page v

This page intentionally left blank

Acknowledgments

F irst, I must thank Tom Cirtin, who originally offered me the book on the basis of a brief
conversation at the beginning of the year. I also need to thank Jennifer Campbell, who

took over and managed the project after the initial stages. It’s been a long process with occa-
sional difficulties, but the people at Sybex were wonderful throughout the course of this
project.

I also need to thank Gene Redding, who copy edited the book for me—after almost five
years of writing, I’m still not as good as I could be. For the technical input, thanks go to
Charles Hornberger for highlighting missed opportunities and less-than-perfect examples.

Big thanks also have to go to all the people who do the work behind the scenes and pro-
duce the modules, extensions, and examples that make up this book. This includes—but in
no way is limited to—James Clarke, the folks at Late Night Software, Apple Computer, Inc.,
Scriptics, Larry Wall and the Perl team, Guido van Rossum, Fredrik Lundh, and the rest of
the Python and PyXML teams and the folks who work on PHP, Ruby, and Rebol.

There’s also a very special thanks to the people out there who helped me deal with the events
of September 11, 2001, which occurred during the writing of this book. My heart goes out to
anybody whose family was touched by the tragedies. Whilst neither I nor any of my family or
friends were involved in the events on that day, many of the people I know and work with were.
In particular, thanks and best wishes to Wendy Rinaldi, Rikke Jørgensen, and Aharon Robbins.

The penultimate thanks go to Neil Salkind and Vicki Harding, my agents, and to the rest
of the team at StudioB for keeping all my contracts, negotiations, and checks in order.

Finally, the biggest thanks should go to my wife. I would be lost without her, and all too
often she has to listen to my complaints and frustrations without any thanks or appreciation.

4021fm.qxd 11/2/01 4:27 PM Page vii

Introduction xxi

Part I Applying XML 1

Chapter 1: Introduction to XML 3

Chapter 2 Fundamentals of XML 11

Chapter 3 Data Type Definitions (DTDs) 23

Chapter 4 Applying XML with Scripting Languages 35

Chapter 5 Data Exchange and XML 47

Part II XML and Perl 61

Chapter 6 XML Solutions in Perl 63

Chapter 7 Perl and Unicode 87

Chapter 8 Generating and Parsing XML Documents with Perl 97

Chapter 9 Converting XML Documents Using Perl 119

Chapter 10 Applying SOAP/XML-RPC in Perl 147

Part III XML and Python 167

Chapter 11 XML Solutions in Python 169

Chapter 12 Python and Unicode 187

Chapter 13 Generating and Parsing XML Documents with Python 197

Contents at a Glance

4021fm.qxd 11/2/01 4:27 PM Page viii

Chapter 14 Converting XML Documents Using Python 209

Chapter 15 Applying SOAP/XML-RPC in Python 225

Chapter 16 Zope and XML Documents 243

Part IV XML and PHP 263

Chapter 17 XML and PHP 265

Chapter 18 Developing XML Applications with PHP 287

Chapter 19 PHP and XML-RPC 305

Part V XML and Other Languages 319

Chapter 20 XML and REBOL 321

Chapter 21 XML and Ruby 329

Chapter 22 XML and Tcl 341

Chapter 23 AppleScript and XML 359

Appendices

Appendix A Unicode Quick Reference 377

Appendix B Resource Guide 393

Index 403

4021fm.qxd 11/2/01 4:27 PM Page ix

This page intentionally left blank

Contents

Introduction xxi

Part I Applying XML 1

Chapter 1 Introduction to XML 3

Proprietary Data Formats 4
XML—Making Data Portable 5
XML Goals 7
XML Features 8
XML: Past, Present, and Future 8
XML and Scripting Languages 9
Where Next 10

Chapter 2 Fundamentals of XML 11

XML Structure 12
Elements and Attributes 13
Comments 15
Character Data 15

Well-Formed XML Documents 16
Entity References 17

Character Entities 18
Mixed-Content Entities 18

XML Processing Instructions 19
The XML Declaration 20
Summary 21

Chapter 3 Data Type Definitions (DTDs) 23

DTD Syntax 24
Element Declarations 24

4021fm.qxd 11/2/01 4:27 PM Page xi

xii

Attribute Declarations 26
General Entity Declarations 30

Using DTDs for Modeling Data 31
When to Use a DTD 31
Standard DTDs 32
Summary 33

Chapter 4 Applying XML with Scripting Languages 35

Why Use a Scripting Language? 36
Text Processing 36
Data Modeling 37
Data Interface 38
Memory Management 39
Development Speed 39
Longevity 41
Compatibility 42
Cost 43

The Scripting Language Irony 44
Summary 45

Chapter 5 Data Exchange and XML 47

Parsing XML 49
Parser Types 49
Parser Solutions 52

Unicode 54
The Unicode Solution 55
Unicode and XML 55

Remote Data Exchange 56
SOAP 58
XML-RPC 58
Limits 58

Summary 59

Contents

4021fm.qxd 11/2/01 4:27 PM Page xii

Part II XML and Perl 61

Chapter 6 XML Solutions in Perl 63

Using XML::Parser 64
Using XML::Parser to Convert to HTML 65
XML::Parser Traps 72

XML Processing Using SAX 73
XML Processing Using DOM 75
Generating XML 80
Other XML Modules 81

DBIx::XML_RDB 81
XML::RSS 82

Summary 84

Chapter 7 Perl and Unicode 87

Core Support 88
Specifying Unicode Characters and Sequences 89
Character Numbers 90

Working with Unicode Data 90
Case Translations 90
Regular Expressions 91
Data Size Traps 94

Unicode Character Conversions 95
Summary 96

Chapter 8 Generating and Parsing XML Documents with Perl 97

Using the SAX Parser 98
Inside SAX Processing 98
Searching Documents with SAX 102
Using SAX for Conversions 108

Using a DOM Parser 108
Inside XML::DOM Processing 109
Access “By Node” 109
Extracting Information 111

Contents xiii

4021fm.qxd 11/2/01 4:27 PM Page xiii

xiv

Modifying Structures and Data 116
Regenerating XML from a DOM Tree 116

Summary 117

Chapter 9 Converting XML Documents Using Perl 119

Database Management 120
Traditional Solution 121
Dumping the Hash to XML 128
Creating the Database from the XML 132
Dumping any SQL Database Structure to XML 136

Converting Database Content to XML 139
A Traditional Dumping Approach 140
The XML Dump Approach 142
Generating More Complex XML Documents 143
XML to Database 145

Summary 146

Chapter 10 Applying SOAP/XML-RPC in Perl 147

Introducing SOAP::Lite 148
How SOAP::Lite Works 151

SOAP Client Programming 152
Explicit Calls 152
Automatic Calls 152
Getting Multiple Return Values 153
Using Objects and Methods 154

Creating SOAP Servers 156
Dispatch Methods 156
SOAP Support Modules 159
Migrating Existing Modules 159

Debugging SOAP::Lite 160
Avoiding Problems 160
Diagnosing Problems 161

Using XML-RPC 163
Where Next with SOAP::Lite and XML-RPC 165
Summary 166

Contents

4021fm.qxd 11/2/01 4:27 PM Page xiv

Part III XML and Python 167

Chapter 11 XML Solutions in Python 169

The xmllib Module 170
Understanding XMLParser 171
Identifying XML Elements 173
Beyond xmllib 174

Parsing Using Expat 175
Parsing Using SAX 177
Parsing Using DOM 178

Using minidom 179
DOM in Action 182
Building XML Documents with DOM 183

Summary 185

Chapter 12 Python and Unicode 187

Creating Unicode Strings 188
Translating Unicode 189

Encoding to Unicode Formats 190
Decoding to Unicode Formats 191
Unicode and XML in Python 192
Translating Character Numbers 192

Accessing the Unicode Database 193
Writing Your Own Codec 193

Summary 196

Chapter 13 Generating and Parsing XML Documents with Python 197

Parsing with SAX 198
Designing Handlers 199
Handler Quick Reference 201
Error Handling 203

Using xmlproc for Validation 205
Summary 208

Contents xv

4021fm.qxd 11/2/01 4:27 PM Page xv

xvi

Chapter 14 Converting XML Documents Using Python 209

Converting XML to an Internal Structure 211
Converting XML to an Internal Class Representation 214

The HTML Fragment Class 214
Using the HTML Builder Class with DOM 218
A SAX Converter 222

Summary 224

Chapter 15 Applying SOAP/XML-RPC in Python 225

Using SOAP 226
Writing SOAP Clients 227
Writing SOAP Servers 232
Debugging 234

XML-RPC Solutions 235
XML-RPC Walkthrough 235
Debugging XML-RPC 239

Summary 240

Chapter 16 Zope and XML Documents 243

The XML Export Format 246
Combining DTML and XML Resources 250

The Web Log Project 250
Exporting DTML as XML 255
Parsing External XML Documents 256

Zope and XML-RPC 259
Summary 261

Part IV XML and PHP 263

Chapter 17 XML and PHP 265

Building a Simple XML Parser 266
Inside the XML Parser 272

Initial Setup 273
Supported Entity Handlers 275

Contents

4021fm.qxd 11/2/01 4:27 PM Page xvi

Getting/Setting Parser Options 277
Error Trapping 277

Converting XML to HTML 279
Summary 285

Chapter 18 Developing XML Applications with PHP 287

The RSS Format 288
Building an RSS Aggregator 290

The RSS Parser 295
The Aggregator in Action 297

Writing RSS Documents 300
Creating a DOM Document 300
Adding Nodes 301
Writing the XML 302

Summary 303

Chapter 19 PHP and XML-RPC 305

Writing an XML-RPC Client 307
Writing an XML-RPC Server 311
XML-RPC Data Conversion 313

PHP to XML-RPC 313
XML-RPC to PHP 315
Quicker Conversions 316

Benefits of XML-RPC in PHP 317
Summary 318

Part V XML and Other Languages 319

Chapter 20 XML and REBOL 321

Parsing XML Information in REBOL 322
Processing XML as Markup 322
Manipulating Tags 325
Building Your Own Event Parser 326

XML-RPC with REBOL 327
Summary 328

Contents xvii

4021fm.qxd 11/2/01 4:27 PM Page xvii

xviii

Chapter 21 XML and Ruby 329

Parsing XML 330
The XPath Access Mechanism 331
Building a To-Do List 332

Ruby and XML-RPC 337
XML-RPC Client 337
XML-RPC Server 338
Error Handling 339

Summary 340

Chapter 22 XML and Tcl 341

The TclXML Parser 342
Configuring the Parser 345
Error Handling 348
Tcl and Unicode 349

Viewing XML with Tk 351
Using XML-RPC 355

Writing an XML-RPC Client 355
Writing an XML-RPC Server 356

Summary 358

Chapter 23 AppleScript and XML 359

XML Parsing with AppleScript 360
Parsing Quick Reference 363
Processing an RSS Feed to HTML 366
Generating XML with AppleScript 370
The XML Tools Dictionary 371

XML-RPC with AppleScript 372
XML and MacOS X 373

Basic XML Parsing 374
Using XML-RPC and SOAP 374

Summary 376

Contents

4021fm.qxd 11/2/01 4:27 PM Page xviii

Appendices 377

Appendix A Unicode Quick Reference 377

Base Character Sets 378
ASCII 378
ISO-8859-1, Latin-1 382
Mac Roman 386

XML Character Set Names 391

Appendix B Resource Guide 393

Generic Resources 394
XML Resources 395
Perl Resources 397
Python Resources 398
PHP Resources 399
REBOL Resources 399
Ruby Resources 400
Tcl Resources 400
AppleScript Resources 401
XML Software 401

Index 403

Contents xix

4021fm.qxd 11/2/01 4:27 PM Page xix

This page intentionally left blank

Introduction

A lmost ten years ago, my introduction to the commercial world was handling and dealing
with the databases of a UK government body. We used a free text-retrieval system to

store information about software products, teachers, and trainers. Although we had fields for
the information, when we entered a search, we were searching the whole document, not just
one field or a collection of them.

One of my jobs was to write programs that processed the information, deduced the fields,
extracted compound addresses and telephone numbers, and tidied up the results to put into a
new version of the database.

Access to the database was through a Sun-based Unix system, and the PCs and Macs on
the network didn’t talk to each other, but they did talk over Telnet to the Sun database server.
You could do searches, edit information, and cut and paste, but you had no control over how
the information looked without manually massaging the text you’d just copied.

Ten Years Later
Ten years later, for the most part I still do the same thing, although not with the same com-
pany or the same information. Ultimately, though, I’m still working with databases and stor-
age systems that rely on managing and dealing with a lot of text, but in a structured way that
is somehow intelligent enough to know what I’m storing but flexible enough not to restrict
what it is I want to store.

The information I’m dealing with has to be accessible on a number of different platforms.
In my home office alone, I’ve got Macs, Unix, Linux, at least five different versions of Win-
dows, and handhelds running EPOC32 and PalmOS. They support different character sets,
and I have to be able to convert the information into more usable formats, such as HTML
for display, or stored in more rigid systems, like an RDBMS.

What should I use? Do I play with a free text-retrieval system again?

If I use a database system, how will I transfer my contacts from my desktop Mac to my
portable Windows notebook or to Palm? If I want to view the information online, can I con-
vert it easily? If I build an application that provides me with access to the information, how
do I go about storing my preferences? How do I make the information available over the net-
work in a format that can be accessed by all the machines that need to use it?

4021fm.qxd 11/2/01 4:27 PM Page xxi

xxii

The Solution
The solution, if you haven’t guessed it already, is that I should use XML, the Extensible
Markup Language. I get all the flexibility I need without losing any capabilities. I can add
new fields, structures, and layouts to the information without breaking any of the existing
tools. I can use fairly standard applications to convert the XML information into a more suit-
able format. In fact, I can easily convert an XML document into a structured database, and I
can query the database using SQL and export the records back in XML format.

Alternatively, I can store everything in XML and access, process, and update the infor-
mation directly. If I want, I can even query the XML document using XQL. I can use it to
exchange information between platforms and, because all the information is in a standard
and easily processed format, I should be able to use the information on any platform I have
access to.

The Tools
I’m not actually a firm believer in being to able to specify the “right” tool for the job. Each
programming job is different and may well have a number of different solutions and possible
tools that would ease the process. However, I do know that scripting languages offer one of
the fastest development environments, and many offer a wider range of supported platforms
(and more accessible methods) than more traditional XML processing tools based on Java or
C/C++.

Python, for example, runs on MacOS, Unix, Windows and PalmOS. Rebol runs on even
more. AppleScript is a standard part of every MacOS revision since 8.0 and is even included
in MacOS X. Perl is supplied as standard with most Linux revisions, and even some commer-
cial Unix installations include Perl as a standard option.

In fact, I have access to a wider range and more easily accessible set of development tools
off the shelf than any Java or C/C++ development environment I know of. Furthermore,
some of them are so easy to use that it’s hard to understand why you would even look at
another language. Did you know, for example, that you can talk to any application in MacOS
with AppleScript?

Think about what you could do if only you knew how to tell Perl to convert your XML-
based documents into Word documents for editing, or to HTML for viewing on the Web,
or to SQL tables for storage in a database!

Introduction

4021fm.qxd 11/2/01 4:27 PM Page xxii

xxiii

This Book
If you haven’t already guessed, this book is all about parsing, processing, and working with
XML using a variety of scripting languages. After a brief XML refresher, I address the lan-
guages in turn to show how each provides solutions for getting at the power of XML. Along
the way, I address some of the important protocols, such as SOAP and XML-RPC, that make
seamless data transfer possible. Throughout this book you’ll find sample scripts. You can
download the complete versions of the scripts by going to www.sybex.com and following the
link to the page for this book.

XML seems to be everywhere today and used in a myriad of ways, especially in the vital
and growing world of e-commerce. This book is designed to help you make the most of it. I
hope that you will return to these pages often as you discover more uses for XML.

Introduction

4021fm.qxd 11/2/01 4:27 PM Page xxiii

This page intentionally left blank

Applying XML

Chapter 1: Introduction to XML

Chapter 2: Fundamentals of XML

Chapter 3: Data Type Definitions (DTDs)

Chapter 4: Applying XML with Scripting Languages

Chapter 5: Data Exchange and XML

Part I

4021ch01.qxd 11/2/01 2:27 PM Page 1

This page intentionally left blank

Introduction to XML

• XML Goals

• Making Data Portable

• Inside XML

• Past, Present, and Future

Chapter 1

4021ch01.qxd 11/2/01 2:43 AM Page 3

4

T he storage and exchange of information has been a problem in the world of computers
since they were invented. In essence, files fit into one of two categories: Either they are

basic text or they are binary.

Text files are the most compatible. They use standard 8-bit characters using the ASCII
system to store information. ASCII is universally accepted—from the Sinclair ZX81 to the
PDP-11/73, the Commodore 64, Atari ST, to the modern PC, Mac, and Unix workstation,
they all read and write ASCII data. ASCII is not without problems—different machines use
different characters for line termination, for example—but these are not impossible to
overcome.

However, there are problems with ASCII as a storage format for anything beyond letters,
numbers and basic punctuation. One of the fundamental problems with ASCII text is that
essentially we are limited to 128 different characters, consisting of the main letters (upper-
and lowercase); numbers; and basic characters, such as the comma, dollar sign, and mathe-
matical symbols.

With standard ASCII there is no way to represent anything beyond these standard charac-
ters, so accented characters and other currency symbols are missing. We don’t even have
access to the accent symbols, so we can’t mark them up in the text so that a program such as
Word will understand what we mean.

The representation issue raises the main complaint of plain text as a file. By definition, plain
text is an unformatted and unstructured solution for storing information. There are solutions
such as Comma Separated Values (CSV) and Tab Delimited Fields (TDF), but both of these
are completely unsuitable for anything other than tabular data.

Suppose you want to store a marked-up document that uses bold and italics, different fonts,
special characters and incorporates images, movies, and sound? The obvious option is to pro-
duce your own proprietary binary format. Rather than being limited to 7-bit data, you get to
use 8-bit, full-width characters, and instead of relying on a text representation of what you
are doing, you can format and structure your document however you like. It doesn’t matter
that the document isn’t readable by anything other than your application. If someone wants
to read your document, he can just buy a copy of your application, right?

Proprietary Data Formats
Although these proprietary formats are fine as long as you are using your application, what
happens when you want to exchange that document with someone else? If you are transferring
it over e-mail, then you probably need to encode it into an ASCII-based format—normally
handled automatically by your e-mail software—then decode it back to its binary format.

Chapter 1 • Introduction to XML

4021ch01.qxd 11/2/01 2:43 AM Page 4

5

Once your recipient gets the document, he still needs a copy of the application that created
it, or at least one that is able to import or read that binary format. This presents something
of a problem. There are lots of different word processors out there; if you’re sending a copy
of a letter that you wrote in Word, and your recipient uses AppleWorks, what do you do?

You could try saving to a compatible format. Both applications support Rich Text Format
(RTF), which is actually a structured text format that retains most of the formatting for a
document, but it’s not infallible. Congratulations, you’ve just solved your first data exchange
problem!

Now do the same with your latest database application. The first problem is that there’s no
direct equivalent of the RTF format for exchanging information. Sure, we can export the
data in DIF, SYLK, or the previously mentioned CSV and TDF formats. We’ll need to do
that for each table in our database, and we’ll need to set up the database at the other end to
hold the information we need to import.

If we take a specific example, such as a contacts database, then we can be more specific.
Exchanging entire tables between systems won’t be a problem, but pulling out a single
record can be. If the database is modeled with three different tables containing contact
names, addresses, and contact numbers, then that single contact will mean taking only a
few rows from each table. You’ll have to import each table individually, and woe to you if
your record IDs don’t match!

Although transferring information between two database systems that you’ve created is rel-
atively simple, trying repeating the exercise with two databases that are not identical, such as
the contact DB in your e-mail software and the DB in your handheld. The field names don’t
match, and in all likelihood the number and type of fields don’t match either.

Modifying the raw text data generated when you did the export would solve the problem,
but you’d probably lose some data in the process. In addition, you would be adding a manual
element to something that should really be automatic. Computers are supposed to make your
life easier, right?

XML—Making Data Portable
By now you should have started to spot a trend. Exchanging data between applications, even
those that you’ve created and written yourself, is not easy. In fact, it’s often the single most
frustrating process in using your application, and one of the most asked-about topics in user
forums and to helpdesk managers.

Data exchange happens all the time. Everything from your latest credit card purchase to
clicking on a URL in an e-mail message triggers some form of data exchange. Get more

XML—Making Data Portable

4021ch01.qxd 11/2/01 2:43 AM Page 5

6

adventurous and you find that exchanging documents with your friends, importing graphics
into your newsletter or catalog, doing a mail merge, or even sharing data between your desk-
top and your handheld all rely on the exchange of information.

The critical area in each case is how to model the data in a format that is as portable as pos-
sible and still retain the data structure. The RTF, CSV, TDF, and a myriad of other formats
have all tried to fit this particularly niche. The problem is that each is targeted at solving a
particular problem, which means that each essentially uses its own proprietary format. We’re
back to square one.

In 1974, Charles F. Goldfarb invented Standardized General Markup Language (SGML).
This system represented the contents of complex documents using standard text. Tags were
used to help describe the content and format of the text so that that it was possible to convert
a raw SGML document and extract data from it, either to produce a final document or to
extract elements. Everything from a full book to a quick reference card could be pulled from
a raw SGML file, all without ever modifying or copying the contents.

In 1991, Tim Berners-Lee used the basic mechanisms provided by SGML to create a
way to mark up text for formatting it on screen; he called it Hypertext Markup Language
(HTML). Although the Internet was nothing new by the time it came on the scene, HTML
did revolutionize the way we use the Internet and browse and exchange information.

In about 1997, it became apparent that many of the principles that applied to SGML and
HTML could equally be applied for modeling data. If SGML declares document elements so
that we can pick out individual paragraphs, chapters and other specific fragments and HTML
defines text formatting, then Extensible Markup Language (XML) can be used to store data
in a structured format.

XML enables us to mark up a text document so that we can identify different pieces of
information. For example, we could mark up a contact record like this:

<contact>
<name>Martin Brown</name>
<address>The House</address>
<town>Sometown</town>
<postcode>AB12 3CD</postcode>
<contact_numbers>

<phone>01234 567890</phone>
<mobile>09876 543210</mobile>
<email>mc@mcslp.com</email>

</contact_numbers>
</contact>

We can now pick out from this XML document the name of the contact, the address, and a
list of phone numbers.

Chapter 1 • Introduction to XML

4021ch01.qxd 11/2/01 2:43 AM Page 6

7

The entire document is in text, so we don’t have to worry about dealing with or program-
ming a reader for a proprietary format. The fields are easily marked up; we needn’t doubt
which of these fields is my phone number, and for all we know the entire record could have
come from seven different tables in a database. We also haven’t lost any information in the
translation.

Going back to our original problem—that of exchanging data between applications—you
can see that we’ve just solved all of the problems we had with either the binary formats or the
CSV, RTF, and other text- and data-specific formats we’ve been using up to now.

Using our contact XML document, if we’d exported that from our e-mail application on
the desktop and then transferred it over to our handheld, we’d have copied the information
easily, efficiently, and without any manual intervention. If the handheld was unable to cope
with mobile phone numbers, it could have ignored the field. If it used a single field to hold
the address, town, and postcode information, then it could have bonded all of that together
when the record was imported.

This is what XML is all about: modeling data in a structured way so that we can easily
exchange information between applications. XML is a solution for making data portable.

XML Goals
Extensible Markup Language (XML) is a side-set of SGML. Although it follows most of the
basic premises of the SGML system, some of the complexity has been removed in order to
make it easier to use as a way of displaying and formatting information for the web. The
original design goals of the World Wide Web Consortium (W3C) when developing XML
were the following:

1. XML shall be straightforwardly usable over the Internet.

2. XML shall support a wide variety of applications.

3. XML shall be compatible with SGML.

4. It shall be easy to write programs to parse XML documents.

5. The number of optional features of the XML standard should be kept to an absolute min-
imum (preferably zero).

6. XML documents should be human-readable and reasonably clear.

7. The XML design should be prepared quickly.

8. The design of XML should be formal and concise.

8. XML documents should be easy to create.

10. Terseness in XML markup is of minimum importance.

XML Goals

4021ch01.qxd 11/2/01 2:43 AM Page 7

8

For the most part, W3C succeeded. XML is easy to use, create, parse, and understand,
even when reading it in its raw format. The XML 1.0 specification has been set in stone,
with the formal ratification taking place on February 10, 1998.

XML Features
We can list the primary features that XML provides in six simple statements:

● XML enables you to store and organize information that can be tailored to your needs,
rather than being controlled by the application that created the information.

● XML uses the Unicode character set, which means we are not limited to ASCII or indeed
any character set for any language. XML documents can be written in English, Chinese,
Gujarat, Greek, or Sanskrit.

● XML is an open standard, which means that nobody owns the standard, it’s not reliant on
a single company, and it’s not a part of or reliant on the features of a single application.

● XML documents can be as open or strict as you like. We can check the quality of the doc-
ument by examining syntax, the data content, or the document structure.

● XML is clear and easy to read. Humans can read and write XML documents, and docu-
ments can be written and modified using a standard text editor.

● XML is a system for modeling data. We can convert the data into a formatted document
using style sheets, without the need to convert the data into another format.

XML: Past, Present, and Future
XML is still a relatively new technology, despite its apparent age. At the time I write this,
July 2001, XML is 3.5 years old, and yet many of the features, applications, and promises
made in XML’s infancy have yet to be realized.

This is not in any way a criticism. HTML is just 10 years old, and even now we are only
just beginning to realize its potential. Most people use, and a significant proportion of them
write, HTML every day, but still there are issues surrounding how best to use the language.
Compatibility issues (different browsers displaying the same HTML in different ways), tags,
and where HTML fits into the whole scheme of document formatting are still topics to be
decided.

XML is actually a family of technologies. The XML standard itself defines how to specify
elements and their attributes within your XML documents. Behind the scenes sits the Docu-
ment Type Definition (DTD), which is an optional element that defines the structure, lay-
out, and validity of the fields and data that you can incorporate into your XML document.

Chapter 1 • Introduction to XML

4021ch01.qxd 11/2/01 2:43 AM Page 8

9

Then there are extensions to the XML standard that enable you to define and specify
other elements in the document, such as XLink for adding hyperlinks and XPointer and
XFragments for pointing and referring to areas of an XML document. For converting the
XML document into HTML for display on a web page we have Cascading Style Sheets
(CSS), Extensible Stylesheet Language (XSL), and XSL Transformations (XSLT).

Finally, there are technologies for reading XML documents, such as Simple API for XML
(SAX) and Document Object Model (DOM). There are the technologies that use XML,
such as Resource Description Format (RDF), which is used to model metadata, RDF Site
Summary (RSS), which is used to stream news information in a structured format, and
remote technologies such as XML-RPC and SOAP, which use XML to exchange requests
and responses with a remote server to enable you to execute functions remotely.

At the present time, XML is still in the “Let’s see what we can do” stage. Standards are
being discussed and agreed upon, and many companies and developers are converting their
systems to use XML. Most of the topics already mentioned in this chapter are still in devel-
opment, and although it’s true that most things evolve over time, many of these haven’t yet
made it to the growing-legs and breathing-air stage.

In the future, XML will be a major part of your computing experience. Whether you are
aware of this or not will depend on how it is advertised.

Other companies are creating groups that will agree on standards for communicating
between systems. Already there are groups for our contact database and desktop/handheld
data problem. There also are companies developing solutions for Electronic Data Inter-
change (EDI), a system that requires the definition of hundreds or even thousands of fields
just to hold the information for an order.

You’ll wake up in the morning, read the news through a set of RSS feeds, send an XML-
formatted e-mail to your friends, exchange an XML document with your bank to find your
latest balance, and raise orders and receive invoices from your suppliers and clients by send-
ing them an XML document, rather than printing them out and faxing or posting them.

XML and Scripting Languages
Now that you know all about XML, where it came from, and what problems it should solve,
you probably wonder where scripting languages fit into the mix. Obviously, if you want to
read or write XML documents, you are going to need to do that with the language in which
you write your application.

Many people will be using XML documents in rapid application development (RAD) envi-
ronments, and many of these rely on scripting languages such as Perl, Python, and Tcl. Oth-
ers will be using XML in their web- and Internet-based applications.

XML and Scripting Languages

4021ch01.qxd 11/2/01 2:43 AM Page 9

10

In most cases, a scripting language offers some advantages over C or C++ even when writ-
ing non-XML scripts. A scripting language is faster to write, easier to use, and generally has
better text-handling features. For example, many of the scripting languages covered in this
book support much better data typing systems, flexible array handling, and the complex
structure building offered by combinations of strings, arrays, and the ever-present hash or
dictionary.

With all these things in mind, since XML is all about processing textual information and
structuring that information into a more useful format, wouldn’t it make sense to use a
scripting language?

Where Next
The aim of this book is to show you how we can read, write, format, and structure informa-
tion in XML using Perl, Python, PHP, REBOL, Ruby, Tcl, and AppleScript. The aim isn’t
to show you which language is better, although we do give more attention to the top three
languages.

Instead, it’s a practical guide to performing a variety of XML processing and manipulation
tasks in each of the different languages. With that in mind, reading the book sequentially
won’t be useful to you; use the following to jump to the section or chapter you want:

● If you are not already familiar with XML as a standard or how to write and use XML,
then you probably want to move straight on to Chapter 2 and Chapter 3, where we look
at the fundamentals of writing XML documents and DTDs, respectively.

● Regardless of your favorite scripting language, Chapter 4 provides a good background as
to why you should use a scripting language for processing XML over C or C++.

● Chapter 5 covers the different technologies used when writing XML documents and how
these features can be used and applied in any scripting language. In particular, we look at
Unicode, how it affects XML documents, and how XML can be used to build a bridge
between applications written in any language.

● If you are Perl programmer and know your XML, skip straight to Chapter 6.

● If you are Python programmer and know your XML, skip straight to Chapter 11.

● If you are PHP programmer and know your XML, skip straight to Chapter 17.

● If you are a REBOL programmer and know your XML, skip straight to Chapter 20.

● If you are a Ruby programmer and know your XML, skip straight to Chapter 21.

● If you are a Tcl programmer and know your XML, skip straight to Chapter 22.

● If you are an AppleScript programmer and know your XML, skip straight to Chapter 23.

Chapter 1 • Introduction to XML

4021ch01.qxd 11/2/01 2:43 AM Page 10

Fundamentals of XML

• XML Structure

• Well-Formed XML Documents

• Processing Instructions

Chapter 2

4021ch02.qxd 11/2/01 2:45 AM Page 11

12

W e can’t really have a book about XML processing without at least some background
information on what XML is and what the different components are that make up an

XML document.

In essence, XML is incredibly simple, and if you know HTML you are already more than
halfway there. XML itself is just an extensible markup language; it uses the same tag style as
an HTML document. Unlike HTML, which has a specific set of tags, with XML you can
create your own.

The difference between HTML and XML is in the information that is contained in the
eventual document. An HTML document contains text with links (hence hyperlink) and
other embedded elements such as graphics and movies. The eventual aim is to produce a
document that looks good onscreen and has links and jump points to similar documents in
order to build an information source—whether that be a website, online help in an applica-
tion, or an interactive info guide.

XML, on other hand, is designed to represent information in a structured and ultimately
transparent and portable way. As we saw in the previous chapter, one of the problems with
modern computing is that we have no portable way of transferring data, and that’s what
XML aims to solve. The way it does this is to use the tags and existing structure and features
of HTML (actually, SGML, the precursor of HTML and XML) in a more flexible way.

In this chapter we’re going to look at what makes up an XML document, what the differ-
ent components are, how we can use this information to help format data, and how the dif-
ferent elements are identified and processed within a typical XML parser.

XML Structure
As you can see from the example below, all XML documents are made up of a number of dif-
ferent components. The text below is a typical XML document, in this case describing a video
and some links that enable us to buy the product through Amazon UK’s referral service:

<video>
<video_base>
<title>Alien Resurrection</title>
<subtitle>Witness the Resurrection</subtitle>
<stars>Sigourney Weaver, Winona Ryder</stars>
</video_base>
<buylinks>

Chapter 2 • Fundamentals of XML

4021ch02.qxd 11/2/01 2:45 AM Page 12

13

<!-- The product code references go here -->
<azuk id="B00004S8GR">Buy Alien Resurrection on DVD</azuk>
<azuk id="B00004S8K7">Buy the Alien Box Set on DVD</azuk>
</buylinks>
</video>

The important fragments of the document are the elements (also known as tags), which
are the portions of text between the < and > characters; the attributes within some of the tags;
and the character data (the information not between the <> characters. One other piece of
information that might be important is the comment text enclosed by <!-- and -->.

The whole document structure should also be noted. We start with a single element,
<video>, in which all the other elements are contained, and also the fact that information in
the document is divided between the XML elements and the character data.

It should be obvious from this small example that XML documents are organized so that
the elements define the data we are storing, while the character data is the actual informa-
tion. For example, our video contains a piece of information about its title, subtitle, and stars,
and the actual data component of the title is Alien Resurrection.

You should also note that although the tags within the XML document define different
fields, there is no limit to the number of tags or their structure. In our example, the video_base
section includes the basic information on the video in question—the title, subtitle, and stars—
and we also have a buylinks section that contains two azuk tags.

Elements and Attributes
An XML element defines an area of information within the document. In our case, our first
XML element is <video> and it defines the start of the information on a video title. The end
of the video title information is indicated by the </video> tag. Those familiar with HTML
will recognize this structure from many tag pairs such as those used for table specifications,
for example <td> and </td>.

Like HTML, XML also supports individual (that is, non-paired) tags. Single-tag elements
don't define. Unlike HTML, which uses bare tags such as <hr>, XML includes a slash mark,
such as <mytag/>.

Some naming rules apply to the text you use for element names. The following sidebar
explains.

XML Structure

4021ch02.qxd 11/2/01 2:45 AM Page 13

14

XML Element Naming Rules
The XML specification includes the following guidelines for tag and attribute names:

❷ Names are case sensitive: <account> and <Account> are treated as different tags.

❷ A name must start with a character or an underscore, but after that it can continue with
any combination of letters, digits, underscores, or periods.

❷ Names beginning with xml (in any combination of uppercase and lowercase) are
reserved for use by the XML specification and any of its associated systems.

Attributes are the additional pieces of information defined within a specific tag. For example,
in our azuk elements, we included an ID number to be used when referring to the product on
the Amazon UK website. Attributes can be used to give an element a unique label or to add
properties to an element.

In HTML, you use attributes to include information such as the URL of a link when
defining a hyperlink or the location of a graphics file when introducing an image.

Any element can have as many attributes as necessary, as long as each attribute has its own
unique name (see the previous sidebar for more information on what’s supported). You
should also note the following:

❷ Individual attributes should be separated by spaces. For example, the following fragment
is invalid:

<chapter section="1"subsection="2">

It should be written:
<chapter section="1" subsection="2">

❷ Attribute data should be enclosed in either single or double quotes. The following is an
example of how not to quote information:

<chapter title=The Long and Winding Road section=1 subsection=2>

The problem here is that we (and therefore an XML parser) have no way of knowing
where the data for the title attribute ends.

Elements are handled in a parser by accessing them either by name or by the name of an
attribute being supplied to a handler function. Attributes are usually handled in the same
way—with most scripting languages, the attributes are supplied as a hash, associative array,
or dictionary (depending on what your language calls it).

Chapter 2 • Fundamentals of XML

4021ch02.qxd 11/2/01 2:45 AM Page 14

15

Comments
You can introduce comments into an XML document just as you can with HTML. But, unlike
HTML, where comments are used both as repositories for thoughts and as a source of addi-
tional information, XML comments are used strictly for comments. HTML comments are
frequently used for everything from processing instructions (the Server Side Includes (SSI)
system on the Web, for example) to adding application-specific data within tools such as
ColdFusion and other HTML authoring systems.

In XML, rather than using processing instructions are handled completely differently (see
the section “XML Processing Instructions,” later in this chapter, for more information) and
we no longer need to use an existing tag in the HTML specification to hold information—
XML lets us define our own tags for that.

XML comments are formatted in the same way as HTML comments, starting with <!--
and ending with -->:

<!-- This is a comment -->

You can include as much text as you like within a comment, even XML tags:
<!-- Please ignore this section
<options>Rear seatbelts, heated windscreen</options>
-->

Most XML parsers completely ignore comments. Others allow you to read and access
comments through the same mechanism as you would normally use to access XML tags and
character data.

Character Data
Character data is essentially all the information within an XML document that doesn’t
appear within the constraints of an XML tag or its attributes. For example, in our sample
XML document, the following fragment contains two pieces of information—the XML tag
<title> and the character data Alien Resurrection:

<title>Alien Resurrection</title>

In the majority of XML documents, it’s actually the character data that contains the real
information. The tags often just define the type or field to which the character data refers.

Note that, as with XML in general, character data contents are treated verbatim—new-
lines, spaces, and other white space are significant. This can cause problems if you are used to

XML Structure

4021ch02.qxd 11/2/01 2:45 AM Page 15

16

building HTML documents, where white space is largely ignored. For example, this XML
fragment:

<title>
Alien Resurrection
</title>

is different from this one:
<title>Alien Resurrection</title>

Different parsers handle the issue of white space in different ways. For example, some
would treat the first item as three separate blocks of character data: the first newline, the
actual text, and then the final newline at the end of the text. Others return any data between
two tags as a single character data block, and it’s then up to you to handle the information
accordingly. We’ll be looking at these issues when we examine the different parsers in differ-
ent languages throughout the rest of this book.

XML also allows you to insert large chunks of character data that are not subject to the
normal conversion and translation handled by entity references (which we’ll see later). In
these situations, you can insert a special CDATA block. CDATA blocks start with the prefix
<![CDATA [and terminate with the]]> character sequence. For example, the following
fragment would normally fail because of the use of < and & characters:

<example>$a << 8; output($a && $b);</example>

We could resolve the problem with entity references:
<example>$a << 8; output($a && $b);</example>

However, not only is this difficult to read, it’s also difficult to write. We can get around this
by using CDATA blocks:

<example><[CDATA [$a << 8; output($a && $b);]]></example>

CDATA blocks are better used in large pieces of text where the normal entity references
would be difficult to use and include. For very short pieces of code, including the examples
above, the use of entity references is much better.

Within most XML parsers, character data is considered to be another vital element in the
processing sequence, in the same way that start and end tags are. Some also support the iden-
tity of the start and end of character data sections.

Well-Formed XML Documents
There are lots of ways to validate and verify that the structure of an XML document is cor-
rect (not least of which is the document type definition (DTD), the subject of our next

Chapter 2 • Fundamentals of XML

4021ch02.qxd 11/2/01 2:45 AM Page 16

17

chapter). However, at the basic level, all XML documents should be correctly formatted
according to the rules of XML syntax. Documents that conform to this are said to be well
formed.

It is not a requirement that a document be well formed, but many of the XML processors
that we’ll be using in this book will raise an error if the document is not well formed. To get
the full details on the rules of well-formedness, see the W3C’s XML specification at http://
www.w3.org/TR/REC-xml#sec-well-formed.

In a nutshell, the rules are these:

❷ There should be one root tag (called the parent), from which all other tags are derived
(known as children). Documents with more than one root tag are not well formed.

❷ Nested elements should be open and closed in the correct sequence. For example, the fol-
lowing is not well formed because the </foo> tag closes before the </bar> tag has been
completed:

<foo><bar></foo></bar>

❷ Child tags should be closed before their parents. For example, the following is wrong
because <bar> has never been closed.

<foo><bar></foo>

❷ Attribute values should be enclosed in double quotes. This fragment is not well formed
because hello should be in quotes:

<foo value=hello></foo>

Entity References
Entity references are merely ways of introducing a standard piece of text by name, rather
than explicitly within the text itself. There are two reasons for using entities. The first is to
get around the problem of introducing characters into character data that would otherwise
be identified as special XML characters. The second is to provide an easy means for intro-
ducing repeating elements of text into your XML documents without the risk of introducing
errors.

This first problem is covered in the next section, “Character Entities.” The second prob-
lem is covered in the “Mixed-Content Entities” section.

There is a third entity type, the unparsed entity, which is used to insert binary data into an
XML document. It’s unparsed because including the information in the XML document
would probably confuse the typical XML parser. We won’t be covering or using unparsed
entities in this book. See XML Complete, published by Sybex, for a complete discussion of
entities, their types, and their definition.

Entity References

4021ch02.qxd 11/2/01 2:45 AM Page 17

18

Character Entities
The XML specification actually supports five standard character entities, listed in Table 2.1.

TABLE 2.1: Standard XML Character Entities

Name Value

amp &

apos '

gt >

lt <

quot "

To insert these entities into your XML documents, you use the form &entity;, where
entity is one of the names in Table 2.1, such as in the following:

<condition>Where x < 10</condition>

In addition to these standard character entities, you can also introduce characters by their
numerical value. For example, to introduce the ampersand character (&) by its numerical
value, we’d use &. The # sign indicates that what follows is a number and should be used
as a numerical value within the Unicode table (see Chapter 5, “Data Exchange and XML,”
for more information on Unicode).

Finally, we can also refer to certain characters within the Unicode database by name if
they’ve been declared within an external DTD. A DTD already exists that allows characters
to be inserted by name from the Latin, Greek, Cyrillic, and Nordic scripts used in the major-
ity of Western Europe and America.

Mixed-Content Entities
Mixed-content entities can be either internal or external. Internal entities are used when you
want to insert the same block or section of text into an XML document. For example:

<?xml version="1.0"?>
<!DOCTYPE doc SYSTEM "http://www.mcwords.com/generic.dtd"
[

<!ENTITY title "Alien Resurrection">
]>
<title>&title</title>
<review>&title is a great film, but it plays more like
a sequence of individual scenes than a connected whole.
One of the problems that you notice throughout &title;
is that the story doesn't really flow. </review>

Chapter 2 • Fundamentals of XML

4021ch02.qxd 11/2/01 2:45 AM Page 18

19

Here we’ve used the title entity so that we can keep referring to the film without having
to type it each time. This prevents you from entering it incorrectly; we know that each time
we use &title; it’ll appear correctly in the text.

Entities are defined as part of a DTD—the DTD in this case is defined inline within the
XML document itself. The entity definition consists of the name we want to use for the
entity, title, and the text that we want to be inserted each time the entity is referenced.
The text can be anything, including more XML.

External entities can be used to insert the contents of an external file into the current XML
document. You can use this to insert repeating or large chunks of data into a number of doc-
uments. For example, when writing the contents of a help document, you might want to
include the same static XML fragment at the head of each XML document. That fragment
would contain the generic help information, such as the product, product version, and other
static information.

You specify the location of an external file by using the SYSTEM keyword within the entity
declaration:

<?xml version="1.0"?>
<!DOCTYPE doc SYSTEM "http://www.mcwords.com/generic.dtd"
[

<!ENTITY docheader SYSTEM "header.xml">
]>
<chapter>
&docheader;
<chapter_title>Help on Help</chapter_title>
</chapter>

Note that the filename following the SYSTEM keyword could just as easily be a URL to an
external XML document.

Providing the parser has been configured properly, most entities should be automatically
inserted into the document while it is being parsed. You normally have some flexibility over
the parsing and inclusion process, including being given triggers when a parsed entity is
found within a document.

XML Processing Instructions
XML itself is designed to hold data. You shouldn’t use XML to hold either presentational
information (such as fonts or layout) or instructions about how to handle or process the infor-
mation contained within the XML document.

XML Processing Instructions

4021ch02.qxd 11/2/01 2:45 AM Page 19

20

However, there are times when you want to be able to give an instruction to the processor
to treat a piece of information in a specific way within an XML document. For example, you
may want to force a particular paragraph or piece of text to be formatted in a particular way
(perhaps because of style or trademark guidelines), or you may want to introduce a fixed ele-
ment such as a linebreak into an otherwise freeform character data section.

Processing instructions are very simple: They follow the form <?name data ?>. name is the
name used to describe the processing instruction in question; it’s used in the same way as tags
are to identify the instruction. data is any information in the form of strings or attribute/value
pairs. For example, all of the following are examples of processing instructions:

<?font MCSLPStandard?>
<?breakline?>
<?parseasrecipe id=567 title="parsnips on parade"?>

Although processing instructions appear to give some information, that’s not the intention.
Whether you actually use processing instructions or follow them is entirely up to you when
parsing the document. The result of the instruction is also up to you, although presumably
you’ll be defining what a process instruction does as part of the definition of the XML struc-
ture itself.

The XML Declaration
The XML declaration is a special type of processing instruction. It sits at the top of an XML
document and tells the parser what the document is (XML), what version of XML is in force,
what encoding system you are using to introduce text into the document, and whether the
document stands alone or requires additional documents.

❷ version defines the version number of the XML specification to which the document
applies. At the time of this writing, there is only one specification, 1.0, but it’s likely that
other versions will be added in the future.

❷ encoding specifies the character encoding used in the document. Unless you are using
characters other than the standard Latin set (as used by most Western and European lan-
guages), this item is optional. Valid values depend on the Unicode standard; a quick refer-
ence to these is given in Appendix A, “Unicode Quick Reference,” and we’ll be covering
Unicode briefly in Chapter 5.

❷ standalone defines whether the document is fully contained or requires other documents
to be loaded to be processed properly. You would typically set this to no if there were no
external entities or DTDs to the XML document and to yes if there were. You can use
this value to improve performance: If the value is set to no, then processing can begin

Chapter 2 • Fundamentals of XML

4021ch02.qxd 11/2/01 2:45 AM Page 20

21

instantly. If set to yes, then you know you must first parse the document to determine
what other files are needed before you can parse the document fully.

All of these properties are configured in the XML declaration just like attributes in a typi-
cal XML element. For example, all of the following are valid examples of XML declarations:

<?xml version="1.0"?>
<?xml version="1.0" encoding='US-ASCII'?>
<?xml version='1.0' standalone='no'?>

XML declarations are normally accessible through a special function as part of the XML
parser, which returns the XML declaration for the XML document being processed.

Summary
XML is a language for describing data in a structured and formatted way using normal ASCII
text. It uses a format similar to the HTML standard, but unlike with HTML, with XML
you can define your own tags, and these tag pairs make up the information in your XML
documents.

You can verify an XML document in a number of ways. You can use a Document Type
Definition (DTD), which is a formal definition of an XML documents structure. You can
also use simpler methods that check the validity of the tags to ensure that they match and are
not nested incorrectly.

Summary

4021ch02.qxd 11/2/01 2:45 AM Page 21

This page intentionally left blank

Data Type Definitions
(DTDs)

• DTD Syntax

• When to Use a DTD

• Standard DTDs

Chapter 3

4021ch03.qxd 11/2/01 2:50 AM Page 23

24

If an XML document describes data, then a Data Type Definition (DTD) describes the
layout and acceptable content of an XML document. A DTD is essentially a description

of the layout, structure, and in some cases the content of the character data stored within
the XML document.

A DTD is more than just a method for declaring the structure of a document, however.
It can also be used to declare entities, and you can use multiple DTDs within a single
XML document to introduce different sets of valid XML tags and entities into a single
XML document.

You specify the use of a DTD within an XML document using the DOCTYPE declaration at
the head of your XML document. This consists of a name (used to indicate the root ele-
ment type) and the location of the DTD that defines the structure for that element. The
location should be either a file reference or a URL that points to an accessible version of
the DTD. For example:

<!DOCTYPE account
SYSTEM “http://www.mcwords.com/XML/DTD/account.dtd”>

In this chapter we’re going to look at the major elements of the DTD syntax and also at
why and how we can use the DTD to help in parsing an XML document.

DTD Syntax
The syntax of a DTD is very simple. There are two main elements that need to be covered:
the Element Declaration, which defines the structure of an XML element (or tag) and the
Attribute Declaration, which defines the structure and content type of attributes within an
XML element. We’ll also look at the Entity Declaration, which allows you to define entities
to be parsed within your document.

Unlike an XML document, there doesn’t need to be any prolog to a DTD as there does
with an XML document. You can include an XML declaration to define the character set or
XML version number.

Element Declarations
Element declarations define the name, type, and content of an XML element. The basic for-
mat is this:

<!ELEMENT element-name content-specification>

element-name should be straightforward; it’s simply the name of the XML element. content-
specification defines what information the element contains.

Chapter 3 • Data Type Definitions (DTDs)

4021ch03.qxd 11/2/01 2:50 AM Page 24

25

This specification defines what combination of character data and subelements can be
specified within a given element, and also the order and number of repetitions and whether
the sequence or elements are optional or required.

Because an XML element has the potential to be empty (such as <tag/>), character data,
or additional tags, there are different methods for defining each of these items, all described
using a series of different symbols, which are listed in Table 3.1. Many follow the same basic
structure as regular expressions.

Some examples of the symbols’ use are given in Table 3.2.

TABLE 3.1: Symbols Used in Element Content Specifications

Symbol Meaning

, Separate the elements in a required (and by order) sequence.

| Logical OR; allows you to specify a list of alternate elements.

(content) Groups a number of elements together. Parentheses can be nested to any level.

? Marks the previous element or group as optional.

+ Requires one or more repetitions of the previous element or group.

* Requires zero or more repetitions of the previous element or group.

TABLE 3.2: Content Specifications for XML Element Declarations

Content Specification Description

<!ELEMENT element (#PCDATA)> The element may contain parsed character data, the ordinary text
enclosed within an XML element pair.

<!ELEMENT element EMPTY> The element is empty (it should only be specified as <element/>).

<!ELEMENT element ANY> The element may contain any other XML element or parsed charac-
ter data.

<!ELEMENT element a*> The element can contain the element a zero or more times.

<!ELEMENT element a+> The element can contain the element a one or more times.

<!ELEMENT element (a, b, c)> Element must contain the elements a, b, and c in that sequence.

<!ELEMENT element (a|#PCDATA)> Element may contain either element a or character data.

<!ELEMENT element (a|b|c)*> Element may contain zero or more repetitions of a, b, or c in any order.

The definitions that you describe apply to only a single element—you still need to provide
the definition for the elements you have specified within the parent definition. For example, if
you look at a simple DTD for a bank account, you can see that the content specification merely
defines the other elements, which in turn also require definitions to define their content.

DTD Syntax

4021ch03.qxd 11/2/01 2:50 AM Page 25

26

Also note that the content specifications themselves can be nested and structured to define
the combination of elements precisely. You can see our bank account example in Listing 3.1.

➲ Listing 3.1: A Sample Element-Only DTD

<!ELEMENT account (name, sortcode?, accnumber, transactions)>
<!ELEMENT name #PCDATA>
<!ELEMENT sortcode #PCDATA>
<!ELEMENT accnumber #PCDATA>
<!ELEMENT transactions (deposit, credit, adjustment)*>
<!ELEMENT deposit (date, amount)>
<!ELEMENT credit (date, amount)>
<!ELEMENT adjustment (date, amount)>
<!ELEMENT date #PCDATA>
<!ELEMENT amount #PCDATA>

Attribute Declarations
Attribute declarations define which attributes can be used (and what data they should contain)
within a single XML element. Just as with the element declarations, the format is straight-
forward and simple, as you can see from this structure example:

<!ATTLIST element-name
attributename-1 attributetype-1 attribute-description-1
attributename-2 attributetype-2 attribute-description-2
>

element-name is the name of the element to which the attribute declarations belong.
attributename defines the name of the attribute, attributetype defines the data type of
the attribute in question, and attribute-description defines the behavior of the attribute’s
value. The individual lines in the layout is important only in that it acts as a distinction
between the individual attribute definitions.

An attribute declaration ideally should be placed immediately after the element to which it
applies, although this isn’t necessary because a definition includes the name of the element to
which it belongs. You can see an example of an attribute declaration here:

<!ELEMENT chapter (#PCDATA)>
<!ATTLIST chapter
section CDATA #REQUIRED
number CDATA #REQUIRED
type (preface|chapter|appendix) “chapter”
>

We look at the attribute data types and attribute behavior in more detail in the following
sections.

Chapter 3 • Data Type Definitions (DTDs)

4021ch03.qxd 11/2/01 2:50 AM Page 26

27

Data Types
All attribute declarations must include information on the type of data that will be stored
within the attribute itself. Some of these are fairly straightforward—for example, we have
parsed character and free-form types. Others are more complex and allow relationships
between elements and entities.

CDATA
The CDATA declaration indicates that the information allowed within the attribute is normal
character data, which can include any normal characters, character entities, and general enti-
ties. For example, this declaration:

<!ATTLIST paragraph description CDATA #IMPLIED>

would allow any content, including this:
description=”talks about perl, python”
description=”The name of game”
description=”Using a 4x2 piece of wood”

It would also allow the fragment:
<paragraph description></paragraph>

where the description text is implied even if not explicitly specified.

Note that the CDATA definition supports character entities, which are useful if you want to
include otherwise interpreted characters, including the quotes around other XML characters.

NMTOKEN
An NMTOKEN declaration is any string sequence that starts with a letter, numbers, and certain
punctuation characters. Note that the intention is for this to be a single named token (such as
a single keyword, version number, or filename). Any white space in the attribute value will be
removed during parsing.

For example:
<!ATTLIST application version NMTOKEN #REQUIRED>

Some examples of suitable attributes are these:
version=”v1.2”
color=”red”
genus=”reptile”

NMTOKENS
This type is essentially identical to the NMTOKEN type except that it implies a list of tokens that
should be separated by white space within the attribute’s value. Most parsers will trim the
white space before and after the text and also compound multiple white space characters into
a single space.

DTD Syntax

4021ch03.qxd 11/2/01 2:50 AM Page 27

28

An example of this specification is shown here:
<!ATTLIST chapter keywords NMTOKENS #REQUIRED>

This would support the following attributes:
keywords=”book perl programming”
color_sequence=”red orange yellow green blue brown black”

ID
The ID is a special type of attribute that gives an element an attribute value that is guaran-
teed to be unique within the document. You can use this in XML documents that support a
repetition of a particular element to ensure that no two elements are treated the same, even
though they may contain the same information.

For example, in a banking system, you may have multiple transactions in a document, but
you would want to be able to identify each transaction individually. You’d use a declaration
such as this:

<!ATTLIST transaction id ID #REQUIRED>

The actual ID itself can be any valid string—you are not limited to numerical or even
alphanumeric ID numbers. For example, the following are all valid:

id=”102738927”
sessionid=”29732-7382732-827382”
product_number=”video-columbia-4953VT8475”
chapter_ref=”xml.scripting.1.3”

Note that when using ID, you must include an #IMPLIED or #REQUIRED in the attribute defi-
nition to ensure that it contains a value.

IDREF
The IDREF type is used to contain the ID reference in another element. You can use this
information for cross referencing—such as when connecting given transactions to a particu-
lar account or when attaching a given word alternative to another within a thesaurus. If the
identifier specified does not exist, the parser should raise an error.

During the parsing, the parser will look for an ID reference within another element that
uses the same attribute name. For example, the following declaration indicates that the
transaction element should have an attribute called transid, and the acctrans element has
an identical transid attribute that references this value:

<!ATTLIST transaction transid ID #REQUIRED>
<!ATTLIST acctrans transid IDREF #REQUIRED>

Chapter 3 • Data Type Definitions (DTDs)

4021ch03.qxd 11/2/01 2:50 AM Page 28

29

Now we can make a connection between a transaction and a transaction within a specific
account in our XML document like this:

<transaction transid=”20010913.01”>
<date>13/09/2001</date><amount>300</amount>
</transaction>
<transaction transid=”20010912.04”>
<date>13/09/2001</date><amount>450</amount>
</transaction>
<account>
<name>Current</name>
<acctrans transid=”20010913.01”><type>Dep</type></acctrans>
<acctrans transid=”20010913.01”><type>Credit</type></acctrans>
</account>

IDREFS
The IDREFS type is identical in principle to NMTOKENS in its relationship to NMTOKEN. Essen-
tially, it allows you to include a list of references, again separated by white space.

ENTITY
ENTITY accepts a general entity name as a value; the string supplied should be the name of the
entity you want to include. For example, with our accounts example, we might want to define
the different transactions types as entities and use icons to show their types:

<!ENTITY deposit SYSTEM “icons/deposit.gif”>
<!ENTITY withdrawal SYSTEM “icons/withdrawal.gif”>
<!ATTLIST transaction icon ENTITY #REQUIRED>

In our XML document, we’d include the information like this:
<transaction icon=”deposit”>

ENTITIES
This is a list of entity names separated by spaces.

Enumerated Value List
There are times when you want an attribute to only contain one of a number of different val-
ues. For example, if your attribute is used to store a true or false value, then you know that its
content should only be true or false or a similar toggle type. You can specify this by enclos-
ing a list of values in parentheses and using the vertical bar to separate the items.

Our true or false example looks like this:
<!ATTLIST prefs store (true | false) #IMPLIED>

DTD Syntax

4021ch03.qxd 11/2/01 2:50 AM Page 29

30

NOTATION
This type enables you to specify a list of NOTATION name tokens. We don’t cover the Notation
Declaration in this title, but see the W3C document on the XML standard for more infor-
mation on these and other declarations.

Attribute Behavior
In addition to the specification of the data type, you can also specify the behavior of the
attribute in question. Some attributes that you want to use will be optional, and others will be
required. You might also want to supply a default value that should always be present.

TABLE 3.3: Attribute Behavior Alternatives

Behavior Specification Description

Default Value “default” Inserts the value default into the attribute if another value is not speci-
fied.

Optional #IMPLIED The attribute is marked as optional.

Required #REQUIRED The attribute must be specified in the element, and it must have been
given a value. Not including the attribute or not supplying a value should
result in a parser error.

Fixed Value #FIXED The attribute is given a fixed value that you must supply in quotes after
the behavior definition. Using a value other than this will raise a parser
error.

For example, to specify a default value from an enumerated list of possible values, you
would use this:

<!ATTLIST week
firstday (mon | tue | wed | thu | fri | sat | sun) “mon”>

General Entity Declarations
Entity declarations are the simplest of the declarations within a DTD. They allow you to
specify a custom entity that can then be inserted into your document by its short name, usu-
ally with the &entityname; sequence.

For example, if you are writing a DTD that describes a book’s layout, you may want to
define an entity that contains the book’s title so that you can maintain consistency through
the document when you refer to your book. As seen in the previous chapter, entity declara-
tions consist of just the <!ENTITY prefix, the name you want to use, and the resulting text:

<!ENTITY title “Scripting XML with Perl, Python and PHP”>

Chapter 3 • Data Type Definitions (DTDs)

4021ch03.qxd 11/2/01 2:50 AM Page 30

31

Using DTDs for Modeling Data
DTDs form the link between what would be the completely free-form data stored within
the XML file and a more structured format such as a formal database. The main difference
with XML is that, unlike a typical database, we can model the entire record for a given infor-
mation item in one document instead of spreading the information across a number of indi-
vidual databases or tables.

For example, in a recipe database you would probably have a main recipe table that held
the recipe information, a method table that contained a list of the steps required to make the
recipe, and an ingredients table to hold a list of ingredients and measurements.

Within XML, we can define all this information within a single document. We don’t have
to worry about manually pulling together information from different sources or even making
assumptions about where and how we link the information together.

The DTD describes the structure and layout of that XML document and helps you to define
the tree structure of the XML document and what information it can contain.

It’s therefore true to say that we can use a DTD to model information before we ever
get to the point of populating an XML document. It’s also possible to use a DTD as a way
of defining the contents and structure of the database or system that will be used to hold
the data.

Although we could use XML for this purpose, the use of XML for very large collections
currently is not a good idea because searching and identifying information, especially if it
contains repeating elements or complex interactions between elements, requires us to read
every document that makes up the database.

When to Use a DTD
There is no requirement to use a DTD in any situation—you can write XML documents
without a DTD (and you’ll see lots of examples of that throughout this book). That’s not to
say that you can completely ignore a DTD; they provide some extra levels of error checking
not otherwise available.

We looked at the basic mechanics of an XML document in the previous chapter, and we
also examined “well-formedness,” the basic level of checking capability that can be applied
to any XML document.

The DTD provides an extra level of security and validity for a document. With a DTD,
we can compare the structure of the XML document with the definition in order to deter-
mine whether it meets the requirements.

When to Use a DTD

4021ch03.qxd 11/2/01 2:50 AM Page 31

32

Without a DTD, the following problems may manifest themselves:

❷ Undisciplined structure—XML tags and data could be located anywhere with no way of
verifying whether the location is valid.

❷ Unlimited vocabulary—The attributes or character data that the document contains
could contain any information, such as alphabetic data in a field that should contain only
numbers, or even character data within a XML tag pair that shouldn’t have
any data.

❷ Attribute structure—Without a DTD, an attribute could contain any information and
potentially include names that would otherwise reside within the xml: namespace. Also,
attribute data will be marked as character data, and therefore ID and IDREF attribute
types may be difficult to match.

Of course, the use of a DTD does not automatically mean that the XML parser will sup-
port it or that the parser will either employ it or replace it with its own structure and valida-
tion routines.

Standard DTDs
It shouldn’t be any surprise that with the meteoric rise of XML as a method for storing and
organizing information, a number of publicly available DTDs have been produced. Of course,
it is possible to declare and use more than one DTD within an XML document, and this has
been used to good effect to create DTDs that define structures for different standard elements,
such as dates, and also for defining standard entity declarations for different data types, includ-
ing standard HTML entities and others.

Although there is no universally accepted and centralized location for finding a given
DTD for a particular type of information, some standard DTDs are making the rounds
already.

If you are looking for a DTD, your best approach is to talk to one of the governing bodies
for the business or research sector you work in. It’s highly likely that somebody has produced
a DTD for modeling the information you are using. If it doesn’t completely match your
requirements, you can usually modify or extend it to fill your need.

If you want to look at one of the existing public DTDs, check out the DocBook DTD,
which was written to allow easy production of technical documentation within a standard
format. You can find more information at http://www.docbook.org.

Chapter 3 • Data Type Definitions (DTDs)

4021ch03.qxd 11/2/01 2:50 AM Page 32

33

Summary
Document Type Definitions help to define the layout and structure of an XML document.
We can use a DTD both to help define the layout of an XML document and to help validate
the structure of an XML document. By making comparisons between the DTD and an XML
document, we can determine whether the document matches the desired structure.

DTDs themselves use a simple text-based structure to help define the XML structure.
They can also be used to define other elements within the XML document, such as the ele-
ment attributes and entities.

Summary

4021ch03.qxd 11/2/01 2:50 AM Page 33

This page intentionally left blank

Applying XML with
Scripting Languages

• Why Use a Scripting Language?

• Scripting Language Irony

Chapter 4

4021ch04.qxd 11/2/01 2:52 AM Page 35

36

M oving on from our express introduction to XML, next you need to think about how you
are going to work with that XML information. Processing XML is what the majority of

this book is all about, but it’s also about using the right tools for the job.

Up to now, the majority of XML processing has been demonstrated and developed using
C/C++ or Java. The reasons for this are relatively obvious: C/C++ is a standard language and
the obvious (and frequently only) choice for many developers.

The use of Java is also obvious. Although XML isn’t a web- or even Internet-related tech-
nology, it is being seen as the obvious solution for data storage and exchange in Internet
applications. In fact, Java isn’t supposed to be an Internet-specific language either.

So why an alternative to these well-established, well-supported, and fast solutions to pro-
cessing XML documents? The reason comes down to two very simple elements of the devel-
opment process:

● Ease of use—that is, the ease with which we can process, manipulate, and work with XML
documents.

● Speed of development—the speed at which we can develop the applications or reuse and
retool existing application for new XML processing projects.

In this chapter, we’re going to take a closer look at these issues and how we can transfer the
benefits of scripting language–based development into processing XML documents.

Why Use a Scripting Language?
There are many reasons for using a scripting language, whether you are working with XML or
developing the latest word processor. Scripting languages have all sorts of benefits, from the
speed of code design, development, and testing to their better support of human-compatible
data such as text strings.

In this section, we’ll be looking at all the XML-specific and some not-so-specific benefits
of using scripting languages, along with some background information on why these facilities
are important for XML processing.

Text Processing
One of the most powerful features of most scripting languages (including all of those we’ll be
looking at in this book) is the capability to work with and process text. No matter how you
look at it, when working with XML documents and information you are ultimately working
with text in some form or another.

Chapter 4 • Applying XML with Scripting Languages

4021ch04.qxd 11/2/01 2:52 AM Page 36

37

It’s worth remembering that computers are ultimately designed to work with numbers, and
although they are capable of working with textual information, it takes a lot more work than
you might think. This is best reflected in the staple language of nearly all platforms, C and
C++. Although we can manipulate strings and textual information within C/C++, it’s not easy,
and relatively simple tasks, such as concatenating two strings, require a reasonable amount of
effort.

Perl, Python, Tcl, PHP, and many others all include the capability to create, manipulate,
and access different portions of a string using relatively simple semantics. For example, in
Perl we can add two strings together using a period, or split up the components of a string
using substr() or split().

In most languages, we also have access to a regular expression system. It’s easier to use in
some languages than in others, but they all allow you to extract, substitute, and identify dif-
ferent components of a string with something more flexible than fixed character sequences.

All of these become vital when working with information in an XML document. Whether
you are processing the contents of an XML document and displaying or manipulating it or
generating information to be written to an XML document, being able to manipulate a string
quickly and easily is vital.

Data Modeling
It should be obvious from the information you’ve seen in the previous two chapters that
processing and producing an XML document requires a certain amount of data gymnastics
within the language you are using, whether you are simply processing the XML or using the
XML as a storage format for an existing data type.

Whatever you are using XML for, you will probably want to hold that information within
your application in some form that is more immediate and accessible than a serial data string
such as the original data source. Even the XML Document Object Model (DOM)—a solu-
tion to the problem of manipulating XML documents as a whole—only solves part of the
problem.

One of the major benefits of Perl, Python and many others is their flexible built-in data
types and the capability to nest and structure data easily using a variety of different data
types.

For example, most scripting languages support a hash or dictionary data type that allows us
to access information in an array by a string or other binary identifier instead of an integer
numeric value. It may sound insignificant—and indeed most programmers forget they are
even using it—but it’s a feature that standard C/C++ implementations don’t have access to.

Why Use a Scripting Language?

4021ch04.qxd 11/2/01 2:52 AM Page 37

38

Even the available toolkits for supporting such a variable type don’t provide the same flexi-
bility as that offered by Perl or Python because you are ultimately still using C to work with
and manipulate the variables.

Data modeling of XML and the conversion of information between internal structures and
XML are topics that we’ll be concentrating on in the remainder of this book.

Data Interface
XML may be touted as the next big thing in data storage, but in reality it’s actually offering
nothing more than a more compatible, extensible, and standardized format for holding data.
In all likelihood, XML will be the format used for exchanging all types of information rather
than being used as the sole solution for data storage.

For example, most companies still expect to use their SQL databases to hold tabular infor-
mation, even though they may exchange individual rows and queries between applications
and other companies using XML.

Access to a SQL database is not easy in C. Although it’s often trivial to gain access to the
required library (or access the database through Open Database Connectivity (ODBC)) and
then to submit the query, it can take a long time to format and process the information once
it’s been extracted from the database, all for reasons already discussed in this chapter.

Java has the Java Database Connectivity extensions (JDBC), which provide easy access to
many databases. The problem with JDBC and ODBC is that they rely on having access to a
JDBC or ODBC component that knows how to talk to the underlying database. Even if you
resolve this issue (and for most RDBMSs the problem has already been solved), you still need
to process the information that you get back.

Many languages also include facilities for talking to different database systems. Perl is by
far the leader here; the DBI toolkit provides a consistent interface to at least 12 different
RDBMS solutions. Python, PHP, and others have similar interfaces for talking to different
database systems.

Using a scripting language, we already have the data processing functionality that comes
standard with the language. It’s easy, for example, with a hash or dictionary to summarize
information from a database automatically. We can also use the built-in data types and nested
structures to model information from a number of SQL tables into a hash or array structure
and then use that structure to build an XML document—or the reverse, turning an XML
document back into a series of XML queries.

Chapter 4 • Applying XML with Scripting Languages

4021ch04.qxd 11/2/01 2:52 AM Page 38

39

Memory Management
When using a scripting language, it’s very easy to forget about the bane of any C/C++ pro-
grammer: memory management for the internal variables and data you are working on. It’s
very easy in Python, for example, to read the entire contents of an XML document into
memory. The document could be 1K or 1MB in size; Python would handle the allocation of
memory and also free up the memory once we’d finished using it, all without us ever worry-
ing about what’s going on behind the scenes.

Try the same in C/C++ and you have a problem. First you need to calculate how much
memory you think you’ll need, then you need to allocate it, start reading in the document,
and then keep track of whether the amount of data is approaching the size of the block you
allocated, just in case you need to extend it later. When you’ve finished with it, you need to
free the memory; woe to you if you make a mistake and try accessing the information after
you’ve freed it.

This may seem like a trivial process, but it isn’t, but not because it’s complex or particu-
larly difficult to deal with (in most cases the interface for memory allocation hasn’t changed
in about 20 years). The problem is the amount of development time required to deal with the
problems of managing memory. In the simple example above, things are quite straightforward,
but in some applications the process of allocating, reallocating, and later freeing the memory
each time can increase the size of the application considerably.

These additional steps add up to a development overhead that you could do without. From
experience, I know that about 50 to 75 percent of the errors introduced into a C/C++ appli-
cation will be directly related to the problem of either variable or memory management.
Other programmers would rate it much higher.

With XML the problems increase, if only because we are dealing with a more flexible data
storage mechanism. XML documents are essentially unlimited in size, and without a very
specific DTD it’s impossible to pin down the size of individual elements within an XML doc-
ument. Memory management when processing an XML document is just another headache
we can do without.

Development Speed
Let’s take a look at the typical development cycle of a program written in C. The same rules
apply to C++ and to a lesser extent Java.

1. Edit the source code.

2. Compile the code into object files.

3. Link the object files and standard library into an executable file.

Why Use a Scripting Language?

4021ch04.qxd 11/2/01 2:52 AM Page 39

40

4. Start the application.

5. Test its behavior.

6. Start the debugger.

7. Debug the application.

8. Stop the application.

9. Go back to step 1.

Sounds like a lot of steps, right? In reality, even for a simple program on a fast machine,
you’re talking about 20 seconds or more for steps 2 and 3 on a reasonable application, even
when using make. Doesn’t sound like much, but repeat that every 30 minutes, and during an
eight-hour day you’ll spend 16 minutes waiting while your application compiles.

Include the time it takes to start the application and run the debugger and you could be
wasting as much as two hours each day just waiting for your application to get to where you
can test its behavior.

Now let’s look at a typical scripting language life cycle:

1. Start the application.

2. Test its behavior.

3. Edit program code and return to step 2.

In reality, the usual method is actually more like this:

1. Test the components.

2. Edit the program code.

3. If the unit is complete, go to step 4; otherwise, go to step 1.

4. Test the application; return to step 2.

We’re still using fewer than half of the steps we used when developing a C application, and
I can guarantee that you’ll waste less than 30 minutes each day waiting. In my experience, it’s
actually difficult to waste more than about 10 minutes each day when developing with Perl.

All of this makes for a very quick development schedule, but the savings don’t end there.

I can write an XML processing script in Perl, Python, or PHP to very simply dump out the
XML document’s contents in about 2 minutes. If you want to update to a SQL database, I
can add that in about 5 minutes because all three languages have easy-to-use libraries and a
very short and simple but powerful syntax. Better still, I can easily reuse what I’ve just written
in another application within a few minutes.

Chapter 4 • Applying XML with Scripting Languages

4021ch04.qxd 11/2/01 2:52 AM Page 40

41

Scripting languages are frequently used in Rapid Application Development (RAD) envi-
ronments for this very reason. They are so quick to use and reuse that often you can cut up to
80 percent of the development time compared to a compiled language like C.

Some companies even use scripting languages to develop and investigate an application
and features, intending to redevelop the same application in C/C++ once the application has
matured. In many situations, the C/C++ version is never produced because it doesn’t need
to be.

Longevity
You have to be a very rare programmer to be one of those who actually comments and docu-
ments his work. We’re all guilty of it. We’re so focused on producing code that works, fre-
quently to some kind of deadline, that we often forget to comment and document what we
are doing so that other people (and often ourselves) can read the code and understand why
and what we did to achieve our goal.

C/C++ is notoriously difficult; I’ve been programming for over 20 years, more than 12 of
them in C, and even I have trouble following what I was doing, let alone somebody else,
when reading C code, even if the code is only a month (sometimes just a day!) old.

Java is better, although it still suffers from the same problems as C/C++. Tracing what
really happens when a function is called can be complex.

Scripting languages don’t have an edge when it comes to comments and documentation
(although most make the latter significantly easier), but often they do have the advantage of
being easier to read. Most experienced programmers will be able to look at a Perl, Python, or
other script and work out what’s going on.

If you’re really experienced and know the language well, you’ll also start picking holes in
the code, identifying areas that could be improved or optimized. If you have access to the
keyboard, within a few seconds you’ll be making those changes yourself.

In general, scripting languages are easier to read, with or without comments, and that
makes the code much easier to use and update and manage later.

Scripting languages also have the separate advantage of being easy to extend and expand in
a structured form without losing sight of what we’re doing. Adding a new module or exten-
sion to an existing project is often a trivial task, and separating elements into more usable
components is much more natural in Perl or Python than in C or Java.

Furthermore, converting the functions and classes that you create into a new module or
extension that can then be used within another application is also easier than with C or Java.
In fact, with Python there aren’t even any special steps involved—you just import the module
you wrote the first time and start calling the functions and classes you want to use.

Why Use a Scripting Language?

4021ch04.qxd 11/2/01 2:52 AM Page 41

42

All of this helps the longevity of the software you are writing. Not only will the code be
easy to maintain (and therefore less likely to require replacing, rather than updating later),
but it’s also easy to update and if necessary reuse the code that you have already written.
Reinventing the wheel is never an easy task.

There’s also one final but less significant effect of the longevity angle. Update your OS to
a new version and you may have to rebuild your application to ensure it works. Even updat-
ing a few libraries can require a rebuild to ensure compatibility with your new environment.
With a scripting language, the chances are you won’t need to change anything, even if you
upgrade the interpreter. I’m still using Perl scripts I wrote five years ago without any changes.
They still run, and they still do what I ask them to do. They may even do it more efficiently,
but the bottom line is that I haven’t edited them (or in some cases even looked at them) in all
that time.

In contrast, I’m currently recompiling an application that I wrote for a client just two
months ago because it now fails under the new version of Linux.

Compatibility
Unfortunately, compatibility is not an issue that crosses many people’s minds. As XML
becomes more standard and is used in more and more applications, it’s likely to become a
major issue.

Develop an application in C/C++ and you’ll need to recompile it for each platform you
expect it to be used on. Move from one major platform to another and you’ll need to retool
and develop parts of your application. Although the core C/C++ language is the same, the
libraries and user interface facilities are not.

Java goes some way to reduce the effects with its “write once, run everywhere” approach.
Certainly normal bugbears like the OS interface and user interface issues are resolved, but
there are other problems. For a start, the truth is that Java is actually supported on fewer
platforms than Perl, Python, or Rebol. Java also suffers from minor problems on different
platforms and with different versions; try running a Java 1.2 spec applet on a machine that
only has 1.1 and you are in trouble.

Most scripting languages—excepting the usual operating system specific foibles—are com-
patible out of the box on all the platforms on which the interpreter executes. For example,
take a Python XML processor from a Unix machine and you can execute it without any
problems on a Mac or Windows machine without modification.

Perl, Python, and others don’t completely solve the problem either. There is unfortunately
no universally supported user interface system. The Tk system is supported on Unix, Win-
dows, and MacOS for example, but only Python and Tcl support development under all
three. The Mac version of Perl does not work with Tk.

Chapter 4 • Applying XML with Scripting Languages

4021ch04.qxd 11/2/01 2:52 AM Page 42

43

These compatibility issues are important because they help you to establish a wider user
base without little additional effort. You don’t even have to move off of Unix or Windows to
appreciate how much of an issue this can be. Different versions of Linux and even commer-
cial Unix flavors such as Solaris can break code. Linux and Solaris as execution platforms are
incompatible—even though they are essentially Unix—and making a Solaris-derived applica-
tion work under Linux will require more than a simple recompile.

Tools such as autoconf, automake, and the configuration scripts offered by GNU will alle-
viate the problems, but they don’t completely solve them, either.

Moving to a whole new platform—such as Unix to Windows—is even worse. With the
best planning and program structure in the world, redevelopment of an application for a new
platform using C/C++ will require about 25 percent of the code to be retooled. In many situ-
ations that figure may be as high as 75 percent.

Combined with the cost of training or employing staff to cover that and the additional
equipment costs required to develop and test the application, you’ve just doubled your
development costs for supporting an additional platform. All for using a “standard” lan-
guage like C.

It’s at this point that you realize that the speed advantage of C/C++ in its compiled form
really offers little to the developer and development-cost side of the equation.

Looking at this purely from an XML perspective, whether you use C/C++ or a scripting
language should be a no-brainer decision. XML is a standard format designed to offer inter-
operability between platforms and applications. You may save money by using XML as your
data storage format, but using C/C++ or Java for the development process may well wipe out
your advantage.

Cost
Cost affects the process in two ways: cost of product and cost of development. First and fore-
most, most scripting languages are either completely free in their own right or free as part of
a component of something else. For example, Perl, Python, Tcl, PHP, Ruby, and Rebol are
all freely downloadable from the Internet (see Appendix B, “Resource Guide,” for details).
AppleScript as such isn’t free, but it does come free with the platforms that it’s compatible
with: MacOS and MacOS X.

The other element is a combination of the time taken to learn the language and the time
saved by using a scripting language over a traditional language such as C/C++ or Java. We’ve
already looked at how the development speed of a scripting language is overall significantly
faster than that of a compiled language.

Why Use a Scripting Language?

4021ch04.qxd 11/2/01 2:52 AM Page 43

44

The learning cost is low because in most instances it doesn’t cost you anything more than
time to learn how to write programs in a particular language. C/C++ is a great language, but
learning C/C++ can be costly in terms of your time and money. To learn how to program
properly in C/C++, your best approach is a formal training course or a book.

Although there are freely available compilers for C/C++ out there, they don’t come with
programming guides. Indeed, for C, the best programming guide in the world (The C Pro-
gramming Language, Kernighan and Ritchie) is 23 years old and still makes it into the best
sellers list each year.

Even if you find a good online guide to programming in C, it’ll probably take you much
longer to learn than Perl or Python, with many more pitfalls and traps. When it comes to
C++, things get even more complicated because C++ is largely fragmented in terms of
libraries and support across the different platforms.

Java is a slightly odd case—it’s given away free by Sun, and without question the best pro-
gramming guides and documentation of the language are also written and made freely avail-
able by Sun. However, you still must invest a significant amount of time to learn the language
itself.

On the other hand, download a copy of Perl and you can be up and running within about
30 minutes, with the language performing some relatively complicated procedures. You don’t
have to worry about documentation, either, because Perl comes with some of the most exten-
sive documentation available.

Python isn’t any different; the documentation on Python is written byGuido van Rossum
and the rest of the Python development team. All the others follow in a similar vein.

As if that wasn’t enough, thousands of websites provide free guides, tips, hints, and all sorts
of additional information on the languages, from basic training courses to advanced topics.

The Scripting Language Irony
As you go through this book, you will find that there is a strange irony to the information
I’ve presented up to now. None of the descriptions or information given above is actually
incorrect, but there is a very small issue that I’ve neglected to mention.

In nearly all cases, when we process an XML document within a scripting language, we are
ultimately using an interface to an underlying C/C++ extension. For most basic processing
needs, the library and interface we are using is Expat, an XML processor written in C by
James Clark.

Chapter 4 • Applying XML with Scripting Languages

4021ch04.qxd 11/2/01 2:52 AM Page 44

45

Perl, Python, PHP, and Tcl provide access to Expat, and most of them use Expat as the
basis for all the other processing models (DOM, SAX, and others) when working with an
XML document.

This is not entirely a bad thing, and it is certainly not a reason to dump scripting languages
and go back to C/C++ or Java. The library is being used only to process the document; once
we have the information, we still need reasonable ways of manipulating and working with the
data we’ve extracted.

The use of extensions also has other benefits. It’s definitely easier to access and work with
data in a SQL database through Perl or Python than it is through C or C++, for example.
Whether you are writing clients or servers, networking also tends to be easier with a script-
ing language than it is with C.

The other benefit of using a C/C++ extension is speed. Although Perl and Python are
some of the fastest and most optimized scripting languages, they still execute code slightly
slower than C or C++ (and in some circumstances Java) because the information is still being
interpreted, rather than being in the raw native machine code.

Using an extension library such as Expat increases the processing time for large docu-
ments by a factor of 2 or more over an entirely interpreted solution. On the other side of
the equation, scripting languages are generally faster at working with complex data struc-
tures—particularly strings—because that’s what they have been optimized to work with.

Therefore, a combination of fast processing (through an extension) and fast manipulation
(through the scripting languages on code) actually makes processing XML with a scripting
language better than using C/C++ or Java.

Summary
Scripting languages offer a number of advantages over both Java and C/C++ applications.
These include, but aren’t limited to, the flexibility of the languages and their data types and
their capability to work with text and textual data in a natural way.

The main two reasons for using scripting languages however, boil down to the two key
reasons:

● Ease of use

● Speed of development

Summary

4021ch04.qxd 11/2/01 2:52 AM Page 45

46

Perl, Python, and most other languages offer well-established, well-supported, and fast
solutions for processing XML documents. Using Perl, Python, or one of the other scripting
languages, we can write an XML processing application within a few lines. Moreover, we can
add to the application later with ease, and we can reuse any components we developed in
order to extend the functionality or solve a problem even quicker than writing the system
from scratch.

Chapter 4 • Applying XML with Scripting Languages

4021ch04.qxd 11/2/01 2:52 AM Page 46

Data Exchange and XML

• Parsing XML

• Unicode

• Remote Data Exchange

Chapter 5

4021ch05.qxd 11/2/01 3:01 AM Page 47

48

I t should be obvious by now that XML is all about storing information. At the simplest
level, it’s about modeling data in a simple and relatively efficient manner, while also mak-

ing it easy to read and understand the contents without the need for special software to read
the information.

At the most complex, it provides a method for exchanging information between comput-
ers and other devices without worrying about whether the destination is big- or little-
endian, what character set it supports, and what type of line-termination sequence the
platform uses.

In truth, XML is not a replacement for normal data storage techniques like a proper data-
base, and it is certainly nowhere near the complexity of a full SQL-enabled RDBMS. It’s also
not designed to replace HTML, which is still the markup language of choice for web pages
and other hyperlinked documents.

That’s not to say that XML will not have its place in data storage. Many platforms and
solutions are now using XML for storing preferences—Mac OS X is a case in point (see
Chapter 23, “XML and AppleScript/MacOS X”). Most of the configuration of the operat-
ing system and its main components is handled in Mac OS X through the use of XML.

XML’s real power is in data exchange. The capability to share information in such a
portable way makes it an ideal alternative for so many different solutions. You can expect to
see XML as the solution for everything from exchanging contacts between your PDA and
desktop to communication between your household appliances.

In this chapter, we’re going to look at the basic mechanics behind the three main compo-
nents of working with XML. First we’ll look at the techniques for parsing and understanding
XML within any language, including the different types of parsers and existing APIs for pro-
cessing XML documents.

We’ll then take a brief look at Unicode, the system used to represent characters within an
XML document. Unicode is a complicated subject, but we’ll touch on the basics of the sys-
tem and how it fits into the XML makeup.

Finally, we’ll look at two of the systems that use XML for exchanging information: XML-
RPC and SOAP. Both systems employ XML as a way of sending a request to a remote
procedure and having the response sent back. You can use XML-RPC and SOAP to execute
procedures on a remote machine—XML is used to hold the request, any arguments, and any
return values.

All the information in this chapter is intended as background for the remainder of the
chapters in this book. We’ll be looking at different parser solutions using the different parser
types, Unicode support in the different languages, and also XML-RPC and SOAP.

Chapter 5 • Data Exchange and XML

4021ch05.qxd 11/2/01 3:01 AM Page 48

49

Parsing XML
Parsing XML by hand is full of traps and pitfalls. Although it’s relatively easy for a person to
read, dissecting the XML into its component parts within an application is quite difficult.

However, you don’t have to worry about writing your own. There are loads of different
solutions for parsing XML; all have their advantages, ranging from speed and accessibility to
the interface. A parser falls into one of two categories only when it comes to accessing the
XML document it has parsed.

In this section, we’ll look at the two different parser types and some examples of the parser
solutions available to parse and provide an interface to an XML document.

Parser Types
All XML processing tools have a basic parser mechanism. It reads the XML and identifies
the tags, their attributes, and all the other components of the XML file before passing it to a
separate component. The other component then does the work of modeling the information
and providing an interface that allows you to access the information and, if possible, edit it.

There are many different XML parsers available for all the different languages. A quick check
reveals four different systems under Python and no fewer than sixteen under Perl. Each falls into
one of two groups: It provides either an event-driven interface or a tree-based interface.

Event-Driven Interface
If you split an XML document into its component parts, it’s easy to identify and parse the
document. As the document is processed, each particular element is treated as an event.

In order for the event-driven parser to work, you need to associate a particular function
with the type of element that is identified in the XML document. Then, when the document
is being parsed, the function is called each time a recognized element is identified. For exam-
ple, each time a start tag is seen, the start tag handler function is called; each time character
data is identified, the character data function is called.

This all gives rise to the term event-driven. Each time you see an element (a tag, a process-
ing instruction, and so forth), you raise an event, which is turn processed by an event handler.

For example, given the following XML file:
<contact refid="23456">
<firstname>Martin</firstname>
<surname>Brown</surname>
</contact>

an event-based parser would raise the following events:

Found start element contact with attribute refid and value 23456.

Found start element firstname.

Parsing XML

4021ch05.qxd 11/2/01 3:01 AM Page 49

50

Found character data Martin.

Found end element firstname.

Found start element surname.

Found character data Brown.

Found end element surname.

Found end element /contact.

The exact implementation will vary according to the parser you are using, but the basic
sequence is there. Note, by the way, that the events only highlight that a tag has been identi-
fied; the tag name is supplied to the event handler function. This is necessary because you
don’t know what the tag names are in advance. It’s up to the script parsing the document to
make a decision about what to do with a specific tag.

Because event-driven systems read an XML document in sequence without ever holding
the entire document in memory, they are generally very fast and efficient. The downside is
that because you read the XML document from start to finish, you have no way of moving
within the document to another position. If that’s a requirement of the parsing process, you’ll
need to record information manually as you go along.

Event-driven parsers are ideal for processing XML data for use elsewhere, such as during
conversion to HTML or when reading the data from the file for insertion into a database.
Other things event-driven parsers are good at include the following:

● Document searches—You can process an XML document until you find the tag or char-
acter data you are looking for.

● Conversion—HTML is just one example, but anything that requires the raw XML to be
translated into another format is generally best done with event-driven parsers because
you translate the information on-the-fly to its new format.

● Minor modifications—It may seem pointless, but you can read and regenerate XML with
a parser. During the parsing process, you can change minor words, character data con-
tents, and even reform XML. Event-driven parsers are great for cleaning and reformat-
ting an XML document.

● Simple validation—The whole document isn’t in memory, so you can’t do all the checks
necessary to validate the information completely, but simple problems such as spelling
errors and general well-formedness can be checked.

● Building an internal structure—You can use event-driven parsers to build up a complex
internal representation of the XML document. In a moment, we’ll look at the tree-based
parser; event-driven parsers are often used to build the tree structure used by tree-based
interfaces.

Chapter 5 • Data Exchange and XML

4021ch05.qxd 11/2/01 3:01 AM Page 50

51

The downside to the event-driven parser is that because you don’t hold the entire docu-
ment in memory, you cannot make decisions or modifications that require you to jump
around the document. For example, if you wanted to reorder or change the structure of the
document, you would have to record the structure first, which kind of defeats the object of
reading the XML document sequentially.

This lack also means that you can’t verify the document beyond the simple checks already
discussed, and you can’t cross reference the contents of the document between XML elements.

Despite all of these apparent problems, event-driven parsing is the most powerful and also
one of the easiest to use. It doesn’t take a lot of work to get an event-driven parser working
and, unless you need that cross-referencing facility, the speed and memory benefits of the
event-driven parser far exceed its limitations.

Tree-Based
Logically, the individual elements of an XML document are similar to components of a tree.
For example, the following extends our earlier contact example:

<contact refid="23456">
<name>
<firstname>Martin</firstname>
<surname>Brown</surname>
</name>
<address>
<house>29</house>
<street>The Road</street>
<town>The Town</town>
<city>The City</city>
<postcode>AB12 34CD</postcode>
<country>UK</country>
</address>
</contact>

The main trunk is contact; name is a branch that contains the first name and surname;
address is a second branch that in turn contains further branches (or leaves, since they are at
the end of a branch) containing the individual details of the address.

A tree-based parser does exactly what we’ve described above: It parses an XML document
and turns the document into an internal representation that closely matches a tree.

If the event-driven method is sequential access, then the tree-based method is random
access. Once the document has been parsed, you can access any element of the tree, change
the order (grafting one branch from one position to another), and of course change the con-
tents. For example, to change the country in our example, you just need to change the value
of the country branch of the address branch of the document tree.

Parsing XML

4021ch05.qxd 11/2/01 3:01 AM Page 51

52

Scripting languages are ideally suited to the tree-based method because most support the
complex structures and easy referencing and linking of information required to build a con-
venient tree model.

Parser Solutions
There are literally hundreds of different XML parsers and parser libraries available. In fact,
long before XML actually became an official standard, there were a number of different
parsers and other tools available.

It wasn’t very long before it became clear that some sort of standard needed to be pro-
duced. Two standard toolkits, both originally written in Java, now exist: Simple API for XML
(SAX) and Document Object Model (DOM). SAX is the standard for event-driven parsers,
and DOM is the standard for tree-based parsers.

We’ll also look at one other parser, Expat, which is not a standard, but is one of the most
widely used parsers available for working with XML within the confines of a scripting language.

Expat
Expat was written by James Clark and is an event-driven parser for XML documents. Expat
was originally written in C. As a result, it has the flexibility of being incorporated into a num-
ber of different scripting languages through their normal extension mechanisms, unlike many
Java-based tools. This means that Expat is probably the most popular and widely supported
of all the XML parsers that you’ll be seeing in this book.

Expat lends itself well to most parsing tasks. Some solutions even use Expat as the basis of a
full SAX or DOM interface.

Simple API for XML (SAX)
The Simple API for XML (SAX) really just defines the frontend interface for processing
XML documents. In the background is an XML parser that is responsible for reading the
information and identifying the different elements.

SAX itself is an event-driven XML parser; to actually process a document, you must first
create the methods or functions that will handle the different elements of the document. The
SAX standard is based on the original Java implementation, called org.xml.sax, and defines
the names of the methods and the process behind supplying the parser with information.

In practice there is very little difference between using SAX and using any other event-dri-
ven XML parser, including Expat. However, the big difference between a SAX-compliant
parser and the other solutions is that the methods you create and the XML elements that can
be handled remain the same. In fact, aside from the language-specific semantics of the lan-
guage you are using, migrating from SAX under one language to SAX under another should
be completely painless.

Chapter 5 • Data Exchange and XML

4021ch05.qxd 11/2/01 3:01 AM Page 52

53

Document Object Model (DOM)
The Document Object Model (DOM) is a W3C standard for a tree-based API for processing
and working with XML documents. As with SAX, it was originally a Java/JavaScript solution,
but it has since grown into a general specification for working with documents in tree form.

Unlike SAX, with DOM you do not define functions to be called when particular elements
are found. Instead, the DOM specification requires that methods be created to enable you to
modify and create branches within an XML tree structure. Most DOM implementations
define a basic set of functions to do this for you.

For example, within both the Perl and Python implementations, a nested data structure is
generated, with each branch having a combination of methods and properties that make up
the interface for manipulating and working with the XML document in its tree form.

The minor irony with most DOM implementations is that they will often use SAX or a
similar event-driven parser to build the tree before it’s exposed and made available to the
programmer.

Within the DOM specification, the individual elements of an XML document are identi-
fied as nodes; you use these nodes to access the data from the document. The different node
types that should be supported by your DOM implementation are shown in Table 5.1.

TABLE 5.1: DOM Node Types

Name Children

Document Element (the root XML element), ProcessingInstruction, Comment,
DocumentType

DocumentFragment Element, ProcessingInstruction, Comment, Text, CDATASection,
EntityReference

DocumentType None

EntityReference Element, ProcessingInstruction, Comment, Text, CDATASection,
EntityReference

Element Element, Text, Comment, ProcessingInstruction, CDATASection,
EntityReference

Attr Text, EntityReference

ProcessingInstruction None

Comment None

Text None

CDATASection None

Entity Element, ProcessingInstruction, Comment, Text, CDATASection,
EntityReference

Notation None

Parsing XML

4021ch05.qxd 11/2/01 3:01 AM Page 53

54

The exact implementation and interface used are entirely dependent on the extension or
module you are using. Many will class themselves as DOM-compliant if they adhere to the
names and general structure as outlined in the DOM specification. Others will just identify
themselves as DOM-compatible or DOM-like if they are close.

Unicode
XML documents are written using a standard text editor. If you have ever tried to exchange
basic text files (rather than word processor documents) between two different platforms,
you’re already aware of a whole host of problems with the process.

First and foremost is line termination: Macs use the carriage return character, Unix uses
linefeed, and Windows uses linefeed and carriage return. Next comes the character. Most of
you will be familiar with the ASCII standard, but this defines only the first 127 characters, of
which the first 31 are actually control characters such as tab and newline.

If you try to exchange more complex characters such as the British pound sign or even
curly quotes, things get more complicated. After the first 127 characters, it’s entirely up to
the platform, and in some cases the font that you are using, which characters actually appear
on the screen.

Other applications, such as Microsoft Word and to a lesser extent the Web, have gotten
around these problems by inventing their own systems for marking up special characters in a
portable. You can share a Word document between a Mac and a PC without too many prob-
lems (providing you have the same fonts). With HTML, some of the more common charac-
ters have their own entity sequence.

The problem is that the different systems are all incompatible with each other unless the
application you are using knows how the document has been saved. For example, Word
knows how to deal with HTML characters, but it can’t deal with AppleWorks characters.

The problem gets even more complex when you realize that most platforms have no way
to represent anything but the standard characters—the 127 ASCII characters—and most still
expect characters in a document to be referred to by a single byte (8-bits), which limits you to
a maximum of 256 different characters in a set. These standard characters are known as the
Roman or Latin character set.

If you want to write a document that’s made up of Chinese, Japanese, or Indian characters,
those 256 combinations won’t be enough; for basic Mandarin Chinese, for example, there are
over 4000 different characters.

Chapter 5 • Data Exchange and XML

4021ch05.qxd 11/2/01 3:01 AM Page 54

55

The Unicode Solution
The Unicode standard gets around this problem in two ways. First, it allows characters to
be encoded using a multibyte format. The standard currently allows for 2-byte characters,
which supports 65,536 different characters. The specification also has provision for 4-byte
characters, supporting a mind-boggling 4.3 billion different characters.

This support of a multibyte format also solves the problem of mixing different characters
in a document. If we can address 65,535 different characters, we should be able to choose a
suitable font or character set on the local operating system to display any character properly.
This assumes that everyone knows, for example, that character 947 in the Unicode table is
the Greek small letter gamma character.

In essence, Unicode is really nothing more than an updated version of ASCII. The only
difference is that the character table has been increased from 127 characters to 65,535, and
the added slots have been filled with the different characters from a variety of different lan-
guages, both Western and Eastern, in order to support documents containing a wide variety
of languages.

There are also two encoding formats, UTF-8 and UTF-16. UTF-8 is essentially the same
as the ASCII format you use for most documents on Western computers. It also allows non-
ASCII characters to be specified by using combinations of single-byte characters to refer to
an extended character.

The UTF-16 format is the 2-byte encoding used when you need to work with a larger
character set, such as that used in China, Japan, or Korea.

Unicode and XML
Unicode is not actually driven by XML; the specification was around some time before XML
was finally ratified. Within the XML specification, the use of Unicode extends to everything
within the document. Both character data and elements can be written in non-Roman/Latin
languages. The only requirement is that the XML declaration at the top of the document
must be written in Roman, and it should then also define the character set and encoding used
in the document.

If this sounds very complicated, don’t worry. The standard Unicode character set is Latin-1
(or ISO-8859-1), and this mirrors the ASCII table for the first 127 characters. It also mirrors

Unicode

4021ch05.qxd 11/2/01 3:01 AM Page 55

56

the extended ASCII table (up to character 255) commonly in use on all platforms. This
means that if you are using an American, British, or Western European computer, you
should be able to read and write XML documents without ever worrying about Unicode.

However, if you are working with documents written in another language or using another
character set, you will need to be able to understand Unicode characters within your scripts
and applications. Most languages support Unicode in a transparent form; for example, Perl
deals with Unicode strings natively.

The only other consideration to take into account is the specification of what you are look-
ing for within the document. For example, looking for the word like is easy, because it’s
written in English and Latin-1. However, when looking for the same word in German, you
must look for the Unicode string mögen.

Remote Data Exchange
No matter where you look today, you will find evidence of computers and devices exchang-
ing information. Most of the time you never think about the process, and other times it’s at
the forefront of your mind. For example, requesting a document from a website is obviously
an example of exchanging information with a remote machine: The client sends a request
and receives the document that was requested.

Now think about logging on to computer within a network: When you type in your name and
password, the information has to be checked with the network server. That exchange of data is
relatively straightforward, but it still requires network communication, and in turn it requires a
protocol, a method of data representation, and of course the exchange of information.

Hopefully, you’ve spotted a few key words there. If these systems are exchanging informa-
tion and data, then they are ideal targets for the use of XML.

In practice, the web browsing example is not an ideal target for transition to XML. Cur-
rently, the act of submitting a request and getting a response is largely one-sided; a typical
request will be about 100 bytes, but the response could be 2KB, 16KB, or 16MB. However,
there’s an argument that says this division of client and server will change as websites and ser-
vices become more interactive.

The second example, that of logging in to a network, is a more likely target. You are send-
ing very small, discrete pieces of information and getting similarly tiny responses. You’re also
running a remote procedure—the one that checks the user database and makes sure that what
you supplied matches what’s in the database. All it needs to do is return a true or false result
and you’ve achieved your aim.

Chapter 5 • Data Exchange and XML

4021ch05.qxd 11/2/01 3:01 AM Page 56

57

Remote procedure calls are nothing new—the Sun platform has had a system called Remote
Procedure Call (RPC) for many years, and many of the services, from data monitoring to
printer spooling, have been supported using the RPC system.

The problem with RPC is that although the system was technically cross platform, there
was a substantial amount of work involved in translating the data types used in your code into
an architecture-neutral format for transmission over the network. The external data repre-
sentation (XDR) system was very complex, and for anything but the simplest data types you
had to perform the process manually.

Using XML you get round all of this—you can convert the request, which is made up of the
function or procedure you want to call and any arguments that you supply, into an XML struc-
ture. You transfer that XML document over the network to a request handler, which decodes
the contents and converts it into a local function or procedure call. The whole process then
works in reverse, with the return value being converted into an XML document that is then
sent back.

Two such systems that provide this functionality have been produced: Simple Object Access
Protocol (SOAP) and XML-RPC. Both work in a similar manner, although they are incom-
patible with each other.

In both cases you create a server, which can be a CGI script hosted on a web server, a dedi-
cated network service provider (in much the same way as a web or FTP server), or in some
cases an e-mail processor that reads the XML request as an attachment to an e-mail. The
client then talks to the server, either through a normal HTTP request (in the case of the CGI
or network service) or by bundling the request in another packet such as an e-mail, and then
waits for a response.

Both SOAP and XML-RPC are easy to use, and it’s likely that you will see an explosion of
Internet services being supported using these systems in the future. You can already find pub-
lic services for converting quantities and temperatures and doing basic calculation.

Because you’re calling remote procedures, the complexity of the request and the data you
transfer is not limited by the constraints of HTTP, and you don’t have to worry about creating
our own protocol to handle the communication side. In most instances, using the two systems
is as simple as specifying the name of the function you want to call and the arguments that you
want to supply. Under Perl and Python, these calls can even be as transparent as calling a local
function.

The other major benefit of both solutions is that they are both platform and language inde-
pendent. You can call a SOAP object from a Perl client when the object itself is hosted on a
Python server. This interoperability means that you no longer have to worry about which
language you use to provide each end of the solution.

Remote Data Exchange

4021ch05.qxd 11/2/01 3:01 AM Page 57

58

The capability to provide mixed-language applications in this way has helped to drive
Microsoft and its .NET initiative, which is in itself an attempt to blur the distinction between
developing an application in one language and doing so in many.

SOAP
Simple Object Access Protocol (SOAP) was developed by a consortium of companies that
included Userland, IBM, Lotus, and Microsoft. As the name suggests, SOAP was actually
designed as a method for accessing and working with objects remotely.

Although you can use SOAP for the simple execution of a remote procedure, its real power
is in its capability to manipulate objects, either created on the server side or created and then
returned to the client. For example, you can have a server process that provides access to a
customer’s account through an object interface. The object and server can be written in
Python, but you can create and manipulate the object from Perl or Java, or indeed Python.

SOAP’s power, and its major advantage over XML-RPC, is that you can work with objects
over the network. You are not dealing with a simple request and response; once the object
has been created, it remains until you delete it. You can therefore use SOAP when state
information is useful, such as logging in to a server or making purchases from a catalog.

Because SOAP deals with live objects, it’s frequently seen as the killer application where
other attempts have failed. Those with long memories will remember systems such as Com-
mon Object Request Broker Architecture (CORBA) and Microsoft’s Distributed Common
Object Model (DCOM). It’s unlikely that we’ll see these systems disappear anytime soon,
but don’t expect them to last forever, either.

XML-RPC
Curiously, XML-RPC actually grew out of the some of the initial work to develop the SOAP
standard. However, unlike SOAP, XML-RPC was designed entirely from the procedural point
of view, and rather than dealing with objects, it deals with simple requests and responses.

In fact, XML-RPC is best described simply as a method for supporting Remote Procedure
Calls. Unfortunately, this makes it useful only in situations where you would normally run a
function. You cannot use it for working with objects, and you can’t use it for applications that
require state information.

Limits
Although I’ve portrayed both SOAP and XML-RPC as solutions to the problem of data
exchange between computers and languages, this shouldn’t lead you to believe that these
solutions will replace everything that requires network communication.

Chapter 5 • Data Exchange and XML

4021ch05.qxd 11/2/01 3:01 AM Page 58

59

It’s unlikely that protocols such as HTTP and FTP will be replaced. Neither SOAP nor
XML-RPC is a great alternative for transferring large files, and XML itself is not ideal for
storing binary data at all.

Instead, SOAP and XML-RPC will replace the sort of solutions that up until now have
required either clever use of HTTP or FTP or a whole new protocol of their own.

Summary
The key power that XML provides us with is the ability to exchange information between
machines and especially applications. Because the format of an XML document is standard
ASCII text, we can easily process that information with a parser into a format that can be
used within an application.

Two main types of parser exist: the event-driven parser, which processes each XML tag in
sequence within a document and in turn triggers an event designed to handle that tag; and
the tree-based parser, which converts the XML document into a complex tree structure.
Examples of such parsers include the SAX system (event-driven) and DOM (tree-based).

To aid in the exchange of information, the Unicode system allows us to deal with a variety
of different characters so that we can deal with foreign and even multilanguage documents
without resorting to the use of special markup systems or other tricks.

For exchanging information between two different machines over a network, we can use
two systems, SOAP and XML-RPC, that make use of the XML standard to exchange infor-
mation between different computers and even different languages transparently.

Summary

4021ch05.qxd 11/2/01 3:01 AM Page 59

This page intentionally left blank

Part II

XML and Perl

Chapter 6: XML Solutions in Perl

Chapter 7: Perl and Unicode

Chapter 8: Generating and Parsing XML Documents with Perl

Chapter 9: Converting XML Documents using Perl

Chapter 10: Applying SOAP/XML-RPC in Perl

4021ch06.qxd 11/2/01 2:34 PM Page 61

This page intentionally left blank

XML Solutions in Perl

• Using XML::Parser

• XML Processing Using SAX

• XML Processing Using DOM

• Other XML Modules

Chapter 6

4021ch06.qxd 11/2/01 3:07 AM Page 63

64

Perl evolved over many years and is now probably the best-known and most widely used of
the scripting languages available. Nearly everyone has heard of Perl, even if they don’t

know what it does.

Perl itself was based on some very strong string and text processing tools, including awk,
sed, and sort, to form a very capable text-processing language. In addition to all of the nor-
mal text-processing facilities you would expect, there is an inline regular expression engine
and a strong but flexible object modeling system that is perfect for building the complex
information trees that XML documents can develop into.

In this chapter we’re going to look at the core modules that make up the Perl XML pro-
cessing toolset. We’ll also examine some of the lesser-known tools and modules that, while
not vital to your processing, may be useful.

Using XML::Parser
XML::Parser is built on top of the Expat XML processing library written by James
Clark. XML::Parser is a vital component of XML processing under Perl because most
other modules within Perl use the facilities offered by XML::Parser to support their own pro-
cessing.

XML::Parser itself is an event-based parser, and because it uses the Expat libraries also
offers simple validation of your XML documents for well-formedness, although it doesn’t
validate your documents against a DTD.

The interface to the parser is simple: You create a new XML::Parser object, a suite of func-
tions that are called when the parser determines a start, end, or data portion in your XML
document. For example, the code in Listing 6.1 builds a very simple XML parser to output
the start and end tags in a document.

➲ Listing 6.1 A Simple XML Parser

use XML::Parser;

my $parse = new XML::Parser();

$parse->setHandlers(Start => \&handler_start,
End => \&handler_end,);

$parse->parsefile($file);

sub handler_start
{

my ($parser, $element, %attr) = @_;
print "Start: $element\n";

}

Chapter 6 • XML Solutions in Perl

4021ch06.qxd 11/2/01 3:07 AM Page 64

65

sub handler_end
{

my ($parser, $element) = @_;
print "End: $element\n";

}

Running this on a simple XML document results in the following output:
$ perl exxmlp.pl simple.xml
Start: simple
Start: paragraph
End: paragraph
End: simple

As you can see, the example outputs a list of the start and end tags. Because we “register”
the functions that we want to call when different elements are seen, the functions can be
called anything we like.

Note as well that the functions are supplied with the name of the tag that was found and
the list of attributes for a given tag. We can use this information within the parsing process
to be more explicit about the information we pass on.

Using XML::Parser to Convert to HTML
Being an event-based parser, the XML::Parser module is ideal in situations where you need to
extract or convert those elements into another form. A good example is in converting an XML
document into an HTML format for display on-screen.

We’re going to be looking at a CGI script that I wrote on behalf of a client who wanted to
convert an XML document into HTML for displaying on its website. The documents them-
selves were actually a mixture of XML and some HTML components, and you can see a
sample in Listing 6.2.

➲ Listing 6.2 A Sample Review Document

<video>
<main>
<title>Alien Resurrection</title>
<para>Sigourney Weaver, Winona Ryder</para>
<title>Witness the Resurrection</title>
<para>The review...</para>
</main>
<panel>
<paneltitle>Purchase</paneltitle>
<para>Amazon UK</para>
<para><azuk id="B00004CXQ6">Buy Alien Resurrection on Video</azuk></para>
<para><azuk id="B00004S8GR">Buy Alien Resurrection on DVD</azuk></para>

Using XML::Parser

4021ch06.qxd 11/2/01 3:07 AM Page 65

66

<para><azuk id="B00004CXR8">Buy the Alien Box Set on Video</azuk></para>
<para><azuk id="B00004S8K7">Buy the Alien Box Set on DVD</azuk></para>
<para>Amazon US</para>
<para><azus id="787987987">Buy Alien Resurrection on Video</azus></para>
<para><azus id="787987987">Buy Alien Resurrection on DVD</azus></para>
<para><azus id="787987987">Buy the Alien Box Set on Video</azus></para>
<para><azus id="787987987">Buy the Alien Box Set on DVD</azus></para>
<paneltitle>Related Items</paneltitle>
<para><realref id="video/alien.xml">Alien</realref></para>
<para><realref id="video/aliens.xml">Aliens</realref></para>
<para><realref id="video/alien3.xml">Alien3</realref></para>
<para><realref id="video/alien_boxset.xml">Alien Legacy Box
Set</realref></para>
<para>
Also see: <keyref id="Sci-Fi">Sci-Fi</keyref>,
<keyref id="Horror">Horror</keyref>,
<keyref id="Action">Action</keyref>
</para>
</panel>
</video>

The document contains both traditional XML data and some HTML-specific link infor-
mation; for example, there are links to other review files and details on the ID and host infor-
mation required to link to the items available for purchase on Amazon.

The script in Listing 6.3 translates the XML document into HTML. The script works by
using a single hash that contains the HTML tags and attributes to output when a specific
XML tag is seen. The handler_start() function identifies the tag and then builds the equiv-
alent HTML tag.

➲ Listing 6.3 An XML-to-HTML Converter

#!/usr/local/bin/perl -w
use strict;
use XML::Parser;

The %elements hash holds the configuration information
for the XML tags found by the parser. The tags output
are HTML. Because an individual XML tag can generate
multiple HTML tags, the base key links to a list
Within the list are individual hash references for
each HTML tag, and the hash contains the tag and attribute
information.
For example, a <title> XML tag produces:
<tr><td bgcolor="#000094" align="left">

Chapter 6 • XML Solutions in Perl

4021ch06.qxd 11/2/01 3:07 AM Page 66

67

my %elements =
(
'video' => [],
'title' => [{ tag => 'tr' },

{ tag => 'td',
attr => {

'bgcolor' => '#000094',
'align' => 'left',

},
},
{ tag => 'font',
attr => {

'face' => 'Arial,Helvetica',
'color' => '#ffffff',

},
},
{ tag => 'b' },
],

'paneltitle' => [{ tag => 'tr' },
{ tag => 'td',
attr => {

'bgcolor' => '#000094',
'align' => 'left',

},
},
{ tag => 'font',
attr => {

'face' => 'Arial,Helvetica',
'color' => '#ffffff',

},
},
{ tag => 'b' },
],

'stars' => [{ tag => 'tr' },
{ tag => 'td' },
],

'description' => [{ tag => 'tr' },
{ tag => 'td',
attr => {

'bgcolor' => '#000094',
'align' => 'left',

},
},
{ tag => 'font',
attr => {

'face' => 'Arial,Helvetica',
'color' => '#ffffff',

},
},
{ tag => 'b' },
],

Using XML::Parser

4021ch06.qxd 11/2/01 3:07 AM Page 67

68

'review' => [{ tag => 'tr' },
{ tag => 'td' },
{ tag => 'p' },
],

'b' => [{ tag => 'b' }
],

'br' => [{ tag => 'br' }
],

'main' => [{ tag => 'td',
attr => {

'width' => '66%',
'valign' => 'top',

},
},
{ tag => 'table',
attr => {

'border' => '0',
'cellspacing' => '0',
'cellpadding' => '2',
'width' => '100%',

},
},
],

'para' => [{ tag => 'tr' },
{ tag => 'td' },
],

'azus' => [{ tag => 'a',
href =>

'http://www.amazon.com/exec/obidos/ASIN/%%ID%%/myamzntag' },
],

'azuk' => [{ tag => 'a',
href =>

'http://www.amazon.co.uk/exec/obidos/ASIN/%%ID%%/myamzntag' },
],

'keyref' => [{ tag => 'a',
href =>

'/cgi/reviews.cgi?t=k&d=%%ID%%' },
],

'realref' => [{ tag => 'a',
href =>

'/cgi/reviews.cgi?t=r&d=%%ID%%' },
],

'img' => [{ tag => 'img',
src => '/img/reviews/',
end => 0,},

],
'panel' => [{ tag => 'td',

attr => {
'width' => '34%',
'valign' => 'top',

},

Chapter 6 • XML Solutions in Perl

4021ch06.qxd 11/2/01 3:07 AM Page 68

69

},
{ tag => 'table',
attr => {

'width' => '100%',
'border' => '0',
'cellspacing' => '0',
'cellpadding' => '2',

},
},
],

);

Because this is a CGI script we output the Content-type
http header before starting the parsing process.

print "Content-type: text/html\n\n";
show_review('alien_r.xml');

The main show_review() function formats a review on screen
sub show_review
{

my ($title) = @_;

The review normally forms part of another page, so we
embed the whole thing into a table

print <<EOF;
<table border=0 cellspacing=0 cellpadding=0 width=100%>
<tr>
EOF

Create the parser and pass it the XML document that
we want to process

my $parse = new XML::Parser();

$parse->setHandlers(Start => \&handler_start,
End => \&handler_end,
Char => \&handler_char,);

$parse->parsefile($title);
Make sure we close off the table

print "</tr></table>";

}

the handler_start() function handles opening
tags. Because of the %elements structure
we need to extract the structure and parse
%elements to work out the HTML we need to produce

Using XML::Parser

4021ch06.qxd 11/2/01 3:07 AM Page 69

70

sub handler_start
{

my ($parser, $element, %attr) = @_;

First, we check that the XML tag we’ve just
recognized has a matching element in the %elements
hash.

if (defined($elements{$element}))
{

Work through each of the HTML tags in the embedded
array

foreach my $tag (@{$elements{$element}})
{

print '<',$tag->{'tag'}
if (exists($tag->{'tag'}));

If there are ID attributes in the XML and a matching
HREF element in %elements
If we find them then we replace %%ID%% in the HREF
from %elements with the ID supplied by the XML tag

if (exists($attr{'id'}) &&
exists($tag->{'href'}))

{
my $url = $tag->{'href'};
$url =~ s/%%ID%%/$attr{'id'}/;
print " href=\"$url\"";
delete($attr{'id'});

}
Check if there are any HTML attributes we need to
generate. If so, work through the attributes to build
an array of the attribute text, and then join them
together with spaces to make the actual attribute text

if (exists($tag->{'tag'}) &&
exists($tag->{'attr'}))
{

my @myattrlist = ();
foreach my $attr (keys %{$tag->{'attr'}})
{

push(@myattrlist,
sprintf('%s="%s"',

$attr,
$tag->{'attr'}->{$attr}));

}
print " ", join(' ',@myattrlist);

}
Finally, add any other attributes defined in the XML to
to the HTML output.

foreach my $attr (keys %attr)
{

print " $attr=\"$attr{$attr}\"";
}

Chapter 6 • XML Solutions in Perl

4021ch06.qxd 11/2/01 3:07 AM Page 70

71

Print the closing tag
print '>' if (exists($tag->{'tag'}));

Output any raw elements (which appear as normal text)
if there are any

print $tag->{'raw'} if (exists($tag->{raw}));
}

}
}

The handler_end() has to output the HTML tags from the
%elements hash, but in opposite order (to produce valid
HTML) and as close tags.

sub handler_end
{

my ($parser, $element) = @_;

if (defined($elements{$element}))
{

foreach my $tag (reverse @{$elements{$element}})
{

if (exists($tag->{'tag'}))
{

print '</',$tag->{'tag'},'>'
unless (exists($tag->{end}));

}
}

}
}

Raw character data is just output verbatim
sub handler_char
{

my ($parser,$data) = @_;

print $data;
}

In Figure 6.1, you can see the result of running the script on the review document
shown in Listing 6.3. Although this was written for a specific solution, you can modify the
%elements table to suit your own needs, and it’ll convert your own XML documents into
HTML.

Using XML::Parser

4021ch06.qxd 11/2/01 3:07 AM Page 71

72

XML::Parser Traps
The Expat libraries on which XML::Parser is based have a few small traps. Because
XML::Parser is used by so many of the other modules within Perl, it’s worth mentioning
these problems before we go any further:

F I G U R E 6 . 1 :
An HTML version of
an XML movie review
document

Chapter 6 • XML Solutions in Perl

4021ch06.qxd 11/2/01 3:07 AM Page 72

73

❷ Errors raise exceptions: Although Expat is non-validating, it still checks the basic layout
of your document to ensure that it’s well formed. Unfortunately, this means that any error
in the basic structure of the document raises an exception. The only way to trap this is to
embed your call to the parser within eval(). Luckily, a further call to the parser will allow
parsing to continue from the position after the last error.

❷ Expat supplies all data: Everything from the XML document is supplied back through
one of the trigger functions you define for XML::Parser to use. This means that whatever
function is used for handling character data must make decisions about what to do with
characters beyond normal text. Expat supplies linefeed/carriage return characters, spaces,
and any other characters to make the XML document more human readable.

❷ Data is returned in UTF-8: Although Expat isn’t strictly a Unicode parser, XML::Parser
always returns UTF-8 strings. This isn’t a problem for most English-sourced documents
because UTF-8 and Latin-1 character sets are the same for those first 256 characters. For
other Unicode strings, especially foreign languages not supported by the Latin-1 set, you
can use Unicode::String for this; we’ll be looking at Unicode within Perl in more detail in
Chapter 7, “Perl and Unicode.”

❷ Data portions are supplied in chunks: Because Expat deals with chunks of data, you may
find that data portions passed to the data handler function are incomplete. If you want to
handle the data portions uniquely, you’ll need to cache the information and initiate a sep-
arate handler to actually process a complete data portion. We’ll be looking at some
examples of this throughout the rest of this section.

Beyond these small problems, XML::Parser works pretty much as you would expect.

XML Processing Using SAX
Many of the parser solutions for XML in Perl support a Simple API for XML (SAX) inter-
face to enable us to communicate between different XML processors when reading a docu-
ment. SAX parsers work in the same basic fashion as XML::Parser; as the document is parsed
and different elements within the document are discovered, a function is called to process the
entity.

There are a number of different SAX parsers available, but the best is probably the
XML::Parser::PerlSAX (PerlSAX) module. In fact, that module forms the basis of many
other modules, including the XML::Grove module that provides a DOM-like interface for
XML documents.

Unlike XML::Parser, which uses references to the functions that handle the entities, with
PerlSAX you need to create a new class that defines the methods to use for parsing different

XML Processing Using SAX

4021ch06.qxd 11/2/01 3:07 AM Page 73

74

XML tags—suitable methods are named according to the tag you want to process. Although
this sounds more complex, it does enable you to identify a number of different elements. The
full SAX specification covers everything from basic document properties to specific elements.

For example, we can create a simple class to output the start and end tags from an XML
document by creating a handler class like the one in Listing 6.4. We inherit from XML::
Handler::Sample, which dumps the output for selected entities, and define two functions,
start_element() and end_element(), which will be called when the parser identifies start
and end tags in the document.

➲ Listing 6.4 A Simple Handler Class for SAX Parsing

package MyHandler;

use vars qw/@ISA/;
use XML::Handler::Sample;

@ISA = qw/XML::Handler::Sample/;

sub new
{

my $self = shift;
my $class = ref($self) || $self;

return bless {}, $class;
}

sub start_element
{

my ($self, $info) = @_;

print "Start Tag $info->{Name}\n";
}

sub end_element
{

my ($self, $info) = @_;

print "End Tag $info->{Name}\n";
}

To create the parser, we create a new instance of our handler class and then a new instance
of the XML::Handler::PerlSAX class, which will do the actual processing. You can see the
final parser script in Listing 6.5.

Chapter 6 • XML Solutions in Perl

4021ch06.qxd 11/2/01 3:07 AM Page 74

75

➲ Listing 6.5 Our PerlSAX Parsing Script

#!/usr/local/bin/perl -w
use XML::Parser::PerlSAX;
use MyHandler;

if ($#ARGV != 0) {
die "You must specify a file to parse";

}
$file = shift @ARGV;

$my_handler = MyHandler->new();

XML::Parser::PerlSAX->new->parse(Source =>
{ SystemId => $file },

Handler => $my_handler);

If we run this script on a simple XML document, we get the following output:
$ perl perlsax-test.pl simple.xml
start_document
Start Tag simple
characters
Start Tag paragraph
characters
End Tag paragraph
characters
End Tag simple
end_document

SAX parsing is great for processing a document in sequence and can be useful for serializ-
ing a document into another format. We saw this with the XML::Parser solution earlier in
this chapter, which converted our document to HTML. We’ll see it again in Chapter 9,
“Converting XML Documents Using Perl,” when we’ll use SAX for converting a document
to and from an RDBMS.

XML Processing Using DOM
The Document Object Model (DOM) for parsing an XML document is essentially just a
method of turning your XML document into an object tree. Because all XML documents are
essentially built like a tree, accessing an individual element by its branch seems a logical step.

XML Processing Using DOM

4021ch06.qxd 11/2/01 3:07 AM Page 75

76

There are lots of different DOM parsers supported under Perl, including XML::DOM,
XML::Simple, and XML::Twig. Of these, my personal favorite is XML::Grove, written by Ken
MacLeod. XML::Grove is not strictly a DOM parser—it doesn’t adhere to W3C’s DOM API,
but it does provide a very similar interface. For a genuine DOM parser, use the XML::DOM
module.

The XML::Grove module provides an easy way to work with an entire XML document by
loading an XML document into memory and then converting it into a tree of objects that
can be accessed just like any other set of nested references. To demonstrate the tree format
offered by XML::Grove, let’s look at a sample XML document. We’ll use a contact entry
within an address book, a structure most people are familiar with. If we think about a single
record within a contact database, then the base of the XML document will be the contact.
We’ll use a fictional version of me for our example, seen in Listing 6.6.

➲ Listing 6.6 A Contact Record Written in XML

<contact>
<name>Martin Brown</name>
<address>
<description>Main Address</description>
<addressline>The House, The Street, The Town</addressline>

</address>
<address>
<description>Holiday Chalet</description>
<addressline>The Chalet, The Hillside, The Forest</addressline>

</address>
</contact>

The grove.pl example script that comes with the XML::Grove module kit can convert this
document into a textual tree. This version has been modified slightly so that it also outputs
the array reference numbers of each branch. We’ll need this information in a later example.
The script itself is shown in Listing 6.7.

➲ Listing 6.7 The grove.pl XML::Grove Sampler

#
Copyright (C) 1998 Ken MacLeod
See the file COPYING for distribution terms.
#
$Id: grove.pl,v 1.4 1999/05/06 23:13:02 kmacleod Exp $
#

use XML::Parser::PerlSAX;
use XML::Grove;
use XML::Grove::Builder;

Chapter 6 • XML Solutions in Perl

4021ch06.qxd 11/2/01 3:07 AM Page 76

77

my $builder = XML::Grove::Builder->new;
my $parser = XML::Parser::PerlSAX->new(Handler => $builder);

my $doc;
foreach $doc (@ARGV) {

my $grove = $parser->parse (Source => { SystemId => $doc });

dump_grove ($grove);
}

sub dump_grove {
my $grove = shift;
my @context = ();

_dump_contents ($grove->{Contents}, \@context);
}

sub _dump_contents {
my $contents = shift;
my $context = shift;

for(my $i=0;$i<@$contents;$i++) {
$item = $contents->[$i];
if (ref ($item) =~ /::Element/) {

push @$context, $item->{Name};
my @attributes = %{$item->{Attributes}};
print STDERR "@$context \\\\ (@attributes)\n";
_dump_contents ($item->{Contents}, $context);
print STDERR "@$context //\n";
pop @$context;

} elsif (ref ($item) =~ /::PI/) {
my $target = $item->{Target};
my $data = $item->{Data};
print STDERR "@$context ?? $target($data)\n";

} elsif (ref ($item) =~ /::Characters/) {
my $data = $item->{Data};
$data =~ s/([\x80-\xff])/sprintf "#x%X;", ord $1/eg;
$data =~ s/([\t\n])/sprintf "#%d;", ord $1/eg;
print STDERR "@$context || $data\n";

} elsif (!ref ($item)) {
print STDERR "@$context !! SCALAR: $item\n";

} else {
print STDERR "@$context !! OTHER: $item\n";

}
}

}

XML Processing Using DOM

4021ch06.qxd 11/2/01 3:07 AM Page 77

78

The script works by recursively calling the _dump_contents() function on each branch of
the tree. That function works through every element within a particular branch. Through
each iteration, we prefix the output with the location of the current branch. The result of
running the script on our sample XML document can be seen in Listing 6.8.

➲ Listing 6.8 A Textual XML Tree of Our Contact Document

0: contact \\ ()
0: contact || #10;
0: contact ||
0: contact 2: name \\ ()
0: contact 2: name || Martin Brown
0: contact 2: name //
0: contact || #10;
0: contact ||
0: contact 5: address \\ ()
0: contact 5: address || #10;
0: contact 5: address ||
0: contact 5: address 2: description \\ ()
0: contact 5: address 2: description || Main Address
0: contact 5: address 2: description //
0: contact 5: address || #10;
0: contact 5: address ||
0: contact 5: address 5: addressline \\ ()
0: contact 5: address 5: addressline || The House, The Street, The Town
0: contact 5: address 5: addressline //
0: contact 5: address || #10;
0: contact 5: address ||
0: contact 5: address //
0: contact || #10;
0: contact ||
0: contact 8: address \\ ()
0: contact 8: address || #10;
0: contact 8: address ||
0: contact 8: address 2: description \\ ()
0: contact 8: address 2: description || Holiday Chalet
0: contact 8: address 2: description //
0: contact 8: address || #10;
0: contact 8: address ||
0: contact 8: address 5: addressline \\ ()
0: contact 8: address 5: addressline || The Chalet, The Hillside, The Forest
0: contact 8: address 5: addressline //
0: contact 8: address || #10;
0: contact 8: address ||
0: contact 8: address //
0: contact || #10;
0: contact //

Chapter 6 • XML Solutions in Perl

4021ch06.qxd 11/2/01 3:07 AM Page 78

79

Because we can access individual tags within a DOM-parsed XML document, DOM
parsers are particularly useful when we want to update the contents of an XML document.
Using SAX to process the document sequentially rather than using the tree model offered
by a DOM parser is far from ideal, because it means reading in the content, identifying
which bits you want to change as they are triggered, and then regenerating the result.

For example, if we wanted to update my Holiday Chalet address using SAX, we’d have to
read in the content, identify first that we were in the address branch, and then that were we
in the correct addressline branch. Then we could replace the information in the output.

Using DOM, we parse the entire document, update the address within the branch we want
to update, and then dump the XML document back out again. Updating the branch is just a
case of referencing the branch’s location within the DOM structure.

XML::Grove converts your XML document into a series of nested arrays and hashes. The
arrays contain a list of elements within the current branch, and the hashes are used to supply
the element type, name, and data (if applicable) for that branch. Because there are different
element types, the numbers don’t always match what you would normally expect.

In Listing 6.8, you’ll notice the array reference numbers required to access each branch. To
access the contents of a branch, you access the Contents element from the enclosed hash and
get the data contained in a branch using the Data key. Finally, the Name key returns the tag
name for a given branch, and the Attributes key returns the attributes for the tag.

For example, to get the data from the name XML tag, we’d need to access the Data key
from branch 0 (contact), 2 (name), 0 (the data element

print 'Name: ',$grove->{Contents}[0]->{Contents}[2]->{Contents}->[0]->{Data},"\n";

Because it’s an object structure, we can update my address using the following:
$grove->{Contents}[0]->{Contents}[8]->{Contents}->[5]->{Contents}->[0]->{Data} =
'The Shed, The Mountain, The Lakes';

We can output the final version of the document using the following:
use XML::Grove::AsCanonXML;
print $grove->as_canon_xml();

XML Processing Using DOM

4021ch06.qxd 11/2/01 3:07 AM Page 79

80

Generating XML
The easiest way to generate XML information within Perl is to use print, probably in com-
bination with a here document to make the process easier.

Using print is an untidy solution, especially since it almost guarantees that you’ll intro-
duce errors and inconsistencies into the code that you generate, and debugging the output
can be an absolute nightmare.

A much better solution is to output your XML tags by name in a structure format, just as if
your were creating the XML tree yourself. We can do this using one of the modules that sup-
port DOM parsing, since DOM allows us to build the XML document branch by branch and
leaf by leaf.

However, it would be much better to use a tool such as the XML::Generator module. Instead
of building the XML tags and objects and structure ourselves, XML::Generator enables you to
use functions to define the tag. Arguments to the functions create additional branches, leaves,
and attributes.

For example, we might populate a contact file using the following:
use XML::Generator;
my $gen = XML::Generator->new('escape' => 'always',

'pretty' => 2);
print $gen->contact($gen->name('Martin C Brown'),

$gen->email('mc@mcwords.com'));

The functions don’t have to be predefined: XML::Generator creates the functions for us on-
the-fly. The previous code generates the following XML document:

<contact>
<name>Martin C Brown</name>
<email>mc@mcwords.com</email>

</contact>

The module generates a raw XML document. To generate a DOM tree, which we could
then separately parse and process using the techniques we saw earlier in this chapter, we can
use the XML::Generator::DOM module:

use XML::Generator::DOM;
my $gen = XML::Generator::DOM->new();

my $domdoc = $gen->xml($gen->contact(
$gen->name('Martin C Brown'),
$gen->email('mc@mcwords.com')));

print $domdoc->toString();

Chapter 6 • XML Solutions in Perl

4021ch06.qxd 11/2/01 3:07 AM Page 80

81

Other XML Modules
There is a host of other XML modules that are available on CPAN that are too numerous
to mention in any detail here, although we may go back to some of these in later chapters.
XML and Perl are developing all the time, and if you want more information about any of
the modules in Perl, check Appendix B, “Resource Guide,” or the CPAN XML page at
http://www.perl.com/CPAN-local/modules/by-module/XML/.

DBIx::XML_RDB
Although there are lots of bits of Perl and XML that I really like, the DBIx::XML_RDB module is
one of my favorites. It simplifies one of the more complicated and often convoluted processes
when converting RDBMS information into an XML document.

The DBIx::XML_RDB module makes an SQL query submitted to any database accessible
through the DBI module into an XML document.

Using the module is straightforward—you create a new DBIx::XML_RDB object, supplying
the datasource, driver, user ID, password, and database name:

my $sqlxml = DBIx::XML_RDB->new($datasource, $driver,
$userid, $password, $dbname)

|| die "Failed to make new xmlout";

Submit an SQL statement:
$sqlxml->DoSql("SELECT * FROM $table ORDER BY 1");

Then print out the result:
print $sqlxml->GetData;

It’s actually easier to demonstrate the effects using the sql2xml.pl and xml2sql.pl tools,
which are installed when you install the module. These convert an SQL statement into an
XML document and vice versa. For example, to dump a table containing ISBN numbers to
an XML file:

$ sql2xml.pl -sn books -driver mysql -uid mc -table isbn
-output hello.xml

You can see the resulting XML file in Listing 6.9.

➲ Listing 6.9 The XML Result of an SQL Query Using DBIx::XML_RDB

<?xml version="1.0"?>
<DBI driver="bookwatch">

<RESULTSET statement="SELECT * FROM isbn ORDER BY 1">
<ROW>

<isbn>0002570254</isbn>

Other XML Modules

4021ch06.qxd 11/2/01 3:07 AM Page 81

82

<title>Sony</title>
<author>John Nathan</author>
<followref>0</followref>

</ROW>
<ROW>

<isbn>0002570807</isbn>
<title>'Tis</title>
<author>Frank McCourt</author>
<followref>0</followref>

</ROW>
...
</RESULTSET>
</DBI>

The xml2sql.pl script obviously does the reverse, converting an XML document follow-
ing the same format as that in Listing 6.9 back into a series of SQL statements.

XML::RSS
If you use the Web for reading your news and to keep up-to-date with Perl, Python, Apache,
and all the other cool stuff that exists out there on the Internet, then you’ll know how frus-
trating it is to have go to 10 or 20 different sites to pick your news.

As a solution to this problem, many sites now export their news and other regularly updated
pieces through an RSS (Rich Site Summary) file. RSS files are really just XML documents
conforming to a DTD that define the different news stories and how to link the original
items. For example, Listing 6.10 shows a truncated version of the RSS file from CNN.com on
June 29, 2001.

➲ Listing 6.10 A Sample RSS File from CNN.com

<?xml version="1.0"?>

<!DOCTYPE rss PUBLIC "-//Netscape Communications//DTD RSS 0.91//EN"
"http://my.netscape.com/publish/formats/rss-0.91.dtd">

<rss version="0.91">

<channel>

<title>News from CNN.com</title>
<link>http://cnn.com/index.html</link>
<description>The world's news leader</description>
<language>en-us</language>

Chapter 6 • XML Solutions in Perl

4021ch06.qxd 11/2/01 3:07 AM Page 82

83



<item>
<title>Retired grocery clerk claims $141 million California lottery
➥ jackpot - June 29, 2001</title>
<link>http://cnn.com/2001/US/06/29/lottery.winner.ap/index.html</link>
</item>

<item>
<title>Kmart pulling handgun ammunition from shelves in wake of
➥ protests - June 29, 2001</title>
<link>http://cnn.com/2001/US/06/29/kmart.guns.ap/index.html</link>
</item>

...

How does RSS make reading news easier?

Once you’ve downloaded the RSS files from a number of different sites, you can then
combine the information in each RSS file in order to aggregate the content into a single web
page. Each item in the RSS file will be a small outline of the full article. If you see something
you like, you can go to the full page; otherwise, you can skip to the next story without going
to multiple websites.

The XML::RSS module enables you to create and update your RSS files, usually from what-
ever source you use in your news service. Some people use the Slashcode (as used by slash-
dot.org and many other sites), and in other instances it’ll be from the your news database. We
can also use RSS to convert an RSS file into HTML.

To get an idea of how RSS works, you might want to try the Meerkat service offered on
the O’Reilly Network (http://www.oreillynet.com/meerkat/). If you want to play around
with RSS in Perl and reap the benefits of reading all your news from a single web page, then
check out AmphetaDesk. Ironically, AmphetaDesk doesn’t use XML::RSS, but it does download,
parse, and convert RSS documents into HTML. You can see a sample of AmphetaDesk in
action in Figure 6.2. The package is available for Mac, Windows, and Unix. See Appendix B
for a list of RSS resources.

Other XML Modules

4021ch06.qxd 11/2/01 3:07 AM Page 83

84

Summary
As with most problems in Perl, you can generally find a suitable solution in the CPAN
archives. XML processing is no exception—there is a whole host of different modules out
there for solving your XML processing and parsing problems using Perl.

F I G U R E 6 . 2 :
AmphetaDesk, an RSS
aggregator

Chapter 6 • XML Solutions in Perl

4021ch06.qxd 11/2/01 3:07 AM Page 84

85

For basic XML processing in Perl we have the XML::Parser module. It provides a sequen-
tial method for calling a specific function when the different elements are identified within
an XML document. XML::Parser is an ideal solution for converting the entire content of an
XML document into another format such as HTML. We saw a sample of this in this chapter.

For a more structured and ultimately expandable method of processing documents, we
have the SAX interface in the form of the XML::Parser::PerlSAX module.

The PerlSAX parser also provides the basis for a number of other modules, including a
DOM-like parser in the form of XML::Grove. The XML::Grove module isn’t a true DOM
parser, but it does enable us to manipulate an XML document as if it were a DOM tree. If
you want a full DOM implementation, we also have the XML::DOM and XML::Simple modules.

As if that weren’t enough, we also have a host of modules that parse and work with XML
documents. The DBIx::XML_RDB module will convert XML documents to and from SQL
statements. We can parse RSS documents for news feeds using the XML::RSS module.

Summary

4021ch06.qxd 11/2/01 3:07 AM Page 85

This page intentionally left blank

Perl and Unicode

• Core Support

• Specifying Unicode Characters and Sequences

• Working with Unicode Data

Chapter 7

4021ch07.qxd 11/2/01 3:11 AM Page 87

88

P erl is one of the few “old” languages that have successfully and largely transparently inte-
grated supported for the Unicode system into the Perl language. If you wanted to, you

could write your entire Perl script using ideographs and other Unicode characters for your
function and variable names throughout your script—the integration is that transparent.

As we’ve already mentioned in Chapter 5, “Data Exchange and XML,” the trick with Uni-
code and XML is not how to use the two together, but instead how to manipulate the Unicode
when it has been extracted from an XML document in your application. In this chapter,
we’re going to look at the most important parts of the Perl language when working with
Unicode data, including how to introduce Unicode characters into your strings and how to
work with and manipulate Unicode characters once you have them in a Perl variable.

NOTE The whole Unicode implementation within Perl is still a work in progress—at the time of
this writing, Unicode support was being tidied up in the development version 5.7, with all
the details of how Unicode support will work in Perl 6 still under discussion. Even with
all the work, there’s lots to do before all of the features and functionality within both Uni-
code and Perl work correctly. The best way to keep up to date is to read the Unicode doc-
umentation that comes with the latest Perl distribution, available in the perlunicode
man page. (You might also want to look over the unicode/Unicode3.html document
within the main Perl library directory, which contains the Unicode standard definitions
used to build the internal information in Perl.)

Core Support
From Perl 5.6 it’s been possible to write Perl scripts entirely in Unicode. Operators, func-
tions, and standard variables obviously retain their U.S. English heritage, but user variables
and functions can use Unicode character in their names, and we can introduce Unicode lit-
eral strings without resorting to any special techniques.

To enable full Unicode support in this fashion, you must import the utf8 pragma. This
forces Perl to accept both string literals and symbolic names that use Unicode characters.
Without the utf8 pragma in force, you can still introduce Unicode literals into your code,
but you cannot use them within variable, function, and other user-definable names.

Internally, all strings are now stored in Unicode format. As a result, in addition to enabling
all Perl operator functions to work with Unicode data, we can also manipulate the informa-
tion character-by-character. There are no limitations in converting or combining Unicode
strings into ASCII strings, because in Perl there is no such distinction.

Chapter 7 • Perl and Unicode

4021ch07.qxd 11/2/01 3:11 AM Page 88

89

Specifying Unicode Characters and Sequences
Perl stores all strings internally in Unicode format. That means that there is no special Uni-
code string datatype, and there are no complexities in mixing and matching ASCII and
Unicode (which includes ASCII) characters into the same scalar value. For example, the
assignment:

$msg = "Hello World\n";

is, as far as Perl is concerned, in Unicode format.

To include a Unicode character beyond the standard ASCII into your string literals, you
can either do so directly, if your editor/platform supports Unicode, or through the \x{} and
\N{} escape sequences in a string.

The first method, \x{}, allows you to specify the Unicode character number in hexadeci-
mal within the braces. For example, to include the Greek lowercase Pi symbol into a string:

$note = "The value of \x{3a0} is 3.141592654";

The second format enables you to include the character by its Unicode name. This is a
long name, usually specified in capitals, that describes the character according to its main
character set and description. For example, the name for the letter A is LATIN CAPITAL LET-
TER A. To use this format, you must import the charnames pragma, which imports the neces-
sary name/character tables.

For example, we could change the above to this:
use charnames ':full';
$note = "The value of \N{GREEK CAPITALLETTER PI} ➥

is 3.141592654";

Using Unicode names in this fashion is probably not the easiest way to introduce Unicode
characters into your text, but it can be useful if you can remember (or work out) the descrip-
tion and not the corresponding number. See the charnames man page for more information
on the different character classes you can import in this way.

Note that as with all other escape sequences, you actually lose the above definitions. The
resulting string literal is a Unicode string, which in this case is assigned to a variable.

You can see a complete list of the Unicode character numbers and names in the file
Unicode.xxx in the unicode directory within your Perl library directory. The xxx refers to
the version number of the Unicode standard being used; with Perl 5.6.1, this was 3.01
(Unicode.301).

Core Support

4021ch07.qxd 11/2/01 3:11 AM Page 89

90

Character Numbers
The chr() and ord() functions work with Unicode values as standard. If you supply chr()
with a value beyond 255, it assumes you are introducing a Unicode character and returns the
value accordingly. Conversely, the ord() function translates a Unicode character back to its
numerical number.

For example, this fragment introduces the ø (o with a cross) into a string:
$name = "Rikke J" . chr(248) . "rgensen";

The ord() function can be used to convert this back into a number:
$number = ord(substr($name, 7, 1));

Working with Unicode Data
The general rule to follow with Unicode in Perl is that a typical operator will now operate
on characters (including multibyte Unicode ones) unless you’ve explicitly told it otherwise
through use of the bytes pragma.

Most of the XML parsers that are supported by Perl use Expat or a derivative of a module
that uses Expat. This means that all of the text you receive, both as element names and char-
acter data, will be Unicode encoded.

Care needs to be taken therefore when working with characters that are potentially non-
ASCII within your XML parsing scripts. Most of these problems can be resolved fairly easily.
For example, when looking for a specific character sequence, you must ensure that you are
matching against the Unicode equivalent. Because Perl’s support for Unicode character and
mixed ASCII/Unicode strings is so transparent, this is incredibly easy.

In this section we’ll look at three areas that often catch people out: case translations, regu-
lar expressions, and character- and byte-based comparisons and calculations.

Case Translations
Unless you’ve enabled the bytes pragma (detailed in the section “Data Size Traps,” later in
this chapter), Perl will automatically assume you are working with Unicode data and change
the case of a string through the \U or \L character escape or the uc(), ucfirst(), and corre-
sponding functions, according to the Unicode lookup tables.

For ASCII data, this has the expected effect. For Unicode data outside the ASCII range,
it converts character or characters to their corresponding uppercase or lowercase value as
defined within the language and character set in use. For example, in the following fragment,
we create a variable with the lowercase PI letter, π, in it, and then use uc() to obtain the
uppercase letter PI, ∏.

Chapter 7 • Perl and Unicode

4021ch07.qxd 11/2/01 3:11 AM Page 90

91

$lcpi = "\x{3d6}";
$ucpi = uc("\x{3d6}");
printf("%x\n",ord($lcpi));
printf("%x\n",ord($ucpi));

The result should be the hexadecimal values of the characters within the Unicode table,
3D6 for the lowercase Pi letter and 3A0 for the uppercase:

$ perl piunicode.pl
3d6
3a0

Regular Expressions
By default, regular expressions work identically to regular expressions using ASCII charac-
ters. The regular expression system is completely Unicode character aware and will therefore
match or substitute characters (not bytes) within source strings. There are only two areas
that need special attention: the matching of non-specific Unicode characters and the use of
Unicode character classes for matching.

Matching Unicode Characters
The regular expression semantics of Perl have been modified to accommodate the Unicode
system so that most of the existing constructs will work with Unicode characters. For exam-
ple, the period character (.) matches any Unicode (and therefore ASCII) character, as you
would expect.

In addition, some new escape sequences have been introduced and existing sequences
modified to handle specific Unicode and traditional instances:

● The \c sequence now matches any one-byte character, including Unicode characters that
can be defined within a single byte (that is, 8-bit or ASCII only).

● The \N{NAME} sequence explicitly matches the Unicode character defined by NAME.

● The \X sequence matches any Unicode sequence that would normally make up a single
character, including multibyte sequences.

This means that now you can match against a Unicode character sequence using \X and a
non-Unicode character sequence using \c.

Unicode/POSIX Classes
In addition to matching against specific characters, Perl also provides methods for matching
against specific character classes. Perl supports the traditional character classes, such as \d for
matching any digit and \s for matching against white space, and new sequences for matching
against specific properties throughout the Unicode tables.

Working with Unicode Data

4021ch07.qxd 11/2/01 3:11 AM Page 91

92

These are defined through a series of property definitions that can be matched using
\p{PROP} and its negation, \P{PROP}, to select characters according to their Unicode proper-
ties. For example, the equivalent of \d across all Unicode characters (including foreign repre-
sentations of numbers outside of the Latin format) is \p{IsN}.

The full list of these properties is too large to be included here, but the basic properties
(case, character, digit and non-character) are listed in Table 7.1.

TABLE 7.1: Standard Unicode Character-Class Properties

Property Meaning

IsC Other

IsCc Other, control

IsCf Other, format

IsCn Other, not assigned

IsCo Other, private use

IsCs Other, surrogate

IsL Letters (Perl defined)

IsLl Letter, lowercase

IsLm Letter, modifier

IsLo Letter, other

IsLt Letter, title case

IsLu Letter, uppercase

IsM Marks (Perl defined)

IsMc Mark, combining

IsMe Mark, enclosing

IsMn Mark, non-spacing

IsN Numbers (Perl defined)

IsNd Number, decimal digit

IsNl Number, letter

IsNo Number, other

IsP Punctuation (Perl defined)

IsPc Punctuation, connector

IsPd Punctuation, dash

IsPe Punctuation, close

IsPf Punctuation, final quote

IsPi Punctuation, initial quote

IsPo Punctuation, other

Continued on next page

Chapter 7 • Perl and Unicode

4021ch07.qxd 11/2/01 3:11 AM Page 92

93

TABLE 7.1 CONTINUED: Standard Unicode Character-Class Properties

Property Meaning

IsPs Punctuation, open

IsS Symbols (Perl defined)

IsSc Symbol, currency

IsSk Symbol, modifier

IsSm Symbol, math

IsSo Symbol, other

IsZ Separators (Perl defined)

IsZl Separator, line

IsZp Separator, paragraph

IsZs Separator, space

In addition to these broad classes, Perl also supports more familiar composite classes
through both a series of POSIX classes and Unicode properties. The POSIX classes can be
used within Perl using [:class:]. For example, to match digits you would use [:digit:].
To match against the Unicode equivalent you would use \p{isDigit}.

The full list of POSIX character classes is given in Table 7.2. The corresponding compos-
ite Unicode properties and their POSIX equivalents are listed in Table 7.3.

TABLE 7.2: POSIX Character Classes

Class Meaning

alnum Any alphanumeric (equivalent to [[:alpha:][:digit:]])

alpha Any letter (uppercase or lowercase)

ascii Any 7-bit ASCII character (that is, those with a value between 0 and 127)

cntrl Any control character—basically those ASCII characters with a decimal value of less
than 32, including newlines, carriage returns, and tabs

digit Any character representing a digit (0–9)

graph Any alphanumeric or punctuation character

lower Any lowercase letter

print Any printable character (equivalent to [[:alnum:][:punct:][:space:]])

punct Any punctuation character

space Any white-space character (space, tab, newline, carriage return, and form feed)

upper Any uppercase letter

word Any identifier character—basically alnum and the underscore

xdigit Any hexadecimal digit (upper- or lowercase, 0–9 plus a–f)

Working with Unicode Data

4021ch07.qxd 11/2/01 3:11 AM Page 93

94

TABLE 7.3: Perl’s Composite Unicode Properties

Property Consists of POSIX Equivalent

IsASCII [\x00-\x7f] ascii

IsAlnum [\p{IsLl}\p{IsLu}\p{IsLt}\p{IsLo}\p{IsNd}] alnum

IsAlpha [\p{IsLl}\p{IsLu}\p{IsLt}\p{IsLo}] alpha

IsCntrl \p{IsC} cntrl

IsDigit \p{Nd} digit

IsGraph [^\pC\p{IsSpace}] graph

IsLower \p{IsLl} lower

IsPrint \P{IsC} print

IsPunct \p{IsP} punct

IsSpace [\t\n\f\r\p{IsZ}] space

IsUpper [\p{IsLu}\p{IsLt}] upper

IsWord [_\p{IsLl}\p{IsLu}\p{IsLt}\p{IsLo}\p{IsNd}] word

IsXDigit [0-9a-fA-F] xdigit

For more information on the other properties supported by Perl (which are subject to con-
stant change as new languages, character sets, and Perl composites are produced), check the
Unicode documentation that comes with Perl.

Data Size Traps
One of the problems with the Unicode system is that it is possible to encode single charac-
ters into multiple bytes. This can make certain operations break if you are relying on storing
information within fixed size blocks that rely on a byte, rather than a character figure.

By default, Perl now reports sizes in terms of characters where appropriate. That means that
strings and other textual scalars (hash keys, for example), which are internally stored in Uni-
code anyway, report their length in characters when tested through the length() function.

To get the byte length of a string, as opposed to the character length, you need to use the
bytes pragma. The following example imports the bytes pragma without changing the
behavior of the length() function, instead to get the length in bytes we use the version in
the bytes pragma:

use bytes (); # Loads without enforcing byte interpretation

$charlen = length($string);
$bytelen = bytes::length($string);

Chapter 7 • Perl and Unicode

4021ch07.qxd 11/2/01 3:11 AM Page 94

95

As a general rule, outside a bytes pragma declaration, Perl assumes you are working with
characters. A more explicit list of the treatment of bytes/characters outside of a bytes pragma
declaration is as follows:

● Strings and regular expression patterns may contain characters with values larger than
8 bits.

● Identifiers may contain alphanumeric characters, including ideographs (utf8 pragma
required).

● Regular expressions match characters, not bytes.

● Character classes in regular expressions match characters, not bytes.

● Named Unicode properties and block ranges can be used as character classes.

● The regular expression metasymbol \X matches any Unicode sequence.

● The tr/// operator transliterates characters, not bytes.

● Case translation operators (\U, \L and uc(), ucfirst(), and so on) use the Unicode
translation tables.

● Functions and operators that deal with position and length within a string use character,
rather than byte positions. Exclusions are pack(), unpack(), and vec(), which tradition-
ally work on byte- or bit-based data anyway.

● The “c” and “C” pack()/unpack() formats do not change—they still extract byte-based
information. If you want to use characters use the “U” format.

● The chr() and ord() functions work on multibyte characters.

● The reverse() function in a scalar context reverses by character, rather than by byte.

Unicode Character Conversions
There is no convenient built-in mechanism for converting a Unicode character string into a
format suitable for printing on any device. The easiest way to translate something for display
on a simple (non-Unicode) capable device is probably to use tr/// to convert anything beyond
the ASCII range to a question mark:

tr/\0-\x{10ffff}/\0-\xff?/;

This is not a tidy solution, and it certainly won’t help if you want to convert Unicode to Mac-
Roman for example. For those situations where you have a specific destination (or source) char-
acter set in mind, the solution is to use the Unicode::Map8 module from Gisle Aas.

Unicode Character Conversions

4021ch07.qxd 11/2/01 3:11 AM Page 95

96

In addition to supporting most of the base tables supported internally by the Unicode stan-
dard, the module also provides access to a number of other standard character tables, includ-
ing Macintosh, PC code pages (starting CP, as used in DOS/Windows 3.11), and even some
tables specific to certain fonts, including the Adobe Zapf Dingbat font that covers most of
the ideographs available on Mac and Windows machines.

Summary
Perl supports Unicode natively, allowing you to create Unicode-compatible strings using
the same methods and techniques that you would use with a normal Perl string. In addition
to supporting Unicode in strings, you can also create variables, functions, and other token
names using Unicode characters.

When working with Unicode strings, there is syntactically no difference to using ASCII
strings, and there are methods and escape sequences for including specific Unicode charac-
ters within a given string. Other elements of Perl also support Unicode characters, and the
regular expression engine even includes the capability to search and match Unicode strings
for different character types, irrespective of their originating language.

The only area that needs care is when working with Unicode information. Standard Perl
automatically returns all counts and other calculations within a Perl string using characters,
rather than bytes. In most situations this shouldn’t cause a problem, but you should be aware
of the effects and how to use the bytes pragma to obtain size information in strict 8-bit
quantities.

Chapter 7 • Perl and Unicode

4021ch07.qxd 11/2/01 3:11 AM Page 96

Generating and Parsing XML
Documents with Perl

• Using the SAX Parser

• Using a DOM Parser

Chapter 8

4021ch08.qxd 11/2/01 3:14 AM Page 97

98

P rocessing XML in Perl is mostly just a case of using the right module and calling the
appropriate methods and functions to extract, convert, or manipulate the XML docu-

ment. When using Perl, you have the advantage of flexible data structures that we can use to
model XML documents internally and we can easily work through those structures. Further-
more you can easily integrate searching and access to that information using the existing reg-
ular expression methods.

In this chapter, we’re going to take a closer look at the two main XML processing systems
available in Perl: SAX and DOM. We’ll also look at some of the techniques you can use to
search, access, and manipulate the information.

Using the SAX Parser
The SAX system is merely an API for dealing and working with XML documents through
an event-driven interface. There are many different event-driven parsers, but the benefit of
SAX is that it’s a standard; this makes it easy to integrate and build upon when developing
parsers and parsing systems. For example, although not directly supported, it’s possible to
use a SAX-based C++ parser within Perl, and for a C++ application to use a Perl-based SAX
parser. In fact, theoretically you could integrate a Perl SAX parser with a Python front end.

Inside SAX Processing
The XML::Parser::PerlSAX module is a PerlSAX-compliant system for XML processing. As
you saw in Chapter 6, “XML Solutions in Perl,” the PerlSAX system works through a class-
based system in which you produce a handler that deals with the different components of an
XML document as it is processed. As with most other event-based systems, the class is used
to define the methods that will be called when the different XML element components are
identified.

The method itself supports only three methods: new() for creating a new instance of a
PerlSAX parser, parse() for actually parsing a document, and a debugging location()
method to return information about the current status of the parser.

You can specify the handler for the different portions of the document using either a single
handler class to handle elements, DTD and other fragments, or you can define a series of
individual handlers for the different types.

The parser() and new() methods accept the options shown in Table 8.1. These should be
specified in the form of key/value pairs (a hash).

Chapter 8 • Generating and Parsing XML Documents with Perl

4021ch08.qxd 11/2/01 3:14 AM Page 98

99

TABLE 8.1: Options When Creating a New SAX Parser

Option Description

Handler The object instance of the handler class that will be used for processing XML
events. The class will be used to handle all Document, DTD, Error, and Entity
events. You can handle these with individual handlers using the options defined
below.

DocumentHandler The object instance used to handle Document events.

DTDHandler The object instance used to handle DTD events.

ErrorHandler The object instance used to handle Error events.

EntityResolver The object instance used to resolve Entity references.

Locale The locale to use when providing a localized error message.

Source A hash containing the input source information.

UseAttributeOrder If set to true, additional AttributeOrder and Defaulted properties are passed
when an XML element is parsed. AttributeOrder will contain a list of the attrib-
utes defined in each element in the order in which they are found. Defaulted will
hold the index number of the first default attribute in AttributeOrder, or the
length of the array in AttributeOrder if there is no default.

The Source element is a special case. Rather than accepting a direct value, it accepts a ref-
erence to a hash that defines the source and encoding for the XML document that you want
to parse. The keys and descriptions for this hash are shown in Table 8.2.

TABLE 8.2: Hash Keys for the Source Parameter When Parsing XML

Key Description

PublicId The public identifier of the document.

SystemId The system identifier of the document.

String A string holding the XML source text.

ByteStream An open file handle from which the XML source will be read. Reads in bytes (han-
dling multibyte source).

CharacterStream An open file handle from which the XML source will be read. Reads characters,
suitable for ASCII or ISO8859-1 only.

Encoding The character encoding used in the XML stream being read.

The handler class or classes that you use to process the XML document must define
certain methods in order to process the different elements of the document. As noted in
Table 8.1, you can either use a single handler class, in which case you specify the class
instance using the Handler option, or use individual handlers for each of the items.

Using the SAX Parser

4021ch08.qxd 11/2/01 3:14 AM Page 99

100

In each case, as each item within the XML document is identified, the corresponding
method is called and passed a single argument that will be a reference to a hash that in turn
contains the information about the XML elements identified. For example, when a start tag
is found, the start_element() method from your handler class is called and supplied with a
hash reference containing the key’s Name, which is the name of the element, and Attributes,
a reference to another hash of attributes and their values.

Brief details on all the methods, which sub-handler they should be defined within if you
are using separate handlers, and the hash keys supplied in the hash reference are shown in
Table 8.3.

TABLE 8.3: Handler Methods and Supplied Information

Method Handler Hash Keys Description

start_document Document Called when the start of an XML docu-
ment is identified.

end_document Document Called when the end of a document is
identified.

start_element Document Called when a start tag/element is
identified.

Name The element name.

Attributes A hash of the element attributes and
values.

end_element Document Called when an end tag/element is
identified.

Name The element name.

characters Document Called when character data is found.

Data The character data.

processing_instruction Document Called when a processing instruction
is identified.

Target The PI target.

Data The PI data.

comment Document Called when a comment is identified.

Data The comment text.

start_cdata Document Called when the start of a character
data block is identified.

end_cdata Document Called when the end of a character
data block is identified.

Continued on next page

Chapter 8 • Generating and Parsing XML Documents with Perl

4021ch08.qxd 11/2/01 3:14 AM Page 100

101

TABLE 8.3 CONTINUED: Handler Methods and Supplied Information

Method Handler Hash Keys Description

entity_reference Document Called when an internal entity refer-
ence is identified. If defined, internal
entities are not expanded and supplied
to the characters() method. If
defined then internal entities are not
expanded or supplied to the charac-
ters() method.

Name The entity reference name.

Value The entity reference value.

notation_decl DTD Called when a notation declaration is
identified.

Name The notation name.

PublicId The public identifier.

SystemId The system identifier.

Base The base for resolving a relative URI.

unparsed_entity_decl DTD Called when an unparsed entity decla-
ration is identified.

Name The unparsed entity name.

PublicId The public identifier.

SystemId The system identifier.

Base The base for resolving a relative URI.

entity_decl DTD Called when an entity declaration is
identified.

Name The entity name.

PublicId The public identifier.

SystemId The system identifier.

Value The entity value.

Notation The notation declared for the entity.

element_decl DTD Called when an element declaration is
identified.

Name The element name.

Model The content model.

attlist_decl DTD Called for each attribute in an ATTLIST
declaration.

ElementName The element name.

AttributeName The attribute name.

Type The attribute type.

Fixed True if this is a fixed attribute.

Continued on next page

Using the SAX Parser

4021ch08.qxd 11/2/01 3:14 AM Page 101

102

TABLE 8.3 CONTINUED: Handler Methods and Supplied Information

Method Handler Hash Keys Description

doctype_decl DTD Called when a DOCTYPE declaration is
identified.

Name The document type name.

PublicId The document’s public identifier.

SystemId The document’s system identifier.

Internal The internal subset.

xml_decl DTD Called when an XML declaration is
identified.

Version The version

Encding The encoding string.

Standalone

resolve_entity Entity Called when an external entity is
identified.

Name The unparsed entity name.

PublicId The public identifier.

SystemId The system identifier.

Base The base for resolving a relative URI.

For a very simple example of how to use PerlSAX and process a basic document, see Chap-
ter 6, “XML Solutions in Perl.”

Searching Documents with SAX
Because you work through an XML document sequentially with SAX (and indeed any event-
based parser), you can use it for searching for information within your documents. There are
two main pieces of information that you might want to search for from within an XML doc-
ument:

● The name of the tag which contains a particular piece of information.

● All the information from a particular tag.

The SAX approach parses the entire document, so you know that you can search all the
information you have available to pick out the items you need.

true, false,
or undefined.

Chapter 8 • Generating and Parsing XML Documents with Perl

4021ch08.qxd 11/2/01 3:14 AM Page 102

103

We’ll look at two sample solutions. We’ll be using the same basic wrapper script for both
examples but two different handler classes to actually parse the content.

In fact, it’s the handlers that are important here. Because you use a class to hold the infor-
mation, you can use the properties of an instance of that class to help manage, store, and
marshal information for output or display. For example, you can cache information about the
tags, tag location, or character data that you have identified. Then you reach another target,
for example when you’ve extracted the character data from a particular tag segment, you can
write the information to a file or print the resulting text.

For our example, you’re going to be working with a very simple XML document that
holds contact method information for a single person. You can see the XML document in
Listing 8.1.

➲ Listing 8.1 A Simple Contact Document

<contact>
<name>Martin Brown</name>
<contactmethods>
<method><type>Phone</type>
<number>01234 567890</number></method>
<method><type>Mobile</type>
<number>09876 543210</number></method>
<method><type>Fax</type>
<number>01928 374650</number></method>
<method><type>Email</type>
<number>mc@mcslp.com</number></method>
<method><type>Email</type>
<number>mc@mcwords.com</number></method>
<method><type>Email</type>
<number>mc@whoever.com</number></method>
<method><type>Email</type>
<number>mcmcslp@aol.com</number></method>
</contactmethods>
</contact>

To demonstrate the two systems, you’ll create two different handlers, both using the same
basic wrapper script, which can be found in Listing 8.2.

➲ Listing 8.2 The PerlSAX Wrapper Script

use XML::Parser::PerlSAX;
use TagText;

$file = shift
or die "You must supply the name of the file to process";

Using the SAX Parser

4021ch08.qxd 11/2/01 3:14 AM Page 103

104

$text = shift
or die "You must supply the text you are searching for";

$my_handler = TagText->new($text);

XML::Parser::PerlSAX->new->parse(
Source => { SystemId => $file},
Handler => $my_handler);

Finding the Tag from a String
Finding a particular string within the character data and then returning the location in which
you found the information relies on first recording your position within the XML document.
Then you need to search the character and report the matching text.

Therefore, in your handler class, the methods that identify the start and end tags will pop-
ulate a property in the class with their location, using a simple stack and push() and pop().
The method for character data does the search using a regular expression and then reports
the location stored in your class instance. You can see the handler class in Listing 8.3.

➲ Listing 8.3 The TagText Search Handler Class

package TagText;

sub new
{

my $self = shift;
my $class = ref($self) || $self;
my $text = shift;
my @locs;

return bless {text => $text,
loc => \@locs,
}, $class;

^

}

sub start_element
{

my ($self, $info) = @_;
push @{$self->{loc}},$info->{Name};

}

sub end_element
{

my ($self, $info) = @_;
pop @{$self->{loc}};

Chapter 8 • Generating and Parsing XML Documents with Perl

4021ch08.qxd 11/2/01 3:14 AM Page 104

105

}

sub characters
{

my ($self, $info) = @_;

if ($info->{Data} =~ m/$self->{text}/i)
{

print("Matched $info->{Data} in ",
join(' -> ', @{$self->{loc}}),"\n");

}
}

1;

You can now use your wrapper script to search for a given piece of text:
$ perl tagfromtext.pl contact.xml mcslp
Matched mcslp in contact -> contactmethods -> method -> number
Matched mcslp in contact -> contactmethods -> method -> number

You can see from the result that you’ve found the text mcslp within the number element
within your list of contact methods.

In this simple example, you searched only for a simple piece of text, but because you’re
using regular expressions to do the actual match process, you could have supplied a regular
expression. You could, for example, extract only e-mail addresses by using a suitable expres-
sion, rather than making decisions based on the method type defined in the XML:

$ perl tagfromtext.pl contact.xml "[a-zA-Z0-9][a-zA-Z0-9_\.\-]\@[a-zA-Z0-9\.\-]"
Matched mc@mcslp.com in contact -> contactmethods -> method -> number
Matched mc@mcwords.com in contact -> contactmethods -> method -> number
Matched mc@whoever.com in contact -> contactmethods -> method -> number
Matched mcmcslp@aol.com in contact -> contactmethods -> method -> number

Finding the Information from a Particular Tag
If you want to extract all of the information from a particular tag, you can do so easily using
PerlSAX by dumping the character data in a specific tag element. For example, if you want to
list all of the numbers for a given contact, you need to access all the character data within the
number tag.

The way to do this is with a very simple change of logic in your handler class. You need to
record the current tag. You also need to remember if you are in the tag you are searching for
and also within a tag within that tag. You can do this with a simple counter. You also need to

Using the SAX Parser

4021ch08.qxd 11/2/01 3:14 AM Page 105

106

record any character data within your desired tag, and you need to output this information
when you see the end of the tag element.

The handler class for this is in Listing 8.4.

➲ Listing 8.4 The TextInTag Search Handler Class

package TextInTag;

sub new
{

my $self = shift;
my $class = ref($self) || $self;
my $tag = shift;
my @locs;

return bless {tag => $tag,
intag => 0,
text => '',
loc => \@locs,}, $class;

^
}

sub start_element
{

my ($self, $info) = @_;

if ($self->{intag} >= 1)
{

$self->{intag}++;
}
else
{

if ($info->{Name} eq $self->{tag})
{

$self->{intag} = 1;
}

}
}

sub end_element
{

my ($self, $info) = @_;

if ($self->{intag} > 1)
{

$self->{intag}--;
}
else
{

Chapter 8 • Generating and Parsing XML Documents with Perl

4021ch08.qxd 11/2/01 3:14 AM Page 106

107

if ($info->{Name} eq $self->{tag})
{

print "$info->{Name} -> $self->{text}\n";
$self->{intag} = 0;
$self->{text} = '';

}
}

}

sub characters
{

my ($self, $info) = @_;

$self->{text} .= $info->{Data} if ($self->{intag} == 1);
}

1;

Now you can use this to dump all of the contact numbers from a given contact’s XML
document:

$ perl textintags.pl contact.xml number
number -> 01234 567890
number -> 09876 543210
number -> 01928 374650
number -> mc@mcslp.com
number -> mc@mcwords.com
number -> mc@whoever.com
number -> mcmcslp@aol.com

Incidentally, if you already know the names and locations of the data that you are searching
for, you can use a DOM system such as XML::DOM or XML::Grove to process the document.
You also can use the XPath or XQL system to search and move within a particular document.
See the section “Inside XML::DOM Processing,” later in this chapter, for more information.

XQL and XPath both allow you to access tags by their name (and location, if there are
repeating elements) or to search for all the nodes with a specific tags or path. For example,
you could access all of the number tags in your phone number document by using the specifi-
cation method/number/* in an XPath query.

Of the two, only XPath is currently an agreed standard, and you can find XPath systems for
most different implementations, including Java, C/C++, and less-used languages such as Ruby
(see Chapter 21, “XML and Ruby”). A Perl version is supported through the XML::XPath mod-
ule. The XQL standard is still being considered, and the XML::XQL module is one of the better
implementations.

Using the SAX Parser

4021ch08.qxd 11/2/01 3:14 AM Page 107

108

For more information, check out your local CPAN mirror for the modules—both come
with a number of good samples. Also, check my website, http://www.mcwords.com, where
you’ll find some other examples based on XQL, a query language similar in principle to
SQL, for searching XML documents. XQL uses a DOM-parsed XML document to do the
searching.

Using SAX for Conversions
In the majority of cases, if you have an XML document that you want to convert then the
chances are you want to translate the entire document, or at least significant proportions of
it, into another format. The benefit of SAX here is that you can parse the entire document,
using the individual methods within a handler class to set the different display or formatting
options.

You’ve already seen an example of an event-based parser that converts an XML document
into HTML format, albeit using the basic XML::Parser module rather than PerlSAX. The
process is the same in each case: You determine the tag (and any attributes) and how you
want that information to appear in the destination format, and then you output the character
data and do the whole process in reverse.

I’ve successfully used this for all sorts of conversions and translations, but my favorite tool
that makes use of this is the subject of Chapter 9, “Converting XML Documents Using
Perl.” It’s a system for extracting and importing information from a database. Rather than
just concentrating on the data, the system will dump and work with the database structure,
allowing you to move an entire project, DB spec and data, from one SQL RDBMS to
another.

Using a DOM Parser
DOM parsers convert an XML document into an easily traversable tree. Unlike SAX and
other event-based parsers, this means you can access information within your XML docu-
ment in a random access fashion; you don’t need to process the document manually to find or
update a particular a piece of information. You can just go straight to it.

There are a number of different DOM- and tree-like systems that process documents, and
you looked at XML::Grove in Chapter 6. The main DOM implementation in Perl, however,
is XML::DOM. In addition to the normal access methods, you can also search and traverse the
branches in your XML tree and search for specific tags by name, moving directly to a partic-
ular branch in each case.

Chapter 8 • Generating and Parsing XML Documents with Perl

4021ch08.qxd 11/2/01 3:14 AM Page 108

109

In this section we’re going to look at how you can use the DOM model to work with and
parse XML documents. Although the scripts and samples you’ll be using are XML::DOM-specific,
most of the basic principles used in this section can also be applied to any DOM- or tree-like
implementation.

Inside XML::DOM Processing
To open and parse a document into a DOM tree using XML::DOM, all you have to do is create
a new XML::DOM object, which you can do directly from a file by using the parsefile()
method to an XML::DOM::Parser instance:

use XML::DOM;

my $parser = new XML::DOM::Parser;
my $doc = $parser->parsefile("faq.xml");

The resultant $doc is the root object from which you can start to process and manipulate
the document. From there, accessing and processing the document requires traversal through
the nodes of the XML document.

Access “By Node”
When using XML::DOM, the most import thing to remember is that you are accessing a tree. If
you look at a sample XML document in the form of an FAQ for this book (see Listing 8.5),
you can see the basic layout.

➲ Listing 8.5 A Sample FAQ XML Document

<faq>
<description>
Simple FAQ for working with the Scripting XML book
</description>
<section title="Chapters">
<topic>
<question>
How many chapters are there in the book?
</question>
<answer>
There are 23 chapters and 2 appendixes split
into 5 different sections.
</answer>
</topic>

<topic>
<question>
How many chapters are there on Perl/Python/PHP?

Using a DOM Parser

4021ch08.qxd 11/2/01 3:14 AM Page 109

110

</question>
<answer>
The Perl section has 5 chapters, the Python section
6 and the PHP section 3 chapters
</answer>
</topic>

</section>
<section title="Author">
<topic>
<question>Who is the author?</question>
<answer>Martin C Brown</answer>
</topic>

<topic>
<question>What does he do for a living?</question>
<answer>Writer and web programmer/consultant</answer>
</topic>
</section>
</faq>

Each XML tag within the document is called a node in XML::DOM (others such as XML::Grove
take the branch/leaf root). Each node can contain sub-data, including the node’s attributes
and any character data it contains, in addition to a list of child nodes, which are all the XML
tags within that node. For example, each topic node contains a question and answer node.

In addition, it’s important to know that each of the subelements is itself a node. For exam-
ple, the character data between a pair of question tags is described in a node, and if that
character data includes an entity reference, then each entity reference is also a node. This
subdivision of information continues throughout the description of the XML document. To
give you an idea of far the system goes, see Table 8.4, which lists the main modules that sup-
port the different node types in the XML::DOM package.

TABLE 8.4 CONTINUED: Modules Supporting Different Node Structures in XML::DOM

Module Description

XML::DOM::Node Superclass for the individual node types.

XML::DOM::Document The root of the entire XML document structure.

XML::DOM::DocumentType Describes the <!DOCTYPE…> declaration.

XML::DOM::Element Describes an individual XML element (or tag).

XML::DOM::Attr Describes an XML element attribute.

XML::DOM::CharacterData Superclass for character data (including comments and CDATA).

Continued on next page

Chapter 8 • Generating and Parsing XML Documents with Perl

4021ch08.qxd 11/2/01 3:14 AM Page 110

111

TABLE 8.4 CONTINUED: Modules Supporting Different Node Structures in XML::DOM

Module Description

XML::DOM::Text The text within an XML element pair.

XML::DOM::CDATASection Describes a CDATA section.

XML::DOM::Comment Describes XML comment.

XML::DOM::EntityReference Describes an XML entity.

XML::DOM::Entity Describes an XML entity definition.

XML::DOM::ProcessingInstruction Describes a processing instruction.

XML::DOM::DocumentFragment Holds a “light” version of a document fragment suitable for
copying and pasting between segments.

XML::DOM::Notation Describes a notation definition.

Armed with this information, you can search for a list of matching nodes, modify the
details about a node, and ultimately modify the XML document on which your node struc-
ture was based.

Extracting Information
The XML::DOM module relies on you traversing through the structure of nodes in order to get
information. Every node supports a number of basic methods that will tell you information
about the node, including its type and its name (if applicable) and a list of all the child nodes.
Table 8.5 lists some but not all of the methods available in each.

TABLE 8.5: Methods Supported by Most Node Types

Method Description

getNodeType Gets the node type; you can check the return value against one of the con-
stants from XML::DOM (see Table 8.6).

getNodeName Gets the node’s name; this is the tag or attribute name for suitable
nodes. Other node classes return different information.

getNodeValue Returns the node’s value. Note that for element nodes it returns undef
because the text in a tag pair is stored in its own Text node.

setNodeValue(value) Sets the node’s value; useful for setting the text in Text or Attr node.

getParentNode Returns a reference to the node’s parent.

setParentNode(node) Sets the node’s parent to node.

getChildNodes Returns a list of the child nodes.

getFirstChild Returns the first child node for the current node.

Continued on next page

Using a DOM Parser

4021ch08.qxd 11/2/01 3:14 AM Page 111

112

TABLE 8.5 CONTINUED: Methods Supported by Most Node Types

Method Description

getLastChild Returns the last child node for the current node.

getPreviousSibling Returns the previous sibling node.

getNextSibling Returns the next sibling node.

getAttributes Returns a list of Attr nodes for an Element node in the form of a
NamedNodeMap.

insertBefore(new, ref) Inserts the node new before the node ref.

replaceChild(new, old) Replaces the node new with the node old.

removeChild(old) Removes the child node old.

appendChild(new) Appends the node new to the list of nodes for the current child.

A list of constants exported by XML::DOM to help you identify different node types is shown
in Table 8.6.

TABLE 8.6: XML::DOM Constants

Constant Numeric Corresponding type

UNKNOWN_NODE 0 Unknown

ELEMENT_NODE 1 Element

ATTRIBUTE_NODE 2 Attribute

TEXT_NODE 3 Text node

CDATA_SECTION_NODE 4 CDATA section

ENTITY_REFERENCE_NODE 5 Entity reference

ENTITY_NODE 6 Entity

PROCESSING_INSTRUCTION_NODE 7 Processing instruction

COMMENT_NODE 8 Comment

DOCUMENT_NODE 9 Document

DOCUMENT_TYPE_NODE 10 Document type

DOCUMENT_FRAGMENT_NODE 11 Document fragment

NOTATION_NODE 12 Notation

Armed with this information, you can dump out the basic structure of your FAQ document
with the script shown in Listing 8.6.

Chapter 8 • Generating and Parsing XML Documents with Perl

4021ch08.qxd 11/2/01 3:14 AM Page 112

113

➲ Listing 8.6 Dumping a DOM Document Structure

use XML::DOM;

my $parser = new XML::DOM::Parser;
my $doc = $parser->parsefile("faq.xml");

dumpnodes($doc,0);

sub dumpnodes
{

my ($node, $level) = @_;

foreach my $subnode ($node->getChildNodes)
{

if ($subnode->getNodeType eq ELEMENT_NODE)
{

print(' ' x $level, $subnode->getNodeName,"\n");
dumpnodes($subnode,$level+4);

}
}

}

The script uses a recursive function to continually get a list of child nodes and then to
dump the node name to the screen. The resulting output is shown here:

faq
description
section

topic
question
answer

topic
question
answer

section
topic

question
answer

topic
question
answer

All further processing with a DOM-parsed document works in the same basic way—you
get a node, access a list of subnodes, and then print or work on the information.

Using a DOM Parser

4021ch08.qxd 11/2/01 3:14 AM Page 113

114

Of course, doing a node-by-node walkthrough like this is not particularly efficient. The
benefit of DOM is the immediate access to different elements (and therefore nodes within
the document).

Accessing Elements More Specifically
To make the process of updating and finding the specific tags you are interested in easier, you
can obtain a list of nodes according to their tag names. From this you can start to process the
information in the document much more explicitly. The starting point for this getElements-
ByTagName() method is your base XML document object. This returns a list of the XML ele-
ments matching the supplied string.

For example, Listing 8.7 shows a script that extracts a list of the XML elements matching
the section element from which you can extract the title attribute and therefore dump the
basic FAQ structure.

➲ Listing 8.7 Getting a List of Nodes by Tag Name

use XML::DOM;

my $parser = new XML::DOM::Parser;
my $doc = $parser->parsefile("faq.xml");

my $nodes = $doc->getElementsByTagName("section");
my $nodelength = $nodes->getLength();

for my $i (0..($nodelength-1))
{

my $node = $nodes->item($i);
my $title =

$node->getAttributeNode("title")->getValue();
print "$title\n";

}

To take the process one stage further, you can generate a formatted FAQ by using further
getChildNodes() and getElementsByTagName() methods to traverse farther down your node
tree. You can see an example of this in Listing 8.8.

➲ Listing 8.8 Getting the Full FAQ

use XML::DOM;

my $parser = new XML::DOM::Parser;
my $doc = $parser->parsefile("faq.xml");

Chapter 8 • Generating and Parsing XML Documents with Perl

4021ch08.qxd 11/2/01 3:14 AM Page 114

115

my $nodes = $doc->getElementsByTagName("section");
my $nodelength = $nodes->getLength();

for my $i (0..($nodelength-1))
{

my $node = $nodes->item($i);
my $title =

$node->getAttributeNode("title")->getValue();
print "Section $title\n";
foreach my $topicnode

($node->getElementsByTagName("topic"))
{

foreach my $subnode ($topicnode->getChildNodes)
{

if ($subnode->getNodeType eq ELEMENT_NODE)
{

print "Question: "
if ($subnode->getNodeName eq

'question');
print "Answer: \n"

if ($subnode->getNodeName eq
'answer');

my @textnodes = $subnode->getChildNodes;
foreach my $textnode (@textnodes)
{

print $textnode->getNodeValue
if ($textnode->getNodeType eq

TEXT_NODE);
}
print "\n\n";

}
}

}
}

You can also access specific nodes within a list of nodes by using the item() method. For
example, if you want to examine the first node within the list of topic nodes immediately,
you can use this:

$firstopicnode
= $doc->getElementsByTagName('topic')->item(0)

You can use the same basic techniques to extract the different elements from a document to
perform updates or to extract information. For example, you could insert a simple match so
that you output only the questions in each section or a match that generates only the ques-
tions within a particular section, all without traversing the entire node tree.

Using a DOM Parser

4021ch08.qxd 11/2/01 3:14 AM Page 115

116

Modifying Structures and Data
Beyond the easier access to specific areas of an XML document, the other benefit with DOM
is that you can very easily manipulate the internal DOM structure in order to add new nodes
or to add information to existing nodes.

You can create a new element node using the createElement() method. You can also add
text to an element by calling the addText() method on the new element node. You can then
manipulate the XML structure using the methods you saw earlier in Table 8.6.

For example, to create a new question, answer, and topic, you would use:
my $topic = $doc->createElement ("topic");
my $question = $doc->createElement("question");
my $answer = $doc->createElement("answer");
$question->addText("How long is the book?");
$answer->addText("About 440 pages");
$topic->appendChild($question);
$topic->appendChild($answer);

In turn, you could easily add this to one of the sections:
$section = $doc->getElementsByTagName('section')->item(0);
$section->appendChild($topic);

When adding attributes you have two possible choices—either you set the attribute
directly using the setAttribute() method for a node:

my $section = $doc->createElement("section");
$section->setAttribute("title", "Scripts");

Alternatively, we can create an attribute node that we then append to the list of children
for the element that you want to set the attribute in:

my $section = $doc->createElement("section");
my $attribute = $doc->createAttr("title", "Scripts");
$section->appendChild($attribute);

Regenerating XML from a DOM Tree
Using the XML::DOM module, this process is probably the easiest of all the procedures for
DOM processing. Assuming you have a root XML::DOM document object, you can get the
string version of an XML document using this:

$myxml = $doc->toString;

or you can print the document straight out to a file using this:
$doc->printToFile ("newfile.xml");

Chapter 8 • Generating and Parsing XML Documents with Perl

4021ch08.qxd 11/2/01 3:14 AM Page 116

117

Summary
Perl has two primary methods for working with XML documents. The PerlSAX system
allows for sequential and complete parsing of an XML document. The DOM system allows
for selective access to different parts of an XML document without the need to work through
the entire document beforehand.

We can use the sequential features of SAX to search for text in an XML document and we
can use this either to identify the tag in which the tag is located, or we can do the reverse,
identifying the text within a particular tag by name.

The DOM system is better suited to situations where we need to pull out information
from an XML document by its element name but don’t want to traverse and parse the entire
document to extract the information. DOM has the added benefit that we can also modify
and update the character data and structure of the document and then dump this structure
back out to an XML file.

Summary

4021ch08.qxd 11/2/01 3:14 AM Page 117

This page intentionally left blank

Converting XML Documents
Using Perl

• Database Management

• Converting Database Content to XML

Chapter 9

4021ch09.qxd 11/2/01 3:16 AM Page 119

120

Y ou saw in the last chapter that you can use XML as a storage format for some databases.
Although it works as a flexible format for storing and working with data, particularly

complex types, its limitation is the searching and retrieval of information.

If you think about a typical company using XML to store customer records, then it’s not
unlikely to find 20,000 or more records in its database, even within a relatively small com-
pany. In a larger company you could be talking about millions of records. Now consider the
process for searching or updating that information.

Dealing with searching first, you run into the same problems that you would encounter if
you were working with a flat file text-delimited database. In order to find a single record, you
have to search through a large number of records to find what you want. With small datasets,
this is not an issue; computers and hard disks are so fast now that even searching 10,000 or
more files takes little more a few seconds. Extend that to a few million records and it’s turned
into minutes and is beginning to approach major fractions of an hour to search the dataset.

You can get round this by using a separate file with an index to other documents, and you
can improve the overall speed by storing all the records within a single file. Using a single
file, you can make educated jumps through the document to find the information. However,
you are introducing extra levels of complexity—building and updating an index of even
10,000 records is a mammoth task, especially if you use XML for the index data.

Turning to the updating process, updating single records stored in single files (assuming
you can find them) is not a problem. If you decide to use a single file for your entire data set,
then making a modification becomes a major project. If you use SAX, you need to decon-
struct and rebuild the XML document each time. If you use DOM, you’ll need to work with
a huge file in memory, which will be slow and very resource hungry.

In all likelihood, therefore, you won’t be using XML for all your data storage needs. Instead,
you’ll be using it as an exchange format to enable you to exchange information between differ-
ent applications. That means that you will need to be able to export your information from
your SQL database into XML format and the reverse, export XML back into your database.

We’ll be looking at that process in this chapter, including some tricks that will make the
whole process easier. Before we get there, however, I’d like to take a look at some XML-
based solutions for managing the databases on which you store the data.

Database Management
Although transferring information between applications, and even between entire databases,
is a problem, I’ve always found managing the databases at the outset more of a complication.

Chapter 9 • Converting XML Documents Using Perl

4021ch09.qxd 11/2/01 3:16 AM Page 120

121

The problems arise in particular when you develop a database on one machine but deploy
the database and associated application on another. For me, the problem occurs because my
websites are hosted with a hosting service called Dreamhost (http://www.dreamhost.com),
but all the development and updating occur on one of the servers in my office. Although
updating and uploading any script changes or HTML is easy, handling the database is more
complex.

What happens, for example, if I create a new table within the database to hold some infor-
mation? What is needed is some way of recording database structure in a format that makes
it easy to update, extended, and modify the structure without requiring me to edit SQL state-
ments directly or execute SQL statements directly on a SQL database system.

Traditional Solution
My solution a number of years ago was to build a hash structure that contained a list of the
tables as the keys and then a nested hash that contained the database information, including a
short name and description, which included another nested array of field definitions.

Because this information was internally useful, I placed the entire specification into a new
module in Perl and then created suitable class methods to extract the information into a hash
that can be used by other parts of the application. For example, using the database structure
in this way, I could easily create a hash structure of a table record—because I know the field
names—and use it to validate a hash supplied to a function that writes the data to a record.

The result is a module such as the one shown in Listing 9.1, which shows a slightly reduced
version of the table structure for a new version of the MCwords.com website, which will be
launched at the end of 2001. Not shown here are all the tables or the index specification.

➲ Listing 9.1 Class Holding the Database Specification

package Database;

Class for supplying back database configuration

Main database configuration

my %tablespec
= (

Tablespecs for core MCSLP functionality
'mcslp_user' =>
{

'short' => 'Users',
'description' => 'Public user logins',
'fields' =>

Database Management

4021ch09.qxd 11/2/01 3:16 AM Page 121

122

[
{

field => 'userid',
type => 'char',
size => '255',
opt => 'NOT NULL',

},
{

field => 'password',
type => 'char',
size => '20',
opt => 'NOT NULL',

},
{

field => 'type',
type => 'char',
size => '1',
opt => 'NOT NULL',

},
{

field => 'usergroup',
type => 'char',
size => '20',
opt => 'NOT NULL',

},
],

},
'mcslp_sessionid' =>
{

'short' => 'User Sessions',
'description' => 'Session IDs for logged logged in/cookie users',
'fields' =>

[
{

field => 'session',
type => 'char',
size => '30',

},
{

field => 'userid',
type => 'char',
size => '255',

},
{

field => 'expires',
type => 'int',

},
],

},
'mcwords_books' =>
{

Chapter 9 • Converting XML Documents Using Perl

4021ch09.qxd 11/2/01 3:16 AM Page 122

123

'short' => 'Books',
'description' => 'Books in the database',
'fields' =>

[
{

field => 'isbn',
type => 'char',
size => '20',
opt => 'NOT NULL',

},
{

field => 'code',
type => 'char',
size => '20',
opt => 'NOT NULL',

},
{

field => 'title',
type => 'char',
size => '255',
opt => 'NOT NULL',

},
{

field => 'releasedate',
type => 'char',
size => '8',

},
],

},
'mcwords_books_contents' =>
{

'short' => 'Book Contents',
'description' => 'Content data for individual books',
'fields' =>

[
{

field => 'isbn',
type => 'char',
size => '20',
opt => 'NOT NULL',

},
{

field => 'chapter',
type => 'int',
opt => 'NOT NULL',

},
{

field => 'sublevel',
type => 'int',
opt => 'NOT NULL',

},

Database Management

4021ch09.qxd 11/2/01 3:16 AM Page 123

124

{
field => 'subsublevel',
type => 'int',
opt => 'NOT NULL',

},
{

field => 'subsubsublevel',
type => 'int',
opt => 'NOT NULL',

},
{

field => 'description',
type => 'char',
size => '255',
opt => 'NOT NULL',

},
{

field => 'pagestart',
type => 'int',
opt => 'NOT NULL',

},
{

field => 'pageend',
type => 'int',
opt => 'NOT NULL',

},
],

},
'mcwords_books_index' =>
{

'short' => 'Book Index',
'description' => 'Index entries for individual books',
'fields' =>

[
{

field => 'isbn',
type => 'char',
size => '20',
opt => 'NOT NULL',

},
{

field => 'description',
type => 'char',
size => '255',
opt => 'NOT NULL',

},
{

field => 'page',
type => 'int',
opt => 'NOT NULL',

},

Chapter 9 • Converting XML Documents Using Perl

4021ch09.qxd 11/2/01 3:16 AM Page 124

125

],
},
'mcwords_books_errata' =>
{

'short' => 'Book Errata',
'description' => 'Book errata entries',
'fields' =>

[
{

field => 'isbn',
type => 'char',
size => '20',
opt => 'NOT NULL',

},
{

field => 'page',
type => 'int',
opt => 'NOT NULL',

},
{

field => 'description',
type => 'blob',

},
],

}
);

sub new
{

my $self = shift;
my $class = ref($self) || $self;

bless {},$self;
}

sub tables
{

my $self = shift;
return %tablespec;

}

1;

Now you can get the entire database structure from within a calling script using this:
my $dbspec = new Database();

my %tablespec = $dbspec->tables();

Database Management

4021ch09.qxd 11/2/01 3:16 AM Page 125

126

Although it’s not shown here, you could also get the definition of the indexes for the tables
using this:

my %indexspec = $dbspec->indexes();

You can use this information to build the tables for the database using a simple script that
traverses the hash structure and extracts the table name and field definition and creates a
suitable set of SQL statements to create the table on the desired database system.

The SQL statement for creating a new table looks this:
create table TABLENAME (FIELD TYPE[(SIZE] FIELDOPTS, …)

For example, to create the mcslp_sessionid table, you’d use this:
create table mcslp_sessionid (session char(30),

userid char(255),
expires int)

The script in Listing 9.2 does exactly this, creating the tables and executing the statements
based on the database specification.

➲ Listing 9.2 Creation Script for Tables

#!/usr/local/bin/perl -w

use Database;
use DBI;

my $dbname = shift or die "You must supply a database name";

my $dbh = DBI->connect("DBI:mysql:$dbname");

my $dbspec = new Database();

my %tablespec = $dbspec->tables();

create_tables(0,0,keys %tablespec);

sub create_tables
{

my ($dummy, $drop, @tables) = @_;
foreach my $table (sort @tables)
{

if ($drop)
{

print "Dropping table $table...";
unless ($dummy)
{

$result = $dbh->do("drop table $table");
print "Error: ",$dbh->{dbh}->errstr(),"\n"

Chapter 9 • Converting XML Documents Using Perl

4021ch09.qxd 11/2/01 3:16 AM Page 126

127

unless ($result);
}
print "Dropped\n";

}
my $query = "create table $table ";
my @fieldspec;
foreach my $fieldkey

(@{$tablespec{$table}->{fields}})
{

my $fielddef;
$fielddef = sprintf("%s %s",

$fieldkey->{field},
$fieldkey->{type});

$fielddef .= "($fieldkey->{size})"
if (exists($fieldkey->{size}));

$fielddef .= " $fieldkey->{opt}"
if (exists($fieldkey->{opt}));

push(@fieldspec,$fielddef);
}
$query .= sprintf("(%s)",join(',',@fieldspec));
print "Creating table $table...";
unless ($dummy)
{

$result = $dbh->do($query);
print "Error: ",$dbh->errstr(),"\n"

unless($result);
}
print "Done\n";

}
}

Although there are no problems with this method, I have come across a few instances
where the location of the definition caused a problem. I’ve used the same system on a num-
ber of different applications now, and on the whole it works very well. However, as always
there are some little problems with the solution, which are summarized here:

● Because the definition is wrapped up within a Perl module, making changes requires Perl
knowledge (in case you miss a quote or bracket). Although this didn’t affect me, it did
occasionally affect a client installation where the people dealing with the system wanted
to modify the structure but didn’t know Perl.

● Being a Perl module, any script that wants access to the structure has to import the mod-
ule first, and that requires additional overhead. You could solve this by using the Auto-
Loader system or by creating a super class that inherits the definitions for individual
tables from other modules dynamically.

Database Management

4021ch09.qxd 11/2/01 3:16 AM Page 127

128

● Documenting and otherwise annotating the information requires use of either Perl docu-
mentation tools or comments or just exporting the structure to another format, such as a
line-by-line field definition for importing into a word processor.

● Migrating the database structure to another platform means having to use Perl on that
platform. Although this is not necessarily a problem for Unix and Windows, I didn’t
always have a Perl installation available.

These problems lead to a decision to move from an internal hash structure into an XML
format. Using XML, you gain these things:

● Easier modification and extension.

● Easier documentation and incorporation in other systems.

● Easier processing and conversion to other formats.

● External storage of the structure, so it could be loaded on demand.

● Database specification can be parsed and understood by any XML parser, which then
translates to any format, including creating the database on an available RDBMS.

● An easier method for adding new fields and metadata about the tables and fields, without
increasing the load within the Perl scripts and without adding further layers of nested
structures to hold the information.

It also means the development of new tools, first to convert the existing structure to XML,
and then new tools for taking the XML structure and creating a database from it. While I
was going through that process, I also developed a set of scripts that would dump an existing
database structure into XML format when modifying an existing database installation from a
client.

Most of these tools are covered in the rest of this section of this chapter.

Dumping the Hash to XML
The first job was to dump the existing hash structure to an XML document. The structure
of the XML required for this is fairly straightforward. You use a tag to hold the table data,
another to hold the field data, and tags to hold the field name, type, size, and constraints
(options) for a given field. The basic format looks like this:

<dbspec>
<table>

<tablename>mcwords_books</tablename>
<short>Books</short>
<description>Books in the database</description>
<field>

Chapter 9 • Converting XML Documents Using Perl

4021ch09.qxd 11/2/01 3:16 AM Page 128

129

<fieldname>isbn</fieldname>
<fieldtype>char</fieldtype>
<fieldsize>20</fieldsize>
<fieldopts>NOT NULL</fieldopts>

</field>
</table>
</dbspec>

As a further expansion, you could separate individual constraints into their own elements,
for example:

<fieldopts>
<fieldopt>NOT NULL</fieldopt>
<fieldopt>UNIQUE</fieldopt>
<fieldopt>DEFAULT = 0</fieldopt>

</fieldopts>

The process to convert the hash structure into something you can use is just a modification
of the code that created the database tables straight from the hash itself. You could have used
one of the XML generator modules, but it’s easier in this instance just to use print() state-
ments to dump the XML tags and data. You can see the script in Listing 9.3.

➲ Listing 9.3 Script for Dumping the Hash Structure to XML

#!/usr/local/bin/perl -w

use Database;

my $dbspec = new Database();
my %tablespec = $dbspec->tables();

print "<dbspec>\n";

my @tablelist;

if (@ARGV)
{
@tablelist = @ARGV;

}
else
{
@tablelist = keys %tablespec;

}

foreach my $table (map { $_ = lc($_) } @tablelist)
{

Database Management

4021ch09.qxd 11/2/01 3:16 AM Page 129

130

print STDERR "Dumping $table\n";
my $xmltable = dump_table($table);
print $xmltable;

}

print "</dbspec>\n";

sub dump_table
{
my ($table) = @_;
my $xmlout;
if (exists($tablespec{$table}))
{
$xmlout =
"<table>\n\t<tablename>$table</tablename>\n";

foreach my $dbinf (qw/short description/)
{
$xmlout .=
"\t<$dbinf>" .
"$tablespec{$table}->{$dbinf}" .
"</$dbinf>\n";

}
my @fieldspec;
foreach my $fieldkey
(@{$tablespec{$table}->{fields}})

{
my $fielddef;
$fielddef =
sprintf("\t\t<fieldname>%s</fieldname>" .

"\n\t\t<fieldtype>%s</fieldtype>\n",
$fieldkey->{field},$fieldkey->{type});

$fielddef .=
"\t\t<fieldsize>$fieldkey->{size}</fieldsize>\n"
if (exists($fieldkey->{size}));

$fielddef .=
"\t\t<fieldopts>$fieldkey->{opt}</fieldopts>\n"
if (exists($fieldkey->{opt}));

push(@fieldspec,"\t<field>\n$fielddef\t</field>\n");
}
$xmlout .= join('',@fieldspec);
$xmlout .= "</table>\n";

}
return $xmlout;

}

When run, the script will dump any structure as defined in the example (Listing 9.1) to the
standard output, while describing its process through the standard error. The result from the
sample looks like Listing 9.4.

Chapter 9 • Converting XML Documents Using Perl

4021ch09.qxd 11/2/01 3:16 AM Page 130

131

➲ Listing 9.4 The Resulting XML Structure

<dbspec>
<table>

<tablename>mcwords_books</tablename>
<short>Books</short>
<description>Books in the database</description>
<field>

<fieldname>isbn</fieldname>
<fieldtype>char</fieldtype>
<fieldsize>20</fieldsize>
<fieldopts>NOT NULL</fieldopts>

</field>
<field>

<fieldname>code</fieldname>
<fieldtype>char</fieldtype>
<fieldsize>20</fieldsize>
<fieldopts>NOT NULL</fieldopts>

</field>
<field>

<fieldname>title</fieldname>
<fieldtype>char</fieldtype>
<fieldsize>255</fieldsize>
<fieldopts>NOT NULL</fieldopts>

</field>
<field>

<fieldname>releasedate</fieldname>
<fieldtype>char</fieldtype>
<fieldsize>8</fieldsize>

</field>
</table>
<table>

<tablename>mcwords_books_errata</tablename>
<short>Book Errata</short>
<description>Book errata entries</description>
<field>

<fieldname>isbn</fieldname>
<fieldtype>char</fieldtype>
<fieldsize>20</fieldsize>
<fieldopts>NOT NULL</fieldopts>

</field>
<field>

<fieldname>page</fieldname>
<fieldtype>int</fieldtype>
<fieldopts>NOT NULL</fieldopts>

</field>

Database Management

4021ch09.qxd 11/2/01 3:16 AM Page 131

132

<field>
<fieldname>description</fieldname>
<fieldtype>blob</fieldtype>

</field>
</table>
...</dbspec>

The result, as you can see, is a nice handy XML-formatted version of the database struc-
ture. Included are the description and other information, as well as the field descriptions. You
could have shortened the output through the use of attributes, such as this:

<field type="char" size="255" opts="not null">userid</field>

This would certainly make parsing easier, but I find that it confuses many people who are
using the system for managing their databases, so I returned to the longer explicit XML
version.

Creating the Database from the XML
With the database specification in XML, you need to be able to convert the XML descrip-
tion of the tables in the database into a series of SQL statements that can then be executed
to build the tables within the database system.

There are a number of ways you could do this, including using a DOM parser to extract
individual table definitions from the XML and build the necessary expression. However,
since you’ll be using this in a sequential form to build up a series of queries from an XML
database specification, you can more easily use SAX to parse the content.

The main wrapper for the SAX parser is shown in Listing 9.5. This just extracts the name
of the database name in which you want to create the tables and the name of the file that con-
tains the database specification. It also extracts a username and password from the command
line to allow you to connect to a secure database to perform the database creation.

➲ Listing 9.5 The XML Processing Wrapper Script

#!/usr/local/bin/perl -w

use XMLDBHandler;
use XML::Parser::PerlSAX;

my $dbname = shift or die "No database name supplied";
my $xmlspec = shift or die "No filename supplied";
my $my_handler;

if (@ARGV)
{

my ($user,$pw) = @ARGV;

Chapter 9 • Converting XML Documents Using Perl

4021ch09.qxd 11/2/01 3:16 AM Page 132

133

$my_handler = XMLDBHandler->new($dbname, $user, $pw);
}
else
{

$my_handler = XMLDBHandler->new($dbname, '', '');
}

XML::Parser::PerlSAX->new->parse(
Source => { SystemId => $xmlspec },
Handler => $my_handler);

$my_handler->{dbh}->disconnect();

The script uses the XMLDBHandler class to process the XML file using SAX methods. The
class itself is defined in Listing 9.6.

➲ Listing 9.6 The SAX Handler Class for Processing the XML

package XMLDBHandler;

use DBI;

sub new
{

my $self = shift;
my $class = ref($self) || $self;

my ($dbname,$user,$pw) = @_;

my $dbh = DBI->connect("DBI:mysql:$dbname", $user, $pw);

unless(defined($dbh))
{

die "Couldn't open connection to database\n";
}

my @fields = ();

return bless {table => '',
in => '',
field => '',
fieldtype => '',
fieldsize => '',
fieldopts => '',
fields => \@fields,
dbh => $dbh,
}, $class;

}

sub start_element

Database Management

4021ch09.qxd 11/2/01 3:16 AM Page 133

134

{
my ($self, $info) = @_;

$self->{in} = lc($info->{Name});
}

sub end_element
{

my ($self, $info) = @_;

my $element = lc($info->{Name});

if ($element eq 'table')
{

my $query = sprintf("create table %s (%s)",
$self->{table},
join(', ', @{$self->{fields}}));

print "Creating table $self->{table}\n";
$self->{dbh}->do($query);
@{$self->{fields}} = ();
$self->{table} = '';

}
elsif ($element eq 'field')
{

my $fielddef;
$fielddef = sprintf("%s %s",

$self->{field},
$self->{fieldtype});

if ($self->{fieldsize} =~ /^\d+$/)
{

$fielddef .= "($self->{fieldsize})";
}
else
{

die "Data in <fieldsize> " .
($self->{fieldsize}) .
" should be numeric";

}
if ($self->{fieldopts} =~ /[a-zA-Z0-9]+/)
{

$fielddef .= " $self->{fieldopts}";
}
else
{

die "Data in <fieldopts> " .
($self->{fieldopts}) .
" should be alphanumeric";

}
push @{$self->{fields}}, $fielddef;
$self->{field} = '';
$self->{fieldtype} = '';

Chapter 9 • Converting XML Documents Using Perl

4021ch09.qxd 11/2/01 3:16 AM Page 134

135

$self->{fieldsize} = '';
$self->{fieldopts} = '';

}
$self->{in} = ''

}

sub characters
{

my ($self, $info) = @_;

my $data = $info->{Data};
$data =~ s/[\r\n]//g;
$data =~ s/[\t]+/ /g;

if ($self->{in} eq 'tablename')
{

$self->{table} .= $data;
}
elsif ($self->{in} eq 'fieldname')
{

$self->{field} .= $data;
}
elsif ($self->{in} eq 'fieldtype')
{

$self->{fieldtype} .= $data;
}
elsif ($self->{in} eq 'fieldsize')
{

$self->{fieldsize} .= $data;
}
elsif ($self->{in} eq 'fieldopts')
{

$self->{fieldopts} .= $data;
}

}

1;

An instance of the class has a number of different properties. The in property holds the
name of the current tag you are processing so that you know what to do with the character
data when you receive it. The table property holds the name of the current table, and the
field* properties hold the field name and others. The fields property is a list that contains
the SQL definition for creating each field. Finally, you also hold a reference to the database
handle—the connection is made when the instance is created.

The start_element() function just records the name of the element you are in. You’re not
interested in the element name, just where you are within the document, so you record the

Database Management

4021ch09.qxd 11/2/01 3:16 AM Page 135

136

information in the in property. Note that you record a lowercase version of the element
name to make testing of element names easier.

The end_element() function is more extensive. It creates a field definition when you find
the </field> end tag, pushing the resulting string onto the fields property. Note that
because you are continually adding text to the field* properties when you process character
data, you also have to make sure that the field* properties are emptied once the field defini-
tion has been created. You use an array here, rather than a hash, because the order of the
fields is important, especially if you update the tables in your scripts without using explicit
fieldnames, for example using insert into table values(…).

Once you reach the end of a single table definition, you create the full SQL statement
required to create the table and then execute the statement to create the table in the data-
base. Again, you must empty both the table name and the list of field definitions; otherwise
you end up with compound table names and tables that contain all the fields specified in
the database specification.

The characters() method collects all the character data and appends it to the correspond-
ing object property. The information in these properties is used to build the SQL statements.

To create the databases using the XML specification file you created earlier, you just need
to type:

$ xmlspectodb.pl mcslp mcslpdbspec.xml

Easy!

You can use exactly the same principle with just about any database that you need to define
in any way, and because you have the information in a nice portable XML format, you can
also the database specification that you’ve created here in any other language to create the
tables. For example, I have a similar Perl script that creates the tables on a Windows plat-
form, and another in Python that can create the tables within a Gadfly database for use in
Python scripts and Zope.

Dumping any SQL Database Structure to XML
The first time I went to a new client and was asked to modify and redevelop part of their
database, I found myself more or less back at square one. Although they had documented the
database structure, it wasn’t in a convenient machine-readable format, so to transfer the data-
base to my own machine for development and testing would have meant manually creating
the XML for the database specification.

The solution to this time-consuming process was to create the database specification in
XML from the database as it stood within the RDBMS.

Chapter 9 • Converting XML Documents Using Perl

4021ch09.qxd 11/2/01 3:16 AM Page 136

137

For this to work, you need to know how to access the information itself and how to parse
the information returned through the DBI interface into the XML specification.

For example, we can use the MySQL utility to submit SQL queries directly into a data-
base. The SQL statement for displaying a list of tables within a given database is show
tables:

mysql> show tables;
+------------------------+
| Tables_in_test |
+------------------------+
| mcslp_sessionid |
| mcslp_user |
| mcwords_books |
| mcwords_books_contents |
| mcwords_books_errata |
| mcwords_books_index |
+------------------------+
6 rows in set (0.00 sec)

When using fetchrow_hashref() and an active statement handle, the hashref will contain
a single field name, Tables_in_DBNAME where DBNAME is the name of the database you are con-
nected to. The value of the element is the table name.

To get a specific table setup, you use describe TABLENAME to describe the fields within a
given table:

mysql> describe mcwords_books;
+-------------+-----------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------------+-----------+------+-----+---------+-------+
isbn	char(20)				
code	char(20)				
title	char(255)				
releasedate	char(8)	YES		NULL	
+-------------+-----------+------+-----+---------+-------+
4 rows in set (0.02 sec)

The corresponding field names from a fetchrow_hashref() call are shown as the headings
to each column of the table. Field and Type should be self explanatory; the remainder hold
the individual field options. Null defines whether the field can be empty when data is inserted.
Key specifies whether the field is a primary key for use with a table index, and Default describes
the default value. Finally the Extra field holds additional options such as auto incrementation.

Armed with this information, you can write a script, shown in Listing 9.7, that will dump
the database table definition from any database to an XML file.

Database Management

4021ch09.qxd 11/2/01 3:16 AM Page 137

138

➲ Listing 9.7 The MySQL-to-XML Database Structure Dumper

#!/usr/local/bin/perl -w

use strict;
use DBI;

my $dbname = shift;

my $dbh = DBI->connect("DBI:mysql:$dbname");

my @tables = ();

my ($sth) = $dbh->prepare("show tables");
$sth->execute();
while (my $row = $sth->fetchrow_hashref())
{

push @tables, $row->{"Tables_in_$dbname"};
}
$sth->finish();

foreach my $table (@tables)
{

print "<table>\n\t<tablename>$table</tablename>\n";
my ($sth) = $dbh->prepare("describe $table");
$sth->execute();
while (my $row = $sth->fetchrow_hashref())
{

my @opts;
print "\t<field>\n";
print "\t\t<fieldname>$row->{Field}</fieldname>\n";
my ($type) = ($row->{Type} =~ m/([a-zA-Z0-9]+)/);
my $size = 0;
($size) = ($row->{Type} =~ m/\(([0-9]+)\)/);
print "\t\t<fieldtype>$type</fieldtype>\n";
print "\t\t<fieldsize>$size</fieldsize>\n"

if ($size);

push @opts, "primary key"
if ($row->{Key} eq 'PRI');

push @opts, "not null"
unless ($row->{Null} eq 'YES');

push @opts, $row->{Extra}
if ($row->{Extra} =~ /\S+/);

print("\t\t<fieldopts>",
join(' ', @opts),
"</fieldopts>\n") if (@opts);

print "\t</field>\n";

Chapter 9 • Converting XML Documents Using Perl

4021ch09.qxd 11/2/01 3:16 AM Page 138

139

}
$sth->finish();
print "</table>\n";

}
$dbh->disconnect()

To use the script, just supply the database name on the command line for the database you
want to dump to XML:

$ sqldbtoxml.pl mcslp

The XML is printed to standard output, so you’ll need to capture the output to store the
file. If you’ve been using the scripts in this chapter and choose to dump out the database
specification created by the script in Listing 9.5, you should get back an XML file that is
almost identical to the one you used to create it in the first place.

There will be a few differences. There will be no short name or description, for example.
This information was originally generated from the hash specification, but the table names,
field names, and field options should be the same.

Converting Database Content to XML
There are a few decisions that you need to make about how you are going to dump your
information to XML. First and foremost, you must think about why you are dumping the
data to XML format:

● What you are extracting. Is it the entire content of a given table or a “record” of informa-
tion with individual rows from a number of tables?

● The layout of the information that you generate. If you are working to an existing XML
DTD, then you obviously have something to work to, but if you are just dumping the
data for your own purposes, then consider what you will do with it once it’s been dumped.

● If you expect to use the XML directly, then consider using a DTD and some of the XML-
specific features such as ID attributes to identify different records in the XML file.

● How you want your information represented in XML. Are you going to use attributes to
hold field data, or will you use XML tag pairs to hold all the information?

These questions can’t be answered easily, and certainly it’s beyond the scope of this book to
answer these questions for you, but we will be looking at some of the issues as we examine
the process of converting data to XML format.

Converting Database Content to XML

4021ch09.qxd 11/2/01 3:16 AM Page 139

140

A Traditional Dumping Approach
If you are trying to dump out the information for transfer from one system to another, there
are better and ultimately more straightforward ways of dumping the information to a file that
can later be processed and imported into another database system. Personally, I use a script
that writes out the information in the form of SQL statements. Then, to import on any sys-
tem, all I need to do is read each line from the file and execute the statement. For reference
and utility, I’ve included the script that I use for this in Listing 9.8.

➲ Listing 9.8 A Simple Script for Dumping Database Contents

#!/usr/local/bin/perl -w

use strict;
use DBI;

my $dbname = shift;

my $dbh = DBI->connect("DBI:mysql:$dbname");

my @tables = ();

my ($sth) = $dbh->prepare("show tables");
$sth->execute();
while (my $row = $sth->fetchrow_hashref())
{

push @tables, $row->{"Tables_in_$dbname"};
}
$sth->finish();

foreach my [TE]$table (@tables)
{

$sth = $dbh->prepare("select * from $table");
$sth->execute();
while(my $row = $sth->fetchrow_hashref())
{

my $query = "insert into $table set ";
foreach my $field (keys %{$row})
{

$query .= "$field=" .
$dbh->quote($row->{$field}) . ',';

}
chop $query;
print "$query\n";

}
}

Chapter 9 • Converting XML Documents Using Perl

4021ch09.qxd 11/2/01 3:16 AM Page 140

141

When executed, the script dumps the content of every table as a SQL statement. Rather
than dumping the fields in sequence, what you actually do is write the information with field-
by-field specifications. You can see the sample output here:

insert into mcwords_books
set releasedate='20010601',
code='cdr',
title='CD Recordable Solutions',
isbn='1929685114'

insert into mcwords_books
set releasedate='20011006',
code='cdr',
title='Python: The Complete Reference',
isbn='007212718'

This way, the script protects you from a situation in which a table is re-created with the
same fields but in a different order, or when you add new fields to the table definition. When
the SQL is executed, it updates the information, ignoring the table field order, thereby retain-
ing the information irrespective of the current table definition.

NOTE If your SQL implementation doesn’t support the insert into … set field=value format,
you can easily change the script to use insert into … (field1, field2, …) values
(value1, value2, …).

Again, for reference, Listing 9.9 includes a simple script for inserting the information back
into a database from the SQL statements.

➲ Listing 9.9 Inserting Raw SQL Statements into the Database

#!/usr/local/bin/perl -w

use strict;
use DBI;

my $dbname = shift;

my $dbh = DBI->connect("DBI:mysql:$dbname");

my $linecount = 0;
open(DATA,$ARGV[0]);
while(<DATA>)
{

$linecount++;
}
close(DATA);

Converting Database Content to XML

4021ch09.qxd 11/2/01 3:16 AM Page 141

142

my $counter = 0;
open(DATA,$ARGV[0]);
while(<DATA>)
{

chomp;
$dbh->do($_);
$counter++;
printf ("$counter/$linecount (%0.1f%%)\r",

($counter/$linecount)*100);
}
print "\n";

The XML Dump Approach
Although I don’t recommend XML for database dumping, there are still occasions when it’s
useful. You’ve already seen an off the shelf tool in Chapter 6, “XML Solutions in Perl,”
under the guise of the DBIx::XML_RDB module. This generates an XML file using the table
name and field names of the table you have selected to build the data file.

In fact, we can modify the script in Listing 9.10 to do what you want quite simply, just by
changing the outer foreach loop to dump XML instead of SQL statements.

➲ Listing 9.10 Inserting the Data Back into the Database

foreach my $table (@tables)
{

print "<table>\n<tablename>$table</tablename>\n";
$sth = $dbh->prepare("select * from $table");
$sth->execute();
while(my $row = $sth->fetchrow_hashref())
{

print "<record>\n";
foreach my $field (keys %{$row})
{

print "<$field>$row->{$field}</$field>\n";
}
print "</record>\n";

}
print "</table>\n";

}

Using the test data, this produces the following output:
<table>
<tablename>mcwords_books</tablename>
<record>

Chapter 9 • Converting XML Documents Using Perl

4021ch09.qxd 11/2/01 3:16 AM Page 142

143

<releasedate>20010601</releasedate>
<code>cdr</code>
<title>CD Recordable Solutions</title>
<isbn>1929685114</isbn>
</record>
<record>
<releasedate>20011006</releasedate>
<code>cdr</code>
<title>Python: The Complete Reference</title>
<isbn>007212718</isbn>
</record>
</table>

Generating More Complex XML Documents
Generating more complex XML records when you are collecting the information from a
number of tables is really just an extension of the basic principles already discussed. You
select the data you want to extract from your database and then build the XML document
accordingly.

There are those who believe that the best way to build a document from a database is to
use XML::Generator or alternatively to construct the document using a DOM model and
then to dump the DOM model in serial form to your XML document. In my experience,
I’ve never found the need to build an XML document in this way when extracting data
straight from a database.

For an example of the sort of XML document you might produce from a database, let’s
go back to the sample database structure that holds information about the books on the
MCwords.com website. Suppose you want to generate an XML document containing all
of the errata for a given book, including all the book information.

To do this, you first need to dump the book data, followed by all of the errata records for
that book. You’ll end up with a document that looks roughly like this:

<bookerrata>
<book>
<isbn>1929685114</isbn>
<code>cdr</code>
<title>CD Recordable Solutions</title>
<releasedate>20010601</releasedate>
</book>
<errata>
<erratum>
<page>23</page><description>Some error</description>
</erratum>

Converting Database Content to XML

4021ch09.qxd 11/2/01 3:16 AM Page 143

144

<erratum>
<page>35</page><description>Some other error</description>
</erratum>
</errata>
</bookerrata>

You can now use this to produce an HTML document or indeed any other document
you want.

Since you already know the basics, we won’t look at an example of how to produce this
document; instead, let’s concentrate on some of the benefits and situations you may want to
work with and handle using the scripting facilities of a language such as Perl or Python when
generating XML from another data source:

● Use attributes where necessary. For example, if you are exporting data that uses a unique
ID code or serial number that is not part of the data itself, then consider storing this in an
attribute against each record, rather than an element pair. That way, you can compare
notes easily between XML files and also between the XML and database.

● Modifying the representation of the information in your XML document. For example,
you want to represent dates in your database in International format (YYYYMMDD), but
in your XML document in U.S. (MMDDYYYY) or European (DDMMYYYY) format.
You can use a regular expression to make the change quite easily:

$date =~ s/(\d{4})(\d{2})(\d{2})/$2$3$1/;

Again, it might be a good idea to store the original date string in an attribute, just to make
processing easier.

● Modifying the structure. In the previous example, you created an XML file that conve-
niently ignores the ISBN information for the errata list—you don’t need it because you
already know you are dumping information about a specific book. You could also have
changed the output to store the errata incidental data such as page number in an attribute,
while placing the main content in the body of the element.

● You can make light work of multiple records and element groups within Perl and other
languages. The nested structures supported by most scripting languages and the capabil-
ity to walk easily through these structures—especially arrays and hashes—make the process
even easier. Anything you can model in a nested structure in a scripting language can be
dumped to XML.

● Most scripting languages can act as glue between another data source and XML. For
example, using the DBI toolkit in Perl, you can communicate with Oracle, mSQL/mySQL,
Informix, PostgreSQL, SQL Server, and even Excel spreadsheets and Comma Separated
Values (CSV) text files.

Chapter 9 • Converting XML Documents Using Perl

4021ch09.qxd 11/2/01 3:16 AM Page 144

145

XML to Database
Converting an XML structure back into records in a database is merely a matter of parsing
the content and from that building a SQL or other database statement. You’ve already seen a
number of different examples in this chapter that use this method to build queries into some-
thing that you can send to a SQL-compliant database.

The most important aspect of the process is taking the information and identifying the ele-
ments that should be transferred to the database. For example, with the book errata example,
there are potentially two tables you could create from the data: the book table and the errata
table. The two tables are also linked, in this case by ISBN number, which means adding fur-
ther information to the errata entries. From the information you’re given, you need to create
three statements:

● The book data, which has the following basic template in SQL:
insert into mcslp_books values(isbn, code,

title, releasedate)

● The two errata entries, including the ISBN number, producing a SQL statement that
looks like this:
insert into mcslp_book_errata values(isbn,

page, description)

For a more complex document, for example a contacts record in XML format, you’d end
up with a number of different sequences of statements that would need to be created, includ-
ing information about the addresses the person uses, phone, e-mail and other information,
and any comments or notes for that person. All of these need to be linked, based on the
information in the XML document.

The issues to look out for when converting XML documents back to a database are these:

● Get a record of any auto-generated ID numbers so that you can use those numbers to add
other linked records to the database. When converting a contact document, for example,
you’ll want to create a unique ID for the contact, and you’ll need that to add the other
information for the contact to the database.

● Use regular expressions or other tricks to convert your XML tag data into the format
required by your database.

● Remember when parsing that the order of fields in your XML data will not necessarily
match the sequence defined in your database. Either cache the information and output it
in the correct order or explicitly define field names and their data in your queries.

● Remember to quote the character data and attributes when posting. Using the DBI sys-
tem, the $dbh->quote() function will automatically quote any data in the correct format
for insertion into the database according to the DBD driver you are using.

Converting Database Content to XML

4021ch09.qxd 11/2/01 3:16 AM Page 145

146

Summary
XML is frequently seen as a method of storing data in an architecture- and platform-neutral
format, but the focus often stays on data, not data about data. Everybody that uses a database
of any kind will be familiar with the problem of recording the database structure.

You can use XML to store the database structure in an easy-to-use format that makes
building the database on any platform much easier. First of all, you might need to turn an
existing internal structure of arrays and hashes into an XML document. The same principles
can be applied to any nested structure that you want to convert into XML easily.

Once you have the XML document that defines the database structure, a different tool can
then be used to convert that XML structure into a series of statements used to create the
tables in your database. The same principles can be used to convert an XML document into
any other format, just by processing the document with a SAX parser.

You can use similar processes to convert a database description into XML format, and you
can also convert a series of records within the individual tables into XML format.

Chapter 9 • Converting XML Documents Using Perl

4021ch09.qxd 11/2/01 3:16 AM Page 146

Applying SOAP/XML-RPC
in Perl

Chapter 10

4021ch10.qxd 11/2/01 3:18 AM Page 147

148

As you already know if you’ve read the introductory material in Chapter 5, “Data
Exchange and XML,” XML-Remote Procedure Calls (XML-RPC) and Simple Object

Access Protocol (SOAP) aren’t really XML technologies, nor do we need to know how to
parse or extract elements from XML documents to use them.

Instead, XML-RPC and SOAP are XML applications: They convert a function call on a
client into a function call on a remote machine by using XML to describe the request to the
server. Once the function has been executed, the whole process works in reverse, translat-
ing the response by the server into another XML document, in order to return the value to
the client.

Remote procedures are nothing new; Unix has had RPC capability for years. More recently,
many object technologies such as Common Object Request Broker Architecture (CORBA)
and Distributed Common Object Model (DCOM) have also provided remote (or distributed)
function calls. The difference is a common standard for making these operations work; both
XML-RPC and SOAP are cross-platform and language compatible.

NOTE Chapter 5 contains generic information on how XML-RPC and SOAP work and how they
can support distributed services irrespective of the platform and language.

The Perl SOAP::Lite module provides both SOAP and XML-RPC functionality in the
same module and hides all of the complexity of the technology behind a set of very simple
functions. The Lite in the module’s name refers to its ease of use and not its capabilities.

The module itself provides support for HTTP, HTTPS, CGI, TCP, FTP, SMTP, POP3,
e-mail parsing, and traditional file-based transport methods for communicating remote
requests. The module also provides methods for operating as a stand-alone network service,
a CGI interface for providing info through an existing web server, and a mod_soap module to
enable SOAP requests to be handled transparently through Apache and mod_perl extensions.

In this chapter were going to look at how to use SOAP::Lite to provide a distributed solution,
using some of the XML technologies we’ve already seen elsewhere in this part of the book.

Introducing SOAP::Lite
All SOAP systems work on the same basic principle—you have a SOAP server, which replies
to requests, mapping the function called by the client to a function within another module.
You also have a SOAP client that makes the request in the first place.

With SOAP::Lite, the server side sets up a script that accepts the request over a given
transport. That script then calls the function defined within a particular package—either

Chapter 10 • Applying SOAP/XML-RPC in Perl

4021ch10.qxd 11/2/01 3:18 AM Page 148

149

internal or external to the server handler script—before supplying the return value from the
function back to the caller.

For example, Listing 10.1 shows a very simple CGI-based server.

➲ Listing 10.1 A Simple SOAP::Lite Server

#!/usr/local/bin/perl

use SOAP::Transport::HTTP;

SOAP::Transport::HTTP::CGI
->dispatch_to('/export/http/webs/test/','SOAP::Demo')
->handle();

The main line creates a new server handler object. The dispatch_to() method first specifies
the location of the module tree that will be used to handle the client requests, and the second
argument defines the name of the module that we’ll accept and handle from the client. Finally,
the handle() method passes off the processing to the module, calling the function requested
by the client.

Note the name of the module that we’ve explicitly defined as being available to clients.
The module is SOAP::Demo, and the handler will actually try to load the module
/export/http/webs/test/SOAP/Demo.pm.

The client, shown in Listing 10.2, is equally brief.

➲ Listing 10.2 A Simple SOAP::Lite Client

use SOAP::Lite;

print SOAP::Lite
->uri('http://test.mchome.pri/SOAP/Demo')
->proxy('http://test.mchome.pri/SOAP/request.cgi')
->getmessage()
->result;

The client creates a new SOAP::Lite object, calls the uri() method, the proxy() method,
and the getmessage() method, and then accesses the result attribute of the object. Because
this is part of a call to print, we’ll be printing out the result.

The different components here are important, and we’ll look at each item in detail:

● The uri() method defines the namespace. The namespace is the location of the mod-
ule that provides us with the functions that we want to call. In this case, the URI refers
to a remote machine (using HTTP) and the SOAP/Demo namespace. Observant readers
will have noticed the similarity here with the name of the module defined in the server
handler script.

Introducing SOAP::Lite

4021ch10.qxd 11/2/01 3:18 AM Page 149

150

● The proxy() method specifies the actual URL that will be used to send the request to the
remote server. In this case, we’re calling a script called request.cgi in the SOAP directory
within the same server as our object.

● The getmessage() method is actually the name of the function on the remote server that
we want to execute. The function is called within the confines of the remote namespace,
which we already know is SOAP/Demo—therefore, the full expansion of the function that is
called is SOAP::Demo::getmessage().

● The result is the return value from the remote function. The result attribute is actually
an object and includes result and error information (if an error occurred). In this instance,
we’re going to assume that everything is working OK.

The final part of the puzzle is the module that provides the actual getmessage() function.
The module is called Demo, and it’s installed within the SOAP directory on our web server. You
can see the module in Listing 10.3.

➲ Listing 10.3 Our Remote Module

package SOAP::Demo;

sub getmessage
{

return "Hello, world!\n";
}

1;

The module defines just a single function—the function getmessage(), which we know we
want to call remotely. The package specification again is important here—it’s SOAP::Demo,
the same as the namespace we requested in the URI we requested in the client and also the
same as the name of the module that we specified as available in the request handler.

To install these scripts on your own server:

1. Create a directory on your web server called SOAP.

2. Copy the request handler (seen in Listing 10.1) into the SOAP directory using the name
request.cgi. Modify the directory argument to the dispatch_to() function to point to
the Demo module.

3. Copy the remote module (seen in Listing 10.3) into the SOAP directory using the name
Demo.pm.

4. Now modify the client (seen in Listing 10.2) to reflect the name of your server in both
the uri() and proxy() methods.

Chapter 10 • Applying SOAP/XML-RPC in Perl

4021ch10.qxd 11/2/01 3:18 AM Page 150

151

TIP I use the .pri domain name extension on my servers to indicate the address is private (for
example, the domain mchome.pri is unique to my LAN). The .pri extension is not officially
recognized, but it is generally accepted as an alternative for use on internal networks that
are not available on the Internet. The host could be public and available on the Internet,
on your intranet with an official name, or as I’ve specified it here.

Once you’ve made all the modifications, you’re ready to go. Execute the client and you
should get a message:

% perl client.pl
Hello, world!

Success!

If the script doesn’t appear to work, see the “Diagnosing Problems” section, later in this
chapter.

How SOAP::Lite Works
If you’ve read Chapter 5, you’ll already know how SOAP itself works. To recap, SOAP con-
verts your request to execute a specific function within a specific module into an XML docu-
ment. The document is then transferred over the transport mechanism to a remote request
handler (in our case a request to a CGI handler on a website).

The XML document that is created makes up the SOAP request and contains the name-
space, the function to be called, and any supplied parameters. In our case, it turns the request
to execute getmessage into the SOAP envelope, shown in Listing 10.4.

➲ Listing 10.4 An XML-Encoded SOAP Envelope

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope xmlns:SOAP-ENC =

"http://schemas.xmlsoap.org/soap/encoding/"
SOAP-ENV:encodingStyle =

"http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"
xmlns:SOAP-ENV =

"http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/1999/XMLSchema">
<SOAP-ENV:Body>

<namesp1:getmessage xmlns:namesp1 =
"http: //test.mchome.pri/SOAP/Demo"/>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Introducing SOAP::Lite

4021ch10.qxd 11/2/01 3:18 AM Page 151

152

In this example we were using standard CGI, so SOAP::Lite sends a POST request to the
URL specified by the proxy() method in the client script.

The server CGI script extracts the XML document that was sent as part of the POST request
and extracts the information it needs to execute the function. The value of the uri() method
is encoded in the SOAP envelope body; this tells the request handler which module it should
be looking for, along with the name of the function that we want to call.

SOAP::Lite then looks for the module/function (assuming that the request handler has
been configured to accept the module and function combination), executes the function, and
then serializes the response into another SOAP envelope to send back to the client.

SOAP Client Programming
SOAP is not limited to calling a simple function; you can pass arguments through to the
remote function the same as you would call the function within a normal script. For example,
we could change our getmessage() function so that we supply the name of the person we are
greeting, as shown in this code:

my $request = SOAP::Lite
->uri('http://foodies.mchome.com/Foodies/Conversion')
->proxy('http://foodies.mchome.pri/request.cgi')
->greet('Martin');

You can also configure the client to automatically pass on calls to functions not identified
locally to a remote request handler. In addition, we can use SOAP to access remote objects
and their methods.

Explicit Calls
We’ve already seen examples of explicit calls, such as that in Listing 10.2. The example shows
how to access a remote function directly by an explicit name. Explicit calls are great for
scripts in which you call only one function.

Automatic Calls
SOAP::Lite also supports a facility called autodispatch. This mode uses the autoload mecha-

nism to call a remote procedure automatically when the function name cannot otherwise be
resolved. For example, we could change our explicit example from Listing 10.2 into an
autodispatching client using the code in Listing 10.5.

Chapter 10 • Applying SOAP/XML-RPC in Perl

4021ch10.qxd 11/2/01 3:18 AM Page 152

153

➲ Listing 10.5 An Autodispatch Client

use SOAP::Lite +autodispatch =>
uri => 'http://test.mchome.com/SOAP/Demo',
proxy => 'http://test.mchome.com/SOAP/request.cgi';

print getmessage();

The first benefit of autodispatch is that we can call remote functions just as if they were
local. The second is that we can obtain their return values just as easily.

Autodispatch is also useful when you want to call a number of different remote functions
within your code. The only problem with autodispatch is that if you get the function name
wrong, you will be unable to trap that information in the script. See the section “Debugging
SOAP::Lite,” later in this chapter, for information on how to find and debug errors in your
SOAP code.

Getting Multiple Return Values
When calling a function that returns multiple values, you need to extract the information dif-
ferently. The result() method returns only the first value returned by the remote function.
Further return values are accessible through the paramsout() method.

Because the return values are split across these two method calls, care needs to be taken
when extracting the information. For example, the convert_qty() function accepts three
arguments: the quantity, the measurement, and the destination measurement group (metric,
imperial) that you want the value converted to. The function returns the converted quantity
and measurement. You can see a modified client to handle multiple return values in List-
ing 10.6.

➲ Listing 10.6 A Client to Handle Multiple Return Values

use SOAP::Lite;

my $request = SOAP::Lite
->uri('http://test.mchome.pri/SOAP/Conversion')
->proxy('http://test.mchome.pri/SOAP/request.cgi')
->convert_qty(1.5,'Kg','Imperial');

@res = $request->paramsout;
$result = $request->result;

if ($request->fault)
{

printf("SOAP Error: %s: %s\n\t%s\n",
$request->faultcode,
$request->faultstring,

SOAP Client Programming

4021ch10.qxd 11/2/01 3:18 AM Page 153

154

$request->faultdetail);
}
else
{

print "Result is: $result\n";
print "Params are: ",join(', ',@res), "\n";

}

Because of this difference, you might want to standardize on returning a success value in
the first argument and then returning the proper argument list in the remaining arguments
that are accessible through the paramsout() attribute. That way you can always check the
function/method return status with result() and all the real arguments from paramsout().

The other alternative to handling multiple return values is to return an array or hash refer-
ence that then contains all the real values. For example:

sub getcontact
{

get contact information
my $result = {'status' => 1,

'name' => 'Martin Brown',
'email' => 'mc@mcwords.com',
...
};

return $result;
}

Now when we get the return value from the result() method call, we have all the infor-
mation we need without needing to call paramsout().

Using Objects and Methods
SOAP was designed as an object access protocol to replace the many different distributed
objects standards out there, so it seems a shame not to mention how we can use it to access
objects.

Actually, object access is easy, especially if we use autodispatch. Listing 10.7 shows a
request handler (with built-in support module) supporting an accounting system.

➲ Listing 10.7 A SOAP Accounting Server

#!/usr/local/bin/perl

use SOAP::Transport::HTTP;

SOAP::Transport::HTTP::CGI
->dispatch_to('Account')
->handle();

Chapter 10 • Applying SOAP/XML-RPC in Perl

4021ch10.qxd 11/2/01 3:18 AM Page 154

155

package Account;

sub new
{

my ($self,$name,$balance) = @_;
my $class = ref($self) || $self;
bless { balance => $balance,

name => $name }, $class;
}

sub balance
{

my $self = shift;

return $self->{balance};
}

sub deposit
{

my $self = shift;

$self->{balance} += shift;
return $self->{balance};

}

sub withdraw
{

my $self = shift;

$self->{balance} -= shift;
return $self->{balance};

}

The client is shown in Listing 10.8. Note that, because we are using autodispatch, execu-
tion is identical to what we would normally use in a standard Perl script if using the module
locally.

➲ Listing 10.8 A SOAP Object Client

#!/usr/local/bin/perl
use SOAP::Lite +autodispatch =>

uri => 'http://test.mchome.pri/Account',
proxy => 'http://test.mchome.pri/accrequest.cgi';

my $current = Account->new('Current',1000);

print $current->deposit(1000);

SOAP Client Programming

4021ch10.qxd 11/2/01 3:18 AM Page 155

156

Creating SOAP Servers
The SOAP::Lite module hides all of the complexity of building servers. It handles all of the
communication, the serialization of your request into a SOAP envelope and, in the case of a
request handler, the job of deserializing the envelope back into the information required to
execute your desired function. As such, the request handlers are limited to controlling the
location and/or definition of the module that the client is requesting to execute. However,
that doesn’t mean that we can’t be flexible.

Dispatch Methods
The dispatch method passes off control to a function within a given package, but the location
of the package does not have to be external, as in the examples we’ve already seen. You can
pass control to an internal package.

The dispatch_to() method controls this interaction between what the client requests and
which module is actually loaded and used (if necessary) and also acts as a control mechanism.
The dispatch_to() method accepts any number of arguments, which can be in one of three
forms:

● A directory, which is used to populate the @INC variable when importing external mod-
ules.

● A module name, which restricts client requests to any function within the specified mod-
ule.

● A module and function definition, which restricts client requests to a specific function in a
specific module. Alternatively you can specify a directory and a module name which
restricts the request to specific module in a specific directory.

All three help to control access to a given module or function as requested by a client. For
example, specifying the name of a module limits client requests to functions within that mod-
ule. In practical terms, it leads to three main dispatch methods: the static internal, the static
external, and the dynamic request handler. We can also create a mixture of those solutions by
using a combination of those arguments.

Static Internal
The static internal form relies on creating a new package within your request handler. Static
internal handlers are useful for stand-alone solutions when you need to support a SOAP ser-
vice, but within a single file and without reliance on an external module. You can see a modi-
fied version of our simple Hello World script in Listing 10.9.

Chapter 10 • Applying SOAP/XML-RPC in Perl

4021ch10.qxd 11/2/01 3:18 AM Page 156

157

➲ Listing 10.9 A Static Internal SOAP Request Handler

#!/usr/local/bin/perl

use SOAP::Transport::HTTP;

SOAP::Transport::HTTP::CGI
->dispatch_to('SOAP::Demo')
->handle();

package SOAP::Demo;

sub getmessage
{

return "Hello, world!\n";
}

1;

Static External
Static external handlers use dispatch_to to pass control to an external but named module
that is imported by the request handler explicitly via a normal use statement. An example is
shown in Listing 10.10.

➲ Listing 10.10 A Static External SOAP Request Handler

#!/usr/local/bin/perl

use SOAP::Transport::HTTP;

use SOAP::Demo;

SOAP::Transport::HTTP::CGI
->dispatch_to('SOAP::Demo')
->handle();

Static external request handlers are most useful when you want to restrict access to a par-
ticular external module that can be loaded safely from a generic location through the normal
@INC array of directories.

Dynamic
The dynamic model enables the client to specify the name of the module to be loaded
(through the uri method). It’s up to the request handler only to define the location of the

Creating SOAP Servers

4021ch10.qxd 11/2/01 3:18 AM Page 157

158

modules that can be dynamically loaded to handle the client’s requests. This allows a single
request handler to support the requests for a number of clients using different modules.
We’ve already seen an example of this; all that’s required is to specify the directory location in
the dispatch_to method, as shown in Listing 10.11.

➲ Listing 10.11 A Dynamic Request Handler

#!/usr/local/bin/perl

use SOAP::Transport::HTTP;

SOAP::Transport::HTTP::CGI
->dispatch_to('/usr/local/lib/SOAP')
->handle();

Obviously the dynamic format passes the responsibility of calling the correct module on
to the client; it also reduces the security aspect. The request handler has to a large extent
been given free reign to the client to request any module available in the directory you con-
figure. This has its advantages because we can use a single request handler to cope with all
the requests for a multitude of different modules without ever needing to change the request
handler.

NOTE Dynamic dispatch actually zeros the content of @INC, replacing it entirely with the list of
directories that you supply.

Mixed
The mixed format enables you to dynamically load modules from a specific directory and to
explicitly preload external modules from the normal @INC variable. For example, the code in
Listing 10.12 will dynamically load modules from /usr/local/lib/SOAP while loading the
Contacts module from a directory in @INC.

➲ Listing 10.12 Mixed Mode Dispatching

#!/usr/local/bin/perl

use SOAP::Transport::HTTP;

SOAP::Transport::HTTP::CGI
->dispatch_to('/usr/local/lib/SOAP','Contacts')
->handle();

Chapter 10 • Applying SOAP/XML-RPC in Perl

4021ch10.qxd 11/2/01 3:18 AM Page 158

159

SOAP Support Modules
The backend of any SOAP application and request handler is the module or function that it
calls. Although there are not many differences between writing traditional modules, there are
a few changes that you may need to make, along with some traps that you might want to
watch out for:

● Modules do not need to export the functions explicitly. You do not need the services of
Exporter, nor do you need to populate @EXPORT to provide access to the functions. Calls
are made by the dispatcher using the explicit module and function/method name.

● All functions are called with at least one argument—the package (or namespace) used
when the request was received from the client. For example, our greet() function is sup-
plied with a single argument: SOAP::Demo.

● All further arguments to a function are supplied just as they are received from the client.
For example, from the client call to the module Conversion and the function
convert_qty(1.5, 'kg'), the server function receives ('Conversion', 1.5, 'kg').

● Return values from the server-side function remain the same. No additional informa-
tion is added, but make sure that your client knows how to extract multiple-argument
return values (see the section “Getting Multiple Return Values,” earlier in this chapter).

In all other respects, any modules that you specifically create for use with SOAP can follow
any of the traditional formats and rules that you probably are already using.

Migrating Existing Modules
The majority of modules and functions should be directly compatible with SOAP without
too many modifications—after all, we are dealing only with functions that accept arguments
and return values. However, therein lies a small trap: Functions called by a SOAP handler
accept the class or module in which they were called as their first argument.

This extra initial argument leads to a small problem. If your module is one that you are
already using in another local application, then the modifications that you make must be
nondestructive.

There are two ways around this. The first is to modify your scripts to silently ignore the
first argument if it contains the name of the module from a SOAP client. This is easy for
some functions because they accept a specific number of arguments, and you can identify
when there is one too many.

Creating SOAP Servers

4021ch10.qxd 11/2/01 3:18 AM Page 159

160

A more complex but much more practical solution is to create a glue module that supports
the same functions but strips the first element. You use the glue module with the SOAP
client. For example, to support an existing module called Conversion that provides a func-
tion convert_qty(), you’d create a glue module such as the one shown in Listing 10.13.

➲ Listing 10.13 A Glue Module for Providing Access to an Existing Module

package SOAP::Conversion;

use Conversion;

sub convert_qty
{

my $class = shift;
return Conversion::convert_qty(@_);

}

Using a glue module not only solves the problems of that additional function argument, it
will also enable you to customize the arguments you accept and the return structure, all with-
out making any modifications to your existing module.

Debugging SOAP::Lite
Unfortunately, because of the complexity of the SOAP system, problems are notoriously dif-
ficult to diagnose and isolate. The problem could be related to how the function was called,
how the server and dispatcher were configured, or a transport problem completely unrelated
to the operation of SOAP itself. Something as simple as the wrong hostname could cause
your SOAP client to fail.

Avoiding Problems
Prevention is always better than cure, so it’s worth taking some time to look at the potential
problems (and solutions) that many SOAP::Lite programmers encounter.

With SOAP::Lite, the important elements in the client and server process are

● The uri() method (as part of the client initialization), which defines the name of the
module (including any parent modules/directories) that contains the function we want to
execute.

● The proxy() method (as part of the client initialization), which defines the name of the
request handler that will actually broker the function call.

Chapter 10 • Applying SOAP/XML-RPC in Perl

4021ch10.qxd 11/2/01 3:18 AM Page 160

161

● The dispatch_to() function and its arguments (in the request handler), which define the
location of the modules to be called and the optional list of modules and functions that
the handler is willing to process.

● The location and name of the module that you want to call as defined on the server side.

If any one of these elements is incorrect, your SOAP system will fail. In particular, make
sure that you’ve correctly aligned the URI, the module registration in the request handler,
and the name of the module itself.

For example, in our example system, the URI ends with SOAP/Demo, the package is
SOAP::Demo, and the request handler accepts requests for the SOAP::Demo module. Request-
ing simply Demo in the client would cause the request to fail. If you execute the client pro-
gram and don’t get a valid response from the remote function, then it probably means one
of these elements is wrong.

Diagnosing Problems
There are two possible solutions available for diagnosing. The first and most obvious is to
use the facilities offered by SOAP::Lite to identify and highlight errors as part of any normal
error-checking procedure. By default, all clients will die with a suitable message when an
error occurs due to the transport, but they will do nothing if the function and/or module that
you have called does not exist.

The second solution is to use the interactive SOAP shell to communicate with your remote
proxy handler and submit requests to a remote function interactively.

Adding Error Checking
Error-handling information is held within the return value sent back by the remote function.
The return value from the remote function call is actually an object that contains additional
information about the success or failure of the result, as well as the actual result from the
remote function. Up to now we’ve accessed only the actual function result, which is held in
the result attribute.

If you change the client script shown in Listing 10.2 so that we access the object rather
than the result directly, you can get more information about why the operation failed. You
can see a modified version of the script in Listing 10.14.

Debugging

4021ch10.qxd 11/2/01 3:18 AM Page 161

162

➲ Listing 10.14 A Client Script with Error Checking

use SOAP::Lite;

my $request = SOAP::Lite
->uri('http://test.mchome.pri/SOAP/Demo')
->proxy('http://test.mchome.pri/SOAP/request.cgi');

$result = $request->getmessage();

if ($result->fault)
{

printf("SOAP Error: %s: %s\n\t%s\n",
$result->faultcode,
$result->faultstring,
$result->faultdetail);

}
else
{

print $result->result,"\n";
}

The faultcode always starts with a probable location for the error, such as Client, Server,
and so on. The two most common problems are

● Client: Failed to locate method (%s) in class (%s)—You’ve tried to call a method that
the request handler can’t find in the module you’ve requested. This usually points to a
typographical error in your client code.

● Client: Failed to access class (%s)—The class you’ve specified can’t be found. Check
that the URI the client has requested is valid and that the request handler has the correct
directory configured for the class you are trying to access.

Because transport errors are raised by calling die, the only way to trap them reliably is to
embed your remote function call in an eval(). The actual error message raised when the
problem occurs will be that raised by the transport—when using HTTP or CGI transport,
for example, you will have HTTP error codes returned. A full list of the different error codes
can usually be found with your web server.

Examples of error codes include a 404, which indicates that you’ve probably specified the
wrong proxy address, and a 403, which may indicate either a permission problem or incor-
rect permissions on the request handler. An HTTP error code 500 probably means that
there’s an error in the request handler—try running the handler locally.

Chapter 10 • Applying SOAP/XML-RPC in Perl

4021ch10.qxd 11/2/01 3:18 AM Page 162

163

The SOAP Shell
The SOAP shell is installed by SOAP::Lite and provides a shell-like interface to a SOAP
request handler. The basic format of the command is

SOAPsh.pl proxy [uri [commands...]]

For example, we can try using our demo function by using
$ SOAPsh.pl http://test.mchome.pri/SOAP/request.cgi
➥ http://test.mchome.pri/SOAP/Demo
Usage: method[(parameters)]
> getmessage()
--- SOAP RESULT ---
'Hello, world'

>

We could deliberately break our request handler by changing the dispatch location:
> getmessage
--- SOAP FAULT ---
SOAP-ENV:Client
Failed to access class (SOAP::Demo): Can't locate SOAP/Demo.pm in @INC
➥ (@INC contains: /export/http/webs/test/OtherEx) at (eval 5) line 3.

Using XML-RPC
The SOAP::Lite package includes support for XML-RPC through the XMLRPC::Lite pack-
age. Users familiar with how SOAP::Lite works shouldn’t have any difficulties developing
XML-RPC–compliant clients and servers. As an example, Listing 10.15 shows an XML-
RPC client.

➲ Listing 10.15 An XML-RPC Client

use XMLRPC::Lite;

$remote = XMLRPC::Lite
-> proxy('http://test.mchome.pri/xml.cgi');

print $remote->call('greet', { username => 'Martin' })
-> result;

print $remote->call('goodbye', 'Brown')
-> result;

Using XML-RPC

4021ch10.qxd 11/2/01 3:18 AM Page 163

164

In essence, the mechanics of the two systems are identical. XMLRPC::Lite attempts to
hide the complexities of XML-RPC as much as SOAP::Lite tries to hide the complexities
of SOAP.

The proxy method specifies the URL that we want to use to send the request. In this
instance, we’re using a CGI host, but we can also use an HTTP daemon—just remove the
reference to the CGI script. Also note that the URL is strictly the location of a server-side
handling script—it bears no relation to any module at the receiving end.

Note as well that we use the call() method to specify the function to be called (the first
argument, in this case greet) rather than naming the function directly as part of the call.
This is less straightforward than the SOAP method, but it may be more practical when you
know the function by its name and don’t want to use soft references to execute the function.

The server script that will handle the requests is shown in Listing 10.16.

➲ Listing 10.16 An XML-RPC Server Handle

#!/usr/local/bin/perl

use XMLRPC::Transport::HTTP;

my $server = XMLRPC::Transport::HTTP::CGI
-> dispatch_to('methodName')
-> handle;

BEGIN { @main::ISA = 'XMLRPC::Server::Parameters' }

sub methodName
{

my $self = shift;
my $method = $_[-1]->method;

return $self->$method(@_);
}

sub greet
{

shift if UNIVERSAL::isa($_[0] => __PACKAGE__);

my ($params) = shift;

$username = $params->{username};

return "Hello $username";
}

sub goodbye
{

shift if UNIVERSAL::isa($_[0] => __PACKAGE__);

Chapter 10 • Applying SOAP/XML-RPC in Perl

4021ch10.qxd 11/2/01 3:18 AM Page 164

165

pop @_;

return "Goodbye @_";
}

The most important point to notice from the server script is that the dispatch() method
sends the request to a single, local function. In this case it’s called methodName, but it could be
any function. It’s up to the methodName function to handle the requests, first extracting the
name of the method that was called by the client, which is available in the method attribute of
the supplied parameters. We then pass off control to the called function.

The second point to note is that we are not—indirectly or otherwise—passing control to
an external module. The Perl SOAP implementation is designed to work with external mod-
ules; when a function is called, the handler executes the function from an external module.
This is because the SOAP protocol itself was designed to work with classes and objects,
which in Perl are better organized in separate modules. XML-RPC, on the other hand, is
designed to execute a remote procedure, which could be defined locally or in an external
module.

Where Next with SOAP::Lite and XML-RPC
SOAP and XML-RPC are XML applications—they use XML to exchange information
between servers and clients about the remote function and arguments and to supply the
return values. You can use XML-RPC and SOAP in any situation where you need to com-
municate with a remote server but don’t want to produce your own protocol or rely on the
features of another protocol.

We’ve only scratched the surface just to show you what SOAP and XML-RPC are capable
of and, more importantly, what we can achieve using XML above and beyond the examples
that we’ve already seen.

SOAP and XML-RPC projects and services are popping up all over the Internet right now,
and it’s easy to see that in a few years we’ll be using the distributed offerings of SOAP and
XML-RPC in the same way as we use traditional client/server solutions now. It’ll certainly
put an end to incompatibility problems when exchanging data between remote machines—
part of the main focus of the XML protocol as a whole.

Check out the resources in Appendix B, “Resource Guide,” for some examples of Internet-
based SOAP and XML-RPC services. For compatibility with some of the examples we’ve
seen in this chapter, check the other chapters that contain SOAP and XML-RPC examples in
other languages.

Where Next with SOAP::Lite and XML-RPC

4021ch10.qxd 11/2/01 3:18 AM Page 165

166

Summary
We can communicate remotely with a Perl script by hosting it on a web server and sending
and receiving requests. We could also do so through the use of a communications system
such as Graham Barr’s libnet bundle. However, neither method provides a simple solution to
calling a remote function or object method over a network.

The SOAP and XML-RPC systems provide a more elegant solution to the problem. The
SOAP::Lite module is one of the easiest to use of all the solutions we’ll see in this book. It
provides an almost transparent interface between a remote server and the client. In fact,
when using the autodispatch mode, once you’ve specified in the client what server to com-
municate with, you’ll never have to worry about explicitly executing a remote function again.

On the server side, SOAP::Lite also enables you to support access to all the modules in a
directory, specific modules, and even specific functions. The system also supports the cre-
ation of objects and calling methods.

A less object-oriented approach, but one that is nonetheless still useful, is the XML-RPC
solution supported by the XMLRPC module. The module provides support for both client and
server XML-RPC solutions, but it requires much more care when setting up the client
and server sides of the solution.

Chapter 10 • Applying SOAP/XML-RPC in Perl

4021ch10.qxd 11/2/01 3:18 AM Page 166

Part III

XML and Python

Chapter 11: XML Solutions in Python

Chapter 12: Python and Unicode

Chapter 13: Generating and Parsing XML Documents with Python

Chapter 14: Converting XML Documents using Python

Chapter 15: Applying SOAP/XML-RPC in Python

Chapter 16: Zope and XML Documents

4021ch11.qxd 11/2/01 2:40 PM Page 167

This page intentionally left blank

XML Solutions in Python

• The xmllib Module

• Parsing Using Expat

• Parsing Using SAX

• Parsing Using DOM

Chapter 11

4021ch11.qxd 11/2/01 3:21 AM Page 169

170

Python’s XML support is probably one of the most complex of the different solutions avail-
able, largely because of the way in which the different XML parsers have been developed.

The original XML parsing system provided with Python 1.5.2 is called xmllib, and it comes
as standard with all Python distributions. xmllib was developed on the same basis as the sgm-
llib module, which provides SGML parsing tools.

The xmllib parser is both a simple validation parser and an event-driven data parser that
provides the base methods for you to use to parse an XML document. To use it, you need to
create a new class that inherits from the xmllib module, providing the necessary methods to
trap start and end tags, data sections, and entities.

Python 2.0 introduced a completely new hierarchy of modules and packages for develop-
ing with XML. The base xml package now includes xml.dom for processing using the DOM,
xml.sax for providing an event-driven parser, and xml.parsers.expat for an interface to the
generic Expat parser used by many other languages. In addition, the xmllib module is still
available as part of the standard Python library, but its use and support have been deprecated
in favor of the superior xml.sax package.

We’ll be having a look at each of these systems briefly before we take a closer look at spe-
cific solutions in later chapters in this part of the book.

The xmllib Module
Python has had a long history of supporting parsers for HTML and SGML. Some four
years ago a developer I know was using sgmllib in combination with a suite of custom tools
to manage the technical documentation for QNX, Inc., a company that develops a real-time
Unix-like operating system.

The only problem with Python’s SGML support is that it is somewhat limited. In fact, the
sgmllib module was designed to be able to support only enough of the SGML standard to
be able to handle HTML. This prevented the use of document type definitions (DTDs) and
many of the extensions used in SGML that make it attractive. However, it was possible to
subclass the sgmllib parser to support the extensions and facilities needed.

The xmllib module is actually quite advanced—it tries to support the entire XML stan-
dard and while reading the document performs basic checks on the document structure.
These include the basics of checking that the tags balance and that the document is based
entirely on a single top-level element.

Unfortunately, xmllib has now been pushed aside in favor of xml.sax, which provides a
more standardized event-drive method for parsing XML documents. This doesn’t mean that
xmllib is now useless, but you should probably avoid using it for production systems because
it will no longer be updated in future Python releases.

Chapter 11 • XML Solutions in Python

4021ch11.qxd 11/2/01 3:21 AM Page 170

171

For us, it’s going to form the basis of understanding XML processing with Python before
we concentrate on the Expat, SAX, and DOM solutions now recommended. They all work
in a largely similar fashion, and xmllib’s simplicity will help you understand how the other
systems work.

Understanding XMLParser
The main part of xmllib is the XMLParser class. The class contains all of the methods required
to parse a document, in addition to a series of methods designed to handle different XML
content.

To create your own parser, you create a new class based on the XMLParser class, overload-
ing the methods that identify the different elements you want to extract. For example, if you
wanted to parse an XML document and identify start and end tags and any raw data, you
would overload the unknown_starttag and unknown_endtag methods.

You can see a sample of a basic parser class in Listing 11.1. The resulting script parses the
first XML document on the command line. Because we haven’t defined any of the other
methods, this script merely allows the xmllib parser to check the validity of the XML it’s
supplied.

➲ Listing 11.1 An Example of XMLParser

import xmllib,sys

Create a new class from which we’ll inherit the base
methods and parser system we need
class MyParser(xmllib.XMLParser):

The instance creator - we need to manually
call the initiator for the parent class
def __init__(self, filename=None):

xmllib.XMLParser.__init__(self)
if filename:

self.loadfile(filename)

Load a file, based on the supplied filename
feeding the information to the XML parser
def loadfile(self, filename):

xmlfile = open(filename)
while 1:

data = xmlfile.read(1024)
if not data:

break
self.feed(data)

self.close()

The xmllib Module

4021ch11.qxd 11/2/01 3:21 AM Page 171

172

Get the first argument from the command line
try:

filename = sys.argv[1]
except IndexError:

print "You must supply a filename"
sys.exit(1)

Create a new MyParser instance and parse the
file supplied on the command line
We ignore EOFError’s, which just indicate the
end of file
The xmllib.Error exception is raised by xmllib’s
parser when an error occurs
try:

parser = MyParser(sys.argv[1])
except EOFError:

pass
except xmllib.Error,data:

print "There was an error in the XML:",data
sys.exit(1)

except:
print "Something went wrong"
sys.exit(1)

Assuming we haven’t trapped an exception, then the
XML has been validated
print "Everything appears to be fine"

The script works very simply: The loadfile() method opens a file and reads the contents,
supplying each batch of information to the feed() method defined within the xmllib
.XMLParser class. The feed() method passes on information directly to the actual parsing
engine. The parsing engine uses regular expressions to extract XML tags and information
from the source data stream.

Because we haven’t overloaded any of the methods responsible for handling XML tags and
data, nothing happens—although they are defined within the XMLParser class, their default
operation is to do nothing.

Supply the script with a valid XML document and we get a message to the effect that
everything is OK:

$ python exxmllib.py alien_r.xml
Everything seems fine

However, supply it with a badly formatted XML document and we get an error, trapped
through the xmllib.Error exception raised by the parser:

$ python exxmllib.py faulty.xml
There was an error in the XML: Syntax error at line 3: missing end tags

Chapter 11 • XML Solutions in Python

4021ch11.qxd 11/2/01 3:21 AM Page 172

173

Identifying XML Elements
To change the script to identify the different elements, we just need to overload the
unknown_starttag() and unknown_endtag() methods for the start and end tags and the
handle_data() method to handle the bare text data within the XML document. You can
see an example of this in Listing 11.2.

➲ Listing 11.2 A Simple XML Parser Using xmllib

import xmllib,sys

Create a new class from which we’ll inherit the base
methods and parser system we need
class MyParser(xmllib.XMLParser):

The instance creator - we need to manually
call the initiator for the parent class
def __init__(self, filename=None):

xmllib.XMLParser.__init__(self)
if filename:

self.loadfile(filename)

Load a file, based on the supplied filename
feeding the information to the XML parser
def loadfile(self, filename):

xmlfile = open(filename)
while 1:

data = xmlfile.read(1024)
if not data:

break
self.feed(data)

self.close()

Called when a start tag is found
def unknown_starttag(self, tag, attrs):

print "Start: ",tag, attrs

Called when an end tag is found
def unknown_endtag(self, tag):

print "End: ",tag

Called when raw data is found
def handle_data(self, data):

print "Data: ",data

Get the first argument from the command line
try:

filename = sys.argv[1]
except IndexError:

print "You must supply a filename"
sys.exit(1)

The xmllib Module

4021ch11.qxd 11/2/01 3:21 AM Page 173

174

Create a new MyParser instance and parse the
file supplied on the command line
We ignore EOFError’s, which just indicate the
end of file
The xmllib.Error exception is raised by xmllib’s
parser when an error occurs
try:

parser = MyParser(sys.argv[1])
except EOFError:

pass
except xmllib.Error,data:

print "There was an error in the XML:",data
sys.exit(1)

except:
print "Something went wrong"
sys.exit(1)

print "Everything seems fine"

Now, each time the parser identifies either a start tag, an end tag, or raw data, it calls the
corresponding method. In our case, the methods just print out the information received (tag,
attributes, or data). Now if we execute the script and supply it with an XML document, we
get the following:

$ python exxmllib2.py simple.xml
Start: simple {}
Data:

Start: paragraph {}
Data: and some data
End: paragraph
Data:

End: simple
Everything seems fine

Beyond xmllib
This concludes our brief look at xmllib. We probably won’t be using xmllib again, but the
basic principles shown here can also be followed for the Expat and SAX implementations we
will be using. Use of xmllib is now deprecated in favor of the other systems.

However, the basics described here apply to the other solutions available in Python because
they follow the same basic structure. The xmllib module is also a useful fallback if you need
to support XML on production systems currently using Python 1.5.2 or 1.6.

Chapter 11 • XML Solutions in Python

4021ch11.qxd 11/2/01 3:21 AM Page 174

175

Parsing Using Expat
Expat, as we’ve already seen in Chapter 6, “XML Solutions in Perl,” is a non-validating
XML parser written in C by James Clark. Like xmllib (and SAX), it’s event driven, parsing
individual XML constructs and using callbacks to initiate the processing of individual start
and end tags and data portions.

To use Expat in Python, we need to import the xml.parsers.expat module. The module
supports one main function, ParserCreate(), which creates an instance of the Expat parser
that we can use to parse XML documents.

It’s probably easiest to create a new class into which you put all the methods you need to
use, including those that will be triggered when different XML constructs are seen. It’s not a
requirement, but it does keep the system nice and tidy. Unlike xmllib, however, we don’t
inherit the methods from the parent class but use them directly. Rather than overloading the
methods to handle the different XML elements, we register the functions to the base parser.

For example, Listing 11.3 is a script that mimics our second xmllib example.

➲ Listing 11.3 An Expat Version of Our Simple XML Parser

import xml.parsers.expat
import sys

Create a new class to hold all the methods that
we want to use when parsing an XML document
class MyParser:

Instance constructor. We create a new parser instance
which we hold locally in parser, then we register
the different methods which will handle the
XML elements
def __init__(self, filename):

self.parser = xml.parsers.expat.ParserCreate()
self.parser.StartElementHandler = self.starttag_handler
self.parser.EndElementHandler = self.endtag_handler
self.parser.CharacterDataHandler = self.data_handler
if filename:

self.loadfile(filename)

Kills off and deletes the parser instance once the
processing of a given XML file is complete
To ensure we get rid of circular references we must
delete the parser reference
def close(self):

if self.parser:
self.parser.Parse('',1)
del self.parser

Parsing Using Expat

4021ch11.qxd 11/2/01 3:21 AM Page 175

176

Hand off some data to the parser
def feed(self, data):

self.parser.Parse(data, 0)

Called when a start tag is found
def starttag_handler(self, tag, attrs):

print 'Start: ',repr(tag), attrs

Called when an end tag is found
def endtag_handler(self, tag):

print 'End: ',repr(tag)

Called when a data portion is found
def data_handler(self, data):

print 'Data: ',repr(data)

Load a file and supply the info to the parser
def loadfile(self, filename):

xmlfile = open(filename)
while 1:

data = xmlfile.read(1024)
if not data:

break
self.feed(data)

self.close()

try:
filename = sys.argv[1]

except IndexError:
print "You must supply a filename"
sys.exit(1)

try:
parser = MyParser(sys.argv[1])

except xml.parsers.expat.ExpatError:
print "Error in XML"

except:
print "Some other error occurred"

If we use this on our sample document, we should get output similar to that in the xmllib
example:

$ python exexpat.py simple.xml
Start: u'simple' {}
Data: u'\n'
Start: u'paragraph' {}
Data: u'and some data'
End: u'paragraph'
Data: u'\n'
End: u'simple'

Chapter 11 • XML Solutions in Python

4021ch11.qxd 11/2/01 3:21 AM Page 176

177

NOTE The output differs slightly from that given by xmllib; that’s because the Expat parser
works with Unicode strings, rather than ASCII strings. We’ll be looking more closely at
how Python works with Unicode and how to encode and decode between Unicode strings
and other types in Chapter 12, ”Python and Unicode.”

Parsing Using SAX
The Simple API for XML (SAX) interface was originally developed under Java, although
interfaces now exist under most languages. Python 2 supports SAX version 2 (or more simply
SAX2), and the interface is extensive. Python provides the basic interface to the SAX parser,
an exception-handling system, a set of base classes for creating SAX handlers, and a low-level
interface to the SAX system for building your own low-level SAX-based parsers.

SAX works by accepting a content handler class that you have previously created to handle
the different elements. The method is similar in principle to Expat, except that the class you
create is entirely devoted to supporting the handler methods for the different elements. SAX
handles all of the data reading and feeding of the information to the parser.

Keeping with the basic theme for the moment, Listing 11.4 is a script that uses SAX to
output the start and end tags from a sample file.

➲ Listing 11.4 A Simple SAX Parser

from xml.sax import make_parser
from xml.sax.handler import ContentHandler

Define a new content handler class, the defined methods
will be triggered when the individual elements
are found in the XML document
class FindStartEnd(ContentHandler):

def __init__(self):
pass

def startElement(self, name, attrs):
print 'Start: ', name, attrs

def endElement(self, name):
print 'End: ', name

Make a new parser
parser = make_parser()

Parsing Using SAX

4021ch11.qxd 11/2/01 3:21 AM Page 177

178

Create a new handler instance based on our class
sehandler = FindStartEnd()

Set up the content handler for using our handler
parser.setContentHandler(sehandler)

import sys

try:
xmlfile = open(sys.argv[1])

except:
print "You must supply the name of the file to parse"
sys.exit(1)

We pass off the name of the file to the parsing engine
parser.parse(xmlfile)

Aside from not printing out our data sections, the output from this script is identical to
the previous examples. Also note that we no longer have to supply the data in discrete seg-
ments to the parser: The SAX interface opens a file by name and handles all of the reading
internally.

Because of the way SAX works, it’s ideally suited to situations where we want to pick out
specific elements while processing a document. For example, we can install triggers to iden-
tify specific tags and/or data sections in a simpler way than offered by the DOM techniques
we’ll see in the next portion of this chapter.

SAX can also be a great way of serializing documents into another format because we can
act on each element as it’s extracted from the original XML source. We’ll be looking at
some examples of using SAX in this way in Chapter 14 and again in Chapter 15, “Applying
SOAP/XML-RPC in Python,” as part of our look at the Python SOAP and XML-RPC
solutions.

Parsing Using DOM
The Document Object Model (DOM) allows you to model an XML document as a tree
structure. In fact, the entire document is accessible as a series of objects, and by following the
branches of the tree, you can traverse the entire document. Because we are representing the
XML document in one piece, we can use DOM both to parse existing documents and to cre-
ate new documents.

The only problem with using DOM is that it stores the entire document in memory. For
the small documents we’re working with here, this won’t be a problem, but a 512KB docu-
ment may require up to five times that amount when it’s stored internally as a DOM object.

Chapter 11 • XML Solutions in Python

4021ch11.qxd 11/2/01 3:21 AM Page 178

179

Of course, in Python we don’t have to worry about allocating the memory, but that also means
that we run the risk of using large quantities of memory without realizing it.

Under Python the DOM interface is based on the IDL version of the specification released
by W3C. The standard Python 2.x distribution comes with a basic DOM parsing system, called
minidom, and a more complex pulldom system that extracts individual elements from a DOM
tree without having to read the entire XML document into memory.

Because of Python’s flexible object system, it’s very easy to create an equivalent of the tree
structure that an XML document mirrors within a Python object. Coupled with the easy
object-handling features (especially when working with dictionaries and lists), we have a good
platform for handling XML documents.

Using minidom
To parse an existing XML document into a DOM object using minidom, you need to call
either the parse() method, which accepts a filename or file object and processes the con-
tents, or parseString(), which parses a bare string of information that you may have read
separately from a file or network connection. In fact, it’s as easy as this:

from xml.dom.minidom import parse, parseString

Parse a bare string as XML

stringdoc = parseString('<para>Some text</para>')

Parse a file object

xmlfile1 = open('myfile.xml')
filedoc = parse(xmlfile1)

Parse a file directly

filedoc = parse('myfile.xml')

Once you’ve converted the XML stream into a DOM object, you can then access the indi-
vidual tags by name. For example, suppose that we’ve modeled a client’s bank accounts in
XML, as shown in Listing 11.5.

➲ Listing 11.5 A Sample Account Record

<client>
<clientname>Martin Brown</clientname>
<account>

<accname>Checking</accname>
<provider>HSBC</provider>

Parsing Using DOM

4021ch11.qxd 11/2/01 3:21 AM Page 179

180

<balance>$4567.00</balance>
<transaction>

<payee>Rent</payee>
<amount>$280.00</amount>
<freq>Monthly</freq>

</transaction>
<transaction>

<payee>Time Subscription</payee>
<amount>$26.00</amount>
<freq>Quarterly</freq>

</transaction>
</account>

<account>
<accname>VISA</accname>
<provider>Morgan Dean Stanley Witter</provider>
<balance>$-3485.00</balance>
<transaction>

<payee>Supermarket</payee>
<amount>$-450.00</amount>

</transaction>
<transaction>

<payee>Gas Station</payee>
<amount>$-18.00</amount>

</transaction>
</account>
</client>

The document could be represented as a tree structure, as shown in Figure 11.1. We’ll be
using this diagram to help us understand how Python’s DOM implementation works.

We could get the name of the client who owns the account information using Listing 11.6.

account (Checking)

accname

provider

balance

transactions

transaction

transaction

account (VISA)

accname

provider

balance

transactions

transaction

transaction

clientname

clientF I G U R E 1 1 . 1 :
An XML tree

Chapter 11 • XML Solutions in Python

4021ch11.qxd 11/2/01 3:21 AM Page 180

181

➲ Listing 11.6 Extracting Content from an XML Document Using minidom

from xml.dom.minidom import parse

Create a function to get the data between XML tags
Information is held in nodes (discrete blocks)
which we’ll need to concatenate together to get the
full picture. We only need to add text nodes to the
string
def getdata(nodes):

rc = ''
for node in nodes:

if node.nodeType == node.TEXT_NODE:
rc = rc + node.data

return rc

Parse the document
client = parse('client.xml')

Get the first clientname tag from the document
clientname = client.getElementsByTagName("clientname")[0]

Print out the data contained within the tags
using getdata to extract the text from the nodes
defined within the element
print 'Client name is', getdata(clientname.childNodes)

The getElementsByTagName() method returns a list of all the tag elements with the sup-
plied name. The resulting objects contain the information about the tag, including any
attributes if supplied, and a set of nodes that make up the data contained within the tags.

Note that the object returned by getElementsByTagName() is a branch (or leaf) of the tree
structure shown in Figure 11.1. The root of the tree is the first (root) tag within the document—
so to access all the elements within the XML document, we’d have to access the client branch.
From that base, we can then access the other elements. For example, to extract the data from the
clientname branch, we must refer to the branch in reference to its parent, the client branch.
Further branches and leaves are referenced in the same way, relative to their parent branches.

Had we used this:
accounts = client.getElementsByTagName("account")

The accounts object would now be a list containing the two account branches. Each ele-
ment would refer to one of the account branches in our diagram. To get a list of the transac-
tions within the checking account, we could have used this:

checking = accounts[0]
trans = checking.getElementsByTagName("transaction")

Parsing Using DOM

4021ch11.qxd 11/2/01 3:21 AM Page 181

182

Now trans would contain the information in the two transactions in our account. Each
element would be one of the transaction branches.

DOM in Action
To put all of this into practice, Listing 11.7 is a script that uses DOM to generate a simple
list of accounts and transactions for a given client. The script is actually a good example of a
tree-based XML parser in Python. Because we’re not following the tree sequentially, we can
be a little less restrictive about how we extract information: We don’t have to worry about
recording states or determining whether the output format should change because we’ve
reach a particular end tag.

➲ Listing 11.7 Using minidom to Summarize an XML Document

from xml.dom.minidom import parse

def getdata(nodes):
rc = ''
for node in nodes:

if node.nodeType == node.TEXT_NODE:
rc = rc + node.data

return rc

def handleclient(client):
clientname = client.getElementsByTagName("clientname")[0]
print 'Client:', getdata(clientname.childNodes)
accounts = client.getElementsByTagName("account")
handleaccounts(accounts)

def handleaccounts(accounts):
print 'Accounts:'
for account in accounts:

handleaccount(account)

def handleaccount(account):
accname = account.getElementsByTagName("accname")[0]
provider = account.getElementsByTagName("provider")[0]
print ' ' * 4, '%s (%s)' % (getdata(accname.childNodes),

getdata(provider.childNodes))
print ' ' * 4, 'Transactions:'
trans = account.getElementsByTagName("transaction")
for transaction in trans:

handletransaction(transaction)
balance = account.getElementsByTagName("balance")[0]
print ' ' * 9, '%-40s %s' % ('', '======')
print ' ' * 9, '%-40s %s' % ('', getdata(balance.childNodes))
print ''

Chapter 11 • XML Solutions in Python

4021ch11.qxd 11/2/01 3:21 AM Page 182

183

def handletransaction(transaction):
payee = transaction.getElementsByTagName("payee")[0]
amount = transaction.getElementsByTagName("amount")[0]
print ' ' * 9, '%-40s %s' % (getdata(payee.childNodes),

getdata(amount.childNodes))

client = parse('client.xml')

handleclient(client)

If we run this script on our client XML document, we get the following output:
$ python exdom2.py
Client: Martin Brown
Accounts:

Checking (HSBC)
Transactions:

Rent $280.00
Time Subscription $26.00

======
$4567.00

VISA (Morgan Dean Stanley Witter)
Transactions:

Supermarket $-450.00
Gas Station $-18.00

======
$-3485.00

We could have just as easily converted this document into HTML or XHTML or
extracted the information easily for writing into the individual tables of a database.

Building XML Documents with DOM
You can write XML documents just by including the necessary print or similar statement in
your script, but it relies on generating the tags in the correct order and structure and ensur-
ing that they are matched up. Although this is not an impossible task, it does add extra levels
of complexity to the process.

Simple serialization from one format into XML is easy if the information is in sequence and
you convert directly into an XML document following the same structure. But what happens
if you need to add new branches within the existing structure, or the definition of the XML
document requires you to organize the information into a given structure that doesn’t match
your source material?

Parsing Using DOM

4021ch11.qxd 11/2/01 3:21 AM Page 183

184

The immediately obvious solution is either to separately model the incoming data into
a more suitable format before translating it to XML or to cache information into one or
more objects and dump them at appropriate times. Neither solution is infallible, and both
are entirely reliant on getting the information correctly and in the order you expect in the
first place.

A much better solution is at hand, though. The Document Object Model specification is
really just a method for modeling XML documents within the confines of a programming
language or other system. Up to now, we’ve used the system only to model an external XML
document into an internal tree to extract information.

We can also use DOM to build an XML document by creating the branches and leaves of
the document. Because DOM is not a sequential system such as SAX or Expat, we can add
new branches and leaves to any part of the document without making modifications to the
XML document in its raw text format.

The xml.dom.minidom module supports a very simple interface for adding new XML tags
and data to an XML document. For a quick example, see Listing 11.8, which adds both a text
block and a tag to a previously parsed XML string.

➲ Listing 11.8 Rebuilding an XML Document

from xml.dom.minidom import parseString

dom = parseString('<title></title>')
root = dom.documentElement
nelem = dom.createElement("separator")

root.insertBefore(nelem, None)
cdata = dom.createTextNode("The New Avengers")
root.insertBefore(cdata, nelem)
print root.toxml()

The start of the process is to create the equivalent of the blank root document as a DOM
object by using the parseString() function to parse a string in XML format into an object.

Then we get the root of the document and create a new element, “separator.” The insert-
Before() method in our document then inserts the element according to its reference loca-
tion. In this case, we’re inserting the element with reference to None, which will insert the tag
between the root title tags in our original XML string. The createTextNode() method cre-
ates a new block of text that we’ll insert before the element we just created.

Chapter 11 • XML Solutions in Python

4021ch11.qxd 11/2/01 3:21 AM Page 184

185

Finally, the toxml() method returns the entire DOM structure as an XML string that we
print out. Executing the script gives us a very simple document in return:

$ python dombuild.py
<title>The New Avengers<separator/></title>

Although this is simplistic, it demonstrates how easy it is to insert new tags and text data
anywhere within a given DOM tree. The process of converting XML data to or from an
alternative source will be a recurring topic. XML is not the ideal format for all situations,
so we’ll be returning to the DOM system in Python in later chapters.

Summary
XML processing in Python is relatively easy. Once you’ve selected the type of processing
that you want to use, it’s then a simple case of importing, or in some cases inheriting from,
the supporting module. From then on, sequential parsing involves handing off the XML
document data and supplying it to the data input of the class we’re using.

The xmllib module is not the ideal module any longer, but it is the only solution available
if you want to guarantee support for older versions of the Python interpreter. For the ulti-
mate in XML parsing in a sequential format, the best solution is the Expat parser, a standard
part of the Python distribution since version 2. Expat offers a familiar event-based interface
that is supported by a number of different languages.

For more advanced event-based parsing, you should use the SAX parser. Python’s SAX
module works identically to the Expat and xmllib systems, so migration to SAX should not
be difficult. The benefit of SAX is that it is a standard agreed upon by the XML standards
group, so we can pass information and events both to Python and other language interfaces.

The more flexible option is to use the DOM system. This uses SAX as the base parser to
build the DOM object, but once we have the XML document in DOM format, we have
more freedom about how to access the tags and data within. We can access elements in the
document by name, and if necessary we can also replace and even rebuild parts of the docu-
ment without having to manipulate any text.

Summary

4021ch11.qxd 11/2/01 3:21 AM Page 185

This page intentionally left blank

Python and Unicode

• Creating Unicode Strings

• Translating Unicode

• Accessing the Unicode Database

Chapter 12

4021ch12.qxd 11/2/01 3:05 PM Page 187

188

As part of the major update that brought much wider support for XML—including a
native interface to the Expat parser—Python 2.0 also brought extensive Unicode sup-

port. In addition to the capability to introduce Unicode and raw Unicode strings, Python
now also includes facilities for encoding and decoding Unicode and the translation of Uni-
code characters.

In addition, most of the core modules are also Unicode compliant, so you can execute reg-
ular expressions, character manipulations, and other translations using Unicode character
strings without needing to resort to a special collection of Unicode functions.

In this chapter we’re going to look at how to work with Unicode strings in Python, includ-
ing creating Unicode and translating it between different formats, as well as methods for look-
ing up Unicode characters and even creating your own Unicode encoder. Armed with this
information, you should be able to handle Unicode data within Python and know how to for-
mat and encode the information for display or storage.

Creating Unicode Strings
Rather than supporting Unicode strings natively—as supported by Perl—Python instead
supports a new data type: Unicode strings. You can create a new Unicode object by prefix-
ing a string with the letter u, in the same way that you introduce raw strings. For example:

>>> u'Hello World'
u'Hello World'
>>> u'Hello\0020World'
u'Hello World'

To include special (non-native) characters into the Unicode object, use the Unicode escape,
\u. This introduces the character according to the supplied hexadecimal value. In the previous
example, we introduced the Unicode character with the hexadecimal value of 20—the space
character, which as you can see has been interpreted accordingly in our example. Here’s
another example, this time inserting a lower case o with a stroke or slash (in other words, ø)
into a Unicode string:

message = u'J\u00f8rgensen'

All other characters are converted according to the Latin-1 encoding. See the section
“Translating Unicode,” later in this chapter, for information on translating a Unicode string
to another format. Note that on platforms and systems that support it, the Unicode string
conversion will also translate non-ASCII characters into Unicode. For example, on a Mac,

Chapter 12 • Python and Unicode

4021ch12.qxd 11/2/01 3:05 PM Page 188

189

introducing accented and other foreign characters is a built-in part of the operating system,
so we can insert these characters directly into a u-prefixed string:

>>> u'øåé'
u'\xbf\x8c\x8e'

To introduce a raw Unicode string, use the ur prefix when creating the Unicode object.
For example:

>>> ur'Rikke\u0020J\u00f8rgensen'
u'Rikke J\u00f8rgensen'

Raw Unicode strings work in the same way as their raw string cousins—they exist to enable
us to introduce strings that may contain information that we don’t want translated or inter-
preted. As with raw strings, this is especially useful when using Unicode strings within regu-
lar expressions. In these instances, Unicode escape sequences are interpreted only when
there is an off number of backslashes in front of a small u character. You can see this more
clearly in the following:

>>> ur'\\u0020'
u'\\\\u0020'
>>> ur'\u0020'
u' '
>>> u'\\\u0020'
u'\\\\ '

Obviously, as we’ve already seen, the old xmllib module in Python extracts only raw text—
it’s not Unicode compliant. However, the new SAX, DOM, and Expat interfaces all support
Unicode extraction. In the case of Expat and SAX, the information is returned in the form of
Unicode objects.

Translating Unicode
Most of the time, you’ll probably be parsing content in Unicode. It’s unlikely that you’ll
want to deal with Unicode objects all of the time when working with data from an XML
document.

At the most basic level, you can mix and match Unicode and normal Python string sequences,
but the result will always be another Unicode object. For example:

>>> 'Hello ' + u'Miss J\u00f8rgensen'
u'Hello Miss J\xf8rgensen'

To convert a Unicode object back into a normal ASCII (7-bit) string, use the built-in str()
function:

>>> str(u'Hello World')
'Hello World'

Translating Unicode

4021ch12.qxd 11/2/01 3:05 PM Page 189

190

Be careful, however, with Unicode strings that are not ASCII compatible. The str() func-
tion will raise an error if you try to convert a string that contains non-ASCII characters. For
example:

>>> greet=u'Miss J\u00f8rgensen'
>>> str(greet)
Traceback (most recent call last):
File "<stdin>", line 1, in ?

UnicodeError: ASCII encoding error: ordinal not in range(128)

Note that this applies however you access the string, even when extracting characters from
a Unicode string individually. For example, the following code will still raise an error:

for char in u'Miss J\u00f8rgensen':
print char,

NOTE Errors in encoding and/or decoding strings raise a UnicodeError exception, which can
be trapped in the same way as any other exception. The exception supplies the error mes-
sage as the only argument.

Encoding to Unicode Formats
ASCII is not the most useful of formats. You can translate a Unicode string into one of a
number of different using encode(). encode() changes the encoding used to represent the
Unicode object directly into another character set, such as Latin-1 or UTF-8. The method
takes a single argument—the encoding type that you want to translate the Unicode string to.
In fact, the encode() method is what is called when the str() built-in function is used on a
Unicode object, supplying the encoding type as ASCII.

Latin-1 encoding, which supports the first 256 characters provided in the 8-bit ASCII
table, can be used for most string representations, such as our earlier example:

>>> greet = u'Rikke J\u00f8rgensen'
>>> greet.encode('latin-1')
'Rikke Jørgensen'

Reproduction of that onscreen will of course rely on you having a font, application, and
OS that adhere to the Unicode standard!

A classic example here is the Mac OS, which doesn’t directly support the Unicode stan-
dard. To get the same effect when writing to a standard Mac document or to the screen,
you’ll need to use mac-roman encoding.

Chapter 12 • Python and Unicode

4021ch12.qxd 11/2/01 3:05 PM Page 190

191

The encode() method can also be used to encode your Unicode object into one of the
native Unicode encoding formats, such as UTF-8 or UTF-16. For example, to encode our
sample string, you’d use the following:

>>> greet.encode('utf-8')
'Rikke J\xc3\xb8rgensen'
>>> greet.encode('utf-16')
'\xfe\xff\x00R\x00i\x00k\x00k\x00e\x00
~CA\x00J\x00\xf8\x00r\x00g\x00e\x00n\x00s\x00e\x00n'

Decoding to Unicode Formats
To translate an encoded string back into its Unicode format (that is, to reverse encode()),
you need to use the built-in unicode() function. This was introduced with Python 2.0. The
function accepts two basic arguments: The first is the bytestream that you want to decode,
and the second is the format that you want it decoded into. For example, we can decode
Rikke Jørgensen from Mac-Roman format into a Unicode string using the following:

>>> unicode('Jørgensen','mac-roman')
u'J\xf8rgensen'

The return type is a Unicode object. Be aware that unicode() decodes a string object into
its Unicode version using the format you supply—use the wrong format and you end up with
the wrong Unicode object. For example, decode Jørgensen, sourced from a Mac document
using Latin-1 encoding, and you get a different Unicode string:

>>> unicode('Jørgensen','latin-1')
u'J\xbfrgensen'

We can also use unicode() to translate directly from one encoding into another. The UTF-8
stream of Jørgensen, for example, can be translated straight into UTF-16 using this:

>>> unicode('Miss J\xc3\xb8rgensen','utf-16')

The error string is used by the codecs to translate Unicode characters to determine how
the encoding and errors should be handled. The actual error strings and their effects are
dependent on the codec that you are using, but there are some standard strings supported
by the translation system.

Using strict causes the translation to fail, irrespective of what the problem was. Using
ignore allows the translation to continue, removing any special characters within encoded
string, such as the following:

>>> unicode('Jørgensen','utf-8','ignore')
u'Jrgensen'

In this case the ‘ø’ character cannot be translated from the local character set (mac-roman in
this case) to utf-8. The 'ignore' tells the Unicode system to ignore any characters that it
can’t convert, essentially deleting the character from the resulting string.

Translating Unicode

4021ch12.qxd 11/2/01 3:05 PM Page 191

192

To replace an unknown character with a character that the codec thinks may be suitable,
use an error string of replace. Python will use the official \uFFFD replacement character as
defined by the codec being used.

Unicode and XML in Python
The most important consideration to make when working with an XML document is that
the extracted data will be in Unicode format. The basic xmllib module that we’ve already
seen does not support Unicode strings. But the new SAX and DOM interfaces for XML
parsing do.

Unicode support in XML affects everything from the tag and attribute names to character
data. In particular you’ll need to take care when comparing strings hard-coded within your
scripts—such as within a dictionary when formatting or translating an XML document—and
when used within regular expressions.

For example, when using a dictionary that contains a tag name, make sure that the name is
specified as a Unicode string using u''. This will ensure that when a comparison is made, the
comparison is between two Unicode strings and not a normal string and the str() represen-
tation of the Unicode extracted from the XML file.

Also remember if you are displaying XML information on-screen that you almost certainly
need to convert the string using the encode() method into a suitable online version. Most
displays support either the Latin-1 or Mac-Roman format. See Appendix A for a list of the
different formats.

Remember as well that the process goes both ways—when storing information that has
been entered by the user, it’ll need to be converted into a UTF-8 or UTF-16 format for stor-
age in an XML file.

Translating Character Numbers
The ord() built-in function will return the number that represents a particular character.
The function is Unicode aware, so we can get the Unicode number for a character like this:

>>> ord('ø')
191

To translate that back into a Unicode character, however, we need to use the unichr()
function rather than the chr() function:

>>> unichr(191)
u'\xbf'

As you can see, this returns a single-character Unicode object.

Chapter 12 • Python and Unicode

4021ch12.qxd 11/2/01 3:05 PM Page 192

193

Accessing the Unicode Database
Occasionally you may want to access a character in the Unicode database with a description,
rather than with a character number. This can be particularly useful if you want to introduce
a particular character from its on-screen encoding into its Unicode format from within an
application.

The unicodedata module provides a direct interface to the Unicode database as defined by
the data file released by the Unicode consortium.

To look up a Unicode character by its description, use the lookup() function. For example,
to determine the Unicode character for the Greek capital letter pi (∏):

>>> import unicodedata
>>> unicodedata.lookup('Greek capital letter pi')
u'\u03a0'

To get the Unicode name for a specific Unicode character, use the name() function:
>>> unicodedata.name(u'\u03a0')
'GREEK CAPITAL LETTER PI'

Writing Your Own Codec
The unicode() function and the encode() method use the codecs module, which is part of
the standard library. The codecs module provides the base classes required to translate
between the different formats, but a separate set of modules within the encodings directory
in the Python standard library does the actual work.

For example, when you select to translate to Mac-Roman format, it’s the mac_roman mod-
ule within the encodings directory that does the actual work.

Python comes with a standard set of codecs for working with the majority of encoding for-
mats supported by Python. However, there may be times when you want to add an encoding
system to support a new language or format. We can also use the encoding system to provide
custom encodings, which can be useful if you want to convert specific characters to your own
sequences when displaying Unicode strings on-screen.

You can write your own codec by creating a new module. It needs to import the codecs mod-
ule, and you then need to define a Codec class that should inherit from the codecs.Codec class.
The Codec class should include two methods: encode() and decode(). The easiest way to
implement these two methods is to use the charmap_encode() function and charmap_decode()
functions within the codecs module.

Both these accept a character map—a dictionary that maps the character to encode or decode
to or from. For example, look at the following extract from the mac_roman.py module.

Accessing the Unicode Database

4021ch12.qxd 11/2/01 3:05 PM Page 193

194

{
0x0080: 0x00c4, # LATIN CAPITAL LETTER A WITH DIAERESIS
0x0081: 0x00c5, # LATIN CAPITAL LETTER A WITH RING ABOVE
0x0082: 0x00c7, # LATIN CAPITAL LETTER C WITH CEDILLA
0x0083: 0x00c9, # LATIN CAPITAL LETTER E WITH ACUTE
0x0084: 0x00d1, # LATIN CAPITAL LETTER N WITH TILDE
0x0085: 0x00d6, # LATIN CAPITAL LETTER O WITH DIAERESIS
0x0086: 0x00dc, # LATIN CAPITAL LETTER U WITH DIAERESIS
0x0087: 0x00e1, # LATIN SMALL LETTER A WITH ACUTE

...
}

If you are updating an existing dictionary, use the make_identity_dict() function in the
codecs module. This creates a base dictionary according to the range you supply. For exam-
ple, to match the standard 256-character 8-bit ASCII map, you would use this:

decoding_map = codecs.make_identity_dict(range(256))

You can then merge your updated map dictionary using the update() method:
decoding_map.update({

0x0080: 0x00c4, # LATIN CAPITAL LETTER A WITH DIAERESIS
0x0081: 0x00c5, # LATIN CAPITAL LETTER A WITH RING ABOVE

...
})

Remember that you’ll need two maps: one for the encoding and one for the decoding.
Assuming the two translations are opposites of each other (that is, an encode/decode pass on
a string should return the original string), then you can create the opposite map using this:

encoding_map = {}
for k,v in decoding_map.items():

encoding_map[v] = k

Going back to our encode() and decode() methods, using the map we’ve just created, we
can define those methods like this:

class Codec(codecs.Codec):
def encode(self,input,errors='strict'):

return codecs.charmap_encode(input,
errors,
encoding_map)

def decode(self,input,errors='strict'):
return codecs.charmap_decode(input,

errors,
decoding_map)

Chapter 12 • Python and Unicode

4021ch12.qxd 11/2/01 3:05 PM Page 194

195

Your codec will also need to define the StreamWriter and StreamReader classes. These are
used by the codecs module to read and write specific data stream types and convert them
into a suitable character format. You probably won’t need this for simple Unicode transla-
tions, so we can dummy-define them:

class StreamWriter(Codec,codecs.StreamWriter):
pass

class StreamReader(Codec,codecs.StreamReader):
pass

The final step in creating your codec is to register your code with the codecs module, which
you do by defining a getregentry() function. This should return a four-element tuple con-
taining the encode() and decode() methods from our class, and the StreamReader and
StreamWriter classes. In our case, this produces a definition like this:

def getregentry():
return (Codec().encode,

Codec().decode,
StreamReader,
StreamWriter)

After you’ve created your codec, drop the module into the encodings directory. The codec
is ready to use.

Here’s a complete codec example that performs the relatively useless operation of translat-
ing a characters into e characters and vice versa:

import codecs

Create our Codec class

class Codec(codecs.Codec):
def encode(self,input,errors='strict'):

return codecs.charmap_encode(input,
errors,
encoding_map)

def decode(self,input,errors='strict'):
return codecs.charmap_decode(input,

errors,
decoding_map)

class StreamWriter(Codec,codecs.StreamWriter):
pass

class StreamReader(Codec,codecs.StreamReader):
pass

Accessing the Unicode Database

4021ch12.qxd 11/2/01 3:05 PM Page 195

196

Register ourselves with the codec module:

def getregentry():
return (Codec().encode,

Codec().decode,
StreamReader,
StreamWriter)

Create our decode and encoding maps

decoding_map = codecs.make_identity_dict(range(256))
decoding_map.update({

0x0041: 0x0045,
0x0061: 0x0065,
0x0045: 0x0041,
0x0065: 0x0061,

})

encoding_map = {}
for k,v in decoding_map.items():

encoding_map[v] = k

I’ve called this codec 'mcb' and put it into the file mcb.py in the encodings directory
within the standard Python library directory. If I start up Python, I can try it out:

>>> unicode('ae','mcb')
u'ea'
>>> u'ae'.encode('mcb')
'ea'

Summary
Python’s Unicode is largely transparent—we can create, merge, and manipulate Unicode
strings natively within Python without the need for any additional modules or functions.
Unicode information can be stored within a special Unicode string. This both provides the
capability to store Unicode characters and has built-in methods for converting the built-in
strings into different Unicode standards such as UTF-8 and UTF-16.

For more in-depth conversion and translation, use the standard unicodedata module, which
provides named access to individual characters within the Unicode database. For conversions,
the built-in unicode() function enables you to create strings in different encodings and trans-
late strings to different encodings. You can even create your own conversion modules for
translating characters.

Chapter 12 • Python and Unicode

4021ch12.qxd 11/2/01 3:05 PM Page 196

Generating and Parsing XML
Documents with Python

• Parsing with SAX

• Using xmlproc for Validation

Chapter 13

4021ch13.qxd 11/2/01 3:27 AM Page 197

198

P ython supports a number of different systems for parsing and working with XML docu-
ments. The entire system is supported under the Python XML package (PyXML for

short) and is classed as a separate, but significant, project managed and run by some of the
members of the main Python development team.

PyXML includes a validating XML parser, SAX and DOM interfaces, and an interface to
the ever-present Expat parser, along with an interface for working with and generating
SGML documents and fragments from an XML document base.

However, despite all the different aspects of the PyXML package, it is still considered a
work in progress. There’s much you can do with the implementation so far, but some aspects
don’t work correctly and are incredibly unpolished, and much of the system is lacking any
real documentation. Work is progressing as this chapter is being written, and the best place
to go for information is the PyXML page at SourceForge (http://pyxml.sourceforge.net).

In this chapter, we’ll take a look at the Python implementation of SAX, with a closer look
at the error handling system. We’ll also look at the xmlproc parser, which can be used to vali-
date XML documents by ignoring the typical errors that are raised during parsing, and
which even includes ready made scripts for just that purpose. For more information and
some examples on parsing using DOM, see Chapter 14, “Converting XML Documents
Using Python.”

Parsing with SAX
The Simple API for XML (SAX) is a standard and consistent interface across all the different
implementations. If you can follow the Perl examples given in earlier chapters, beyond the
obvious Perl/Python differences, you should be able to easily transfer your software to and
from Perl or any other language implementation.

In Python, the SAX handler works through the xml.sax package. The package includes a
number of modules that handle different aspects of the process. What actually happens is
that you first create a generic parser instance by calling saxexts.make_parser().

The parser must then be configured with different handler instances to handle content,
DTDs, entities, and errors. For this you’ll need to create a class that processes each of the
elements that are identified by the parser. Alternatively, you can create one single class, a
document handler, that contains the functions for all the different content types.

For convenience, the saxlib package includes default classes for the different types made
available through the ContentHandler, DTDHandler, EntityResolver, and ErrorHandler
classes, or through the superclass DocumentHandler. You can set the different handlers for

Chapter 16 • Generating and Parsing XML Documents with Python

4021ch13.qxd 11/2/01 3:27 AM Page 198

199

an individual parser by using parser.setContentHandler() and associated functions for the
other handler types, supplying a single argument that should be an instance of the han-
dler type.

To supply XML to the parser, you should call either the parse() or parseString() method.
The parse() method accepts a filename or an open file handle from which it will read the
entire document. The parseString() method accepts a string to be parsed. In each case, the
supplied file or string should be self contained—that is, it should be an entire XML document.
You cannot “drip” feed the parser, even using the parseString() method.

Designing Handlers
The handler or handlers that you create must be self-contained. If you want to record informa-
tion or use SAX for building another object or nested structure, you must store that infor-
mation within the handler you create.

NOTE Actually, you could use global variables to store the information, but as you should
already know, global variables are essentially considered to be a bad thing, and there’s
nothing to make the process of storing the data into the handler class any more difficult.

To put this into practice, Listing 13.1 shows a script that collects information about an
XML file (number of tags, individual tag counts, attributes, processing instructions, and
characters in character data).

➲ Listing 13.1 Using SAX for Document Statistics

from xml.sax import saxexts
from xml.sax import saxlib
import sys

class StatHandler(saxlib.DocumentHandler):

def __init__(self):
self.tags = {}
self.elems=0
self.attrs=0
self.pis=0
self.char=0

def startElement(self,name,attrs):
if (self.tags.has_key(name) != 1):

self.tags[name] = 0

Parsing with SAX

4021ch13.qxd 11/2/01 3:27 AM Page 199

200

self.tags[name]=self.tags[name]+1

self.elems=self.elems+1
self.attrs=self.attrs+len(attrs)

def characters(self, data, dummya, dummyb):
self.char=self.char+len(data)

def processingInstruction(self,target,data):
self.pis=self.pis+1

parser = saxexts.make_parser()
statistics = StatHandler()
parser.setDocumentHandler(statistics)

try:
parser.parse(sys.argv[1])

except IndexError:
print "You must supply a file name"
sys.exit(1)

except IOError, msg:
print "Error opening file:",msg
sys.exit(1)

except saxlib.SAXException, msg:
print "Error parsing file:",msg
sys.exit(1)

for tag in statistics.tags.keys():
print "%-50s%d" % ('Tag "' + tag + '":',statistics.tags[tag])

print "%-50s%d" % ('Elements:',statistics.elems)
print "%-50s%d" % ('Attributes:',statistics.attrs)
print "%-50s%d" % ('Processing Instructions:',statistics.pis)
print "%-50s%d" % ('Character Data:',statistics.char)

If you look at this script in detail, you should be able to see how you collate the informa-
tion from the XML document. The content handler class knows how to deal with three dif-
ferent types of entities: start tags, character data, and processing instructions (PI).

As the document is parsed, whenever the reader sees these items, the corresponding
method is called, just as with the xmllib library you saw in Chapter 11, “XML Solutions in
Python.” To make your statistics gatherer work, the first job is to set up the properties of a
handler instance that will be used to hold the information as the document is parsed.

You do this in the initializer for the class. Then, when you see a start element, character
data, or PI, you add up the numbers and update the handler object instance with the infor-
mation. Then, when the script is run, you know that when the parser has finished, you can

Chapter 16 • Generating and Parsing XML Documents with Python

4021ch13.qxd 11/2/01 3:27 AM Page 200

201

pull out the data from your handler instance to get the summary information you were trying
to extract.

Running this on the sample client document from the previous chapter, you get this:
$ python saxstats.py contact.xml
Tag "empty": 1
Tag "number": 7
Tag "type": 7
Tag "contactmethods": 1
Tag "method": 7
Tag "name": 1
Tag "contact": 1
Elements: 25
Attributes: 0
Processing Instructions: 0
Character Data: 149

All SAX-based processing works on the same premise—you have to record the information
about what you are processing in order to be able to convert or otherwise translate the infor-
mation trapped in your XML document into some other format. The reason you have to do
this is because of the nature of the SAX parser. It works through and reads each tag, each
block of character data, and all the other elements. Then it executes a single function to han-
dle the event.

This can make some processes difficult. For example, to extract the character data stored
between two tags, such as this:

<message>Come grow old along with me.</message>

you have three events triggered. You can’t access the child data between the tags directly.
Instead, you have to identify the start tag, remember where you are, cache the character data,
and then identify when you see the end tag to ensure that you store that cached data in the
message property or other structure. In some situations, SAX can be better than DOM, but
as you’ll see in Chapter 14, DOM can also be better for some solutions than SAX.

Handler Quick Reference
The SAX handler is set in stone as part of the SAX standard, but for a quick reference, I’ve
included the main methods called when processing a document with SAX. By default, all of
the methods defined in the base classes (from which you should inherit) do nothing. You’ll
need to overload the methods with your own versions to actually process information.

Methods within the ContentHandler class are listed in Table 13.1.

Parsing with SAX

4021ch13.qxd 11/2/01 3:27 AM Page 201

202

TABLE 13.1: Methods for ContentHandler Classes

Method Description

startDocument() Triggered at the start of a document.

endDocument() Triggered at the end of a document.

startElement(name, attrs) Triggered when a start element is identified. name is the ele-
ment name, and attrs is a dictionary of the element’s
attributes.

endElement(name) Triggered when an end element is identified. name is the ele-
ment name.

startElementNS(name, qname, attrs) Triggered when a start element is identified when processing
in namespace mode. name is the name of the element as a
tuple, containing the URI and the local name (for example,
mcwords:title would be returned as ('mcwords', 'title')).
qname is the raw element name as identified from the XML,
and attrs is a dictionary of the attribute.

endElementNS(name, qname) Triggered when an end element is identified when process-
ing in namespace mode. name and qname are as for
startElementNS().

characters(content) Triggered when character data is found. Note that this may
be triggered multiple times during an apparently single char-
acter data block.

processingInstruction(target, data) Triggered when a processing instruction is identified.

skippedEntity(name) Triggered when an entity is skipped.

Be aware that single elements (such as <header/>) trigger both startElement() and
endElement() methods.

Methods for the DTDHandler class are listed in Table 13.2. Currently, the system supports
only notation and unparsed entity declarations.

TABLE 13.2: Methods for the DTDHandler Class

Method Description

notationDecl(name, publicId, systemId) Triggered by a notation declaration.

unparsedEntityDecl(name, publicId, systemId, ndata) Triggered by an unparsed entity.

The EntityResolver class defines only a single method, resolveEntity(), which accepts
publicId and systemId arguments and is triggered when an entity is identified.

Chapter 16 • Generating and Parsing XML Documents with Python

4021ch13.qxd 11/2/01 3:27 AM Page 202

203

Error Handling
One of the most important aspects of parsing an XML document is to be able to cope when
an error occurs. Errors within SAX are handled during the process of reading the XML doc-
ument, which is in turn handled by a separate XMLReader class. In order to handle any errors
in the XML parsing process, you have to provide an alternative error-handling class to the
standard ErrorHandler object used by default.

You can trap and deal with three different types of errors: standard errors, fatal errors,
and simple warnings. Each type of error is handled by a different method, as summarized
in Table 13.3. In each method, only a single argument is accepted—a SAXParseException
instance.

TABLE 13.3: Methods in the ErrorHandler Class

Method Description

error(exception) Called when the parser encounters a recoverable error. By default, this
method raises an exception (through the SAXException class). If you
implement the method but don’t raise an exception, then processing can
continue.

fatalError(exception) Called when the parser encounters a fatal error. Parsing should stop when
this method is called, and no more information will be supplied to the
parser.

warning(exception) Called when the parser encounters a warning. Parsing will continue after
this method returns, and additional data will be supplied to the parser so
that the process can continue. If you raise an exception within this method,
parsing will cease.

As you can see from the table, you can only deal with standard errors and warnings. The
fatalError() method can be overloaded by your own class, but parsing stops when a fatal
error occurs.

The SAXParseException exception is a subclass of the main SAXException exception class
provided by xml.sax. It conveniently encapsulates the error message and its location and can
easily be converted to a useful string form for printing.

The SAXException class is the base class for all errors raised when parsing a document in
SAX. The exception passes on a message of the error as standard. Whatever type of process-
ing you are doing, you should be trapping SAXException errors through a try statement
when you call the parse() method to parse a particular document.

You might also want to explicitly handle the SAXNotRecognizedException, which is
picked up when the XML reader doesn’t recognize a given feature or property of the XML

Parsing with SAX

4021ch13.qxd 11/2/01 3:27 AM Page 203

204

document, and SAXNotSupportedException, which is raised when a known unsupported
event occurs.

You can use this information to build an alternative parser that will simply bail out and
print a suitable message if there is an error during parsing. To do this, you first create a new
error handler class that overloads the methods in Table 13.3 and a dummy content handler
class that does nothing with any of the information provided to it.

To install the error handler, you need to create instances of your two classes and then set
them as the content and error handlers in your parser object. You can see a full script imple-
menting the entire process in Listing 13.2.

➲ Listing 13.2 A Modified SAX Parser Armed for Error Handling

from xml.sax import saxlib, make_parser
import sys

class ValidityHandler(saxlib.ContentHandler):
def __init__(self):

pass

class MyErrorHandler(saxlib.ErrorHandler):
def __init__(self):

pass
def error(self, exception):

print "Error",exception

def fatalError(self, exception):
print "Fatal Error", exception

def warning(self, exception):
print "Warning",exception

try:
parser = make_parser()

except saxlib.SAXReaderNotAvailable:
raise ImportError("No XML Parser")

validity = ValidityHandler()
errors = MyErrorHandler()

parser.setErrorHandler(errors)
parser.setContentHandler(validity)

try:
parser.parse(sys.argv[1])

except saxlib.SAXException, errmsg:
print "Error parsing document"+str(errmsg)

Chapter 16 • Generating and Parsing XML Documents with Python

4021ch13.qxd 11/2/01 3:27 AM Page 204

205

For example, if you use the script in Listing 13.2 against the following XML document,
you get information about the problems dealing with the document:

<first>
<second attr=something>First text
<third>Second text</second></third>
</last>

The actual errors reported are these:
Fatal Error bad.xml:2:13: not well-formed (invalid token)
Fatal Error bad.xml:3:13: not well-formed (invalid token)

This highlights the two well-formed errors, the second and third tags not appearing in
the right order.

Unfortunately, there’s not a lot you can about these errors, and in fact well-formedness
errors generally cause problems with most parsing exercises. For example, in the example
above, you run the risk of adding the character data in the third element to the data of
second and vice versa.

Using xmlproc for Validation
When working with any kind of XML document, there are always issues relating to the
validity of the document being parsed. Most of the parsers will check a document for “well-
formedness,” including SAX, which is used both directly and for building the DOM object
model for the Python DOM implementation, and Expat. This involves simply checking that
start tags have corresponding end tags and that tags don’t overlap each other (start and end
tags in different orders).

These basic checks are obviously useful and appreciated when parsing an XML document,
but all the parsers we’ve mentioned raise an exception when such an error occurs. Once
raised and reported on, there is no way to tell the parsers to continue working after the error
has occurred.

In most instances this is what you want; there’s an error in the basic structure of the docu-
ment that could potentially break the processing and parsing that you are trying to perform.
Imagine, for example, trying to parse a document with SAX that doesn’t have an end tag or
has an end tag in the wrong place. When keying on that end tag to update a structure or
dump out an HTML tag, you run into a problem. Cached data will start clogging up, and
character data from multiple tags may well end up in the wrong place once you’ve finished
parsing the document.

You can’t switch off the exceptions entirely using either SAX or DOM because you can’t
restart the processing from the point of the error (unless it’s a warning or an error that you

Using xmlproc for Validation

4021ch13.qxd 11/2/01 3:27 AM Page 205

206

haven’t otherwise ignored). As you saw in Listing 13.2, even in those scripts where you are
able to override the exception handlers, you can’t get over the issue of fatal errors identified
by the parser.

The xmlproc parser was written by Lars Marius Garshol and is an almost complete validat-
ing parser. It can be used as a general-purpose parser and provides a similar event-driven
interface to the xml.sax package in terms of basic processing.

Its main advantage over both SAX and DOM systems is that, because it validates the XML
as it is read by the parser, it can be used to check the document as it is being processed. In
addition, unlike SAX, when an error occurs, xmlproc just records the problem and then allows
the processing to continue. The parser doesn’t apply severities, and therefore the normal
exception handling performed by SAX just doesn’t apply.

Although you could write your own script for doing this, there’s one provided in the PyXML
toolkit. If you check the scripts directory, you’ll find xmlproc_val, which is a script that
operates the front end to the validating portion of the parser.

If you use this to check the XML you used with Listing 13.2, you get a more useful list of
errors and problems in the source document:

Parsing 'bad.xml'
E:bad.xml:2:14: One of ' or '"' expected
E:bad.xml:2:61: End tag for 'second' seen, but 'third' expected
E:bad.xml:2:69: End tag for 'third' seen, but 'first' expected
E:bad.xml:3:8: End tag for 'last' seen, but 'first' expected
E:bad.xml:3:8: Premature document end, element 'first' not closed
5 error(s), 0 warning(s)

Looking more closely at the code that supports this, you can see that the entire process is
handled by an Application class defined within the xmlproc system. In fact, ignoring the
processing of any command-line arguments, you can actually reduce the script to something
like that in Listing 13.3.

➲ Listing 13.3 The Basis of the Validating Parser in xmlproc

import sys
from xml.parsers.xmlproc import xmlproc, _outputters

application = xmlproc.Application()

parser = xmlproc.XMLProcessor()

errors = _outputters.MyErrorHandler(parser, parser, 1, 0, 0)
parser.set_error_handler(errors)

Chapter 16 • Generating and Parsing XML Documents with Python

4021ch13.qxd 11/2/01 3:27 AM Page 206

207

parser.set_application(application)

for file in sys.argv[1:]:
print
print "Parsing '%s'" % file
parser.set_data_after_wf_error(0)
parser.parse_resource(file)
print "%d error(s), %d warning(s)" % (errors.errors,

errors.warnings)

errors.reset()
parser.reset()

Unfortunately, we can’t go into the details of the system here. Make sure you check out the
script; it’s one of the best command-line validators I’ve come across.

If you prefer a visual interface, the wxValidator.py script, also included with the standard
distribution, provides the same functionality but with a front end supported by wxPython.
You can see a sample in Figure 13.1.

F I G U R E 1 3 . 1 :
Validating a document
with wxPython

Using xmlproc for Validation

4021ch13.qxd 11/2/01 3:27 AM Page 207

208

Summary
Python’s XML support is provided by a single package called PyXML which encompasses a
number of different parsers including those for SAX and DOM-based processing. The SAX
parser is the most extensive and it includes facilities for working with most types of XML
components. Using SAX is a case of combining a custom-built class that provides methods
for the different XML components.

SAX also includes a flexible error-checking system that can be overridden for warnings and
non-fatal errors using a special error handling class. If this level of error checking is not
enough, the xmlproc parse includes a much more extensive mechanism that can identify
errors and report them while continuing to parse the XML source.

Chapter 16 • Generating and Parsing XML Documents with Python

4021ch13.qxd 11/2/01 3:27 AM Page 208

Converting XML Documents
Using Python

• Converting XML to an Internal Structure

• Converting XML to an Internal Class Representation

Chapter 14

4021ch14.qxd 11/2/01 3:29 AM Page 209

210

Y ou’ve already had a look at some samples of converting documents from XML using
Python, but you haven’t covered all the tricks available for making the process easier.

Irrespective of the destination format that you want to convert your documents to, you
need to first process your documents using the SAX or DOM parsing system you’ve already
seen. What do you do with the information that you extract?

Ultimately, it depends on what you want to do with the information. Some documents will
need to be converted to an internal structure, such as a nested array or dictionary, and others
will have more familiar destinations, such as HTML.

In both cases you can use the strict class and object manipulation functions within Python
to make the process of representing the information more structured for use within another
Python script.

For example, looking back at the simple bank client XML document from Chapter 11,
“XML Solutions in Python,” included here in Listing 14.1, you can see that you could easily
convert the document into a data structure that consists of the client, its name, a list of
accounts and their details, and an embedded list of transactions for each account. That struc-
ture could be an object instance or just a stand-alone nested structure.

➲ Listing 14.1 The Client Sample

<client>
<clientname>Martin Brown</clientname>
<account>

<accname>Checking</accname>
<provider>HSBC</provider>
<balance>$4567.00</balance>
<transaction>

<payee>Rent</payee>
<amount>$280.00</amount>

</transaction>
<transaction>

<payee>Time Subscription</payee>
<amount>$26.00</amount>

</transaction>
</account>

<account>
<accname>VISA</accname>
<provider>Morgan Dean Stanley Witter</provider>
<balance>$-3485.00</balance>
<transaction>

<payee>Supermarket</payee>
<amount>$-450.00</amount>

</transaction>
<transaction>

Chapter 14 • Converting XML Documents Using Python

4021ch14.qxd 11/2/01 3:29 AM Page 210

211

<payee>Gas Station</payee>
<amount>$-18.00</amount>

</transaction>
</account>
</client>

From this internal structure, you could convert the original XML information into just
about anything you want, or you could manipulate it before writing the information to a data-
base or even back out to an XML file using the techniques you saw in the previous chapter.

In this chapter, we’re going to look at how to use SAX to convert an XML document into a
nested structure that you can use and manipulate. We’ll also look at using DOM to convert
XML to HTML with a special HTML building class that mirrors the DOM node system in
its design. Finally, we’ll look at a solution using SAX to do the processing while still using the
same HTML builder class.

Converting XML to an Internal Structure
Converting any XML document generally requires knowledge of the document structure
before you start processing. You need to decide what information you are going to store and
what format it needs to be stored in.

In the XML document in Listing 14.1, you can see how the structure of the information is
organized. You see the main client, the list of accounts, and a list of transactions. You can eas-
ily model that data by using a combination of dictionaries and lists.

When using SAX, you already know that the only way to record information and data about
what you are parsing is to use a series of objects within the parser handler. In this instance you
need to record information about each transaction, the current list of transactions for the cur-
rent account, and the information about the current account.

In all other ways, the basic method for implementing the parser is the same as for the
examples in Chapter 11 and 13: Before extracting the information, you create a new parser
and tell it what content handler to use to process the XML tags.

The full script for this can be seen in Listing 14.2.

➲ Listing 14.2 Using SAX to Create a Nested Structure

from xml.sax import saxexts
from xml.sax import saxlib
import copy, string

class SAXToStructureHandler(saxlib.DocumentHandler):

Converting XML to an Internal Structure

4021ch14.qxd 11/2/01 3:29 AM Page 211

212

def __init__(self):
self.structure = {'accounts' : []}
self.data = ''
self.transactions = []
self.transaction = {}
self.account = {}

def endElement(self, name):
if (name == 'clientname'):

self.structure['clientname'] = self.data

elif (name == 'accname'):
self.account['name'] = self.data

elif (name == 'provider'):
self.account['provider'] = self.data

elif (name == 'balance'):
self.account['balance'] = self.data

elif (name == 'transaction'):
self.transactions.append(

copy.deepcopy(self.transaction))
self.transaction = {}

elif (name == 'payee'):
self.transaction['payee'] = self.data

elif (name == 'amount'):
self.transaction['amount'] = self.data

elif (name == 'account'):
self.account['transactions'] = copy.deepcopy(self.transactions)
self.structure['accounts'].append(copy.deepcopy(self.account))
self.transactions = []
self.transaction = {}
self.account = {}

self.data = ''

def characters(self, data, dummy, dummyb):
self.data =+ string.strip(data)

p=saxexts.make_parser()
ch=SAXToStructureHandler()
p.setDocumentHandler(ch)

p.parse('client.xml')

Chapter 14 • Converting XML Documents Using Python

4021ch14.qxd 11/2/01 3:29 AM Page 212

213

There’s nothing special in this script—you simply collect any character data using the
characters() method, then use the endElement() method to corral that data into the nooks
and crannies of the structure property of our SAXToStructureHandler object, ch. (The
structure property is simply a nested data structure made up of lists and dictionaries.)

At the end of a transaction, you add the transaction to the list of current transactions, and
at the end of an account you add the account information and transaction information to the
dictionary. The most important aspect in this part of the process is that you must use the
deepcopy() function from the copy module.

Python doesn’t copy references to objects, so you must copy the structure to its final desti-
nation. Without this, you put a reference to the structure that you later empty into the final
dictionary; therefore, you’d lose the information about every account except the last one.

You can print out the structure quite easily by adding this:
(.+)

to the end of the script. The result, formatted slightly to make it easier to read, is shown in
Listing 14.3.

➲ Listing 14.3 The Parsed XML Document in Its Internal Structure Form

{'clientname': u'Martin Brown',
'accounts': [

{'provider': u'HSBC',
'name': u'Checking',
'balance': u'$4567.00',
'transactions': [

{'amount': u'$280.00',
'payee': u'Rent'},
{'amount': u'$26.00',
'payee': u'Time Subscription'}]},

{'provider': u'Morgan Dean Stanley Witter',
'name': u'VISA',
'balance': u'$-3485.00',
'transactions': [

{'amount': u'$-450.00',
'payee': u'Supermarket'},
{'amount': u'$-18.00',
'payee': u'Gas Station'}]

}]
}

Now you have the information in a more useful internal structure. You could process
the information, write the data to a database or another XML file, or merely work on and
summarize the information for displaying on a web page or Tk, WxPython, or other GUI

Converting XML to an Internal Structure

4021ch14.qxd 11/2/01 3:29 AM Page 213

214

application. The key here is that you have the data in a Python, not XML, structure that
you can easily use.

Converting XML to an Internal Class Representation
In the previous example we looked at a script that used SAX to convert the client XML data
into a standard Python nested structure using lists and dictionaries. The same basic princi-
ples could be used to convert an XML document into a class instance, providing your han-
dler had created the instance in the first place as part of the __init__() method and then
knew how to add the information to the object.

As an example of this in practice, we’ll look at an alternative on the HTML conversion sys-
tem that uses the HTMLFragment class.

For the actual processing, you’ll use a DOM parser. The benefit of DOM in this instance
is that you can access the individual components of the document that you want to work on
in isolation, without the usual SAX need to keep recording temporary information during
the processing just to record the location. For reference, an example of a SAX parser that
could be used to produce the same document using the same class is also included.

The HTML Fragment Class
The DOM system uses nodes to represent the structure of the individual components within
an XML document. Everything is available as a node, from the tag elements and attributes to
the character data.

You can use the same principle for creating HTML documents. You need only two differ-
ent types for this: the HTML node and any attributes it requires and a text node to hold the
character information outside of an HTML tag.

To add to the complexity, you need to deal with HTML tags that work as singles, not pairs,
and therefore have a different representation. You also have to hold a list of all the child
nodes. For example, the following is the basic layout of an HTML document:

<html>
<head><title>Some Title</title></head>
<body>
<h1>Some Header</h1>
<hr>
<p>Some Text.</p>
</body>
(.+)

Chapter 14 • Converting XML Documents Using Python

4021ch14.qxd 11/2/01 3:29 AM Page 214

215

You can see here the typical tag pairs such as title and p and the individual tags such as hr.
You also see that the main html tag holds child tags of the head and body, which in turn hold
their own child tags.

You can see the HTML fragment class in Listing 14.4.

➲ Listing 14.4 The HTMLFragment Class for Building HTML Documents in a DOM Way

import sys, string

htmltagpairs = {'A' : 1,
'ADDRESS' : 1,
'B' : 1,
'BLOCKQUOTE' : 1,
'BODY' : 1,
'BQ' : 1,
'BR' : 0,
'CENTER' : 1,
'CITE' : 1,
'CODE' : 1,
'DFN' : 1,
'DIR' : 1,
'DL' : 1,
'EM' : 1,
'FIG' : 1,
'FONT' : 1,
'FORM' : 1,
'H1' : 1,
'H2' : 1,
'H3' : 1,
'H4' : 1,
'H5' : 1,
'H6' : 1,
'HEAD' : 1,
'HR' : 0,
'HTML' : 1,
'I' : 1,
'KBD' : 1,
'LISTING' : 1,
'MATH' : 1,
'MENU' : 1,
'OL' : 1,
'P' : 1,
'PRE' : 1,
'S' : 1,
'SAMP' : 1,
'SELECT' : 1,
'STRONG' : 1,
'STYLE' : 1,
'TABLE' : 1,

Converting XML to an Internal Class Representation

4021ch14.qxd 11/2/01 3:29 AM Page 215

216

'TEXTAREA' : 1,
'TITLE' : 1,
'TD' : 1,
'TR' : 1,
'TT' : 1,
'U' : 1,
'UL' : 1,
'VAR' : 1,
'XMP' : 1,
'BLOCKQUOTE' : 1,
}

class HTMLFragment:
def __init__(self, tag, data = {}):

self.type = 'text'
self.pair = 0

if htmltagpairs.has_key(string.upper(tag)):
self.pair = htmltagpairs[string.upper(tag)]
self.type = 'tag'
self.tag = tag
self.attr = data

else:
self.data = tag

self.children = []

def writeashtml(self):
if (self.type == 'tag'):

tagstring = "<" + self.tag
attrlist = []
for attr in self.attr.keys():

attrlist.append('%s="%s"' %
(attr,self.attr[attr]))

if (len(attrlist)>0):
tagstring =+ tagstring + " " + string.join(attrlist," ")

tagstring =+ tagstring + ">"
sys.stdout.writelines(tagstring)

else:
sys.stdout.writelines(self.data)

for child in self.children:
child.writeashtml()

if (self.pair):
sys.stdout.write("</%s>\n" % self.tag)

def newtag(self, name, attributes = {}):
return HTMLFragment(name, attributes)

def newcontent(self, data):
return HTMLFragment(data)

Chapter 14 • Converting XML Documents Using Python

4021ch14.qxd 11/2/01 3:29 AM Page 216

217

def appendtag(self, name, attributes = {}, content = ''):
tagchild = self.newtag(name, attributes)
self.children.append(tagchild)
if (len(content)):

contentchild = tagchild.appendcontent(content)
return tagchild, contentchild

else:
return tagchild

def appendcontent(self, data):
child = self.newcontent(data)
self.children.append(child)
return child

if __name__ == '__main__':
root = HTMLFragment('html', {})
head = root.appendtag('head')
head. appendtag('title', {}, 'Some Other Title')

root.writeashtml()

To use the HTMLFragment class to build a new HTML document, first create your root
node that will be used to hold all the other nodes. You can do this by just creating an instance
of the class and supplying the information for the root node. In HTML, when you are writ-
ing out a full document, the root node should be html:

(.+)

When creating a new instance, the __init__() method first checks if the first argument is
one of the tags in htmltagpairs. This is a dictionary that performs two functions. First, it
contains a list of all the HTML tags the class recognizes. Also, it tells you whether a particu-
lar HTML tag is reproduced individually, as with hr, or in pairs, as with most other tags.

Assuming you’ve identified a valid tag, you create a tag node by setting the properties of
the tag to record its type, tag name, whether it’s a pair, and the tag’s attributes. If it’s text,
then you just record the raw text. Any children should be added to the children property of
the object.

For convenience, you can create a tag node from the base object using the newtag() method
or a new content node using the newcontent() method. Note that these don’t automatically
add the resulting nodes to the parent, they are just simpler interfaces for creating tags. To
add a node to its parent, you can either update the node’s children property directly or use
the appendtag() or appendcontent() method to both create and append the nodes to the
current object. For convenience, appendtag() will create both tag and content nodes, adding
the content node as a child to the tag node and then returning both objects to the caller.

Converting XML to an Internal Class Representation

4021ch14.qxd 11/2/01 3:29 AM Page 217

218

The final method in the class is writeashtml() which simply walks through the nodes,
dumping the tag and its attributes or the content data as it goes; then it walks through the
children. Because the child nodes are other HTMLFragment class instances, you can call the
writeashtml() method recursively to print each node and to build up the final structure.
Note that if a tag is identified as a pair, the closing tag is written after the children.

Using the HTML Builder Class with DOM
Working with DOM is a matter of accessing the tags that you want to use, either by refer-
encing them directly or by walking through the structure of nodes and their children to
extract the information that you want from the document.

In the case of the client bank accounts XML file, you know that there are four different
areas to the XML document. These are the main client name, the list of accounts, the infor-
mation for each account, and the list of transactions for a given account.

You can extract all of that information by first accessing the client tag node in the XML
document, then the account node, the account detail nodes, and the transaction nodes.

As you go through and extract the information, you build a structure using the HTMLFragment
class to create new instances. From that you create new children to build up an HTML
document.

You can see the script for this in Listing 14.5.

➲ Listing 14.5 The DOM Parser for Converting Account Data into HTML

from xml.dom.minidom import parse
from xmltohtml import HTMLFragment

def getdata(nodes):
rc = ''
for node in nodes:

if node.nodeType == node.TEXT_NODE:
rc = rc + node.data

return rc

def handleclient(client, html):
clientname = client.getElementsByTagName("clientname")[0]

line = html.appendtag('font', {'size' : '+2'})
line.appendtag('b', {}, getdata(clientname.childNodes))
html.appendtag('br')

accounts = client.getElementsByTagName("account")
handleaccounts(accounts, html)

Chapter 14 • Converting XML Documents Using Python

4021ch14.qxd 11/2/01 3:29 AM Page 218

219

def handleaccounts(accounts, html):
accthdr = html.appendtag('blockquote')
line = accthdr.appendtag('font', {'size' : '+1'})
line.appendtag('b', {}, 'Accounts')
acctlist = accthdr.appendtag('blockquote')
for account in accounts:

handleaccount(account, acctlist)
def handleaccount(account, html):

accname = account.getElementsByTagName("accname")[0]
provider = account.getElementsByTagName("provider")[0]

html.appendtag('b',{}, '%s (%s)' % \
(getdata(accname.childNodes),
getdata(provider.childNodes)))

html.appendtag('br')

table = html.appendtag('table', {'cellspacing' : 5, 'cellpadding' : 5,
'border' : 0 })

row = table.appendtag('tr')
cell = row.appendtag('td')
cell.appendtag('b', {}, 'Transaction')
cell = row.appendtag('td')
cell.appendtag('b', {}, 'Amount')

trans = account.getElementsByTagName("transaction")
for transaction in trans:

row = table.appendtag('tr')
handletransaction(transaction, row)

balance = account.getElementsByTagName("balance")[0]
row = table.appendtag('tr')
row.appendtag('td')
cell = row.appendtag('td')
cell.appendtag('b', {}, getdata(balance.childNodes))

def handletransaction(transaction, htmlrow):
payee = transaction.getElementsByTagName("payee")[0]
amount = transaction.getElementsByTagName("amount")[0]
htmlrow.appendtag('td', {}, getdata(payee.childNodes))
htmlrow.appendtag('td', {}, getdata(amount.childNodes))

client = parse('client.xml')

htmlrepr = HTMLFragment('html')
head = htmlrepr.appendtag('head')
head.appendtag('title', {}, 'Client Record')
body = htmlrepr.appendtag('body', {'bgcolor' : '#ffffff'})
handleclient(client, body)

htmlrepr.writeashtml()

Converting XML to an Internal Class Representation

4021ch14.qxd 11/2/01 3:29 AM Page 219

220

The script is divided into three main sections: the DOM parser functions, the single line
that parses the XML source document into a DOM structure, and the final section that
builds the HTML structure with the HTMLFragment class.

The parser is really just a series of functions that work through and process each element.
The result of the second section is a DOM structure stored within the client object. You
pass that off to the handleclient() function, which in turn extracts the client data before
processing each account tag. This in turn passes processing of the all the nodes within a sin-
gle account tag to the handleaccount() function.

Once the account data has been extracted and written into the HTML structure, you pass
control over to handletransaction(), which extracts a list of the individual transactions and
translates them to HTML using the handletransaction() function.

Through each stage of the process, from the original account to the individual account trans-
actions, you pass along the object referring to the node you are currently working on within the
full DOM structure. For example, you start by finding the first client tag. Within that tag are
nodes that hold information about the two accounts, and it’s these subaccount nodes that are
handed to handleaccount() and so on until you reach the bottom of the structure.

By walking through the document in this way, you can traverse in a logical fashion without
losing the structure of the original XML document. You can also process repeated tags in dif-
ferent sections without worrying about how you deal with different locations. For example,
you have multiple transactions in the entire XML document, and it’s easy to identify that the
transaction information is attached to the two accounts.

Had you just accessed a list of all the transaction entries in the document, you’d mix up
the information between the accounts. In this case, you’re extracting only the transaction
entries that are children of a specific account node.

By the same basic process, you are also walking through the HTML structure and adding
appropriate nodes to the structure to build the document. For example, within handle-
transactions you create a node for a table tag and from that build individual rows that are
children of the table node. In handletransactions, the new row is the header row, but in
handletransaction it’s a row for each transaction.

Once the HTML structure has been built, all you need to do is dump the HTML node
tree as HTML text and you are finished. The resulting HTML can be seen in Listing 14.6;
the file as rendered in Internet Explorer is shown in Figure 14.1.

➲ Listing 14.6 The Resulting HTML from the Client XML Document

<html><head><title>Client Record</title>
</head>
<body fgcolor="#000000" bgcolor="#ffffff">Martin Brown

Chapter 14 • Converting XML Documents Using Python

4021ch14.qxd 11/2/01 3:29 AM Page 220

221

Accounts:

Checking (HSBC)

<table border="0" cellspacing="5" cellpadding="5">
<tr><td>Transaction</td>
<td>Amount</td></tr>
<tr><td>Rent</td><td>$280.00</td></tr>
<tr><td>Time Subscription</td><td>$26.00</td></tr>
<tr><td></td><td>$4567.00</td></tr>
</table>
VISA (Morgan Dean Stanley Witter)

<table border="0" cellspacing="5" cellpadding="5">
<tr><td>Transaction</td>
<td>Amount</td></tr>
<tr><td>Supermarket</td><td>$-450.00</td></tr>
<tr><td>Gas Station</td><td>$-18.00</td></tr>
<tr><td></td><td>$-3485.00</td></tr>
</table>
</body>
</html>

F I G U R E 1 4 . 1 :
The rendered client
record

Converting XML to an Internal Class Representation

4021ch14.qxd 11/2/01 3:29 AM Page 221

222

Although you’ve only created a fairly simple HTML object structure from the source doc-
ument, you could just as easily have created a Client class instance and added the necessary
information to that. After all, objects in Python are just combinations of base objects, proper-
ties, and complex property types such as lists and dictionaries.

Using the techniques demonstrated in this example, you could have built Account and
Transaction classes directly from the information extracted from the document with the
DOM parser, and the accounts and transactions objects could be appended to the base
Client class.

A SAX Converter
Up to now I’ve given SAX and DOM parsing methods more or less equal billing when it
comes to their usefulness, but there are times when the capabilities and structure of one far
outweigh the other.

For example, when converting an XML document to an internal structure, as discussed
earlier in this chapter, SAX is the obvious choice because you are parsing an entire docu-
ment. When converting to an internal node structure, as you did in the last example, DOM
makes more sense because you can more easily extract the individual elements such as the
account details or a list of transactions for conveniently appending to an existing structure.

Trying the same trick with DOM requires recording lots of information about the struc-
ture, the current location, and the character data between each tag until the process becomes
essentially unmanageable.

To demonstrate this more fully, Listing 14.7 is an example of a script for converting the
same document through SAX using the HTMLFragment class.

➲ Listing 14.7 A SAX Version of the XML-to-HTML Converter

import string
from xml.sax import saxexts
from xml.sax import saxlib
from xmltohtml import HTMLFragment

class SAXToHTMLHandler(saxlib.DocumentHandler):

def __init__(self):
self.data = ''
self.root = HTMLFragment('')
self.currenthtml = self.root
self.htmltagtree = []

Chapter 14 • Converting XML Documents Using Python

4021ch14.qxd 11/2/01 3:29 AM Page 222

223

def startElement(self,name,attrs):
if (name == 'clientname'):

self.htmltagtree.append(self.currenthtml)
line = self.root.appendtag('font',

{'size' : '+2'})
self.htmltagtree.append(line)
(rettag,retdata) =

line.appendtag('b', {}, self.data)
rettag.appendcontent('Account: ')
self.currenthtml = rettag

def endElement(self, name):
if (name == 'clientname'):

self.currenthtml.appendcontent(self.data)
self.currenthtml = self.htmltagtree.pop()
self.currenthtml = self.htmltagtree.pop()
self.currenthtml.appendtag('br')

self.data = ''

def characters(self, data, dummy, dummyb):
self.data += data

p=saxexts.make_parser()
ch=SAXToHTMLHandler()
p.setDocumentHandler(ch)

p.parse('client.xml')

ch.root.writeashtml()

Aside from the fact that it isn’t completed (for reasons that will become apparent shortly),
you can already see that you are storing more transient information in the handler class
instance than you did in the earlier SAX or previous DOM examples.

Some of this is related to the SAX processing method; because you process each tag in
turn, you have to be able to record the current location. With the HTMLFragment class, you
also need to record the current HTMLFragment instance, so you know to which object to add
the tag or content information. You also have to remember the previous instance, in case
there’s character data to be added to a tag pair that you haven’t finished processing.

You can also see that, unlike the SAX example at the start of the chapter, you now have
more to do within the startElement() method, both identifying the element in question and
adding HTML tag nodes to the structure to help lay out the document in its ultimate
HTML format.

Converting XML to an Internal Class Representation

4021ch14.qxd 11/2/01 3:29 AM Page 223

224

Trying to manage the whole process becomes unmanageable as you try to deal with more
and more of the source XML tags and cope with the HTML node structure, in addition to
dealing with the existing structure and other transient data.

The result is a perfect example of when using SAX over DOM is a bad idea and vice versa.
The same basic rules can be applied to many forms of XML processing.

Summary
In general, converting entire documents to another serial format should be done using SAX.
That includes conversions to serial structures, as you did in the first script, or to the text and
database formats we’ve covered in other chapters and other languages.

DOM is much better for conversion to more complex structures or to structures, objects,
and classes that can’t easily be manipulated through a serial format. Examples include objects
and other node and tree structures, including some nested structures. DOM is also ideal for
when you want to pick out only specific areas of a given document, such as a list of account
transactions, without dealing with account data.

Chapter 14 • Converting XML Documents Using Python

4021ch14.qxd 11/2/01 3:29 AM Page 224

Applying SOAP/XML-RPC
in Python

• Using SOAP.py

• Using xmlrpclib

Chapter 15

4021ch15.qxd 11/2/01 3:31 AM Page 225

226

SOAP and XML-RPC are both applications of the XML language that make use of XML’s
cross-platform and text format to enable us to call remote functions and object methods.

You don’t need to know how to parse XML, nor do you need to know anything about XML
in order to use either SOAP or XML-RPC. However, an understanding of how the mecha-
nism works and how it relates to XML is useful. See Chapter 5, “Data Exchange and XML,”
for information.

Support in Python is offered by a number of different modules, all of which do their best
to hide the complexities of the SOAP or XML-RPC process. You shouldn’t ever have to
parse any XML to use these technologies, but you should get a good idea of what’s possible
with XML.

In this chapter we’re going to look at two solutions. The SOAP module is one of a number
of SOAP solutions available in Python. Written by Cayce Ullman and Brian Matthews, it
provides one of the simplest interfaces to the SOAP system. We’ll also look at the xmlrpclib
module from Fredrik Lundh, the only solution available at the time of writing.

TIP For other SOAP and XML-RPC solutions in Python, check out the vaults of Parnassus (see
Appendix B, “Resource Guide”).

Using SOAP
If you’ve read Chapter 10, “Applying SOAP/XML-RPC in Perl,” you know how easy it is to
create clients within Perl. The SOAP.py module in Python actually follows a very similar for-
mat, hiding all the complexity of writing SOAP clients and servers from the programmer.

All SOAP services are based on three elements: the client, the server, and an optional sup-
port module that provides the functions you want to support over a remote connection.

The client is straightforward to set up. You supply the location of the remote SOAP
request handler using an instance of the SOAPProxy class. Individual functions on the remote
server are then accessible as methods to the SOAPProxy instance that you have created. You
can see how easy this is in Listing 15.1.

➲ Listing 15.1 A Simple Python SOAP Client

import SOAP

server = SOAP.SOAPProxy('http://localhost:8081/')
print server.getmessage()

Chapter 15 • Applying SOAP/XML-RPC in Python

4021ch15.qxd 11/2/01 3:31 AM Page 226

227

If we look at the server in Listing 15.2, you can see that it’s similarly brief. In this case,
we’re setting up a daemon-based server to run on the localhost address on port 8081.

➲ Listing 15.2 A Simple Python Server

import SOAP

def getmessage():
return 'Hello world!'

server = SOAP.SOAPServer(('localhost',8081))
server.registerFunction(getmessage)
server.serve_forever()

The server actually sets up two elements. First, we set up the configuration of the server
itself by supplying the hostname and port on which to serve up your request handler. The
SOAP module supports only daemon-based servers at the moment, but more transports are
being added all the time.

The next step (and the second element that’s required by the server) is to register the func-
tions that we want to provide the client with access to. In this case, we’ve registered a local
getmessage() function; we could just as easily have registered a function from an external
module.

To actually use the system, first we need to fire up the server so that it can listen for
requests from the client. I’ve deliberately used port 8081, which isn’t in use by most
machines. Firing up the server is just a case of running the server script:

$ pyserver.py

If we now run the client, we should get a message back from the server:
$ python pyclient.py
Hello world!

It works!

You should also have received some output from the server to indicate that a request had
been made. For example, the following shows two requests from the same machine as the
server is running on:

localhost - - [04/Jul/2001 13:11:06] "POST / HTTP/1.0" 200 -
localhost - - [04/Jul/2001 14:30:45] "POST / HTTP/1.0" 200 –

Writing SOAP Clients
SOAP clients are surprisingly easy to write when using the SOAP module. You call a function
simply by using it as a method to an open server connection. However, there are a few tricks
and traps that you should be aware of when passing arguments and accepting return values.

Using SOAP

4021ch15.qxd 11/2/01 3:31 AM Page 227

228

We’ll also take a look at how to access objects—since we’re working with the Simple
Object Access Protocol—and how to access functions registered in an alternative namespace.

Passing Arguments
You can supply arguments to functions just as you would with any normal function. Strings,
numbers and multiple objects are passed as normal. Arrays and dictionaries can also be passed
as normal to a remote function, but they are given special treatment at the server end. We’ll
look more closely at the mechanics of this process in the “Return Values” section, later in this
chapter.

You are limited in the methods in which you can supply arguments to the remote function.
Normal function argument passing, such as

server.newaccount('Current', 1000, 'MSDW')

work as normal, but if you want to supply arguments using the keyword notation, then the
supporting function on the server side must be registered using the registerKWFunction()
method. See the section “Writing SOAP Servers,” later in this chapter, for more information.

Return Values
A remote function can return any type of value to a client, and you can return multiple objects
within a single response just as you would with a local function. The string and numeric types
are returned as normal, but arrays and dictionaries are handled slightly differently.

Rather than converting the advanced sequence types to one of the core object types sup-
ported internally by Python, the SOAP module creates its own object classes. These are based
on the core object types, but they have a few little tricks for the unsuspecting programmer.

Handling Lists and Tuples
If there is a server such as the one in Listing 15.3, you can see that we register a function
called getNames(), which returns a tuple of names. The SOAP standard doesn’t include a
tuple type, so the tuple is converted to the SOAP array type during serialization into a SOAP
envelope.

➲ Listing 15.3 A Server Supporting Multiple Return Values

import SOAP

def getnames():
return 'Martin', 'Sharon', 'Wendy', 'Rikke'

server = SOAP.SOAPServer(('localhost',8081))
server.registerFunction(getnames)
server.serve_forever()

Chapter 15 • Applying SOAP/XML-RPC in Python

4021ch15.qxd 11/2/01 3:31 AM Page 228

229

When accessing the information from the client, you must either use repr(), because
str() outputs information about the SOAP module object type, or access the information ele-
ment by element. You can see the effects of the different access methods by using the client
script shown in Listing 15.4.

➲ Listing 15.4 Accessing an Array Returned by a SOAP Server

import SOAP

server = SOAP.SOAPProxy('http://localhost:8081/')
result = server.getnames()

print "Direct: ",result
print "Direct: ",str(result)
print "Direct: ",repr(result)
print "Individual: ",
for i in result:

print i,

If you execute the script you get the following output:
$ pyclient2.py
Direct: <SOAP.typedArrayType Result at 135860460>
Direct: <SOAP.typedArrayType Result at 135860460>
Direct: ['Martin', 'Sharon', 'Wendy', 'Rikke']
Individual: Martin Sharon Wendy Rikke

Note the output in the third line—the information we returned in the getnames() function
was returned as a tuple, but there is no tuple type in the SOAP definition, so what is actually
returned is a list, not a tuple. This obviously breaks the usefulness of using a tuple in the first
place. We’ve now listed the immutability of a tuple and ended up with a mutable list. There
is no way around this (short of changing the SOAP standard), but if you know that you are
expecting a tuple back from a function, you might want to embed the call to the function in
tuple().

Handling Dictionaries
Dictionaries are exchanged between server and client as the SOAP structure or compound
type. They work in a similar fashion to the array type that we’ve already seen, except that nei-
ther str() nor repr() will print out a usable version of the object. However, you can access
the elements within the returned dictionary just as you would with a normal dictionary.

Using SOAP

4021ch15.qxd 11/2/01 3:31 AM Page 229

230

To access a list of keys, though, you must use the _keys() method rather than the normal
keys() method (note the underscore prefix). You can see an example of accessing informa-
tion in this way in the fragment below:

for i in dict._keys():
print i,'=>',dict[i]

In all ways, _keys() works in an identical fashion to keys().

Working with Objects
The SOAP module does not enable us to create remote objects directly, but it does enable us
to access remote objects that have been suitably registered by the server. For example, List-
ing 15.5 shows a SOAP server supporting the Account class, which provides three methods:
balance(), withdraw(), and deposit().

➲ Listing 15.5 An Object-Based SOAP Server

import SOAP

class Account:
def __init__(self):

self._account = ''
self._balance = 0

def balance(self):
return self._balance

def deposit(self, value):
self._balance += value
return self._balance

def withdraw(self, value):
self._balance -= value
return self._balance

server = SOAP.SOAPServer(('localhost',8081))
account = Account()
server.registerObject(account)
server.serve_forever()

We can now access the methods of the account object that was created in the server, as
demonstrated by the script in Listing 15.6.

Chapter 15 • Applying SOAP/XML-RPC in Python

4021ch15.qxd 11/2/01 3:31 AM Page 230

231

➲ Listing 15.6 A SOAP Object Client

import SOAP

server = SOAP.SOAPProxy('http://localhost:8081/')

print server.deposit(100)
print server.withdraw(50)

What we can’t do is access the object attributes directly—you must always use a method
to obtain or set information. Although this may seem like a limitation, it’s actually how the
SOAP standard was designed to work. The acronym refers to an object access protocol, so
you should expect to access instances of an object and not remote classes.

For new classes that you create specifically to support SOAP servers, this shouldn’t be a
problem. When developing a SOAP interface to an existing module, you might want to con-
sider creating a separate class that inherits from your original class and then provide addi-
tional methods that enable you to set and retrieve attribute information remotely using
method calls.

Accessing Namespaces
SOAP servers register and support functions in a number of different namespaces. These can
be used to enable a single request handler to support a number of different services to a num-
ber of different clients and also as a logical way to divide up the services that you offer.

To use a particular namespace, you can either specify the namespace at the time you create
your SOAPProxy, as seen in Listing 15.7, or dynamically during a function call, as shown in
Listing 15.8. The former is best used when you are calling functions from a single namespace
on a remote server. The latter makes more sense when calling functions from multiple name-
spaces on the same server.

➲ Listing 15.7 A Client Accessing a Namespace Statically

import SOAP

server = SOAP.SOAPProxy('http://localhost:8081/',
namespace='urn:mySOAPmethods')

print server.getmessage()

Using SOAP

4021ch15.qxd 11/2/01 3:31 AM Page 231

232

➲ Listing 15.8 A Client Accessing a Namespace Dynamically

import SOAP

server = SOAP.SOAPProxy('http://localhost:8081/')

print server._ns('urn:mySOAPmethods').getmessage()

Note in both cases that we prefix the namespace with a urn: prefix definition. This is part
of the SOAP standard, but it actually isn’t required. If you leave out the urn declaration, the
string will be used as the prefix.

However, be careful. If your prefix contains a colon, the namespace string will be incor-
rectly split across the colon. For example, we can access the SOAP::Demo namespace created
for the Perl server that we created in Listing 10.2 in Chapter 10 using the code in List-
ing 15.9. Here we must include the urn prefix because the SOAP::Demo namespace, which is a
Perl module declaration, contains colons.

➲ Listing 15.9 Accessing a Perl Namespace from Python

import SOAP

server = SOAP.SOAPProxy('http://test.mchome.pri/SOAP/request.cgi',
namespace='urn:SOAP::Demo')

print server.getmessage()

Note in Listing 10.5 that the address of the proxy points directly to the CGI request han-
dler, since that’s how we configured the server in Chapter 10. We can now run the script and
get a reply from our Perl-based server:

$ python perl.py
Hello, world

Writing SOAP Servers
The SOAP module currently supports only the daemon form of SOAP server. It inherits from
the socket and BaseHTTPServer modules in order to provide an HTTP interface for serving
up object and function requests.

The basic process for creating servers using SOAP is first to import the SOAP module and
then to register each function that you want to expose to a remote client. For example, in our
first sample script, you saw how easy it was to set up a simple server to provide remote access
to a local function.

Chapter 15 • Applying SOAP/XML-RPC in Python

4021ch15.qxd 11/2/01 3:31 AM Page 232

233

We’ve already covered in this chapter some of the basics regarding the creation of different
servers and the methods that you need to employ to provide an interface to modules—SOAP
specific and existing. To finish off our look at the SOAP module and SOAP servers, we’ll look
at how to register functions and objects in specific namespaces and the different methods for
registering functions and objects for providing services. We’ll also take a brief look at how to
access and use arguments supplied from a client in your SOAP server.

Namespaces
The SOAPServer class provides four registration methods: registerFunction(), registerKW-
Function(), registerObject(), and registerKWObject(). All the methods support the same
basic arguments:

register*(FUNCTIONAME|OBJECTNAME [, NAMESPACE])

FUNCTIONAME or OBJECTNAME is the name of the function or object that you want to register.
In each case, if NAMESPACE is supplied, then it’s registered into the supplied namespace. This
should be specified as a raw string—you don’t have to prefix the namespace with urn as you
do with the client, but you do need to specify the namespace.

We have already seen examples of the two primary methods: registerFunction() and
registerObject(). These register a single function or a single object and all of its methods
so that they can be accessed from a remote client.

The registerKW*() methods register functions (or methods to an object) that use keyword
argument passing instead of straight argument passing.

Using External Modules
If you want to export a function from another module, you can import the module and regis-
ter the individual functions as usual. Note that importing works either into the module’s own
namespace, as shown in Listing 15.10, or when imported into the server module's name-
space, as shown in Listing 15.11.

➲ Listing 15.10 Exporting a Module’s Functions from Its Own Namespace

import SOAP
import pyserver3mod

server = SOAP.SOAPServer(('localhost',8081))
server.registerFunction(pyserver3mod.echo)
server.registerFunction(pyserver3mod.strdict)
server.registerFunction(pyserver3mod.getnames)
server.registerFunction(pyserver3mod.getages)
server.serve_forever()

Using SOAP

4021ch15.qxd 11/2/01 3:31 AM Page 233

234

➲ Listing 15.11 Exporting a Module’s Functions from the Server's Namespace

import SOAP
from pyserver3mod import *

server = SOAP.SOAPServer(('localhost',8081))
server.registerFunction(echo)
server.registerFunction(strdict)
server.registerFunction(getnames)
server.registerFunction(getages)
server.serve_forever()

Note that the Python namespace has no bearing on or relationship to the SOAP name-
space into which the functions are registered.

For objects the process is even easier. Because we are only registering an instance of a class,
it makes no difference how we derived the class or instance.

Function/Method Arguments
As we’ve already covered, server-side functions can accept any form of argument. However,
special care needs to be taken when accepting arguments made up of arrays and dictionaries.
Just as when we were receiving information back from a server, the way in which you access
the contents of the object data supplied as an argument differs from the normal Python
object types. In particular, lists need to be accessed individually or output using repr(), and
when accessing the individual key/value pairs from a dictionary, you must use _keys(). See
“Handling Lists and Tuples” and “Handling Dictionaries,” earlier in this chapter for more
information and examples of how to extract information from the method/function call.

Debugging
The SOAP module uses the exception system to raise any errors. As you would expect, errors
are propagated up from either the socket or HTTP server libraries if there is a problem.

Most problems can be traced either to a transmission fault (a host cannot be found) or to
the remote server not responding to connections.

Problems in calling a remote function can be placed into one of two possible categories.
Either the remote function does not exist or the call to the function failed because the argu-
ment or function implementation didn’t work.

In either of these cases, the easiest way to identify any problems is to embed the call in a
try statement.

Chapter 15 • Applying SOAP/XML-RPC in Python

4021ch15.qxd 11/2/01 3:31 AM Page 234

235

XML-RPC Solutions
If you thought writing SOAP services with Python was easy, then you’ll be pleased to hear
that supporting XML-RPC is even easier. However, in comparison to the SOAP solutions that
are available, the XML-RPC solution written by Python development team member Fredrik
Lundh is not quite as mature in its interface.

The xmlrpclib package incorporates three files. The main xmlrpclib module contains all
the core elements need to package up request calls into XML-RPC envelopes and unpackage
them back into the method and parameters required to make a call on the server. To install
the modules, copy them from the TAR package into the site-packages directory in the
Python library directory (usually /usr/local/lib/python2.1).

XML-RPC Walkthrough
To use xmlrpclib from the client side, we need only to specify the location of the request
handler when creating a new server instance. Once we’ve created the new instance, just like
SOAP, we then access the methods on the remote server by name, as if they were methods to
our class instance. You can see this more clearly in Listing 15.12.

➲ Listing 15.12 A Simple XML-RPC Client

from xmlrpclib import Server

server = Server("http://localhost:8005/")

print server.echo('Hello')
print server.join(['Rod','Jane','Freddy'])
print server.pprint({'Rod' : 23,

'Jane' : 25,
'Freddy' : 26})

The module enables us to transfer any of the normal object types, using any of the normal
methods for supplying data to the remote procedure. You can see from Listing 15.12 that
we’ve supplied a simple string, a list, and a dictionary to the remote functions.

The server side is equally straightforward. To understand how the server side works,
look at the xmlrpcserver.py module that comes with the package, included here in List-
ing 15.13.

XML-RPC Solutions

4021ch15.qxd 11/2/01 3:31 AM Page 235

236

➲ Listing 15.13 The Sample XML-RPC Server from xmlrpclib

#
XML-RPC SERVER
Id
#
a simple XML-RPC server for Python
#
History:
1999-02-01 fl added to xmlrpclib distribution
#
written by Fredrik Lundh, January 1999.
#
Copyright (c) 1999 by Secret Labs AB.
Copyright (c) 1999 by Fredrik Lundh.
#
fredrik@pythonware.com
http://www.pythonware.com
#

Permission to use, copy, modify, and distribute this
software and its associated documentation for any
purpose and without fee is hereby granted. This
software is provided as is.

#

import SocketServer, BaseHTTPServer
import xmlrpclib
import sys

class RequestHandler(BaseHTTPServer.BaseHTTPRequestHandler):

def do_POST(self):
try:

get arguments
data = self.rfile.read(int(self.headers["content-length"]))
params, method = xmlrpclib.loads(data)

generate response
try:

response = self.call(method, params)
if type(response) != type(()):

response = (response,)
except:

report exception back to server
response = xmlrpclib.dumps(

xmlrpclib.Fault(1, "%s:%s" % (sys.exc_type, sys.exc_value))
)

Chapter 15 • Applying SOAP/XML-RPC in Python

4021ch15.qxd 11/2/01 3:31 AM Page 236

237

else:
response = xmlrpclib.dumps(

response,
methodresponse=1
)

except:
internal error, report as HTTP server error
self.send_response(500)
self.end_headers()

else:
got a valid XML RPC response
self.send_response(200)
self.send_header("Content-type", "text/xml")
self.send_header("Content-length",

str(len(response)))
self.end_headers()
self.wfile.write(response)

shut down the connection (from Skip Montanaro)
self.wfile.flush()
self.connection.shutdown(1)

def call(self, method, params):
override this method to implement RPC methods
print "CALL", method, params
return params

if __name__ == '__main__':
server = SocketServer.TCPServer(('', 8000), RequestHandler)
server.serve_forever()

As you can see from Listing 15.13, the module creates a new class, RequestHandler, which
itself inherits from the BaseHTTPServer class from the Python standard library. The do_POST
method then accepts a request from a client, extracts the necessary information, and decodes
the XML-RPC envelope to determine the function that has been called. The parameters pass
to that function.

The sample also includes a call method that prints out the request and echoes back the
parameters to the client. We’ll be using the call method later to set up our own server.

Rather than rewrite this module in its entirety, instead we can inherit from the Request-
Handler class and override the call method to do something more useful.

The call method that is invoked by RequestHandler must accept two arguments: method,
which is the text name of the method that has been called, and params, which is a tuple of the
parameters. We need to convert these two pieces of information into a Python function call
that will return information that we can pass on to the client.

XML-RPC Solutions

4021ch15.qxd 11/2/01 3:31 AM Page 237

238

In the case of the method, we’re dealing with a text string, so we’ll need to run it through
eval in order to convert it into a code object that we can execute. We could pass params on to
any function natively, such as this:

realmethod = eval(method)
realmethod(params)

We’d have to modify any existing functions to extract a single-element tuple before passing
the real arguments supplied to the function. A better solution is to use apply, which accepts a
tuple of arguments while actually passing them to the function you are calling as normal
parameters.

You can see the final solution in Listing 15.14.

➲ Listing 15.14 A Simple XML-RPC Server Using HTTP

import xmlrpcserver
import string

def echo(s):
return 'Echo: %s' % (s)

def join(list):
return string.join(list,' ')

def pprint(dict):
str = ''
for k in dict.keys():

str += '%s => %s\n' % (k,dict[k])
return str

class MyRequestHandler(xmlrpcserver.RequestHandler):
def call(self, method, params):

realmethod = eval(method)
return apply(realmethod,params)

import SocketServer
server = SocketServer.TCPServer(('', 8005), MyRequestHandler)
server.serve_forever()

Listing 15.14 shows the versatility of allowing us to call virtually any function. Not only
are we accepting the different types supplied by the client in the native formats, but we can
also format the information and response too. We’ve even used the information to call an
external function (from the string module) to handle the request.

The final part to the server process is to create a new socket server on a given port and
then supply your request handler class when creating the server instance so that it can handle
the requests.

Chapter 15 • Applying SOAP/XML-RPC in Python

4021ch15.qxd 11/2/01 3:31 AM Page 238

239

To run the server, just start the script in Listing 15.14. As with all instances of Base-
HTTPServer, you’ll be given a normal web server–style access log as clients connect, such
as this:

localhost - - [05/Jul/2001 13:48:27] "POST /RPC2 HTTP/1.0" 200 -
localhost - - [05/Jul/2001 13:48:28] "POST /RPC2 HTTP/1.0" 200 -
localhost - - [05/Jul/2001 13:48:28] "POST /RPC2 HTTP/1.0" 200 –

Note that you’ll receive one request for each function call from a call—it doesn’t batch
requests.

From the client end, we get a nicely formatted set of results:
$ python xmlrpcc.py
Echo: Hello
Rod Jane Freddy
Jane => 25
Rod => 23
Freddy => 26

As you can see from this walkthrough, XML-RPC is incredibly straightforward. In fact,
once you’ve resolved the call method to handle client requests easily, there’s not much more
to deal with. We can pass arguments and information to remote functions as we would any
other function, and we can get the information back from those functions in the same way.

The only limitation of the xmlrpclib is that you cannot handle objects and classes remotely.
This is not a limitation of the module at all but a limitation of the XML-RPC standard. If you
need object access, use SOAP.

Debugging XML-RPC
As with the SOAP module, the xmlrpclib module raises exceptions when an error occurs.
Exceptions are actually raised using the xmlrpclib.Fault exception, and they are propa-
gated across the network connection.

For example, here’s the default exception output when trying to call the remote join func-
tion with the wrong arguments:

Traceback (most recent call last):
File "xmlrpcc.py", line 7, in ?
print server.join({'Rod' : 23, 'Jane' : 25, 'Freddy' : 26})

File "/usr/local/lib/python2.1/site-packages/xmlrpclib.py", line 547, in
➥ __call__return self.__send(self.__name, args)
File "/usr/local/lib/python2.1/site- packages/xmlrpclib.py", line 630, in
➥ __request request File "/usr/local/lib/python2.1/site packages/xmlrpclib.py",
➥ line 585, in request return self.parse_response(h.getfile())
File "/usr/local/lib/python2.1/site-➥ packages/xmlrpclib.py", line 601, in
➥ parse_response

XML-RPC Solutions

4021ch15.qxd 11/2/01 3:31 AM Page 239

240

return u.close()
File "/usr/local/lib/python2.1/site- packages/xmlrpclib.py", line 371, in
➥ close
raise apply(Fault, (), self._stack[0])

xmlrpclib.Fault: <Fault 1: 'exceptions.TypeError:sequence expected, dictionary
➥ found'>

Unfortunately, the exception system can make identifying the source of an error difficult,
because it’s almost impossible to determine the actual location of the fault. To give an exam-
ple, here’s the output from a call to the remote join function when calling the function
direct, rather than through apply():

Traceback (most recent call last):
File "xmlrpcc.py", line 6, in ?
print server.join(['Rod','Jane','Freddy'])

File "/usr/local/lib/python2.1/site-packages/xmlrpclib.py", line 547, in
__call__

return self.__send(self.__name, args)
File "/usr/local/lib/python2.1/site- packages/xmlrpclib.py", line 630, in
➥ __request
request

File "/usr/local/lib/python2.1/site- packages/xmlrpclib.py", line 585, in
➥ request
return self.parse_response(h.getfile())

File "/usr/local/lib/python2.1/site- packages/xmlrpclib.py", line 601, in
➥ parse_response
return u.close()

File "/usr/local/lib/python2.1/site- packages/xmlrpclib.py", line 371, in
➥ close
raise apply(Fault, (), self._stack[0])

xmlrpclib.Fault: <Fault 1: 'exceptions.AttributeError:join'>

The best advice I can give is to test your functions thoroughly on the server side by using
the client module to import the functions it expects to use, rather than calling them remotely.
Make sure that you use the same basic process as used by the call() method (see List-
ing 15.14) in the request handler to invoke the functions.

Summary
Python supports both SOAP and XML-RPC through a number of different modules. The
SOAP.py is not the only SOAP solution available for Python, but it does provide one of the
easiest and simplest interfaces on both the client side and the server side for setting up the
remote server and server-side functions and module access.

Chapter 15 • Applying SOAP/XML-RPC in Python

4021ch15.qxd 11/2/01 3:31 AM Page 240

241

The entire SOAP system works through the use of a SOAPProxy class—you create a new
instance of the class, supplying the location of the remote server that you want to talk to.
From that moment, you can call any remote functions by specifying the remote function
name as a method of the SOAPProxy class instance.

When communicating information between the server and the client, you need to be
careful because the information is transferred using special objects rather than the base
object types; although they work in the same fashion, some of the shortcuts you may have
used, such as str(), don’t work as advertised on the SOAP data types.

For XML-RPC, one of the solutions is xmlrpclib. It works in a similar fashion as our SOAP
module: You create a new instance of the Server class, which simply requires the address of the
request handler that you want to talk to. Remote functions are called just as methods to that
object; then their request and other information is transferred to the remote server.

Both solutions enable you to access and call functions defined within the handler itself and
also those imported from an external module.

Summary

4021ch15.qxd 11/2/01 3:31 AM Page 241

This page intentionally left blank

Zope and XML Documents

• Combining DTML and XML Resources

• Parsing External XML Documents

• Zope and XML-RPC

Chapter 16

4021ch16.qxd 11/2/01 3:33 AM Page 243

244

Z ope is a solution for developing web applications. It combines the flexibility of HTML
with the programming flexibility and CGI tools of a normal Python CGI script into one

simple bundle; it is therefore no stranger to the needs or requirements of working with
markup languages. If you don’t know Zope already, check out the following sidebar.

Zope Backgrounder
One of the major issues facing most web developers is how to implement an application as
a web site. At the simplest level, you use a combination of HTML files and CGI scripts to sup-
port your application. This model can lead to problems when you try to marry the two com-
ponents: how to get the HTML- and CGI-based elements to look the same, for example. The
CGI components require you to import and handle CGI and HTTP data and make decisions
based on the information before supplying an HTML-formatted document back to the user.

Zope is different. Zope allows you to embed Python objects—or at least the information con-
tained within them—right in the content of an HTML page. You no longer have to worry about
marrying static HTML and Dynamic HTML components; HTML documents contain references
to the objects and the information you want to display.

Furthermore, Zope provides a very simple way for multiple people to work on the same web-
site at the same time. It uses a special markup language called DTML (Document Template
Markup Language), which allows you to create HTML documents based on standard tem-
plates. The DTML system also allows you to integrate calls to Python objects and to create
links between an HTML page and external data sources such as a SQL database.

The Zope system takes away all of the complexity of CGI programming. Instead, it allows pro-
grammers to concentrate on developing interfaces to internal systems, web developers to
concentrate on developing suitable document templates, and content managers to concen-
trate on filling the site with content, without anybody having to cross into anyone else’s terri-
tory. To help explain this further, let’s look at how Zope is organized and how object
publishing works.

Zope is made up of four primary components that work together to provide the Zope system.
There are the Zope Object Request Broker (ORB), ZPublisher, the DTML markup language,
and a Zope Object Data Base (ZODB):

● The Zope ORB is the object request broker in Zope, and it is the heart of the Zope sys-
tem. The ORB is responsible for turning a client’s request into information along the way
and converting that into an object and method call on an object instance.

Continued on next page

Chapter 16 • Zope and XML Documents

4021ch16.qxd 11/2/01 3:33 AM Page 244

245

● ZPublisher is the public interface. It interacts between the web server and the requests,
CGI data and ZORB, which is actually a component of ZPublisher, rather than a separate
entity. ZPublisher is the frontend to the entire Zope system and works with any number
of different web server solutions, including CGI, PCGI, FastCGI, Netscape’s Web Applica-
tion Interface (WAI), COM, Medusa (see the description later in this chapter), and the
included ZopeHTTPServer. Most people forget ZPublisher exists and instead refer to it
as ZORB—for the most part the two terms are interchangeable.

● DTML provides a simple way of defining HTML templates. The templates are parsed dur-
ing a request with information from any objects (brokered through ZORB) and external
data sources. This allows a web system to be developed by separate Python developers
and web programmers without either party worried about how to integrate the Python
objects and HTML code.

● Zope’s Object Database (ZODB) uses the pickle module (see Chapter 12, “Python and
Unicode”) to serialize a Python object and store the resulting data stream. Beyond the
basics of storing objects, ZODB also includes support for transactions, concurrent
access to a single object (similar to the row and table locking mechanisms in an
RDBMS), and delayed evaluation of object components, allowing you to access objects
without the time overhead of recovering all the information from the database until it’s
needed. The entire system works through a key, in a similar fashion to pulling informa-
tion out of a dictionary within Python itself.

In addition to all this, Zope also provides a number of ancillary systems to help you develop
Zope solutions. For example, the Zope kit includes an HTTP server module so that Zope
can broker all of the requests itself, rather than working through an existing web server.
Other components include a management framework for administering your website and a
content management system that works with the CVS system to record changes to your
website and allow multiple users to update the website content without interfering with
another person’s work.

Although Zope is familiar with the concept of markup languages—due to its use of DTML,
a modified version of HTML—you might be surprised to know that in fact Zope is largely
ignorant of XML.

It can export and import its own objects to and from XML format, but there are no built-
in controls for processing XML documents. This might appear to be a mistake, but in fact
the reason for the omission is far more straightforward. Since Zope enables you to work with
external scripts and methods, why not leave the processing of XML information to those
external scripts?

Zope Backgrounder

4021ch16.qxd 11/2/01 3:33 AM Page 245

246

In this chapter we’re going to look at four main areas in which Zope can be used to inte-
grate with XML. The first is the basic import/export process supported by the core Zope
system. Although it’s of no use to the end user, it does provide an interesting insight into how
you can dump quite complex objects in XML format.

The next section looks at how to produce XML documents from DTML information and
how to parse external XML documents within your Zope applications for inclusion in your
Zope databases. Finally, we’ll look at how Zope exposes itself for use through an XML-RPC
client.

The XML Export Format
Despite its heavy web service and integration focus, Zope doesn’t actually include the built-
in capability to parse and process XML documents. That doesn’t mean that it’s totally igno-
rant of XML. Once you have created a folder or collection on Zope, you can export the
folder object into an export file. The normal format for this is a binary Zope export format
that uses the Python pickle and cPickle modules to dump Zope objects out to the file.

This export format in Zope is exceedingly useful because it allows you to transport an
entire Zope-based web application from one machine to another, incorporating all of the
scripts, components, permissions, and other information from one machine to another.
This is an excellent and more convenient way of transferring a project from one machine to
another without the normal transfer and compatibility problems exhibited by typical HTML/
CGI-based solutions.

In addition to the binary Zope export format, you can also export the site in XML format.
To do this, go into the main Zope management panel, an example of which is shown in Fig-
ure 16.1, and click on the Import/Export button in the button bar at the bottom.

You’ll be prompted to provide the name and location of the object that you want to export
from the current folder. You can also elect to download to your machine or save onto the
server. If you choose the former, then the file will be downloaded as objectname.ext. If you
elect to save it on the server, it will be written as objectname.ext to the var directory within
the main Zope directory.

To save in XML format, click the XML Format box and then click Export. You can see the
window in Figure 16.2.

Chapter 16 • Zope and XML Documents

4021ch16.qxd 11/2/01 3:33 AM Page 246

247

F I G U R E 1 6 . 2 :
The Import/Export
management interface

F I G U R E 1 6 . 1 :
The main manage-
ment panel in Zope

The XML Export Format

4021ch16.qxd 11/2/01 3:34 AM Page 247

248

The resulting XML file is at least human readable, which is more than can be said for the
Zope export formatted file. You can see a small snapshot of the start, middle, and end of such
a file in Listing 16.1.

➲ Listing 16.1 A Zope Object Export in XML Format

<?xml version="1.0"?>
<ZopeData>
<record id="5065" aka="AAAAAAAAE8k=">
<pickle>
<tuple>
<tuple id="5065.3">
<string id="5065.1" encoding="repr">OFS.Folder</string>
<string id="5065.2" encoding="repr">Folder</string>

</tuple>
<none/>

</tuple>
</pickle>
<pickle>

...
<item>

<key> <string id="5822.26" encoding="repr">title</string> </key>
<value> <string id="5822.27" encoding="repr">Adds an XML

Entry</string> </value>
</item>
<item>

<key> <string id="5822.28" encoding="repr">_function</string> </key>
<value> <string id="5822.29" encoding="repr">receiveEntry</string>

</value>
</item>
<item>

<key> <string id="5822.30" encoding="repr">func_defaults</string>
</key>

<value>
<none/>

</value>
</item>
<item>

<key> <string id="5822.31" encoding="repr">_module</string> </key>
<value> <string id="5822.32" encoding="repr">parseXMLEntry</string>

</value>
</item>

...
<item>

<key> <string id="5817.16" encoding="repr">raw</string> </key>
<value> <string id="5817.17" encoding="cdata"><![CDATA[

Chapter 16 • Zope and XML Documents

4021ch16.qxd 11/2/01 3:34 AM Page 248

249

<dtml-var standard_html_header>\n
<h2><dtml-var title_or_id></h2>\n
<p>Add new entry</p>\n
<dtml-in expr="objectValues(\'DTML Document\')"
sort="bobobase_modification_time" reverse>\n
<p><dtml-var bobobase_modification_time fmt="aCommon">
\n
<dtml-var sequence-item html_quote newline_to_br>\n
</p>\n
</dtml-in>\n
<dtml-var standard_html_footer>\n

]]></string> </value>
</item>

...
<item>

<key> <string id="5069.48" encoding="repr">Python_magic</string>
</key>

<value> <string id="5069.49" encoding="base64">KusNCg==</string>
</value>

</item>
</dictionary>

</pickle>
</record>

</ZopeData>

If you read through this (great bedtime reading!), you should be able to spot both Zope’s
Python roots (the use of tuples and dictionaries) and the one situation in which the mapping
between Python’s attribute system, the Zope/DTML property system, and XML attributes
can be seen clearly to complement each other.

You can also find raw DTML documents stored in XML CDATA blocks. You’ll also note that
individual Zope records are stored within a <pickle> XML tag, which relates to the pickle
module normally used to dump the objects in raw binary format.

Although the XML format is very useful from an overview point of view when looking at a
Python service, in essence it’s nothing without being imported into a Zope service. Although
you could parse and process the contents to determine different pieces of information, it will
ultimately only make sense when it’s all been reassembled as a Zope project. The DTML is
Zope specific, and to extract individual components such as Python scripts and other elements,
you’d be better off using the management interface and opening each item.

Currently the only product that understands and can use an XML export from Zope is
Zope itself.

The XML Export Format

4021ch16.qxd 11/2/01 3:34 AM Page 249

250

Combining DTML and XML Resources
Zope itself doesn’t understand XML (except when importing a previous Zope object export
in XML format), but that doesn’t mean that you can’t work with XML and other formats.

For example, you can use the built-in features of DTML and Zope to export a DTML
resource in XML format. For this, you first need to have a Zope project to work with; for
our examples in this entire chapter, you’ll be working with a very simple logging project that
allows you to enter a title and message, which is logged with its time in a DTML document.

The Web Log Project
To start with, create a new folder called weblog, into which you’ll be creating all of the differ-
ent elements. Your first job is a simple index page, index_html, which will display your log
entries and provide a link to the form for adding new entries (addEntryForm). Log entries are
stored within the Zope database as other DTML documents. You can see the script in more
detail in Listing 16.2.

➲ Listing 16.2 The index_html Main Page (DTML Method)

<dtml-var standard_html_header>

<h2><dtml-var title_or_id></h2>

<!-- Add a link at the top of the page so you can add
new entries

-->

<p>
Add new entry
</p>

<!-- Get all the documents and dump their modification
time, title and comments in a nice way

-->

<dtml-in expr="objectValues('DTML Document')" sort="bobobase_modification_time"
reverse>
<p>
<dtml-var log_title html_quote> at
<dtml-var bobobase_modification_time fmt="aCommon">

<dtml-var sequence-item html_quote newline_to_br>
</p>

</dtml-in>

<dtml-var standard_html_footer>

Chapter 16 • Zope and XML Documents

4021ch16.qxd 11/2/01 3:34 AM Page 250

251

The web form is equally simple; it just provides text boxes for a log entry title and its con-
tents. You don’t need to worry about the time because you pick that up from the document
properties. The form itself, which is set to hand off processing to the addEntryAction method,
is shown in Listing 16.3. You’ll need to configure this as a DTML method with the name
addEntryForm.

➲ Listing 16.3 The addEntryForm for New Log Entries (DTML Method)

<dtml-var standard_html_header>

<p>Add a new log entry below</p>

<form action="addEntryAction" method="POST">

<p>
Title: <input type="text" name="log_title" value="My Log Entry">
</p>

<p>
Content: <textarea name="logcontent" rows="10" cols="60"></textarea>
</p>

<p>
<input type="submit" value="Add Entry">
</p>

</form>

<dtml-var standard_html_footer>

When the user clicks the Submit button, browser will pass the data from the form fields
off to the DTML Method addEntryAction, shown here in Listing 16.4. This simply passes
the user input off to the addEntry Python script and then displays a thank you message.

➲ Listing 16.4 Web Log Processing Form (DTML Method)

<dtml-var standard_html_header>

<dtml-call expr="addEntry(log_title, logcontent)">

<h3>Log entry added.</h3>

<p>
<a href="<dtml-var URL1>">Back to Log
</p>

<dtml-var standard_html_footer>

Combining DTML and XML Resources

4021ch16.qxd 11/2/01 3:34 AM Page 251

252

The final part of the basic system is our Python script. This determines the next ID num-
ber based on the number of objects in the current directory and creates a new object ID.
Then it creates a new DTML document object using this ID with the title and content as
received from addEntryAction, which in turn pulls the information from addEntryForm.

Finally, you also add the entry title field as an explicit object property to make it easier to
obtain and to demonstrate how easy it would be to add more information to your DTML
document. You need to create this as a Python script within Zope and configure the parame-
ters passed to the script as log_title and logcontent. You can see the entry window with
these options in Figure 16.3; the actual Python script is shown in Listing 16.5.

➲ Listing 16.5 Python Script for Adding the Entry

"""
Creates a log book entry
"""
id='entry_%d' % len(context.objectIds())

F I G U R E 1 6 . 3 :
The Python script for
handling the request

Chapter 16 • Zope and XML Documents

4021ch16.qxd 11/2/01 3:34 AM Page 252

253

context.manage_addProduct['OFSP'].manage_addDTMLDocument(~CA
id, title=log_title, file=logcontent)

doc=getattr(context, id)
doc.manage_addProperty('log_title',log_title, 'string')

That’s it—that’s our framework for the log book system. It’s simple enough, but it should
provide a simple base on which you can demonstrate the real XML facilities of Zope.

You can see the main screen, entry window, and acceptance windows in Figures 16.4, 16.5
and 16.6, respectively.

F I G U R E 1 6 . 4 :
The main index page,
showing existing
entries

Combining DTML and XML Resources

4021ch16.qxd 11/2/01 3:34 AM Page 253

254

F I G U R E 1 6 . 6 :
A successful addition

F I G U R E 1 6 . 5 :
Adding a new entry to
your DB

Chapter 16 • Zope and XML Documents

4021ch16.qxd 11/2/01 3:34 AM Page 254

255

Exporting DTML as XML
Now that you have information in your web logging application, it’d be nice to be able to get
it back out again in a more usable—XML—format. You could easily format your log in XML
manually using a style such as this:

<logbook>
<entry>
<datetime>Oct 8, 2001 1:02 pm</datetime>
<title>Phone call</title>
<comments>From Tom, Lua</comments>
</entry>
<entry>
<datetime>Oct 6, 2001 3:48 pm</datetime>
<title>Email</title>
<comments>From Viki about WWW4Mail</comments>
</entry>
</logbook>

We can actually do this ridiculously easily by combining our required XML tags and some
DTML instructions into a new DTML Method. The markup and code for this is show in
Listing 16.6.

➲ Listing 16.6 XML Export Method (DTML Method)

<?xml version=”1.0”?>
<logbook>
<dtml-in expr="objectValues('DTML Document')">
<entry>
<datetime><dtml-var bobobase_modification_time fmt="aCommon"></datetime>
<title><dtml-var log_title html_quote></title>
<comments><dtml-var sequence-item html_quote></comments>
</entry>
</dtml-in>
</logbook>

To get a better response from this, you might want to get Zope to return the document as
XML rather than HTML with unknown tags (which is what’s produced otherwise). You can
do this by setting the response type in your DTML using this:

<dtml-call expr="RESPONSE.setHeader('content-type', 'text/xml')">

Exporting in XML format in this way is most useful in applications such as this log book
for exporting your document in the RSS format, which we’ve already looked at in previous
chapters. Since we’ve already looked at the format of an RSS document, you should be able
to create a similar DTML method for generating such a file.

Combining DTML and XML Resources

4021ch16.qxd 11/2/01 3:34 AM Page 255

256

Parsing External XML Documents
Zope doesn’t have the capability to parse XML documents directly, but it is easy enough to
write an external method to process an XML document and then provide an interface within
Zope to use the method.

Listing 16.7 is a very simple SAX-based parser that will convert a document of this form:
<entry>
<log_title>Some or other title</log_title>
<logentry>Some other message</logentry>
</entry>

into an entry posted to the DB. To do this, you have a simple class, EntryHandler, that
extracts the information and puts the two values (title and entry) into attributes; then you
access those attributes and use the Zope API to create a new DTML document based on
this information.

➲ Listing 16.7 External XML Processor (External Method)

Import the SAX libraries/classes you need
from xml.sax import parseString
from xml.sax.handler import ContentHandler

Create a new class to parse an XML log entry

class EntryHandler(ContentHandler):
"""
Extracts a log entry from an XML message.
"""

You need to remember if you are in a particular element
so you can add the character data to the correct attribute
These four fields are used to remember where you are and
hold the information you extract

log_title=""
intitle=0
logentry=""
inentry=0

Called when you see a start element, you identify if you are
in a particular tag and set an attribute accordingly

def startElement(self, name, attrs):
if name=="log_title":

self.intitle=1
if name=="logentry":

self.inentry=1

Called when you see a start element, again you identify the
element and then reset the current location – this

Chapter 16 • Zope and XML Documents

4021ch16.qxd 11/2/01 3:34 AM Page 256

257

prevents you from processing character data that you
probably shouldn't be seeing – it doesn't matter in this
case if the document contains other data, you just ignore
it.

def endElement(self, name):
if name=="log_title":

self.intitle=0
if name=="logentry":

self.inentry=0

If you're in one of the two tags you are expecting, then you
need to add the information to the attribute

def characters(self, content):
if self.intitle:

self.log_title=self.log_title+content
if self.inentry:

self.logentry=self.logentry+content

The name of the function that will be called by Zope is
receiveEntry and accepts a single argument, the actual XML
text you want to process. Note that you need to insert a
'self' argument here, because the external method becomes a
part of the Zope API – self is in fact the same as the
context object within an internal Zope Python script.

def receiveEntry(self, message):
"""
Called by remote client.
"""

Pass the XML text off to our XML/SAX processor class

handler=EntryHandler()
parseString(message, handler)

Make sure you have the information as string
representations of the extracted text.

log_title=str(handler.log_title)
logcontent=str(handler.logentry)

Create the next available object ID

id='entry_%d' % len(self.objectIds())

Create a new DTML document based on the extracted
text elements.

self.manage_addProduct['OFSP'].manage_addDTMLDocument(
id, title=log_title, file=logcontent)

Combining DTML and XML Resources

4021ch16.qxd 11/2/01 3:34 AM Page 257

258

Set the log_title property

doc=getattr(self, id)
doc.manage_addProperty('log_title',log_title, 'string')

Return a suitable response to the caller.

return "<h3> Received (%s)</h3>" % (id, logcontent)

A little test when running it directly.

if __name__ == "__main__":
content = """
<entry>
<log_title>Some or other title</log_title>
<logentry>Some message</logentry>
</entry>
"""

print receiveEntry('',content)

To use this, create a script called parseXMLEntry.py in the Extensions folder of your Zope
installation. To provide access to this external method, you need to add an External method
to the Zope directory called addXMLEntry; you can see an example of this in Figure 16.7.

The ID of the external method is the name given to the object within Zope. It’s also the name
you use to access the method from a web form or DTML method or directly through a URL.

F I G U R E 1 6 . 7 :
Adding an external
method

Chapter 16 • Zope and XML Documents

4021ch16.qxd 11/2/01 3:34 AM Page 258

259

The Module name is that of the external module, without the .py extension, that you just cre-
ated in the Extensions folder. The Function name is the name of the function that you want to
call—in this case it’s the main receiveEntry function in the extension you created.

Once the External method connection has been made, you can start to use the XML proces-
sor. The easiest way would be to use a web form that accepts a single text area into which you
place the XML. The other alternative is to use a URL that accesses and posts the informa-
tion directly, such as this:

http://myzope:8080/weblog/addXMLEntry?message=<entry>
➥ <log_title>Some%20or%20other%20title</log_title>
➥ <logentry>Some%20other%20message</logentry></entry>

Like magic, you get a response posted directly into the DB as a DTML document!

You’ve actually created a pretty clever process here—it converts an XML document (some-
thing largely alien to Zope) into a DTML document (something Zope knows very well).
Although the example given here is deliberately simplistic, you could use a similar system to
process just about any XML document and convert it either into a DTML document or—
through the same basic Zope API—straight into a ZODB, Gadfly SQL, or other SQL database.

Note that you could just as easily have submitted your request to the Zope server from a
scriptable web client such as Perl or Python—in fact anything that allows you to submit a
URL and receive a response. But there is another way.

Zope and XML-RPC
One of the clever things about Zope is that because it hides all that complexity of community
with a client from the Zope programmer, there are also other ways in which you can commu-
nicate with a Zope service.

Zope exposes objects and scripts over the WWW as well as the powerful Web API for
CGI processing. It also provides a built-in parser to convert requests from an XML-RPC
client into local function and object calls on the Zope server.

Therefore, you can use XML-RPC to send in a new log entry. The code for that is ridicu-
lously easy, as you can see in Listing 16.8.

➲ Listing 16.8 XML-RPC Client for Adding an Entry

import xmlrpclib

server = xmlrpclib.Server('http://twinsol.mcslp.pri:8080/')
response=server.weblog.addXMLEntry("""
<entry>

Zope and XML-RPC

4021ch16.qxd 11/2/01 3:34 AM Page 259

260

<log_title>XML-RPC Log</log_title>
<logentry>XML-RPC Entry</logentry>
</entry>
""")

print response

The format of the response is important—the location of the server and its port number is
straightforward, but the actual remote function you’ve called is more complex. You’ve called
server.weblog.addXMLEntry(). weblog is the name of the directory on the Zope server
where the logging system is located, and addXMLEntry is the name of the External method
you created in the previous section for processing an XML document supplied in a web form
or other request.

You already know that this takes a single argument—the XML document that you want to
parse—and you also know that the result should be a new DTML document within your
directory. If you use the script in Listing 16.8 and then check the main page for your web
log, you should see something like the image in Figure 16.8.

F I G U R E 1 6 . 8 :
The web log and its
XML-RPC–submitted
entry

Chapter 16 • Zope and XML Documents

4021ch16.qxd 11/2/01 3:34 AM Page 260

261

Summary
Zope includes built-in facilities for exporting and importing its own object database in XML
format, but is unfortunately limited to this task only. For exporting documents from Zope in
XML format all you need to do is embed DTML commands for extracting document object
data straight into your XML layout. We can even make use of the multi-record formatter in
DTML to output repeating XML elements.

Using an external Python script we can process and format XML within a Zope applica-
tion. The Python extension script simply acts as an additional method that we can access as
though it were a CGI script on your local site. The extension will have access to the same
methods and data as a normal Python script within Zope so we can update and create docu-
ments within the Zope folder directly from our XML source.

Zope is also capable of servicing requests from XML-RPC clients directly, without the use
of an additional extension because of the way in which Zope handles CGI requests. This
makes supporting XML-RPC services through your Zope application as easy as writing the
CGI script that would normally service your form submissions.

Summary

4021ch16.qxd 11/2/01 3:34 AM Page 261

This page intentionally left blank

Part IV

XML and PHP

Chapter 17: XML and PHP

Chapter 18: Developing XML Applications with PHP

Chapter 19: PHP and XML-RPC

4021ch17.qxd 11/2/01 3:39 PM Page 263

This page intentionally left blank

XML and PHP

• Parsing XML with PHP

• XML-RPC with PHP

Chapter 17

4021ch17.qxd 11/2/01 3:39 PM Page 265

266

PHP4 comes with a built-in suite of functions for parsing and working with XML docu-
ments. The parser itself is based on the Expat parser, which is an XML 1.0 parser written

by James Clark.

Expat is an event-based parser. This means that the parser processes the document in chunks,
accepting parts of the XML document (anything from a byte up to the entire document). As
each entity within the document is identified, the parser calls a predefined function whose
job it is to handle the entity.

Since PHP is an embedded HTML technology, the most obvious use for an XML parser
is to turn an XML document into an embedded part of the HTML document you are pro-
ducing. Other uses include converting a web form into an XML document for storage, either
directly or by handing off the XML document to an extension so that it can be translated
into a database record.

In this chapter, we’ll be looking at the basic mechanics of parsing an XML document
within PHP. We’ll also look at the basics of translating XML documents into HTML—the
typical use of XML within PHP applications. In the next chapter, we’ll concentrate on the
development of XML-based applications in PHP. XML-RPC will be covered in Chapter 19,
“PHP and XML-RPC.”

Building a Simple XML Parser
As you already know, the XML parser available within PHP is based on the Expat library.
The Expat library uses callback functions that are executed when the different entities in
the document are identified.

A number of different entities make up an XML document, but the primary components
that all XML parsers are capable of handling are the start tag (such as <data>), the end tag
(</data>), and character data (any non-tagged element).

The full process for building an XML parser within PHP can be resolved into five steps:

1. Create the handlers that will deal with the different document entities.

2. Create the XML parser.

3. Register the entity handlers with the XML parser.

4. Feed the XML parser with the XML document, probably read from an external file.

5. Close the parser.

You can see a very simple parser in Listing 17.1.

Chapter 17 • XML and PHP

4021ch17.qxd 11/2/01 3:39 PM Page 266

267

➲ Listing 17.1 A Simple XML Parser

<?php

// set up the function that will handle any opening
// tags. It must accept the tagname and any
// attributes

function startTagHandler($parser,
$tagname,
$attributes)

{
echo("START: $tagname
");

}

// set up the function for any end tags
// end tags dont have attributes so we can simply
// accept the tagname for closure

function endTagHandler($parser,
$tagname)

{
echo("END: $tagname
");

}

// set up the function for any character data

function cdataHandler($parser,
$data)

{
echo("DATA: $data
");

}

// create a new XML parser

$parser = xml_parser_create();

// register the tag and data handling functions
// with the parser

xml_set_element_handler($parser,
"startTagHandler",
"endTagHandler");

xml_set_character_data_handler($parser, "cdataHandler");

Building a Simple XML Parser

4021ch17.qxd 11/2/01 3:39 PM Page 267

268

// Open the file, here hardcoded,
//that holds the XML

if (!($xmlfile = fopen("simple.xml", "r")))
{

die("Could not open the file for reading");
}

// Read data from the file in 2K blocks and send it
// off to the parser. Any error will trigger a call
// to die reporting the line and column number that
// the error occured within the source XML file
// !!!NOT!!! the PHP script

while ($xmldata = fread($xmlfile, 2048))
{

if (!xml_parse($parser, $xmldata, feof($xmlfile)))
{

die(sprintf("XML error at line %d, column %d",
xml_get_current_line_number($parser),
xml_get_current_column_number($parser)));

}
}

?>

If you feed the parser a simple XML file such as the one shown in Listing 17.2, then you
get the HTML output shown in Listing 17.3. The actual output is probably best demon-
strated by Figure 17.1, which shows the HTML in its rendered form.

➲ Listing 17.2 A Simple XML Document to Demonstrate the PHP Parser

<contact>
<name>Martin Brown</name>
<address>
<description>Main Address</description>
<addressline>The House, The Street, The Town</addressline>

</address>
<address>
<description>Holiday Chalet</description>
<addressline>The Chalet, The Hillside, The Forest</addressline>

</address>
</contact>

Chapter 17 • XML and PHP

4021ch17.qxd 11/2/01 3:39 PM Page 268

269

➲ Listing 17.3 The HTML Generated by the “Simple” XML Parser

START: CONTACT

DATA:

DATA:

START: NAME

DATA: Martin Brown

END: NAME

DATA:

DATA:

START: ADDRESS

DATA:

DATA:

START: DESCRIPTION

DATA: Main Address

END: DESCRIPTION

DATA:

DATA:

START: ADDRESSLINE

DATA: The House, The Street, The Town

END: ADDRESSLINE

DATA:

DATA:

END: ADDRESS

DATA:

DATA:

START: ADDRESS

DATA:

DATA:

START: DESCRIPTION

DATA: Holiday Chalet

END: DESCRIPTION

DATA:

DATA:

START: ADDRESSLINE

DATA: The Chalet, The Hillside, The Forest

END: ADDRESSLINE

DATA:

Building a Simple XML Parser

4021ch17.qxd 11/2/01 3:39 PM Page 269

270

DATA:

END: ADDRESS

DATA:

END: CONTACT

F I G U R E 1 7 . 1 :
The simple XML docu-
ment in HTML

Chapter 17 • XML and PHP

4021ch17.qxd 11/2/01 3:39 PM Page 270

271

You can see a few important aspects of how the Expat parser works by looking in detail at
Listing 17.3. Ignoring the formatting for the moment, you can see how each of the different
entities in the source is passed off to handler functions that you created.

You’ll also notice that the ASCII output of HTML includes additional spaces and newlines
that you might not have expected. These are part of the original source file because of the
way Expat (rather than PHP) works.

Expat passes on all characters from the source XML file, including spaces, newline, tab,
and other characters. You’ll also notice that the blocks of character data as they are processed
are not consistent with the source file—even though you know from looking at the XML
source that the character data is all in one block, when it’s extracted by the Expat parser, it
gets split into separate chunks.

Both of these effects are unfortunate side effects of the way Expat parses an XML docu-
ment. In most instances they are not going to cause a significant problem because these
artifacts affect what should be raw data. When converted to HTML, the additional spaces
and newlines probably won’t seriously affect the output, but you might want to apply a fil-
ter to ensure that any blocks of data consisting of any white space are ignored. A simple
regular expression will handle this for us; see Listing 17.4 for an updated version of the
cdataHandler() function and Listing 17.5 for the somewhat cleaner resulting output from
the XML file.

➲ Listing 17.4 A Version of the Character Data Handler That Filters White Space

function cdataHandler($parser,
$data)

{
if (!ereg("^[\f\r\t\n]+$",$data))
{

echo("DATA: $data
\n");
}

}

➲ Listing 17.5 A Cleaner Version of the XML File

START: CONTACT

START: NAME

DATA: Martin Brown

END: NAME

START: ADDRESS

START: DESCRIPTION

DATA: Main Address

Building a Simple XML Parser

4021ch17.qxd 11/2/01 3:39 PM Page 271

272

END: DESCRIPTION

START: ADDRESSLINE

DATA: The House, The Street, The Town

END: ADDRESSLINE

END: ADDRESS

START: ADDRESS

START: DESCRIPTION

DATA: Holiday Chalet

END: DESCRIPTION

START: ADDRESSLINE

DATA: The Chalet, The Hillside, The Forest

END: ADDRESSLINE

END: ADDRESS

END: CONTACT

As you can see from Listing 17.5, the output is now much cleaner, and the resulting ren-
dered HTML page, although not shown here, doesn’t look any different.

Inside the XML Parser
At the risk of repeating myself, the XML parser built into PHP is based on Expat libraries.
The standard PHP 4.x distributions now include the source for Expat and the extensions for
PHP itself to handle the XML processing, and XML should be enabled by default when you
configure and build the system.

Information sent to the parser is handled entirely by the parser and the functions that you
create to handle the different elements. There’s no way to interrupt the flow of parsing and
execute another function unless it’s been triggered by the existence of an entity within the
XML file.

In this section we’ll be looking at the specifics of the XML parsing process, the supported
XML handlers, and how to debug and trace errors within your XML documents.

Before we get there, two more points should be noted about the PHP XML extensions:

● XML documents are encoded using Unicode; this enables you to write documents that
include characters beyond the normal 127 ASCII characters you may be used to. Unicode
uses multibyte characters to allow you to include accented Roman characters as well as
Kanji (Chinese/Korean and other Far Eastern languages) and all other native forms,
including Indian and Middle Eastern characters. Check out the following sidebar, “Uni-
code Support,” for information on how the PHP extensions handle Unicode-encoded
XML characters, and remember that the effects are felt by both the character data and
entity handlers.

Chapter 17 • XML and PHP

4021ch17.qxd 11/2/01 3:39 PM Page 272

273

● There is no standard for the case within tags in XML documents; in fact, the XML stan-
dard deliberately allows lowercase, uppercase, or mixed-case tags in XML documents.
By default, the PHP XML extensions case fold tags so that when supplied as arguments
to the entity handlers, they are received as uppercase. You can control this through an
option; see the section “Getting/Setting Parser Options,” later in this chapter, for more
information.

Unicode Support
The PHP XML extensions supports the Unicode character set by using different character
encodings for input and output. Input encodings affect how a PHP XML extension interprets
incoming characters. The default input encoding is ISO-8859-1, which closely follows the
basic Roman character set with extensions as supported by most computer platforms. The
ISO-8859-1 set matches the ASCII set for the first 127 characters, so you can parse most
ASCII/text–based documents without changing the encoding.

The output encodings are used when transferring information over to the entity handlers that
you have configured to parse your XML documents. The output encoding affects all aspects
the entities passed on to the entity-handling functions, from tag names to character data.

Any error in handling the input encodings—such as characters that do not match the set
input encoding—raises an error. If the input encoding cannot be translated into the desired
output encoding, the character is replaced with a question mark.

Initial Setup
The core function in the PHP XML extensions is xml_parser_create(). This creates a new
instance of the XML parser. You can have many such parsers active in your application at one
time, but remember that an XML document is generally executed and parsed from start to
finish without any interruption.

If you want to parse multiple XML documents in sequence, it’s a good idea to create a new
parser each time, even if you place the resulting parser object into the same variable. This is
because Expat is not a validating parser—that is, it doesn’t verify that the content of the
XML document follows a given DTD.

What Expat does is check that the document is structured correctly. Start and end tags
must match, and any errors during parsing are raised by immediately falling out of the parser
with a false return value. See the section “Error Trapping,” later in this chapter, for informa-
tion on how to identify the location of such errors.

Inside the XML Parser

4021ch17.qxd 11/2/01 3:39 PM Page 273

274

By re-creating a new parser, you reset the information that the parser has built up regard-
ing the structure of the document.

Creating the Parser
The first step to parsing any XML document is to create the parser itself. The format for the
xml_parser_create() function is this:

xml_parser_create([string encoding_format])

The optional encoding_format is the character source encoding to use when parsing the
document. This can only be set once—if you want to parse another document with a differ-
ent encoding, you’ll have to create a new parser. Accepted values for the input encoding for-
mat are ISO-8859-1 (the default), US-ASCII, and UTF-8.

The xml_parser_create() function returns a true value—actually a parser handle—if the
parser could successfully be created or false if there was some kind of error. You need to catch
this return value because you’ll need the parser handle when you want to supply the parser
with some data:

$parser = xml_parser_create("US-ASCII");

Supplying Data
Once the parser has been created, you can then call the xml_parse() function to start the
parsing process. Although nothing will happen when the different entities are identified in
the XML document or string that you pass to the function, it will cause the XML to be
checked for its structure.

If you want to parse the document and perform different operations according to the dif-
ferent entities, you need to register the entity handlers before calling xml_parse().

The format of the xml_parse() function is this:
xml_parse(int parser, string data [, int isFinal])

The parser should be the parser handler that was created when you called
xml_parser_create(). The data argument is the XML data that you want to supply to the
parser. You can supply as much or as little of this information as you like. If you’re reading
the data from an external file, a figure of 1KB or 2KB is enough for most uses. Remember
though how Expat deals with character data: If you know that you have large character data
elements within your documents, you may want to supply a larger quantity to ensure that the
parser identifies the block as one entire unit.

The optional isFinal argument defines whether the block of data that you are supplying
is the final block or not. The parser needs to know this to ensure that the structure of the
document is valid; when you signify the end of XML, it ensures the tags match up and don’t

Chapter 17 • XML and PHP

4021ch17.qxd 11/2/01 3:39 PM Page 274

275

overlap. If you’re reading from an external file, the easiest way to supply this value is to use
the return from the feof() function on your file’s filehandle.

Freeing the Parser
Once you’ve finished parsing an XML document, or if you’ve trapped an error that means
you cannot continue processing the document, then you can call the xml_parser_free()
function. This clears the parser and any resources it was using from memory. Although this is
not a vital part of the process—because PHP frees the resources once the script terminates
anyway—it is good practice, especially if you expect to be parsing large documents.

Supported Entity Handlers
There are three primary entity handlers: for the start, end, and data elements of your XML
document. You’ve already seen some examples of these, but to recap, the format of each han-
dler function that you need to create is this:

startTagHandler(int parser, string tagname, array attributes[]);
endTagHandler(int parser, string tagname);
charDataHandler(int parser, string chardata);

The names used here are just examples; a handler function can have any name.

The parser argument is just the parser handle that invoked the handler. The tagname is
the tag text; for example, the tag <para> would be supplied simply as the string para.

For the start tag handler, the function is also supplied with an associative array of attrib-
utes. For example, the tag

<ref loc="someotherxml.xml" width=100 height=200>

is supplied to the handler function as this:
array("loc" => "someotherxml.xml",

"width" => 100,
"height" => 200);

The chardata argument is just the text identified by the parser as character data.

In order for these functions to be accepted as the handlers for the different entities, you
need to use one of the xml_set*() functions. The start and end tag handlers are registered
using the xml_set_element_handler() function, and the character data handler is registered
by the xml_set_character_data_handler() function:

xml_set_element_handler($parser,
"startTagHandler",
"endTagHandler");

xml_set_character_data_handler($parser, "cdataHandler");

Inside the XML Parser

4021ch17.qxd 11/2/01 3:39 PM Page 275

276

You can see a list of the other handlers for dealing with different entities that are supported
by the XML parser in Table 17.1. Note that all entity handlers accept a first argument, the
parser handler. Only additional arguments for the handler are listed. Also note that all han-
dler register functions are prefixed by xml_set_ and have a suffix of handler; for example, the
processing_instruction function listed in the first row of the table should actually be called
xml_set_processing_instruction_handler().

TABLE 17.1: Other Entity Handlers Supported by PHP XML

Handler Register Function Handler Arguments Description

processing_instruction target, data Handles processing instructions, which
allow an XML document to execute a par-
ticular instruction. The target should be
the target of the processing instruction
(such as php). The data is the string to
be supplied to the target handler. The
usual operation is to supply data to the
target processor.

notation_decl The notation is the name of the nota-
tion, base the base for resolving system-
Id (currently always a null string),
systemId the system identifier, and
publicId the public identifier.

external_entity_ref The entityname is the name of the
entity that has been identified, base the
base for resolving systemId (currently
always a null string), systemId the sys-
tem identifier (the expansion of the
external entity), and publicId the public
identifier. Most functions should incorpo-
rate the contents of systemId into the
current document.

unparsed_entity_decl Handles entities that are unparsed. See
previous handlers for descriptions on
how to handle the different arguments.

Default Handler default_handler data The default handler function handles all
other entities that do not already have
an explicit handler function. The default
handler is also called if you have not
explicitly registered a handler for a
given entity. The data contains the
entire entity, including angled brackets.

entityname,
base, systemid,
publicid,
notationname

Unparsed Entity
Declaration

entityname,
base, systemid,
publicid

External Entity
Reference

notation,
base, systemid,
publicid

Notation
Declaration

Processing
Instruction

Chapter 17 • XML and PHP

4021ch17.qxd 11/2/01 3:39 PM Page 276

277

Getting/Setting Parser Options
The PHP XML parser supports two options that change the way the document is parsed and
how the information is propagated on to the entity handlers. The two options are discussed
in the following.

XML_OPTION_CASE_FOLDING If this option is set to true, tag names are con-
verted to uppercase before they are supplied to the start and end tag handlers. Note that
this only affects the tag names; attribute names and other elements within the entities
remain unchanged. Case folding is on by default; setting the value to false disables case
folding.

XML_OPTION_TARGET_ENCODING This option sets the type of encoding used
when data is parsed on to any of the entity handlers. The default type is the same as the
input handler, as defined when the parser was created. If the input and output (target)
encodings are different, PHP translates the data to the new encoding format. See the side-
bar “Unicode Support” earlier in this chapter for more information.

You can obtain the current value of any option use the xml_parser_get_option() function.
For example, to determine whether case folding is switched on, use this:

$casefolding = xml_parser_get_option($parser, XML_OPTION_CASE_FOLDING);

To set the value of these options, use the xml_parser_set_option() function. For example,
to disable case folding, use this:

xml_parser_set_option($parser, XML_OPTION_CASE_FOLDING, false);

Other options may be added in the future. Check the documentation for PHP for more
information.

Error Trapping
The main xml_parse() function returns an error code if it sees some problem with the XML
document it is parsing. The return code can be matched against one of the predefined XML
error codes, listed in Table 17.2. Note that nearly all the error codes refer to problems in the
XML document that you are parsing, not a problem in the parser or your PHP code.

TABLE 17.2: XML Error Codes and Descriptions

Error Code Constant Description

XML_ERROR_NONE No error.

XML_ERROR_NO_MEMORY Parser ran out of memory; try supplying the data in
smaller chunks.

Continued on next page

Inside the XML Parser

4021ch17.qxd 11/2/01 3:39 PM Page 277

278

TABLE 17.2 CONTINUED: XML Error Codes and Descriptions

Error Code Constant Description

XML_ERROR_SYNTAX Syntax error.

XML_ERROR_NO_ELEMENTS No elements found in the document.

XML_ERROR_INVALID_TOKEN A tag is not well formed; check for matching <> brackets.

XML_ERROR_UNCLOSED_TOKEN The tag has not been closed.

XML_ERROR_PARTIAL_CHAR Unclosed token.

XML_ERROR_TAG_MISMATCH Start and end tags do not match.

XML_ERROR_DUPLICATE_ATTRIBUTE Attributes in a tag have been duplicated.

XML_ERROR_JUNK_AFTER_DOC_ELEMENT There is junk after a document element or end of the
XML document.

XML_ERROR_PARAM_ENTITY_REF The document references an entity that has not been
defined.

XML_ERROR_UNDEFINED_ENTITY The document uses an entity that has not been
defined.

XML_ERROR_RECURSIVE_ENTITY_REF The entity reference refers back to itself or to another
reference that points back to itself.

XML_ERROR_ASYNC_ENTITY Asynchronous entity.

XML_ERROR_BAD_CHAR_REF Document contains a reference to a bad character
number.

XML_ERROR_BINARY_ENTITY_REF Document refers to a binary entity reference (which
cannot be handled).

XML_ERROR_ATTRIBUTE_EXTERNAL_ENTITY_REF Document refers to an external entity reference within
a tag attribute.

XML_ERROR_MISPLACED_XML_PI An XML processing instruction is not in the right place.

XML_ERROR_UNKNOWN_ENCODING The XML document uses an unknown encoding format
(not UTF-8, US-ASCII, or ISO-8859-1).

XML_ERROR_INCORRECT_ENCODING The encoding defined in the XML encoding declaration
is not supported.

XML_ERROR_UNCLOSED_CDATA_SECTION A character data portion has not been terminated
properly. If reading from a file, check that the entire
file was read properly.

XML_ERROR_EXTERNAL_ENTITY_HANDLING There was an error processing an external entity
reference.

You can convert any of these error codes into a more meaningful string by using the
xml_error_string() function. This accepts the error code number, as returned by
xml_parse(), and returns a string error message. For example:

echo xml_error_string(XML_ERROR_NONE);

Chapter 17 • XML and PHP

4021ch17.qxd 11/2/01 3:39 PM Page 278

279

Once an error has occurred, you can also determine your location within the XML docu-
ment that you were passing using xml_get_current_line_number(), xml_get_current_
column_number(), and xml_get_current_byte_index() to determine the line, column, and
byte of the location of the error. Note that these return the location within the XML docu-
ment or stream you were passing where the parsing error occurred, not the location within
your PHP script.

For example, here’s a call to the xml_parse() function that reports an error detailing the
line and column number, taken here from the first PHP XML processing example:

if (!xml_parse($parser, $xmldata, feof($xmlfile)))
{

die(sprintf("XML error %d %d",
xml_get_current_line_number($parser),
xml_get_current_column_number($parser)));

}

Converting XML to HTML
The previous example is unlikely to be the perfect example of what you can do with XML in
PHP. Instead, let’s have a look at a script, shown in Listing 17.6, which converts an XML
document into HTML suitable for display on-screen.

➲ Listing 17.6 Converting XML to HTML in PHP

<?php

$file = "alien_r.xml";

// The array which holds the map from XML tag
// to HTML tags and attributes

$xmltohtml = array(
"TITLE" => array(array("tag" => "FONT",

"attrs" =>
array("size" => "+1")),
array("tag" => "B"),
),

"ACTORS" => array(array("tag" => "FONT",
"attrs" =>

array("color" => "red")),
),

"PARA" => array(array("tag" => "P")),
"PANEL" => array(array("tag" => "table",

"attrs" =>
array("border" => 0,

Converting XML to HTML

4021ch17.qxd 11/2/01 3:39 PM Page 279

280

"cellspacing" => 0,
"cellpadding" => 0,))),

"PANELTITLE" => array(array("tag" => "tr",
"attrs" =>

array("bgcolor" => "black",
"fgcolor" => "white",)),

array("tag" => "td")),

"PANELBODY" => array(array("tag" => "tr",
"attrs" =>

array("bgcolor" => "white",
"fgcolor" => "black",)),

array("tag" => "td")),
"EXTREF" => array(array("tag" => "A")),

);

// set up the function that will handle any opening
// tags. This function looks up in the xmltohtml
// associative array and matches an XML tag with an
// equivalent HTML entry for displaying the data

function startTagHandler($parser,
$tagname,
$attributes)

{
global $xmltohtml;
if ($html = $xmltohtml[$tagname])
{

for($tagindex = 0; $tagindex < count($html); ++$tagindex)
{

$mytagdetails = $html[$tagindex];
echo "<",$mytagdetails["tag"];
if ($myattrs = $mytagdetails["attrs"])
{

while (list($k, $v) = each($myattrs))
{

echo " $k=\"$v\"";
}

}

while (list($k, $v) = each($attributes))
{

echo " $k=\"$v\"";
}

echo ">";
}

}
}

Chapter 17 • XML and PHP

4021ch17.qxd 11/2/01 3:39 PM Page 280

281

// set up the function for any end tags

function endTagHandler($parser,
$tagname)

{
global $xmltohtml;
if ($html = $xmltohtml[$tagname])
{

for($tagindex = (count($html)-1); $tagindex >= 0; --$tagindex)
{

$mytagdetails = $html[$tagindex];
echo "</",$mytagdetails["tag"],">";

}
}

}

// set up the function for any character data

function cdataHandler($parser,
$data)

{
if (!ereg("^[\f\r\t\n]+$",$data))
{

echo($data);
}

}

// Create a new XML parser

$parser = xml_parser_create();

// Ensure case folding is switched on

xml_parser_set_option($parser, XML_OPTION_CASE_FOLDING, true);

// register the tag and data handling functions
// with the parser

xml_set_element_handler($parser,
"startTagHandler",
"endTagHandler");

xml_set_character_data_handler($parser, "cdataHandler");

if (!($fp = fopen($file, "r"))) {
die("could not open XML input");

}

while ($data = fread($fp, 4096)) {
if (!xml_parse($parser, $data, feof($fp))) {

Converting XML to HTML

4021ch17.qxd 11/2/01 3:39 PM Page 281

282

die(sprintf("XML error: %s at line %d",
xml_error_string(xml_get_error_code($parser)),
xml_get_current_line_number($parser)));

}
}
xml_parser_free($parser);

?>

The important parts of the script are the $xmltohtml variable and the two start and end tag
handlers.

The $xmltohtml variable is a nested structure. The top-level structure is an associative
array. The key at this top level is the XML tag that you want to replace, and the correspond-
ing value is an array of HTML tags that you want to use as the replacement text. Note that
you use an array of tags, not an associative array. This is because you need to order the HTML
tags correctly in the output.

Each HTML tag is made up of the base tag and an associative array of attributes and their
values that you want to introduce.

The startTagHandler() function identifies the XML tag in the $xmltohtml array and then
works through the resulting tree to output the corresponding HTML tags that you’ve con-
figured. Once the HTML tags have been output, you also output any XML tags that you’ve
supplied before closing off each HTML tag.

The endTagHandler() function essentially does the same as startTagHandler(), only it
processes the HTML tags in reverse so that they nest properly in the resulting HTML. Now
you can see why you have an array of these tags—so that you can sequence and desequence in
the same order.

We can explain this all better with a sample. In this XML code:
<title>Alien Resurrection</title>

the tag handlers would generate this:
Alien Resurrection

If you supply the script with the whole document, shown in Listing 17.7, you get the
HTML output shown in Listing 17.8 (massaged slightly for readability) or the final rendered
document shown in Figure 17.2. Note in both cases that I’ve trimmed the full document
(which uses the Lorem Ipsum text) for brevity.

TIP Lorem Ipsum is a standard piece of text that you can incorporate into a document for
example purposes in place of regular text.

Chapter 17 • XML and PHP

4021ch17.qxd 11/2/01 3:39 PM Page 282

283

➲ Listing 17.7 The Sample XML Document

<video>
<main>
<para><title>Alien Resurrection</title></para>
<para><actors>Sigourney Weaver, Winona Ryder</actors></para>
<title>Witness the Resurrection</title>
<para>Alien Resurrection is a film...Lorem ipsum dolor sit amet, consectetuer
adipiscing elit, sed diam nonummy nibh euismod tincidunt ut laoreet dolore magna
aliquam erat volutpat.
...
It va esser tam simplic quam Occidental: in fact, it va esser Occidental. A un
Angleso it va semblar un simplificat Angles, quam un skeptic Cambridge amico dit
me que Occidental es.
</para>
</main>
<panel>
<paneltitle>Related Items</paneltitle>
<panelbody>
<para><extref href="vhrefeo/alien.xml">Alien</extref></para>
<para><extref href="vhrefeo/aliens.xml">Aliens</extref></para>
<para><extref href="vhrefeo/alien3.xml">Alien3</extref></para>
<para><extref href="vhrefeo/alien_boxset.xml">Alien Legacy Box
set</extref></para>
<para><extref href="scifi.php">Sci-Fi</extref></para>
<para><extref href="horror.php">Horror</extref></para>
<para><extref href="action.php">Action</extref></para>
</panelbody>
</panel>
</video>

➲ Listing 17.8 The Final HTML Document

<P>Alien Resurrection</P>
<P>
Sigourney Weaver, Winona Ryder
</P>
Witness the Resurrection
<P>Alien Resurrection is a film...Lorem ipsum dolor sit
amet, consectetuer adipiscing elit, sed diam nonummy nibh
euismod tincidunt ut laoreet dolore magna aliquam erat
volutpat.
...
It va esser tam simplic quam Occidental: in fact, it va
esser Occidental. A un Angleso it va semblar un simplificat
Angles, quam un skeptic Cambridge amico dit me que
Occidental es.
</P><table border="0" cellspacing="0" cellpadding="0">
<tr bgcolor="black" fgcolor="white">
<td>Related Items</td>
</tr>

Converting XML to HTML

4021ch17.qxd 11/2/01 3:39 PM Page 283

284

<tr bgcolor="white" fgcolor="black"><td>
<P>Alien</P>
<P>Aliens</P>
<P>Alien3</P>
<P>
Alien Legacy Box set
</P>
<P>Sci-Fi</P>
<P>Horror</P>
<P>Action</P>
</td></tr></table>

F I G U R E 1 7 . 2 :
The final XML docu-
ment rendered in
HTML

Chapter 17 • XML and PHP

4021ch17.qxd 11/2/01 3:39 PM Page 284

285

We’ve really only scratched the surface of what you can do. Once you have the XML
document working through the parser, you can more or less translate the information as you
like. The important elements are the entity handlers, which treat each individual entity as it
is seen.

Summary
The PHP distribution includes XML extensions as standard, and these can easily be used to
build parsers for converting XML into HTML or other formats for use within your PHP
applications.

As with event-driven XML parsers in other languages, the PHP XML parser works by
calling specific functions when the elements, character data, and other elements of an XML
document are identified by the parser.

Changing XML to HTML is straightforward because the two are very similar. By creating
an associative array structure that maps the XML elements into a series of HTML elements,
we can make the translation quite easily. When each XML element is identified, the corre-
sponding HTML elements are generated, character data is translated directly, and each end
tag causes the list of HTML tags to be generated in reverse order.

Summary

4021ch17.qxd 11/2/01 3:39 PM Page 285

This page intentionally left blank

Developing XML Applications
with PHP

• The RSS Format

• Building an RSS Aggregator

Chapter 18

4021ch18.qxd 11/2/01 3:36 PM Page 287

288

B uilding an application in PHP that makes use of XML is essentially a case of either pro-
cessing an existing XML document into HTML format for online display or building an

XML document from existing information.

We’ve already looked at simple examples of how to output an XML document as an HTML
page by using a static associative array to define the layout and structure of the document you
want to display. Although XML can make a suitable format for generating HTML-style docu-
ments, it’s much more likely that you’ll use one or more XML documents from which you
extract the information you want to display.

Rich Site Summary (RSS) is a standard for an XML document that enables you to summa-
rize the content of a system. RSS is used on a number of websites to enable them to export a
simple summary of news items and other details easily. You can download RSS files from a
number of different sites and browse all the news from the different sites on a single page.

If you are like me, you probably regularly visit 5 to 10 or more sites each day in order to
pick up the latest information. By downloading each site’s RSS file and viewing it through a
simple aggregator, I can view all of the news from all of the sites on one page.

In this chapter, we’re going to start by taking a look at the RSS format. Then we’ll look at
the front end to an RSS aggregator that enables you to view the information from a number
of different sites and jump directly to either the site’s home page or the full expansion of the
story you are interested in. You can even search RSS documents for a particular string.

There are sites on the Internet that enable you to view RSS information from a number of
other sites. These include http://mynetscape.com and O’Reilly’s Meerkat service (http://www
.oreillynet.com/meerkat/).

The last part of this chapter then looks at how you can use the LibXML library to build your
own RSS files from your own website. LibXML is a DOM-based parser that allows you to build
XML documents easily through an object interface.

The RSS Format
An RSS document is basically an XML document using the agreed RSS structure. RSS is a
standard that comes under the umbrella of the Resource Description Format (RDF), a stan-
dard agreed to by W3C for describing metadata—that is, data about data.

An RSS file consists of two main components: the header and the individual news items.
The header contains information about the site, its home page, a description of the sort of
news that appears on the site, and other metadata such as the editor, the webmaster, and
copyright information.

Chapter 18 • Developing XML Applications with PHP

4021ch18.qxd 11/2/01 3:36 PM Page 288

289

Each news item (stored in an item tag) holds the news story title, the link to the page that
displays the news item, and a description of the story to help the reader decide if he wants to
read it.

Many of these items are essentially optional—for example, the channel needs to hold only
the title, link description and image sub-elements; just as news items need to hold only a title
and a link to the full story. However, it’s customary for sites to include both story summaries
and additional detail about the website. Other items can be added, such as details of an image
to use as an icon for the site link.

You can see a sample RSS file in Listing 18.1. Obviously you can have as many item ele-
ments for the different news stories as you like, although in practice most sites limit their
RSS file to the last 10 or 20 news items or all the news items for a given day.

➲ Listing 18.1 A Sample RSS News Summary File

<rss version ‘0.91’>
<channel><title>MCwords News</title>
<description>Information about books, articles and sample
scripts from the MCwords writing team.</description>
<link>http://www.mcwords.com</link>
<language>en-us</language>
<copyright>Copyright, 1998-2002, MCslp.</copyright>
<item>
<title>New Scripting XML with Perl, Python and PHP
book released</title>
<link>http://www.mcwords.com/projects/books/sxml</link>
<description>Scripting XML with Perl, Python and PHP
looks at the mechanics of processing and building
XML documents with Perl, Python, PHP, Rebol, Ruby,
Tcl and AppleScript. </description>
</item>
<channel>
</rss>

When outputting the information, you obviously first need to output the header informa-
tion (with or without a description), followed by a list of all the news items. If you are build-
ing an aggregator, then you need to repeat the process for a number of different RSS files in
order to build a single page with all the information.

Finding your RSS files in the first place is relatively easy. Most sites publicize the fact that
you can download their RSS summary files from their sites. Downloading them is left as an
exercise for you to try—my preferred method is a very simple script based on Gisle Aas’ LWP
toolkit under Perl.

The RSS Format

4021ch18.qxd 11/2/01 3:36 PM Page 289

290

Building an RSS Aggregator
The whole point of the RSS forma is that it should make viewing and reading all the websites
you normally look through much easier. In general, the majority of news sites that people
visit show loads of information, much of which you are not interested in, but often you have
to see either a summary or the whole thing.

When I view sites such as /. (http://www.slashdot.org) or even the BBC news site (http://
www.bbc.co.uk/news), I spend most of my time looking past the stories I’m not interested in,
perhaps clicking on only two or three stories each day.

Although in its basic format RSS doesn’t filter out those stories you aren’t interested in, it
does make it easier to browse over all the stories from all the sites you view each day in order
to extract the few stories you do want to read.

For your PHP-based aggregator, you need to cover three main facilities:

● Browse the channel information. This is useful if I want to remind myself what a particu-
lar site is about. I have about 200 different sites in my aggregation list, and some of them
have somewhat esoteric names that make it difficult to remember what the site is all
about.

● Browse the stories. This is just a single-page summary of all the news stories you want to
read, incorporating links to allow you to view the full story when you find something
you’re interested in.

● Search all the sites. Because you have access to the news from a number of different sites,
you can search across all the sites for stories that match a particular string. For example,
you might want to pull out all the stories relating to PHP from all the different news and
scripting sites.

I’m a big fan of the single script for most processes because it often makes the process of
updating and managing the script much easier, especially if you’re dealing with very similar
basic structures and display methods. Your entire PHP RSS aggregator system is therefore
held within the single script shown in Listing 18.2.

➲ Listing 18.2 A PHP RSS Aggregator

<?php

$currentTag = ‘’;
$title = ‘’;
$link = ‘’;
$description = ‘’;
$channels = array();

Chapter 18 • Developing XML Applications with PHP

4021ch18.qxd 11/2/01 3:36 PM Page 290

291

$items = array();
$pubdate = ‘’;

function startTagHandler($parser,
$tagname,
$attributes)

{
global $currentTag;
$currentTag = $tagname;

}

function endTagHandler($parser,
$tagname)

{
global $currentTag, $items, $title, $link,

$description, $channels,
$pubdate, $search;

if (strcmp($tagname,”CHANNEL”) == 0)
{
$channels[] = array(“title” => $title,

“link” => $link,
“description” => $description,
“pubdate” => $pubdate);

$title = ‘’;
$link = ‘’;
$pubdate = ‘’;
$description = ‘’;

}
elseif(strcmp($tagname,”ITEM”) == 0)
{
if (ereg(“^[a-zA-Z0-9].*”,$search))
{
if (eregi($search, $title) ||
eregi($search, $description))

{
$items[] = array(“title” => $title,

“link” => $link,
“description” => $description,

);
}

}
else
{
$items[] = array(“title” => $title,

“link” => $link,
“description” => $description,

);
}

Building an RSS Aggregator

4021ch18.qxd 11/2/01 3:36 PM Page 291

292

$title = ‘’;
$link = ‘’;
$description = ‘’;

}
}

function cdataHandler($parser,
$data)

{
global $currentTag, $title, $link, $description, $channels;

if (strcmp($currentTag, “TITLE”) == 0)
{
$title .= $data;

}
elseif (strcmp($currentTag, “LINK”) == 0)
{
$link .= $data;

}
elseif (strcmp($currentTag, “DESCRIPTION”) == 0)
{
$description .= $data;

}
elseif (strcmp($currentTag, “PUBDATE”) == 0)
{
$pubdate .= $data;

}
}

function getchannelinfo($channelfile)
{
global $channels;

$parser = xml_parser_create();

xml_parser_set_option($parser, XML_OPTION_CASE_FOLDING, true);

xml_set_element_handler($parser,
“startTagHandler”,
“endTagHandler”);

xml_set_character_data_handler($parser, “cdataHandler”);

if (!($fp = fopen($channelfile, “r”))) {
die(“could not open XML input”);

}

while ($data = fread($fp, 4096))
{
if (!xml_parse($parser, $data, feof($fp)))

Chapter 18 • Developing XML Applications with PHP

4021ch18.qxd 11/2/01 3:36 PM Page 292

293

{
die(sprintf(“XML error: %s at line %d in %s”,

xml_error_string(xml_get_error_code($parser)),
xml_get_current_line_number($parser),
$channelfile));

}
}

xml_parser_free($parser);
}

function getallchannels($showsub)
{
global $channels, $items;
$handle=opendir(“rss/”);
while (($file = readdir($handle))!==false)
{
if (ereg(“^[a-zA-Z0-9].*\.xml$”,$file))
{

getchannelinfo(“rss/” . $file);
if (count($items) > 0)
{
print “” . $channels[$i][“title”] . “”;
print “<a href=\”” .

$channels[$i][“link”] .
“\”>Jump to Homepage”;

if (ereg(“[a-zA-Z0-9]+”,
$channels[$i][“pubdate”]))

{
print “ (“ . $channels[$i][“pubdate”] . “) “;

}
print “
”;

if ($showsub == 0)
{
print $channels[$i][“description”];

}
else
{
print “
”;
for($j=0;$j<count($items);$j++)
{
print “<a href=\”” . $items[$j][“link”] .

“\”>” . $items[$j][“title”] . “
”;

if (ereg(“[a-zA-Z0-9]+”,
$items[$j][“description”]))

{

Building an RSS Aggregator

4021ch18.qxd 11/2/01 3:36 PM Page 293

294

print $items[$j][“description”] .
“

”;

}
}

}
print “

”;

}

$channels = array();
$items = array();

}
}
closedir($handle);

}

?>

<html>
<head>
<title>News Channel List</title>
</head>
<body>
News Feed

<form action=”sitelist.php” METHOD=GET>
<input type=”hidden” name=”expandStories” value=”1”>

View Channel Information
 |
Show All News

 |
<input type=”text” size=”40” name=”search”>
<input type=”submit” value=”Search”></form>

<?php
if (ereg(“^[a-zA-Z0-9].*”,$search))
{
print “Search results for $search

”;

}
getallchannels($expandStories);

?>
</body>
</html>

You should be able to follow the structure and comments in the code to see what’s going
on, but there are special notes on the different components of the system in the next section.

Chapter 18 • Developing XML Applications with PHP

4021ch18.qxd 11/2/01 3:36 PM Page 294

295

The RSS Parser
The RSS parser is actually just a standard XML parser with functions defined for start, end,
and character data tags. You could have used a DOM system to extract the information, but
since you need to parse the whole document when producing the story list or searching, you
may as well use an event-based parser to work through the entire document and just ignore
what you don’t need.

The three handlers do all the main work, and we’ll look at each one individually.

The startTagHandler Function
The startTagHandler records the current tag name:

function startTagHandler($parser,
$tagname,
$attributes)

{
global $currentTag;
$currentTag = $tagname;

}

You’ll need to know this in order to know where you need to record the information about
the title, link, description, or other data. You use global variables to hold the information
until you’re ready to process it when you reach an end element.

The cdataHandler Function
The cdataHandler function adds whatever character data has been extracted from the XML
file into one of the appropriate global variables that will hold the title, description, link, or
publication date information. You know which variable to store the information in because
startHandler has been recording this information.

For example, here’s the fragment for adding text to your global $description variable:
function cdataHandler($parser,

$data)
{
global $currentTag, $title, $link, $description, $channels;

...
elseif (strcmp($currentTag, “DESCRIPTION”) == 0)
{
$description .= $data;

}
...
}

Building an RSS Aggregator

4021ch18.qxd 11/2/01 3:36 PM Page 295

296

Note that you don’t actually make a distinction between the title, link, or description within
the channel section or a news item. This is not an oversight—by the time you’ve finished
working with the channel data, these variables will be empty. The reason for this is that the
endHandler function deals with these global variables, adding them to suitable structures so
that the information can be easily displayed later.

The endTagHandler Function
Once you’ve collected the character data within the different elements that you know make
up a particular component, you can then build a summary of the information and store it. In
the case of the channel section within an RSS document, you know when you see the channel
end tag that the data in your global $title, $link, $description, and $pubdate variables con-
tains the channel data. You put the information into an associative array, $channel, as you can
see from this fragment from the main script:

if (strcmp($tagname,”CHANNEL”) == 0)
{
$channels[] = array(“title” => $title,

“link” => $link,
“description” => $description,
“pubdate” => $pubdate);

$title = ‘’;
$link = ‘’;
$pubdate = ‘’;
$description = ‘’;

}

If the end element is item, then you know that $title, $link, and $description refer to
the information within an individual news item. This information is placed into an associa-
tive array, but there’s one more check needed before you add the associative array of informa-
tion to the global list of news stories for this site.

Searches occur at this point. If a search item has been defined (which you check by look-
ing for a repeating alphanumeric sequence in a regular expression), then you search for a
match between a search string and either the news item’s title or its description. If it’s found
in either element, you add the item to the global $items array; otherwise you just forget the
information.

If there is no valid search string, then you place the associative array into the global $items
list, thereby building a list of all the stores in the RSS file. It’s important to remember to zero

Chapter 18 • Developing XML Applications with PHP

4021ch18.qxd 11/2/01 3:36 PM Page 296

297

out the global variables used to hold the temporary character data. Otherwise, you start
adding information to news items you’ve already identified.

The getchannelinfo Function
The getchannelinfo function opens the file that is passed to it, creates a parser instance, sets
up the handlers (start, end, and character data) in order to parse the XML file, and then pro-
vides the parser with the contents of the RSS file itself.

The getallchannels Function
The final part of the process is to open each file within your list of RSS documents and send
that to getchannelinfo() to parse the document and extract the channel information and
news items. I’ve put the RSS files I’ve downloaded into a subdirectory called rss, which is
searched by using opendir() with each file being matched by a regular expression to ensure I
only load files ending in .xml:

$handle=opendir(“rss/”);
while (($file = readdir($handle))!== false)
{
if (ereg(“^[a-zA-Z0-9].*\.xml$”,$file))

getallchannels() is also responsible for displaying the information. There are two
parts to the process. First you need to decide whether to display news items (which is
handled by the value of the supplied $showsub function argument). Second, you need to
account for the layout when the information from the RSS files doesn’t match what you
could generate.

For example, there’s no point in adding an extra
 tag to the output if there is a descrip-
tion for a channel or news item. Another such example would be to ignore those channels
that don’t contain any items matched in a search.

The Aggregator in Action
All the pages include three links at the top to show the channel summary and the news stories
and perform a search across all the RSS channels.

Displaying the Channel Summary
The channel summary is just a dump of the title, link, and description tags from the
channel portion of each RSS file in your directory. You can see a sample of the output in Fig-
ure 18.1. In addition to the basic information, you also provide a link to take the user straight
to each channel’s website.

Building an RSS Aggregator

4021ch18.qxd 11/2/01 3:36 PM Page 297

298

Displaying the News Stories
When displaying the news stories, you output only the channel name and jump link, fol-
lowed by a list of each story title, which is itself a link to the real story on the full website.
Therefore, clicking on a story title will take you to the site so that you can read the full story.

If there is a story description, you print that below each story as well. Figure 18.2 shows a
sample of this in action.

Performing a Search
The final example is the search result screen. Every page has a search box into which you can
type a word or words to search for from the titles and story summaries in the RSS feeds. Fig-
ure 18.3 shows the result when searching for “DVD” in your story list.

Note that, because you’ve used a free-form regular expression search, the system already
supports the capability to do complex regular expression–based searches without making any
changes to the script.

F I G U R E 1 8 . 1 :
Your news channel
summary

Chapter 18 • Developing XML Applications with PHP

4021ch18.qxd 11/2/01 3:36 PM Page 298

299

F I G U R E 1 8 . 3 :
Search results

F I G U R E 1 8 . 2 :
Full news feeds and
stories

Building an RSS Aggregator

4021ch18.qxd 11/2/01 3:36 PM Page 299

300

Writing RSS Documents
If you’ve developed a site that has a “news” feel to it, you want to be able to write your own
RSS document from your website. Although you could do this manually by outputting the
tags, a much easier way is to use a DOM parser to build up the document in a structured
fashion, tag by tag.

As you already know if you’ve looked at Chapter 5, “Data Exchange and XML,” an XML
document that is parsed by a DOM parser produces a tree structure that is based on a number
of different nodes. As well as parsing an existing XML document into a DOM structure, you
can create an XML document by creating the different nodes that make up the document.

PHP, through the GNOME XML library, supports a DOM parser in the form of LibXML.
We’ll ignore the process of parsing a document in this form for the moment and instead con-
centrate on how to build an RSS document using the LibXML DOM node system.

NOTE PHP4 includes the necessary functions for working with the DOM parser, but the imple-
mentation is subject to change because the new features are added to the PHP system.
For example, function names have already changed a number of times since the original
release. Those used here were correct at the time of writing, but check http://www
.php.net/manual/en/ref.domxml.php to get the latest information.

Creating a DOM Document
The entire system works by creating a nested structure of objects. The base object of any
DOM structure is a document object. You create a “blank” document object by using the
domxml_new_xmldoc() function. The result is a document into which you can start building
the XML content. The function accepts a single optional argument, the version of the XML
being produced:

$doc = domxml_new_xmldoc(“1.0”)

There are four base methods to your new document object:

● root() returns a node object containing the root element of the document.

● add_root() adds a new root node to your document.

● dtd() adds a DTD object.

● dumpmem() returns a string of the DOM structure as XML.

add_root() is the most important element because it starts the root element of your XML
document. The function accepts a single argument, the name of the root element itself.
We’re dealing with RSS, so we’ll use rss:

$root = $doc->add_root(“rss”);

Chapter 18 • Developing XML Applications with PHP

4021ch18.qxd 11/2/01 3:36 PM Page 300

301

The return value is a node object. The next stage is to start adding nodes to your root
object to build the document.

Adding Nodes
Nodes account for all the different components within an XML document, from the XML
tags to the tag attributes down to the character data contained between tags.

You can navigate around nodes in a document by using the parent() and children() meth-
ods to a node object. The children() method returns an array of all child nodes belonging to
the current object. The parent() method returns a reference to the parent node of the cur-
rent object. For example, from an attribute node, this returns the parent tag node.

You can add new nodes to an existing node by using the new_child() method. This accepts
two arguments: the name of the XML element you want to create and the data that you want
to add to the current node. For example, you can add your channel node to your root rss

node using:
$root->new_child(“channel”,””);

The result in each case is a new node object, although you can ignore the result if you do
not want to add any children to the node.

The last part of the puzzle is the capability to add attributes to an existing element node.
You do this with the setattr() method, which accepts the attribute name and its value.

In Listing 18.3 you can see the code required to build an RSS document that mirrors the
example RSS file in Listing 18.1.

➲ Listing 18.3 Generating an RSS File

$doc = domxml_new_xmldoc(“1.0”);

$root = $doc->add_root(“rss”);
$root->setattr(“version”, “0.91”);

$channel = $root->new_child(“channel”,””);
$channel->new_child(“title”,”MCwords News”);
$channel->new_child(“description”,”Information about books, articles and sample
scripts from the MCwords writing team.”);
$channel->new_child(“link”,”http://www.mcwords.com”);
$channel->new_child(“language”,”en-us”);
$channel->new_child(“copyright”,”Copyright, 1998-2002, MCslp.”);

$item = $channel->new_child(“item”,””);
$item->new_child(“title”,”New Scripting XML with Perl, Python and PHP book
released”);

Writing RSS Documents

4021ch18.qxd 11/2/01 3:36 PM Page 301

302

$item->new_child(“link”,”http://www.mcwords.com/projects/books/sxml”);
$item->new_child(“description”, “Scripting XML with Perl, Python and PHP looks
at the mechanics of processing and building XML documents with Perl, Python,
PHP, Rebol, Ruby, Tcl and AppleScript.”);

Writing the XML
Once you’ve produced your DOM structure for your XML document, the final stage is to
output the structure as XML. You can do that easily with the dumpmem() method to the origi-
nal document object you created with domxml_new_xmldoc().

In fact, just adding this:
print($doc->dumpmem());

is enough to generate the XML. If you want to display the XML within a browser, then use
the htmlspecialchars() filter function:

print(htmlspecialchars($doc->dumpmem()));

The resulting document looks like Listing 8.4, which is almost identical to Listing 18.1.
Note, by the way, that I’ve cleaned up the output in Listing 18.4 to make it easier to read.
The dumpmem() method doesn’t pretty-print the output.

➲ Listing 18.4 PHP-Generated RSS in XML Form from a DOM Structure

<?xml version=”1.0”?>
<rss version=”0.91”>
<channel><title>MCwords News</title>
<description>Information about books, articles and sample
scripts from the MCwords writing team.</description>
<link>http://www.mcwords.com</link>
<language>en-us</language>
<copyright>Copyright, 1998-2002, MCslp.</copyright>
<item>
<title>New Scripting XML with Perl, Python and PHP
book released</title>
<link>http://www.mcwords.com/projects/books/sxml</link>
<description>Scripting XML with Perl, Python and PHP looks
at the mechanics of processing and building XMLdocuments
with Perl, Python, PHP, Rebol, Ruby, Tcl and AppleScript.</description>
</item>
</channel>
</rss>

Chapter 18 • Developing XML Applications with PHP

4021ch18.qxd 11/2/01 3:36 PM Page 302

303

Summary
The RSS format is an XML structure that allows us to summarize the information from a
website or other information source into a convenient document. By collecting together a
number of RSS files from different sites we can aggregate the information into a single page.

Many different news sites create their own RSS summary files and we can use the abilities
of PHP to read and summarize the stories—including links to the full story on the home
site—into a single page. This allows you to scan through the stories and different pieces of
information from a variety of sites only choosing the stories that interest you.

In addition to summarizing RSS documents from other sites, PHP can also be used to cre-
ate an RSS file from the news and information on your own site. All we need to do is gener-
ate the XML document structure based on the information from your site. This could be
done manually or if you are using a database to hold your news and other stories, it could be
created automatically from your database.

Summary

4021ch18.qxd 11/2/01 3:36 PM Page 303

This page intentionally left blank

PHP and XML-RPC

• Writing an XML-RPC Server

• Writing an XML-RPC Client

• Inside XML-RPC for PHP

Chapter 19

4021ch19.qxd 11/2/01 3:35 PM Page 305

306

XML-RPC is a technology that uses an XML document transferred over a transport (usu-
ally HTTP) that requests a remote function on a machine to be executed. The function

called can be any supported function and you can supply arguments to it just as you would a
local function. Also, just like a local function, the results of the function call are sent back
over the transport link back to the caller.

XML-RPC is useful in those situations when you want to execute a piece of code on a
remote machine without resorting to designing your own network protocol and without the
need to parcel up information in a CGI request and get it back in HTML format from the
server.

It’s particularly useful in distributed applications where you may have a number of individ-
ual web servers providing information and services to your clients, but with only one or two
back-end servers actually processing information and exchanging data on a secure network.

Using XML-RPC, the user requests a document from the server, the sever finds that it
needs some information from one of the data servers, send the request by XML-RPC to the
data server, receives the response back and then displays that information to the user.

The critical point here is that the remote server is doing much more than simply supplying
the data back; after all, we can do this already using MySQL, PostgreSQL or many other
database solutions. The remote server is executing a function written in PHP (or any other
language, since XML-RPC is language- and platform-independent).

The server side function could access data from the database and put it into a structure
suitable for returning from the XML-RPC function call. It might be a summary function
that not only accesses the data from the database but also summarizes it before returning
the summary data to the XML-RPC client. All the processing occurs on the database server,
allowing the XML-RPC client (the web server) to concentrate on processing web requests
from the end user.

The XML-RPC solution available with PHP is not quite as easy to use and straightforward
as those we’ve seen for some other languages. Requests and responses still have to be manu-
ally packaged and unpackaged when exchanging data for example. Although this adds extra
complexity to the process the whole system is still straightforward enough.

As has been explained elsewhere, XML-RPC doesn’t require any XML parsing abilities in
order to use the system. XML-RPC is just a technology that uses XML to exchange informa-
tion about functions, arguments and return values between a server and a client.

The XML-RPC implementation under PHP works using the HTTP/CGI protocol, so the
server acts just like any other CGI script on your web server, and the client communicates
with the server by sending a normal POST request. The information is then sent back as if

Chapter 19 • PHP and XML-RPC

4021ch19.qxd 11/2/01 3:35 PM Page 306

307

we were dealing with any normal HTTP request, except that the information returned is an
XML-RPC envelope which we decode into the response.

We’ll be looking at both a client and server implementation using PHP. In addition, since
XML-RPC is platform- and language-independent, we’ll also be looking at a client that
accesses a Perl or Python server.

In order to use XML-RPC you will need to install the XML-RPC package on your
machine which can be found at http://xmlrpc.usefulinc.com/php.html.

Writing an XML-RPC Client
The XML-RPC client communicates from one machine to another, sending a request to
execute a specific function, along with the arguments you want to supply to the function,
and then extracting and printing or using the returned values in some other calculation or
operation.

The basic sequence for creating an XML-RPC client in PHP is:

1. Create a request object. This is the object which is “serialized” into XML and sent to the
server.

2. Create a client object. This holds the information about the remote handler, its host and
the port on which to communicate.

3. Send the request to the server, using the information we’ve just built into client and
request object that we’ve just created.

4. Decode the response, extracting the elements returned by the remote function into local
variables that we can print or use accordingly.

We can see all of this put into a full script in Listing 19.1.

➲ Listing 19.1 A simple XML-RPC Client in PHP

<html>
<head><title>XML-RPC Client Demo</title></head>
<body>
<?php

// Include the necessary XML-RPC code we need
include("xmlrpc.inc");

// Create a new request, based on the name of the remote
// function, and an array of the arguments that you want
// to supply to the remote function
$request = new xmlrpcmsg('remote_echo',

Writing an XML-RPC Client

4021ch19.qxd 11/2/01 3:35 PM Page 307

308

array(new xmlrpcval("Hello")));

// Create a new XML-RPC client instance using the
// location of the handler that will deal with the request,
// the address of the machine and its port number
$server = new xmlrpc_client("/xmlrpcs.php",

"test.mchome.pri", 80);

// Switch debugging on
$server->setDebug(1);

// Execute the remote function, retrieving the reponse
// from the remote function
$response = $server->send($request);

// Check that the reponse was received
if (!$response) { die("Couldn't send request"); }

// Make sure that we got a reasonable reponse from
// the server
if (!$response->faultCode())
{
// Extract the value of the response

$value = $response->value();

// Print out the value
print "Remote response: " .

$value->scalarval() . "
\n";
}
else
{
// If we had a fault at the remote end, decode the
// fault response packet and print out the errors

print "Fault: (" . $response->faultCode() .
") " . $response->faultString() . "
";

}

?>
</body>
</html>

The vital parts are building the request object, which is actually an instance of the xmlr-
pcmsg class. The arguments to the object’s creation are the name of the remote function that
we want to call, in this case remote_echo, and the second argument is an array which contains
a list of the values we want to supply to the remote function.

The remote function name should actually be composed of the namespace and the func-
tion name. We’ll see a Python compatible version later in this chapter.

Chapter 19 • PHP and XML-RPC

4021ch19.qxd 11/2/01 3:35 PM Page 308

309

You build each argument by using the xmlrpcval class which accepts the value you want to
encode and an optional argument defining how you want it interpreted—for example we’ve
used a string here which is automatically identified as a string, but you might want to supply
a number as an integer or floating point value. The encoding affects how the information is
serialized into the XML-RPC packet sent to the server.

The other vital part is the creation of the client object. The object holds information about
the remote host, its address and port number, and the name of the handler (usually the URL
of a CGI script) that will process your request. In this example we’ve used the name of our
PHP server which we’ll be looking at shortly. You could leave it blank, which assumes a
direct HTTP connection to a server running in Daemon mode.

If you execute this script, assuming you’ve modified it to reflect your environment and
installed the server sample shown later in this chapter correctly, then you should see some-
thing similar to the output shown in Listing 19.2.

➲ Listing 19.2 Sample Output from an XML-RPC Client

---GOT---
HTTP/1.1 200 OK
Date: Fri, 06 Jul 2001 14:14:57 GMT
Server: Apache/1.3.20 (Unix) PHP/4.0.6 mod_perl/1.25
X-Powered-By: PHP/4.0.6
Connection: close
Content-Type: text/xml
Content-length: 204

<?xml version="1.0"?>
<!-- DEBUG INFO:

0 - new xmlrpcval("Hello", 'string')

-->
<methodResponse>
<params>
<param>
<value><string>Echo: Hello Hello</string></value>
</param>
</params>
</methodResponse>
---END---

---EVALING---[44 chars]---
new xmlrpcval("Echo: Hello Hello", 'string');
---END---
Remote response: Echo: Hello Hello

Writing an XML-RPC Client

4021ch19.qxd 11/2/01 3:35 PM Page 309

310

The bulk of the output shown here is actually debugging information—if debugging were
switched off we’d only see the final line, but you get the idea.

Now let’s have a look at a PHP XML-RPC application that talks to a Python XML-RPC
server. In this example we’re going to call the join function on the Python server which
accepts a list of words and returns a string containing the words joined together by spaces.
Listing 19.3 shows the client.

➲ Listing 19.3 Accessing a Python Daemon-based XML-RPC Server

<html>
<head><title>XML-RPC Client Demo (Python)</title></head>
<body>
<?php

include("xmlrpc.inc");

$myxmlargs=new xmlrpcval(array(
new xmlrpcval("Tom"),
new xmlrpcval("Dick"),
new xmlrpcval("Harry")), "array");

$request = new xmlrpcmsg('join',array($myxmlargs));

$server = new xmlrpc_client("/RPC2", "localhost", 8000);

$response = $server->send($request);

if (!$response) { die("Couldn't send request"); }

if (!$response->faultCode())
{

$value = $response->value();
print "Remote response: " . $value->scalarval() . "
\n";

}
else
{

print "Fault: (" . $response->faultCode() .
") " . $response->faultString() . "
";

}

?>
</body>
</html>

There are two critical elements from this script. The first is the arguments that we supply.
We need to supply an array as a single argument, so we first build an xmlrpcval array which

Chapter 19 • PHP and XML-RPC

4021ch19.qxd 11/2/01 3:35 PM Page 310

311

in turn contains a list of XML-RPC value objects which contain the words we want joined
together. We then supply that in the array of arguments that we define when building the
request.

Second, because the Python server is daemon based (rather than CGI based) we need to
access the server through a different port, in this case 8000 and we specify the host name
rather than a URL to the CGI script that will handle the request.

The request handler is the /RPC2 specification—this is defined according to the XML-
RPC standards but it’s hidden under Perl, Python and other languages which automatically
append the information when they realize they are communicating directly with an HTTP
daemon and not through a CGI service.

Needless to say, the output we get is what we expect:
Remote response: Tom Dick Harry

Writing an XML-RPC Server
The XML-RPC server is equally straightforward once you understand how to extract the
information from the client and then repackage the response up to send back to the client.
The basic sequence for creating a PHP based XML-RPC server is:

Define the functions that you want to support on your server.

Each function needs to extract the data from the request manually, then build the response,
and then return the response back to the client.

Create a new server instance during which you register the functions that you want to sup-
port remotely.

You can see the server that supports the function we used in the client in Listing 19.4.

➲ Listing 19.4 A Simple XML-RPC Server in PHP

<?php

// Include the necessary XML-RPC code

include("xmlrpc.inc");
include("xmlrpcs.inc");

// Setup a function to echo back a string

function remote_echo($params)
{

Writing an XML-RPC Server

4021ch19.qxd 11/2/01 3:35 PM Page 311

312

// Get the XML client information
global $xmlrpcerruser;

// Extract the first parameter from those supplied
$param = $params->getParam(0);

// Check the parameter is the right type
if ((isset($param)) && ($param->scalartyp()=="string"))
{

// Extract the actual value from the parameter
$mesg = $param->scalarval();

// Build our response string
$retval = "Echo: $mesg $mesg";

// Create a new response object and return it
// the contents of the response will be sent back
// to the client

return new xmlrpcresp(new xmlrpcval($retval));
}
else
{

// We didn't get the type of argument we were expecting
// So build an error respinse to be returned to the client

return new xmlrpcresp(0, $xmlrpcerruser,
"Invalid argument");

}
}

// Create a new instance of an XML-RPC server
// and register our remote_echo function
$s=new xmlrpc_server(array("remote_echo" =>

array("function" =>
"remote_echo")));

?>

The important elements here are the way we get the information from the arguments, how
we package the response and how we register the function(s) that we want to support.

To extract the arguments sent to the remote function from the client we use the getParam()
method which accepts one argument, the index of the argument that we want to retrieve. In
our case there is only one argument, the string we want to echo back. We then test that the
variable and value that we received is the correct type for the rest of the function.

To create a response, whether the return value or an error packet, we create an instance of
the xmlrpcresp class. In the case of the return value, we supply a single xmlrpcval object—
identical to the one we created when sending the request in the client. If you want to return
more than one argument then use the technique we used for the Python XML-RPC client to
build an array based xmlrpcval object.

Chapter 19 • PHP and XML-RPC

4021ch19.qxd 11/2/01 3:35 PM Page 312

313

For an error we build the response from a false value, the XML user information and the
error message we want to use.

The final part of the process is to register the function within a new instance of the xmlrpc_
server class. The class handles all of the communication and extraction for us.

The first argument should be an associative array where each key is the name of the func-
tion as it is exposed to the client. In our case we’ve used a value of remote_echo which exists
within the standard namespace. You could also prefix the name with the namespace you want
to support, for example example.remote_echo.

The value of that element of the associative array is then an embedded array—the function
key defines the name of the actual function that will respond to the request. By using this two-
tier system we can expose the real remote_echo function as example.echo for example.

That’s really all there is to it. Obviously you could add more functions to the list, assuming
you have definitions. All you need to do to enable the server is to copy it over into your web
server directory.

XML-RPC Data Conversion
Unlike the Perl and Python examples which we have already seen, XML-RPC under PHP
requires a lot more work when dealing with complex data types. The Perl and Python imple-
mentations we looked at in earlier convert nearly all of the built-in data types of those lan-
guages, including nested structures for you automatically.

In the PHP implementation the only types which are directly mapped to the equivalent
types within the XML-RPC standard are the int, string and double. To preserve other types
the type data must be encapsulated into an object. This is especially true with the array types
which in PHP can be used for normal serial and associative arrays. These obviously required
different handling, but there is no way to distinguish between the two.

XML-RPC for PHP actually creates its own typing system which you must use explicitly
for everything but the base types and when supplying multiple arguments (i.e., arrays). We’ve
actually already seen examples of the process within the examples in this chapter, but the
process warrants some closer inspection.

PHP to XML-RPC
The xmlrpcval class provides the necessary wrapper to convert any value into a format suit-
able for transmission over XML-RPC. For example, we can convert a string into a suitable
XML-RPC compatible value using:

$xmlstr = new xmlrpcval("Hello World!");

XML-RPC Data Conversion

4021ch19.qxd 11/2/01 3:35 PM Page 313

314

This assumes that we are dealing with a string. For a more explicit conversion you need to
supply a second argument which a string constant which defines the type of value that you
want to encode. For example, we can more explicitly convert integer, floating point (double)
and string values into XML-RPC values using:

$xmlint = new xmlrpcval(34, "int");
$xmldbl = new xmlrpcval(3.141, "double");
$xmlstr = new xmlrpcval("Hello World!", "string");

The full list of types supported by the system are listed in Table 19.1—note that they are
backed up by a number of predefined variables which you should in preference to the raw
strings to prevent typographical errors tripping up your programs.

TABLE 19.1: XML-RPC for PHP Data Types

Type string Variable

i4 $xmlrpcI4

int $xmlrpcInt

boolean $xmlrpcBoolean

double $xmlrpcDouble

string $xmlrpcString

dateTime.iso8601 $xmlrpcDateTime

base64 $xmlrpcBase64

array $xmlrpcArray

struct $xmlrpcStruct

The $xmlrpcDateTime value can be used to encode dates and times either from a raw
string, as in:

$xmldatetime = new xmlrpcval("2001-10-02T16:49:06",
$xmlrpcDateTime);

Or, when used in conjunction with the iso801_encode() function with a raw epoch value
as returned by the PHP function time():

$xmldatetime = new xmlrpcval(is801_encode(time()),
$xmlrpcDateTime);

Binary objects such as graphics, sounds or even applications can be encoded using the
base64 type—the XML-RPC code will automatically encode the binary string into base64
for you during the conversion process.

Chapter 19 • PHP and XML-RPC

4021ch19.qxd 11/2/01 3:35 PM Page 314

315

The array and struct types are slightly more complex. For an array type, you must create an
array using array() and mark that array as the XML-RPC array type, while simultaneously
embedding the new types for the individual elements you want in the array. For example, to
create an array containing an integer, double, and float, you would use:

$xmlarray = new xmlrpcval(array(
new xmlrpcval(12374);
new xmlrpcval(19.99);
new xmlrpcval("Widget with a handle")), $xmlrpcArray);

For a struct you supply an associative array instead of a linear one, with the keys as the
struct member names:

$xmlarray = new xmlrpcval(array(
'productcode' => new xmlrpcval(12374),
'price' => new xmlrpcval(19.99),
'description' => new xmlrpcval("Widget with a handle")),
$xmlrpcStruct);

XML-RPC to PHP
For converting information back from its XML-RPC encoded format you first need to iden-
tify the variables data type. If you know what type is and the return value is a scalar then you
can obtain the data directly using scalarval() on the returned value. For example:

$response = $server->send($request);
$value = $response->value();
print "Remote response: " . $value->scalarval() . "\n";

If you need to know the scalars type, use the scalartyp() method.

If you don’t know what the return value’s type is, you can use the kindOf() method on the
value to return the data type (scalar, array, struct) as a string.

To extract the values from a XML-RPC array you need to use the arraymem() method to
extract a single element from the array. The method accepts a single argument, an index into
the array. Combined with the arraysize() method we can use this to extract elements from
the array directly—but note that these will encoded as XML values so you’ll also need to use
scalarval() to extract their values. For example, you could iterate over a simple, single
dimension array like this:

for($i=0; $i < $value->arraysize(); $i++)
{

$v = $value->arraymem($i);
print "Got " . $v->scalarval() . "\n";

}

XML-RPC Data Conversion

4021ch19.qxd 11/2/01 3:35 PM Page 315

316

For struct types it depends on whether you know the member names or not. If you do
know the member names, then you can use the arraymem() method to access the values. For
example, to extract the description of the product from our earlier example you would use:

$descval = $value->arraymem("description");
$description = $descval->scalarval();

If you don’t know the type, then you need to use the structeach() method which works
in the same way as the PHP each() function to iterate over the value. The structreset()
method also works in the same way as the reset() function, setting up and resetting the iter-
ator for the structeach() method.

The example below also includes an example of the use of the kindOf() method:
$value->structreset();
while(list($key, $structval)=$value->structeach())
{
switch($structval->kindOf()) {
case "scalar":
print "$key is " . $structval->scalarval() . "\n";
break;

default:
print "$key is type " . $structval->kindOf() . "\n";
break;

}
}

Quicker Conversions
The techniques we’ve already seen are very awkward, especially when working with both
very simple scalar values, and also with more complex scalar and array values. They certainly
break the flow, and make it very difficult for anybody else reading the code to understand
exactly what is going on.

There are quicker ways of encoding and decoding the information to and from the internal
PHP variables. The xmlrpc_encode() function and its companion xmlrpc_decode() function
will convert information between the PHP and XML-RPC formats. For example, we can
shorten our earlier example, which used:

$xmlint = new xmlrpcval(34, "int");
$xmldbl = new xmlrpcval(3.141, "double");
$xmlstr = new xmlrpcval("Hello World!", "string");

to:
$xmlint = xmlrpc_encode(34);
$xmldbl = xmlrpc_encode(3.141);
$xmlstr = xmlrpc_encode("Hello World!");

Chapter 19 • PHP and XML-RPC

4021ch19.qxd 11/2/01 3:35 PM Page 316

317

Unfortunately, we can’t use this method to convert to the date, boolean or binary formats
supported by XML-RPC as there is no direct equivalent in PHP that can be identified and
therefore converted. Frustratingly we can’t convert arrays either, because PHP cannot distin-
guish between a serial and an associative array.

However, we can make conversion of a struct easier using xmlrpc_encode(), so the sample
$xmlarray = new xmlrpcval(array(

'productcode' => new xmlrpcval(12374),
'price' => new xmlrpcval(19.99),
'description' => new xmlrpcval("Widget with a handle")),
$xmlrpcStruct);

Becomes:
$xmlarray = xmlrpc_encode(array(

'productcode' => 12374,
'price' => 19.99,
'description' => "Widget with a handle"));

Which is just a little easier to handle!

Decoding works in a similar fashion, converting an XML-RPC value directly into a PHP
equivalent:

$phpint = xmlrpc_decode($xmlint);
$phpdbl = xmlrpc_decode($xmldbl);
$phpstr = xmlrpc_decode($xmlstr);

For struct types the process becomes even easier, since the value that is returned by xml-
rpc_decode() is in fact just an associative that we can iterate over:

$phparray = xmlrpc_decode($xmlstructvalue);
reset($phparray);
while(list($key, $value)=each($phparray))
{

print "$key is $value\n";
}

Benefits of XML-RPC in PHP
Armed with the basic information on how to write and use a PHP based XML-RPC service,
let’s have a look at a few solutions that actually use the facilities of XML-RPC to provide a
service.

The benefit of XML-RPC is that it allows us to execute a procedure on a remote machine,
and that means we can use in all those situations where we would otherwise need some spe-
cial tool or interface to communicate with another machine.

Benefits of XML-RPC in PHP

4021ch19.qxd 11/2/01 3:35 PM Page 317

318

PHP is a web-based publishing environment and so we already have all sorts of tools and
interfaces available to us that allow us to pull in information on to our web pages from a
number of sources. For example, in a single PHP generated web page we can already pull
information from a number of different databases through PHP itself from either local or
remote database systems.

We can also add and introduce graphics, text elements and JavaScript components from a
wide variety of different servers into that single page. If we’re using frames, we can easily mix
and match whole generated pages for a number of different machines.

So, why use XML-RPC in the first place, if we’ve already got access to this array of differ-
ent and distributed data sources?

The first and foremost reason is that XML-RPC is an easy way to get a simple answer to a
query from a remote machine that may not actually be either capable or configured to handle
a full web-based request.

We can also use XML-RPC on both a local and remote basis to communicate with a piece
of software or service that is normally supported by a different language. For example, we’ve
already seen a solution here that allows us to communicate with a Python-based server using
a PHP client.

Finally, we can use XML-RPC in those situations where we want to combine the abilities
and functionality of two or more websites into a single page. For example, you could com-
bine a news site and a discussion service together to allow people to comment on web stories
from two different sites into one amalgamated site.

Summary
One of the limitations of PHP is that it’s difficult to combine information and resources
from a number of computers simultaneously. Although we can embed information from
other servers, there are limits to the ways in which we can combine this information.

Using XML-RPC we can execute procedures on remote machines and include the infor-
mation directly within our page, without relying on HTML generated by another service.
This makes integration of data from different sources much easier, and we can control the
method in which the data is formatted to the user from the PHP service generating the page.

Using XML-RPC is a simple case of creating a server connection and then submitting a
request. Most standard data types and arguments are supported and for types not supported
by PHP and/or XML-RPC directly we can build the structures manually.

We can also use PHP to service XML-RPC requests and to act as a service to other sites
which can be useful if you want to exchange information between multiple machines.

Chapter 19 • PHP and XML-RPC

4021ch19.qxd 11/2/01 3:35 PM Page 318

Part V

XML and Other
Languages

Chapter 20: XML and REBOL

Chapter 21: XML and Ruby

Chapter 22: XML and Tcl

Chapter 23: AppleScript and XML

4021ch20.qxd 11/2/01 3:32 PM Page 319

This page intentionally left blank

XML and REBOL

• Parsing XML Information in REBOL

• XML-RPC with REBOL

Chapter 20

4021ch20.qxd 11/2/01 3:32 PM Page 321

322

REBOL (pronounced “rebel”) has a slightly different approach to programming and devel-
oping applications than most other languages, even scripting languages. In most other

languages, the data and variables you use are tools that you use to store information as you
are processing data. In REBOL, everything is data. REBOL knows that an e-mail address is
an e-mail address and that a URL is a URL.

Unsurprisingly, this also stretches to files that have been created using a markup format
such as HTML or XML. When loading a document or URL, you can automatically mark it
as a markup document, which has the effect of converting your document into a set of blocks.
REBOL even knows when it’s working with a tag through the use of a tag! data type.

The only downside to this approach is that it matches neither the event-based processing
nor the DOM model. Technically, the system supports serial parsing because you can work
through each element of the XML document. There are a few tricks you can use to at least
simulate DOM parsing—with some limits—and serial parsing is at least similar in principle
to the whole-document parsing used in typical event parsers.

In this chapter, we’re going to look at some basic parsing techniques with REBOL and at
RXR, a solution for communicating with servers using XML-RPC.

Parsing XML Information in REBOL
The simplest way of extracting information from an XML document with REBOL is to
load the file and then use the parse function to parse the document and extract the text
between a given set of tags. For example, you could extract the character data between two
tags like this:

xmlsource: read %simple.xml

parse xmlsource [thru <title> copy text to </title>]
print text

This copies the text between the <title> and </title> tags. The only problem with this
method is that it’s fairly limited in the simple form shown here. You can’t pick out specific tag
element data, and you certainly can’t traverse through to pick out a particular tag within a
nested structure.

Processing XML as Markup
The easiest way around this limitation is to tell REBOL to load the XML document in
markup mode, using an option to the load function to tell it to parse the XML tags and

Chapter 20 • XML and REBOL

4021ch20.qxd 11/2/01 3:32 PM Page 322

323

character data into separate blocks. You can demonstrate this quite easily using the follow-
ing script:

xmlsource: load/markup %simple.xml
probe xmlsource

When used on the following XML file:
<simple>
<title>Some Other Title</title>
<paragraphs>
<paragraph refid="p1">Some text</paragraph>
<paragraph refid="p2">Some more text</paragraph>
</paragraphs>
</simple>

you get the following output:
[<simple> "^/" <title> "Some Other Title" </title> "^/"
<paragraphs> "^/" <paragraph refid="p1"> "Some text"
</paragraph> "^/" <paragraph refid="p2"> "Some more text"
</paragraph> "^/" </simple>]

You can see from this that you now have a list of the different elements—character data
and tags—in a single block. To extract some information from the XML file, all you need to
do is process this list of elements.

Note from the list that elements are not quoted; this is because among all the different
types that REBOL is aware of, one of them is the tag! data type.

You can use this differentiation between XML tags and character data to process the infor-
mation within a more complex XML document by using many of the same techniques that
you used when dealing with event-driven—and especially SAX-based—parsers within other
languages. After all, you are working through the document in a similar fashion.

For example, you can print out the titles and link test from an RDF/RSS file. Listing 20.1
gives an example of such a script, and Listing 20.2 shows the eventual output.

➲ Listing 20.1 An RDF/RSS-to-HTML Converter

REBOL [
Title: "RSS Parser"
File: %xml.r
Purpose: {Print out Title/Links for stories from RDF/RSS}

]

xmlsource: load/markup %freemarket.xml

Parsing XML Information in REBOL

4021ch20.qxd 11/2/01 3:32 PM Page 323

324

current: ""
linktext: ""
titletext: ""
foreach item xmlsource [

either tag? item [
if item == <title> [current: item]
if item == </title> [

print join "" [:titletext "</b
"]
current: ""]

if item == <link> [current: item]
if item == </link> [

print join {<A href="} [:linktext
{">Read Story
}]

current: ""
linktext: ""]

]
[

if current == <link> [linktext: :item]
if current == <title> [titletext: :item]

]
]

➲ Listing 20.2 Output from the RSS-to-HTML Converter

FreeMarket</b

Read Story

FreeMarket</b

Read Story

3/18/2001 IRC Session</b

Read Story

You need your input</b

Read Story

IRC Session, 3/11/2001</b

Read Story

Idea Scratchpad</b

Read Story

Prototype Work</b

Read Story

Repository of Tradestation/Metastock articles/scripts</b

Read Story

List of Requirements Started</b

Read Story

Need Help? Got a problem?</b

Read Story

Technical analysis script repository</b

Read Story

Comments on the FreeMarket Project</b

Read Story

Chapter 20 • XML and REBOL

4021ch20.qxd 11/2/01 3:32 PM Page 324

325

The script works very simply. First you load the XML document in markup mode to end
up with a list of elements and character data. Then you use a foreach loop to work through
each element of the list. The either test identifies whether each item within the list is an ele-
ment or character data.

If it’s an element tag, you first identify what type of element tag it is. You are interested
only in either <title> or <link> elements from the RSS file. If it’s an opening tag of one of
these types, then you have a record of that fact so that you can record the information when
processing character data. If it’s an end tag, then you build suitable HTML output to pro-
duce the story title and a link to go with it.

The major difference between the event-driven parsers you’ve seen for other languages
and the solution used in REBOL is that you identify the link type while accessing the XML
fragments directly. There is no function called when you identify the different fragments
(elements, character data, and so on). You should also note that you don’t have to jump
through the normal hoops when working with character data. In markup mode, each ele-
ment of the resulting list is either a single block of character data or a single XML element.

Manipulating Tags
Because REBOL knows what a tag is, it also knows how to manipulate tags. For example, if
you have a tag object, you can add attributes to it using append:

imgtag:
append imgtag { alt="Company Logo"}

The resulting tag includes both attributes:

You can also build a new tag very easily using build-tag:
probe build-tag [a href http://www.mcwords.com/]

The tag! type in REBOL is a serial type, so you can access the information from a tag in
the same way as any other serial object within REBOL. Unfortunately, accessing attribute
information is not easy. The only way to extract an attribute and its value is to search for
the information using parse.

For example, from the XML file you used earlier:
<simple>
<title>Some Other Title</title>
<paragraphs>
<paragraph refid="p1">Some text</paragraph>
<paragraph refid="p2">Some more text</paragraph>
</paragraphs>
</simple>

Parsing XML Information in REBOL

4021ch20.qxd 11/2/01 3:32 PM Page 325

326

You can extract the refid data from a tag using the fragment demonstrated in Listing 20.3.

➲ Listing 20.3 Extracting Attribute Data

REBOL []

tag: <paragraph refid="p1">

if parse tag [
"paragraph" thru "refid="
[{"} copy attr to {"} | copy attr to ">"]
to end
]
[

print join "Attr: " attr
]

The script does two things: First you ignore the text from the tag name (paragraph) until
the attribute definition (refid=), then you copy the text between double quotes into the attr
variable. It shouldn’t happen in an XML file, but just in case quotes are not used, you also
have the option to copy all the text from the end of refid= until the closing >. The whole
process is trapped up within an if statement so that if it doesn’t exist you don’t raise an error.

Building Your Own Event Parser
Although it’s not always needed, you could easily build your own event-driven parser using
REBOL and the techniques you’ve seen here. In essence you have the start of an event-
driven parser; you can load the file and determine the difference between a tag and character
data as you proceed through the block list that is returned when you load the XML docu-
ment in markup mode.

All you have to do is create functions that accept the fragment types, as you would in a
SAX parser, and a wrapper function that is capable of parsing the contents of a tag to identify
the difference between XML declarations, processing instructions, and start and end tags.

For example, you can quickly identify a start or end tag using this:
foreach item xmlsource [

if tag? item [
either find item "/" [

print ["End tag: " item]]
[

print ["Start Tag: " item]]
]

]

Other elements can be extracted in much the same way.

Chapter 20 • XML and REBOL

4021ch20.qxd 11/2/01 3:32 PM Page 326

327

XML-RPC with REBOL
XML-RPC support within REBOL is still relatively new, despite REBOL’s heavy data focus.
There are two solutions currently available: one from Thomas Jensen and the other, RXR,
from Chris Langreiter. We’ll be looking at the RXR solution.

The RXR solution is still in its early stages and, although the client side of the process
appears to be relatively stable, the server side is still particularly prone to problems. Because
of these limitations, we’ll be having a quick look at the client side of the process. Watch for
an update on the website (http://www.mcwords.com) for information on how the client and
server sides can be used.

The client side is very easy to use. You load the XML-RPC library, create a new object
based on the xmlrpc-server class, and use this class to call remote procedures.

For example, you can create a connection to the XML-RPC demo server at UserLand
using this:

stateserver: make xmlrpc-server [host: "betty.userland.com"
port: 80 uri: "/RPC2"]

The host and port arguments should be self explanatory: These are the hostname and port
number of the XML-RPC server you want to communicate with. The final argument, uri, is
the name of the service on the host/port combination you want to use to service requests.
With XML-RPC, this value is always /RPC2.

The procedure call is handled by the xmlrpc-call function:
print xmlrpc-call stateserver "examples.getStateName" [21]

The function accepts three arguments, the xmlrpc-server object that you want to use for
communication, the name of the remote function that you want to call, and a block of argu-
ments that you want to supply to the remote procedure.

The entire script is shown in Listing 20.4.

➲ Listing 20.4 Calling a Remote Procedure with XML-RPC

REBOL []

do load %xmlrpc-lib.r

stateserver: make xmlrpc-server [host: "betty.userland.com"
port: 80 uri: "/RPC2"]

print xmlrpc-call stateserver "examples.getStateName" [21]

XML-RPC with REBOL

4021ch20.qxd 11/2/01 3:32 PM Page 327

328

Just to verify that it works, the result is shown here:
Massachusetts

You can interface to any XML-RPC server using the same process. For example, to talk to
the Python XML-RPC server you saw demonstrated in Chapter 15, “Applying SOAP/XML-
RPC in Python,” you might use a script like the one in Listing 20.5.

➲ Listing 20.5 Communicating with the Python XML-RPC Server

REBOL []

do load %xmlrpc-lib.r

localserver: make xmlrpc-server [host: "twinsol.mcslp.pri"
port: 8009 uri: "/RPC2"]

print xmlrpc-call localserver "echo" ["Martin"]

arglist: make xmlrpc-object [type: 'array data: [
"Martin" "Charles" "Brown"]]

print xmlrpc-call localserver "join" [arglist]

Note that you have to build the argument for the join remote procedure beforehand.
This is because you cannot mutate a REBOL list into an XML-RPC list directly. Instead,
you must construct an XML-RPC array using the xmlrpc-object function. This translates a
given data block into an array of the required type, which in turn you use as the single array
argument to the join function.

Summary
REBOL provides a number of different methods for processing XML documents. If you
only want to extract information from an XML document then we can use the parse method
within REBOL to extract information between two tags within a document.

For a more interactive form of processing we can use the built-in facilities of REBOL to
load an XML document in “markup” format—this translates the structure of XML elements
and character data into a sequence of elements and strings that we can process and identify
using methods similar to those we employed when processing XML documents using SAX in
other languages.

The RXR tool is a REBOL XML-RPC solution that allows us to communicate easily with
remote servers and execute procedures.

Chapter 20 • XML and REBOL

4021ch20.qxd 11/2/01 3:32 PM Page 328

XML and Ruby

• Parsing XML

• Ruby and XML-RPC

Chapter 21

4021ch21.qxd 11/2/01 3:28 PM Page 329

330

R uby is a relatively new language developed by Yukihiro Matsumoto in 1995. It offers the
flexibility of an object-oriented interface along some of the systems we’ve come to

expect in all scripting languages, such as easy access to a regular expression engine, some
handy data types—including hashes—and big integers.

There is no XML parser that comes standard with Ruby, but there are plenty of packages out
there. We’ll be looking at my favorite, REXML, which offers an incredibly simple method for
accessing and modifying XML documents through Ruby. Ruby is a general-purpose scripting
language, so there’s no specific job I would recommend it for when working with XML. Even
so, once you’ve used Ruby and REXML to parse and manipulate your documents, you may
wonder why it’s so difficult to perform the manipulation in other languages.

Parsing XML
There are a number of different solutions for working with XML in Ruby, all of which are
available through the Ruby Application Archive (RAA) at http://www.ruby-lang.org/en/
r1aa.h1tml. You can find the more traditional event-driven and DOM-based parsers as well
as tools for dealing and working with specific XML formats such as RSS and for processing
documents with XSLT.

Of all the solutions available, my favorite is REXML by Sean Russell. It combines the easy
access and control of an XML document through a DOM-like interface while merging the
API with XPath to allow easy searching of elements. You can even use REXML to process
the individual elements of an XML document, just as you would if processing it through an
event-based parser.

In its simplest form, it turns your source XML document into an REXML::Document object.
For example, to open an existing document and process it into an XML document object,
you’d use this:

require "rexml/document"
file = File.open("document.xml")
xmldoc = REXML::Document.new file

Once you’ve opened the document it’s simply a case of accessing the different elements in
the document to determine it’s structure and extracting the information. Most of the informa-
tion is stored in a series of subobjects (many of which have their own classes). For example, the
REXML::Element class includes all of the information in order to store a single element, with
the text property holding the character data within a given tag, and the attributes property
unsurprisingly holding a list of the attributes for a given element.

Chapter 21 • XML and Ruby

4021ch21.qxd 11/2/01 3:28 PM Page 330

331

For example, working from this XML:
<products>
<item code="1001"><name>Thingy</name></item>
<item code="1003"><name>Whatsit</name></item>
<item code="1002"><name>Doohickey</name></item>
</products>

you can access the root element (products) using this:
doc.root = xmldoc.root

The root element properties contain the information about the element itself. As we’ve
already mentioned, text holds the character data in an element, and attributes are the
attributes defined in the tag. A list of subelements can be found in the elements property,
which is actually an array. You can access the first subelement within the root element
using this:

el1 = docroot.elements[1]

Incidentally, an interesting artifact of this approach to XML parsing is that printing out a
particular element will dump the element as XML source. For example, if you print out the
first subelement from the root tag, you get this:

<item code='1001'>
<name>Thingy</name>

</item>

This makes REXML one of the best tools for manipulating XML documents, especially if
you are trying to bond together the XML source of a number of elements into a single XML
document.

The XPath Access Mechanism
The XPath part of the solution makes accessing the elements within the XML document
much easier than a traditional event-driven or even DOM-based parser. To use the XPath
interface is simplicity itself. For example, to get a list of all the subelements, you need to do is
access the elements property of the parent element. The each() method accepts an XPath
definition that in turn returns a list of all the subelements that it finds.

For example, you can work through all the items using this:
xmldoc.elements.each("*/item") { |element| print element }

which in turn generates this:
<item code='1001'>
<name>Thingy</name>

</item>
<item code='1003'>

Parsing XML

4021ch21.qxd 11/2/01 3:28 PM Page 331

332

<name>Whatsit</name>
</item>
<item code='1002'>
<name>Doohickey</name>

</item>

You can also use XPath to access a specific element. For example, to extract the element
with a code attribute matching 1001, you would use this:

doc.root.elements["[@code='1001']"]

A list of the fully supported XPath constructs is shown in Table 21.1.

TABLE 21.1: XPath Constructs Supported by REXML

Construct Description

/ root element.

. Self.

.. Parent element.

* All child elements.

// All document elements.

//child All child elements in document matching child.

parent//child All child elements of the element parent.

parent/child All child elements of parent.

[...] All predicates (attribute, index, or text) matching supplied text. You can prefix a spe-
cific element with @; for instance, to search for an attribute match use @attribute.

[...][...] Compound predicates.

element Child element element.

Building a To-Do List
To demonstrate how easy it is, let’s look at a simple to-do list manager that uses XML to store
a list of the to-do items and their status. The basic format of the XML document is this:

<todo>
<idseq>5</idseq>
<item id='1'>
<description>Call Mike</description>
<status>Done</status>

</item>
</todo>

Chapter 21 • XML and Ruby

4021ch21.qxd 11/2/01 3:28 PM Page 332

333

The idseq tag holds the sequence number of the ID attribute of each individual to-do list
item, and obviously it needs to be updated each time you add a new entry. The description
and status tags should be self explanatory.

Showing the To-Do List
Actually dumping a list of all the to-do list items in the XML document is simply a case of

iterating over all the item elements and extracting the description, to get the information
about the item itself, and an ID number, which you’ll need when you want to mark a to-do
item as completed. The script for doing this is shown in Listing 21.1.

➲ Listing 21.1 Getting the List of Things to Do

require "rexml/document"
file = File.open("todo.xml","r")
doc = REXML::Document.new file
doc.elements.each("todo/item") { |item|

if item.elements["status"].text == "Open" then
printf("%03d -> %s\n",

item.attributes["id"],
item.elements["description"].text)

end
}

The script works very simply: You call each on the document elements with an XPath
specification to get a list of all the items. For each item, you check the status element text
and display the information only if the item is marked Open. Then you use printf to print
out the id attribute and the description element text.

The following is the result of running this on a previously built XML file:
$ ruby todo.rb
001 -> Call Mike
002 -> Call Sharon
003 -> Complete XML chapter
004 -> Check Ruby XML-RPC
005 -> Write Ruby XML Adding Script

Conveniently, the last item leads us on to the next task—building a script that allows us to
add information to the to-do list.

Adding to the To-Do List
Because the REXML system turns a document into a series of objects, you can also produce
an XML document by creating a series of objects, which can then be dumped as XML. You
already know that when you print an REXML::Element object, you get a textual version of the
object in XML.

Parsing XML

4021ch21.qxd 11/2/01 3:28 PM Page 333

334

To create a brand new element:
todoitem = REXML::Element.new "item"

To set any character data, just assign a value to the text property:
todoitem.text = "Some other item text"

You can add attributes to the element by setting the attributes property:
todoitem.attributes["id"] = 4

To add a subelement, you can use the add_element() method:
tododesc = todoitem.add_element "description"

The following adds a subelement with attributes:
product = products.add_element "product", {"code" => "1001"}

Alternatively, you can create the subelements and then append them to the element list for
the parent:

todoitem = REXML::Element.new "item"
tododesc = REXML::Element.new "desc"
todostat = REXML::Element.new "stat"
todoitem << tododesc
todoitem << todostat

For the to-do list manager, there are six steps to the process:

1. Read the existing document.

2. Create the new to-do element and its children.

3. Add the new to-do element to the parent element.

4. Rename the old file.

5. Write the new XML document to a new file.

6. Delete the old file.

The script for doing this in Ruby is shown in Listing 21.2.

➲ Listing 21.2 Giving Ourselves More to Do

require "rexml/document"
include REXML
require "ftools"

file = File.open("todo.xml","r")
doc = REXML::Document.new file
file.close

Chapter 21 • XML and Ruby

4021ch21.qxd 11/2/01 3:28 PM Page 334

335

description = Element.new "description"
description.text = ARGV.join(" ")
status = Element.new "status"
status.text = "Open"

seqid = doc.elements["todo/idseq"].text
doc.elements["todo/idseq"].text = (seqid.to_i+1).to_s

todoitem = Element.new "item"
todoitem.attributes["id"] = seqid
todoitem.elements << description
todoitem.elements << status

doc.root.elements << todoitem

File.move("todo.xml","todo.xml.bak")
outfile = File.new("todo.xml","w")
doc.write outfile
outfile.close
File.unlink("todo.xml.bak")

print "Todo list:\n"
doc.elements.each("todo/item") { |item|

if item.elements["status"].text == "Open" then
printf("%03d -> %s\n",

item.attributes["id"],
item.elements["description"].text)

end
}

The process of the script is quite straightforward. You read in the existing document and
then take the entire content of the command line as the words to make up the new to-do item.

The new item needs a new ID number, and you use the value from the idseq XML tag.
This value should always contain the next value to be used so that you can use its current
value when you create the new to-do item. You can access that directly using this:

seqid = doc.elements["todo/idseq"].text

You also need to update the seqid item, which means converting it to an integer and writ-
ing back the new number into the idseq tag. All string objects in Ruby can be converted to
an integer using the to_i() method, and the result of the calculation, which is a numeric
object, needs to be converted back to a string so that it can be written into the idseq tag. As
with the string, you use a method, to_s(), to create a string version of the number:

doc.elements["todo/idseq"].text = (seqid.to_i+1).to_s

The final aspects of the script are simply to create the elements, create the compound item
element, and then add that to the list of subelements of the root todo element.

Parsing XML

4021ch21.qxd 11/2/01 3:28 PM Page 335

336

Then you just dump the contents of the document back out as XML to a new file; rename
and then delete the old one. The final stage is to output the new to-do list.

For example, you can add a new item using this:
$ ruby todoadd.rb Write Ruby XML completion script
Todo list:
001 -> Call Mike
002 -> Call Sharon
003 -> Complete XML chapter
004 -> Check Ruby XML-RPC
005 -> Write Ruby XML Adding Script
006 -> Write Ruby XML completion script

Marking an Item Completed
To mark an item as completed, you need to update the status tag character data with Done
instead of the default Open. The basics are identical to adding a new item; you find the entry
you are looking for (with the item id attribute) and set its text, then you repeat the XML
dumping as text procedure to write the new document before printing the to-do list sum-
mary again. The full script is shown in Listing 21.3.

➲ Listing 21.3 Crossing an Item Off the List

require "rexml/document"
require "ftools"
file = File.open("todo.xml","r")
doc = REXML::Document.new file

for id in ARGV
idstr = sprintf("todo/item[@id='%s']",id)
doc.elements.each(idstr) { |item|

item.elements["status"].text = "Done" }
end

File.move("todo.xml","todo.xml.bak")
outfile = File.new("todo.xml","w")
doc.write outfile
outfile.close
File.unlink("todo.xml.bak")

print "Todo list:\n"
doc.elements.each("todo/item") { |item|

if item.elements["status"].text == "Open" then
printf("%03d -> %s\n",

item.attributes["id"],
item.elements["description"].text)

end
}

Chapter 21 • XML and Ruby

4021ch21.qxd 11/2/01 3:28 PM Page 336

337

The script allows you to mark multiple items in the to-do list as completed just by supply-
ing multiple IDs on the command line. For example, you now know that items 5 and 6 from
the list are completed, so you can mark them as such using this:

$ ruby todocomp.rb 5 6
Todo list:
001 -> Call Mike
002 -> Call Sharon
003 -> Complete XML chapter
004 -> Check Ruby XML-RPC

Ruby and XML-RPC
The XML-RPC solution for Ruby is written by Michael Neumann and is called xmlrpc4r.
Like the other XML-RPC solutions that you’ve seen in this book, the actual interface is
about as simple as it can be, providing a transparent and natural interface for communicating
with a remote server.

NOTE You’ll need Ruby 1.6.5 (from http://www.ruby-lang.com), NQXML (from http://
www.io.com/~jimm/downloads/nqxml/index.html) and the latest xmlrpc4r distribu-
tions (from http://www.fantasy-coders.de/ruby/xmlrpc4r/). Trying to install earlier
versions if either doesn’t work because of the installation script used in xmlrpc4r.

We’ll have a quick look at the processes behind creating a client to access both CGI and
stand-alone services. We’ll also look at the mechanics of building a stand-alone server to ser-
vice requests.

XML-RPC Client
The client side of the process with xmlrpc4r is quite straightforward. You create a new client
instance, supplying the server name, directory, and port number (if applicable) of the server
you want to talk to. For example, to connect to the XML-RPC server at UserLand from the
URL http://betty.userland.com:80/RPC2, you’d use this:

require "xmlrpc/client"
server = server = XMLRPC::Client.new("betty.userland.com",

'/RPC2')

Then you use the call method on the new object to call a particular procedure, using the
first argument as the name of the procedure that you want to call and separating a procedure
and namespace with a period. Additional arguments to call are then used as the arguments
to the remote procedure. You can see an example of the UserLand U.S. state name client in
Listing 21.4.

Ruby and XML-RPC

4021ch21.qxd 11/2/01 3:28 PM Page 337

338

➲ Listing 21.4 Getting U.S. States by Number from UserLand

require "xmlrpc/client"

server = XMLRPC::Client.new("betty.userland.com", '/RPC2')

result = server.call("examples.getStateList",
[1, 12, 34, 50])

print "States: ", result, "\n"

You can see from this that you’ve supplied a single array as the first argument. The result
that you get back is a string in this case, but xmlrpc4r supports string, array, hash, and object
types in return values. The result of the script can be seen here:

$ ruby xmlrpcstate.rb
States: Alabama,Idaho,North Dakota,Wyoming

XML-RPC Server
The XML-RPC server implementation is also very straightforward. In fact, all you have to
do is create the server either as a stand-alone or CGI service and then add the functions you
want supported to the new server class.

With this method, you can add support for procedures supported by inline (block) defini-
tions. You can also import methods from a Ruby object instance into a server namespace. You
can see this more clearly from the stand-alone server example in Listing 21.5, which is itself a
modified and slightly tidier version of an example server provided with the source code.

➲ Listing 21.5 An Example Stand-Alone Server in Ruby

require "xmlrpc/server"

class MyMathClass
def subtract(a,b)
a-b

end
def square(a)
a ** 2

end
end

s = XMLRPC::Server.new(8001, "127.0.0.1", 4,
nil, true, true)

s.add_handler("pubmath.add") {|a,b| a+b }
s.add_handler("pubmath.div") {|a,b|

Chapter 21 • XML and Ruby

4021ch21.qxd 11/2/01 3:28 PM Page 338

339

if b == 0
raise XMLRPC::FaultException.new 1, "division by zero"

else
a / b

end
}

s.add_handler(XMLRPC::iPIMethods("pubmath"), MyMathClass.new)

s.serve

The main components are the initial call to create the new server, which accepts the port
number and hostname or IP address. The remaining options set the default options (debug-
ging and logging) and are passed directly on to the underlying HTTP server class, which
accepts and services the requests.

The add_handler() method adds a new remote procedure using code blocks to hold the
actual code that will be executed. The argument you pass is the name of the remote proce-
dure, including its namespace. In this case, both pubmath.add and pubmath.div are added in
this way. The XMLRPC::iPIMethods() will import a series of methods from an object instance
into the supplied namespace, making the methods available to the outside world. Note that
this doesn’t make objects available, but there is nothing to stop you from supporting the capa-
bility to publish the new method and its response to the client.

Finally, you just need to call the serve() method to start the server so that you can process
requests. The client call to access the server is shown in Listing 21.6.

➲ Listing 21.6 Calling the Server

require "xmlrpc/client"

server = XMLRPC::Client.new("localhost", '/RPC2', 8001)

addresult = server.call("pubmath.add", 5, 3)
subresult = server.call("pubmath.subtract", 13.1, 4.5)
divresult = server.call("pubmath.div", 22, 7)

print "Add: ",addresult,"\n"
print "Sub: ",subresult,"\n"
print "Div: ",divresult,"\n"

Error Handling
As you can probably tell from Listing 21.7, you can raise any errors in the requests by return-
ing an instance of the XMLRPC::FaultException class, which accepts two arguments: the error
number and an error message.

Ruby and XML-RPC

4021ch21.qxd 11/2/01 3:28 PM Page 339

340

In the client, this is treated as an exception, and you’ll need to identify any problems by
using a normal begin/end block and the rescue statement to pick up the error.

For example, you should change the client example to the one in Listing 21.7.

➲ Listing 21.7 Error Handling with xmlrpc4r

require "xmlrpc/client"

server = XMLRPC::Client.new("localhost", '/RPC2', 8001)

begin
result = server.call("pubmath.div", 17, 0)
print "17/0 is ", result, "\n"

rescue XMLRPC::FaultException => e
puts "Error:"
puts e.faultCode
puts e.faultString

end

Summary
The Ruby XML parser REXML supports a simplified system for accessing information and
data from an XML document. In essence it is a DOM-based solution that also includes an
XPATH system for extracting information from specific elements and locations within the
document.

As well as allowing easy access to the elements and data within an XML document REXML
also allows us to update and add information to an XML structure and then dump the new
XML structure out to a new file. Using this we can use an XML document as a storage con-
tainer for information adding new records and making modifications to existing records easily.

The XML-RPC solution, xmlrpc4r, provides a simplified interface both for creating
clients and for servicing requests on the server side.

Chapter 21 • XML and Ruby

4021ch21.qxd 11/2/01 3:28 PM Page 340

XML and Tcl

• The TclXML Parser

• Viewing XML with Tk

• XML-RPC with Tcl

Chapter 22

4021ch22.qxd 11/2/01 3:26 PM Page 341

342

T cl has one of the longest histories of dealing with XML of any of the scripting languages,
largely because it was one of the first scripting languages to introduce Unicode support as

an integral part of the language. John Ousterhout and the rest of the Tcl development team
produced one of the best Unicode-handling systems of any language. Even now, Tcl still pro-
vides an excellent base for supporting multiple languages and integrating internationalization
into your scripts; it is an ideal base for translating between the different encoding formats
supported by Unicode.

Tcl’s other advantage is that it provides excellent integration with the Tk GUI develop-
ment system, making it an ideal language for creating cross-platform–compatible scripts with
a consistent GUI whether you are working on Unix, Windows, or Mac OS.

For XML, Tcl provides a single solution called TclXML developed by Zveno Pty Ltd.
TclXML is comparable in functionality to Simple API for XML (SAX) in terms of its speed
and capability.

TclXML is essentially just a suite of tools that provides you with the information you need
to parse XML documents. TclXML supports two different parsers: a parser called TclExpat
that is based on the now-familiar Expat parser (see Chapter 5, “Data Exchange and XML”)
and a native XML parser written entirely in Tcl that is supported directly in the TclXML
extension.

Also available is a layer called TclDOM that sits on top of TclXML. It supports the access
to and modification of XML documents using the Document Object Model (DOM) API
within Tcl. DOM can be a useful way of viewing and manipulating information, especially if
you integrate with the capabilities of the Tk interface-building toolkit, which uses an object-
like interface.

The TclXML Parser
The TclXML parser is based on Expat, which is an event-based parser. In event parsers, dif-
ferent procedures are registered with the parser class when it is created. Then, each time a
different entity is identified within the XML file, the command is called and operates on the
entity information.

For example, if you register procedures for the start and end tags, then when parsing the
XML file

<name backref="00120">Martin C Brown</name>

the parser would call the registered start command once, supplying the tagname and the
attribute list as arguments, and the end procedure once, again supplying the tagname as an
argument.

Chapter 22 • XML and Tcl

4021ch22.qxd 11/2/01 3:26 PM Page 342

343

For example, here you can see a simple handler for a start tag:
proc Start {name attlist args} {

puts "Start: $name"
}

You create a new instance of the XML parser and register the procedures that you want to
use for the different entities using something like the following fragment:

set p [xml::parser -elementstartcommand Start \
-elementendcommand End \
-characterdatacommand CData]

You can configure a number of different XML entities to be identified and handled by set-
ting up different commands to handle them and configuring the parser accordingly. See the
section “Configuring the Parser,” later in this chapter, for more information.

Creating the parser is only part of the story, however. You also need to supply the parser
with some XML for it to process. You do this by using the parse method on the newly cre-
ated parser object. For example

$p parse "<mytag>mydata</mytag>"

You can call this method as many times as necessary in order to supply an entire XML doc-
ument to the parser. The parser will handle—and if necessary bond together—all of the text
in order to build and identify entire entities. Typically, of course, you’ll be reading data from
an external file as we do in our sample scripts by opening the file and embedding an evalua-
tion of the read command on the file.

You can see an example of an XML parser that generates a very simple annotated list of the
start, end, and data portions of the XML document in Listing 22.1.

➲ Listing 22.1 A Simple XML Parser

#!/bin/sh
\
exec tclsh8.3 "$0" "$@"

Import the xml package

package require xml

set up the handler for opening (start)
tags. Must accept the tag name, list
of attributes and a list of additional
arguments

proc Start {name attlist args} {
puts "Start: $name"

}

The TclXML Parser

4021ch22.qxd 11/2/01 3:26 PM Page 343

344

set up the handler for the closing (end)
tags. Must accept the tag name and any
additional arguments

proc End {tag args} {
puts "End: $tag"

}

set up the handler for character data
we ignore data entirely composed of
whitespace characters

proc CData {data args} {
if {![regexp {^[\t\r\n]+$} $data]} {

puts "Data: $data"
}

}

Open each file in the argument list

foreach in $argv {
if {[catch {open $in} ch]} {

puts stderr "unable to open file \"$in\""
exit 1

}

create a new instance of the XML parser

set p [xml::parser -elementstartcommand Start \
-elementendcommand End \
-characterdatacommand CData]

supply the parser with the test we read from
the file, catching (and reporting) any errors

if {[catch {$p parse [read $ch]} err]} {
puts stderr $err
exit 1

}
catch {close $ch}

}

exit 0

The core elements of the script are the procedures that handle the entities as the XML
parser actually sees them. The Start and End procedures are straightforward enough: They
get passed the name of the tag that has just been identified (as well as other information). All
we do is print out the tag with a suitable prefix.

Chapter 22 • XML and Tcl

4021ch22.qxd 11/2/01 3:26 PM Page 344

345

The character data procedure is slightly special. One of the problems with the way the Expat
parser works is that it parses on all information to the procedures. In the case of tags, the
information passed on is what you would expect. For the character data, this means that the
handler may be called a number of times for what appears to you to be a single data block
within the XML file.

Furthermore, because it can be called a number of times, on occasion it will be composed
merely of white space (spaces, tabs, newline/carriage return). So that we don’t end up out-
putting useless data, we check the supplied data first by running it past a regular expression.
Of course, this is an issue only when using Expat; the TclXML parser doesn’t exhibit this
problem.

TIP You can ask the parser to ignore white space by setting the –ignorewhitespace option
on the parser.

If we run the script on a simple XML file, we get the following:
Start: contact
Start: name
Data: Martin Brown
End: name
Start: address
Start: description
Data: Main Address
End: description
Start: addressline
Data: The House, The Street, The Town
End: addressline
End: address
Start: address
Start: description
Data: Holiday Chalet
End: description
Start: addressline
Data: The Chalet, The Hillside, The Forest
End: addressline
End: address
End: contact

Configuring the Parser
You can configure the parser when you create the parser instance, such as the following:

set p [xml::parser -characterdatacommand CData]

The TclXML Parser

4021ch22.qxd 11/2/01 3:26 PM Page 345

346

You also can configure it after the parser has been created by using the configure method,
such as this:

$p configure -elementstartcommand Start

You can see a full list of the configurable options supported by the parser in Table 22.1.The
option is the name of the option that you can configure. The Command Arguments are the
arguments supplied to the command that is evaluated when a particular entity is identified.

TABLE 22.1: Configurable Options for the TclXML Parser

Option Command Arguments Description

-attlistdeclcommand script Defines the command prefix to be eval-
uated whenever an attribute list declara-
tion is encountered within an XML docu-
ment’s DTD.

-baseurl URI The base URI to use when resolving any
relative URIs in the document.

-characterdatacommand script data The command prefix evaluated when any
character data is encountered.

-commentcommand script data The command prefix to be evaluated
when a comment is encountered.

-defaultcommand script data The command prefix to be evaluated
when an entity not otherwise covered by
another configured option.

-defaultexpandinternalentities Boolean If True, resolves entities declared in the
DTD with the expanded version.

-doctypecommand script The command prefix to be evaluated
when a document type declaration is
identified.

-elementdeclcommand script name model The command prefix evaluated when an
element markup declaration is encoun-
tered.

-elementendcommand script name args The command prefix evaluated when an
end tag is identified.

-elementstartcommand script name attributes args The command prefix evaluated when a
start tag is identified.

-endcdatasectioncommand script The command prefix evaluated when the
end of a data section is identified.

-enddoctypedeclcommand script The command prefix evaluated when the
end of the document type declaration is
identified.

-entitydeclcommand script name args The command prefix evaluated when the
entity declaration is encountered.

Continued on next page

name publicid system
id dtd

name attrname type
default value

Chapter 22 • XML and Tcl

4021ch22.qxd 11/2/01 3:26 PM Page 346

347

TABLE 22.1 CONTINUED: Configurable Options for the TclXML Parser

Option Command Arguments Description

-entityreferencecommand script name The command prefix evaluated when an
entity reference is identified.

-errorcommand script errorcode errormessage The command prefix evaluated when a
fatal error is detected. See the “Error
Handling” section, later in this chapter.

-externalentitycommand script name baseuri uri publicid The command prefix evaluated when
an external entity reference is identi-
fied. If the parser is validating the doc-
ument (see the -validate option), then
a default script is supplied that recur-
sively parses the entity’s data.

-final Boolean When data is being supplied to the parser
in multiple chunks, this should be set to
False while there is additional data to
be parsed. When you run out of data,
set it to True to indicate that the final
chunk has been supplied.

-ignorewhitespace Boolean If set to True, then the parser automati-
cally ignores character data segments in
the document that are composed
entirely of white space.

-notationdeclcommand script name uri The command prefix evaluated when a
notation declaration is encountered.

-notstandalonecommand script The command prefix evaluated when
the parser determines that the XML
document requires and/or uses other
documents.

-paramentityparsing Boolean If set to True, then external parameter
entities are parsed.

-parameterentitydeclcommand script name args The command prefix evaluated when a
parameter entity declaration is identified.

-parser name The name of the parser class to use for
this parser object. Only valid when the
parser is created.

-processinginstructioncommand script target data The command prefix evaluated when a
processing instruction is encountered.

-reportempty Boolean If True, then additional arguments are
appended to the element start and end
callbacks to indicate that the element was
empty. Empty elements are ignored oth-
erwise.

Continued on next page

The TclXML Parser

4021ch22.qxd 11/2/01 3:26 PM Page 347

348

TABLE 22.1 CONTINUED: Configurable Options for the TclXML Parser

Option Command Arguments Description

-startcdatasectioncommand script The command prefix evaluated when
the start of the character data section
is identified.

-startdoctypedeclcommand script The command prefix evaluated when a
document type declaration is identified.

-unknownencodingcommand script The command prefix evaluated when a
character using an unknown encoding
format is identified.

-unparsedentitydeclcommand script The command prefix evaluated when a
declaration is identified for an unparsed
entity.

-validate Boolean If set to True, forces the parser to vali-
date the structure of the XML document.

-warningcommand script The command prefix to be evaluated
when a warning condition is raised by
the parser (see the “Error Handling” sec-
tion, later in this chapter, for more infor-
mation).

-xmldeclcommand script The command prefix evaluated when an
XML declaration is encountered.

NOTE Character data can be handled in two ways. If you want only to output the character data
string, then use the -characterdatacommand option. If you want to identify the start and
end of any character data sections—useful when converting XML to another format—use
the -startcdatasectioncommand and -endcdatasectioncommand options. Note that,
when using the latter option, you still need to use -characterdatacommand to obtain the
character data.

Error Handling
The simplest way to handle errors is to catch any errors generated during the parsing process
using a catch statement. However, you may want to handle the errors a bit more exclusively.
The best way of handling errors is to set up a callback to be triggered when an error occurs.
To use this method you’ll need to set call-back either as part of the options supplied when the
parser is created or afterwards using the configure command.

version encoding
standalone

warningcode
warningmessage

systemid publicid
notation

Chapter 22 • XML and Tcl

4021ch22.qxd 11/2/01 3:26 PM Page 348

349

The parser handles two different error conditions:

● Warnings occur when an XML document has not been created properly, such as when an
empty element is used but not declared. The default command for the -warningcommand
option silently ignores any problems.

● Errors are raised when the document is not well-formed; that is, when tags do not match
(or there is no closing tag) or the nesting is bad. Errors can be trapped by creating a com-
mand and setting the -errorcommand option to the parser. The default command set for
errors hands back an error response to the caller.

To define a command for either of these options, you must create a command that accepts
two arguments, the errorcode (numerical) and the error message (a textual description).
How you handle this information is up to you.

If you want your commands to raise an error with the parser, then you can return an error
from your handlers. For example, when translating your XML documents into HTML, you
may want to raise an error if a tag is identified in the XML document without a matching
conversion. The supported return codes and their effects are listed in Table 22.2.

TABLE 22.2: Command Statements for Handlers

Code Description

break Terminates parsing of the XML document, suppressing the invocation of any further
entity-handler commands. The parse method returns the TCL_OK return code.

continue Stops invocation of callback handlers until the current element has finished.

error Terminates the XML processing immediately. The parse method also returns the
TCL_ERROR return code.

default Any other return code suppresses invocation of all further callback scripts. The parse
method returns the same return code.

Tcl and Unicode
The TclXML parser will read Unicode encoded documents directly, so you need to identify
or display either entities or character data. Then you will need to be able to translate
between Unicode formats.

Tcl 8.1 and after includes the encoding command, which will convert strings between the
different encoding formats for you. See the following sidebar for information on determin-
ing which encodings are supported by your system.

The TclXML Parser

4021ch22.qxd 11/2/01 3:26 PM Page 349

350

Supported Encodings
To determine which encodings are supported by your Tcl installation, use the following:

lsort [encoding names]

This will produce a list of the available encodings. See Appendix A, “Unicode Quick Refer-
ence,” for information on what each of these encodings means. For example, on my Solaris
system running Tcl 8.3, the list is as follows:

ascii big5 cp1250 cp1251 cp1252 cp1253 cp1254 cp1255 cp1256 cp1257 cp1258

➥ cp437cp737 cp775 cp850 cp852 cp855 cp857 cp860 cp861 cp862 cp863 cp864

➥ cp865 cp866 cp869 cp874 cp932 cp936 cp949 cp950 dingbats euc-cn euc-jp

➥ euc-kr gb12345 gb1988 gb2312 identity iso2022 iso2022-jp iso2022-kr iso8859-1

➥ iso8859-2 iso8859-3 iso8859-4 iso8859-5 iso8859-6 iso8859-7 iso8859-8

➥ iso8859-9 jis0201 jis0208 jis0212 koi8-r ksc5601 macCentEuro macCroatian

➥ macCyrillic macDingbats macGreek macIceland macJapan macRoman macRomania

➥ macThai macTurkish macUkraine shiftjis symbol unicode utf-8

The encoding function supports a number of different options:
encoding convertfrom ?encoding? data

This converts data to Unicode format from the specified encoding. For example, the fol-
lowing would convert the ASCII string into Unicode format:

set s [encoding convertfrom ascii "Hello World"]

The convertto option translates a bytestring from Unicode format into the specified
encoding.

encoding convertto ?encoding? string

In both cases, the system encoding is used if the encoding format is not specified. You can
set the system encoding using this command:

encoding system ?encoding?

Note that modifying the system encoding may affect the names of commands you evaluate,
because the system encoding is used for command names. Using a non-ASCII–compatible
system encoding is not recommended.

Chapter 22 • XML and Tcl

4021ch22.qxd 11/2/01 3:26 PM Page 350

351

Viewing XML with Tk
An obvious use of Tcl (in combination with the Tk GUI builder) is to develop an application
that enables us to view an XML document marked up so that we can identify start and end
tags in the document more easily. We don’t really need to do anything clever here—we’re
not checking the validity of the document in any way. We just need an easier way to view the
contents.

You can see a sample of the script in action in Figure 22.1. Start tags are identified by col-
oring them red; end tags are blue. Character data is left untouched, but all the elements are
indented according to the structure, so you can also identify the nesting and document
structure.

The code that generated the viewer is shown in Listing 22.2.

F I G U R E 2 2 . 1 :
Viewing an XML docu-
ment with Tcl/Tk

Viewing XML with Tk

4021ch22.qxd 11/2/01 3:26 PM Page 351

352

➲ Listing 22.2 The Tcl/Tk XML Viewer

#!/bin/sh
\
exec wish8.3 "$0" "$@"

set up our main Tk window

wm title . "XML Viewer"

Set up our global variables
indent holds the indentation value
tagnumber keeps track of the text paragraphs
input contains the name of the XML file

set indent 0
set tagnumber 0
set input [lindex $argv 0]

Set up the button bar at the top
Contains a Quit button and
a Reparse button to re-read the XML
and the name of the file

set bf [frame .menubar]
pack $bf -fill x
button $bf.quit -text Quit -command exit
button $bf.parse -text Re-ParseXML -command ParseXML
label $bf.label -textvariable input
pack $bf.quit $bf.parse -side left
pack $bf.label -side right -fill x -expand true

Set up the main textbox to hold our XML

set tf [frame .text]
pack $tf -side top -fill both -expand true
set t [text $tf.t \

-setgrid true \
-wrap word \
-width 80 \
-height 40 \
-yscrollcommand "$tf.sy set"]

scrollbar $tf.sy -orient vert -command "$tf.t yview"
pack $tf.sy -side right -fill y
pack $tf.t -side left -fill both -expand true

Create two tags to markup the start and end
enetities without our XML file

Chapter 22 • XML and Tcl

4021ch22.qxd 11/2/01 3:26 PM Page 352

353

$t tag configure opentag -foreground #ff0000
$t tag configure closetag -foreground #0000ff

Import the XML parser

package require xml

The start handler accepts the XML tag name
and outputs the tag, formatted, to the text box

proc Start {name attlist args} {
global t indent tagnumber

Increment the paragraph number so we can set the tag
incr tagnumber

Add the XML tag to the text box, using the current
indentation

$t insert end [format "%*s%s\n" $indent "" "<$name>"]
Set the style of the paragraph that we just added

$t tag add opentag \
[eval format "%0.1f" $tagnumber] \
[eval format "%d.end" $tagnumber]

Now increase the indent so that any nested tag or
character data appears to be within this tag

incr indent 2
}

The end handler accepts the XML tag name
and outputs the results to the text box
But we mark it with a different text color
and decrement the indentation so that
tags line up

proc End {name args} {
global t indent tagnumber

Decrment the indent, to bring the end tag into
line with the opening tag

incr indent -2
Increment the paragraph number

incr tagnumber
Add the tag to the text box

$t insert end [format "%*s%s\n" $indent "" "</$name>"]
Set the style of the previous paragraph

$t tag add closetag \
[eval format "%0.1f" $tagnumber] \
[eval format "%d.end" $tagnumber]

}

The character data handler adds the data (except
whitespace) to the text box

Viewing XML with Tk

4021ch22.qxd 11/2/01 3:26 PM Page 353

354

proc CData {data args} {
global t indent tagnumber

Check were dealing with a valid text block
if {![regexp {^[\t\r\n]+$} $data]} {

Increment the indentation
incr indent 2

Increment the paragraph number to keep the
paragraph numbers in check

incr tagnumber
Add the text to the text box, using the indent

$t insert end [format "%*s%s\n" $indent "" $data]
Decrement the indent

incr indent -2
}

}

Set up the parser. Since this is the same procedure
called when we click on the Re-ParseXML button
we also reset the indentation, paragraph numbers
and the contents of the text box

proc ParseXML {} {
global input t tagnumber indent
set tagnumber 0
set indent 0
$t delete 0.0 end
if {[catch {open $input} ch]} {

puts stderr "unable to open file \"$input\""
exit 1

}
set p [xml::parser -elementstartcommand Start \

-elementendcommand End \
-characterdatacommand CData]

if {[catch {$p parse [read $ch]} err]} {
puts stderr $err
exit 1

}
catch {close $ch}

}

Call the ParseXML procedure and start processing the file
supplied on the command line

ParseXML

The script actually builds on our simple parser example earlier in this chapter. Before we
get to the actual parsing of the XML we set up a simple window with a few buttons and a
main text box to hold the XML.

Chapter 22 • XML and Tcl

4021ch22.qxd 11/2/01 3:26 PM Page 354

355

We then use the text tags feature in a Tk text box to mark up the start and end tags as we
see them in the XML document. To ensure that we mark up the right element, we have to
keep a count of the paragraphs that we write to the text widget (in the tagnumber variable).
To aid display, we also indent the structure like a tree (using the indent variable).The appli-
cation was designed as an active viewer for XML documents while editing the XML docu-
ment in another application. You can reparse the document and redisplay XML by clicking
on the Re-ParseXML button. It’s not perfect—supply an XML document that has multiple
linefeeds/paragraphs in a character data block and the numbering goes awry, but it’s a great
way to view a basic XML document.

Using XML-RPC
Back in Chapter 5, we looked at XML-RPC, a solution for executing functions, proce-
dures, and commands on a remote machine using a standard interface. The system is cross-
platform and cross-language compatible, and it’s all made possible because the request to
the remote machine and its response to the client are handled entirely using XML.

When you submit a request, it’s packaged into an XML document, which is then sent over
your desired transport (TCP/IP and usually HTTP). The whole process is then reversed
when sending back the response. Because the request and response are in XML, we can use
any XML-capable language.

There are a few XML-RPC solutions available for Tcl, but the one with the easiest inter-
face is the XML-RPC Tcl toolkit written by Eric Yeh.

Writing an XML-RPC Client
The client interface for calling a remote procedure is not that different from evaluating a
local procedure. In fact, we can dissect the line that performs the call very simply, as in the
following line, extracted from our full client sample:

[xmlrpc::call "http://localhost:5557" "bond" {{string Cats} {int 101}}]

The first part is just the command xmlrpc::call, which submits the request to the remote
server. The first argument to the call is the URL we want to use to answer queries. In this
instance, we’re using a server running on port 5557 on the local machine.

The next argument, bond, is the name of the remote function that we want to call. The last
argument is a list of the arguments that we want to supply to the remote procedure as part of
the call. In this example, we’ve supplied a string and an integer. Note that you must type these
values explicitly so that the XML-RPC package knows how to mark up the values when it
builds the request envelope sent to the server.

Using XML-RPC

4021ch22.qxd 11/2/01 3:26 PM Page 355

356

You can see the full server, which includes error checking and the reporting of the
response, in Listing 22.3.

➲ Listing 22.3 A Simple XML-RPC Client in Tcl

package require xmlrpc
if {[catch {set res [xmlrpc::call "http://localhost:5557" "bond"
➥ {{string Cats} {int 101}}]}]} {

puts "xmlrpc call failed"
} else {

puts "Join: $res."
}

if {[catch {set res [xmlrpc::call "http://localhost:5557" "circlearea"
➥ {{int 2}}]}]} {

puts "xmlrpc call failed"
} else {

puts "Area of circle: $res."
}

If you execute this script while running the server—which we’ll see shortly—you get the
following output:

Join: {} Cats101.
Area of circle: {} 12.566370616.

Although these seem like fairly simple examples (and they are), the flexibility of XML-
RPC cannot be underestimated. We’ve run a couple of commands on a local machine, but
the server could just as easily have been on the other side of the world. In fact, we could have
been calling the remote procedures on an embedded system inside a soft drink machine.

Writing an XML-RPC Server
The XML-RPC server handles requests from a given client. The server needs to set up only
two pieces of information: the port on which it will accept requests from a client and the one
or more functions that you want to support remotely. The XML-RPC toolkit handles the
rest of the process; you don’t have to register the commands separately that you want to sup-
port, as you do with some toolkits.

For example, Listing 22.4 shows a very simple client that supports two commands: bond,
which bonds two arguments into a single string, and circlearea, which calculates the area of
a circle if given the radius.

Chapter 22 • XML and Tcl

4021ch22.qxd 11/2/01 3:26 PM Page 356

357

➲ Listing 22.4 A Simple XML-RPC Server in Tcl

package require xmlrpc

xmlrpc::serve 5557

proc circlearea {r} {
return [list string [expr 3.141592654 * ($r * $r)]]

}

proc bond {a b} {
return [list string ab]

}

vwait forever

The primary line sets up a daemon-based XML-RPC server on TCP/IP port 5557. Then
we define two commands, which will be those supported and accessible by any remote clients.

Arguments to commands are supplied and accessible as normal. However, when returning
information, you must ensure that you return a list of items. Each item within the returned
list should also be typed explicitly (through int(), double(), or string()) before being
returned. For example, you can see in Listing 22.4 that the result of the area calculation is
converted explicitly into a double during its calculation and return.

Finally, we set the server to wait for incoming connections forever. The server will handle
all connections until either a fatal error or you terminate the process. During execution, the
server will display diagnostic information, including the client host and port and the XML-
RPC–encoded envelope returned to the client.

For example, the abbreviated snippet that follows is produced when running our client script.
in serveOnce: addr: 127.0.0.1
in serveOnce: port: 41179
in doRequest: response:
HTTP/1.1 200 OK
Content-Type: text/xml
Content-length: 142

<?xml version="1.0"?>
<methodResponse>

<params>
<param>

<value><string>Cats101</string></value>
</param>

</params>
</methodResponse>
...

Using XML-RPC

4021ch22.qxd 11/2/01 3:26 PM Page 357

358

As you can see, both the client and the server are very easy to write. In fact, this is one of
the easiest implementations of the XML-RPC system of any of the languages covered in
this book.

See Chapter 5 for more information on how XML-RPC works and how to debug the
information shown in the above output.

Summary
Although Tcl is a very useful language in its own right, it really comes into its own when you
combine the language with the Tk user interface builder.

The Tcl system supports two main XML parsers: TclXML, which parses documents using
an XML parser written entirely in Tcl, and TclExpat, which uses the popular Expat parser
system to process the XML document.

In both cases, the system works by passing off the individual elements to a Tcl command.
It’s up to these commands to process the information, whether it’s simply printing out the
information or formatting it in a more structured form, such as the Tk XML viewer.

Tcl also supports the XML-RPC system for executing remote procedures. By supporting
an HTTP service, a Tcl server script can service requests from a Tcl client, enabling the
client to execute commands directly on the server and obtain responsses.

Chapter 22 • XML and Tcl

4021ch22.qxd 11/2/01 3:26 PM Page 358

AppleScript and XML

• XML Parsing with AppleScript

• XML-RPC with AppleScript

• XML and MacOS X

Chapter 23

4021ch23.qxd 11/2/01 3:24 PM Page 359

360

A ppleScript is the scripting system built into MacOS. Although it’s not most people’s first
choice for parsing XML documents, it’s actually remarkably capable at processing and

working with XML documents.

Also, because it’s the standard scripting language for communicating with many of the vari-
ous systems and applications under MacOS, we can use it to integrate the applications and
XML documents that they would otherwise not understand.

XML support for AppleScript is available only through a third-party extension available
from Late Night Software (http://www.latenightsw.com/freeware/XMLTools2/index.html).
They also provide an XML-RPC extension (http://www.latenightsw.com/freeware/
XMLTools2/xml-rpc.html) that we’ll be looking at in this chapter.

When using MacOS X, we still need to use the Late Night Software solution for Apple-
Script when parsing XML, but support for both XML-RPC and SOAP solutions is actually
built into the operating system. MacOS X will automatically encode a request into the desired
XML format for you and send it to a destination, decoding the result.

In this chapter, we’ll be looking at the basic mechanics for parsing XML using AppleScript
and how to generate XML documents from within AppleScript. We’ll also be looking at XML-
RPC in MacOS before moving on to look at how MacOS X uses XML and how to use
XML-RPC and SOAP within MacOS X to access remote servers.

XML Parsing with AppleScript
Once you’ve downloaded XML Tools from Late Night Software’s website, you need to install
the tools by copying the XML Tools AppleScript extension in the ScriptingAdditions folder
in your System folder. This is seen with some other extensions in Figure 23.1.

To actually parse some XML, you use this expression:
parse XML XMLSOURCE

XMLSOURCE is a text object containing the source of the document you want to parse. The
return value from the call is an XML Document class structure. Normally you’d use this infor-
mation with set to put the class structure into a variable that you can conveniently use and
process later.

Chapter 23 • AppleScript and XML

4021ch23.qxd 11/2/01 3:24 PM Page 360

361

For example, to parse this simple XML:
<simple>
Wrapper text
<paragraph book='Fox' chapter='16'>
The Quick Brown Fox
</paragraph>
</simple>

you might use this:
set theXML to parse XML "
<simple>
Wrapper text
<paragraph book='Fox' chapter='16'>

The Quick Brown Fox
</paragraph>
</simple>

F I G U R E 2 3 . 1 :
The Scripting-
Additions folder

XML Parsing with AppleScript

4021ch23.qxd 11/2/01 3:24 PM Page 361

362

You can also parse text strings:
set theXMLSource to "
<simple>
Wrapper text
<paragraph book='Fox' chapter='16'>
The Quick Brown Fox
</paragraph>
</simple>"

set theXML to parse XML theXMLSource

You can parse information read from a file using this:
set theXML to parse XML (read file ("sample.xml"))

Note that AppleScript will try to load this from the AppleScript folder on your machine. If
you want to load from a specific location you’ll need to specify the location explicitly.

The result is an AppleScript structure containing our XML as a series of objects and properties:
{

class: XML document,
XML tag: "simple",
XML contents:{

"Wrapper text",
{

class: XML element,
XML tag: "paragraph",
XML attributes: {

book: "Fox",
chapter: "16"

}
XML contents: {

"The Quick Brown Fox"
}

}
}

}

We can access this information using the standard record access techniques. Note that the
information here is stored by name, so you must access the XML tag by its name. Notice also
that attributes are stored as properties within the XML attributes entity.

It’s also important to note that you must process nested structures directly—unlike the
other serial XML parsers such as SAX and those built on most Expat bases that we’ve seen
elsewhere in this book. Instead, we’ve basically created a DOM tree from an XML document
that we can access directly within AppleScript.

Also note that we’ve create a new structure based on our XML that, unlike the other solu-
tions we’ve seen in this book, we can’t identify when we reach the end of a particular XML

Chapter 23 • AppleScript and XML

4021ch23.qxd 11/2/01 3:24 PM Page 362

363

tag. Although initially this looks like a problem, it actually makes the processing sequence
easier. Instead of having to identify the end of an XML tag using a separate function, we can
identify it when we finish processing that tag’s content. We also get to access the entire con-
tent of an XML tag without jumping through the hoops we’ve used in other solutions using
SAX or even DOM processing—we don’t have to process the entire document to extract a
single piece of information.

Parsing Quick Reference
The XML Tools parser, you may not be surprised to discover, is based on the Expat parser
that is the basis of so many other parsing interfaces we’ve covered in this book. Because of
this, the parser is completely Unicode compliant and should process Unicode text in most of
the standard forms without any problems.

The parse XML statement accepts a number of different parameters that control the pars-
ing process. A list of these parameters is shown in Table 23.1. All the parameters are optional,
and the table includes data types and default values for each of the supported parameters.
Most of these correspond to similar parameters supported in other Expat interfaces.

TABLE 23.1: parse XML Parameters

Parameter Data type Default Description

boolean false Raises an error, trappable through the try statement, if the
XML that is being parsed is not entirely standalone.

boolean false When true, it triggers the XML Tools to use the URL
Access Scripting extensions to download and parse any
external entities referenced in the document.

boolean false When true, includes any comments from the XML file within
an XML comment record. See the example in the main text.

boolean false When true, it causes XML processing instructions to be
incorporated into the resulting XML document record within
an XML processing instruction record. See the example
in the main text.

serializing boolean default When enabled, it automatically adds an id property to the
XML attributes record of each XML tag within the result-
ing record. See the main text for an example.

base path Unicode text none If supplied, it’s used as the base URL for all the external
entity IDs. For example, specifying http://www.mcwords
.com/dtds/ would cause this URL to be used as the prefix
for any implied entity requests.

boolean false When true, it causes any white space (carriage returns,
newlines, and tabs) to be included in the character data.
The default is for this information to be trimmed from the
data when the XML is parsed.

preserving
whitespace

including
processing
instructions

including
comments

expanding
external
entities

strict
standalone

XML Parsing with AppleScript

4021ch23.qxd 11/2/01 3:24 PM Page 363

364

For example, with including comments, the code in Listing 23.1 would produce the record
in Listing 23.2. You can see how the comments become part of the XML document record.

➲ Listing 23.1 Simple XML with Comments

parse XML "
<theory>

Here is my theory:
<!-- Here is the theory which is mine and that I have written -->
My theory is:

</theory>" with including comments

➲ Listing 23.2 An XML document Record with Comments

{
class:XML document,
XML tag:"theory",
XML contents:{

" Here is my theory:",
{

class:XML comment,
XML comment:" Here is the theory which is mine and that I have

written "
},
"My theory is:"

}
}

You might notice that the comment actually includes any white space between the <!--
and --> sequences.

When we include processing instructions, the information is placed into a special XML pro-
cessing instruction class within the tag in which the processing instruction was created.
For example, when executing the script in Listing 23.3, we get a record with the structure
shown in Listing 23.4.

➲ Listing 23.3 Simple XML with a Processing Instruction

parse XML "
<theory>

My theory is:
<?linebreak 'with horizontal'?>
Brontosaurses are very thin at one end, thicker in
the middle, and thin at the other end.

</theory>" with including processing instructions

Chapter 23 • AppleScript and XML

4021ch23.qxd 11/2/01 3:24 PM Page 364

365

➲ Listing 23.4 An XML document Record with processing instruction

{
class:XML document,
XML tag:"theory",
XML contents:{

"My theory is:",
{

class:XML processing instruction,
XML target: "linebreak",
XML target data: "with horizontal"

},
"Brontosaurses are very thin at one end, thicker ➥
in the middle, and thin at the other end.",

}
}

You can see from Listing 23.4 how the XML processing instruction class includes sepa-
rate properties for the processing instruction’s target and target data.

When using the serializing function, we get a more useful unique ID number for each
tag in the output, as demonstrated from the XML in Listing 23.5 and the resulting record in
Listing 23.6.

➲ Listing 23.5 Simple XML with Serialization

parse XML "
<simple>
Wrapper text
<paragraph book='Fox' chapter='16'>
The Quick Brown Fox
</paragraph>
</simple>" with serializing

➲ Listing 23.6 An XML document Record with a Serialized ID

{
class: XML document,
XML element id: 1

,
XML tag: "simple",
XML attributes: {

id: 2
},

XML Parsing with AppleScript

4021ch23.qxd 11/2/01 3:24 PM Page 365

366

XML contents:{
"Wrapper text",
{

class: XML element,
XML element id: 1,
XML tag: "paragraph",
XML attributes: {

book: "Fox",
chapter: "16",
id: 1

}
XML contents: {

"The Quick Brown Fox"
}

}
}

}

The resulting output in Listing 23.6 shows the ID number in place within the record. We
can use this information if we decide to restructure the document but still need to refer to
earlier elements. All we need to do is search for an element by a given ID number, rather
than by its name, to update the contents.

Processing an RSS Feed to HTML
We can use the XML parser in combination with the URL Access Scripting extension (a
standard part of the OS) to download and parse RDF/RSS news summary files from websites
into an HTML document. We can use that document in Internet Explorer or Netscape Nav-
igator to browse and link to the stories.

For our example, we’ll use the Macintosh News Network site (http://macnn.com), which
publishes an RSS feed at http://www.macnn.com/macnn.rdf. A fragment of the resulting RSS
feed can be seen in Listing 23.7.

➲ Listing 23.7 The MacNN RDF File

<?xml version="1.0" encoding="ISO-8859-1" ?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22➥
-rdf-syntax-ns#" xmlns="http://my.netscape.com/rdf/simple/0.9/">

...
<item>
<title>Apple to introduce new iBooks, PowerBooks</title>
<link>http://www.macnn.com/news.php?id=9900</link>
</item>

<item>
<title>Media 100 completes $16M sale to Discreet</title>
<link>http://www.macnn.com/news.php?id=9904</link>
</item>

<item>
<title>Adobe reaffirms earnings, despite 9-11 attack</title>
<link>http://www.macnn.com/news.php?id=9903</link>
</item>

</rdf:RDF>

We’ve already looked at the structure of an RSS or RDF feed when we looked at a PHP
script for formatting RSS/RDF data within a PHP application. To recap, the header includes
information about the site itself (trimmed from Listing 23.7) and links to the site from which
the RSS/RDF feed was downloaded. Then individual stories are contained within item tags
with the story title and corresponding URL in title and link tags, respectively.

Using this information, we can quickly produce an AppleScript that downloads the RDF
file and then processes the output to produce an HTML file (after prompting you for the
location and filename). The RSS file is then processed, the required elements extracted, and
the HTML written to the HTML file of your choice. You can see the AppleScript source in
Listing 23.8.

➲ Listing 23.8 Downloading and Converting an RSS to HTML

on loadxml()
local infile, fileRef, theXMLSource, theXML

tell application "Finder"
set theFolder to temporary items folder as string
if exists file "macnn.xml" of temporary items folder then ¬
delete file "macnn.xml" of temporary items folder

end tell
tell application "URL Access Scripting"
activate
download "http://www.macnn.com/macnn.rdf" to file (theFolder & "macnn.xml")

with progress
quit

end tell

XML Parsing with AppleScript

4021ch23.qxd 11/2/01 3:24 PM Page 367

368

set theXML to parse XML (read file (theFolder & "macnn.xml"))

return theXML
end loadxml

on writeFile(outFileRef, theData)
write theData to outFileRef

end writeFile

on openDestFile(outFile)
local outFileRef

set outFileRef to open for access outFile with write permission
try
set eof outFileRef to 0
write "<html>
<head><title>Latest News</title></head>
<body bgcolor=\"#ffffff\" fgcolor=\"#000000\">
<h1>Latest News</h1>" to outFileRef

on error errMsg number errNumber
close access outFileRef
error errMsg number errNumber

end try
return outFileRef

end openDestFile

local theXML, theOutFile

set outFile to choose file name
set theXML to loadxml()
set theOutFile to openDestFile(outFile)

repeat with anElement in XML contents of theXML
set theText to XML tag of anElement
if XML tag of anElement is "item" then
repeat with itemElement in XML contents of anElement
if XML tag of itemElement is "title" then
set theText to XML contents of itemElement as string
writeFile(theOutFile, "" & theText & "")

else if XML tag of itemElement is "link" then
set theText to XML contents of itemElement as string
writeFile(theOutFile, " Read

Story
")
end if

end repeat
end if

end repeat

write "</body></html>" to theOutFile
close access theOutFile

Chapter 23 • AppleScript and XML

4021ch23.qxd 11/2/01 3:24 PM Page 368

369

The major parts of the script are in the line that gets the RSS feed:
download "http://www.macnn.com/macnn.rdf" to file (theFolder & "macnn.xml") with
progress

This uses the URL Access Scripting extension to allow you to download an RSS file to
your machine. The other is the repeat loop at the bottom of the script. The outer loop iter-
ates through the outer RSS item tags, and the inner repeat loop iterates through the tags
within an item tag. You then write a suitable line when you find the link and title tags.

If you save this script and execute it, you’ll be prompted for a file into which to save the
HTML, as shown in Figure 23.2. Once the processing has finished, the script will exit, and
you’ll need to open the file in Internet Explorer, Netscape, or another browser to view the
output. You can see the resulting news item page in Figure 23.3.

You could easily extend the code in Listing 23.8 to download other pages. In the past, I
have used the system to download RSS feeds to an AppleShare IP server to build a series of
HTML pages of news for a client. Combined with something like CronTask or MacAT
(both available from http://www.macupdate.com), the news pages can be updated at regular
intervals.

F I G U R E 2 3 . 2 :
The prompt for a file-
name and location

XML Parsing with AppleScript

4021ch23.qxd 11/2/01 3:24 PM Page 369

370

Generating XML with AppleScript
You can build an XML document by creating the record and then using the generate XML
command to dump the record as an XML string. You can see a simple example of an Apple-
Script script for this in Listing 23.9.

➲ Listing 23.9 Generating XML from an XML Record

set theXML to ¬
{ class:XML element, ¬
XML tag:"chapter", ¬
XML attributes: ¬

{ title:"XML and AppleScript", ¬
chapnumber: "03"}, ¬

XML contents:¬
{ class:XML element, ¬
XML tag:"paragraph", ¬
XML contents:{¬

"The Quick Brown Fox"} ¬
} ¬

}

generate XML theXML

F I G U R E 2 3 . 3 :
The resulting
news page

Chapter 23 • AppleScript and XML

4021ch23.qxd 11/2/01 3:24 PM Page 370

371

The output of the script is shown in Listing 23.10.

➲ Listing 23.10 XML Generated by XML Tools

"<?xml version=\"1.0\"?>
<chapter

title=\"XML and AppleScript\"
chapnumber=\"03\">
<paragraph>

The Quick Brown Fox
</paragraph>

</chapter>
"

You can change certain aspects of the generated XML through a number of parameters to
the generate XML command, as listed in Table 23.2. Most of these enable dumping of differ-
ent XML entities back to text format, in the same way as the parsing parameters enable con-
version from XML to AppleScript record format. Unlike the parsing command, most of
these are enabled by default.

TABLE 23.2: Parameters for Generating XML

Parameter Data type Default Description

boolean true Includes the XML declaration in the output.

boolean true Generates a DOCTYPE declaration in the
XML string if one exists in the source
record.

boolean true Includes processing instruction declarations.

including comments boolean true Includes XML comments.

generating unicode boolean false When false, outputs a standard Apple-
Script string. When true, generates Uni-
code text.

pretty printing boolean true When true, formats the XML with indenta-
tion and line breaks to make the XML eas-
ier to read. When false, XML tags and
character data are printed raw, with no
indentation or groupings.

The XML Tools Dictionary
As with most AppleScript extensions, you can get more information and examples about the
XML Tools by opening the XML Tools dictionary in your AppleScript editor. For example,

including processing instructions

including DOCTYPE declaration

including XML declaration

XML Parsing with AppleScript

4021ch23.qxd 11/2/01 3:24 PM Page 371

372

using the standard Script Editor application (in the AppleScript directory of the Apple
Extras directory on your hard disk), select File ➣ Open Dictionary and find the XML Tools
extension. You should get a window like the one shown in Figure 23.4.

XML-RPC with AppleScript
Late Night Software also provides an XML-RPC extension that enables you to access XML-
RPC services from AppleScript easily.

You need to place the extension, which is actually an AppleScript library, in a location that
is found easily. Ideally, this should be somewhere in the System folder. On my system, I cre-
ated a Libraries folder in System Folder:Scripts and then copied the XML-RPC Lib library
into that folder.

Once there, you first need to load the library in your script. For example, if you’ve copied
the library into the location I suggested, you can do so with this:

property XMLRPC : XMLRPC of (load script alias ((path to scripts folder as
string) & "Libraries:XML-RPC Lib"))

F I G U R E 2 3 . 4 :
Viewing an AppleScript
dictionary

Chapter 23 • AppleScript and XML

4021ch23.qxd 11/2/01 3:24 PM Page 372

373

To connect to a remote machine, you call the newly created XML-RPC object’s invoke-
Method. For example, to access the UserLand XML-RPC example server, you’d use this:

set stateName to XMLRPC's
invokeMethod("http://betty.userland.com:80/RPC2",
"examples.getStateName", 13)

This sets the value of stateName to the result of calling the getStateName() function in the
examples directory on the XML-RPC server. Note that we’ve supplied only a single argu-
ment here. To supply multiple arguments, you must embed an AppleScript list. To supply a
list as a single argument, use a list in a list, as in this example that gets the first and last U.S.
state names from the server:

set stateNames to XMLRPC's invokeMethod("http://betty.userland.com:80/RPC2",
"examples.getStateList", {{1,50}})

Unfortunately, AppleScript is not the ideal solution to able to handle XML-RPC requests
on the server side. We can’t use it to service requests from remote machines, even when com-
bined with a suitable web server such as Webstar or Apple’s AppleShare IP web service. If
you want to support XML-RPC services on your machine, use Python or Perl.

XML and MacOS X
Apple has embraced XML to a significant extent in MacOS X. XML is used by many parts of
the operating system to store configuration and other information in a convenient format for
parsing and processing by the OS services and applications. For example, the information
about the current version of MacOS X can be found in the System/Library/CoreServices/
SystemVersion.plist file. The file from MacOS X 10.1 build 5G27 is shown in Listing 23.11.

➲ Listing 23.11 System Information in MacOS X in XML Format

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist SYSTEM
"file://localhost/System/Library/DTDs/PropertyList.dtd">
<plist version="0.9">
<dict>

<key>ProductBuildVersion</key>
<string>5G27</string>
<key>ProductName</key>
<string>Mac OS X</string>
<key>ProductVersion</key>
<string>10.1</string>

</dict>
</plist>

XML and MacOS X

4021ch23.qxd 11/2/01 3:24 PM Page 373

374

From this you can see the build number, version strings, and other information about the
operating system. Further investigation will show you just how much of the operating system
relies on XML to store information.

Many of the built-in applications that come with MacOS X use XML. For example, Mail,
the MacOS X e-mail application, uses XML for everything from your e-mail account settings
to the cache of mail message recipients, senders, and subjects that have been downloaded
from your mail server.

You can see plenty of examples of the different preference files by looking in ~/Library/
Preferences. All of the files ending in .plist are actually XML files, and in keeping with the
uniqueness of the XML files and DTD system, they are stored using their unique Internet
addresses as filenames. For example, the preferences for Mail are stored in com.apple.mail
.plist, and Finder preferences are in com.apple.finder.plist. Even Dock uses XML to
store information about its contents, icons, and layout.

Basic XML Parsing
For XML processing you’ll need to use the Late Night Software XML Tools with the MacOS
X version of the tools you installed for MacOS 9.

To install the tools in MacOS X:

1. Install XML Tools under MacOS 9. You can do this through a Classic install or by boot-
ing into MacOS X.

2. Create a folder named ScriptingAdditions in the root level Library folder of your
MacOS X startup disk. This will make the extensions available to all users on your system.
To restrict access to a specific user, create a folder of the same name in the Library folder
of that user’s home directory.

3. Copy XML Tools.osax into the ScriptingAdditions folder using the MacOS X Finder.

Once installed, the system works the same as the examples in this chapter. In fact, the only
changes you might need to make relate to the methods when talking to the Finder and select-
ing locations to store specific files, due to the changes in the underlying file system structure.

Using XML-RPC and SOAP
Although not supported in the earlier versions, in MacOS X version 10.1 (which was released
on September 28, 2001), Apple incorporated the capability to communicate with external
XML-RPC and SOAP services within the operating system. AppleScript support on the new
OS automatically encapsulates a request in XML and then sends it off to the remote server.

Chapter 23 • AppleScript and XML

4021ch23.qxd 11/2/01 3:24 PM Page 374

375

This negates the need for Late Night Software’s extension and allows you to use these ser-
vices on any MacOS X installation without additional software.

To call an XML-RPC server, you use call xmlrpc and then supply the method name and
parameter properties with the remote function name and arguments.

For example, we can rewrite the earlier MacOS 9.x XML-RPC example under MacOS X
in this way:

tell application "http://betty.userland.com:80/RPC2"
set returnValue to call xmlrpc { method ¬

name:"examples.getStateName",¬
parameters: { 13 }}

end tell

That’s even easier than the Late Night Software solution!

The SOAP interface works in much the same way, except that we use the call soap com-
mand. The connection and method names and arguments are supplied in the same way. For
example, we can communicate with the BabelFish service to convert a string from English to
French on the xmethods.com server using this:

tell application ¬
"http://services.xmethods.net:80/perl/soaplite.cgi"
set returnValue to call soap {
method name:"BabelFish",¬
method namespace uri:"urn:xmethodsBabelFish", ¬
parameters: { translationmode: "en_fr", ¬
sourcedata: "Hello World" }, ¬
SOAPAction: "urn:xmethodsBabelFish#BabelFish"}

end tell

Again, the whole process is incredibly easy.

At the time this is being written, I’ve been unable to test the capabilities completely. As an
Apple developer in the UK, I’m still waiting for my full version of the 10.1 update, and beta
versions have proven to be unstable. Check my website at http://www.mcwords.com for some
further examples.

Apple has a “book” in its developer documentation that contains more examples and
detailed information at http://developer.apple.com/techpubs/macosx/Carbon/
interapplicationcomm/soapXMLRPC/.

XML and MacOS X

4021ch23.qxd 11/2/01 3:24 PM Page 375

376

Summary
AppleScript can make use of a simple XML processing toolkit that converts any XML docu-
ment into an internal AppleScript record structure which we can access and process using the
same methods as we would in any other AppleScript that uses records for storing information.

With an XML document in its record form we can easily convert to other formats, such as
converting an RSS document into an HTML document. We can also couple AppleScript’s
existing URL Access Scripting extension to first download an RSS feed before conversion.

Mac OS X uses XML documents within the OS to store all sorts of information from pref-
erences right through to system information and layouts. However, we still need to use a
third-party XML scripting extension to be able to parse these files.

In Mac OS, a third party extension is also required when accessing servers using XML-RPC,
but in Mac OS X the facilities for XML-RPC and SOAP access are supported natively by the
AppleScript implementation. Using both services in Mac OS X is as easy as using tell to
control an application.

Chapter 23 • AppleScript and XML

4021ch23.qxd 11/2/01 3:24 PM Page 376

Unicode Quick Reference

• Base Character Sets

• XML Character Set Names

Appendix A

4021apa.qxd 11/2/01 3:48 PM Page 377

378

O ne of the parts of the XML standard was a way of storing different characters for differ-
ent languages in a platform-independent fashion. This appendix contains a list of the

base character sets (and associated tables) and a list of the different character sets and encod-
ing standards supported by the XML standard.

Base Character Sets
Although there are several different character sets supported by XML, Unicode, and the dif-
ferent platforms, many are actually based on a few standard sets. The oldest standard is ASCII,
which is the basis of most of the character sets supported by XML.

In addition, most computers use the ISO-8859-1 (or Latin-1) character set to provide
extended characters for more Western European languages. Nearly all the ISO-8859 charac-
ter sets are modifications of the ISO-8859-1 standard. All the ISO-8859 standards modify
the characters specified within a single byte (8-bits) as an extension of ASCII.

Unicode, on the other hand, has separate character planes, with each plane containing the
characters for a different language or dialect. Unlike the ISO standards, each character in
Unicode has its own unique character number, up to 65,535.

ASCII
The basic ASCII character is made up of 127 characters, 33 of which (0 through 31 and 127)
are officially known as the C0 control characters. The Unicode standard does not allow for the
inclusion of these control characters, except for the linefeed, carriage return, and tab characters.

You can insert these characters either directly or through the use of character/entity refer-
ences. If you need to include a particular character in an XML document, you should use a spe-
cific tag and then handle that tag within your parser. For characters that would otherwise be
classed as instructions (vertical tab, form feed, or bell), consider using a processing instruction.

The full character table for the ASCII set can be seen in Table A.1.

TABLE A.1: ASCII Character Set

Decimal Hexadecimal Character XML Entity

0 0 \0 N/A

1 1 [SOH] N/A

2 2 [STX] N/A

3 3 [ETX] N/A

4 4 [EOT] N/A

Continued on next page

Appendix A • Unicode Quick Reference

4021apa.qxd 11/2/01 3:48 PM Page 378

379

TABLE A.1 CONTINUED: ASCII Character Set

Decimal Hexadecimal Character XML Entity

5 5 [ENQ] N/A

6 6 [ACK] N/A

7 7 \a N/A

8 8 \b N/A

9 9 \t 	

10 a \n

11 b \v N/A

12 c \f N/A

13 d \r 

14 e [SO] N/A

15 f [SI] N/A

16 10 [DCE] N/A

17 11 [DC1] N/A

18 12 [DC2] N/A

19 13 [DC3] N/A

20 14 [DC4] N/A

21 15 [SYN] N/A

22 16 [ETB] N/A

23 17 [CAN] N/A

24 18 [EM] N/A

25 19 [SUB] N/A

26 1a [ESC] N/A

27 1b [FS] N/A

28 1c [GS] N/A

29 1d [RS] N/A

30 1e [US] N/A

31 1f N/A

32 20

33 21 ! !

34 22 " " "

35 23 # #

36 24 $ $

37 25 % %

38 26 & & &

39 27 ' ' '

Continued on next page

Base Character Sets

4021apa.qxd 11/2/01 3:48 PM Page 379

380

TABLE A.1 CONTINUED: ASCII Character Set

Decimal Hexadecimal Character XML Entity

40 28 ((

41 29))

42 2a * *

43 2b + +

44 2c , ,

45 2d - -

46 2e . .

47 2f / /

48 30 0 0

49 31 1 1

50 32 2 2

51 33 3 3

52 34 4 4

53 35 5 5

54 36 6 6

55 37 7 7

56 38 8 8

57 39 9 9

58 3a : :

59 3b ; ;

60 3c < < <

61 3d = =

62 3e > > >

63 3f ? ?

64 40 @ @

65 41 A A

66 42 B B

67 43 C C

68 44 D D

69 45 E E

70 46 F F

71 47 G G

72 48 H H

73 49 I I

74 4a J J

75 4b K K

Continued on next page

Appendix A • Unicode Quick Reference

4021apa.qxd 11/2/01 3:48 PM Page 380

381

TABLE A.1 CONTINUED: ASCII Character Set

Decimal Hexadecimal Character XML Entity

76 4c L L

77 4d M M

78 4e N N

79 4f O O

80 50 P P

81 51 Q Q

82 52 R R

83 53 S S

84 54 T T

85 55 U U

86 56 V V

87 57 W W

88 58 X X

89 59 Y Y

90 5a Z Z

91 5b [[

92 5c \ \

93 5d]]

94 5e ^ ^

95 5f _ _

96 60 ` `

97 61 a a

98 62 b b

99 63 c c

100 64 d d

101 65 e e

102 66 f f

103 67 g g

104 68 h h

105 69 i i

106 6a j j

107 6b k k

108 6c l l

109 6d m m

110 6e n n

Continued on next page

Base Character Sets

4021apa.qxd 11/2/01 3:48 PM Page 381

382

TABLE A.1 CONTINUED: ASCII Character Set

Decimal Hexadecimal Character XML Entity

111 6f o o

112 70 p p

113 71 q q

114 72 r r

115 73 s s

116 74 t t

117 75 u u

118 76 v v

119 77 w w

120 78 x x

121 79 y y

122 7a z z

123 7b { {

124 7c | |

125 7d } }

126 7e ~ ~

127 7f [DEL] N/A

ISO-8859-1, Latin-1
The ISO-8859 standard defines a number of supersets of the basic ASCII character set. All
ISO-8859 sets match the ASCII set for the first 128 characters and define additional charac-
ters for the range 128 to 255. The ISO standard actually incorporates a second control char-
acter block (C1) from 128 to 159 used in some terminals.

Unfortunately, unlike the C0 control characters, the characters in the range of the C1
characters are allowed within an XML document. This is because the Windows code page
character set Cp1252 uses characters 128 through 159 for line-based graphics characters.
Cp1252 is not actually an agreed character set within the XML standard, but some systems
still allow you to introduce such characters into an XML document.

The Latin-1 standard (ISO-8859-1) is used under most Western operating systems. It con-
sists of the ASCII set plus the accented characters necessary for most Western European lan-
guages and certain currency symbols. The full character set for Latin-1 can be seen in Table A.2.
Note that Mac OS systems use the Mac Roman rather than Latin 1 character; see the next
section in this appendix for more details.

Appendix A • Unicode Quick Reference

4021apa.qxd 11/2/01 3:48 PM Page 382

383

TABLE A.2: Characters Supported by the Latin 1 Character Set

Decimal Hexadecimal Character XML Entity

128 80 [XXX] €

129 81 [XXX] 

130 82 [BPH] ‚

131 83 [NBH] ƒ

132 84 [IND] „

133 85 [NEL] …

134 86 [SSA] †

135 87 [ESA] ‡

136 88 [HTS] ˆ

137 89 [HTJ] ‰

138 8a [VTS] Š

139 8b [PLD] ‹

140 8c [PLU] Œ

141 8d [RI] 

142 8e [SS2] Ž

143 8f [SS3] 

144 90 [DCS] 

145 91 [PU1] ‘

146 92 [PU2] ’

147 93 [STS] “

148 94 [CCH] ”

149 95 [MW] •

150 96 [SPA] –

151 97 [EPA] —

152 98 [SOS] ˜

153 99 [XXX] ™

154 9a [SCI] š

155 9b [CSI] ›

156 9c [ST] œ

157 9d [OSC] 

158 9e [PM] ž

159 9f [APC] Ÿ

160 a0 [NBSP]

161 a1 ¡ ¡

162 a2 ¢ ¢

Continued on next page

Base Character Sets

4021apa.qxd 11/2/01 3:48 PM Page 383

384

TABLE A.2 CONTINUED: Characters Supported by the Latin 1 Character Set

Decimal Hexadecimal Character XML Entity

163 a3 £ £

164 a4 ¤ ¤

165 a5 ¥ ¥

166 a6 | ¦

167 a7 § §

168 a8 ¨ ¨

169 a9 © ©

170 aa ª ª

171 ab « «

172 ac ¬ ¬

173 ad [SHY] ­

174 ae ® ®

175 af  ¯
176 b0 ° °

177 b1 ± ±

178 b2 2 ²

179 b3 3 ³

180 b4 ´ ´

181 b5 µ µ

182 b6 ↵ ¶
183 b7 • ·

184 b8 ¸ ¸

185 b9 1 ¹

186 ba º º

187 bb » »

188 bc 1⁄4 ¼

189 bd 1⁄2 ½

190 be 3⁄4 ¾

191 bf ¿ ¿

192 c0 À À

193 c1 Á Á

194 c2 Â Â

195 c3 Ã Ã

196 c4 Ä Ä

197 c5 Å Å

Continued on next page

Appendix A • Unicode Quick Reference

4021apa.qxd 11/2/01 3:48 PM Page 384

385

TABLE A.2 CONTINUED: Characters Supported by the Latin 1 Character Set

Decimal Hexadecimal Character XML Entity

198 c6 Æ Æ

199 c7 Ç Ç

200 c8 È È

201 c9 É É

202 ca Ê Ê

203 cb Ë Ë

204 cc Ì Ì

205 cd Í Í

206 ce Î Î

207 cf Ï Ï

208 d0 Ð

209 d1 Ñ Ñ

210 d2 Ò Ò

211 d3 Ó Ó

212 d4 Ô Ô

213 d5 Õ Õ

214 d6 Ö Ö

215 d7 × ×
216 d8 Ø Ø

217 d9 Ù Ù

218 da Ú Ú

219 db Û Û

220 dc Ü Ü

221 dd Ý

222 de Þ

223 df ß ß

224 e0 À à

225 e1 Á á

226 e2 Â â

227 e3 Ã ã

228 e4 Ä ä

229 e5 Å å

230 e6 Æ æ

231 e7 Ç ç

232 e8 È è

Continued on next page

Base Character Sets

4021apa.qxd 11/2/01 3:48 PM Page 385

386

TABLE A.2 CONTINUED: Characters Supported by the Latin 1 Character Set

Decimal Hexadecimal Character XML Entity

233 e9 É é

234 ea Ê ê

235 eb Ë ë

236 ec Ì ì

237 ed Í í

238 ee Î î

239 ef Ï ï

240 f0 ∂ ð

241 f1 Ñ ñ

242 f2 Ò ò

243 f3 Ó ó

244 f4 Ô ô

245 f5 Õ õ

246 f6 Ö ö

247 f7 ÷ ÷

248 f8 Ø ø

249 f9 Ù ù

250 fa Ú ú

251 fb Û û

252 fc Ü ü

253 fd ý

254 fe þ

255 ff ÿ ÿ

Mac Roman
Mac Roman is not an officially recognized character set within either the XML or Unicode
standard, but it is a standard for the typical character set defined within any given Roman
font within the operating system. Mac Roman actually closely matches the Latin-1 set, albeit
with some characters replaced with other alternatives and a completely different order.

Most languages support an encoding format that will allow you to convert a Unicode docu-
ment to its Mac Roman equivalent for display. Obviously, because of a lack of certain charac-
ters, this will not be a perfect translation compared to Latin-1, but the majority of differences
affect only symbols, not foreign letters.

Appendix A • Unicode Quick Reference

4021apa.qxd 11/2/01 3:48 PM Page 386

387

Note, however, that you should not be storing XML documents in to the Mac Roman for-
mat; like Cp1252, it is not an agreed standard and therefore shouldn’t be used. Instead,
encode and decode your documents to/from the UTF-8 standard.

The decimal/hexadecimal and character equivalents for the Mac Roman set are listed in
Table A.3.

TABLE A.3: Characters in the Mac Roman Set

Decimal Hexadecimal Character

128 80 Ä

129 81 Å

130 82 Ç

131 83 É

132 84 Ñ

133 85 Ö

134 86 Ü

135 87 á

136 88 à

137 89 â

138 8a ä

139 8b ã

140 8c å

141 8d ç

142 8e é

143 8f è

144 90 ê

145 91 ë

146 92 í

147 93 ì

148 94 î

149 95 ï

150 96 ñ

151 97 ó

152 98 ò

153 99 ô

154 9a ö

155 9b õ

Continued on next page

Base Character Sets

4021apa.qxd 11/2/01 3:48 PM Page 387

388

TABLE A.3 CONTINUED: Characters in the Mac Roman Set

Decimal Hexadecimal Character

156 9c ú

157 9d ù

158 9e û

159 9f ü

160 a0 †

161 a1 °

162 a2 ¢

163 a3 £

164 a4 §

165 a5 •

166 a6 ↵
167 a7 ß

168 a8 ®

169 a9 ©

170 aa ™

171 ab ´

172 ac ¨

173 ad ≠
174 ae Æ

175 af Ø

176 b0 ∞
177 b1 ±

178 b2 ≤
179 b3 ≥
180 b4 ¥

181 b5 µ

182 b6 ∂
183 b7 ∑
184 b8 ∏
185 b9 π
186 ba ∫
187 bb ª

188 bc º

189 bd Ω
190 be æ

Continued on next page

Appendix A • Unicode Quick Reference

4021apa.qxd 11/2/01 3:48 PM Page 388

389

TABLE A.3 CONTINUED: Characters in the Mac Roman Set

Decimal Hexadecimal Character

191 bf ø

192 c0 ¿

193 c1 ¡

194 c2 ¬

195 c3 √
196 c4 ƒ

197 c5 ≈
198 c6 ∆
199 c7 «

200 c8 »

201 c9 …

202 ca

203 cb À

204 cc Ã

205 cd Õ

206 ce Œ

207 cf œ

208 d0 –

209 d1 —

210 d2 “

211 d3 ”

212 d4 ‘

213 d5 ’

214 d6 ÷

215 d7 ◊
216 d8 ÿ

217 d9 Ÿ

218 da ⁄

219 db

220 dc ‹

221 dd ›

222 de fi

223 df fl

224 e0 ‡

225 e1 ·

Continued on next page

Base Character Sets

4021apa.qxd 11/2/01 3:48 PM Page 389

390

TABLE A.3 CONTINUED: Characters in the Mac Roman Set

Decimal Hexadecimal Character

226 e2 ‚

227 e3 „

228 e4 ‰

229 e5 Â

230 e6 Ê

231 e7 Á

232 e8 Ë

233 e9 È

234 ea Í

235 eb Î

236 ec Ï

237 ed Ì

238 ee Ó

239 ef Ô

240 f0

241 f1 Ò

242 f2 Ú

243 f3 Û

244 f4 Ù

245 f5 ı

246 f6 ˆ

247 f7 ˜

248 f8 ¯

249 f9 ˘

250 fa ˙

251 fb ˚

252 fc ¸

253 fd ˝

254 fe ˛

255 ff ˇ

Appendix A • Unicode Quick Reference

4021apa.qxd 11/2/01 3:48 PM Page 390

391

XML Character Set Names
Unicode itself really only supports two different character sets: UTF-8 and UTF-16. In
addition, a number of different existing character sets ratified by the ISO also exist and are
supported by most XML parsers. The exact list of character sets supported depends on your
parser, but all should support the basic Unicode sets as well as the ISO-8859-1 set. UTF-8
and ISO-8859-1 match the ASCII set for the first 127 characters.

In essence, if you need access to a full range of characters from all languages, use UTF-16.
If you are not concerned about the Eastern character sets of Chinese, Japanese, and Korean,
use UTF-8. If you need only Western characters, use ISO-8859-1. Table A.4 lists the charac-
ter sets supported by the XML 1.0 standard.

TABLE A.4: XML Character Set Names and Contents

Character Set Name Contents

UTF-8 The default encoding for XML documents, unless another specification was
made as part of the XML declaration at the top of the document. UTF-8 can be
used for most Western documents, including those that contain a small amount
of Chinese, Japanese, or Korean.

UTF-16 A 2-byte encoding format that supports the full Unicode 3.0 character set,
including the majority of the Western and Eastern characters. In addition to the
2-byte character format, UTF-16 also supports a special format of 4-byte specifi-
cations working with two 2-byte pairs.

ISO-10646-UCS-2 The multilingual plane of Unicode; that is, the character set that incorporates all
of the Unicode character set and is nominally identical to the UTF-16 format. The
only difference is that the special 4-byte characters are not supported. Each
character is specified in a 2-byte unsigned integer.

ISO-10646-UCS-4 The Unicode character set encoded with each character taking up exactly 4
bytes.

ISO-8859-1 (Latin-1) ASCII plus the characters for most Western European languages such as
Swedish, German, and Portuguese. This character set largely matches the sets
used by most Western computers.

ISO-8859-2 (Latin-2) ASCII plus the characters required by most central European languages such as
Croatian, Hungarian and Polish.

ISO-8859-3 (Latin-3) ASCII plus the characters required for Esperanto, Maltese, Turkish, and Galician.
ISO-8859-9 (Latin-5) is preferred for Turkish.

ISO-8859-4 (Latin-4) ASCII plus the characters for the Baltic languages: Latvian, Lithuanian, Green-
landic, and Lappish. Replaced by ISO-8859-10 (Latin 6).

ISO-8859-5 ASCII plus the Cyrillic characters used for Byelorussian, Bulgarian, Macedonian,
Russian, Serbian, and Ukrainians.

ISO-8859-6 ASCII plus Arabic.

Continued on next page

XML Character Set Names

4021apa.qxd 11/2/01 3:48 PM Page 391

392

TABLE A.4 CONTINUED: XML Character Set Names and Contents

Character Set Name Contents

ISO-8859-7 ASCII plus modern Greek.

ISO-8859-8 ASCII plus Hebrew.

ISO-8859-9 (Latin-5) Essentially identical to Latin-1, except that some Turkish characters replace less
commonly used Icelandic characters.

ISO-8859-10 (Latin-6) Covers the characters required for more Northern European languages, including
Estonian, Lithuanian, Greenlandic, Icelandic, Inuit, and Lappish. Superseded by
ISO-8859-13.

ISO-8859-11 Basic ASCII plus Thai.

ISO-8859-12 Previously reserved for Devanagari, now likely to be unused.

ISO-8859-13 Baltic set, essentially identical to Latin-6 but with additional Latvian and Ice-
landic characters.

ISO-8859-14 (Latin-8) A variant of Latin-1 that includes letters required for Gaelic and Welsh.

ISO-8859-15 (Latin-9) Essentially identical to Latin-1 but includes the Euro currency symbol; also
replaces fractional symbols with some minor French letters and some punctua-
tion characters with some additional Finnish letters.

ISO-2022-JP The Japanese character as defined in JIS X-0208-1997, which uses 7-bit encod-
ing. Used on web pages and in e-mail.

Shift_JIS The encoding of the Japanese national standard character set JIS X-0208-1997
used under Windows.

EUC-JP The encoding of the Japanese national standard character set JIS X-0208-1997
used by most Unix variants.

Appendix A • Unicode Quick Reference

4021apa.qxd 11/2/01 3:48 PM Page 392

Resource Guide

Appendix B

4021apb.qxd 11/2/01 3:41 PM Page 393

394

F inding XML resources is a bit like looking for hay in a haystack—there is information
everywhere, and typing “XML” into your favorite search engine is likely to keep you

busy for hours. The real problem is sorting the wheat from the chaff. Finding good XML
resources is more difficult.

In this appendix I’ve tried to collect together as large and comprehensive a collection of
pointers as possible. Included here are details on websites, mailing lists, books, and any
other resources, both generically on XML and XML-related technologies and with some
language-specific and XML application–specific entries.

You can find a more up-to-date list of resources relevant to this book on the
MCwords.com website.

Generic Resources
Listed below are some of the generic resources on computing and standards that you may
find useful. Many of them have their own XML sections, and all of them are great places to
visit periodically just to check out the latest news and information.

W3C (http://www.w3.org)
The World Wide Web Consortium oversees the specification and guidelines for numerous
technologies on the World Wide Web and the Internet in general. The site is the best resource
for information on a number of technologies including CSS, DOM, (X)HTML, XML, XLink,
and XSL.

Unicode Consortium (http://www.unicode.org)
The Unicode consortium defines and manages the contents of the Unicode standard. You
can find character set lists for the different Unicode tables at
http://www.unicode.org/charts.

Internet Engineering Taskforce (http://www.ietf.org)
The IETF helps to agree on and design different standards for the Internet. Unlike W3C,
which looks at web-specific technologies, IETF looks at generic Internet standards, including
the core protocols and technologies such as SOAP. For those familiar with the documents, it’s
the IETF that now holds responsibility for RFC (Request For Comments) documentation,
which forms the basis of many Internet standards, including FTP, SMTP, NTP, HTTP,
and MIME.

Appendix B • Resource Guide

4021apb.qxd 11/2/01 3:41 PM Page 394

395

ISO (http://www.iso.ch)
The International Standards Organization works with organizations around the world such
as the American National Standards Institute (ANSI) and the British Standards Institute
(BSI) to develop standards for different technologies, including systems such as HTML,
XML, and Unicode.

OASIS (http://www.oasis-open.org)
The Organization for the Advancement of Structure Information Standards is an interna-
tional group that creates specifications to promote open and interoperable communication.
The standards are based on public technologies such as XML and SGML.

IBM DeveloperWorks (http://www.ibm.com/developer works/)
The IBM DeveloperWorks website is a combination resource site and article library. You can
find information and background material on a host of standards and articles covering the
theory and practice of developing applications for just about every topic. It primarily concen-
trates on open-source technologies, and there is a huge section on the use of XML.

Dr Dobb’s Journal (http://www.ddj.com)
This is a huge and long-running site dedicated to news, reviews, and in-depth articles on all
areas of computer programming. The site is also backed up by a paper magazine of the same
name. You can go direct to the XML section using the URL http://www.ddj.com/topics/xml.

Developer Shed (http://www.devshed.com)
A useful article and news site covering nearly all of the languages we look at in this book,
along with some of the other technologies related to the different programming languages
and standards such as XML and HTML.

Meerkat (http://www.oreillynet.com/meerkat/)
Meerkat is a web-based RSS aggregator. Besides selecting and reading different RSS newsfeeds,
you can also clip specific stories into a personal list of links, and you can group and organize
your RSS feeds into different personal channels to make reading specific topics easier.

XML Resources
Here are some links and books covering XML, SOAP, XML-RPC, and other XML-related
technologies.

XML Resources

4021apb.qxd 11/2/01 3:41 PM Page 395

396

XML.com (http://www.xml.com)
The O’Reilly XML resource page. Although it’s primarily designed as a tool for finding
O’Reilly’s XML books, there is also a news section and loads of background information and
articles on the XML standard and the use of XML in applications.

XML.org (http://www.xml.org)
The XML Industry Portal is a news and article site devoted to XML and related technolo-
gies. Along with the normal range of XML information, the site also includes a useful news
page for information on the latest XML information and a searchable XML Registry for
XML DTDs and other standard XML related standards.

XMLHack (http://www.xmlhack.com)
A great background and example resource for learning how to hack and program using XML.

Apache XML Project (http://xml.apache.org)
The Apache group, famous for its web server software, has been developing a suite of XML
tools. The project consists of five main tools: Xerces, an XML parser in Java and C++ with
Perl bindings; Xalan, an XSLT stylesheet processor (Java and C++); Cocoon, an XML-based
web publishing environment (Java); Xang, a tool for rapid development of dynamic server
pages, written in JavaScript; and SOAP, a suite for working with SOAP services, primarily in
the area of SOAP servers that integrate with Apache.

SAX (http://www.megginson.com/SAX/)
Megginson Technologies posted a page devoted to the SAX parser, and it became such a suc-
cess that the page is now a regularly updated part of the XML website matrix. The site is
geared toward Java-based SAX parsers, but the same methods and techniques covered here
can be easily migrated to other languages.

Microsoft’s XML Site (http://msdn.microsoft.com/xml)
Microsoft has been a key player in the development of XML (its Office applications have
used XML for some time) and related technologies such as SOAP. Although the site is heav-
ily geared toward XML processing using Microsoft operating systems and developer tools,
there’s a wealth of background information to be found. Whether you like Microsoft or not,
there are worse places to start looking for information.

XML-RPC.org (http://www.xml-rpc.org)
The home of the XML-RPC standard. The site contains standards information on the XML-
RPC system, along with a regularly updated resource for XML-RPC implementations in all

Appendix B • Resource Guide

4021apb.qxd 11/2/01 3:41 PM Page 396

397

the different languages. It also provides a directory of XML-RPC services available for use with
a suitable client. If you are looking for an XML-RPC solution for any language, start here.

James Clark’s Expat XML Parser Page (http://www.jclark.com/xml/expat.html)
The home of James Clark’s Expat parser. You should go here first for information on parsers
and extensions for any language using the Expat system.

ActiveState (http://www.activestate.com)
ActiveState develop software and tools for using and creating applications with Perl, Python,
Tcl, and technologies such as XML.

The XML Bible (Elliotte Rusty Harold, Hungry Minds)
A well-rounded book covering the mechanics of XML from basic document building to pro-
cessing and many of the technologies, systems, and applications that have been built up around
the XML standard.

Learning XML (Erik T. Ray, O’Reilly and Associates)
A terrific guide to the basic mechanics of writing and building XML documents and applica-
tions. Covers everything from basic XML document building to DTDs, Xlinks, and XHTML,
and the development of XML documents using Docbook and other specialized formats.

XML Complete (Various, Sybex Inc.)
A great book covering all of the ins and outs of XML. It includes some of the chapters from
this book as well as background information on XML, full details on the XML standard, and
reference documentation for XML documents.

Perl Resources
Perl is and always has been a heavily web-supported programming language. Your primary
point of contact should be the main Perl site, where you can find information for just about
everything, including XML.

Perl.com (http://www.perl.com)
The O’Reilly-funded site for all things Perl. The site includes news, downloads, resource
links, and a huge range of articles for processing all sorts of documents, including XML and
related technologies.

Perl Resources

4021apb.qxd 11/2/01 3:41 PM Page 397

398

Perl.org (http://www.perl.org)
The “free” site for Perl development that includes links to the local Perl Monger groups and
meetings and general Perl resources.

CPAN XML Modules (http://www.perl.com/CPAN-local/modules/by-module/XML/)
The home of the XML modules on the Comprehensive Perl Archive Network (CPAN). You
should be able to find all of the modules covered in this book and many more, which will
help in your XML processing.

Python Resources
Python is heavily web based and like Perl has a central resource for most of its content.

Python Home (http://www.python.org)
The home of the Python language. Contains an extensive set of resources and information
on the Python language, as well as download sections for the Python distribution and docu-
mentation. There’s also a very handy search feature that will search all of the main sites for
information.

Vaults of Parnassus (http://www.vex.net/parnassus/)
The Vaults of Parnassus is the Python equivalent of Perl’s CPAN module. It contains links to
most of the third-party modules available for Python.

Zope Corporation (http://www.zope.com)
Zope Corporation, formerly Digital Creations, is now the home of Guido van Rossum and
the rest of the Python development team. Zope Corporation is also responsible for the Zope
web publishing environment (http://www.zope.org), which can be tooled to work with
XML documents directly as the source for content material.

Python XML SIG (http://www.python.org/sigs/xml-sig/)
The XML SIG (Special Interest Group) handles the development of Python-specific XML
tools, including the XML modules that come as part of the standard distribution. The XML
SIG publishes a more extensive collection of tools and modules that is available only from
its CVS server. You can also join the XML-SIG mailing list. If you are serious about doing
XML development with Python, you should consider joining the mailing list and download-
ing the new tools.

Appendix B • Resource Guide

4021apb.qxd 11/2/01 3:41 PM Page 398

399

Python: The Complete Reference (Martin C. Brown, Osborne/McGraw-Hill)
An introduction and reference to everything to do with Python programming. Covers gen-
eral *ML document processing as well as Unicode, regular expressions, and general data pro-
cessing in Python.

PHP Resources
Listed below are the main PHP resources and some of the XML-specific tools available
for PHP.

PHP.net (http://www.php.net)
The home of the PHP system. You can download the PHP distribution and search the online
document for XML and other information.

PHP XML Manual (http://www.php.net/manual/en/ref.xml.php)
The XML manual for the core XML parser available in PHP.

PHPBuilder.com (http://www.phpbuilder.com)
PHPBuilder.com includes news and articles on using PHP, including a number of useful
articles on PHP and XML. You’ll also find an interesting article on using PHP, XML, and
Apache’s Cocoon project together to parse XML documents.

O’Reilly PHP-XML Mailing List (http://www.onlamp.com/pub/a/php/php-xml-ml.html)
O’Reilly has created a useful PHP-XML interest mailing list on which interested parties can
discuss using PHP and XML.

REBOL Resources
Despite its heavy Internet focus and huge cross-platform support (27, at the last count),
REBOL is not as well represented as older languages such as PHP, Perl, and Python.

REBOL Home Page (http://www.rebol.com)
The main focus for everything REBOL. REBOL is very well supported by the REBOL
development team, so you should find everything you need to use REBOL and process XML
documents.

REBOL Resources

4021apb.qxd 11/2/01 3:41 PM Page 399

400

REBOL: The Official Guide (Elan Goldman and John Blanton, Osborne/McGraw-Hill)
A good introduction to using and processing information using REBOL. Although it doesn’t
cover XML processing, it should give you basics.

Ruby Resources
Ruby is a relatively new language with a heavy object focus and a cleaner and simpler style
than both Python and Perl, while still retaining much of the functionality of these and other
languages. Ruby is written by Yukihiro Matsumoto.

Ruby Home Page (http://www.ruby-lang.org/en/)
The main focus point for everything Ruby. You should be able to find downloadable versions
of the language and extensive examples and documentation.

Ruby Introduction (http://www.ibm.com/developerworks/library/ruby.html)
A good overview on using the Ruby language.

Programming Ruby (David Thomas, Andrew Hunt, Addison Wesley)
The first English guide to programming with Ruby contains everything from the basic struc-
ture and layout of the language to web programming.

Tcl Resources
The Tcl language has had something of a checkered history. Originally a Sun project, it
then moved to Scriptics, a company devoted to the promotion and development of Tcl and
Tk. In 2000, Scriptics was purchased by Ajuba, which in turn was acquired by Interwoven.
The Tcl project now continues with the people at ActiveState, who also do Perl and Python
development.

Scriptics (http://www.scriptics.com or http://tcl.activestate.com)
The main site for Tcl and Tk programming. Tcl and the Tk GUI are available for a number
of platforms. Along with download links to the main installer packages, the site also includes
articles and other information on using the Tcl and Tk languages.

TclXML (http://www.zveno.com/zm.cgi/in-tclxml/)
The home of the TclXML parser that we use in this book for processing XML documents.

Appendix B • Resource Guide

4021apb.qxd 11/2/01 3:41 PM Page 400

401

XML-RPC for Tcl (http://sourceforge.net/projects/xmlrpctcl/)
The home of the XML-RPC extensions for Tcl. The site includes the main distribution and
samples of programs using the system. Because it’s hosted on SourceForge, you can also sign
up for regular updates when new versions of the system are released.

AppleScript Resources
AppleScript as a technology is focused on the entirely operating system. It is available only
for Apple’s two operating systems: MacOS and MacOS X. Most of the AppleScript docu-
mentation is available only to registered MacOS developers, although this will likely change
with MacOS X, which includes its own XML parser and SOAP interface.

AppleScript in a Nutshell (Bruce W Perry, O’Reilly)
A solid desktop reference for everything to do with AppleScript. As a reference rather than a
learning guide, it concentrates on listing the documentation in a suitable format, but it can
be a handy resource for double-checking your code.

XML Tools Scripting Addition
(http://www.latenightsw.com/freeware/XMLTools2/index.html)
The core XML processing tools for AppleScript. The tools use osax to communicate with
James Clark’s ever-present Expat parser.

XML-RPC with AppleScript (http://www.latenightsw.com/freeware/XMLTools2/
xml-rpc.html)
The home page for the XML-RPC implementation made available through the XML 2.2
Scripting Addition. This page provides a quick summary of how to use XML-RPC in Mac OS.

Making XML-RPC and SOAP Requests with AppleScript (http://developer.apple.com/
techpubs/macosx/Carbon/interapplicationcomm/soapXMLRPC/)
The “book” that covers the use of SOAP and XML-RPC within MacOS X—now a standard
capability of AppleScript.

XML Software
A huge amount of software is out there already using XML to do a lot of its processing and
data storage. The following are some of the tools written in one of the languages featured in

XML Software

4021apb.qxd 11/2/01 3:41 PM Page 401

402

this book that either use XML as a storage or processing format or can be used to develop
and write XML documents.

Amphetadesk (http://www.disobey.com/amphetadesk)
Amphetadesk is an RSS aggregator. You use it to download and read the outlines of various
news stories from hundreds of different sites. The entire system is written in Perl, and the
tool runs as a personal web server, downloading the content and providing an interface
through which you can configure the newsfeeds or story outlines that you want to read.

Komodo (http://www.activestate.com/komodo)
Komodo is probably best described as a project development and editing tool. It doesn’t go
quite as far as a full integrated development environment (IDE), but it does provide project
management tools and an editing environment that offers auto-formatting and completion of
keywords and terms.

Komodo supports much more than just XML; it also supports Perl, Python, Tcl, HTML,
and many others. Komodo provides formatting and completion facilities, making it an ideal
tool for writing applications using one or more of these technologies.

Appendix B • Resource Guide

4021apb.qxd 11/2/01 3:41 PM Page 402

Index

Note to the reader: Throughout this index boldfaced page numbers indicate primary discussions of
a topic. Italicized page numbers indicate illustrations.

SYMBOLS & NUMBERS

& (ampersand) for character entities, 18

#FIXED for attribute behavior, 30

#IMPLIED for attribute behavior, 30

#REQUIRED for attribute behavior, 30

<!-- and --> for comments, 15

<? and ?> for XML processing instructions,
19–20

@INC variable, 158

init() method, 217

_keys() method, 230

403 error code, 162

404 error code, 162

500 error code, 162

\x{} to specify Unicode character, 89

A

Aas, Gisle, 95

ActiveState, 397

add_root() function, 300–301

addText() method, 116

alnum class (POSIX), 93

alpha class (POSIX), 93

amp character entity, 18

AmphetaDesk, 83, 84, 402

Apache XML Project, 396

apos character entity, 18

appendChild method (XML::DOM), 112

appendcontent() method, 217

appendtag() method, 217

AppleScript, 43, 360–376

for parsing XML, 360–372

processing RSS feed to HTML, 366–369

quick reference, 363–366

resources on, 401

viewing dictionary, 372

XML generation, 370–371

XML-RPC with, 372–373

XML tools dictionary, 371–372

AppleScript in a Nutshell (Perry), 401

arguments for server-side functions, 234

array, returned by SOAP server, accessing, 229

arraymen() method, 315

4021idx.qxd 11/9/01 1:24 PM Page 403

404

arraysize() method, 315

ASCII character set, 4, 378–382

ascii class (POSIX), 93

<!ATTLIST >, 26

attlist_decl method (SAX), 101

Attr node type (DOM), 53

attributes in XML, 13–14

DTD declaration, 26–30

specifying behavior, 30

extracting in REBOL, 325–326

structure, 32

autodispatch in SOAP::Lite, 152–153, 155

B

BabelFish service, 375

Berners-Lee, Tim, 6

Brown, Martin C., Python: The Complete Refer-
ence, 399

bytes pragma, 90

for byte length of string, 94

ByteStream key for Source parameter, 99

C

C/C++, 36

compatibility, 42

learning costs, 44

memory management, 39

The C Programming Language (Kernighan and
Ritchie), 44

call() method, 164, 237

callback functions, in Expat, 266

Cascading Style sheets (CSS), 9

case sensitivity for XML element names, 14

case translations, 90–91

CDATA block, 16

declaration, 27

cdataHandler function for RSS parser, 295–296

CDATASection node type (DOM), 53

CGI, SOAP::Lite support for, 148

channel summary, in RSS aggregator, 297, 297

character classes

Perl support for, 91

standard properties, 91–92

character data, 15–16

extracting from between two tags, 201

character entities, 18

character map, 193–194

characters. See Unicode character set

characters() method (SAX), 100, 136, 202, 213

CharacterStream key for Source parameter, 99

charmap_decode() function, 193

charmap_encode() function, 193

charnames pragma, 89

children() method to navigate document nodes,
301

children property of object, 217

children tags in XML, 17

arraysize() method—children tags in XML

4021idx.qxd 11/9/01 1:24 PM Page 404

405

chr() function (Perl), 90, 95

Clark, James, 44

Expat XML Parser Page, 397

class, converting XML to internal representa-
tion, 214–224

client

for SOAP, in Python, 227–232

passing arguments, 228

return values, 228–230

for SOAP::Lite, 149–150

for XML-RPC

PHP and, 307–311

with Python, 235

with Ruby, 337–338

Client: Failed to access class message, 162

Client: Failed to locate method() in class() mes-
sage, 162

cntrl class (POSIX), 93

codec

registering code with codecs module, 195

writing to access Unicode database, 193–196

codecs module, 193

Comma Separated Values (CSV), 4

comment method (SAX), 100

Comment node type (DOM), 53

comments

in programming, 41

in XML, 13, 15

Common Object Request Broker Architecture
(CORBA), 58

compatibility, scripting language and, 42–43

constants, XML::DOM, 112

contact information, XML document for, 103

ContentHandler class, 198

methods in, 201–202

converting Unicode characters for printing,
95–96

convert_qty() method, 153

CORBA (Common Object Request Broker
Architecture), 58

cost, scripting language and, 43–44

CPAN XML modules, Web site, 398

cPickle module (Python), 246

create table statement (SQL), 126

createElement() method, 116

createTextNode() method, 184

CSS (Cascading Style sheets), 9

CSV (Comma Separated Values), 4

D

data conversion for XML-RPC, PHP and,
313–317

data exchange, XML and, 48

data formats

proprietary, 4–5

XML and, 48

data interface, scripting language and, 38

data modeling, scripting language and, 37–38

data portability, XML for, 5–7

data size traps in Unicode, 94–95

chr() function (Perl)—data size traps in Unicode

4021idx.qxd 11/9/01 1:24 PM Page 405

406

data types for attributes, 27–30

database applications, file formats, 5

database management with Perl, 120–139

converting content to XML, 139–145

converting XML to database, 145

database creation from XML, 132–136

dumping hash to XML, 128–132

dumping SQL database structure into XML,
136–139

script for building table, 126–127

DCOM (Distributed Common Object
Model), 58

debugging

SOAP (Simple Object Access Protocol), 234

SOAP::Lite, 160–163

error checking, 161–162

XML-RPC, 239–240

declarations in DTD for elements, 24–26

content specifications, 25

decode() method, 193

deepcopy() function, 213

default behavior for attributes, 30

default_handler function (PHP), 276

describe statement (SQL), 137

Developer Shet, 395

development speed, scripting language and,
39–41

dictionaries

for codec, 193–194

handling, 229–230

dictionary data type, 37

digit class (POSIX), 93

dispatch_to() method, 149

avoiding problems, 161

distributed applications, XML-RPC for, 306

Distributed Common Object Model
(DCOM), 58

DocBook DTD, 32

DOCTYPE declaration, 24

doctype_decl method (SAX), 102

Document node type (DOM), 53

Document Object Model (DOM), 9, 37

document searches

event-driven parser for, 50

SAX (Simple API for XML) for, 102–108

document statistics, SAX for, 199–200

Document Template Markup Language
(DTML), 244, 245

Document Type Definition (DTD), 8

documentation

of Perl script for database table creation, 128

for programming, 41

DocumentFragment node type (DOM), 53

DocumentHandler class, 198

for SAX parser creation, 99

documents, well-formed XML, 16–17

DocumentType node type (DOM), 53

DOM (Document Object Model), 9, 37, 53–54

document for RSS, 300–301

dumping document structure, 113

to generate account list and transactions,
182–183

generating tree, 80

parsing in Python using, 178–185

data types for attributes—DOM (Document Object Model)

4021idx.qxd 11/9/01 1:24 PM Page 406

407

to build XML document, 183–185

minidom for, 179–182

using HTMLFragment class with, 218–222

XML processing with Perl using, 75–79,
108–116

access by node, 109–111

information extraction, 111–115

modifying structures and data, 116

regenerating XML from DOM tree, 116

domxml_new_xmldoc() function, 300

Dr. Dobb's Journal, 395

Dreamhost, 121

DTD (Document Type Definition), 8

entity definition, 19

standard, 32

syntax, 24–32

attribute declarations, 26–30

element declarations, 24–26

general entity declarations, 30

using for modeling data, 31

when to use, 31–32

DTDHandler class, 198

methods, 202

for SAX parser creation, 99

DTML (Document Template Markup Lan-
guage), 244, 245

combining resources with XML, 250–259

exporting DTML as XML, 255

parsing external XML documents,
256–259

Web log project, 250–253, 253, 254

dynamic handlers, for SOAP server, 157–158

E

e-mail parsing, SOAP::Lite support for, 148

Element node type (DOM), 53

element_decl method (SAX), 101

elements in XML, 13–14

DTD declaration, 24–26

content specifications, 25

naming rules, 14

empty element, element declaration for, 25

encode() method, 190–191, 193

encoding function, 350

encoding, in XML declaration, 20

Encoding key for Source parameter, 99

end_cdata method (SAX), 100

end_document method (SAX), 100

endDocument() method (SAX), 202

end_element method (SAX), 100, 136

endElement() method (SAX), 202, 213

endElementNS() method (SAX), 202

endtag function for RSS parser, 296–297

ENTITIES declaration, 29

entity handlers in PHP, 275–276

Entity node type (DOM), 53

entity references, 17–19

character entities, 18

DTD declaration, 30

mixed-content entities, 18–19

entity_decl method (SAX), 101

entity_reference method (SAX), 101

EntityReference node type (DOM), 53

domxml_new_xmldoc() function—EntityReference node type (DOM)

4021idx.qxd 11/9/01 1:24 PM Page 407

408

EntityResolver class, 198

for SAX parser creation, 99

enumerated value list, 29

error checking, SOAP::Lite client script
with, 162

error handling

in SAX, 203–205

in TclXML parser, 348–349

for XML-RPC, with Ruby, 339–340

error() method (SAX), 203

error trapping in PHP, 277–279

ErrorHandler class, 198

methods, 203

for SAX parser creation, 99

errors in document structure, and Expat excep-
tions, 73

escape sequences, for Perl regular
expressions, 91

eval() method, 162

event-driven interface, 49–51

exceptions in Expat, errors in document struc-
ture from, 73

expanding code in scripting languages, 41

Expat, 44–45, 52

library traps, 72–73

parsing in Python using, 175–177

and PHP, 266

white space and, 271

XML::Parser and, 64

explicit calls, for SOAP::Lite client, 152

exporting DTML as XML, 255

Extensible Markup Language (XML). See XML
(Extensible Markup Language)

Extensible Stylesheet Language (XSL), 9

external DTD, character declaration, 18

external entities, 19

external_entity_ref function (PHP), 276

extracting information from tags, with Perl-
SAX, 105–108

F

FAQ

generating formatted, 114–115

sample XML document, 109–110

fatalError() method (SAX), 203

feed() method (Python), 172

feof() function (PHP), 275

fetchrow_hashref() method, 137

field* properties of XMLDBHandler class
instance, 135, 136

fields property of XMLDBHandler class
instance, 135

file formats, 4

#FIXED for attribute behavior, 30

FTP, SOAP::Lite support for, 148

G

Garshol, Lars Marius, 206

general entity declarations, 30

EntityResolver class—general entity declarations

4021idx.qxd 11/9/01 1:24 PM Page 408

409

getallchannels function for RSS parser, 297

getAttributes method (XML::DOM), 112

getchannelinfo function for RSS parser, 297

getChildNodes method (XML::DOM), 111

getElementsByTagName() method, 114, 181

getFirstChild method (XML::DOM), 111

getLastChild method (XML::DOM), 112

getmessage() method, 150

getNextSibling method (XML::DOM), 112

getNodeName method (XML::DOM), 111

getNodeType method (XML::DOM), 111

getNodeValue method (XML::DOM), 111

getParam() method, 312

getParentNode method (XML::DOM), 111

getPreviousSibling method (XML::DOM), 112

getregentry() function, 195

global variables, 199

Goldfarb, Charles F., 6

graph class (POSIX), 93

gt character entity, 18

H

handle() method, 149

handleaccount() function, 220

Handler, for SAX parser creation, 99

handletransaction() function, 220

Harold, Elliotte Rusty, The XML Bible, 397

hash data type, 37

hash structure for database tables, 121–126

dumping to XML, 128–132

vs. XML, 128

HTML (Hypertext Markup Language), 6

basic document layout, 212

comments, 15

PHP to convert XML to, 279–285

SAX for converting XML to, 222–224

XML vs., 12

XML::Parser for conversion, 65–71, 72

HTMLFragment class, 212–218

using with DOM, 218–222

htmltagpairs, 217

HTTP

SOAP::Lite support for, 148

XML-RPC server using, 238

HTTPS, SOAP::Lite support for, 148

I

IBM DeveloperWorks, 395

ID attribute declaration, 28

IDREF attribute declaration, 28–29

IDREFS attribute declaration, 29

#IMPLIED, for attribute behavior, 30

in property of XMLDBHandler class instance,
135, 136

@INC variable, 158

index to database file, 120

obtaining definition, 126

getallchannels function for RSS parser—index to database file

4021idx.qxd 11/9/01 1:24 PM Page 409

410

insert into statement (SQL), 141

insertBefore method (XML::DOM), 112, 184

internal mixed-content entities, 18

International Standards Organization
(ISO), 395

Internet, 6

Internet Engineering Taskforce, 394

ISO-8859-1character set, 382–386

ISO (International Standards Organiza-
tion), 395

iso801_encode() function, 314–315

item method, 115

J

Java, 36

compatibility, 42

learning costs, 44

JDBC (Java Database Connectivity), 38

Jensen, Thomas, 327

K

Kernighan, Brian, The C Programming
Language, 44

keys() method, 230

kindOf() method, 315

Komodo, 402

L

Langreiter, Chris, 327

Late Night Software, 360

Latin-1 character set, 382–386

encoding, 190–191

Latin character set, 54

Learning XML (Ray), 397

length() function, 94

LibXML DOM node system, to build RSS doc-
ument, 300–302

line termination, 54

Linux compatibility issues, 43

load function, 322–323

loadfile() method (Python), 172

Locale, for SAX parser creation, 99

location() method, 98

longevity, scripting language and, 41–42

lookup() function, 193

lower class (POSIX), 93

lt character entity, 18

Lundh, Fredrik, 226

M

Mac Roman character set, 386–390

encoding, 190

Macintosh News Network, 366

MacOS X, XML and, 373–375

insert into statement (SQL)—MacOS X, XML and

4021idx.qxd 11/9/01 1:24 PM Page 410

411

make_identity_dict() function, 194

Matsumoto, Yukihiro, 330

Matthews, Brian, 226

Meerkat service, 83, 395

Megginson Technologies, 396

memory management

for DOM, 178–179

scripting language and, 39

Microsoft XML site, 396

minidom, 179–182

to extract content from XML document, 181

mixed-content entities, 18–19

MySQL utility, 137

N

name() function, 193

names, for XML elements, 14

namespaces

accessing, 231–232

exporting modules' functions from, 233

nested elements in XML, 17

nested structure, SAX to create, 211–212

Neumann, Michael, 337

new() method, 98

new_child() method, 301

newcontent() method, 217

newlines, 54

in XML character data, 15–16

news summaries. See RSS (Rich Site Summary)
format

newtag() method, 217

NMTOKEN declaration, 27

NMTOKENS declaration, 27–28

nodes

adding to RSS document, 301–302

in DOM, 53

in XML::DOM, 109

getting list by tag name, 114

NOTATION declaration, 30

Notation node type (DOM), 53

notation_decl function (PHP), 276

notationDecl() method, 202

notation_decl method (SAX), 101

O

OASIS (Organization for the Advancement of
Structure Information Standards), 395

objects

SOAP server and, 230–231

xmlrpclib package and, 239

ODBC (Open Database Connectivity), 38

open standard, XML as, 8

ORB (Object Request Broker in Zope), 244

ord() function, 90, 95, 192

O'Reilly Network

Meerkat service, 83

PHP-XML Mailing List, 399

make_identity_dict() function—O'Reilly Network

4021idx.qxd 11/9/01 1:24 PM Page 411

412

Organization for the Advancement of Structure
Information Standards (OASIS), 395

Ousterhout, John, 342

P

pack() function (Perl), 95

paramsout() method, 153

parent() method, to navigate document
nodes, 301

parent tag in XML, 17

parse function, 322

parse() method, 98, 199

parsed character data, element declaration
for, 25

parsefile() method, 109

ParserCreate() function, 175

parseString() function, 184, 199

parsing external XML documents, 256–259

parsing XML, 49–54

AppleScript for, 360–372

processing RSS feed to HTML, 366–369

quick reference, 363–366

parser types, 49–52

event-driven interface, 49–51

tree-based, 51–52

PHP for

building simple, 266–272

error trapping, 277–279

getting/setting options, 277

HTML generated from, 269–270, 270

initial setup, 273–275

supported entity handlers, 275–276

with Ruby, 330–337

solutions, 52–54

DOM (Document Object Model), 9, 37,
53–54

Expat, 44–45, 52

SAX (Simple API for XML), 9, 52

Zope and, 256–259

Perl, 61

advantages for XML generation from
another source, 144

compatibility, 42

composite Unicode properties, 94

for database management, 120–139

converting content to XML, 139–145

database creation from XML, 132–136

dumping hash to XML, 128–132

dumping SQL database structure into
XML, 136–139

script for building table, 126–127

traditional solution, 121–128

DBIx::XML_RDB module, 81–82

DOM (Document Object Model) and, 53

learning costs, 44

longevity, 42

resources on, 397–398

and Unicode, core support, 88–90

utf8 pragma, 88

XML generation, 80

Organization for the Advancement of Structure Information Standards (OASIS)—Perl

4021idx.qxd 11/9/01 1:24 PM Page 412

413

XML processing using DOM, 75–79,
108–116

access by node, 109–111

information extraction, 111–115

modifying structures and data, 116

regenerating XML from DOM tree, 116

XML processing using SAX, 73–75, 98–108

conversions, 108

document searches, 102–108

XML::Parser, 64–73

XML::RSS module, 82–83

PerlSAX wrapper script, 103–104

Perry, Bruce, AppleScript in a Nutshell, 401

PHP, 266

changes to implementation, 300

converting XML to HTML, 279–285, 284

resources on, 399

for RSS aggregator, 290–298

for XML application development, 288–303

XML parser

building simple, 266–272

error trapping, 277–279

getting/setting options, 277

HTML generated from, 269–270, 270

initial setup, 273–275

supported entity handlers, 275–276

and XML-RPC, 306–320

benefits, 317–318

client, 307–311

data conversion, 313–317

server, 311–313

pickle module (Python), 246

pop() method (Perl), 104

POP3, SOAP::Lite support for, 148

POSIX character classes, 93

.pri file extension, 151

print class (POSIX), 93

print (Perl), 80

printToFile() method, 116

processing instruction class, 364–365

processing_instruction function (PHP), 276

processing_instruction method (SAX), 100

processingInstruction method (SAX), 202

ProcessingInstruction node type (DOM), 53

Programming Ruby (Thomas), 400

proprietary data formats, 4–5

proxy() method, 150, 164

avoiding problems, 160

PublicId key for Source parameter, 99

punct class (POSIX), 93

push() method (Perl), 104

Python, 167

advantages for XML generation from
another source, 144

compatibility, 42

to convert XML documents, 210–224

to internal class representation, 214–224

to internal structure, 211–214

DOM (Document Object Model) and, 53

learning costs, 44

parsing using DOM, 178–185

parsing using Expat, 175–177

PerlSAX wrapper script—Python

4021idx.qxd 11/9/01 1:24 PM Page 413

414

parsing using SAX, 177–178

resources on, 398–399

SOAP in, 226–234

client, 227–232

server, 227

and Unicode, 188–196

string creation, 188–189

for XML-RPC, 235–240

accessing server, 310

XML support, 170

xmllib module, 170–174

identifying XML elements, 173–174

XMLParser class, 171–172

Python: The Complete Reference (Brown), 399

Python XML package (PyXML), 198

parsing with SAX, 198–205

toolkit, 206

xmlproc for validation, 205–207

Q

quot character entity, 18

quotation marks, for XML element attributes,
14, 17

R

Ray, Erik T., Learning XML, 397

RDF (Resource Description Format), 9, 288

RDF/RSS-to-HTML converter, 323–325

REBOL, 322–328

parsing XML in, 322–326

building event parser, 326

tag manipulation, 325–326

XML processing as markup, 322–325

resources on, 399–400

XML-RPC with, 327–328

registerFunction() method, 233

registerKWFunction() method, 228, 233

registerKWObject() method, 233

registerObject() method, 233

registration method for SOAPServer class, 233

regular expressions, 37

in database management, 144

to manage white space, 271

in Perl, 91–94

remote data exchange, 56–59

limits, 58–59

SOAP (Simple Object Access Protocol), 58

XML-RPC, 58

remote procedure calls, 57

with XML-RPC, 327

removeChild method (XML::DOM), 112

replaceChild method (XML::DOM), 112

repr() function, 229

#REQUIRED, for attribute behavior, 30

resolveEntity() method, 202

resolve_entity method (SAX), 102

Resource Description Format (RDF), 9, 288

resources

on AppleScript, 401

Python: The Complete Reference—resources

4021idx.qxd 11/9/01 1:24 PM Page 414

415

generic, 394–395

on Perl, 397–398

on PHP, 399

on Python, 398–399

on REBOL, 399–400

on Ruby, 400

on Tcl, 400–401

on XML, 395–397

XML software, 401–402

result() method, 153

return values in Python, for SOAP client, 228

reverse() function (Perl), 95

REXML, 330

Rich Text Format (RTF), 5

Ritchie, Dennis, The C Programming
Language, 44

Roman character set, 54

root node for HTMLFragment class, 217

RSS (Rich Site Summary) format, 82–83,
288–289

AppleScript to process feed to HTML,
366–369

building aggregator, 290–298

parser, 295–297

sample file, 289

using aggregator, 297–298

writing documents, 300–302

adding nodes, 301–302

DOM document creation, 300–301

writing XML, 302

RTF (Rich Text Format), 5

Ruby, 330–340

parsing XML, 330–337

building to-do list, 332–337

XPath access mechanism, 331–332

resources on, 400

and XML-RPC, 337–340

client, 337–338

error handling, 339–340

server, 338–339

Ruby Application Archive, 330

Russell, Sean, 330

RXR, 327–328

S

SAX (Simple API for XML), 9, 52

to create nested structure, 211–212

error handling, 203–205

handler quick reference, 201–202

options when creating, 99

parser modified for error handling, 204

parsing in Python using, 177–178, 198–205

Web site, 396

XML processing with Perl using, 73–75,
98–108

conversions, 108

document searches, 102–108

XML processing wrapper script for database,
132–133

for XML-to-HTML converter, 222–224

result() method—SAX (Simple API for XML)

4021idx.qxd 11/9/01 1:24 PM Page 415

416

SAXException class, 203

saxlib package, 198

SAXNotRecognizedException, 203

SAXNotSupportedException, 204

SAXParseException exception, 203

scalartyp() method, 315

scalarval() method, 315

Scriptics, 400

scripting languages

advantages for XML generation from
another source, 144

irony, 44–45

reasons to use, 36–44

compatibility, 42–43

cost, 43–44

data interface, 38

data modeling, 37–38

development speed, 39–41

longevity, 41–42

memory management, 39

text processing, 36–37

scripting languages, XML (Extensible Markup
Language) and, 9–10

ScriptingAdditions folder, 361

searches

in RSS aggregator, 298, 299

with SAX, 102–108

serializing function, 365

server

for Python, 227

for SOAP, writing, 232–234

for SOAP::Lite, 148–149

for XML-RPC

PHP and, 311–313

Python for, 236–237

Python for, using HTTP, 238

with Ruby, 338–339

with Tcl, 356–358

server-side functions

arguments for, 234

in XML-RPC, 306

setNodeValue method (XML::DOM), 111

setParentNode method (XML::DOM), 111

SGML (Standardized General Markup
Language), 6

support by Python, 170

show tables statement (SQL), 137

Simple API for XML. See SAX (Simple API
for XML)

Simple Object Access Protocol (SOAP), 57, 58

single-tag elements, 13

skippedEntity() method (SAX), 202

SMTP, SOAP::Lite support for, 148

SOAP (Simple Object Access Protocol),
57, 58, 148

debugging, 234

and MacOS X, 374–375

in Python, 226–234

accessing namespaces, 231–232

client, 227–232

SAXException class—SOAP (Simple Object Access Protocol)

4021idx.qxd 11/9/01 1:24 PM Page 416

417

server, 227

working with objects, 230–231

writing servers, 232–234

SOAP::Lite module, 148–152

client, 149–150

automatic calls, 152–153

explicit calls, 152

multiple return values, 153–154

objects and methods, 154–155

script with error checking, 162

debugging, 160–163

error checking, 161–162

future, 165

how it works, 151–152

migrating existing modules, 159–160

server for, 148–149

dispatch methods, 156–158

SOAP shell, 163

support modules, 159

Solaris, compatibility issues, 43

Source, for SAX parser creation, 99

SourceForge, PyXML, 198

space class (POSIX), 93

speed

of development, scripting language and,
39–41

of event-driven parser, 50

SQL database, 81

access to, 38

dumping structure into XML, 136–139

SQL statements

converting XML table description to, 132–136

create table statement, 126

describe statement, 137

for dumping database content, 140

insert into statement, 141

inserting raw into database, 141–142

show tables statement, 137

standalone in XML declaration, 20

Standardized General Markup Language
(SGML), 67

support by Python, 170

start_cdata method (SAX), 100

start_document method (SAX), 100

startDocument() method (SAX), 202

start_element method (SAX), 100, 135–136

startElement() method (SAX), 202

startElementNS() method (SAX), 202

startTagHandler function, for RSS parser, 295

static handlers for SOAP server

external, 157

internal, 156–157

str() function, 189–190, 229

StreamReader class, 195

StreamWriter class, 195

String key for Source parameter, 99

strings, finding tag from, 104–105

structeach() method, 316

structreset() method, 316

SYSTEM keyword, 19

SystemId key for Source parameter, 99

SOAP::Lite module—SystemId key for Source parameter

4021idx.qxd 11/9/01 1:24 PM Page 417

418

T

Tab Delimited Fields (TDF), 4

table property of XMLDBHandler class
instance, 135

tag names, getting list of nodes by, 114

tag node, creating, 217

tags in XML, 13

finding from string, 104–105

finding information from, with PerlSAX,
105–108

REBOL manipulation of, 325–326

TagText package (Perl), 104–105

Tcl, 342–358

resources on, 400–401

and Unicode, 342, 349–350

supported encodings, 350

XML-RPC for, 355–358

TclXML, 342

parser, 342–350

configuration, 345–348

error handling, 348–349

TCP, SOAP::Lite support for, 148

TDF (Tab Delimited Fields), 4

text files, 4

Text node type (DOM), 53

text processing, scripting language and, 36–37

TextInTag search handler class, 106–107

Thomas, David, Programming Ruby, 400

Tk system, 42

to view XML, 351, 351–355

to-do list, 332–337

adding to, 333–336

displaying, 333

marking completed items, 336–337

toxml() method, 185

tr/// operator, 95

tree-based parser, 51–52

tuples, 229

U

uc() function (Perl), 90

ucfirst() function (Perl), 90

Ullman, Cayce, 226

Unicode character set, 8, 54–56

accessing database, 193–196

base sets, 378–390

ASCII, 378–382

ISO-8859-1, Latin-1, 382–386

Mac Roman, 386–390

character conversions, 95–96

character numbers, 90

PHP XML extensions and, 272–273

Python and, 188–196

decoding to Unicode formats, 191–192

encoding to Unicode formats, 190–191

string creation, 188–189

translation, 189–192

translation of character numbers, 192

specifying characters and sequences in Perl, 89

Tab Delimited Fields (TDF)—Unicode character set

4021idx.qxd 11/9/01 1:25 PM Page 418

419

Tcl and, 342, 349–350

working with data, 90–95

case translations, 90–91

data size traps, 94–95

regular expressions, 91–94

and XML, 55–56

XML character set names, 391–392

Unicode Consortium, 394

unicode() function, 191–192

Unicode/POSIX classes, 91–94

unicodedata module, 193–196

Unicode::Map8 module, 95

unknown_endtag() method, 173

unknown_starttag() method, 173

unpack() function (Perl), 95

unparsed entity, 17

unparsedEntity() method, 202

unparsed_entity_decl function (PHP), 276

unparsed_entity_decl method (SAX), 101

updating

database file, 120

XML document, DOM parser for, 79

upper class (POSIX), 93

uri() method, 149

avoiding problems, 160

UseAttributeOrder for SAX parser creation, 99

UTF-8 format, 55, 391

from Expat, 73

translation to UTF-16, 191

UTF-16 format, 55, 391

utf8 pragma, 88

V

validation

event-driven parser for, 50

xmlproc for, 205–207

Vaults of Parnassus, 398

vec() function (Perl), 95

version in XML declaration, 20

vocabulary, DTD and, 32

W

warning() method (SAX), 203

Web log project, 250–253, 253, 254

addEntryForm, 251

index_html page (DHTML), 250

processing form, 251

Python script for handling request, 252

XML export method, 255

Web sites. See also resources

application implementation as, 244

well-formed XML documents, 16–17

errors, 205

white space

Expat and, 271

in XML character data, 15–16

word class (POSIX), 93

World Wide Web Consortium

Web site, 394

XML design goals, 7

XML specification, 17

Unicode Consortium—World Wide Web Consortium

4021idx.qxd 11/9/01 1:25 PM Page 419

420

writeashtml() method, 218

wxValidator.py script, 207

X

\x{} to specify Unicode character, 89

xdigit class (POSIX), 93

XFragments, 9

XLink, 9

XML (Extensible Markup Language), 6. See also
parsing XML

from AppleScript, 370–371

application development with PHP, 288–303

converting to database, 145

converting to HTML, SAX for, 222–224

data portability, 5–7

for database dumping, 142–143

declaration, 20–21

elements and attributes, 13–14

entity references, 17–19

character entities, 18

mixed-content entities, 18–19

error codes and descriptions, 277–278

event-driven parser to regenerate, 50

extensions, 9

features, 8

goals, 7–8

vs. hash structure for database tables, 128

vs. HTML, 12

and MacOS X, 373–375

past, present, future, 8–9

processing instructions, 19–20

resources on, 395–397

and scripting languages, 9–10

structure, 12–16

Tk system to view, 351, 351–355

Unicode and, 55–56

The XML Bible (Harold), 397

XML Complete, 397

XML documents

conversion with Perl, 120

DOM parser to update contents, 79

generating from multiple database tables,
143–144

opening and parsing into DOM tree, 109

Python to convert, 210–224

to internal class representation, 214–224

to internal structure, 211–214

well-formed, 16–17

XML export format, in Zope, 246–249

XML processing

with Perl using DOM, 108–116

access by node, 109–111

information extraction, 111–115

modifying structures and data, 116

regenerating XML from DOM tree, 116

with Perl using SAX parser, 98–108

conversions, 108

document searches, 102–108

XML-RPC, 57, 58, 148, 163–165

with AppleScript, 372–373, 401

writeashtml() method—XML-RPC

4021idx.qxd 11/9/01 1:25 PM Page 420

421

debugging, 239–240

future, 165

obtaining package, 307

PHP and, 306–320

benefits, 317–318

client, 307–311

data conversion, 313–317

server, 311–313

Python for, 235–240

client, 235

server, 236–237

with REBOL, 327–328

Ruby and, 337–340

client, 337–338

error handling, 339–340

server, 338–339

standard, 396

for Tcl, 355–358, 401

Zope and, 259–260

XMLDBHandler class (SAX), 133–135

xml_decl method (SAX), 102

XML::DOM, 76, 108

accessing tree, 109–111

constants, 112

modules supporting different node struc-
tures, 110–111

xml.dom.minidom module, 184

XML::Generator module, 80, 143

XML::Grove, 76

xmllib module (Python), 170–174

identifying XML elements, 173–174

XMLParser class, 171–172

xml_parse() function (PHP), 274

XML::Parser, 64–73

for converting to HTML, 65–71, 72

traps, 72–73

XMLParser class (Python), 171–172

xml_parser_create() function (PHP),
273, 274

xml_parser_free() funciton (PHP), 275

xml_parser_get_option() funciton, 277

XML::Parser::PerlSAX module, 98

xml.parsers.expat module, 175

xmlproc for validation, 205–207

xmlproc_val script, 206

XMLReader class, 203

xmlrpc-object function, 327

xmlrpc_decode() function, 316–317

xmlrpc_encode() function, 316–317

xmlrpclib package, 235

XMLRPC::Lite package, 163–165

xmlrpcresp class, 312

xmlrpcval class, 309

for PHP to XML-RPC data conversion,
313–314

xml.sax, and xmllib, 170

XML::XQL module, 107

XPath, 107, 331–332

XPointer, 9

XQL, 107

XSL (Extensible Stylesheet Language), 9

XSLT (XSL Transformations), 9

XMLDBHandler class (SAX)—XSLT (XSL Transformations)

4021idx.qxd 11/9/01 1:25 PM Page 421

422

Z

ZODB (Zope Object Data Base), 244

Zope

background, 244–245

combining DTML and XML resources,
250–259

exporting DTML as XML, 255

parsing external XML documents, 256–259

Web log project, 250–253, 253, 254

Import/Export management inter-
face, 247

main management panel, 247

XML export format, 246–249

and XML-RPC, 259–260

Zope Corporation, 398

Zope Object Data Base (ZODB), 244

ZPublisher, 244, 245

Zveno Pty Ltd., 342

XSLT (XSL Transformations)—Zveno Pty Ltd.

4021idx.qxd 11/9/01 1:25 PM Page 422

	Contents
	Introduction
	Part I Applying XML
	Chapter 1 Introduction to XML
	Proprietary Data Formats
	XML—Making Data Portable
	XML Goals
	XML Features
	XML: Past, Present, and Future
	XML and Scripting Languages
	Where Next

	Chapter 2 Fundamentals of XML
	XML Structure
	Well-Formed XML Documents
	Entity References
	XML Processing Instructions
	The XML Declaration
	Summary

	Chapter 3 Data Type Definitions (DTDs)
	DTD Syntax
	Using DTDs for Modeling Data
	When to Use a DTD
	Standard DTDs
	Summary

	Chapter 4 Applying XML with Scripting Languages
	Why Use a Scripting Language?
	The Scripting Language Irony
	Summary

	Chapter 5 Data Exchange and XML
	Parsing XML
	Unicode
	Remote Data Exchange
	Summary

	Part II XML and Perl
	Chapter 6 XML Solutions in Perl
	Using XML:: Parser
	XML Processing Using SAX
	XML Processing Using DOM
	Generating XML
	Other XML Modules
	Summary

	Chapter 7 Perl and Unicode
	Core Support
	Working with Unicode Data
	Unicode Character Conversions
	Summary

	Chapter 8 Generating and Parsing XML Documents with Perl
	Using the SAX Parser
	Using a DOM Parser
	Summary

	Chapter 9 Converting XML Documents Using Perl
	Database Management
	Converting Database Content to XML
	Summary

	Chapter 10 Applying SOAP/XML-RPC in Perl
	Introducing SOAP:: Lite
	SOAP Client Programming
	Creating SOAP Servers
	Debugging SOAP:: Lite
	Using XML-RPC
	Where Next with SOAP:: Lite and XML-RPC
	Summary

	Part III XML and Python
	Chapter 11 XML Solutions in Python
	The xmllib Module
	Parsing Using Expat
	Parsing Using SAX
	Parsing Using DOM
	Summary

	Chapter 12 Python and Unicode
	Creating Unicode Strings
	Translating Unicode
	Accessing the Unicode Database
	Summary

	Chapter 13 Generating and Parsing XML Documents with Python
	Parsing with SAX
	Using xmlproc for Validation
	Summary

	Chapter 14 Converting XML Documents Using Python
	Converting XML to an Internal Structure
	Converting XML to an Internal Class Representation
	Summary

	Chapter 15 Applying SOAP/XML-RPC in Python
	Using SOAP
	XML-RPC Solutions
	Summary

	Chapter 16 Zope and XML Documents
	The XML Export Format
	Combining DTML and XML Resources
	Zope and XML-RPC
	Summary

	Part IV XML and PHP
	Chapter 17 XML and PHP
	Building a Simple XML Parser
	Inside the XML Parser
	Converting XML to HTML
	Summary

	Chapter 18 Developing XML Applications with PHP
	The RSS Format
	Building an RSS Aggregator
	Writing RSS Documents
	Summary

	Chapter 19 PHP and XML-RPC
	Writing an XML-RPC Client
	Writing an XML-RPC Server
	XML-RPC Data Conversion
	Benefits of XML-RPC in PHP
	Summary

	Part V XML and Other Languages
	Chapter 20 XML and REBOL
	Parsing XML Information in REBOL
	XML-RPC with REBOL
	Summary

	Chapter 21 XML and Ruby
	Parsing XML
	Ruby and XML-RPC
	Summary

	Chapter 22 XML and Tcl
	The TclXML Parser
	Viewing XML with Tk
	Using XML-RPC
	Summary

	Chapter 23 AppleScript and XML
	XML Parsing with AppleScript
	XML-RPC with AppleScript
	XML and MacOS X
	Summary

	Appendices
	Appendix A Unicode Quick Reference
	Base Character Sets
	XML Character Set Names

	Appendix B Resource Guide
	Generic Resources
	XML Resources
	Perl Resources
	Python Resources
	PHP Resources
	REBOL Resources
	Ruby Resources
	Tcl Resources
	AppleScript Resources
	XML Software

	Index
	SYMBOLS & NUMBERS
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

