Building Dynamic Web 2.0 Websites with

Ruby on Rails

Create database-driven dynamic websites with this open-source
web application framework

PACKT

Building Dynamic Web 2.0
Websites with Ruby on Rails

Create database-driven dynamic websites with this
open-source web application framework

A.P. Rajshekhar

[PUBLISHING]

BIRMINGHAM - MUMBALI

Building Dynamic Web 2.0 Websites with Ruby on Rails

Copyright © 2008 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the author, Packt Publishing,
nor its dealers or distributors will be held liable for any damages caused or alleged to
be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: March 2008
Production Reference: 1200308

Published by Packt Publishing Ltd.
32 Lincoln Road

Olton

Birmingham, B27 6PA, UK.

ISBN 978-1-847193-41-4
www . packtpub.com

Cover Image by Vinayak Chittar (vinayak.chittaregmail . com)

Credits

Author Project Manager
A.P. Rajshekhar Abhijeet Deobhakta
Reviewer Project Coordinator
Walt Stoneburner Zenab Kapasi
Senior Acquisition Editor Indexers
Douglas Paterson Hemangini Bari

Monica Ajmera
Development Editor
Ved Prakash Jha Proofreader
Angie Butcher
Technical Editor
Mithun Sehgal Production Coordinator
Shantanu Zagade
Editorial Team Leader
Mithil Kulkarni Cover Work
Shantanu Zagade

About the Author

A.P. Rajshekhar, Senior Developer with Vectorform, has worked on
enterprise-level web applications and game development. His endeavors include
the development of a Learning Management System, Supply Management Solution,
and Xbox-based games. He holds a Masters Degree in Computer Applications. He
is a regular contributor to the Devshed Portal on topics ranging from server-side
development (JEE/.Net/RoR) to mobile (Symbian-based development) and game
development (SDL and OpenGL) with a total readership of more than 1.4 million.

Authoring a book is not an easy feat. However, the help and
guidance from my family and friends helped me to author this book.
First, I would like to thank Packt Publication for providing me an
opportunity to work on such an exciting project. I would like to
thank my parents for their constant encouragement. Special thanks
to my friends Shrikant Khare and Sormita Chakraborty for their
support and encouragement.

About the Reviewer

Walt Stoneburner is a software architect with over 20 years of commercial
application development and consulting experience. Fringe passions involve quality
assurance, configuration management, and security. If cornered, he may actually
admit to liking statistics and authoring documentation as well.

He's easily amused by programming language design, collaborative applications,
and ASCII art. Self-described as a closet geek, Walt also evaluates software products
and consumer electronics, draws cartoons, produces photography, writes humor
pieces, performs slight of hand, enjoys game design, and can occasionally be found
on ham radio.

Walt may be reached directly via email at wlsewwco.com. He publishes a tech and
humor blog called the Walt-O-Matic at http: //www.wwco.com/~wls/blog/. Rumors
suggest that some of his strange videography may be found on iTunes.

Currently he is employed at Business & Engineering Systems Corporation as a lead
engineer developing advanced software solutions for knowledge management.

Other book reviews and contributions include AntiPatterns and Patterns in Software
Configuration Management (ISBN 0-471-32929-0, p. xi) and Exploiting Software:
How to Break Code (ISBN 0-201-78695-8, p. xxxiii).

Table of Contents

Preface 1
Chapter 1: Getting Started with Ruby and RoR 5
Ruby and RoR—The Next Level in Dynamic Web Development 5
Ruby 6
Ruby on Rails (RoR) 7
Philosophy 7
Features 8
Installing and Configuring Ruby and RoR 9
Manual Installation 9
Downloading and Installing Ruby 10
Updating Gem 13
Installing RoR 14
One-Click RoR Installation 15
Download and Unzip the Instant Rails 16
Configure Instant Rails Installation 16
Testing the Installation 19
Ruby 19
RoR 19
Summary 24
Chapter 2: Getting to Know Ruby and RoR 25
Ruby—the Basics 25
Classes, Attributes, Methods, and Objects 26
Classes 26
Attributes 27
Methods 28
Objects 30
Inheritance 31
Modules 32
Data Types 32
Number 33
Float 33
String 33

Table of Contents

Blocks and Iterators 34
Blocks 34
lterators 34

Exception Handling 37

Data Structures 38
Arrays 38
Hashes 38

RoR—Concepts and Components 39

RoR is a Ruby-Based Framework 39

RoR Implements MVC Pattern 40
Active Record 40
Action View 42
Action Controller 43

Hello World—the RoR Way 45

Setting up the Application Structure 45

Adding the First Controller Class 47

Defining the Action Method 48

Adding the View Template 49

Testing the Application 50

Summary 51
Chapter 3: TaleWiki—The Basic Setup 53
Understanding the Requirements 53

System Requirements 54

Module-Specific Requirements 55
Managing the Stories 55

Designing the Database 56
Understanding the Conventions 57
Designing the E-R Model 58
Defining the Schema 61
Creating the Tables 62

TaleWiki—Developing the Tale Management Module 64
Creating the Application Structure 64
Generating the Scaffolds 65
Customizing the Model 68
Customizing the Controller 73
Refining the View 75

Testing the Application 79

Summary 84
Chapter 4: Managing the Users 85
Understanding the Requirements 85

Managing the User 86
Managing Roles 87

Designing the Tables 88
Designing the E-R Model 88

Lii]

Table of Contents

Deriving the Schema 92
Creating the Tables 93
Developing the User Management 94
Developing the Role Management 95
Developing the User Management Functionality 98
Testing the Functionalities 104
Summary 109
Chapter 5: Gathering User Comments 111
Understanding the Requirements 111
Login Management 112
Managing the Comments 112
Designing the Database 113
Designing the E-R Model 113
Deriving the Schema 115
Creating the Tables 116
Developing the Login Management Module 116
Creating the Login Page 117
Implementing the Authenticate method 118
Setting up the Session 120
Applying Authorization 121
Tying Up the Loose Ends 123
Developing the Comment Management Module 124
Generating the Scaffold 125
Modifying the Model 125
Refining the View 127
Customizing the Controller 129
Testing the Module 130
Summary 135
Chapter 6: Setting up the Template 137
Understanding Migration 137
Generating Migration Classes 138
Editing the Generated Classes 139
Running the Migration 142
Customizing the Template 143
Defining the Layout 143
Customizing the Layout of the Login Page 143
Defining the Master Layout 148
Setting up the Navigation 152
Testing the Application 155
Summary 156
Chapter 7: Tagging the Tales 157
Understanding the Requirements 157
Developing the Tag management Module 158

[iii]

Table of Contents

Selecting a Plug-in for Tag Management 159
Installing the Plug-in 159
Setting up Tables Required by the Plug-in 161
Developing the Tag Management Module 163
Adding a Tag 163
Visualizing the Tag Cloud 166
Searching By Tag 169
Testing the Modifications 172
Summary 175
Chapter 8: Enhancing User Experience with Ajax 177
Understanding the Requirements 177
Implementing Ajax 178
What is Ajax? 178
How Ajax and RoR are Related 179
Implementing the Live Search 180
Specify the Location to Display the Result 180
Use the observe_field Helper 181
Modify the Action Method 183
Implementing the In-line Editing 183
Marking the Fields for In-line Editing 184
Set up the Controller 187
Testing the Modifications 188
Summary 190
Chapter 9: Developing the Interface for Administration 191
Understanding the Requirements 191
Implementing the Functionalities 192
Modification of the Deletion of Tales 192
Providing Access to All the Functionalities of the Comment Management
Module 194
Implementing Auto-Complete for the User name 195
Implementing Search 197
Testing the Modifications 199
Summary 204
Chapter 10: Deploying the TaleWiki 205
Understanding the Production Environment 205
Development Mode 206
Test Mode 206
Production Mode 206
Changing to the Production Environment 207
Migrating to the Production Database 207
Configuring Mongrel 208

[iv]

Table of Contents

Points to Consider 210
Summary 210

Index 211

[v]

Preface

Ruby on Rails is an open-source web application framework ideally suited to
building business applications, accelerating and simplifying the creation of
database-driven websites. It has been developed on the Ruby platform.

This book is a tutorial for creating a complete website with Ruby on Rails (RoR). It
will teach you to develop database-backed web applications according to the
Model-View-Controller pattern. It will take you on a joy ride right from installation
to a complete dynamic website. All the applications discussed in this book will help
you add exciting features to your website. This book will show you how to assemble
RoR's features and leverage its power to design, develop, and deploy a fully
featured website.

What This Book Covers

Chapter 1 gives you an overview of the features of Ruby and RoR, as well as
providing the various ways of installing, configuring, and testing both Ruby
and RoR.

Chapter 2 introduces you to the basics of Ruby as well as the main concepts and
components of RoR.

Chapter 3 makes you understand the design of tables according to the conventions
of RoR, creation of scaffolds for tables, and changing the scaffolds according to the
requirements.

Chapter 4 gives you details about how to set up the User Management module for the
website called TaleWiki.

Chapter 5 makes you familiar with the Login Management and Comment
Management modules for TaleWiki.

Preface

Chapter 6 introduces you to the Migrations and Layouts involved in setting up the
template for TaleWiki.

Chapter 7 describes the tagging functionality being implemented for the enhanced
search usability.

Chapter 8 provides you with the implementation of AJAX for TaleWiki.
Chapter 9 deals with the development of an interface for the administration.

Chapter 10 gives you the steps for deploying the website.

What You Need for This Book

e Operating System: Windows 2000 or above / Redhat Fedora core 1.0
or above

e Database: MySQL 4.9 or above
e Editor: Notepad/Vim or Emacs
e Browser: Firefox 1.5 or above/ Internet Explorer 6.0 or above

Conventions

In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

There are three styles for code. Code words in text are shown as follows: "For
example, to add instance attributes named author and genre to the Tale class,
you will do it as follows:"

A block of code will be set as follows:

class Tale
@author
@genre
@tale body
end

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items will be made bold:

class Tale
@author
@genre
@tale_body
end

[2]

Preface

Any command-line input and output is written as follows:

c:\InstantRails\rails apps\ > rails talewiki

New terms and important words are introduced in a bold-type font. Words that you
see on the screen, in menus or dialog boxes for example, appear in our text like this:
"In the next page, without entering any data, click on the Create button."

% Important notes appear in a box like this.

N\l
Q Tips and tricks appear like this.

Reader Feedback

Feedback from our readers is always welcome. Let us know what you think about
this book, what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply drop an email to feedbacke@packtpub.com,
making sure to mention the book title in the subject of your message.

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www.packtpub.com or
email suggest@packtpub. com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer Support

Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the Example Code for the Book

Visit http://www.packtpub.com/files/code/3414_Code.zip to directly
download the example code.

The downloadable files contain instructions on how to use them.

[31]

Preface

Errata

Although we have taken every care to ensure the accuracy of our contents, mistakes
do happen. If you find a mistake in one of our books —maybe a mistake in text or
code —we would be grateful if you would report this to us. By doing this you can
save other readers from frustration, and help to improve subsequent versions of
this book. If you find any errata, report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the Submit Errata link, and entering
the details of your errata. Once your errata are verified, your submission will be
accepted and the errata added to the list of existing errata. The existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Questions

You can contact us at questionse@packtpub.com if you are having a problem with
some aspect of the book, and we will do our best to address it.

[4]

Getting Started with
Ruby and RoR

'Which is the best framework for web application development?' This question

is asked in different ways and forms. The answer, however, always remains the
same — 'The one that enhances productivity'. The next obvious query would be 'In
that case which is the framework that enhances productivity?' After some debates
and deliberations, we can conclude, 'A framework that reduces Boilerplate code and
also reduces the learning curve is the one that increases productivity.'

If you look around, there are an abundance of frameworks that cater to web
application development. But most of them fail in one of the two points that govern
productivity. Either the framework reduces the Boilerplate code or it is easier to
learn. Achieving a balance between the two is seen as a tough task. It is here that
Ruby and Ruby on Rails (or RoR as it is fondly called), score above most of their
contemporaries. How they achieve this balance is what we will be looking at in

this book.

We will be developing a website throughout the book, each chapter adding
something new to the website. This chapter will lay the groundwork of introducing
you to Ruby and RoR. It will also tell you the ways to install and configure Ruby and
RoR —one-click as well as manual installation, and finishing with techniques to test
your installation.

Ruby and RoR—The Next Level in
Dynamic Web Development

It is always a good idea to know about the specifications of the tool with which
one has to work, before handling the tool. In our context, the tools are Ruby and
RoR —Ruby as the language and RoR as the framework built upon Ruby.

Getting Started with Ruby and RoR

Ruby

In 1995, Yukihiro Matsumoto released the first version of Ruby and this added one
more language to the ever-growing toolkit of application developers. The current
stable version is 1.8.6. According to the TIOBE Programming Community Index, it
is the fastest growing language. So, what makes it the fastest growing one among
the languages? To understand this, let us first understand the reason behind the
creation of Ruby. The main reason given by Mr. Matsumoto for creating Ruby was
that he wanted a scripting language that would optimize the way a programmer
would develop the software. This means that the features of Ruby are such that they
optimize the way the software is developed. What are these features? Let us have a
look at them:

Interpreted: Ruby is an interpreted language. Therefore, whenever you make
a change to the source code, you need not compile the code and then run it to
see the effect of the change. As a result of this feature, the code-compile-run
cycle becomes the code-run cycle.

Purely Object-Oriented: Ruby is purely object-oriented. That means that
everything in Ruby is an object which includes primitive data-types and
numbers. In addition, it supports all the features required by an Object-
Oriented Language.

Functional: Ruby supports functional programming using blocks.

Duck Typing: It is also known as Dynamic Typing. Ruby decides about

the type of variable while the program is running by looking at the value
contained in the variable at that instant. In other words, if an object looks like
a duck, sounds like a duck, then it is a duck!

Automatic Memory Management: You would know it as Garbage
Collection. As in any Very High-Level Language (VHLL), Ruby provides
Garbage Collection out-of-the-box, thus you need not worry about physical
memory leaks.

Threading: The current stable version of Ruby provides 'almost' platform
independent threading using green threads (threads used at the user-space
level are known as green threads.) I said 'almost' because Ruby threads are
simulated in the VM rather than running as native OS threads.

Reflection: Ruby provides a program with the ability to 'look at itself'
while running. This ability is known by different terms, such as reflection,
introspection, and so on. Using reflection, a program can modify certain
aspects of itself during execution, or create a completely new object at
runtime based on the requirements at that time.

[6]

Chapter 1

Looking at the features we just discussed, you could definitely see that the creator's
reason holds true. The way imperative programming features have been balanced
with functional programming is the proof of that. It is on such a foundation that RoR
has been built.

Ruby on Rails (RoR)

RoR is a recent entrant in the world of web application frameworks. So how come
such a new player on the block not only stands on its own but can also challenge
veteran players of the likes of J2EE/JEE? The answer does not just lie in the
functionalities. The other aspect that governs the acceptance of a framework is its
philosophy. Hence, we will have to look at both the aspects of RoR — functionality as
well as philosophy. Keep in mind that the philosophy holds true for all the versions
of RoR.

Philosophy

The philosophy of RoR depends on two principles:

e DRY: Don't Repeat Yourself or the DRY principle, if applied properly,
reduces the duplication of tasks within a project. Duplication of any kind,
within a project, leads to difficulty in modification and maintenance
and inconsistency. In RoR, you can see this principle at work in almost
everything — from the reusable components in the form of plug-ins to the
way database tables are mapped.

¢ Convention-over-Configuration (CoC): Configuration has taken over
the web application frameworks so much that even a simple task such as
applying 'compulsory field' validation for just one field requires entries
in an XML file. In RoR, the principle is to supply information about only
those aspects that are different from usual application settings. The ORM
(Object Relational Mapping) framework provided by RoR is an example of
the Convention-over-Configuration principle. Unless you specify a different
name for an ORM object, the object uses the name of the table to which it
is mapped. Whereas in the case of configuration-based ORM frameworks,
such as Hibernate, the mapping of each table along with its columns has
to be given in the configuration file. So, a change in the schema means a
change in the configuration file. However, in the case of RoR, a change in the
schema doesn't mean a change in the object unless the name of the table itself
changes. We will see more about the ORM framework in Chapter 2.

[71

Getting Started with Ruby and RoR

Features

The features based on the philosophy of DRY and Convention-over-Configuration
principles are what make RoR so attractive for the development of dynamic web-
sites. The features that showed the way for alternative methods for implementation
of various server-side techniques are:

Automatic setup of Application structure: If you have worked with J2EE
technologies, this would come as a pleasant surprise. The structure of

any application need not be created manually. Just one command and the
complete structure including folders and basic web files such as index.html
will be generated for you. Therefore, no more hunting for third party

tools such as those that provide the initial setup or setting up the

structure manually.

Generation of Boilerplate Code: Every application has certain blocks of
code that are essentially the same for all other applications of the same type
or category. Such blocks are called Boilerplate code. One of the examples of
Boilerplate code is the code block setting up a connection to the database.
The same code can be used with different applications with only a little
change. Though this is the case, most of the frameworks do not provide any
inbuilt mechanism to reduce this 're-invention of the wheel'. RoR avoids
the duplication using scaffolding. In essence, a scaffold contains the bare
minimum of code to accomplish tasks such as connecting to the database,
setting up a log, and so on. Scaffolds reflect the DRY principle that RoR
adheres to.

Dynamic mapping of classes to database schemas: No web application can
go online without having a database as its back-end. ORM frameworks

have eased the database access. However, the configuration aspect reduces
any advantage to the developer. In the case of RoR, ORM does not need

any configuration. At runtime, RoR reads and maps the schema based

on the names of classes and corresponding tables using reflection and
meta-programming. Moreover, what the developer gets is more productivity.

Ajax at the core of presentation: Ajax is the technology that provides
interactivity to websites without becoming intrusive. All the current
server-side technologies claim to support Ajax, but the support is peripheral
and not at the core. You would have to download new libraries, configure
them, and then start the develop-compile-deploy-test cycle again. Whereas in
RoR, Ajax is part of the core libraries. So when you install RoR, Ajax support
is also made available to you. Using them is as easy as when you use any
other library provided by RoR.

[8]

Chapter 1

o Batteries included: RoR contains many more libraries that provide for
essentially all the requirements of a dynamic website including layout
management, mailing, and so on. If you look at these libraries, you will
understand that they are, in fact, fully-fledged components in themselves,
representing different services provided by a website or a portal.

That completes the roundup of features of the 'tools' that we are going to use to build
our website. The next step is to install and configure our 'tools' so that we can get
started with our task.

Installing and Configuring Ruby and RoR

RoR can be installed in two ways:

1. Manual installation after installing Ruby
2. One-click installer that installs Ruby and RoR, which includes Apache
web-server and MySQL database server

If you already have Apache and MySQL installed, then manual installation is the
better way as it installs only RoR.

Manual Installation

There are three main steps for manually installing RoR, which are:
¢ Downloading and installing Ruby
e Updating gem

¢ Installing RoR using gem

In this case, the RoR installation is done over the internet. So from the second step
itself, ensure that the internet is connected throughout the installation.

[o]

Getting Started with Ruby and RoR

Downloading and Installing Ruby

First, grab the Ruby installer for windows at
http://rubyinstaller.rubyforge.org/wiki/wiki.pl.

@ - @ 6 [O ntperubyinstaler. rubyforge orgfviuik.p [=[] [[Cl-]ruby download %) ‘
| w7 (3urvead) Yahoo! Mail Beta, a_p_rajs... L) | Ll http://66.90.103. .. 200f%20Music. bt || 1 [} RubyInstallerWiki: RubylInstaller &3 }

RubylInstaller B

RubvylInstaller | RecentChanges | Preferences

One-Click Ruby Installer for Windows

Current Version: 1.8.6-25

This is a [one-click, self-contained Windows installer] that contains the Ruby language itself, dozens of popular extensions and packages, a
syntax-highlighting editor and execution environment, and a Windows help file that contains the full text of the book, Prog g Ruby: The Prag ic
Programmer’s Guide.

If this is your first visit here, please click on Preferences above to register so that your name can be associated with your changes and contributions.

¢ Quick Introduction
+ RubyinstallerNews
+ RubylnstallerFAQ
¢ [Download

+ [Report a bug

¢ Developerlist

¢ DevDoc

+ [Mailing Lists

+ [Browse the code
+ [Report a bug

+ [Reguest a Feature

The previous figure shows the main page for the one-click Ruby installer (do not
confuse it with one-click RoR installer). It provides a list of links that provide details
about the one-click installer. Here are the steps for downloading and installing Ruby:

o From the list, select [Download] link.

[10]

Chapter 1

e On clicking the [Download] link, you will be taken to the page listing the
downloadable release version of the installers.

5 RubyForge: One-Click Ruby Installer: Project Filelist - Mozilla Firef o

File Edit View History Bookmarks Tools Help

- - (17 | @ witpysrubyforge.org/frs/igroup id=167 B[~ [B] [Aeix] Answers.com I

4 Getting Started [Latest Headlines

(@ RubyForge: One-Click Ruby Install...J | [s1 Adobe - InDesign C53 : Desktop Pu...

RUBYF@RGE

6RubyCentral
Home My Page Project Tree Code Snippets Project Openings One-Click Ruby Installer

Summary Tracker Lists Tasks Docs News SCM Files Wiki

Log In Support New Account

This project's trackers E

F{jit] Edinburgh, UK
'~ 4-5 April 2008

Files | Admin

Below is a list of all files of the project. Before downloading, you may want to read Release Notes and Changelog (accessible by clicking on release version)

Package Release & Notes Filename = Date
Size D/L Arch Type
One-Click Installer - Windows =
1.8.6-26 Final Release 2007-12-14 23:13
ruby186-26.exe 23.72 MB 217,111i386 .exe (Windows executable)
ruby186-26.md5 34 bytes 8,022 Other Other Source File
1.8.6-26 Release Candidate 2 2007-10-29 23:15
ruby186-26_rc2.exe 23.41 MB 89,481i386 .exe (Windows executable)
ruby186-26_rc2.mds 34 bytes 3,302 Any Other
1.8.6-26 Release Candidate 1 2007-10-16 16:01
ruby186-26_rcl.exe 23.39 MB 13,336i380 .exe (Windows executable)
ruby186-26_rc1l.md5 32 bytes 1,434 Any Other
1.8.6-25 2007-03-18 01:17
ruby186-25.exe 22.86 MB 516,4461386 .exe (Windows executable)
ruby186-25.md5 154 bytes 17,442 Any Other
1.8.5-24 2007-02-18 16:55
ruby185-24.exe 22.75 MB 52,928 i386 .exe (Windows executable)
ruby185-24.md5s 153 bytes 3,903 Any Other
1.8.5-23 2007-02-18 03:20
ruby185-23.exe 22.67 MB 2,616i386 .exe (Windows executable)
ruby185-23.md5 153 bytes 868 Any Other

e From the given list, select the . exe link for the latest release and save the
file in your preferred location. In our case the version to be downloaded is
ruby186-25.exe.

e Double click on the file to be installed to start the installation process.

e The first screen that will be presented to you should be the License
Agreement. Read the license carefully and click on I Agree.

[11]

Getting Started with Ruby and RoR

The next screen will present you with the components to be installed.

Chaose which features of Ruby-1856-25 you want to install, (Py)

Check the components you want to install and unchecdk the components you don't want to
install. Click Mext to continue.

Select components to install: m [Desdription

SoTE
Enable RubyGems
[] European Keyboard

Space required: 86.2MB

I < Back][Mext >][Cancel I

e Keep the default choices and click Next. Of these SciTE is a programmer's
editor and RubyGems is Ruby's package manager and updater.

e Next, choose where Ruby should be installed. It's always advisable to install
in the root of any drive instead of a sub-folder. Ruby commands may not
work correctly if the sub-folder is deeply nested. For example, if you want to
install it in drive C:, then give c: \ruby as the value for Destination Folder.
Also keep in mind not to specify any folder name with spaces in it, as it may
create problems while installing RoR.

e Next, provide the name for the Start Menu entry for Ruby installation. Keep
the default name and click Install.

[12]

Chapter 1

If the installation completes without any problem, then you will see the
following screen:

Installation Complete
Setup was completed successfully. .a_?

Completed
[28E!ﬁl!!23E!ﬁlS!E!E!ﬁl!!2!E!E!S!S!E!E!!!SSEEEESISEEEEESISEEEEEHS

Create shortcut: C:\Documents and SettingsA P RAJSHEKHAR\Start Menu\Programs. .. [|
Output folder: c:yruby B
Create folder: C:\Documents and Settings'A P RAJSHEKHAR \Start MenuPrograms'R. ..
Create shortcut: Cr\Documents and Settings\a P RAJSHEKHAR \Start Menu\Programs. ..
Create shortcut: C:\Documents and Settings' P RAJSHEKHAR \Start Menu\Programs. ..
Create folder: C:\Documents and Settings'A P RAJSHEKHAR \Start Menu'\Programs'\R...
Create shortcut: C:\Documents and Settings'4 P RAJSHEKHAR \Start Menu\Programs. ..
Create shortcut: Cr\Documents and Settings\a P RAJSHEKHAR\Start Menu\Programs. ..
Qutput folder; c:'yuby

Adding .RB to PATHEXT

Adding .REW to PATHEXT

Completed ;V|

e C(lick on the Next > button to complete the installation process.

o The last screen presented by the installer should give you an option to view
the Readme file. If you wish to read it, check the Show Readme checkbox
and then click on Finish to complete the installation.

That completes the Ruby installation. The next step is to update the installation
using gem.

Updating Gem

Gem is the name of the utility supplied with Ruby in order to manage, install,

and update the Ruby installation in an easy way. The second step in the manual
installation of RoR is updating the Ruby installation so that if a new package or an
update for any of the package is available, then the complete installation can be
made up-to-date.

Before we begin, if you are behind a proxy, open the command prompt and give the
following command:

>Set HTTP_PROXY=http://<proxy address>:<proxy port>

[13]

Getting Started with Ruby and RoR

For example, if the address of the proxy server is 192.168.1.1 and the port number is
9090, then you would have to give the following at the command prompt:

>set HTTP_PROXY=http://192.168.1.1:9090
Next, give the following command at the prompt:
>gem update

You will get the following reply after the last step:

oft Windows BP [Uerszion 5.1.26H01
G Cupytlght 1985-2001 Microsoft Corp.

:wDocuments and Settings“~A P RAJEHEKHAR>gemsz update
‘gems’ is not recognized az an internal or external command.
operable program or batch file.

:S\Documents and Settings™“A P RAJSHEKHAR»gem update

pdating installed gems...
Bulk updating Gem source index for: http:/sgems.rubuforge.org
Attempting remote update of fxruhy
Belect wvhich gem to install for your platform <i386-—mswin3Z)>
1. fxruby 1.6.11 <ruby>

. fxruby 1.6.11 <{mswin32)>

. fxruby 1.6.180 {(mswin32)>

. fxruby 1.6.18 {ruby>

. S8kip this gem

. Cancel installation

Select the compatible version for your platform. Here I choose option 2 which is
the latest for Windows. The difference between <ruby> and <mswin32> is that
the former is a pure Ruby-based package and the latter is the packages natively
compiled for Windows. If there is more than one package to be updated, then
more 'choice menus' will be presented to you. The point to remember is to choose
the number corresponding to the latest version of the package natively compiled
for Windows.

That completes the update gem step. Next, let us install RoR.

Installing RoR

This is the last and the easiest part of the installation process. Just one command and
RoR shall be installed. At the prompt, issue the following command:

>gem install rails --include-dependencies

[14]

Chapter 1

omplete

Buccessfully
Inztalling »i
ri
ri
ri
ri

Inztalling

installed rails—1.2_3

installed activesupport—1.4.2

installed activerecord-1.15_3

installed actionpack-1.12.3

installed actionmailer—1.3.3

installed actionwehservice-1.2.3

for activesupport—1._4_2
or activerecord-1.15.

or actionpack-1.13.3.

or actionmailer—1.3_3_..
or actionwehservice-1.2.3...

documentation
documentation f
documentation f
documentation f
documentation f
documentation
documentation
documentation
documentation
documentation

IC:“Documents and Settings~A P

——install—-diw c:/Puhy)llh/Pﬁhy/;ems)i:s- a
IC:“\Documents and Settingz~A P RAJSHEKHAR»>gem install rails ——include—dependencie

Meed to wupdate 1 gems from http:/sgems.rubyforge.ory

for
for
for
for
for

RAJSHEKHAR > =

-2l x|

activesupport—1._4.2___
activerecord—-1.15.3...
actionpack—1.13_3.._.
actionmailer—1.3.3...
actionwebservice—-1.2.3...

The command should give the messages as shown in the previous figure. Congrats!
RoR is now installed on your system.

For those working on GNU/Linux, only the first step would differ. To
install Ruby, grab the latest tar file from http://www.ruby-lang.org/
en/. Then give the following command at the prompt:

tar -zxvf <ruby tar file>
Then go into the directory created by the tar command. Inside the
directory issue following commands:

./configure; make; make install

That's it. Ruby is ready to be explored.

One-Click RoR Installation

The one-click installer is, in fact, a zip package containing everything that you need.
All you need to do is download it and unzip it to a directory of your choice. Even
though, it is in a single package, the installation needs to be configured. Therefore, in
essence, there are two steps:

[15]

Getting Started with Ruby and RoR

Download and Unzip the Instant Rails

e First, go to the following address:

http://instantrails.rubyforge.org/wiki/wiki.pl.

e From the links listed on the page click on the [Download] link.

e On the next page, select the package corresponding to the latest release from
the list.

e Once the download has completed, unzip the package into the directory of
your choice. I use the InstantRails directory.

Configure Instant Rails Installation

The first step is to configure the environment of the installation. To do so, click on the
InstantRails.exe file within the directory of Instant Rails. You will be presented
with the following dialog box:

".’/ Instant Rails has moved from "Ci\force-path-update” to "C:\InstantRails\",
-~

Reqenerate configuration files 2

L Ok a[Cancel]

When the dialog box just shown appears, click OK. It will configure the environment
variables for the Instant Rails directory.

Once configuration is done, you will be presented with the main application
window. What the configuration does is that it updates the configuration files for the
Apache web-server and the MySQL database server. It also starts these servers.

Ihstant Rails]
[TIL_teeche | 2 stopped [started

05/06 22:05:23 Instant Rails: Servers starting

05/06 22:05:25 Apache : Apache port [80] iz uzed by "™ [inetinfo.exe] |
0506 22:05:25 MuSql : Configuration file changed

05/06 22:085:25 Apache : Configuration file changed

ey
+ I

[16]

Chapter 1

Next, we have to tell Windows about how to find and launch our application. To
achieve this we have to change the Window's Hosts File. Click on the button labelled
I and choose Configure | Window's Hosts file.

“Instant Rails

i .Help - ; '|:|:ueu:| tdySAL

0 LogFilks b & Servers statting

I Contore [
| Rails Applications ¥
o Flp | Apache

Mysql

Window's Hosts file
Other

The host file will be opened in NOTEPAD. The file should contain the following line:
127.0.0.1 localhost

If it is not there, it has to be added manually. Save the changes and exit Notepad.

File Edit Format View Help
copyright (c) 1993-1999 microsoft Corp. i)\]

This is a sample HOSTS file used by microsoft TCP/IP for windows.

This file contains the mappings of IP addresses to host names. Each
entr%i should be kept on an individual 1ine. The IP address should

be placed in the first column followed b[\j/ the corresponding host name.
The IP address and the host name should be separated by at least one
space.

Additionally, comments (such as these) may be inserted on individual
Tines or following the machine name denoted by a "#' symbol.

For example:

102.54.94.97 rhino. acme. com # source server
38.25.63.10 X.acme. com # x client host

A e HE Mt N R e el e R

127.0.0.1 localhost r
1]

Now, we have to set the path to the Ruby directory of the Instant Rails installation.
To do so, open the use_ruby . cmd file within the Instant Rails installation directory.
Then, add the <Instant_Rails_directory>\ruby\lib; line to the PATH entry in the
file, where <Instant_Rails_directorys is the path of the directory where Instant
Rails have been installed. Now, Save the file to $WINDIRS\system32 folder. In the

[17]

Getting Started with Ruby and RoR

case of Windows 2000, $WINDIR$ refers to WINNT folder, and in the case of Windows
XP, it is the windows folder. By doing this, giving the command use_ruby enables
you to use Instant Rails without changing anything in the installation directory. After
the addition, the content of the file will be as follows:

File Edit Format View Help

e WARNING ! ———mmmmmmmmmmmmmmm
- This file is GENERATED by Instant Rails.

: If you need to make changes to this file, you should edit
: the source template file instead. The source template is
: C:hZInstantRailsh\conf_files‘\use_ruby. cmd

vInstantRails

PATH
C:hInstantRails\ruby\bin;C:\InstantRails\mysqlibin;C:\InstantRails\ruby']l
ib; BPATH

cd rails_apps

dir

On giving the use_ruby command, if you get a screen similar to the following, the
configuration has been successful. That completes the one-click RoR installation.

c:\wmww's.\systm:{ ‘\cmd.exe

:nInstantRails>cd rails_apps
:nInstantRailssrails_apps>dir

Uolume in drive C has no label.

Uolume Serial Mumber iz 662D-7614
Directory of C:sInstantRailsswrails_apps

A3-24-2007 @8:17 PM <DIR> 9

Al-24-20087 0@8:19 PH <DIR> e
A3-24-2007 0G8:19 FH {DIR> -metadata
B8:=19 PH <DIR> cookhbook
[1-24-2807 O8:19 FPH <DIR> typo-2. 6.8
B Filed(s> B hytes
5 Divds> 33.0887.164.416 hytes free

:snInstantRailssrails_apps>o

[18]

Chapter 1

Testing the Installation

The installation is successful as much as the process is concerned. However, it is
always a good idea to test the installation. From this point onwards, I will be using
the rails_apps directory as the base directory for the RoR application that will be
developed within this book. The installation has to be tested for two components:

Ruby

Fire up the editor of your choice (I will be using ScITE) and enter the following
code: print 'Hello Ruby'.Save it in a file named first.rb, and place the file in
the rails_apps directory. Then drop into the command prompt and change into
the rails_app directory (if you are using Instant Rails, then the rails_app
directory would be inside the Instant Rails directory). Then run the file with the
following command:

>ruby first.rb

The result should be as shown below.

st C:\WINDOWS\system32\cmd.

IC:srails_apprruby first.rh
ello from Ruby
srails_app>

Anything apart from the output shown means you will have to check the installation
and configuration of Ruby. This test is more important in the case of an Instant Rails
installation. The reason is that in the case of any manual installation, if Ruby does
not work, then the RoR installation would not be successful. However, in the case of
Instant Rails, everything comes as a bundle. If it succeeds, then Ruby supplied with
the bundle is working fine. That completes the first part of 'Testing the Installation'.

RoR

Inside the rails_apps directory, issue the following command:

>rails test app

[19]

Getting Started with Ruby and RoR

If you get the screen shown next, then your RoR installation is OK. What has
happened is that RoR has generated the whole file structure for the application. Even
certain files that work as placeholders have been generated by just one command.
Impressive, isn't it?

create ptAprocess/reaper

create script/process/spawner

create script/process/inspector
create script/runner

create script/server

create script/plugin

create publicr/dispatch.rb

create puhlicr/dispatch.cgi

create publicrsdispatch.fcgi

create publics484 _html

create publics588_html

create publicsindex.html

create publicsfavicon.ico

create public/robots.txt

create public/images ils.png

create pubhlic/javascripts/prototype.js
create public/javascriptsseffects.js
create publicsjavascriptssdragdrop.js
create publicsjavascriptsscontrols.js
create public/javascripts-application.js
create doc-README_FOR_APP

create log/server.log

create log-/production.log

create log/development.log

create log-/test.log

tnrails_app>

The next step is to check the server provided by RoR. Give the following command
after changing into the test_app folder.

> ruby script/server

As a response to the command, you should see the messages shown in the following
screen saying that it is booting up the WebRick server.

; =T
® File(s) 7?77 hytes =
4 Dirds> 33,.131.986.944 hytes free

srails_apphtest_appsscript>ruby seruver
=> Booting WEBrick...
=» Rails application started on http:--8.8.0.0:3808
=» Ctrl-C to shutdown sewrver; call with ——help for options
[2887-86-87 19:28:4@1 INFO UEBrick 1.3.1
[2087-86—A7 19:28:4@1 INFO ruby 1.8.6 (28087-83-13> [i3B6-mswin32]
[20@7-B6-A7 19:28:481 INFO UWEBrick::HITPServerifstart: pid=5696 port=38600
H2?7.80.8.1 — - [B?7/Jun/28@7:19:38:14 India Standard Timel “GET ~ HTTP-1.1i" 288 75
52

=

127.8.8.1 — — [B7/Jun-/20807:19:38:14 India Standard Timel "GET ~javascripts/proto
ype.js HITP-/1.1" 288 71268

http://localhost =380/ —> /javascripts/prototype.js

8.1 - - [B7/Jun 20087:19:38:14 India Standard Timel "GET ~javascripts-seffec

s.js HITP-1.1" 288 382808

fhttp:/“localhost 3080, —> /javascriptsseffects.js

127.8.68.1 — — [B7/Jun-/2087:1%:38:15 India Standard Timel "GET ~images~-rails.png
ITP/1.1" 288 1787

http://localhost:=3088/ —> simages rails.png

H2?7.8.8.1 — - [B7-Jun/2887:1%:38:15 India Standard Timel “GET ~favicon.ico HTTP/|
-1'" 288 A
—» sfavicon.ico

127.8.8.1 — - [B7/Jun/2887:12:3%2:42 India Standard Timel “GET ~ HTTP-1.1i" 384 B

—F
127.0.0.1 — — [B7/Jun/28087:19:39:49 India Standard Timel "GET ~javascripts./protoil

[20]

Chapter 1

WebRick is a project embeddable server provided by RoR that resides in the script
folder of the application which in this case is test_app.

Next, open the browser of your choice and provide the following URL:
http://localhost:3000.

You will be presented with the following screen. If you get anything else, then it
means that you need to go through the steps for installation and configuration once
again. That covers testing the manual installation of RoR. So what about Instant
Rails? That is what is coming up next.

[E-5 & T @0 nodehoton [=]] TG [eforvien SJ[- &=

¥ (0 urwead) Yahoo! Mal Beta, 8 p_rais... (| [+ Gmal - Inbox () l=i | L Instaling instant fads. i e foriview ~oneofi. b | [Rub ks Wekcome aboard a

the Rails site

You're riding the Rails

Welcome aboard

Abhout your application’s environment B .
Juin the community

Getting started Fuby on Rails
Here's how to get rolling: Official weblog
Mailing ksts
1. Create your databases and edit B
config/database.yml Wikl
Bug) trackier

Rails needs to know your login and passwerd,

Browse the
2. Use script/generate to create your documentation
meodels and controllers
To see all avalable options, run it without parameters, Rails. A1
Rubry standard Mwary
Rugg core

3. Set up a default route and remove or
rename this file

Routes are setup in config/routes.rb.

To test Instant Rails's RoR installation, first stop the Apache server by selecting
Apache | stop. This step is necessary so that the Rails server is provided by Instant
Rails. Next, select I | Rails Applications | Manage Rails Applications.... It will
popup the following window:

Rails Applications ‘wieh Server
[] cookboak
[wpo-260

Check one or more Rails applications and then click a button above to
perform that action on the selected applications.

To create a new Rail: app, click the button below to open a console
window where pou can run the rails' command.

Unless you configure the startup mode, the default is to start a Rails app
in development mode on port 3000,

Cieate New Rails App... Refresh List [Cloze]

[21]

Getting Started with Ruby and RoR

Click on the Create New Rails App... button. It will drop you into the shell at
the rails_app directory of the Instant Rails install folder as shown in the
following screen:

:~InstantRails>PATH C:osInstantRailssrubysbin;C:sInstantRailssmysglsbin;C:~Insta
tRailssrubyslibice ssrubyshin; C:SPROGRA™IMGTENbin; "C:\Program Files“\Microsoft Diw|
ecty SDK <April 2006)>~Utilities“Bin“xB6";C: \WINDOWS systemn32;C:\WINDOWS ; C:“WINDOQ
JESystemd2 Ubem;C:~Program Filez“Microsoft Uizual Studlu\Comnun\Tuo1*\”1nNT [RN
Program Files“Microsoft Uisuval Studio“Common>M3Deuv?8“Bin;C:“\Program Flle“\"lCPO“
oft Uiswal Studio™Common“:Tools;C:wProgram Files“\Microsoft Uizuwal Studio~UC%8%hin
sCaSINSTANT 2 puby<bin; C:~INSTAN™2~Apache ; C: ~INSTAN"2~FPHP

:nInstantRails>cd wails_apps

:NInstantRailssrails_apps>die
Uolume in drive C has no label.
Uolume Serial Mumber iz 662D-7614

Directory of C:nInstantRailssrails_apps

3-24-2007 B8:19 PH <DIR> 3
B8:-19 PH <DIR> .-
A8:17 PHM <DIR> -metadata
B8:-19 PH <DIR> cookbook
3-24-2087 BE:19 PH <DIR> typo-2.6.8
B Filed{s> B hytes
5 Dirds)> 33.112.75%6.224 hytes free

:nInstantRailssrails_apps >

Then give the rails command as follows:

>rails test app

If the screen you get is the same as shown it means the Instant Rails installation is
correct. It is the same as that of the one which you saw for the manual installation.

create ptA/process/reapep

create ptA/process/spawner

create ptsprocesssinspector
create pt/runner

create

create scriptsplugin

create publicrsdispatch.rb

create publicsdispatch.cgi

create public/dispatch.fcgi

create public~/484.html

create public/5868.html

create public/index.html

create public/favicon.ico

create public/robots.txt

create publicsimages-srails.png

create public/javascripts/prototype.js
create publicsjavascriptsrseffects.js
create publicsjavascriptssdragdrop.js
create publicsjavascripts./controlzs.js
create publicsjavascriptssapplication.js
create doc/README_FOR_APP

create logs/server.log

create logs/production.log

create log~sdevelopment.log

create logrs/test.log

ssrails_app?

[22]

Chapter 1

Now, select I | Rails Applications | Manage Rails Applications..., and in the
pop-up window, select the check box corresponding to test_app. Then click Start
with Mongrel. The popup window will appear as the following screen:

R ailz &pplications wieh Server

[cookbook

test_app I Configure Startup Mode. .. J
[wpe-2E0

I Start with Mongrel J

I Open a Railz Conzole... J

Check one or more Railz applications and then click a button above to
perform that action on the selected applications.

To create a new Railz app. click the button below to open a cotsole
window where you can run the raily’ command,

Unlezz you configure the startup mode, the default iz to start a Rails app
in developrient mode on port 3000,

[Create Mew Rails App.. l [Refiesh List] | Close |

The Mongrel server will be started as a command window. Next, in the browser
give the URL as http://localhost:3000 to bring up the default index page of the
test_app application. If it looks like the following screen that means you are set to
go into the exciting world of RoR.

[- - @ O G [T bwtecabost 300f [=[] [l rtamsew =l - 4
Sy {1 unwead) Yahoo! Mad Fetn, a_p_ras... (1 | [N 6mal - Tnbe 5) L0 | L) trataling inssant Rads. | ¥ Iefanview - Official Hemepage <oneaf.. || | [Ruby on Ralle Welcome abaard 3

Welcome aboard

You're riding the Rails!

" a e |
N’ [ESah] the nnits site
RAILS
Ahout your application’s environment .
Juin the community

Getting started Rubiy on Raik:
Here's how to get roling: Official weblos
Mailing lists
1. Create your databases and edit I chamnh
config/database. yml Wiki
Bug tracker

Rails neads to know your legin and password,

Browse the

2. Use script/generate to create your documentation
models and controllers

Rails APL

Rubry standard hrary

To see all avalable oplions, run it without parameters.

Ruby caore

2. Set up a default route and remove or
rename this file

Routes are setup in config/routes.rb.

[23]

Getting Started with Ruby and RoR

This completes the testing phase of the installation. From here on, I will be using
Instant Rails as the development environment.

Summary

That brings us to the end of the first chapter. In this chapter, you have had an
overview of the features of Ruby and RoR. It also took you through the various ways
of installing, configuring, and testing of both Ruby and RoR.

The next chapter will take you deeper into Ruby and RoR, as it will deal with
the components and concepts of both Ruby and RoR. Sit tight as this is just
the beginning...

[24]

Getting to Know Ruby
and RoR

In the last chapter, the focus was on the specifications and installation of the 'tools',
if I continue using the analogy of 'tools.' By the same analogy — until the user
understands which control provides what functionality — the tool cannot be used to
its maximum potential. So it is necessary to understand which library provides what
functionality and which component maps to what specification for each and every
tool. Ruby and RoR is no exception to this.

RoR builds upon the functionalities provided by Ruby. Thus, by understanding
how Ruby works, you can know about the building blocks of RoR. That in turn,
will help you to have a clearer picture of how the different components of RoR fit
into the bigger picture. The chapter will first introduce you to the basic concepts of
Ruby. Then it will move on to the basic concepts and components of RoR. Finally,
the chapter will be completed with an example of RoR, which can be considered as
'Hello World' in RoR.

Ruby—the Basics

To understand Ruby, you will have to understand the concepts that are fundamental
to Ruby. These concepts are:

o (lasses

e Inheritance

e Module

e Data Types

e Blocks and Iterators
e Exception Handling
e Data Structures

Getting to Know Ruby and RoR

Of these, the first two are Object-Oriented concepts. Let us have a look at each of
these concepts and the way Ruby implements them. However, you will have to keep
one point in mind. The discussion in this section is not 'the definitive guide' to Ruby.
The focus of this section is to provide you with the fundamentals of Ruby so that you
can understand RoR better.

Classes, Attributes, Methods, and Objects

Classes, attributes, methods, and objects are the core of any Object-Oriented
language. How they are implemented and how they can be used, differs from
language to language. How they are implemented in Ruby? — that's what I am going
to discuss now.

Classes

A class is a blueprint that represents a section of the real world objects. For example,
a class 'Tale' would represent a real world tale (or a story). A class is an abstract
representation of a real world object, including its characteristics and functionalities.
Hence, it doesn't occupy space in memory during the execution of the program that
contains the class.

There are two types of classes — close-ended and open-ended. If a class is close-ended,
then new functionalities cannot be added to it without inheriting the class. A C++ or
a Java class is close-ended because you cannot add a new functionality to it without
inheriting or subclassing it.

On the other hand, if a class is open-ended, then new functionalities can be added to
it without inheriting it. One of the important aspects of the Ruby class is that it is
open-ended. It means you can add new functionalities at any point of time.

In Ruby, the class declaration and definition happens at the same time. A class is
declared using a class keyword. The definition goes between class <class_name> and
end. For example, to declare and define a class named Tale, you have

to write:

class Tale
end

The class declared and defined just now is an empty class as it doesn't contain any
attributes or methods. If you compare the class definition with say, that of Java or
C++, you will observe that there is no parenthesis demarcating the body of the class.
Also, Ruby doesn't rely on indentation for the demarcation of blocks. The only thing
that you have to keep in mind is to provide an end statement at the end of each
block —whether the block is an attribute or a class.

[26]

Chapter 2

Al

~Q The name of a class should always begin with a capital letter.

Attributes

Like all other Object-Oriented languages, Ruby too has the provision for defining
the fields or attributes for a class. The attributes are the variables that describe the
qualities of a class. To continue with our 'Tale' example, a real world 'Tale' will have
an author, a genre, and so on. So, the name of the author and genre are the qualities
that describe a 'Tale.' Now if we compare a 'Tale' to a class, then author and genre
will become its attributes.

A class can have two kinds of attributes —instance attributes and class-level
attributes. Instance attributes describe the qualities of an instance of a class, whereas
the class-level attributes describe the qualities of all the current instances of a class.
In other words, the instance attributes are bound to a specific instance of the class
but the class-level attributes are bound to the class itself. So the value of a class-
level attribute will be same across all the instances of that class and the value of an
instance attribute will differ with each instance. The static variable is like a global
variable stored in a class that can be accessed by all the instances of that class. The
change done to the static variable by one of the instances will be seen by the other
instances. Another term for an instance attribute is instance variable and for class-
level attribute is class-level variable.

In Ruby, you must define the instance attributes using the @ symbol. To define
the class-level attributes you will have to use the @@ symbol. For example, to add
instance attributes named author and genre to the Tale class, you will do it

as follows:

class Tale
@author
@genre
@tale body

end

[27]

Getting to Know Ruby and RoR

Methods

Methods define the functionality provided by a class. Simply stated, methods tell
about what a class can do. You can define three types of methods —one that neither
accepts any parameter nor returns any value, one that accepts parameters but doesn't
return any value, and lastly, one that accepts parameters as well as returns values.
Let's say that every 'Tale' can tell the way through which that 'Tale' is told to others,
then 'Tale' will have a method 'tell".

You can add a method to the class using the def keyword. The end of the method
is denoted by the end keyword. For example, you would add a method tel1 to the
class Tale in the following way:

class Tale
@author
@genre
@tale body
#method to display the tale
def tell
print @tale body
end
end

A method can accept values through parameters. Parameters are declared as
variables in parenthesis. If there is only one parameter then parenthesis is not
required. If the tell method takes only part of the tale to be told then the method
would be like:

class Tale
@author
@genre
@tale body
#method to display part of the tale
def tell part to be told
start_index=@tale body.index(part_to_be told)
print @etale body\
[start index+part to be told.length,@tale body.length]
end
end

A method can return a value by using the return keyword. If the Tale class contains
a method that returns the name of the author, it would be:

class Tale
@author
@genre
@tale body
#method to display part of the tale

[28]

Chapter 2

def tell part to be told

start start index=@tale body.index(part to be told)

print @tale body\
[start index+part to be told.length,@tale body.length]

end
def get author

return @author
end

end

There is a special type of method that is used to initialize the instance attributes of
a class. Such a method is known as constructor. The specialty of the constructor is
that it is called when an instance of that class is created. Also, it doesn't return any
value. In Ruby, the constructor is denoted by the initialize method. Let's add a
constructor to our Tale class. The instance attributes are moved to the constructor.

class Tale
def initialize (author, genre, body)
@author=author
@genre=genre
@tale body=body
end
def tell part_to be told
start_index=@tale_body.index(part_to be told)
print etale body\
[start index+part to be told.length,@tale body.length]
end
def get_author
return @author
end
end

Another special kind of method is related to attributes. Attributes can be read and
written using getters and setters. A Getter is a method that has the same name as that
of the attribute whose value it is to get. To make it clearer I will rewrite get_author
to make it a getter as follows:

class Tale
def initialize(author, genre, body)
@author=author
@genre=genre
@tale body=body
end
def tell part_to be told
start_index=@tale_body.index(part_to _be told)
print etale body\
[start index+part to be told.length,@tale body.length]

[29]

Getting to Know Ruby and RoR

end
#igetter for author attribute
def author
@author
end
end

Next is the setter. A setter is a method having the same name as that of the
attribute followed by the variable containing the value to be set. The variable
containing the value is kept in parenthesis and is assigned to the attribute name. A
setter for the author attribute of our Tale class will be:

class Tale
def initialize (author, genre, body)
@author=author
@genre=genre
@tale body=body
end
#method to display part of the tale
def tell part to _be told
start index=@tale body.index (part to be told)
print @tale body\
[start index+part to be told.length,@tale body.length]
end
#getter for author attribute
def author
@author
end
#isetter for author attribute
def author=(newAuthor)
@author=newAuthor
end
end

Objects

Until now, I have been using the term 'instance of a class'. What does this actually
mean? As already said, a class doesn't occupy any memory. Memory is only
allocated when an instance of the class is created. The instance of a class is another
term for an object of the class. If the class is a blueprint then an object is the
implementation of the blueprint. For example, tale_of_mermaid will be the object
of the Tale class.

[30]

Chapter 2

A new Ruby object is created by calling a new method on the class. The new method
is an implicit method. It means that each class will be supplied with the new method
by the Ruby Interpreter. You don't have to define the new method on your own. It
automatically calls the initialize method. Therefore, the following code will create
an object of the Tale class named mermaid_tale

mermaid tale=Tale.new("unknown", "fairy tale", "once upon a
time...")

Once you create the instance of a class, you can call its methods. If you want to tell
only the first part of the Cinderella tale you will call:

mermaid tale.tell("first")

Similarly, attributes can be get and set by calling getters and setters on the object of
the Tale class. So, if you want to set the name of the author to Jim Henson, then you
will call the setter as:

mermaid tale.author= "Jim Henson"

And to get the name of the author you can call the getter on the object. The # sign
is used to replace the value of the variable that comes after it. In the following
statement, mermaid_tale.author will be replaced by its value as it comes after #.

print "Author is #mermaid tale.author"

Inheritance

In general, inheritance is something that is transferred from parents to children.

The inheritance can be of any type. The physical attributes of parents and the mental
faculties of parents are some of the qualities in our parents that we have inherited.
In the same way, a class can inherit methods and attributes of another class. In an
Object-Oriented approach, this is known as Inheritance. Inheritance is also known as
specialization.

Let's say you want to have a class that deals specifically with fantasy tales. Let's name
the new class FantasyTale. Apart from the attributes specified in the Tale class, the
FantasyTale class will have the type of creature that the Tale focuses on. Following
is the definition of the FantasyTale class:

class FantasyTale < Tale
def initialize (author, genre, body, creature)
super (author, genre, body)
@creature = creature
end
end

[31]

Getting to Know Ruby and RoR

The < Tale tells Ruby that the FantasyTale class inherits from the Tale class. Hence,
FantasyTale will have all the methods that we have defined in the Tale class. Here,
the Tale class is the super class and FantasyTale is the subclass. To pass values to
the super class, the keyword super needs to be used. When you create an object of

a subclass, the object can access the methods of the super class. The following code
creates an instance of FantasyTale. Then it calls the tell method of Tale (which is
FantasyTale's super class) to display part of the tale.

fantasy = FantasyTale.new("Jim Henson", "Fantasy", "Once upon a
time...", "mermaid")

fantasy.tell ("Once")

Ruby supports multiple inheritance through mixins. However, it is out of the scope
of this chapter to discuss mixins.

Modules

Modules are the collection of classes or methods. The main use of modules is to
prevent namespace clashes that may occur when you try to use different classes with
the same name. Modules are defined by the module and end keywords. For example,
Tale and FantasyTale classes can be encapsulated in a module as follows:

module Tales
class Tale
end
class FantasyTale < Tale
end
end

To call a module, you will need to use the : : operator. For example, to call the Tale
class you will need to use the following statement:

Tl = Tales :: Tale.new("Jim Henson", "Fantasy", "Once upon a time...")

Next, let us look at data types.

Data Types

In Ruby, the data type of a variable is determined at runtime. However, this doesn't
mean that there is no primitive data type support in Ruby. Ruby has the following
primitive data types.

[32]

Chapter 2

Number

Number represents an integer. It can be any integer — positive or negative. Places
within the numbers can be demarcated using an underscore. For example:

tale age=1000
or
tale_age=1_000

Both the above forms are valid.

Float

Any decimal number is a float data type. A variable of a float type can have a
number with decimal points as well as scientific notation. Hence you can define a
float variable in either of the following ways:

diameter=3.145
or
diameter=3.14e-05

String
Any alphanumeric character surrounded by quotes is considered a string. Both

single as well as double quotes denote a string. Both the following codes are
valid strings:

s= "It's a beautiful life"
or
sl= 'It's a beautiful life'

If you observe, when the alphanumeric sequence contains a single quoted
character or characters, they need to be enclosed in double quotes. The string can
be accessed as a list as you have seen in the tell method.

There is a special kind of string called Symbol. It can be considered as a
lightweight string. It is mostly used when the string need not be shown on the
screen. A Symbol is like a common variable except that it is prefixed with a colon
(:). For example, both the following are valid symbols:

:part_of story
or
:next part

One point to keep in mind is that data types in Ruby are objects. The data types
being discussed next are objects.

[33]

Getting to Know Ruby and RoR

Blocks and lterators

Ruby provides unnamed blocks to group a set of statements together. It also
provides a technique known as an iterator to go through a collection. Let's see how
they can be used to make development simpler.

Blocks

Code blocks are of two kinds —named and unnamed (or anonymous). Classes and
methods come under named blocks. Anonymous blocks are denoted with curly braces
({})- They can also start with the do keyword and end with the end keyword. You
can use either curly braces ({}) or do/end. Loops also come under anonymous blocks.
An example of anonymous block can be opening a file. In code it will be:

5.times({
print "Hello \n"

}

Blocks can have arguments too. In other words, they can work like a slimmed down
version of methods. Throughout this chapter, I will be using methods and functions
interchangeably. The block arguments are surrounded by pipe characters and
separated by comma. So to pass the message to be printed inside the block, you can
rewrite the above code as:

5.times{ |msg|

print msg
}

Use of blocks will become clearer when we discuss iterators, and that is coming
up next.

Iterators

Iterators do what their name suggests — they iterate over a collection. Iteration can be
done using the each keyword. The way in which iterator is used is:

<collections>.each {|<var>| <operation on vars}

Here, <collection> can be an array or a list of any kind and var is the variable.
For example, let's say that array alist has been defined as follows:

alist=[1,2,3.4,"foo"]
Then by using iterators you can print the elements of the array in the following way:

alist.each {|item| puts item}

[34]

Chapter 2

It will give you the following result:

>ruby iterator example.rb
1

2

3.4

foo

>Exit code: 0

So how do blocks and iterators help in more common contexts such as reading and
writing to a file? As an answer to this question let us come back to the Tale class.
Everything is fine and dandy until now. You can create different tale objects, get
and set author's name, and display a part of the tale. However, once the object is
destroyed, the values of that object are lost. In other words, the values present in
individual instance attributes are not saved. This is where reading and writing of a
file (such as file I/ O) comes into the picture. Using blocks and iterators, file I/O can
become really easy. Let's add a method that writes the values to a file.

class Tale
#constructor
def initialize (author, genre, body)
@author=author
@genre=genre
@tale body=body
end
#method to display part of the tale
def tell part to be told
start index=@tale body.index(part to be told)
print etale body\
[start index+part to be told.length,@tale body.length]
end
#getter for author attribute
def author
@author
end
#setter for author attribute
def author= (newAuthor)
@author=newAuthor
end
def write to file
#opens a file and does the writing within it
File.open ('tale.txt','w') { |file|
file.puts @author
file.puts @genre
file.puts @tale body
}
end
end

[35]

Getting to Know Ruby and RoR

Here everything is done within the block. Now let's add a read_from_file method
that will read a file and print the contents onto the screen.

class Tale
#constructor
def initialize (author, genre, body)
@author=author
@genre=genre
@tale body=body
end
#method to display part of the tale
def tell part to_be told
start index=@tale body.index (part to be told)
print @tale body\
[start index+part to be told.length,@tale body.length]
end
#getter for author attribute
def author
@author
end
#setter for author attribute
def author=(newAuthor)
@author=newAuthor
end
#method to write the attribute values to a file
def write_to_file
#opens a file and does the writing within it
File.open ('tale.txt',6'w') { |file|
file.puts @author
file.puts @genre
file.puts @tale body
}
end
#method to read from a file
def read from file
File.readlines('tale.txt').each { |line|
puts line
}
end
end

Here, the file is read and each line is iterated over using each, which is then passed
into the block by passing it as the argument. Then the value of the argument is
printed. That's how iterators and blocks work together.

[36]

Chapter 2

Exception Handling

Exceptions are error conditions that interrupt the normal execution of a program.
Exceptions can occur due to many reasons including I/O errors and trying to
divide by zero. It is always a good practice to handle exceptions. To handle
exceptions, Ruby provides the raise and rescue clauses. Every block containing
a logic that can give raise exceptions is kept inside a begin/end block as

shown below

begin

#logic

rescue

#handle error condition
end

For example, to catch all the exceptions that can occur within a block, you will have
to write:

begin
#logic
rescue Exception
#handle error condition
end

Let's say that in the read_from_file method of the Tale class, while opening the
file, an exception can occur. The exception can occur due to many reasons, such

as the file does not exist, the path to the file is wrong or the user does not have
permission to access it. So, let's add an error handling block. For that you will have to
rewrite the read_ from_ file method as follows:

def write_to_file
#opens a file and does the writing within it
begin
File.open ('tale.txt','w') { |file|
file.puts @author
file.puts @genre
file.puts @tale body
}
rescue Exception => ex
$stderr.print "File open failed "
end
end

In this case, it catches any kind of exception. That is how exceptions are handled
in Ruby.

[37]

Getting to Know Ruby and RoR

Data Structures

Most of the power and ease that Ruby provides to the developers comes from its
inbuilt data structures. The most commonly used data structures are:

e Arrays
e Hashes

Of these the former is index-based and the latter is key-based.

Arrays

An array is a list that holds a collection of items. The Array class of Ruby provides
the array related functionalities. The main difference between an array in Ruby
and an array in a language —such as Java—is that an array in Ruby is a dynamic
data structure. A list of books is an example where an array can be used. An array
containing a list of books can be created as follows:

books = ["The Treasure Island", "Don Quixote"]

The books array can be accessed using the index or a number starting at 0. For
example, using the following statement, you can access the first element of the array,
The Treasure Island.

books [0]

You have to keep in mind that arrays in Ruby are zero indexed. An interesting
relationship between arrays and strings is that strings can be accessed as arrays.
If you remember the definition of the te1l method, we have accessed the body
variable as an array. Next, let us look at hashes.

Hashes

Arrays are useful as long as you do not want to associate the values with any other
type other than the numeric index. Let us say that you would like to use the name
of the author as the index instead of a number. In such a case, you will need to use
a hash instead of an array. Similar to array, hash is also a class. To define a hash as
having the details of a book including title, author, and genre, the statement
will be:

book = {"title" => "The Treasure Island"
"author" => "R.L.Stevenson'"
"genre" => "Adventure"

[38]

Chapter 2

To access the title of the book, you will do as follows:

book ["title"]

The last statement will give The Treasure Island as output. That completes the fast
track introduction to the basic concepts of Ruby. Next, let us see how RoR builds
itself on Ruby.

The # is an interesting character. When used outside single or double
quotes, the line following it is treated as a comment. However, inside
single or double quotes, it is treated as a value replacement.

~\l

RoR—Concepts and Components

Now that the basics of Ruby have been introduced, let us move on to the next
stage —RoR. If you ask the question, 'What is RoR?', the most common answer will
be, 'RoR is a Ruby-based framework that implements the MVC pattern'. There are
two key points in this answer:

e Itis a Ruby-based Framework

e It Implements the MVC pattern

Let us have a look at these points in detail.

RoR is a Ruby-Based Framework

The dynamic and open-ended nature of Ruby makes it an attractive option to

build frameworks. Given the ease of meta-programming and reflection, blocks and
iterators along with the exception handling, you have a language that could service
any tier of a web application. That's what Mr. Hansson did. He took the different
services provided by Ruby and created RoR out of it.

How Ruby eases the meta-programming is evident from Active Record, the ORM
framework within RoR. Based on the name of the class, RoR (basically Ruby
constructs) reads the schema and creates the objects of the class based on the data
retrieved from the table on-the-fly. An action method communicates with the
corresponding view using an instance variable and not through the explicit usage
parameters sent through request objects or session objects. Apart from these,

RoR makes heavy use of hash like structures and anonymous code blocks to
reduce configuration.

Now that you have had a taste of how RoR makes use of Ruby, let us go the next
aspect of RoR.

[39]

Getting to Know Ruby and RoR

RoR Implements MVC Pattern

You will have definitely heard the term MVC being used with different frameworks.
But what is MVC and how is RoR concerned with it? MVC is a design pattern that
provides a clear-cut demarcation between three aspects of an application — data
access logic, the control flow logic, and the presentation logic. These three aspects
have been deemed as M, V, and C. They stand for:

e Model —It represents the data processed by the application. It provides a link
to the persistent storage (data store).

e View —the logic corresponding to the display of the data held by the Model
is provided by the View. It is the only aspect of MVC that directly interacts
with the user.

e Controller — It represents the control flow logic. The decisions about which
View has to be called to display the current data, which part of the Model has
to be updated are taken care of by the Controller. It sits at the boundary of
your application and intercepts each request. It then calls the corresponding
Model to update or retrieve data, and then chooses the appropriate View to
display the data.

Coming to the question of how RoR is concerned with it, RoR implements MVC by
providing three layers or components as a part of the framework. They are:

e Active Record
e Action View

e Action Controller

Action Controller and Action View together are known as Action Pack.
Understanding more about these components will help you in not only finding an
answer to the question of RoR's implementation of MVC, but will also tell you a
great deal about how Ruby forms the base of RoR. So here it goes.

Active Record

Active Record is the 'Model' in RoR. The Model component stores data and provides
functionality to work with the data. Apart from being the Model component, Active
Record is also an ORM framework. ORM stands for Object Relational Mapping.
Hence, Active Record does the following, which constitutes functionalities of both a
Model as well as an ORM framework:

[40]

Chapter 2

Table to Class Mapping: Each table is mapped to one or more classes. This
is the default mapping, and the default mapping is based on convention
rather than configuration. Having the name of the table plural and the name
of the class singular is one of such conventions. As Active Record follows the
Active Record data mapping pattern, the table attributes are mapped to the
instance attributes at runtime. Hence, the classes don't need to provide the
getters and setters for the table attributes, as you would have done in other
ORM frameworks such as Hibernate. Once mapping is done, each object of
the ORM class represents a specific row of the table with which the class has
been mapped.

Database Connectivity: You can connect to the database by making calls
to the generic API that Active Record provides. The API then delegates the
task to the database specific adaptor. In short, Active Record provides an
abstraction over the process of connecting to a database. Active Record has
adaptors for MySQL, Postgres, MS SQLServer, DB2, and SQLite databases.
The connection aspect of Active Record comes into the picture only when
you are not using Active Record with RoR. Yes, you can use Active Record
even for Ruby projects that don't need to be web-enabled. In the case of
RoR, you have to provide the parameters for connecting to the database

in the database.yml file that resides in the config director of your RoR
application. YML provides a way to describe data in a structured manner.

CRUD Operations: CRUD stands for create, retrieve, update, and delete
operations on a table. In terms of SQL, it means insertion, selection, updation,
and deletion operations that are the basis of any application capable of saving
user's choices. Because Active Record is an ORM framework, you always
work with objects. To insert a new row, you will create an object of the class
and populate its instance attributes with values. When a select statement is
executed at the database side, Active Record creates objects corresponding to
each row and provides them to you. Similarly, when an object is deleted, the
corresponding row is also deleted. For retrieving existing data, Active Record
provides a £ind () method. Thus, you can perform CRUD operations without
worrying about the vendor of the database or the variation of SQL to be used.

Data Validation: Validating the data before persisting it to the database is
the first step in ensuring security of your website. To make it easier, Active
Record provides validation of the Model component, also known as the Data
Model. Data can be validated automatically when saved. You can also ensure
that data is validated after an object is created or values are updated by using
validate on create() and validate on update () methods. All the
validation methods need to be overridden.

[41]

Getting to Know Ruby and RoR

To create a model object from a table, you have to give the following command at the
prompt of your application's directory:

ruby script/generate model <tablename in singular>

For example, to create model from a table named Tale, you have to issue the
following command at the prompt:

c:\InstantRails\rail apps\test app\> ruby script/generate model Tale

Action View

View component encompasses the logic for the presentation of the data present

in the Model component. Action View is the View component of RoR. The
functionalities provided by Action View range from template creation to Ajaxifying
the web page. The most often used functionalities of Action View are:

e Templates: Templates are the files containing placeholders that will
be replaced with content or expanded at runtime. The basic template
functionality is provided by RHTML templates. They are HTML files in
which you can embed Ruby code. When the template is called either through
the browser or by the Controller component, the RUBY code is executed and
its result is placed in place of the code itself. The final output is then sent to
the browser. In RHTML templates, you can embed any kind of Ruby code.

e Form Helper: Even though you can embed Ruby code in RHTML, large
chunks of code make the page unreadable and less maintainable. So you can
place the code in Ruby files and call the relevant functions from within your
RHTML page. This process is made simpler through Helpers. One of the
commonly used Helpers is the Form Helper. It provides methods to create
form elements such as checkboxes and textboxes. While using Form Helpers,
you should start placing the element methods in the form of form_tag().

o Formatting Helper: Formatting of the data to be presented is one of the
major concerns in the presentation logic. Using Formatting Helpers you can
easily format the data in the way you require it. It contains Helpers for the
formatting of date, currency, and string.

e Layout: Layout defines how the various contents of a page are arranged. A
dynamically created page may contain nesting of different pages. This can
be the case even without using tables or frames. Action View helps in this
case by providing a Layout service. Using the Layout API, you can create a
page by nesting different pages. For example, if the pages of your site contain
a header, body, and footer, then, only the body part will change with each
page. By using Layout API, you can pass the content of the body without
providing the header or body multiple times. Using this technique, you can
even provide user-specific body content for a page.

[42]

Chapter 2

A basic RHTML template can be created either by hand or through a command. The
command is closely linked with the Controller component. We will look at it in the
next section. Let's have a view of an RHTML file. As you already know, RHTML

is an HTML file having embedded Ruby code. Let's say that you want to display

a set of combo boxes, one each for day, month, and date, then the RHTML file

will contain:

<html>
<head>
<title>Select Date</title>
</heads>
<body>
<h3> Please select the date of the publication of the
Tale</hl>

date select("post", "written on", :start year => 1855)
</body>
</html>

You will see the details of this helper and many other such helpers in the
coming chapters.

Action Controller

The controller orchestrates the flow of logic. In a web-application, it is the Controller
that regulates and orchestrates the flow of application logic. The controller sits at
the boundary of an application and intercepts all the requests. Based on the request,
it updates the corresponding Model object and calls the View logic to display the
updated data. In RoR, the Action Controller provides the functionalities of the
Controller. The main functionalities provided by the Action Controller, apart from
the flow control logic, are:

¢ Session Handling: A session is the time period spent by a single user at
a website. A session can be tracked in two ways — by cookies or by using
a session object. Cookies are small files saved at the client side either for a
definite time period such as a day or a week, or for the period of the user's
stay at the website. The file contains the required user information. You
can use a cookies object which is a hash like object to track the user session.
However, cookies cannot hold objects. For that you need to use the session
object. The session object is also a hash like structure that can store objects. By
using cookies and session objects you can track the user session.

[43]

Getting to Know Ruby and RoR

o Filtering: There are situations where you would like to call a particular set
of statements before executing the logic in the Controller. Logging, user
authentication and providing personalized response based on user are
examples of such situations. To handle these situations, the Action Controller
provides filters. There are three main filters — before, after, and around. These
filters work as their name suggests. The before filter is executed before the
logic within the Controller is executed. The after filter is called once the
Controller logic is executed. And the around filter is a combination of the
before and after filters. They wrap around the complete logic. So they
are called before the execution as well as after the execution of the
Controller logic.

e Caching: Caching is the process in which the most requested content is
saved in a cache so that it need not be generated again and again. By using
the Action Controller you can implement either page caching or action
caching. Actions are the methods within the Controllers that correspond
to a particular URL. In page caching, once generated, the content is not
regenerated for the next request having the same URL. Instead, the already
generated content is sent to the user. This is simple caching. The catch here is
that the filter, if any defined, is executed only once. If you want to ensure that
the filter is executed every time along with having the caching functionality,
then you will have to use the action caching. It ensures that even though the
content is not regenerated, the filter is executed for each request.

To create a controller you have to give the following command at the prompt:

ruby script/generate controller <controller name> [<view name>]

For example, to create a controller named AddTale, you have to give the following at
the prompt:

c:\InstantRails\rail apps\test app\> ruby script/generate controller
AddTale

The created Controller file is a Ruby file just like the files created for the Model.
However, the methods contained within this file are action methods that are mapped
at the Controller level to the View templates, using the hash like structures. So you
don't need to provide the XML configuration file for mapping them.

That completes the concepts and components of RoR. Now let's have a look at an
application that uses the basic concepts discussed here.

[44]

Chapter 2

Hello World—the RoR Way

'Hello World' is one of the programs that any person tries out when starting with
a new language or framework. It gives the basic steps in writing and executing the
program in a successful way. The 'Hello World' of RoR is going to do a simple
task —the Controller will pass a string to the View and the View will format it and
present it to the user. There are four steps:

1. Setting up the Application Structure

2. Adding the First Controller class
3. Implementing the Action Method
4

Adding the View Template

Setting up the Application Structure

Fire up the command prompt and give the following command:
C:\>use_ruby

It will drop you in the rails_app directory as shown below:

C:\WINDOWS\system32\cmd.exe

tRails\Puhy\lih;c:\Puhy\hin;C:\PROGRH”l\GTH\hin;"C:k?rngram Files“Microsoft Dip
ectd SDK (April 2006>\Utilities“Bin“x86";C=\UINDOUS~system32 ;G HINDOUS ;C:»WINDO
S~Systemd2s\Ubem; C:“\Program Files“Microsoft Uizual Studio“Common“Tools \WinNT;C:x
rogran FilessMicrosoft Uiswal Studio™Common“~MS5Deuv?8:\Bin;C:“Program Files“\Micros
pft Uiswal Studio“Common“Tools;C:“\Program Files“Microsoft Uisual Studio“UC?8%hin

:snInstantRails>cd rails_apps

:s»InstantRailssrails_apps>dir
Uolume in drive C has no lahel.
Uolume Serial Mumber is 662D-Y6l14

Directory of GC:sInstantRailssrails_apps

A6 -B87-2007 B83:82 PHM {DIR> -
AG-87-2807 B8:82 PM <DIR> .-
A3 24,2007 B8:19 PM {DIR> -metadata
A1-24-28007 @8:17 PM <DIR> cookbook
A6 -B7-2007 B83:82 PHM {DIR> test_app
B1-24-2807 B@8:17 PM <DIR> typo—-2.6.8
B File(s> B hytes
6 Dir<s)> 31.358.738.432 hytes free

v InstantRailssrails_apps>

Next, give the following command:

C:\InstantRails\rails apps>rails hello world

[45]

Getting to Know Ruby and RoR

You will see the following screen:

create

create script/runner

create scripts/server

create scriptsplugin

create publicsdispatch.vb

create publicsdispatch.cgi

create publicosdispatch.fegi

create public~-484_html

create public/58@._htnl

create publicsindex.html

create publicsfavicon.ico

create public/robhots.txt

create publicsimages rails.png

create publicsjavascriptssprototype.js
create publicsjavascriptsreffects.js
create publicrsjavascriptss/dragdrop.js
create publicsjavascriptss/controls.js
create publicsjavascriptssapplication.js
create doc-READHE_FOR_AFP

create logsserver.log

create logsproduction.log

create log/development.log

create logstest.log

twInstantRailssrails_a

That completes setting up the structure application. If you change to the
directory of hello_world you will see the following structure:

File Edit View Favorites Tools Help f”
€) Back - ? Search Folders Ev
Address |[5) C:\InstantRails\rails_apps\hello_world v a Go
-]]
T e f app f components
. —— -
) Make a new folder
€0 Publish this folder to the . Y
Web II config II db
k! Share this folder — —
|]
- - | doc flm
ot laces _ __
() rails_apps
() My Documents III log III public
) Shared Documents — —
SI My Computer ' ,
& My Network Places | script | test
= - I

tmp II wendor
hello_world _—
File Foider Rakefile README
Date Modified: Today, June 20, a4
2007, 5:23PM e

[46]

Chapter 2

The directory of our concern for the "Hello World" application is the app
directory. It contains the following directories:

e controllers: It will hold all the generated controller files.

e helpers: It will contain the custom helpers.

e models: It will hold the generated model related files.

e views: It will have the template and presentation logic related files.

Adding the First Controller Class

At the command prompt, give the following command to generate the Controller
named Greet.

C:\InstantRails\rails apps\hello world>ruby script/generate controller
Greet

You will get a bunch of messages as shown in the following screen:

C:AWINDOWS\system 3 2\cmd. exe

:nInstantRailssrails_appsshello_world>ruby script/generate controller Greet
exists appscontrollers/
exists appshelpers/
create apps/viewssgreet
exizts testsfunctional~s
create appscontrollerssgreet_controller.rh
create testsfunctionalsgreet_controller_test.vrh
create apprshelperssgreet_helper.rh

:nInstantRailssrails_appsshello_world>_

[47]

Getting to Know Ruby and RoR

If you look in the app/controllers directory you will see the files as shown in
the following image

= controllers

File Edit WView Favorites Tools Help

eﬁack - \,_,) l!; pSearm H:'“ Folders v

Address |[-5) C:\InstantRails\ralz_apps'hello_worldiappcontrollers M '—) Go
= .

I — - application.rb
File and Folder Tasks % '- REE*,' Program
r 1KB
lj Make a new folder]
@ Publish this folder to -"-: greet_controller.rb
the Web - Bl Ruby Program
JEEl 1kE

k! Share this folder

Other Places

=) app

[EJ My Documents
| Shared Documents
g My Computer

\ﬂ My Metwork Places

Of the two files you will be working with the greet_controller.rb file. We will
be defining the action method in that file.

Defining the Action Method

Every Controller contains actions which are methods that are mapped to a
particular URL. So, whenever there is a request for the URL, the corresponding
action is called and it is executed. We will be adding the action method

index. To do so, open the greet_controller.rb file. It will already contain

the following method:

class GreetController < ApplicationController
end

[48]

Chapter 2

The class Greetcontroller has been inherited from the ApplicationController.
The action method index will set an instance attribute named opening lines. To
the class add the following code:

class GreetController < ApplicationController
def index
@opening lines="Walking down the memory lane, Standing at the
arch of time"

end

end

That completes this step. Next, let us add the View template.

Adding the View Template

Views are mapped with the action methods. Since our action method is named
index, the name of the RHTML template will be index.rhtml. Now you can see
the philosophy of Convention over Configuration at work. You don't need to add
an entry into any configuration file as you would have done in frameworks such
as Struts or JSF. Here, when RoR sees a URL ending with the action index, it will
call up the action method named index, execute it, and the give the result to the
template having the same name (index.rhtml). It searches for the template

in the app/views/greet folder. So you have to create the index.rhtml in the
apps/views/greet directory.

Open your favourite editor and write the following code:

<html>

<head>

<titles>Hello World from RoR</titles>
</head>

<body>

<h2>Greeting From RoR</h2>

Todays's Opening Lines are:

<%=simple format (@opening lines) %>
</body>

</html>

The simple_format helper formats the given text preserving breaks and new
lines. The <%=/%> tags output the result of the expression given between them.

Save it as index.rhtml in the app/views/greet folder. That completes the
'Hello World' application.

[49]

Getting to Know Ruby and RoR

Testing the Application

Start the Instant Rails Manger application and select I | Rails Applications |
Manage Rails Applications.... In the window opened, select the hello_world
checkbox and click on Start with Mongrel.

R ailz Applications Wieb Server

[] cookbook,

hello_wiarld [Configure Startup Mode. .]
|:| test_app

[] wpa-26.0 [Start with Mongrel]

[Open a Railz Conzale...]

Check one or more Rails applications and then click a button above ta
perfarm that action on the selected applications.

To create a new Railz app, click the button below to open & conzole
window where you can wn the 'rails’ command.

Unlezz you configure the startup mode, the default is to start a Railz app
i development mode o park 3000,

Create Mew Rails App...] Refresh List] | Close |

Once the Mongrel server starts, open the web browser and give the following URL:

http://localhost:3000/greet/index

[50]

Chapter 2

If you get the following screen, then everything is well and fine.

"-’3 Hello"World from RoR - Mozilla Firetox

File Edit WView History Bookmarks Tools Help
@ - - @ ﬁ ||_| hth:u:,.‘,."lncalhu:ust:3DDD,‘greetﬁndex| ‘| [}"] "| “\l
Greeting From RoR
Todays's Opening Lines are:
Walking down the memory lane, Standing at the arch of time
Done @

One thing you have to keep in mind is that when Mongrel is started in the
development environment, the name of application need not be given before the
controller's name in the URL.

Summary

This chapter introduced you to the basics of Ruby including classes, attributes,
methods, and blocks, as well as the main concepts and components of RoR. We
have also seen how to set up the application structure. In the next chapter, the
development of the TaleWiki application starts, where these concepts will help you
in building the application. So get ready for RoR in real world.

[51]

TaleWiki—The Basic Setup

In the last two chapters, you saw what RoR provides and how to access the services
of RoR to ease the path of dynamic website development. However, the chapters
dealt primarily with the theoretical aspect of RoR. Now is the time to apply the
theory to develop the real world application. That's what we are going to do from
this chapter onwards. Beginning with this chapter, we will be developing a

website called TaleWiki. Each chapter will add a new functionality or enhance the
existing functionality.

In this chapter, you will understand the basic requirements of TaleWiki. We will then
move on to design and set up the database for these requirements. The next step will
tell you about developing the website and we will wrap up the chapter by testing
TaleWiki with its bare minimum functionality. So let's get started.

Understanding the Requirements

The requirements of a software system define and set the boundaries of
functionalities provided by that system and expected output in terms of reports. In
our case, system requirements will tell us the expected services that TaleWiki will
provide. The requirements can be broadly classified into two sets:

e Overall System Requirement

e Module-Specific Requirements

The former will tell you about the features and functionalities to be provided by
TaleWiki. And the latter will detail the individual functionalities planned in the
overall system requirement. The overall requirement will also help you to keep track
of the functionalities as the system evolves. In short, the overall requirement lays
out the modules of the system, and the module-specific requirements go in depth
into the functionalities of the modules. Each chapter will go into the details of the
modules and their functionality.

TaleWiki — The Basic Setup

System Requirements

Before building any kind of system, it is a good practice to understand what its
boundaries are. TaleWiki is no exception. The first thing to decide is what lies within
the boundary and what stays out. TaleWiki, as the name suggests, is about tales

or stories. But that's just the first part. 'Wiki' suggests a collaborative environment.
Collaboration comes in many forms, such as comments, tagging, and user

groups —all of these are part of the collaboration. It also means interaction between
the users. Based on these 'starting inputs', we can definitely say that TaleWiki will
provide following functionalities:

e Managing the Stories: Stories or tales form the core of the system. So all the
operations including creation, updation, and deletion of the stories need to
be supported.

¢ Managing the Users: It is the users who provide the stories. So users need
to be managed. The management of users not only includes the tasks of
registering and providing functionality to update their details, but also tasks
such as assigning the roles, authenticating, and authorizing them come into
picture. In short, the user management also includes role management and
user authentication/authorization functionalities.

¢ Gathering Comments: Feedback is what keeps the stories coming. Once a
story is published, the comments need to be collected from other users so
that the author can have an understanding of the opinions of his/her target
audience. Comments can also take the form of an impromptu discussion
about a particular issue raised by the particular story or tale.

e Tagging the Stories: Tags increase the usability of a system by providing
a better way to navigate and find what one needs. TaleWiki will provide
tagging of the individual stories so that users can easily find what they need.

e Providing the Administrative Interface: A site always needs to be
administered. The administrative tasks can include knowing the number
of active users or banning a particular user. TaleWiki will provide an
easy-to-use interface to do the administrative stuff.

The functionalities listed above just provide the overview. Each item of the list can be
treated as a module, thus needing to be handled separately. The 'separate handling'
starts from here on.

[54]

Chapter 3

Module-Specific Requirements

Once the modules based on functionalities have been decided, the next step is

to go into the depth of each of the proposed modules and set the boundaries for
implementation. This will help in understanding the sub-modules or tasks that form
the module as well as know which tasks require communication with other modules.
So let's get started.

Managing the Stories

This is the basic functionality of TaleWiki. A story can be anything from fiction

and non-fiction to current affairs. There are four main tasks with any kind of story.
Firstly, they need to be written and saved with the system, then the story may need
updating, and finally be posted for reading. A situation may arise where the user
or the administrator may want to delete a story. Based on these tasks we can
definitely say that the Story Management module can be divided into the following
sub-modules or tasks:

e Submitting the Story: The first step is to submit a story and save it with
the system. The interface for this sub-module will have a provision to enter
the details of the story. The details will include genre, author or source,
and publication date. Of these, publication date will typically be the date of
submission of the story.

e Updating a Submission: This is a usual scenario —you have submitted a
post and then you remember that you have missed some important point.
That's where this task or sub-module comes into picture. It will provide an
easy way to update a submitted story. All the details of the submission will
be updatable by the user except the publication date and genre. Whenever
a user updates his/her story, the status field will be updated to reflect that
revisions have been done to the story. Once the status has been changed, the
UI will also reflect it by making the status visible to the reader (other users).

¢ Deleting Submissions: When a submission is deleted then it will be deleted
from the database itself.

e Publishing a Submission: Once a story has been submitted, it needs to
be published so that other users can read it. The publishing sub-module
will provide two views —Iist and detailed. The list view will provide all the
submissions as a list, and the details view will show the submission in its
entirety. The list view will not contain the story itself; it will contain only the
title, submission date, genre, and the author/source information. The detailed
view will show one story at a time with all the information provided in the list
view along with the story itself and comments added by the user. Because the
detailed view will contain the comments, its implementation will be dealt in
Chapter 5 where we will be Developing the Comments Management Module.

[55]

TaleWiki — The Basic Setup

Genre is one of the related information of a story. However, the 'acceptable values'
must be provided by the administrator. The user can only choose from the provided
list of genres. To achieve this end, TaleWiki needs to manage the genre as well. So
genre management — part of the story management —supports the tasks related to
managing genres. Genre management will enable the administrator to perform the
following tasks:

¢ Adding new Genre: When a new genre has to be added, the admin can
use the interface provided by this sub-module. The admin can enter details
including the name of the genre and a small description about the genre.

e Modifying an Existing Genre: The task of modifying the details of an
existing genre can be carried out by using this sub-module. Any modification
done using this module will be reflected in the stories.

e Deleting a Genre: The Admin may want to remove a genre. To do this, this
sub-module will provide an interface to the admin.

e Viewing the List of Existing Genres: The view will be in the form of a list
only. It will show the genre and its related description.

That completes the details of functionalities that are going to be provided by the
Story Management module. Let us move on to the next step —designing the database
where the stories and their related information will be stored.

Designing the Database

The next step is to design the underlying database and the tables that will act as a
data store for the Story Management module. As this is the first time that we are
going to discuss the database design in the context of RoR, we will not only be
discussing the table design but also the conventions that need to be followed. The
steps in designing the database and tables are:

1. Understanding the Conventions
2. Designing the E-R model
3. Defining the Schema
4. Creating the Tables
The first step is one-time as it is about the conventions that you need to follow while

designing the database and tables for use with Active Record. You will be repeating
the other steps for each module.

[56]

Chapter 3

Understanding the Conventions

The philosophy of Convention-over-Configuration is most evident in the rules

for the database design. These conventions/rules bring down the configuration
factor to near-zero. Why only near-zero? The reason is that the database connection
parameters —such as the type of database, hostname, or user name need to be
specified in database.yml. Before going into the details of the configuration aspect
let us have a look at the conventions for the database and tables.

The name of database should be suffixed with _development, _test,

or _production. By using these suffixes, RoR knows whether the application
is in development mode, testing mode, or production mode. The mode helps
the application to access the corresponding database. One thing you have to
keep in mind is that unlike development or production mode databases, the
test mode database is re-created every time the application starts or restarts.
Based on this convention, the database name of our application will be
talewiki_development during the development cycle.

The name of the table must be in its plural form: The table name must be
pluralized. That means if you want to name the table for story tale, it must
be named fales. If you want to use a name with multiple words, you have
to delimit them with underscores (_). The beauty of Active Record is that if
you give a name such as axes (plural of axis), Active Record will derive the
singular name for the corresponding class automatically.

The Primary Key should always be named 'id": Having the primary key
named id removes two problems. The first is that you don't need to think
about a new name for the primary column and tell Active Record that this
particular column is the Primary Key. To understand the second advantage,
assume that for the user table you have used the SSN as the Primary Key.
And if in the future the length of the SSN changes, not only you will have to
change it in the user table but also in all those tables where the SSN is used
as foreign key reference. This will mean a lot of work and if this happens

for a deployed and widely-used application then it will lead to the sleepless
nights. By keeping the Primary key as id, this problem is completely avoided.
The only thing you have to keep in mind is that the id is an attribute in
addition to other attributes. To use an example, you will still have to use SSN
in the user table, but it will be constrained to the user table only.

The Data type of the Primary key should be Integer: Active Record assumes
that the data type of the Primary Key is of type integer or long. This helps in
easier generation of id values automatically.

[57]

TaleWiki — The Basic Setup

e The Foreign keys should be named 'name of the referenced table in
singular _id": Whenever you want to provide a foreign key, the attribute
should be named with the _id suffix of the name of the table in singular.
For example, if tales table needs to refer the genres table, then the fales table
should contain an attribute named genre_id.

These conventions can be overridden but not recommended. Next, let us look at the
E-R model.

Designing the E-R Model

The first step in designing a database is coming out with the Entity-Relationship
model for the given scenario. This will help you in arriving at tables and give you a
clear-cut picture of the relationship between the tables. Let us start with the scenario.

The Story Management module manages stories posted by the user. Each posted
story contains the following information:

¢ Id that uniquely identifies a story

e The heading of the story

e The body or the complete story

e The day the story was submitted

e The author or the source of the story

e The genre or category of the story

o The status of the story —new or updated.

e The name of the user who posted the story
Here, the user and the author are different, as the author may be a different person
and the user may be a person who submits it. In most cases, the source will be
more appropriate. Based on this information we can arrive at the first entity and its
attributes. The first entity is Story. Its attributes are:

o Id—this is the Primary key attribute as it can uniquely identify a story

e heading—the title of the story

¢ Body text—the body of the story

¢ Date of submission —the day the user submitted the story

e Source — the source from where the story was found. If it is written by the
user himself/herself, the source will be the user's id

e Genre —the category of the story

e User—the user who submitted the story

[58]

Chapter 3

Diagrammatically, the entity will be as follows:

Date of submission

Story CUser >

Body Text

Of these, there are two attributes that need a special attention — User and Genre.

The reason is that they provide extra information about the Story, but they are not
completely dependent on the Id of the Story. And even if the Story is deleted, the
information related to these attributes may be required in the future. In short, User
and Genre can be separate entities themselves. Keeping this point in mind, if we look
at the entities, we have:

e Story
e Genre
e User

We will be getting back to the User entity in the next chapter. So for this chapter,
we have two main entities —Story and Genre. To understand why Genre has to be a
different entity and not just an attribute of the Story entity, consider this scenario: A
user with Id 'John Doe' submitted a story for the genre named 'Obscure news'. No
other user has submitted any story for this genre. So the genre becomes unique. If
the user, in the future, deletes that story, the genre named 'Obscure news' will also
be deleted. So even if there had been a genre for submitting news with little value
or limited interest, the entry no longer exits. Such a scenario can be repeated with
different types of stories. In order to avoid such situations, we are making Genre a
separate entity. The revised Story entity is as follows:

Date of submission

Body Text

[59]

TaleWiki — The Basic Setup

Now that the 'whys' of making Genre a separate entity have been dealt with, let us
see what will be the attributes of this entity. Each genre will require the following;:

o Id—it will separate out the different genres
e Name of genre—the name of the particular genre

e Description—a short description about the genre.

The Genre entity with all its attributes will be as follows:

Id CBeserpton >
Genre

We have identified the two entities that form the basis of the Story Management
module. The question that now arises is, 'Is there any relation between these two
entities? If yes, what type of relation is it?' The answer to the first question is a
definitive yes. If it was not so, the Story entity won't be having an attribute named
Genre. The answer to the next question lies in another question—'Does a story have
many genres or does the Genre have many stories?' We can definitely say that a
story is not going to have multiple genres. So, one story having many genres is out
of the picture. However, one genre can have multiple stories. So the relationship

is one-to-many when viewed from Genre to Story. If you want to view it the other
way, we can say that the relationship is many-to-one from Story to Genre. The
complete entities with relationship are shown as follows:

o] >

[60]

Chapter 3

The following is the complete E-R diagram:

Body Text Date of submission

That completes the E-R design step. The next step is to derive a schema from the E-R
design. That's what is coming up next.

Defining the Schema

The next step is to define the schema based on the E-R model. From the E-R model,
we have three things:

e The two entities —Story and Genre
e Their attributes

e The relationship between them which is many-to-one

Because the relationship is many-to-one, there is no requirement of converting the
relationship into a table. So we have two entities that can become tables —Story

and Genre. In defining a schema based on the E-R model, what you have to do is to
provide details for each of the attributes. These details include the data type of the
attribute, length of the acceptable value of the attribute, and a description about the
properties. Describing the properties will be overkill as it has been already done. We
will be defining the schema for the Genre entity.

Name of the attribute Data type of the attribute Length of the acceptable value
Id Integer 10
Name of Genre Varchar 25

Description Varchar 100

[61]

TaleWiki — The Basic Setup

The Id can have value up to 10 numbers. The Name of Genre can accept values up
to 25 characters, and Description can be of 100 characters. These are standard SQL-
types and not specific to any database.

The schema for the Story entity is as follows:

Name of the attribute Data type of the attribute Length of the acceptable value

Id Integer 10
Title Varchar 100
Body Text Varchar 1000
Date of Submission Date

Source Varchar 50
Status Varchar 15
Id of Genre Integer 10

The main point to be noted here is the presence of the Id of Genre attribute. The
reason for its presence is the many-to-one relationship between the Story and Genre.
The relationship is converted to the foreign key reference. Each row of Story will
have an Id of Genre which needs not to be unique. That completes the schema
design. In the next step we will derive the tables for the MySQL database from the
schema designed just now.

Creating the Tables

The schema defines the tables in a Database-server-independent manner. That means
the data-types we used were not specific to a particular database server such as
MySQL or Oracle 9i. However, while creating tables the database-independent types
will have to be substituted with the database-server-specific data type. Not only that,
each database server gives its own flavor to the Data Definition Language (DDL) or
table creation queries. MySQL is the database server that we are going to use.

In MySQL, you can specify relations if you are using the InnoDB engine. A simple
table creation statement in MySQL looks like:

Create table <table names>(
<column 1> <data_ types>(length),

) engine=INNODB;

However, before creating the tables, you will have to create a database so

that the tables can be created within it. The name of our database will be
talewiki_development. To create this database, give the following command on
the MySQL prompt.

[62]

Chapter 3

mysqgl>create database talewiki development;
MySQL will respond with:

Query OK, 1 row affected

>

Next, we have to tell MySQL that we will like to create tables in the
taleswiki_development database. For that issue use the following command:

mysqgl>use talewiki development;

MySQL will respond with:

Database changed

Now we are ready to create the tables. The first table is for Genre. Applying RoR's
convention, the name of the table will be genres. The table creation statement is
as follows:

CREATE TABLE “genres (

“id® INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
“genre name~ VARCHAR(25) NOT NULL
“description” VARCHAR(100) NOT NULL

) ENGINE = innodb;

Keep in mind that the names of the fields are surrounded with back quotes and not
single quotes. If you look at the id field, you will notice that we have not provided
the length of the field. So, it is also a convention not to provide the field length. Once
executed, MySQL responds with:

Query OK, 1 row affected

Next is the Story table. Here we will give a name different from that of the schema.
Let us name it tales. The reason is that this table is the core table of TaleWiki. So it is
appropriate that the name of the core table matches with that of the application. The
table creation statement for tales table is:

CREATE TABLE “tales™ (

“id® INT NOT NULL AUTO_ INCREMENT PRIMARY KEY,
“title™ VARCHAR(100) NOT NULL,

“body text® TEXT NOT NULL,

“submission date® DATE NOT NULL,

“source” VARCHAR(50) NOT NULL,

“status”~ VARCHAR(15) NOT NULL,

“genre_id~ INT NOT NULL,

CONSTRAINT “fk tales genres™ FOREIGN KEY (genre_id~) REFERENCES
genres (~id")

) ENGINE = innodb;

[63]

TaleWiki — The Basic Setup

If the query has been executed successfully, MySQL will, as usual, respond with:

Query OK, 1 row affected

While creating the tales table, if the foreign key reference is having any error,
MySQL will complain with error no. 102. Whenever you get an error no. 102, check
the foreign key part of your CREATE statement. That completes the database design
for this module. From the next section, we will be treading in the domain of RoR.

The SQL data-types and their matching MySQL data-types are as follows:
.\‘Q Integer becomes INT

Varchar remains Varchar
Varchar with length more than 500 can be mapped to Text

TaleWiki—Developing the Tale Management
Module

Though the heading of the section is developing the tale management module, we will
be dealing with both tale (story) as well as genre management. We will be developing
these modules step-by-step. The steps that we will be following are:

e Creating the Application Structure

e Generating the Scaffolds for genres and tales tables

e Customizing the Model

e Customizing the Controller

e Refining the View

e Testing the Application
Testing follows each of these steps. Of these, the first will be done only in this

chapter as from the next chapter onwards we will be building upon the application.
So, without any further ado let us get started.

Creating the Application Structure

To create the application structure, fire up the command prompt and give the
following command:

>use ruby

[64]

Chapter 3

Once the prompt drops you into the rails_apps directory, give the following
command to create the application:

c:\InstantRails\rails apps\ > rails talewiki

As a response you will get the following screen:

create scriptsprocesssinspector
create script/runner

create script/server

create scriptsplugin

create publicsdispatch.rb

create publicrdispatch.cgi

create publicrsdispatch.fegi

create publics484_html

create publics588.html

create publicsindex.html

create public/favicon.ico

create publics/rohots._txt

create public/images/rails.png

create publicr/javascripts~s/prototype.js
create publicrsjavascriptsreffects.js
create public/javascripts/dragdrop.js
create publicrjavascriptss/controls.js
create public/javascriptssapplication.js
create docsREADME_FOR_AFPF

create logrsserver.log

create logsproduction.log

create logsdevelopment.log

create logrstest.log

:nInstantRailssrails_a

It's same as that we did in Chapter 2. However for the sake of continuity, it has been
recounted. That completes our first step. In the second step, we will be generating
scaffolds for the tables.

Generating the Scaffolds

Before we generate scaffolds for our tables, it is better to understand what a scaffold
is. In general terms, a scaffold refers to a temporary platform to provide support

to the workers while working at heights above the ground. Here, the keywords

are temporary platform and provide support. Therefore, scaffolds are temporary
and they provide support to accomplish a particular task. If we take this concept
and bring it into RoR, the meaning still holds true. We have a table, which we

want to access by mapping it to a model and manipulating it through a view and
corresponding controller. However, once done, we will be customizing it. For such
a situation you have to use scaffolds. So, they are frameworks generated by RoR to
provide access and manipulation interfaces that can be customized later. That's what
scaffolds are. Let's generate scaffolds for our tables.

[65]

TaleWiki — The Basic Setup

The first step in creating the scaffolds is to configure the connection parameters.
To do it, open the database.yml file within the config directory. If it contains the
following details, then you are ready.

development :

adapter: mysqgl

database: talewiki development

username: root

password: .

host: localhost
#Warning: The database defined as 'test' will be erased and
#ire-generated from your development database when you run 'rake'.
#Do not set this db to the same as development or production.
test:

adapter: mysqgl

database: talewiki test

username: root

password:

host: localhost
production:

adapter: mysqgl

database: talewiki production

username: root

password:

host: localhost

Next, we have to give the scaffold command to generate scaffold. Essentially, the
scaffold command is the scaffold argument to the script named generate. The
syntax of the command is:

ruby script/generate scaffold <table name in singular> <name of the
controller>

So to create the scaffold for the genre table change into talewiki directory and give
the following command:

C:\InstantRails\rails apps\talewiki>ruby script/generate scaffold genre
genre

[66]

Chapter 3

RoR will respond with the following screen:

C:AWINDOWShsystem3 2\emd. exe

exists appscontrollerss
exiztes appshelpers/
create appsviews/genre
exists apps/views/lavouts/
exists testsfunctionals
dependency model
app-mode 1z~
testA/unit/
test/fixtures/
appsmode ls~genre .rh
test units/genre_test.rh
test/f ixtures/genres.yml
apps/views/genres/_Form_.rhtml
appsviewssgenreslist.rhtml
appsvieuwz/genresshow. rhtml
apps/views/genresnew.rhtml
apps/views/genresedit.rhtml
appscontrollers/genre_controller.rh
testsfunctional/genre_controller_test.rh
app~he lpers/genre_he lper.rh
apps/viewsslayouts/genre.rhtml
publicsstylesheetssscaffold.css

:nInstantRailssrails_appsstalewiki

“InstantRailswrails_appsstalew ruby script/generate scaffold genre genre

Similarly, for the tales table give the following command:

C:\InstantRails\rails apps\talewiki>ruby script/generate scaffold tale

tale

RoR will respond with a screen similar to that shown for genre. The next step is to
test the generated scaffolds. To test the scaffold genre, start the mongrel server. Once

it is started, start the browser and give the following URL:

http://localhost:3000/genre

¥ Ge < - Mo

File Edit View History Bookmarks Tools Help

- =]

Listing genres

Genre name Description

New genre

& Find: I Mext 1 Previous [Highlightall [] Match case

Done

& - = % L http:/flecalhost: 3000 /genre | [|G|' instant rails my

| Genre: index @ %7 {1 unread) Yahoo! Mail B... 4t localhost: 3000 /localhost. ..

& Phrase not foun

[67]

TaleWiki — The Basic Setup

If you get the screen just shown, then everything is fine. Next, to test the tale scaffold
give the following URL in the browser:

http://localhost:3000/tale

If you get a screen similar to that shown next, then tale scaffold has also been
generated correctly.

@ Tale: index - Mozilla Firefox Q@
File Edit View History delicio.us Bookmarks Tools Help

Q\'Z - - \é‘J I_/H:‘ Eﬁ 1ac | LI http://localhost:3000/tale (| % G-

QY stumble! | &y Ilikeitt @ | & 7 Sendtor [0 | Channel: @ % (O 58 - 2 7 All-| .y Favorites »
&7 Yahoo! Mail: The best web-ba... s 127.0.0.1 / localhost [talewiki... | Tale: index a |-

Listing tales

Title Body text Submission date Source Status

New tale

Done =3

That completes the scaffold generation. However, the logic generated by the scaffold
doesn't meet all of our requirements. So we will be refining each component starting
with Model. That is our next step.

Customizing the Model

When the scaffold is generated, the Model component or the ORM classes
mapped to the tables are placed in app/models directory. If you look at the
directory, you will see two files—genre.rb and tale.rb, which correspond to
genre and tale tables respectively. The models generated by the scaffold lack two
important functionalities:

e Relationship Mapping
e Data Validation

We will be adding these two functionalities to the Model component.

[68]

Chapter 3

Relationship Mapping

In RoR, relationships can be mapped using the following declarations:

e has_many: It is used with the class which is at the 'one' end of the
one-to-many relationship. In our case, we will be using it with the
genre class.

e Dbelongs_to: It is used to with the class which is at the 'many' end of the
one-to-many relationship. We will be using it with the tale class.

To add relationship mapping to the Genre class, open the genre. rb file. You will see
the following code:

class Genre < ActiveRecord: :Base
end

Now we know that the genre will have many tales. To tell RoR the same, we have
to add a has_many declaration to the Genre class. The argument to this declaration
will be the tale class as it is at the 'many' end of the relationship. After adding the
declaration, the code will be:

class Genre < ActiveRecord: :Base
has many:tales
end

Similarly, we have to tell that the Tale class is at the other end of the relationship.
For that we will be using the belongs_to declaration with genre as its parameter.
Open the tale.rb file. You will find the following code:

class Tale < ActiveRecord: :Base
end

After adding the declaration, it will look like this:

class Tale < ActiveRecord: :Base
belongs to :genre
end

[69]

TaleWiki — The Basic Setup

Here, in both the cases, we are not providing the class name as the parameter.
Instead, we are giving the object names as the parameter. This is again a convention.
An object can have the same name as the class with its starting letter in lower

case. Thus, our model classes have become model aware. Next we will be adding
the validation.

Data Validation

One main point to keep in mind, while developing a database driven dynamic
website, is the correctness of data. It is a common practice among users to leave fields
empty. Validating whether the input is empty is one of the most common uses of

data validation. It is also known as required field validation. If we look at TaleWiki,
when the user submits the data for the new genre, the name of the genre should not be
empty. Similarly, when the user submits a new story, the fields including the title of
the story, its body, and the source should not be left empty. To achieve this end, RoR
provides the validates_presence of () method. You just have to pass the fields to
be validated. It will become clearer when we apply it to the genre and tale model.

Let us take up Genre class first. We have to check the name field for null or empty
values. To do it, open the genre. rb file and add to it the validates presence_
of () method with the name genre name. The Convention-over-Configuration
principle is at play here. RoR assumes that the name of the field in the View is the
same as that of the Model's attribute. After adding the method, the Genre class will
look like as follows:

class Genre < ActiveRecord::Base
validates presence of :genre name
has _many :tales

end

To test the effect of the validation, fire up your browser and give the URL for the
genre management:

http://localhost:3000/genre

[70]

Chapter 3

Then, click on the New genre link. In the next page, without entering any data,
click on the Create button. If you get the following screen, then the validation has
taken effect.

" ‘¥ Genre: create - Mozilla Firefox

File Edit View History Bookmarks Tools Help
<’E| v - @ ﬁ_I‘ |_| hth:n:fﬂacalhast:3DDngenrefcreate| v| [}] 'v|c0mh0 box rar

LI Genre: C... Q I W? (2urread) Y... | 4k localhost flo... Creating Tod... [*] Gmail - Inbo... -

=y

New genre

1 error prohibited this genre from being saved

There were problems with the following fields:

m Genre name can't be blank

Genre name

Description

Back

G Find: _ 1 Mext 1 Previous [Highlightall [] Match case & Phrase not foun
Done =

[71]

TaleWiki — The Basic Setup

Next, let us apply required field validation on the Tale class. In the Tale class,

we have multiple fields to validate. They are title, body_ text, and source. The
beauty of the validate presence_of () method is that you can give it multiple
parameters, and thus you don't have to call it again and again. Once the validation
has been added, the Tale class will be as follows:

class Tale < ActiveRecord: :Base

validates presence of :title, :body text, :source
belongs to:genre

end

Now in the address bar, give the URL of the tale management module, which is:
http://localhost:3000/tale

Then click on the New Tale link and submit the form on the next screen without
filling any values. You will get the following screen:

"'-'3‘ Tale: create - Mozilla Firefox
File Edit Wew History Bookmarks Tools Help

<"j - - @ ﬁ ||_| http: flocalhost: 3000/tale foreate |'| [}] "|c0mbn bou ror \4\]

(] Tale: cre... |3 . W7 (2unread) Y... | 4 localhost [lo... Creating Tod... [*] Gmail - Inbo... -

e
3 errors prohibited this tale from being saved [

There were problems with the following fields:

= Title can't be blank
= Source can't be blank
= Body text can't be blank

Title

Body text 1
[v

&3 Find: _ {¢ Mext { Previous [~ Highlightal [] Matchcase & Phrase not foun

Done o

[72]

Chapter 3

That completes the customization of the generated Model as per our requirements.
However, the relationship mapping has not been reflected on the Controller. That's
what we are going to do next by customizing the generated Controller components.

Customizing the Controller

We have made the Model components aware of the relationship, but the Controller
and View are still not aware of it. If you look at the 'New Tale' form, you will see that
there is no field to enter the genre type. To add the field we have to first make

some changes in the Controller, specifically the new and create methods in the
tales_controller.rb file. At present, the new method has the following statements:

def new
@tale = Tale.new
end

It creates an instance variable named tale that is an object of the Tale class. To add
genre to the 'New Tale' page, we have to retrieve the genres stored in the database.
For that we will add a £ind method. As the Tale class has been derived from the
Base class of the Active Record package, the £ind method and all its variations have
been inherited by the Tale class. So we can call the find_all method on the object
of the Tale class. The £ind_all method returns a list of the objects retrieved. In
addition, we will be setting the value of the status attribute as it is not to be entered
by the user. Therefore, the new method after adding the required statements will be:

def new
@genres=Genre.find_all
@tale = Tale.new
@tale.status= “new"
end

Now, the obvious question will be why are we using the new method and not the
create method? The create method is called after the data has been submitted.
Also, the view corresponding to the 'new' action is the 'New Tale' page.

Next change to be done is in the create method. The selected genre has to be added
to the model. For that we have to set the value of genre id attribute of the Tale
object. So after adding the attribute the create method will look like:

def create
@tale = Tale.new(params[:tale]l)
@tale.genre id=params[:genre])
if etale.save
flash[:notice]l = 'Tale was successfully created.'

[73]

TaleWiki — The Basic Setup

redirect to :action => 'list’
else
render :action => 'new'
end
end

One point you have to keep in mind is that even if the form is built properly,
checking the return value of the save method is always good. The reason is that
while saving, if the database gets disconnected, the data will not be saved. By
checking the return value of the save method, you can alert the user. Here, there are
some new constructs being used, which are:

e params: It is an hash like structure containing the values of the form being
submitted. The name of the fields act as index. So params [:genre] will
return the value of the selected genre.

e redirect_to: This method redirects the user to the action or the view specified.
Here redirect to :action => 'list' redirects the user to the 1ist action.

e render: It is used to output some data to the screen. It can take either an
action or the text to be rendered as parameters. Here, we are using action
as the parameter.

o flash: It is a temporary hash stored in the session. It is used to transfer the
information between actions.

Now let us set the value of the story to updated, when the user edits the story. In the
edit method of the tales_controller.rb, you will have to set the status attribute
of the retrieved Tale object. After the addition, the code will look as follows:

def edit
@tale = Tale.find(params/[:id])
@tale.status="updated"

end

The highlighted code contains the statement that has been added. That completes the
changes to be made to the Controller component. Next, we will be looking at how it
affects the View component.

~“Q An instance variable created in an action method is always accessible in
the corresponding view.

[74]

Chapter 3

Refining the View

We have retrieved the details about genre from the database. Next, we have to show
it to the user. However, changes need to be done to the View. The changes are:

e Refining the Add Tale template
¢ Refining the Edit Tale template

Let the process of refining begin.

Refining the New Tale Template

Navigate to app/views folder. The folder will be having the following folders:

e genres: It contains the View templates for the genre corresponding to the
action methods defined in genre controller.rb.

e layouts: It contains the layout templates for the whole application. A file
name standard.rhtml can be placed here that could contain layout which
can be applied to the whole application. If you want to provide a different
layout for a particular view, then you will have to provide the layout with
the view name in this folder. For example, if you want to provide a different
layout for genre, then you will have to create a genre . rhtml file in this
folder. The scaffold specific layouts are also created here.

e tales: View templates for the tale corresponding to the action methods
defined in tale_controller.rb.

The change that we will be making will be in tale's '"Add New Tale' template. So go
into the tales folder. Open the new. rhtml file. You will find the following code.

<hl>New tale</hl>

<% form tag :action => 'create' do %>
<%= render :partial => 'form' %>
<%= submit tag “Create" %>

<% end %>

<%= link to 'Back', :action => 'list' %>

All the functions used here are form helpers. Let us look at each of these tags as they
are used heavily.

e form_tag: It creates an HTML form tag. The :action parameter is (part of)
the url hash that is used in the action attribute to post the info to. In reality,
the form_tag takes a hash as parameter.

[75]

TaleWiki — The Basic Setup

e render: It renders the fragment of page on the browser. The fragment can
be extracted from another template using the hash named :partial. The
:partial hash takes the name of the template from which the fragment has
to be extracted. Here the name of the template is form.

e submit_tag: It creates a submit button. The name to be displayed is given as
the parameter.

e link_to: It creates a link to a given action or a page. The parameters are the
name to be displayed and the action or page to be called.

The helper that we have to consider here is render. Here it calls the form
template. The convention that RoR follows in naming a template containing a
fragment is prefixed with underscore (_). So the template that we need to change is
_form.rhtml. Open _form.rhtml. The following is the code that it contains:

<%= error messages_ for 'tale' %>

<!--[form:tale]-->
<p><label for="tale title">Title</label>

<%= text field 'tale', 'title' %></p>

<p><label for="tale body text">Body text</labels

<%= text area 'tale', 'body text' $></p>

<p><label for="tale submission date">Submission date</label>

<%= date_select 'tale', 'submission date' $></p>

<p><label for="tale source"s>Source</label>

<%= text field 'tale', 'source' %></p>

<p><label for="tale status"s>Status</label>

<%=@tale.status></p>
<!--[eoform:tale] -->

All the fields are created using the form helpers. Now, we have to add the select
tag so that the user can select the genre. To do that we will iterate over the genres
list and display the select tag. However, we will not be using the form helper. To
the existing code, add the following highlighted statements. Also, the status field is
deleted as the user need not enter the status.

<%= error messages_ for 'tale' %>

<!--[form:tale] -->
<p><label for="tale title">Title</label>

<%= text field 'tale', 'title' $%$></p>

<p><label for="tale body text">Body text</label>

<%= text _area 'tale', 'body text' %></p>

<p><label for="tale submission date">Submission date</labels>

[76]

Chapter 3

<%= date_select 'tale', 'submission date' $%$></p>

<p><label for="tale source">Source</label>

<%= text field 'tale', 'source' %></p>

<p><label for="tale genre name">Genre

<select name="genre">

<% @genres.each do |genre| %>
<option value="<%= genre.id %>">
<%= genre.genre name %>

</option>

<% end %>

</select>

</p>
<!--[eoform:tale] -->

We are using iterator and block to iterate over the list of genres. The id of the genre
is set as the value of the option and the name of the genre is set as the value to be
displayed. There is a RoR helper to do the same. However, knowing an alternative
method such as the one I described just now comes handy in circumstances where
the helper cannot be used.

Next, let us change the view corresponding to the update of the tale.

Refining the Edit Tale Template
Open the edit.rhtml file in the tale folder. It contains the following code:

<hl>Editing tale</hl>

<% form tag :action => 'update', :id => @tale do %>
<%= render :partial => 'form' %>
<%= submit_tag 'Edit' %>

<% end %>

ink to 'Show', :action => 'show', :id => @tale %> |

=

ink_to 'Back', :action => 'list' %>

As it is also calling _form.rhtml, we will have to change the fragment being called.
The reason is that _form.rhtml contains code to create a select box with type of
genres in it which we don't need while editing. So let's create a new template

for showing the edit form. The name will be _form_edit. It will contain the
following code:

<%= error messages_ for 'tale' %>

<!--[form:tale] -->

[77]

TaleWiki — The Basic Setup

<p><label for="tale title">Title</label>

<%= text field 'tale', 'title' $%$></p>

<p><label for="tale body text">Body text</label>

<%= text area 'tale', 'body text' $%$></p>

<p><label for="tale submission date">Submission date</labels>

<%= date_select 'tale', 'submission date' $%$></p>

<p><label for="tale source">Source</label>

<%= text field 'tale', 'source' %></p>

<p><label for="tale status">Status</label>

<%= @tale.status %$></p>

<p><label for="genre name">Genre</label>

<%=@tale.genre.genre name $%$></p>

<!--[eoform:tale]l -->

As the status field won't be editable, we are not providing the text box for it.
Similarly, there is no edit option for type of genre. Now, let us change the reference
to form edit. The edit.rhtml file will now look like:

<hl>Editing tale</hl>
<% form tag :action => 'update', :id => @tale do %>
<%= render :partial => 'form edit' %>
<%= submit_tag 'Edit' %>
<% end %>
link to 'Show', :action => 'show', :id => @tale %> |
link to 'Back', :action => 'list' %>
That completes the change to the updating functionality. Now, let us test
the application.

[78]

Chapter 3

Testing the Application

The first thing to be done is add a genre. So open the browser with the following URL:

http://localhost:3000/genre

Now, click on the New genre link. You will see the following page:

i3, Genre: new - Mozilla Firefox
File Edit View History Bookmarks Tools Help

QE[v v @ ﬁ} ||_| http:/flocalhost: 3000/genre fnew | " D] £'|renderpartial !H_}

|| Genreznew [LJ | Y;(3uread)‘rahoo... | ,;,;bcﬂnst!locaho I [*] Gmail - spedal ph... |
[

New genre

Genre name

Description

4

Find: | partia | @ next @ previous [Highightall [] Match case

Done

[79]

TaleWiki — The Basic Setup

Add the following data:
Genre name —News
Description — News items of interest

Now, click on the submit button. If you get the following page, then everything
is fine.

¥ Genre: list - Mozilla Firefox

File Edit Wew Higtory Bookmarks Tool= Help

@ < - @ /IJ} ||:| http: /localhost: 3000/genre flist |Y| [i'] ‘*‘render partial ‘H\,l

| [| Genre: list 3¢ | %7 (3 unread) Yahoo... iis localhost [localhe... | [+] Gmail - spedial ph... -

Genre was successfully created.

Listing genres

Genre name Description

MNews Mews items of interest Show Edit Destroy

New genre

E Find: ||:uartia |@- Mext i Previous || Highlightal [] Match case

Done @

[80]

Chapter 3

Now open the URL http://localhost:3000/tale in the browser and click on the

New Tale link. You will get the following page:

lez " new - Mozilla Firefox

File Edit View History Bookmarks Tools Help

'@l - - @ ﬂ_I‘ ||:| http: fflocalhost: 3000 /tale fnew |7| P] |*|render partial |'~\,l

[| Tale:new .3 | %? (3unread) ... iy localhost f1... . 1 Gmail - spec... | [} RDocDocu...

Title

Body text

Submission date
2007 (v [iy [v][6]

Source

Genre

& Find: ||:|artia |Q Mext it Previous [Highlightal [] Match case

Daone

[81]

TaleWiki — The Basic Setup

Add the following data:
Title—Test News
Body text—This is a test news

Source Status — Test

For the other fields, leave the default values. On clicking the Create button you will
get the following page:

3 Tale: list - Mozilla Firefox

File Edit WView History Bookmarks Tools Help
@ - l$' - @ "G_I‘ |E| http:/localhost: 3000 /tale list |T| [i'] |'|render partial |'~\,]

[[} Tale: list 3] 57 (3unread) ... ik localhost (1. [*] Gmail - spec... | | RDoc Docw... -

Tale was successfully created.

Listing tales

Submission

Title Body text Source Status
date
Test This is a test)
2007-07-06 Test Show Edit Destroy
MNews news I
New tale
& Find: |partia |@ Mext i Previous [Highlightal [] Match case
http:/flocalhost: 3000 ftale fnew @

[82]

Chapter 3

Next, click on the Edit link. You will get the following screen:

Y Tale: edit - Mozilla Firefox s
File Edit WView History Bookmarks Tools Help {:}
@ - - @ @ “:I htu:l:fﬂamlhust:SUUUIEIefeditI." 1|r| P] |*|render partial |L\,]
| O Tole:edit @ | ¥ (Buwend)... | i locahost fi... |] Gmad-spec... | [RbocDoau... |~
| IS 3ILITNTSWS | A

Body text
Thi=s is a test news

Submission date
2007 [v] | July [v] |6 [v]

Source
|Test |

Status
updated

Genre
Mews

-

& Find: |parﬁa |4]- Mext 8 Previous [Highlightal [] Match case

Daone @

[83]

TaleWiki — The Basic Setup

Change the value of the Body text to “This was test news" and click Edit. It will show
you the list with the edited text. That confirms the success of the changes we have
done. That completes the testing of our application.

Summary

That completes another chapter. In this chapter, you understood how to design
tables according to the conventions of RoR, creation of scaffolds for tables, and
changing the scaffolds according to the requirements.

This is just the start of our application. Keep on reading.

[84]

Managing the Users

In the last chapter, we developed one of the core modules of TaleWiki. In this
chapter, we will be dealing with the next core module —the User Management
module. You would have reached a conclusion by now that the Tales without the
corresponding users lacks credibility. To ensure credibility of the stories submitted,
as well as to track the users using the system, User management is required.

This chapter will start with a detailed look at the requirements of the User
Management module. Then we will design the module according to the
requirements and develop the module functionalities. The chapter will end with
testing the functionality of the developed module. So let's get started.

Understanding the Requirements

User Management is a module that is required by almost all the applications.
However, the functionalities provided by it will differ from application to application.
This is where the module specific functionalities come into the picture. As TaleWiki is
a collaborative site that will be built upon story submissions, the different users will
have different privileges so that the matter submitted can be verified and edited when
required. Also, a separate user will be there, who will be looking after the site. That
user is the administrator. So, we can say that the functionalities to be provided by the
User Management can be broadly divided into two:

¢ Managing the User
e Managing the Privileges

The former will be how to go about managing the users and the latter will be about
who can access and what they can modify. Let us have a detailed look into these.

Managing the Users

Managing the User

After stories, users form the most important aspect of our system, as all other
functionalities will be based on tales and users. As stated in the previous chapter,
each story is submitted by a user. So it becomes necessary that we keep track of who
submits what. We dealt with the management of tales in the previous chapter. Now
let us look at what requirements arise when we introduce users into the picture.

To keep track of which user submitted the story, we will need to develop the
following functionalities:

Registering the User: It's the first step in managing the users. It will let the
administrator know who is currently using the system. The user registration
can also be termed as adding the user if we look at it from the perspective of
the administrator. These terms will be used interchangeably in this chapter.
When a user registers himself or herself with TaleWiki, the information
collected will include the desired user id, full name of the user, age, complete
address, email id, and gender. The age will be required so that we can assure
that no one under the age of 15 gets registered.

Assigning Role: Role translates to privilege. Each user will be given a role so
that whatever functionalities of TaleWiki that they can access can be clearly
defined. This can be achieved by assigning roles to the registered users. Until
the roles are assigned, the users will be treated as 'Guest.' A user will not
have more than one Role.

Modifying the Information about the Users: The user as well as the
administrator (on being requested by the user) may want to modify some
information provided at the time of registration. This requirement will be
covered by 'Modifying User Details' functionality. All the information except
user id can be changed using this functionality. However, the normal user
and the administrator will have different views. The normal user will be able
to see and change his or her details. But the administrator will be able to view
and change all the details of all the users.

Viewing the Users: The administrator will need to view all the registered
users and their details, including the stories submitted by them. This
sub-module will provide the administrator with two views — [list view
and detailed view. The detailed view will contain the details of the stories
submitted by the particular user.

Deleting a User: There may be a case where the user may need to register
off the system and his/her details will need to be deleted. In such situations,
delete functionality will delete a user and the user's associated details,
including the submitted stories.

[86]

Chapter 4

That completes the round up of functionalities to be provided by the User
Management sub-module. Next, let us look at the Role Management sub-module.

Managing Roles

We have a system that will be used by multiple users. So firstly, there is a need to
stop users from accessing certain functionalities. This is done by a process known
as 'Authorization.' For authorization to work, we need to specify the privileges for
each user. Through privileges, we can check what functionalities of TaleWiki can
be used by a particular user. Checking privileges for each user is a time-consuming
job. Hence, privileges are grouped together as Roles. Each Role represents a set of
privileges. Thus, when you assign a Role to a user, the set of privileges that the Role
represents is also assigned to the user.

The privileges that you can assign to a Role can be either static or dynamic. If
privileges are static then once the Roles have been defined, the privileges cannot be
changed. That means you will not be able to add new privileges or delete/ modify
the existing ones from a Role. But in the case of dynamic privileges, you can add new
privileges to the existing set corresponding to a Role. In the case of TaleWiki, we will
be using static privileges. This is to ease the Role management until the interface for
the administrator is developed. After ascertaining the type, privilege assignment is
decided. The next step is to decide the functionalities needed to manage the Roles.
Here are the functionalities that the Role Management module will be providing to
the administrator:

e Add Role: To assign a Role, the system should know what Roles are
supported. 'Add Role' functionality will help the administrator to add new
Roles so that TaleWiki can know about the Roles that can be assigned. The
information that can be entered will include the id of the Role and the name of
the Role.

e Modify Role: In case the administrator wants to change the name associated
with a Role, he/she will be able do it using this functionality.

e Delete Role: There may be situations where a particular Role may no longer
be required. When faced with such situations, the administrator can delete
that Role. However, the Role won't be deleted as long as users are still
assigned to that Role.

e View Role: This functionality will help the administrator in viewing the
Roles supported by TaleWiki. The list view will contain a list of all the
supported Roles, and the detailed view will contain the details of a particular
Role, including the users who are assigned that Role.

[87]

Managing the Users

That's all about the functionalities that will be provided by the User Management
module. The next task-at-hand is to design the tables that will become the back-end
of the user management functionality.

Designing the Tables

As you remember from the previous chapter, the next step is to design the tables.
To create tables, we need to understand the entities and their relationship, the
schema corresponding to the entities, and then the table creation queries. If we go
step-by-step, we can say that following are the steps in designing the tables for the
User Management module:

e Designing the E-R model

e Deriving the Schema from the E-R model
o Creating the Tables from the Schema

So, let us follow the steps.

Designing the E-R Model

To design the E-R model, let us first look at what we have understood about the
data required by the functionalities, which we just discussed. It tells us that 'only
the Users with a particular Role can access TaleWiki'. Now we can consider this

as our 'problem statement' for our E-R model design. If you observe closely, the
statement is vague. It doesn't tell about the particular Roles. However, for the E-R
design, this will suffice as it clearly mentions the two main entities, if we use the E-R
terminology. They are:

e User

e Role
Let us look at the User entity. Now this entity represents a real-world user. It is
not difficult to describe its attributes. Keeping a real-world user in mind and the
functionalities discussed for managing a user, we can say that the User entity should
have the following attributes:

e Id—It will identify the different users, and it will be unique.

e User name — the name which will be displayed with the submitted story.

e Password —the pass key with which the user will be authenticated.

e First name — the first name of the user.

[88]

Chapter 4

¢ Last name —the last name of the user. The combination of the first and last
name will be the real name of the user.

o Age—the age of the user. This will help in deciding whether or not the user
is of required age which is 15.

e E-mail id —the email id of the user in which he/she would like to get emails
from the administrator regarding the submissions.

e Country—to keep track of the 'geographic distribution' of users.

e Role—to know what privileges are granted for the user. The Role is required
because the problem statement mentions "User with a particular Role".

The entity diagram will be as follows:

Id Last name
User
Country E-mail id

Next, let us look at the Role entity. Role, as already discussed, will represent

the privileges a user can have. And as these privileges are static, the Role entity
won't need to have the attribute to store the privileges. The important point

about the static privileges that you have to keep in mind is that they will have to
be programmatically checked against a user. In other words, the privileges are

not present in the database and there can only be a small number of Roles with
predefined privileges. We will be discussing more about it while developing the
interface for managing Roles. Keeping this in mind, we can say that the Role entity
will have the following attributes:

e Id—the unique identification number for the Role.

e Name — the name with which the id will be known and that will be displayed
along with the user name.

[89]

Managing the Users

The entity diagram for Role entity will be as follows:

Role

We have completed two out of three steps in designing the E-R model. Next, we
have to define how the User entity is related with the Role entity. From the problem
statement we can say that a user will definitely have a Role. And the functionality
for assigning the Role tells us that a user can have only one Role. So if we combine
these two, we can say that 'A user will have only one Role but different users can
have the same Role'. In simple terms, a Role —let us say normal user —can be applied
to different users such as John, or Jane. However, the users John or Jane cannot be
both normal user as well as administrator. In technical terms, we can say that a Role
has a one-to-many relationship with the User entity and a User has a many-to-one
relationship with a Role. Diagrammatically, it will be as follows:

e]G>t

One piece of the puzzle is still left. If you remember the Story entity from the
previous chapter, we had found that each story had a submitter. The submitter is

a user. So that means there is a relationship between the User and the Story entity.
Now, a user, let us say, John or Jane, can submit many stories. However, the same
story cannot be submitted by more than one user. On the basis of this we can say that
a User has a many-to-one relationship with a Story and a Story has a many-to-one
relationship with a User. According to the E-R diagram it will be as follows:

I]

[90]

Chapter 4

The final E-R design including all the entities and the attributes will be as follows:

Body Text Date of submission
i Cheading >
CGenmre > | Story CUser >
has
I CLest name>
User
Country E-mail id
Password
has
Role

Ca> Qame

Description

That completes our E-R design step. Next, we will derive the schema from the

E-R model.

[91]

Managing the Users

Deriving the Schema

We have all we need to derive the schema for our purpose. While deriving a schema
from an E-R model, it is always a good choice to start with the entities at the 'one'
end of a 'one-to-many' relationship. In our case, it is the Role entity. As we did in the
previous chapter, let us start by providing the details for each attribute of the Role
entity. The following is the schema for the Role entity:

Attribute Data type of the attribute Length of the
acceptable value

Id Integer 10

Name Varchar 25

Next, let us look at the schema of the User entity. As it is at the 'many' end of the
'one-to-many' relationship, the Role attribute will be replaced by the Id of Role. The
schema will be as follows:

Attribute Data type of the attribute Length of the acceptable value
Id Integer 10

User name Varchar 50

First name Varchar 50

Last name Varchar 50

Password Varchar 15

Age Integer 3

e-mail id Varchar 25

Country Varchar 20

Id of the Role Integer 10

Now, let us revisit the Story entity. The attributes of the entity were:

e Id—This is the Primary key attribute as it can uniquely identify a story.
e Heading— the title of the story.

e Body text—the body of the story.

e Date of Submission —the day the user submitted the story.

e Source—the source from where the story was found. If it is written by the
user himself/herself, the source will be the user's id.

e Genre—the category of the story.
e User—the user who submitted the story.

[92]

Chapter 4

Now based on the relationship that we have established between the User Entity and
the Story entity, we can say that Story is at the 'many' end of the relationship. So, in
its schema, the User attribute will be replaced by the Id of the User entity. Thus, the
schema of Story will be:

Name of the attribute Data type of the attribute Length of the acceptable value

Id Integer 10
Title Varchar 100
Body Text Varchar 1000
Date of Submission Date

Source Varchar 50
Status Varchar 15
Id of Genre Integer 10
Id of the User Integer 10

The schema has been derived and now we can move to the last part of the database
design — creation of the tables.

Creating the Tables

Looking at the schema and keeping in mind the conventions required for tables in
RoR, here is the table creation statement for the Role schema:

CREATE TABLE “roles™ (

“id® INT NOT NULL AUTO_INCREMENT PRIMARY KEY ,
“name~ VARCHAR(25) NOT NULL ,

“description” VARCHAR(100) NOT NULL

) ENGINE = innodb;

Next comes the table creation statement for the User schema. Note that here also we
are following the one-to-many path, that is, the table at the 'one' end is created first.
Whenever there is a one-to-many relationship between entities, you will have to
create the table for the entity at the 'one' end. Otherwise you will not be able to create
a foreign key reference in the table for the entity at the 'many' end, and if you try to
create one, you will get an error (obviously). So here is the create table statement for
the User schema:

CREATE TABLE “users™ (

“id® INT NOT NULL AUTO_INCREMENT PRIMARY KEY ,
“user name~ VARCHAR(50) NOT NULL ,
“password” VARCHAR(15) NOT NULL ,

“first name”~ VARCHAR(50) NOT NULL ,

“last _name~ VARCHAR(50) NOT NULL |,

“age™ INT(3) NOT NULL ,

[93]

Managing the Users

“email® VARCHAR(25) NOT NULL ,
“country~ VARCHAR(20) NOT NULL ,
role_id INT NOT NULL,

CONSTRAINT ~fk users roles™ FOREIGN KEY ("role id~) REFERENCES “role™ (
“id”) ON DELETE CASCADE

) ENGINE = innodb;

Next, let us alter the table for story, that is, the tales table, by adding a foreign key
reference to the users table in it. For that, first we will have to add a new column
name user_id in the tales table. Here is the query for adding a new column:

ALTER TABLE “tales™ ADD “user_ id~ INT NOT NULL ;

Next, we will make a reference to the users table with the following query:

ALTER TABLE “tales™ ADD FOREIGN KEY (“user id~) REFERENCES “users” (
~ig~
) ON DELETE CASCADE ;

That completes our task of creating the required tables and making necessary
changes to the tales table. The effect of this change will be visible to you when we
implement session management in the next chapter. And incidentally, it completes
the 'designing the tables' section. Let us move onto the development of the user
management functionality.

Developing the User Management

The tasks and operations for user management are clear and the tables are ready. The
only job left to be done is developing the module itself so that user will be able to
access the functionalities. User Management has two different sets of functionalities

- managing the roles and managing the users. So we will be developing these as two
different set of functionalities. First we will be working on Role Management and
then we will move over to User Management. The steps will be the same as in the
previous chapter. However, unlike the previous chapter, we will not be focussing on
the steps. Instead we will look at both functionalities separately and steps will be a
part of them. This will be the approach from this chapter onwards because the steps
have already been introduced in Chapter 2. So let us get started.

[94]

Chapter 4

Developing the Role Management

The steps in developing the interface for Role Management are the same as follows:

¢ Generating the Scaffolds

e Modifying the Model

e Customizing the Controller
e Refining the View

But in this case the major refinement or changes will be done to the View. The reason
is the detailed view functionality.

Generating the Scaffolds

Give the following commands at the prompt to set the paths and get into our
application directory:

use_ ruby

cd talewiki

Once inside the folder of our application, give the following command to generate
the scaffold:

ruby script/generate scaffold role role

In response, you will get the following screen:

:sJInstantRailssrails_appsstalewiki>r»uby script/generate scaffold role role
exists appscontrollers/
existz appshelpers/
create appsvieuwssrole
exists appsviewsslagouts./
exists test-functional~s
dependency model
exists app-mode 15/
exists test s units
exists test Fixtures/
create appsmode ls/role.rh
create test/unit- role_test.rh
create test/fixturessroles.yml
create appsviewssrole/ form.rhtml
create appsviewssroleslist.rhtml
create appsviews-srole/shou
create appsviewssrolesnev.rhtml
create appsviewssrolesedit.rhtml
create appscontrollerssrole_controller.rh
create testsfunctionalsrole_controller test.rh
create appshelperssrole_helper.rh
create appsuviews/layoutss/role.rhtml
identical publicsstylesheetssscaffold.css

s InstantRailssrails_appsstalewiki>

[95]

Managing the Users

Next, we have to ensure that the name field of the Role in the 'New Role' interface is
never left empty by the user. For that, we will now modify the Model.

Modifying the Model

In the case of Role Management, the only change we will be doing in the Model is
adding the validation for the name attribute. We do not want anyone to add a Role
without a name, do we? To avoid that, open the role.rb file from the app/models
folder. It contains the following code:

class Role < ActiveRecord: :Base
end

It tells RoR that the Role class is mapped to the roles table (through convention).
Next, let us add the validates_presence_of method with :name as the argument to
validate the name field. Also, let us check the uniqueness of the name of the Role, as
it is important that the name is unique.

class Role < ActiveRecord: :Base
validates presence of :name

validates uniqueness of :name

end

With that, the modifications to the data model of the Role Management are
completed. Next, we have to add the details of users assigned to a particular Role.
For that, first we have to tell the model that it will be containing objects of the User
model. So, add the has_many declaration to the role.rb, shown as follows:

class Role < ActiveRecord::Base
validates presence of :name
validates uniqueness of :name
has many :users

end

We will be changing the Controller and the View. So let's move to the changes to
be done in the Controller. However, keep in mind that we will not be testing the
Role Management until we create the User model and tell it that the User model is
related with the Role model. At present, there is no User model. We are creating
the placeholders so that when we create the User model we don't need to revisit the
Model corresponding to the Role.

[96]

Chapter 4

Customizing the Controller

To show the details of the users assigned, we need to get the list of users having
the Role. In order to display more information about the user in the details page,
we will have to make changes in the action corresponding to the details page. By
convention, it is named show. The show action method for the Role Controller has
the following code:

def show
@role = Role.find(params[:id])
end

You will find this method in role controller.rb within the app/controllers
folder. We have to show the user under the particular role. For that, get the list of
users from the role object by calling users on the role object. The code will be
as follows:

def show
@role = Role.find(params[:id])
@users=@role.users
end

Now may be wondering where the users attribute came from and what it actually
gives you as data. The answer is that the has_many declaration in Model tells RoR
that we are expecting many instances of the User object corresponding to a Role
object. The best way to represent many objects within another object is by using a list.
That's what RoR is doing here. So when you create an object of Role using any form
of the £ind method, RoR also looks at the corresponding User objects and makes a
list populated with them. Then it creates a getter for the created list. The name of the
getter is again a convention. So it is called users because it is plural of the user class.
That completes the explanation behind the @role.users expression. Now you can
understand how much work RoR does for us and the level of abstraction it provides
to make our development easy. Next, let us do the required changes in the View.

Refining the View

The next step in showing the details is to modify the template corresponding to the
show action method. In this case it is the show. rhtml file within the app/views/role
folder. It will has the following code:

<% for column in Role.content columns %>

<p>
<%= column.human name %$>: <%=h @role.send(column.name) %>
</p>
<% end %>
<%= link to 'Edit', :action => 'edit', :id => @role %> |
<%= link to 'Back', :action => 'list' %>

[97]

Managing the Users

The code iterates over the attributes of the selected object and displays their human
readable format. What we will be doing is adding the code to iterate over the list of
users and displaying their details. This is how you do it:

<% for column in Role.content columns %>
<p>
<%= column.human name %>: <%=h @role.send(column.name) %>
</p>
<% end %>

<table>

<tr>
<th>UserName</th>
<th>FirstName</th>
<th>LastName</th>

<th>email id</th>
</tr>

<% for user in @users %>
<tr>
<td><%=user.user name%></td>
<td><%=user.first name%></td>
<td><%=user.last name%></td>
<td><%=user.email%></td>

</tr>
<%end%>
</table>
<%= link_to 'Edit', :action => 'edit', :id => @role %> |
<%= link to 'Back',6 :action => 'list' %>

The highlighted code is actually iterating over the list of users by using the for
construct. Then the attributes of the current user object is being displayed using
normal HTML and embedded Ruby code. That completes one end of the User
management. But it is still not complete as the functionality to manage users is still
not in place. So let us put User management in place next.

Developing the User Management Functionality

We just completed the first half of the User Management module by developing the
Role management functionality. Without further ado, let us get on to the second
half of User management. To develop the interfaces for the User management
functionality, the steps are the same as that we followed for Role management,
which are:

[98]

Chapter 4

e Generating the Scaffold

e Modifying the Model

e Providing Default Role to the User

¢ Adding Display Action method to the Controller

e Refining the View

e Adding the Assign Action Method to the Controller
As in Role management, there is only one operation that we will be
customizing — assigning a Role to a User. As RoR doesn't generate the scaffold for

the assigning role, the better term will be adding an operation. So here is how
we are going to do it.

Generating the Scaffold

At the command prompt, give the following command to generate the scaffold for
the users table:

ruby script/generate scaffold user user

Just like before, you will get the following screen:

:sInstantRailssrails_appsitalewiki>ruby script/generate scaffold wser user
exists appscontrollers/
exists appshelpers/
create appsuieussusep
exists appsuiewsslayouts/
exists testAfunctionals
dependency model
exists appsmode 1s/
exists test units
exizts testsfixturess
create appsmode ls/user.rh
create test unit user_test.rh
create test/fixtures/users.yml
create appsuvieuwssuser/_form.rhtml
create appsuvieuwssuserslist.rhtml
create appsuieuwssusersshow.rhtml
create apps/vieuwssusersnew.rhtml
create appsuieuwssusersedit.rhtml
create appscontrollerss/user_controller.vh
create testsfunctionalsuser_controller _test.vh
create appshelperssuser_helper.rh
create appsuieuwsslayoutssuser.rhtml
identical publicrsstylesheetssscaffold.css

:~InstantRailswrails_appsstalewiki>

The setup for User management is completed. Now, let us move onto customization.
The first part of customization is validating the data input and telling RoR that the
users table is related to the roles table. That's what we are going to do next.

[99]

Managing the Users

Modifying the Model

We have two tasks related to the model —adding the validation and relating the user
model with the model of Role. It is always better to do the validation first so that
during the saving of data overhead can be reduced. The validations we will be
doing are:

The field's user name, password, first name, last name, age, email, and
country should be filled. For this we will use the validates_presence_of
() function.

The user name has to be unique. We will be using the
validates_uniqueness_of () method to check the uniqueness of
the user name.

Email should be of the form some@some . com. To check the format of email,
we will use the validates_format_of () function. Apart from the field to
be validated, it expects a regular expression which will be used to validate
the value of the field.

The age should be of numerical value. The validate numericality of ()
function will take care of the validation for numerical value in age field.

To add these validations, open the user. rb file from the app/models folder and add
the validation code to the User class. The class currently is as follows:

class User < ActiveRecord: :Base

end

After adding the code, the class would be as below:

class User < ActiveRecord: :Base

end

validates presence of :user name, :password, :first name,
:last name, :age, :email, :country

validates uniqueness of :user name

validates numericality of :age

validates format of :email, :with => /\A(["@\s]l+)@((?:[-a-
- B 20-91+\.) +la-z1{2,) \z/i

The regular expression is passed with the help of the :with hash. That completes the
validation aspect of the User management. Next, we have to tell RoR that the users
table is related to the roles table. We will do that using the belongs_to declaration,
as the users table is at the many end of the relationship. Now, add the belongs_to
declaration after the validation code. The complete class definition will be as follows:

[100]

Chapter 4

class User < ActiveRecord: :Base
validates presence of :user name, :password,:first name,\
:last _name, :age, :email, :country

validates uniqueness of :user name

validates numericality of :age

validates format of :email,:with =>/\A(["e\s]l+)@((?:[-a-z0-\
91+\.)+[a-z]1{2,})\z/1

belongs to :role
end
Next, we have to assign the user a default role which will be 'guest'. Let us see how

to do it.

Assigning Default Role to a User

To assign a default Role, first let us create a Role named 'Guest'. Navigate to the
'New Role' page after giving the following URL in the address bar of the browser:

http://localhost:3000/role

For the Name field supply Guest as the value. For the Description field, give
Default Role for newly registered user as the value. The page will look as follows:

File Edit Wiew History Bookmarks Tools He

€ - € W G]y

New role

MName
Guest

Description
Default Role for newly registered u

Back

Dane @

[101]

Managing the Users

Now, click Create. The 'Guest' Role is now created. So let us now assign it to any user
who is registering. For that go to the create method in the Usercontroller class
defined in the user controller.rb file within the app/controllers folder. Add
these two statements to the create method before the if statement:

@role=Role.find(:all, :conditions=>"name='Guest'")
@user.role id=@role.id

What the first statement is doing is that it is retrieving the objects of Role having
their name as Guest. The second statement assigns the id of the retrieved Role object
(we are sure that there is only one Role object because of the uniqueness check within
the model corresponding to the Role) to the role_id attribute of the user object.
After addition of the statements, the create method will be as follows:

def create
@user = User.new(params|[:user])
@role=Role.find(:all, :conditions=>"name='Guest'")
@Quser.role_id=@role.id
if @user.save

flash[:notice] = 'User was successfully created.'
redirect to :action => 'list!'

else
render :action => 'new'

end

end

Next, let us add the action method to display all the users and all the roles so that
the assign role functionality can be developed.

Adding Display Action Method to the Controller

The two things that we require to assign a role to a user are the list of registered
users and the available roles. So first we have to add an action method that will
retrieve both the lists — that of users and roles. For retrieving the lists we will use
the £ind(:all) function on both the models. Add the following method to the
UserController class in the user controller.rb file. You can find the file in the
app/controllers folder.

def display assign
@users = User.find(:all)
@roles = Role.find(:all)
end

So we have created the two required lists. Now let us display it to the user.

[102]

Chapter 4

Refining the View

The first step in displaying both the lists is to create a template in the app/views/
users folder. Let us name it display assign.rhtml. It will contain code to show
two combo boxes — one for showing the users and another for showing the roles.
Apart from that we need to give the submit button to submit the selected values to
the Controller. The code is identical to what you have seen for displaying the list of
genres in the 'New Tale' page. The following is the code:

<hl>Assign Role</hl>

<% form tag :action => 'assign' do %>
<p><label for="user user name">User

<select name="user">

<% @users.each do |user| %>

)

<option value="<%= user.id %>">
<%= user.user_name %>
</option>
<% end %>
</select>
</p>
<p><label for="role role name">Role

<select name="role">
<% @roles.each do |role| %>
<option value="<%= role.id %>">
<%= role.name %>
</option>
<% end %>
</select>
</p>
<%= submit tag "Assign Role"

o°
\Y

)

<% end %>
<%= link to 'Back',6 :action => 'list' %>

The code creates two combo boxes and fills them with user names and roles. It then
creates a submit button. All of this is enclosed within the form helper. The action
method being called is assign. That completes the page to display users and roles so
that a role can be assigned to a user. Now we have to save the data in table.

[103]

Managing the Users

Adding the Assign Method to the Controller

When the user clicks on submit, the selected user and role has to be saved.
Essentially, this means the role_id of the selected user has to be updated with
the id of the selected role. So the assign method in UserController will be
as follows:

def assign
@user= User.find (params[:id])

if @user.upadate attribute :role id,params/[:role]
flash[:notice] = 'User was successfully assigned the role.'
redirect to :action => 'list’

else
flash[:notice] =

'Role could not be assigned to the selected user.'

render :action=>'display assign'

end

end

It updates only the selected attribute of the user object. If successful, it shows the
list of users, otherwise it redisplays the 'Assign Role' page. In this case it is role_id.
That completes our assign role task. Next, let us test the application.

Testing the Functionalities

We are going to test only those functionalities that have been either modified or
added by us after the scaffold has been generated. So the functionalities to be
tested are:

e Uniqueness of the Role name
e Validation of the User details during user registration/addition
e Assigning of Role to a User

e Displaying of Users assigned a particular Role

Let us begin the testing with the uniqueness of the Role name. Open the following
URL in a browser:

http://localhost:3000/role
Navigate to the New role page. In the page, give the following values to the fields:
Name — Guest

Description — Testing uniqueness of name field

[104]

Chapter 4

Now, click on Create. If you get the following screen, then the validation is working.

"-) Role: create - Mozilla
File Edit Vew History

@.

- €@

New role

1 error prohibited this role from being saved

There were problems with the following fields:

= Name has already been taken

Firefox

Bookmarks Tools Help

ﬁ ||_| hth::fﬂocalhost:3DDD,’rDIe,’c|'| l}] "|

Name

Guest

Back

Done

Description
Testing uniqueness of name field

&

The next functionality we are going to check is the validations on the fields of the
'New User' page. So open up the following URL and go to 'New User' page:

http://localhost:3000/user

Following are the values that we will be giving to check the validations

Name Value

User name tester

Password testing123

First name test

Last name (leave this blank to test the required field validation)
Age twenty

Email a@c

Country nowhere

[105]

Managing the Users

In the values, Age and Email validations are what we are really checking for. If you
get the following screen, then the validations are working perfectly:

" ¥ User: create - Mozilla Firefox

File Edit Vew History Bookmarks Tools Help

<,"‘:| - - @ ﬁ} ||_| htn::fﬂocalhnst:BDDDfuser,’u|'| [}] "

]
3 errors prohibited this user from being saved

There were problems with the following fields:

= Last name can't be blank
= Age is not a number
= Email is invald

User name
tester

Password

s

First name
test

Last name

Age

|1wenty |

Email

e |

Country
nowhere

=
Dane @

[106]

Chapter 4

After correcting the values, click on Create again. If you get the following screen,

then everything is well with the changes we did in the create method of

user_controller.rb.

" JUser: [ist - Mozilla Firefox

File Edit “iew History Bookmarks Tools Help
<E| A - @ ﬁ_l‘ ||_| http: /localhost: 3000 /user flist |‘| [}] '*| H\]
o]
User was successfully created.
Listing users
User Password First Last Age Email Country 1
name name name
tester testing test test 20 a@c.com nowhere Show Edit Destroy
New user E
Done @

Next, let us test the 'Assign Role' functionality. For that, first add a new

Role called Contributor. Then navigate to the following URL:
http://localhost:3000/user/display assign

In response, you will see the following screen:

" ¥ User: display_assign - M... ': a8

Assign Role

User

tester v/

Role
Contributor Iﬂ

Assign Role

Back

File Edit Wew Higtory Bookmarks Tools

€ > @0 @0

Done &y

[]

B

[107]

Managing the Users

Select the User whose name is tester from the combo box for User and Contributor
from the combo box for the Role. Click on Assign Role and if you get the following
screen then the 'Assign Role' functionality is working perfectly:

" JUser: list - Mozilla Firefox

File Edit View History Bookmarks Tools Help
<E| - - @ ﬁ_l‘ ||_| http: flocalhost: 3000 /user flist |‘| [3‘] "| \‘\]
User was successfully assigned the role.
Listing users
User Password First Last Age Email Country
name name name
tester testing test test 20 a@c.com nowhere Show Edit Destroy
New user
Done @

Next, let us test the 'Show details' functionality of Role management. Open the

following URL and click on the Show link for the Contributor Role. You will get the
following screen:

" Y Role: show - Mozilla Firefox

Eile Edit Wview Higtory Bookmarks Tools

Help

<ﬂ = - @ ﬁ_l‘ ||_| http:/flocalhost: |‘| [}] "|

~&

Name: Contributor
Description: Role for the story contributers

UserName FirstName LastName email id
tester test test
Edit | Back

a@c.com

Done

[108]

Chapter 4

That completes the testing of the functionalities. It tells us that our changes and
additions are working fine. As I had mentioned in the beginning of this chapter, the
administrator will be looking after the site. Creation of the administrator is left to
you as an exercise. The difference between a normal user and an administrator is that
an administrator will have the role name Administrator. So, the exercise is to add a
Role having Administrator as the name, add a user, and assign Administrator Role to
the newly created user.

Summary

With that, we have set up the User Management for TaleWiki. However, there

are some gaps. User management, without User Authentication and Session
Management, is like a story half told. Also, due to the lack of Session Management,
the changes we did to the tales table could not be implemented at the application
level. Apart from these, we are still using the default template provided by RoR.
These gaps are what we will address in the next chapter. Keep on reading.

[109]

Gathering User Comments

In the last chapter, we saw how to set up User Management and Role Management
for TaleWiki. However, we did not set up the Login Management based on Users.
So, it was work only half done. To complete the task, we will set up Login
Management in this chapter. It will not only authenticate a user but also provide
the session management.

Secondly, we will look at how to gather user comments for a particular story. We
will start with the functionalities to be provided by the Comment Gathering module.
We will then move on to the database design for the module. After that we will not
only set up the Login Management but also modify the Tale Management so that
the User and Tales can be related. We will wrap up with the implementation of the
Comment Gathering module. Let's gets started.

Understanding the Requirements

In this chapter, we will be tackling two problems —managing the user authentication
as well as the session management and accepting comments from other users for a
particular tale. So we can divide the requirements into two:

e Login Management

° Comment management

The Login Management module will also provide the solution to the problem of Tale
management that evolved during the development of User management. As the tales
table refers to the users table, without a user id a new tale cannot be submitted. The
Login management will provide us the user id corresponding to the new tales. Also,
it will tell us who has commented on a particular tale. Let us see how.

Gathering User Comments

Login Management

As the name suggests, the main functionality the Login Management will provide
will be managing the logins. However, managing logins is not a single task. It is
dependent on others tasks or operations as well. So, the overall functionalities we
will be developing as part of Login management are:

e Authenticating the User: We can allow only the registered users to access
the functionalities of TaleWiki. This operation will ensure that the user is a
registered user before he or she tries to enter the TaleWiki.

e Setting the Session: Once the user is found to be authentic, then we have
to maintain his/her authenticity until he/she logs out. The authenticity can be
maintained by this functionality.

e Checking Roles: Each User is assigned a Role. So we will need to check
whether a particular functionality —such as viewing details of another
user —is a part of the Role. This functionality will check the User's Role
whenever he/she tries to access any functionality provided by TaleWiki.

e Invalidating Session: When a user logs out, all the details of the user in the
current session need to be cleared out. This functionality will clear out all the
details of the user, including whether the user is authentic or not.

Now that we have defined the functionalities of Login management, let us move on
to the next set of tasks —managing the comments.

Managing the Comments

It is natural for a person to comment upon whatever he or she reads. So, it is
necessary to provide a way for users to comment on a particular story. The
comments can be of two types — threaded and non-threaded. In threaded comments, one
comment can be posted as a response for another comment. If the first comment is
removed, then all its child comments will also be removed. If we go for non-threaded
comments, then each comment is considered an individual. So if one is deleted,
others are not affected.

The Comment Management module will do the same. The functionalities that the
Comment Management module will provide are:

¢ Adding a Comment: When a user wants to comment on a particular story,
he or she can use this functionality. A user can comment on many stories.
Comments are not threaded. That means a comment cannot be a response for
another comment. Each comment is considered an individual.

[112]

Chapter 5

e Deleting a Comment: If an administrator finds a comment offensive or feels
that comments are very old, this functionality can be used to delete such
comments. Only the administrator will have access to this functionality.

e Viewing Comments: Using this functionality, a user can read all the comments
submitted for a particular story. It will be available for all users. In addition,
the comments will be shown in the list view and the details view. In list view,
the comments will be shown for each story, and in the details view, all the
details including the date and complete text of the comment will be shown.

We are not providing a way to modify a posted comment. That is because comments
are considered one time and brief view of what the user thinks. Hence, no
functionality will be provided for the modification of comments. That wraps up the
requirements of the Login and Comment Management modules. Next, let us work
on the database design for the modules.

Designing the Database

As you would have already guessed, our next step will be designing the database.
However, unlike the modules that we developed previously, we will be designing
the database only for one of the two modules. The Login management module
doesn't require a table because its functionalities are based on the users and roles
tables. So we will have to design the table for the Comment management module
only. Just like the previous chapter, the steps for designing the database are:

¢ Designing the E-R Model
e Deriving the Schemas

e Creating the Tables

Whenever a new module is added, some of the existing E-R models need to be
refined, and consequently the corresponding schemas and tables will be changed
accordingly. In the case of Comment management, this holds true as you will see as
we go through the steps. So here we go.

Designing the E-R Model

As the name suggests, the Comment Management module will have data related
to the comments submitted by the user. What is this data apart from the comment
itself? To answer this, first let us try to define the functionality of the Comment
Management module in one line. 'Comment management will manage comments
submitted by a user for a particular story'—that's how what will look like. The
important point here is 'comments submitted by a user for a particular story'. We
have three main entities — Comments, Users, and Stories. Story and User entities
have already been discussed in Chapters 3 and 4. So let us look at the Comments

[113]

Gathering User Comments

entity. The attributes for comments will include the date on which the comment has
been added and the title of the comment. In short, the Comments entity will have the
following attributes:

e Id—the unique number to identify each comment

¢ Comment body — the text of the comment

e Date—the date on which comment was added

e User—the user who has added the comment

e Story — the story on which the comment has been made

The entity diagram for the Comments entity will be as follows:

Comment Body
Id Date
Story User
Comments

Coming back to our one line definition, we know that the User, Story, and Comments
entities are related. The question is how are they related? The answer is there in the
one line definition itself. First, let us consider the User entity. The definition says
'comments submitted by a user'. That means one user can submit many comments.
Hence, the User entity has a one-to-many relationship with the Comments entity.
The relationship will be as follows in terms of an E-R diagram:

[bser J———Cpos>———<{commen

The next part of the definition tells us 'comments for a story'. This means that one
story can have many comments. In other words, the Comments entity is related to
the Story entity through a many-to-one relationship. The Story entity will be at the
'one' end and the Comments entity will be at the 'many' end of the relationship. The
diagram will look like as follows:

o] ——feammare]

[114]

Chapter 5

When looking at all the entities with their attributes and relationships, the picture
will be as follows:

Date of submission

Comment Body

Comments |

| Age

E-mail id

Password

has

The next step obviously is deriving the schema. Here it comes.

Deriving the Schema

We have the complete information about the attributes and relationships of the
Comments entity. The main point about this entity is that unlike the User entity

it doesn't introduce any changes in the existing schemas. The reason is that the
Comment entity is dependent on other entities and not vice versa. The schema will
be as follows:

[115]

Gathering User Comments

Attribute Data type of the attribute Length of the acceptable value
Id Integer 10

Comment body Varchar 1000

Date of comment Date

Id of user Integer 10

Id of Story Integer 10

Here Story and User both have their own schemas. So their Ids will be the foreign
keys in the table. Now, we can develop the table.

Creating the Tables

There is only one table to be created. Apart from the attributes, the comments table
(keeping with the naming convention), will have two foreign key references —one to
the users table and another to the tales table. Including these, the SQL query will be
as follows:

CREATE TABLE “comments™ (

~id® INT NOT NULL AUTO_INCREMENT PRIMARY KEY ,

“comment body~ TEXT NOT NULL ,

“submission date® DATE NOT NULL ,

“tale id> INT NOT NULL,

“user id> INT NOT NULL,

CONSTRAINT ‘fk_comments_users‘ FOREIGN KEY (\user_id\) REFERENCES
users(~id~) ,

CONSTRAINT \fk_comments_tales\ FOREIGN KEY (\tale_id\) REFERENCES
tales(~id")

) ENGINE = innodb;

That completes the table definition. By this time you will have started to think that
if RoR is so productive, why do we still have to use the SQL statements to create
tables?. There is another way — the Ruby way. We will see that in the next chapter
where we will convert all the table creation statements using Ruby. Now that the
required table has been defined, let us develop the modules starting with the
Login management.

Developing the Login Management Module

Even though Login and session handling are separate functionalities from User
management, they depend on the same table —user. Also, the functionalities are
more alike than different. Hence, instead of creating a new Controller, we will be
using the UserController itself as the Controller for the Login module. Keeping this
point in mind, let us look at the steps involved in developing the Login Management,
which are:

[116]

Chapter 5

e Creating the Login page

e Implementing the Authentication Method
e Setting up the Session

e Applying Authorization

Leaving aside the first step, all other steps mainly focus on the Controller. Here
we go.

Creating the Login Page

We need a login page with textboxes for user name and password in which users can
put their credentials and submit to the login authenticator (fancy name for the action
method that will contain the logic to authenticate the user). That's what we are going
to create now. The convention for any website is to show the login page when the user
enters the URL without any specific page in mind. RoR also follows this convention.
For example, if you enter the URL as http://localhost:3000/user, it displays the
list of users. The reason is that the index action method of the Usercontroller class
calls the 1ist method whenever the aforementioned URL is used. From this, we can
understand two things —first, the default action method is index, and second, the
first page to be shown is changeable if we change the index method.

What we need is to show the login page whenever a user enters the URL
http://localhost:3000/user. So let's change the index method. Open the
user controller.rb file from the app/views/user folder and remove all the
statements from the body of the index method so that it looks like as follows:

def index
end

Next, let us create an index.rhtml file, which will be shown when the index
method is called. This file will be the login page. In the app/views/user folder,
create an index.rhtml file. It will be as follows:

<%= form tag :action=> 'authenticate'%>
<table >
<tr align="center" class="tablebody">
<td>User name:</td>
<td><%= text field("user", "user name", :size=>"15") %></td>
</tr>
<tr align="center" class="tablebody">
<td>Password:</td>
<td><%= password field("user",
"password", :size=>"17") %></td>
</tr>

[117]

Gathering User Comments

<tr align="center" class="tablebody">
<td></td>
<td><input type="submit" value=" LOGIN " /></td>
</tr>
</table>

It uses two new form helpers —text field and password_field. The text field
creates a text field with the name passed as the parameter, and the password_
field creates a password field again with the name passed as the parameter. We
have passed the authenticate method as the action parameter so that the form is
submitted to the authenticate method. That completes the login page creation.
Next, we will work on the authenticate method.

Implementing the Authenticate method

Authenticating a user essentially means checking whether the user name and
password given by the user corresponds to the one in database or not. In our case,
the user gives us the user name and password through the login page. What we will
be doing is checking whether the user is in database and does the password that we
got corresponds to the password stored in the database for the user? Here, we will be
working on two levels:

e Model

e Controller

We can put the data access part in the action method that being the Controller itself.
But it will create problems in the future if we want to add something extra to the user
name/ password checking code. That's why we are going to put (or delegate) the
data access part into Model.

Model

We will be modifying the User class by adding a method that will check whether
the user name and password provided by the user is correct or not. The name of the
method is 1ogin. It is as follows:

def self.login (name,password)
find(:first, :conditions => ["user name = ? and password =
?",name, password])
end

[118]

Chapter 5

It is defined as a singleton method of the User class by using the self keyword. The
singleton methods are special class-level methods. The conditions parameter of the
find method takes an array of condition and the corresponding values. The £ind
method generates an SQL statement from the passed parameters. Here, the find
method finds the first record that matches the provided user_name and password.
Now, let us create the method that the Controller will call to check the validity of the
user. Let us name it check login. The definition is as follows:

def check login
User.login(self.user name, self.password)
end

This function calls the 1ogin method. Now if you observe closely, check_login calls
the login function. One more point to remember —if a method 'test' returns a value
and you call 'test' from another method 'testl,' then you don't need to say 'return test'
from within 'testl'.The value returned from 'test' will be returned by 'test1' implicitly.
That completes the changes to be done at the Model level. Now let us see the changes
at the Controller-level.

Controller

In the Controller for User —UserController —add a new method named
authenticate. The method will first create a User object based on the user name
and password. Then it will invoke check_login on the newly created User object. If
check login is successful, that is, it does not return nil, then the user is redirected to
the list view of Tales. Otherwise, the user is redirected to the login page itself. Here is
what the method will look like:

def authenticate
@user = User.new(params/[:user])
valid_user = @user.check login
if logged_in user
flash[:note]="Welcome "+logged in_user.name

redirect to(:controller=>'tale', :action => "list")
else
flash[:notice] = "Invalid User/Password"

redirect to :action=> "index"
end
end

[119]

Gathering User Comments

The redirect_to method accepts two parameters — the name of the Controller

and the method within the Controller. If the user is valid, then the 1ist method of
TaleController is called, or in other words, the user is redirected to the list of tales.
Next, let us make it more robust by checking for the get method. If a user directly
types a URL to an action, then the get method is received by the method. If any user
does that, we want him/her to be redirected to the login page. To do this, we wrap
up the user validation logic in an if/else block. The code will be the following;:

def authenticate
if request.get?
render :action=> 'index'
else
@user = User.new(params|[:user])
valid user = @user.check login
if valid user
flash[:note]="Welcome "+valid user.user name
redirect to(:controller=>'tale', :action => 'list')
else
flash[:notice] = "Invalid User/Password"
redirect to :action=> 'index'
end
end
end

The get? method returns true if the URL has the GET method else it returns false.
That completes the login authentication part. Next, let us set up the session.

o In Ruby, any method that returns a Boolean value — true or false —is
Q suffixed with a question mark (?). The get method of the request object
returns a boolean value. So it is suffixed with a question mark (?).

Setting up the Session

Once a user is authenticated, the next step is to set up the session to track the user.
Session, by definition, is the conversation between the user and the server from

the moment the user logs in to the moment the user logs out. A conversation is a
pair of requests by the user and the response from the server. In RoR, the session
can be tracked either by using cookies or the session object. The session is an object
provided by RoR. The session object can hold objects where as cookies cannot.
Therefore, we will be using the session object. The session object is a hash like
structure, which can hold the key and the corresponding value. Setting up a session
is as easy as providing a key to the session object and assigning it a value. The
following code illustrates this aspect:

[120]

Chapter 5

def authenticate
if request.get?
render :action=> 'index'
else
@user = User.new(params|[:user])
valid user = @user.check login
if valid user
session[:user id]l=valid user.id
flash[:note]="Welcome "+valid user.user name

redirect to(:controller=>'tale', :action => 'list')
else
flash[:notice] = "Invalid User/Password"
redirect to :action=> 'index'
end
end

end

That completes setting up the session part. That brings us to the last
step —applying authorization.

Applying Authorization

Until now, we have authenticated the user and set up a session for him/her.
However, we still haven't ensured that only the authenticated users can access the
different functionalities of TaleWiki. This is where authorization comes into the
picture. Authorization has two levels — coarse grained and fine grained. Coarse grained
authorization looks at the whole picture whereas the fine grained authorization looks
at the individual 'pixels' of the picture. Ensuring that only the authenticated users
can get into TaleWiki is a part of coarse grained authorization while checking the
privileges for each functionality comes under the fine grained authorization. In this
chapter, we will be working with the coarse grained authorization.

The best place to apply the coarse grained authorization is the Controller as it is the
central point of data exchange. Just like other aspects, RoR provides a functionality
to easily apply any kind of logic on the Controller as a whole in the form of filters. To
jog your memory, a filter contains a set of statements that need to be executed before,
after (or before and after) the methods within the Controllers are executed.

Our problem is to check whether the user is authenticated or not, before any
method in a Controller is executed. The solution to our problem is using a 'before
filter'. But we have to apply authorization to all the Controllers. Hence, the filter
should be callable from any of the Controller. If you look at the definition of

a Controller, you can find such a place. Each Controller is inherited from the
ApplicationController. Anything placed in ApplicationController

[121]

Gathering User Comments

will be callable from other Controllers. In other words, any method placed in
ApplicationController becomes global to all the Controllers within your application.
So, we will place the method containing the filter logic in ApplicationController.

To check whether a user is authentic or not, the simplest way is to check whether a
session exists for that person or not. If it exists, then we can continue with the normal
execution. Let us name it check _authentic_user. The implementation will be

as follows:

def check authentic user
unless session[:user id]

flash[:notice] = "Please log in"
redirect to(:controller => "user", :action =>
"index")
end

end

It checks for the user_id key in a session. If it is not present, the user is redirected
to the login page. Place the code in the application.rb file as a method

of ApplicationController. Next, let us use it as a filter. First, we will tell
UserController to apply the filter for all the action methods except index and
authenticate methods. Add the following statement to the UserController. It
should be the first statement after the starting of the controller class.

class UserController < ApplicationController
before filter :check authentic user, :except =>[:index, :authenticate

1

end

Similarly, we will place the filter in other Controllers as well. However, in their case,
there are no exceptions. So TaleController will have:

class TaleController < ApplicationController
before filter :check authentic user

end

GenreController and RoleController will be the same as TaleController. Thus,
we have completed the 'applying authorization' part for the time being. Now, let's tie
up one loose end — the problem of adding a new tale.

[122]

Chapter 5

Tying Up the Loose Ends

When we developed the User management, the Tale management was affected as the
tales table has a many-to-one relationship with the users table. Now we can solve the
problem created by the foreign key reference. First, open the user.rb file and add
the following statement indicating that it is at the 'one' end of the relationship:

has many :tale
After addition of the statement, the class will look like the following:

class User < ActiveRecord: :Base

validates presence of :user name, :password, :first name,
:last _name, :age, :email, :country
validates_uniqueness_of :user_name

validates numericality of :age

validates format_of :email, :with => /\A(["e\s]+)@((?:[-a-
z0-91+\.)+[a-z]1{2, })\z/1

belongs to :role

has many :tale

def check login
User.login(self.name, self.password)
end
def self.login (name, password)
find(:first, :conditions => ["user name = ? and password
=?",name, password])

end

end

Next, add the following statement to the tale.rb file:

belongs to :user

The file will look like as follows:

class Tale < ActiveRecord: :Base
validates presence of :title, :body text, :source
belongs to:genre
belongs to :user

end

[123]

Gathering User Comments

Next, open the tale controller.rb file. In the create method, we need to add the
user's id to the tale's user id reference so that the referential integrity can be satisfied.
For that, we will get the current user's id from the session and set it as the value of
the user_id attribute of the tale object. The create method will look like as follows,
after doing the changes:

def create
@tale = Tale.new(params[:tale])
@tale.genre id=params[:genre]
@tale.user id=session[:user id]
@tale.status="new"
if etale.save
flash[:notice] = 'Tale was successfully created.'
redirect to :action => 'list!'
else
render :action => 'new'
end
end

That's it. The 'loose ends' related to the User management are tied up. Now let us
move onto the Comment Management module.

Developing the Comment Management
Module

From the description of functionalities, we know that the module needs to support
only three operations —add, view, and delete. The steps for developing the module
are almost the same:

¢ Generating the Scaffold

e Modifying the Model

e Refining the View

e Customizing the Controller

We have changed the order of refining the view and customizing the Controller
steps. That's what I meant by 'almost the same'. Let's get into the development.

[124]

Chapter 5

Generating the Scaffold

Open the RoR prompt using use_ruby command, and enter the following command:

C:\InstantRails\rails apps\talewiki>ruby script/generate scaffold
Comment comment list show new create destroy

You will get the following screen:

:szInstantRailssrails_appsstalewiki?>ruby scriptsgenerate scaffold Comment commen
list show new create destroy
exists appscontrollerss
exists appshelpers/
create apps/uiewsscomment
exists appsuieuwsslayouts/
exists testsfunctionals
dependency model
exists appsmode 15/
exists test units
exists test fixtures/
identical app/mode 1s/comment .rh
identical test unit/comment_test.rh
identical test/fixtures/comments.yml
create appsuvieuwss/comment/_form.rhtml
create appsuvieuwsscommentslist.rhtml
create appsuieuwss/commentsshow.rhtml
create appsuieusscommentsnew.rhtml
create apps/uieusscommentsedit.rhtml
create appscontrollerss/comment_controller.vh
identical teszts/functional/comment_controller_test._rh
identical app-shelpers/comment_helper.rh
identical apps/viewsslayouts/comment.rhtml
identical ublic-stylezsheets scaffold.css

If the scaffold command is reused, then it will not rewrite the existing files

unless you specify the - force parameter. We need only new, 1ist, and delete
functionalities. So, we have specified the actions that we need —1ist, show for listing
of comments, new and create for adding, and delete for deleting. However, it will
still create the stubs and links that need to be tackled at the View level. First, let us do
the required modifications at the Model level.

Modifying the Model

First, we have to tell RoR which fields should not be empty. For that, add the
validates_presence_of method with : comment_body as the argument in the
comment . rb file. After addition, the code shall be as follows:

class Comment < ActiveRecord::Base
validates presence of :comment body
end

[125]

Gathering User Comments

Next, we have to tell that the comments table is at the 'many' end of the relationship
with both tales and users table. For that, add a belongs to declaration to the
comment . rb file.

class Comment < ActiveRecord::Base
validates presence of :comment body
belongs to :tale
belongs to :user

end

The next step is to tell both the users and the tales table that they are at the 'one'
end of the relationship. For that, open the user.rb and tale.rb files, and add the
has_many declaration. After the additions, the code will be as follows for user. rb:

class User < ActiveRecord: :Base

validates_presence_of :user name, :password, :first_name,
:last _name, :age, :email, :country

validates uniqueness of :user name

validates numericality of :age

validates format of :email, :with => /\A(["e\s]+)e((?:[-a-
z0-91+\.)+[a-z]1{2, })\z/1

belongs _to :role

has_many :tale

has many :comment

def check_login
User.login(self.name, self.password)
end

def self.login (name, password)
find(:first, :conditions => ["user name = ? and password
=?",name, password])
end

end

For tale.rb, here is the code:

class Tale < ActiveRecord: :Base
validates presence of :title, :body text, :source
belongs to:genre
belongs to :user
has many :comment
end

[126]

Chapter 5

That completes the changes to be done at the Model level. Next, let us refine
the View.

Refining the View

Comments will be given for a story. That means the page displaying a tale will have
a link to add comments. This also means that the Comment management module

is not a 'standalone' module like others, as it will not have its own menu when we
decide upon the template. Now coming back to links to the comments in the

tale display page, for what functionalities do we need the links? The answer is
two—adding a comment and listing the comment. The add comment link will lead
to the 'New Comment' page, and the view comments link will lead to the list view of
the comments. Now let us see what are the problems —each comment needs a user id
and the id of the tale for which the comment is being added. The listing of comments
needs only the id of the tale. As user id is available from the session, we have to add
only the tale id as a part of the link. That is what we are going to do.

Open the show. rhtml file from the app/views/tale directory. It contents
are as follows

<% for column in Tale.content columns %>

<p>
<%= column.human name %>: <%=h @tale.send(column.name) %>
</p>
<% end %>
<%= link to 'Edit', :action => 'edit', :id => @tale %>
<%= link to 'Back', :action => 'list' %>

Now let us add two more links —one for adding a comment and another for listing
the comments:

<% for column in Tale.content columns %>
<p>
<%= column.human name %>: <%=h @tale.send(column.name) %>
</p>
<% end %>

<%= link to 'Edit', :action => 'edit', :id => @tale %>
<%= link to 'Back', :action => 'list' %>

<%= link to 'Add Comment', :controller=>'comment', :action => 'new',
id => @tale.id %>

<%= link to 'View Comments', :controller=>'comment', :action => 'list’',
:id => @tale.id %>

[127]

Gathering User Comments

The next change we have to do is remove the edit option from the viewing part
of the comments. So open the 1ist.rhtml file from the app/views/comments. The
code will be as follows:

<hl>Listing comments</hl>

<table>
<tr>
<% for column in Comment.content columns %>
<th><%= column.human name %></th>
<% end %>
</tr>
<% for comment in @comments %>
<tr>
<% for column in Comment.content columns %>
<td><%=h comment.send (column.name) %></td>

<% end %>
<td><%= link to 'Show', :action => 'show', :id => comment %></td>
<td><%= link to 'Edit', :action => 'edit', :id => comment %></td>
<td><%= link to 'Destroy', { :action => 'destroy', :id => comment
}, :confirm => 'Are you sure?', :method => :post %$></td>
</tr>
<% end %>
</table>
<%= link to 'Previous page', { :page => @comment pages.current.
previous } if @comment pages.current.previous %>
<%= link to 'Next page', { :page => @comment pages.current.next } if @
comment pages.current.next %>

<%= link to 'New comment',6 :action => 'new' %>

Delete the tags that link to the Edit and New Comment functionalities. We do not need
anyone adding a comment without reading the story. After deletions, the code will
be as follows:

<hl>Listing comments</hl>

<table>
<tr>
<% for column in Comment.content columns %>
<th><%= column.human_name %></th>
<% end %>
</tr>
<% for comment in @comments %>
<tr>

<% for column in Comment.content columns %>

[128]

Chapter 5

<td><%=h comment.send (column.name) %></td>

<% end %>

<td><%= link_to 'Show', :action => 'show', :id => comment %></td>
<td><%= link to 'Destroy', { raction => 'destroy', :id => comment
}, :confirm => 'Are you sure?', :method => :post $></td>
</tr>
<% end %>
</table>
<%= link to 'Previous page', { :page => @comment pages.current.
previous } if @comment pages.current.previous %>
<%= link to 'Next page', { :page => @comment pages.current.next } if @
comment pages.current.next %>

That completes the refinement to be done to the VIEW. Now let's modify
the Controller.

Customizing the Controller

Open the comment_controller.rb file and in the new method add the tale_id to
the session object so that the method looks like the following:

def new
@comment = Comment.new
session[:tale id]=params/[:1id]
end

Now in the create method, let us get the tale idand the user_ id from the
session, and pass it to the comment object. We have used the session object because
the tale_id is coming as a part of the get request, which will be available only to the
new method and not the create method. After the changes, the create method will
be as follows:

def create

@comment = Comment.new (params [:comment])

@comment .tale_id=session[:tale_id]

@comment .user id=session[:user_ id]

if @comment.save
flash[:notice]l] = 'Comment was successfully created.'
redirect_to :action => 'list'

else
render :action => 'new'

end

end

[129]

Gathering User Comments

We do not want to show the list of comments, once a comment has been added.
Therefore, we will redirect the user to the tale's list once a comment has been added
successfully.

def create

@comment = Comment.new (params [:comment])

@comment .user id=session[:user id]

@comment .tale id=session[:tale_ id]

if @comment.save
flash[:notice] = 'Comment was successfully created.'
redirect to :controller=>'tale', :action => 'list'

else
render :action => 'new'

end

end

Apart from this, we have to change the 1ist method so that it finds that only those
comments are selected for which the tale_id has been passed through the link. So
let us modify the paginate method in the 1ist method to add a condition. After
modification, the 1ist method will be as follows:

def list
@comment pages, @comments = paginate :comments,
conditions=>['tale id = ?',
params [:1d]] :per page => 10
end

As you can see, the paginate method takes the table to paginate, the condition
which is optional and the number of items to be shown per page as arguments.

And that completes our current work on the Comment management module. Now it
is testing time!

Testing the Module

Let us start with the authorization part. Give the following URL at the address bar:

http://localhost:3000/tale

[130]

Chapter 5

If you get the following screen, it means authorization is working fine:

¥ User: index - Mozilla Firefox

Eile Edit View History Bookmarks Tools

Help

¢| - - @ /IJ} ||:| htn:l:fﬂoalh|"| [P‘] |'|E:-:-;e |k_l

Please log in

User name: | ‘
Password: ‘
Done

&)

Next let us test the login functionality. Firstly, give the wrong User name and

Password (give anything). If you get the following screen, then the changes are

working fine:

' lser: index - Mozilla Firefox

File Edit View History Bookmarks Tools Help

@D @ 0 0[O rwman][b) [Grleoe Q)
Invalid User/Password

User name: | |

Password: ‘

Done =

[131]

Gathering User Comments

Now, give the correct User name/Password combination. I am giving tester as User
name and testing as password. If you get the following screen, then authentication is
working fine, and also the redirection is doing what it is supposed to do.

I Tale: [ist - Mozilla Firefox

File Edit View History Bookmarks Tools Help

¢| ks 7 @ ﬂ_l‘ ||:| http:/flocalhost: 3000 /tale list |Y| [i"] |'|E::;f |k\,]

Listing tales

Title Body text Submission date Source Status
Test This is a test 2007-08-15 self new Show Edit Destroy

MNew tale

Done @

Now click on the list link of the first tale and you will get the following screen:

¥ Tale: show - Mozilla Firefox

File Edit Wew History Bookmarks Toolz Help

@l b ~ @ G_I‘ ||:| http:/flocalhost: 3000 ftale/show/1 |Y| [i'l |'| Google |'L\,l

Title: Test

Body text: This is a test
Submission date: 2007-08-15
Source: self

Status: new

Edit Back Add Comment View Comments

Done &

[132]

Chapter 5

On the detail page, click on the Add Comment link. The following screen
will be displayed:

¥ Comment: new - Mozilla Firefox

File Edit View History Bookmarks Tools Help

@ @ w7 @ /IJ} ||:| htn:u:,u'ﬂncalhost:|"'| [i'] |'|E::='i |L\,l

New comment

Comment body

Submission date

12007 |v| August v 16|+

Back
Done]

Give the following inputs:
Comment Body — This is a test.

Submission Date — (leave the default date)

[133]

Gathering User Comments

Now click on Create. Then, if you get the following screen you can rest assured that

everything is working as planned.

3 Tale: Iist - Mozilla Firefox

File Edit Wew History Bookmarks Tools Help

Q':' v M @ ‘ﬁ} |EI hthJ:.n'ﬂDcalhnst:E»DDDfE|v| [}] |,|:::=_

Comment was successfully created.

Listing tales

Submission

Title Body text Source Status
date
This i
Test tes'i =% 5007-08-15 self new Show Edit Destroy
Done

=

Now click on the Show link again and select the View Comments link. If you get the

following screen, then the functionality is working;:

¥ Comment: list - Mozilla Firefox

File Edit View History Bookmarks Tools Help

@ - l$ - @ /U} ||:| hth::fﬂocalhost:BDDD,.’cc|Y| [i'l |'|:II='% |L\,]
Listing comments

Comment body Submission date

This is a test 2007-08-16 Show Destroy

Done @

These tests tell us that the changes we did are working fine. And that completes our

'endeavour' on gathering the user comments.

[134]

Chapter 5

Summary

We have completed Login management and Comment management. Login
management was one of the loose ends from the User management part. Now we
can concentrate on enhancing the developed modules. These enhancements include
custom template creation, the logout option, database-independent table creation,
and other features that need to be completed before moving on to developing the
new functionalities. These enhancements will implemented in the next chapter. So
keep reading!

[135]

Setting up the Template

In the previous chapters, you have seen the steps involved in creating an initial setup
for each module and customizing the setup to meet our needs. However, we are

still using the default template that RoR provided with the initial setup. The default
template is the only template provided by RoR. Moreover, currently each module

is standalone, that is, the user has to give the complete URL to the module to access
it. To overcome this situation, we need to set up a navigation system that will link
the modules with each other at the 'View level'. Thus, the user will be able to access
the different functionalities that we have developed without providing the complete
address to the page providing the functionality.

The other matter of concern is the creation of the database. Until now, we have
created the table using SQL. The problem with this approach is that it has locked

us down with MySQL. If we want to shift to the Oracle server, all the table creation
scripts will have to be rewritten. RoR provides a solution to this problem in the form
of Migration.

In this chapter, our focus will be on two things — setting up the template for TaleWiki
and generating the migration for our tables. It is always a good idea to start from the
back-end (database) and move towards the front-end (template). Therefore, we will
create migration for our files and then move onto setting up the template.

Understanding Migration

The functionality provided by Migration in RoR can be defined as 'Managing the
evolution of a schema used by several physical databases using Ruby, making it
possible to use a version control system to keep things synchronized with the actual
code.' The keywords here are schema using Ruby and keep synchronized with actual code.
In other words, Migration helps you to create and manage tables using Ruby
without going into the native SQL. In other words 'The Migration tool records and
plays back incremental changes to the database schemas. Data definitions are

Setting up the Template

database-independent. This allows the database to be recreated as it was at any point
in the project's lifecycle on any database platform.' Following are some of the tasks
that you can accomplish using Migration:

e Creation of Table: The create_table method allows you to create a table
in the database provided in the database.yml file. It takes the table name
and options as arguments. The options include the name of the column, type
of the column, and so on. The options supplied are usually in the form of
an anonymous code block providing details of the columns of the table. The
options can be varied. That's why the anonymous code block is used.

¢ Dropping a Table: Using drop_table, you can drop a table. It takes the
name of the table to be dropped as the only argument. Cascade delete will be
caused only if the cascade option is provided as a native SQL query.

¢ Adding a new Column: When you need to add a new column to an existing
table, you can use the add_column method. It takes the table name, the name
of the column to be added, data type of the column, and options such as the
size of the column as the arguments.

¢ Defining an Index: There are situations where indexing a table on a
particular column speeds up the data access. For such situations, add_index
can be of great help. It accepts the table name, the column name upon which
the index needs to be generated, and the type of index as arguments.

Next, let us implement the Migration for TaleWiki. We can divide the
implementation process into the following steps:

¢ Generating Migration classes

e [Editing the Generated classes

¢ Running Migration

I will be implementing migration for two tables — genres and tales. I am leaving the
Migration for other tables as an exercise for you.

Generating Migration Classes

In keeping with the philosophies of RoR, migrations are also generated using the
generator supplied with RoR. The generator creates the migration classes (which
are Ruby files in the db/migrate folder of the rails application). For example, when
we generate migration files for our site, they will be created in the db folder directly
under the talewiki folder. The syntax of the migration generator is:

ruby script/generate migration <table name>

[138]

Chapter 6

Here, <table name> is the name of the table for which the migration file will be
generated. To make it more clear, let us create migration for genres and tales tables.
Bring up the command prompt and give the use_ruby command to set the required
environment variables. At the prompt, give the following commands:
C:\InstantRails\rails apps>cd talewiki

C:\InstantRails\rails app\talewiki>ruby script/generate migration roles

You will get the following screen:

CAWINDOWS\system3 2\cmd.exe

:snInstantRailssrails_appsstalewiki>pruby scripts/generate migration roles
exizts db/migrate
create db/migrate/B01_roles.rh

:sInstantRailssrails_appsstalewiki»_

Similarly, for the tales table give the following command:
C:\InstantRails\rails app\talewiki>ruby script/generate migration users

You will get a screen similar to the one you got for the genres table. If you look into
the db/migrate folder, you will find two files—001_roles.rband 002_users.rb.
These are the migration files for our tables. Whenever RoR generates the Migration
file related to the Migration class, it will append the numerical prefix starting from

001. The first file generated will have the value 001 prefixed. Let us move on to

the next step.

Editing the Generated Classes

The second step is to edit the generated classes. Open the 001_roles.rb file. You
will find the following code:

class Roles < ActiveRecord::Migration
def self.up
end

def self.down
end
end

[139]

Setting up the Template

The class Roles is derived from the Migration class. The generated code contains
two methods:

e up: RoR calls this method to create the table on the database specified in the
database.yml file. The table creation code will go into this method.

e down: RoR calls this method when the changes done to the database need to
be rolled back. The code to handle rollback will be part of this method.

Before we move towards the table creation code, let us look at how the SQL data
types map to the Ruby data type, which is displayed in the following table:

SQL Data type Ruby Data type
Varchar String

Int Integer

Decimal Float

Text Text

Date Datetime

BLOB Binary

Now let us modify the self.up method. As we have to create a table, we will call
the create table method here. After modification, the self.up and self.down
methods will be as follows:

class Roles < ActiveRecord::Migration
def self.up
create table :roles do |t

t.column :name, :string, :limit => 25, :null =>
false
t.column :description, :string, :limit => 100, :null =>
false
end

def self.down
drop_table :roles
end
end

The create_table, as you will remember, takes the table name and options in the
form of an anonymous code block, as arguments. In the block, we are setting the data
type, size, and null ability (whether a column can be null or not) for each column of
the table. Size is specified with :1imit. If there is a problem during table creation,
we want the table to be dropped. Therefore, in the self.down, we are calling the
drop_table method. Now, let us apply the same step on 002_users.rb. Open
002_users.rb and modify the self.up and self.down so that they look like the
following code:

[140]

Chapter 6

class Users < ActiveRecord::Migration
def self.up
create table :users do |t

t.column :user name, :string, :limit => 50, :null =»>
false
t.column :password, :string, :limit => 15, :null =>
false
t.column :first name, :string, :limit => 50, :null =>
false
t.column :last name, :string, :limit => 50, :null =»>
false
t.column :age, :int, :limit=>3, :null=>false
t.column :email, :string, :1limit => 25, :null => false
t.column :country, :string, :limit => 20, :null =>
false
t.column :role id, :int, :limit => 11, :null => false
end

end

def self.down
drop_table :users
end
end

Next, we have to tell RoR that the users table is at the 'many' end of the 'one-to-many’
relationship it has with the roles table. Unfortunately, there is no 'Ruby' way to do
that. To create the foreign key reference, you will have to use native SQL by calling
the execute method and passing the SQL as an argument. This locks us down to

a particular vendor. The way around it is to implement the conditional logic after
create_table to check the vendor of the database. However, the implementation is
out of the scope of the current discussion. On adding the foreign key reference, the
code will be as follows:

class Users < ActiveRecord::Migration
def self.up
create_table :users do |t|

t.column :user name, :string, :limit => 50, :null =»>
false
t.column :password, :string, :limit => 15, :null =>
false
t.column :first name, :string, :limit => 50, :null =>
false
t.column :last name, :string, :limit => 50, :null =»>
false
t.column :age, :int, :limit=>3, :null=>false
t.column :email, :string, :limit => 25, :null => false
t.column :country, :string, :limit => 20, :null =>
false
t.column :role id, :int, :limit => 11, :null => false

[141]

Setting up the Template

end

execute "ALTER TABLE user ADD FOREIGN KEY (role id)
REFERENCES roles (id) ON DELETE CASCADE "

end
def self.down
drop_table :users
end
end

That completes the table creation using Migration. However, if you observe
closely, we haven't added the column for primary key in both the tables. Yet, we
are referencing the primary key of the roles table in the SQL statement passed to
the execute method. The reason is that the Migration creates the primary keys
automatically in keeping with the conventions of RoR. Now we can move onto
step three.

Running the Migration

The third step is to run or execute the Migration so that the tables are created in the
database. To run Migration, we will use a tool called rake. Rake is a program for
Ruby that is similar to the make program. Both are build programs. A build program
is a program that simplifies the execution of complex tasks, such as compilation of
programs having multiple dependencies, generating the database schema, and so on
C/C++ uses make whereas RoR uses rake. Let us put rake to the task for running the
migration. At the command prompt, give the following command:

C:\InstantRails\rails app\talewiki>rake db:migrate

The first argument tells about the directory in which the migration files are kept, and
the second argument — migrate — specifies the task to be executed. The result of the
rake command will be similar to the following screen:

C:\WINDOWS\system32\cmd.exe
:nInstantRailssrails_apps>cd talewiki

swInstantRailssrails_appsstalewikirrake dbh:imigrate
in C:rInstantRails/ “t iki»

Roles: migrating =

Roles: migrated (@.

Users: migrating
create_tableC:users?

-> B.1258s

Users: migrated (B.1258s3>

ssJInstantRailssrails_appsstalewiki>

[142]

Chapter 6

That completes the steps for using Migration. The other tables — tales, genres, and
comments are left to you. Next, let us customize the template of our site.

You can find more about the options and methods that Migration
.\IQ supports from the RoR docs, available at the following URL:

http://api.rubyonrails.org/classes/ActiveRecord/
Migration.html

Customizing the Template

A template can be defined as 'A master page that dictates the look and feel of the
whole website.' In other words, a template contains information about the layout as
well as placeholders for dynamic data, such as navigation, and menu. The definition
provides us with the points on which we will be working, layout and navigation.
Therefore, to customize the template of Talewiki, we will be performing the
following tasks:

e Defining the Layout
e Setting up the Navigation

Let us look into the details of each task.

Defining the Layout

For TaleWiki, we require two separate layouts —one for the login page and the other
for rest of the TaleWiki pages. The reason is that the login page is, in a way, outside
the system and it does not have the menu system. Therefore, we can divide the
'defining the layout' task into:

e Defining Layout for Login Page
e Defining Master Layout

The layout for the login page will be embedded within the login page itself whereas
the Master Layout will be a separate RHTML file that will be included wherever we
require the specific layout. So, let's get started.

Customizing the Layout of the Login Page

The layout that we are going to define for the login page will be used by the login
page only. Therefore, it will not be kept in a different RHTML page. The current
layout does not have a header. So the first thing we will be adding is a header. The
header is an image file. Open the index.rhtml file from the app/views/users
folder. The file contains the following code:

[143]

Setting up the Template

<%= form tag :action=>'authenticate' %>
<table >

<tr align="center" class="tablebody">
<td>User name:</td>
<td><%= text field("user", "user name", :size=>"15") %></td>

</tr>

<tr align="center" class="tablebody">
<td>Password:</td>

<td><%= password field("user", "password", :size=>"17"
) $></td>
</tr>
<tr align="center" class="tablebody">
<td></td>
<td><input type="submit" value=" LOGIN " /></td>
</tr>
</table>

First, enclose the page in the <body> and <html> tags so that the source will be
as follows:

<html>
<body>
<%= form tag :action=>'authenticate' %>
<table >
<tr align="center" class="tablebody">
<td>User name:</td>
<td><%= text field("user", "user name", :size=>"15") %></td>
</tr>
<tr align="center" class="tablebody">
<td>Password:</td>

<td><%= password field("user", "password", :size=>"17")
$></td>
</tr>
<tr align="center" class="tablebody">
<td></td>
<td><input type="submit" value=" LOGIN " /></td>
</tr>
</table>
</body>
</html>

Next, we have to add the link to the stylesheet that we will be using. RoR makes
adding stylesheet reference simpler by providing the stylesheet_link_tag helper.
It takes the following arguments:

[144]

Chapter 6

e Name —It specifies the name of the stylesheet being included.

e Media—It specifies on which kind of media the page is being shown. It can
be a hand held device such as a cell phone or it can be a normal browser. If
you provide 'all' as value, it becomes generic for all the devices.

The name of the stylesheet is 'basic' and the media is 'all'. Before we add the
stylesheet tag to the page, let us create the stylesheet. Open your favorite editor and
write the following code:

BODY {
background-color: #ffffff;
}
BODY, P, TD, OPTION, SELECT, INPUT, TEXTAREA {
font-size: .98em;
}
PRE {
font-size: 0.9em;
}
BODY, P, TD, OPTION, SELECT {
font-family: Arial, Helvetica, sans-serif;

PRE, TEXTAREA ({
font-family: monospace;

INPUT
font-family: Arial, Helvetica, sans-serif;

HR {
}
A {
text-decoration: underline;

A:link {
color: #0000ff;

A:visited {
color: #0000ff;

A:active {
color: #C01010;

[145]

Setting up the Template

.talewikiheader {
text-align: right;

}

.talewikifooter {
text-align: right;

}

Save it asbasic.css inthe public/stylesheets folder of the talewiki folder.
If you observe, the Convention-over-Configuration principle is evident here also.
RoR looks for a stylesheet named basic. css inside the folder named public/
stylesheet. Add the stylesheet tag so that the code looks like as follows:

<html>
<head>
<%= stylesheet_link tag "basic", :media => "all" %>
</head>
<body>
<%= form tag :action=>'authenticate' %>
<table >
<tr align="center" class="tablebody">
<td>User name:</td>
<td><%= text field("user", "user name", :size=>"15") %></td>
</tr>
<tr align="center" class="tablebody">
<td>Password:</td>

<td><%= password field("user", "password", :size=>"17")
$></td>
</tr>
<tr align="center" class="tablebody">
<td></td>
<td><input type="submit" value=" LOGIN " /></td>
</tr>
</table>
</body>
</html>

Coming back to the header, add an tag enclosed by the div tag. Then, change
the table and row/column tags so that it looks like as follows:

< !DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd" >

<html>

<head>

<titles>TaleWiki</title>

<%= stylesheet link tag "basic", :media => "all" %>

</head>

[146]

Chapter 6

<body>
<div class="talewikiheader">
<div align="center">

</div>
</div>
<hr>
<%= form tag :action=>'authenticate' %>
<div>
<center>
<table border=1><tr><td>
<table border=0 cellspacing=0>
<tr>
<td colspan=2 class="tabletitle">
Please enter your user information
</td>
</tr>
<tr>
<td align="right">
Username:
</td>
<td>
<%= text field("user", "user name", :size=>"15") %>
</td>
</tr>
<tr>
<td align="right">

Password:
</td>
<td>
<%= password field("user", "password",:size=>"17") %>
</td>
</tr>
<tr>

<td colspan=2 align="center">
<HR>
<input type="submit" value=" LOGIN " />
</td>
</tr>
</table>
</td></tr></table>
</centers>
</div>
<hr>

[147]

Setting up the Template

<div class="talewikifooter"s
</div>

</body>

</html>

Place talewiki.jpg in the images folder, which is directly under the talewiki
folder. This image was developed specifically for the header. That completes the
layout design for the login page. Let us save the index page as a layout so that we
can use it to override the master layout for the index page. There is a small hitch. The
layout will override the notices provided through flash. Flash is a message displayed
by RoR to convey any information to the user. Do not confuse it with Adobe's flash.
So add the following statement after the <hr> before the <div> for footer.

<% if @flash[:notice] %>
<div id="notice"><%= @flash[:notice] %></div>
<% end %>

<% if @flash[:note] %>
<div id="note"><%= @flash[:note] %$></divs>

<% end %>

It checks whether the f1ash is a note or a notice and shows it accordingly. Next, let
us create a master layout and apply it to the rest of the application.

Defining the Master Layout

We will be performing two tasks while defining the master layout. They are:

e Defining and applying the Master Layout
e Setting up the Navigation

In the master layout, we will have a placeholder for the menu, which we will replace
with the menu when we set up the navigation.

Defining and Applying the Master Layout

Master layout is an RHTML file just like other layout files, with one difference. The
master layout contains structure that will be common to all pages. To insert the
content generated by other pages into the master layout, we will use a variable called
@content_for_layout. This variable is provided by RoR. This variable contains the
content/ HTML generated by other pages. Wherever RoR sees the econtent_for
layout variable, it replaces the variable with the content generated by the action
method that has been called most recently. You can also use the yield method
instead of the @content for layout variable. Now let us see @content for
layout in action.

[148]

Chapter 6

The layout for the pages of TaleWiki will be as follows:

Header

Left

Menu Body

To create the master layout page, open an editor and write the following code:

<html>
<head>
<meta http-equiv="Content-Type" content="text/html;
charset=windows-1252"/>
<body>
<table width="778" bgcolor="#FFFFFF" height="428" border="0"
cellpadding="0" cellspacing="0">
<tr>
<td height="35" width="778" align="left" valign="top">
<!--header-->
</td>
</tr>
<tr>
<td width="778">
<table width="778" border="0" cellpadding="0"
cellspacing="0">
<tr>
<td width="150" align="left" valign="top"
bgcolor="#FFFFFF">
<!--leftmenu-->
</td>
<td width="478" align="left" valign="top">
<!--body-->
</td>
<td width="150" bgcolor="#FFFFFF" height="384"
align="left" valign="top"> </td>
</tr>
</tables>
</td>
</tr>
</tables>
</body>
</html>

[149]

Setting up the Template

Save the file as master.rhtml in the app/views/layouts folder. We will be
customizing the highlighted tags, or in terms of the table, we will be adding our
content to the highlighted cells. Let us start with the body where the dynamic
content will be placed. Replace <!—body- - > with <¥=econtent_for_ layout%> S0
that the code looks as follows:

<html>
<head>

<meta http-equiv="Content-Type" content="text/html;
charset=windows-1252"/>

<style type="text/css">

body {
MARGIN: Opx;
}
</style>
<body>
<table width="778" bgcolor="#FFFFFF" height="428" border="0"
cellpadding="0" cellspacing="0">
<tr>
<td height="35" width="778" align="left" valign="top">
<!--header-->
</td>
</tr>
<tr>
<td width="778">
<table width="778" border="0" cellpadding="0" cellspacing="0">

<tr>
<td width="150" align="left" valign="top" bgcolor="#FFFFFF">
<!--leftmenu-->
</td>

<td width="478" align="left" valign="top">
<%=@content for layout%>
</td>
/tr>
</table>
</td>
</tr>
</table>
</body>
</html>

[150]

Chapter 6

Next, let us change the header. Add an <image> tag so that it refers to talewiki.
jpg. The code will look as follows after the addition of the image tag;:

<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=windows-
1252" />
<style type="text/css">
body {
MARGIN: Opx;
}
</style>
<body>
<table width="778" bgcolor="#FFFFFF" height="428" border="0"
cellpadding="0" cellspacing="0">
<tr>
<td height="35" width="778" align="left" valign="top">

</td>
</tr>
<tr>
<td width="778">
<table width="778" border="0" cellpadding="0" cellspacing="0">
<tr>
<td width="150" align="left" valign="top"
bgcolor="#FFFFFF" >
<!--leftmenu-->
</td>
<td width="478" align="left" valign="top">
<%=@content for layout%>
</td>
<td width="150" bgcolor="#FFFFFF" height="384" align="left"
valign="top"> </td>
</tr>
</tables>
</td>
</tr>
</tables>
</body>
</html>

[151]

Setting up the Template

This layout also overrides the flash notices. Therefore, we have to add the code block
for showing the flash. Add the following code just before the <$=@content_for
layout%> tag.

<% if @flash[:notice] %>

<div id="notice"><%= @flash[:notice] %></div>
end %>

if @flash[:note] %>

<div id="note"><%= @flash/[:note] %></div>

AAY
o° o°

o°

<% end %>

Now, we have to tell RoR to use the master layout. For that, we will have to add the
layout declaration to the Controllers. Open the user_controller.rb file and place
the layout declaration as follows:

class UserController < ApplicationController
before filter :check authentic user, :except => [:index,
:authenticate]
layout "master"

end

However, we do not need the master layout for the index page. So, add the render
declaration in the index method so that the method looks like as follows:

def index
render :layout=>'login'
end

The render method controls the HTML being generated (also known as page
rendering) by a particular method. One of the parameters is layout. As, we want to
use the login layout, we pass the value 1ogin to the layout argument. By doing this,
we have overridden the master layout for the index method.

Similarly, add the layout declaration to all the other Controllers. That completes
defining the master layout step. Now, let us move on to the step of setting up the
menu and navigation.

Setting up the Navigation

Navigation for a site rests solely on two things. They are the menu and internal

links between the pages. Menus help the user to jump from one module to another
and internal links provide access to the operations within a particular module. In
addition, the internal links provide a good mechanism to control the access to certain
features. Let us start with setting up the menu.

[152]

Chapter 6

We will place the menu in the master layout, as we do not require the generation of
menus dynamically. We will replace the following comment with the menu:

<tr>
<td width="150" align="left" valign="top" bgcolor="#FFFFFF">
<!--leftmenu-->
</td>

Open the master.rhtml file and replace <!—leftmenu- -> with the
following code:

<tr>
<td width="150" align="left" valign="top" bgcolor="#FFFFFF">
<table width="778" border="1" cellpadding="0"
cellspacing="0" height="387">
<tr><td width="75" height="250">
<table width="75" border="1" cellpadding="2"
cellspacing="2">
<tr>
<td width="286"> Roles</td>

</tr>
<tr>
<td>Users</td>
</tr>
<tr>
<td>Genres
</td>
</tr>
<tr>
<td>
Tales</td>
</tr>
<tr>
<td rowspan="6"> </td>
</tr>
</table>

</tds>

[153]

Setting up the Template

The menu is very simple. It uses a combination of <td>/<a> tags to create a menu.
The menu items link up with the index page of the different modules except for the
user module. The reason is that the index page of the user management module is
the login page. I haven't used the 1ink_to helper to show that in layouts, simple
<a> tags will work just fine. You can try out 1ink_to as an exercise. Next, we have
to ensure that only the users with the administrator role should be able to access the
user and role modules. For that we require the role of the currently logged in user.
So, add the following statement to the authenticate method:

session[:role_name] =valid user.role.name

Now, the method looks as follows:

def authenticate
if request.get?
render :action=> 'index'
else
@user = User.new(params|[:user])
valid user = @user.check login
if valid user
session[:user id]=valid user.id
session[:user id]l=valid user.role.name
flash[:note]="Welcome "+valid user.user name
redirect to(:controller=>'tale', :action => "list")

else
flash[:notice] = "Invalid User/Password"
redirect to :action=> 'index'
end
end
end

Next, let us surround the user and role menu items with an if statement that will
check whether the user has a required role or not.

<% if session[:role name]== 'administrator' %>
<tr>
<td width="286">
Roles</td>
</tr>
<tr>
<td>Users</td>
</tr>
<tr>
<td>Genres</td>
</tr>
<%end%>

[154]

Chapter 6

Next, let us prevent users from accidentally deleting or modifying other users'
entries. Open list.rhtml which is in app/views/tales. Surround the 'link to
'destroy' and link_to 'Edit' tag with an if statement that checks the role of the
user. It is similar to what we did for the menu items. The code will look like

as follows:

<% for tale in e@tales %>
<tr>
<% for column in Tale.content columns %>
<td><%=h tale.send(column.name) %$></td>
<% end %>
<td><%= link to 'Show', :action => 'show', :id => tale %></td>
<%if session[:role name]=='administrator'%>
<td><%= link to 'Edit', :action => 'edit', :id => tale %></td>
<td><%= link to 'Destroy’, { taction => 'destroy', :id =>
tale }, :confirm => 'Are you sure?', :method => :post
%></td>
<%end%>
</tr>

° °

<% end %>

That completes setting up the navigation. Next, let us test the modifications we
have done.

Testing the Application

The first page that we are going to test is the login page. Open the following URL in
your favorite browser: http://localhost:3000/user

If you get the following screen, then the layout for the login page is working fine:

©¥ TaleWiki - Mozilla Firefox E@ﬂ

File Edit View History Bookmarks Tools Help
€ -9 -& U 6 GErwu[[p [
B
Please enter your user information
Username:
Password:
Log In
vl
Done @

[155]

Setting up the Template

Now give the following as user name and password
Username: tester
Password: testing

If you get the following screen, then the master layout is working fine.

©F Mozilla Firefox

File Edit View History Bookmarks Tools Help
@ - - @ ﬁ ||_| http: /flocalhost: 3000 /tale flist |"| [}'l "| |4\]
[A
Tales LlStlllg tales
Title Body text Submission date Source Status =
Test This is a test 2007-08-15 self new Show
’7 New tale
[w
F3] I [}]
Done

That completes the testing of the modifications.

You can learn more about the layout API from the following URL:
) http://api.rubyonrails.org/.

Q Look at the documentation of classes under the Action View package for
more information on layouts.

Summary

In this chapter, I discussed about Migrations and layouts. We have also seen how
to override the templates whenever required. However, the template that we
have set up is very basic. We shall enhance it later when we will implement the
personalization. In the next chapter, we will be looking at the implementation of
tagging for the tales. So keep on reading.

[156]

Tagging the Tales

In the previous chapter, we have tackled one aspect of usability (making the

site usable for the users), the user interface. Now let us look at the next aspect of
usability, which is providing the user with enhanced search within the published
tales. Enhancing the search facility is a part of search usability. There are many
techniques to provide users with the enhanced search facility. The most used and
'sought after' technique is Tagging and Tag Clouds. In this chapter, we will be
implementing Tagging and Tag Clouds for Talewiki.

The DRY principle is the corner stone of RoR. We have seen this principle in play
only in the validation of data. In this chapter, we will be applying the DRY principle
using plug-ins to implement the Tagging system. First, we will look at what tagging
means and which plug-in are suitable for implementing it. Then we will install

the plug-in and set up the tables required by the plug-in. The next step will be
implementing the system for Talewiki with the help of the plug-in. We will wrap up
the chapter by testing the implemented functionalities.

Understanding the Requirements

By definition, tags are keywords that classify a set of contents for better searching.
So tags are keywords that help in organizing the content according to the user's
classification. The organization further helps in searching for the related information
without much digging around. Based on the services expected from tags, we can say
that the tag management module will provide the following functionalities:

e Adding a tag: This operation will provide an interface to add a tag to a
particular tale. A tale may have many tags and a tag may be associated with
many tales.

Tagging the Tales

e Search using a tag: This operation will help the user to find tales that are
tagged using the same keyword. The View will be in the form of a list of
tales, selecting any one of which will lead to the detailed view of the tale.

e Visualizing tag clouds: Tag clouds provide the visualization of the weight
of a tag based on its popularity. The most popular tags will be depicted in
larger font size or a darker color. The listing will be in alphabetical order.

The next step is to develop the module. So let us get on with the implementation of
the Tag Management module.

Developing the Tag management Module

Until now, we were developing the functionalities from scratch. The reason was that
the requirements were TaleWiki-specific. However, the Tag management is totally a
different story. Today, tags have become a common tool that aid in searching. Hence,
components are available for RoR that provide the basic functionalities required for
Tag management. In RoR, components are known as plug-ins. To use a plug-in as the
base of our development, the following steps are required:

e Select a plug-in for the Tag management
e Install the plug-in
e Set up tables as required by the plug-in
e Develop the functionalities using the plug-in
Whenever you want to use any plug-in, there may be different options available.

Therefore, the first step is a common step when you decide to use a plug-in. Now, let
us look at each step in detail.

You can find more about the available plug-ins from the following site:
A http://agilewebdevelopment.com/plugins.

[158]

Chapter 7

Selecting a Plug-in for Tag Management

For Tag Management, one can choose from the following implementations of the Tag
management plug-ins:

e acts_as_taggable: It was the first plug-in that tried to provide the out-of-
the-box implementation for tags. It was developed by D.H.Hansson. The
plug-in provided a small set of features. However, tag cloud was not one of
them. The status of the plug-in indicates that it has been deprecated and its
development has stopped. A new plug-in named as act_as_taggable_on_
steroids has replaced it.

e acts_as_taggable_on_steroids: This plug-in is a rewrite of the act_as_
taggable plug-in and can be used in the production environment. Viney
Jonathan developed it based on acts_as_taggable. It adds new functionalities
for tag implementation including the tag cloud visualization.

e has_many_polymorphs: It is a relative newcomer when compared to the
other two. One important aspect of this plug-in is that it does not solely focus
on the tag implementation. Its focus is on the multi-model joins. In other
words, if you require a complex-join query on multiple tables as well as the
tag implementation, then this is the one for you.

We can remove the first plug-in —acts_as_taggable — from our list, as it is

'officially' deprecated. From the remaining two, has_many_polymorphs provides
functionalities that will not be needed for our development. Therefore, the plug-in
that we will be using is acts_as_taggable_on_steroids. From the description of each
plug-in, you would also have come to the same conclusion that acts_as_taggable_on_
steroids provides the functionalities we need, and it is straightforward as it focuses
only on tagging. Let us move onto the next step, which is installing the plug-in.

Installing the Plug-in

The best place to start looking for the plug-in is the following URL:
http://agilewebdevelopment .com/plugins/.
In the search box on the left side, give the following string:

acts_as_taggable_on_steroids

[159]

Tagging the Tales

Now click GO. From the list that the search presents, click on the link for Acts As
Taggable On Steroids. It will take you to the following page:

"F'Plugins - Acts As Taggable On Steroids - Agile Web Development - Mozilla Firefox

File Edit View History delico.us Bookmarks Tools Help

<r":| - - @ ﬁ_l‘ E TAG ||_| http://agilewebdevelopment.com/plugins/acts_as_taggable_o L_,I|‘| [}] "|

[} Plugins - Acts As Taggable On St... [|

Build it. Launch it. Love it.

Plugins - Acts As Taggable On Steroids Add a new plugin

Edit this plugin

TAdd to favorites

If vou find this plugin useful, please consider a donation to show your support! .
Search Plugins

Query syntax
Plugins by Category

http://www.paypal.com/cgi-bin/webscr?omd=_send-money

Email address: jonathan.viney@gmail.com

Instructions

Recently Added
This plugin is based on acts_as_taggable by DHH but includes extras such as tests, Top-Rated
smarter tag assignment, and tag cloud calculations.

Assets
Installation Controllers

. i . . . Internationalization
ruby script/plugin install http://svn.viney.net.nz/things/rails/

=1 m | B Misc. Enhancements
Usage Model

Rails Engi
Prepare database ails Engines

Generate and apply the migration:

Done @

Searching and Queries

Now, open the command prompt and give the use_ruby command to set up
the Ruby and RoR environment. Then, as given in the just shown page, give the
following command in the prompt:

C:\InstantRails\rails apps\talewiki>ruby script/plugin install http://
svn.viney.net.nz/things/rails/plugins/acts_as taggable on_ steroids

[160]

Chapter 7

If you get the following screen, the installation of the plug-in is successful:

:wInstantRailssrails_appsstalewikiXruby scripts/plugin install http:-sssun.viney.
et.nesthingssrails pluginssacts_as_taggable_on_steroids
./acts_as_taggable_on_steroids /CHANGELOG
.sacts_as_taggable_on_steroids/MIT-LICENSE
.s/acts_as_taggable_on_steroidsREADHE
.Aacts_as_taggable_on_steroids~sRakefile
./acts_as_taggable_on_steroids/generatorssacts_as_taggable_migrationsacts_as_t
ggahle_migration_generator.rh
+ .sacts_as_taggahle_on_steroids/generatorssacts_as_taggable_migrations/templates
migration.rh
./acts_as_taggable_on_steroids/init.»rb
.racts_as_taggable_on_steroidsslibracts_as_taggahle.rh
.sfacts_as_taggable_on_steroidsslibs/tag.rh
.sacts_as_taggable_on_steroids-libstag_counts_extension.rb
.sacts_as_taggable_on_steroids-slibs/tag_list.rh
.sacts_as_taggable_on_steroidsslibstagging.rh
.Aacts_as_taggable_on_steroidsslibstags_helper.rb
./acts_as_taggable_on_steroids tests/abstract_unit.rb
.sacts_as_taggable_on_steroids-test/acts_as_taggable_test.vh
.s/acts_as_taggable_on_steroids-test/database.yml
.Aacts_as_taggable_on_steroidsA/testAfixtures/magazine.rbh
.sacts_as_taggable_on_steroids test/fixtures/magazines.yml
.sacts_as_taggable_on_steroidsstests/fixturessphoto.rh

.~acts_as_taggable _on_steroids-stest-fixturesphotos.yml

The plug-in command will install the plug-in whose URL has been passed as the
argument. That completes the installation step. Next, let us set up the database
required by the plug-in.

Setting up Tables Required by the Plug-in

One of the most important aspects of any plug-in is that it abstracts out even the
table design. You only have to set up the tables using the migration. It is not a good
idea to provide your own tables unless you have a valid reason to do so. In our
case, we do not have any reason to provide our own tables. So let us use the tables
provided by the plug-in.

The first step in setting up the tables is to generate the migration files. To generate
the migration files for the acts_as_taggable_on_steroids plug-in, give the following
command in the command prompt:

C:\InstantRails\rails apps\talewiki>ruby script/generate acts_as_
taggable migration

[161]

Tagging the Tales

The generate command with the acts_as_taggable_migration argument will
create the migration table in the db/migrate directory under the root directory. If
you get the following screen, the migration has been generated successfully:

AWINDOWS\system32\cmd.exe

:sInstantRailswrails_appsstalewikiruby scripts/generate actsz_as_taggable_migrat
ion
exists dbsmigrate
create db/nigratesBB3_acts_as_taggable_migration.rh

:nJInstantRailswrails_appsstalewiki>

Next, let us run the rake command on migration so that the tables are created in the
database. Give the following command to run the rake tool:

C:\InstantRails\rails apps\talewiki>rake db:migrate

If you get the following screen, then the tables have been successfully created:

\WINDOWS\system32\cmd.exe

:xInstantRails“rails_apps~talewiki*rake db:migrate
n C:/InstantRailssrails_apps-talewiki)
ActsAsTaggableMigration: migrating ==
create_table(:tags)
->» B.8318s
create_table(:taggings?
-> B.9888s
add_index{:taggings,. :tag_id>
-> B.9168s
add_index{:taggings, [:taggable_id, :taggable_typel)>
-> B.9158s
ActsAszsTaggableMigration: migrated (B.B628s)> ==

:snInstantRailssrails_appsstalewiki»_

The rake tool created two tables and two indexes. The tables are tag and taggings.
If you look at the database, you can see these tables. That brings us to the next
step —developing the Tag Management modules.

[162]

Chapter 7

Developing the Tag Management Module

We are going to develop three functionalities as a part of the Tag Management
module. They are:

¢ Adding a Tag
e Visualizing the Tag cloud
e Searching by Tag

Let us start implementing the functionalities.

Adding a Tag

This is the first functionality that we will be implementing. The first step is to tell
the plug-in about the Model that needs to be tagged. The user will be tagging the
Tales. Therefore, we have to tell the plug-in that the Tale model needs to be tagged.
To do so, open the tale.rb file from the app/models folder and add the acts_as_
taggable declaration to the Tale class. After adding the declaration, the Tale class
will be as follows:

class Tale < ActiveRecord: :Base

acts as taggable

validates presence of :title, :body text, :source
belongs to:genre
belongs to :user
has many :comment
end

One point to keep in mind is that only the classes derived from ActiveRecord: :
Base will become taggable when acts_as_taggable is added. Next, let us provide
an interface to the user so that they can add tags to the tales of their choice. Users will
be able to add tags when they visit the page having the complete tale (the detailed
view of the tales). So let's add a link in the detailed view that will help users to tag
that particular tale. Open the show.rhtml file which is in the app/views/tales
folder. The code looks like as follows:

<% for column in Tale.content_ columns %>

<p>
<%= column.human name %>: <%=h @tale.send(column.name) %>
</p>
<% end %>
<%= link to 'Edit',6 :action => 'edit',6 :id => @tale %>
<%= link to 'Back',6 :action => 'list' %>

[163]

Tagging the Tales

<%= link to 'Add Comment', :controller=> 'comment', :action => 'new',
id => @tale %>
<%= link_to 'View Comments', :controller=>'comment', :action => 'list',

:id => @tale.id %>

Next, add a link that will take the users to the page where they can add tags. To add
the link, add 1ink_to helper. The controller will be tag and the action will be
new. After the modifications, the code will be:

<% for column in Tale.content columns %>
<p>
<%= column.human name %>:
<%=h @tale.send(column.name) %>
</p>
<% end %>

<%= link to 'Edit', :action => 'edit', :id => @tale %>

<%= link to 'Back', :action => 'list' %>

<%= link to 'Add Comment', :controller=> 'comment',6 :action => 'new',
id => @tgle %>

<%= link to 'View Comments', :controller=>'comment', :action => 'list',

:1d => @tale.id %>
<%= link to 'Add tags', :controller=>'tag', :action => 'new', :id => @
tale.id %>

The next step is to create the tag controller. In the command prompt, give the
following command:

C:\InstantRails\rails apps\talewiki>ruby script/generate controller tag

You will get the following screen telling you that the Controller named tag has been
created successfully:

:snInstantRailssrails_appsstalewiki?ruby script/generate controller tag
exists appscontrollers/
exists appshelpers/
create appsviewsstag
exizts testsfunctionals
create appscontrollerss/tag_controller.rh

create tests/functionalstag_controller_test.rvh
create appshelpers-stag_helper.rb

:snInstantRailssrails_appsstalewiki»_

[164]

Chapter 7

Open the tag_controller.rb file within the app/controllers folder. You will see
the following code:

class TagController < ApplicationController
end

Next, we have to add the action method given in the 1ink_to helper. It is new. After
adding the method, the TagController class will be as follows:

class TagController < ApplicationController
def new
end

end

When the user adds a tag, it will be easier for him/her if he/she sees the title of the
tale, which he/she is tagging. To display the title of the tale, we will need the tale
object. To get the tale object we will call the find method on the Tale class, with the
id passed from the show template of the Tale management. Also, we will set the id of
the tale in the session so that we can access it easily whenever required.

class TagController < ApplicationController
def new
@tale=Tale.find (params[:1id])
session[:tale id]=params[:id]
end
end

Next, we have to create a template that will provide an interface to the user to add
tags. To do so, create a file named new. rhtml in the app/views/tag folder. Open the
file in your favorite editor and add the following code:

<h1l>Add Tag</hl>
<% form tag :action => 'create' do %>
<p><label for="tag tale title">Title of the Tale</label>

<%=@tale.title%>

<label for="tag name">Tag</labels>
<%= text field 'tag', 'tag _name' %></p>

<%= submit_ tag “Add Tag" %>
<% end %>

<%= link to 'Back',controller=>'tale' :action => 'list' %>

[165]

Tagging the Tales

The page calls the create method of the tag controller when the submit button is
clicked. Therefore, we will be creating the create method next. The create method
will add the tags that the user entered to the tale. To do so, we will need the tale. We
will get the tale using the tale_id from the session. Then we will call the tag_list
method on the tale object. You will be wondering how we can call a method of the
plug-in on an object of tale. We are able to do so because of the acts_as_taggable
declaration in the Tale model. Once tagging is done, we will redirect the user to the
list of tales. So, here is the create method:

def create
tale=Tale.find(session[:tale id])
tags=params [:tag]
tags tale=tags|[:tag name]
tale.tag list=params[:tags_tale]

if tale.save

flash[:notice] = 'The tale was successfully tagged'
redirect to controller=>'tale', :action => 'list'
else

redirect to :action => 'new'
end
end

The tag parameter returns a hash containing tag_name as the key. Therefore, we
will have to extract the tags from the hash. That is the reason for the following two
statements in the create method:

tags=params [:tag]
tags tale=tags[:tag name]

That completes the tagging functionality. Next, let us implement the tag
cloud visualization.

Visualizing the Tag Cloud

Tag cloud visualization is a technique using which the most searched tags can be
displayed with a different color or size. The acts_as_taggable_on_steroids
provides a handy method to achieve the tag cloud visualization. Let us implement
the tag cloud visualization for TaleWiki. Open standard.rhtml from the
app/views/layouts folder. The code for the left menu is as follows:

<table width="778" border="1" cellpadding="0" cellspacing="0"
height="387">
<tr><td width="75" height="250"><table width="75"
border="1" cellpadding="2" cellspacing="2">

<%if session[:role]=='administrator' %>

[166]

Chapter 7

<tr>
<td width="286"> Roles</td>
</tr>
<tr>
<td>Users</td>
</tr>
<tr>
<td>Genres</td>
</tr>
<%end%>
<tr>
<td>Tales</td>
</tr>
<tr>
<td rowspan="6"> </td>
</tr>
</table>

Let us add a link labelled Browse By Tags that will take the user to the page with the
tag cloud. The controller is tag and the action is browse.

<table width="778" border="1" cellpadding="0" cellspacing="0"
height="387">
<tr><td width="75" height="250"><table width="75"
border="1" cellpadding="2" cellspacing="2">
<%if session[:role]l=='administrator' %>
<tr>
<td width="286"> Roles</td>
</tr>
<tr>
<td>Users</td>
</tr>
<tr>
<td>Genres</td>
</tr>
<%end%>
<tr>
<td><a

[167]

Tagging the Tales

href="http://localhost:3000/tale">Tales</td>

</tr>

<tr>
<td>Browse
By Tags</td>

</tr>

<tr>

<td rowspan="6"> </td>

</tr>

</table>

Next, open the tag controller.rb file and add the tag clouds method to the
class. We will use the tag_counts method to get the tag count. The method will be
as follows:

def tag clouds
@tags=Tale.tag counts
end

The next step in visualization is to call the helper provided by the plug-in from
within our helper class. You will find the file of the helper class in app/helpers. We
will be calling the helper provided by the plug-in in application_helper.rb. Any
helper method provided in the AplicationHelper class will be available throughout
the application. To use the helper method provided by the acts_as_taggable_
on_steroids plug-in, we have to use the include declaration. The argument to be
included will be the helper. In our case, the name of the helper is TagsHelper. After
adding the declaration, the ApplicationHelper class will look like as follows:

module ApplicationHelper
include TagsHelper
end

Next, let us implement the view. Create a new RHTML template with name
tag_cloud.rhtml in the app/views/tag folder. Then add the following code:

<html>

<head>

<style>
.cssSmall { font-size: 1.0em; }
.cssMedium { font-size: 1.2em; }
.cssNormal { font-size: 1.4em; }
.cssLarge { font-size: 1.6em; }

</style>

</head>

< body/>

</html>

[168]

Chapter 7

We will be using the style with the tag helper. Next, in the body part, we will call
the tag_cloud. The name is that of the controller. The helper works by passing the
required data back to the controller. The code is as follows:

<html>

<head>

<style>
.cssSmall { font-size: 1.0em; }
.cssMedium { font-size: 1.2em; }
.cssNormal { font-size: 1.4em; }
.cssLarge { font-size: 1.6em; }

</style>

</head>

<body>

<% tag cloud @tags, %w(cssSmall cssMedium cssNormal cssLarge) do |tag,
css_class| %>

<%= link to tag.name, { taction => “result search", :id => tag.
name }, :class => css_class %>
<% end %>
</body>
</html>

The tag_cloud helper selects the count array and the style. Then it applies the style
according to the weight of the individual count. If you observe, the Convention-over-
Configuration is still at play here. Even though the name of the helper and that of the
action method are same, yet, as the name is not given as an argument to the action
key of any hash, it is treated as a helper. In the 1ink_to helper, we are passing an
action method called result_search. We will be coming to this function in the

next section.

That completes the functionality for tag cloud visualization. Next, let us implement
the search by tag functionality.

Searching By Tag

As each tale is tagged, we can provide interface to the user to search by tag. The
first step is to provide a link to the search page. Open master.rhtml and add a link
labelled search By Tag to the left menu. The controller will be tag and the action
method will be search. After addition of the link the left menu will be as follows:

<table width="778" border="1" cellpadding="0" cellspacing="0"
height="387">
<tr><td width="75" height="250"><table width="75"
border="1" cellpadding="2" cellspacing="2">

<%1if session[:role]=='administrator' %>

[169]

Tagging the Tales

<tr>
<td width="286"> Roles</td>
</tr>
<tr>
<td>Users</td>
</tr>
<tr>
<td>Genres</td>
</tr>
<%end%>
<tr>
<td>Tales</td>
</tr>
<tr>
<td>Browse By
Tags</td>
</tr>
<tr>
<td>Search
By Tag</td>
</tr>

</table>

Next, open tag_controller.rb and add the search method to it. It will be an
empty method.

def search
end

After that, create an RHTML template with the name search.rhtml. It will contain
the code to show the search box to the user and a button to submit the query. The
page will submit the query to the result method. Here is the code:

<hl>Search By Tag</hl>

<% form tag :action => 'result' do %>
<p>

<label for="tag name">Tag</label>

<%= text field 'tag', 'tag_name' %></p>

[170]

Chapter 7

<%= submit tag “Search" %>
<% end %>
<%= link to 'Back',controller=>'tale' :action => 'list' %>

Now, we will use the find tagged with method to search for the tales with the
tag provided by the user. The find_tagged_with method takes a comma-delimited
string as the argument. Therefore, the result method will be as follows:

def result

tags=params[:tag]

query tag=tags[:tag name]

@tales =Tale.find tagged with(query tag)
end

Next, create another template related to the result method named result.rhtml in
app/views/tag.

<hl>Search Result</hl>
<table>
<tr>
<% for column in Tale.content columns %>
<th><%= column.human name %></th>
<% end %>
</tr>
<% for tale in @tales %>
<tr>
<% for column in Tale.content columns %>
<td><%=h tale.send(column.name) %$></td>
<% end %>
<td><%= link to 'Show', :action => 'show', :id => tale %></td>
</tr>
<% end %>
</table>

It displays the columns using the content _columns getter of the Tale class. The
names are then converted to a human readable format. Inside the for loop, the result
of the search is displayed. That is how Search By Tag works. Now let us implement
the result_search method called by the tag_cloud helper. It is like the result
method. It calls the find tagged with method. The method looks like as follows:

def result search

query tag=params [:tag]

@tales =Tale.find tagged with (query tag)
end

[171]

Tagging the Tales

In addition, with that, the development phase of the Tag management module is
complete. The only task left is testing the modifications we did.

Testing the Modifications

Now, let us test the modifications that we have done. First, let us test the 'Add Tag'
functionality. Open the following URL:

http://localhost:3000/tale.

Click on the show link. In the next page, click on the link for Add Tag. You will get
the following page:

" Mozilla Firefox

File Edit Wiew Higtory delico.us Bookmarks Tools Help

<-E| - i @ ﬁ} E TAG ||_| hth:u:,"ﬂu:ucalhu:ust:3tltl|'| D‘l 'v

" || http://localhost:3000/tag/new/1 [| .
—_— .Y
- Add Tag
Browse .
Bv T_a . Title of the Tale |
=———— |Test £
Search Bv |Tag
Tag
S

Back w
< i [i]
Done @

[172]

Chapter 7

Give the Tag as News and click on submit. If you get the following page, then the
tag was added successfully:

¥ Mozilla Firefox

File Edit View History delicio.us Bookmarks Tools Help

<:F_| = - @ ﬂ_I‘ E TAG |E| htn::fﬂocalhost:3O0|7| [i‘l |"|E:-:-;§ |H_l

| [http://localhost:3000/tale/list (3

Tales

Bovse] jsting tales

By Tags
Search By
Tag

The tale was successfully tagged

Title Body text Submission date Source Status
Test Thisis atest 2007-08-15 sef new Show

New tale

— v}
< M}] [i]
Done @

Next, click on the Browse By Tags link of the left menu. If you get the following
page, then the tag-cloud visualization is working fine:

¥ Mozilla Firefox

File Edit View History delido.us Bookmarks Tools Help

@ a < @ ﬂ_I‘ E TAG |E| htq::fﬂocalhost:3m|7| [}l |'|E:-:-;§ |k\,l

| LI http://localhost.../tag/tag_clouds (3 |

testnews
Tales —

Browse
Bv Tags
Search By
Tag

—

< I | (2]

Done

[173]

Tagging the Tales

Now, click on Search By Tag link. You will get the following page:

¥ Mozilla Firefox

File Edit WView History delido.us Bookmarks Tools Help
(?,F_l < - @ ﬂ_l‘ E TAG ||:| htq:u:fﬂocalhost:E»ODDﬂBgfse|Y| [P] |'|E::;§ |L\,]

| [htep: flocalhost:3000/tag/search 3 |

Toes Search By Tag

Browse T |news| |
By Tags a8

Search By

Tag

’7 Bacl{
’7
111 I >

£
Done @

Give news as the Tag for searching and click Search. If you get a page similar to the
following page, then the search functionality is working fine.

I Mozilla Firefox

File Edit Wiew History delidous Bookmarks Tools Help
@ = - @ ‘G} E TAG ||:| htn::fﬂocalhnst:SODE|Y| Dl |'|E::;5 |L4\,]

| L http://localhost:3000/tag/result (|

raes (LiSting tales

Browse
By Tags | Title Body text Submission date Source Status

Search | Test This is a test 2007-08-15 self new Show

’7 New tale

111]

[174]

Chapter 7

That completes the testing part.

Summary

In this chapter, we saw how easy it is to use the plug-ins and to implement the
functionalities that we need using the plug-ins. However, the functionalities of
adding a tag and many others of its kind do a page refresh. In the next chapter, we
will see how to overcome this limitation. So keep reading!

[175]

Enhancing User
Experience with Ajax

In the last chapter, we saw how to enhance the search usability and the user experience
of TaleWiki by making use of tags and providing users with the tag-based search
facility. Searching and tagging are just two of the many aspects of user experience. The
third aspect that we need to take care of consists of interactivity and responsiveness.
Interactivity ensures that the users have constant interaction with the TaleWiki, and
responsiveness will help in providing results to the user with minimum waiting. In
web applications, Ajax is the way to achieve the same thing. In this chapter, we will
see how to enhance the various functionalities that we have implemented until now,
in order to enhance the usability. First, we will find out the functionalities that can

be enhanced using Ajax, then we will look at how RoR supports Ajax, and will be
winding up the chapter by implementing the enhancements.

Understanding the Requirements

The important point to keep in mind while 'Ajaxifying' any functionality is that, not
all functionalities will get more responsive and interactive by using Ajax in them. For
example, if you want the user to be able to bookmark a page, then its better not to
Ajaxify that page. The reason is that the Ajaxified page is not registered. Due to such
situations, we need to be careful while choosing the functionalities for 'Ajaxifying'.
Keeping this point in mind, let us see on which functionalities we can apply Ajax.
The criteria on which we can decide this is the 'number of clicks required to access
the functionality'. On the basis of this criterion, the following are the functionalities
that we can Ajaxify:

Enhancing User Experience with Ajax

e Live search: The search by tag functionality is static. That means, until the
user clicks on submit after entering the tag to be searched, the search results
will not be displayed. Using Ajax, we can make it live. That means, as the
user types the search string, the results will be displayed. In addition, in
every 0.25 seconds, we will check whether a new string has been entered. If it
has been entered, we will then display the results accordingly.

o Editing functionality: The edit/ modification functionality that we have
developed takes the user to an edit page. Using Ajax, we will provide in-line
editing. By using in-line editing, the user will not need to navigate to another
page to edit or update the information such as their password.

We are going to Ajaxify these functionalities. Now let us start working on Ajaxifying
the functionalities.

Implementing Ajax
We have defined the functionalities that we are going to Ajaxify. However, before we
implement Ajax, we need to understand two points:

e Whatis Ajax

¢ How RoR and Ajax are related

Let us have a look at these points.

What is Ajax?

Ajax is not a single technology. It is, essentially, a combination of technologies. The
term Ajax can be expanded to Asynchronous JavaScript and XML. The keyword
here is Asynchronous. Typically, a web page will stop all its work until it receives
a response from the server. For such a web page, the communication (sending

a request to the server and getting a response from the server) is synchronous.
However, if a web page sends the requests and does not wait for the reply to
resume processing, then it uses the asynchronous method of communication.

Ajax helps developers to implement the asynchronous method of communication
using JavaScript.

The XMLHTTPRequest object of JavaScript can be used to send a request to the server
and then do the required changes to the web page based on the data sent by the
server. Now let us look at the data sent by the server. The server sends its response
as an XML document. It is from XML that Ajax gets its 'X." At the client side you can
use the JavaScript XML parsing API to parse the XML and get the data. This data can
be used to modify the page or display the information to the user, using JavaScript.

[178]

Chapter 8

The problem with JavaScript is that it is browser-dependent. The browser
dependency makes it harder to implement Ajax. However, you can use different
JavaScript libraries that provide an out-of-the-box implementation for Ajax. That
means you do not need to write code to get all the facilities of Ajax. The following are
the two most widely used JavaScript libraries having Ajax support:

Prototype: It is the JavaScript library/framework developed by Sam
Stephson, which provides a simplified Ajax API and other utilities, such as
accessing form variables, replacing data within a set of tags, and so on.

Script.aculo.us: It is pronounced as 'Scriptaculous'. This library/framework
is built upon prototype to provide dynamic visual effects. The effects include
animation of controls and GUI elements, fading, and so on.

That was a 'bird's eye' view of Ajax. You do not need to worry about adding
JavaScript to your code. The reason is that Ajax and other JavaScript functionalities
are present as the core functionalities of RoR. How does that translate to the ease of
development? That is what we are going to see next.

How Ajax and RoR are Related

The DRY principle of RoR is evident in the approach that it uses towards Ajax

and other JavaScript related functionalities. RoR has integrated various JavaScript
libraries/frameworks into its core. RoR provides these libraries to the developer as
JavaScript helpers. RoR provides four libraries out-of-the-box to the users. They are:

Prototype: This library is one of the main JavaScript libraries that RoR
supports. The development of prototype is driven by its integration
with RoR.

Effects: The Script.aculo.us library is divided into different helpers. The
Ef fects helper is one of them. It provides visual effects for the GUI elements
and controls.

DragDrop: The 'drag and drop' functionalities that Script.aculo.us gives are
provided by the DragDrop helper. Using this helper, you can develop a 'drag
and drop' based GUI that can be customized by the user.

Controls: This library provides the Ajax-based controls. Using these, you
can provide data-tables that update automatically on the basis of the
user's selection.

[179]

Enhancing User Experience with Ajax

The next obvious question will be how to use these helpers within a page. To use
these helpers, we will have to use the javascript_include_tag, which is one of
the helpers that the gavascriptHelper module provides. Using the javascript_
include_tag will import the JavaScript library provided as a part of the argument.
The javascript_include_tag accepts the following argument:

e Name of the JavaScript library: This is the only argument that the
javascript_include_tag accepts. The argument is the name of the library
or the path to the JavaScript that you want to use. The libraries you can
choose are any one of the previously mentioned four libraries. The most
commonly passed argument is :defaults which includes all the libraries.

Now that we have familiarized ourselves with the way of Ajax in RoR, let us move
on to the implementation of the functionalities. First, we will implement the live
search functionality.

Implementing the Live Search

To convert a simple search to a live search, we will be following these steps:

e Specify the location to display the result
e Use the observe_field helper to monitor the search field
e Modify the action method

Let us see them in detail.

Specify the Location to Display the Result

First, we have to tell RoR where we will display the results. To do so, we will use the
<div> tag. Before that, we will need to do some modifications to the 'Search by Tag'
page. Open search.rhtml from the app/views/tag folder. The current code looks
like as follows:

<hl>Search By Tag</hl>
<% form tag :action => 'result' do %>
<p>
<label for="tag name">Tag</labels>
<%= text field 'tag', 'tag _name' %></p>

<%= submit_ tag “Search" %>
<% end %>

<%= link to 'Back', :controller=>'tale', :action => 'list' %>

[180]

Chapter 8

First, we will remove the submit button so that the user does not click it. Along
with the submit button, we will remove the form_tag helper because there is no
requirement for the form tag. After the modifications, the code will be as follows:

<hl>Search By Tag</hl>

<p>

<label for="tag name">Tag</label>

<%= text field 'tag', 'tag name' %></p>

<%= link to 'Back', :controller=>'tale', :action => 'list' %>

Next, let us specify where the result will be displayed. It will be before the 1ink_to
'Back' statement and after the
 tag. It is specified using the <div> tag. It will
act as the place holder for the content. Let us name it result. After this, the code
will be as follows:

<hl>Search By Tag</hl>

<p>

<label for="tag name">Tag</label>

<%= text field 'tag', 'tag name' %></p>

<div id="result"s></div>

<%= link to 'Back', :controller=>'tale', :action => 'list' %>

That completes the first step. Next, let us get the results using the
observe_field helper.

Use the observe_field Helper

The next step is to use the observe field helper. In order to use it, we will

need the JavaScript libraries. To include the JavaScript libraries, we will use the
javascript_include_tag helper. Placing the JavaScript in the head part is a good
practice because the head part will be evaluated before any other tags. Hence, errors
such as the No method found error can be avoided when the functions of JavaScript
are called later on. We will use :defaults as the parameter. The code after adding
the javascript_include_tag helper will be as follows:

<html>

<head>

<%= Javascript include_ tag :defaults %>
</head>

<body>

<hl>Search By Tag</hl>

[181]

Enhancing User Experience with Ajax

<p>

<label for="tag name"s>Tag</label>

<%= text field 'tag', 'tag name' %></p>

<div id="result"></div>
<%= link to 'Back', :controller=>'tale', :action => 'list' %>
</body>
</html>

Next, we will add the observe field helper. It takes the following arguments:

o Field to observe: This argument takes the name of the control, which needs
to be monitored for change in its value. In our case, it will be tag_name.

e Frequency: The frequency at which the field will be checked for change in
its value is passed as the value for this argument. We will be checking for
change in the value every quarter of a second. So, the value we will pass will
be 0.25.

e Update: This argument takes the element or the tag to be updated with the
result as value. We will be displaying the result in the <div> tag whose
name is result. Therefore, we will pass result as the value to this argument.

e url: The action method that will provide the result is passed as the value of
this argument. In our case, the action method is result. So the value to the
URL will be result.

After adding the observe_field helper, the code will be as follows:

<html>

<head>

<%= javascript include tag :defaults %>

</head>

<body>

<hl>Search By Tag</hl>

<p>

<label for="tag name"s>Tag</labels>

<%= text field 'tag', 'tag name' %></p>

<%= observe field(:tag name, :frequency => 0.25, :update =>
:search result, :url => { :action => :result }) %>
<p>Search Results </p>
<div id="search result"></div>

<%= link to 'Back', :controller=>'tale', :action => 'list' %>

</body>

</html>

[182]

Chapter 8

Modify the Action Method

The action method passed to observe_field renders the result using the master
layout. That means, the result that will be displayed will contain the left menu
which is undesirable. So we will have to override the layout template. So, create a
new template in app/views/layouts and name it empty.rhtml. It will have the
following code:

<html>
<head/>
<body>
<%=@content for layout%>
</body>
</html>

Next, add the statement to override the default template. After the modification, the
code will be as follows:

def result
tags=params [:tag]
query tag=tags|[:tag name]
@tales =Tale.find tagged with(query tag)
render :layout=>"empty"
end

That completes the implementation of the live search functionality. Next, we will be
working on in-line editing functionality.

Implementing the In-line Editing

In-line editing, also known as in-place editing, is a way to enhance the usability
by providing the modification of the displayed data in the same place without
leaving the page. Ajax helped to bring this feature of desktop applications to web
applications. To implement in TaleWiki, we will use the in_place_editor field
helper. To use in_place_editor_field helper we will follow the following steps:

e Mark the fields for in-line editing
e Set up the controller to update the values
I will be implementing the in-line editing for the 'Modify User' operation. The

administrator may need to reset the password. Implementing the same thing for the
other modules is left to you as an exercise.

[183]

Enhancing User Experience with Ajax

Marking the Fields for In-line Editing

To mark the fields, we will start with modifying show.rhtml in the
app/views/users folder. The show.rhtml provides details about a particular

user. The in-line edit functionality will come in handy here because the administrator
will not be required to go to the edit page just to edit one or two values. The

code looks like as follows:

<% for column in User.content columns %>

<p>
<%= column.human name %>: <%=h @user.send(column.name) %>
</p>
<% end %>
<%= link to 'Edit', :action => 'edit', :id => @user %> |
<%= link to 'Back', :action => 'list' %>

Let us change it so that the fields are shown column-wise rather than row-wise. After
the changes, the code will be as follows:

<table width="100%" border="1">

<tr>
<th scope="row"align="left"> User Name </th>
<td width="71"><%=@user.user name%></td>

</tr>

<tr>
<th scope="row" align="left">Password</th>
<td><%=@user.password></td>

</tr>

<tr>
<th scope="row" align="left">First Name </th>
<td><%=@user.first name%></td>

</tr>

<tr>
<th scope="row" align="left">Last Name </th>
<td><%=@user.last name%$></td>

</tr>

<tr>
<th scope="row" align="left">Age</th>
<td><%=@user.age%></td>

</tr>

<tr>
<th scope="row" align="left">eMail</th>
<td><%=@user.email%></td>

</tr>

<tr>

[184]

Chapter 8

<th scope="row" align="left">Country</th>
<td><%=@user.country%></td>

</tr>

<tr>
<th scope="row" align="left"> </th>
<td> </td>

</tr>
</table>
<%= link to 'Edit', :action => 'edit', :id => @user %>
<%= link to 'Back',6 :action => 'list' %>

Next, let us add the JavaScript helper tag as we will be using the Script.aculo.us
library. As the Script.aculo.us library requires the prototype library, we will use
:defaults as the argument. After adding the helper, the code will be as follows:

<%=javascript include tag :defaults %>
<table width="100%" border="1">

<tr>
<th scope="row"> User Name </th>
<td width="71"><%=@user.user_name%></td>

</tr>

<tr>
<th scope="row" align="left">Password</th>
<td><%=@user.password></td>

</tr>

<tr>
<th scope="row" align="left">First Name </th>
<td><%=@user.first name%></td>

</tr>

<tr>
<th scope="row" align="left">Last Name </th>
<td><%=@Quser.last name%></td>

</tr>

<tr>
<th scope="row" align="left">Age</th>
<td><%=@user.age%></td>

</tr>

<tr>
<th scope="row" align="left">eMail</th>
<td><%=@user.email%></td>

</tr>

<tr>
<th scope="row" align="left">Country</th>
<td><%=@user.country%></td>

</tr>

[185]

Enhancing User Experience with Ajax

<tr>
<th scope="row" align="left"> </th>
<td> </td>

</tr>
</table>
<%= link to 'Edit', :action => 'edit', :id => @user %>
<%= link to 'Back',6 :action => 'list' %>

Next, let us mark the fields for in-line editing. To do so, we will use the
in_place_editor_field helper. It accepts the following arguments:

o fields : It specifies the fields that require the in-place editing.

e :options: The highlighting color, the size of the field, are passed as options.
The options parameter takes hash as its value.

e :url: The action to be called when the user clicks on the OK button. The
url is passed as a hash containing the controller and the action to be called
as values. If you are going to use the helper to update values, then this
argument is not optional.

Therefore, after adding the in_place_editor_field, the code will be as follows:

<%=javascript include tag :defaults %>
<table width="100%" border="1">

<tr>
<th scope="row" align="left"> User Name </th>
<td width="71"><%=@user.user_name%></td>

</tr>

<tr>
<th scope="row" align="left">Password</th>
<td><%=1in place editor field('user', 'password')%></td>

</tr>

<tr>
<th scope="row" align="left">First Name </th>
<td><%=@user.first name%></td>

</tr>

<tr>
<th scope="row" align="left">Last Name </th>
<td><%=@user.last name%></td>

</tr>

<tr>
<th scope="row" align="left">Age</th>
<td><%=@user.age%></td>

</tr>

<tr>

[186]

Chapter 8

<th scope="row" align="left">eMail</th>
<td><%=@user.email%></td>

</tr>

<tr>
<th scope="row" align="left">Country</th>
<td><%=@user.country%></td>

</tr>

<tr>
<th scope="row" align="left"> </th>
<td> </td>

</tr>
</table>
<%= link to 'Edit', :action => 'edit', :id => @user %>
<%= link to 'Back',6 :action => 'list' %>

We will provide the facility to change only the password, unless the
user/administrator goes for a complete modification using the Edit link. This
will help the administrator to reset the password. Next, let us do the changes in
the controller.

Set up the Controller

The in_place_edit_field helper has a corresponding helper for the controller. It is
the in_place_edit_field_for helper. It takes the following arguments:

e Name of the model: The model that will be updated will be the value for it.
In our case, it is user.

e Name of the field: The attribute of the model (column of the table) that will
be updated becomes the value of this argument. In our case, it is password.

Now, let us add the helper to the user_controller.rb. Add the in place_edit_
field_ for helper after the filter declaration. After the modification,
user controller.rb will be as follows:

class UserController < ApplicationController

layout “master"

before filter :check authentic user, :except => [:index,
authentzcate] B B

in place_edit_field for :user, :password
#the remaining code
end

That completes the implementation of in-line editing functionality. Now, let us test
the modifications.

[187]

Enhancing User Experience with Ajax

Testing the Modifications

Let us first test the live-search functionality. Open your favorite browser and give the
following URL:

http://localhost:3000/user

After logging in using the administrator as user name and admin as password, click
on the Search by Tag link. In the search field, give news as input. If you get the
following screen, then the modifications are working fine:

) Mozilla Firefox

File Edit Wew History delido.us Bookmarks Tools Help
<f| - - @ ﬁ E T ||_| http: {localhost: 3000/tagfsearch |‘| l}l "| “‘\l
LI http:/ /localhost:3000/ tag/search G -
— EEE—— | [~
Roles
uses | Search By Tag
Genres
Tales Tag news|
Browse =
By Tags
Search |Search Results
By Tag
Listing tales 1
Title Body text Submission date Source Status
Test This 1s a test 2007-08-15 self new Show [v]
£ 11} m
Done e

[188]

Chapter 8

Next, click on the Users link in the left menu. Then click on the Show link of user
with User Name as tester. On the next page, click on the value displayed against the

Password field. If you get the following page, then everything is fine:

¥ Mozilla Firefox

File Edit Wew History delicio.us Bookmarks Tools Help
@ - - @ ﬁ_l‘ E TAG ||:| http: /focalhost: 3000 fuser fshow (1 |V| D] |'| Google |k_l
[|:| http:”lncalhus...ﬂl]o,fuser,fshm,fla |
iad
TALEWIKI
Roles User Name tester
Users Lestin9123| =
| P d
Gonros asswor ok |cancel
Tales First Name test
% Last Name test L
ags
% Age 20
searet eMail af@c.com
By Tag
EEE— Country nowhere
EAit Ranl- M
F3 {111}]m
Done @

Change the password and click on the OK button. If you get the following page, then

the modifications are working fine:

) Mozilla Firefox

File Edit View Hstory delicio.us Bookmarks Tools Help
¢| = = @ ﬁ_l‘ E TAG | D http:/flocalhost: 3000 user jshow/1 | Y| D‘] |'| Google ‘ bt l
| [http:/flocalhos...000/user/show/1J |
had
TALEWIKI
Roles User Name tester
Users Password testing123 | =
Genres First Name test
Tales Last Name test
Browse Age 20 A
By Tags eMail al@e.com
Search Country nowhere
By Tag
Edit Back
[v]
< ALl]m
Done @

[189]

Enhancing User Experience with Ajax

That completes the testing of our modifications.

Summary

That completes implementing the Ajax for TaleWiki. This is the second step towards
enhancing the usability. There are many more steps in the process of enhancing
usability, which we will see later. In the next chapter, we will implement the
administrative interface so that the administrator can efficiently manage the website.
So keep reading!

[190]

Developing the Interface
for Administration

In the previous chapters, we have specified certain functionalities as accessible only
to the administrator. However, we still haven't developed a User Interface from
where the administrator can access all of them without navigating between multiple
modules. In this chapter, we will be designing such an interface that will facilitate the
administrator in 'administering' the TaleWiki.

First, we will identify from the already implemented functionalities those that an
administrator will require to manage the TaleWiki as well as add new ones. Then we
will implement them and wrap up the chapter by testing the administrative interface.

Understanding the Requirements

We have already developed most of the functionalities of the Administration
module. Genre management, Role management, and User management can

only be accessed by the administrator. Therefore, the functionalities that we need
to enhance are:

e Restricting Deletion of Tales: We have already implemented the
functionality for deleting the published tales as a part of Tale management.
However, the current implementation allows any user to delete the tales
published by any other user. This is not desirable. Only the administrator
should be able to delete the tales. Therefore, this functionality will restrict all
other users except the administrator from deleting the tales.

¢ Managing Comments: The administrator may want to view, modify, and
delete the comments that the users have submitted. This functionality will
help the administrator to do so by providing complete access to all the
functionalities of the Comment management module.

Developing the Interface for Administration

e Searching for a User: The administrator will need to look up a particular
user with all his/her corresponding details, such as the tales published
by him/her, comments given by him/her, and the profile of the user. The
functionality to search for users will help the administrator to do so. The
search will have an auto-complete feature so that the administrator needs to
know only the first few characters of the user ID. Auto-completion is another
feature that enhances the usability.

Now that we are clear with the requirements, let us move on to implementation.

Implementing the Functionalities

Based on the requirements, the implementation can be divided into the
following steps:

e Modification of the Deletion of Tales

e Providing access to all the functionalities of the Comment Management
module

e Auto-completion of the User name during the User search

e Searching for a particular user

Let us start with the modification of the deletion of tales.

Modification of the Deletion of Tales

We have to restrict the other users from deleting the published tales. To do so, we
will show the link to delete the tale to the administrator only. That means, if the
current user's role is not 'administrator', then the link will not be displayed. To
achieve this end, we will have to make modifications in the 1ist.rhtml file in
app/views/tales folder. Open the file in your favorite editor. It will have the
following code:

<hls>Listing tales</hl>
<table>
<tr>
<% for column in Tale.content columns %>
<th><%= h(column.human name) $%></ths>
<% end %>
</tr>
<% for tale in e@tales %>
<tr>
<% for column in Tale.content columns %>
<td><%=h tale.send(column.name) %></td>
<% end %>

[192]

Chapter 9

<td><%= link to 'Show', :action => 'show', :id => tale %></td>
<td><%= link_to 'Edit', :action => 'edit', :id => tale %></td>
<td><%= link to 'Destroy', { :action => 'destroy', :id => tale },
:confirm => 'Are you sure?', :method => :post %></td>
</tr>

<% end %>

</table>

<%= link to 'Previous page', { :page => @tale pages.current.previous }

if etale pages.current.previous %>

<%= link to 'Next page', { :page => @tale pages.current.next } if @
tale pages.current.next %>

<%= link to 'New tale', :action => 'new' %>

Next, we will surround the 1ink to 'Destroy' with the if statement. In the if
statement, we will check whether the role of the current user is administrator or
not. If the role is administrator, we will display the link to delete the tales. We will
get the role of the current user from the session. After the modifications, the code
will be as follows:

<hl>Listing tales</hls>
<table>
<tr>
<% for column in Tale.content columns %>

<th><%= column.human name %></th>
<% end %>
</tr>
<% for tale in @tales %>
<tr>

<% for column in Tale.content columns %>
<td><%=h tale.send(column.name) %$></td>
<% end %>
<td><%= link to 'Show', :action => 'show', :id => tale %></td>
<%if session[:role]=='administrator'%>
<td><%= link to 'Edit', :action => 'edit', :id => tale %></td>
<td><%= link to 'Destroy', { :action => 'destroy', :id => tale },
:confirm => 'Are you sure?', :method => :post %></td>

<%end%>

</tr>
<% end %>
</table>
<%= link to 'Previous page', { :page => @tale pages.current.previous }
if @tale pages.current.previous %>
<%= link to 'Next page', { :page => @tale pages.current.next } if @
tale pages.current.next %>

%= link to 'New tale', :action => 'new' %>

Next, let us move on to the comment functionality.

[193]

Developing the Interface for Administration

Providing Access to All the Functionalities of
the Comment Management Module

If you remember, we directly linked the 'adding new comment' functionality with
the 'detailed view of tales', when we implemented the Comment management
module. Now we will provide all the links to the administrator, including the list of
comments. For that, we will add a link to the left menu so that the administrator can
have access to all the functionalities of the Comment Management module. Open the
master.rhtml file from the app/views/layouts folder. Add the following code just
after the link for Genres:

<tr>
<td>Comments</td>
</tr>

After adding the link, the code of the left menu will be as follows:

<table width="75" border="1" cellpadding="2" cellspacing="2">
<%if session[:role]l=='administrator' %>
<tr>
<td width="286">
Roles</td>
</tr>
<tr>
<td>Users</td>
</tr>
<tr>
<td>Genres</td>
</tr>
<tr>
<td>Comments</td>
</tr>
<%end%>
<tr>
<td>Tales</td>
</tr>
<tr>
<td>Browse By
Tags</td>
</tr>
<tr>
<td>Search By
Tag</td>
</tr>

</table>

[194]

Chapter 9

With these changes, the second step for implementing the administrative interface is
complete. Let us move on to the third step.

Implementing Auto-Complete for the
User name

TaleWiki will have many users. It is humanly impossible to remember each user's
user name while trying to look up the information on a particular user. The
auto-completion of user names will help the administrator to look up a particular
name easily, by providing a list of user names starting with a given letter of the
alphabet, and narrowing the list down to specific names, as the administrator types
more letters of the name he or she is looking up.

To implement auto-complete, we will use the text_field with auto_complete
helper. It accepts two arguments:

e Name of the model: The data will be retrieved and displayed as a list from
the model whose name is passed as a value to this argument. In our case, it is
the user.

e Name of the field: This accepts the attribute of the model (column of the
table) whose data will be used to display the auto-completion list. In our
case, it is the name field of the user table.

However, before implementing the auto-completion, let us add a link to the left
menu so that the administrator can easily access the search User functionality. After
adding the link, the left menu will be as follows:

<table width="75" border="1" cellpadding="2" cellspacing="2">
<%1f session[:role]l=='administrator' %>
<tr>
<td width="286">
Roles</td>
</tr>
<tr>
<td>Users</td>
</tr>
<tr>
<td>Genres</td>
</tr>
<tr>
<td>Comments</td>
</tr>
<tr>
<td>Search
User</td>

[195]

Developing the Interface for Administration

</tr>
<%end%>
<tr>
<td>Tales</td>
</tr>
<tr>
<td>Browse By
Tags</td>
</tr>
<tr>
<td>Search By
Tag</td>
</tr>

</table>

Next, open the user controller.rb file from the apps/controllers/ folder. Then
add the following action method:

def search
end

Now create a file called search.rhtml in the app/views/users folder. Open it and
write the following code:

<html>

<head>

<%=javascript include tag (:defaults) %>
</head>

<body>

<hl>Search User</hl>

<p>

<label for="user name">Tag</label>

<%= text field with auto complete :user, :user name %> </p>

</body>

</html>

Next, open the user_controller.rb. Add the following statement after the
in _place editor_ for helper:

auto complete for :user, :user name

This is the helper at the controller level, corresponding to the auto-completion helper
on the view side. It retrieves data from the model on the basis of passed arguments,
and sends the data back to the view. In our case, the model is user and the attribute
is user_name. The auto_complete for helper takes the user name from the user
table and passes the data back to the search page. That completes the auto-complete
feature. Next, let us move on to the implementation of the search functionality.

[196]

Chapter 9

Implementing Search

The search functionality will not only provide details of the user, but also the details
of the stories published by the user as well as comments given by him or her. The
implementation that we will do now will display the user details and the tales
published by him/her. The second part, that is displaying the comments of a user, is
left as an exercise for you. So, let us begin the implementation.

As a first step in implementing the search, we will modify the search.rhtml file. We
will have to send the selected user name to the controller. To do so, we will have to
place the textbox in a form. So, open the search.rhtml file and surround the textbox
with the form helper. So that it looks as follows:

<html>

<head>

<%=javascript include tag (:defaults) %>
</head>

<body>

<hl>Search User</hl>

<p>

<% form tag :action=>'search_result'%>
<label for="user name">Tag</label>

<%= text field with auto complete :user, :user name %> </p>
<% submit tag “Search" %>

<% end %>

</body>

</html>

The form tag is calling an action method named search_result. Therefore, next
we will implement the search_result method. In the user_controller, add the
following method:

def search result
user to find=params[:user]
userl=user to find[:user name]
@user=User.find(:first, :conditions => [“user name = ?",
userl])
@tales=@user.tale

end

As, we are not passing the ID of the user in the search page, the parameters are
passed as part of a hash. So, first we retrieve the hash containing the user details.
Following the principle of Convention over Configuration, the key of the hash is
'user'. The value of this key is another hash containing the parameter that we require.
The key in the second hash is the parameter name —user_name —which is used to
retrieve the value entered by the administrator. After that, using the f£ind method,
the user details are retrieved. This is similar to what we did while assigning the user.

[197]

Developing the Interface for Administration

Next, let us design the search result page. The search result page will have two
sections. The first section will have the details of the user, and the second section will
have the details of the tales published by the user. As the details of the user can be
accessed from the user object, the first section will be as follows:

<table width="100%" border="1">
<tr>
<th scope="row"> User Name </th>
<td width="71"><%=@user.user name%></td>
</tr>
<tr>
<th scope="row">Password</th>
<td><%=@user.password¥></td>
</tr>
<tr>
<th scope="row">First Name </th>
<td><%=@user.first name%></td>
</tr>
<tr>
<th scope="row"sLast Name </th>
<td><%=@user.last name%></td>
</tr>
<tr>
<th scope="row">Age</th>
<td><%=@user.age%></td>
</tr>
<tr>
<th scope="row">eMail</th>
<td><%=@user.email%></td>
</tr>
<tr>
<th scope="row">Country</th>
<td><%=@user.country%></td>
</tr>
<tr>
<th scope="row"> </th>
<td> </td>
</tr>
</tables>

[198]

Chapter 9

Create a new file named search_result.rhtml in the app/views/user folder. Open
it and add the code just given. Next, let us create the second section using the tale
object. Place the following code after the <table> tag of the search_result.rhtml:

<table width="100%">

<tr>

<td> Tale Details</td>

</tr>

</table>

<table width="100%"

<tr>
<th
<th
<th
<th
<th
<th

</tr>

width="11%"
width="10%"
width="30%"
width="21%"
width="14%"
width="14%"

border="1">

scope="col"
scope="col"
scope="col"
scope="col"
scope="col"
scope="col"

<% @tales.each do |tale| %>

<tr>

<td><%$=tale.title%$></td>

align="left">Title</th>
align="left">Tale</th>
align="left">Submission Date </th>
align="left">Source</th>
align="left">Status</th>
align="left">Genre</th>

<td><%=tale.
<td><%=tale.
<td><%=tale.
<td><%=tale.
<td><%=tale.

body text$%$></td>
submission date%></tds>
source%></td>
status%></td>

genre.name%></td>

</tr>

<%end%
</table>

>

It iterates over the array of tales and displays the details of the individual tales. That
completes the search functionality. Next, let us test our modifications.

Testing the Modifications

First, let us test the modification to the list functionality of the Tale Management
module. Log in with the following user name and password:

Username: tester

Password: testing123

[199]

Developing the Interface for Administration

Click on the Tales link. If you get the following screen, then the modifications are
working well:

@ Mozilla Firefox M=%
File Edit View History del.icio.us Bookmarks Tools Help
<f:l - - @ /IJ} E e ||:| http://localhost:3000/tale/list |‘| D] |'| ‘x]

| [} http://localho...000/ tale/list (& |

TALEWIKI fi

Roles Welcome tester

I

Users

Gees | LiSting tales

Search
User Title Body text Submission date Source Status

Comments | Lest This is a test 2007-08-15 self new Show

Tales New tale

Browse
By Tags

Search By
Tag

< I 11} | m

[200]

Chapter 9

Next, log in with the administrator username and password. If you get the following
screen, then the administrative interface is working fine:

@ Mozilla Firefox =JOEd

File Edit View History del.icio.us Bookmarks Tools Help

&e-> - ¢& (2 &™ (g [0 http://localnost:3000/tale/t [| B | [[Gl+ cooge []

| LI http:/ /localho...000/ tale/list (3 | -
oY ™
TALEWIKI i
=

Roes T jisting tales

Users

f

'

Genres Title Body text Submission date Source Status
Search Test This is a test 2007-08-15 self new Show Edit Destroy

New tale

<] il

Ol

[201]

Developing the Interface for Administration

Next, click on the Search user link. On the next page, input t in the text field. If you

get the following screen, then the auto-completion is working fine:

-

& Mozilla Firefox

(=] ¥

File Edit View History delicio.us Bookmarks Tools Help

A

-
- -

IIJ} E = ||:| http:fflocalhost:3DDDf|'r| [i] |v|£

=y

| L http://localh...0/ user/search ()

*

TALEWIKI

||

.
]

Search User

G
3

)
2
2

Tag
Administrator
testl

tester

Search
User

Ses

3
W%
4

Tales

Browse

E ‘
—
25

Search B
Ta

1

WL.,

4 I Ll

Done

[202]

Chapter 9

Select tester and press enter. If you get the following screen, then the search is
functioning well:

@& Mozilla Firefox M=)
File Edit View History del.icio.us Bookmarks Tools Help
<‘F_| - M @ ﬁ_l‘ E e ||:| http://localhost: 3000/ user/search_result |v| [>] |v| Google |L\.]
[[} http://localh...search_result [3j | -
-~
i TALEWIKI A I
Roles User Name tester
Users Password testing123
Genres First Name test
Search Last Name test
User Age 20 3
Comments eMail a@c.com
Tales Country nowhere
Browse
By Tags |Tale Details
Search By Title Tale Submission Date Source Status Genre
Tag 51
— || Test This s 2 2007-08-15 self new News
test -
[v]
< I il] m
Done [

With that, we come to the end of this chapter.

[203]

Developing the Interface for Administration

Summary

This chapter marks the last step in the development of TaleWiki. In the next chapter,
we will look at the steps in deploying our website. However, if you compare the
development that we have done with the real-world scenario, it is the first phase

or the 'basic setup' phase. The next level is to add the services that will make the
website unique. Some of the services that can add value to any website are:

¢ Polling: Understanding the mood of the user is essential for any social
networking site. Polls are one of the ways to gauge the user's opinion.

e Personalization: Each user is an individual. Hence, their tastes with respect
to the themes, color schemes, etc., may differ. Personalization can help you to
attract more users.

You can implement these services to test the understanding of the concepts that we
have discussed until now. With that, I will wrap up this chapter. Keep reading to
understand the deployment procedure!

[204]

10

Deploying the TaleWiki

Once the development and testing is completed, the next step (which is also the last
step before going live), is to deploy the application. In this chapter, we will see how
to deploy the TaleWiki. In the first section, we will discuss the difference between the
development mode and the deployment/production mode. In the second section, we
will configure Mongrel so that it can run in the production mode. We will wrap up
with the points to keep in mind while running a RoR-based website.

Understanding the Production
Environment

Before going into the details about the production environment, let us have a look
at what an 'Environment' really means. The environment that we are discussing
here is with respect to the Mongrel server. The Mongrel server can run in three
different modes:

e Development Mode
e Test Mode

e Production Mode

The mode in which the Mongrel server runs for a RoR site is known as the
environment. In other words, mode is for the server and environment is for the
site. In our case, the Mongrel server is running in the development mode and the
TaleWiki is running in the development environment. Keeping this in mind, let us
look at the different modes in which the Mongrel can run.

Deploying the TaleWiki

Development Mode

The development mode is the default mode for the Mongrel server. In this mode,
Mongrel provides the development environment for the application or the site. In
this environment, ease-of-use is given importance over speed or scalability. Hence,
for every request, the application is reloaded by the server. This is the reason that
you don't need to restart the server when you make changes to the application.

In addition, caching is disabled when an application is using the development
environment. This essentially means that none of the caching services is available in
this environment.

The other important aspect of the development environment is the information it
provides when application fails to service a request. In this environment, whenever
a request fails, Rails provide you all the information related to the failed request. The
information is displayed on the browser.

Test Mode

Test mode provides the test environment for an application. It is just like the
development environment with one difference —the database is recreated every time
test cases are run. Therefore, whenever you run a test using the testing service, then
it is necessary to create a different database with the same set of tables.

The second important point you have to keep in mind while using the test
environment is regarding services, such as mailing. For example, in the test
environment, mails are not delivered to the mail server. The mail delivery is just
simulated. We haven't used the testing service in this book. All the testing that we
have done so far is manual.

Production Mode

When the Mongrel server is run in the production mode, it provides the production
environment for your application. In the production environment, speed and
scalability is given importance over ease-of-use. Therefore, the application is not
reloaded for each request. In this mode, Mongrel ensures that once all the classes
related to the Model and Controller are loaded, they are not reloaded. Secondly,
caching is enabled for any application using the production environment. In other
words, your application can make use of the caching services provided by RoR.

[206]

Chapter 10

In addition, the debugging information is also not provided whenever any failure
occurs. Instead of details of the failed request, Mongrel shows the 500.rhtml page
in the public folder. This ensures that the details of the application are not given out
to the public, if a request fails. The 500 is related to the HTTP protocol that tells the
user that the service is currently unavailable. The 500.rhtml displays the 'service
unavailable' message in the case of a request failure.

Now that you have understood the differences between the three modes, let us look
at how to move from the development environment to the production environment.

Changing to the Production Environment

To change from the development environment to the production environment, you
will need to do the following things:

e Migrating to the Production database

e Configuring Mongrel to start in the production mode

For the former, migration files can be very helpful.

Migrating to the Production Database

To migrate to the Production database, you will need to create a database named
talewiki_production. Then, only RoR will use the production database. This is due
to the 'Convention-over-Configuration' philosophy of RoR. When Mongrel runs in
the production mode, it looks for the database whose name ends with _production.
It will work only when such a database is found.

In order to migrate to the production database, first create a database named
talewiki_production. Then open the database.yml file from the config folder.
Modify it so that the content looks as follows:

#MySQL (default setup). Versions 4.1 and 5.0 are recommended.
#

#Install the MySQL driver:

gem install mysqgl

#On MacOS X:

gem install mysqgl -- --include=/usr/local/lib

#On Windows:

gem install mysqgl

Choose the win32 build.
Install MySQL and put its /bin directory on your path.
#

#And be sure to use new-style password hashing:

[207]

Deploying the TaleWiki

http://dev.mysqgl.com/doc/refman/5.0/en/old-client.html
production:

adapter: mysqgl

database: talewiki production

username: root

password:

host: localhost

We have removed the development and test entries. This is for security purposes, as
having the development database entry along with the production database entry
can help a hacker to know the database schema. Next, at the command prompt give
the following command:

C:\InstantRails\rails app\talewiki>rake db:migrate

The migrate task will now create all the tables in the production database. This
completes the migration of the database.

Configuring Mongrel

To use the speed and caching services, you need to tell RoR to run in the production
mode. In order to do it, you will have to set the value of the RATILS_ENV variable to
the string production. Instant Rails provides a very easy tool to do exactly this.
Select Rails Application | Manage Rails Application... from the Instant Rails menu.
You will get the following dialog box:

T Rails Applications

Railz pplications wieb Server
] cookbook,

71 iLms

] ralewiki

7 talewikiz.0

D test_app

] typo-2.6.0

Check one or mare Rail: applications and then click a button above to
perform that action on the selected applications.

To create a new Fails app, click the button below to open a conzale
window where you can run the 'rails’ command.

Unless wou configure the startup mode, the default is to start a Rails app
in development mode on port 3000,

Create Mew Rails App...] [Refresh List] [Close

[208]

Chapter 10

Select the talewiki checkbox and click on the configure Startup Mode. . . button.
You will see the following window:

I

Configure talevaiki

Runtime tode: production NUfma".'gJi development, [Edit &pache config file]
production or test

Pt | 3000 [E dit Wwindows Hosts file]

To configure the startup mode of pour Railz application, pick a part number and a runtime
maode, “developrment’ mode will reload pour application's claszes before each request for
eazy development. "production” mode will lnad pour clazzes only once for better perfarmance.

If, for example you chooze to run pou application on port 3001, you could browse to:

http: #4127.0.0.1:3000¢

You can alzo set up an Apache virtual host to use mod_prosy to take hitp requests sent
to a particular hostname and forward them ko thiz mnning instance of pour Failz app.

You must edit you apache configuration file and zpecify the zame port number in pour app's
WirtualHost directive. The hosthame pou decide to use must alza be in the YWitualHost directrive.
If this hiozthame iz not a real, exizting hosthame inthe DWS, then pou must alzo edit pour
‘windows HOSTS file and fake it by added a line ke this:

127007 v my-fake-hozstname. com

Fake hostnames are for development purposes only, and can only be accessed from your local
machine.

[Ok][Cancel]

In the textbox labelled Runtime Mode, enter the value as production and click
OK. The Mongrel server will now run in the production mode. That completes the
configuring of Mongrel.

To change back to the development or test mode, give either
i

development or test in the textbox.

[209]

Deploying the TaleWiki

Points to Consider

There are several points to keep in mind after deploying an application. Two of the
most important points are:

e Scaling: When your site's traffic is limited to about 1000 users (or 1000 hits),
Mongrel performs well. The performance of a server with respect to the
number of user requests is known as scaling. However, if it crosses the limit
of 1000 users, then Mongrel does not scale well. In that case, you will have
to run Mongrel in conjunction with other web-servers, such as Apache with
CGI, Apache with FastCGI, and lighttpd with FastCGI. Among these, Apache
with FastCGl is an industry standard, as Apache is the most robust of them
all. However, configuring Apache is a complex task. Therefore, if you need to
scale up, lighttpd with FastCGl is a good option.

e Bottlenecks: As scaling is to the web or application server, so are bottlenecks
to the database servers. When the application's response becomes sluggish
due to the time taken in querying the database, then the application is said
to have hit a bottleneck. To overcome bottlenecks, two basic strategies can
be applied. The first of them is to bring most of the database processing to
the application level. Instead of relying on the database to do the complex
multi-table based computations, the application itself is upgraded to handle
the computation. In other words, the database is simply used to store and
retrieve data. The manipulation of data is completely taken care of by the
logic embedded in the application itself. The second strategy is to use the
native SQL. RoR's ORM library is pretty optimized. However, there are
situations where using native SQL can be more effective than the generic
optimization provided by Active Record. You will have to decide which
strategy to apply depending on the situation.

These are two main points that you will have to keep track of. However, keep in
mind that these situations will not arise unless you deploy the application.

Summary

With that, we come to the end of the chapter. Throughout the book, we have seen
how easily one can develop dynamic sites using RoR, without sacrificing the
flexibility and robustness. However, this is just an overview of what RoR can do.
Based on what we have discussed in this book, you can create your own commercial
sites. The only point you have to keep in mind is that RoR is an evolving framework.
Therefore, every other day some new functionality is being added. Keep track of that
and you can create highly scalable and robust sites without sidetracking usability
and flexibility. That is the beauty of RoR and that is what this book has tried to
convey. With that I conclude this chapter as well as this book.

[210]

Index

A Ajax, TaleWiki
about 177
Action Controller action method, modifying 183
about 43 Ajax and RoR, relation 179
caching 44 controller, setting up 187
filtering 44 editing functionality 178
functionalities 43 fields marking, in-line editing 184-187
session handling 43 functionalities, Ajaxifying 178
Action View functionalities, required 177
about 42 implementing 178
Formatting Helper 42 in-line editing, implementing 183
Form Helper 42 in-place editing, implementing 183
functionalities 42 in RoR 179
layout 42 JavaScript library, supported by 179
templates 42 live search 178
Active Record live search, implementing 180
about 40 location, specifying to display result 180,
class mapping 41 181
CRUD operations 41 modifications, testing 188-190
database connectivity 41 observe_field helper, using 181, 182
data validation 41 Prototype, JavaScript library 179
functionalities 40 Script.aculo.us, JavaScript library 179
administrator, TaleWiki arrays 38
auto-complete for user name, implementing attributes, Ruby
195, 196 about 27
comment management module, class-level attirbutes 27
access providing to 194, 195 instance attirbutes 27
comments, managing 191
deletion of tales, restricting 191, 192 B
functionalities, implementing 192
functionalities, required 191 blocks, Ruby
modifications, testing 199-204 about 34
search functionality, implementing 197-199 anonymous blocks 34
tales deletion, modifying 192, 193 anonymous blocks, example 34
user, searching for 192 named blocks 34

working, with iterators 35, 36

C

classes, Ruby
about 26
close-ended, types 26
open-ended, types 26
types 26
comment management
about 112
comment management module,
developing 124
database, designing 113
functionalities 112,113
comment management module
about 124
Controller, customizing 129, 130
Model, modifying 125-127
scaffold, generating 125
testing 130-134
View, refining 127-129
Controller component
about 73
customizing 73
methods 74

D

database, comment management
designing 113
E-R model designing 113
schema, deriving 115
tables, creating 116
database, TaleWiki application
conventions 57, 58
designing 56
E-R model, designing 58
schema, designing based on E-R model 61
schema, for genre 61
schema, for story 62
tables, creating 62, 64
data structures, Ruby
about 38
arrays 38
hashes 38
data types, Ruby
float 33
number 33
string 33

string, symbol 33
DB2 41
deploying, TaleWiki
bottlenecks, guidelines 210
development environment to production
environment, changing from 207
development mode 206
guidelines 210
Mongrel, configuring 208, 209
Mongrel server, modes 205
production database, migrating to 207, 208
production mode 206
scaling, guidelines 210
test mode 206
development mode 206

E

E-R model
designing 58
diagramatic representation 61
genre 60
genre attributes 60
relationship, between story and genre 60
story attributes 58
E-R model, comment management
attributes, comment entity 114
comment entity 114
diagramatic representation 114
E-R diagram 114
entities, relationships 115
E-R model, user management
attributes, role entity 89
attributes, user entity 88
E-R design 91
role entity 88, 89
role entity, diagramatic representation 90
user entity 88
user entity, diagramatic representation 89
exceptions, Ruby
about 37
handling 37

F

functionalities, TaleWiki application
administrative interface, providing 54
comments 54

[212]

genre management 56
story, tagging 54
story management 54
user management 54

G

GEM 13

H

hashes 38

Hello World application, RoR
about 45
action method, defining 48
directories 47
first Controller class, adding 47, 48
structure, setting up 45
testing 50, 51
View template, adding 49

inheritance, Ruby 31
installing, RoR

manual installation 9

one-click RoR installation 15
iterators, Ruby

about 34

working, with blocks 35, 36

L

login management
about 112
functionalities 112
login management module, developing 116
login management module
about 116
authenticate method, implementing 118
authorization, applying 121, 122
Controller, authenticate method 119, 120
login page, creating 117, 118
loose ends, tying up 123
Model, authenticate method 118, 119
session, setting up 120

manual installation, RoR
GEM, upgrading 13
RoR, installing 14
Ruby, downloading 10
Ruby, installing 11, 12
methods, Ruby
constructor method 29
definition 28
example, Tale 28,29
getter method 29
setter method 30
types 28
migration, RoR
down method, generated classes 140
generated classes, editing 139
implementing 138
migration classes, generating 138, 139
migration generator, syntax 139
running 142, 143
self. down method, modifying 140, 142
self.up method, modifying 140
SQL data type, mapping to Ruby data type
140
up method, generated classes 140
uses 138
Model component
about 68
customizing 68
data validation 70, 72
relationship mapping 69
modules, Ruby 32
Mongrel server
configuring 208
development mode 206
modes 205
production mode 206
test mode 206
MS SQLServer 41
MVC 40
MVC pattern
Controller 40
Model 40
View 40
MySQL 41

[213]

(0

objects, Ruby 30
one-click RoR installation
Instant Rails, downloading 16
Instant Rails, unzipping 16
Instant Rails installation, configuring 16, 17

P

parameters 28
Postgres 41
production environment
about 206
development mode 206
Mongrel, configuring 208, 209
production database, migrating to 207, 208
production mode 206
test mode 206
production mode 206

R

role management
Controller, customizing 97
developing 95
Model, modifying 96
scaffolds, generating 95
View, refining 97, 98

RoR
about 5,7,39
Action Controller 43
Action View 42
Active Record 40
controls, JavaScript library 179
DragDrop, JavaScript library 179
effects, JavaScript library 179
features 8
Hello World application 45
installation, testing 19-24
installing ways 9
JavaScript library 179
migration 138
MVC pattern, implementing 40
philosophy 7
prototype, JavaScript library 179
Ruby-based framework 39

Ruby
about 5
attributes 27
blocks 34
classes 26
concepts 25
data structures 38
data types 32
downloading 10
exceptions, handling 37
features 6
inheritance 31
installation, testing 19
installing 10
iterators 34
methods 28
modules 32
objects 30

overview 6

S

SQLite 41

T

tables, TaleWiki application
conventions 57, 58
designing 56
index, adding 138
migration 137
migration, tasks 138
new column, adding 138
tables, creating 138
tables, dropping 138

tables, user management
creating 93, 94
designing 88
E-R model, designing 88
schema, deriving from E-R model 92
schema, for role entity 92
schema, for story entity 93
schema, for user entity 92

tag management module, TaleWiki
developing 158
functionalities 157, 158
functionalities, implementing 163

[214]

modifications, testing 172-175
plug-in, installing 159-161
plug-in, selecting 159
plug-in, tables setting up 161, 162
tag, adding 163
tag, searching by 169-172
tag cloud, visualizing 166-169
tag controller, creating 164, 165
template, creating 165, 166
tale management module, TaleWiki
application structure, creating 64
Controller, customizing 73
developing 64
Model, customizing 68
Model component 68
scaffolds, generating 65
scaffolds, generating for genre table 66, 67
scaffolds, generating for tales table 67, 68
View, refining 75
TaleWiki
administrator 191
Ajax 177
deploying 205
tag management module 157
tale management module 64
template 143
TaleWiki application
database, designing 56
functionalities 54
genre, story management 56
migration 138
module-specific requirements 55
requirements 53
story management 55
story management module 55
sub-modules, story management module
55
system requirements 54
template, customizing 143
testing 78-84
user management module 85
template, TaleWiki
about 143
application, testing 155, 156
customizing 143
layout, defining 143

login page layout 143
login page layout, customizing 143-148
master layout 143
master layout, applying 148
master layout, defining 148
master layout page, creating 149-152
menu, setting up 153-155
navigation, setting up 152
test mode 206

U

user management
comment management 111, 112
developing 94
login management 111, 112
role management, developing 95
tables, designing 88
user management functionality,

developing 98

user management functionality
assign method, adding to Controller 104
default role, assigning to user 101
display action method, adding to

Controller 102

Model, modifying 100
scaffold, generating 99
View, refining 103

user management module
functionalities 85
functionalities, testing 104-109
requirements 85
roles, managing 87
user, managing 86

\'

View component
about 75
edit tale template, refining 77, 78
new tale template, refining 75-77
refining 75

[215]

	Building Dynamic Web 2.0 Websites with Ruby on Rails
	Table of Contents
	Preface
	Chapter 1: Getting Started with Ruby and RoR
	Ruby and RoR—The Next Level in Dynamic Web Development
	Ruby
	Ruby on Rails (RoR)
	Philosophy
	Features

	Installing and Configuring Ruby and RoR
	Manual Installation
	Downloading and Installing Ruby
	Updating Gem
	Installing RoR

	One-Click RoR Installation
	Download and Unzip the Instant Rails
	Configure Instant Rails Installation

	Testing the Installation
	Ruby
	RoR

	Summary

	Chapter 2: Getting to Know Ruby and RoR
	Ruby—the Basics
	Classes, Attributes, Methods, and Objects
	Classes
	Attributes
	Methods
	Objects
	Inheritance
	Modules

	Data Types
	Number
	Float

	Blocks and Iterators
	Blocks
	Iterators

	Exception Handling
	Data Structures
	Arrays
	Hashes

	RoR—Concepts and Components
	RoR is a Ruby-Based Framework
	RoR Implements MVC Pattern
	Active Record
	Action View
	Action Controller

	Hello World—the RoR Way
	Setting up the Application Structure
	 Adding the First Controller Class
	Defining the Action Method
	Adding the View Template
	Testing the Application

	Summary

	Chapter 3: TaleWiki—The Basic Setup
	Understanding the Requirements
	System Requirements
	Module-Specific Requirements
	Managing the Stories

	Designing the Database
	Understanding the Conventions
	Designing the E-R Model
	Defining the Schema
	Creating the Tables

	TaleWiki—Developing the Tale Management Module
	Creating the Application Structure
	Generating the Scaffolds
	Customizing the Model
	Customizing the Controller
	Refining the View

	Testing the Application

	Summary

	Chapter 4: Managing the Users
	Understanding the Requirements
	Managing the User
	Managing Roles

	Designing the Tables
	Designing the E-R Model
	Deriving the Schema
	Creating the Tables

	Developing the User Management
	Developing the Role Management
	Developing the User Management Functionality

	Testing the Functionalities

	Summary

	Chapter 5: Gathering User Comments
	Understanding the Requirements
	Login Management
	Managing the Comments
	Designing the Database
	Designing the E-R Model
	Deriving the Schema
	Creating the Tables

	Developing the Login Management Module
	Creating the Login Page
	Implementing the Authenticate method
	Setting up the Session
	Applying Authorization
	Tying Up the Loose Ends

	Developing the Comment Management Module
	Generating the Scaffold
	Modifying the Model
	Refining the View
	Customizing the Controller
	Testing the Module

	Summary

	Chapter 6: Setting up the Template
	Understanding Migration
	Generating Migration Classes
	Editing the Generated Classes
	Running the Migration

	Customizing the Template
	Defining the Layout
	Customizing the Layout of the Login Page
	Defining the Master Layout

	Setting up the Navigation
	Testing the Application

	Summary

	Chapter 7: Tagging the Tales
	Understanding the Requirements
	Developing the Tag management Module
	Selecting a Plug-in for Tag Management
	Installing the Plug-in
	Setting up Tables Required by the Plug-in
	Developing the Tag Management Module
	Adding a Tag
	Visualizing the Tag Cloud
	Searching By Tag
	Testing the Modifications

	Summary

	Chapter 8: Enhancing User Experience with Ajax
	Understanding the Requirements
	Implementing Ajax
	What is Ajax?
	How Ajax and RoR are Related
	Implementing the Live Search
	Specify the Location to Display the Result
	Use the observe_field Helper
	Modify the Action Method

	Implementing the In-line Editing
	Marking the Fields for In-line Editing
	Set up the Controller

	Testing the Modifications

	Summary

	Chapter 9: Developing the Interface for Administration
	Understanding the Requirements
	Implementing the Functionalities
	Modification of the Deletion of Tales
	Providing Access to All the Functionalities of the Comment Management Module
	Implementing Auto-Complete for the User name
	Implementing Search
	Testing the Modifications

	Summary

	Chapter 10: Deploying the TaleWiki
	Understanding the Production Environment
	Development Mode
	Test Mode
	Production Mode

	Changing to the Production Environment
	Migrating to the Production Database
	Configuring Mongrel

	Points to Consider
	Summary

	Index

