

What readers are saying about From Java to Ruby

Bruce has a great reputation as a forward-leaning thinker, and he
articulates his opinions well. The mix of audience (Manager and
Developer) leans towards managers, but he manages to pull this dif-
ficult mix off well. It is just as good as I would expect from Bruce, hav-
ing read his other works.

Neal Ford
Author, speaker, and architect, Thoughtworks

Many leading developers are already sold on the idea that Ruby can
benefit their organizations—however, most of us still have to convince
our management. With Bruce Tate’s Java to Ruby, we have a powerful
ally in our quest to add this fantastic language to our toolbox.

Nathaniel T. Schutta
Co-author, Foundations of Ajax

This is a book that every die hard Java developer should read. The
strategy of integrating current Java Enterprise assets with Ruby’s
productivity can bring the edge that an organization needs to remain
competitive, react quicker to requirements, market shifts and ulti-
mately more agile.

Miguel Serrano
Enterprise Architect, VWR International

This book provides an excellent overview of the important Ruby com-
ponents and concepts to the Java developer.

Jeffrey Blessing, Ph.D.
Professor, Milwaukee School of Engineering

From Java to Ruby
Things Every Manager Should Know

Bruce Tate

The Pragmatic Bookshelf
Raleigh, North Carolina Dallas, Texas

Bookshelf
Pragmatic

Many of the designations used by manufacturers and sellers to distinguish their prod-
ucts are claimed as trademarks. Where those designations appear in this book, and The
Pragmatic Programmers, LLC was aware of a trademark claim, the designations have
been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The
Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g
device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher
assumes no responsibility for errors or omissions, or for damages that may result from
the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team
create better software and have more fun. For more information, as well as the latest
Pragmatic titles, please visit us at

http://www.pragmaticprogrammer.com

Copyright © 2006 The Pragmatic Programmers LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-
ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN 0-9766940-9-3

Printed on acid-free paper with 85% recycled, 30% post-consumer content.

First printing, June 2006

Version: 2006-8-1

http://www.pragmaticprogrammer.com

Contents
1 Introduction 1

1.1 The Emergence of Ruby 2
1.2 The Java Platform Is Weakening 4
1.3 Early Adopters Embrace Ruby 5
1.4 The Process . 8
1.5 Moving Ahead . 13
1.6 Executive Summary . 13

2 Pain 14
2.1 The House of Pain . 14
2.2 Poor Productivity . 17
2.3 Long Ramp-Up . 27
2.4 A Look at Risk . 29
2.5 Executive Summary . 33

3 Establishing Your Reward 34
3.1 Momentum . 34
3.2 Productivity . 37
3.3 Cost . 46
3.4 Ramp-Up . 49
3.5 Risk . 55
3.6 Looking Ahead . 57
3.7 Executive Summary . 58

4 Pilot 59
4.1 Building Your Plan . 59
4.2 Scenario 1: Classic Pilot 62
4.3 Scenario 2: Trojan Horse 66
4.4 Scenario 3: Race . 69
4.5 Scenario 4: Bet-your-Business: Basecamp 71
4.6 Scenario 5: Rescue . 72
4.7 Making the Choice . 75
4.8 Executive Summary . 75

CONTENTS vi

5 On an Island 76
5.1 Overview . 76
5.2 The Basics . 77
5.3 Web Development . 81
5.4 Rails . 84
5.5 Middleware . 88
5.6 Looking Ahead . 90
5.7 Executive Summary . 91

6 Bridges 92
6.1 Road Maps . 92
6.2 Scenarios . 94
6.3 Ruby to Java Bridges . 105
6.4 JRuby . 107
6.5 Service-Oriented Architectures 112
6.6 Executive Summary . 118

7 Ramping Up 119
7.1 Building Your Staff . 119
7.2 Building Skills Internally 123
7.3 Short-Term Augmentation 126
7.4 Preparing the Way . 128
7.5 A Brief Word about Deployment 130
7.6 Executive Summary . 134

8 Risk 135
8.1 Bad Risk . 135
8.2 Mitigating Technical Risk 138
8.3 Mitigating Political Risk 143
8.4 What’s Ahead for Ruby? 145

9 Bibliography 147

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=vi

The enemy of the truth is very often not the lie—deliberate,
contrived, and dishonest—but the myth—persistent,
persuasive, and unrealistic.

John F. Kennedy

Preface
The Explosion

When I started writing From Java to Ruby, I had a good idea that
Java was not the perfect solution for every problem, though some in
the industry may wish it were so. I knew Java visionaries were ner-
vously abandoning Java as they began to recognize real productivity
problems and unrelenting complexity. I saw the Java community suffer
through an unreal proliferation of frameworks, providing new choices
but also introducing an integration quagmire and a near-paralyzing
uncertainty. I heard from Java customers flailing against the tide of
increasing complexity, desperate to keep their heads above water. In
truth, some of those customers needed Java, and many still do. Still,
others used Java because it was the popular platform at the time, even
though more suitable alternatives existed. With slowly building momen-
tum behind Ruby on Rails, I saw Ruby as a good candidate for growth.
If Ruby kept growing, From Java to Ruby might have a chance.

But I had no idea how violent the explosion could be. Since I started
writing this book, I’ve seen Ruby on Rails downloads grow by nearly
an order of magnitude. Where I used to get dozens of emails a day, I
now sometimes get hundreds of emails in a few hours from the Rails
support forums. You can get books, hosting, training, consulting, and
informed opinions from many reputable sources. Make no mistake:
Ruby is exploding, and developers are driving the revolution. Devel-
opers can see the simplicity and power of Ruby, and developers first
experience the amazing productivity improvements when using Rails.

The problem is this: developers don’t usually pick technologies or sign
checks. If Ruby is to continue the rapid growth, we developers need to
understand how to make an effective case for our technology—but not
by using technical buzzwords. We need to communicate in the language
our managers understand.

CONTENTS viii

Those deciding between Java and Ruby must understand how Ruby can
save them money and help them better satisfy the needs of their cus-
tomers.

I now believe that the ideas expressed in this book fill a vacuum. If
this programmer-led revolution is to advance into the enterprise where
it can do the most good, we must learn to express how the technical
advantages of Ruby help solve business problems in ways that Java
can’t. After interviewing customers, visionaries, and Ruby programmers
for this book I am more convinced than ever that Ruby represents a
fundamental advancement over Java for many of the most important
problems we need to solve. In From Java to Ruby, you’ll learn:

• Why the Ruby risk profile is decreasing, even as Java’s rapidly
accelerates.

• Where Ruby can help, where it can’t, and where it simply has more
growing to do.

• Pilot strategies others have successfully used across many indus-
tries and circumstances.

• What industry visionaries say about Ruby.

If you think you might want to consider Ruby, other books may concen-
trate on helping you express your Java programs in Ruby. This book is
about moving minds. If you are a manager, From Java to Ruby will help
you articulate why Ruby is so important to your project, developers,
and your customers. If you are a developer, you can buy this book for
your manager or use the ideas to convince him yourself. These ideas
work. I’ve used them successfully to jump-start my Ruby practice, and
two reviewers of the book have already used them to help their man-
agement teams make the right decisions. They can work for you, too.

Acknowledgments

Writing a book is a challenging endeavor that tests each author with
every word. Writing a book worthy of my name, and that of my col-
leagues at the Pragmatic Bookshelf, takes passion and plenty of help.
From Java to Ruby would not have been possible without many peo-
ple who stirred my passion, provided technical support, answered my
questions, and provided frank criticism.

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=viii

CONTENTS ix

I’m profoundly grateful to all who helped. If I fail to mention you, please
accept my heartfelt apologies. Please let me know so I can list you here.

In particular, I would like to thank the people who use and drive this
emerging language. This book would not be the same without the prac-
tical experience each one of you provided. I thank my good friend Stuart
Halloway for an excellent discussion about the merits of Ruby. Thanks
also to Neal Ford for shaping my thinking, and sharing your network.

Thanks to Martin Fowler for the phone conversations that helped shape
my thinking and the subsequent interview that advances the ideas in
this book. I’m a huge admirer, and I was more than a little in awe as
I interviewed you. Thanks to Joshua Haberman at Amazon.com and
Heri ter Steeg for telling your stories about real production applications
in Ruby. Your ideas are compelling. I hope they will motivate others to
succeed with Ruby as you have.

As an open source community, many developers contribute excellent
frameworks and ideas to this community without any compensation.
Several of the interviews in this book are by such people. Thanks to
David Heinemeier Hansson for your astounding energy leading to the
Rails framework. Thanks also for your note setting me straight about
how things are accomplished in the Rails world—the note that ulti-
mately led to the interview in this book. I’m thrilled with your cre-
ation and learning more about the little things you got right every day.
Thanks to Jamis Buck, again, for your contributions to migrations,
Capistrano, and base Rails. And thanks for being willing to tell my
readers about your experience. You’ve always been willing to help.

The JRuby project is so exciting to me that I dedicated space for two
interviews on the topic. Thanks to Thomas E. Enebo and Charles O.
Nutter for your Herculean efforts in actually making Rails run on the
JVM. I can’t believe I’m actually typing that. Also, thanks for spending
so much time with me so I could tell my readers what you’ve done and
for helping me get the details right. I’ve got high hopes for JRuby from
many different perspectives.

Thanks also to all of those who reviewed From Java to Ruby: Jeffrey
Blessing, Miguel Serrano, Nate Schutta, Robert Brown, Steve Yegge,
Venkat Subramanium, and Wesley Reisz. Your comments were often
frank. If your ego can survive the experience, these are the types of
comments that help a book. I was blown away by the quality of your
comments. I built a document with each comment you made, and con-
sidered every single one.

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=ix

CONTENTS x

This is the first review process I’ve been through with such good feed-
back from each and every reviewer. Thanks also to Kim Wimpsett for a
thorough copy edit.

I have a special desire to thank Dave and Andy. You both stepped in to
do jobs that I’d never expect a typical publisher to do. Then again, noth-
ing about the Pragmatic Bookshelf is the least bit typical. Dave, we’ve
worked the same conference for three years now, and I’m finally get-
ting around to doing a book with you. I should have done it before. The
experience has been particularly rewarding to me. You opened doors for
me that might still otherwise be closed. It must have been maddening
working with some of my early stuff. Thanks for the hours formatting
my text and graphics before I got comfortable with my new tool set.
Andy, thanks for stepping out of your role and into mine to fill in details
and make sure each pixel was in the right place. You’ve got a fantas-
tic sense for what a book needs. I’ve not worked with this end of the
Pragmatic dynamic duo, and now feel shorted. Individually, you’re top
notch. As a team, you’re amazing to work with. Thanks to both of you
for giving me this opportunity and helping me to make the most of it.
And thanks for bringing a much needed jolt of sanity to the publishing
process. It’s nice to see the good guys do well.

More than anyone else, I’d like to thank my family. Julia, you will never
know how beautiful you are to me. When you laugh, the whole room
laughs with you. Kayla, your smile works magic on my soul. I’ve been
tremendously proud of you both for all you’ve done at school as dyslex-
ics. Keep working hard. You both know that daddy is dyslexic too, but
if I can write a book or two, you can overcome your problems to make
words do anything you want. Maggie, through it all, you have been the
love of my life and my inspiration. You support me even when you are
afraid. You give me joy and laughter even when pressing publishing
deadlines make it seem like there’s not much to smile or laugh about.
You do the little things like proofreading some early disasters, helping
me work through copy edits, and anything else that needs doing. More
than anything else, you love me. That love feeds my energy and passion
for writing. I’d be a worthless author without you. I love you, always
and ever.

Bruce Tate
June, 2006

bruce@rapidred.com

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=x

In every age of well-marked transition, there is the pattern
of habitual dumb practice and emotion which is passing
and there is oncoming a new complex of habit.

Alfred North Whitehead

Chapter 1

Introduction
As I drove across the central Texas landscape, my excitement and anx-
iety were both building. I was driving to a new client that would change
everything for me. This short trip would take me an hour south to a
small college town, but symbolically I was beginning a much longer
journey. I was going from Java to Ruby.

The past year, I had been involved in my first non-Java project in more
than a decade, and based on that success, I had recently written a
book called Beyond Java. I called into question my investments in not
only the Java platform but also ten years of skills, hundreds of cus-
tomers, scores of enterprise applications, four Java books (including
three Java One best-sellers and a Jolt award), and a reputation as a
pragmatic Java developer. As often happens, researching Beyond Java
changed the way I think about software development today. Modern
programming should be about leverage, with much more emphasis on
total cost and productivity. The more I learned, the more I believed that
this industry was heading for a revolution that would change the way
we write most database-backed Internet applications first and a much
broader suite of applications later. I put together a plan to ready my
company for the pending revolution, but planning and executing show
much different levels of commitment. This client would be my first full-
Ruby client.

I had worked on a small Ruby implementation before, at a small start-
up, but as a project manager, I had taken only limited peeks at the
Ruby code. At other times, I had also taught some small half-day Ruby
classes. This account would be my first large all-Ruby engagement, but
I was convinced that Ruby was the right language for my customer, and
for me, based on a number of criteria:

THE EMERGENCE OF RUBY 2

• Many of the programmers I respected the most raved about the
productivity and beauty of the Ruby language. With the Java lan-
guage, my productivity had been increasingly restricted under the
growing weight of a steady stream of new frameworks. Java began
to feel restrictive.

• The Ruby on Rails framework was experiencing explosive growth. I
had seen programming languages explode like this only twice over
the span of my career, with the introduction of the C++ and Java
languages.

• Ruby motivated me. The Ruby language rekindled some fires for
the love of programming, which I had not experienced since the
early days of Java.

• Ruby on Rails was gaining maturity. As Ruby on Rails kept stack-
ing up a steady stream of achievements, I started to believe that
this framework could satisfy the needs of my customers.

So I drove through central Texas, contemplating my longer journey,
filled with nagging questions. Would Ruby succeed or leave me hang-
ing? Would I be able to fill my calendar with Ruby work, and would I be
able to fill the gaps with Java assignments? I knew my customer was
having the same kinds of doubts.

1.1 The Emergence of Ruby

As I readied for change, I needed only the right customer. When a com-
pany south of Austin invited me to build a Ruby on Rails application
with them, I couldn’t refuse. The application was a perfect fit for Ruby
on Rails, a new database-backed web-enabled application with an exist-
ing implementation on Microsoft’s .NET Framework. They had pressing
cost concerns and scheduling constraints that I did not believe we could
meet with existing Java or .NET technologies. I had a project, a moti-
vated client, and all the right conditions for success. I told the customer
that Ruby was a match, and we continued.

When I said that I’d be doing demos every week starting the first week
after development, the company was plainly skeptical. They doubted
that we’d be able to do enough work to justify a room full of clients for
a demo, but as we presented the first week’s demo, the skepticism was
replaced with excitement. The Rails language let us quickly generate
some basic business objects, carve out our security model, and get

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=2

THE EMERGENCE OF RUBY 3

the first dozen or so screens up to show our users. With some of the
application in hand, we had a common basis for real communication.
Everyone in the room was aware that this project would be different.

After only two days of training, my development team, consisting of
two Ruby novices, started writing code the first day, and they contin-
ued to improve through the first month. By the second month, they
were fully productive members of a well-oiled machine. The first four
demos included work that the customer estimated would take them
four months on the Java platform. For the customer, genuine excite-
ment replaced skepticism, and my biggest challenge was controlling
the scope creep born of months of accumulated requirements that they
had been unable to work into their existing system.

After three months worth of development, we had completed the devel-
opment phase, with a few minor exceptions. We had put aside a month
for testing and ironing out development issues. We had handled the
development twice as fast and with less than a quarter of the cost of
the existing implementation. The new application was faster, provided
a much better user interface, and included many capabilities that the
original version could not possibly touch. My customer now believed,
and I validated my own belief. As From Java to Ruby readies for pro-
duction, our application also readies for production. All early indica-
tions are good except for a few typical growing pains.

As a mountain biker and white-water kayaker, hard decisions are famil-
iar to me. I’m often perched at the top of a dangerous drop on land or
water, deciding whether the trail or rapid is worth the risk and the best
way to attack it. I have to understand the potential rewards of the move
and weigh those against the unavoidable risks. I have to take steps to
mitigate that risk and be able to recover should the need arise.

Shifting the foundation of my practice from Java to Ruby was exactly
the same. I needed to understand the consequences of failure, mea-
sure those against the potential rewards, mitigate risks, and act based
on what I knew. As I contemplated retooling my practice, I shifted into
data-gathering mode. Early within the process, I began to meet Ruby
developers to understand what was so special about Ruby. Then, I
talked to managers. I wanted to understand who was using Ruby for
production applications and how hard they were willing to push it. I
talked to skeptics to understand where they thought the biggest holes
might be. Next, I tried Ruby on Rails on something beyond trivial. It fell
short of my expectations in some ways but far surpassed them in most

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=3

THE JAVA PLATFORM IS WEAKENING 4

others. Now, I’m working on strategies to integrate Java with Ruby. I’ll
start doing integration projects in the near future. In this book, you’ll
learn what I’ve learned. I’ll tell you how far and hard I think you can
push Ruby. I’m excited about the language, and I’ll try to tell you about
Java’s limitations, where Ruby is an appropriate choice. I will also warn
you where Java may be a better choice, or Ruby is not quite mature.

Be forewarned, though. This field is moving rapidly and will doubtless
change many times in the next few years.

In this chapter, we’ll look at the emergence of new technologies, espe-
cially programming languages. Then, we’ll look broadly at a process you
can use to decide whether to take the plunge. Finally, we’ll see what
some Ruby visionaries have to say about moving from Java to Ruby.

1.2 The Java Platform Is Weakening

Successful programming languages seem to emerge every decade or so.
Bell Labs developed the C programming language in the early 1970s,
and C emerged in the mid-1970s as a commercially successful lan-
guage for applications. The new language had critical advantages that
application languages of the time didn’t have: speed and close affinity
with the rapidly emerging Unix operating system. C++ was released by
AT&T in 1985 and slowly subsumed C because it had features allow-
ing object-oriented programming. Sun released Java in 1996, and it
rapidly emerged as a popular language for Internet development. Java
has been growing steadily ever since.

Figure 1.1, on the following page, shows the overall timeline, with a new
language emerging every decade or so.1 FORTRAN in the early 1950s
and COBOL in the early 1960s reinforce this trend. If you believe the
trend will continue, we’re due for a new programming language around
now, and Java should start to decline soon. If you pay careful attention
to the trade press, you’re probably already seeing some signs of decline:

• Complexity. Java’s complexity is increasing. With one massively
complex framework after another, Java vendors embraced EJB
and the most complicated version imaginable of web services and
XML. EJB vendors redesigned EJB from scratch twice, forcing sig-
nificant migrations on their customers.

1http://www.levenez.com/lang/history.html

http://www.levenez.com/lang/history.html
http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=4

EARLY ADOPTERS EMBRACE RUBY 5

1950 1960 1970 1980 1900 2000

Java 1996

C++ 1983

C 1971

Cobol 1961

Fortran 1954

Figure 1.1: Language timeline

• Availability. In a 2003 study, Wily reported that J2EE performance
and availability were generally average to poor. To add fuel to the
fire, Java Lobby, a Java evangelist organization, published an arti-
cle called “The Fabled ’Five Eights’ of J2EE Availability.” This term
stuck and has been hotly debated ever since.2

• Competition. In February 2005, IBM announced consulting sup-
port for PHP. Ruby on Rails has passed 500,000 total downloads.
By the middle of 2006, there will be seven books about Ruby on
Rails. Peter Yared, Sun’s previous application server CTO, pre-
dicted that J2EE would lose to LAMP (open source software con-
sisting of Linux, Apache web server, MySQL, and a dynamic lan-
guage such as Python, Perl, or PHP).3

Still, most executives embrace Java or the Microsoft equivalent, .NET.
Alternatives may as well not even exist. We’ve created an environment
where the popular decisions are safe, even if the popular decision is
wrong. But I believe Ruby will emerge soon. Many of Java’s visionaries—
including James Duncan Davidson, the creator of two of the most suc-
cessful Java open source projects of all time—are betting on Ruby on
Rails. Let’s quickly look at how new technologies, including program-
ming languages, emerge.

1.3 Early Adopters Embrace Ruby

In Crossing the Chasm [Moo99], Geoffrey Moore presents a theory about
the adoption of technology. Figure 1.2, on the next page shows his tech-

2http://www.wilytech.com/news/releases/031120.html
3http://www.theserverside.com/news/thread.tss?thread_id=36129

http://www.wilytech.com/news/releases/031120.html
http://www.theserverside.com/news/thread.tss?thread_id=36129
http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=5

EARLY ADOPTERS EMBRACE RUBY 6

Technologists Visionaries Pragmatists Conservatives Skeptics

Figure 1.2: Technology adoption curve

nology adoption graph. The X axis represents time, and the Y axis repre-
sents market share. Moore believes that technology adoption comes in
five groups. Technology enthusiasts will play with technology because
it’s fun and informative. Visionaries come next, applying technology
to achieve competitive advantage when they see big rewards that off-
set high risks. These two groups together are early adopters. Later,
the mass market follows with pragmatists and conservatives in a huge
wave of adoption. Skeptics trickle in last. Moore argues that many
unsuccessful technologies stall after the visionaries adopt the technol-
ogy because pragmatists look for safe choices, and that’s the rub for
new technologies. A new language must show it can “cross the chasm”
to be commercially successful, but the mass market will not adopt a
new language until it has crossed the chasm.

With new programming languages, the chasm is a massive obstacle.
The problem for new adopters is daunting: to get the biggest competi-
tive advantage, you must be willing to bet that a new language will be
enticing to risk-averse pragmatists, but without an established com-
munity that makes the technology safe, a new language will rarely
be enticing enough. In Beyond Java [Tat05], I argue that the chasm
for new languages is bigger than the chasm for many other new tech-
nologies because of the need for a supporting community. A language
needs community to supply enough education, enhancements, pro-
grammers, and aftermarket extensions to make the language worth-
while. So, new languages rarely grow slowly to prominence. Instead,
either they explode or they stall and never enter the mainstream. With

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=6

EARLY ADOPTERS EMBRACE RUBY 7

explosive growth, the chasm becomes much less of an issue, because
pragmatists can see evidence of rapid growth and the promise of com-
munity for the new technology, so the risk becomes much smaller.

Ruby is exploding today, and the catalyst is productivity, thanks to
a framework called Ruby on Rails. The intended niche for Ruby on
Rails is database-backed Internet applications. This is clearly the most
important application niche, and we’ll focus on this space within this
book; however, I’m convinced that the benefits of Ruby reach far beyond
any single framework, and you’ll see many examples within this book
of people who have used Ruby without Rails and achieved impressive
productivity. In today’s marketplace, productivity is king. Some inter-
esting innovations in Ruby on Rails make it several times more produc-
tive than Java for an important class of applications. Some features of
Ruby make it more productive than Java as an application or scripting
language.

You may be reading this book right now because you’ve heard about
some of those great productivity numbers and because you can’t afford
to ignore them. You’re right. I’m not going to belittle the enormous risk
of adopting a new programming language, but let’s look at how Ruby
early adopters tend to mitigate that risk.

Risk

In this book, the central question is this: how can you justify the mas-
sive risk of moving to a new programming language? I won’t pretend
to make this decision for you, but I will show you how I came to this
decision for my practice, and I’ll walk you through what others have
done. My intuition tells me Java development is getting riskier as Ruby
development gets safer. Although my metrics may be disputable, I do
have eight years of experience working with Java customers, and I have
close relationships to Java visionaries who are observing the same phe-
nomenon.

As the risks for Java increase, Ruby’s risks will diminish as its mar-
ket share rises. Eventually, these trend lines will surely cross, at least
for certain problem sets as shown in Figure 1.3, on the following page.
You’ll have to measure the risk of stagnation of a new programming lan-
guage, leading to spectacular injury, against the greater risk of highly
probable death by a thousand pin pricks—bugs, cost overruns, and
delays.

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=7

THE PROCESS 8

RubyRisk

Java

Risk

R
is
k

Time

Figure 1.3: Java’s risks are increasing over time

Those who make the Ruby decision early will have a tremendous advan-
tage over those who have to wait. That’s what’s driving the investment
of dozens of Java visionaries, and that’s what’s fueling Ruby’s explo-
sion.

I won’t dwell too long on why I believe Ruby will emerge just yet. Instead,
let’s look at how you might decide to move to Ruby, and how you might
act on that decision.

1.4 The Process

The structure of this book is based on the phases, shown in Figure 1.4,
on the next page, that you might go through as you introduce a new
language. Each chapter in the book will walk you through part of that
flowchart. You can see the three distinct phases of the decision:

• Gather information. In this phase, you seek to understand your
own Java-based pain and what you expect to gain from a new
programming language. Pain, potential risk, and potential reward
are all part of this equation.

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=8

THE PROCESS 9

Gather Information

Validate
Pain

Establish
Rewards

Stop!

Limited Deploy

Build
Pilot

Limited
Deploy

Broad Deploy

Integrate Ramp Up

Stop!

Stop!

Stop!

Stop!

Stop!

Figure 1.4: Ruby adoption decision chart

• Limited deployment. In this phase, you try Ruby in a pilot, and
if it is successful, you deploy that pilot. You may then begin to
take on limited, isolated projects with Ruby. At this point, risks
are relatively low, based on the limited deployment.

• Broad deployment. In this phase, you expand the scope of your
Ruby deployments. This set of risks is much different from work-
ing with limited deployments. You’ll need strategies for your inte-
gration with other applications, and you’ll also need to understand
how you’ll go about recruiting talent.

Validating Pain

The first step in any significant technical transition is evaluating the
need. The most expensive migration is one that never should have hap-
pened. If you’re one of Moore’s technologists or visionaries, you might
be tempted to plunge headlong into Ruby, without assessing your pain,
but it is better to take the time to understand what Java’s limitations
are costing you. A cost assessment in your back pocket can be an excel-
lent insurance policy against trouble.

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=9

THE PROCESS 10

Establishing Rewards

With the costs of Java development firmly in your pocket, your next
move is to understand the benefits of Ruby. For this step, you’ll try to
make as direct a comparison between Java and Ruby as you can. You’ll
use tangible and intangible evidence to support your thought process:

• Costs. You’ll directly compare your cost structure under Java to a
similar one for Ruby. You’ll take into account both hard and soft
costs.

• Visionary opinions. The opinions of several people in the indus-
try carry more weight than others. The movement of visionaries to
Ruby or away from Java could also lend support to a Ruby deci-
sion.

• Team dynamics. This intangible factor will become increasingly
important as Ruby continues to emerge. If the emergence of Ruby
is like that of other languages, you’ll find developers want to use
it because it’s a new and marketable skill.

• Maintenance. There aren’t any empirical studies about the cost
of maintaining Java versus alternatives, but some circumstantial
evidence suggests that maintaining simpler systems costs much
less, and other studies suggest that applications with fewer lines
of code are generally easier to maintain.

The Pilot

If you’ve established that Ruby is in your future, the next step is to
establish some success with working code. You can choose from many
strategies to help you do so:

• A conservative team can build a prototype in Ruby that’s repre-
sentative of a real-world application. You can show a shorter cycle
time or a richer application or both.

• A consulting team can start a Ruby project, at its own expense,
in parallel with a Java project. When the customer is convinced
of the benefits (such as lower cost or richer features), the Java
version can be disbanded.

• A team with a variety of old and new projects can choose a small,
low-risk internal application in Ruby instead of Java. Most compa-
nies have inwardly facing applications that might not be mission
critical. The best pilot projects have high visibility and low risk.

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=10

THE PROCESS 11

• An aggressive team can build the same high-risk application in
parallel, once in Ruby and once in Java. Usually, the Ruby team
will be much smaller. As the Ruby team demonstrates compe-
tence, the Java effort can be disbanded.

The best options usually deliver tangible business value quickly. We’ll
go over each of these scenarios and back them up with people who have
implemented successful pilots with each technique.

Picking Technologies

After you’ve established success, you’ll want to take stock of Ruby and
its world. Once you’ve gotten a good handle on it, you’ll want to compare
Ruby technologies to Java technologies at a very high level to get your
head around what a particular migration will require.

You don’t need a whole lot of deep technical detail. You just need a
high-level understanding of the tools at your disposal. You’ll want to
understand the Ruby language, how you’ll handle issues such as per-
sistence or security, and web development strategies. In short, you’ll
want to know what Ruby can do for you.

Integrating the Old World

If you have much invested in Java code, you won’t be able to migrate
overnight, and you shouldn’t try. Many companies run Java, COBOL,
and C++ side by side quite effectively. The key to understanding your
overall migration plan is knowing the integration strategies available to
you.

We’ll highlight these strategies:

• You can integrate coarsely. Using this strategy, you make major
chunks of your Java applications available remotely, usually over
some Internet standards. Web services and service-oriented archi-
tectures are two examples of this approach.

• You can use web services or prepackaged middleware. Messaging
software (such as IBM’s MQ or BEA’s Business Integration Suite)
usually provides good C APIs that Ruby can use.

• You can use fine-grained integration. Using this strategy, you use
special software to let Java and Ruby talk together at very low
levels. You’ll see several frameworks that use this approach.

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=11

THE PROCESS 12

When you have a clear strategy for how you want your Java and Ruby
applications to interoperate, you stand a much better chance of suc-
cess. Big bangs—migrations that must happen all at once—are rarely
successful. A good integration strategy goes a long way toward helping
you deliver business value throughout your transition, and that means
greater success.

Ramping Up

Once you know how your system will fit together, it’s time to ramp up
your development effort. You might be surprised to know how much
harder it will be to find Ruby developers over the short run. Don’t let
that deter you. You can often teach a Java developer Ruby faster than
you can teach her many Java frameworks. We’ll look at strategies to
find and hire Ruby developers.

Weighing Scope and Risk

Once you have an idea of your potential gains, it’s time to focus on
the other side of the equation. As an emerging programming language,
Ruby has a different set of challenges from Java:

• As a new language, Ruby could potentially stagnate, which could
make scarce resources even harder to find.

• There are not as many deployed Ruby applications in production
yet, so we don’t have as much definitive proof of the ultimate scal-
ability of Ruby.

• The Ruby community is not as well established as the Java com-
munity, so it’s harder to find third-party components, frameworks,
education, and services.

• Ruby is less structured than Java and has fewer automated fea-
tures to protect applications from abuse. This flexibility is both a
strength and a weakness.

To be fair, many Java developers face the same set of risks on a smaller
scale. The number of Java frameworks is exploding, with dozens of new
open source and commercial frameworks emerging monthly. But Ruby
is especially vulnerable to these risks, so you have got to take them
seriously and carefully weigh them against the potential benefits.

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=12

MOVING AHEAD 13

1.5 Moving Ahead

Ruby is real. Java visionaries I know are moving aggressively toward
it, investing by creating education, writing books, and generally paving
the way for the masses to follow. Education companies are ramping up
to offer courses on Ruby on Rails. In the chapters that follow, you’ll see
what has Java visionaries concerned and Ruby visionaries enthused.
You’ll also see the deep questions that all of us must answer as we
move from Java to Ruby.

1.6 Executive Summary

• Java is bogging down under too many frameworks.

• The integrated Rails environment counters this complexity.

• Early Rails adoption is very strong.

• Moving to Ruby involves gathering information, establishing an
early limited pilot, and deploying more broadly.

• Risk is inevitable, but Java’s risks are understated.

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=13

We must all suffer one of two things: the pain of discipline
or the pain of regret or disappointment.

Jim Rohn

Chapter 2

Pain
If you want to truly know the health of your project, you have to get in
touch with your pain. Athletes need to strike a balance between nagging
twinges and deeper telling aches; development managers must distin-
guish between mere hiccups and symptoms of damaging disease. If
you’re succeeding with Java with only nagging pain—if you’re deliver-
ing software your customers want on time within your budget and with
happy developers—you probably shouldn’t consider moving to Ruby.
But if your aches run deep and are the symptoms of real disease, you
have to act. The first step of introducing any new technology must be
recognizing pain.

2.1 The House of Pain

After hearing all the hype around Ruby on Rails and other frameworks,
you might be tempted to bolt for the exit too soon, but take a deep
breath first. Don’t let anyone tell you that Ruby is the answer to every
question. Java does have some tremendous advantages over most other
programming languages:

• Java’s population of programmers is huge. With Java’s massive
pool of programmers, you can always find developers to hire or
supplement your staff with temps, consultants, or even offshore
development.

• Java’s open source community thrives. Open source projects exist
across a wide spectrum of problem spaces and fill many different
niches. With Java, you can often get software for free that you’d
have to build yourself or pay for on other languages.

• Java is mature. Java is often the safest choice.

THE HOUSE OF PAIN 15

• Java is scalable. We’ve learned enough from experience to build
applications that scale.

• Java offers choice. You don’t have to paint yourself into a corner
with Java, because you have so many open standards defining
many important interfaces and vendors to choose from.

Technology

In general, Java is a safe choice. It’s mature, complete, and ready for
outsourcing. For good reasons, Java has dominated Internet integra-
tion projects. Sure, Java can handle the most difficult enterprise inte-
gration issues. It has got features to solve notoriously hard problems:

• Two-phase commit. When the same application needs to coordi-
nate two resources—such as two databases, for example—you
sometimes need sophisticated software to tie the two together to
keep things consistent. That software often uses two-phase com-
mit, and Java supports it.

• Powerful object-relational mapping. Say your company’s new DBA,
a PhD student with ten years of schooling but no practical experi-
ence, proudly brings you a database model that is in 14th normal
form. After they stop screaming, your programmers tell you they
have never heard of 14th normal form, but they are quite sure
that they don’t want to subject their object model to such torture.

Instead, your best programmers use a framework to translate data
between the database schema and the objects of your application.
That technique is known as object-relational mapping. Java has
mature frameworks that do it well; Ruby doesn’t.

• Distributed objects. When you need to build applications that span
many different computers across the room, or even across the
ocean, you sometimes need specialized software to help differ-
ent pieces of the application communicate. Java can manage dis-
tributed objects in many ways. Ruby’s options are more limited.

Ruby does have some simple transaction management and some rudi-
mentary object-relational mapping, but those frameworks are nowhere
near as powerful or as proven as their Java counterparts. If you were
to attack any of these problems with Ruby today, you’d possibly wind
up writing too much infrastructure and glue code.

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=15

THE HOUSE OF PAIN 16

With Java, a whole lot of your glue code comes for free. Treat these
enterprise problems as if they were elephants. You can’t bring down an
elephant with a toothpick or a Swiss army knife. You need an elephant
gun. The Java platform is an elephant gun.

The Hierarchy of Pain

I once talked to a customer about the problems in her enterprise. After
questioning her developers and reading code, I strongly suspected that
productivity was her biggest problem. In fact, I was wrong. They were
horribly unproductive, but given the business climate, it didn’t matter.
Their group was dependent on requirements from three different busi-
ness units, and the development team frequently had to wait weeks at
a time for new requirements. It dawned on me that the director was
telling me the truth. Java development was simply not a bottleneck. If
Java is not the problem, don’t go looking for a solution.

To be successful, you need to understand the pain in your organization
and interpret it. You need to know where the pain is the most acute.
Most projects don’t fail for technical reasons. If you can’t solve your
communication problems, if you can’t control scope creep, or if you
can’t tell what the customer actually wants, the choice of programming
language is not going to matter to you. It’s simply not high enough in
the hierarchy of pain. Put this book down, and pick up another one.
Ruby won’t help; it will only introduce more risk.

But if you’re inclined to believe that a simpler, more productive lan-
guage would help, read on. Too many people worship Java, and too
many vendors tell you you that Java can be all things to all people, and
therein lies another kind of risk. Using the wrong tool for the job, even
when it’s the most popular tool, costs you money. Many of the problems
that we solve with Java simply aren’t elephants. I’d argue the problem
we solve most often with Java—putting a web-based user interface on
a relational database—isn’t an elephant. It’s a fuzzy little bunny rabbit.
Or a squirrel. Although you can probably kill a rabbit with an elephant
gun, bad things usually happen when you do.

Solve the wrong problem with the wrong technology, and the real pain
begins. When Java was invented, it was simple, nimble, and robust
when compared to most alternatives. But the pain crept up on us,
slowly building from an itch to a piercing, throbbing crescendo. Let’s
look at the types of problems you’re likely to find with the Java plat-
form.

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=16

POOR PRODUCTIVITY 17

2.2 Poor Productivity

More than any other characteristic of any programming language, you
can translate productivity to bottom-line dollars. Let each worker do
more, and you can carry less staff. Work faster, and your application
can deliver value to the business sooner. In most cases, productivity
is the most important consideration for software development. Whether
your project emphasizes quality, features, availability, or performance,
productivity is the key to get you there. The best development teams
build software in three stages:

• Make it work (delivery).

• Make it right (quality).
• Make it fast (performance).

You can’t attack quality or performance without first getting your base
running. And you certainly need to make an application available before
you can make it highly available. It’s all about evolution. You need
to deliver tangible business value with every step. In this industry,
we’ve learned that the most productive software development happens
in smaller iterations. You simply can’t be productive by building fast,
clean applications with all possible features the first pass through your
development cycle. You’ll drown in the details, and you’ll likely throw
too much code away. It’s far better to get something running and then
improve it quickly.

You may be using Java because you think it’s a clean language and
it will save you time in the long run by improving your productivity
over the long haul. You are betting that you can introduce new fea-
tures faster, introduce fewer bugs, and fix the ones that sneak in more
quickly.

Why Is Productivity So Important?

Here’s an example from another industry. When Japan started building
cars, they didn’t build them very well. In fact, Japan had a reputation
for building junk. They needed to improve quality, and the best path to
do so was one iteration at a time.

Japan’s quality improved after they applied the technique of Statisti-
cal Process Control (SPC) to their manufacturing. The inventor of SPC,
Edward Walter Demming, tried to get the United States to adopt these
methods in post–World War II America, and it didn’t take hold; so,

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=17

POOR PRODUCTIVITY 18

Phase 1:
Admin

Phase 2
Data Entry

Phase 3
Reporting

Project 1

Project 2

P
er
fo
rm
an
ce

tu
ni
ng

M
or
e

fe
at
ur
es

M
in
im
al

fe
at
ur
es

P
er
fo
rm
an
ce

tu
ni
ng

M
or
e

fe
at
ur
es

M
in
im
al

fe
at
ur
es

P
er
fo
rm
an
ce

tu
ni
ng

M
or
e

fe
at
ur
es

M
in
im
al

fe
at
ur
es

P
erform

ance

tuning

P
erform

ance

tuning

M
inim

al

features

M
ore

features

M
inim

al

features

M
inim

al

features

Figure 2.1: Project 1’s team concentrated on unnecessary detail too
soon

he took it to Japan, where they needed to rebuild their manufactur-
ing infrastructure after the war. Demming was treated like a god in
Japan. They applied his SPC techniques religiously in their automotive
industry and eventually unseated Detroit as the top-selling auto man-
ufacturer. They improved slowly, focusing on improving process, espe-
cially their cycle time between generations. With a shorter cycle time
and leadership focused on process improvement, Tokyo’s cars improved
faster than Detroit’s.

You can apply the same principle to software. With better productivity,
you have more time to focus on improvements to features, performance,
and quality, based on the needs of the business. Figure 2.1 shows
the story. If you had three major pieces of an application to deliver
(admin, data entry, and reporting) and you focused on building fast,
perfect, feature-rich software for each major component, it would take
you a certain amount of time—arbitrarily call it 15 units, if nothing
went wrong.

If instead you put something in front of your customers after satisfying
your initial set of requirements, you’d learn things from your customers
that could save you time. Let’s say that each initial iteration takes one
unit of time. Assume your administrators say that the new admin con-

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=18

POOR PRODUCTIVITY 19

sole is fine; in fact, it’s far better than the one they’re using. Still, you
know of some bugs to fix, so you allocate one unit of time for polish-
ing work. Now, let’s say your analysts do not like the reporting feature,
finding it crude, limiting, and slow (four units). You’d need to do some
rework, combined with some polishing and performance work. Cus-
tomer service reps liked the look and feel of the system, but it could not
keep up with the call volume. You’d have to improve performance (two
units). You have delivered your software in less than half the time.

So, your goal isn’t to be perfect right out of the gate—your goal is to get
out of the gate quickly. Then, you iteratively improve. The quicker your
iterations, the better off you are. With most applications, rather than
anticipating the needs of your users, you should instead strive to get
code in front of your users quickly. Then, based on their feedback and
the needs of your business, you can apply your resources to address
performance optimization, features, and other improvements. Take a
lesson from Japan. Strive to cycle faster, and improve with each iter-
ation. If you can do both, you’ll beat your competition. That’s true in
manufacturing, and that’s true in software.

Productivity of Core Java

In terms of productivity, in order to understand how Java comes up
short, you have to know where it came from. In 1996, C++ was the
dominant programming language for application development on server
platforms. C++ was not a very productive language, but it was fast. At
the time, we thought speed was more important than productivity. C++
had all the marketing momentum (from all the Unix vendors, Microsoft,
and IBM, among others). C++ had the community. But when conditions
are right, new programming languages emerge and old ones fade.

Any new programming language needs a catalyst to get the community
rolling. Programming languages need a community in order to achieve
widespread success, but it’s hard to get new users without a commu-
nity. When Sun created Java and embedded it into the Netscape Navi-
gator Internet browser, they made some excellent compromises to ramp
up a Java community in a hurry:

• Sun made Java look like C++. Java adopted a syntax like that of
C++. With a C++-like language, Java didn’t have to establish its
own community from scratch. It could simply lure in C++ devel-
opers.

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=19

POOR PRODUCTIVITY 20

• Sun made Java act like C++ in a few important ways. Object-
oriented languages let you build applications with a certain kind
of building block: an object. Objects have both behavior and data,
rolled up together. C++ cheats on object orientation, because some
C++ elements, like characters and numbers, are not really objects.
Java cheats in the same way.

• Sun copied a C++ feature called static typing. Static typing means
that certain pieces of an application have one type, and you have
to declare that type in advance. Many of the most productive lan-
guages for building applications use a different strategy, called
dynamic typing.

In Beyond Java, I assert that Java’s creators had to make these com-
promises to succeed. But compromises have two sides. By building a
language that was closer to C++ than alternatives such as Smalltalk or
Lisp, Sun was able to attract C++ users to the fledgling language. The
downside of these compromises is productivity. C, and C++ by exten-
sion, was never designed to build applications. It was designed to build
operating systems such as Unix. C++ was designed to be flexible and to
produce fast systems code, not to productively build applications. We’re
now paying for the compromises:

• The C++ syntax, combined with Java’s static typing, means pro-
grammers have to type too much—Java programs have two to
four times the number of characters of similar programs in more
dynamic languages such as Ruby. Many believe that shorter pro-
grams reduce maintenance costs proportionately.

• Java’s static typing requires a compiler, so the compiler can check
certain details for programmers, such as several forms of compat-
ibility between two parts of a program. As a consequence, Java
developers have to go through an extra compile step hundreds of
times a day. Ruby developers don’t.

• Java’s primitives, are not object-oriented; this means that Java
libraries must often be many times larger than libraries for purely
object-oriented languages. For example, object-oriented languages
have features to turn objects into XML. Similar Java programs
have to deal with objects, but also characters, numbers, Booleans,
and several other primitive types.

The available evidence to support programmer productivity for any lan-
guage is remarkably scarce. One of the most compelling studies I’ve

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=20

POOR PRODUCTIVITY 21

0 5 1510 20

Median development time in hours

TCL
REXX
Python
Perl

Java
C++
C

D
yn
am
ic

S
ta
tic

Figure 2.2: The productivity of seven different languages

seen on the topic is very old and does not relate directly to Ruby. I men-
tion it here only because every single dynamically typed language, the
so-called scripting languages, did much better than its statically typed
peers. Figure 2.2 shows the results of a report1 comparing productiv-
ity of dynamic languages such as Python, REXX, and Tcl to static lan-
guages such as C++ and Java. Surprisingly, Java is the worst language
in the study, being around one third as productive as the scripting
alternatives. Further, Java programs were generally two to three times
as long as programs from the scripting languages. You could argue that
tools and frameworks have gotten better since then, but we’ve also seen
extensive bloating and a proliferation of frameworks. To many, these
problems represent a productivity gash too large for any IDE to patch.

In Chapter 4, Pilot, on page 59, we’ll look at a number of reasons that
Ruby development can be many times as productive as Java develop-
ment for certain problem domains. If you’re interested but not con-
vinced, you can do a prototype and measure productivity for yourself.

Productivity in Frameworks

You might think you could sacrifice some productivity when you’re deal-
ing with the low-level Java programming language and make up that
time by using one of the thousands of Java frameworks. Usually, you’d
be wrong.

1http://page.mi.fu-berlin.de/~prechelt/Biblio/jccpprt_computer2000.pdf

http://page.mi.fu-berlin.de/~prechelt/Biblio/jccpprt_computer2000.pdf
http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=21

POOR PRODUCTIVITY 22

Essential complexity is the complexity required to do a job. If your appli-
cation does tax returns, your application is going to be at least as com-
plex as the requirements in the tax law. Nonessential complexity, also
called accidental complexity, deals with the complexity you introduce
to your environment. Martin Fowler, one of the most influential con-
sultants in the computing profession, suggests Java frameworks intro-
duce too much nonessential complexity. When you look at the history
of enterprise computing in Java, you have to conclude he’s right.

What’s wrong with Java?—A discussion with Martin Fowler
Chief scientist of ThoughtWorks,

author of Patterns of Enterprise Application Architecture

Q: What was your first object-oriented programming language?
Early in my career, I had an interest in objects. I worked with
Smalltalk and C++. Most people at that time started with one or
the other, but knowing both gave me a certain advantage. I got a
distinctly schizophrenic view of the world. I was always conscious
of the benefits of Smalltalk over C++. I didn’t believe that peo-
ple should use C++ for enterprise applications, but they did. When
Java came along, we gained some, primarily because Java killed
C++ for enterprise application development. But like many old
Smalltalkers, I felt Java was a step backward from Smalltalk.

Q: What are the advantages of Java over Ruby?
With Java, you get sophisticated tools. I feel the pain when I have
to leave the Intellij IDE. For companies, the stability of Java (and
.NET, Java’s separated-at-birth twin) is important, because post-
COBOL, things were unstable with many languages and tools
where it was hard to see what would last.

Q: What are the limitations of Java as you see them?
I usually hear people complain about static typing, which is impor-
tant but not the whole story. Java guys spend too much time
dealing with all the technical stuff that surrounds the core busi-
ness behavior; this is complexity that’s not helping to deal with
the business problem. Our CEO (ThoughtWorks CEO Roy Singham)
likes to taunt Java by saying it has failed the enterprise. The fact
that we have to do all of this machinery means developers are

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=22

POOR PRODUCTIVITY 23

not thinking enough about business issues. They’re thinking about
how to move data in and out of a database, and in and out of a
GUI.

Q: Where did Java go wrong?

There’s so much of a push in the Java world to keep lesser-skilled
developers from making messes, and that idea has failed. The
idea that you can keep people from shooting themselves in the
foot is appealing, but it’s not what we’ve seen in practice. There
are far too many overly complex bad Java apps out there.

Overall, Java is just too complicated. No Silver Bullet [Bro86] made
the distinction between essential and accidental complexity. For
example, if you’re building a payroll system, the payroll business
rules represent real complexity. But with Java, accidental com-
plexity is most of the total effort. The EJB fiasco made this worse.
EJB is a stunningly complex framework but is far too complex for
most of the applications we see. Spring and Hibernate are a huge
step forward, but there’s still this nagging feeling that there’s too
much accidental complexity.

Q: Do you see any real alternatives to Java?

In the enterprise space in the last six years, a dark horse is stalk-
ing the .NET/Java duopoly: LAMP. LAMP stands for Linux, Apache,
MySQL, and one of the P-scripting languages from PHP, Perl, and
Python. In reality, LAMP has come to signify some combination of
open source frameworks, plus a scripting language. By that defini-
tion, Ruby is an honorary part of the LAMP equation; you just have
to ignore the downstroke on the R.

I used Perl for a little while, but I gave up when I couldn’t even
read some of the stuff I wrote. Some things in LAMP are now get-
ting more interesting because the scripting languages are getting
closer—application designs are getting better. I got into Python
for a while, because objects were much more fluent, and it was
much more dynamic than Java.

But don’t forget that these are still early days. As I talk about this,
we don’t have much experience of Rails in the field.

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=23

POOR PRODUCTIVITY 24

At the moment it looks good, good enough to be worth exploring
further, but until we see the practice in the field, we won’t know
for sure.

Q: Can Java be fixed?
That’s an interesting question. You need to first answer the ques-
tion, “What do they need to do to evolve the language to look
more like the languages that feel more comfortable?” I’m not
completely sure what that list is, but we could come up with such
a list. But it’s not just the language. It’s all of the libraries. Can
you meld those to take advantage of the new languages? What
impact will new language fixes have on the frameworks? Are the
frameworks going to be able to become more dynamic? Or are
there so many frameworks that we’ve become locked into a static
mind-set?

On another level, can people really replicate the design decisions
that David Heinemeier Hansson (creator of Ruby on Rails) made?
Take convention over configuration. It’s one of those things where
people can worry about all of the things that can go wrong
instead of concentrating on what’s going right. I like that decision.
It’s gutsy and so much against conventional wisdom. Lots of evi-
dence suggests that it does work. Can that decision be brought
into Java frameworks?

Q: Will Java be fixed?
I don’t really care. Because one way or another, we win. My heart
is behind the underdog, though.

EJB

Since about 1999, most of the commercial Java brainpower has been
focused on the hardest enterprise problems. In December 1998, the
Java Community Process (JCP), unleashed the EJB (Enterprise Jav-
aBeans) framework onto the Java developer population.

This terrible creature was very powerful, but that beast brought along
too many of its own problems, including unmanageable complexity and
poor performance.

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=24

POOR PRODUCTIVITY 25

Most experts now agree that early versions of EJB were unmitigated
disasters. Since 1999, EJB experts have scrapped and rewritten big
pieces of EJB specification twice.

Many authors are now critical of the EJB albatross. My book Bitter
EJB [Tat03] concentrated on the problems with EJB entity beans (the
standard for letting EJB code access databases). The Internet has hun-
dreds of sites chronicling problems with EJB. EJB has gotten a lit-
tle better, but it’s still an albatross, and the big vendors supporting it
refuse to give up. EJB is an elephant cannon of the highest order, yet
most EJB developers that I know use it to build objects, backed by rela-
tional databases, with a web-based user interface on top. At best, EJB
is a niche solution for problems requiring advanced capabilities such
as distributed transactions.

XML

Java is pretty good at specifying behavior and data types, but doesn’t
express data itself very well. Enter XML (eXtensible Markup Language).
XML offers Java programmers a way to structure data better so their
programs can interpret that data better. Java developers embraced XML
the same way they embraced EJB.

XML is a markup language based on an older document language called
SGML. Early versions were relatively simple, but new versions seem to
have solved that problem. XML designers have added features called
Schema and Namespaces, making XML a little easier for the toughest
problems but much more cumbersome for everything else. Like EJB,
XML has become overkill for many of the problems Java developers
most need to solve.

XML has now crept so far into the collective psyche of Java developers
that the line between Java development and XML development is get-
ting harder and harder to draw. Java developers use XML to define con-
figuration, specify business rules, describe documents and messages,
write programs, and even name their kids. And Java is a worse lan-
guage for it.

Microsoft and IBM now hype up web services with the same energy
and fervor once reserved for EJB. Web services are used to invoke pro-
grams remotely, over the Web. It’s a noble idea, but the web services
designers seem to be making many of the same mistakes that EJB and
XML creators did. Rather than focus on making it easy for simple Java

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=25

POOR PRODUCTIVITY 26

applications to communicate on the Internet, they increasingly seek to
solve the most difficult problems for enterprise uber-programmers, at
the expense of the masses of everyday programmers who could easily
make a simpler solution work.

In Tim O’Reilly’s talk “What Is Web 2.0”2 he describes the adoption of
web services at Amazon.com. At the peak of the web services craze,
Amazon.com had a set of remote services they wanted to make avail-
able. They provided two versions of their API. The first was web services.
With all the hype surrounding web services, it’s not surprising that
most Amazon.com clients tried the web services version first. But Ama-
zon made another version of their API available, using a simpler ser-
vices API called ReST (Representational State Transfer). Surprisingly,
over time, 95% of Amazon.com clients moved from the web services API
to the ReST-based API, because the newer API is simpler, cleaner and
generally more productive. Web services remind me of my best friend’s
Jaguar: the performance is nice on paper, but the car is always in the
shop.

It should come as no surprise to you that Java vendors heavily back
web services, EJB, and XML. Java frameworks look oddly impressive,
but the Java community has not yet learned to build truly productive
frameworks. In fact, we don’t even know what to measure. Analysts
such as Gartner write reports3 showing productivity gains of Java over
C++. If your goal is to boost productivity, C++ should not be your goal!
We should compare productivity in Java with languages built to write
applications, not systems software.

As the current versions of Struts, EJB and web services fade, giving
way to lightweight versions, many open source frameworks are striv-
ing to fill the open spaces. As they do, the explosion of open source
frameworks, combined with new commercial APIs, leads to another sig-
nificant source of pain: confusion. Making the right choice is a difficult
and exhausting process. Guessing wrong can doom a project to failure
or paralyzing bloat. The proliferation of APIs is not a unique problem.
It’s a response to a complicated language with a complicated set of
frameworks. The Java developer can do nothing but try to cope.

2http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html
3http://www.javaworld.com/javaworld/jw-02-2001/jw-0209-itw-javajobs.html

http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html
http://www.javaworld.com/javaworld/jw-02-2001/jw-0209-itw-javajobs.html
http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=26

LONG RAMP-UP 27

2.3 Long Ramp-Up

If long-term productivity is a problem for Java, short-term productiv-
ity is a disaster. For me, teaching Java used to be pure joy. Now, it’s
incredibly tedious. In 2003, I wrote Better, Faster, Lighter Java [Tat04].
In it, I talked about a set of principles for lightweight development. I
then suggested a combination of simplified open source technologies
that a developer could use to solve simple problems:

• An MVC framework. A web-based framework such as Struts sepa-
rates the model, view and controller. Most developers recognize
that options such as Tapestry and JSF (JavaServer Faces) are
emerging, but Struts is by far the most popular Java MVC frame-
work.

• The Spring framework. The Spring framework provides the glue
code necessary to wire together system services with application
logic.

• Hibernate. Java development usually calls for persistence, or sav-
ing Java objects to a database. Hibernate lets developers access
relational databases through ordinary Java objects.

Each of these sophisticated technologies allows good programmers to
build better code in less time than conventional Java frameworks, but
there’s a cost: they’re complex. Each of these technologies has at least
one 600-page book written about it, and most of them have several
books that are even longer. You can find courses that teach either
Spring or Hibernate for several weeks. These frameworks make sense
when you’re building heavy-duty enterprise applications, but for most
web-based development, they are overkill. Keep in mind that we’re talk-
ing about the frameworks touted as the simple Java solutions. The
result is that Java is no longer as approachable as it once was—you
have to learn too much to get started.

In August 2005, I spent a week with a customer, training some new
Java developers to build lightweight applications. Eventually, it was
time to lay out the education plan for the customer. I presented five
courses: basic Java, web-based programming with Tapestry, enterprise
development with Spring, database access with Hibernate, and a class
on their development tools. I could see the drooping body language of
the potential students as I worked my way down the list. With each
topic, their shoulders slumped a little more under the weight of the
new requirements.

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=27

LONG RAMP-UP 28

Course Description Duration

Web-based Java Basic Java and servlets 1 week

Hibernate Database access with Hibernate 1 week

Agile development tools IDEA, JUnit, CVS, Ant and
CruiseControl

2 weeks

Tapestry Web-based user interfaces 1 week

Figure 2.3: Example syllabus for lightweight development

Here’s the kicker. The manager asked whether his team would be able
to build an application without help. I had to say “Absolutely not.”
Sure, they could write a supercharged version of the first traditional
Java application, a web and database-enabled “Hello, World,” but they
wouldn’t have any experience. They would need some time to make
some mistakes. To even recognize those mistakes, they’d need mentors
looking over their shoulders. The brutal truth was plain—to join even
the lightweight Java club, they’d have to pay a high initiation fee and
learn many secret handshakes. Joining the club would take much more
time than they wanted to invest.

Even Java developers with experience are not immune to steep learn-
ing curves. A developer with good experience with JDBC, Java’s most
basic database access API (application programming interface), would
still have to work hard and long to learn alternative persistence frame-
works such as Hibernate or JDO. Frameworks that provide the glue
code to hold applications together, like EJB (Enterprise JavaBeans) and
Spring, might make a developer more productive, but they also add to
the learning curve. Throw in presentation frameworks, and the work-
load becomes oppressive.

If either your team or a potential new hire does not have good Java expe-
rience, expect at least a month and a half of course work and another
three to six months of development time to achieve modest productiv-
ity. For lead developers or architects, ramping up will take longer. In the
best conditions, it will take a Java developer two to five years to learn
enough of a stack of enterprise frameworks to lead a team or project.

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=28

A LOOK AT RISK 29

2.4 A Look at Risk

You’ve probably heard the old cliché: no one has ever been fired for
choosing IBM. As long as any monopoly reigns, the safest choice is
usually the wisest one. But after several years of stagnation, Java may
be the most popular choice, but it’s no longer always the safest choice.
In a global economy, bad choices, even popular ones, can burn you
badly.

Outsourcing

Offshoring centers like the ones in Bangalore, India, have tens of thou-
sands of developers providing an inexpensive programming alternative.
Make no mistake; in many cases, these centers have programmers who
are motivated, skilled, and talented. If your development organization
doesn’t communicate with your customers, it doesn’t matter whether
they’re in the next building, the next state, or overseas. India’s out-
sourcing shops increasingly have presences in major United States and
European markets with improving project management.

But with unproductive programming languages, communicating with
your customer is much more difficult. If it takes you too long between
a customer request and showing them results on the screen, your cus-
tomer will lose interest.

If you’re not productive, you’re not cost-effective, and your project is
vulnerable. Outsourcing operations are finding more and more inno-
vative ways to work with corporations abroad. But we’re finding that
certain types of projects do not lend themselves to outsourcing. If you
want to keep your job safe, your projects need features that offshoring
cannot easily replicate:

• Productivity. Outsourcing takes much more management over-
head. A colleague who outsources his programming says he has to
pay developers about 30% of what he pays developers in Raleigh,
North Carolina. The catch is that he has to be much more diligent
with his project management. With the extra project management
overhead, he pays 70 cents for every dollar he’d pay local program-
mers. So if you can reduce your costs by just 30%, you can often
improve your chances.

• Communication. If you’re communicating with your customers sev-
eral times a week and if the communication is productive, you’re
using your biggest advantage over offshoring centers: proximity.

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=29

A LOOK AT RISK 30

The ocean between you and them got smaller with the invention
of the Internet, but overseas programmers aren’t there to look
your customer in the eye and read her facial expression when you
show her that new demo. Offshore operations have a culture and
language barrier to overcome. You don’t. But Java’s productivity
won’t let you put new features in front of your customer nearly
often enough, so Java projects are at risk for outsourcing.

• New technologies. Outsourcing centers won’t want to use leading-
edge technologies. They will want to use technologies that are
broadly used and more mature. Ruby will be safer from outsourc-
ing shops until it’s a mainstream technology.

Competition

In Beyond Java, I make the case that key Java visionaries know that
Java is fading. As the programming industry wakes up, we’re going
to recognize that Java is not the best possible fit for a wide spectrum
of applications. Consider once again the most common programming
problem: capturing and manipulating relational database data from a
web-based user interface. The newer technologies, such as Ruby on
Rails, will be disruptive. Most consultants I know believe that Ruby on
Rails is several times as productive as similar Java frameworks. Usu-
ally, a productivity edge of a couple of percentage points is enormous.
When you consider the huge productivity reports of two to ten times
attributed to Ruby, they’re even bigger.

But you can’t limit Ruby’s productivity to a single aspect of develop-
ment. Consider one of Ruby’s primary strengths: metaprogramming.
This language feature lets Ruby programmers extend Ruby painlessly.
When you metaprogram, you write programs that write programs. With
this strategy, you’re seeking not just linear productivity gains but com-
pounded gains, just like compounding interest.

To put this claim into perspective, consider the simple investing chart
in Figure 2.4, on the next page. A double-digit investment edge (say,
10%) is a significant advantage. With a 10% investment edge over your
competition, you’ll double his effort every seven years. With a 20% pro-
ductivity edge, you’ll double his total effort every four years. I’m not
suggesting you can compound all your development, but compounding
even a fraction of it can lead to spectacular productivity improvements
over time.

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=30

A LOOK AT RISK 31

Figure 2.4: A 20% productivity difference is huge over time

Perhaps the best example of productivity is Ruby on Rails. By build-
ing features that eliminate traditional repetitive code and by concen-
trating on features that could reduce repetitive blocks of code to mere
fragments, Rails has revolutionized database-backed web development.
Each time I build on these features to add another framework fragment,
I compound the productivity that’s built into the Rails framework.

You may not be able to attack every project with an emerging framework
like Rails, but you can still use Rails to give you a real competitive
advantage by simply using it in spots. Each project you attack with a
more productive framework, whether it’s a smaller internal application
or a custom one-time application for a customer, frees money that you
could be spending on your main development effort.

Throughout the course of this book, I’ll show you ways to use Ruby
creatively side by side with Java projects. Each time you employ a more
productive tool, you save money and squeeze your competition.

You’ve seen how you can take a more productive language and use it to
your advantage. But the flip side is also true—your competition can do

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=31

A LOOK AT RISK 32

the same to you. With Java’s dominance, dynamic frameworks such as
Rails are not as likely to emerge in the basements of your competition.
But as Java wanes, you have to watch your competition much more
closely.

Taking Action

Deciding to choose Ruby over Java for a given project is risky. But
remember, there are many levels of commitment. If you’ve recognized
real pain, you don’t have to negotiate a 50-foot drop to test the waters.
At this point, it’s probably more prudent to dip your toe in to test the
temperature. Your goals are to begin to collect data, assess risks, and
start to look at alternatives. These are tangible steps you can take,
without committing yourself irrevocably:

• Understand your problem domain. If productivity is an overriding
concern, choosing the right tool for a job is the most important
decision you can make, by far. If you are starting a project that
uses a web user interface to baby-sit a big, fat relational database
or you’re building simple tools to manage text, Java is not the right
answer for you.

• Count dollars. Knowing exactly what a developer’s day of work
costs you is important and so is understanding the cost of a month
of operations. With just this data and a pilot project, you can
extrapolate a very good case for productivity. Counting all the
hours spent troubleshooting classpath errors or the API of the
month in Java can add up.

• Get opinions you respect. Talk to peers who have experience with
Java and with alternatives. If you can’t find one, find a reputable
consultant who has that experience. Opinions are cheap when
measured against the cost of poor productivity.

• If you suspect a problem, collect data. Many costs associated with
Java are hidden. Complex issues such as bugs in frameworks or
threading bugs are always difficult to identify and solve. You might
be tempted to write those problems off as one-time occurrences.
Don’t. Record every second you spend solving them. Add up the
time you spend to ramp up and train your team. Factor in the
time you spend building infrastructure instead of solving your core
business problems.

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=32

EXECUTIVE SUMMARY 33

• Have a backup plan to Java. Since you’re reading this book, I’m
assuming your backup plan is at least partially Ruby. Whatever
your plan, you need a serious alternative to Java to know what to
do should Java rapidly start to fade.

• Reassess risks. Often, risks identified on the front end of a project
are not accurate or complete. For example, in today’s marketplace,
if you’re not incredibly productive, outsourcing is a risk. It may not
have been a risk when the project started.

In this chapter, we’ve addressed pain: Java suffers from too much com-
plexity and poor productivity for new and experienced developers alike.
In the next chapter, we’ll look at some of the benefits of the Ruby pro-
gramming language. We’ll get some rewards to weigh against the risks.
You’ll see more interviews from some of the industry’s brightest pro-
grammers, and you’ll have real benefits to weigh against the risks of
moving to a new programming language.

2.5 Executive Summary

• You should establish a credible pain before you consider adopting
Ruby.

• Java is not nearly as productive as we need it to be.

• Java’s poor productivity comes from a C++ legacy and from an
explosion of frameworks leading to confusion and bloat.

• Martin Fowler, a leading industry technologist, breaks down com-
plexity into essential and nonessential categories.

• The nonessential complexity on the Java platform is unacceptably
high.

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=33

Simplicity is the final achievement. After one has played a
vast quantity of notes and more notes, it is simplicity that
emerges as the crowning reward of art.

Frédéric Chopin

Chapter 3

Establishing Your Reward
In such a fickle industry, programming languages remain remarkably
stable. Programming languages based on the C-language syntax have
dominated since the mid-1970s. In the previous chapter, you saw some
of the reasons that the Java language may be showing signs of age.
In this chapter, I’ll make the case that programmers may be ready to
move, and I’ll also show you who’s making that move.

3.1 Momentum

For new programming languages, momentum matters, and Ruby is just
beginning to explode. You can’t necessarily see growth in job postings
yet, but other signs point to real growth. To see the beginnings of this
explosion, you just have to know where to look.

Visionaries

If you know where to listen, you can hear all about the adoption of
leading-edge technologies well before the rest of the industry. If you
want to know where the industry is going, build a network of visionaries
you trust. Look at the impressive list of programming visionaries with
some vested interest in Ruby on Rails:

• Martin Fowler, chief scientist at ThoughtWorks, prolific and award-
winning author, and one of the most influential thinkers of our time.
He has been a vocal proponent of Ruby, and ThoughtWorks is
using Ruby on projects. Ruby is a major growth initiative for them.

• Dave Thomas and Andy Hunt, founders of the Pragmatic Program-
mers, authors, and publishers. The Pragmatic Programmers are

MOMENTUM 35

investing heavily in several Ruby offerings including an impres-
sive line of award-winning Ruby books.

• James Duncan Davidson, best-selling author and creator of Ant and
Tomcat, two of the most popular open source Java frameworks of
our time. James Duncan Davidson is using Rails within a start-up
to develop a web-enabled rich application that will be the primary
offering of that company.

• Stuart Halloway and Justin Gehtland, authors, instructors, colum-
nists, and founders of Relevance, LLC. Relevance is offering a
series of courses on Ruby on Rails and is offering Rails devel-
opment services.

• David Geary, one of the best-selling Java authors of all time and a
key designer for several successful web development frameworks
including JavaServer Faces (JSF). David is speaking and blogging
about Rails with regularity.

• Richard Monson Haefel, once one of two voting individuals for the
Java Community Process (JCP) and a best-selling author. Richard
recently led the Burton Group in a discussion with high-profile
U.S. companies about Ruby on Rails as an important emerging
technology. He has also published a paper about using Rails with
Oracle.

Many others are moving toward Ruby. Today, visionaries are even more
important than they have been, because visionaries not only can iden-
tify trends but also create them. The Internet gives this influential
group an increasingly powerful voice to reach ever-broadening audi-
ences. Blogs, online articles, and public forums all serve to evolve tech-
nology visionaries into technology influencers.

Like any other successful businessman, I have a circle of advisors.
When a visionary adopts a technology, he is making a calculated choice
on a technology, the potential for commercial success, and the support
structure for the technology. Through listening to the right people, I’ve
been able to predict some serious market movements, including the
emergence of Java, the fall of EJB, the emergence of Spring (EJB’s
replacement for many customers), and the rise of Hibernate. In each
case, I was able to invest my resources early enough in my business to
achieve a major competitive advantage. You can do the same.

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=35

MOMENTUM 36

Framework Downloads
Spring framework 280,787
Hibernate framework 520,061
Ruby on Rails 500,205

Figure 3.1: Download statistics from software repositories SourceForge
and RubyForge for the most popular integration and persistence frame-
works for Java, compared to Ruby on Rails over the same time period

Downloads

When you’re weighing the importance of open source software, the key
metric to watch is the number of downloads. This metric does not
translate directly to the number of customers because one customer
can download a framework many times or one department can down-
load a tool once and share it with the rest of the department. Still,
there is no better metric. Figure 3.1 shows the download statistics
for Ruby, compared to the downloads for the two most popular Java
frameworks for persistence and integration. Ruby on Rails has been
downloaded over 500,000 times, as of May 1, 2006. You can check
the up-to-date statistics for the largest download source of Rails at
http://gems.rubyforge.org/stats.html. Figure 3.1 shows an approxi-
mate number of the most influential Java frameworks against the most
influential Ruby framework over the same period of time. The gap is
closing rapidly and may well be closed by the time this book is pub-
lished.

Books

Books are another important metric. Open source frameworks become
much more prominent as you can find more books on the subject, and
I’m more inclined to take them seriously as more people buy and write
books on a topic. A typical successful Java book will sell 5000 units.
Dave Thomas’s Agile Development with Ruby on Rails was the top pro-
gramming book on Amazon.com for a couple of weeks, and the second
book was Programming Ruby. In recent years, Java books have had
a hard time generating that much interest. Different publishers have
five Ruby on Rails books in production today, and the Ruby program-
ming language will have more than 20 books by the end of 2006. Tim
O’Reilly, of O’Reilly publications says Java book sales are stagnating

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=36

PRODUCTIVITY 37

and the growth in Ruby books is very steep. The Ruby language, driven
by the Ruby on Rails catalyst, is experiencing explosive growth that’s
likely to continue. But there’s more behind this movement than hype.
Let’s look at the engines of growth: productivity, cost, and rapid ramp-
up time—all Achilles heels of Java-based frameworks.

3.2 Productivity

You might wonder why I’ve gotten so passionate about Ruby so quickly.
I’ve noticed a remarkable change in my programming practice since I
picked up Ruby. With Java, I had long since quit doing live program-
ming in my seminars. I rarely coded Java production applications. I had
a difficult time keeping up with the rapidly churning state of the art in
Java, because the choices were overwhelming me. I coded infrequently
enough that basic problems tripped me up, often for hours at a time.

Since I’ve tried Ruby, up to half of my presentations show live pro-
gramming. The audience feedback has been tremendous. After only
several weeks, I became far more productive in Ruby than in Java,
and it amazes me that I’ve only scratched the surface. I’m coding pro-
duction applications again, and I know that I can tap deeper parts of
the Ruby language and get even better.

Sure, there have been problems. I miss JDBC, a common database API.
Ruby’s DBI pales in comparison, and there’s no broadly accepted stan-
dard API across all databases. I don’t have a world-class development
environment. There aren’t nearly as many jobs out there for Ruby. I
spend more time finding Ruby programmers for the mundane tasks
not cost-effective enough for me to do. But I like programming again,
and I’ve been programming more than I have in the last five years.

A Case Study

Let me expand on the experience that Justin Gehtland and I had with
a customer with Java and Ruby. If you’ve been in this field for long,
you’ve often seen astronomical claims of insane productivity improve-
ments. Object-oriented software vendors claimed tenfold productivity
claims. Development tool vendors often claim to make you several times
as productive. Even Enterprise JavaBeans claimed to make us more
productive. So when Ruby on Rails advocates claimed they were from
five to ten times as productive as Java developers for certain types of

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=37

PRODUCTIVITY 38

problems, I tuned them out. I had heard it too many times before to
believe it. But eventually, I tried Ruby, and it has changed me.

Justin and I had been working on a Java application with three typical
lightweight Java frameworks: Spring, Hibernate, and WebWork. We had
taken four months to do what a .NET team took far longer to do. I
worked on the data model, and Justin wrote the Java code. I called
Justin to talk about possibly exploring Ruby on Rails for the application
after some preliminary prototyping. Justin told me he had implemented
the entire application on Ruby on Rails in four nights.

Now, the second time through an application will obviously go much
more quickly, but differences this great are significant. Over time, our
productivity held up. I estimate we were from five to ten times more
productive. Something else caught Justin’s eye. With minimal tuning,
the Ruby version was faster. Although we recognize this performance
test was not perfect, it’s unusual that a Java expert who had written
books about Spring and Hibernate could make a faster Ruby on Rails
application, with no previous experience with the Rails framework or
the Ruby language.

Justin then published his results in his blog. His experiences fueled a
deafening roar of protest from the Java community. Justin has been a
long-standing author and consultant, exploring some of the most pro-
ductive Java frameworks with a near fanatical following, but it’s amaz-
ing how quickly we can turn on our own when we hear a threatening
message. The Ruby on Rails versus Java debate still intensifies.

For another example, consider the Java to Ruby rewrite, chronicled in
the blog Following the Rewrite.1 The blog features posts from project
managers and developers from the development team of an enterprise
application in the mental health-care arena. The undercurrent of the
whole blog is the amazing productivity of Ruby on Rails. This blog, too,
has been attacked with fervor.

The root of the debate is productivity. Java developers claim that ten-
fold productivity improvements just don’t exist for general program-
ming languages. Ruby programmers point out that if you move from
a general toolset to a specific one (such as from a general text and
networking framework to a web development framework), the numbers

1http://rewrite.rickbradley.com/ chronicles a rewrite of an Enterprise Java applica-
tion to Ruby on Rails.

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=38

PRODUCTIVITY 39

are much easier to understand. Ruby is an applications language. Java
was based on C++, which was designed to build systems software. Ruby
proponents can point to specific Java limitations and use specific Ruby
features that make them more productive. Let’s look at the deep roots
behind Ruby’s productivity.

Power

I’m a big fan of cycling. Since I’ve been following the sport, there has
been one winner of the Tour de France—Lance Armstrong. He wins
because, for whatever reason, he consistently gets a little bit more lever-
age out of each tiny pedal stroke. Multiply that miniscule advantage by
hundreds of thousands of times for a typical tour, and he wins tours.
The pedal stroke for a programming language is the expression of one
thought, usually in a line of code.

In several software studies, the lines-of-code metric is the one that will
most often translate to tangible benefits. You’ll find a number of stud-
ies, both old and new, on this topic:

• In Software Reliability [MIO98], Musa et al. claim the total number
of bugs in a program is proportional to the total lines of code.
This metric has been studied to death, and most believe that the
number of bugs is at least proportional to the total lines of code.

• In Peopleware [DL99], Tom Demarco and Timothy Lister claim the
length of time it takes to develop an application is directly propor-
tional to the lines of code.

• In an interview by John Udell, Bill Gates claimed “There’s only
really one metric to me for future software development, which
is—do you write less code to get the same thing done?”

• Citing the previous Bill Gates interview, Tim O’Reilly, the creator
of one of the most successful lines of computer books of our time,
suggested placing more emphasis on scripting languages such as
Ruby that do very well with the lines-of-code metric.

There are many other examples. Opinions are clear. Total lines of code
matter, and Ruby code is many times more expressive than Java code.
Each line of code represents an additional burden for your IDE that
must parse them, for your build tools that must process them, for eyes
that read them, for brains that must understand them, for developers
who must keep them clean, and for systems that run them. Each Ruby
line of code—each pedal stroke—does the work of four or more typical
Java lines of code.

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=39

PRODUCTIVITY 40

Consider a Ruby program that computes a Fibonacci sequence (or the
sum of the previous two numbers in the sequence). This program:

x, y = 0, 1
10.times do

puts y
x, y = y, x + y

end

gives you the following:

1
1
2
3
5
8
13
21
34
55

Here’s the program in Java to give you the same result:

class Fib {
public static void main (String args[]) {

int x = 0;
int y = 1;
int total = 1;
for (int i=0; i<10; i++) {

System.out.println(total);
total = x+y;
x = y;
y = total;

}
}

}

This code is typical, but not nearly defensive enough. The Java pro-
gram will actually compute the wrong value (silently, with no exception
thrown) starting at the 48th number in the sequence, because of inte-
ger overflow. Ruby will continue to grow the number into a Bignum.
Countless money-abuse bugs in Java-based programs originate from
int overflows. Exception handling for each would maintain roughly the
same proportions.

Overall, the total weight, or inertia, of a code base is directly propor-
tional to the lines of code. You may be able to generate some of that
base with a tool or wizard, but you still have to maintain the whole set;
you may believe that other factors mitigate the total lines of code, but

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=40

PRODUCTIVITY 41

Metric Java Ruby on Rails
Time 4 months, half-time 4 days, half-time
Lines of code 3293 1164
Lines of configuration 1161 113

Figure 3.2: Productivity of Java versus Ruby for one production appli-
cation

Java developers must still work much harder, using cumbersome tech-
niques such as code generation or complex techniques such as aspect-
oriented programming (which changes the syntax of the language) or
byte code enhancement (which is complex), to achieve the same result
that a Ruby developer can get with a simpler code base and fewer total
lines of code.

In fact, Java developers increasingly have to take the time to implement
language features that other languages support natively. These features
have obscure names such as continuations and annotations (which were
only recently added to Java). Although the names sound academic, they
are becoming increasingly important to Java. For example, continua-
tions are critical for building the next generation of web servers. Java
frameworks such as RIFE and WebWork had to implement their own
limited continuations for Java, while developers in more powerful lan-
guages like Ruby can use such support natively.

Figure 3.2 shows the productivity numbers that Justin published for
our Ruby venture I mentioned earlier. Notice the four-to-one lines-of-
code advantage of Ruby over Java. I’d expect these numbers to change
based on the particular problem you’re trying to solve.

You might expect such a terse language to be harder to read and main-
tain, but your intuition can be deceiving. Take a typical task of counting
to ten. Compare Ruby’s syntax:

10.times { ... }

to Java’s corresponding syntax:

for (int i=0; i<10; i++) { ... }

In fact, many people find Ruby much more intuitive than Java, and
easier to read, because it’s closer to their native language. You don’t
have to work as hard to translate it in your head.

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=41

PRODUCTIVITY 42

Java programmers lean on tools and frameworks to help them win back
some of the productivity they are missing right now. Java supports
excellent development tools. Ruby has gotten only its first few develop-
ment environments, and for many reasons, Ruby tools will be harder to
build. But Java’s tools can’t come close to closing the productivity gap.
Ruby is just a more powerful language, so it takes much more Java
work to accomplish most Ruby tasks.

Since Ruby is relatively new, it does not have as many frameworks as
Java does. So right now, if you’re doing a project that requires specific
features that have good libraries in Java but not Ruby, you’ll lose some
of your productivity edge. That’s the reason community is so important
for the emergence of new languages. But remember, the proliferation
of hundreds of frameworks is not always a good thing and not always
conducive to high productivity.

Choosing between the dozens of Java frameworks to do web develop-
ment, persistence, or remoting is one of the most frequent complaints
of many of my Java students. In these cases, the weight of so many
frameworks can decimate your productivity. Simplicity is at least as
important as choice. And if Ruby frameworks give you everything you
need, the power of the Ruby language will give you a significant edge.

You might be thinking that Ruby is just a fad, like parachute pants or
pet rocks. Maybe it is, but new programming languages don’t fire up
and quickly fade away. They accumulate critical mass for niche status
for a community, or they don’t. Do your due diligence. If you find that a
language meets your needs, use it. Value productivity more and inertia
less.

Figure 3.3, on the next page, shows you a few features that Ruby has
and Java doesn’t. I’m not going to bore you with the details. Just under-
stand that these features all boost productivity, and they all let Ruby
developers express ideas with more efficiency. I’ll also tell you why they
are important.

Long-Term Productivity

The power, simplicity, and flexibility behind Ruby’s excellent short-term
productivity also serve to sustain that productivity. Better maintenance
comes from reducing repetition and expressing ideas concisely in a way
that’s easy to read and understand.

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=42

PRODUCTIVITY 43

Closures:
Reduce repetition and work with groups of items such as lists,
files, or databases.

Pure object orientation:
Ruby has exactly one type system. Everything is an object. There’s
less to learn, less to code, and fewer opportunities for mistakes.
Pure OO makes your code easier to read.

Continuations:
Make better web servers (probably the next generation of web
servers).

Optional parameters:
Allow better defaults. Ruby has a convention allowing a single
table of parameters (called a hash map), letting programmers spec-
ify many different options only if an option is needed.

Open classes:
Make it easier to test code and extend code in important ways that
are difficult in Java.

ObjectSpace:
Gives developers the ability to enumerate all objects defined in an
application, improving debugging and allowing much easier imple-
mentations of certain algorithms such as publish-subscriber sys-
tems.

Freezing:
Permits locking an object, to catch code doing something it
shouldn’t. For example, if a variable value is changing, you can
freeze it and then let the Ruby interpreter tell you when someone
else uses it.

Message passing and missing method:
Lets you quickly add dynamic methods to an object at run
time. For example, Ruby on Rails can let you use per-

son.find_by_name_and_address or any combination of the attributes
of a Person. Rails adds these methods automatically, through miss-

ing_method.

Figure 3.3: Features that boost the productivity of Ruby over Java

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=43

PRODUCTIVITY 44

For long-term productivity, you also want a language that allows rapid
extension. Dynamic languages have an excellent reputation for reduc-
ing coupling and for allowing extensions in ways that Java can’t. In
Beyond Java, I make the case that many cumbersome and complex
extensions in the language (using buzzwords such as dependency injec-
tion, aspect-oriented programming, and XML-based configuration) are
needed precisely because Java is difficult to extend in certain ways.

Finally, for long-term productivity, you want a language that is accessi-
ble to novices but available to advanced developers as well. Ruby allows
conventional procedural programming for simple scripts, supports full
object-oriented programming for the typical programmer, and supports
advanced techniques like functional programming, metaprogramming,
and domain-specific languages that are attractive to advanced develop-
ers. Ruby is good for both student and teacher.

Ruby on Rails

Ruby on Rails users claim that for a certain type of application—a web-
enabled database application where the development team controls the
database schema—Rails gains a significant edge with the following:

• Convention over configuration. Instead of forcing tedious XML con-
figuration, Ruby on Rails relies heavily on conventions for naming
and structure, dramatically reducing configuration. Figure 3.2, on
page 41, shows the difference in configuration in our application.

• A radically different database strategy. A Rails program discovers
the structure of a database and adds features to the application
based on the contents of the database.

• Providing excellent defaults pervasively. The Ruby language offers
better capabilities for providing default values, so most of the time,
Rails developers don’t need to specify common parameters but are
still free to change the defaults should the need arise.

• A rapid feedback loop. Rails developers can change a line of code
and then reload the browser. Java developers must often do spe-
cial build or deploy steps. It’s easy to underestimate the impact of
saving five minutes dozens of times every day.

• Built-in testing. Rails builds default test cases and fixtures into the
application. It’s easier to build well-tested Rails applications.

• Ajax. Rails reduces the cost of building web applications with a
feature called Ajax. With Ajax, your web applications can be more
interactive, giving your users a more fluid, memorable experience.

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=44

PRODUCTIVITY 45

The productivity of Rails goes well beyond bullets in a list. To under-
stand the magnitude of what’s happening here, you simply must have
a development team, who has built web applications with other tech-
nologies, try Rails.

To have the broadest possible reach, productivity must extend beyond
the production phase into maintenance. If you’re looking for a pro-
ductive language for the long term, you simply have to look beyond
languages that may give you a quick productivity fix at the expense
of long-term maintenance. Though disciplined teams can make them
work, other teams experience a quick productivity euphoria with lan-
guages like Perl, PHP, or Visual Basic, but it all comes crashing down
over time as the application slowly becomes too difficult to maintain.

So far, in my dealings with Ruby on Rails, the productivity improve-
ments have been extended into the maintenance of the projects as
well. All the developers on my projects can quickly understand what
we’ve done, and make the appropriate changes. Ruby’s advantages of
an expressive and concise syntax, the wonderful readability, and the
pure object-orientation serve us just as well in the maintenance phase
as they do elsewhere.

I’ll go one step further. I believe that Ruby’s metaprogramming features,
especially as they exist in Rails, reduce the kinds of repetition that
make maintenance on software systems so problematic.

Inertia

The obvious rebuttal to productivity is reuse. If you can take existing
frameworks and corporate assets, a common perception is that you can
always be more productive overall, even with a less-productive technol-
ogy. Witness the millions of lines of COBOL and CORBA (a distributed
objects technology).

But if you’re at all typical, you’ve spent way more money chasing reuse
than you’ve saved, and modern reuse models, which we’ll discuss in
Chapter 6, Bridges, on page 92, will often let you reuse code written in
other languages. JRuby and the simplified Ruby on Rails web services
are two technologies that allow excellent reuse across language bound-
aries. If you want to be productive, you must be willing to explore the
most productive technologies and use them where they make sense.

You can also expect to experience some pain related to ramping up on
a new language. Keep in mind how often you change languages or add

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=45

COST 46

new ones—it’s probably not very often. Inertia is a powerful force, but
you can’t let inertia hold you in a bad situation when alternatives are
available.

3.3 Cost

A clean, productive programming language usually translates to lower
bottom-line costs more quickly than you might think. I interviewed
three business owners, discussing software development costs. In each
case, the top costs all related to the developers on staff. The overall cost
of an employee ranged from 1.3 times a developer’s salary to two times
a developer’s salary, depending on the employment model of the com-
pany. By extension, improving productivity was by far the most effective
way to reduce costs. And each said that he would be willing to use Ruby
if it became clear that it was much more productive than Java.

Communication and Management Costs

Reducing the typical project size through improving your process or
development language has some other benefits as well. Look at the ways
a programming language can impact your overall cost structure:

• More productivity leads to fewer developers per project.

• You spend less effort on communication for small projects.

• Having fewer developers per project also lowers management costs
per project.

• When you finish applications sooner, you deliver their value to the
business sooner.

So, the overall reduction of cost is much more than just straight pro-
ductivity savings. At some point, you can even realize exponential gains.
Most project managers know that productivity degenerates rapidly as
teams get very large. Jeff Sutherland, consultant for agile methods, pro-
vides a simple metric for team size: the average cost per function point
across 1,000 projects in Rubin’s Worldwide Benchmark database was
$2,970. For teams of seven, the average cost was $566 per function
point.2 Several essays in the Mythical Man-Month make a similar case,
suggesting exponential decay based on communication as team sizes

2Scrum Log, by Jeff Sutherland, SCRUM: Keep Team Sizes Under 7. Thursday, Febru-
ary 6, 2003

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=46

COST 47

increase. The decreasing productivity of larger teams makes sense,
because larger teams need to spend progressively more effort on plan-
ning, management, and communication, both within the organization
and between the organization and external groups.

Take management. If Ruby on Rails is five times more productive than
Java for web-enabled database applications and a manager can han-
dle ten employees, a typical manager can handle five times as many
projects. With such savings, you could flatten your organization by
removing one full level of management.

Or consider communication. Software development on larger teams
demands more design documentation. A family of software develop-
ment processes known as agile development methods promotes rely-
ing on test cases and cleaner code rather than other design docu-
ments. These methods work best for small teams because each team
must design all programming interfaces that will be used by other
teams up front. This task makes up-front design work critical, but
this design work takes more time, even though such documentation
often becomes increasingly obsolete as requirements inevitably change.
Then, the team must rigidly follow these public interfaces so that other
teams will be able to use them upon completion of their code. Conse-
quentially, larger teams lose some of their ability to quickly adapt to
new business requirements. Further, the development cycle is longer,
so new business requirements become more likely. Implementing late
requirements means breaking the work of other teams, lengthening the
development cycle again.

Multiply your productivity by just 2, and a large team of 14 becomes
a small team of 7. You can manage it from one department instead of
two, and you’ll be free to use an agile process. Multiply your productiv-
ity by four, and a department of developers can do the work of a small
division. If, at the same time, you decide to use top-tier programming
talent instead of the typical corporate journeyman programmer, you’ll
see small teams of three or four that could do the work of many tradi-
tional Java departments.

In fact, if you look around, you can see a few prominent start-up com-
panies spring up that adopt this exact model. The 37signals company
that built Ruby on Rails builds web applications. In many cases, these
applications would take many times the number of similar Java devel-
opers. They’re getting incredible mileage from Ruby and from the Ruby
on Rails framework.

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=47

COST 48

The applications often heavily use Ajax, a technology that makes much
richer web applications possible. These applications are very difficult
to build using Java because the Java Ajax libraries are much more
complex.

To put things in perspective, I joined a start-up in the year 2000 that
did a project that was much less ambitious than Basecamp. Our com-
pany had 20 highly skilled Java developers. We bet on Enterprise Java-
Beans. We were able to build our application and make it work, and it
took us nine months. 37signals could have built the application in a
fraction of the time, with no more than two or three developers.

Here’s the kicker. A start-up that bets on Rails has fewer developers and
delivers faster. Since their cost structure is so much lower, their capital
will go further, and they’ll have more funding options. They don’t have
to have nearly as much formal management staff. Self-funding often
becomes an option. Sometimes, less is more.

The Time Value of Software

Any investor knows the time value of money. Dave Thomas of the Prag-
matic Programmers believes in the time value of software. A deployed
application should be earning you money or saving you money. If an
application is under production, it’s not delivering business value. If
you deliver early, your solution begins to pay dividends early and frees
developers to work on the next value-producing project. Figure 3.4, on
the following page, tells the story for an ideal world. While developers
move from one project to the next, users get the accumulated value of
software you’ve already built.

But that’s an idealistic picture. As your existing systems grow in com-
plexity, you can lose productivity. And if your programming language
and your software designs are too static, you’ll spend too much time
reworking the old system just to get to the point where you can add new
features again. Some systems require more maintenance or more man-
agement expense. This is why productive languages that build clean,
simple applications are so important. Every decade or so, as existing
programming languages get more complex for the everyday applications
we build, it pays to simplify and return to the point where completed
projects deliver incremental value for incremental effort.

You’ve seen that the Java language is dated, but the Java platform’s
problems are not limited to the language itself. The Java frameworks

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=48

RAMP-UP 49

E
ar

ni
ng

s
($

)

Time

P
ro

je
ct

 1
 c

om
pl

et
io

n

P
ro

je
ct

 2
 c

om
pl

et
io

n

P
ro

je
ct

 3
 c

om
pl

et
io

n

Figure 3.4: Each new piece of software delivers increasing business
value

that allow Internet development and database access are cumbersome
and complex by Ruby standards. Java’s database access frameworks
may be more sophisticated, but they leave behind temperamental, frag-
ile applications. Java’s enterprise-strength frameworks at best enable
solutions to difficult problems at the expense of incredible complexity.
At worst, Java’s enterprise frameworks seduce users who should be
working with simpler technologies.

3.4 Ramp-Up

The Ruby framework has still more advantages. You can ramp up devel-
opers much more quickly. Ruby, with enough framework code to solve
the most interesting problems, is usually easier to install. A typical
developer doesn’t have to learn nearly as much. More important, most
Ruby frameworks do a good job of giving novices some power right out
of the gate and growing that power as they learn.

Becoming Productive

Though Ruby is an incredibly powerful language that’s interesting to
experienced developers, it attracts a wide array of beginners. The Ruby

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=49

RAMP-UP 50

community has always embraced new developers, helping them out by
answering questions and by creating the features you use to download
and install frameworks. For example, the minute you decide to learn a
Ruby feature, you can use Gems to download a project and all the fea-
tures it needs. To install Rails, I simply typed the following and followed
the prompts:

gem install rails

That’s it. The Ruby installer called Gems went to the Ruby site called
RubyForge and looked for the last stable release of Rails. It then auto-
matically checked for all dependencies. (Dependencies include other
projects that your project needs.) If Gems needs a dependency, it asks
you whether you want to install that dependency. The result is a clean,
simple installation process.

On the other hand, for Java, you’d have to download each project inde-
pendently, making sure you had each dependency installed and config-
ured. You’d often have to worry about environment variables such as
the classpath, and installing the tools into your environment. Installing
major Java frameworks is a major time drain. That’s a shame, because
installation is a chore that impacts every Java developer who uses a
given framework.

After I downloaded Rails, I had my first web application written in 20
minutes. It often takes Java developers several hours to install and
configure one framework, and a typical Java project may need five to
ten open source frameworks. Getting a working application integrated
across the frameworks is a major task. Figure 3.5, on the next page,
shows the contrast.

Now, some experienced Java developers don’t have to go through all
these steps. They’ve taken the time to invest in a set of tools or skills
that will manage that complexity for them. But learning an integrated
development language, such as Eclipse, or a build management sys-
tem, such as Maven, without knowing Java is an incredibly difficult
proposition. Since neither the IDE nor Maven is part of the base Java
distribution, the tools simply add to the piles of skills you have to learn
to be effective in Java development today.

Too much reliance on tools also fragments the skill sets of Java devel-
opers and restricts the learning process. Instead of learning how Java
works, the developer must often instead learn how Eclipse works with
Java.

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=50

RAMP-UP 51

Task Ruby Java

Install a framework

Configure

Choose a framework

gem install framework

• Do minimal
 configuration

• Run test app

• Identify all
 dependancies

• install each
 dependancy

• install frame-
 work

• Make libraries
 available

• Set variables
 such as classpath

• Configure with
 XML

• Compile and run
 test app

• Few rich choices • Many choices with
 vastly different
 trade-offs

Figure 3.5: Ramping up in Java and Ruby involves dramatically differ-
ent experiences

Getting started as a Java developer today is traumatic. Many novice
Java developers run into the same pitfalls. Configuring classpath gets
us all at one time or another. Choosing frameworks from hundreds
of possible alternatives is a daunting challenge in its own right, and
ramping up on that framework can be oppressive too. Writing a “Hello,
World” application, enabled for databases and the web, can take days or
even weeks, depending on the choices you make. With Ruby, you could
choose Rails, download it with all its dependencies, and have your first
application running in less than 20 minutes. Free training videos can
help you with the experience.

Education

When it’s time to sharpen your team’s skills, you’ll probably find a sim-
ilar experience to the ramp-up. Education is one place where Java used

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=51

RAMP-UP 52

to have a decided advantage, because the Java language once pro-
vided an unmatched library for web development, and it was easy to
find education from reputable sites. That advantage no longer holds. If
you want to do web development with the state-of-the-art open source
frameworks, you’ll probably not be dealing with companies like IBM.

Instead, you’ll be using smaller consultancies like JBoss Group, Inter-
face21, and others depending on the tools you need to use. You may
even need to use more than one consultancy to pull together all the
expertise you need, which can get expensive. With Ruby, you’ll be using
similar companies to provide your training, but a single consultancy
could easily have the experience you are looking for, since Ruby on
Rails is an integrated development environment.

And when your team finally sits down in a classroom, they’ll notice a
remarkable difference between Java and Ruby. Visionary Stuart Hal-
loway is excited about Ruby partially because it’s such a good language
for teaching.

Why is Ruby a great development language?
—A discussion with Stuart Halloway

Relevance, LLC

Q: How have you used Ruby to date?

I build database-backed, web-based applications with Ruby on
Rails. This is primarily something that Relevance, LLC, does for cus-
tomers and is certainly the sweet spot that has gotten Ruby so
much press.

I also use Ruby for most of my Ajax development. I spend
most of my time these days working in (and on) codecite
(http://www.codecite.com), which is an Ajax-oriented outboard
brain/presentation tool that I am building for myself (but will open
source eventually).

Ruby’s automation is underrated. Ruby + Rake is totally com-
pelling compared to anything else of its kind. In the medium run,
this may be more important than Rails. I still like building applica-
tions in Java; I never liked managing builds or continuous integra-
tion from Java.

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=52

RAMP-UP 53

Finally, to think in. Ruby has become my native language for
solving problems. Those transitions happen only a few times per
career (for me anyway), so it’s always exciting when it happens.

Q: What problems are you comfortable solving with Ruby today?
Just about anything. We’ve had a few projects where the Ruby
library we needed didn’t exist yet, and we simply absorbed the
cost of building the libraries as we went.

Q: What are Ruby’s three biggest assets as a language?
First, expressiveness. Ruby code is expressive and readable. This is
important enough up front, but even more important later: main-
tenance is a huge cost in the software life cycle, and Ruby code
is easier to maintain. This will be a huge cost savings over time.

Second, the pragmatic and eclectic adoption of features from
other languages. From a wide variety of other languages, you can
come to Ruby and say “This has feature X which has always been
really important to me, and adds idiom Y, which is very cool and
new to me.”

Third, Ruby is a natural fit for lightweight, internal DSLs. Ruby makes
it possible to build a domain-specific language as you go. The
sweet thing is that there is no clear-cut point where this happens;
it occurs organically as you refactor code. The declarative syntax
for relationships in Active Record is a great example.

Q: You’ve also been a Java instructor and author. What does Ruby
do for you that Java can’t?

Ruby is wonderful for teaching. Ninety percent of the concepts
I want to explain to people can be explained in one slide, one
paragraph, or one page of Ruby. That number is probably more
like 30% for Java—the combination of XML configuration, static
typing, long namespaces, and misguided exception handling
makes Java a very difficult language to teach in.

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=53

RAMP-UP 54

As a higher-level language than Java and an interpreted one, Ruby
is much friendlier to exploration. If you want to know how something
works, you can simply type a few characters and see how the Ruby
interpreter responds. With Java, you’d have to write, compile, and then
debug your program. Ruby reads much more like English than Java.
Take a look at these simple lines of code from Active Record, part of the
popular Rails framework:

class Invoice ...
has_many :line_items
...

class LineItem ...
belongs_to :invoice
has_one :product
...

You can immediately tell what’s going on, without knowing too much
about Active Record, Rails, or even Ruby. The Ruby programming lan-
guage is packed with features that make it easier to read. Instructors
who have taught Ruby and Java typically prefer Ruby, and it’s easy to
see why. Programming students can spend more time learning the pro-
gramming craft and less time dealing with the mundane details of the
language.3

In my practice, I can generally train a novice Java developer who has
no Ruby experience to use Ruby on Rails (which has web and database
components) roughly four times faster than I can train the same devel-
oper to build a web-enabled database application.

Higher Abstractions

A higher abstraction gets you closer to the solution of the problem
you’re working to solve. Ruby on Rails, for example, lets you generate
a default application to manipulate a single relational database table
from a web-based user interface; therefore, my students can get some-
thing off the ground quickly, within the first two hours of a Rails class.
I can then help them experiment and extend this foundation. The expe-
rience for the student is at once motivating and liberating.

For example, Figure 3.6, on the following page, shows a simple example
of a screen built to manage a database table of users. The application
has four windows and took three minutes to build. The application is

3See Learn to Program [Pin06]

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=54

RISK 55

Figure 3.6: A simple Rails user interface

not nearly complete, but it gives me a much greater head start than tra-
ditional Java-based frameworks. By contrast, my advanced Spring Java
course has my customers completing a database-backed web applica-
tion at the middle of day three. The difference in the body language of
my students is striking.

By letting programmers focus on customization and the intricate rela-
tionships between models, Rails greatly improves productivity for both
advanced developers and students alike. Ruby is a more productive
language, and Rails gives developers a better head start, without sac-
rificing good design techniques. Put them together, and you have a
stunningly productive environment that accelerates productivity and
doesn’t let up.

3.5 Risk

You’ve seen that Ruby will usually have a huge productivity edge over
Java when applied to the right problems, but you have to weigh those
gains against increased risk. New languages are inherently risky. But
if you do an honest assessment of risk, you’ll find that though the Java
language may be established, other factors increase your risk dramati-
cally.

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=55

RISK 56

S
co
pe

C
re
ep

C
os
t

In
cr
ea
se

D
el
ay
s

Time

R
is
k

Figure 3.7: Risk increases over time

Java’s Low Productivity

All things being equal, the more productive language is much less risky.
You don’t have to look far for the reason. Risk increases with time (see
Figure 3.7). Think of time as the perfect medium for disease. Time lets
problems fester and grow. Longer cycles increase doubt and decrease
morale. When you take too long, you overspend and open the window
for scope creep, forcing even more cost overruns and new requirements.
Time also opens windows for competition. All of these diseases take
time to grow.

Java’s Fragmentation

It’s amazing to me that so many people fear the risk of a new program-
ming language and yet have no problem at all with adopting incredibly
complex frameworks that bind applications to an architecture until the
end of time, or at least the end of the project. The Ruby language is

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=56

LOOKING AHEAD 57

relatively new (or, at least, new to most of us), increasing its risk. But
compare that risk to the commitments you make within the Java com-
munity every day. Do you want to commit to Spring or EJB 3? Should
you use Hibernate for persistence, JDO, or EJB? What should you use
for the web tier? Struts, the JSF standard, or something more revolu-
tionary? Some of these frameworks will fail, and wrong decisions can
cripple you. Although the Java language may be safe, it’s hard for even
experts to choose the most effective frameworks.

At one point, experts have broadly promoted technologies that we now
know to be mistakes, such as EJB. Big companies bet on this frame-
work and sold it to their customers. I think similar mistakes may be
brewing for very popular frameworks such as web services, JavaServer
Faces, and JavaServer Pages. Each major architectural layer of a typi-
cal Java application offers a choice of dozens of possible technologies.
Certain tiers of development may be fairly well established, but others,
like the web presentation tier, offer a staggering lineup of choices—
Struts, JavaServer Faces, WebWork, Tapestry, Rife, Spring Web MVC,
and many others. On this tier, the safe choices are among the least
productive.

By contrast, Ruby is relatively consolidated. Most Ruby development
occurs on Ruby on Rails. This framework consolidates frameworks for
persistence, user interfaces, web services, security, XML, and even e-
mailing. The choices may not always be as robust as the Java alter-
natives, but they are integrated with the overall platform, leading to
rapid ramp-up and incredible productivity. You’ll also find Ruby much
easier to extend than other languages. So from a language perspective,
the Java language is safe. But for frameworks, you could well make
the case that Ruby on Rails is a safer framework than even the most
respected Java stacks.

3.6 Looking Ahead

The Ruby language is exploding rapidly because it’s so productive.
Many Java visionaries are leaving the Java community to gear up for
Java development. Although the productivity may not fully translate to
all problem spaces, it’s very real for applications that web-enable rela-
tional databases. Although new languages may carry more risk than
older ones with similar characteristics, some factors such as cost, pro-
ductivity, ramp-up time, and competition increase Java’s risks signifi-
cantly.

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=57

EXECUTIVE SUMMARY 58

In the end, productivity is the measuring stick for all technologies, and
the productivity reported by Ruby on Rails developers is staggering. If
I’m looking at programming languages, a language that makes me two
times productive is compelling, but we’re hearing reports that Ruby on
Rails is five to ten times as productive as Java for certain problems. I
was skeptical until I experienced it for myself.

We’ve just concluded the data collection portion of this book. In the
next chapter, we’ll begin to discuss limited deployments, beginning with
pilots. We’ll work to understand various models for mitigating risk,
looking at several pilot scenarios that have been successful for Ruby
pilot projects in the past.

3.7 Executive Summary

• Gauge Ruby’s explosive growth with downloads, visionaries, and
emerging books.

• The cornerstone of the Ruby experience is productivity, both short
and long term.

• Java’s risk factors are perceived to be low because of dominant
market share.

• But project risk increases with time and complexity, and Java
fares poorly with both.

• Java is an infrastructure language that’s ill-suited for many appli-
cations.

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=58

If you want to make enemies, try to change something.
Woodrow Wilson

Chapter 4

Pilot
4.1 Building Your Plan

The first time you use a new language in anger, to solve a real busi-
ness problem, there’s much at stake. If you’re wildly successful, you
can pave the way for change. If you fail miserably, you may never get
another chance. If you’re convinced that Ruby can help, you’ll need to
carefully plan this initiation.

Identifying a Business Problem

You’ll choose your business problem based on the political environ-
ment and technical demands. You’ll need to strike a balance across at
least two axes: the political and the technical. If you get too conserva-
tive and pick a problem that’s too easy or too small, you won’t prove
much, and no one will take notice. Conversely, if you get so aggressive
that you hit technical obstacles beyond your abilities, you could fail, or
experience an ugly success and get swept away by politics. The inter-
view on page 64 tells the story. As a problem gets more difficult, risks
get higher, but you learn more. As politics and visibility increase, your
potential reward gets higher, but consequences also increase.

Choosing a Technical Problem

Combined with the people you put on the project, the technical char-
acteristics of your problem, more than any other characteristics, will
determine your success or failure. A good tool, used for the wrong job,
is a bad tool. Chapters 5 and 6 will explore Ruby technologies in greater
detail, but let’s look beyond the simplistic view of picking the right job
for the tool. Figure 4.1, on the next page shows that your political goals
will help determine the technical problem you choose:

BUILDING YOUR PLAN 60

Te
ch

ni
ca

l R
is

k

Political Risk

High

Low

H
igh

Low

“Difficult”
Learn more.

Easy. Low
payback.

Learn more.
Bad if fails.

Good chance
of success.

Less learned.

Figure 4.1: High technical risks are ideal for learning but bad for poli-
tics

• Selling. If you’ve already chosen Ruby and you’re looking to estab-
lish early success to sell the framework, you want the easiest pos-
sible problem and best possible fit.

• Learning. If you’re more interested in learning about how far you
can push Ruby or whether it’s the best technical fit, then you’ll
want to pick a more demanding technical problem, and you’ll want
to see how far you can bend Ruby to suit your purposes.

In other words, you can’t always have the perfect pilot for both selling
and learning. Since you’ll usually want to do some of both, you’ll have to
strike a compromise. As I lay out individual scenarios from teams who
have built successful Ruby pilots, you’ll see how each team considered
both the technical and political realities of breaking new ground. You’ll
have to do the same:

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=60

BUILDING YOUR PLAN 61

• You’ll be learning a new technology. You’ll want to show off your
productivity, but make sure you allow some time for your team
to play and learn so you’ll know more about the environment and
have a better experience once it’s time to apply your knowledge to
a real-world problem.

• You’ll often be tempted to explore some aspect of Ruby that other
teams have never tried before, but you’ll be much better off if you
stick to problems that others have solved before you for your first
project. The Ruby community is open and accommodating. Ask
them whether anyone has tried a given problem before.

• You’ll be anxious to prove that you can work on a thinner budget,
but be careful. If you need help, get it. Working with a Ruby expert
on a short-duration pilot project will save you thousands of dollars
in the long run. You won’t save any money if you attack too much
of a problem before you’re ready.

• Keep sight of your political goals. If Java is not working in your
environment, your first goal is to establish a working alternative.
If serious Java proponents exist, technical failure will be devastat-
ing, so you’ll want to start slow. If you have more freedom to fail,
you can push the technology into more demanding applications.

Building a Team

After you’ve chosen a problem, you’ll need to build a team. The best
teams for Ruby have a few common characteristics:

• They often have some experience with dynamic languages. If your
programmers have written Smalltalk, Lisp, Python, or Perl before,
they’ll be able to take better advantage of Ruby. If they’ve used
Java’s dynamic features such as reflection or aspect-oriented pro-
gramming, they’ll fare better than those who haven’t.

• They are small. You don’t need nearly as many developers as you
need for similar Java problems.

• They have freedom. If your technical staff is free to make their
own decisions, they’ll make progress more quickly.

Small, smart teams play to the strengths of dynamic languages. In the
rest of the chapter, we’ll lay out scenarios that have been successful
for other Ruby teams. They will range from simple to complex on a
technical scale and from low to high visibility on a political scale. See
how others introduced Ruby.

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=61

SCENARIO 1: CLASSIC PILOT 62

4.2 Scenario 1: Classic Pilot

Using this scenario, your goal is to learn enough about Ruby to make a
go or no-go decision. Frankly, this scenario is not quite as common as
you’d expect. Since Java is near its peak popularity, language advocates
typically need to be stronger and more creative than those for other new
technologies. Still, a pilot project can often tell you everything you need
to know about whether Ruby is a technical fit.

Profile

This scenario differs from the others in this chapter because the pri-
mary goal is to learn, rather than sell. Figure 4.2, on the following page,
shows that when you look at the profile for this type of application, the
critical axis is the technical one. Although different people in your orga-
nization may well have different motivations, if your goal is to make
a decision rather than validate your decision with a successful pilot,
you’re going to want to choose an application with enough technical
challenges to make your decision. The political visibility of the project
doesn’t matter as much. For the best of cases, you should reduce your
risk by picking a project with limited consequences for failure.

Example: A Manufacturing Monitor at Autobar Flexible
Holland B.V.

Sake Lemstra, a managing director at Autobar Flexible Holland B.V.,
asked Henri ter Steeg of LinkIT Group to develop an application to help
collect data on his manufacturing process. The interview on page 64
tells the story. Originally, Henri used Java with Swing to develop the
application, based on the popularity of Java and the excellent enter-
prise integration features, including good Oracle integration. The per-
formance was adequate and the interface was rich, but the application
became increasingly complex as new requirements came.

They decided to pick a new technology and considered several Java
solutions, but none of them seemed to offer enough of an advantage to
make a rewrite worthwhile. Henri noticed the new Ajax support in Ruby
on Rails, so he decided to give Rails a try. Henri was concerned about
several aspects of the application that would stretch the Ruby platform:

• The performance would have to be good, because the application
would post graphs with thousands of data points every minute.

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=62

SCENARIO 1: CLASSIC PILOT 63

Te
ch

ni
ca

l R
is

k

Political Risk

High

Low

H
igh

Low

Pilot

A lower political risk helps.
Technical risk must be

moderately high.

Figure 4.2: Classic pilots need medium to high technical risk

• The customer had a version of Oracle that was not yet supported
by Ruby on Rails, so they’d need to add specific support for Oracle
features such as their outer join syntax.

• The user interface would need to be much more powerful than
typical HTML applications.

Henri decided to implement a small slice of the application but one
that dove deeply into technical details. He implemented a classic spike,
which is a thin but technically demanding slice of the application to
make sure Ruby on Rails would work. A custom caching layer solved
the performance concerns. Ajax support, in conjunction with existing
C code, handled the graphing functions needed by the sophisticated
interface requirements. The flexibility of both Ruby and Rails allowed
him to change the outer join syntax and add a simple real-time cache
to his objects by changing the definition of classes in the core frame-

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=63

SCENARIO 1: CLASSIC PILOT 64

works. This capability, called open classes, lends an incredible flexibil-
ity to Ruby, compared to Java. Because of excellent productivity and a
much simpler application base, they decided to move ahead with Ruby
on Rails. His customer was more interested in a clean, working appli-
cation on a better timeline than forcing a Java agenda, so he moved
development operations to Ruby.

Drawing Conclusions

Henri’s implementation was a classic pilot. He was most interested in
improving productivity and saw Ruby on Rails as one possible candi-
date to get him there. He was not concerned about political fallout,
because had he failed, he would have simply chosen an alternative
technology. This was strictly a learning exercise. The pilot was quite
successful. Even after dealing with these framework limitations, Henri
estimates that he is roughly four times as productive on Rails as he
was in Java.

Rescue scenario—A discussion with Henri ter Steeg
LinkiT Group

Q: Would you describe your application?
We had a suffering Java application. The application was writ-
ten in Swing. It worked OK, but it was getting too complicated.
The application had to communicate with other clients, and we
couldn’t get it to query the database with good performance.
It got to the point where we were afraid to add more features,
because the application was out of control. So, we decided to
move the application to another framework.

We looked at other Java frameworks first. We considered the
Spring Rich Client framework, but it looked unfinished. We also
considered a handful of other Java frameworks.

We ran across Rails. We considered it briefly and then put it aside
until the Ajax stuff came along. I thought, “This is really impressive.”
I did a spike and was really surprised with the speed of develop-
ment. I could develop client-server applications very fast. I got
back to Java and said, “This is too difficult, and it’s too much work.”

On Rails, my development speed was excellent.

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=64

SCENARIO 1: CLASSIC PILOT 65

Q: What were some of the limitations?
We needed to use abstract data types for performance reasons.
In JDBC, you can use them, but you can’t in Rails. So, we created
some views and “instead of” triggers and got past the problem.
We also used Oracle drivers that did not support the outer join syn-
tax. Active Record did not support outer join syntax, so we just cre-
ated some classes and changed one of the Rails methods at run
time. It was easier than I expected to work around what looked
like serious problems at the time.

Q: What are you using for security?
At the moment, we’re just using Apache security. We did not use
the Rails generator. For now, Apache security is all we need.

Q: Have you been pleased with the performance?
For the most part, it has been good. We had one major perfor-
mance issue. With Java, we could use a Swing app, which did
some caching for us for performance reasons. This approach is
difficult with a web app. We solved it with time-based caching.

Q: Did you experience any resistance to Rails?
No. The business environment trumped everything else. Our code
is simpler and easier to maintain, and we can work faster with it.

Q: What were your top business priorities?
We wanted a stable application. We wanted to develop faster,
and we wanted a simpler code base. As a very rough guess, I’d
say we’re coding three to four times faster.

Q: What was the most interesting part of your application?
We wrote a C fragment to produce our business graph. The busi-
ness logic gets one data point for each minute, and we accumu-
late many data points over time. Doing a fresh database query
every minute was not an option. In the Swing application, we
cached the entire graph. Now, database triggers write the new
data points to a file. We have a CGI script that reads the file and
plots the graph.

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=65

SCENARIO 2: TROJAN HORSE 66

4.3 Scenario 2: Trojan Horse

With the Trojan horse strategy, your goal is to get a working pilot estab-
lished with minimal visibility and leverage that tiny success to increase
Ruby penetration. Unlike the classic pilot scenario, you’re not as inter-
ested in learning from the experience. You’ve already established that
Ruby can help by other means, and you’re seeking to establish some
success with an easy project with a political climate that will not pro-
vide much resistance. If you later choose to do so, you can grow your
advocates internally and leverage your success for better Ruby pene-
tration on more important applications in the future.

Profile

The key to the Trojan horse scenario is to get your initial pilot, or Tro-
jan horse, established with as few technical and political obstacles pos-
sible. To do so, you work Ruby into an organization with very little
management visibility and feed the Ruby development culture. You’d
prefer an application with little technical or political risk, as in Fig-
ure 4.3, on the following page, choosing instead to fly Ruby in beneath
the radar. Culture is often the most important element. You want to
build a groundswell of support for the language from the bottom up.

Keep in mind that you’ll need to take on enough technical risk to prove
something important—you won’t prove anything by building an appli-
cation to manage your ten contacts with a primitive web page. Often,
you’re looking to save time and money by efficiently handling tedious,
unimportant jobs, where technology choice might not be as much of
an issue. These applications are often inward facing and may support
other applications. Admin consoles, tests, and build tools are likely tar-
gets for the Trojan. You can then promote your success and leverage
that success to take on other Ruby on Rails projects.

Example: Amazon.com

The Amazon.com interest in Ruby has been well publicized by several
bloggers, including Steve Yegge, who worked at Amazon.com for seven
years (and provided much of the background for this scenario), and
David Heinemeier Hansson, the creator of Ruby on Rails. Ruby was
initially not a popular or approved language at Amazon.com, but they
have since hosted the Seattle-area Ruby user group. To establish Ruby,
its proponents simply got Ruby into the hands of developers who could
use it. The tools support team made sure Ruby was installed on all

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=66

SCENARIO 2: TROJAN HORSE 67

Te
ch

ni
ca

l R
is

k

Political Risk

High

Low

H
igh

Low

Trojan

Take on the bare minimum
political risk. Take on only
enough technical risk to

establish credibility.

Figure 4.3: The Trojan Horse scenario requires low risk on both axes

developer machines. They brought in Dave Thomas to do a brown-
bag talk on Ruby. Dave didn’t actually promote using Ruby at Ama-
zon.com; instead, he promoted learning alternative languages to learn
how to program better. They gave away 120 free copies of Programming
Ruby [TFH05] and eventually built a ground swell of support at Ama-
zon.com. Ruby found increasing use in small, inwardly facing projects.
Ruby is thriving today at Amazon.com as an accepted language, though
it does not do most of the heavy lifting.

Example: An Administrative Console

I recently encountered another excellent opportunity for the Trojan
horse strategy. I was doing a Java training course at a consultancy.
They provided application developers to conservative companies. Nearly
all their development was done in the Java programming language. One
application in particular was done with old technologies, including EJB.

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=67

SCENARIO 2: TROJAN HORSE 68

Te
ch

ni
ca

l R
is

k

Political Risk

High

Low

H
igh

Low

R
a
c
e

High political risk is the key.
Technical risk is neutral,
tending toward medium.

Figure 4.4: The Race offsets high risk with a Java hedge

The project ran over budget, and they ran out of time and money before
they could implement their administrative console. Instead, they asked
their customers to manipulate data in the live production database with
raw SQL statements. They were concerned that they were opening up
their database to data entry errors and possible integrity problems.

Throughout the course, we discussed the application and came to the
conclusion that though the customer was a Java-only development
shop, the client would be receptive to installing a Ruby administra-
tive console, because it would take a fraction of the cost to develop the
administration console in Java. In fact, most of the application could
be generated by Ruby on Rails directly, without much customization at
all. I don’t know whether the customer has yet moved forward with this
approach, but it would be an outstanding example of the Trojan horse
scenario.

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=68

SCENARIO 3: RACE 69

4.4 Scenario 3: Race

A rapidly growing strategy for selling Ruby on Rails into conservative
organizations is based strictly on the incredible productivity of the plat-
form. With a race between Java and Ruby, you can turn a pilot that
would be a high-stakes gamble into a relatively safe and very effective
way to introduce Ruby. Your goal is to implement a Rails application
and a Java application side by side. If you pick a problem that’s as
good a fit for Ruby as Java, the Ruby team will usually show far better
productivity. The race scenario is attractive across a broadly different
set of circumstances:

• Improving technical fit. For applications where Java is a partic-
ularly bad technology choice and Ruby is a good one, the Race
scenario works well. Ideal Ruby on Rails applications, with well-
defined and simple integration scenarios, are the most common.

• Improving options for consultancies. If you think Ruby is the best
technology choice but the customer balks, you can often take a
financial risk. Implement the Java project and Ruby projects side
by side, and show the customer what you’ve achieved. They may
be willing to buy the Ruby version from you or pay you higher
hourly rates to make up the difference once you’ve proven the
success of the platform.

• Winning over upper-management. If lower-level management sup-
ports Rails but higher management doesn’t, you can spend your
contingency budgets on Ruby as your hedge. Developing a backup
application is a viable way to mitigate risk. It’s much tougher for
upper-management to reject a proven development effort.

Profile

Figure 4.4, on the page before, shows that a race scenario depends on
middling technical risk and very high political risk. You’re willing to
take on higher risk by using a more important application because you
have the Java project as a hedge. If you fail, you can simply continue
development with the Java version.

The downside is cost, but since the Ruby project should take far fewer
resources, it should be incremental to your overall Java costs. The core
question is this: who pays? You’ve seen that consultancies may be will-
ing to foot the short-term bill, betting that the customer will pay for the
effort so far, once you’re far enough along to prove your value.

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=69

SCENARIO 3: RACE 70

If you’re the project director, you may be willing to spend your research
or contingency budgets on a parallel development effort.

Alternatively, you can sell the Ruby development as a cheap hedge. You
have to be creative. It’s usually difficult to get conservative management
to sign off on risky technologies, and is doubly so for parallel throwaway
development, but it can and has been done.

Example: A Start-Up Company Builds a Manufacturing
Application

J2Life, LLC, and Relevance, LLC, worked together on an application for
a start-up in the spring of 2005. We began building the application with
the lightweight stack of Java frameworks including Spring, Hibernate,
and WebWork. I worked on the data model and advised the customer.
Justin worked with the remainder of the code. The customer, a start-up
in Austin, had been complaining about the slow pace of new develop-
ment and our responsiveness to changes. He was self-funding, and the
application was the company’s only asset. The intelligence of the appli-
cation was in the organization of the data model based on the years of
experience of the founder. We basically needed a web user interface to
manage a relational database.

Justin and I both experimented with Ruby on Rails after talking to Dave
Thomas at a conference. I played enough to find that we should take
Rails seriously. Justin actually completed all the functionality that we
had built in Java, but in a fraction of the time. The start-up company’s
goal was to sell the technology to large manufacturing companies. We
were confident that large manufacturing companies would be willing to
buy a Ruby application.

When we talked to the customer, we were able to show overwhelm-
ing productivity improvements and the corresponding lower cost. We
shifted to a reduced, fixed-price contract, which also pleased the cus-
tomer. By doing so, we eliminated the customer’s downside risk, and
Relevance improved their margins, because the newer technology was
so productive. They passed additional savings on to the customer as
well.

This project eventually failed, but not for technical reasons. Consider-
ing the eventual failure, we believe the Rails choice was well justified,
because we limited the out-of-pocket expenses from the investors.

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=70

SCENARIO 4: BET-YOUR-BUSINESS: BASECAMP 71

Over time, Justin’s productivity was between five and ten times his
productivity with the Java programming language. He found that the
Ruby version of the application could be tuned for performance much
more easily than the Java version, and with the Ajax support, the user
interface was better also.

Example: Consultancies

I have recently learned that we are one of several consultancies that
have used this Race scenario. In two cases, the consultancy initially
funded the Ruby development effort. They were willing to do so to gain
experience with the exploding Ruby language. Like Justin and I, they
also had enough confidence in the Ruby on Rails technology that they
fully expected the investment to pay off.

In every case, the customer had struggling Java development issues,
usually due to the complexity of building web-based applications in
Java. As I did the research for this book and Beyond Java, an often
repeated message was that the Java platform simply makes web devel-
opment harder than it needs to be.

The Race scenario need not depend on web-based development. Small
teams with strong experience with dynamic languages can usually work
much faster than Java teams given a common problem set.

4.5 Scenario 4: Bet-your-Business: Basecamp

The riskiest, and potentially most rewarding, scenario is to bet your
business on the productivity improvements you can get with Ruby on
Rails versus Java. This scenario is actually more popular than you
might expect among start-up companies. These types of companies
need serious technological edges against larger competitors, and a more
dynamic and productive programming language is often a serious part
of the equation.

The Ruby on Rails project was basically built based on this scenario at
37signals. There, a very small team of programmers builds and main-
tains web applications that are used worldwide. The company is now
viewed as one of the most promising young companies in the world.

In these cases, the risk associated with Ruby is trivial against the
potential rewards of the environment. Figure 4.5, on the following page
shows the profile.

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=71

SCENARIO 5: RESCUE 72

Te
ch

ni
ca

l R
is

k

Political Risk

High

Low

H
igh

Low

Bet

Bet-your-business scenarios
combine the highest possible

risks on both axes.

Figure 4.5: The Bet-your-Business scenario offsets risk of a new lan-
guage against gains in productivity

4.6 Scenario 5: Rescue

An increasingly prominent scenario with Ruby is the Rescue scenario.
The goal is to take a floundering Java project and implement the project
with Ruby. When I took a cardiopulmonary resuscitation (CPR) class,
we were told that we’d have to press on the chest of a patient hard—
often hard enough to break ribs. When we asked if that might hurt the
patient, the instructor told us not to worry. The patient was already
dead. The rescue strategy seeks to take a dead or dying Java project
and successfully implement it on Ruby on Rails. Typically conservative
management may be willing to accept an alternate technology to save
the project. After all, the patient is already dead, or dying, so the risk is
already unacceptable.

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=72

SCENARIO 5: RESCUE 73

Te
ch

ni
ca

l R
is

k

Political Risk

High

Low

H
igh

Low

Rescue

Offset high technical and
political risk by stepping in to
save a troubled Java project.

Figure 4.6: The Rescue saves a floundering Java project

Profile

A rescue scenario takes on high political risk and a difficult technical
problem, as in Figure 4.6 . Your bet is that the high risk of the current
project and the need for a recovery plan help offset the lesser risk of a
new language.

You learned in the previous two chapters that risk levels increase dra-
matically with time and the risk profile of a newer technology reduces
dramatically with market share. Here’s the catch: you must make sure
that the project is floundering primarily for technical reasons! If you
don’t have the skill or if the primary problems are related to the pro-
cess, then a faster technology will just help you fail faster.

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=73

SCENARIO 5: RESCUE 74

Example: Public Pilots at a Large .com

One of the largest .com organizations in the United States has a num-
ber of pilot projects every year to entice new customers to their existing
services. Often, the designers of these aggressive pilot programs have
no clear idea what their customers want to see or how their user inter-
faces should present new data. I interviewed a developer who works at
this company. I knew he was a proponent of Ruby but didn’t know he
had been able to use Ruby at work. He offered this story, provided that
I leave out details that might identify the company. We’ll call my contact
Bill and his company Mega.com.

Like many of the more successful .coms, Mega.com is a strong pro-
ponent of using good technologies. They’ve used Java extensively and
also some other dynamic languages. Ruby has yet to be introduced. Bill
had the charter of taking a small team and developing a pilot applica-
tion with a proprietary Java and XML-based framework. After working
through several iterations of the pilot, he calculated that they could
not possibly make their projected deadlines, because the Java technol-
ogy was not nearly productive enough to handle the quickly changing
requirements driven by their beta customers.

He told his management team that Java was no longer an option and
he intended to use Ruby on Rails for the pilot projects. His choice
paid off almost immediately, experiencing a fivefold improvement over
the proprietary Java framework. Bill was shocked, because his team
did not have working experience with Ruby on Rails, but they were
able to quickly ramp up and generate the pilot application, learning as
they developed. Bill estimates that his team will experience an order of
magnitude improvement in productivity once everyone on the team is
comfortable with Ruby and the Rails environment. He attributes this
improvement to the programming language, the excellent Ajax integra-
tion, and the Rails environment. He calls Rails “the most important
open source project in the last ten years.”

Learning from the experience

Bill has some selling yet to do. Although he was able to push Ruby
on Rails through for his pilot project based on the rescue scenario,
Mega.com has not yet agreed to push Ruby on Rails into production.
Because the Mega.com company has a strong Unix tradition and expe-
rience with dynamic languages, he has a fighting chance, but Bill now
needs to do some research to back up his case for putting Rails into pro-

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=74

MAKING THE CHOICE 75

duction. As with all .coms, a new service might have limited scalability
requirements, but one post on Slashdot can increase volumes quickly
to massive proportions. He’s still doing research to make his case. Since
Bill ran his pilot, many other teams at Mega.com have moved forward
with their own Rails experiments.

4.7 Making the Choice

In the end, your circumstances will determine your decisions. Keep in
mind that new technologies can and do fail. The best you can possi-
bly hope to do is understand how much political risk you’re willing to
accept and weigh your potential gains against that risk. Keep in mind
that even in the context of each scenario, you’ll need to work to mitigate
risks by picking the right team and making sure they are prepared for
the challenge. In the next chapter, we’ll talk about the technologies that
come into play as you move from Java to Ruby.

4.8 Executive Summary

• Any effective pilot must take into account current technical and
political realities.

• The goals of learning and selling are often at odds.

• A classic pilot undertakes a project with high technical risk and
emphasizes learning over selling.

• The Race scenario runs the same project side by side with Ruby
and Java.

• The Trojan Horse scenario seeks to introduce Ruby under the
radar via low-risk, low-visibility projects.

• The Bet-your-Business scenario is common in start ups, and off-
sets the high technical risk of a new language with very high pro-
ductivity.

• The Rescue scenario implements a failing Java project in Ruby,
weighing high political risk of a new language against the higher
risk of a failing application.

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=75

It is our choices that show what we truly are, far more than
our abilities.

J. K. Rowling, author of Harry Potter

Chapter 5

On an Island
After you’ve implemented a successful pilot, you’ll want to expand Ruby
to other projects. This chapter and the next deal with the Ruby land-
scape and enterprise integration strategies. In this chapter, we’ll talk
about ways to build “island” applications that need very limited inte-
gration with the outside world. In the following chapter, we’ll talk about
the technologies that can help you integrate with other applications,
Java and otherwise.

5.1 Overview

Many people have tried to pigeonhole Ruby into the niche of script-
ing languages. The implication is that as a mere utility language, Ruby
will never form the foundation of real applications. As you’ve seen, a
growing number of developers are pushing Ruby into ever-expanding
niches. Ruby on Rails is a big part of that movement. Rails is an incred-
ible framework that has excellent support for simplified but powerful
web development, productive database access that includes migration
of both your schema and data, web services, and even Ajax. But Ruby
goes far beyond Rails. Ruby is an outstanding language for the follow-
ing:

• Driving testing
• Integrating enterprise applications

• Working with text files
• Using images

• Building and accessing web services
• Using middleware like LDAP directories

• Working with databases

THE BASICS 77

Ruby

Language

Core types
(text,

numbers)

I/O, OS
(Network,

files)
Integration

Operating System

Apps

Applications, libraries

Figure 5.1: Ruby’s basic features

...and much more. Even without Rails, Ruby is a far more advanced
language than Java for web development, as you will see. At some point,
you’re going to want to fly over the landscape at 10,000 feet and take
it all in. This chapter will walk you through the most important and
popular Ruby frameworks.

5.2 The Basics

Like Java, the Ruby programming language has been around for more
than ten years, spending the first five years in relative obscurity, pretty
much exclusively in Japan. Over that time, Ruby grew an impressive set
of features. Figure 5.1 shows the major features of Ruby (but doesn’t
necessarily reflect the underlying structure of Ruby). You can divide
Ruby’s core libraries into these major categories:

• Language support. These features are the basic building blocks of
Ruby, such as the syntax, expressions, threads, decisions, and
loops. These features also support objects and the components
that define objects such as methods and classes. In addition, lan-
guage support includes the most basic and pervasive objects with
containers to hold them. The language support tends to be more
dynamic than you’ll find for Java.

• Input/output (I/O). Ruby supports basic input and output fea-
tures. I/O forms the cornerstone of any language. Ruby’s I/O
features allow access to devices and other programs. Borrowing
features from both Perl and C, Ruby has an impressive and con-
sistent library of input/output features.

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=77

THE BASICS 78

• Data munging. When you add Ruby’s impressive array of features
dedicated to processing text and other kinds of data to the strong
input/output features inherent in scripting languages, you have a
language that’s very well suited for data manipulation tasks of all
kinds. Ruby’s high-level string support includes regular expres-
sions and advanced features such as templating (for tasks similar
to mail merge) and first-class ranges that work with both charac-
ters and numbers. Ruby also has extensive support for math.

• Communications. Ruby supports common Internet communica-
tion via several libraries. For starters, you can use low-level Inter-
net protocols such as TCP/IP and HTTP. You can also use higher-
level APIs such as SOAP or web services. (We’ll cover these fea-
tures in more detail in Chapter 6, Bridges, on page 92.) Several
web development features, such as the common gateway interface
(CGI), are also supported. Combine this support with the tem-
plating support described in data munging, and you have a good
language for creating simple web pages.

• Development support. Ruby has several libraries and utilities to
support developers. Ruby has an interactive interpreter that lets
developers explore and play. Ruby also has libraries and tools
such as Rake to help you build projects, unit test your code, doc-
ument your code, and run benchmarks to show you bottlenecks.
Tools such as Gems and setup also help to package, deploy, and
distribute new code.

• User interfaces. Ruby has support for building user interfaces.
Though not as extensive as frameworks for the Java, Microsoft,
or Apple platforms, they are quite productive. You also have the
luxury of several cross-platform GUI toolkits.

• Security. Ruby has some features that allow you to encrypt files,
identify user input that might have dangerous hacking code built
in, or lock down separate parts of your application.

• Integration. Ruby has features allowing integration to Microsoft
tools, DLLs, and other programming languages. The C integration
in Ruby is especially strong. We’ll look at the special integration
packages available for Java in Chapter 6, Bridges, on page 92.

You can see that Ruby gives you a good deal of power right out of the
box. Many programmers use these features as a scripting language,
writing small applications to process text files or even deliver simple
websites. Joshua Haberman of Amazon.com speaks of using Ruby as a
scripting language. Ruby is quite powerful in that role, but as Joshua
found, there’s far more to Ruby than scripting.

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=78

THE BASICS 79

Introducing Ruby—A discussion with Joshua Haberman
Amazon.com

Q: How long have you been using Ruby?
I first used Ruby in college, about five years ago. I liked it a lot, but
I was afraid it would never gain enough mind share to be more
than a niche language. Mind share is extremely important for a
programming language. Only when a language achieves a criti-
cal mass do you start to see the kinds of libraries, frameworks, and
tools that you need to be effective. If you write in a niche lan-
guage, no one wants to read or maintain your code. Five years
ago, it looked like Ruby was destined to be one of those great-
but-unknown languages, so I switched to Python, which looked
like it was going to be the dominant language in this space.

Then, a year ago, Dave Thomas of the Pragmatic Programmers
came to Amazon.com to speak about Ruby. His talk reminded me
of what a powerful, expressive language Ruby is and how it really
does stand out even compared to similar languages like Python.
Also, by this time Ruby on Rails was really hitting it big and creat-
ing the mind share that earlier I worried would never materialize.
I left from Dave Thomas’s talk and immediately rewrote in Ruby a
Python script I had been working on. I haven’t written any Python
since.

Q: What types of jobs do you use Ruby to do?

I have found Ruby extremely useful for the jobs where people
have traditionally turned to Perl. Utility scripts, batch jobs, unit tests,
monitors, log parsing, ad hoc programs, and prototypes are all
jobs where Ruby has been a powerful tool. In this space, Ruby is
a clear win because it has all the capabilities of Perl but a much
cleaner design and more expressive syntax.

I am also using Ruby on Rails to build an internal website. For a
while I was skeptical about the buzz surrounding Rails, but now
that I’ve used it, I have to say that it really lives up to the hype.
Web applications have been unnecessarily painful to write for a
long time. Ruby on Rails frees you from having to write the part of
the web application that was always the most boring and unnec-
essarily time-consuming.

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=79

THE BASICS 80

Q: Does Ruby make you more productive, and why?
If you see Ruby’s most visible advocates speak (Dave Thomas and
David Heinemeier Hansson especially), you’ll notice that they talk
about the happiness, joy, and motivation that Ruby brings to pro-
grammers. This may seem like fluff or icing on the cake, but for me
it has led to very tangible productivity gains. I tend to be a perfec-
tionist when I code, and I am always looking for the clearest way
to express every line of code that I write. When a programming
language doesn’t give me a good way to say something, it’s like
writer’s block—I have to stop my train of thought and dumb down
my idea until the programming language can understand it.

On the other hand, if my language gives me a concise, readable,
and elegant way to say something, I am pleased with what I’ve
written, and I am inspired to continue writing.

Q: What’s the best way for an established company to get started
with Ruby?
I started using Ruby because it could make my job, as an engi-
neer, easier. I focused my efforts on creating libraries that can
interoperate with our internal systems, and I made these libraries
as easy as possible to use. Once I had that going, I could start
demonstrating to others that Ruby would make their jobs easier
too. It is a very grassroots, bottom-up movement.

When I was first using Ruby, I would choose Ruby to solve small
tasks that my manager assigned, being sure to let my manager
know I was doing this. Over time, my manager noticed that when
I chose Ruby, I would complete the job quickly and effectively.
That made him more comfortable when I would choose Ruby
for slightly bigger and more important programs. I definitely don’t
believe in springing a new language on an organization by imme-
diately choosing it for something big. It needs to prove itself with
small problems first, and management needs to be in on the con-
versation.

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=80

WEB DEVELOPMENT 81

5.3 Web Development

People new to Ruby marvel about how an incredible web development
environment could come out of nowhere to challenge the most success-
ful programming language of our time. But Ruby was often used as
a language for building simple web applications for most of its early
existence. Before we look at Rails in detail, we should look at the Ruby
technologies that are attractive to web developers. We should start with
a discussion of a growing alternative to Java in LAMP.

LAMP

Many experts associate the Ruby language with a development strategy
called LAMP, which stands for the open source projects Linux, Apache,
MySQL, and Perl/PHP/Python. (Ignore the kickstand, and Ruby is a
P-language too.) LAMP web development tends to have a few overriding
characteristics:

• Open source software

• Web-enabled database applications
• Simplicity

• Low cost
• Dynamic programming languages

Figure 5.2, on the next page, shows a typical LAMP configuration. LAMP
architectures work by running simple scripts through a web server. The
web server uses the operating system to execute these scripts, usually
through some variation of an interface called CGI. The scripts are sim-
ple applications that may access a database or file, execute some code,
and add the results to a web page, which is then returned to the user.
Since web pages are basically strings and references to static resources
like graphics and music files, languages that are good at manipulating
text tend to be good for LAMP.

Enterprise applications can have trouble scaling because as the num-
ber of requests grow companies must deploy the applications to more
and more servers. Running the same application across several servers
gets especially difficult when the application must share the resources
across servers. Then, the complexity gets out of control, or the scalabil-
ity suffers. LAMP achieves scalability through clustering, but applica-
tions don’t share resources across a cluster. Instead, each application
contains enough information to fulfill a request independently. Called
shared-nothing, this strategy greatly simplifies applications and makes

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=81

WEB DEVELOPMENT 82

Database Server

Application Server

Internet

Client Application Server

Operating System

Linux (or FreeBSD)

Web Server

Apache, or Lighttpd

Interface: FastCGI

Or other plug-in

Language: Many

Python, Perl, PhP, or Ruby
Client UI: Browser

Database Server
Database Software: MySQ:

Or PostgreSQL, or SQLite

Application Server

Operating System

Linux (or FreeBSD)

Web Server

Apache, or Lighttpd

Interface: FastCGI

Or other plug-in

Language: Many

Python, Perl, PHP, or Ruby
Database Server

Database Software: MySQL:

Or PostgreSQL, or SQLite

Data

Figure 5.2: Typical LAMP deployments use simple, shared-nothing
architectures

it possible to scale by adding hardware. The networking infrastructure
shares jobs across a cluster. Only a few specialized layers, such as the
database or a distributed file system, are shared across the cluster.
Everything else is private.

Ruby web applications typically use the LAMP approach. Ruby has
many characteristics that make it outstanding for LAMP designs:

• Ruby is an open source language.
• Ruby handles text extremely well.

• Ruby supports all the necessary Internet protocols.
• The two most popular LAMP servers run Ruby, and Ruby also has

a lightweight server for development.
• Ruby has efficient database integration.

Before Ruby on Rails became popular, many Ruby web applications
used the LAMP style of development. Recently, some consultants and
writers have suggested that LAMP technologies are starting to pose
a credible alternative to the Java programming language and frame-
works. Some of the most scalable Internet sites in the world, such as
Google, use LAMP philosophies in places. LAMP technologies also have
strong publishers available to help manage the community that makes
programming languages and frameworks thrive. But web development
still has some significant problems, and Ruby’s developers are always
trying approaches to take LAMP to the next level.

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=82

WEB DEVELOPMENT 83

Continuation Servers

Web development has needed an overhaul for quite some time. Stateless
applications often scale better for the same reason that shared-nothing
architectures scale better. So, most web servers use stateless architec-
tures. The problem is that stateless web development is hard, because
it doesn’t automatically keep track of whole conversations. If an appli-
cation has conversations that take more than a page, the application
developer is left to manage state without help. So each time an appli-
cation has a conversation with a user that spans more than one page,
like shopping from a catalog, placing an item in a cart, and checking
out, the application has to keep track of everything that has happened
in the past. That’s a tedious process, and a user can click the back
button at any time, making the problem even harder to solve.

Ruby has several frameworks that experiment with a new and radical
way of building web applications. Continuation servers use a language
feature called continuations to make web development easier. A con-
tinuation captures the state of an application. Ruby supports contin-
uations. Using a continuation server, the web server can capture and
store a continuation for each application, with only a limited impact
on the overall scalability of the system. Ruby has at least three such
frameworks:

• Wee is a framework that uses a continuation-like approach but
doesn’t actually use Ruby continuations.

• Borges is a port of a famous continuation server implemented in
Smalltalk called Seaside.

• Iowa is a framework started by Avi Bryant, the author of Seaside.
Now, Iowa is maintained by other developers, but it still uses some
of the concepts of continuation servers.

None of these frameworks is broadly deployed, and some are imma-
ture. Even so, it’s worth knowing about them in case you run into a
problem where state management is a serious problem. You’ll want to
pay attention to these projects as they evolve, because some experts
believe that all major web development frameworks will eventually use
continuations.

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=83

RAILS 84

5.4 Rails

Although Java has many different web development frameworks that
are broadly used, Ruby has one in Ruby on Rails. That level of focus
and integration gives Rails an incredible productivity advantage. A com-
plete treatment of Ruby on Rails is far beyond the scope of this book,
but you’ll need to know about the scope of exactly what this beast can
do for you. Rails is an application development framework that focuses
on building web applications to front relational databases. It is funda-
mentally a mix of some glue code on top of several distinct frameworks:

• Active Record. Rails performs all database access through Active
Record, but you can plug in other persistence frameworks if you
want. Active Record improves programming by discovering the
fields and structure, based on some naming conventions, and
adding certain things to your classes automatically.

• Action Pack. Rails uses a well-known strategy for separating pre-
sentation logic from business logic called Model-View-Controller.
Action Pack handles the presentation aspects of Rails.

• Action Mailer. Rails uses Action Mailer to handle e-mail integration
for features such as password support.

• Prototype. Rails can make extensive use of Ajax technology to do
things like drag and drop and rich user interfaces on the Web. See
Pragmatic Ajax [GGA06] for more details.

• Action Web Service. You can integrate Rails applications with appli-
cations written on other frameworks and languages with Action
Web Service.

• Ruby. Rails makes good use of Ruby’s capabilities. Rails uses
Ruby’s metaprogramming to make it easier to define database
classes and for simpler configuration within Active Record. Rails
also improves on Ruby’s core frameworks for web development
and for helping Ruby and HTML work together.

Figure 5.3, on the following page, shows how it all hangs together. When
you take these well-designed components and glue them together in a
convenient way, you have the recipe for success. We’ll focus on Action
Pack and Active Record as the cores of the Rails framework.

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=84

RAILS 85

Web Server (CGI)

Action Pack controller

Action Mailer Active Record Action
Web Service

Action View

Client

Database

Server

Figure 5.3: Rails is actually a number of smaller, loosely-coupled frame-
works

Active Record

Active Record is arguably the most important part of the Ruby on Rails
framework. It makes developing database-backed applications much
easier. Traditionally, when you developed object-oriented applications
that dealt with relational databases, you’d need to define the database
and the object model independently and then write some code or con-
figuration to tie the two together. Instead, with Rails, you simply define
database tables and let Active Record automatically discover your fields
and add them to your objects. So, an Active Record class looks like this:

class Book < ActiveRecord::Base
has_one :author
has_many :chapters

end

A similar Java class would be dozens of lines long and often require a
configuration file as well. Active Record works by asking you to adhere
to certain naming conventions in your database tables and in your
code. If you do so, Active Record knows where to look for important
information. For example, tables are English plurals of your classes.
So, in the previous program, Active Record knows the class Book will
get information from a database table called books.

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=85

RAILS 86

You’ll be much more successful with Active Record if you create your
schema explicitly for Active Record. You’ll have more limited success if
you need to support an existing schema, especially schemas that have
features such as composite keys, a strategy for identifying a row with
more than one database column.

Action Pack

Action Pack is the Rails framework responsible for presentation. Action
Pack handles both the view and controller parts of the well-known
Model-View-Controller pattern. Views present data, Active Record mod-
els contain and store data, and controllers invoke both, moving data
back and forth between models and views. Action Pack also makes
sure that any incoming requests get from the web server to the right
controller.

The Rails view framework is called Action View. It fills the same role
as JavaServer Pages do for Java. Rails executes Action Views on the
server, executing any Ruby code that plugs in dynamic content like
database data from Active Record objects. Unlike Java, Rails developers
are encouraged to add Ruby code directly to web pages, if it makes
sense. Rails developers can then move code that has more to do with
business logic into Active Record objects, whenever it makes sense.

Strengths of Rails

The developers I interviewed for this book love Rails. Most often, they
cite incredible productivity gains over Java and other programming lan-
guages. You can attribute this added productivity to any number of
small innovations, but a better explanation is that the integrated frame-
work achieves a synergy greater than any single piece of Rails. The rapid
turnaround between coding something and seeing it on the screen is
also significant. The lack of repetition means less code to write, debug,
and maintain.1 Taken alone, each of these ideas is important. Taken
together, they’re nearly overwhelming:

• Convention over configuration. Rails achieves this improvement by
taking advantage of the clean integration between Rails compo-
nents. The difference in the amount of configuration that you need
to apply to get a real application running is striking. I’ve measured

1See the DRY prinicple in [HT00]

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=86

RAILS 87

a difference of ten to one on the production Rails applications I’ve
worked on so far.

• Scaffolding. Clever code generation based on your model lets you
quickly generate database-backed user interface code for a given
database table to jump-start your development and get code in
front of your users in a hurry.

• Built-in testing. Many developers recognize the need for writing
automated tests, but it’s often hard to jump-start a testing frame-
work. Rails provides the project organization and creates simple
test cases automatically, so you can build from working test cases
to jump-start testing.

• Tailored environments. Rails creates environments for test, devel-
opment, and production. Many frameworks try to optimize the
development experience for either test, development, or produc-
tion. But all of these environments have different needs, and Rails
manages those different needs well. For example, the development
mode lets you change a line of code and immediately see the result
in your application, but the production mode optimizes for perfor-
mance instead.

• Domain-specific languages. Rails includes a number of domain-
specific languages that allow you to map application objects to
database tables, create view components, and configure the appli-
cation. Code written with these built-in languages is easier to
write, extend, and understand.

• Good integration with Ruby. Rails uses the Ruby language very
well. Sometimes, it’s hard to see where Rails begins and Ruby
ends. Rails also makes good use of Ruby packaging, documen-
tation, and deployment components. This seamless integration
makes Rails easier to use, learn, and extend.

You’ve seen that Rails is clearly the engine behind the explosive growth
of Ruby, and the benefits do not stop at the technology, The Rails com-
munity is active, committed, and quite helpful. But Rails is not an
island. Ruby has nice middleware integration capabilities, and Rails
can take advantage of them well.

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=87

MIDDLEWARE 88

5.5 Middleware

Many of the people who explore Ruby for the first time are surprised
by the number of available middleware integration packages. The roots
of Ruby as an open source language of choice mean the most common
integration problems have been solved. Many of the middleware integra-
tion frameworks use Ruby’s interface for the C programming language,
but some of the others have native support. This section presents some
of the most important middleware packages.

Databases

Nearly all Java database applications access databases through JDBC
at some level. Ruby has no overriding common database API, but there
are still good integration strategies. Database integration with Ruby
uses one of three strategies. You can work with a direct database API,
you can work with a common database layer (like Java’s JDBC), or you
can work with a mapper. Let’s look at each of these choices in detail.

Direct APIs

One of the features I miss most about Java as a persistence expert
is JDBC, one common database interface. In Ruby, things are differ-
ent. Many database bindings grew before any major effort was made to
consolidate them. MySQL and Oracle seem to be the most widely used
databases for Ruby, but you can also find drivers for many others.
DB2, PostgreSQL, and Microsoft SQL Server all have database inter-
faces for Ruby, and many others are under development. Installing
drivers for lesser-known platforms is often not for the faint of heart,
but you should be able to find a driver for most commercial databases.

DBI

DBI, or Database Interface, is an attempt to build a unified database
layer for all Ruby databases, using a library patterned after the Perl-
based API of the same name. Python, Perl, and Ruby all use the same
approach. A database specific layer, supplied by the vendor, accesses
a database through a native interface. Then, a common layer sits on
top, and application developers all code to the common layer. DBI rep-
resents an important attempt to unify database access on Ruby, but
it has not been universally successful. Frameworks and application
developers who need the best possible performance and stability tend

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=88

MIDDLEWARE 89

to build on the native C database-specific drivers. Rails, for example,
uses native drivers. All in all, DBI is moving in the right direction but
doesn’t seem to have the pervasive adoption of JDBC.

Mappers and Wrappers

Java developers tend to address higher-level database access with one
of two methods. The first is object-relational mapping, and the second is
database wrapping. With mapping approaches, you design your objects
and database tables independently and then build a map between the
two. With wrapping you start with a database table and then build an
object explicitly to access it.

The mapping approach is by far the most popular approach in Java
today. Frameworks such as EJB and Hibernate are by far the most
popular frameworks for database access today. In Ruby, these map-
ping approaches are not nearly so popular. The most popular mapping
framework is called OG, though the nature of the Ruby language makes
it easy to write your own, so many customers have doubtlessly done so.

Using the wrapping approach, you create a database table and then
create objects with operations that operate on the table. This is the
approach used by simple Java frameworks called DAO frameworks.
A couple of examples are iBATIS, Spring JDBC, and Velocity. Active
Record uses the wrapping approach. As you’ve seen, the Active Record
framework uses the capabilities of Ruby to build onto a developer’s
classes based on the fields and structure of the database. Active Record
also handles relationships, while most Java wrapping frameworks do
not, or do so poorly. You don’t need to use Rails to use Active Record.

Security

Most Ruby developers use one of two approaches: they use Ruby’s LDAP
support to integrate to an external directory, or they use a plug-in for
their web framework of choice. Ruby/LDAP is a Ruby extension that
provides an API to access most LDAP servers. If you’re using Rails,
you’ll probably use a more focused API instead. Several strategies exist
to support security strategies that cover everything from flat-file sup-
port to database support to LDAP. You can also use Rails plug-ins to do
role-based security or simple authentication. The choices are actually
well developed and easy to integrate. Alternatives are getting stronger
by the day.

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=89

LOOKING AHEAD 90

Communications

Ruby has several available communications APIs. The most relevant
are the low-level Internet standards and the web services. Since Ruby
is not a dominant language, it must have a language-agnostic way to
communicate with other applications written in other languages. Web
services fill that niche nicely, and we’ll talk about them in detail in
the next chapter. Ruby frameworks tend to provide better support for
a simpler model of web services called ReST, but support for SOAP is
also available.

If you need to work at a lower level, you can easily do so. Ruby has
direct support for the Internet’s communication protocol, TCP/IP, as
well as HTTP. You can also use a feature called XML RPC (RPC stands
for remote procedure call). Some of the Java bridging technologies we
discuss in the next chapter are based on XML RPC. Many other com-
munication APIs at different levels are available to meet your needs,
from CORBA to proprietary RPC. More are being developed monthly.

XML

Ruby has fantastic support for basic XML and a few XML-based frame-
works like SOAP. Since XML is fundamentally a character string, the
Ruby language is actually better equipped to deal with XML than is
Java. Features like regular expressions, ranges, and Ruby’s massive
string libraries give it an inherent advantage over Java. You have sev-
eral XML frameworks to choose from, but right now, the most popular
is called REXML. It’s loosely based on the Java ElectricXML package,
but it’s easier to use. If you depend on XML, rest assured. You’ll have
excellent support. We’ll talk more about the XML support in Chapter 6,
Bridges, on page 92.

5.6 Looking Ahead

So far, you’ve seen the tools you’re likely to use to build stand-alone
Ruby applications. Whether you use Rails or another Ruby web frame-
work, or the simple CGI-based tools directly, you’ll find a mature, effec-
tive language working for you. But all programming languages age, and
eventually accumulate legacy code. And you may have your own legacy
code to manage. In the next chapter, we’ll talk about some of the tools
you can use to deal with your legacy Java code. We’ll build some bridges
to these isolated islands.

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=90

EXECUTIVE SUMMARY 91

5.7 Executive Summary

• The Ruby language has been wrongly pigeonholed as a scripting
language.

• Ruby handles integration, data munging, web development, and
other rapid development tasks well.

• Ruby on Rails is quick like PHP or Visual Basic and clean like
Java.

• Ruby middleware supports database integration, security, mes-
saging, communications, XML, web services, and more.

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=91

Design is not making beauty, beauty emerges from
selection, affinities, integration, love.

Louis Kahn, master builder

Chapter 6

Bridges
In the previous chapter, you saw how to use Ruby on an island. If you
think of Java development as the mainland, sooner or later you’ll need
to build bridges to integrate your Java and Ruby applications. In this
chapter, we’ll introduce strategies for building and crossing bridges.
Then, we’ll show you the popular bridges from Java to Ruby.

6.1 Road Maps

When we were young, my wife and I used to be indecisive about eating
out. We’d get into the car to just drive into town and decide where to
go along the way. Often, we’d come to a decision and find ourselves on
the wrong side of a river. We’d either have to backtrack or pick another
destination, driving a long way to find the closest bridge. When we eat
out now, we still get in the car and decide along the way. But we’ve
learned where the bridges are, and we quickly vote yes or no to places
that will take us across the river without a convenient crossing point.

Application development is like that. I’ve worked with many struggling
projects over the years. Modern programming methods try to get you
coding quickly with minimal planning, and that strategy works for small
proofs of concept, and prototypes. But if you don’t make important
decisions early and plan carefully at critical points in time, your inertia
becomes too difficult to overcome and can trap you on the wrong side
of the river.

You’ve already seen what it takes to build a successful proof of concept.
If you plan to leverage that early success to adopt Ruby more broadly,
you’ll need to stop and consider your overall goals. Your strategy will be
different if you plan a wholesale migration to Ruby than if you plan to

ROAD MAPS 93

keep code written in multiple languages. And your strategy will change
if you plan to mix languages within the same application rather than
implementing each application in a different language, based on the
characteristics of the problem. Let’s look at various road maps that will
take us across the river. We’ll look at each strategy across two different
axes.

Tactical versus Strategic

Tactical solutions are quick and usually simple but temporary or lim-
ited. Strategic solutions may be more complex or expensive, but they
are lasting. Let’s expand our bridge metaphor. When an army needs to
cross a river without a bridge quickly, army engineers build a tactical
bridge, possibly out of floating barges, knowing the bridge will proba-
bly not last through flood season. But when the City of Austin needs
a bridge to serve generations, they decide to build strategically, care-
fully planning city growth, traffic flows, capacity, and impact on the
environment.

Coming back to software development, a technique known as service-
oriented architectures (SOA) is strategic, because it forces you to build
the appropriate interfaces and extend your applications to use those
services. A Java bridge is more tactical, because you can wrap a single
method and make only minimal changes to get running fairly quickly
without considering the sweeping implications of wrapping a method.
You will often need to compromise between tactical and strategic, trad-
ing time against flexibility and staying power.

Coarse versus Fine Transport

Coarse-grained strategies seek to move big loads. They are often more
efficient for moving great volumes through a system but are not as
convenient. Fine-grained strategies seek to move many small loads,
trading efficiency for convenience. For a metaphor, consider a company
that must move great volumes of goods to the mainland from an island
close to the mainland. They choose a location close to the best railway,
because it’s cost-effective, efficient, and frequent enough. Conversely,
a person who lives on the island but works odd hours on the mainland
will want to live near the road with the most effective highway bridge.
Convenience is possibly the overriding concern. Sometimes you can get
efficiency and convenience, such as rail transportation in some coun-
tries in Europe.

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=93

SCENARIOS 94

Applications are similar. If you plan in advance, coarse-grained integra-
tion can be very efficient. The Web generally works with coarse-grained
communication. If you’re building a user interface in Ruby that merely
submits simple forms and accessing a Java back end with a web ser-
vice, your needs are not too demanding. You’ll choose a coarse-grained
strategy such as SOA. You’ll invest in a few common interfaces and
design your applications to use those interfaces and take as few trips
to the mainland as possible. But for some problems, you’ll need fine-
grained integration, such as scripting business rules in Ruby and plac-
ing them in a Java engine. You won’t be able to afford the overhead of
a trip across the network using an SOA, so you’ll use a fine-grained
strategy, letting both languages run in the same virtual machine.

6.2 Scenarios

Now that we’ve categorized strategies, let’s look at some major scenar-
ios. Your Java to Ruby integration technology will depend on your busi-
ness problem. We’ll categorize each one across both axes.

Migration

For a migration, you’ve fundamentally decided that Java is not getting
it done anymore, Ruby is the future, and you’d like to eventually move
all your Java applications to Ruby or shrink-wrapped software with
some Ruby glue code to hold it all together. If you have a significant
base of legacy code, you’re going to have to plan on a healthy dose of
migration. Your Ruby implementation strategy will depend on a variety
of problems:

• Integration between independent Java applications. What kind of
integration exists between independent applications? Are the inte-
grations coarse- or fine-grained? If they are fine, can you switch
them to coarse, in a pinch?

• Time frame. How long do you have to finish the migration?

• Size. If you have some larger applications, is there a way to break
them up? Can you avoid a single big bang?

• The urgency of changes. Can you suspend changes while you per-
form the migration?

• New functionality. All projects need political wins. What easy fea-
tures can you add based on capabilities in Ruby?

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=94

SCENARIOS 95

Strategic

C
oa
rs
e

F
in
e

Tactical

Migrations

Migrations often require temporary
scaffolding to cross language

boundaries. Granularity mimics
existing systems; tend to be

coarse-grained.

Performance demands
can drive granularity up.

Figure 6.1: Migrations offer the choice of tactical integration

Fundamentally, migrations have one thing in common. You will have
the option of building temporary Java to Ruby technologies, as in Fig-
ure 6.1 . Just like major construction projects, you may need some
temporary scaffolding while your migration is underway. You don’t have
to take the tactical option just because you can. You might decide that
an SOA could serve you well, regardless of language.

Keep in mind these issues:

• Big-bang migrations seldom work. Find a way to carve the project
up, and iterate over each small problem.

• Migrations work best when you can deliver some unexpected ben-
efit. With Rails, a richer interface with Ajax is one example.

• It’s best if you can run old applications without changes while new
ones are under development.

• The less time you can spend on temporary integration code, the
better.

• If you need to serialize objects, try to serialize only the simplest
possible objects, with only primitive attributes.

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=95

SCENARIOS 96

Interapplication Integration

In this scenario, you build each application in the best possible lan-
guage, but each application is in its own language. You’re betting that
you can get extra productivity based on using the best possible lan-
guage for each job, but you’re limiting your integration costs and com-
plexity by integrating only across major interfaces. For this strategy,
careful planning is critical. You will want to do the following:

• Target applications to migrate.

• Define major application interfaces within these applications—
interfaces that cross language boundaries.

• Assess the number, size, and granularity of requests that flow
between applications. Cross-language interfaces are very expen-
sive, and these items will all have a significant impact.

This strategy requires a strategic, coarse-grained view, as in Figure 6.2,
on the next page.

In the past, building distributed applications that talked across lan-
guages was a much more arduous process, but now, with SOA, this
particular scenario is much easier to solve. Ruby in general and Ruby
on Rails in particular have excellent integration with important SOA
technologies.

Integrating with a Scripting Language

Integration can be a massive problem. Over time, the number of plat-
forms and applications grows and will require some glue code to inte-
grate things. Ruby is a great integration language for a variety of rea-
sons:

• Ruby makes dealing with collections of objects easy. Files, data-
bases, XML documents, and even formatted text are all collec-
tions. Ruby’s language features such as regular expressions, clo-
sures, and ranges make it an excellent language for quickly trans-
lating data between formats.

• Ruby is terse and productive. Integration jobs often have short
timelines. The target languages must therefore be productive and
nimble. Ruby is both.

• Ruby values productivity over run-time efficiency. Since integra-
tion projects use low-level middleware (which is normally written

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=96

SCENARIOS 97

Strategic

C
oa
rs
e

F
in
e

Tactical

Interapp

Long-term interapp,
interlanguage integration is
highly strategic. Reducing
coupling is an overriding

concern, driving granularity
down.

Figure 6.2: Long-term interapp, interlanguage integration demands a
strategic view

in an efficient systems language like C or Java) to do most of the
processing, run-time efficiency is less important.

In short, Ruby makes excellent glue code. As integration projects grew
with Java, more and more people began to build applications from the
ground up in Java, and integration became secondary. These are some
examples of glue code that you might see between applications.

Data Munging

Enterprise applications often need to translate data from one format
to another. For example, a shrink-wrapped sales application builds
reports in XML format for delinquent accounts. A proprietary C appli-
cation manages delinquent accounts but uses a proprietary interface
and a proprietary file format. Ruby glue code can take the incoming
XML code, parse it, and translate it into a form that the C application
can understand.

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=97

SCENARIOS 98

Strategic

C
oa
rs
e

F
in
e

Tactical

Glue
code

Glue code requires speed.
Applications with fine-

grained integration
requirements are more

likely to need glue code.

Figure 6.3: Speed is the overriding concern for glue code

Maintenance

Database applications often need maintenance. Free databases, such
as PostgreSQL, or MySQL, may not have the tools to run this kind
of maintenance on a periodic basis. But using the database API and
a simple scheduled job (Unix operating systems use a feature called
Cron to launch applications on a schedule), a Ruby script could run
the scheduled backups and statistics and also build custom queries to
build tables for reporting snapshots or the like.

Utilities

Enterprises often need quick utilities to solve targeted problems. For
example, say your developers introduce a nasty bug, forgetting to set
up some important data in the database, and causing applications to
crash. Your support team could write a simple Ruby utility to fix the
problem and run it, or have the user run it.

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=98

SCENARIOS 99

Strategic

C
oa
rs
e

F
in
e

Tactical

Simplify

Simplification requires
tight Java coupling for

performance. It is strictly
strategic.

Figure 6.4: Simplification of Java is a strategic concern requiring fine-
grained integration

Testing

Modern development places a much greater emphasis on automat-
ing testing. Fundamentally, testing is a scripting problem. Python and
Ruby both do exceptional jobs of testing. If test cases are easier to write
and run, your team will write more of them.

When you look at glue code, you’re tying applications together that
may not integrate together cleanly on their own. As Figure 6.3, on the
preceding page, shows, glue code leans toward the tactical, fine-grained
interfaces. Bridges, middleware (like databases), and operating system
interfaces work well here.

Simplification

A much more ambitious plan is to build a single application that spans
multiple languages. If you’re going to attack this additional level of com-
plexity, you’ll want a good reason to do so. The best reason to use Ruby

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=99

SCENARIOS 100

from within Java applications is simplification, as Thomas E. Enebo,
project lead for JRuby, addresses below.

Java provides some core services that Ruby doesn’t, and Ruby provides
a much better programming language for some tasks. Web pages, busi-
ness rules, testing code, configuration, and scripts are all much simpler
in scripting languages. Right now, Java developers often reach for XML,
a declarative language for data, when they’d be better off with a script-
ing language. In Figure 6.4, on the page before, you can see that the
solutions lean heavily to fine-grained and strategic.

This strategy will gain increasing popularity as users begin to see the
greater power of Ajax. End users are getting a taste of dynamic web sites
with popular applications like Google Maps, and they are demanding
more.

Java has never been a productive language for web development, so
developers will increasingly look for ways to tie Java back ends to Ruby
web development frameworks, including Ruby on Rails front ends, to
take advantage of Ajax.

Just as Ruby can simplify some Java applications, you can use existing
Java services to simplify Ruby applications. Ruby developers must often
implement services Java developers take for granted, including JDBC,
transaction libraries with two phase commit, and enterprise integra-
tion libraries. As JRuby matures, customers with existing infrastruc-
ture investments will be able to run Ruby and Java applications side
by side.

Practical applications of JRuby—A discussion with Thomas E.
Enebo

JRuby team lead

Q: What is JRuby?
JRuby is a Java implementation of the Ruby programming lan-
guage. It boasts Java integration features. The first Java integra-
tion feature is the ability to reference and use Java classes from
within the Ruby programming environment. This feature allows a
user to write a Ruby program that could leverage a Java library.
For example, let’s say I need to work with an advanced XML
capability called XML Schema, or some other unimplemented

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=100

SCENARIOS 101

technology in Ruby, and I want to do this work in Ruby. Multi-
ple XML Schema options exist in Java, but Ruby has no such
library. JRuby can also adorn additional Ruby methods to a Java
class making things more Ruby-like. Adding an each method and
including Enumerable to Java.sql.ResultSet to make them more pow-
erful would be an example of this.

The second Java integration feature is the ability to embed a Ruby
interpreter in a Java application. Our primary vehicle for doing this
is the Bean Shell Framework (BSF).

Ruby can be embedded via our internal APIs, too. I recently wrote
a simple servlet that can pass requests off to Ruby scripts in a web
container.

Q: Why is JRuby important to the Ruby community?

We now have another implementation of Ruby, and it will help
solidify Ruby the language. Ruby has no formal specification.

Essentially, the implementation is the specification. Another imple-
mentation now exists. Over time JRuby will help root out ambi-
guities in the language over time whenever divergent behavior is
spotted.

Ruby has not been ported to as many platforms as Java. JRuby
runs on more platforms. Also, JRuby has long-term potential to
pressure Ruby in areas that would otherwise likely go unchal-
lenged. Native threading and tail recursion come to mind.

Java has a much larger user base than Ruby. JRuby adoption
could grow Ruby’s user base. One killer JRuby application could
introduce a large number of Java programmers to Ruby.

Q: Why is JRuby important to the Java community?

More languages for the JVM will greatly strengthen Sun’s position
in their war with .NET. Additionally, JRuby provides a compelling
dynamic typing option for the Java platform.

Embedding Ruby in a Java app provides a nice alternative to a
pure statically typed solution. Ruby is a good tool for a Java pro-
grammer’s toolbox.

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=101

SCENARIOS 102

The Java culture has not had anything disruptive happen in a
while. Ruby on Java really could shake up people’s preconceived
notions of how programs must be written.

Java syntax is verbose and cumbersome. Even though it supports
a limited idea of closures, it is almost painful to write one in Java
syntax. Ruby syntax is much friendlier.

Q: What are people doing with JRuby today?

• Datavision. This is a reporting tool that embeds
Ruby as its default reporting language. (See
http://datavision.sourceforge.net)

• Spring with JRuby. Someone is working on a rapid prototyp-
ing system that uses JRuby and Spring. (For more details, see
http://thebogles.com/blog/2005/10/more-on-rapid-prototyping-using-jRuby-and

• JEDIT and RDT. These two IDEs implement a Ruby integrated
development environment. Both embed JRuby to parse and
calculate positioning information of the Ruby abstract syn-
tax tree (AST). RDT launches JRuby to provide information for
debugging.

• Antbuilder. This effort is apparently inspired from Antbuilder in
Groovy. (See http://antbuilder.Rubyforge.org)

• J2Rubee. Someone started working on a Ruby-based servlet.
This one is a very new project, but it’s promising. (See
http://j2rubee.sourceforge.net)

• Testing frameworks. People are interested in using an
embedded Ruby interpreter to generate test implementa-
tions of Java interfaces and pass them back to Java. This
approach ends up yielding a simple syntactical way of writ-
ing Java test classes without Java (and class files).

Q: What projects would you attack today with JRuby?

I would build any one-off tool that you would normally write in
Java. Let’s say you want to write a database utility to update
something for an application you are working on. You could just
write it in Ruby. You would include the Java you need to use, like

http://datavision.sourceforge.net
http://thebogles.com/blog/2005/10/more-on-rapid-prototyping-using-jRuby-and-spring
http://antbuilder.Rubyforge.org
http://j2rubee.sourceforge.net
http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=102

SCENARIOS 103

JDBC (the Java database integration class), and write your Ruby
code to use the Java libraries directly.

I would also use Ruby as a configuration language. You could
embed Ruby in a Java application and create a Ruby syntax ver-
tical domain language. This approach gives you a nicer syntax for
configuration with plenty of power.

I would consider making a servlet that embeds JRuby to pro-
vide an alternative to JSP for making simple apps in Ruby in a
Java web container. I have personally thought about making a
servlet/controller amenable to a ReST architectural style. And I
think testing frameworks are a natural fit for JRuby.

Q: What projects would you not attack today?
We can’t do the following:

• Anything low-latency or high-transaction. Charles Nutter has
been working on reengineering the evaluation portion of our
interpreter, but it is still not fast by many definitions. Once
he has converted our interpreter to an iterative interpreter,
we can consider a whole slew of optimizations not possible
today, like making a Ruby byte code. We will also gain con-
tinuations and cheap exception handling.

• Anything using continuations. We do not support them yet.

• Anything that requires extending a Java class from Ruby and
passing that back to a Java consumer. The Java consumer
in this case will not see the changes. Extending an interface
does work, however. This will be fixed by version 0.8.4.

Domain-Specific Languages

Often, developers provide applications that have embedded program-
ming languages intended for application end users instead of program-
mers. Macros in Microsoft Office, formulas in a spreadsheet, and HTML
documents in a web browser are a few examples. These languages work
best when they use the terminology and syntax of the problem they seek
to solve.

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=103

SCENARIOS 104

Strategic

C
oa
rs
e

F
in
e

Tactical

Scripting

Scripting languages require
tight coupling with Java.

They are strongly strategic.

Figure 6.5: Simplification, like scripting, requires very tight coupling
with Java and is strongly strategic

Java does not provide a good syntax or vocabulary for most domain-
specific languages. Extending Java to add the right vocabulary is also
difficult. Java developers requiring a DSL must seek other options.

Ruby is particularly good at building DSL, and serves as a fine scripting
language in its own right. Ruby on Rails makes excellent use of this
capability.

The JRuby project makes it possible for you to build Java applications
that use the Ruby language for scripting. Like simplification, this strat-
egy is fine-grained and strategic (see Figure 6.5).

Supporting Technology

We’ll categorize Java to Ruby technologies the same way we catego-
rized strategies: coarse to fine and strategic to tactical. The pragmatic
solutions, the Java to Ruby bridges, tend to provide spot integration,
allowing a Ruby application to call a Java API through a specialized
interface called a bridge.

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=104

RUBY TO JAVA BRIDGES 105

These bridging technologies provide only primitive support for bridg-
ing the data types across languages and don’t try to give you the best
possible integration—they seek to be good enough.

The strategic solutions, such as web services and JRuby, provide a
much more comprehensive solution, but they will require a steeper
learning curve and possibly more complexity.

These are the major players.

• JRuby, an implementation of Ruby in the Java virtual machine.

• Java/Ruby bridges. Several bridges allow communication from
Ruby to Java.

• SOAs. Ruby has several important web services technologies.

Coarse-grained technologies will provide a remote API, usually with web
standards for transport with XML to describe messages. You get a rel-
atively expensive but well-defined interface. If you don’t have to use
the interface too often, the performance overhead is not too bad. Fine-
grained solutions such as JRuby and some of the bridges provide a
much lower-level interface between Java and Ruby.

6.3 Ruby to Java Bridges

Over the last five years, a handful of Java to Ruby bridge solutions have
emerged. Although the problems they solve are similar, the implemen-
tations are wildly different, and some have fallen out of favor. I’m going
to list all of them here so you’ll know which are under active develop-
ment. at least at the time of this writing):

• RJB, Ruby/Java Bridge. This is a bridge that uses the Java Native
Interface (JNI). Java’s JNI is used primarily for C to Java integra-
tion, and it’s a high-performance API. The performance is good,
and the package is under active development. This bridge is more
difficult to set up than some of the others, especially on alternate
platforms such as Windows. But once it’s set up, it’s easy to use.

• YAJB, Yet Another Java Bridge. This bridge uses a common com-
munication strategy called XML remote procedure calls. YAJB is
very easy to install and configure. You don’t need a C compiler to
deploy it; you just drop the libraries into the right directory. This
bridge is reasonably up-to-date, and seems to be actively main-

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=105

RUBY TO JAVA BRIDGES 106

tained. There’s an active mailing list. YAJB is a coarse, tactical
tool.

• RJNI, Ruby to Java Native Interface. This bridge uses the Java
Native Interface (JNI) to provide a Ruby to Java bridge with high-
performance potential. It’s not under active development, and goes
only one way (for example, you can’t do callbacks from Java, so
rich user interface development is all but impossible).

It was last updated more than a year ago, and it works only on
Unix platforms, not Windows.

• RJAVA. This Ruby to Java bridge uses TCP/IP to communicate
between Java and Ruby. It is not under active development and
should not be used in production systems.

Advantages

As of this printing, the most prominent of these are YAJB (Yet Another
Java Bridge) and RJB (Ruby to Java Bridge). The others are no longer
being actively maintained (though that situation could well change).
These types of tactical bridges have some definite advantages:

• They are light. They require only small libraries, and you can get
them running relatively quickly (though the JNI versions have to
be compiled).

• They are simple to use. The API for both of the major implementa-
tions is focused and easy to understand.

• They are convenient. You can easily cross boundaries with a simple
method call.

Disadvantages

These technologies would both be quite useful in the tactical scenarios
we discussed, such as small projects with targeted needs or for short-
term scaffolding for larger projects. The bridges could be used for either
coarse (YAJB) or fine (RJB) strategies. But they take a limited view of
application architecture, so they’re less than ideal for large-scale devel-
opment across languages. These are the primary limitations:

• They don’t seek to make transparent, bidirectional access between
languages. You won’t be able to build frameworks that have much
bidirectional communication, such as plugging a Ruby business
rule into a Java rules engine, for example.

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=106

JRUBY 107

• They don’t seek broader integration to programming languages
beyond Java or Ruby. Your interfaces will be usable only between
Ruby and Java.

Of course, a typical bridge wouldn’t seek to do all of those things. It’s a
tactical solution.

6.4 JRuby

JRuby, a project that’s building a Ruby implementation in Java, is the
most ambitious and active fine-grained Java to Ruby project. Today, the
Ruby language is implemented in the C programming language. That
trade-off makes Ruby fast but has behavior specific to its host operating
system. Further, developers find extending Ruby more difficult because
the basic building blocks are not all based on the same foundation—
some are on Ruby, and some are on C. Charles O. Nutter talks about
the status of Java to Ruby.

JRuby from the inside—A discussion with Charles O. Nutter
Core JRuby Developer

Q: What is JRuby?
JRuby is an implementation of the Ruby language on the Java
platform. We generally consider it to be a Ruby virtual machine
on top of the JVM. There are a number of VM features that Ruby
requires that are not provided by the JVM, so we don’t implement
JRuby entirely with byte codes. Think of JRuby as a version of Ruby,
written in Java.

Q: Why is JRuby important?
Ruby is fast becoming the language of choice for many types of
applications, and not just web applications written in Rails. For
example, we’ve also seen Ruby used to write system applica-
tion servers and build tools like Rake. I personally would like to see
JRuby used to implement business rules in a Java application, or
web front-ends to Java services. JRuby also offers unique potential
for running existing Ruby apps because the Java platform brings
a full complement of APIs, frameworks, and services.

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=107

JRUBY 108

Java provides many features that the Ruby community doesn’t
have yet. Transaction management, JMS, JMX, remoting, and
security—all of these enterprise services would be useful to a Ruby
application.

For example, many users would like to use JDBC from Ruby on
Rails, because so many database systems already have a JDBC
driver written for them. We will eventually support running Rails in
JRuby with JDBC, and provided a preview of this at JavaOne 2006.
Swing is another good example. We’ve seen and demonstrated
many scenarios where Swing apps could be implemented entirely
in Ruby.

Ruby should be treated as another tool for implementing Java
applications. The Java world is full of alternative languages: SQL,
XML dialects, Velocity, Jelly (in Maven), JavaScript, web frame-
works like JSP—the list goes on and on. There are dozens of alter-
native languages for the Java platform, and we think Ruby is one
of the best. Sun has also announced their official support for mak-
ing the Java platform multilingual. The upcoming release of Java
SE 6 includes pluggability for scripting languages like Ruby, and will
ship with a JavaScript interpreter.

JRuby can bring the powerful elegance of Ruby, its growing library
of frameworks and applications, and its large and dedicated
community to the Java platform.

Q: What are people doing with JRuby today?

People are already doing automated testing, writing unit tests in
Ruby and using JRuby to exercise their systems. We’ve also seen
Java-based reporting software with Ruby as a report language.
A few developers have been implementing Swing applications in
JRuby as well. Our big focus recently has been on running existing
Ruby applications like IRB (which works now) and Ruby on Rails
(which works for simple apps), so people have also started using
JRuby to simply run Ruby applications.

Q: Where does JRuby break down?

Right now, we’re passing 80 to 85% of the core Ruby test cases.
(Editor’s note: the Ruby language has a full automated test suite

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=108

JRUBY 109

that exercises much of the Ruby language.) We are working to
get as close to 100% as possible, but we’ll never get all of the way
there. We’ll never be able to support operating system–specific
calls, and we can’t do native C calls in Java. We should be able
to pass over a high percentage of the test cases, though, and
we already have many large and complicated Ruby applications
working without those unsupported features.

Q: Where is JRuby going in the immediate future?

Right now, we are undergoing a core redesign. We are working
toward a stackless model to support continuations and more flex-
ible threading models. We want to be able to exactly match the
way Ruby handles continuations and threads in JRuby.

We would like to take greater advantage of Rake. I think it could
potentially replace Ant scripts in the future. We have working pro-
totypes of servlets for running run Ruby web applications, and we
made use of this for our Rails presentation at JavaOne. In produc-
tion mode, the performance was quite acceptable.

I would like to have the JRuby VM redesigned by the second or
third quarter of 2006. I want us to support major features of Ruby
that we’re missing, especially thread scheduling and continua-
tions. I would like to have just-in-time compilation. I am also work-
ing on compilation options for JRuby. There’s great potential for
improving performance with just-in-time and ahead-of-time com-
pilation. Performance will always be a priority. We’ll always work
to improve performance.

We continue to work toward supporting as many major Ruby
applications as possible. IRB works now, Rake mostly works, Rails
is coming along quickly, and RubyGems is just around the corner.
Running existing Ruby apps is one of the most compelling scenar-
ios for JRuby, since as Rails has shown, Ruby offers new and unique
ways to write software.

Q: What is the significance of running Ruby on Rails in JRuby at
JavaOne 2006?

Successfully running a simple Rails app under JRuby means there’s
a giant new opportunity for deployment and integration of Rails

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=109

JRUBY 110

in existing enterprises. Current Java shops will soon be able to
deploy Rails apps side-by-side with standard Java web and enter-
prise applications, making use of existing infrastructure and ser-
vices. All the features of the Java platform will be available to Rails
apps, and the agile development model of Rails will empower
Java developers.

I’m very excited to start deploying my own Rails apps under JRuby.

The Java virtual machine is the environment that runs all Java appli-
cations. If you were to build your language on top of the JVM, you
could run anywhere that Java does, and you could take advantage
of Java services such as the database interface (JDBC), security, dis-
tributed transactions, and servlets. The JVM is portable, fast, reliable,
and secure. Many managers have a comfort zone with the Java platform
that they’ve never experienced with another language. As we saw in the
interview, JRuby is a Ruby virtual machine, written in Ruby, that runs
in the Java virtual machine. JRuby is more than a stand-alone Ruby
implementation, though. It also seeks to integrate Java and Ruby at
unprecedented levels. With JRuby, you’ll be able to do the following:

• Call a Java object from Ruby, as if it were a Ruby object.

• Use Java frameworks from within the Ruby langauge.

• Let Ruby take advantage of some of the JVM’s strengths.

Developers who work on the Ruby language rely on automated tests
that run whenever anyone changes Ruby. The JRuby implementation
today passes around 85% of those test cases for the base Ruby lan-
guage, so you can already do some impressive things with JRuby.

Practical Uses

You’ve now seen the major JRuby features and interviews of two of the
primary project leads. With this information, we can begin to identify
the practical uses of JRuby today and in the near future. As the Thomas
Enebo interview on page 100 describes, these areas seem particularly
inviting:

• Testing. Automated testing is catching on in many Java commu-
nities, but the testing capabilities of Java pale in comparison to

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=110

JRUBY 111

Other Cross-Language Projects

The question is this: how ambitious is JRuby, and has this kind of
integration been pulled off in the past? If you want to see exam-
ples of this kind of integration in the past, look at attempts to
build programming languages on a common foundation. Here
are some projects that I’ve seen:

• Microsoft’s .NET environment is perhaps the most interest-
ing movement to integrate several languages under one
umbrella. They have Visual Basic, C++, C, and C# all uni-
fied under one operating environment, called the CLR
(common language runtime). Now, more than 25 lan-
guages exist for the CLR. The Mono project is an open
source implementation of Microsoft’s CLR. So far, the
project has not been able to keep up with Microsoft’s
changes, and adoption has been limited. With the Novell
acquisition, Mono is beginning to pick up adoption and
gain credibility.

• Java’s C++ integration never achieved broad success. In
fact, the adoption of JNI (the Java Native Interface), has
been sporadic at best.

• IBM’s System Object Model (SOM) was to serve as a foun-
dation for object-oriented languages in the early 1990s.
They succeeded in building support under C and C++,
but interpreted and dynamic languages bogged them
down. After investing hundreds of thousands into DSOM
(Distributed SOM) and a product called Component Bro-
ker, they eventually abandoned the effort in favor of Web-
Sphere.

• IBM’s VisualAge project actually succeeded in building
a common foundation underneath both Smalltalk and
Java. The Java version of the tool actually ran on the same
virtual machine as the Smalltalk version of the tool. Still, IBM
never was able to keep up with revisions in the JVM, and
Visual Age was eventually abandoned in favor of Eclipse.

Java never achieved fine-grained, generic integration with
C++, but Microsoft seems to have had limited success, and
with close to infinite resources. Still, you have to acknowledge
that there are already dozens of languages on the JVM such
as Jython (a port of Python), REXX, Lisp, and some experimen-
tal languages called Groovy, P-Nuts, and Nice. Most of those
implementations were open source language, like JRuby.

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=111

SERVICE-ORIENTED ARCHITECTURES 112

Ruby’s. Java and Ruby expert Stuart Halloway says a dynamic
language changes the way you think as you test, by enabling more
possibilities.

• Simplifying. When you or your customers need to write many small
scripts, that’s a hint that Java may not be the best possible solu-
tion. Business rules, web pages, test cases, build scripts, and con-
figuration are just a few examples.

• Extending Ruby. Java has many additional utilities and capabili-
ties that Ruby lacks. JRuby can give you those capabilities.

• Extending Java. Ruby makes an excellent domain-specific lan-
guage.

Looking Forward

In the near future, if JRuby development continues to improve, the
scenarios will open up rapidly. The possibilities are endless, but the
JRuby team seems most passionate about these:

• Running Ruby code from within a Java servlet. This approach gives
Ruby programmers access to the most robust web servers in the
world and gives Java programmers access to a better templating
language.

• Using Ruby on Rails for the user interface and existing Java legacy
code as the model. This level of integration would open up a whole
new world of productivity and rapid web development capabilities
to Java developers.

We’ve just scratched the surface here. Keep in mind that today, JRuby
is under heavy development, and would be an aggressive move to try
and deploy it now. If you want to use it, make sure to stay well within
the realm of the recommended uses. This said, the future of JRuby
seems to be bright.

6.5 Service-Oriented Architectures

In the last five years, we’ve seen an increasing movement toward an
idea of SOA. At its simplest form an SOA has services and consumers.
The goal is to reuse major services and loosen the coupling between the
service provider and the consumer. That’s a pretty broad definition, but

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=112

SERVICE-ORIENTED ARCHITECTURES 113

commercial implementations of SOA use a few common patterns. An
SOA should do the following:

• Use common standards for sending messages and formatting mes-
sage content. Internet standards drive communications; Web ser-
vices standards deliver messages; and XML represents data.

• Keep interfaces simple. Provide complexity through message con-
tent. Practically, this means you’ll use a few messaging methods to
send and deliver messages. The messages, implemented in XML,
can be as simple or complex as your applications need them to be.

• Expose coarse-grained interfaces. XML and remote messaging are
both expensive, so minimizing them through a coarse strategy
makes sense.

Now, we’re starting to describe web services as you see them imple-
mented today. So, let’s create a more practical definition of an SOA.
Service-oriented architecture is an architectural style that

• decouples consumers and service providers by providing a com-
mon set of well-defined interfaces,

• exposes these interfaces through some form of web services for
messaging, and

• structures message payload with XML.

As you can well imagine, SOA can take many vastly different forms.
We’re going to focus on the small scale: how do you build a Ruby appli-
cation that can share its services with other languages and consume
services from Java applications? To do so, we’ll focus on a simple form
of web services.

SOA and web services need standards and conventions to be useful.
These standards serve as a communications backbone, define a higher-
level messaging protocol, and structure the payload of messages.

Internet

Web services build on top of basic Internet standards. The Internet
starts with TCP and IP, which provide the communication protocol and
define the addressing scheme that you use today. The dots, numbers,
and names you see in your browser address bar all represent addresses
organized in a giant tree.

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=113

SERVICE-ORIENTED ARCHITECTURES 114

HTML is the language that represents web pages. HTTP defines the way
we move documents on the Web. Going to a website uses HTTP to get
a document. Clicking the submit button on a form sends the contents
of the form back to the server. Several other standards, like HTTPS for
security, sit on top of these basic standards. Ruby has excellent support
for these Internet standards through core libraries.

XML

HTML is adequate for presenting documents, but it does not do a good
job of representing documents. For example, if you’re reading a cat-
alog on a web page, you can tell that there’s a price, but computers
can’t. There’s nothing in the document that ties the data $14.95 to a
price for a CD, or any price at all, for that matter. Enter XML. XML
is a language for expressing data. You could have a document with
<price>14.95</price>. And you’d know the meaning of the data.

Web services make broad use of XML. Most importantly, some web ser-
vices use XML to communicate the structure of messages, and almost
all kinds of web services use XML to communicate the structure of the
message payload.

To understand Ruby’s support for XML, you need a brief history. In the
beginning, XML was simple and elegant. XML use grew rapidly, and
people began to press it into use in more and broader places. As time
went on, controlling vendors changed XML to accommodate the most
extreme customers. Changes like XML Schema and XML Namespaces
complicated XML tremendously. Many developers tend to ignore those
extensions.

Ruby supports several good XML processors. REXML is the most promi-
nent, and its use in Ruby on Rails will increase its acceptance and pen-
etration in the Ruby community. The Ruby community tends to value
simplicity. Perhaps it’s not too surprising that Ruby has excellent sup-
port for base XML, but support for extensions such as Schema is not
as readily available. (The support for XML extensions will doubtlessly
grow, though.)

Ruby also supports a simplified data representation called YAML, which
bizarrely stands for YAML Ain’t a Markup Language. Frameworks like
Ruby on Rails use YAML when XML seems too complicated for the job.

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=114

SERVICE-ORIENTED ARCHITECTURES 115

SOAP-Based Web Services

The web services history is similar to the XML history: you can choose
between heavyweight and lightweight implementations, and the Ruby
community embraces the lightweight version first. In the early hype-
filled years for web services, IBM and Microsoft controlled major stan-
dards and fueled much of the development. They defined a stack of APIs
based on an XML-based messaging scheme over the Internet, called
SOAP, and built on that stack over time. Ironically, SOAP originally
stood for Simple Object Access Protocol. Early web services based on
a thin wrapper around SOAP had a simple elegance about them, but
now, there’s nothing simple about the SOAP-based web services stack.

This kind of web service is now incredibly complex and increasingly
dependent on tools and libraries in Java and .NET for any hope of
effective use. Widespread integration beyond these languages is a pipe
dream. Ruby does support SOAP through several APIs, if you need to
go down that route. The problem is that the web services stack of inter-
faces is so tall and high and complex that it has become practically use-
less to languages that aren’t the center of the known universe. Enter
ReST.

ReST-Based Web Services

Some observant developers noticed that the Web has been used for
years to deliver services, and the Web’s version of web services didn’t
look much like the tower of SOAP. Roy Fielding1 did some research on
the Web’s behavior and coined the term ReST (Representational State
Transfer) to describe web services as they existed “in the wild.”

Instead of starting with a message like the SOAP-based web services (or
a doomed architecture known as CORBA), ReST starts with resources
on the Web. Messages simply create, read, update, and delete resource
items. ReST-based web services rely strictly on TCP/IP and HTTP to
move XML documents and on a thin API on top of both.

Ruby provides excellent support for ReST, merely adequate support
for SOAP, and more limited support for full SOAP-based web services.
Rails, in particular, is a fantastic example of the simplicity of ReST.

1http://www.w3.org/2001/tag/webarch/

http://www.w3.org/2001/tag/webarch/
http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=115

SERVICE-ORIENTED ARCHITECTURES 116

Web Server with Rails

HTTP Response

XML Message

HTTP Request

XML Message

Rails Application

Model

View

Controller
Web Service API

Java Client

Figure 6.6: Rails uses a ReST style of web service

Putting Web Services into Practice

Now that you know what standards Ruby supports, we can talk about
implementing a coarse-grained, strategic integration strategy. We will
focus on a strategy implemented in Rails, but you can easily use the
similar frameworks to achieve the same result.

Figure 6.6 , shows the overall application architecture. Your base appli-
cation will have layers for model, view, and controller. Both your web
services layer and your controllers will share the model. Other appli-
cations will communicate to this application layer with simple CRUD
methods.

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=116

SERVICE-ORIENTED ARCHITECTURES 117

Let’s drill down. A client, written in some arbitrary language, sends a
message over HTTP. We know it’s going to be a request to create, read,
update, or delete a document. The incoming request will specify any
needed document (like an input form) in XML. This request comes into
Ruby through a Ruby-enabled web server, and Rails routes the request
to the API layer. The API layer uses REXML to parse the request, and
the Rails model logic does the work. Then, the REXML layer sends an
XML document back as a response to the request, if necessary.

If this flow seems familiar to you, it should. This flow represents the
way the Web has worked for decades. The model has proven to be sim-
ple, scalable, and extensible. It fueled the e-commerce explosion that
powered the growth of the Web throughout the late 1990s.

The Possibilities

You can use this style of application development on both the Java side
and the Ruby side. All your applications will have layers accessible by
either your private views or your external applications. It’s a compelling
vision that works in a variety of circumstances:

• Across languages. Since documents are in XML and flow across
Internet standards, you need support only for these simple stan-
dards to make ReST-based web services work. With Java, that
means you need support for servlets, HTTP, and XML.

• Within a multilanguage application. If your application consists of
major, coarse-grained layers (such as the business logic and user
interface for a web application), you could pick the best language
for each part of the application. JRuby may soon enable a Rails
front end against a Spring and Hibernate back end.

• Across applications. This strategy works across applications eas-
ily. You can call other languages that have a similar web services
implementation, and other applications can access your model.

• With legacy applications. You can access legacy applications by
using glue code. You’d access the legacy application with a tactical
bridge technology (such as the C interface or one of the Java-Ruby
bridges) and then add the web services layer to your glue code.

• For scalability. The approach can scale the same way that the
Web scales. For a higher-traffic implementation, you can just let
your existing networking infrastructure do your load balancing,
because this shared-nothing architecture works the same way
that many websites work.

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=117

EXECUTIVE SUMMARY 118

But you can appreciate the importance of planning. The more applica-
tions that share this style of service, the more services that can par-
ticipate in the overall vision. But even if you decide to implement web
services, dramatically different implementations from site to site will
complicate your integration and force you to use more glue code.

That completes our review of your technical Java to Ruby integration
options. In this chapter, we looked at the difficult technical integration
problems. In the next chapter, we’ll look into the political challenges of
ramping up.

6.6 Executive Summary

• Ruby provides excellent integration options for many languages,
including Java.

• Options range from tactical to strategic and from fine to coarse.

• JRuby is rapidly maturing and is a Ruby implementation on the
JVM.

• Java to Ruby bridges are more tactical, allowing Ruby code to call
specifically designed function points in Java.

• Web services allow a coarse-grained, strategic integration.

• Ruby frameworks favor simplified implementations of XML and
web services.

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=118

Unless you try to do something beyond what you have
already mastered, you will never grow.

Ralph Waldo Emerson

Chapter 7

Ramping Up
Success can be a dangerous thing. Succeeding with a pilot is challeng-
ing, even when you have a good technology on your side. After you’ve
done some initial groundwork, you’ll want to grow. Replicating your
early success can be tougher than you think. In this chapter, we’ll look
at the ways you can begin to extend your success into the mainstream.
To do so, you’re going to have to deal with a growing staff and issues
related to a broader deployment.

To be perfectly frank, we don’t have a whole lot of experience to draw
from when deploying Ruby. Although it’s becoming clear that more peo-
ple will increasingly depend on Ruby in the near future, few shops
have large development efforts underway. Still, we do have some expe-
rience with Ruby-like languages. Many enterprises use Perl, which has
deployment strategies and performance characteristics similar to Ruby.
Smalltalk has been used in production in conservative Wall Street firms
for more than 30 years now, and the language and application archi-
tectures tend to be similar. So by looking at development with similar
languages, you can intelligently build a strategy for ramping up.

7.1 Building Your Staff

The first order of business will be expanding your talent pool. Since you
can’t simply rely on dozens of offshore organizations, your local Java
user group, or an available pool of tens of thousands of Java developers,
you’ll have to be a little more creative. Despite the market realities, you
can grow your Ruby skills and grow them quickly. Before you begin
to despair, consider the factors that mitigate the smaller pool of Ruby
talent:

BUILDING YOUR STAFF 120

• Since Ruby is such an attractive technology, you’ll find these kinds
of positions easier to fill. Developers want Ruby jobs. They’ll also
often work for less.

• Ruby developers can do more work than Java developers. Num-
bers vary, but I’ve generally used one-third to one-fifth of the
required Java developers for a typical project.

• Since projects are smaller, your mentors go further. And since the
language has integrated frameworks instead of dozens of sprawl-
ing choices, you can settle on a framework and educate Ruby
developers much more quickly than Java developers. That means
you can build teams faster with Ruby.

• The nature of an emerging language and the absence of certifica-
tion programs means there is less of an assembly-line feel to the
community. I’ve found that so far, Ruby developers on average are
better than their Java counterparts.

So although you might need to stretch to fill out a medium-sized orga-
nization, you can fill your positions. And you should have no prob-
lem whatsoever building a smaller project team. Let’s look at recruiting
strategies you can use.

Recruiting Strategies

In some geographies, you won’t have recruiting problems at all. In
Austin, the Ruby on Rails user group has more than 30 active mem-
bers. Other Ruby user groups are much larger. But let’s just assume
that you’re not lucky enough to have dozens of Ruby developers close
by, and you need to work harder. You will have to expand your search
using one of a few strategies:

• Train your internal developers. You can build good Ruby develop-
ers from good Java developers. Good programmers know how to
learn.

• Build on a dynamic foundation. Developers who know languages
similar to Ruby, like Perl and Smalltalk, can learn Ruby quickly.

• Engage the Ruby communities. Find local user groups. Post jobs
on the active Ruby newsgroups. Austin, Columbus, Salt Lake City,
and St. Louis all have active Ruby user groups.

• Shift to a top-heavy strategy. Rather than trying to find four low-
cost programmers, hire one top-grade one.

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=120

BUILDING YOUR STAFF 121

• Hire short-term help. You can hire short-term contractors, or look
for contract-to-hire help.

• Consider hiring a remote developer. Tools to manage remote devel-
opment are getting much better and making remote work easier.
Rails, in particular, is easy to manage with geographic distribu-
tion. (Rails itself was built this way.)

All things being equal, you want small numbers of great programmers
rather than large numbers of mediocre programmers. A great Ruby pro-
grammer will get much more leverage than three or four average Java
programmers who are just learning Ruby.

Targeting Languages

I’ve taught Ruby to several different classes of programmers and seen
others in classroom situations. In every case, good programmers can
learn to be productive with Ruby quickly. Learning the intricacies of
techniques like metaprogramming can take a little more time.

These are some experiences that I’ve had with the ramp-up time for
other languages. As you’d expect, the more similar the language, the
quicker the ramp-up. Perl, Python, Lisp, and Smalltalk developers can
be particularly successful.

Among the first-tier choices are languages that match Ruby, in syntax,
in the abstract, or in design patterns:

• Smalltalk. Ruby is very close to Smalltalk. Both are dynamically-
typed and object oriented, and many of the patterns that work
well in Smalltalk (for example, features such as code blocks and
method chaining) also work well in Ruby.

• Lisp. In general, programmers who are comfortable with Lisp gen-
erally adapt to other languages very well. Ruby makes a good plat-
form for Lisp developers, because Ruby has many Lisp-like fea-
tures. Lisp is in a family of functional languages, and many Ruby
features can be used in a functional way.

• Python. Developers who have used Python also usually work well
with Ruby. Python syntax is relatively close to Ruby’s, and the
type systems are similar.

• Perl. The Ruby language has many features of Perl. Programmers
tend to be creative and very productive.

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=121

BUILDING YOUR STAFF 122

Be careful, though. Programming hygiene is important to your
ability to maintain a program long-term. Get someone who has
done full object-oriented application development rather than a
few Perl operating system shell scripts.

Second-tier choices on a résumé include developers who may not be
application developers or developers in object-oriented languages with
less in common to Ruby:

• Java. There are many Java developers out there with vastly differ-
ent skills. Not all are what they claim to be. Some Java develop-
ers are highly dependent on their tools and will struggle without
them. Most Java developers who are comfortable with command-
line development and dynamic Java features such as reflection
and aspect-oriented programming can learn the basics quickly.
Getting the intricacies of testing, metaprogramming, and dynamic
languages can take a little more time for the casual Java devel-
oper.

• C#. This language today is similar to Java. They are both statically
typed, compiled, and highly dependent on tools. C# programmers
tend to lean on their tools a little harder than others.

• C++. This language is strictly compiled and very difficult to learn.
C++ developers who have done it for a while must be very compe-
tent. Still, C++ is not nearly as dynamic or as high level as Ruby.

These languages are poor fits, because they are so different from Ruby:

• COBOL, FORTRAN, Pascal, etc. Developers of procedural versions
of these languages often need to make a big transition in two ways.
First, those developers must learn the whole new object-oriented
programming paradigm. Second, they must learn techniques that
make dynamic languages so productive. Often, they need to learn
web standards as well.

If you have time, you don’t have to get an experienced Ruby program-
mer in order to successfully build applications. With a little training,
you’ll be able to ramp up a team quickly.

The Recruiting Process

The recruiting process is not much different from recruiting any can-
didate. You’ll just allocate your resources a little differently and use

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=122

BUILDING SKILLS INTERNALLY 123

different strategies to screen candidates. Here are the steps of a typical
recruiting process:

1. Reach your intended pool.
2. Trim your list.

3. Interview your candidates.
4. Close your candidates.

The primary differences in your process will be the first and second
steps. You’ll use different strategies to reach your talent pool, because
the Ruby community is smaller. You’ll also trim your list less aggres-
sively, because you’ll have fewer candidates.

As you define your initial candidate list, you’ll want to use the Ruby
community. Ruby user groups are growing rapidly, so don’t neglect that
angle. You may also expand your search using some of the techniques
mentioned in the previous section, such as expanding to different lan-
guages or geographies.

When it’s time to trim your list, you’ll want to lean harder on phone
screens than résumé content, because phone screens are more effec-
tive at determining qualified candidates. Then, you can move into the
formal interview process as usual. Here are a couple of thoughts to
keep in mind:

• Require a coding test! Programmers should program before you
give them a job. You want to be building on top of an effective
foundation.

• If you don’t have the skill to make good hiring decisions, get help.
It’s easy to enlist help on interview day from consultants to grade
coding tests, do phone screens, or even be part of a technical inter-
view. All of these tasks can be handled remotely, at quite reason-
able rates.

7.2 Building Skills Internally

In all of the strategies we mentioned, your basic goal is to expand your
talent pool. But you can’t compromise quality. You need to make sure
your candidates are technically strong, have rock-solid work ethics, and
are good fits.

With a strong internal staff and a little time, you shouldn’t have to gam-
ble on work ethic and cultural fit. You can just build your skills inter-

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=123

BUILDING SKILLS INTERNALLY 124

nally, augmenting only with full-time or temporary mentors. Strong
developers with desire can make the transition. Most will love Ruby.
When you build skills internally, you send a message to your develop-
ers that you’re willing to invest in them. Loyalty cuts both ways.

• Consider making at least one hire of a senior developer, either
short-term or long-term. The hire may seem expensive but will pay
for itself quickly through the productivity of your overall team.

• Classroom study is important. The classroom context is best for
learning broadly what is possible.

• Mentoring helps. Developers who have role models will learn faster
and make fewer critical errors.

• Share your code base. If everyone can work on all the files when
it’s time, you’ll reduce the risk that bad or incorrect code will go
unnoticed.

Though Ruby education will be much quicker than Java education (I
mentioned earlier that my typical training for a Java developer takes at
least four times as long as training for a similar Ruby developer), keep
in mind that building skills still takes time. Your developers will need
to use the tools, preferably under the direction of a senior developer, to
advance their skills quickly.

Training senior-level developers internally takes time. ThoughtWorks
builds the skills for their staff through an extensive training program
that takes months, but they get much better productivity over the
lifetime of their consultants and better retention with this strategy.
Longer-term goals will give you the option of building skills internally.

Education

With a language like Java, you can pick from a wide variety of classes
from hundreds of vendors. IBM shops can just pick up the phone and
arrange a custom course. Ruby courses are not as widely available,
though you can increasingly find courses from many reputable firms. If
you go with someone who has less of a track record or reputation, here
are some ideas that you should target in a course:

• Try to keep classes short. It’s hard to focus for a whole week,
and it’s even harder to apply what you’ve learned over that period
of time. You’ll have much better success if you break up longer
courses into several two- to three-day segments.

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=124

BUILDING SKILLS INTERNALLY 125

• Use instructors with real Rails programming experience. Practical
experience means everything in this arena, since the language is
new. Some trainers will try to break into the field without practical
experience, and they will likely miss important topics that can save
a typical developer a tremendous amount of time, or worse, teach
techniques that are not secure or sound.

• Make sure the course has adequate lab time. Some instructors
will ask your team to bring their own laptops and install required
software. This approach is ideal, because it allows you to keep
your programming exercises that you’ve worked on yourself and
makes the attendees build a working environment.

Ruby on Rails training is ramping up sharply. A list of educators and
classes is available online.1

Mentoring

Classroom training is no substitute for effective mentoring. You can use
several strategies to mentor your staff, especially in the early stages:

• Pair programming. Pair programming is the most intense mentor-
ing possible. A mentor can give much more intense instruction
through pair programming.

• Proximity. Place all programmers in an open seating arrangement
(often called a bull pen) without walls. Your goal is to get questions
answered quickly, when quick answers matter most.

• Electronic proximity. A motivated team can communicate well with
electronic tools. Skype is one of my favorites, because I can main-
tain three or four running chats with pupils without disrupting my
flow too much and still pick up the phone when it’s appropriate.

• Gatekeeper model. A mentor looks over all new code that’s checked
into a project. This way, a mentor can make sure that the best
Ruby coding techniques apply to a given problem.

One of the most often overlooked keys to rapid learning is to keep your
developers from getting stuck for long periods of time. Although some
degree of problem solving is a healthy and necessary experience, long
periods of fixing small problems frustrates developers and kills motiva-
tion to code and learn. Having an experienced programmer available to
remove roadblocks is critical.

1http://rubyonrailsworkshops.com/

http://rubyonrailsworkshops.com/
http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=125

SHORT-TERM AUGMENTATION 126

As you make mentoring possible, don’t forget the needs of your men-
tors. Mixing teaching with development is much more demanding than
simple development. If you expect programmers to mentor as they code,
count on less productivity for that developer. If you set project sched-
ules that don’t allow much time, it’s the mentoring that ultimately will
suffer the most.

7.3 Short-Term Augmentation

Many development managers would like to build all their software inter-
nally. Consultants and contractors, especially those with skill, can be
prohibitively expensive. Although long-term consultants and contract
labor may not always be cost-effective, you can get your money’s worth
by using short-term help carefully, especially at ramp-up time.

The key to effectively using consultants is to look for ways to multiply
the impact of your dollars. Jump-starts leverage talent to educate while
delivering an application. Design reviews seek to involve help in the
early stages when mistakes are the most costly and research is the
most demanding. Recruiting seeks to tap the experience of consultants
to screen and interview candidates. Each of these techniques requires
only short-term investment but has long-lasting consequences.

Jump-Starts

Sometimes, it makes sense to send off whole projects to a third party for
turnkey development, but if you’re going to make a long-term commit-
ment to Ruby, you’d often be better off working alongside a consultant.
You’re looking for a jump-start.

The goal of a jump-start is to ramp up a development team quickly
while building a production application. You can call the jump-start
successful only if you do both. A typical jump-start package will include
everything you need to get a project running quickly, ensuring plenty of
learning opportunities for your staff. When you enlist jump-start ser-
vices, you’ll want to consider the following:

• Some classroom training. This will give your developers a broad
perspective of what they can expect from Ruby.

• A planning phase. Letting your regular developers and the jump-
start team participate in the same training exercise will ensure
that the consultants follow your process or that you’ll be able to

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=126

SHORT-TERM AUGMENTATION 127

pick up any process introduced by the consultant when she goes
home.

• A development phase. You should make sure that your develop-
ers have enough access to the consultant and that you keep your
developers as free as possible from old projects to immerse them-
selves in the new language. (It’s harder to learn a new language if
you have to keep using an old one for, say, maintenance.)

• An integrated automated testing strategy. Any dynamic language
should use automated tests to catch bugs that would normally be
caught by a compiler.

• A post-deployment support plan. The project should include some
support, post-deployment, for a period of time after the project
goes into production to make sure you have expert help available
should critical issues emerge.

A jump-start combines short-term training, with a chance for your
developers to pair program with a recognized expert. You also get the
long-term value of a working application, built by an expert.

Turnkey

You can certainly hire someone to build a turnkey application in Ruby,
and you can build cost-effective solutions without having to go offshore.
Ruby can give you the advantage of rapid turnaround, which would
allow more regular demonstrations. For any complex system, user feed-
back is critical. But technology is only a small part of the problem. Peo-
ple, and their decisions, will determine the success or failure of your
overall system. So if you have a choice, don’t shop for a Ruby solution.
Shop for a solution, and hire the best possible team. Then, let them
build your systems.

Design Reviews

My favorite way to use consultants is the design review. In these short,
focused encounters, your goal is to learn as much about a project
as you can. You should employ experts in the field, and you should
ask for some kind of record of the review. The outcome should be an
assessment of the project and what should be done. You can use design
reviews at any stage of development, but for a new language, they will
be particularly effective at the beginning of a starting project. You’ll look
to accomplish one or more of these tasks:

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=127

PREPARING THE WAY 128

• Fit. An expert can help you assess the fit of Ruby for a particular
project. For this type of engagement, you’ll want someone with
experience in both languages, presumably Java and Ruby.

• Process. Development with Ruby will be far different from Java,
and you can get maximum advantage if you’re able to tailor your
process. Automated testing becomes more important, and you can
get feedback from users more often.

• Sizing. Development projects on new technologies are hard to size,
because you don’t have accumulated experience.

• High-level design. A good consultant with experience can help you
choose the right approaches to major problems and suggest the
architecture of the major layers of the system. He can also discuss
your network design or hosting options.

• Deployment strategy. Having someone who has deployed Ruby
before can help you take advantage of the capabilities of the plat-
form and avoid pitfalls.

By employing a design review, you hope to mitigate risk by tapping the
experience of someone who has done it before. Short engagements are
a productive, cost-effective way to mitigate risk and learn about holes
in your current plans before they can bite you. When you’re choos-
ing, do what you would normally do. Value experience over other cre-
dentials, check your references, and prefer referrals over someone you
don’t know.

7.4 Preparing the Way

Conservative organizations may need to wait until there’s more momen-
tum before beginning a wholesale migration. Others might be starting
Java projects today that cannot be changed. Still, even if you’re not
quite ready to make a wholesale move to Ruby, you can still prepare
the way for a future migration by some careful investments. Adopting
friendly conventions, subtle changes in your hiring practices, and some
changes in architecture will go a long way toward providing a smoother
migration.

Conventions

Most people who adopt Ruby today are planning on using Ruby on
Rails. The database layer, Active Record, is much easier to map to Ruby

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=128

PREPARING THE WAY 129

if you follow some naming conventions. Most of the naming conventions
won’t lock you into Rails. They just make good sense. These are the
highlights:

• Tables should have names that are English plurals. For example,
the people database holds person objects.

• Use object identifiers named id. Databases use columns to identify
a row in the database. For example, a Social Security number
could identify a person in a database. Object-oriented specialists
like to introduce identifiers with no real-world business value.

• Foreign keys should be named object_id. Database systems use
foreign keys to relate two tables. In Active Record, a row named
person_id would point to a row in the people database.

• Join tables should use the names of the tables they join. Database
systems use join tables to relate two tables. For example, a table
relating professors to a given workshop would have a table called
professors_workshops.

If you’re able to follow these conventions, your Active Record objects will
require much less code. A few other naming conventions will matter,
such as Ruby’s notion of inheritance, but if you follow these rules, you’ll
be most of the way there.

Architecture

As you’re preparing old applications for Ruby integration or enabling
older ones for longer-term integration, you can follow some simple
guidelines to ease your transition:

• MVC separation. If you design your Java applications with the
idea that views are just services that use models, you’ll be able
to quickly wrap that model with a service-oriented architecture
and consume those services with Ruby user interfaces.

• SOA. Java developers are beginning to use service-oriented archi-
tectures. If you build your back-end logic in a certain way, you’ll
be able to consume those services with many different applica-
tions. SOA layers, more than any other philosophy, make it easy
to consume services across languages.

• ReST-based web services. You saw in the previous chapter that
both Java and .NET platforms tend to use one of two strategies for

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=129

A BRIEF WORD ABOUT DEPLOYMENT 130

web services: ReST and Microsoft/IBM style. By far the simplest to
implement is ReST style, and Rails provides excellent integration.

• Shared-nothing architecture. There are many strategies for achiev-
ing scalability. You’ve seen that the strategy for LAMP-based solu-
tions is a shared-nothing architecture. If you code your Java appli-
cations that way, you’ll find that your network infrastructure will
be very similar across programming languages.

• HTML and JavaScript on the client. Some Java frameworks like
Spring’s web MVC and Tapestry rely less on Java-specific com-
ponents like JSP (JavaServer Pages) and JSTL (Java Standard
Tag Library) tags. The more that you can rely on portable tech-
nologies like HTML and JavaScript, the better. Some JavaScript
frameworks that enable things like Ajax work with Java and Ruby
projects.

• Standards supported by Ruby when you build your applications.
For example, you’ll want to make sure that a version of Ruby XML
supports a particular XML feature before you use it on the Java
side.

These are just some of the things that you can do within your Java
project to ease your transition to Ruby. This list is not exhaustive,
and it’s likely to change. If you plan to move to Ruby tomorrow, learn
enough about Ruby to prepare for it today.

7.5 A Brief Word about Deployment

When you build a small proof-of-concept application, deployment is
not necessarily a huge issue when you push it into production for the
first time. Deploying a mission-critical application with a broad foot-
print, thousands of files, and expectations of a ten-year life span is
a completely different story. You’ll want to get your deployment story
straight. The good news is that excellent solutions exist. Your goal for
deployment should be threefold:

• Deployment should be completely automated. Don’t create oppor-
tunities for user-introduced mistakes.

• Deployment should be recoverable. You should be able to back up
to the previous release.

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=130

A BRIEF WORD ABOUT DEPLOYMENT 131

• Deployment should manage important dependencies. You need to
be able to manage database changes in an automated way as well.

You should know about a few technologies that will help you with
deployment. I’ll stick with Ruby on Rails, but these techniques and
technologies can work across many Ruby projects.

Capistrano

37signals, the company that brought you Ruby on Rails, offers Capis-
trano, previously named SwitchTower. It’s a utility that will let you
deploy your application to a remote server. It works best for web appli-
cations written in Ruby on Rails but can be extended to easily work
with other technologies as well. Here are the core capabilities:

• You can deploy applications with a single command.

• You can roll back a deployment to the previous state with one
command.

• Capistrano can issue parallel commands for deployment tasks
that must reach across multiple servers.

• Capistrano can check your code out of a repository, which is Sub-
version by default.

Best of all, it’s an open source tool with commercial backing and wide
use. Working with these technologies will help you build a strong foun-
dation for your deployments. In the sidebar, Jamis Buck discusses his
evolution and use of Capistrano. 37signals deploys directly from devel-
opment to production, but Capistrano can deploy to staging environ-
ments as well. I would expect many shops to use staging environments
instead.

Deploying Ruby—A discussion with Jamis Buck interview
37signals

Q: You work with the applications for some of the largest Rails
applications in the world. What are the most important factors to
consider when deploying software?
Zero downtime is the biggest thing. We need to be able to push
updates without inconveniencing our customers whenever possi-

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=131

A BRIEF WORD ABOUT DEPLOYMENT 132

ble. Naturally, some upgrades will require that we take our appli-
cations offline for a period of time (like when we are making
DB schema changes and such), but for the vast majority of our
updates all we are doing is pushing an update to the code or
views.

Q: What are the most important features of a deployment system?

Zero downtime, as I mentioned, is pretty critical. It is also very
important that deployments occur atomically so that visitors don’t
see a bizarre mixture of “old app” and “new app” during the
deployment. This atomic deployment must occur in parallel across
multiple machines, as well. We need to be able to painlessly and
quickly push new releases and just as easily back out of a bad
release. And for those rare deployments where we need to take
our applications offline for an hour, we also need to be able to
tell visitors that the application is down for maintenance and to
prevent access to the application during that period.

Q: How do you manage deployment at 37signals?

With Capistrano (http://manuals.rubyonrails.com/read/book/17).
We used to do it all by hand, back when we had a single appli-
cation (Basecamp) and it ran on a single machine. Now, how-
ever, we have four applications, and a cluster of servers that we
deploy to, and trying to do that consistently and atomically by
hand would be excruciating. I wrote Capistrano to remove that
pain. Deploying Basecamp, for instance, is as simple as typing
“rake deploy”.

As I mentioned, we don’t have an intermediate staging envi-
ronment like many shops do. When we need to push a bug fix
or release a new feature, we first make sure it is well tested (as
defined primarily by our unit tests) in our development environ-
ment, and then we deploy it directly to production. This works for
us primarily because we are a small shop and the amount of coor-
dination needed to make sure everything is safe for deployment
is minimal. However, Capistrano is reportedly working very well for
people who do use a staging environment, so if we ever need
that feature, it’s going to be a no-brainer to add it to our process.

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=132

A BRIEF WORD ABOUT DEPLOYMENT 133

Q: What’s the relationship between Capistrano and Rails?
Rails has really evolved independently of our deployment needs,
although as I said, I did write Capistrano to take care of that
aspect. We’ve worked hard to make sure Capistrano plays nicely
with Rails, and to that end Rails has changed a little bit to make
that integration nicer. Things like the extensible Rake tasks were
implemented as a consequence of the Capistrano integration
work. But the design of Rails itself hasn’t really been affected by
deployment considerations, at least not significantly.

We are using more or less the same underlying techniques that
David used back when Basecamp was first released and Rails
was being born. Thus, it might be more accurate to say that Rails
and our deployment needs were born together, and the assump-
tions that Rails makes (and has always made) include some of
those deployment assumptions. Take the directory layout that
every Rails application uses—that assumes a few things about
how your deployed application will look. However, the changes
in Rails since its inception have not been significantly affected by
deployment considerations.

Rails Schema Migrations

Often, the hard part about backing out a deployment is migrating your
database backward in the event of a problem. Ruby on Rails uses a
feature called schema migrations for the purpose. With schema migra-
tions, Rails keeps a numbered list of migrations. Each migration has
the ability to move up one level or back to the previous level. Then,
developers can ask Rails to move to a particular migration version. If
you move up, Rails applies the necessary migrations in order. If you
move down, Rails backs out the migrations in reverse order.

Migrations help manage the schema, or structure of the database. (For
example, you can add tables and indexes, rename columns or tables, or
even remove columns from a database.) Migrations also migrate data.
For example, if you added a greeting to a table called email_messages,
you may want to initialize the greeting to Dear #{person.name}, which
would personalize the greeting for each person in the database.

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=133

EXECUTIVE SUMMARY 134

With the combination of version control software, Capistrano, and Rails
migrations, you can provide a surprisingly sophisticated deployment
strategy. In fact, your deployment strategy would likely be better than
the strategy for many Java shops.

In this chapter, we looked at ramping up your development experience.
In the next, we’ll wrap up From Java to Ruby and tell you what you can
expect in the next few years.

7.6 Executive Summary

• Ramping up to broad deployment is relatively new for Ruby.

• You can often draw from the Perl, Smalltalk, and Python commu-
nities to understand more about Ruby.

• You can expand the pool of available developers for Ruby projects.

• Capistrano and schema migrations are two features that simplify
the deployment of Ruby applications.

• The deployment strategy of Ruby projects is often more advanced
than similar Java project teams.

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=134

First rule of the kayak: When in doubt, paddle like hell
unknown origin

Chapter 8

Risk
A kayaking guide once told me to “paddle like hell” in the heart of a
rapid, because I’d have no chance of influencing the position of my
boat if my paddle was not in the water. In software development, I’ve
learned to paddle aggressively and with a purpose. If your software
development is badly broken and your underlying technology is a big
part of that problem, doing nothing is far more dangerous than taking
a risk. I’ve written several books on fixing Java in evolutionary ways.
But I’ve since come to believe that Java is simply not suitable for some
types of problems. In many ways, this book, from cover to cover, is
about risks worth taking.

But I’ve said many times throughout this book that adopting any new
technology is a risky proposition. You can hurt yourself with any lan-
guage, especially new languages like Ruby. In this chapter, we’ll offer a
concentrated discussion of the risks you will likely encounter along the
way and some steps you can take to mitigate that risk.

8.1 Bad Risk

Good project management means avoiding bad risks and mitigating
good risks, should you choose to take them. Not all risk is good risk.
Any long-term technology manager knows this keenly. A high percent-
age of projects fail. Some reports1 suggest as many as 80% of all soft-
ware projects fail. Let’s look at what makes a risk bad:

1http://www.standishgroup.com/sample_research/chaos_1994_1.php

http://www.standishgroup.com/sample_research/chaos_1994_1.php

BAD RISK 136

• Long odds. The most obvious variable in risk is your odds of suc-
cess. The greater your chance of failure, the better mitigation you’ll
need, and the higher payoff you’ll require.

• Payoff. Some bad risks don’t have any payoff at all. Working with-
out backing up critical data at regular intervals is not a good risk
because there’s no payoff.

• Need. If you don’t need the payoff, the risk is a bad one.

• Consequence. If the consequence of the risk is not proportionate
to the reward, the risk is a bad one.

• Accumulation. Even low probabilities can accumulate to unaccept-
able levels. If you take too many big risks without effective mitiga-
tion, you will get burned.

• Mitigation. Most of the time, a major risk should require an effec-
tive backup plan.

• The unknown. What you don’t know increases your risk.

Let’s bring bad risks into context. Ruby is not the answer to every ques-
tion. Certain scenarios have unacceptable risk as they relate to Ruby.

Not a Technology Problem

In general, you should solve your critical process problems before trying
to attack ones based on technology. Most software development prob-
lems are not technology problems. Building the wrong software faster
won’t help. Solving systemic process or political problems should take
precedence over a more productive programming language. A language
won’t change your work ethic. If you can’t generate a payoff, the risk
isn’t worthwhile.

Admittedly, this process-first idea is an oversimplification, because a
programming language can sometimes help your process flow more
smoothly. For example, a language can help you shorten your cycle
times and put solutions in front of your users more quickly. Shorter
cycles and early feedback can be part of a broader process improve-
ment. Still, process problems need to get attention first.

Political Opposition

Although some amount of political opposition to new languages appears
inevitable, sometimes the opposition is so intense that you can’t move

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=136

BAD RISK 137

your agenda forward. Depending on your potential reward, your ability
to overcome the opposition, and the energy required to do so, you might
decide to table Ruby adoption or choose one of the less-confrontational
strategies we introduced in Chapter 4.

Not a Technical Fit

Ruby will make many good developers more productive and simplify
many types of applications. You’ve seen that Rails is perhaps the most
productive web development platform with broad circulation. Ruby has
continuations and other features that Java doesn’t, but not everyone
needs Rails or continuations. Unless you need what Ruby offers, the
risk will not be worthwhile.

Many technology problems come from choosing the wrong technology
for the job. Ruby is going to excel at problems that demand a higher-
level language. If raw processing power or hardware integration forms
the foundation of your application, Ruby’s higher-level structures are
going to work against you. If you have a team that is dead set against
automated testing, you probably need some of the additional safety nets
that static languages provide, because they will catch at least some
errors when your developers compile.

Similarly, Ruby won’t have huge numbers of frameworks. If you’re look-
ing for full-stack web services to interoperate with WebSphere or .NET
applications, you’d be better off relying on languages in tools supporting
those platforms. Java’s Swing may not be the most elegant framework
in the world, but it is portable and rich. If you need to do fat-client
development across platforms, Ruby may not be the answer.

Unknown Territory

Finally, some problems may or may not be fits for Ruby. These are some
of the places that are breaking new Ruby ground:

• Ultrahigh volume. Although other dynamic languages have run
some of the highest volume sites in the world, Ruby doesn’t have
such a flagship deployment yet.

• Ultrahigh connections. Massive numbers of concurrent users or
requests have also not been proven.

• Rich user interfaces. Right now, most Ruby development is focused
on web development, single-platform development, and integra-
tion scripts that don’t have user interfaces.

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=137

MITIGATING TECHNICAL RISK 138

I’m not suggesting that you run away from all risk, just that applying
Ruby in such unknown territory increases your risk. If you find your-
self in such a scenario, you may decide to gather more data (through
possibly a prototype), you may decide to mitigate your risk, or you may
decide that your combined risk level is unacceptable.

Dealing with Bad Risk

The knee-jerk reaction for dealing with bad risk is often to stop taking
all risks. In software development, that mind-set can doom you to bleed
to death slowly. Progress will move on with or without you. You’re better
off working to mitigate risk:

• Gather information. You’ve seen a heavy emphasis on pilot projects
because they help you gather information about Ruby, often with-
out staking too much on a given problem.

• Create backup plans. A backup plan doesn’t reduce risk, but it
does reduce the cost of failure. Running a Java project in parallel
is an expensive backup plan, and identifying purchased software
that you might buy if you fail is a cheaper one.

• Scale back. By scaling back your ambition, you can achieve some-
thing like 80% of the benefit with 20% of the risk. You can always
add the remaining 20% in a later iteration.

• Eliminate related risks. If your accumulated risks go down, often
the total risk level can become acceptable.

Risk mitigation is really turning bad risk into good risk. You’ll use one
of these strategies to mitigate each technical and political risk that you
introduce.

8.2 Mitigating Technical Risk

A project manager for a new Ruby project must ultimately make the
decision as to whether Ruby is technically up to the task. When you
think of the risk of adopting a new technology, most people think about
the technical risks first:

• Can the language do what I need it to do?

• Is it too buggy?

• Will it be fast enough?

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=138

MITIGATING TECHNICAL RISK 139

• Can I train my people or find people who can use the new lan-
guage?

• Can I get support?

When you are considering technical risks, you need to expand your
assessment to include Ruby the language, the core Ruby frameworks
you’ll use, the Ruby programmers you’ll use on the project, the Ruby
community you’ll tap to solve your problems, and the Ruby commercial
industry that you’ll tap to do your job. This world is not a Java world.
The economics work differently in a few ways. It’s an open source lan-
guage with different licensing and economics (though Java depends on
many open source projects too), it’s a dynamic language that’s easier
to extend but less performant, and it’s a newer language to the mass
market, so there’s less overall investment.

Open Source Projects

Working with minor open source projects is pretty straightforward. If
the project does exactly what you need or if you can make it do what
you need with minimal effort, you use it. If not, you move on to the next
project or write the feature yourself.

Working with major, larger open source projects like Rails or the Ruby
language is a different proposition. You’ll sometimes depend on the
community to make major enhancements, and you’ll depend on the
economy that springs up around the project to get the education, books
and other media, recruits, and consulting you’ll need to be successful.
Open source projects can take risks that might be major for commer-
cial projects and trim those risks to trivial levels, if your chosen project
is successful.

So you should depend on Ruby, or some Ruby project, to the extent
that you believe it will succeed. That’s why I placed so much empha-
sis on momentum in Chapter 1. I do believe that Ruby will be wildly
successful, powered by the success of it’s flagship framework, Ruby on
Rails.

Even so, the character of open source communities will change from
project to project. From my experience, Ruby and Java differ dramat-
ically in one primary way: open source contributions. The nature of
the Ruby programming language leads to projects that are less com-
plex and easier to extend. You’ll find it much easier to make critical
extensions to Ruby on Rails than to, say, Hibernate.

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=139

MITIGATING TECHNICAL RISK 140

The Role of the community—A discussion with David Heinemeier
Hansson

CTO, 37signals

Q: What’s driving the rapid innovation in Rails?
Momentum comes from people needing something that’s not
there. Thus, if you needed composite keys, you could pour that
momentum into a patch, rather than waiting for the community
to solve your problems for you.

Q: What’s the difference between the way your community’s
requirements are managed and the way they are managed on
Java projects?
In the Java model, you would not even contemplate changing
the frameworks. For example, Hibernate is something Gavin King
does, and Struts has been frozen for years. The weight and com-
plexity make it so.

But in the Ruby community, this is not so. It’s so easy to extend and
tweak the framework that anyone can do so and in a reasonable
time period too. We have people coming to Ruby on Rails that
contribute a patch on the first night of their journey.

So for a Java project, you may turn away from a project because
Hibernate, Struts, or Spring doesn’t do exactly what you need it to
do. But Ruby gives you the ability to bend Active Record or Rails
or even the language itself through patches. Then, it becomes a
simple cost versus benefit analysis.

We encourage all Rails programmers to hop on and contribute to
the project.

Building Risky Features

You can often effectively mitigate risk by attacking the riskiest ele-
ment of a project first, while there’s still time to recover. In one of my
first Ruby on Rails development efforts, we had an inexperienced team
and one high-risk element to cover. We needed to build an open-ended
reporting engine. We decided to do reporting in our first iteration, rather

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=140

MITIGATING TECHNICAL RISK 141

than saving the feature until the last major drop. We got several benefits
by attacking the risk early:

• We were able to give the customer a capability they did not have
early in the project. Our early success made the customer much
more cooperative.

• We were able to refine the interface, getting feedback from users
earlier in the project.

• We got to see how the report writer would perform under load.

• When it became clear that we could handle about 70% of the cus-
tomer’s requests with a primitive engine, we changed the spec
to include the minimal reporting engine, and the customer aug-
mented our solution with a commercial report writer.

• The customer saved thousands on training and license fees by
satisfying most needs through our tool.

We used three mitigation strategies: we attacked risk early, we built a
backup plan, and we scaled back. We were successful only because we
attacked the risk early enough to implement our fallback plan.

Reducing Coupling

You can often reduce your overall risk by reducing the coupling between
the major pieces of your application. Rails makes this easy by enforcing
a Model-View-Controller architecture. If you can reduce the size of the
major components of your application, you can better survive major
changes in strategy or design, because changes in one part of your
application will not ripple through your entire system.

One of my long-standing Java customers built software for Wall Street.
They knew that their customers needed a simplified development envi-
ronment for web-based user interfaces but did not believe that their
conservative customers would endorse Rails, because the framework
required Ruby on the server.

In the end, we came up with a strategy that let the user build the
user interface in the technology of their choice. We settled on a web
services API, enabling access across multiple systems. We settled on
ReST-based web services (see Chapter 6, Bridges, on page 92) for this
purpose, enabling access from Ruby on Rails.

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=141

MITIGATING TECHNICAL RISK 142

By decoupling the back end through web services and implementing
a simplified ReST approach, the company can now sell its software to
clients who are free to use Ruby on Rails. Their marketing reps can also
build rapid demonstrations based on Ruby on Rails, which work much
more quickly than their Java-based competition. They still get the full
power of Java for their business engine, which has some enterprise
integration requirements that are not well supported by Ruby.

Technical Prototypes

One of the most commonly employed risk mitigation techniques is the
prototype. Technical prototypes help you learn. Several different com-
panies have bucked conventional wisdom and employed Rails to solve
problems that don’t use the Active Record back end. These projects jus-
tified the use of Ruby on Rails based on an early prototype. Dynamic
languages like Ruby make great prototyping languages, and Ruby on
Rails includes additional features to make prototypes painless.

Automated Testing

Automated testing is a development practice in which developers build
automated unit tests as they build code. The practice can make you
more productive, and it’s also a great tool for reducing your overall risk.
Late changes are inevitable. At one account, we built an application
with an extensive amount of native SQL on the PostgreSQL database
engine. We chose it based on scalability and the absence of license fees.

As we negotiated with hosting vendors, we found that the best hosting
company had only limited experience with PostgreSQL but extensive
experience with MySQL. We were able to run the test suite and deter-
mine the total effort of supporting MySQL, down to the lines of code
required, in only two hours.

Automated testing also mitigates risk in another way. Late changes to a
code base are much riskier if you don’t have the automated test suite to
catch problems that you introduce. Ruby on Rails is a particularly good
framework for automated testing. Rails builds in tools that make testing
easy and organizes projects to make testing strategies consistent. Rails
also builds in a test environment that makes tests almost painless to
run.

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=142

MITIGATING POLITICAL RISK 143

Walking Away

Sometimes, when you’ve done all that you can to control a risk and
you’re still failing, you need to have the courage to walk away. Some
teams will doubtlessly do better with Java than Ruby, and some prob-
lems are just not well suited to Ruby frameworks. Some teams, espe-
cially those with inexperienced programmers, will need more restrictive
environments. When you’ve gathered your information and the answers
are no, you need to listen and move on.

8.3 Mitigating Political Risk

Political risks imperil projects from a social perspective. New program-
ming languages are especially prone to political risks because new lan-
guages will bring uncertainty and change. New languages also threaten
skill sets and knowledge bases of your current staff and management.
Where technical risks tax you by forcing you to work and cover details,
political risks are difficult for a different set of reasons.

Handling Top-Down Risk

The most frustrating risk can be top-down risk. Convincing some man-
agers to take a significant risk is a difficult proposition. The best way to
combat such risks is to establish some early success. Chapter 4 showed
you how to establish early pilots. One of the scenarios in that chapter,
or a similar approach, might well be the ticket to your success. Still,
even getting the green light to launch a pilot is often next to impossible.
Here are some tips to move your agenda forward:

• Sponsorship. If you can find a sponsor in upper-management,
your job gets much easier. The best sponsors have the most to
gain from a successful transition.

• Forgiveness rather than permission. Sometimes, it’s easier to ask
for forgiveness than permission. You want to establish rapid value
to offset the damage you do by moving forward without permis-
sion. This strategy works better in some companies than others,
so know what the implications of success will be for you.

• Alternative funding. If you don’t have to ask for additional budget,
you can often start a pilot project without the support of upper-
management.

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=143

MITIGATING POLITICAL RISK 144

• Off-hours. Sometimes you can convince employees to start a Ruby
project after hours. Your hope is to compensate those developers
once they establish success.

• Dollars. In the face of increasing financial pressures due to global
competition, financial arguments become increasingly compelling.
Usually, the capital you can save by reducing your cycle time by a
mere fraction will lead to significant financial savings.

The key is persistence. If you get told no, think of it as the closing of
just one path. Look for an alternate one. Once you’ve delivered your
first successful application, you’ll be surprised at how far your success
will take you.

I recently worked on a Rails project where the upper-management gave
the project only grudging support. We overcame objections by including
that manager’s most critical feature first. We put in a few extra hours
to make sure that the Ruby solution delivered Ajax, which provided a
much richer interface than the Java alternative. We turned a borderline
enemy into an ally.

Managing Dissension, or Bottom-Up Risk

Good developers are passionate about what they do. The best develop-
ers love to choose sides. With a decision so huge as moving to Ruby,
some programmers will definitely not support the project. So dissen-
sion is inevitable; you just need to manage it. These tips can help you
deal with the inevitable dissension you’ll face:

• Be honest. Most people are surprisingly accommodating when they
know the whole story. If you need better productivity to survive,
tell your people. If you think Ruby simply represents a better fit
than what you’re using, tell them that too.

• Pick your leadership wisely. Your long-term success often depends
on who works on your initial pilots, because those people will be
your most vocal leaders.

• Build a broader community. You will achieve better results long
term though grass-roots growth.

At Amazon.com, a small Ruby group invited Dave Thomas to speak for
several brown-bag education sessions over lunch and even worked to
have Ruby installed on the new machines given to developers.

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=144

WHAT’S AHEAD FOR RUBY? 145

This early support led to a grassroots growth that whittled down inter-
nal dissension.

8.4 What’s Ahead for Ruby?

Throughout this book, we’ve looked at the impact of moving people,
programs, and organizations from Java to Ruby. In this last section, I’d
like to play a short game of what-if. We’ll look at two possible futures of
Ruby.

First, let’s take the darker scenario. What if Ruby does not get a major
commercial investment? What if the growth tapers off and people decide
that Ruby on Rails is not all things to all people? What will become of
people who made a Ruby decision?

The Church of the Unthinkable

When I wrote Beyond Java, I suggested that Smalltalk would never be
the next great language. I later reiterated this comment, saying that
the Smalltalk train had rusted at the station, implying stagnation. I
was not surprised by the outpouring of mail from developers defending
their beloved language.

But I was surprised to find a vibrant, active community and an economy
around it. The programmers understand that Smalltalk is not the next
Java and probably never will be. A few major vendors told me their
business was healthy and growing. In particular, James Robertson, an
officer at Smalltalk vendor Cincom, had this to say:

Smalltalk likely won’t become mainstream anytime soon, but I’d hardly
refer to it as “rusted at the station.” There are few profitable Java tool
vendors. IBM is pressuring them with Eclipse, and once that’s complete,
there’s a real danger that Eclipse will end up like Microsoft’s Internet
Explorer before the appearance of Firefox, with most of the funding dried
up and stagnated.

Contrast that to Smalltalk, where we (Cincom) are profitable and our cus-
tomer base is growing.

I’ve come to respect the Smalltalk programmer base. Sure, they’d like to
see growth, but rather than bemoan what Smalltalk isn’t, they celebrate
what it is. Georg Heeg had this to say:

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=145

WHAT’S AHEAD FOR RUBY? 146

I just saw your article about Seaside. I love the picture of the “five times
faster” “lightweight” “train rusted at the station.” It is so wonderfully
contradictory. It reminds me of the 27-year-old picture of “the craggy
aloofness of the kingdom of Smalltalk...where great and magical things
happen” [Byte Magazine, August 1978].

Indeed, within this vibrant and colorful community, strange and won-
derful things do happen. The language is still incredibly productive,
and people still use it with fantastic leverage to solve difficult business
problems. And important innovation is still happening within that com-
munity. So the “unthinkable,” stagnation, has happened to this quiet
little community, but they’re still devoted to the language, almost reli-
giously.

I humbly suggest that in the worst-case scenario, Ruby may well wind
up with a similar future. The culture, the language, and even the syn-
tax are similar. Extreme productivity in a language that you can easily
extend to meet your purposes: you could do worse.

Or an Explosion of Truth?

But I don’t think we’re headed for a future of obscurity or stagnation.
Ruby has the catalyst that other dynamic languages have long been
missing. I strongly believe that the dynamic object-oriented languages
like Smalltalk, Ruby, and Python are a path to greater productivity. We
are on the cusp of experiencing that increased productivity, for the first
time, within a popular, commercially dominant language.

The programming mentors that I respect the most—including Martin
Fowler, Dave Thomas, Stuart Halloway, and a few others—all tell me
that dynamic languages have what we need to be more productive.
We’ve been slowly moving toward a higher abstraction, from structured
programming to object-oriented programming. A movement toward an
interpreted dynamic language is the next logical step. And Ruby has
the catalyst that a dynamic language will need to succeed. Ruby just
feels right, like a fresh breath of pure truth.

A quick look at the excitement and controversy around Ruby and Rails
should tell you that this beast is different. I haven’t felt this kind of
electricity since a medium-sized hardware company started a tiny lit-
tle language in a laboratory, built it into a browser called Netscape,
attached a mascot called Duke, and changed the name from Oak to
Java.

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=146

Chapter 9

Bibliography
[Bro86] Frederick P. Brooks, Jr. No silver bullet—essence and acci-

dent in software engineering. Proceedings of the IFIP Tenth
World Computing Conference, pages 1069–1076, 1986.

[DL99] Tom Demarco and Timothy Lister. Peopleware: Productive
Projects and Teams. Dorset House, New York, NY, second
edition, 1999.

[GGA06] Justin Gehtland, Ben Galbraith, and Dion Almaer. Prag-
matic Ajax: A Web 2.0 Primer. The Pragmatic Programmers,
LLC, Raleigh, NC, and Dallas, TX, 2006.

[HT00] Andrew Hunt and David Thomas. The Pragmatic Program-
mer: From Journeyman to Master. Addison-Wesley, Reading,
MA, 2000.

[MIO98] John D. Musa, Anthony Iannino, and Kazuhira Okumoto.
Software Reliability: Measurement, Prediction, Application.
McGraw Hill, New York, 1998.

[Moo99] Geoffrey A. Moore. Crossing the Chasm: Marketing and Sell-
ing High-Tech Products to Mainstream Customers. Harper-
Business, 1999.

[Pin06] Chris Pine. Learn to Program. The Pragmatic Programmers,
LLC, Raleigh, NC, and Dallas, TX, 2006.

[Tat03] Bruce Tate. Bitter EJB. Manning Publications Co., Green-
wich, CT, 2003.

[Tat04] Bruce Tate. Better, Faster, Lighter Java. O’Reilly & Asso-
ciates, Inc, Sebastopol, CA, 2004.

CHAPTER 9. BIBLIOGRAPHY 148

[Tat05] Bruce Tate. Beyond Java. O’Reilly & Associates, Inc,
Sebastopol, CA, 2005.

[TFH05] David Thomas, Chad Fowler, and Andrew Hunt. Program-
ming Ruby: The Pragmatic Programmers’ Guide. The Prag-
matic Programmers, LLC, Raleigh, NC, and Dallas, TX, sec-
ond edition, 2005.

http://books.pragprog.com/title/fr_j2r/errata/add?pdf_page=148

	Introduction
	The Emergence of Ruby
	The Java Platform Is Weakening
	Early Adopters Embrace Ruby
	The Process
	Moving Ahead
	Executive Summary

	Pain
	The House of Pain
	Poor Productivity
	Long Ramp-Up
	A Look at Risk
	Executive Summary

	Establishing Your Reward
	Momentum
	Productivity
	Cost
	Ramp-Up
	Risk
	Looking Ahead
	Executive Summary

	Pilot
	Building Your Plan
	Scenario 1: Classic Pilot
	Scenario 2: Trojan Horse
	Scenario 3: Race
	Scenario 4: Bet-your-Business: Basecamp
	Scenario 5: Rescue
	Making the Choice
	Executive Summary

	On an Island
	Overview
	The Basics
	Web Development
	Rails
	Middleware
	Looking Ahead
	Executive Summary

	Bridges
	Road Maps
	Scenarios
	Ruby to Java Bridges
	JRuby
	Service-Oriented Architectures
	Executive Summary

	Ramping Up
	Building Your Staff
	Building Skills Internally
	Short-Term Augmentation
	Preparing the Way
	A Brief Word about Deployment
	Executive Summary

	Risk
	Bad Risk
	Mitigating Technical Risk
	Mitigating Political Risk
	What's Ahead for Ruby?

	Bibliography

