The .
Png{matn:
TOgraminers

Dave Thomas

with Chad Fowler and Andy Hunt

» o Ruby Series



Programming Ruby 1.9

The Pragmatic Programmers” Guide

Dave Thomas

with Chad Fowler
and Andy Hunt

The Pragmatic Bookshelf

Raleigh, North Carolina Dallas, Texas



Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and The Pragmatic Programmers, LLC, was aware of a trademark
claim, the designations have been printed in initial capital letters or in all capitals.

Every precaution was taken in the preparation of this book. However, the publisher assumes no responsibility for
errors or omissions or for damages that may result from the use of information (including program listings) contained
herein.

This book is a heavily revised version of the book Programming Ruby, originally published by Addison Wesley.
This book is printed with their permission.

Our Pragmatic courses, workshops, and other products can help you and your team create better software and have
more fun. For more information, as well as the latest Pragmatic titles, please visit us at

http://www.pragmaticprogrammer.com

Copyright © 2009 The Pragmatic Programmers, LLC. All rights reserved. No part of this publication may be repro-
duced, stored in a retrieval system, or transmitted, in any form, or by any means, electronic, mechanical, photocopy-
ing, recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN: 1-934356-08-5
ISBN-13:  978-1-934356-08-1

Printing: P2.00, April 2009
Version: 2009-4-18

Text printed on acid-free paper.


http://www.pragmaticprogrammer.com

Contents

FOREWORD 16
PREFACE 17
ROAD MAP 22

PART I—FACETS OF RUBY

1 GETTING STARTED 25
The Command Prompt . . . . . . . ... ... ... 25
InstallingRuby . . . . . ... 27
RunningRuby . . . . . .. o 30
Ruby Documentation: RDocandri . . . . ... .. ... ... ......... 32

2  RUBY.NEW 35
Ruby Is an Object-Oriented Language . . . . . .. ... ... ... ...... 35
Some BasicRuby . . ... .. ... 37
Arraysand Hashes . . . . . . . .. ... oL 40
Symbols . . . .. e e e 42
Control Structures . . . . . . . . . .. e e 43
Regular EXpressions . . . . . . . . ... .. o e 45
Blocks and Iterators . . . . . . . . .. ... 46
Readingand 'Riting . . . . ... ... ... ... ... 48
Command-Line Arguments . . . . ... ... ... ... ... ... . ... . 49
Onwardand Upward . . . . . . . .. ... . 49

3 CLASSES, OBJECTS, AND VARIABLES 50
Objects and Attributes . . . . . . . . . . ... 53
Classes Working with Other Classes . . . . . . ... ... ... ........ 58
AccessControl . . . . . . . L 61
Variables . . . . . . . .. e 64

4 Report erratum


http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=4

CONTENTS

4 CONTAINERS, BLOCKS, AND ITERATORS 67
Blocks and Iterators . . . . . . . . ... 74
Containers Everywhere . . . . . ... ... ... ... o 90

5 SHARING FUNCTIONALITY: INHERITANCE, MODULES, AND MIXINS 91

Inheritance and Messages . . . . . . . . . ..o 91
Modules . . . . . . . . e e e 96
MIXiNS . . . o v v e e e e e e e e e 98
Iterators and the Enumerable Module . . . . . . ... ... ... ........ 100
Composing Modules . . . . . .. ... .. L 101
Inheritance, Mixins, and Design . . . . . . .. ... ... ... ... .. ... 104
6 STANDARD TYPES 106
Numbers . . . . . . . e e e e e e 106
SIIngs . . . . . o e 109
Ranges . . . . . . . e 114
7 REGULAR EXPRESSIONS 117
What Regular Expressions Let YouDo . . . . . ... ... ... ........ 117
Ruby’s Regular Expressions . . . . . .. ... ... ... ... .. ... .. 118
Digging Deeper . . . . . . . . . ... .. 120
Pattern-Based Substitution . . . . . ... ... ... Lo 128
Advanced Regular Expressions . . . . . . ... ... ... oL 130
8 MORE ABOUT METHODS 137
DefiningaMethod . . . . . ... ... ... L L o 137
CallingaMethod . ... ... .. ... e 140
9 EXPRESSIONS 146
Operator Expressions . . . . . . . . . . . . 147
Miscellaneous Expressions . . . . . . . . .. ... oo 149
ASSIgNMENt . . . . L. e e e e e e e 150
Conditional Execution . . . . . . ... ... ... o o 153
Case EXpressions . . . . . . . . . . e 158
Loops . . o o e 160
Variable Scope, Loops, and Blocks . . . . . .. .. ... ... . 165
10 EXCEPTIONS, CATCH, AND THROW 167
The Exception Class . . . . . . . . . . . o i i 167
Handling Exceptions . . . . . . . . . . L e 168
Raising Exceptions . . . . . . . . ... e 172
Catchand Throw . . .. ... .. . . . . 174
11 BASIC INPUT AND OUTPUT 176
WhatIsan IO Object? . . . . . . . . . .. e 176
Opening and Closing Files . . . . .. ... ... ... ... .. ... 177
Reading and Writing Files . . . . . ... ... ... ... . o . 178
Talkingto Networks . . . . . . . ... ... L 181

Report erratum


http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=5

CONTENTS

12 FIBERS, THREADS, AND PROCESSES 184
Fibers . . . . . . 184
Multithreading . . . . . . . . . .. L. 186
Controlling the Thread Scheduler . . . . . ... ... ... .. ... ..... 190
Mutual Exclusion . . . . .. ... . 191
Running Multiple Processes . . . . . . ... ... ... ... ... ... 194

13 UNIT TESTING 198
The Testing Framework . . . . . ... ... .. ... ... . ... . ... . 200
Structuring Tests . . . . . . . . ... e 204
Organizing and Running Tests . . . . . ... ... ... ... ......... 206
RSpecand Shoulda . . . . ... ... ... ... ... 209

14 WHEN TROUBLE STRIKES 220
Ruby Debugger . . .. ... ... ... ... .. 220
Interactive Ruby . . . . . . . . . ... 221
Editor Support . . . . . . . e 222
ButIt Doesn’t Work! . . . . . . ... .. 224
ButIt’'s Too Slow! . . . . . . . . . 227

PART II—RUBY IN ITS SETTING

15 RUBY AND ITS WORLD 233
Command-Line Arguments . . . . . . . .. ... ... 233
Program Termination . . . . . . . ... ... ... e 236
Environment Variables . . . . ... ... ... ... o o oo 237
Where Ruby Finds Its Libraries . . . . . . ... ... ... ... .. ..., 238
RubyGems Integration . . . . . . .. .. ... e 239
The Rake Build Tool . . . .. .. ... ... ... .. .. . .. .. ..... 245
Build Environment . . . . .. ... . L. e 248

16 NAMESPACES, SOURCE FILES, AND DISTRIBUTION 249
Namespaces . . . . . . o v i v e e e e e e e e 249
Organizing Your SOUICe . . . . . . . . . v it v it e 251
Distributing and Installing Your Code . . . .. ... ... ... ........ 258

17 CHARACTER ENCODING 264
Encodings . . . . . . . e 265
Source Files . . . . . . . .. 266
Transcoding . . . . . . . ... L 270
Input and Output Encoding . . . . . ... ... ... ... . .. .. 272
Default External Encoding . . . . . ... ... ... ... ... . . . .. ... 274
Encoding Compatibility . . . . . . . ... .. ... 275
Default Internal Encoding . . . . . .. ... ... ... .. Lo L. 276
Funwith Unicode . . .. ... ... ... . ... ... . ... 277

Report erratum


http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=6

18

19

20

21

22

CONTENTS

INTERACTIVE RUBY SHELL

Command Line . . . . . . . . . . . . . e
Configuration . . . . . . . .. . e e e
Commands . . . . . . . . . e e e
Restrictions . . . . . . . . . e e

DOCUMENTING RUBY

Adding RDoctoRuby Code . . .. ... ... ... ... ... ... .....
Adding RDoc to C EXtensions . . . . . . . .. ..o
RunningRDoc . . . . . . . .. o

RUBY AND THE WEB

Writing CGI Seripts . . . . . . o oo i e
CoOKIES & v v o e e e e e e e e
Choice of Web Servers . . . . . . . . . . e e
Frameworks . . . . . . . . . . . e e

RUBY AND MICROSOFT WINDOWS

PART III—RUBY CRYSTALLIZED

THE RUBY LANGUAGE

Source File Encoding . . . . . .. ... ... L o
Source Layout . . . . . . . . e
The Basic Types . . . . . . . . o o e
NameS . . . . . o e e e e e e e
Variables and Constants . . . . . . . . . . . . . . e e e
Expressions . . . . . ..
Method Definition . . . . . . . . . . . .. e
InvokingaMethod . . . . . . . . ...
Allasing . . . . L e
Class Definition . . . . . . . . . . . . . e
Module Definitions . . . . . . . . . ..
AccessControl . . . . . . .
Blocks, Closures, and Proc Objects . . . . . . . ... ... ... ... .....
Exceptions . . . . . . . . . e
Catchand Throw . . . . . . . . . . . . e

Report erratum


http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=7

CONTENTS

23 DUCK TYPING 370
Classes Aren’t Types . . . . . . . . o i i i e 371
CodinglikeaDuck . . ... ... ... ... . ... .. .. 375
Standard Protocols and Coercions . . . . . . . ... ... ... .. 376
Walk the Walk, Talk the Talk . . . . . .. ... ... ... .. .. ....... 383

24 METAPROGRAMMING 384
Objects and Classes . . . . .« o v v v v vt it e e e e e e 384
Singletons . . . ... 387
Inheritance and Visibility . . . . .. ... .. ... o o 393
Modules and MixXins . . . . . . . . . . oo e e e 394
Metaprogramming Class-Level Macros . . . . . . ... ... ... ....... 397
Two Other Forms of Class Definition . . . . . . ... ... ... ........ 402
instance_eval and class_eval . . . . . . . . .. ... ... ... ... 406
Hook Methods . . . . . . . . . . . .. . e 410
One LastExample . . . . . . . . .. e 415
Top-Level Execution Environment . . . . . .. ... ... ... ........ 417
The Turtle Graphics Program . . . . ... ... ... ... ... . ...... 418

25 REFLECTION, OBJECTSPACE, AND DISTRIBUTED RUBY 420
Looking at Objects . . . . . . . . . . e 420
Looking at Classes . . . . . . . . . . i i ittt e e 422
Calling Methods Dynamically . . . ... ... ... ... ......... 423
System Hooks . . . . . . . . 426
Tracing Your Program’s Execution . . . . ... ... ... ... ........ 427
Behind the Curtain: The Ruby VM . . . . . . . ... ... .. . ... 430
Marshaling and Distributed Ruby . . . . . . . ... ... oo o oL 431
Compile Time? Runtime? Anytime! . . . ... ... ... ... .. ...... 435

26 LOCKING RUBY IN THE SAFE 436
SafeLevels . . . . . . . . . 437
Tainted Objects . . . . . . . . . . e 438
Trusted Objects . . . . . . . . ... 438

PART IV—RUBY LIBRARY REFERENCE

27 BUILT-IN CLASSES AND MODULES 442
Alphabetical Listing . . . . . . .. ... ... ... .. o 443
ATTAY . . o oo o e e e e 447
BasicObject . . . . . . . . e e e 463
Bignum . ... 466
Binding . . .. ... e 469
Class . . . v e 470
Comparable . . . . .. . . .. e 472
Complex . . . . . . e e 473

Report erratum


http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=8

CONTENTS )

Dir . . e e e 478
Encoding . . . . . . . e 483
Enumerable . . . . . . . . ... 487
Enumerator . . . . . . . . .. 496
Errno . . . . . e e e 500
Exception . . . . . . . . .. 501
FalseClass . . . . . . . . . . e 504
Fiber . . . . . e 505
File . . . . . e 506
File::Stat . . . . . . . e e 518
FileTest. . . . . . . . e 524
Fixnum . . . . . . e e 525
Float . . . . . . . e e e 528
GC . e e e 532
Hash . . . . . . e e 533
Integer . . . . . . . e 543
) (0 546
Kernel . . . . . . . e e 564
Marshal . . . . . . . e e e e 583
MatchData . . . . . . . . . . e e e 585
Math . . . . . e 588
Method . . . . . . . . e 591
Module . . . . . . e 594
Mutex . . . . . e e e e e e e 612
NilClass . . . . . . o e e e 613
NUMETIC . . . . o e e e e e e e e e e e e e e e e 615
Object . . . o o e e e e e e 622
ObjJectSpace . . . . . . o i i e e e e e e e 635
Proc . . . . e e e 637
Process . . . . . . e e e e e 641
Process::GID . . . . . . . . e e e 648
Process::Status . . . . . . . ... e e e 650
Process::Sys . . . . e 653
Process::UID . . . . . . . . . e e e e 655
Range . . . . . . . e 656
Rational . . . . . . . . . . e 660
Regexp . . . . . . o e 663
Signal . . . L 668
SIIng . . . . . e 670
Struct . . . . e e 696
Struct::Tms . . . . . . e e e e 700
Symbol . . . . . . 701
Thread . . . . . . . . e 705
ThreadGroup . . . . . . . . . . . e 712
Time . . . . . e 714
TrueClass . . . . . . . o e e e e 723

Report erratum


http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=9

CONTENTS 10

UnboundMethod . . . . . . . . . . . . . e 724
28 STANDARD LIBRARY 726
Library ChangesinRuby 1.9 . . . . . ... ... ... ... ... 727
Abbrev . . . . e e 729
Base6d . . . .. e e e 730
Benchmark . . . . . . . ... 731
BigDecimal . . . ... ... ... 732
CGlL. . . e 733
CGL:Session . . . . o v o e e e e e e e 735
CMath . . . . e 736
Complex . . . . . o e e e e 737
Continuation . . . . . . . . . e e e e e e e e e e 738
CSV e e 739
CUISES . v v ot e e e e e e e e 741
Date/DateTime . . . . . . . . . . . . e e e 742
DBM . . . e e e e 743
Delegator. . . . . . . . e 744
Digest . . . .. e 745
. 746
dRuby . . . . 747
English . . . . . . . e 748
1< 4 o OO 749
Bt . . e e e 751
EBXPECT © o v i e e e e e e e e e e 752
Fentl . . . . e 753
Fiber . . . . . e 754
FileUtils . . . . . . . e 755
Find . . . . . e 756
Forwardable . . . . . . . . . . .. e 757
GDBM . . . e e 758
GetoptlLong . . . . . .. 759
GServer . . . . . . e e 760
TIconv . . . e e e e 761
TIO/Wait . . . . . e e e e 762
TPAdr . . . . . e e e e 763
14 o 764
JSOM L o i e e e e e 765
Logger . . . . . . e 766
mathn . . . . . e e e e e e 767
Matrix . . . . . . e e e e e e e e 769
MiniTest . . . . . . o e e e e e 770
MONItor . . . . . e e e e 771
MUteX_ 1M . . . v v o o e e e e e e e e e e e e e e 772
Net::FTP . . . . . e 773
Net::HTTP . . . . . . e e e e e 774
Net::IMAP . . . . . e e 776

Report erratum


http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=10

CONTENTS 11

Net::POP . . . . . e e 777
Net::SMTP . . . . . . e e e 778
Net::Telnet . . . . . . . . . . e e 779
NKFE . e e 780
Observable . . . . . . . . . e 781
0] 0155 1 O 782
Open3 . . .. e 783
OpenSSL . . . . . . 784
OptionParser . . . . . . . . . . e e 785
OpenStruct . . . . . . . e e e e e 787
Pathname . . . . . . . . . . . e 788
PP . e e e 789
PrettyPrint . . . . . . . . e 790
PIrIME . . . . oot e e e e e e e e e 791
Profile . . . . . . . . e e 792
Profiler__ . . . . . . e e e 793
PStore . . . . e e e 794
PTY . e e e 795
Rational . . . . . . . . . . e 796
Readline . . . . . . . . . . e 797
Resolv . . . . . e 798
REXML . . . . e 799
Rinda . . . . . . . . e 801
Ripper . . . . . e 802
RSS . e 804
Scanf . . . . e e 805
SDBM . . . e e e 806
SecureRandom . . . . . . . . . .. ... 807
Set o e 808
Shellwords . . . . . . . . . e e e 809
Singleton . . . . ... L 810
Socket . ..o e e e 811
StringlO . . . L L 812
StringScanner . . . ... . e e e 813
Syslog . . . 814
Tempfile . . . . . . . e 815
Test::Unit . . . . . . e e e e e e 816
thread . . . . . . . e e e 817
ThreadsWait . . . . . . . . . . . e 818
Time . . . . . e e 819
Timeout . . . . . . . . e e e 820
TK . o e e 821
tmpdir . . ... e e e e 822
Tracer . . . . . . . e e e 823
TSort . . . e e 824
1 N 825

Report erratum


http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=11

CONTENTS 12

URI. . . e 826
WeakRef . . . . . . . . 827
WEBrick . . . . . . e 828
WIN320LE . . . . . e 829
XMLRPC . .. e 830
YAML . . . e 831
ZID . .o e 832
29 EXTENDING RUBY 833
Your First Extension . . . . . . . . . . .. ... 833
Ruby Objects inC . . . . . . . . . e 836
The Threading Model . . . . .. ... ... ... ... ... . ... ..... 841
The Jukebox Extension . . . . . . ... . ... ... ... 845
Memory Allocation . . . . . . . . .. 852
Ruby Type System . . . . . . . . .. e 853
Creating an Extension . . . . . . . .. ... .. o o 855
Embedding a Ruby Interpreter . . . . . . ... ... ... ... .. 860
Bridging Ruby to Other Environments . . . . . ... ... ... ........ 864
Ruby C Language API . . . . . . ... . .. .. . . 865
MKMFReference . . . . ... ... . . ... e 874
mkmf . . .. 874

PART V—APPENDIXES

A  SOCKET LIBRARY 878
BasicSocket . . . ... e e 879
Socket . .. e e e 881
IPSocket . . . . . . . e e e 885
TCPSocket . . . . . . . e 886
SOCKSSocket . . . . . . . . e e 887
TCPServer . . . . . . o e e e e 888
UDPSocket . . . . . . . e 889
UNIXSocket . . . . . . . e 891
UNIXServer . . . . . . o e e e e e e e e e e 892

B SUPPORT 893
WeDbSItes . . . . . . . e e e e 893
Usenet Newsgroup . . . . . . . . . o v ittt e e e 894
Mailing Lists . . . . . . . . o o o e e e e e e 894
BugReporting . . . . . ... 895

Report erratum


http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=12

CONTENTS

C BIBLIOGRAPHY 896

INDEX 897

Report erratum


http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=13

List of Tables

2.1
7.1
7.2
7.3
9.1
14.1
15.1
15.2
18.1
20.1
22.1
22.2
22.3
22.4
24.1
26.1
27.1
27.2
27.3
274
27.5
27.6
27.7
27.8
27.9
27.10
27.11
27.12
27.13
27.14
27.15
27.16
27.17
27.18
28.1
28.2
29.1
29.2

Example Variable and Class Names . . . . .. ... ... ... ....... 41
Character Class Abbreviations . . . . . ... ... ... ........... 125
Posix Character Classes . . . . . . ... ... ... 125
Unicode Character Properties . . . . . . .. ... ... ... ....... 126
Common Comparison Operators . . . . . . . . .o v v v v v v v oo . 156
Debugger Commands . . . . . . ... ... .. Lo 231
Environment Variables Usedby Ruby . . . . ... ... . ... ....... 238
Version Operators . . . . . . v v v vttt e e e e e e e e e e e e 246
irb Command-Line Options . . . . . . . .. ... .. .. 279
Command-Line Options forerb . . . . ... ... ... ... ........ 312
General Delimited Input . . . . . . ... ... L L 327
Substitutions in Double-Quoted Strings . . . . . . ... ... L. 329
ReservedWords . . . . . .. .. ... 335
Ruby Operators (High to Low Precedence) . . ... ... ... ....... 345
Ruby Hook Methods . . . . .. ... ... ... ... . ... 411
Definition of the Safe Levels . . . . .. ... .. ... .. .. ..... ... 440
Class Array: pack directives . . . . . . . . . . v i i i i e e 456
Encoding Names and Class Names . . . . . . .. .. ... ... ....... 484
Class File: Match-Mode Constants . . . . . . . ... ... .. ........ 510
Class File: Path Separators . . . . . .. ... ... ... .. ... .. .... 512
Class File: Open-Mode Constants . . . . . . . .. ... ... 514
Class File: Lock-Mode Constants . . . . . . .. .. ... .. ........ 518
Class I0: Mode Strings . . . . . . . . ... .o e 547
Module Kernel: Options to Spawn and System . . . . . ... ........ 580
Module Kernel: sprintf Flag Characters . . . .. ... ... ........ 581
Module Kernel: sprintf Field Types . . . ... ... .. ... ....... 581
Module Kernel: File Tests with a Single Argument . . . . ... ... .. .. 582
Module Kernel: File Tests with Two Arguments . . . . . . .. ... ... .. 582
Class Numeric: Methods and Subclasses . . . . . . ... ... ... ..... 618
Class Numeric: divmod, modulo, and remainder . .. .. .. .. ... ... 619
Class String: Optionsto Encode . . . . . . ... ... ... ... ...... 680
Class String: Backslash Sequences in Substitution Strings . . . . . ... .. 682
Class String: unpack Directives . . . . . .. . ... ... ... ... ..., 694
Class Time: strftime Directives . . . . . .. ... ... ... ... ..... 720
Class ERB: Inline Directives . . . . .. ... ... ... ... ........ 750
Class OptionParser: Option Definitions . . . . . .. ... ... ... .... 786
C/Ruby Data Type Conversion Functions and Macros . . . ... ... ... 838
Object Accessor Macros . . . . . .o oo vt i il e 841

Report erratum


http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=14

List of Figures

3.1

4.1

10.1
13.1
13.2
14.1
14.2
15.1
17.1
19.1
19.2
19.3
19.4
19.5
19.6
20.1
22.1
24.1
24.2
243
244
24.5
27.1
27.2
29.1
29.2

Variables Hold Object References . . . . . . ... ... .. ... ...... 66
How Arrays AreIndexed . . . . . . . ... ... ... .. 69
Ruby Exception Hierarchy . . . . ... .. ... ... ... ... ...... 169
Testing Framework Assertions . . . . . .. ... ... ... ......... 218
Additional Test::Unit Assertions . . . . . . . .. ... .. 219
SampleirbSession . . . .. .. ... 223
Determining Method Calling Costs Using Benchmark . . . . ... ... .. 228
Installed Documentation for Builder . . . . . ... ... ... .. ...... 242
Encodings and Their Aliases . . . . . . ... ... ... .. ......... 266
Browse RDoc Output for Class Counter . . . . . . ... ... ........ 291
Browse RDoc Output When Source Has Comments . . . .. ... ... .. 292
Using ri to Read Documentation . . . . . .. ... ... .. ......... 293
Documentation for Class Proc Generated by RDoc/ri . . . . . .. ... ... 294
Ruby Source File Documented withRDoc . . . . . . ... ... ... .... 302
C Source File Documented withRDoc . . . . . .. ... ... ... ..... 303
Sample CGIForm. . . . .. . ... . .. . 307
State Transitions for BooleanRange . . . . . . ... ... ... ... . ... 348
Object Model foraBasicClass . . . . . ... ... ... ... .. ...... 387
Object Model for a Singleton Class . . . . ... ... ... ... ...... 389
Basic Class Definition . . . . . .. ... ... ... . .. .. ... ... . 391
Class with So-Called Class Methods . . . . . ... .............. 392
How Modules Are Included . . . . .. ... .. ... ............ 396
Standard Exception Hierarchy . . . .. ... ... ... ........... 502
Method#arity in Action . . . . . . . .. .. ... 592
Wrapping Objects Around C Data Types . . . . .. ... ... ... .... 846
Building an Extension . . . . .. ... ... L oo 856

Report erratum



http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=15

Foreword

I wrote forewords to the previous two editions of this book. For the first edition, I wrote
about motivation. For the second edition, I wrote about miracles.

For this third edition, I'd like to write about courage. I always admire brave people. People
around Ruby seem to be brave, like the authors of this book. They were brave to jump in
to a relatively unknown language like Ruby. They were brave to try out new technology.
They could have happily stayed with an old technology, but they didn’t. They built their
own world using new bricks and mortar. They were adventurers, explorers, and pioneers.
By their effort, we have a fruitful result—Ruby.

Now I feel that I've created my own universe with help from those brave people. At first, I
thought it was a miniature universe, like the one in “Fessenden’s Worlds.” But now it seems
like a real universe. Uncountable brave people are now working with Ruby. They challenge
new things every day, trying to make the world better and bigger. I am very glad I am part
of the Ruby world.

I suppose that even the world itself could not contain the books that should be written. But
now we have the first book, updated to the most recent. Enjoy.

Yukihiro Matsumoto, ak.a. “Matz”
FOobL WEUVA
Japan, February 2009

Report erratum


http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=16

Preface

This book is a new version of the PickAxe, as Programming Ruby is known to Ruby pro-
grammers. It is a tutorial and reference for the version 1.9 of Ruby programming language.

Ruby 1.9is a significant departure from previous versions. There are major changes in string
handling, the scoping of block variables, and the threading model. It has a new virtual
machine. The built-in libraries have grown, adding many hundreds of new methods and
almost a dozen new classes. The language now supports scores of character encodings,
making Ruby one of the only programming languages to live fully in the whole world.

Given a choice between showing the 1.8 version of some Ruby construct and the 1.9 ver-
sion, this book shows the new way. If you’re planning to use Ruby 1.8 and not Ruby 1.9,
then I'd recommend putting this book down and instead looking at the second edition of
Programming Ruby.'

But, before you run off, I'd also like you to stop for a second and consider switching to
Ruby 1.9. As a language, and as a programming environment, it really is a step up from
previous versions of Ruby. It runs faster, it is more expressive, and it enables even more
programming paradigms. Most frameworks (including Ruby on Rails) are now compatible
with Ruby 1.9. And some Ruby implementations (such as MacRuby—a version of Ruby
that is integrated into the Objective C runtime on the Mac) run only 1.9 code.

Why Ruby?

When Andy and I wrote the first edition, we had to explain the background and appeal
of Ruby. Among other things, we wrote, “When we discovered Ruby, we realized that
we’d found what we’d been looking for. More than any other language with which we have
worked, Ruby stays out of your way. You can concentrate on solving the problem at hand,
instead of struggling with compiler and language issues. That’s how it can help you become
a better programmer: by giving you the chance to spend your time creating solutions for
your users, not for the compiler.”

That belief is even stronger today. Almost eight years later, Ruby is still our language of
choice: I use it for client applications and web applications. I use it to run our publishing
business (our online store, http://pragprog.com, is more than 40,000 lines of Rails code),
and I use it for all those little programming jobs I do just to get things running smoothly.

1. http://pragprog.com/titles/ruby

Report erratum


http://pragprog.com
http://pragprog.com/titles/ruby
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=17

PREFACE

In those eight years, Ruby has progressed nicely. A large number of methods have been
added to the built-in classes and modules, and the size of the standard library (those libraries
included in the Ruby distribution) has grown tremendously. The community now has a stan-
dard documentation system (RDoc), and RubyGems has become the system of choice for
packaging Ruby code for distribution. We have a best-of-breed web application framework,
Ruby on Rails, with others waiting in the wings.

Ruby Versions

This version of the PickAxe documents Ruby 1.9.2
Exactly what version of Ruby did I use to write this book? Let’s ask Ruby:

% ruby -v
ruby 1.9.1p0 (2009-01-30 revision 21907) [1386-darwin9.6.0]

This illustrates an important point. Most of the code samples you see in this book are actu-
ally executed each time I format the book. When you see some output from a program, that
output was produced by running the code and inserting the results back into the book.

Changes in the Book

Throughout the book I’ve tried to mark changes between 1.8 and 1.9 using a small symbol

=2 , in the margin, like the one here. One change I didn’t make: I decided to continue to use the
word we when talking about the authors in the body of the book. Many of the words come
from the first edition, and I certainly don’t want to claim any credit for Andy’s work on that
book.

Resources

Visit the Ruby website at http://www.ruby-1lang.org to see what’s new. Chat with other
Ruby users on the newsgroup or mailing lists (see Appendix B).

And I’d certainly appreciate hearing from you. Comments, suggestions, errors in the text,
and problems in the examples are all welcome. E-mail us at

rubybook@pragprog.com

2. Ruby version numbering used to follow the same scheme used for many other open source projects. Releases
with even minor version numbers—1.6, 1.8, and so on—were stable, public releases. These are the releases that
are prepackaged and made available on the various Ruby websites. Development versions of the software had odd
minor version numbers, such as 1.5 and 1.7. However, in 2007 Matz broke with convention and made 1.9 a stable
public release of Ruby.

Report erratum


http://www.ruby-lang.org
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=18

PREFACE

If you tell us about errors in the book, I’ll add them to the errata list at
http://www.pragprog.com/titles/ruby3/errata.html
You’ll find links to the source code for almost all the book’s example code at

http://www.pragprog.com/titles/ruby3

Acknowledgments

The first International Ruby Conference had something like 32 attendees. We could all
fit into the tiny hotel bar and talk the night away. Things have changed since then. The
annual conference now sells out many hundreds of seats within hours, and an increasing
number of secondary conferences have sprung up to meet the needs of folks who can’t get
to RubyConf.

As the community has grown, so has Ruby. The language and its libraries are now many
times bigger than they were back when the first edition of this book came out.

And as the language has grown, so has this book. The PickAxe is now massive, mostly
because I still want to document every single built-in class, module, and method. But a
book of this size can never be a solo undertaking. This edition builds on the work from the
first two editions, which included major contributions from Chad Fowler and Andy Hunt.
Just as significant, all three editions have been works created by the Ruby community. On
the mailing lists, in the forums, and on this book’s errata pages, hundreds of people have
contributed ideas, code, and corrections to make it better. As always, I owe every one of you
a big “thank you!” for all you have done and for all that you do. The Ruby community is
still as vibrant, interesting, and (mostly) friendly as it ever was—that’s quite an achievement
given the explosive growth we’ve enjoyed.

Getting this book into production has also been a challenge. Many thanks to Kim Wimpsett
for doing an amazing job on the copy edit, Steve Peter for finding ways to lay out all those
awkward pages full of code, and Janet Furlow for keeping us all on track.

Finally, I'm still deeply indebted to Yukihiro “Matz” Matsumoto, the creator of Ruby.
Throughout this period of growth and change, he has remained helpful, cheery, and ded-
icated to polishing this gem of a language. The friendly and open spirit of the Ruby com-
munity is a direct reflection of the person at its center.

Thank you all. Domo arigato gozaimasu.

Dave Thomas
THE PRAGMATIC PROGRAMMERS
http://www.pragprog.com

Report erratum


http://www.pragprog.com/titles/ruby3/errata.html
http://www.pragprog.com/titles/ruby3
http://www.pragprog.com
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=19

PREFACE

Notation Conventions

Throughout this book, we use the following typographic notations.
Literal code examples are shown using a typewriter-like font:

Download samples/preface_2.rb

class SampleCode
def run
#...
end
end

Within the text, Fred#do_something is a reference to an instance method (in this case
do_something) of class Fred, Fred.new® is a class method, and Fred::EOF is a class con-
stant. The decision to use a hash character to indicate instance methods was a tough one.
It isn’t valid Ruby syntax, but we thought that it was important to differentiate between the
instance and class methods of a particular class. When you see us write File.read, you know
we’re talking about the class method read. When instead we write File#read, we’re referring
to the instance method read. This convention is now standard in most Ruby discussions and
documentation.

The book contains many snippets of Ruby code. Where possible, we’ve tried to show what
happens when they run. In simple cases, we show the value of expressions on the same line
as the expression. For example:

Download samples/preface_3.rb
a=1

b=2
a+b #= 3

Here, you can see that the result of evaluating a + b is the value 3, shown to the right of the
arrow. Note that if you were to run this program, you wouldn’t see the value 3 output—you’d
need to use a method such as puts to write it out.

At times, we’re also interested in the values of assignment statements, in which case we’ll
show them:

Download samples/preface_4.rb

a=1 #=> 1
b=2 #= 2
a+b #= 3

3. In some other Ruby documentation, you may see class methods written as Fred::new. This is perfectly valid
Ruby syntax; we just happen to think that Fred.new is less distracting to read.

Report erratum


http://media.pragprog.com/titles/ruby3/code/samples/preface_2.rb
http://media.pragprog.com/titles/ruby3/code/samples/preface_3.rb
http://media.pragprog.com/titles/ruby3/code/samples/preface_4.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=20

PREFACE

If the program produces more complex output, we show it below the program code:
Download samples/preface_5.rb

3.times { puts "Hello!" }

produces:

Hello!
Hello!
Hello!

In some of the library documentation, we wanted to show where spaces appear in the output.
You’ll see these spaces as “_,” characters.

Command-line invocations are shown with literal text in a Roman font, and parameters you
supply are shown in an italic font. Optional elements are shown in large square brackets.

ruby [ flags ... ] [ progname ] [ arguments ... ]

Report erratum


http://media.pragprog.com/titles/ruby3/code/samples/preface_5.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=21

Road Map

The main text of this book has four separate parts, each with its own personality and each
addressing different aspects of the Ruby language.

In Part I, Facets of Ruby, you’ll find a Ruby tutorial. It starts with some notes on getting
Ruby running on your system followed by a short chapter on some of the terminology and
concepts that are unique to Ruby. This chapter also includes enough basic syntax so that the
other chapters will make sense. The rest of the tutorial is a top-down look at the language.
There we talk about classes and objects, types, expressions, and all the other things that
make up the language. We end with chapters on unit testing and digging yourself out when
trouble strikes.

One of the great things about Ruby is how well it integrates with its environment. Part II,
Ruby in Its Setting, investigates this. Here you’ll find practical information on using Ruby:
using the interpreter options, using irb, documenting your Ruby code, and packaging your
Ruby gems so that others can enjoy them. You’ll also find tutorials on some common
Ruby tasks: using Ruby with the Web and using Ruby in a Microsoft Windows environ-
ment (including wonderful things such as native API calls, COM integration, and Windows
Automation). We’ll also touch on using Ruby to access the 'net.

Part I1I, Ruby Crystallized, contains more advanced material. Here you’ll find all the gory
details about the language, the concept of duck typing, the object model, metaprogram-
ming, tainting, reflection, and marshaling. You could probably speed-read this the first time
through, but we think you’ll come back to it as you start to use Ruby in earnest.

The Ruby Library Reference is Part IV. It’s big. We document more than 1,250 methods in
more than 54 built-in classes and modules (up from 800 methods in 40 classes and modules
in the previous edition). On top of that, we now document the library modules that are
included in the standard Ruby distribution (96 of them).

So, how should you read this book? Well, depending on your level of expertise with pro-
gramming in general and OO in particular, you may initially want to read just a few portions
of the book. Here are our recommendations.

If you’re a beginner, you may want to start with the tutorial material in Part I. Keep the
library reference close at hand as you start to write programs. Get familiar with the basic
classes such as Array, Hash, and String. As you become more comfortable in the environ-
ment, you may want to investigate some of the more advanced topics in Part III.

Report erratum


http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=22

PREFACE

If you’re already comfortable with Perl, Python, Java, or Smalltalk, then we suggest read-
ing Chapter 1 on page 25, which talks about installing and running Ruby, followed by the
introduction in Chapter 2. From there, you may want to take the slower approach and keep
going with the tutorial that follows, or you can skip ahead to the gritty details starting in
Part II1, followed by the library reference in Part I'V.

Experts, gurus, and “I-don’t-need-no-stinking-tutorial” types can dive straight into the lan-
guage reference in Chapter 22, which begins on page 325, skim the library reference, and
then use the book as a (rather attractive) coffee coaster.

Of course, nothing is wrong with just starting at the beginning and working your way
through page by page.

And don’t forget, if you run into a problem that you can’t figure out, help is available. See
Appendix B, beginning on page 893, for more information.

Report erratum


http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=23

Part |

Facets of Ruby



http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=24

Chapter 1

Getting Started

Before we start talking about the Ruby language, it would be useful if we helped you get
Ruby running on your computer. That way, you can try sample code and experiment on your
own as you read along. In fact, that’s probably essential if you want to learn Ruby—get into
the habit of writing code as you’re reading. We will also show you some different ways to
run Ruby.

The Command Prompt

(Feel free to skip to the next section if you're already comfortable at your system’s command
prompt.)

Although there’s growing support for Ruby in IDEs, you’ll probably still end up spending
some time at your system’s command prompt, also known as a shell prompt or just plain
prompt. If you’re a Linux user, you’re probably already familiar with the prompt. If you
don’t already have a desktop icon for it, hunt around for an application called Terminal or
xterm. (On Ubuntu, you can navigate to it using Applications > Accessories > Terminal.)
On Windows, you’ll want to run cmd. exe, accessible by typing cmd into the dialog box that
appears when you select Start > Run. On OS X, run Applications > Utilities > Terminal.app.

In all three cases, a fairly empty window will pop up. It will contain a banner and a prompt.
Try typing echo hello at the prompt and hitting Enter (or Return, depending on your key-
board). You should see hello echoed back, and another prompt should appear.

Directories, Folders, and Navigation

It is beyond the scope of this book to teach the commands available at the prompt, but we
do need to cover the basics of finding your way around.

If you’re used to a GUI tool such as Explorer on Windows, or Finder on OS X, for navigating
to your files, then you’ll be familiar with the idea of folders—locations on your hard drive
that can hold files and other folders.

Report erratum


http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=25

THE COMMAND PROMPT

When you’re at the command prompt, you have access to these same folders. But, somewhat
confusingly, at the prompt they’re called directories (because they contain lists of other
directories and files). These directories are organized into a strict hierarchy. On Unix-based
systems (including OS X)), there’s one top-level directory, called / (a single forward slash).
On Windows, there is a top-level directory for each drive on your system, so you’ll find the
top level for your C: drive at C:\ (that’s the drive letter, C, a colon, and a single backslash).

The path to a file or directory is the set of directories that you have to traverse to get to
it from the top-level directory, followed by the name of the file or directory itself. Each
component in this name is separated by a forward slash (on Unix) or a backslash (on Win-
dows). So, if you organized your projects in a directory called projects under the top-level
directory and if the projects directory had a subdirectory for your time_planner project,
the full path to the README file would be /projects/time_planner/readme.txt on Unix and
C:\projects\time_planner\readme.txt on Windows.

To navigate to a directory, use the cd command. (Because the Unix prompt varies from
system to system, we’ll just use a single dollar sign to represent it here.)

$ cd /projects/time_planner (on Unix)
C:\> cd \projects\time_planner (on Windows)

Now, on Unix boxes, you probably don’t want to be creating top-level directories. Instead,
Unix gives each user their own home directory. So, if your username is dave, your home
directory might be located in /usr/dave, /home/dave, or /Users/dave. At the shell prompt,
the special character ~ (a single tilde) stands for the path to your home directory. You can
always change directories to your home directory using cd ~, which can also be abbreviated
to just cd.

To find out the directory you’re currently in, you can type pwd (on Unix) or cd on Windows.
So, for Unix users, you could type this:

$ cd /projects/time_planner
$ pwd
/projects/time_planner

$ cd

$ pwd

/Users/dave

$

On Windows, there’s no real concept of a user’s home directory:

C:\> cd \projects\time_planner
C:\projects\time_planner> cd \projects
C:\projects>

You can create a new directory under the current directory using the mkdir command:

$ cd /projects

$ mkdir expense_tracker

$ cd expense_tracker

$ pwd
/projects/expense_tracker

Report erratum


http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=26

INSTALLING RUBY

in Dir ry Nam nd Filenam

Most operating systems now allow you to create folders with spaces in
their names. This is great when you’re working at the GUI level. How-
ever, from the command prompt, spaces can be a headache, because
the shell that interprets what you type will treat the spaces in file and
folder names as being parameter separators and not as part of the
name. You can get around this, but it generally isn’'t worth the hassle.
If you are creating new folders and files, it's easiest to avoid spaces in
their names.

Notice that to change to the new directory, we could just give its name relative to the current
directory—we don’t have to enter the full path.

I suggest you create a directory called pickaxe to hold the code you write while reading this
book:

$ mkdir ~/pickaxe (on Unix)
C:\> mkdir \pickaxe (on Windows)

Get into the habit of changing into that directory before you start work:

$ cd ~/pickaxe (on Unix)
C:\> cd \pickaxe (on Windows)

Installing Ruby

Quite often, you won’t even need to download Ruby. It now comes preinstalled on many
Linux distributions, and Mac OS X includes Ruby (although the version of Ruby prein-
stalled on OS X is normally several minor releases behind the current Ruby version). Try
typing ruby -v at a command prompt—you may be pleasantly surprised.

If you don’t already have Ruby on your system or if you’d like to upgrade to a newer version
(remembering that this book describes Ruby 1.9), you can install it pretty simply. But first,
you have a choice to make: go for a prepackaged distribution or build Ruby from source?

Prepackaged Distributions

A packaged distribution of Ruby simply works out of the box. You install it, and it runs.
Binary distributions are prebuilt for a particular operating environment and are convenient
if you don’t want to mess around with building Ruby from source. The downside of a
packaged distribution is that you may have to take it as given: it may be a minor release
or two behind the leading edge, and it may not have the optional libraries that you might
want (although you may be able to install additional libraries using RubyGems, described

Report erratum


http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=27

INSTALLING RUBY

in a moment). If you can live with that, you’ll need to find a packaged distribution for your
operating system and machine architecture.

Windows Distributions

In the old days (where old means Ruby 1.8), things were good for Windows users. There
was a great “batteries included” package that would install not just Ruby but also a vast
array of libraries and gems. This was called the One-Click Installer, or OCL

However, with the advent of Ruby 1.9, the situation has changed somewhat. Ruby 1.9 hasn’t
been around long, so some of the libraries that were included in the 1.8 installer have not
yet been made compatible with 1.9. As I write this, the OCI project is in a state of flux. The
maintainer, Luis Lavena, is planning on releasing a Ruby 1.9 version of the OCI in early
2009, but it may well not contain as many libraries as the 1.8 version. The situation will
improve over time. (And, if you feel strongly about this, I know Luis would welcome your
help porting stuff over.)

So, you have a couple of choices for installing Ruby 1.9 on Windows. You can visit http://rubyforge.org/pro,
and see whether a one-click installer is available. If not, you can download a prebuilt binary
from ruby-lang.org.!

Linux Distributions

Most modern Linux distributions use the apt-get system (or the Synaptic GUI) to find and
install Ruby. As of November 2008, the following command installs Ruby, irb, and ri:

$ sudo apt-get install rubyl.9 librubyl.9 libreadline-rubyl.9 irbl.9
$ sudo apt-get install rdocl.9 ril.9

This installs all the Ruby commands with a 1.9 suffix, so you’ll need to do this:

$ rubyl.9 -v
ruby 1.9.0 (2007-12-25 revision 14709) [1486-1inux]

Be aware that the version of Ruby we just installed is many months behind the current
version.

Note that you need to have superuser access to install global packages on a Unix or Linux
box, which is why we use the sudo command.

OS X Distributions

Leopard (OS X 10.5) comes with Ruby 1.8 preinstalled.? If you want to make use of the
new Ruby 1.9 features, you’ll want to install Ruby yourself. You can do this from source,
or you can use a package management system. I personally use MacPorts.®> Once you have

1. Visit http://www.ruby-1lang.org/en/downloads/, and look for Ruby on Windows.

2. At some point, it seems likely that Apple will include MacRuby. This is its own port of Ruby 1.9, tightly inte-
grated into the Objective-C runtime. In the meantime, you can download MacRuby from http: //www.macruby.org.

3. http://www.macports.org/

Report erratum


http://rubyforge.org/projects/rubyinstaller
http://www.ruby-lang.org/en/downloads/
http://www.macruby.org
http://www.macports.org/
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=28

INSTALLING RUBY

the basic ports system installed, as described on its website, installing Ruby is as simple as
doing this:

$ sudo port install rubyl9

As with apt-get for Linux, MacPorts currently installs the Ruby executables with a 1.9 suffix
(ruby1.9, irb1.9, and so on). If you don’t already have /opt/local/bin in your path, you’ll need
to add it. As an alternative, you could investigate http://rubyosx.com/, which claims to
offer a packaged OS X installation.

Building Ruby from Source

Because Ruby is an open source project, you can download the interpreter’s source code
and build it on your own system. Compared to using a binary distribution, this gives you
a lot more control over where things go, and you can keep your installation totally up-to-
date. The downside is that you’re taking on the responsibility of managing the build and
installation process. This isn’t onerous, but it can be scary if you’ve never installed an open
source application from source.

The first thing to do is to download the source. This comes in three flavors, all from
http://www.ruby-lang.org/en/downloads:

* The stable release in farball format. A tarball is an archive file, much like a .zip file.

» The stable snapshot. This is a tarball, created nightly, of the latest source code in
Ruby’s stable development branch. The stable branch is intended for production code
and in general will be reliable. However, because the snapshot is taken daily, new fea-
tures may not have received thorough testing yet—the stable tarball in the previous
bullet will be generally more reliable.

* The nightly snapshot. This is again a tarball, created nightly. Unlike the stable code in
the previous two tarballs, this code is leading edge, because it is taken from the head
of the development branch. Expect things to be broken in here.

If you plan on downloading either of the nightly snapshots regularly, it may be easier to
subscribe to the source repository directly. The sidebar on page 31 gives more details.

Once you’ve loaded a tarball, you’ll have to expand the archive into its constituent files. Use
the tar command for this (if you don’t have tar installed, you can try using another archiving
utility, because many now support tar-format files).

$ tar xzf snapshot.tar.gz
ruby/

ruby/bcc32/
ruby/bcc32/Makefile.sub
ruby/bcc32/README.bcc32

This installs the Ruby source tree in the subdirectory ruby/. In that directory, you’ll find a
file named README, which explains the installation procedure in detail. To summarize, you
build Ruby on Unix-based systems using the same four commands you use for most other
open source applications: ./configure, make, make test, and make install. You can build Ruby

Report erratum


http://rubyosx.com/
http://www.ruby-lang.org/en/downloads
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=29

RUNNING RUBY

under other environments (including Windows)—see README.win32 in the distribution’s
win32 subdirectory as a starting point.

Source Code from This Book

We have made the source code from this book available for download from our website at
http://pragprog.com/titles/ruby3/code. Sometimes, the listings of code in the book
correspond to a complete source file. Other times, the book shows just part of the source in
a file—the program file may contain additional scaffolding to make the code run.

Running Ruby

Now that Ruby is installed, you’d probably like to run some programs. Unlike compiled
languages, you have two ways to run Ruby—you can type in code interactively, or you can
create program files and run them. Typing in code interactively is a great way to experiment
with the language, but for code that’s more complex or that you will want to run more than
once, you’ll need to create program files and run them. But, before we go any further, let’s
test to see whether Ruby is installed. Bring up a fresh command prompt, and type this:*

$ ruby -v
ruby 1.9.1p0 (2009-01-30 revision 21907) [1386-darwin9.6.0]

If you believe that you should have Ruby installed and yet you get an error saying something
like “ruby: command not found,” then it is likely that the Ruby program is not in your
path—the list of places that the shell searches for programs to run. If you used the Windows
One-Click Installer, make sure you rebooted before trying this command. If you’re on OS X
and installed Ruby from source, you’ll probably have to add a line like this to the file .profile
in your home directory:

PATH=/usr/local/bin:$PATH

Interactive Ruby

One way to run Ruby interactively is simply to type ruby at the shell prompt. Here we typed
in the single puts expression and an end-of-file character (which is Ctrl+D on our system).
This process works, but it’s painful if you make a typo, and you can’t really see what’s
going on as you type.

% ruby

puts "Hello, world!"
AD

Hello, world!

4. Remember you may need to use ruby1.9 as the command name if you installed using a package management
system.

Report erratum


http://pragprog.com/titles/ruby3/code
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=30

RUNNING RUBY

The Very Latest Ruby

For those who just have to be on the very latest, hot-off-the-press,
and untested cutting edge (as we were while writing this book), you
can get development versions straight from the developers’ working
repository.

The Ruby developers use Subversion (often abbreviated as SVN) as
their revision control system. Subversion clients can be downloaded
from http://subversion.tigris.org/. You can check files out as an
anonymous user from their archive by executing the following SVN
command:

$ svn co http://svn.ruby-lang.org/repos/ruby/trunk ruby

The complete source code tree, just as the developers last left it, will
now be copied to a ruby subdirectory on your machine.

This command will check out the head of the development tree. If you
want the Ruby 1.8 branch, change trunk to branches/ruby_1_8 in the
checkout command.

For most folks, irb—Interactive Ruby—is the tool of choice for executing Ruby interac-
tively. irb is a Ruby shell, complete with command-line history, line-editing capabilities,
and job control. (In fact, it has its own chapter beginning on page 278.) You run irb from
the command line. Once it starts, just type in Ruby code. It will show you the value of each
expression as it evaluates it. Exit an irb session by typing exit or by using the end-of-file
character on your operating system (normally Ctrl+D or Ctrl+Z).

% irb

irb(main):001:0> def sum(nl, n2)
irb(main):002:1> nl1 + n2
irb(main):003:1> end

=> nil

irb(main):004:0> sum(3, 4)

=7

irb(main) :005:0> sum("cat", "dog")
=> "catdog"

irb(main):006:0> exit

We recommend that you get familiar with irb so you can try our examples interactively.

Ruby Programs

The normal way to write Ruby programs is to put them in one or more files. You’ll use a
text editor (Emacs, vim, TextMate, and so on) or an IDE (such as NetBeans) to create and
maintain these files. You’ll then run the files either from within the editor or IDE or from the

Report erratum


http://subversion.tigris.org/
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=31

RuBY DOCUMENTATION: RDOC AND Rl

command line. I personally use both techniques, typically running from within the editor
for single-file programs and from the command line for more complex ones.

Let’s start by creating a simple Ruby program and running it. Open a command window,
and navigate to the pickaxe directory you created earlier:

$ cd ~/pickaxe (unix)
C:\> cd \pickaxe (windows)

Then, using your editor of choice, create the file myprog.rb, containing the following:
Download samples/gettingstarted_2.rb

puts "Hello, Ruby Programmer"
puts "It is now #{Time.now}"

(Note that the second string contains the text Time.now between curly braces, not parenthe-
ses.)

You can run a Ruby program from a file as you would any other shell script, Perl program, or
Python program. Simply run the Ruby interpreter, giving it the script name as an argument:

$ ruby myprog.rb
Hello, Ruby Programmer
It is now 2009-04-13 13:25:51 -0500

On Unix systems, you can use the “shebang” notation as the first line of the program file:

Download samples/gettingstarted_4.rb

#!/usr/local/bin/ruby -w
puts "Hello, Ruby Programmer"
puts "It is now #{Time.now}"

If you make this source file executable (using, for instance, chmod +x myprog.rb), Unix lets
you run the file as a program:

$ ./myprog.rb
Hello, Ruby Programmer
It is now 2009-04-13 13:25:51 -0500

You can do something similar under Microsoft Windows using file associations, and you
can run Ruby GUI applications by double-clicking their names in Explorer.

Ruby Documentation: RDoc and ri

As the volume of the Ruby libraries has grown, it has become impossible to document them
all in one book; the standard library that comes with Ruby now contains more than 9,000

5. If your system supports it, you can avoid hard-coding the path to Ruby in the “shebang” line by using
#!/usr/bin/env ruby, which will search your path for ruby and then execute it.

Report erratum


http://media.pragprog.com/titles/ruby3/code/samples/gettingstarted_2.rb
http://media.pragprog.com/titles/ruby3/code/samples/gettingstarted_4.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=32

RuBY DOCUMENTATION: RDOC AND Rl

methods. Fortunately, an alternative to paper documentation exists for these methods (and
classes and modules). Many are now documented internally using a system called RDoc.

If a source file is documented using RDoc, its documentation can be extracted and converted
into HTML and ri formats.

Several websites contain a complete set of the RDoc documentation for Ruby, but http://www.ruby-doc.org
is probably the best known. Browse on over, and you should be able to find at least some

form of documentation for any Ruby library. The site is adding new documentation all the

time.

The ri tool is a local, command-line viewer for this same documentation. Most Ruby distri-
butions now also install the resources used by the ri program.

To find the documentation for a class, type ri ClassName. For example, the following lists
the summary information for the GC class. (For a list of classes with ri documentation, type

ri.)

—————————————————————————————————————————————————————————————— Class: GC
The GC module provides an interface to Ruby's mark and sweep
garbage collection mechanism. Some of the underlying methods are
also available via the ObjectSpace module.

Class methods:
count, disable, enable, malloc_allocated_size, malloc_allocations,
start, stress, stress=

Instance methods:
garbage_collect

For information on a particular method, give its name as a parameter:

% ri GC::enable

Enables garbage collection, returning true if garbage
collection was previously disabled.

GC.disable #=> false
GC.enable #=> true
GC.enable #=> false

If the method you pass to ri occurs in more than one class or module, ri will list all of the
alternatives.

Report erratum


http://www.ruby-doc.org
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=33

RuBY DOCUMENTATION: RDOC AND Rl

Reissue the command, prefixing the method name with the name of the class and a dot:

$ ri assoc
More than one method matched your request. You can refine your
search by asking for information on one of:

Array#assoc [Ruby 1.9.1]
Array#rassoc [Ruby 1.9.1]
Hash#assoc [Ruby 1.9.1]

Hash#rassoc [Ruby 1.9.1]

$ ri Array.assoc

array.assoc(obj) -> an_array or nil

Searches through an array whose elements are also arrays
comparing obj with the first element of each contained array
using obj.==. Returns the first contained array that matches
(that is, the first associated array), or nil if no match is
found. See also Array#rassoc.

For general help on using ri, type ri --help. In particular, you might want to experiment with
the --format option, which tells ri how to render decorated text (such as section headings). If
your terminal program supports ANSI escape sequences, using --format ansi will generate a
nice, colorful display. Once you find a set of options you like, you can set them into the Rl
environment variable. Using my shell (zsh), this would be done using the following:

% export RI="--format ansi --width 70"

If a class or module isn’t yet documented in RDoc format, ask the friendly folks over at
suggestions@ruby-doc.org to consider adding it.

All this command-line hacking may seem a tad off-putting if you’re not a regular visitor to
the shell prompt. But, in reality, it isn’t that difficult, and the power you get from being able
to string together commands this way is often surprising. Stick with it, and you’ll be well
on your way to mastering both Ruby and your computer.

Report erratum


http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=34

Chapter 2

Ruby.new

Most books on programming languages look about the same. They start with chapters on
basic types: integers, strings, and so on. Then they look at expressions, before moving on
to if and while statements. Then, perhaps around Chapter 7 or 8, they’ll start mentioning
classes. We find that somewhat tedious.

Instead, when we designed this book, we had a grand plan (we were younger then). We
wanted to document the language from the top down, starting with classes and objects and
ending with the nitty-gritty syntax details. It seemed like a good idea at the time. After all,
most everything in Ruby is an object, so it made sense to talk about objects first.

Or so we thought.

Unfortunately, it turns out to be difficult to describe a language that way. If you haven’t
covered strings, if statements, assignments, and other details, it’s difficult to write examples
of classes. Throughout our top-down description, we kept coming across low-level details
we needed to cover so that the example code would make sense.

So, we came up with another grand plan (they don’t call us pragmatic for nothing). We’d
still describe Ruby starting at the top. But before we did that, we’d add a short chapter that
described all the common language features used in the examples along with the special
vocabulary used in Ruby, a kind of mini-tutorial to bootstrap us into the rest of the book.
And that mini-tutorial is this chapter.

Ruby Is an Object-Oriented Language

Let’s say it again. Ruby is a genuine object-oriented language. Everything you manipulate
is an object, and the results of those manipulations are themselves objects. However, many
languages make the same claim, and their users often have a different interpretation of what
object-oriented means and a different terminology for the concepts they employ.

So, before we get too far into the details, let’s briefly look at the terms and notation that
we’ll be using.

Report erratum


http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=35

RUBY IS AN OBJECT-ORIENTED LANGUAGE

When you write object-oriented programs, you’re normally looking to model concepts from
the real world. Typically during this modeling process you’ll discover categories of things
that need to be represented in code. In a jukebox, the concept of a “song” could be such
a category. In Ruby, you’d define a class to represent each of these entities. A class is a
combination of state (for example, the name of the song) and methods that use that state
(perhaps a method to play the song).

Once you have these classes, you’ll typically want to create a number of instances of each.
For the jukebox system containing a class called Song, you’d have separate instances for
popular hits such as “Ruby Tuesday,” “Enveloped in Python,” “String of Pearls,” “Small
Talk,” and so on. The word object is used interchangeably with class instance (and being
lazy typists, we’ll probably be using the word object more frequently).

In Ruby, these objects are created by calling a constructor, a special method associated with
a class. The standard constructor is called new.

Download samples/intro_1.rb

songl = Song.new("Ruby Tuesday")
song2 = Song.new("Enveloped in Python")
# and so on

These instances are both derived from the same class, but they have unique characteristics.
First, every object has a unique object identifier (abbreviated as object ID ). Second, you
can define instance variables, variables with values that are unique to each instance. These
instance variables hold an object’s state. Each of our songs, for example, will probably have
an instance variable that holds the song title.

Within each class, you can define instance methods. Each method is a chunk of functionality
that may be called in the context of the class and (depending on accessibility constraints)
from outside the class. These instance methods in turn have access to the object’s instance
variables and hence to the object’s state. A Song class, for example, might define an instance
method called play. If the variable my_way referenced a particular Song instance, you’d be
able to call that instance’s play method and play a particular song.

Methods are invoked by sending a message to an object. The message contains the method’s
name, along with any parameters the method may need.! When an object receives a mes-
sage, it looks into its own class for a corresponding method. If found, that method is exe-
cuted. If the method isn’t found. .. well, we’ll get to that later.

This business of methods and messages may sound complicated, but in practice it is very
natural. Let’s look at some method calls. In this code, we’re using puts, a standard Ruby
method that writes its argument(s) to the console, adding a newline after each:

puts "gin joint".length
puts "Rick".index("c")
puts 42.even?

puts sam.play(song)

1. This idea of expressing method calls in the form of messages comes from Smalltalk.

Report erratum


http://media.pragprog.com/titles/ruby3/code/samples/intro_1.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=36

SOME BAsIc RuBY

produces:

9

2

true

duh dum, da dum de dum ...

Each line shows a method being called as an argument to puts. The thing before the period
is called the receiver, and the name after the period is the method to be invoked. The first
example asks a string for its length, and the second asks a different string to find the index
of the letter c. The third line asks the number 42 if it is even (the question mark is part of the
method name even?). Finally, we ask Sam to play us a song (assuming there’s an existing
variable called sam that references an appropriate object).

It’s worth noting here a major difference between Ruby and most other languages. In (say)
Java, you’d find the absolute value of some number by calling a separate function and pass-
ing in that number. You could write this:

num = Math.abs(num) // Java code

In Ruby, the ability to determine an absolute value is built into numbers—they take care of
the details internally. You simply send the message abs to a number object and let it do the
work:

num = -1234 # => -1234
positive = num.abs # => 1234

The same applies to all Ruby objects. In C you’d write strlen(name), but in Ruby it’s
name.length, and so on. This is part of what we mean when we say that Ruby is a gen-
uine object-oriented language.

Some Basic Ruby

Not many people like to read heaps of boring syntax rules when they’re picking up a new
language, so we’re going to cheat. In this section, we’ll hit some of the highlights—the
stuff you’ll just need to know if you’re going to write Ruby programs. Later, in Chapter 22,
which begins on page 325, we’ll go into all the gory details.

Let’s start with a simple Ruby program. We’ll write a method that returns a cheery, person-
alized greeting. We’ll then invoke that method a couple of times:

Download samples/intro_5.rb

def say_goodnight(name)

result = "Good night, " + name
return result
end

# Time for bed...
puts say_goodnight ("John-Boy")
puts say_goodnight("Mary-Ellen")

Report erratum


http://media.pragprog.com/titles/ruby3/code/samples/intro_5.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=37

SOME BAsIc RuBY

As the example shows, Ruby syntax is clean. You don’t need semicolons at the ends of
statements as long as you put each statement on a separate line. Ruby comments start with a
# character and run to the end of the line. Code layout is pretty much up to you; indentation is
not significant (but using two-character indentation will make you friends in the community
if you plan on distributing your code).

Methods are defined with the keyword def, followed by the method name (in this case,
say_goodnight) and the method’s parameters between parentheses. (In fact, the parentheses
are optional, but we like to use them.) Ruby doesn’t use braces to delimit the bodies of
compound statements and definitions. Instead, you simply finish the body with the keyword
end. Our method’s body is pretty simple. The first line concatenates the literal string "Good
night, " and the parameter name and assigns the result to the local variable result. The next
line returns that result to the caller. Note that we didn’t have to declare the variable result; it
sprang into existence when we assigned to it.

Having defined the method, we invoke it twice. In both cases, we pass the result to the
method puts, which simply outputs its argument followed by a newline (moving on to the
next line of output):

Good night, John-Boy
Good night, Mary-Ellen

The line
puts say_goodnight ("John-Boy")

contains two method calls, one to the method say_goodnight and the other to the method
puts. Why does one call have its arguments in parentheses while the other doesn’t? In this
case, it’s purely a matter of taste. The following lines are both equivalent:

puts say_goodnight ("John-Boy")

puts(say_goodnight ("John-Boy"))
However, life isn’t always that simple, and precedence rules can make it difficult to know
which argument goes with which method invocation, so we recommend using parentheses
in all but the simplest cases.

This example also shows some Ruby string objects. Ruby has many ways to create a string
object, but probably the most common is to use string literals, which are sequences of
characters between single or double quotation marks. The difference between the two forms
is the amount of processing Ruby does on the string while constructing the literal. In the
single-quoted case, Ruby does very little. With a few exceptions, what you type into the
string literal becomes the string’s value.

In the double-quoted case, Ruby does more work. First, it looks for substitutions (sequences
that start with a backslash character) and replaces them with some binary value. The most
common of these is \n, which is replaced with a newline character. When a string containing
a newline is output, that newline becomes a line break:

puts "And good night,\nGrandma"
produces:

And good night,
Grandma

Report erratum


http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=38

SOME BAsIc RuBY

The second thing that Ruby does with double-quoted strings is expression interpolation.
Within the string, the sequence #{expression} is replaced by the value of expression. We
could use this to rewrite our previous method:

Download samples/intro_10.rb

def say_goodnight(name)
result = "Good night, #{name}"
return result

end

puts say_goodnight('Pa')

produces:

Good night, Pa
‘When Ruby constructs this string object, it looks at the current value of name and substitutes
it into the string. Arbitrarily complex expressions are allowed in the #{. ..} construct. In the

following example, we invoke the capitalize method, defined for all strings, to output our
parameter with a leading uppercase letter:

Download samples/intro_11.rb

def say_goodnight(name)

result = "Good night, #{name.capitalize}"
return result
end

puts say_goodnight('uncle')
produces:
Good night, Uncle

For more information on strings, as well as on the other Ruby standard types, see Chapter
6, which begins on page 106.

Finally, we could simplify this method some more. The value returned by a Ruby method
is the value of the last expression evaluated, so we can get rid of the temporary variable and
the return statement altogether:

Download samples/intro_12.rb

def say_goodnight(name)

"Good night, #{name.capitalize}"
end
puts say_goodnight('ma')

produces:

Good night, Ma
We promised that this section would be brief. We have just one more topic to cover: Ruby
names. For brevity, we’ll be using some terms (such as class variable) that we aren’t going

to define here. However, by talking about the rules now, you’ll be ahead of the game when
we actually come to discuss class variables and the like later.

Ruby uses a convention that may seem strange at first: the first characters of a name indicate
how the name is used. Local variables, method parameters, and method names should all

Report erratum


http://media.pragprog.com/titles/ruby3/code/samples/intro_10.rb
http://media.pragprog.com/titles/ruby3/code/samples/intro_11.rb
http://media.pragprog.com/titles/ruby3/code/samples/intro_12.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=39

ARRAYS AND HASHES

start with a lowercase letter or with an underscore. Global variables are prefixed with a
dollar sign ($), and instance variables begin with an “at” sign (@). Class variables start with
two “at” signs (@ @).2 Finally, class names, module names, and constants must start with
an uppercase letter. Samples of different names are given in Table 2.1 on the next page.

Following this initial character, a name can be any combination of letters, digits, and under-
scores (with the proviso that the character following an @ sign may not be a digit). How-
ever, by convention, multiword instance variables are written with underscores between the
words, and multiword class names are written in MixedCase (with each word capitalized).
Method names may end with the characters ?, !, and =.

Arrays and Hashes

Ruby’s arrays and hashes are indexed collections. Both store collections of objects, acces-
sible using a key. With arrays, the key is an integer, whereas hashes support any object as
a key. Both arrays and hashes grow as needed to hold new elements. It’s more efficient to
access array elements, but hashes provide more flexibility. Any particular array or hash can
hold objects of differing types; you can have an array containing an integer, a string, and a
floating-point number, as we’ll see in a minute.

You can create and initialize a new array object using an array literal—a set of elements
between square brackets. Given an array object, you can access individual elements by
supplying an index between square brackets, as the next example shows. Note that Ruby
array indices start at zero.

Download samples/intro_13.rb

a=1[1, 'cat', 3.14 ] # array with three elements
puts "The first element is #{a[O0]}"

# set the third element

a[2] = nil

puts "The array is now #{a.inspect}"

produces:

The first element is 1

The array is now [1, "cat", nil]

You may have noticed that we used the special value nil in this example. In many languages,
the concept of nil (or null) means “no object.” In Ruby, that’s not the case; nil is an object,
just like any other, that happens to represent nothing. Anyway, let’s get back to arrays and
hashes.

2. Although we talk about global and class variables here for completeness, you’ll find they are rarely used in
Ruby programs. There’s a lot of evidence that global variables make programs harder to maintain. Class variables
are not as dangerous—it’s just that people tend not to use them much.

Report erratum


http://media.pragprog.com/titles/ruby3/code/samples/intro_13.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=40

ARRAYS AND HASHES

Table 2.1. Example Variable and Class Names

Variables Constants and
Local Global Instance Class Class Names
name $debug @name @@total PI
fish_and_chips $CUSTOMER @point_1 @@symtab FeetPerMile
X_axis $ @X @®@N String
thx1138 $plan9 @_ @@x_pos MyClass
26 $Global @plan9 @@SINGLE JazzSong

Sometimes creating arrays of words can be a pain, what with all the quotes and commas.
Fortunately, Ruby has a shortcut: %w does just what we want:

Download samples/intro_14.rb

a=1[ "ant', 'bee', 'cat', 'dog', 'elk' ]
a[0] # => "ant"

a[3] # => "dog"

# this is the same:

a = %w{ ant bee cat dog elk }

a[0] # => "ant"

a[3] # => "dog"

Ruby hashes are similar to arrays. A hash literal uses braces rather than square brackets.
The literal must supply two objects for every entry: one for the key, the other for the value.
The key and value are normally separated by =>.

For example, you may want to map musical instruments to their orchestral sections. You
could do this with a hash:

inst_section = {

'cello’ => 'string',
'clarinet' => 'woodwind',
"drum' => 'percussion',
'oboe' => 'woodwind',
"trumpet' => 'brass',
'violin' => 'string'

3

The thing to the left of the => is the key, and the thing to the right is the corresponding value.
Keys in a particular hash must be unique—you can’t have two entries for “drum.” The keys
and values in a hash can be arbitrary objects—you can have hashes where the values are
arrays, other hashes, and so on.

Hashes are indexed using the same square bracket notation as arrays. In this code, we’ll use
the p method to write the values to the console. This works like puts but displays values
such as nil explicitly.

Report erratum


http://media.pragprog.com/titles/ruby3/code/samples/intro_14.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=41

SYMBOLS

p inst_section['oboe']
p inst_section['cello']
p inst_section['bassoon’]

produces:

"woodwind"

"string"

nil
As the previous example shows, a hash by default returns nil when indexed by a key it
doesn’t contain. Normally this is convenient, because nil means false when used in condi-
tional expressions. Sometimes you’ll want to change this default. For example, if you’re
using a hash to count the number of times each different word occurs in a file, it’s conve-
nient to have the default value be zero. Then you can use the word as the key and simply
increment the corresponding hash value without worrying about whether you’ve seen that
word before. This is easily done by specifying a default value when you create a new, empty
hash. (The full source for the word frequency counter is on page 72.)

Download samples/intro_17.rb

histogram = Hash.new(0) # The default value is zero
histogram['ruby'] # => 0

histogram['ruby'] = histogram['ruby'] + 1
histogram['ruby'] # => 1

Array and hash objects have lots of useful methods; see the discussion starting on page 67,
and the reference sections starting on pages 447 and 533, for details.

Symbols

Often, when programming, you need to create a name for something significant. For exam-
ple, you might want to refer to the compass points by name, so you’d write this:

NORTH = 1

EAST =2

SOUTH = 3

WEST = 4

Then, in the rest of your code, you could use the constants instead of the numbers:

walk (NORTH)
1ook (EAST)

Most of the time, the actual numeric values of these constants are irrelevant (as long as they
are unique). All you want to do is differentiate the four directions.

Ruby offers a cleaner alternative. Symbols are simply constant names that you don’t have to
predeclare and that are guaranteed to be unique. A symbol literal starts with a colon and is
normally followed by some kind of name:

walk(:north)
look(:east)

Report erratum


http://media.pragprog.com/titles/ruby3/code/samples/intro_17.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=42

CONTROL STRUCTURES

There’s no need to assign some kind of value to a symbol—Ruby takes care of that for you.
Ruby also guarantees that no matter where it appears in your program, a particular symbol
will have the same value. That is, you can write the following:

def walk(direction)
if direction == :north
# ...
end
end

Symbols are frequently used as keys in hashes. We could write our previous example as

this:

inst_section = {
:cello => 'string',
:clarinet => 'woodwind',
:drum => 'percussion',
:oboe => 'woodwind',
:trumpet => 'brass',
:violin => 'string'

}

inst_section[ :oboe] # => "woodwind"

inst_section[:cello] # => "string"
# Note that strings aren't the same as symbols...
inst_section['cello'] # => nil

In fact, symbols are so frequently used as hash keys that Ruby 1.9 introduces a new syntax—
19 , you can use name: value pairs to create a hash if the keys are symbols:

inst_section = {

cello: 'string',
clarinet: 'woodwind',
drum: 'percussion’,
oboe: 'woodwind',
trumpet: ‘'brass',
violin: 'string’

3

puts "An oboe is a #{inst_section[:oboe]}"

produces:

An oboe is a woodwind

Control Structures

Ruby has all the usual control structures, such as if statements and while loops. Java, C, and
Perl programmers may well get caught by the lack of braces around the bodies of these
statements. Instead, Ruby uses the keyword end to signify the end of a body:

if count > 10
puts "Try again"

elsif tries ==
puts "You lose"

Report erratum


http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=43

CONTROL STRUCTURES

else
puts "Enter a number"
end

Similarly, while statements are terminated with end:

while weight < 100 and num_pallets <= 30
pallet = next_pallet()
weight += pallet.weight
num_pallets += 1

end

Most statements in Ruby return a value, which means you can use them as conditions. For
example, the method gets returns the next line from the standard input stream or nil when
end of file is reached. Because Ruby treats nil as a false value in conditions, you could write
the following to process the lines in a file:

while line = gets
puts line.downcase
end

Here, the assignment statement sets the variable line to either the next line of text or nil, and
then the while statement tests the value of the assignment, terminating the loop when it is
nil.

Ruby statement modifiers are a useful shortcut if the body of an if or while statement is just
a single expression. Simply write the expression, followed by if or while and the condition.
For example, here’s a simple if statement:

if radiation > 3000
puts "Danger, Will Robinson"
end

Here it is again, rewritten using a statement modifier:
puts "Danger, Will Robinson" if radiation > 3000
Similarly, a while loop such as this:

square = 2

while square < 1000
square = squarexsquare

end

becomes this more concise version:

square 2
square = squarexsquare while square < 1000

These statement modifiers should seem familiar to Perl programmers.

Report erratum


http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=44

REGULAR EXPRESSIONS

Regular Expressions

Most of Ruby’s built-in types will be familiar to all programmers. A majority of languages
have strings, integers, floats, arrays, and so on. However, regular expression support is typ-
ically built into only scripting languages, such as Ruby, Perl, and awk. This is a shame,
because regular expressions, although cryptic, are a powerful tool for working with text.
And having them built in, rather than tacked on through a library interface, makes a big
difference.

Entire books have been written about regular expressions (for example, Mastering Regular
Expressions [Fri02]), so we won’t try to cover everything in this short section. Instead,
we’ll look at just a few examples of regular expressions in action. You’ll find full coverage
of regular expressions starting on page 117.

A regular expression is simply a way of specifying a pattern of characters to be matched
in a string. In Ruby, you typically create a regular expression by writing a pattern between
slash characters (/pattern/). And, Ruby being Ruby, regular expressions are objects and can
be manipulated as such.

For example, you could write a pattern that matches a string containing the text Perl or the
text Python using the following regular expression:

/Perl|Python/

The forward slashes delimit the pattern, which consists of the two things we’re matching,
separated by a pipe character (|). This pipe character means “either the thing on the right
or the thing on the left,” in this case either Perl or Python. You can use parentheses within
patterns, just as you can in arithmetic expressions, so you could also have written this pattern
like this:

/P(erl|ython)/

You can also specify repetition within patterns. /ab+c/ matches a string containing an a
followed by one or more b’s, followed by a c. Change the plus to an asterisk, and /ab*c/
creates a regular expression that matches one a, zero or more b’s, and one c.

You can also match one of a group of characters within a pattern. Some common examples
are character classes such as \s, which matches a whitespace character (space, tab, newline,
and so on); \d, which matches any digit; and \w, which matches any character that may
appear in a typical word. A dot (.) matches (almost) any character. A table of these character
classes appears on page 125.

We can put all this together to produce some useful regular expressions:

/\d\d:\d\d:\d\d/ # a time such as 12:34:56

/Perl.«Python/ # Perl, zero or more other chars, then Python
/Perl Python/ # Perl, a space, and Python

/Perl =Python/ # Perl, zero or more spaces, and Python
/Perl +Python/ # Perl, one or more spaces, and Python
/Perl\s+Python/ # Perl, whitespace characters, then Python

/Ruby (Perl|Python)/ # Ruby, a space, and either Perl or Python

Report erratum


http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=45

BLOCKS AND ITERATORS

Once you have created a pattern, it seems a shame not to use it. The match operator =~ can
be used to match a string against a regular expression. If the pattern is found in the string,
=~ returns its starting position; otherwise, it returns nil. This means you can use regular
expressions as the condition in if and while statements. For example, the following code
fragment writes a message if a string contains the text Perl or Python:

if line =~ /Perl|Python/
puts "Scripting language mentioned: #{line}"
end

The part of a string matched by a regular expression can be replaced with different text
using one of Ruby’s substitution methods:

line.sub(/Perl/, 'Ruby') # replace first 'Perl' with 'Ruby’
line.gsub(/Python/, 'Ruby') # replace every 'Python' with 'Ruby’

You can replace every occurrence of Perl and Python with Ruby using this:
line.gsub(/Perl|Python/, 'Ruby')

We’ll have a lot more to say about regular expressions as we go through the book.

Blocks and Iterators

This section briefly describes one of Ruby’s particular strengths. We’re about to look at
code blocks, which are chunks of code you can associate with method invocations, almost
as if they were parameters. This is an incredibly powerful feature. One of our reviewers
commented at this point: “This is pretty interesting and important, so if you weren’t paying
attention before, you should probably start now.” We’d have to agree.

You can use code blocks to implement callbacks (but they’re simpler than Java’s anonymous
inner classes), to pass around chunks of code (but they’re more flexible than C’s function
pointers), and to implement iterators.

Code blocks are just chunks of code between braces or between do. ..end. This is a code
block:

{ puts "Hello" }
So is this:

do
club.enroll(person)
person.socialize
end

Why are there two kinds of delimiter? It’s partly because sometimes one feels more natural
to write than another. It’s partly too because they have different precedences: the braces
bind more tightly than the do/end pairs. In this book, we try to follow what is becoming a
Ruby standard and use braces for single-line blocks and do/end for multiline blocks.

All you can do with a block is associate it with a call to a method. You do this by putting
the start of the block at the end of the source line containing the method call.

Report erratum


http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=46

BLOCKS AND ITERATORS

For example, in the following code, the block containing puts "Hi" is associated with the call
to the method greet (which we don’t show):

greet { puts "Hi" }
If the method has parameters, they appear before the block:
verbose_greet("Dave", "loyal customer") { puts "Hi" }

A method can then invoke an associated block one or more times using the Ruby yield
statement. You can think of yield as being something like a method call that invokes the
block associated with the call to the method containing the yield.

The following example shows this in action. We define a method that calls yield twice. We
then call this method, putting a block on the same line, after the call (and after any arguments
to the method).

Download samples/intro_41.rb

def call_block
puts "Start of method"
yield
yield
puts "End of method"
end

call_block { puts "In the block" }
produces:

Start of method
In the block
In the block
End of method

The code in the block (puts "In the block") is executed twice, once for each call to yield.

You can provide arguments to the call to yield, and they will be passed to the block. Within
the block, you list the names of the parameters to receive these arguments between vertical
bars (| params... |). The following example shows a method calling its associated block
twice, passing the block two arguments each time:

Download samples/intro_42.rb

def who_says_what
yield("Dave", "hello")
yield("Andy", "goodbye")
end
who_says_what {|person, phrase| puts "#{person} says #{phrase}"}

produces:

Dave says hello
Andy says goodbye

3. Some people like to think of the association of a block with a method as a kind of argument passing. This
works on one level, but it isn’t really the whole story. You may be better off thinking of the block and the method as
coroutines, which transfer control back and forth between themselves.

Report erratum


http://media.pragprog.com/titles/ruby3/code/samples/intro_41.rb
http://media.pragprog.com/titles/ruby3/code/samples/intro_42.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=47

READING AND 'RITING

Code blocks are used throughout the Ruby library to implement iterators, which are meth-
ods that return successive elements from some kind of collection, such as an array:

animals = %w( ant bee cat dog elk ) # create an array
animals.each {|animal| puts animal } # iterate over the contents

produces:

ant
bee
cat
dog
elk

Many of the looping constructs that are built into languages such as C and Java are simply
method calls in Ruby, with the methods invoking the associated block zero or more times:

Download samples/intro_44.rb

[ 'cat', 'dog', 'horse' ].each {|name| print name, " " }
5.times { print "=" }
3.upto(6) {|i| print i }
('a'..'e").each {|char| print char }
produces:

cat dog horse **%xx3456abcde

Here we ask an array to call the block once for each of its elements. Then, object 5 calls a
block five times. Rather than use for loops, in Ruby we can ask the number 3 to call a block,
passing in successive values until it reaches 6. Finally, the range of characters from a to e
invokes a block using the method each.

Reading and ’Riting

Ruby comes with a comprehensive I/O library. However, in most of the examples in this
book, we’ll stick to a few simple methods. We’ve already come across two methods that do
output: puts writes its arguments with a newline after each; print also writes its arguments
but with no newline. Both can be used to write to any I/O object, but by default they write
to standard output.

Another output method we use a lot is printf, which prints its arguments under the control
of a format string (just like printf in C or Perl):

printf("Number: %5.2f,\nString: %s\n", 1.23, "hello")
produces:

Number: 1.23,

String: hello

In this example, the format string "Number: %5.2f,\nString: %s\n" tells printf to substitute in
a floating-point number (with a minimum of five characters, two after the decimal point)
and a string. Notice the newlines (\n) embedded in the string; each moves the output onto
the next line.

Report erratum


http://media.pragprog.com/titles/ruby3/code/samples/intro_44.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=48

COMMAND-LINE ARGUMENTS

You have many ways to read input into your program. Probably the most traditional is to
use the routine gets, which returns the next line from your program’s standard input stream:

line = gets
print line

Because gets returns nil when it reaches the end of input, you can use its return value in
a loop condition. Notice that here the condition to the while is an assignment: we store
whatever gets returns into the variable line and then test to see whether that returned value
was nil or false before continuing:

while line = gets
print line
end

Command-Line Arguments

When you run a Ruby program from the command line, you can pass in arguments. These
are accessible in two different ways.

First, the array ARGV contains each of the arguments passed to the running program. Create
a file called cmd_line.rb that contains the following:

puts "You gave #{ARGV.size} arguments"
p ARGV

When we run it with arguments, we can see that they get passed in:

$ ruby cmd_line.rb ant bee cat dog

produces:

You gave 4 arguments
["ant", "bee", "cat", "dog"]

Often, the arguments to a program are the names of files that you want to process. In this
case, you can use a second technique: the variable ARGF is a special kind of I/O object that
acts like all the contents of all the files whose names are passed on the command line (or
standard input if you don’t pass any filenames). We’ll look at that some more on page 342.

Onward and Upward

That’s it. We’ve finished our lightning-fast tour of some of the basic features of Ruby. We
took a look at objects, methods, strings, containers, and regular expressions; saw some sim-
ple control structures; and looked at some rather nifty iterators. We hope this chapter has
given you enough ammunition to be able to attack the rest of this book.

Time to move on and move up—up to a higher level. Next, we’ll be looking at classes and
objects, things that are at the same time both the highest-level constructs in Ruby and the
essential underpinnings of the entire language.

Report erratum


http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=49

Chapter 3

Classes, Objects,
and Variables

From the examples we’ve shown so far, you may be wondering about our earlier assertion
that Ruby is an object-oriented language. Well, this chapter is where we justify that claim.
We’re going to be looking at how you create classes and objects in Ruby and at some of the
ways in which Ruby is more powerful than most object-oriented languages.

As we saw back on page 35, everything we manipulate in Ruby is an object. And every
object in Ruby was generated either directly or indirectly from a class. In this chapter, we’ll
look in more depth at creating and manipulating those classes.

Let’s give ourselves a simple problem to solve. Let’s say that we’re running a secondhand
bookstore. Every week, we do stock control. A gang of clerks uses portable bar-code scan-
ners to record every book on our shelves. Each scanner generates a simple comma-separated
value (CSV) file containing one row for each book scanned. The row contains (among other
things) the book’s ISBN and price. An extract from one of these files looks something like
this:

"Date","ISBN", "Amount"

"2008-04-12","978-1-9343561-0-4",39.45
"2008-04-13","978-1-9343561-6-6",45.67
"2008-04-14","978-1-9343560-7-4",36.95

Our job is to take all the CSV files and work out how many of each title we have, as well as
the total list price of the books in stock.

Whenever you’re designing OO systems, a good first step is to identify the things you're
dealing with. Typically each type of thing becomes a class in your final program, and the
things themselves are instances of these classes.

It seems pretty clear that we’ll need something to represent each data reading captured by
the scanners. Each instance of this will represent a particular row of data, and the collection
of all of these objects will represent all the data we’ve captured.

Report erratum


http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=50

Let’s call this class BookInStock. (Remember, class names start with an uppercase letter,
and method names normally start with a lowercase letter.)

class BookInStock
end

As we saw in the previous chapter, we can create new instances of this class using new:

a_book = BookInStock.new
another_book = BookInStock.new

After this code runs, we’d have two distinct objects, both of class BookInStock. But, apart
from the fact that they have different identities, these two objects are otherwise the same—
there’s nothing to distinguish one from the other. And, what’s worse, these objects actually
don’t hold any of the information we need them to hold.

The best way to fix this is to provide the objects with an initialize method. This lets us set the
state of each object as it is constructed. We store this state in instance variables inside the
object. (Remember instance variables? They’re the ones that start with an @ sign.) Because
each object in Ruby has its own distinct set of instance variables, each object can have its
own unique state.

So, here’s our updated class definition:

Download samples/tutclasses_4.rb

class BookInStock
def initialize(isbn, price)

@isbn = isbn
@price = Float(price)
end
end

initialize is a special method in Ruby programs. When you call BookInStock.new to create a
new object, Ruby allocates some memory to hold an uninitialized object and then calls that
object’s initialize method, passing in any parameters that were passed to new. This gives you
a chance to write code that sets up your object’s state.

For class BookInStock, the initialize method takes two parameters. These parameters act just
like local variables within the method, so they follow the local variable naming convention
of starting with a lowercase letter. But, as local variables, they would just evaporate once
the initialize method returns, so we need to transfer them into instance variables. This is very
common behavior in an initialize method—the intent is to have our object set up and usable
by the time initialize returns.

This method also illustrates something that often trips up newcomers to Ruby. Notice how
we say @isbn = isbn. It’s easy to imagine that the two variables here, @isbn and isbn, are
somehow related—it looks like they have the same name. But they don’t. The former is an
instance variable, and the “at” sign is actually part of its name.

Report erratum


http://media.pragprog.com/titles/ruby3/code/samples/tutclasses_4.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=51

Finally, this code illustrates a simple piece of validation. The Float method takes its argu-
ment and converts it to a floating-point number,! terminating the program with an error
if that conversion fails. (Later in the book we’ll see how to handle these exceptional sit-
uations.) What we’re doing here is saying that we want to accept any object for the price
parameter as long as that parameter can be converted to a float. We can pass in a float, an
integer, and even a string containing the representation of a float, and it will work. Let’s try
this now. We’ll create three objects, each with different initial state. The p method prints out
an internal representation of an object. Using it, we can see that in each case our parameters
got transferred into the object’s state, ending up as instance variables:

Download samples/tutclasses_5.rb

class BookInStock
def initialize(isbn, price)

@isbn = isbn
@price = Float(price)
end
end
bl = BookInStock.new("isbnl", 3)
p bl
b2 = BookInStock.new("isbn2", 3.14)
p b2
b3 = BookInStock.new("isbn3", "5.67")
p b3
produces:

#<BookInStock:0x0a37f0 @isbn="isbnl", @price=3.0>
#<BookInStock:0x0a3584 @isbn="isbn2", @price=3.14>
#<BookInStock:0x0a3354 @isbn="isbn3", @price=5.67>

Why did we use p to write out our objects, rather than puts? Well, let’s repeat the code using
puts:

Download samples/tutclasses_6.rb

bl = BookInStock.new("isbnl", 3)
puts bl

b2 = BookInStock.new("isbn2", 3.14)
puts b2

b3 = BookInStock.new("isbn3", 5.67)
puts b3

produces:

#<BookInStock:0x0a38cc>
#<BookInStock:0x0a3764>
#<BookInStock:0x0a36d8>

1. Yes, we know. We shouldn’t be holding prices in inexact old floats. Ruby has classes that hold fixed-point
values exactly, but we want to look at classes, not arithmetic, in this section.

Report erratum


http://media.pragprog.com/titles/ruby3/code/samples/tutclasses_5.rb
http://media.pragprog.com/titles/ruby3/code/samples/tutclasses_6.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=52

OBJECTS AND ATTRIBUTES

Remember, puts simply writes strings to your program’s standard output. When you pass it
an object based on a class you wrote, it doesn’t really know what to do with it, so it uses a
very simple expedient: it writes the name of the object’s class, followed by a colon and the
object’s unique identifier (a hexadecimal number). It puts the whole lot inside #<...>.

Our experience tells us that during development we’ll be printing out the contents of a
BookInStock object many times, and the default formatting leaves something to be desired.
Fortunately, Ruby has a standard message, to_s, that it sends to any object it wants to render
as a string. So, when we pass one of our BookInStock objects to puts, the puts method calls
to_s in that object to get its string representation. So, let’s override the default implementa-
tion of to_s to give us a better rendering of our objects:

Download samples/tutclasses_7.rb

class BookInStock
def initialize(isbn, price)

@isbn = isbn
@price = Float(price)
end
def to_s
"ISBN: #{@isbn}, price: #{@price}"
end
end
bl = BookInStock.new("isbnl", 3)
puts bl
b2 = BookInStock.new("isbn2", 3.14)
puts b2
b3 = BookInStock.new("isbn3", "5.67")
puts b3
produces:

ISBN: isbnl, price: 3.0
ISBN: isbn2, price: 3.14
ISBN: isbn3, price: 5.67

There’s something going on here that’s both trivial and profound. See how the values we
set into the instance variables @isbn and @price in the initialize method are subsequently
available in the to_s method? That shows how instance variables work—they’re stored with
each object and available to all the instance methods of those objects.

Objects and Attributes

The BookInStock objects we’ve created so far have an internal state (the ISBN and price).
That state is private to those objects—no other object can access an object’s instance vari-
ables. In general, this is a Good Thing. It means that the object is solely responsible for
maintaining its own consistency.

However, an object that is totally secretive is pretty useless—you can create it, but then you
can’t do anything with it. You’ll normally define methods that let you access and manipulate
the state of an object, allowing the outside world to interact with the object. These externally
visible facets of an object are called its attributes.

Report erratum


http://media.pragprog.com/titles/ruby3/code/samples/tutclasses_7.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=53

OBJECTS AND ATTRIBUTES

For our BookInStock objects, the first thing we may need is the ability to find out the ISBN
and price (so we can count each distinct book and perform price calculations). One way of
doing that is to write accessor methods:

Download samples/tutclasses_8.rb

class BookInStock
def initialize(isbn, price)
@isbn = isbn
@price = Float(price)
end
def isbn
@isbn
end
def price
@price
end
# ..
end
book = BookInStock.new("isbnl", 12.34)
puts "ISBN = #{book.isbn}"
puts "Price = #{book.price}"

produces:

ISBN
Price

isbnl
12.34

Here we’ve defined two accessor methods to return the values of the two instance variables.
The method isbn, for example, returns the value of the instance variable @isbn (because the
last thing executed in the method is the expression that simply evaluates the @isbn variable).

Because writing accessor methods is such a common idiom, Ruby provides a convenient
shortcut. attr_reader creates these attribute reader methods for you:

Download samples/tutclasses_9.rb

class BookInStock
attr_reader :isbn, :price
def initialize(isbn, price)

@isbn = isbn
@price = Float(price)
end
# ..
end
book = BookInStock.new("isbnl", 12.34)
puts "ISBN = #{book.isbn}"
puts "Price = #{book.price}"
produces:
ISBN = isbnl

Price = 12.34

This is the first time we’ve used symbols in this chapter. As we discussed back on page 42,
symbols are just a convenient way of referencing a name. In this code, you can think of

Report erratum


http://media.pragprog.com/titles/ruby3/code/samples/tutclasses_8.rb
http://media.pragprog.com/titles/ruby3/code/samples/tutclasses_9.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=54

OBJECTS AND ATTRIBUTES

sisbn as meaning the name isbn and plain isbn as meaning the value of the variable. In
this example, we named the accessor methods isbn and price. The corresponding instance
variables are @isbn and @price. These accessor methods are identical to the ones we wrote
by hand earlier.

There’s a common misconception, particularly among people who come from languages
such as Java and C#, that the attr_reader declaration somehow declares instance variables.
It doesn’t. It creates the accessor methods, but the variables themselves don’t need to be
declared—they just pop into existence when you use them. Ruby completely decouples
instance variables and accessor methods, as we’ll see in the section Virtual Attributes on the
next page.

Writable Attributes

Sometimes you need to be able to set an attribute from outside the object. For example, let’s
assume that we sometimes have to discount the price of some titles after reading in the raw
scan data.

In languages such as C# and Java, you’d do this with setter functions:

class JavaBookInStock { // Java code
private double _price;
public double getPrice() {
return _price;

}
public void setPrice(double newPrice) {
_price = newPrice;

}

}
b = new JavaBookInStock(....);
b.setPrice(calculate_discount(b.getPrice());

In Ruby, the attributes of an object can be accessed as if they were any other variable. We
saw this earlier with phrases such as book.isbn. So, it seems natural to be able to assign to
these variables when you want to set the value of an attribute. It turns out you do that by
creating a Ruby method whose name ends with an equals sign. These methods can be used
as the target of assignments:

Download samples/tutclasses_11.rb

class BookInStock
attr_reader :isbn, :price
def initialize(isbn, price)

@isbn = isbn
@price = Float(price)
end

def price=(new_price)
@price = new_price
end
# ...
end

Report erratum


http://media.pragprog.com/titles/ruby3/code/samples/tutclasses_11.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=55

OBJECTS AND ATTRIBUTES

book = BookInStock.new("isbnl", 33.80)

puts "ISBN = #{book.isbn}"
puts "Price = #{book.price}"
book.price = book.price * 0.75 # discount price

puts "New price = #{book.price}"

produces:
ISBN = isbnl
Price = 33.8

New price = 25.35

The assignment book.price = book.price * 0.75 invokes the method price= in the book object,
passing it the discounted price as an argument. If you create a method whose name ends with
an equals sign, that name can appear on the left side of an assignment.

Again, Ruby provides a shortcut for creating these simple attribute-setting methods. If you
want a write-only accessor, you can use the form attr_writer, but that’s fairly rare. You’re
far more likely to want both a reader and a writer for a given attribute, so you’ll use the
handy-dandy attr_accessor method:

Download samples/tutclasses_12.rb

class BookInStock

attr_reader :isbn
attr_accessor :price

def initialize(isbn, price)

@isbn = isbn
@price = Float(price)
end
# ...
end
book = BookInStock.new("isbnl", 33.80)
puts "ISBN = #{book.isbn}"
puts "Price = #{book.price}"
book.price = book.price * 0.75 # discount price

puts "New price = #{book.price}"

produces:
ISBN = isbnl
Price = 33.8
New price = 25.35

Virtual Attributes

These attribute-accessing methods do not have to be just simple wrappers around an object’s
instance variables. For example, you may want to access the price as an exact number of
cents, rather than as a floating-point number of dollars.”

2. We multiply the floating-point price times 100 to get the price in cents but then add 0.5 before converting
to an integer. Why? Because floating-point numbers don’t always have an exact internal representation. When we

Report erratum


http://media.pragprog.com/titles/ruby3/code/samples/tutclasses_12.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=56

OBJECTS AND ATTRIBUTES

Download samples/tutclasses_13.rb

class BookInStock

attr_reader :isbn
attr_accessor :price

def initialize(isbn, price)

@isbn = isbn
@price = Float(price)
end

def price_in_cents
Integer(price=100 + 0.5)

end

# ...
end
book = BookInStock.new("isbnl", 33.80)
puts "Price = #{book.price}"
puts "Price in cents = #{book.price_in_cents}"

produces:

Price = 33.8
Price in cents 3380

We can take this even further and allow people to assign to our virtual attribute, mapping
the value to the instance variable internally:

Download samples/tutclasses_14.rb

class BookInStock

attr_reader :isbn
attr_accessor :price

def initialize(isbn, price)

@isbn = isbn
@price = Float(price)
end

def price_in_cents
Integer(price=100 + 0.5)

end

def price_in_cents=(cents)
@price = cents / 100.0

end

# ...
end
book = BookInStock.new("isbnl", 33.80)
puts "Price = #{book.price}"

puts "Price in cents = #{book.price_in_cents}"
book.price_in_cents = 1234

multiply 33.8 times 100, we get 3379.99999999999954525265. The Integer method would truncate this to 3379.
Adding 0.5 before calling Integer rounds up the floating-point value, ensuring we get the best integer representation.
This is a good example of why you want to use BigDecimal, not Float, in financial calculations.

Report erratum


http://media.pragprog.com/titles/ruby3/code/samples/tutclasses_13.rb
http://media.pragprog.com/titles/ruby3/code/samples/tutclasses_14.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=57

CLASSES WORKING WITH OTHER CLASSES

puts "Price = #{book.price}"

puts "Price in cents = #{book.price_in_cents}"
produces:

Price = 33.8

Price in cents = 3380

Price = 12.34

Price in cents = 1234

Here we’ve used attribute methods to create a virtual instance variable. To the outside world,
price_in_cents seems to be an attribute like any other. Internally, though, it has no corre-
sponding instance variable.

This is more than a curiosity. In his landmark book Object-Oriented Software Construc-
tion [Mey97], Bertrand Meyer calls this the Uniform Access Principle. By hiding the dif-
ference between instance variables and calculated values, you are shielding the rest of the
world from the implementation of your class. You’re free to change how things work in the
future without impacting the millions of lines of code that use your class. This is a big win.

Attributes, Instance Variables, and Methods

This description of attributes may leave you thinking that they’re nothing more than methods
—why’d we need to invent a fancy name for them? In a way, that’s absolutely right. An
attribute is just a method. Sometimes an attribute simply returns the value of an instance
variable. Sometimes an attribute returns the result of a calculation. And sometimes those
funky methods with equals signs at the end of their names are used to update the state of
an object. So, the question is, where do attributes stop and regular methods begin? What
makes something an attribute and not just a plain old method? Ultimately, that’s one of
those “angels on a pinhead” questions. Here’s a personal take.

When you design a class, you decide what internal state it has and also decide how that
state is to appear on the outside (to users of your class). The internal state is held in instance
variables. The external state is exposed through methods we’re calling attributes. And the
other actions your class can perform are just regular methods. It really isn’t a crucially
important distinction, but by calling the external state of an object its attributes, you're
helping clue people in to how they should view the class you’ve written.

Classes Working with Other Classes

Our original challenge was to read in data from multiple CSV files and produce various
simple reports. So far, all we have is BookInStock, a class that represents the data for one
book.

During OO design, you identify external things and make them classes in your code. But
there’s another source of classes in your designs. There are the classes that correspond to
things inside your code itself. For example, we know that the program we’re writing will
need to consolidate and summarize CSV data feeds. But that’s a very passive statement.
Let’s turn it into a design by asking ourselves what does the summarizing and consolidating.

Report erratum


http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=58

CLASSES WORKING WITH OTHER CLASSES

And the answer (in our case) is a CSV reader. Let’s make it into a class. Here it is in skeletal
form:

class CsvReader
def initialize
# ...
end

def read_in_csv_data(csv_file_name)
# ...

end

def total_value_in_stock
# ...

end

def number_of_each_isbn
# ...

end

end

We’d call it using something like this:

reader = CsvReader.new
reader.read_in_csv_data("filel.csv")
reader.read_in_csv_data("file2.csv")

puts "Total value in stock = #{reader.total_value_in_stock}"

We need to be able to handle multiple CSV files, so our reader object needs to accumulate
the values from each CSV file it is fed. We’ll do that by keeping an array of values in
an instance variable. And how shall we represent each book’s data? Well, we just finished
writing the BookInStock class, so that problem is solved. The only other question is how we
parse data in a CSV file. Fortunately, Ruby comes with a good CSV library (described on
page 739). Given a CSV file with a header line, we can iterate over the remaining rows and
extract values by name:

class CsvReader
def initialize
@books_in_stock = []
end
def read_in_csv_data(csv_file_name)
CSV.foreach(csv_file_name, headers: true) do |row]|
@books_in_stock << BookInStock.new(row["ISBN"], row["Amount"])
end
end
end

Just because you’re probably wondering what’s going on, let’s dissect that read_in_csv_data
method. On the first line, we tell the CSV library to open the file with the given name. The
headers: true option tells the library to parse the first line of the file as the names of the
columns.

Report erratum


http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=59

CLASSES WORKING WITH OTHER CLASSES

The library then reads the rest of the file, passing each row in turn to the block (the code
between do and end).3 Inside the block, we extract the data from the ISBN and Amount
columns and use that data to create a new BookInStock object. We then append that object
to an instance variable called @books_in_stock. And just where does that variable come
from? It’s an array that we created in the initialize method.

Again, this is the pattern you want to aim for. Your initialize method sets up an environment
for your object, leaving it in a usable state. Other methods then use that state.

So, let’s turn this from a code fragment into a working program. We’re going to organize
our source into three files. The first, book_in_stock.rb, will contain the definition of the class
BookInStock. The second, csv_reader.rb, is the source for the CsvReader class. Finally, a
third file, stock_stats.rb, is the main driver program.

Here’s book_in_stock.rb:

Download samples/book_in_stock.rb

class BookInStock
attr_reader :isbn, :price
def initialize(isbn, price)

@isbn = isbn
@price = Float(price)
end
end

Here’s the csv_reader.rb file. The CsvReader class has two external dependencies: it needs
the standard CSV library, and it needs the BookInStock class that’s defined in the file
book_in_stock.rb. Ruby has a couple of helper methods that let us load external files. In
this file we use require to load in the Ruby CSV library and require_relative to load in the
book_in_stock class we wrote. (We use require_relative for this because the location of the
file we’re loading is relative to the file we’re loading it from—they’re both in the same
directory.)

Download samples/csv_reader.rb

require 'csv'
require_relative 'book_in_stock'
class CsvReader
def initialize
@books_in_stock = []
end
def read_in_csv_data(csv_file_name)
CSV.foreach(csv_file_name, headers: true) do |row|
@books_in_stock << BookInStock.new(row["ISBN"], row["Amount"])
end
end

3. If you encounter an error along the lines of ‘Float: can’t convert nil into Float (TypeError) when you run this
code, you’ve likely got extra spaces at the end of the header line in your CSV data file. The CSV library is pretty
strict about the formats it accepts.

Report erratum


http://media.pragprog.com/titles/ruby3/code/samples/book_in_stock.rb
http://media.pragprog.com/titles/ruby3/code/samples/csv_reader.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=60

ACCESS CONTROL

# later we'll see how to use inject to sum a collection
def total_value_in_stock

sum = 0.0

@books_in_stock.each {|book| sum += book.price}

sum
end

def number_of_each_isbn
# ...
end

end
And finally, here’s our main program, in the file stock_stats.rb:
Download samples/stock_stats.rb

require_relative 'csv_reader'
reader = CsvReader.new
ARGV.each do |csv_file_name]
STDERR.puts "Processing #{csv_file_name}"
reader.read_in_csv_data(csv_file_name)
end

puts "Total value = #{reader.total_value_in_stock}"

Again, this file uses require_relative to bring in the library it needs (in this case, just the
csv_reader.rb file). It uses the ARGV variable to access the program’s command-line argu-
ments, loading CSV data for each.

We can run this program using the simple CSV data file we showed on page 50:

$ ruby stock_stats.rb data.csv
produces:

Processing data.csv
Total value = 122.07

Do we need three source files for this? No. In fact, most Ruby developers would probably
start off by sticking all this code into a single file—it would contain both class definitions
as well as the driver code. But as your programs grow (and almost all programs grow over
time), you’ll find that this starts to get cuambersome. You’ll also find it harder to write auto-
mated tests against the code if it is in a monolithic chunk. Finally, you won’t be able to reuse
classes if they’re all bundled into the final program.

Anyway, let’s get back to our discussion of classes.

Access Control

When designing a class interface, it’s important to consider just how much of your class
you’ll be exposing to the outside world. Allow too much access into your class, and you
risk increasing the coupling in your application—users of your class will be tempted to rely
on details of your class’s implementation, rather than on its logical interface. The good news

Report erratum


http://media.pragprog.com/titles/ruby3/code/samples/stock_stats.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=61

ACCESS CONTROL

is that the only easy way to change an object’s state in Ruby is by calling one of its methods.
Control access to the methods, and you’ve controlled access to the object. A good rule of
thumb is never to expose methods that could leave an object in an invalid state.

Ruby gives you three levels of protection:

* Public methods can be called by anyone—no access control is enforced. Methods are
public by default (except for initialize, which is always private).

* Protected methods can be invoked only by objects of the defining class and its sub-
classes. Access is kept within the family.

* Private methods cannot be called with an explicit receiver—the receiver is always the
current object, also known as self. This means that private methods can be called only
in the context of the current object; you can’t invoke another object’s private methods.

The difference between “protected” and “private” is fairly subtle and is different in Ruby
than in most common OO languages. If a method is protected, it may be called by any
instance of the defining class or its subclasses. If a method is private, it may be called
only within the context of the calling object—it is never possible to access another object’s
private methods directly, even if the object is of the same class as the caller.

Ruby differs from other OO languages in another important way. Access control is deter-
mined dynamically, as the program runs, not statically. You will get an access violation only
when the code attempts to execute the restricted method.

Specifying Access Control

You specify access levels to methods within class or module definitions using one or more of
the three functions public, protected, and private. You can use each function in two different
ways.

If used with no arguments, the three functions set the default access control of subsequently
defined methods. This is probably familiar behavior if you’re a C++ or Java programmer,
where you’d use keywords such as public to achieve the same effect:

class MyClass
def methodl # default is 'public'

#...
end
protected # subsequent methods will be 'protected'
def method2 # will be 'protected'
#...
end
private # subsequent methods will be 'private'
def method3 # will be 'private'
#...
end
public # subsequent methods will be 'public'
def method4 # so this will be 'public'
#...
end

end

Report erratum


http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=62

ACCESS CONTROL

Alternatively, you can set access levels of named methods by listing them as arguments to
the access control functions:

Download samples/tutclasses_23.rb

class MyClass
def methodl

end
# ... and so on
public :methodl, :method4

protected :method2
private :method3
end

It’s time for some examples. Perhaps we’re modeling an accounting system where every
debit has a corresponding credit. Because we want to ensure that no one can break this rule,
we’ll make the methods that do the debits and credits private, and we’ll define our external
interface in terms of transactions.

Download samples/tutclasses_24.rb

class Account
attr_accessor :balance
def initialize(balance)
@balance = balance
end
end
class Transaction
def initialize(account_a, account_b)
@account_a = account_a
@account_b = account_b

end
private
def debit(account, amount)
account.balance -= amount
end

def credit(account, amount)
account.balance += amount
end
public
#...
def transfer(amount)
debit(@account_a, amount)
credit(@account_b, amount)
end
#...
end
savings = Account.new(100)
checking = Account.new(200)
trans = Transaction.new(checking, savings)
trans.transfer(50)

Report erratum


http://media.pragprog.com/titles/ruby3/code/samples/tutclasses_23.rb
http://media.pragprog.com/titles/ruby3/code/samples/tutclasses_24.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=63

VARIABLES

Protected access is used when objects need to access the internal state of other objects of
the same class. For example, we may want to allow individual Account objects to compare
their cleared balances but to hide those balances from the rest of the world (perhaps because
we present them in a different form):

Download samples/tutclasses_25.rb

class Account
attr_reader :cleared_balance # accessor method 'cleared_balance'

protected :cleared_balance # and make it protected

def greater_balance_than(other)
return @cleared_balance > other.cleared_balance
end
end

Because cleared_balance is protected, it’s available only within Account objects.

Variables

Now that we’ve gone to the trouble to create all these objects, let’s make sure we don’t
lose them. Variables are used to keep track of objects; each variable holds a reference to an
object.

Let’s confirm this with some code:

Download samples/tutclasses_26.rb

person = "Tim"

puts "The object in 'person' is a #{person.class}"
puts "The object has an id of #{person.object_id}"
puts "and a value of '#{person}'"

produces:

The object in 'person' is a String
The object has an id of 338010
and a value of 'Tim'

On the first line, Ruby creates a new String object with the value Tim. A reference to this
object is placed in the local variable person. A quick check shows that the variable has
indeed taken on the personality of a string, with an object ID, a class, and a value.

So, is a variable an object? In Ruby, the answer is “no.” A variable is simply a reference to
an object. Objects float around in a big pool somewhere (the heap, most of the time) and are
pointed to by variables. Let’s make the example slightly more complicated:

Download samples/tutclasses_27.rb

personl = "Tim"
person2 = personl

personl[0] = 'J"'
puts "personl is #{personl}"
puts "person2 is #{person2}"

Report erratum


http://media.pragprog.com/titles/ruby3/code/samples/tutclasses_25.rb
http://media.pragprog.com/titles/ruby3/code/samples/tutclasses_26.rb
http://media.pragprog.com/titles/ruby3/code/samples/tutclasses_27.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=64

VARIABLES

produces:

personl is Jim
person2 is Jim

What happened here? We changed the first character of personi, but both person1 and
person2 changed from Tim to Jim.

It all comes back to the fact that variables hold references to objects, not the objects them-
selves. The assignment of personi to person2 doesn’t create any new objects; it simply
copies personi’s object reference to person2 so that both person1 and person2 refer to the
same object. We show this in Figure 3.1 on the following page.

Assignment aliases objects, potentially giving you multiple variables that reference the
same object. But can’t this cause problems in your code? It can, but not as often as you’d
think (objects in Java, for example, work exactly the same way). For instance, in the exam-
ple in Figure 3.1, you could avoid aliasing by using the dup method of String, which creates
anew String object with identical contents:

Download samples/tutclasses_28.rb

personl = "Tim"

person2 = personl.dup
personl[0] = "J"

puts "personl is #{personl}"
puts "person2 is #{person2}"

produces:

personl is Jim
person2 is Tim

You can also prevent anyone from changing a particular object by freezing it. Attempt to
alter a frozen object, and Ruby will raise a RuntimeError exception:

Download samples/tutclasses_29.rb

personl = "Tim"
person2 = personl
personl.freeze # prevent modifications to the object
person2[0] = "J"
produces:

prog.rb:4:in "[]=': can't modify frozen string (RuntimeError)
from /tmp/prog.rb:4:in “<main>'

There’s more to say about classes and objects in Ruby. We still have to look at class methods
and at concepts such as mixins and inheritance. We’ll do that in Chapter 5 on page 91. But,
for now, take away the fact that everything you manipulate in Ruby is an object and the fact
that objects start life as instances of classes. And one of the most common things we do
with objects is create collections of them. But that’s the subject of our next chapter.

Report erratum


http://media.pragprog.com/titles/ruby3/code/samples/tutclasses_28.rb
http://media.pragprog.com/titles/ruby3/code/samples/tutclasses_29.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=65

-
Figure 3.1. Variables Hold Object References

personl = "Tim"

person2 = personl

personl[0] = "J"

personl

|-
personl

|-
person2
personl

|-
person2




Chapter 4

Containers, Blocks,
and Iterators

Most real programs deal with collections of data: the people in a course, the songs in your
playlist, the books in the store. Ruby comes with two built-in classes to handle these col-
lections: arrays and hashes.' Mastery of these two classes is key to being an effective Ruby
programmer. This mastery may take some time, because both classes have large interfaces.

But it isn’t just these classes that give Ruby its power when dealing with collections. Ruby
also has a block syntax that lets you encapsulate chunks of code. When paired with col-
lections, these blocks become powerful iterator constructs. In this chapter, we’ll look at the
two collection classes as well as blocks and iterators.

Arrays

The class Array holds a collection of object references. Each object reference occupies a
position in the array, identified by a non-negative integer index.

You can create arrays by using literals or by explicitly creating an Array object. A literal
array is simply a list of objects between square brackets. (In the code examples that follow,
we’re often going to show the value of expressions such as a[0] in a comment at the end of
the line. If you simply typed this fragment of code into a file and executed it using Ruby,
you’d see no output—you’d need to add something like a call to puts to have the values
written to the console.)

a = [ 3.14159, "pie", 99 ]
a.class # => Array

a.length # => 3
al0] # => 3.14159
a[1l] # => "pie"
a[2] # => 99
a[3] # => nil
1. Some languages call hashes associative arrays or dictionaries.

Report erratum


http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=67

b = Array.new

b.class # => Array

b.length # => 0

b[0] = "second"

b[1] = "array"

b # => ["second", "array"]

Arrays are indexed using the [] operator. As with most Ruby operators, this is actually a
method (an instance method of class Array) and hence can be overridden in subclasses. As
the example shows, array indices start at zero. Index an array with a non-negative integer,
and it returns the object at that position or returns nil if nothing is there. Index an array with
a negative integer, and it counts from the end. This indexing scheme is illustrated in more
detail in Figure 4.1 on the following page.

a=1[1, 3,5,7,9]1]
al[-1] #=> 9
al[-2] # = 7
a[-99] # => nil

You can also index arrays with a pair of numbers, [start, count]. This returns a new array
consisting of references to count objects starting at position start:

a=[1,3,5 7,91

al1, 31 #=> 1[3,5,7]
a[3, 11 # = [7]
a[-3, 2] # =[5, 7]

Finally, you can index arrays using ranges, in which start and end positions are separated by
two or three periods. The two-period form includes the end position, and the three-period
form does not:

a=1[1,3,5, 7,91
all..3] #=> [3, 5, 7]
all...3] #=> [3, 5]
al3..3] #=> [7]
a[-3..-1] # => [5, 7, 9]

The [] operator has a corresponding [ ]= operator, which lets you set elements in the array. If
used with a single integer index, the element at that position is replaced by whatever is on
the right side of the assignment. Any gaps that result will be filled with nil:

a=1[1,3,5,7,9]1]
a[l] = ’bat’

a[-3] = ’'cat’

a[31 =109, 81

a[6] = 99

(1, 3, 5, 7, 9]

[1, "bat", 5, 7, 9]

[1, "bat", "cat", 7, 9]

[1, "bat", "cat", [9, 8], 9]

[1, "bat", "cat", [9, 8], 9, nil, 99]

Ll

If the index to []= is two numbers (a start and a length) or a range, then those elements
in the original array are replaced by whatever is on the right side of the assignment. If the
length is zero, the right side is inserted into the array before the start position; no elements
are removed. If the right side is itself an array, its elements are used in the replacement. The
array size is automatically adjusted if the index selects a different number of elements than
are available on the right side of the assignment.

Report erratum


http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=68

(. )
Figure 4.1. How Arrays Are Indexed
Positive — 0 1 2 3 4 5 6 Negative
indices -7 —6 -5 —4 -3 -2 —1 <« indices
a=[ “ant’ | “bat’ | “cat’ [ “dog” | *elk’ | “fiy’ | “gnu”
a[2] — “cat”
a3l -
a[1..3] — | “bat” | “cat’ | “dog” |
a[1..3] — | “bat” | “cat’
al-3..-1] — [ el | “fy” | “gnu” |
al4.2] —
. J

a=[1,3,5, 7,91 — [1, 3,5, 7, 9]

a[2, 2] = ’cat’ — [1, 3, "cat", 9]

al[2, 0] = ’dog’ — [1, 3, "dog", "cat", 9]

a[1, 11 =019,8,7]1 — [1, 9, 8, 7, "dog", "cat", 9]
a[0..3] =[] —  ["dog", "cat", 9]

a[5..6] = 99, 98 — ["dog", "cat", 9, nil, nil, 99, 98]

Arrays have a large number of other useful methods. Using them, you can treat arrays as
stacks, sets, queues, dequeues, and FIFO queues.

For example, push and pop add and remove elements from the end of an array, so you can
use it as a stack:

stack = []
stack.push "red"
stack.push "green"
stack.push "blue"
p stack

puts stack.pop
puts stack.pop
puts stack.pop

p stack

produces:

["red", "green", "blue"]
blue

green

red

[1

Report erratum


http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=69

Similarly, unshift and shift add and remove elements from the head of an array. Combine
shift and push, and you have a first-in first-out (FIFO) queue:

queue = []
queue.push "red"
queue.push "green"
puts queue.shift
puts queue.shift

produces:

red
green

The first and last methods return the n entries at the head or end of an array without removing
them:

array = [ 1, 2, 3, 4, 5, 6, 7 ]
p array.first(4)
p array.last(4)

produces:
[17 2! 37 4]
[4, 5, 6, 71

A complete list of array methods starts on page 447. It is well worth firing up irb and playing
with them.

Hashes

Hashes (sometimes known as associative arrays, maps, or dictionaries) are similar to arrays
in that they are indexed collections of object references. However, although you index arrays
with integers, you can index a hash with objects of any type: symbols, strings, regular
expressions, and so on. When you store a value in a hash, you actually supply two objects—
the index, which is normally called the key, and the entry to be stored with that key. You can
subsequently retrieve the entry by indexing the hash with the same key value that you used
to store it.

The example that follows uses hash literals: a list of key value pairs between braces:

h = { 'dog' => 'canine', 'cat' => 'feline', 'donkey' => 'asinine' }

h.length # => 3
h['dog'] # => '"canine"

h['cow'] = 'bovine'

h[12] = 'dodecine'

h['cat'] = 99

h # => {"dog"=>"canine", "cat"=>99, "donkey"=>"asinine",

"cow"=>"bovine", 12=>"dodecine"}

In the previous example, the hash keys were strings. If instead we wanted them to be sym-
bols, we could write the hash literal using either the old syntax with => or the new key:
value syntax introduced in Ruby 1.9.

Report erratum


http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=70

h = { dog: 'canine', cat: 'feline', donkey: 'asinine' }
# same as...
h = { :dog => 'canine', :cat => 'feline', :donkey => 'asinine' }

Compared with arrays, hashes have one significant advantage: they can use any object as an

=2 / index. And, as of Ruby 1.9, you’ll find something that might be surprising: Ruby remembers
the order in which you add items to a hash. When you subsequently iterate over the entries,
Ruby will return them in that order.

You’ll find that hashes are one of the most commonly used data structures in Ruby. A full
list of the methods implemented by class Hash starts on page 533.

Word Frequency: Using Hashes and Arrays

Let’s round off this section with a simple program that calculates the number of times each
word occurs in some text. (So, for example, in this sentence the word the occurs two times.)

The problem breaks down into two parts. First, given some text as a string, return a list of
words. That sounds like an array. Then, build a count for each distinct word. That sounds
like a use for a hash—we can index it with the word and use the corresponding entry to keep
a count.

Let’s start with the method that splits a string into words:

def words_from_string(string)
string.downcase.scan(/[\w']+/)
end

This method uses two very useful String methods: downcase returns a lowercase version of
a string, and scan returns an array of substrings that match a given pattern. In this case, the
pattern is [\w’]+, which matches sequences containing “word characters” and single quotes.

We can play with this method. Notice how the result is an array:

p words_from_string("But I didn't inhale, he said (emphatically)")
produces:

["but", "i", "didn't", "inhale", "he", "said", "emphatically"]

Our next task is to calculate word frequencies. To do this, we’ll create a hash object indexed
by the words in our list. Each entry in this hash stores the number of times that word
occurred. Let’s say we already have read part of the list, and we have seen the word the
already. Then we’d have a hash that contained this:

{ ..., "the" =>1, ...}

If the variable next_word contained the word the, then incrementing the count is as simple
as this:

counts[next_word] += 1
We’d then end up with a hash containing the following:
{ ..., "the" =>2, ...}

Report erratum


http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=71

Our only problem is what to do when we encounter a word for the first time. We’ll try to
increment the entry for that word, but there won’t be one, so our program will fail. There are
a number of solutions to this. One is to check to see whether the entry exists before doing
the increment:

if counts.has_key?(next_word)
counts[next_word] += 1

else
counts[next_word] = 1

end

However, there’s a tidier way. If we create a hash object using Hash.new(0), the parameter
(0 in this case) will be used as the hash’s default value—it will be the value returned if
you look up a key that isn’t yet in the hash. Using that, we can write our count_frequency
method:

def count_frequency(word_list)
counts = Hash.new(0)
for word in word_list
counts[word] += 1
end
counts
end

p count_frequency(["sparky", "the", "cat", "sat", "on", "the", "mat"])
produces:

{"sparky"=>1, "the"=>2, "cat"=>1, "sat"=>1, "on"=>1, "mat"=>1}

One little job left. The hash containing the word frequencies is ordered based on the first
time it sees each word. It would be better to display the results based on the frequencies
of the words. We can do that using the hash’s sort_by method. When you use sort_by, you
give it a block that tells the sort what to use when making comparisons. In our case, we’ll
just use the count. The result of the sort is an array containing a set of two-element arrays,
each subarray corresponding to a key/entry pair in the original hash. This makes our whole
program:

Download samples/tutcontainers_21.rb

def words_from_string(string)
string.downcase.scan(/[\w']+/)
end
def count_frequency(word_list)
counts = Hash.new(0)
for word in word_list
counts[word] += 1

end
counts
end
raw_text = File.read("para.txt")
word_list = words_from_string(raw_text)
counts = count_frequency(word_list)
sorted = counts.sort_by {|word, count| count}

top_five = sorted.last(5)

Report erratum


http://media.pragprog.com/titles/ruby3/code/samples/tutcontainers_21.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=72

for i in 0...5 # (this is ugly code
word = top_five[i][0] # which we'll fix shortly)
count = top_five[i][1]
puts "#{word}: #{count}"

end

produces:

that: 2
sounds: 2
like: 2
the: 3

a: 6

At this point, a quick test may be in order. To do this, we’re going to use a testing framework
called Test::Unit that comes with the standard Ruby distributions. We won’t describe it fully
yet (we do that in the Unit Testing chapter starting on page 198). For now, we’ll just say that
the method assert_equal checks that its two parameters are equal, complaining bitterly if
they aren’t. We’ll use assertions to test our two methods, one method at a time. (That’s one
reason why we wrote them as separate methods—it makes them testable in isolation.)

Here are some tests for the word_from_string method:
Download samples/tutcontainers_22.rb

require_relative 'words_from_string.rb'
require 'test/unit’
class TestWordsFromString < Test::Unit::TestCase
def test_empty_string
assert_equal([], words_from_string(""))
assert_equal([], words_from_string(" D)
end
def test_single_word
assert_equal(["cat"], words_from_string("cat"))
assert_equal(["cat"], words_from_string(" cat "))
end
def test_many_words
assert_equal(["the", "cat", "sat", "on", "the", "mat"],
words_from_string("the cat sat on the mat"))

end
def test_ignores_punctuation
assert_equal(["the", "cat's", "mat"],
words_from_string("<the!> cat's, -mat-"))
end
end
produces:

Loaded suite /tmp/prog
Started

Finished in 0.000578 seconds.

4 tests, 6 assertions, O failures, 0 errors, 0 skips

Report erratum


http://media.pragprog.com/titles/ruby3/code/samples/tutcontainers_22.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=73

BLOCKS AND ITERATORS

The test starts by requiring the source file containing our words_from_string method, along
with the unit test framework itself. It then defines a test class. Within that class, any methods
whose names start test are automatically run by the testing framework. The results show that
four test methods ran, successfully executing six assertions:

Download samples/tutcontainers_23.rb

require_relative 'count_frequency.rb'
require 'test/unit’
class TestCountFrequency < Test::Unit::TestCase
def test_empty_list
assert_equal({}, count_frequency([]))
end
def test_single_word
assert_equal({"cat" => 1}, count_frequency(["cat"]))
end
def test_two_different_words
assert_equal({"cat" => 1, "sat" => 1},
count_frequency(["cat", "sat"]))
end
def test_two_words_with_adjacent_repeat
assert_equal({"cat" => 2, "sat" => 1},
count_frequency(["cat", "cat", "sat"]))
end
def test_two_words_with_non_adjacent_repeat
assert_equal({"cat" => 2, "sat" => 1},
count_frequency(["cat", "sat", "cat"]))
end
end

produces:

Loaded suite /tmp/prog
Started

Finished in 0.000534 seconds.

5 tests, 5 assertions, 0 failures, O errors, 0 skips

Blocks and Iterators

In our program that wrote out the results of our word frequency analysis, we had the fol-
lowing loop:
for i in 0...5
word = top_five[i][0]
count = top_five[i][1]

puts "#{word}: #{count}"
end

This works, and it looks comfortingly familiar: a for loop iterating over an array. What could
be more natural?

Report erratum


http://media.pragprog.com/titles/ruby3/code/samples/tutcontainers_23.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=74

BLOCKS AND ITERATORS

It turns out there is something more natural. In a way, our for loop is somewhat too intimate
with the array; it magically knows that we’re iterating over five elements, and it retrieves
values in turn from the array. To do this, it has to know that the structure it is working with
is an array of two-element subarrays. This is a whole lot of coupling.

Instead, we could write this code like this:

top_five.each do |word, count]|
puts "#{word}: #{count}"
end

The method each is an iferator—a method that invokes a block of code repeatedly. In fact,
some Ruby programmers might write this more compactly as this:

puts top_five.map { |word, count| "#{word}: #{count}" }

Just how far you take this is a matter of taste. But, however you use them, iterators and code
blocks are among the more interesting features of Ruby, so let’s spend a while looking into
them.

Blocks

A block is simply a chunk of code enclosed between either braces or the keywords do and
end. The two forms are identical except for precedence, which we’ll see in a minute. All
things being equal, the current Ruby style seems to favor using braces for blocks that fit on
one line and do/end when a block spans multiple lines:

some_array.each {|value| puts value * 3 }
sum = 0
other_array.each do |value]
sum += value
puts value / sum
end

You can think of a block as being somewhat like the body of an anonymous method. Just
like a method, the block can take parameters (but, unlike a method, those parameters appear
at the start of the block between vertical bars). Both the blocks in the preceding example
take a single parameter, value. And, just like a method, the body of a block is not executed
when Ruby first sees it. Instead, the block is saved away to be called later.

Blocks can appear in Ruby source code only immediately after the invocation of some
method. If the method takes parameters, the block appears after these. In a way, you can
almost think of the block as being one extra parameter, passed to that method. Let’s look at
a simple example that sums the squares of the numbers in an array:
sum = 0
[1, 2, 3, 4].each do |value]
square = value * value
sum += square
end
puts sum

produces:
30

Report erratum


http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=75

BLOCKS AND ITERATORS

The block is being called by the each method once for each element in the array. The
element is passed to the block as the value parameter. But there’s something subtle going
on, too. Take a look at the sum variable. It’s declared outside the block, updated inside the
block, and then passed to puts after the each method returns.

This illustrates an important rule: if there’s a variable inside a block with the same name
as a variable in the same scope outside the block, the two are the same—there’s only one
variable sum in the preceding program. (You can override this behavior, as we’ll see later.)

If, however, a variable appears only inside a block, then that variable is local to the block—
in the preceding program, we couldn’t have written the value of square at the end of the
code, because square is not defined at that point. It is defined only inside the block itself.

Although simple, this behavior can lead to unexpected problems. For example, say our
program was dealing with drawing different shapes. We might have this:

square = Shape.new(sides: 4) # assume Shape defined elsewhere

#

# .. lots of code
#

sum = 0

[1, 2, 3, 4].each do |value]|
square = value * value
sum += square

end

puts sum

square.draw # BOOM!

This code would fail, because the variable square, which originally held a Shape object,
will have been overwritten inside the block and will hold a number by the time the each
method returns. This problem doesn’t bite often, but when it does, it can be very confusing.

=2 , Fortunately, Ruby 1.9 has a couple of answers.

First, parameters to a block are now always local to a block, even if they have the same
name as locals in the surrounding scope. (You’ll get a warning message if you run Ruby
with the -w option.)

Download samples/tutcontainers_30.rb

value = "some shape"
[ 1, 2 J.each {|value| puts value }
puts value

produces:

1
2
some shape

Second, you can now define block local variables by putting them after a semicolon in the
block’s parameter list. So, in our sum-of-squares example, we should have indicated that
the square variable was block-local by writing it as follows:

Report erratum


http://media.pragprog.com/titles/ruby3/code/samples/tutcontainers_30.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=76

BLOCKS AND ITERATORS

Download samples/tutcontainers_31.rb

square = "some shape"

sum = 0

[1, 2, 3, 4].each do |value; square]|
square = value * value # this is a different variable
sum += square

end

puts sum

puts square
produces:

30
some shape

By making square block-local, values assigned inside the block will not affect the value of
the variable with the same name in the outer scope.

Implementing Iterators

A Ruby iterator is simply a method that can invoke a block of code.

We said that a block may appear only in the source adjacent to a method call and that the
code in the block is not executed at the time it is encountered. Instead, Ruby remembers the
context in which the block appears (the local variables, the current object, and so on) and
then enters the method. This is where the magic starts.

Within the method, the block may be invoked, almost as if it were a method itself, using
the yield statement. Whenever a yield is executed, it invokes the code in the block. When
the block exits, control picks back up immediately after the yield.? Let’s start with a trivial
example:

Download samples/tutcontainers_32.rb

def three_times
yield
yield
yield
end
three_times { puts "Hello" }

produces:

Hello
Hello
Hello

2. Programming-language buffs will be pleased to know that the keyword yield was chosen to echo the yield
function in Liskov’s language CLU, a language that is more than thirty years old and yet contains features that still
haven’t been widely exploited by the CLU-less.

Report erratum


http://media.pragprog.com/titles/ruby3/code/samples/tutcontainers_31.rb
http://media.pragprog.com/titles/ruby3/code/samples/tutcontainers_32.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=77

BLOCKS AND ITERATORS

The block (the code between the braces) is associated with the call to the three times meth-
od. Within this method, yield is called three times in a row. Each time, it invokes the code
in the block, and a cheery greeting is printed. What makes blocks interesting, however, is
that you can pass parameters to them and receive values from them. For example, we could
write a simple function that returns members of the Fibonacci series up to a certain value:*

Download samples/tutcontainers_33.rb

def fib_up_to(max)

il, i2 =1, 1 # parallel assignment (il = 1 and i2 = 1)
while il <= max
yield il
il, i2 = i2, il+i2
end
end
fib_up_to(1000) {|f| print £, " " }
produces:

1123581321 34 55 89 144 233 377 610 987

In this example, the yield statement has a parameter. This value is passed to the associated
block. In the definition of the block, the argument list appears between vertical bars. In
this instance, the variable f receives the value passed to yield, so the block prints successive
members of the series. (This example also shows parallel assignment in action. We’ll come
back to this on page 151.) Although it is common to pass just one value to a block, this is
not a requirement; a block may have any number of arguments.

A block may also return a value to the method. The value of the last expression evaluated in
the block is passed back to the method as the value of the yield. This is how the find method
used by class Array works.* Its implementation would look something like the following:

class Array
def find
for i in 0...size
value = self[i]
return value if yield(value)
end
return nil
end
end

[1, 3, 5, 7, 9].find {|v| v*v > 30 } # => 7

This passes successive elements of the array to the associated block. If the block returns true
(that is, a value other than nil or false), the method returns the corresponding element. If no

3. The basic Fibonacci series is a sequence of integers, starting with two 1s, in which each subsequent term is
the sum of the two preceding terms. The series is sometimes used in sorting algorithms and in analyzing natural
phenomena.

4. The find method is actually defined in module Enumerable, which is mixed into class Array.

Report erratum


http://media.pragprog.com/titles/ruby3/code/samples/tutcontainers_33.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=78

BLOCKS AND ITERATORS

element matches, the method returns nil. The example shows the benefit of this approach to
iterators. The Array class does what it does best, accessing array elements, and leaves the
application code to concentrate on its particular requirement (in this case, finding an entry
that meets some criteria).

Some iterators are common to many types of Ruby collections. We’ve looked at find already.
Two others are each and collect. each is probably the simplest iterator—all it does is yield
successive elements of its collection:

[1, 3,5, 7, 9 ].each {|i] puts i }

produces:
1

3
5
7
9

The each iterator has a special place in Ruby; on page 162, we’ll describe how it’s used
as the basis of the language’s for loop, and starting on page 100, we’ll see how defining an
each method can add a whole lot more functionality to your class for free.

Another common iterator is collect (also known as map), which takes each element from the
collection and passes it to the block. The results returned by the block are used to construct
anew array. The following example uses the succ method, which increments a string value:

["H", "A", "L"].collect {|x| x.succ } # => ["I", "B", "M"]

Iterators are not limited to accessing existing data in arrays and hashes. As we saw in the
Fibonacci example, an iterator can return derived values. This capability is used by Ruby
input/output classes, which implement an iterator interface that returns successive lines (or
bytes) in an I/O stream:

f = File.open("testfile")
f.each do |line]|

puts "The line is: #{line}"
end
f.close

produces:

The line is: This is line one
The line is: This is line two
The line is: This is line three
The line is: And so on...

Sometimes you want to keep track of how many times you’ve been through the block. The
each_with_index is your friend. It calls its block with two parameters: the current element
of the iteration and the count (which starts at zero, just like array indices):

f = File.open("testfile")

f.each_with_index do |line, index|
puts "Line #{index} is: #{line}"

end

f.close

Report erratum


http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=79

BLOCKS AND ITERATORS

produces:
Line 0 is: This is line one
Line 1 is: This is line two
Line 2 is: This is line three
Line 3 is: And so on...

Let’s look at just one more useful iterator. The (somewhat obscurely named) inject method
(defined in the module Enumerable) lets you accumulate a value across the members of a
collection. For example, you can sum all the elements in an array, and find their product,
using code such as this:

[1,3,5,7].inject(0) {|sum, element| sum+element} # => 16
[1,3,5,7].inject(1) {|product, element| product=element} # => 105

inject works like this: the first time the associated block is called, sum is set to inject’s
parameter, and element is set to the first element in the collection. The second and subse-
quent times the block is called, sum is set to the value returned by the block on the previous
call. The final value of inject is the value returned by the block the last time it was called.
One more thing: if inject is called with no parameter, it uses the first element of the collec-
tion as the initial value and starts the iteration with the second value. This means that we
could have written the previous examples like this:

[1,3,5,7].inject {|sum, element| sum+element} # => 16
[1,3,5,7].inject {|product, element| productrelement} # => 105

And, just to add to the mystique of inject, you can also give it the name of the method you

=2 , want to apply to successive elements of the collection. These examples work because, in
Ruby, addition and multiplication are simply methods on numbers, and :+ is the symbol
corresponding to the method +:

[1,3,5,7].inject(:+) #
[1,3,5,7].inject(:%) # =

Enumerators—EXxternal Iterators

It’s worth spending a paragraph comparing Ruby’s approach to iterators to that of languages
such as C++ and Java. In the Ruby approach, the basic iterator is internal to the collection—
it’s simply a method, identical to any other, that happens to call yield whenever it generates
a new value. The thing that uses the iterator is just a block of code associated with a call to
this method.

In other languages, collections don’t contain their own iterators. Instead, they implement
methods that generate external helper objects (for example, those based on Java’s lterator
interface) that carry the iterator state. In this, as in many other ways, Ruby is a transparent
language. When you write a Ruby program, you concentrate on getting the job done, not on
building scaffolding to support the language itself.

It’s also worth spending another paragraph looking at why Ruby’s internal iterators aren’t
always the best solution. One area where they fall down badly is where you need to treat
an iterator as an object in its own right (for example, passing the iterator into a method that
needs to access each of the values returned by that iterator). It’s also difficult to iterate over
two collections in parallel using Ruby’s internal iterator scheme.

Report erratum


http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=80

BLOCKS AND ITERATORS

19 , Fortunately, Ruby 1.9 comes with a built-in Enumerator class, which implements external
iterators in Ruby for just such occasions.

One way to create an Enumerator object is to call the to_enum method (or its synonym,
enum_for) on a collection such as an array or a hash:

a [ 1, 3, "cat" ]
h = { dog: "canine", fox: "lupine" }

# Create Enumerators
enum_a = a.to_enum
enum_h = h.to_enum

enum_a.next # => 1
enum_h.next # => [:dog, "canine"]
enum_a.next # => 3
enum_h.next # => [:fox, "lupine"]

Most of the internal iterator methods—the ones that normally yield successive values to a
block—will also return an Enumerator object if called without a block:

a=1[1, 3, "cat" ]
enum_a = a.each # create an Enumerator using an internal iterator

enum_a.next # => 1
enum_a.next # => 3

Ruby has a method called loop that does nothing but repeatedly invoke its block. Typically,
your code in the block will break out of the loop when some condition occurs. But loop
is also smart when you use an Enumerator—when an enumerator object runs out of values
inside a loop, the loop will terminate cleanly. The following example shows this in action—
the loop ends when the three-element enumerator runs out of values.’

short_enum = [1, 2, 3].to_enum
long_enum = ('a'..'z').to_enum
loop do
puts "#{short_enum.next} - #{long_enum.next}"
end

produces:
1-a
2-D
3-c¢

5. You can also handle this in your own iterator methods by rescuing the Stoplteration exception, but because
we haven’t talked about exceptions yet, we won’t go into details here.

Report erratum


http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=81

BLOCKS AND ITERATORS

Enumerators Are Objects

Enumerators take something that’s normally executable code (the act of iterating) and turn
it into an object. This means that you can do things programatically with enumerators that
aren’t easily done with regular loops.

For example, the Enumerable module defines each_with_index. This invokes its host class’s
each method, returning successive values along with an index:

result = []
[ 'a'", 'b', 'c¢' ].each_with_index {|item, index| result << [item, index] }
result # => [["a", O], ["b", 11, ["c", 2]]

But what if you wanted to iterate and receive an index but use a different method than each
to control that iteration? For example, you might want to iterate over the characters in a
string. There’s no method called each_char_with_index built into the String class.

Enumerators to the rescue. You can use the fact that the each_char method of strings will
return an enumerator if you don’t give it a block, and you can then call each_with_index on
that enumerator:

result = []

"cat".each_char.each_with_index {|item, index| result << [item, index] }
result # => [["c", 0], ["a", 11, ["t", 2]]

In fact, this is such a common use of enumerators that Matz has given us with_index, which
makes the code read better:
result = []

"cat".each_char.with_index {|item, index| result << [item, index] }
result # => [["c", 0], ["a", 11, ["t", 2]]

You can also create the Enumerator object explicitly—in this case we’ll create one that will
call our string’s each_char method. We can call to_a on that enumerator to iterate over it
and get the result:

enum = "cat".enum_for(:each_char)
enum.to_a # => ["c", "a", "t"]

If the method we’re using as the basis of our enumerator takes parameters, we can pass them
to enum_for:

enum_good = (1..10).enum_for(:each_slice, 3)
enum_good.to_a # => [[1, 2, 3], [4, 5, 6], [7, 8, 9], [10]]

Enumerators Are Generators and Filters

(This is more advanced material that can be skipped on first reading.) As well as creating
enumerators from existing collections, you can create an explicit enumerator, passing it a
block. The code in the block will be used when the enumerator object needs to supply a
fresh value to your program. However, the block isn’t simply executed from top to bottom.
Instead, the block is executed in parallel with the rest of your program’s code. Execution
starts at the top and pauses when the block yields a value to your code. When the code needs
the next value, execution resumes at the statement following the yield. This lets you write
enumerators that generate infinite sequences (among other things):

Report erratum


http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=82

BLOCKS AND ITERATORS

Download samples/tutcontainers_50.rb

triangular_numbers = Enumerator.new do |yielder|
number = 0
count = 1
loop do
number += count
count += 1
yielder.yield number
end
end

5.times { puts triangular_numbers.next }
produces:

1
3
6
10
15

Enumerator objects are also enumerable (that is to say, the methods available to enumerable
objects are also available to them). That means we can use enumerable’s methods (such as
first) on them:

triangular_numbers = Enumerator.new do |yielder|

# ...
end

p triangular_numbers.first(5)
produces:
[1, 3, 6, 10, 15]

You have to be slightly careful with enumerators that can generate infinite sequences. Some
of the regular enumerator methods such as count and select will happily try to read the whole
enumeration before returning a result. If you want a version of select that works with infinite
sequences, you’ll need to write it yourself. Here’s a version that gets passed an enumerator
and a block and returns a new enumerator containing values from the original for which the
block returns true. We’ll use it to return triangular numbers that are multiples of 10.

Download samples/tutcontainers_52.rb

triangular_numbers = Enumerator.new do |yielder|
# ... as before
end
def infinite_select(enum, &block)
Enumerator.new do |yielder|
enum.each do |value|
yielder.yield(value) if block.call(value)
end
end
end

p infinite_select(triangular_numbers) {|val| val % 10 == 0}.first(5)
produces:
[10, 120, 190, 210, 300]

Report erratum


http://media.pragprog.com/titles/ruby3/code/samples/tutcontainers_50.rb
http://media.pragprog.com/titles/ruby3/code/samples/tutcontainers_52.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=83

BLOCKS AND ITERATORS

Here we use the &block notation to pass the block as a parameter to the infinite_select
method.

As Brian Candler pointed out in [ruby-core:19679], you can make this more convenient by
adding filters such as infinite_select directly to the Enumerator class. Here’s an example that
returns the first five triangular numbers that are multiples of 10 and that have the digit 3 in
them:

Download samples/tutcontainers_53.rb

triangular_numbers = Enumerator.new do |yielder|
# ... as before
end
class Enumerator
def infinite_select(&block)
Enumerator.new do |yielder|
self.each do |value]|
yielder.yield(value) if block.call(value)
end
end
end
end
p triangular_numbers
.infinite_select {|val| val % 10 == 0}
.infinite_select {|val| val.to_s =~ /3/ }
.first(5)

produces:
[300, 630, 1830, 3160, 3240]

Blocks for Transactions

Although blocks are often used as the target of an iterator, they have other uses. Let’s look
at a few.

You can use blocks to define a chunk of code that must be run under some kind of trans-
actional control. For example, you’ll often open a file, do something with its contents, and
then want to ensure that the file is closed when you finish. Although you can do this using
conventional linear code, a version using blocks is simpler (and turns out to be less error
prone). A naive implementation (ignoring error handling) could look something like the
following:

Download samples/tutcontainers_54.rb

class File
def self.open_and_process(xargs)
f = File.open(xargs)
yield f
f.close()
end
end

Report erratum


http://media.pragprog.com/titles/ruby3/code/samples/tutcontainers_53.rb
http://media.pragprog.com/titles/ruby3/code/samples/tutcontainers_54.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=84

BLOCKS AND ITERATORS

File.open_and_process("testfile", "r") do |[file]
while line = file.gets
puts line
end
end
produces:

This is line one
This is line two
This is line three
And so on...

open_and_process is a class method—it may be called independently of any particular file
object. We want it to take the same arguments as the conventional File.open method, but
we don’t really care what those arguments are. To do this, we specified the arguments as
*args, meaning ‘“collect the actual parameters passed to the method into an array named
args.” We then call File.open, passing it *args as a parameter. This expands the array back
into individual parameters. The net result is that open_and_process transparently passes
whatever parameters it receives to File.open.

Once the file has been opened, open_and_process calls yield, passing the open file object
to the block. When the block returns, the file is closed. In this way, the responsibility for
closing an open file has been shifted from the users of file objects back to the file objects
themselves.

The technique of having files manage their own life cycle is so useful that the class File
supplied with Ruby supports it directly. If File.open has an associated block, then that block
will be invoked with a file object, and the file will be closed when the block terminates. This
is interesting, because it means that File.open has two different behaviors. When called with
a block, it executes the block and closes the file. When called without a block, it returns the
file object. This is made possible by the method block_given?, which returns true if a block
is associated with the current method. Using this method, you could implement something
similar to the standard File.open (again, ignoring error handling) using the following:

Download samples/tutcontainers_55.rb

class File
def self.my_open(*args)
result = file = File.new(*args)
# If there's a block, pass in the file and close
# the file when it returns
if block_given?
result = yield file
file.close
end
return result
end
end

This has one last twist: in the previous examples of using blocks to control resources, we
didn’t address error handling. If we wanted to implement these methods properly, we’d need

Report erratum


http://media.pragprog.com/titles/ruby3/code/samples/tutcontainers_55.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=85

BLOCKS AND ITERATORS

to ensure that we closed a file even if the code processing that file somehow aborted. We do
this using exception handling, which we talk about later (starting on page 167).

Blocks Can Be Objects

Blocks are like anonymous methods, but there’s more to them than that. You can also convert
a block into an object, store it in variables, pass it around, and then invoke its code sometime
later.

Remember I said that you can think of blocks as being a little like an implicit parame-
ter that’s passed to a method? Well, you can also make that parameter explicit. If the last
parameter in a method definition is prefixed with an ampersand (such as &action), Ruby
looks for a code block whenever that method is called. That code block is converted to an
object of class Proc and assigned to the parameter. You can then treat the parameter as any
other variable.

Here’s an example where we create a Proc object in one instance method and store it in an
instance variable. We then invoke the proc from a second instance method.

Download samples/tutcontainers_56.rb

class ProcExample
def pass_in_block(&action)
@stored_proc = action
end
def use_proc(parameter)
@stored_proc.call(parameter)
end
end
eg = ProcExample.new
eg.pass_in_block { |param| puts "The parameter is #{param}" }
eg.use_proc(99)

produces:

The parameter is 99
See how the call method on a proc object invokes the code in the original block?

Many Ruby programs store and later call blocks in this way—it’s a great way of implement-
ing callbacks, dispatch tables, and so on.

But, you can go one step further. If a block can be turned into an object by adding an
ampersand parameter to a method, what happens if that method then returns the Proc object
to the caller?

Download samples/tutcontainers_57.rb

def create_block_object(&block)
block
end

Report erratum


http://media.pragprog.com/titles/ruby3/code/samples/tutcontainers_56.rb
http://media.pragprog.com/titles/ruby3/code/samples/tutcontainers_57.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=86

BLOCKS AND ITERATORS

bo = create_block_object { |param| puts "You called me with #{param}" }

bo.call 99
bo.call "cat"

produces:

You called me with 99
You called me with cat

In fact, this is so useful that Ruby provides not one but two built-in methods that convert a
block to an object.® Both lambda and Proc.new take a block and return an object of class
Proc. The objects they return differ slightly in how they behave, but we’ll hold off talking
about that until page 364.

Download samples/tutcontainers_58.rb

bo = lambda { |param| puts "You called me with #{param}" }
bo.call 99
bo.call "cat"

produces:

You called me with 99
You called me with cat

Blocks Can Be Closures

Remember I said that a block can use local variables from the surrounding scope? So, let’s
look at a slightly different example of a block doing just that:

Download samples/tutcontainers_59.rb

def n_times(thing)
lambda {|n| thing * n }
end

pl = n_times(23)

pl.call(3) # => 69

pl.call(4) # => 92

p2 = n_times("Hello ")

p2.call(3) # => "Hello Hello Hello "

The method n_times returns a Proc object that references the method’s parameter, thing.
Even though that parameter is out of scope by the time the block is called, the parameter
remains accessible to the block. This is called a closure—variables in the surrounding scope
that are referenced in a block remain accessible for the life of that block and the life of any
Proc object created from that block.

6.  There’s actually a third, proc, but it is effectively deprecated.

Report erratum


http://media.pragprog.com/titles/ruby3/code/samples/tutcontainers_58.rb
http://media.pragprog.com/titles/ruby3/code/samples/tutcontainers_59.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=87

BLOCKS AND ITERATORS

Here’s another example, which is a method that returns a Proc object that returns successive
powers of 2 when called:

Download samples/tutcontainers_60.rb

def power_proc_generator
value = 1
lambda { value += value }
end

power_proc = power_proc_generator

puts power_proc.call
puts power_proc.call
puts power_proc.call

produces:

2
4
8

An Alternative Notation

=2 s Ruby 1.9 has another way of creating Proc objects. Rather than write this:
lambda { |params| ... }
you can now write the following:’
->params { ... }
The parameters can be enclosed in optional parentheses. For example:
Download samples/tutcontainers_63.rb

procl = -> arg { puts "In procl with #{arg}" }

proc2 = -> argl, arg2 { puts "In proc2 with #{argl} and #{arg2}" }
proc3 = ->(argl, arg2) { puts "In proc3 with #{argl} and #{arg2}" }
procl.call "ant"

proc2.call "bee", "cat"

proc3.call "dog", "elk"

produces:

In procl with ant
In proc2 with bee and cat
In proc3 with dog and elk

7. Let’s start by getting something out of the way. Why ->? For compatibility across all the different source file
encodings, Matz is restricted to using pure 7-bit ASCII for Ruby operators, and the choice of available characters is
severely limited by the ambiguities inherent in the Ruby syntax. He felt that -> was (kind of) reminiscent of a Greek
lambda character \.

Report erratum


http://media.pragprog.com/titles/ruby3/code/samples/tutcontainers_60.rb
http://media.pragprog.com/titles/ruby3/code/samples/tutcontainers_63.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=88

BLOCKS AND ITERATORS

The -> form is more compact than using lambda and seems to be in favor when you want to
pass one or more Proc objects to a method:

Download samples/tutcontainers_64.rb

def my_if(condition, then_clause, else_clause)
if condition
then_clause.call
else
else_clause.call
end
end

5.times do |val]
my_if val < 3,
-> { puts "#{val} is small" },
-> { puts "#{val} is big" }
end

produces:

0 is small
is small
is small
is big
is big

W N R

One good reason to pass blocks to methods is that you can reevaluate the code in those
blocks at any time. Here’s a trivial example of reimplementing a while loop using a method.
Because the condition is passed as a block, it can be evaluated each time around the loop:

Download samples/tutcontainers_65.rb

def my_while(cond, &body)

while cond.call
body.call

end

end

a=0

my_while -> { a < 3 } do
puts a
a+=1

end

produces:

0
1
2

Block Parameter Lists

=2 /s Prior to Ruby 1.9, blocks were to some extent the poor cousins of methods when it came
to parameter lists. Methods could have splat args, default values, and block parameters,
whereas blocks basically had just a list of names (and could accept a trailing splat argument).
Now, however, blocks have the same parameter list capabilities as methods.

Report erratum


http://media.pragprog.com/titles/ruby3/code/samples/tutcontainers_64.rb
http://media.pragprog.com/titles/ruby3/code/samples/tutcontainers_65.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=89

CONTAINERS EVERYWHERE

Blocks written using the old syntax take their parameter lists between vertical bars. Blocks
written using the -> syntax take a separate parameter list before the block body. In both
cases, the parameter list looks just like the list you can give to methods. It can take default
values, splat args (described on page 143), and a block parameter (a trailing argument start-
ing with an ampersand). You can write blocks that are just as versatile as methods.®

Here’s a block using the original block notation:

Download samples/tutcontainers_66.rb

procl = lambda do |a, *b, &block]

puts "a = #{a.inspect}"
puts "b = #{b.inspect}"
block.call

end

procl.call(l, 2, 3, 4) { puts "in blockl" }

produces:
a=1
b = [2i 31 4]
in blockl

And here’s one using the new -> notation:

Download samples/tutcontainers_67.rb

proc2 = -> a, *b, &block do

puts "a = #{a.inspect}"
puts "b = #{b.inspect}"
block.call

end

proc2.call(l, 2, 3, 4) { puts "in block2" }

produces:
a=1
b = [2i 31 4]
in block2

Containers Everywhere

Containers, blocks, and iterators are core concepts in Ruby. The more you write in Ruby,
the more you’ll find yourself moving away from conventional looping constructs. Instead,
you’ll write classes that support iteration over their contents. And you’ll find that this code
is compact, easy to read, and a joy to maintain. If this all seems too weird, don’t worry.
After a while, it’ll start to come naturally. And you’ll have plenty of time to practice as you
use Ruby libraries and frameworks.

8. Actually, they are more versatile, because these blocks are also closures, while methods are not.

Report erratum


http://media.pragprog.com/titles/ruby3/code/samples/tutcontainers_66.rb
http://media.pragprog.com/titles/ruby3/code/samples/tutcontainers_67.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=90

Chapter 5

Sharing Functionality:
Inheritance, Modules,
and Mixins

One of the accepted principles of good design is the elimination of unnecessary duplication.
We work hard to make sure that each concept in our application is expressed just once in
our code.!

We’ve already seen how classes help. All the methods in a class are automatically accessible
to instances of that class. But there are other, more general types of sharing that we want
to do. Maybe we’re dealing with an application that ships goods. Many forms of shipping
are available, but all forms share some basic functionality (weight calculation, perhaps). We
don’t want to duplicate the code that implements this functionality across the implementa-
tion of each shipping type. Or maybe we have a more generic capability that we want to
inject into a number of different classes. For example, an online store may need the ability
to calculate sales tax for carts, orders, quotes, and so on. Again, we don’t want to duplicate
the sales tax code in each of these places.

In this chapter, we’ll look at two different (but related) mechanisms for this kind of sharing
in Ruby. The first, class-level inheritance, is common in object-oriented languages. We’ll
then look at mixins, a technique that is often preferable to inheritance. We’ll wind up with a
discussion of when to use each.

Inheritance and Messages

In the previous chapter we saw that when puts needs to convert an object to a string, it
calls that object’s to_s method. But we’ve also written our own classes that don’t explic-

1. Why? Because the world changes. And when you adapt your application to each change, you want to know
that you’ve changed exactly the code you need to change. If each real-world concept is implemented at a single
point in the code, this becomes vastly easier.

Report erratum



http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=91

INHERITANCE AND MESSAGES

itly implement to_s. Despite this, objects of these classes respond successfully when we
call to_s on them. How this works has to do with inheritance, subclassing, and how Ruby
determines what method to run when you send a message to an object.

Inheritance allows you to create a class that is a refinement or specialization of another
class. This class is called a subclass of the original, and the original is a superclass of the
subclass. People also talk of child and parent classes.

The basic mechanism of subclassing is simple. The child inherits all of the capabilities of
its parent class—all the parent’s instance methods are available in instances of the child.

Let’s look at a trivial example and then later build on it. Here’s a definition of a parent class
and a child class that inherits from it:

Download samples/tutmodules_1.rb

class Parent

def say_hello

puts "Hello from #{self}"

end
end
p = Parent.new
p.say_hello
# Subclass the parent...
class Child < Parent
end
¢ = Child.new
c.say_hello

produces:

Hello from #<Parent:0x0a40c4>
Hello from #<Child:0x0a3d68>

The parent class defines a single instance method, say_hello. We call it by creating a new
instance of the class and store a reference to that instance in the variable p.

We then create a subclass using class Child < Parent. The < notation means we’re creating a
subclass of the thing on the right; the fact that we use less-than presumably signals that the
child class is supposed to be a specialization of the parent.

Note that the child class defines no methods, but when we create an instance of it, we can
call say_hello. That’s because the child inherits all the methods of its parent. Note also that
when we output the value of self—the current object—it shows that we’re in an instance of
class Child, even though the method we’re running is defined in the parent.

The superclass method returns the parent of a particular class:

Download samples/tutmodules_2.rb

class Parent

end

class Child < Parent

end

puts "The superclass of Child is #{Child.superclass}"

Report erratum


http://media.pragprog.com/titles/ruby3/code/samples/tutmodules_1.rb
http://media.pragprog.com/titles/ruby3/code/samples/tutmodules_2.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=92

INHERITANCE AND MESSAGES

produces:

The superclass of Child is Parent
But what’s the superclass of Parent?

class Parent
end
puts "The superclass of Parent is #{Parent.superclass}"

produces:
The superclass of Parent is Object
If you don’t define an explicit superclass when defining a class, Ruby automatically makes
the built-in class Object that class’s parent. Let’s go further:
puts "The superclass of Object is #{Object.superclass}"
produces:
The superclass of Object is BasicObject
=2 / Class BasicObject was introduced in Ruby 1.9. It is used in certain kinds of metaprogram-
ming, acting as a blank canvas. What’s its parent?
puts "The superclass of BasicObject is #{BasicObject.superclass.inspect}"
produces:
The superclass of BasicObject is nil
So, we’ve finally reached the end. BasicObject is the root class of our hierarchy of classes.

Given any class in any Ruby application, you can ask for its superclass, then the superclass
of that class, and so on, and you’ll eventually get back to BasicObject.

We’ve seen that if you call a method in an instance of class Child and that method isn’t in
Child’s class definition, Ruby will look in the parent class. It goes deeper than that, because
if the method isn’t defined in the parent class, Ruby continues looking in the parent’s parent,
the parent’s parent’s parent, and so on, through the ancestors until it runs out of classes.

And this explains our original question. We can work out why to_s is available in just about
every Ruby object. to_s is actually defined in class Object. Because Object is an ancestor of
every Ruby class (except BasicObject), instances of every Ruby class have a to_s method
defined:

Download samples/tutmodules_6.rb

class Person
def initialize(name)
@name = name
end
end
p = Person.new("Michael")
puts p

produces:

#<Person:0x0adefc>

Report erratum


http://media.pragprog.com/titles/ruby3/code/samples/tutmodules_6.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=93

INHERITANCE AND MESSAGES

We saw in the previous chapter that we can override the to_s method:
Download samples/tutmodules_7.rb

class Person
def initialize(name)
@name = name
end
def to_s
"Person named #{@name}"
end
end
p = Person.new("Michael")
puts p

produces:

Person named Michael

Armed with our knowledge of subclassing, we now know there’s nothing special about this.
The puts method calls to_s on its arguments. In this case, the argument is a Person object.
Because class Person defines a to_s method, that method is called. If it hadn’t defined ato_s
method, then Ruby looks for (and finds) to_s in Person’s parent class, Object.

It is common to use subclassing to add application-specific behavior to a standard library
or framework class. If you’ve used Ruby on Rails,? you’ll have subclassed ActionController
when writing your own controller classes. Your controllers get all the behavior of the base
controller and add their own specific handlers to individual user actions. If you’ve used
the FXRuby GUI framework,> you’ll have used subclassing to add your own application-
specific behavior to Fox’s standard GUI widgets.

Here’s a more self-contained example. Ruby comes with a library called GServer that imple-
ments basic TCP server functionality. You add your own behavior to it by subclassing the
GServer class. Let’s use that to write some code that waits for a client to connect on a socket
and then returns the last few lines of the system log file. This is an example of something
that’s actually quite useful in long-running applications—by building in such a server, you
can access the internal state of the application while it is running (possibly even remotely).

The GServer class handles all the mechanics of interfacing to TCP sockets. When you create
a GServer object, you tell it the port to listen on.* Then, when a client connects, the GServer
object calls its serve method to handle that connection. Here’s the implementation of that
serve method in the GServer class:

def serve(io)
end

2. http://www.rubyonrails.com
3. http://www.fxruby.org

4. You can tell it a lot more, as well. We chose to keep it simple here.

Report erratum


http://media.pragprog.com/titles/ruby3/code/samples/tutmodules_7.rb
http://www.rubyonrails.com
http://www.fxruby.org
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=94

INHERITANCE AND MESSAGES

As you can see, it does nothing. That’s where our own LogServer class comes in:
Download samples/tutmodules_9.rb

require 'gserver'
class LogServer < GServer
def initialize
super (12345)
end
def serve(client)
client.puts get_end_of_log_file
end
private
def get_end_of_log_file
File.open("/var/log/system.log") do |log]|
log.seek(-1000, IO::SEEK_END) # back up 1000 characters from end

log.gets # ignore partial line
log.read # and return rest
end
end
end

server = LogServer.new
server.start.join

I don’t want to focus too much on the details of running the server. Instead, let’s look at
how inheritance has helped us with this code. First, notice that our LogServer class inherits
from GServer. This means that a log server is a kind of GServer, sharing all the GServer
functionality. It also means we can add our own specialized behavior.

The first such specialization is the initialize method. We want our LogServer to run on TCP
port 12345. That’s a parameter that would normally be passed to the GServer constructor.
So, within the initialize method of the LogServer, we want to invoke the initialize method of
GServer, our parent, passing it the port number. We do that using the Ruby keyword super.
When you invoke super, Ruby sends a message to the parent of the current object, asking it
to invoke a method of the same name as the method invoking super. It passes this method
the parameters that were passed to super.

This is a crucial step and one often forgotten by folks new to OO. When you subclass
another class, you are responsible for making sure the initialization required by that class
gets run. This means that, unless you know it isn’t needed, you’ll need to put a call to super
somewhere in your subclass’s initialize method. (If your subclass doesn’t need an initialize
method, then there’s no need to do anything, because it will be the parent class’s initialize
method that gets run when your objects get created.)

So, by the time our initialize method finishes, our LogServer object will be a fully fledged
TCP server, all without us having to write any protocol-level code. Down at the end of our
program, we start the server. The call to join causes our program to wait for the server to
exit before itself exiting.

While our server is running, it will receive connections from external clients. These invoke
the serve method in the server object. Remember that empty method in class GServer? Well,

Report erratum


http://media.pragprog.com/titles/ruby3/code/samples/tutmodules_9.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=95

MODULES

our LogServer class provides its own implementation. And because it gets found by Ruby
first when it’s looking for methods to execute, it’s our code that gets run whenever GServer
accepts a connection. And our code reads the last few lines of the log file and returns them
to the client:>

$ telnet 127.0.0.1 12345

Trying 127.0.0.1...

Connected to localhost.

Escape character is 'A]'.

Jul 7 13:39:44 dave com.apple.syncservices.SyncServer[54938]:...

Jul 7 13:39:44 dave com.apple.syncservices.SyncServer[54938]:...
Jul 7 13:39:44 dave com.apple.syncservices.SyncServer[54938]:...
Jul 7 13:42:40 dave login[54768]: DEAD_PROCESS: 54768 ttys001

Jul 7 13:45:34 dave mdworker[54977]: fcntl to turn on F_CHECK...

Jul 7 13:48:44 dave mdworker[54977]: fcntl to turn on F_CHECK...
Connection closed by foreign host.

The use of the serve method shows a common idiom when using subclassing. A parent
class assumes that it will be subclassed and calls a method that it expects its children to
implement. This allows the parent to take on the brunt of the processing but to invoke what
are effectively hook methods in subclasses to add application-level functionality. As we’ll
see at the end of this chapter, just because this idiom is common doesn’t make it good
design.

So, instead, let’s look at mixins, a different way of sharing functionality in Ruby code. But,
before we look at mixins, we’ll need to get familiar with Ruby modules.

Modules

Modules are a way of grouping together methods, classes, and constants. Modules give you
two major benefits:

* Modules provide a namespace and prevent name clashes.

* Modules support the mixin facility.

Namespaces

As you start to write bigger and bigger Ruby programs, you’ll naturally find yourself pro-
ducing chunks of reusable code—Ilibraries of related routines that are generally applicable.
You’ll want to break this code into separate files so the contents can be shared among dif-
ferent Ruby programs.

Often this code will be organized into classes, so you’ll probably stick a class (or a set of
interrelated classes) into a file. However, there are times when you want to group things
together that don’t naturally form a class.

5. You can also access this server from a web browser by connecting to http://127.0.0.1:12345.

Report erratum


http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=96

MODULES

Inheritan nd Mixin

Some object-oriented languages (such as C++) support multiple
inheritance, where a class can have more than one immediate parent,
inheriting functionality from each. Although powerful, this technique
can be dangerous, because the inheritance hierarchy can become
ambiguous.

Other languages, such as Java and C#, support single inheritance.
Here, a class can have only one immediate parent. Although cleaner
(and easier to implement), single inheritance also has drawbacks—in
the real world objects often inherit attributes from multiple sources (a
ball is both a bouncing thing and a spherical thing, for example).

Ruby offers an interesting and powerful compromise, giving you the
simplicity of single inheritance and the power of multiple inheritance. A
Ruby class has only one direct parent, so Ruby is a single-inheritance
language. However, Ruby classes can include the functionality of
any number of mixins (a mixin is like a partial class definition). This
provides a controlled multiple-inheritance-like capability with none of
the drawbacks. We'll explore mixins more beginning on the following

page.

An initial approach may be to put all these things into a file and simply load that file into
any program that needs it. This is the way the C language works. However, this approach
has a problem. Say you write a set of the trigonometry functions sin, cos, and so on. You
stuff them all into a file, trig.rb, for future generations to enjoy. Meanwhile, Sally is working
on a simulation of good and evil, and she codes a set of her own useful routines, including
be_good and sin, and sticks them into moral.rb. Joe, who wants to write a program to find
out how many angels can dance on the head of a pin, needs to load both trig.rb and moral.rb
into his program. But both define a method called sin. Bad news.

The answer is the module mechanism. Modules define a namespace, a sandbox in which
your methods and constants can play without having to worry about being stepped on by
other methods and constants. The trig functions can go into one module:

Download samples/tutmodules_10.rb

module Trig
PI = 3.141592654
def Trig.sin(x)
# ..
end
def Trig.cos(x)
# ..
end

Report erratum


http://media.pragprog.com/titles/ruby3/code/samples/tutmodules_10.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=97

MIXINS

end
and the good and bad “moral” methods can go into another:

Download samples/tutmodules_11.rb

module Moral

VERY_BAD = 0
BAD =1
def Moral.sin(badness)
# ...
end
end

Module constants are named just like class constants, with an initial uppercase letter.® The
method definitions look similar, too: module methods are defined just like class methods.

If a third program wants to use these modules, it can simply load the two files (using the
Ruby require statement. In order to reference the name sin unambiguously, our code can
then qualify the name using the name of the module containing the implementation we
want, followed by ::, the scope resolution operator:

require 'trig'

require 'moral'

y = Trig.sin(Trig::PI1/4)

wrongdoing = Moral.sin(Moral: :VERY_BAD)

As with class methods, you call a module method by preceding its name with the module’s
name and a period, and you reference a constant using the module name and two colons.

Mixins
Modules have another, wonderful use. At a stroke, they pretty much eliminate the need for
inheritance, providing a facility called a mixin.

In the previous section’s examples, we defined module methods, methods whose names
were prefixed by the module name. If this made you think of class methods, your next
thought may well be “What happens if I define instance methods within a module?” Good
question. A module can’t have instances, because a module isn’t a class. However, you can
include a module within a class definition. When this happens, all the module’s instance
methods are suddenly available as methods in the class as well. They get mixed in. In fact,
mixed-in modules effectively behave as superclasses.

6. But we will conventionally use all uppercase letters when writing them.

Report erratum


http://media.pragprog.com/titles/ruby3/code/samples/tutmodules_11.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=98

MIXINS

Download samples/tutmodules_13.rb

module Debug

def who_am_i?
"#{self.class.name} (\##{self.object_id}): #{self.to_s}"

end

end

class Phonograph
include Debug
# ...

end

class EightTrack
include Debug

# ...
end
ph = Phonograph.new("West End Blues")
et = EightTrack.new("Surrealistic Pillow")

ph.who_am_i? # => "Phonograph (#330450): West End Blues"
et.who_am_i? # => "EightTrack (#330420): Surrealistic Pillow"

By including the Debug module, both the Phonograph and EightTrack classes gain access to
the who_am_i? instance method.

We’ll make a couple of points about the include statement before we go on. First, it has
nothing to do with files. C programmers use a preprocessor directive called #include to
insert the contents of one file into another during compilation. The Ruby include statement
simply makes a reference to a module. If that module is in a separate file, you must use
require (or its less commonly used cousin, load) to drag that file in before using include.
Second, a Ruby include does not simply copy the module’s instance methods into the class.
Instead, it makes a reference from the class to the included module. If multiple classes
include that module, they’ll all point to the same thing. If you change the definition of a
method within a module, even while your program is running, all classes that include that
module will exhibit the new behavior.”

Mixins give you a wonderfully controlled way of adding functionality to classes. However,
their true power comes out when the code in the mixin starts to interact with code in the class
that uses it. Let’s take the standard Ruby mixin Comparable as an example. The Comparable
mixin adds the comparison operators (<, <=, ==, >=, and >), as well as the method between?,
to a class. For this to work, Comparable assumes that any class that uses it defines the
operator <=>. So, as a class writer, you define one method, <=>, include Comparable, and
get six comparison functions for free.

Let’s try this with a simple Person class.

7. Of course, we’re speaking only of methods here. Instance variables are always per object, for example.

Report erratum


http://media.pragprog.com/titles/ruby3/code/samples/tutmodules_13.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=99

ITERATORS AND THE ENUMERABLE MODULE 100

We’ll make people comparable based on their names:
Download samples/tutmodules_14.rb

class Person
include Comparable
attr_reader :name
def initialize(name)
@name = name
end
def to_s
"#{@name}"
end
def <=>(other)
self.name <=> other.name
end
end
pl = Person.new("Matz")
p2 = Person.new("Guido")
p3 = Person.new("Larry")

# Compare a couple of names
if pl > p2

puts "#{pl.name}'s name > #{p2.name}'s name
end

# Sort an array of Person objects

puts "Sorted list:"
puts [ pl, p2, p3].sort

produces:

Matz's name > Guido's name
Sorted list:

Guido

Larry

Matz

Note that we included Comparable in our Person class and then defined a <=>. We were then
able to perform comparisons (such as p1 > p2) and even sort an array of Person objects.

Ilterators and the Enumerable Module

The Ruby collection classes (Array, Hash, and so on) support a large number of operations
that do various things with the collection: traverse it, sort it, and so on. You may be thinking,
“Gee, it’d sure be nice if my class could support all these neat-o features, too!” (If you
actually thought that, it’s probably time to stop watching reruns of 1960s television shows.)

Well, your classes can support all these neat-o features, thanks to the magic of mixins and
module Enumerable. All you have to do is write an iterator called each, which returns the
elements of your collection in turn. Mix in Enumerable, and suddenly your class supports
things such as map, include?, and find_all?. If the objects in your collection implement
meaningful ordering semantics using the <=> method, you’ll also get methods such as min,
max, and sort.

Report erratum


http://media.pragprog.com/titles/ruby3/code/samples/tutmodules_14.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=100

COMPOSING MODULES 101

Composing Modules

Enumerable is a standard mixin, implementing a bunch of methods in terms of the host
class’s each method. One of the methods defined by Enumerable is inject, which we saw
back on page 80. This method applies a function or operation to the first two elements in the
collection and then applies the operation to the result of this computation and to the third
element, and so on, until all elements in the collection have been used.

Because inject is made available by Enumerable, we can use it in any class that includes the
Enumerable module and defines the method each. Many built-in classes do this.

Download samples/tutmodules_15.rb

15

[ 1, 2, 3, 4, 5 J.inject(:+) # =
# "abcdefghijklm"

>
( 'a'..'m").inject(:+) >

We could also define our own class that mixes in Enumerable and hence gets inject support:
Download samples/tutmodules_16.rb

class VowelFinder
include Enumerable
def initialize(string)
@string = string
end
def each
@string.scan(/[aeiou]/) do |vowel|
yield vowel
end
end
end

Download samples/tutmodules_17.rb

vf = VowelFinder.new("the quick brown fox jumped")

vf.inject(:+) # => "euiooue"

Notice that we’ve used the same pattern in the call to inject in these examples—we’re using
it to perform a summation. When applied to numbers, it returns the arithmetic sum; when
applied to strings, it concatenates them. We can use a module to encapsulate this function-
ality too:

Download samples/tutmodules_18.rb

module Summable

def sum
inject(:+)

end

end

class Array
include Summable

end

Report erratum


http://media.pragprog.com/titles/ruby3/code/samples/tutmodules_15.rb
http://media.pragprog.com/titles/ruby3/code/samples/tutmodules_16.rb
http://media.pragprog.com/titles/ruby3/code/samples/tutmodules_17.rb
http://media.pragprog.com/titles/ruby3/code/samples/tutmodules_18.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=101

COMPOSING MODULES 102

class Range
include Summable

end

class VowelFinder
include Summable

end

Download samples/tutmodules_19.rb

1, 2, 3, 4, 5 ].sum # => 15
a'..'m").sum # => "abcdefghijklm"

vf = VowelFinder.new("the quick brown fox jumped")
vf.sum # => "euiooue"

Instance Variables in Mixins

People coming to Ruby from C++ often ask, “What happens to instance variables in a
mixin? In C++, I have to jump through some hoops to control how variables are shared in a
multiple-inheritance hierarchy. How does Ruby handle this?”

Well, for starters, it’s not really a fair question. Remember how instance variables work in
Ruby: the first mention of an @-prefixed variable creates the instance variable in the current
object, self.

For a mixin, this means that the module you mix into your client class (the mixee?) may
create instance variables in the client object and may use attr_reader and friends to define
accessors for these instance variables. For instance, the Observable module in the following
example adds an instance variable @observer_list to any class that includes it:

module Observable
def observers
@observer_list ||= []
end
def add_observer(obj)
observers << obj
end
def notify_observers
observers.each {|o| o.update }
end
end

However, this behavior exposes us to a risk. A mixin’s instance variables can clash with
those of the host class or with those of other mixins. The example that follows shows a
class that uses our Observer module but that unluckily also uses an instance variable called
@observer_list. At runtime, this program will go wrong in some hard-to-diagnose ways:

class TelescopeScheduler
# other classes can register to get notifications
# when the schedule changes
include Observable

Report erratum


http://media.pragprog.com/titles/ruby3/code/samples/tutmodules_19.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=102

COMPOSING MODULES 103

def initialize
@observer_list = [] # folks with telescope time
end
def add_viewer (viewer)
@observer_list << viewer
end
# ...
end

For the most part, mixin modules don’t use instance variables directly—they use accessors
to retrieve data from the client object. But if you need to create a mixin that has to have its
own state, ensure that the instance variables have unique names to distinguish them from
any other mixins in the system (perhaps by using the module’s name as part of the variable
name). Alternatively, the module could use a module-level hash, indexed by the current
object ID, to store instance-specific data without using Ruby instance variables:

Download samples/tutmodules_22.rb

module Test
State = {}
def state=(value)
State[object_id] = value
end
def state
State[object_id]
end
end

Download samples/tutmodules_23.rb

class Client
include Test
end

cl = Client.new
c2 = Client.new
cl.state = 'cat'
c2.state = 'dog'

cl.state # => "cat"
c2.state # => "dog"

A downside of this approach is that the data associated with a particular object will not get
automatically deleted if the object is deleted.

Resolving Ambiguous Method Names

One of the other questions folks ask about mixins is, how is method lookup handled? In
particular, what happens if methods with the same name are defined in a class, in that class’s
parent class, and in a mixin included into the class?

Report erratum


http://media.pragprog.com/titles/ruby3/code/samples/tutmodules_22.rb
http://media.pragprog.com/titles/ruby3/code/samples/tutmodules_23.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=103

INHERITANCE, MIXINS, AND DESIGN 104

The answer is that Ruby looks first in the immediate class of an object, then in the mixins
included into that class, and then in superclasses and their mixins. If a class has multiple
modules mixed in, the last one included is searched first.

Inheritance, Mixins, and Design

Inheritance and mixins both allow you to write code in one place and effectively inject that
code into multiple classes. So, when do you use each?

As is usual with most questions of design, the answer is, to some extent, it depends. How-
ever, over the years developers have come up with some pretty clear general guidelines to
help us decide.

First, let’s look at subclassing. Classes in Ruby are related to the idea of types. It would be
natural to say that "cat" is a string and [1,2] is an array. And that’s another way of saying that
the class of "cat" is String and the class of [1,2] is Array. When we create our own classes,
you can think of it as adding new types to the language. And when we subclass either a
built-in class or our own class, we’re creating a subtype.

Now, a lot of research has been done on type theories. One of the more famous results is
the Liskov Substitution Principle. Formally, this states: “Let q(x) be a property provable
about objects x of type T. Then q(y) should be true for objects y of type S where S is a
subtype of T.” What this means is that you should be able to substitute an object of a child
class wherever you use an object of the parent class—the child should honor the parent’s
contract. There’s another way of looking at this: we should be able to say that the child
object is a kind of the parent. We’re used to saying this in English: a car is a vehicle, a cat
is an animal, and so on. This means that a cat should, at the very least, be capable of doing
everything we say that an animal can do.

So, when you’re looking for subclassing relationships while designing your application, be
on the lookout for these is-a relationships.

But...here’s the bad news. In the real world, there really aren’t that many true is a relation-
ships. Instead, it’s far more common to have has a or uses a relationships between things.
The real world is built using composition, not strict hierarchies.

In the past, we’ve tended to gloss over that fact when programming. Because inheritance was
the only scheme available for sharing code, we got lazy and said things like “My Person
class is a subclass of my DatabaseWrapper class.”® But a person object is not a kind of
database wrapper object. A person object uses a database wrapper to provide persistence
services.

Is this just a theoretical issue? No! Inheritance represents an incredibly tight coupling of two
components. Change a parent class, and you risk breaking the child class. But, even worse, if
code that uses objects of the child class relies on those objects also having methods defined

8. Indeed, the Rails framework makes just this mistake.

Report erratum


http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=104

INHERITANCE, MIXINS, AND DESIGN 105

in the parent, then all that code will break, too. The parent class’s implementation leaks
through the child classes and out into the rest of the code. With a decent-sized program, this
becomes a serious inhibitor to change.

And that’s where we need to move away from inheritance in our designs. Instead, we need
to be using composition wherever we see a case of A uses a B or A has a B. Our persisted
Person object won’t subclass DataWrapper. Instead, it’ll construct a reference to a database
wrapper object and use that object reference to save and restore itself.

But that can also make code messy. And that’s where a combination of mixins and metapro-
gramming comes to the rescue, because we can say this:

class Person
include Persistable
# ...

end

instead of

class Person < DataWrapper
# ...
end

If you’re new to object-oriented programming, this discussion probably feels remote and
abstract. But as you start to code larger and larger programs, I urge you to think about the
issues discussed here. Try to reserve inheritance for the times where it is justified. And try
to explore all the cool ways that mixins let you write decoupled, flexible code.

Report erratum


http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=105

Chapter 6

Standard Types

So far we’ve been having fun implementing programs using arrays, hashes, and procs, but
we haven’t really covered the other basic types in Ruby: numbers, strings, ranges, and reg-
ular expressions. Let’s spend a few pages on these basic building blocks now.

Numbers

Ruby supports integers and floating-point, rational, and complex numbers. Integers can be
any length (up to a maximum determined by the amount of free memory on your system).
Integers within a certain range (normally —230 230 _ 1 or =262 252 _ 1) are held
internally in binary form and are objects of class Fixnum. Integers outside this range are
stored in objects of class Bignum (currently implemented as a variable-length set of short
integers). This process is transparent, and Ruby automatically manages the conversion back
and forth:

num = 81

6.times do
puts "#{num.class}: #{num}"
num == num

end

produces:
Fixnum: 81
Fixnum: 6561
Fixnum: 43046721
Bignum: 1853020188851841
Bignum: 3433683820292512484657849089281
Bignum: 11790184577738583171520872861412518665678211592275841109096961

You write integers using an optional leading sign, an optional base indicator (0 for octal, 0d
for decimal [the default], 0x for hex, or Ob for binary), followed by a string of digits in the
appropriate base. Underscore characters are ignored in the digit string (some folks use them
in place of commas in larger numbers).

Report erratum



http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=106

NUMBERS

123456 => 123456 # Fixnum

0d123456 => 123456 # Fixnum

123_456 => 123456 # Fixnum - underscore ignored
-543 => -543 # Fixnum - negative number
Oxaabb => 43707 # Fixnum - hexadecimal

0377 => 255 # Fixnum - octal

-0b10_1010 => -42 # Fixnum - binary (negated)

123_456_789_123_456_789 => 123456789123456789 # Bignum

A numeric literal with a decimal point and/or an exponent is turned into a Float object,
corresponding to the native architecture’s double data type. You must both precede and
follow the decimal point with a digit (if you write 1.0e3 as 1.e3, Ruby will try to invoke the
method e3 on the object 1).

19 , Asof Ruby 1.9, rational and complex number support is built into the interpreter. Rational
numbers are the ratio of two integers—they are fractions—and hence have an exact rep-
resentation (unlike floats). Complex numbers represent points on the complex plane. They
have two components, the real and imaginary parts.

Ruby doesn’t have a literal syntax for representing rational and complex numbers. Instead,
you create them using explicit calls to the constructor methods Rational and Complex (al-
though, as we’ll see, you can use the mathn library to make working with rational numbers

easier).
Rational(3, 4) * Rational(2, 3) # => (1/2)
Rational("3/4") % Rational("2/3") # => (1/2)

Complex(1l, 2) * Complex(3, 4) # => (-5+101i)
Complex("1+2i") * Complex("3+4i") # => (-5+10i)

All numbers are objects and respond to a variety of messages (listed in full starting on pages
466 [Bignum], 473 [Complex], 525 [Fixnum], 528 [Float], 543 [Integer], 615 [Numeric], and
660 [Rational]). So, unlike (say) C++, you find the absolute value of a number by writing
num.abs, not abs(num).

Finally, we’ll offer a warning for Perl users. Strings that contain just digits are not automat-
ically converted into numbers when used in expressions. This tends to bite most often when
reading numbers from a file. For example, we may want to find the sum of the two numbers
on each line for a file such as the following:

34
56
78

The following code doesn’t work:

some_file.each do |line]

vl, v2 = line.split # split line on spaces
print vl + v2, " "
end
produces:
34 56 78

Report erratum


http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=107

NUMBERS 108

The problem is that the input was read as strings, not numbers. The plus operator concate-
nates strings, so that’s what we see in the output. To fix this, use the Integer method to
convert the strings to integers:

some_file.each do |line]

vl, v2 = line.split

print Integer(vl) + Integer(v2),
end

produces:
7 11 15

How Numbers Interact

Most of the time, numbers work the way you’d expect. If you perform some operation
between two numbers of the same class, the answer will typically be a number of that same
class (although, as we’ve seen, fixnums can become bignums, and vice versa). If the two
numbers are different classes, the result will have the class of the more general one. If you
mix integers and floats, the result will be a float; if you mix floats and complex numbers,
the result will be complex.

1+2 # =>

2.0 # = .0

+ 2 # => .0

+ Complex(1,2) # => (2.0+21)
# =>
# =>

w w w

Rational(2,3) (5/3)
+ Rational(2,3) 1.66666666666667

R RRRR
o+ oo+ +

The return-type rule still applies when it comes to division. However this often confuses
folks, because division between two integers yields an integer result:

1.0 /2 #= 0.5
1/2.0 #= 0.5
1/ 2 #=> 0

If you’d prefer that integer division instead return a fraction (a Rational number), require
the mathn library (described on page 767). This will cause arithmetic operations to attempt
to find the most natural representation for their results. For integer division where the result
isn’t an integer, a fraction will be returned.

22 /7 #=> 3
Complex::I * Complex::I # => (-1+0i)

require 'mathn'’
22 /7 #=> (22/7)
Complex::I * Complex::I # => -1

Note that 22/7 is effectively a rational literal once mathn is loaded (albeit one that’s calcu-
lated at runtime).

Report erratum


http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=108

STRINGS 109

Looping Using Numbers

Integers also support several useful iterators. We’ve seen one already: 6.times in the code
example on page 106. Others include upto and downto for iterating up and down between
two integers. Class Numeric also provides the more general method step, which is more like
a traditional for loop.

3.times { print "X " }

1.upto(5) {li| print i, " " }

99.downto(95) {l|i| print i, " " }

50.step(80, 5) {|i| print i, " " }
produces:

XXX1234599 98 97 96 95 50 55 60 65 70 75 80
&/ As with other iterators, if you leave the block off, the call returns an Enumerator object:
10.downto(7) .with_index {|num, index| puts "#{index}: #{num}"}

produces:
0: 10

w N R
~N 0 ©

Strings

19 , Ruby strings are simply sequences of characters.! They normally hold printable characters,
but that is not a requirement; a string can also hold binary data. Strings are objects of class
String.

Strings are often created using string literals—sequences of characters between delimiters.
Because binary data is otherwise difficult to represent within program source, you can place
various escape sequences in a string literal. Each is replaced with the corresponding binary
value as the program is compiled. The type of string delimiter determines the degree of sub-
stitution performed. Within single-quoted strings, two consecutive backslashes are replaced
by a single backslash, and a backslash followed by a single quote becomes a single quote.

'escape using "\\"' # => escape using "\"
'That\'s right' # => That's right

Double-quoted strings support a boatload more escape sequences. The most common is
probably \n, the newline character. Table 22.2 on page 329 gives the complete list. In addi-
tion, you can substitute the value of any Ruby code into a string using the sequence #{ expr }.
If the code is just a global variable, a class variable, or an instance variable, you can omit
the braces.

1. Prior to Ruby 1.9, strings were sequences of 8-bit bytes.

Report erratum


http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=109

STRINGS

"Seconds/day: #{24+60+60}" # => Seconds/day: 86400
"#{'Ho! '«3}Merry Christmas!" # => Ho! Ho! Ho! Merry Christmas!
"This is line #$." # => This is line 3

The interpolated code can be one or more statements, not just an expression:

puts '"now is #{ def the(a)

the('time'")
} for all good coders..."
produces:

now is the time for all good coders...
You have three more ways to construct string literals: %q, %Q, and here documents.

%q and %Q start delimited single- and double-quoted strings (you can think of %q as a thin
quote ' and %Q as a thick quote "):

%q/general single-quoted string/ # => general single-quoted string
%Q!general double-quoted string! # => general double-quoted string
%Q{Seconds/day: #{24+60%60}} # => Seconds/day: 86400

In fact, the Q is optional:

%!general double-quoted string! # => general double-quoted string
%{Seconds/day: #{24+60+60}} # => Seconds/day: 86400

The character following the g or Q is the delimiter. If it is an opening bracket ([), brace
({), parenthesis ((), or less-than sign (<), the string is read until the matching close symbol
is found. Otherwise, the string is read until the next occurrence of the same delimiter. The
delimiter can be any nonalphanumeric or nonmultibyte character.

Finally, you can construct a string using a here document:

string = <<END_OF_STRING
The body of the string
is the input lines up to
one starting with the same
text that followed the '<<'
END_OF_STRING

A here document consists of lines in the source up to but not including the terminating
string that you specify after the << characters. Normally, this terminator must start in the
first column. However, if you put a minus sign after the << characters, you can indent the
terminator:

string = <<-END_OF_STRING
The body of the string is the input lines up to
one starting with the same text that followed the '<<'
END_OF_STRING

You can also have multiple here documents on a single line. Each acts as a separate string.
The bodies of the here documents are fetched sequentially from the source lines that follow.

Report erratum


http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=110

STRINGS 111

print <<-STRING1l, <<-STRING2
Concat
STRING1
enate
STRING2
produces:

Concat
enate

Note that Ruby does not strip leading spaces off the contents of the strings in these cases.

Strings and Encodings

=2 , In Ruby 1.9, every string has an associated encoding. The default encoding of a string
literal depends on the encoding of the source file that contains it. With no explicit encoding,
a source file (and its strings) will be US-ASCII.

plain_string = "dog"
puts "Encoding of #{plain_string.inspect} is #{plain_string.encoding}"
produces:

Encoding of "dog" is US-ASCII
If you override the encoding, you’ll do that for all strings in the file:

#encoding: utf-8

plain_string = "dog"

puts "Encoding of #{plain_string.inspect} is #{plain_string.encoding}"

utf_string = "dog"

puts "Encoding of #{utf_string.inspect} is #{utf_string.encoding}"
produces:

Encoding of "dog" is UTF-8
Encoding of "dog" is UTF-8

We’ll have a lot more to say about encoding in Chapter 17 on page 264.

Character Constants

Technically, Ruby does not have a class for characters—characters are simply strings of
length one. For historical reasons, character constants can be created by preceding the char-
acter (or sequence that represents a character) with a question mark:

7a #=>"a" (printable character)
Nn #=>"\n" (code for a newline (0x0a))
NC-a #=>"\x01" (control a)

NM-a #=>"\xE1" (meta sets bit 7)
NM-\C-a #=>"\x81" (meta and control a)
NC-? #=>"\x7F" (delete character)

Report erratum


http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=111

STRINGS 112

Do yourself a favor and immediately forget this section. It’s far easier to use regular octal
and hex escape sequences than to remember these ones. Use "a" rather than ?a, and use "\n"
rather than ?\n.

Working with Strings

String is probably the largest built-in Ruby class, with more than 100 standard methods.
We won’t go through them all here; the library reference has a complete list. Instead, we’ll
look at some common string idioms—things that are likely to pop up during day-to-day
programming.

Maybe we’ve been given a file containing information on a song playlist. For historical
reasons (are there any other kind?), the list of songs is stored as lines in the file. Each line
holds the name of the file containing the song, the song’s duration, the artist, and the title,
all in vertical bar—separated fields. A typical file may start like this:

/jazz/j00132.mp3 | 3:45 | Fats Waller | Ain't Misbehavin'
/jazz/j00319.mp3 | 2:58 | Louis Armstrong | Wonderful World
/bgrass/bg0732.mp3| 4:09 | Strength in Numbers | Texas Red

Looking at the data, it’s clear that we’ll be using some of class String’s many methods to
extract and clean up the fields before we use them. At a minimum, we’ll need to

¢ break each line into fields,
* convert the running times from mm:ss to seconds, and
* remove those extra spaces from the artists’ names.

Our first task is to split each line into fields, and String#split will do the job nicely. In this
case, we’ll pass split a regular expression, /As*\|\s*/, that splits the line into tokens wherever
split finds a vertical bar, optionally surrounded by spaces. And, because the line read from
the file has a trailing newline, we’ll use String#chomp to strip it off just before we apply the
split. We’ll store details of each song in a Struct that contains an attribute for each of the
three fields. (A Struct is simply a data structure that contains a given set of attributes—in
this case the title, name, and length. See page 696 for the gory details.)

Download samples/tutstdtypes_24.rb

Song = Struct.new(:title, :name, :length)
File.open("songdata") do |song_file]
songs = []
song_file.each do |line]|
file, length, name, title = line.chomp.split(/\s+*\|\s*/)
songs << Song.new(title, name, length)
end

puts songs[1]
end

produces:

#<struct Song title="Wonderful World", name="Louis Armstrong", length="2:58">

Report erratum


http://media.pragprog.com/titles/ruby3/code/samples/tutstdtypes_24.rb
http://books.pragprog.com/titles/ruby3/errata/add?pdf_page=112

STRINGS 113

Unfortunately, whoever created the original file entered the artists’ names in columns, so
some of them contain extra spaces that we’d better remove before we go much further. We
have many ways of doing this, but probably the simplest is String#squeeze, which trims
runs of repeated characters. We’ll use the squeeze! form of the method, which alters the
string in place:

Download samples/tutstdtypes_25.rb

Song = Struct.new(:title, :name, :length)
File.open("songdata") do |song_file]
songs = []
song_file.each do |line]|
file, length, name, title = line.chomp.split(/\s+*\|\s*/)
name.squeeze! (" ")
songs << Song.new(title, name, length)
end
puts songs[1]
end

produces:

#<struct Song title="Wonderful World", name="Louis Armstrong", length="2:58">

Finally, we have the minor matter of the time format: the file says 2:58, and we want the
number of seconds, 178. We could use split again, this time splitting the time field around
the colon character:

mins, secs = length.split(/:/)

Instead, we’ll use a related method. String#scan is similar to split in that it breaks a string
into chunks based on a pattern. However, unlike split, with scan you specify the pattern that
you want the chunks to match. In this case, we want to match one or more digits for both
the minutes and seconds components. The pattern for one or more digits is Ad+/:

Download samples/tutstdtypes_27.rb

Song = Struct.new(:title, :name, :length)
File.open("songdata") do |song_file]|
songs = []
song_file.each do |line]
file, length, name, title = line.chomp.split(/\s*\|\s*/)
name.squeeze! (" ")
mins, secs = length.scan(/\d+/)
songs << Song.new(title, name, mins.to_i*60 + secs.to_i)
end
puts songs[1]
end

produces:

#<struct Song title="Wond