

Ruby Cookbook ™

,TITLE.21720 Page i Friday, July 7, 2006 4:42 PM

Other resources from O’Reilly

Related titles Ajax Hacks™

Ajax Design Patterns

Head Rush Ajax

Rails Cookbook™

Ruby on Rails: Up and
Running

oreilly.com oreilly.com is more than a complete catalog of O’Reilly books.
You’ll also find links to news, events, articles, weblogs, sample
chapters, and code examples.

oreillynet.com is the essential portal for developers interested in
open and emerging technologies, including new platforms, pro-
gramming languages, and operating systems.

Conferences O’Reilly brings diverse innovators together to nurture the ideas
that spark revolutionary industries. We specialize in document-
ing the latest tools and systems, translating the innovator’s
knowledge into useful skills for those in the trenches. Visit con-
ferences.oreilly.com for our upcoming events.

Safari Bookshelf (safari.oreilly.com) is the premier online refer-
ence library for programmers and IT professionals. Conduct
searches across more than 1,000 books. Subscribers can zero in
on answers to time-critical questions in a matter of seconds.
Read the books on your Bookshelf from cover to cover or sim-
ply flip to the page you need. Try it today for free.

,TITLE.21720 Page ii Friday, July 7, 2006 4:42 PM

Ruby Cookbook™

Lucas Carlson and Leonard Richardson

Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo

,TITLE.21720 Page iii Friday, July 7, 2006 4:42 PM

Ruby Cookbook
by Lucas Carlson and Leonard Richardson

Copyright © 2006 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Mike Loukides
Production Editor: Colleen Gorman
Proofreader: Colleen Gorman
Indexer: Johnna VanHoose Dinse

Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrators: Robert Romano and Jessamyn Read

Printing History:

July 2006: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. The Cookbook series designations, Ruby Cookbook, the image of a side-striped
jackal, and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

ISBN: 0-596-52369-6

[M]

,COPYRIGHT.21583 Page iv Friday, July 7, 2006 4:42 PM

For Tess, who sat by me the whole time.

For John and Rael, the best programmers I know.

—Lucas Carlson

For Sumana.

—Leonard Richardson

,DEDICATION.6852 Page v Tuesday, June 27, 2006 11:12 AM

,DEDICATION.6852 Page vi Tuesday, June 27, 2006 11:12 AM

vii

Table of Contents

Preface . xix

1. Strings . 1
1.1 Building a String from Parts 4
1.2 Substituting Variables into Strings 6
1.3 Substituting Variables into an Existing String 8
1.4 Reversing a String by Words or Characters 10
1.5 Representing Unprintable Characters 11
1.6 Converting Between Characters and Values 14
1.7 Converting Between Strings and Symbols 14
1.8 Processing a String One Character at a Time 16
1.9 Processing a String One Word at a Time 17

1.10 Changing the Case of a String 19
1.11 Managing Whitespace 21
1.12 Testing Whether an Object Is String-Like 22
1.13 Getting the Parts of a String You Want 23
1.14 Handling International Encodings 24
1.15 Word-Wrapping Lines of Text 26
1.16 Generating a Succession of Strings 28
1.17 Matching Strings with Regular Expressions 30
1.18 Replacing Multiple Patterns in a Single Pass 32
1.19 Validating an Email Address 33
1.20 Classifying Text with a Bayesian Analyzer 37

2. Numbers . 39
2.1 Parsing a Number from a String 40
2.2 Comparing Floating-Point Numbers 43

viii | Table of Contents

2.3 Representing Numbers to Arbitrary Precision 45
2.4 Representing Rational Numbers 48
2.5 Generating Random Numbers 50
2.6 Converting Between Numeric Bases 52
2.7 Taking Logarithms 53
2.8 Finding Mean, Median, and Mode 55
2.9 Converting Between Degrees and Radians 58

2.10 Multiplying Matrices 60
2.11 Solving a System of Linear Equations 64
2.12 Using Complex Numbers 67
2.13 Simulating a Subclass of Fixnum 69
2.14 Doing Math with Roman Numbers 73
2.15 Generating a Sequence of Numbers 78
2.16 Generating Prime Numbers 81
2.17 Checking a Credit Card Checksum 85

3. Date and Time . 87
3.1 Finding Today’s Date 90
3.2 Parsing Dates, Precisely or Fuzzily 93
3.3 Printing a Date 96
3.4 Iterating Over Dates 100
3.5 Doing Date Arithmetic 102
3.6 Counting the Days Since an Arbitrary Date 104
3.7 Converting Between Time Zones 106
3.8 Checking Whether Daylight Saving Time Is in Effect 109
3.9 Converting Between Time and DateTime Objects 110

3.10 Finding the Day of the Week 113
3.11 Handling Commercial Dates 115
3.12 Running a Code Block Periodically 116
3.13 Waiting a Certain Amount of Time 118
3.14 Adding a Timeout to a Long-Running Operation 121

4. Arrays . 123
4.1 Iterating Over an Array 125
4.2 Rearranging Values Without Using Temporary Variables 129
4.3 Stripping Duplicate Elements from an Array 130
4.4 Reversing an Array 132
4.5 Sorting an Array 132
4.6 Ignoring Case When Sorting Strings 134

Table of Contents | ix

4.7 Making Sure a Sorted Array Stays Sorted 135
4.8 Summing the Items of an Array 140
4.9 Sorting an Array by Frequency of Appearance 141

4.10 Shuffling an Array 143
4.11 Getting the N Smallest Items of an Array 145
4.12 Building Up a Hash Using Injection 147
4.13 Extracting Portions of Arrays 149
4.14 Computing Set Operations on Arrays 152
4.15 Partitioning or Classifying a Set 155

5. Hashes . 159
5.1 Using Symbols as Hash Keys 161
5.2 Creating a Hash with a Default Value 162
5.3 Adding Elements to a Hash 164
5.4 Removing Elements from a Hash 166
5.5 Using an Array or Other Modifiable Object as a Hash Key 168
5.6 Keeping Multiple Values for the Same Hash Key 170
5.7 Iterating Over a Hash 171
5.8 Iterating Over a Hash in Insertion Order 174
5.9 Printing a Hash 175

5.10 Inverting a Hash 177
5.11 Choosing Randomly from a Weighted List 179
5.12 Building a Histogram 181
5.13 Remapping the Keys and Values of a Hash 183
5.14 Extracting Portions of Hashes 184
5.15 Searching a Hash with Regular Expressions 185

6. Files and Directories . 187
6.1 Checking to See If a File Exists 190
6.2 Checking Your Access to a File 191
6.3 Changing the Permissions on a File 193
6.4 Seeing When a File Was Last Used 196
6.5 Listing a Directory 198
6.6 Reading the Contents of a File 201
6.7 Writing to a File 204
6.8 Writing to a Temporary File 206
6.9 Picking a Random Line from a File 207

6.10 Comparing Two Files 209
6.11 Performing Random Access on “Read-Once” Input Streams 212

x | Table of Contents

6.12 Walking a Directory Tree 214
6.13 Locking a File 217
6.14 Backing Up to Versioned Filenames 220
6.15 Pretending a String Is a File 222
6.16 Redirecting Standard Input or Output 225
6.17 Processing a Binary File 227
6.18 Deleting a File 231
6.19 Truncating a File 232
6.20 Finding the Files You Want 233
6.21 Finding and Changing the Current Working Directory 235

7. Code Blocks and Iteration . 237
7.1 Creating and Invoking a Block 240
7.2 Writing a Method That Accepts a Block 241
7.3 Binding a Block Argument to a Variable 244
7.4 Blocks as Closures: Using Outside Variables Within a Code Block 246
7.5 Writing an Iterator Over a Data Structure 247
7.6 Changing the Way an Object Iterates 250
7.7 Writing Block Methods That Classify or Collect 253
7.8 Stopping an Iteration 254
7.9 Looping Through Multiple Iterables in Parallel 256

7.10 Hiding Setup and Cleanup in a Block Method 260
7.11 Coupling Systems Loosely with Callbacks 262

8. Objects and Classes . 267
8.1 Managing Instance Data 269
8.2 Managing Class Data 272
8.3 Checking Class or Module Membership 275
8.4 Writing an Inherited Class 277
8.5 Overloading Methods 279
8.6 Validating and Modifying Attribute Values 281
8.7 Defining a Virtual Attribute 283
8.8 Delegating Method Calls to Another Object 284
8.9 Converting and Coercing Objects to Different Types 287

8.10 Getting a Human-Readable Printout of Any Object 291
8.11 Accepting or Passing a Variable Number of Arguments 293
8.12 Simulating Keyword Arguments 295
8.13 Calling a Superclass’s Method 297
8.14 Creating an Abstract Method 299

Table of Contents | xi

8.15 Freezing an Object to Prevent Changes 302
8.16 Making a Copy of an Object 304
8.17 Declaring Constants 307
8.18 Implementing Class and Singleton Methods 309
8.19 Controlling Access by Making Methods Private 311

9. Modules and Namespaces . 315
9.1 Simulating Multiple Inheritance with Mixins 315
9.2 Extending Specific Objects with Modules 319
9.3 Mixing in Class Methods 321
9.4 Implementing Enumerable: Write One Method, Get 22 Free 322
9.5 Avoiding Naming Collisions with Namespaces 324
9.6 Automatically Loading Libraries as Needed 326
9.7 Including Namespaces 328
9.8 Initializing Instance Variables Defined by a Module 329
9.9 Automatically Initializing Mixed-In Modules 330

10. Reflection and Metaprogramming . 333
10.1 Finding an Object’s Class and Superclass 334
10.2 Listing an Object’s Methods 335
10.3 Listing Methods Unique to an Object 337
10.4 Getting a Reference to a Method 339
10.5 Fixing Bugs in Someone Else’s Class 341
10.6 Listening for Changes to a Class 343
10.7 Checking Whether an Object Has Necessary Attributes 345
10.8 Responding to Calls to Undefined Methods 347
10.9 Automatically Initializing Instance Variables 351

10.10 Avoiding Boilerplate Code with Metaprogramming 352
10.11 Metaprogramming with String Evaluations 355
10.12 Evaluating Code in an Earlier Context 357
10.13 Undefining a Method 358
10.14 Aliasing Methods 361
10.15 Doing Aspect-Oriented Programming 364
10.16 Enforcing Software Contracts 367

11. XML and HTML . 371
11.1 Checking XML Well-Formedness 372
11.2 Extracting Data from a Document’s Tree Structure 374
11.3 Extracting Data While Parsing a Document 376

xii | Table of Contents

11.4 Navigating a Document with XPath 377
11.5 Parsing Invalid Markup 380
11.6 Converting an XML Document into a Hash 382
11.7 Validating an XML Document 385
11.8 Substituting XML Entities 388
11.9 Creating and Modifying XML Documents 390

11.10 Compressing Whitespace in an XML Document 394
11.11 Guessing a Document’s Encoding 395
11.12 Converting from One Encoding to Another 396
11.13 Extracting All the URLs from an HTML Document 398
11.14 Transforming Plain Text to HTML 401
11.15 Converting HTML Documents from the Web into Text 402
11.16 A Simple Feed Aggregator 405

12. Graphics and Other File Formats . 409
12.1 Thumbnailing Images 409
12.2 Adding Text to an Image 412
12.3 Converting One Image Format to Another 415
12.4 Graphing Data 417
12.5 Adding Graphical Context with Sparklines 421
12.6 Strongly Encrypting Data 424
12.7 Parsing Comma-Separated Data 426
12.8 Parsing Not-Quite-Comma-Separated Data 429
12.9 Generating and Parsing Excel Spreadsheets 431

12.10 Compressing and Archiving Files with Gzip and Tar 433
12.11 Reading and Writing ZIP Files 436
12.12 Reading and Writing Configuration Files 437
12.13 Generating PDF Files 439
12.14 Representing Data as MIDI Music 443

13. Databases and Persistence . 447
13.1 Serializing Data with YAML 450
13.2 Serializing Data with Marshal 454
13.3 Persisting Objects with Madeleine 455
13.4 Indexing Unstructured Text with SimpleSearch 458
13.5 Indexing Structured Text with Ferret 459
13.6 Using Berkeley DB Databases 463
13.7 Controlling MySQL on Unix 465
13.8 Finding the Number of Rows Returned by a Query 466

Table of Contents | xiii

13.9 Talking Directly to a MySQL Database 468
13.10 Talking Directly to a PostgreSQL Database 470
13.11 Using Object Relational Mapping with ActiveRecord 473
13.12 Using Object Relational Mapping with Og 477
13.13 Building Queries Programmatically 481
13.14 Validating Data with ActiveRecord 485
13.15 Preventing SQL Injection Attacks 487
13.16 Using Transactions in ActiveRecord 490
13.17 Adding Hooks to Table Events 492
13.18 Adding Taggability with a Database Mixin 495

14. Internet Services . 499
14.1 Grabbing the Contents of a Web Page 500
14.2 Making an HTTPS Web Request 502
14.3 Customizing HTTP Request Headers 504
14.4 Performing DNS Queries 506
14.5 Sending Mail 508
14.6 Reading Mail with IMAP 512
14.7 Reading Mail with POP3 516
14.8 Being an FTP Client 520
14.9 Being a Telnet Client 522

14.10 Being an SSH Client 525
14.11 Copying a File to Another Machine 527
14.12 Being a BitTorrent Client 529
14.13 Pinging a Machine 531
14.14 Writing an Internet Server 532
14.15 Parsing URLs 534
14.16 Writing a CGI Script 537
14.17 Setting Cookies and Other HTTP Response Headers 540
14.18 Handling File Uploads via CGI 543
14.19 Running Servlets with WEBrick 546
14.20 A Real-World HTTP Client 551

15. Web Development: Ruby on Rails . 555
15.1 Writing a Simple Rails Application to Show System Status 557
15.2 Passing Data from the Controller to the View 560
15.3 Creating a Layout for Your Header and Footer 563
15.4 Redirecting to a Different Location 565
15.5 Displaying Templates with Render 567

xiv | Table of Contents

15.6 Integrating a Database with Your Rails Application 570
15.7 Understanding Pluralization Rules 573
15.8 Creating a Login System 575
15.9 Storing Hashed User Passwords in the Database 579

15.10 Escaping HTML and JavaScript for Display 581
15.11 Setting and Retrieving Session Information 582
15.12 Setting and Retrieving Cookies 585
15.13 Extracting Code into Helper Functions 587
15.14 Refactoring the View into Partial Snippets of Views 588
15.15 Adding DHTML Effects with script.aculo.us 592
15.16 Generating Forms for Manipulating Model Objects 594
15.17 Creating an Ajax Form 598
15.18 Exposing Web Services on Your Web Site 601
15.19 Sending Mail with Rails 604
15.20 Automatically Sending Error Messages to Your Email 606
15.21 Documenting Your Web Site 608
15.22 Unit Testing Your Web Site 609
15.23 Using breakpoint in Your Web Application 613

16. Web Services and Distributed Programming . 616
16.1 Searching for Books on Amazon 617
16.2 Finding Photos on Flickr 620
16.3 Writing an XML-RPC Client 623
16.4 Writing a SOAP Client 625
16.5 Writing a SOAP Server 627
16.6 Searching the Web with Google’s SOAP Service 628
16.7 Using a WSDL File to Make SOAP Calls Easier 630
16.8 Charging a Credit Card 632
16.9 Finding the Cost to Ship Packages via UPS or FedEx 633

16.10 Sharing a Hash Between Any Number of Computers 635
16.11 Implementing a Distributed Queue 639
16.12 Creating a Shared “Whiteboard” 640
16.13 Securing DRb Services with Access Control Lists 644
16.14 Automatically Discovering DRb Services with Rinda 645
16.15 Proxying Objects That Can’t Be Distributed 647
16.16 Storing Data on Distributed RAM with MemCached 650
16.17 Caching Expensive Results with MemCached 652
16.18 A Remote-Controlled Jukebox 655

Table of Contents | xv

17. Testing, Debugging, Optimizing, and Documenting 661
17.1 Running Code Only in Debug Mode 662
17.2 Raising an Exception 664
17.3 Handling an Exception 666
17.4 Rerunning After an Exception 668
17.5 Adding Logging to Your Application 669
17.6 Creating and Understanding Tracebacks 672
17.7 Writing Unit Tests 674
17.8 Running Unit Tests 677
17.9 Testing Code That Uses External Resources 679

17.10 Using breakpoint to Inspect and Change the State
 of Your Application 684
17.11 Documenting Your Application 686
17.12 Profiling Your Application 691
17.13 Benchmarking Competing Solutions 694
17.14 Running Multiple Analysis Tools at Once 696
17.15 Who’s Calling That Method? A Call Graph Analyzer 697

18. Packaging and Distributing Software . 701
18.1 Finding Libraries by Querying Gem Respositories 702
18.2 Installing and Using a Gem 705
18.3 Requiring a Specific Version of a Gem 708
18.4 Uninstalling a Gem 711
18.5 Reading Documentation for Installed Gems 712
18.6 Packaging Your Code as a Gem 714
18.7 Distributing Your Gems 717
18.8 Installing and Creating Standalone Packages with setup.rb 719

19. Automating Tasks with Rake . 723
19.1 Automatically Running Unit Tests 725
19.2 Automatically Generating Documentation 727
19.3 Cleaning Up Generated Files 729
19.4 Automatically Building a Gem 731
19.5 Gathering Statistics About Your Code 732
19.6 Publishing Your Documentation 735
19.7 Running Multiple Tasks in Parallel 737
19.8 A Generic Project Rakefile 738

xvi | Table of Contents

20. Multitasking and Multithreading . 745
20.1 Running a Daemon Process on Unix 746
20.2 Creating a Windows Service 749
20.3 Doing Two Things at Once with Threads 752
20.4 Synchronizing Access to an Object 754
20.5 Terminating a Thread 757
20.6 Running a Code Block on Many Objects Simultaneously 760
20.7 Limiting Multithreading with a Thread Pool 763
20.8 Driving an External Process with popen 765
20.9 Capturing the Output and Error Streams

 from a Unix Shell Command 767
20.10 Controlling a Process on Another Machine 768
20.11 Avoiding Deadlock 770

21. User Interface . 773
21.1 Getting Input One Line at a Time 774
21.2 Getting Input One Character at a Time 776
21.3 Parsing Command-Line Arguments 779
21.4 Testing Whether a Program Is Running Interactively 782
21.5 Setting Up and Tearing Down a Curses Program 782
21.6 Clearing the Screen 785
21.7 Determining Terminal Size 786
21.8 Changing Text Color 788
21.9 Reading a Password 791

21.10 Allowing Input Editing with Readline 792
21.11 Making Your Keyboard Lights Blink 794
21.12 Creating a GUI Application with Tk 796
21.13 Creating a GUI Application with wxRuby 800
21.14 Creating a GUI Application with Ruby/GTK 803
21.15 Creating a Mac OS X Application with RubyCocoa 807
21.16 Using AppleScript to Get User Input 815

22. Extending Ruby with Other Languages . 817
22.1 Writing a C Extension for Ruby 818
22.2 Using a C Library from Ruby 821
22.3 Calling a C Library Through SWIG 825
22.4 Writing Inline C in Your Ruby Code 827
22.5 Using Java Libraries with JRuby 830

Table of Contents | xvii

23. System Administration . 833
23.1 Scripting an External Program 834
23.2 Managing Windows Services 835
23.3 Running Code as Another User 837
23.4 Running Periodic Tasks Without cron or at 839
23.5 Deleting Files That Match a Regular Expression 840
23.6 Renaming Files in Bulk 842
23.7 Finding Duplicate Files 845
23.8 Automating Backups 848
23.9 Normalizing Ownership and Permissions in User Directories 849

23.10 Killing All Processes for a Given User 852

Index . 855

xix

Preface1

Life Is Short
This is a book of recipes: solutions to common problems, copy-and-paste code snip-
pets, explanations, examples, and short tutorials.

This book is meant to save you time. Time, as they say, is money, but a span of time
is also a piece of your life. Our lives are better spent creating new things than fight-
ing our own errors, or trying to solve problems that have already been solved. We
present this book in the hope that the time it saves, distributed across all its readers,
will greatly outweigh the time we spent creating it.

The Ruby programming language is itself a wonderful time-saving tool. It makes you
more productive than other programming languages because you spend more time
making the computer do what you want, and less wrestling with the language. But
there are many ways for a Ruby programmer to spend time without accomplishing
anything, and we’ve encountered them all:

• Time spent writing Ruby implementations of common algorithms.

• Time spent debugging Ruby implementations of common algorithms.

• Time spent discovering and working around Ruby-specific pitfalls.

• Time spent on repetitive tasks (including repetitive programming tasks!) that
could be automated.

• Time spent duplicating work that someone else has already made publicly available.

• Time spent searching for a library that does X.

• Time spent evaluating and deciding between the many libraries that do X.

• Time spent learning how to use a library because of poor or outdated
documentation.

• Time lost staying away from a useful technology because it seems intimidating.

xx | Preface

We, and the many contributors to this book, recall vividly our own wasted hours
and days. We’ve distilled our experiences into this book so that you don’t waste your
time—or at least so you enjoyably waste it on more interesting problems.

Our other goal is to expand your interests. If you come to this book wanting to gen-
erate algorithmic music with Ruby then, yes, Recipe 12.14 will save you time over
starting from scratch. It’s more likely that you’d never considered the possibility until
now. Every recipe in this book was developed and written with these two goals in
mind: to save you time, and to keep your brain active with new ideas.

Audience
This cookbook is aimed at people who know at least a little bit of Ruby, or who
know a fair amount about programming in general. This isn’t a Ruby tutorial (see the
Resources section below for some real tutorials), but if you’re already familiar with a
few other programming languages, you should be able to pick up Ruby by reading
through the first 10 chapters of this book and typing in the code listings as you go.

We’ve included recipes suitable for all skill levels, from those who are just starting
out with Ruby, to experts who need an occasional reference. We focus mainly on
generic programming techniques, but we also cover specific application frameworks
(like Ruby on Rails and GUI libraries) and best practices (like unit testing).

Even if you just plan to use this book as a reference, we recommend that you skim
through it once to get a picture of the problems we solve. This is a big book but it
doesn’t solve every problem. If you pick it up and you can’t find a solution to your
problem, or one that nudges you in the right direction, then you’ve lost time.

If you skim through this book once beforehand, you’ll get a fair idea of the problems
we cover in this book, and you’ll get a better hit rate. You’ll know when this book
can help you; and when you should consult other books, do a web search, ask a
friend, or get help some other way.

The Structure of This Book
Each of this book’s 23 chapters focuses on a kind of programming or a particular
data type. This overview of the chapters should give you a picture of how we divided
up the recipes. Each chapter also has its own, somewhat lengthier introduction,
which gives a more detailed view of its recipes. At the very least, we recommend you
skim the chapter introductions and the table of contents.

We start with six chapters covering Ruby’s built-in data structures.

• Chapter 1, Strings, contains recipes for building, processing, and manipulating
strings of text. We devote a few recipes specifically to regular expressions (Reci-
pes 1.17 through 1.19), but our focus is on Ruby-specific issues, and regular

Preface | xxi

expressions are a very general tool. If you haven’t encountered them yet, or just
find them intimidating, we recommend you go through an online tutorial or
Mastering Regular Expressions by Jeffrey Friedl (O’Reilly).

• Chapter 2, Numbers, covers the representation of different types of numbers:
real numbers, complex numbers, arbitrary-precision decimals, and so on. It also
includes Ruby implementations of common mathematical and statistical algo-
rithms, and explains some Ruby quirks you’ll run into if you create your own
numeric types (Recipes 2.13 and 2.14).

• Chapter 3, Date and Time, covers Ruby’s two interfaces for dealing with time: the
one based on the C time library, which may be familiar to you from other program-
ming languages, and the one implemented in pure Ruby, which is more idiomatic.

• Chapter 4, Arrays, introduces the array, Ruby’s simplest compound data type.
Many of an array’s methods are actually methods of the Enumerable mixin; this
means you can apply many of these recipes to hashes and other data types. Some
features of Enumerable are covered in this chapter (Recipes 4.4 and 4.6), and
some are covered in Chapter 7.

• Chapter 5, Hashes, covers the hash, Ruby’s other basic compound data type.
Hashes make it easy to associate objects with names and find them later (hashes
are sometimes called “lookup tables” or “dictionaries,” two telling names). It’s
easy to use hashes along with arrays to build deep and complex data structures.

• Chapter 6, Files and Directories, covers techniques for reading, writing, and
manipulating files. Ruby’s file access interface is based on the standard C file
libraries, so it may look familiar to you. This chapter also covers Ruby’s stan-
dard libraries for searching and manipulating the filesystem; many of these reci-
pes show up again in Chapter 23.

The first six chapters deal with specific algorithmic problems. The next four are
more abstract: they’re about Ruby idiom and philosophy. If you can’t get the Ruby
language itself to do what you want, or you’re having trouble writing Ruby code that
looks the way Ruby “should” look, the recipes in these chapters may help.

• Chapter 7, Code Blocks and Iteration, contains recipes that explore the possibili-
ties of Ruby’s code blocks (also known as closures).

• Chapter 8, Objects and Classes, covers Ruby’s take on object-oriented program-
ming. It contains recipes for writing different types of classes and methods, and a
few recipes that demonstrate capabilities of all Ruby objects (such as freezing
and cloning).

• Chapter 9, Modules and Namespaces, covers Ruby’s modules. These constructs
are used to “mix” new behavior into existing classes and to segregate functional-
ity into different namespaces.

• Chapter 10, Reflection and Metaprogramming, covers techniques for programati-
cally exploring and modifying Ruby class definitions.

xxii | Preface

Chapter 6 covers basic file access, but doesn’t touch much on specific file formats.
We devote three chapters to popular ways of storing data.

• Chapter 11, XML and HTML, shows how to handle the most popular data inter-
change formats. The chapter deals mostly with parsing other people’s XML doc-
uments and web pages (but see Recipe 11.9).

• Chapter 12, Graphics and Other File Formats, covers data interchange formats
other than XML and HTML, with a special focus on generating and manipulat-
ing graphics.

• Chapter 13, Databases and Persistence, covers the best Ruby interfaces to data
storage formats, whether you’re serializing Ruby objects to disk, or storing struc-
tured data in a database. This chapter demonstrates everything from different
ways of serializing data and indexing text, to the Ruby client libraries for popu-
lar SQL databases, to full-blown abstraction layers like ActiveRecord that save
you from having to write SQL at all.

Currently the most popular use of Ruby is in network applications (mostly through
Ruby on Rails). We devote three chapters to different types of applications:

• Chapter 14, Internet Services, kicks off our networking coverage by illustrating a
wide variety of clients and servers written with Ruby libraries.

• Chapter 15, Web Development: Ruby on Rails, covers the web application frame-
work that’s been driving so much of Ruby’s recent popularity.

• Chapter 16, Web Services and Distributed Programming, covers two techniques for
sharing information between computers during a Ruby program. In order to use a
web service, you make an HTTP request of a program on some other computer,
usually one you don’t control. Ruby’s DRb library lets you share Ruby data struc-
tures between programs running on a set of computers, all of which you control.

We then have three chapters on the auxilliary tasks that surround the main program-
ming work of a project.

• Chapter 17, Testing, Debugging, Optimizing, and Documenting, focuses mainly
on handling exception conditions and creating unit tests for your code. There
are also several recipes on the processes of debugging and optimization.

• Chapter 18, Packaging and Distributing Software, mainly deals with Ruby’s Gem
packaging system and the RubyForge server that hosts many gem files. Many
recipes in other chapters require that you install a particular gem, so if you’re not
familiar with gems, we recommend you read Recipe 18.2 in particular. The
chapter also shows you how to create and distribute gems for your own projects.

• Chapter 19, Automating Tasks with Rake, covers the most popular Ruby build
tool. With Rake, you can script common tasks like running unit tests or packag-
ing your code as a gem. Though it’s usually used in Ruby projects, it’s a general-
purpose build language that you can use wherever you might use Make.

Preface | xxiii

We close the book with four chapters on miscellaneous topics.

• Chapter 20, Multitasking and Multithreading, shows how to use threads to do
more than one thing at once, and how to use Unix subprocesses to run external
commands.

• Chapter 21, User Interface, covers user interfaces (apart from the web interface,
which was covered in Chapter 15). We discuss the command-line interface,
character-based GUIs with Curses and HighLine, GUI toolkits for various plat-
forms, and more obscure kinds of user interface (Recipe 21.11).

• Chapter 22, Extending Ruby with Other Languages, focuses on hooking up Ruby
to other languages, either for performance or to get access to more libraries.
Most of the chapter focuses on getting access to C libraries, but there is one rec-
ipe about JRuby, the Ruby implementation that runs on the Java Virtual
Machine (Recipe 22.5).

• Chapter 23, System Administration, is full of self-contained programs for doing
administrative tasks, usually using techniques from other chapters. The recipes
have a heavy focus on Unix administration, but there are some resources for
Windows users (including Recipe 23.2), and some cross-platform scripts.

How the Code Listings Work
Learning from a cookbook means performing the recipes. Some of our recipes define
big chunks of Ruby code that you can simply plop into your program and use with-
out really understanding them (Recipe 19.8 is a good example). But most of the reci-
pes demonstrate techniques, and the best way to learn a technique is to practice it.

We wrote the recipes, and their code listings, with this in mind. Most of our listings
act like unit tests for the concepts described in the recipe: they poke at objects and
show you the results.

Now, a Ruby installation comes with an interactive interpreter called irb. Within an
irb session, you can type in lines of Ruby code and see the output immediately. You
don’t have to create a Ruby program file and run it through the interpreter.

Most of our recipes are presented in a form that you can type or copy/paste directly
into an irb session. To study a recipe in depth, we recommend that you start an irb
session and run through the code listings as you read it. You’ll have a deeper under-
standing of the concept if you do it yourself than if you just read about it. Once
you’re done, you can experiment further with the objects you defined while running
the code listings.

Sometimes we want to draw your attention to the expected result of a Ruby expres-
sion. We do this with a Ruby comment containing an ASCII arrow that points to the
expected value of the expression. This is the same arrow irb uses to tell you the value
of every expression you type.

xxiv | Preface

We also use textual comments to explain some pieces of code. Here’s a fragment of
Ruby code that I’ve formatted with comments as I would in a recipe:

1 + 2 # => 3

On a long line, the expected value goes on a new line:
Math.sqrt(1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10)
=> 7.41619848709566

To display the expected output of a Ruby expression, we use a comment that has no
ASCII arrow, and that always goes on a new line:

puts "This string is self-referential."
This string is self-referential.

If you type these two snippets of code into irb, ignoring the comments, you can
check back against the text and verify that you got the same results we did:

$ irb
irb(main):001:0> 1 + 2
=> 3
irb(main):002:0> Math.sqrt(1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10)
=> 7.41619848709566
irb(main):003:0> puts "This string is self-referential."
This string is self-referential.
=> nil

If you’re reading this book in electronic form, you can copy and paste the code frag-
ments into irb. The Ruby interpreter will ignore the comments, but you can use
them to make sure your answers match ours, without having to look back at the text.
(But you should know that typing in the code yourself, at least the first time, is bet-
ter for comprehension.)

$ irb
irb(main):001:0> 1 + 2 # => 3
=> 3
irb(main):002:0>
irb(main):003:0* # On a long line, the expected value goes on a new line:
irb(main):004:0* Math.sqrt(1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10)
=> 7.41619848709566
irb(main):005:0> # => 7.41619848709566
irb(main):006:0*
irb(main):007:0* puts "This string is self-referential."
This string is self-referential.
=> nil
irb(main):008:0> # This string is self-referential.

We don’t cut corners. Most of our recipes demonstrate a complete irb session from
start to finish, and they include any imports or initialization necessary to illustrate the
point we’re trying to make. If you run the code exactly as it is in the recipe, you should
get the same results we did.* This fits in with our philosophy that code samples should

* When a program’s behavior depends on the current time, the random number generator, or the presence of
certain files on disk, you might not get the exact same results we did, but it should be similar.

Preface | xxv

be unit tests for the underlying concepts. In fact, we tested our code samples like unit
tests, with a Ruby script that parses recipe texts and runs the code listings.

The irb session technique doesn’t always work. Rails recipes have to run within
Rails. Curses recipes take over the screen and don’t play well with irb. So sometimes
we show you standalone files. We present them in the following format:

#!/usr/bin/ruby -w
sample_ruby_file.rb: A sample file

1 + 2
Math.sqrt(1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10)
puts "This string is self-referential."

Whenever possible, we’ll also show what you’ll get when you run this program:
maybe a screenshot of a GUI program, or a record of the program’s output when run
from the Unix command line:

$ ruby sample_ruby_file.rb
This string is self-referential.

Note that the output of sample_ruby_file.rb looks different from the same code
entered into irb. Here, there’s no trace of the addition and the square root opera-
tions, because they produce no output.

Installing the Software
Ruby comes preinstalled on Mac OS X and most Linux installations. Windows
doesn’t come with Ruby, but it’s easy to get it with the One-Click Installer: see http://
rubyforge.org/projects/rubyinstaller/.

If you’re on a Unix/Linux system and you don’t have Ruby installed (or you want to
upgrade), your distribution’s package system may make a Ruby package available.
On Debian GNU/Linux, it’s available as the package ruby-[version]: for instance,
ruby-1.8 or ruby-1.9. Red Hat Linux calls it ruby; so does the DarwinParts system on
Mac OS X.

If all else fails, download the Ruby source code and compile it yourself. You can get
the Ruby source code through FTP or HTTP by visiting http://www.ruby-lang.org/.

Many of the recipes in this book require that you install third-party libraries in the
form of Ruby gems. In general, we prefer standalone solutions (using only the Ruby
standard library) to solutions that use gems, and gem-based solutions to ones that
require other kinds of third-party software.

If you’re not familiar with gems, consult Chapter 18 as needed. To get started, all
you need to know is that you first download the Rubygems library from http://
rubyforge.org/projects/rubygems/ (choose the latest release from that page). Unpack

xxvi | Preface

the tarball or ZIP file, change into the rubygems-[version] directory, and run this
command as the superuser:

$ ruby setup.rb

The Rubygems library is included in the Windows One-Click Installer, so you don’t
have to worry about this step on Windows.

Once you’ve got the Rubygems library installed, it’s easy to install many other pieces
of Ruby code. When a recipe says something like “Ruby on Rails is available as the
rails gem,” you can issue the following command from the command line (again, as
the superuser):

$ gem install rails --include-dependencies

The RubyGems library will download the rails gem (and any other gems on which it
depends) and automatically install them. You should then be able to run the code in
the recipe, exactly as it appears.

The three most useful gems for new Ruby installations are rails (if you intend to cre-
ate Rails applications) and the two gems provided by the Ruby Facets project:
facets_core and facets_more. The Facets Core library extends the classes of the Ruby
standard library with generally useful methods. The Facets More library adds entirely
new classes and modules. The Ruby Facets homepage (http://facets.rubyforge.org/)
has a complete reference.

Some Ruby libraries (especially older ones) are not packaged as gems. Most of the
nongem libraries mentioned in this book have entries in the Ruby Application
Archive (http://raa.ruby-lang.org/), a directory of Ruby programs and libraries. In
most cases you can download a tarball or ZIP file from the RAA, and install it with
the technique described in Recipe 18.8.

Platform Differences, Version Differences,
and Other Headaches
Except where noted, the recipes describe cross-platform concepts, and the code itself
should run the same way on Windows, Linux, and Mac OS X. Most of the platform
differences and platform-specific recipes show up in the final chapters: Chapter 20,
Chapter 21, and Chapter 23 (but see the introduction to Chapter 6 for a note about
Windows filenames).

We wrote and tested the recipes using Ruby version 1.8.4 and Rails version 1.1.2, the
latest stable versions as of the time of writing. In a couple of places we mention code
changes you should make if you’re running Ruby 1.9 (the latest unstable version as
of the time of writing) or 2.0.

Preface | xxvii

Despite our best efforts, this book may contain unflagged platform-specific code, not
to mention plain old bugs. We apologize for these in advance of their discovery. If
you have problems with a recipe, check out the eratta for this book (see below).

In several recipes in this book, we modify standard Ruby classes like Array to add
new methods (see, for instance, Recipe 1.10, which defines a new method called
String#capitalize_first_letter). These methods are then available to every
instance of that class in your program. This is a fairly common technique in Ruby:
both Rails and the Facets Core library mentioned above do it. It’s somewhat contro-
versial, though, and it can cause problems (see Recipe 8.4 for an in-depth discus-
sion), so we felt we should mention it here in the Preface, even though it might be
too technical for people who are new to Ruby.

If you don’t want to modify the standard classes, you can put the methods we dem-
onstrate into a subclass, or define them in the Kernel namespace: that is, define
capitalize_first_letter_of_string instead of reopening String and defining
capitalize_first_letter inside it.

Other Resources
If you need to learn Ruby, the standard reference is Programming Ruby: The Prag-
matic Programmer’s Guide by Dave Thomas, Chad Fowler, and Andy Hunt (Prag-
matic Programmers). The first edition is available online in HTML format (http://
www.rubycentral.com/book/), but it’s out of date. The second edition is much better
and is available as a printed book or as PDF (http://www.pragmaticprogrammer.com/
titles/ruby/). It’s a much better idea to buy the second edition and use the first edi-
tion as a handy reference than to try to read the first edition.

“Why’s (Poignant) Guide to Ruby,” by “why the lucky stiff,” teaches Ruby with stories,
like an English primer. Excellent for creative beginners (http://poignantguide.net/ruby/).

For Rails, the standard book is Agile Web Development with Rails by Dave Thomas,
David Hansson, Leon Breedt, and Mike Clark (Pragmatic Programmers). There are
also two books like this one that focus exclusively on Rails: Rails Cookbook by Rob
Orsini (O’Reilly) and Rails Recipes by Chad Fowler (Pragmatic Programmers).

Some common Ruby pitfalls are explained in the Ruby FAQ (http://www.rubycentral.
com/faq/, starting in Section 4) and in “Things That Newcomers to Ruby Should
Know” (http://www.glue.umd.edu/~billtj/ruby.html).

Many people come to Ruby already knowing one or more programming languages.
You might find it frustrating to learn Ruby with a big book that thinks it has to teach
you programming and Ruby. For such people, we recommend Ruby creator Yukihiro
Matsumoto’s “Ruby User’s Guide” (http://www.ruby-doc.org/docs/UsersGuide/rg/). It’s
a short read, and it focuses on what makes Ruby different from other programming
languages. Its terminology is a little out of date, and it presents its code samples

xxviii | Preface

through the obsolete eval.rb program (use irb instead), but it’s the best short intro-
duction we know of.

There are a few articles especially for Java programmers who want to learn Ruby: Jim
Weirich’s “10 Things Every Java Programmer Should Know About Ruby” (http://
onestepback.org/articles/10things/), Francis Hwang’s blog entry “Coming to Ruby
from Java” (http://fhwang.net/blog/40.html), and Chris Williams’s collection of links,
“From Java to Ruby (With Love)” (http://cwilliams.textdriven.com/pages/java_to_ruby)
Despite the names, C++ programmers will also benefit from much of what’s in these
pieces.

The Ruby Bookshelf (http://books.rubyveil.com/books/Bookshelf/Introduction/Bookshelf)
has produced a number of free books on Ruby, including many of the ones men-
tioned above, in an easy-to-read HTML format.

Finally, Ruby’s built-in modules, classes, and methods come with excellent docu-
mentation (much of it originally written for Programming Ruby). You can read this
documentation online at http://www.ruby-doc.org/core/ and http://www.ruby-doc.org/
stdlib/. You can also look it up on your own Ruby installation by using the ri com-
mand. Pass in the name of a class or method, and ri will give you the corresponding
documentation. Here are a few examples:

$ ri Array # A class
$ ri Array.new # A class method
$ ri Array#compact # An instance method

Conventions Used in This Book
The following typographical conventions are used in this book:

Plain text
Indicates menu titles, menu options, menu buttons, and keyboard accelerators
(such as Alt and Ctrl).

Italic
Indicates new terms, URLs, email addresses, and Unix utilities.

Constant width
Indicates commands, options, switches, variables, attributes, keys, functions,
types, classes, namespaces, methods, modules, properties, parameters, values,
objects, events, event handlers, XML tags, HTML tags, macros, programs, librar-
ies, filenames, pathnames, directories, the contents of files, or the output from
commands.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values.

Preface | xxix

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example
code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Ruby Cookbook, by Lucas Carlson
and Leonard Richardson. Copyright 2006 O’Reilly Media, Inc., 0-596-52369-6.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Comments and Questions
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any addi-
tional information. You can access this page at:

http://www.oreilly.com/catalog/rubyckbk

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our web site at:

http://www.oreilly.com

Acknowledgments
First we’d like to thank our editor, Michael Loukides, for his help and for acquiesc-
ing to our use of his name in recipe code samples, even when we turned him into a
talking frog. The production editor, Colleen Gorman, was also very helpful.

xxx | Preface

This book would have taken longer to write and been less interesting without our
contributing authors, who, collectively, wrote over 60 of these recipes. The roll of
names includes: Steve Arniel, Ben Bleything, Antonio Cangiano, Mauro Cicio, Mau-
rice Codik, Thomas Enebo, Pat Eyler, Bill Froelich, Rod Gaither, Ben Giddings,
Michael Granger, James Edward Gray II, Stefan Lang, Kevin Marshall, Matthew
Palmer Chetan Patil, Alun ap Rhisiart, Garrett Rooney, John-Mason Shackelford,
Phil Tomson, and John Wells. They saved us time by lending their knowledge of var-
ious Ruby topics, and they enriched the book with their ideas.

This book would be of appallingly low quality were it not for our technical review-
ers, who spotted dozens of bugs, platform-specific problems, and conceptual errors:
John N. Alegre, Dave Burt, Bill Dolinar, Simen Edvardsen, Shane Emmons, Edward
Faulkner, Dan Fitzpatrick, Bill Guindon, Stephen Hildrey, Meador Inge, Eric Jaco-
boni, Julian I. Kamil, Randy Kramer, Alex LeDonne, Steven Lumos, Keith Rosenb-
latt, Gene Tani, and R Vrajmohan.

Finally, to the programmers and writers of the Ruby community; from the celebri-
ties like Yukihiro Matsumoto, Dave Thomas, Chad Fowler, and “why”, to the hun-
dreds of unsung heroes whose work went into the libraries we demonstrate
throughout the book, and whose skill and patience bring more people into the Ruby
community all the time.

1

Chapter 1 CHAPTER 1

Strings1

Ruby is a programmer-friendly language. If you are already familiar with object-
oriented programming, Ruby should quickly become second nature. If you’ve strug-
gled with learning object-oriented programming or are not familiar with it, Ruby
should make more sense to you than other object-oriented languages because Ruby’s
methods are consistently named, concise, and generally act the way you expect.

Throughout this book, we demonstrate concepts through interactive Ruby sessions.
Strings are a good place to start because not only are they a useful data type, they’re
easy to create and use. They provide a simple introduction to Ruby, a point of com-
parison between Ruby and other languages you might know, and an approachable
way to introduce important Ruby concepts like duck typing (see Recipe 1.12), open
classes (demonstrated in Recipe 1.10), symbols (Recipe 1.7), and even Ruby gems
(Recipe 1.20).

If you use Mac OS X or a Unix environment with Ruby installed, go to your com-
mand line right now and type irb. If you’re using Windows, you can download and
install the One-Click Installer from http://rubyforge.org/projects/rubyinstaller/, and do
the same from a command prompt (you can also run the fxri program, if that’s more
comfortable for you). You’ve now entered an interactive Ruby shell, and you can fol-
low along with the code samples in most of this book’s recipes.

Strings in Ruby are much like strings in other dynamic languages like Perl, Python
and PHP. They’re not too much different from strings in Java and C. Ruby strings are
dynamic, mutable, and flexible. Get started with strings by typing this line into your
interactive Ruby session:

string = "My first string"

You should see some output that looks like this:

=> "My first string"

You typed in a Ruby expression that created a string “My first string”, and assigned
it to the variable string. The value of that expression is just the new value of string,
which is what your interactive Ruby session printed out on the right side of the

2 | Chapter 1: Strings

arrow. Throughout this book, we’ll represent this kind of interaction in the follow-
ing form:*

string = "My first string" # => "My first string"

In Ruby, everything that can be assigned to a variable is an object. Here, the variable
string points to an object of class String. That class defines over a hundred built-in
methods: named pieces of code that examine and manipulate the string. We’ll
explore some of these throughout the chapter, and indeed the entire book. Let’s try
out one now: String#length, which returns the number of bytes in a string. Here’s a
Ruby method call:

string.length # => 15

Many programming languages make you put parentheses after a method call:

string.length() # => 15

In Ruby, parentheses are almost always optional. They’re especially optional in this-
case, since we’re not passing any arguments into String#length. If you’re passing
arguments into a method, it’s often more readable to enclose the argument list in
parentheses:

string.count 'i' # => 2 # "i" occurs twice.
string.count('i') # => 2

The return value of a method call is itself an object. In the case of String#length, the
return value is the number 15, an instance of the Fixnum class. We can call a method
on this object as well:

string.length.next # => 16

Let’s take a more complicated case: a string that contains non-ASCII characters. This
string contains the French phrase “il était une fois,” encoded as UTF-8:†

french_string = "il \xc3\xa9tait une fois" # => "il \303\251tait une fois"

Many programming languages (notably Java) treat a string as a series of characters.
Ruby treats a string as a series of bytes. The French string contains 14 letters and 3
spaces, so you might think Ruby would say the length of the string is 17. But one of
the letters (the e with acute accent) is represented as two bytes, and that’s what Ruby
counts:

french_string.length # => 18

For more on handling different encodings, see Recipe 1.14 and Recipe 11.12. For
more on this specific problem, see Recipe 1.8

You can represent special characters in strings (like the binary data in the French
string) with string escaping. Ruby does different types of string escaping depending

* Yes, this was covered in the Preface, but not everyone reads the Preface.

† “\xc3\xa9” is a Ruby string representation of the UTF-8 encoding of the Unicode character é.

Strings | 3

on how you create the string. When you enclose a string in double quotes, you can
encode binary data into the string (as in the French example above), and you can
encode newlines with the code “\n”, as in other programming languages:

puts "This string\ncontains a newline"
This string
contains a newline

When you enclose a string in single quotes, the only special codes you can use are “\'”
to get a literal single quote, and “\\” to get a literal backslash:

puts 'it may look like this string contains a newline\nbut it doesn\'t'
it may look like this string contains a newline\nbut it doesn't

puts 'Here is a backslash: \\'
Here is a backslash: \

This is covered in more detail in Recipe 1.5. Also see Recipes 1.2 and 1.3 for more
examples of the more spectacular substitutions double-quoted strings can do.

Another useful way to initialize strings is with the “here documents” style:

long_string = <<EOF
Here is a long string
With many paragraphs
EOF
=> "Here is a long string\nWith many paragraphs\n"

puts long_string
Here is a long string
With many paragraphs

Like most of Ruby’s built-in classes, Ruby’s strings define the same functionality in
several different ways, so that you can use the idiom you prefer. Say you want to get
a substring of a larger string (as in Recipe 1.13). If you’re an object-oriented pro-
gramming purist, you can use the String#slice method:

string # => "My first string"
string.slice(3, 5) # => "first"

But if you’re coming from C, and you think of a string as an array of bytes, Ruby can
accommodate you. Selecting a single byte from a string returns that byte as a number.

string.chr + string.chr + string.chr + string.chr + string.chr
=> "first"

And if you come from Python, and you like that language’s slice notation, you can
just as easily chop up the string that way:

string[3, 5] # => "first"

Unlike in most programming languages, Ruby strings are mutable: you can change
them after they are declared. Below we see the difference between the methods
String#upcase and String#upcase!:

string.upcase # => "MY FIRST STRING"
string # => "My first string"

4 | Chapter 1: Strings

string.upcase! # => "MY FIRST STRING"
string # => "MY FIRST STRING"

This is one of Ruby’s syntactical conventions. “Dangerous” methods (generally those
that modify their object in place) usually have an exclamation mark at the end of
their name. Another syntactical convention is that predicates, methods that return a
true/false value, have a question mark at the end of their name (as in some varieties
of Lisp):

string.empty? # => false
string.include? 'MY' # => true

This use of English punctuation to provide the programmer with information is an
example of Matz’s design philosophy: that Ruby is a language primarily for humans
to read and write, and secondarily for computers to interpret.

An interactive Ruby session is an indispensable tool for learning and experimenting
with these methods. Again, we encourage you to type the sample code shown in
these recipes into an irb or fxri session, and try to build upon the examples as your
knowledge of Ruby grows.

Here are some extra resources for using strings in Ruby:

• You can get information about any built-in Ruby method with the ri command;
for instance, to see more about the String#upcase! method, issue the command
ri "String#upcase!" from the command line.

• “why the lucky stiff” has written an excellent introduction to installing Ruby,
and using irb and ri: http://poignantguide.net/ruby/expansion-pak-1.html

• For more information about the design philosophy behind Ruby, read an inter-
view with Yukihiro “Matz” Matsumoto, creator of Ruby: http://www.artima.com/
intv/ruby.html

1.1 Building a String from Parts

Problem
You want to iterate over a data structure, building a string from it as you do.

Solution
There are two efficient solutions. The simplest solution is to start with an empty
string, and repeatedly append substrings onto it with the << operator:

hash = { "key1" => "val1", "key2" => "val2" }
string = ""
hash.each { |k,v| string << "#{k} is #{v}\n" }
puts string
key1 is val1
key2 is val2

1.1 Building a String from Parts | 5

This variant of the simple solution is slightly more efficient, but harder to read:

string = ""
hash.each { |k,v| string << k << " is " << v << "\n" }

If your data structure is an array, or easily transformed into an array, it’s usually
more efficient to use Array#join:

puts hash.keys.join("\n") + "\n"
key1
key2

Discussion
In languages like Python and Java, it’s very inefficient to build a string by starting with
an empty string and adding each substring onto the end. In those languages, strings are
immutable, so adding one string to another builds an entirely new string. Doing this
multiple times creates a huge number of intermediary strings, each of which is only
used as a stepping stone to the next string. This wastes time and memory.

In those languages, the most efficient way to build a string is always to put the sub-
strings into an array or another mutable data structure, one that expands dynami-
cally rather than by implicitly creating entirely new objects. Once you’re done
processing the substrings, you get a single string with the equivalent of Ruby’s
Array#join. In Java, this is the purpose of the StringBuffer class.

In Ruby, though, strings are just as mutable as arrays. Just like arrays, they can
expand as needed, without using much time or memory. The fastest solution to this
problem in Ruby is usually to forgo a holding array and tack the substrings directly
onto a base string. Sometimes using Array#join is faster, but it’s usually pretty close,
and the << construction is generally easier to understand.

If efficiency is important to you, don’t build a new string when you can append items
onto an existing string. Constructs like str << 'a' + 'b' or str << "#{var1} #{var2}"
create new strings that are immediately subsumed into the larger string. This is
exactly what you’re trying to avoid. Use str << var1 << ' ' << var2 instead.

On the other hand, you shouldn’t modify strings that aren’t yours. Sometimes safety
requires that you create a new string. When you define a method that takes a string
as an argument, you shouldn’t modify that string by appending other strings onto it,
unless that’s really the point of the method (and unless the method’s name ends in
an exclamation point, so that callers know it modifies objects in place).

Another caveat: Array#join does not work precisely the same way as repeated
appends to a string. Array#join accepts a separator string that it inserts between every
two elements of the array. Unlike a simple string-building iteration over an array, it
will not insert the separator string after the last element in the array. This example
illustrates the difference:

data = ['1', '2', '3']
s = ''

6 | Chapter 1: Strings

data.each { |x| s << x << ' and a '}
s # => "1 and a 2 and a 3 and a "
data.join(' and a ') # => "1 and a 2 and a 3"

To simulate the behavior of Array#join across an iteration, you can use
Enumerable#each_with_index and omit the separator on the last index. This only
works if you know how long the Enumerable is going to be:

s = ""
data.each_with_index { |x, i| s << x; s << "|" if i < data.length-1 }
s # => "1|2|3"

1.2 Substituting Variables into Strings

Problem
You want to create a string that contains a representation of a Ruby variable or
expression.

Solution
Within the string, enclose the variable or expression in curly brackets and prefix it
with a hash character.

number = 5
"The number is #{number}." # => "The number is 5."
"The number is #{5}." # => "The number is 5."
"The number after #{number} is #{number.next}."
=> "The number after 5 is 6."
"The number prior to #{number} is #{number-1}."
=> "The number prior to 5 is 4."
"We're ##{number}!" # => "We're #5!"

Discussion
When you define a string by putting it in double quotes, Ruby scans it for special
substitution codes. The most common case, so common that you might not even
think about it, is that Ruby substitutes a single newline character every time a string
contains slash followed by the letter n (“\n”).

Ruby supports more complex string substitutions as well. Any text kept within the
brackets of the special marker #{} (that is, #{text in here}) is interpreted as a Ruby
expression. The result of that expression is substituted into the string that gets cre-
ated. If the result of the expression is not a string, Ruby calls its to_s method and
uses that instead.

Once such a string is created, it is indistinguishable from a string created without
using the string interpolation feature:

"#{number}" == '5' # => true

1.2 Substituting Variables into Strings | 7

You can use string interpolation to run even large chunks of Ruby code inside a
string. This extreme example defines a class within a string; its result is the return
value of a method defined in the class. You should never have any reason to do this,
but it shows the power of this feature.

%{Here is #{class InstantClass
 def bar
 "some text"
 end
 end
 InstantClass.new.bar
}.}
=> "Here is some text."

The code run in string interpolations runs in the same context as any other Ruby code
in the same location. To take the example above, the InstantClass class has now been
defined like any other class, and can be used outside the string that defines it.

If a string interpolation calls a method that has side effects, the side effects are trig-
gered. If a string definition sets a variable, that variable is accessible afterwards. It’s
bad form to rely on this behavior, but you should be aware of it:

"I've set x to #{x = 5; x += 1}." # => "I've set x to 6."
x # => 6

To avoid triggering string interpolation, escape the hash characters or put the string
in single quotes.

"\#{foo}" # => "\#{foo}"
'#{foo}' # => "\#{foo}"

The “here document” construct is an alternative to the %{} construct, which is some-
times more readable. It lets you define a multiline string that only ends when the
Ruby parser encounters a certain string on a line by iteself:

name = "Mr. Lorum"
email = <<END
Dear #{name},

Unfortunately we cannot process your insurance claim at this
time. This is because we are a bakery, not an insurance company.

Signed,
 Nil, Null, and None
 Bakers to Her Majesty the Singleton
END

Ruby is pretty flexible about the string you can use to end the “here document”:

<<end_of_poem
There once was a man from Peru
Whose limericks stopped on line two
end_of_poem
=> "There once was a man from Peru\nWhose limericks stopped on line two\n"

8 | Chapter 1: Strings

See Also
• You can use the technique described in Recipe 1.3, “Substituting Variables into

an Existing String,” to define a template string or object, and substitute in vari-
ables later

1.3 Substituting Variables into an Existing String

Problem
You want to create a string that contains Ruby expressions or variable substitutions,
without actually performing the substitutions. You plan to substitute values into the
string later, possibly multiple times with different values each time.

Solution
There are two good solutions: printf-style strings, and ERB templates.

Ruby supports a printf-style string format like C’s and Python’s. Put printf direc-
tives into a string and it becomes a template. You can interpolate values into it later
using the modulus operator:

template = 'Oceania has always been at war with %s.'
template % 'Eurasia' # => "Oceania has always been at war with Eurasia."
template % 'Eastasia' # => "Oceania has always been at war with Eastasia."

'To 2 decimal places: %.2f' % Math::PI # => "To 2 decimal places: 3.14"
'Zero-padded: %.5d' % Math::PI # => "Zero-padded: 00003"

An ERB template looks something like JSP or PHP code. Most of it is treated as a
normal string, but certain control sequences are executed as Ruby code. The control
sequence is replaced with either the output of the Ruby code, or the value of its last
expression:

require 'erb'

template = ERB.new %q{Chunky <%= food %>!}
food = "bacon"
template.result(binding) # => "Chunky bacon!"
food = "peanut butter"
template.result(binding) # => "Chunky peanut butter!"

You can omit the call to Kernel#binding if you’re not in an irb session:

puts template.result
Chunky peanut butter!

You may recognize this format from the .rhtml files used by Rails views: they use
ERB behind the scenes.

1.3 Substituting Variables into an Existing String | 9

Discussion
An ERB template can reference variables like food before they’re defined. When you
call ERB#result, or ERB#run, the template is executed according to the current values
of those variables.

Like JSP and PHP code, ERB templates can contain loops and conditionals. Here’s a
more sophisticated template:

template = %q{
<% if problems.empty? %>
 Looks like your code is clean!
<% else %>
 I found the following possible problems with your code:
 <% problems.each do |problem, line| %>
 * <%= problem %> on line <%= line %>
 <% end %>
<% end %>}.gsub(/^\s+/, '')
template = ERB.new(template, nil, '<>')

problems = [["Use of is_a? instead of duck typing", 23],
 ["eval() is usually dangerous", 44]]
template.run(binding)
I found the following possible problems with your code:
* Use of is_a? instead of duck typing on line 23
* eval() is usually dangerous on line 44

problems = []
template.run(binding)
Looks like your code is clean!

ERB is sophisticated, but neither it nor the printf-style strings look like the simple
Ruby string substitutions described in Recipe 1.2. There’s an alternative. If you use
single quotes instead of double quotes to define a string with substitutions, the sub-
stitutions won’t be activated. You can then use this string as a template with eval:

class String
 def substitute(binding=TOPLEVEL_BINDING)
 eval(%{"#{self}"}, binding)
 end
end

template = %q{Chunky #{food}!} # => "Chunky \#{food}!"

food = 'bacon'
template.substitute(binding) # => "Chunky bacon!"
food = 'peanut butter'
template.substitute(binding) # => "Chunky peanut butter!"

You must be very careful when using eval: if you use a variable in the wrong way,
you could give an attacker the ability to run arbitrary Ruby code in your eval

10 | Chapter 1: Strings

statement. That won’t happen in this example since any possible value of food gets
stuck into a string definition before it’s interpolated:

food = '#{system("dir")}'
puts template.substitute(binding)
Chunky #{system("dir")}!

See Also
• This recipe gives basic examples of ERB templates; for more complex examples,

see the documentation of the ERB class (http://www.ruby-doc.org/stdlib/libdoc/
erb/rdoc/classes/ERB.html)

• Recipe 1.2, “Substituting Variables into Strings”

• Recipe 10.12, “Evaluating Code in an Earlier Context,” has more about Binding
objects

1.4 Reversing a String by Words or Characters

Problem
The letters (or words) of your string are in the wrong order.

Solution
To create a new string that contains a reversed version of your original string, use the
reverse method. To reverse a string in place, use the reverse! method.

s = ".sdrawkcab si gnirts sihT"
s.reverse # => "This string is backwards."
s # => ".sdrawkcab si gnirts sihT"

s.reverse! # => "This string is backwards."
s # => "This string is backwards."

To reverse the order of the words in a string, split the string into a list of whitespace-
separated words, then join the list back into a string.

s = "order. wrong the in are words These"
s.split(/(\s+)/).reverse!.join('') # => "These words are in the wrong order."
s.split(/\b/).reverse!.join('') # => "These words are in the wrong. order"

Discussion
The String#split method takes a regular expression to use as a separator. Each time
the separator matches part of the string, the portion of the string before the separator
goes into a list. split then resumes scanning the rest of the string. The result is a list of
strings found between instances of the separator. The regular expression /(\s+)/
matches one or more whitespace characters; this splits the string on word bound-
aries, which works for us because we want to reverse the order of the words.

1.5 Representing Unprintable Characters | 11

The regular expression \b matches a word boundary. This is not the same as match-
ing whitespace, because it also matches punctuation. Note the difference in punctua-
tion between the two final examples in the Solution.

Because the regular expression /(\s+)/ includes a set of parentheses, the separator
strings themselves are included in the returned list. Therefore, when we join the
strings back together, we’ve preserved whitespace. This example shows the differ-
ence between including the parentheses and omitting them:

"Three little words".split(/\s+/) # => ["Three", "little", "words"]
"Three little words".split(/(\s+)/)
=> ["Three", " ", "little", " ", "words"]

See Also
• Recipe 1.9, “Processing a String One Word at a Time,” has some regular expres-

sions for alternative definitions of “word”

• Recipe 1.11, “Managing Whitespace”

• Recipe 1.17, “Matching Strings with Regular Expressions”

1.5 Representing Unprintable Characters

Problem
You need to make reference to a control character, a strange UTF-8 character, or
some other character that’s not on your keyboard.

Solution
Ruby gives you a number of escaping mechanisms to refer to unprintable characters.
By using one of these mechanisms within a double-quoted string, you can put any
binary character into the string.

You can reference any any binary character by encoding its octal representation into
the format “\000”, or its hexadecimal representation into the format “\x00”.

octal = "\000\001\010\020"
octal.each_byte { |x| puts x }
0
1
8
16

hexadecimal = "\x00\x01\x10\x20"
hexadecimal.each_byte { |x| puts x }
0
1
16
32

12 | Chapter 1: Strings

This makes it possible to represent UTF-8 characters even when you can’t type them
or display them in your terminal. Try running this program, and then opening the
generated file smiley.html in your web browser:

open('smiley.html', 'wb') do |f|
 f << '<meta http-equiv="Content-Type" content="text/html;charset=UTF-8">'
 f << "\xe2\x98\xBA"
end

The most common unprintable characters (such as newline) have special mneu-
monic aliases consisting of a backslash and a letter.

"\a" == "\x07" # => true # ASCII 0x07 = BEL (Sound system bell)
"\b" == "\x08" # => true # ASCII 0x08 = BS (Backspace)
"\e" == "\x1b" # => true # ASCII 0x1B = ESC (Escape)
"\f" == "\x0c" # => true # ASCII 0x0C = FF (Form feed)
"\n" == "\x0a" # => true # ASCII 0x0A = LF (Newline/line feed)
"\r" == "\x0d" # => true # ASCII 0x0D = CR (Carriage return)
"\t" == "\x09" # => true # ASCII 0x09 = HT (Tab/horizontal tab)
"\v" == "\x0b" # => true # ASCII 0x0B = VT (Vertical tab)

Discussion
Ruby stores a string as a sequence of bytes. It makes no difference whether those
bytes are printable ASCII characters, binary characters, or a mix of the two.

When Ruby prints out a human-readable string representation of a binary character,
it uses the character’s \xxx octal representation. Characters with special \x mneu-
monics are printed as the mneumonic. Printable characters are output as their print-
able representation, even if another representation was used to create the string.

"\x10\x11\xfe\xff" # => "\020\021\376\377"
"\x48\145\x6c\x6c\157\x0a" # => "Hello\n"

To avoid confusion with the mneumonic characters, a literal backslash in a string is
represented by two backslashes. For instance, the two-character string consisting of a
backslash and the 14th letter of the alphabet is represented as “\\n”.

"\\".size # => 1
"\\" == "\x5c" # => true
"\\n"[0] == ?\\ # => true
"\\n"[1] == ?n # => true
"\\n" =~ /\n/ # => nil

Ruby also provides special shortcuts for representing keyboard sequences like
Control-C. "\C-_x_" represents the sequence you get by holding down the control
key and hitting the x key, and "\M-_x_" represents the sequence you get by holding
down the Alt (or Meta) key and hitting the x key:

"\C-a\C-b\C-c" # => "\001\002\003"
"\M-a\M-b\M-c" # => "\341\342\343"

Shorthand representations of binary characters can be used whenever Ruby expects a
character. For instance, you can get the decimal byte number of a special character

1.5 Representing Unprintable Characters | 13

by prefixing it with ?, and you can use shorthand representations in regular expres-
sion character ranges.

?\C-a # => 1
?\M-z # => 250

contains_control_chars = /[\C-a-\C-^]/
'Foobar' =~ contains_control_chars # => nil
"Foo\C-zbar" =~ contains_control_chars # => 3

contains_upper_chars = /[\x80-\xff]/
'Foobar' =~ contains_upper_chars # => nil
"Foo\212bar" =~ contains_upper_chars # => 3

Here’s a sinister application that scans logged keystrokes for special characters:

def snoop_on_keylog(input)
 input.each_byte do |b|
 case b
 when ?\C-c; puts 'Control-C: stopped a process?'
 when ?\C-z; puts 'Control-Z: suspended a process?'
 when ?\n; puts 'Newline.'
 when ?\M-x; puts 'Meta-x: using Emacs?'
 end
 end
end

snoop_on_keylog("ls -ltR\003emacsHello\012\370rot13-other-window\012\032")
Control-C: stopped a process?
Newline.
Meta-x: using Emacs?
Newline.
Control-Z: suspended a process?

Special characters are only interpreted in strings delimited by double quotes, or
strings created with %{} or %Q{}. They are not interpreted in strings delimited by sin-
gle quotes, or strings created with %q{}. You can take advantage of this feature when
you need to display special characters to the end-user, or create a string containing a
lot of backslashes.

puts "foo\tbar"
foo bar
puts %{foo\tbar}
foo bar
puts %Q{foo\tbar}
foo bar

puts 'foo\tbar'
foo\tbar
puts %q{foo\tbar}
foo\tbar

If you come to Ruby from Python, this feature can take advantage of you, making
you wonder why the special characters in your single-quoted strings aren’t treated as

14 | Chapter 1: Strings

special. If you need to create a string with special characters and a lot of embedded
double quotes, use the %{} construct.

1.6 Converting Between Characters and Values

Problem
You want to see the ASCII code for a character, or transform an ASCII code into a
string.

Solution
To see the ASCII code for a specific character as an integer, use the ? operator:

?a # => 97
?! # => 33
?\n # => 10

To see the integer value of a particular in a string, access it as though it were an ele-
ment of an array:

'a'[0] # => 97
'bad sound'[1] # => 97

To see the ASCII character corresponding to a given number, call its #chr method.
This returns a string containing only one character:

97.chr # => "a"
33.chr # => "!"
10.chr # => "\n"
0.chr # => "\000"
256.chr # RangeError: 256 out of char range

Discussion
Though not technically an array, a string acts a lot like like an array of Fixnum objects:
one Fixnum for each byte in the string. Accessing a single element of the “array” yields a
Fixnum for the corresponding byte: for textual strings, this is an ASCII code. Calling
String#each_byte lets you iterate over the Fixnum objects that make up a string.

See Also
• Recipe 1.8, “Processing a String One Character at a Time”

1.7 Converting Between Strings and Symbols

Problem
You want to get a string containing the label of a Ruby symbol, or get the Ruby sym-
bol that corresponds to a given string.

1.7 Converting Between Strings and Symbols | 15

Solution
To turn a symbol into a string, use Symbol#to_s, or Symbol#id2name, for which to_s is
an alias.

:a_symbol.to_s # => "a_symbol"
:AnotherSymbol.id2name # => "AnotherSymbol"
:"Yet another symbol!".to_s # => "Yet another symbol!"

You usually reference a symbol by just typing its name. If you’re given a string in
code and need to get the corresponding symbol, you can use String.intern:

:dodecahedron.object_id # => 4565262
symbol_name = "dodecahedron"
symbol_name.intern # => :dodecahedron
symbol_name.intern.object_id # => 4565262

Discussion
A Symbol is about the most basic Ruby object you can create. It’s just a name and an
internal ID. Symbols are useful becase a given symbol name refers to the same object
throughout a Ruby program.

Symbols are often more efficient than strings. Two strings with the same contents are
two different objects (one of the strings might be modified later on, and become dif-
ferent), but for any given name there is only one Symbol object. This can save both
time and memory.

"string".object_id # => 1503030
"string".object_id # => 1500330
:symbol.object_id # => 4569358
:symbol.object_id # => 4569358

If you have n references to a name, you can keep all those references with only one
symbol, using only one object’s worth of memory. With strings, the same code
would use n different objects, all containing the same data. It’s also faster to com-
pare two symbols than to compare two strings, because Ruby only has to check the
object IDs.

"string1" == "string2" # => false
:symbol1 == :symbol2 # => false

Finally, to quote Ruby hacker Jim Weirich on when to use a string versus a symbol:

• If the contents (the sequence of characters) of the object are important, use a
string.

• If the identity of the object is important, use a symbol.

See Also
• See Recipe 5.1, “Using Symbols as Hash Keys” for one use of symbols

• Recipe 8.12, “Simulating Keyword Arguments,” has another

16 | Chapter 1: Strings

• Chapter 10, especially Recipe 10.4, “Getting a Reference to a Method” and Rec-
ipe 10.10, “Avoiding Boilerplate Code with Metaprogramming”

• See http://glu.ttono.us/articles/2005/08/19/understanding-ruby-symbols for a sym-
bol primer

1.8 Processing a String One Character at a Time

Problem
You want to process each character of a string individually.

Solution
If you’re processing an ASCII document, then each byte corresponds to one charac-
ter. Use String#each_byte to yield each byte of a string as a number, which you can
turn into a one-character string:

'foobar'.each_byte { |x| puts "#{x} = #{x.chr}" }
102 = f
111 = o
111 = o
98 = b
97 = a
114 = r

Use String#scan to yield each character of a string as a new one-character string:

'foobar'.scan(/./) { |c| puts c }
f
o
o
b
a
r

Discussion
Since a string is a sequence of bytes, you might think that the String#each method
would iterate over the sequence, the way Array#each does. But String#each is actu-
ally used to split a string on a given record separator (by default, the newline):

"foo\nbar".each { |x| puts x }
foo
bar

The string equivalent of Array#each method is actually each_byte. A string stores its
characters as a sequence of Fixnum objects, and each_bytes yields that sequence.

String#each_byte is faster than String#scan, so if you’re processing an ASCII file, you
might want to use String#each_byte and convert to a string every number passed
into the code block (as seen in the Solution).

1.9 Processing a String One Word at a Time | 17

String#scan works by applying a given regular expression to a string, and yielding
each match to the code block you provide. The regular expression /./ matches every
character in the string, in turn.

If you have the $KCODE variable set correctly, then the scan technique will work on
UTF-8 strings as well. This is the simplest way to sneak a notion of “character” into
Ruby’s byte-based strings.

Here’s a Ruby string containing the UTF-8 encoding of the French phrase “ça va”:

french = "\xc3\xa7a va"

Even if your terminal can’t properly display the character “ç”, you can see how the
behavior of String#scan changes when you make the regular expression Unicode-
aware, or set $KCODE so that Ruby handles all strings as UTF-8:

french.scan(/./) { |c| puts c }
#
#
a
#
v
a

french.scan(/./u) { |c| puts c }
ç
a
#
v
a

$KCODE = 'u'
french.scan(/./) { |c| puts c }
ç
a
#
v
a

Once Ruby knows to treat strings as UTF-8 instead of ASCII, it starts treating the
two bytes representing the “ç” as a single character. Even if you can’t see UTF-8, you
can write programs that handle it correctly.

See Also
• Recipe 11.12, “Converting from One Encoding to Another”

1.9 Processing a String One Word at a Time

Problem
You want to split a piece of text into words, and operate on each word.

18 | Chapter 1: Strings

Solution
First decide what you mean by “word.” What separates one word from another?
Only whitespace? Whitespace or punctuation? Is “johnny-come-lately” one word or
three? Build a regular expression that matches a single word according to whatever
definition you need (there are some samples are in the Discussion).

Then pass that regular expression into String#scan. Every word it finds, it will yield
to a code block. The word_count method defined below takes a piece of text and cre-
ates a histogram of word frequencies. Its regular expression considers a “word” to be
a string of Ruby identifier characters: letters, numbers, and underscores.

class String
 def word_count
 frequencies = Hash.new(0)
 downcase.scan(/\w+/) { |word| frequencies[word] += 1 }
 return frequencies
 end
end

%{Dogs dogs dog dog dogs.}.word_count
=> {"dogs"=>3, "dog"=>2}
%{"I have no shame," I said.}.word_count
=> {"no"=>1, "shame"=>1, "have"=>1, "said"=>1, "i"=>2}

Discussion
The regular expression /\w+/ is nice and simple, but you can probably do better for
your application’s definition of “word.” You probably don’t consider two words sep-
arated by an underscore to be a single word. Some English words, like “pan-fried”
and “fo’c’sle”, contain embedded punctuation. Here are a few more definitions of
“word” in regular expression form:

Just like /\w+/, but doesn't consider underscore part of a word.
/[0-9A-Za-z]/

Anything that's not whitespace is a word.
/[^\S]+/

Accept dashes and apostrophes as parts of words.
/[-'\w]+/

A pretty good heuristic for matching English words.
/(\w+([-'.]\w+)*/

The last one deserves some explanation. It matches embedded punctuation within a
word, but not at the edges. “Work-in-progress” is recognized as a single word, and
“—-never—-” is recognized as the word “never” surrounded by punctuation. This
regular expression can even pick out abbreviations and acronyms such as “Ph.D”
and “U.N.C.L.E.”, though it can’t distinguish between the final period of an acro-
nym and the period that ends a sentence. This means that “E.F.F.” will be recog-
nized as the word “E.F.F” and then a nonword period.

1.10 Changing the Case of a String | 19

Let’s rewrite our word_count method to use that regular expression. We can’t use the
original implementation, because its code block takes only one argument.
String#scan passes its code block one argument for each match group in the regular
expression, and our improved regular expression has two match groups. The first
match group is the one that actually contains the word. So we must rewrite word_
count so that its code block takes two arguments, and ignores the second one:

class String
 def word_count
 frequencies = Hash.new(0)
 downcase.scan(/(\w+([-'.]\w+)*)/) { |word, ignore| frequencies[word] += 1 }
 return frequencies
 end
end

%{"That F.B.I. fella--he's quite the man-about-town."}.word_count
=> {"quite"=>1, "f.b.i"=>1, "the"=>1, "fella"=>1, "that"=>1,
"man-about-town"=>1, "he's"=>1}

Note that the “\w” character set matches different things depending on the value of
$KCODE. By default, “\w” matches only characters that are part of ASCII words:

french = "il \xc3\xa9tait une fois"
french.word_count
=> {"fois"=>1, "une"=>1, "tait"=>1, "il"=>1}

If you turn on Ruby’s UTF-8 support, the “\w” character set matches more characters:

$KCODE='u'
french.word_count
=> {"fois"=>1, "une"=>1, "était"=>1, "il"=>1}

The regular expression group \b matches a word boundary: that is, the last part of a
word before a piece of whitespace or punctuation. This is useful for String#split
(see Recipe 1.4), but not so useful for String#scan.

See Also
• Recipe 1.4, “Reversing a String by Words or Characters”

• The Facets core library defines a String#each_word method, using the regular
expression /([-'\w]+)/

1.10 Changing the Case of a String

Problem
Your string is in the wrong case, or no particular case at all.

20 | Chapter 1: Strings

Solution
The String class provides a variety of case-shifting methods:

s = 'HELLO, I am not here. I WENT to tHe MaRKEt.'
s.upcase # => "HELLO, I AM NOT HERE. I WENT TO THE MARKET."
s.downcase # => "hello, i am not here. i went to the market."
s.swapcase # => "hello, i AM NOT HERE. i went TO ThE mArkeT."
s.capitalize # => "Hello, i am not here. i went to the market."

Discussion
The upcase and downcase methods force all letters in the string to upper- or lower-
case, respectively. The swapcase method transforms uppercase letters into lowercase
letters and vice versa. The capitalize method makes the first character of the string
uppercase, if it’s a letter, and makes all other letters in the string lowercase.

All four methods have corresponding methods that modify a string in place rather
than creating a new one: upcase!, downcase!, swapcase!, and capitalize!. Assuming
you don’t need the original string, these methods will save memory, especially if the
string is large.

un_banged = 'Hello world.'
un_banged.upcase # => "HELLO WORLD."
un_banged # => "Hello world."

banged = 'Hello world.'
banged.upcase! # => "HELLO WORLD."
banged # => "HELLO WORLD."

To capitalize a string without lowercasing the rest of the string (for instance, because
the string contains proper nouns), you can modify the first character of the string in
place. This corresponds to the capitalize! method. If you want something more like
capitalize, you can create a new string out of the old one.

class String
 def capitalize_first_letter
 self[0].chr.capitalize + self[1, size]
 end

 def capitalize_first_letter!
 unless self[0] == (c = self[0,1].upcase[0])
 self[0] = c
 self
 end
 # Return nil if no change was made, like upcase! et al.
 end
end

s = 'i told Alice. She remembers now.'
s.capitalize_first_letter # => "I told Alice. She remembers now."
s # => "i told Alice. She remembers now."
s.capitalize_first_letter!
s # => "I told Alice. She remembers now."

1.11 Managing Whitespace | 21

To change the case of specific letters while leaving the rest alone, you can use the tr
or tr! methods, which translate one character into another:

'LOWERCASE ALL VOWELS'.tr('AEIOU', 'aeiou')
=> "LoWeRCaSe aLL VoWeLS"

'Swap case of ALL VOWELS'.tr('AEIOUaeiou', 'aeiouAEIOU')
=> "SwAp cAsE Of aLL VoWeLS"

See Also
• Recipe 1.18, “Replacing Multiple Patterns in a Single Pass”

• The Facets Core library adds a String#camelcase method; it also defines the case
predicates String#lowercase? and String#uppercase?

1.11 Managing Whitespace

Problem
Your string contains too much whitespace, not enough whitespace, or the wrong
kind of whitespace.

Solution
Use strip to remove whitespace from the beginning and end of a string:

" \tWhitespace at beginning and end. \t\n\n".strip

Add whitespace to one or both ends of a string with ljust, rjust, and center:
s = "Some text."
s.center(15)
s.ljust(15)
s.rjust(15)

Use the gsub method with a string or regular expression to make more complex
changes, such as to replace one type of whitespace with another.

#Normalize Ruby source code by replacing tabs with spaces
rubyCode.gsub("\t", " ")

#Transform Windows-style newlines to Unix-style newlines
"Line one\n\rLine two\n\r".gsub(\n\r", "\n")
=> "Line one\nLine two\n"

#Transform all runs of whitespace into a single space character
"\n\rThis string\t\t\tuses\n all\tsorts\nof whitespace.".gsub(/\s+/," ")
=> " This string uses all sorts of whitespace."

Discussion
What counts as whitespace? Any of these five characters: space, tab (\t), newline (\n),
linefeed (\r), and form feed (\f). The regular expression /\s/ matches any one

22 | Chapter 1: Strings

character from that set. The strip method strips any combination of those charac-
ters from the beginning or end of a string.

In rare cases you may need to handle oddball “space” characters like backspace (\b
or \010) and vertical tab (\v or \012). These are not part of the \s character group in a
regular expression, so use a custom character group to catch these characters.

" \bIt's whitespace, Jim,\vbut not as we know it.\n".gsub(/[\s\b\v]+/, " ")
=> "It's whitespace, Jim, but not as we know it."

To remove whitespace from only one end of a string, use the lstrip or rstrip
method:

s = " Whitespace madness! "
s.lstrip # => "Whitespace madness! "
s.rstrip # => " Whitespace madness!"

The methods for adding whitespace to a string (center, ljust, and rjust) take a sin-
gle argument: the total length of the string they should return, counting the original
string and any added whitespace. If center can’t center a string perfectly, it’ll put one
extra space on the right:

"four".center(5) # => "four "
"four".center(6) # => " four "

Like most string-modifying methods, strip, gsub, lstrip, and rstrip have counter-
parts strip!, gsub!, lstrip!, and rstrip!, which modify the string in place.

1.12 Testing Whether an Object Is String-Like

Problem
You want to see whether you can treat an object as a string.

Solution
Check whether the object defines the to_str method.

'A string'.respond_to? :to_str # => true
Exception.new.respond_to? :to_str # => true
4.respond_to? :to_str # => false

More generally, check whether the object defines the specific method of String you’re
thinking about calling. If the object defines that method, the right thing to do is usu-
ally to go ahead and call the method. This will make your code work in more places:

def join_to_successor(s)
 raise ArgumentError, 'No successor method!' unless s.respond_to? :succ
 return "#{s}#{s.succ}"
end

join_to_successor('a') # => "ab"
join_to_successor(4) # => "45"

1.13 Getting the Parts of a String You Want | 23

join_to_successor(4.01)
ArgumentError: No successor method!

If I’d checked s.is_a? String instead of s.respond_to? :succ, then I wouldn’t have
been able to call join_to_successor on an integer.

Discussion
This is the simplest example of Ruby’s philosophy of “duck typing:” if an object
quacks like a duck (or acts like a string), just go ahead and treat it as a duck (or a
string). Whenever possible, you should treat objects according to the methods they
define rather than the classes from which they inherit or the modules they include.

Calling obj.is_a? String will tell you whether an object derives from the String
class, but it will overlook objects that, though intended to be used as strings, don’t
inherit from String.

Exceptions, for instance, are essentially strings that have extra information associ-
ated with them. But they don’t subclass class name "String". Code that uses is_a?
String to check for stringness will overlook the essential stringness of Exceptions.
Many add-on Ruby modules define other classes that can act as strings: code that
calls is_a? String will break when given an instance of one of those classes.

The idea to take to heart here is the general rule of duck typing: to see whether pro-
vided data implements a certain method, use respond_to? instead of checking the
class. This lets a future user (possibly yourself!) create new classes that offer the same
capability, without being tied down to the preexisting class structure. All you have to
do is make the method names match up.

See Also
• Chapter 8, especially the chapter introduction and Recipe 8.3, “Checking Class

or Module Membership”

1.13 Getting the Parts of a String You Want

Problem
You want only certain pieces of a string.

Solution
To get a substring of a string, call its slice method, or use the array index operator
(that is, call the [] method). Either method accepts a Range describing which charac-
ters to retrieve, or two Fixnum arguments: the index at which to start, and the length
of the substring to be extracted.

s = 'My kingdom for a string!'
s.slice(3,7) # => "kingdom"

24 | Chapter 1: Strings

s[3,7] # => "kingdom"
s[0,3] # => "My "
s[11, 5] # => "for a"
s[11, 17] # => "for a string!"

To get the first portion of a string that matches a regular expression, pass the regular
expression into slice or []:

s[/.ing/] # => "king"
s[/str.*/] # => "string!"

Discussion
To access a specific byte of a string as a Fixnum, pass only one argument (the zero-
based index of the character) into String#slice or [] method. To access a specific
byte as a single-character string, pass in its index and the number 1.

s.slice(3) # => 107
s[3] # => 107
107.chr # => "k"
s.slice(3,1) # => "k"
s[3,1] # => "k"

To count from the end of the string instead of the beginning, use negative indexes:

s.slice(-7,3) # => "str"
s[-7,6] # => "string"

If the length of your proposed substring exceeds the length of the string, slice or []
will return the entire string after that point. This leads to a simple shortcut for get-
ting the rightmost portion of a string:

s[15...s.length] # => "a string!"

See Also
• Recipe 1.9, “Processing a String One Word at a Time”

• Recipe 1.17, “Matching Strings with Regular Expressions”

1.14 Handling International Encodings

Problem
You need to handle strings that contain nonASCII characters: probably Unicode
characters encoded in UTF-8.

Solution
To use Unicode in Ruby, simply add the following to the beginning of code.

$KCODE='u'
require 'jcode'

1.14 Handling International Encodings | 25

You can also invoke the Ruby interpreter with arguments that do the same thing:

$ ruby -Ku -rjcode

If you use a Unix environment, you can add the arguments to the shebang line of
your Ruby application:

#!/usr/bin/ruby -Ku -rjcode

The jcode library overrides most of the methods of String and makes them capable
of handling multibyte text. The exceptions are String#length, String#count, and
String#size, which are not overridden. Instead jcode defines three new methods:
String#jlength, string#jcount, and String#jsize.

Discussion
Consider a UTF-8 string that encodes six Unicode characters: efbca1 (A), efbca2 (B),
and so on up to UTF-8 efbca6 (F):

string = "\xef\xbc\xa1" + "\xef\xbc\xa2" + "\xef\xbc\xa3" +
 "\xef\xbc\xa4" + "\xef\xbc\xa5" + "\xef\xbc\xa6"

The string contains 18 bytes that encode 6 characters:

string.size # => 18
string.jsize # => 6

String#count is a method that takes a strong of bytes, and counts how many times
those bytes occurs in the string. String#jcount takes a string of characters and counts
how many times those characters occur in the string:

string.count "\xef\xbc\xa2" # => 13
string.jcount "\xef\xbc\xa2" # => 1

String#count treats "\xef\xbc\xa2" as three separate bytes, and counts the number of
times each of those bytes shows up in the string. String#jcount treats the same string
as a single character, and looks for that character in the string, finding it only once.

"\xef\xbc\xa2".length # => 3
"\xef\xbc\xa2".jlength # => 1

Apart from these differences, Ruby handles most Unicode behind the scenes. Once
you have your data in UTF-8 format, you really don’t have to worry. Given that
Ruby’s creator Yukihiro Matsumoto is Japanese, it is no wonder that Ruby handles
Unicode so elegantly.

See Also
• If you have text in some other encoding and need to convert it to UTF-8, use the

iconv library, as described in Recipe 11.2, “Extracting Data from a Document’s
Tree Structure”

• There are several online search engines for Unicode characters; two good ones are
at http://isthisthingon.org/unicode/ and http://www.fileformat.info/info/unicode/char/
search.htm

26 | Chapter 1: Strings

1.15 Word-Wrapping Lines of Text

Problem
You want to turn a string full of miscellaneous whitespace into a string formatted
with linebreaks at appropriate intervals, so that the text can be displayed in a win-
dow or sent as an email.

Solution
The simplest way to add newlines to a piece of text is to use a regular expression like
the following.

def wrap(s, width=78)
 s.gsub(/(.{1,#{width}})(\s+|\Z)/, "\\1\n")
end

wrap("This text is too short to be wrapped.")
=> "This text is too short to be wrapped.\n"

puts wrap("This text is not too short to be wrapped.", 20)
This text is not too
short to be wrapped.

puts wrap("These ten-character columns are stifling my creativity!", 10)
These
ten-character
columns
are
stifling
my
creativity!

Discussion
The code given in the Solution preserves the original formatting of the string, insert-
ing additional line breaks where necessary. This works well when you want to pre-
serve the existing formatting while squishing everything into a smaller space:

poetry = %q{It is an ancient Mariner,
And he stoppeth one of three.
"By thy long beard and glittering eye,
Now wherefore stopp'st thou me?}

puts wrap(poetry, 20)
It is an ancient
Mariner,
And he stoppeth one
of three.
"By thy long beard
and glittering eye,
Now wherefore
stopp'st thou me?

1.15 Word-Wrapping Lines of Text | 27

But sometimes the existing whitespace isn’t important, and preserving it makes the
result look bad:

prose = %q{I find myself alone these days, more often than not,
watching the rain run down nearby windows. How long has it been
raining? The newspapers now print the total, but no one reads them
anymore.}

puts wrap(prose, 60)
I find myself alone these days, more often than not,
watching the rain run down nearby windows. How long has it
been
raining? The newspapers now print the total, but no one
reads them
anymore.

Looks pretty ragged. In this case, we want to get replace the original newlines with
new ones. The simplest way to do this is to preprocess the string with another regu-
lar expression:

def reformat_wrapped(s, width=78)
 s.gsub(/\s+/, " ").gsub(/(.{1,#{width}})(|\Z)/, "\\1\n")
end

But regular expressions are relatively slow; it’s much more efficient to tear the string
apart into words and rebuild it:

def reformat_wrapped(s, width=78)
 lines = []
 line = ""
 s.split(/\s+/).each do |word|
 if line.size + word.size >= width
 lines << line
 line = word
 elsif line.empty?
 line = word
 else
 line << " " << word
 end
 end
 lines << line if line
 return lines.join "\n"
end

puts reformat_wrapped(prose, 60)
I find myself alone these days, more often than not,
watching the rain run down nearby windows. How long has it
been raining? The newspapers now print the total, but no one
reads them anymore.

See Also
• The Facets Core library defines String#word_wrap and String#word_wrap! methods

28 | Chapter 1: Strings

1.16 Generating a Succession of Strings

Problem
You want to iterate over a series of alphabetically-increasing strings as you would
over a series of numbers.

Solution
If you know both the start and end points of your succession, you can simply create a
range and use Range#each, as you would for numbers:

('aa'..'ag').each { |x| puts x }
aa
ab
ac
ad
ae
af
ag

The method that generates the successor of a given string is String#succ. If you don’t
know the end point of your succession, you can define a generator that uses succ,
and break from the generator when you’re done.

def endless_string_succession(start)
 while true
 yield start
 start = start.succ
 end
end

This code iterates over an endless succession of strings, stopping when the last two
letters are the same:

endless_string_succession('fol') do |x|
 puts x
 break if x[-1] == x[-2]
end
fol
fom
fon
foo

Discussion
Imagine a string as an odometer. Each character position of the string has a separate
dial, and the current odometer reading is your string. Each dial always shows the
same kind of character. A dial that starts out showing a number will always show a
number. A character that starts out showing an uppercase letter will always show an
uppercase letter.

1.16 Generating a Succession of Strings | 29

The string succession operation increments the odometer. It moves the rightmost
dial forward one space. This might make the rightmost dial wrap around to the
beginning: if that happens, the dial directly to its left is also moved forward one
space. This might make that dial wrap around to the beginning, and so on:

'89999'.succ # => "90000"
'nzzzz'.succ # => "oaaaa"

When the leftmost dial wraps around, a new dial is added to the left of the odome-
ter. The new dial is always of the same type as the old leftmost dial. If the old left-
most dial showed capital letters, then so will the new leftmost dial:

'Zzz'.succ # => "AAaa"

Lowercase letters wrap around from “z” to “a”. If the first character is a lowercase
letter, then when it wraps around, an “a” is added on to the beginning of the string:

'z'.succ # => "aa"
'aa'.succ # => "ab"
'zz'.succ # => "aaa"

Uppercase letters work in the same way: “Z” becomes “A”. Lowercase and upper-
case letters never mix.

'AA'.succ # => "AB"
'AZ'.succ # => "BA"
'ZZ'.succ # => "AAA"
'aZ'.succ # => "bA"
'Zz'.succ # => "AAa"

Digits in a string are treated as numbers, and wrap around from 9 to 0, just like a car
odometer.

'foo19'.succ # => "foo20"
'foo99'.succ # => "fop00"
'99'.succ # => "100"
'9Z99'.succ # => "10A00"

Characters other than alphanumerics are not incremented unless they are the only
characters in the string. They are simply ignored when calculating the succession,
and reproduced in the same positions in the new string. This lets you build format-
ting into the strings you want to increment.

'10-99'.succ # => "11-00"

When nonalphanumerics are the only characters in the string, they are incremented
according to ASCII order. Eventually an alphanumeric will show up, and the rules
for strings containing alphanumerics will take over.

'a-a'.succ # => "a-b"
'z-z'.succ # => "aa-a"
'Hello!'.succ # => "Hellp!"
%q{'zz'}.succ # => "'aaa'"
%q{z'zz'}.succ # => "aa'aa'"
'$$$$'.succ # => "$$$%"

30 | Chapter 1: Strings

s = '!@-'
13.times { puts s = s.succ }
 # !@.
 # !@/
 # !@0
 # !@1
 # !@2
 # ...
 # !@8
 # !@9
 # !@10

There’s no reverse version of String#succ. Matz, and the community as a whole,
think there’s not enough demand for such a method to justify the work necessary to
handle all the edge cases. If you need to iterate over a succession of strings in reverse,
your best bet is to transform the range into an array and iterate over that in reverse:

("a".."e").to_a.reverse_each { |x| puts x }
 # e
 # d
 # c
 # b
 # a

See Also
• Recipe 2.15, “Generating a Sequence of Numbers”

• Recipe 3.4, “Iterating Over Dates”

1.17 Matching Strings with Regular Expressions

Problem
You want to know whether or not a string matches a certain pattern.

Solution
You can usually describe the pattern as a regular expression. The =~ operator tests a
string against a regular expression:

string = 'This is a 30-character string.'

if string =~ /([0-9]+)-character/ and $1.to_i == string.length
 "Yes, there are #$1 characters in that string."
end
=> "Yes, there are 30 characters in that string."

You can also use Regexp#match:

match = Regexp.compile('([0-9]+)-character').match(string)
if match && match[1].to_i == string.length
 "Yes, there are #{match[1]} characters in that string."
end
=> "Yes, there are 30 characters in that string."

1.17 Matching Strings with Regular Expressions | 31

You can check a string against a series of regular expressions with a case statement:

string = "123"

case string
when /^[a-zA-Z]+$/
 "Letters"
when /^[0-9]+$/
 "Numbers"
else
 "Mixed"
end
=> "Numbers"

Discussion
Regular expressions are a cryptic but powerful minilanguage for string matching and
substring extraction. They’ve been around for a long time in Unix utilities like sed,
but Perl was the first general-purpose programming language to include them. Now
almost all modern languages have support for Perl-style regular expression.

Ruby provides several ways of initializing regular expressions. The following are all
equivalent and create equivalent Regexp objects:

/something/
Regexp.new("something")
Regexp.compile("something")
%r{something}

The following modifiers are also of note.

Here’s how to use these modifiers to create regular expressions:

/something/mxi
Regexp.new('something',
 Regexp::EXTENDED + Regexp::IGNORECASE + Regexp::MULTILINE)
%r{something}mxi

Here’s how the modifiers work:

case_insensitive = /mangy/i
case_insensitive =~ "I'm mangy!" # => 4
case_insensitive =~ "Mangy Jones, at your service." # => 0

multiline = /a.b/m
multiline =~ "banana\nbanana" # => 5
/a.b/ =~ "banana\nbanana" # => nil

Regexp::IGNORECASE i Makes matches case-insensitive.

Regexp::MULTILINE m Normally, a regexp matches against a single line of a string. This
will cause a regexp to treat line breaks like any other character.

Regexp::EXTENDED x This modifier lets you space out your regular expressions with
whitespace and comments, making them more legible.

32 | Chapter 1: Strings

But note:
/a\nb/ =~ "banana\nbanana" # => 5

extended = %r{ \ was # Match " was"
 \s # Match one whitespace character
 a # Match "a" }xi
extended =~ "What was Alfred doing here?" # => 4
extended =~ "My, that was a yummy mango." # => 8
extended =~ "It was\n\n\na fool's errand" # => nil

See Also
• Mastering Regular Expressions by Jeffrey Friedl (O’Reilly) gives a concise intro-

duction to regular expressions, with many real-world examples

• RegExLib.com provides a searchable database of regular expressions (http://
regexlib.com/default.aspx)

• A Ruby-centric regular expression tutorial (http://www.regular-expressions.info/
ruby.html)

• ri Regexp

• Recipe 1.19, “Validating an Email Address”

1.18 Replacing Multiple Patterns in a Single Pass

Problem
You want to perform multiple, simultaneous search-and-replace operations on a
string.

Solution
Use the Regexp.union method to aggregate the regular expressions you want to match
into one big regular expression that matches any of them. Pass the big regular expres-
sion into String#gsub, along with a code block that takes a MatchData object. You can
detect which of your search terms actually triggered the regexp match, and choose
the appropriate replacement term:

class String
 def mgsub(key_value_pairs=[].freeze)
 regexp_fragments = key_value_pairs.collect { |k,v| k }
 gsub(Regexp.union(*regexp_fragments)) do |match|
 key_value_pairs.detect{|k,v| k =~ match}[1]
 end
 end
end

Here’s a simple example:

"GO HOME!".mgsub([[/.*GO/i, 'Home'], [/home/i, 'is where the heart is']])
=> "Home is where the heart is!"

1.19 Validating an Email Address | 33

This example replaces all letters with pound signs, and all pound signs with the letter P:

"Here is number #123".mgsub([[/[a-z]/i, '#'], [/#/, 'P']])
=> "#### ## ###### P123"

Discussion
The naive solution is to simply string together multiple gsub calls. The following
examples, copied from the solution, show why this is often a bad idea:

"GO HOME!".gsub(/.*GO/i, 'Home').gsub(/home/i, 'is where the heart is')
=> "is where the heart is is where the heart is!"

"Here is number #123".gsub(/[a-z]/i, "#").gsub(/#/, "P")
=> "PPPP PP PPPPPP P123"

In both cases, our replacement strings turned out to match the search term of a later
gsub call. Our replacement strings were themselves subject to search-and-replace. In
the first example, the conflict can be fixed by reversing the order of the substitu-
tions. The second example shows a case where reversing the order won’t help. You
need to do all your replacements in a single pass over the string.

The mgsub method will take a hash, but it’s safer to pass in an array of key-value
pairs. This is because elements in a hash come out in no particular order, so you
can’t control the order of substution. Here’s a demonstration of the problem:

"between".mgsub(/ee/ => 'AA', /e/ => 'E') # Bad code
=> "bEtwEEn"

"between".mgsub([[/ee/, 'AA'], [/e/, 'E']]) # Good code
=> "bEtwAAn"

In the second example, the first substitution runs first. In the first example, it runs
second (and doesn’t find anything to replace) because of a quirk of Ruby’s Hash
implementation.

If performance is important, you may want to rethink how you implement mgsub.
The more search and replace terms you add to the array of key-value pairs, the longer
it will take, because the detect method performs a set of regular expression checks
for every match found in the string.

See Also
• Recipe 1.17, “Matching Strings with Regular Expressions”

• Confused by the *regexp_fragments syntax in the call to Regexp.union? Take a
look at Recipe 8.11, “Accepting or Passing a Variable Number of Arguments”

1.19 Validating an Email Address

Problem
You need to see whether an email address is valid.

34 | Chapter 1: Strings

Solution
Here’s a sampling of valid email addresses you might encounter:

test_addresses = [#The following are valid addresses according to RFC822.
 'joe@example.com', 'joe.bloggs@mail.example.com',
 'joe+ruby-mail@example.com', 'joe(and-mary)@example.museum',
 'joe@localhost',

Here are some invalid email addresses you might encounter:

 # Complete the list with some invalid addresses
 'joe', 'joe@', '@example.com',
 'joe@example@example.com',
 'joe and mary@example.com']

And here are some regular expressions that do an okay job of filtering out bad email
addresses. The first one does very basic checking for ill-formed addresses:

valid = '[^ @]+' # Exclude characters always invalid in email addresses
username_and_machine = /^#{valid}@#{valid}$/

test_addresses.collect { |i| i =~ username_and_machine }
=> [0, 0, 0, 0, 0, nil, nil, nil, nil, nil]

The second one prohibits the use of local-network addresses like “joe@localhost”.
Most applications should prohibit such addresses.

username_and_machine_with_tld = /^#{valid}@#{valid}\.#{valid}$/

test_addresses.collect { |i| i =~ username_and_machine_with_tld }
=> [0, 0, 0, 0, nil, nil, nil, nil, nil, nil]

However, the odds are good that you’re solving the wrong problem.

Discussion
Most email address validation is done with naive regular expressions like the ones
given above. Unfortunately, these regular expressions are usually written too strictly,
and reject many email addresses. This is a common source of frustration for people
with unusual email addresses like joe(and-mary)@example.museum, or people tak-
ing advantage of special features of email, as in joe+ruby-mail@example.com. The
regular expressions given above err on the opposite side: they’ll accept some syntacti-
cally invalid email addresses, but they won’t reject valid addresses.

Why not give a simple regular expression that always works? Because there’s no such
thing. The definition of the syntax is anything but simple. Perl hacker Paul Warren
defined an 6343-character regular expression for Perl’s Mail::RFC822::Address module,
and even it needs some preprocessing to accept absolutely every allowable email
address. Warren’s regular expression will work unaltered in Ruby, but if you really want
it, you should go online and find it, because it would be foolish to try to type it in.

1.19 Validating an Email Address | 35

Check validity, not correctness

Even given a regular expression or other tool that infallibly separates the RFC822-
compliant email addresses from the others, you can’t check the validity of an email
address just by looking at it; you can only check its syntactic correctness.

It’s easy to mistype your username or domain name, giving out a perfectly valid email
address that belongs to someone else. It’s trivial for a malicious user to make up a valid
email address that doesn’t work at all—I did it earlier with the joe@example.com non-
sense. !@ is a valid email address according to the regexp test, but no one in this uni-
verse uses it. You can’t even compare the top-level domain of an address against a
static list, because new top-level domains are always being added. Syntactic validation
of email addresses is an enormous amount of work that only solves a small portion of
the problem.

The only way to be certain that an email address is valid is to successfully send email
to it. The only way to be certain that an email address is the right one is to send email
to it and get the recipient to respond. You need to weigh this additional work (yours
and the user’s) against the real value of a verified email address.

It used to be that a user’s email address was closely associated with their online iden-
tity: most people had only the email address their ISP gave them. Thanks to today’s
free web-based email, that’s no longer true. Email verification no longer works to
prevent duplicate accounts or to stop antisocial behavior online—if it ever did.

This is not to say that it’s never useful to have a user’s working email address, or that
there’s no problem if people mistype their email addresses. To improve the quality of
the addresses your users enter, without rejecting valid addresses, you can do three
things beyond verifying with the permissive regular expressions given above:

1. Use a second naive regular expression, more restrictive than the ones given
above, but don’t prohibit addresses that don’t match. Only use the second regu-
lar expression to advise the user that they may have mistyped their email
address. This is not as useful as it seems, because most typos involve changing
one letter for another, rather than introducing nonalphanumerics where they
don’t belong.

def probably_valid?(email)
 valid = '[A-Za-z\d.+-]+' #Commonly encountered email address characters
 (email =~ /#{valid}@#{valid}\.#{valid}/) == 0
end

#These give the correct result.
probably_valid? 'joe@example.com' # => true
probably_valid? 'joe+ruby-mail@example.com' # => true
probably_valid? 'joe.bloggs@mail.example.com' # => true
probably_valid? 'joe@examplecom' # => false
probably_valid? 'joe+ruby-mail@example.com' # => true
probably_valid? 'joe@localhost' # => false

36 | Chapter 1: Strings

This address is valid, but probably_valid thinks it's not.
probably_valid? 'joe(and-mary)@example.museum' # => false

This address is valid, but certainly wrong.
probably_valid? 'joe@example.cpm' # => true

2. Extract from the alleged email address the hostname (the “example.com” of
joe@example.com), and do a DNS lookup to see if that hostname accepts email.
A hostname that has an MX DNS record is set up to receive mail. The following
code will catch most domain name misspellings, but it won’t catch any user-
name misspellings. It’s also not guaranteed to parse the hostname correctly,
again because of the complexity of RFC822.

require 'resolv'
def valid_email_host?(email)
 hostname = email[(email =~ /@/)+1..email.length]
 valid = true
 begin
 Resolv::DNS.new.getresource(hostname, Resolv::DNS::Resource::IN::MX)
 rescue Resolv::ResolvError
 valid = false
 end
 return valid
end

#example.com is a real domain, but it won't accept mail
valid_email_host?('joe@example.com') # => false

#lcqkxjvoem.mil is not a real domain.
valid_email_host?('joe@lcqkxjvoem.mil') # => false

#oreilly.com exists and accepts mail, though there might not be a 'joe' there.
valid_email_host?('joe@oreilly.com') # => true

3. Send email to the address the user input, and ask the user to verify receipt. For
instance, the email might contain a verification URL for the user to click on. This
is the only way to guarantee that the user entered a valid email address that they
control. See Recipes 14.5 and 15.19 for this.

This is overkill much of the time. It requires that you add special workflow to
your application, it significantly raises the barriers to use of your application,
and it won’t always work. Some users have spam filters that will treat your test
mail as junk, or whitelist email systems that reject all email from unknown
sources. Unless you really need a user’s working email address for your applica-
tion to work, very simple email validation should suffice.

See Also
• Recipe 14.5, “Sending Mail”

• Recipe 15.19, “Sending Mail with Rails”

• See the amazing colossal regular expression for email addresses at http://www.ex-
parrot.com/~pdw/Mail-RFC822-Address.html

1.20 Classifying Text with a Bayesian Analyzer | 37

1.20 Classifying Text with a Bayesian Analyzer

Problem
You want to classify chunks of text by example: an email message is either spam or
not spam, a joke is either funny or not funny, and so on.

Solution
Use Lucas Carlson’s Classifier library, available as the classifier gem. It provides a
naive Bayesian classifier, and one that implements Latent Semantic Indexing, a more
advanced technique.

The interface for the naive Bayesian classifier is very straightforward. You create a
Classifier::Bayes object with some classifications, and train it on text chunks
whose classification is known:

require 'rubygems'
require 'classifier'

classifier = Classifier::Bayes.new('Spam', 'Not spam')

classifier.train_spam 'are you in the market for viagra? we sell viagra'
classifier.train_not_spam 'hi there, are we still on for lunch?'

You can then feed the classifier text chunks whose classification is unknown, and
have it guess:

classifier.classify "we sell the cheapest viagra on the market"
=> "Spam"
classifier.classify "lunch sounds great"
=> "Not spam"

Discussion
Bayesian analysis is based on probablities. When you train the classifier, you are giv-
ing it a set of words and the classifier keeps track of how often words show up in
each category. In the simple spam filter built in the Solution, the frequency hash
looks like the @categories variable below:

classifier
=> #<Classifier::Bayes:0xb7cec7c8
@categories={:"Not spam"=>
{ :lunch=>1, :for=>1, :there=>1,
:"?"=>1, :still=>1, :","=>1 },
:Spam=>
{ :market=>1, :for=>1, :viagra=>2, :"?"=>1, :sell=>1 }
},
@total_words=12>

These hashes are used to build probability calculations. Note that since we mentioned
the word “viagra” twice in spam messages, there is a 2 in the “Spam” frequency hash

38 | Chapter 1: Strings

for that word. That makes it more spam-like than other words like “for” (which also
shows up in nonspam) or “sell” (which only shows up once in spam). The classifier can
apply these probabilities to previously unseen text and guess at a classification for it.

The more text you use to train the classifier, the better it becomes at guessing. If you
can verify the classifier’s guesses (for instance, by asking the user whether a message
really was spam), you should use that information to train the classifier with new
data as it comes in.

To save the state of the classifier for later use, you can use Madeleine persistence
(Recipe 13.3), which writes the state of your classifier to your hard drive.

A few more notes about this type of classifier. A Bayesian classifier supports as many
categories as you want. “Spam” and “Not spam” are the most common, but you are
not limited to two. You can also use the generic train method instead of calling
train_[category_name]. Here’s a classifier that has three categories and uses the
generic train method:

classifier = Classifier::Bayes.new('Interesting', 'Funny', 'Dramatic')

classifier.train 'Interesting', "Leaving reminds us of what we can part
 with and what we can't, then offers us something new to look forward
 to, to dream about."
classifier.train 'Funny', "Knock knock. Who's there? Boo boo. Boo boo
 who? Don't cry, it is only a joke."
classifier.train 'Dramatic', 'I love you! I hate you! Get out right
 now.'

classifier.classify 'what!'
=> "Dramatic"
classifier.classify "who's on first?"
=> "Funny"
classifier.classify 'perchance to dream'
=> "Interesting"

It’s also possible to “untrain” a category if you make a mistake or change your mind
later.

classifier.untrain_funny "boo"
classifier.untrain "Dramatic", "out"

See Also
• Recipe 13.3, “Persisting Objects with Madeleine”

• The README file for the Classifier library has an example of an LSI classifier

• Bishop (http://bishop.rubyforge.org/) is another Bayesian classifier, a port of
Python’s Reverend; it’s available as the bishop gem

• http://en.wikipedia.org/wiki/Naive_Bayes_classifier

• http://en.wikipedia.org/wiki/Latent_Semantic_Analysis

39

Chapter 2 CHAPTER 2

Numbers2

Numbers are as fundamental to computing as breath is to human life. Even pro-
grams that have nothing to do with math need to count the items in a data structure,
display average running times, or use numbers as a source of randomness. Ruby
makes it easy to represent numbers, letting you breathe easy and tackle the harder
problems of programming.

An issue that comes up when you’re programming with numbers is that there are
several different implementations of “number,” optimized for different purposes: 32-
bit integers, floating-point numbers, and so on. Ruby tries to hide these details from
you, but it’s important to know about them because they often manifest as mysteri-
ously incorrect calculations.*

The first distinction is between small numbers and large ones. If you’ve used other pro-
gramming languages, you probably know that you must use different data types to
hold small numbers and large numbers (assuming that the language supports large
numbers at all). Ruby has different classes for small numbers (Fixnum) and large num-
bers (Bignum), but you don’t usually have to worry about the difference. When you type
in a number, Ruby sees how big it is and creates an object of the appropriate class.

1000.class # => Fixnum
10000000000.class # => Bignum
(2**30 - 1).class # => Fixnum
(2**30).class # => Bignum

When you perform arithmetic, Ruby automatically does any needed conversions.
You don’t have to worry about the difference between small and large numbers:†

small = 1000
big = small ** 5 # => 1000000000000000

* See, for instance, the Discussion section of Recipe 2.11, where it’s revealed that Matrix#inverse doesn’t work
correctly on a matrix full of integers. This is because Matrix#inverse uses division, and integer division works
differently from floating-point division.

† Python also has this feature.

40 | Chapter 2: Numbers

big.class # => Bignum
smaller = big / big # => 1
smaller.class # => Fixnum

The other major distinction is between whole numbers (integers) and fractional num-
bers. Like all modern programming languages, Ruby implements the IEEE floating-
point standard for representing fractional numbers. If you type a number that
includes a decimal point, Ruby creates a Float object instead of a Fixnum or Bignum:

0.01.class # => Float
1.0.class # => Float
10000000000.00000000001.class # => Float

But floating-point numbers are imprecise (see Recipe 2.2), and they have their own
size limits, so Ruby also provides a class that can represent any number with a finite
decimal expansion (Recipe 2.3). There’s also a class for numbers like two-thirds,
which have an infinite decimal expansion (Recipe 2.4), and a class for complex or
“irrational” numbers (Recipe 2.12).

Every kind of number in Ruby has its own class (Integer, Bignum, Complex, and so
on), which inherits from the Numeric class. All these classes implement the basic
arithmetic operations, and in most cases you can mix and match numbers of differ-
ent types (see Recipe 8.9 for more on how this works). You can reopen these classes
to add new capabilities to numbers (see, for instance, Recipe 2.17), but you can’t
usefully subclass them.

Ruby provides simple ways of generating random numbers (Recipe 2.5) and
sequences of numbers (Recipe 2.15). This chapter also covers some simple mathe-
matical algorithms (Recipes 2.7 and 2.11) and statistics (Recipe 2.8).

2.1 Parsing a Number from a String

Problem
Given a string that contains some representation of a number, you want to get the
corresponding integer or floating-point value.

Solution
Use String#to_i to turn a string into an integer. Use String#to_f to turn a string into
a floating-point number.

'400'.to_i # => 400
'3.14'.to_f # => 3.14
'1.602e-19'.to_f # => 1.602e-19

2.1 Parsing a Number from a String | 41

Discussion
Unlike Perl and PHP, Ruby does not automatically make a number out of a string
that contains a number. You must explicitly call a conversion method that tells Ruby
how you want the string to be converted.

Along with to_i and to_f, there are other ways to convert strings into numbers. If
you have a string that represents a hex or octal string, you can call String#hex or
String#oct to get the decimal equivalent. This is the same as passing the base of the
number into to_i:

'405'.oct # => 261
'405'.to_i(8) # => 261
'405'.hex # => 1029
'405'.to_i(16) # => 1029
'fed'.hex # => 4077
'fed'.to_i(16) # => 4077

If to_i, to_f, hex, or oct find a character that can’t be part of the kind of number
they’re looking for, they stop processing the string at that character and return the
number so far. If the string’s first character is unusable, the result is zero.

"13: a baker's dozen".to_i # => 13
'1001 Nights'.to_i # => 1001
'The 1000 Nights and a Night'.to_i # => 0
'60.50 Misc. Agricultural Equipment'.to_f # => 60.5
'$60.50'.to_f # => 0.0
'Feed the monster!'.hex # => 65261
'I fed the monster at Canoga Park Waterslides'.hex # => 0
'0xA2Z'.hex # => 162
'-10'.oct # => -8
'-109'.oct # => -8
'3.14'.to_i # => 3

Note especially that last example: the decimal point is just one more character that
stops processing of a string representing an integer.

If you want an exception when a string can’t be completely parsed as a number, use
Integer() or Float():

Integer('1001') # => 1001
Integer('1001 nights')
ArgumentError: invalid value for Integer: "1001 nights"

Float('99.44') # => 99.44
Float('99.44% pure')
ArgumentError: invalid value for Float(): "99.44% pure"

To extract a number from within a larger string, use a regular expression. The
NumberParser class below contains regular expressions for extracting floating-point
strings, as well as decimal, octal, and hexadecimal numbers. Its extract_numbers
method uses String#scan to find all the numbers of a certain type in a string.

42 | Chapter 2: Numbers

class NumberParser
 @@number_regexps = {
 :to_i => /([+-]?[0-9]+)/,
 :to_f => /([+-]?([0-9]*\.)?[0-9]+(e[+-]?[0-9]+)?)/i,
 :oct => /([+-]?[0-7]+)/,
 :hex => /\b([+-]?(0x)?[0-9a-f]+)\b/i
 #The \b characters prevent every letter A-F in a word from being
 #considered a hexadecimal number.
 }

 def NumberParser.re(parsing_method=:to_i)
 re = @@number_regexps[parsing_method]
 raise ArgumentError, "No regexp for #{parsing_method.inspect}!" unless re
 return re
 end

 def extract(s, parsing_method=:to_i)
 numbers = []
 s.scan(NumberParser.re(parsing_method)) do |match|
 numbers << match[0].send(parsing_method)
 end
 numbers
 end
end

Here it is in action:

p = NumberParser.new

pw = "Today's numbers are 104 and 391."
NumberParser.re(:to_i).match(pw).captures # => ["104"]
p.extract(pw, :to_i) # => [104, 391]

p.extract('The 1000 nights and a night') # => [1000]
p.extract('$60.50', :to_f) # => [60.5]
p.extract('I fed the monster at Canoga Park Waterslides', :hex)
=> [4077]
p.extract('In octal, fifteen is 017.', :oct) # => [15]

p.extract('From 0 to 10e60 in -2.4 seconds', :to_f)
=> [0.0, 1.0e+61, -2.4]
p.extract('From 0 to 10e60 in -2.4 seconds')
=> [0, 10, 60, -2, 4]

If you want to extract more than one kind of number from a string, the most reliable
strategy is to stop using regular expressions and start using the scanf module, a free
third-party module that provides a parser similar to C’s scanf function.

require 'scanf'
s = '0x10 4.44 10'.scanf('%x %f %d') # => [16, 4.44, 10]

See Also
• Recipe 2.6, “Converting Between Numeric Bases”

2.2 Comparing Floating-Point Numbers | 43

• Recipe 8.9, “Converting and Coercing Objects to Different Types”

• The scanf module (http://www.rubyhacker.com/code/scanf/)

2.2 Comparing Floating-Point Numbers

Problem
Floating-point numbers are not suitable for exact comparison. Often, two numbers
that should be equal are actually slightly different. The Ruby interpreter can make
seemingly nonsensical assertions when floating-point numbers are involved:

1.8 + 0.1 # => 1.9
1.8 + 0.1 == 1.9 # => false
1.8 + 0.1 > 1.9 # => true

You want to do comparison operations approximately, so that floating-point num-
bers infintesimally close together can be treated equally.

Solution
You can avoid this problem altogether by using BigDecimal numbers instead of floats
(see Recipe 2.3). BigDecimal numbers are completely precise, and work as well as as
floats for representing numbers that are relatively small and have few decimal places:
everyday numbers like the prices of fruits. But math on BigDecimal numbers is much
slower than math on floats. Databases have native support for floating-point num-
bers, but not for BigDecimals. And floating-point numbers are simpler to create (sim-
ply type 10.2 in an interactive Ruby shell to get a Float object). BigDecimals can’t
totally replace floats, and when you use floats it would be nice not to have to worry
about tiny differences between numbers when doing comparisons.

But how tiny is “tiny"? How large can the difference be between two numbers before
they should stop being considered equal? As numbers get larger, so does the range of
floating-point values that can reasonably be expected to model that number. 1.1 is
probably not “approximately equal” to 1.2, but 1020 + 0.1 is probably “approxi-
mately equal” to 1020 + 0.2.

The best solution is probably to compare the relative magnitudes of large num-
bers, and the absolute magnitudes of small numbers. The following code accepts
both two thresholds: a relative threshold and an absolute threshold. Both default
to Float::EPSILON, the smallest possible difference between two Float objects. Two
floats are considered approximately equal if they are within absolute_epsilon of each
other, or if the difference between them is relative_epsilon times the magnitude of the
larger one.

class Float
 def approx(other, relative_epsilon=Float::EPSILON, epsilon=Float::EPSILON)
 difference = other - self
 return true if difference.abs <= epsilon

44 | Chapter 2: Numbers

 relative_error = (difference / (self > other ? self : other)).abs
 return relative_error <= relative_epsilon
 end
end

100.2.approx(100.1 + 0.1) # => true
10e10.approx(10e10+1e-5) # => true
100.0.approx(100+1e-5) # => false

Discussion
Floating-point math is very precise but, due to the underlying storage mechanism for
Float objects, not very accurate. Many real numbers (such as 1.9) can’t be represented
by the floating-point standard. Any attempt to represent such a number will end up
using one of the nearby numbers that does have a floating-point representation.

You don’t normally see the difference between 1.9 and 1.8 + 0.1, because Float#to_s
rounds them both off to “1.9”. You can see the difference by using Kernel#printf to
display the two expressions to many decimal places:

printf("%.55f", 1.9)
1.8999999999999999111821580299874767661094665527343750000
printf("%.55f", 1.8 + 0.1)
1.9000000000000001332267629550187848508358001708984375000

Both numbers straddle 1.9 from opposite ends, unable to accurately represent the
number they should both equal. Note that the difference between the two numbers
is precisely Float::EPSILON:

Float::EPSILON # => 2.22044604925031e-16
(1.8 + 0.1) - 1.9 # => 2.22044604925031e-16

This EPSILON’s worth of inaccuracy is often too small to matter, but it does when you’re
doing comparisons. 1.9+Float::EPSILON is not equal to 1.9-Float::EPSILON, even if (in
this case) both are attempts to represent the same number. This is why most floating-
point numbers are compared in relative terms.

The most efficient way to do a relative comparison is to see whether the two num-
bers differ by more than an specified error range, using code like this:

class Float
 def absolute_approx(other, epsilon=Float::EPSILON)
 return (other-self).abs <= epsilon
 end
end

(1.8 + 0.1).absolute_approx(1.9) # => true
10e10.absolute_approx(10e10+1e-5) # => false

The default value of epsilon works well for numbers close to 0, but for larger num-
bers the default value of epsilon will be too small. Any other value of epsilon you
might specify will only work well within a certain range.

2.3 Representing Numbers to Arbitrary Precision | 45

Thus, Float#approx, the recommended solution, compares both absolute and rela-
tive magnitude. As numbers get bigger, so does the allowable margin of error for two
numbers to be considered “equal.” Its default relative_epsilon allows numbers
between 2 and 3 to differ by twice the value of Float::EPSILON. Numbers between 3
and 4 can differ by three times the value of Float::EPSILON, and so on.

A very small value of relative_epsilon is good for mathematical operations, but if
your data comes from a real-world source like a scientific instrument, you can
increase it. For instance, a Ruby script may track changes in temperature read from a
thermometer that’s only 99.9% accurate. In this case, relative_epsilon can be set to
0.001, and everything beyond that point discarded as noise.

98.6.approx(98.66) # => false
98.6.approx(98.66, 0.001) # => true

See Also
• Recipe 2.3, “Representing Numbers to Arbitrary Precision,” has more informa-

tion on BigDecimal numbers

• If you need to represent a fraction with an infinite decimal expansion, use a
Rational number (see Recipe 2.4, “Representing Rational Numbers”)

• “Comparing floating point numbers” by Bruce Dawson has an excellent (albeit
C-centric) overview of the tradeoffs involved in different ways of doing floating-
point comparisons (http://www.cygnus-software.com/papers/comparingfloats/
comparingfloats.htm)

2.3 Representing Numbers to Arbitrary Precision

Problem
You’re doing high-precision arithmetic, and floating-point numbers are not precise
enough.

Solution
A BigDecimal number can represent a real number to an arbitrary number of decimal
places.

require 'bigdecimal'

BigDecimal("10").to_s # => "0.1E2"
BigDecimal("1000").to_s # => "0.1E4"
BigDecimal("1000").to_s("F") # => "1000.0"

BigDecimal("0.123456789").to_s # => "0.123456789E0"

Compare how Float and BigDecimal store the same high-precision number:

nm = "0.123456789012345678901234567890123456789"
nm.to_f # => 0.123456789012346

46 | Chapter 2: Numbers

BigDecimal(nm).to_s
=> "0.123456789012345678901234567890123456789E0"

Discussion
BigDecimal numbers store numbers in scientific notation format. A BigDecimal consists
of a sign (positive or negative), an arbitrarily large decimal fraction, and an arbitrarily
large exponent. This is similar to the way floating-point numbers are stored, but a dou-
ble-precision floating-point implementation like Ruby’s cannot represent an exponent
less than Float::MIN_EXP (–1021) or greater than Float::MAX_EXP (1024). Float
objects also can’t represent numbers at a greater precision than Float::EPSILON, or
about 2.2*10-16.

You can use BigDecimal#split to split a BigDecimal object into the parts of its scientific-
notation representation. It returns an array of four numbers: the sign (1 for positive
numbers, –1 for negative numbers), the fraction (as a string), the base of the expo-
nent (which is always 10), and the exponent itself.

BigDecimal("105000").split
=> [1, "105", 10, 6]
That is, 0.105*(10**6)

BigDecimal("-0.005").split
=> [-1, "5", 10, -2]
That is, -1 * (0.5*(10**-2))

A good way to test different precision settings is to create an infinitely repeating deci-
mal like 2/3, and see how much of it gets stored. By default, BigDecimals give 16 dig-
its of precision, roughly comparable to what a Float can give.

(BigDecimal("2") / BigDecimal("3")).to_s
=> "0.6666666666666667E0"

2.0/3
=> 0.666666666666667

You can store additional significant digits by passing in a second argument n to the
BigDecimal constructor. BigDecimal precision is allocated in chunks of four decimal
digits. Values of n from 1 to 4 make a BigDecimal use the default precision of 16 dig-
its. Values from 5 to 8 give 20 digits of precision, values from 9 to 12 give 24 digits,
and so on:

def two_thirds(precision)
 (BigDecimal("2", precision) / BigDecimal("3")).to_s
end

two_thirds(1) # => "0.6666666666666667E0"
two_thirds(4) # => "0.6666666666666667E0"
two_thirds(5) # => "0.66666666666666666667E0"
two_thirds(9) # => "0.666666666666666666666667E0"
two_thirds(13) # => "0.6666666666666666666666666667E0"

2.3 Representing Numbers to Arbitrary Precision | 47

Not all of a number’s significant digits may be used. For instance, Ruby considers
BigDecimal("2") and BigDecimal("2.000000000000") to be equal, even though the sec-
ond one has many more significant digits.

You can inspect the precision of a number with BigDecimal#precs. This method
returns an array of two elements: the number of significant digits actually being used,
and the toal number of significant digits. Again, since significant digits are allocated
in blocks of four, both of these numbers will be multiples of four.

BigDecimal("2").precs # => [4, 8]
BigDecimal("2.000000000000").precs # => [4, 20]
BigDecimal("2.000000000001").precs # => [16, 20]

If you use the standard arithmetic operators on BigDecimals, the result is a
BigDecimal accurate to the largest possible number of digits. Dividing or multiplying
one BigDecimal by another yields a BigDecimal with more digits of precision than
either of its parents, just as would happen on a pocket calculator.

(a = BigDecimal("2.01")).precs # => [8, 8]
(b = BigDecimal("3.01")).precs # => [8, 8]

(product = a * b).to_s("F") # => "6.0501"
product.precs # => [8, 24]

To specify the number of significant digits that should be retained in an arithmetic
operation, you can use the methods add, sub, mul, and div instead of the arithmetic
operators.

two_thirds = (BigDecimal("2", 13) / 3)
two_thirds.to_s # => "0.666666666666666666666666666666666667E0"

(two_thirds + 1).to_s # => "0.1666666666666666666666666666666666667E1"

two_thirds.add(1, 1).to_s # => "0.2E1"
two_thirds.add(1, 4).to_s # => "0.1667E1"

Either way, BigDecimal math is significantly slower than floating-point math. Not
only are BigDecimals allowed to have more significant digits than floats, but
BigDecimals are stored as an array of decimal digits, while floats are stored in a
binary encoding and manipulated with binary arithmetic.

The BigMath module in the Ruby standard library defines methods for performing
arbitrary-precision mathematical operations on BigDecimal objects. It defines power-
related methods like sqrt, log, and exp, and trigonometric methods like sin, cos, and
atan.

All of these methods take as an argument a number prec indicating how many digits
of precision to retain. They may return a BigDecimal with more than prec significant
digits, but only prec of those digits are guaranteed to be accurate.

require 'bigdecimal/math'
include BigMath

48 | Chapter 2: Numbers

two = BigDecimal("2")
BigMath::sqrt(two, 10).to_s("F") # => "1.4142135623730950488016883515"

That code gives 28 decimal places, but only 10 are guaranteed accurate (because we
passed in an n of 10), and only 24 are actually accurate. The square root of 2 to 28
decimal places is actually 1.4142135623730950488016887242. We can get rid of the
inaccurate digits with BigDecimal#round:

BigMath::sqrt(two, 10).round(10).to_s("F") # => "1.4142135624"

We can also get a more precise number by increasing n:

BigMath::sqrt(two, 28).round(28).to_s("F") # => "1.4142135623730950488016887242"

BigMath also annotates BigDecimal with class methods BigDecimal.PI and BigDecimal.E.
These methods construct BigDecimals of those transcendental numbers at any level
of precision.

Math::PI # => 3.14159265358979
Math::PI.class # => Float
BigDecimal.PI(1).to_s # => "0.31415926535897932364198143965603E1"
BigDecimal.PI(20).to_s
=> "0.3141592653589793238462643383279502883919859293521427E1"

See Also
• At the time of writing, BigMath::log was very slow for BigDecimals larger than

about 10; see Recipe 2.7, “Taking Logarithms,” for a much faster implementation

• See Recipe 2.4, “Representing Rational Numbers,” if you need to exactly repre-
sent a rational number with an infinite decimal expansion, like 2/3

• The BigDecimal library reference is extremely useful; if you look at the generated
RDoc for the Ruby standard library, BigDecimal looks almost undocumented,
but it actually has a comprehensive reference file (in English and Japanese): it’s
just not in RDoc format, so it doesn’t get picked up; this document is available
in the Ruby source package, or do a web search for “BigDecimal: An extension
library for Ruby”

2.4 Representing Rational Numbers

Problem
You want to precisely represent a rational number like 2/3, one that has no finite
decimal expansion.

Solution
Use a Rational object; it represents a rational number as an integer numerator and
denominator.

2.4 Representing Rational Numbers | 49

float = 2.0/3.0 # => 0.666666666666667
float * 100 # => 66.6666666666667
float * 100 / 42 # => 1.58730158730159

require 'rational'
rational = Rational(2, 3) # => Rational(2, 3)
rational.to_f # => 0.666666666666667
rational * 100 # => Rational(200, 3)
rational * 100 / 42 # => Rational(100, 63)

Discussion
Rational objects can store numbers that can’t be represented in any other form, and
arithmetic on Rational objects is completely precise.

Since the numerator and denominator of a Rational can be Bignums, a Rational object
can also represent numbers larger and smaller than those you can represent in floating-
point. But math on BigDecimal objects is faster than on Rationals. BigDecimal objects
are also usually easier to work with than Rationals, because most of us think of num-
bers in terms of their decimal expansions.

You should only use Rational objects when you need to represent rational numbers
with perfect accuracy. When you do, be sure to use only Rationals, Fixnums, and
Bignums in your calculations. Don’t use any BigDecimals or floating-point numbers:
arithmetic operations between a Rational and those types will return floating-point
numbers, and you’ll have lost precision forever.

10 + Rational(2,3) # => Rational(32, 3)
require 'bigdecimal'
BigDecimal('10') + Rational(2,3) # => 10.6666666666667

The methods in Ruby’s Math module implement operations like square root, which
usually give irrational results. When you pass a Rational number into one of the
methods in the Math module, you get a floating-point number back:

Math::sqrt(Rational(2,3)) # => 0.816496580927726
Math::sqrt(Rational(25,1)) # => 5.0
Math::log10(Rational(100, 1)) # => 2.0

The mathn library adds miscellaneous functionality to Ruby’s math functions. Among
other things, it modifies the Math::sqrt method so that if you pass in a square number,
you get a Fixnum back instead of a Float. This preserves precision whenever possible:

require 'mathn'
Math::sqrt(Rational(2,3)) # => 0.816496580927726
Math::sqrt(Rational(25,1)) # => 5
Math::sqrt(25) # => 5
Math::sqrt(25.0) # => 5.0

50 | Chapter 2: Numbers

See Also
• The rfloat third-party library lets you use a Float-like interface that’s actually

backed by Rational (http://blade.nagaokaut.ac.jp/~sinara/ruby/rfloat/)

• RCR 320 proposes better interoperability between Rationals and floating-point
numbers, including a Rational#approximate method that will let you convert the
floating-point number 0.1 into Rational(1, 10) (http://www.rcrchive.net/rcr/
show/320)

2.5 Generating Random Numbers

Problem
You want to generate pseudorandom numbers, select items from a data structure at
random, or repeatedly generate the same “random” numbers for testing purposes.

Solution
Use the Kernel#rand function with no arguments to select a psuedorandom floating-
point number from a uniform distribution between 0 and 1.

rand # => 0.517297883846589
rand # => 0.946962603814814

Pass in a single integer argument n to Kernel#rand, and it returns an integer between
0 and n–1:

rand(5) # => 0
rand(5) # => 4
rand(5) # => 3
rand(1000) # => 39

Discussion
You can use the single-argument form of Kernel#rand to build many common tasks
based on randomness. For instance, this code selects a random item from an array.

a = ['item1', 'item2', 'item3']
a[rand(a.size)] # => "item3"

To select a random key or value from a hash, turn the keys or values into an array
and select one at random.

m = { :key1 => 'value1',
 :key2 => 'value2',
 :key3 => 'value3' }
values = m.values
values[rand(values.size)] # => "value1"

This code generates pronounceable nonsense words:

2.5 Generating Random Numbers | 51

def random_word
 letters = { ?v => 'aeiou',
 ?c => 'bcdfghjklmnprstvwyz' }
 word = ''
 'cvcvcvc'.each_byte do |x|
 source = letters[x]
 word << source[rand(source.length)].chr
 end
 return word
end

random_word # => "josuyip"
random_word # => "haramic"

The Ruby interpreter initializes its random number generator on startup, using a seed
derived from the current time and the process number. To reliably generate the same
random numbers over and over again, you can set the random number seed manually
by calling the Kernel#srand function with the integer argument of your choice. This is
useful when you’re writing automated tests of “random” functionality:

#Some random numbers based on process number and current time
rand(1000) # => 187
rand(1000) # => 551
rand(1000) # => 911

#Start the seed with the number 1
srand 1
rand(1000) # => 37
rand(1000) # => 235
rand(1000) # => 908

#Reset the seed to its previous state
srand 1
rand(1000) # => 37
rand(1000) # => 235
rand(1000) # => 908

See Also
• Recipe 4.10, “Shuffling an Array”

• Recipe 5.11, “Choosing Randomly from a Weighted List”

• Recipe 6.9, “Picking a Random Line from a File”

• The Facets library implements many methods for making random selections
from data structures: Array#pick, Array#rand_subset, Hash#rand_pair, and so on;
it also defines String.random for generating random strings

• Christian Neukirchen’s rand.rb also implements many random selection meth-
ods (http://chneukirchen.org/blog/static/projects/rand.html)

52 | Chapter 2: Numbers

2.6 Converting Between Numeric Bases

Problem
You want to convert numbers from one base to another.

Solution
You can convert specific binary, octal, or hexadecimal numbers to decimal by repre-
senting them with the 0b, 0o, or 0x prefixes:

0b100 # => 4
0o100 # => 64
0x100 # => 256

You can also convert between decimal numbers and string representations of those
numbers in any base from 2 to 36. Simply pass the base into String#to_i or
Integer#to_s.

Here are some conversions between string representations of numbers in various
bases, and the corresponding decimal numbers:

"1045".to_i(10) # => 1045
"-1001001".to_i(2) # => -73
"abc".to_i(16) # => 2748
"abc".to_i(20) # => 4232
"number".to_i(36) # => 1442151747
"zz1z".to_i(36) # => 1678391
"abcdef".to_i(16) # => 11259375
"AbCdEf".to_i(16) # => 11259375

Here are some reverse conversions of decimal numbers to the strings that represent
those numbers in various bases:

42.to_s(10) # => "42"
-100.to_s(2) # => "-1100100"
255.to_s(16) # => "ff"
1442151747.to_s(36) # => "number"

Some invalid conversions:

"6".to_i(2) # => 0
"0".to_i(1) # ArgumentError: illegal radix 1
40.to_s(37) # ArgumentError: illegal radix 37

Discussion
String#to_i can parse and Integer#to_s can create a string representation in every
common integer base: from binary (the familiar base 2, which uses only the digits 0
and 1) to hexatridecimal (base 36). Hexatridecimal uses the digits 0–9 and the letters
a–z; it’s sometimes used to generate alphanumeric mneumonics for long numbers.

2.7 Taking Logarithms | 53

The only commonly used counting systems with bases higher than 36 are the vari-
ants of base-64 encoding used in applications like MIME mail attachments. These
usually encode strings, not numbers; to encode a string in MIME-style base-64, use
the base64 library.

See Also
• Recipe 12.5, “Adding Graphical Context with Sparklines,” and Recipe 14.5,

“Sending Mail,” show how to use the base64 library

2.7 Taking Logarithms

Problem
You want to take the logarithm of a number, possibly a huge one.

Solution
Math.log calculates the natural log of a number: that is, the log base e.

Math.log(1) # => 0.0
Math.log(Math::E) # => 1.0
Math.log(10) # => 2.30258509299405
Math::E ** Math.log(25) # => 25.0

Math.log10 calculates the log base 10 of a number:

Math.log10(1) # => 0.0
Math.log10(10) # => 1.0
Math.log10(10.1) # => 1.00432137378264
Math.log10(1000) # => 3.0
10 ** Math.log10(25) # => 25.0

To calculate a logarithm in some other base, use the fact that, for any bases b1 and
b2, logb1(x) = logb2(x) / logb2(k).

module Math
 def Math.logb(num, base)
 log(num) / log(base)
 end
end

Discussion
A logarithm function inverts an exponentiation function. The log base k of x, or
logk(x), is the number that gives x when raised to the k power. That is, Math.
log10(1000)==3.0 because 10 cubed is 1000.Math.log(Math::E)==1 because e to the
first power is e.

The logarithm functions for all numeric bases are related (you can get from one base
to another by dividing by a constant factor), but they’re used for different purposes.

54 | Chapter 2: Numbers

Scientific applications often use the natural log: this is the fastest log implementa-
tion in Ruby. The log base 10 is often used to visualize datasets that span many
orders of magnitude, such as the pH scale for acidity and the Richter scale for earth-
quake intensity. Analyses of algorithms often use the log base 2, or binary logarithm.

If you intend to do a lot of algorithms in a base that Ruby doesn’t support natively,
you can speed up the calculation by precalculating the dividend:

dividend = Math.log(2)
(1..6).collect { |x| Math.log(x) / dividend }
=> [0.0, 1.0, 1.58496250072116, 2.0, 2.32192809488736, 2.58496250072116]

The logarithm functions in Math will only accept integers or floating-point numbers,
not BigDecimal or Bignum objects. This is inconvenient since logarithms are often
used to make extremely large numbers managable. The BigMath module has a func-
tion to take the natural logarithm of a BigDecimal number, but it’s very slow.

Here’s a fast drop-in replacement for BigMath::log that exploits the logarithmic iden-
tity log(x*y) == log(x) + log(y). It decomposes a BigDecimal into three much smaller
numbers, and operates on those numbers. This avoids the cases that give BigMath::log
such poor performance.

require 'bigdecimal'
require 'bigdecimal/math'
require 'bigdecimal/util'

module BigMath
 alias :log_slow :log
 def log(x, prec)
 if x <= 0 || prec <= 0
 raise ArgumentError, "Zero or negative argument for log"
 end
 return x if x.infinite? || x.nan?
 sign, fraction, power, exponent = x.split
 fraction = BigDecimal(".#{fraction}")
 power = power.to_s.to_d
 log_slow(fraction, prec) + (log_slow(power, prec) * exponent)
 end
end

Like BigMath::log, this implementation returns a BigMath accurate to at least prec
digits, but containing some additional digits which might not be accurate. To avoid
giving the impression that the result is more accurate than it is, you can round the
number to prec digits with BigDecimal#round.

include BigMath

number = BigDecimal("1234.5678")
Math.log(number) # => 7.11847622829779

prec = 50
BigMath.log_slow(number, prec).round(prec).to_s("F")
=> "7.11847622829778629250879253638708184134073214145175"

2.8 Finding Mean, Median, and Mode | 55

BigMath.log(number, prec).round(prec).to_s("F")
=> "7.11847622829778629250879253638708184134073214145175"
BigMath.log(number ** 1000, prec).round(prec).to_s("F")
=> "7118.47622829778629250879253638708184134073214145175161"

As before, calculate a log other than the natural log by dividing by BigMath.log(base)
or BigMath.log_slow(base).

huge_number = BigDecimal("1000") ** 1000
base = BigDecimal("10")
(BigMath.log(huge_number, 100) / BigMath.log(base, 100)).to_f
=> 3000.0

How does it work? The internal representation of a BigDecimal is as a number in sci-
entific notation: fraction * 10**power. Because log(x*y) = log(x) + log(y), the log of
such a number is log(fraction) + log(10**power).

10**power is just 10 multiplied by itself power times (that is, 10*10*10*...*10). Again,
log(x*y) = log(x) + log(y), so log(10*10*10*...*10) = log(10)+log(10) + log(10)+...
+log(10), or log(10)*power. This means we can take the logarithm of a huge
BigDecimal by taking the logarithm of its (very small) fractional portion and the loga-
rithm of 10.

See Also
• Mathematicians used to spend years constructing tables of logarithms for

scientific and engineering applications; so if you find yourself doing a boring
job, be glad you don’t have to do that (see http://en.wikipedia.org/wiki/
Logarithm#Tables_of_logarithms)

2.8 Finding Mean, Median, and Mode

Problem
You want to find the average of an array of numbers: its mean, median, or mode.

Solution
Usually when people speak of the “average” of a set of numbers they’re referring to
its mean, or arithmetic mean. The mean is the sum of the elements divided by the
number of elements.

def mean(array)
 array.inject(0) { |sum, x| sum += x } / array.size.to_f
end

mean([1,2,3,4]) # => 2.5
mean([100,100,100,100.1]) # => 100.025
mean([-100, 100]) # => 0.0
mean([3,3,3,3]) # => 3.0

56 | Chapter 2: Numbers

The median is the item x such that half the items in the array are greater than x and
the other half are less than x. Consider a sorted array: if it contains an odd number of
elements, the median is the one in the middle. If the array contains an even number
of elements, the median is defined as the mean of the two middle elements.

def median(array, already_sorted=false)
 return nil if array.empty?
 array = array.sort unless already_sorted
 m_pos = array.size / 2
 return array.size % 2 == 1 ? array[m_pos] : mean(array[m_pos-1..m_pos])
end

median([1,2,3,4,5]) # => 3
median([5,3,2,1,4]) # => 3
median([1,2,3,4]) # => 2.5
median([1,1,2,3,4]) # => 2
median([2,3,-100,100]) # => 2.5
median([1, 1, 10, 100, 1000]) # => 10

The mode is the single most popular item in the array. If a list contains no repeated
items, it is not considered to have a mode. If an array contains multiple items at the
maximum frequency, it is “multimodal.” Depending on your application, you might
handle each mode separately, or you might just pick one arbitrarily.

def modes(array, find_all=true)
 histogram = array.inject(Hash.new(0)) { |h, n| h[n] += 1; h }
 modes = nil
 histogram.each_pair do |item, times|
 modes << item if modes && times == modes[0] and find_all
 modes = [times, item] if (!modes && times>1) or (modes && times>modes[0])
 end
 return modes ? modes[1...modes.size] : modes
end

modes([1,2,3,4]) # => nil
modes([1,1,2,3,4]) # => [1]
modes([1,1,2,2,3,4]) # => [1, 2]
modes([1,1,2,2,3,4,4]) # => [1, 2, 4]
modes([1,1,2,2,3,4,4], false) # => [1]
modes([1,1,2,2,3,4,4,4,4,4]) # => [4]

Discussion
The mean is the most popular type of average. It’s simple to calculate and to under-
stand. The implementation of mean given above always returns a floating-point num-
ber object. It’s a good general-purpose implementation because it lets you pass in an
array of Fixnums and get a fractional average, instead of one rounded to the nearest
integer. If you want to find the mean of an array of BigDecimal or Rational objects,
you should use an implementation of mean that omits the final to_f call:

def mean_without_float_conversion(array)
 array.inject(0) { |x, sum| sum += x } / array.size
end

2.8 Finding Mean, Median, and Mode | 57

require 'rational'
numbers = [Rational(2,3), Rational(3,4), Rational(6,7)]
mean(numbers)
=> 0.757936507936508
mean_without_float_conversion(numbers)
=> Rational(191, 252)

The median is mainly useful when a small proportion of outliers in the dataset would
make the mean misleading. For instance, government statistics usually show
“median household income” instead of “mean household income.” Otherwise, a few
super-wealthy households would make everyone else look much richer than they are.
The example below demonstrates how the mean can be skewed by a few very high or
very low outliers.

mean([1, 100, 100000]) # => 33367.0
median([1, 100, 100000]) # => 100

mean([1, 100, -1000000]) # => -333299.666666667
median([1, 100, -1000000]) # => 1

The mode is the only definition of “average” that can be applied to arrays of arbi-
trary objects. Since the mean is calculated using arithmetic, an array can only be said
to have a mean if all of its members are numeric. The median involves only compari-
sons, except when the array contains an even number of elements: then, calculating
the median requires that you calculate the mean.

If you defined some other way to take the median of an array with an even number of
elements, you could take the median of Arrays of strings:

median(["a", "z", "b", "l", "m", "j", "b"])
=> "j"
median(["a", "b", "c", "d"])
TypeError: String can't be coerced into Fixnum

The standard deviation

A concept related to the mean is the standard deviation, a quantity that measures
how close the dataset as a whole is to the mean. When a mean is distorted by high or
low outliers, the corresponding standard deviation is high. When the numbers in a
dataset cluster closely around the mean, the standard deviation is low. You won’t be
fooled by a misleading mean if you also look at the standard deviation.

def mean_and_standard_deviation(array)
 m = mean(array)
 variance = array.inject(0) { |variance, x| variance += (x - m) ** 2 }
 return m, Math.sqrt(variance/(array.size-1))
end

#All the items in the list are close to the mean, so the standard
#deviation is low.
mean_and_standard_deviation([1,2,3,1,1,2,1])
=> [1.57142857142857, 0.786795792469443]

58 | Chapter 2: Numbers

#The outlier increases the mean, but also increases the standard deviation.
mean_and_standard_deviation([1,2,3,1,1,2,1000])
=> [144.285714285714, 377.33526837801]

A good rule of thumb is that two-thirds (about 68 percent) of the items in a dataset
are within one standard deviation of the mean, and almost all (about 95 percent) of
the items are within two standard deviations of the mean.

See Also
• “Programmers Need to Learn Statistics or I Will Kill Them All,” by Zed Shaw

(http://www.zedshaw.com/blog/programming/programmer_stats.html)

• More Ruby implementations of simple statistical measures (http://dada.perl.it/
shootout/moments.ruby.html)

• To do more complex statistical analysis in Ruby, try the Ruby bindings to the
GNU Scientific Library (http://ruby-gsl.sourceforge.net/)

• The Stats class in the Mongrel web server (http://mongrel.rubyforge.org) imple-
ments other algorithms for calculating mean and standard deviation, which are
faster if you need to repeatedly calculate the mean of a growing series

2.9 Converting Between Degrees and Radians
Problem
The trigonometry functions in Ruby’s Math library take input in radians (2π radians
in a circle). Most real-world applications measure angles in degrees (360 degrees in a
circle). You want an easy way to do trigonometry with degrees.

Solution
The simplest solution is to define a conversion method in Numeric that will convert a
number of degrees into radians.

class Numeric
 def degrees
 self * Math::PI / 180
 end
end

You can then treat any numeric object as a number of degrees and convert it into the
corresponding number of radians, by calling its degrees method. Trigonometry on
the result will work as you’d expect:

90.degrees # => 1.5707963267949
Math::tan(45.degrees) # => 1.0
Math::cos(90.degrees) # => 6.12303176911189e-17
Math::sin(90.degrees) # => 1.0
Math::sin(89.9.degrees) # => 0.999998476913288

Math::sin(45.degrees) # => 0.707106781186547
Math::cos(45.degrees) # => 0.707106781186548

2.9 Converting Between Degrees and Radians | 59

Discussion
I named the conversion method degrees by analogy to the methods like hours
defined by Rails. This makes the code easy to read, but if you look at the actual
numbers, it’s not obvious why 45.degrees should equal the floating-point number
0.785398163397448.

If this troubles you, you could name the method something like degrees_to_radians.
Or you could use Lucas Carlson’s units gem, which lets you define customized unit
conversions, and tracks which unit is being used for a particular number.

require 'rubygems'
require 'units/base'

class Numeric
 remove_method(:degrees) # Remove the implementation given in the Solution
 add_unit_conversions(:angle => { :radians => 1, :degrees => Math::PI/180 })
 add_unit_aliases(:angle => { :degrees => [:degree], :radians => [:radian] })
end

90.degrees # => 90.0
90.degrees.unit # => :degrees
90.degrees.to_radians # => 1.5707963267949
90.degrees.to_radians.unit # => :radians

1.degree.to_radians # => 0.0174532925199433
1.radian.to_degrees # => 57.2957795130823

The units you define with the units gem do nothing but make your code more read-
able. The trigonometry methods don’t understand the units you’ve defined, so you’ll
still have to give them numbers in radians.

Don't do this:
Math::sin(90.degrees) # => 0.893996663600558

Do this:
Math::sin(90.degrees.to_radians) # => 1.0

Of course, you could also change the trigonometry methods to be aware of units:

class << Math
 alias old_sin sin
 def sin(x)
 old_sin(x.unit == :degrees ? x.to_radians : x)
 end
end

90.degrees # => 90.0
Math::sin(90.degrees) # => 1.0
Math::sin(Math::PI/2.radians) # => 1.0
Math::sin(Math::PI/2) # => 1.0

That’s probably overkill, though.

60 | Chapter 2: Numbers

See Also
• Recipe 8.9, “Converting and Coercing Objects to Different Types”

• The Facets More library (available as the facets_more gem) also has a Units module

2.10 Multiplying Matrices

Problem
You want to turn arrays of arrays of numbers into mathematical matrices, and multi-
ply the matrices together.

Solution
You can create Matrix objects from arrays of arrays, and multiply them together with
the * operator:

require 'matrix'
require 'mathn'

a1 = [[1, 1, 0, 1],
 [2, 0, 1, 2],
 [3, 1, 1, 2]]
m1 = Matrix[*a1]
=> Matrix[[1, 1, 0, 1], [2, 0, 1, 2], [3, 1, 1, 2]]

a2 = [[1, 0],
 [3, 1],
 [1, 0],
 [2, 2.5]]
m2 = Matrix[*a2]
=> Matrix[[1, 0], [3, 1], [1, 0], [2, 2.5]]

m1 * m2
=> Matrix[[6, 3.5], [7, 5.0], [11, 6.0]]

Note the unusual syntax for creating a Matrix object: you pass the rows of the matrix
into the array indexing operator, not into Matrix#new (which is private).

Discussion
Ruby’s Matrix class overloads the arithmetic operators to support all the basic matrix
arithmetic operations, including multiplication, between matrices of compatible
dimension. If you perform an arithmetic operation on incompatible matrices, you’ll
get an ExceptionForMatrix::ErrDimensionMismatch.

Multiplying one matrix by another is simple enough, but multiplying a chain of
matrices together can be faster or slower depending on the order in which you do the
multiplications. This follows from the fact that multiplying a matrix with dimen-
sions K × M, by a matrix with dimensions MxN, requires K * M * N operations and

2.10 Multiplying Matrices | 61

gives a matrix with dimension K * N. If K is large for some matrix, you can save time
by waiting til the end before doing multiplications involving that matrix.

Consider three matrices A, B, and C, which you want to multiply together. A has 100
rows and 20 columns. B has 20 rows and 10 columns. C has 10 rows and one column.

Since matrix multiplication is associative, you’ll get the same results whether you mul-
tiply A by B and then the result by C, or multiply B by C and then the result by A. But
multiplying A by B requires 20,000 operations (100 * 20 * 10), and multiplying (AB) by
C requires another 1,000 (100 * 10 * 1). Multiplying B by C only requires 200 opera-
tions (20 * 10 * 1), and multiplying the result by A requires 2,000 more (100 * 20 * 1).
It’s almost 10 times faster to multiply A(BC) instead of the naive order of (AB)C.

That kind of potential savings justifies doing some up-front work to find the best order
for the multiplication. Here is a method that recursively figures out the most efficient
multiplication order for a list of Matrix objects, and another method that actually car-
ries out the multiplications. They share an array containing information about where
to divide up the list of matrices: where to place the parentheses, if you will.

class Matrix
 def self.multiply(*matrices)
 cache = []
 matrices.size.times { cache << [nil] * matrices.size }
 best_split(cache, 0, matrices.size-1, *matrices)
 multiply_following_cache(cache, 0, matrices.size-1, *matrices)
 end

Because the methods that do the actual work pass around recursion arguments that the
end user doesn’t care about, I’ve created Matrix.multiply, a wrapper method for the
methods that do the real work. These methods are defined below (Matrix.best_split
and Matrix.multiply_following_cache). Matrix.multiply_following_cache assumes
that the optimal way to multiply that list of Matrix objects has already been found and
encoded in a variable cache. It recursively performs the matrix multiplications in the
optimal order, as determined by the cache.

 :private
 def self.multiply_following_cache(cache, chunk_start, chunk_end, *matrices)
 if chunk_end == chunk_start
 # There's only one matrix in the list; no need to multiply.
 return matrices[chunk_start]
 elsif chunk_end-chunk_start == 1
 # There are only two matrices in the list; just multiply them together.
 lhs, rhs = matrices[chunk_start..chunk_end]
 else
 # There are more than two matrices in the list. Look in the
 # cache to see where the optimal split is located. Multiply
 # together all matrices to the left of the split (recursively,
 # in the optimal order) to get our equation's left-hand
 # side. Similarly for all matrices to the right of the split, to
 # get our right-hand side.
 split_after = cache[chunk_start][chunk_end][1]

62 | Chapter 2: Numbers

 lhs = multiply_following_cache(cache, chunk_start, split_after, *matrices)
 rhs = multiply_following_cache(cache, split_after+1, chunk_end, *matrices)
 end

 # Begin debug code: this illustrates the order of multiplication,
 # showing the matrices in terms of their dimensions rather than their
 # (possibly enormous) contents.
 if $DEBUG
 lhs_dim = "#{lhs.row_size}x#{lhs.column_size}"
 rhs_dim = "#{rhs.row_size}x#{rhs.column_size}"
 cost = lhs.row_size * lhs.column_size * rhs.column_size
 puts "Multiplying #{lhs_dim} by #{rhs_dim}: cost #{cost}"
 end

 # Do a matrix multiplication of the two matrices, whether they are
 # the only two matrices in the list or whether they were obtained
 # through two recursive calls.
 return lhs * rhs
 end

Finally, here’s the method that actually figures out the best way of splitting up the
multiplcations. It builds the cache used by the multiply_following_cache method
defined above. It also uses the cache as it builds it, so that it doesn’t solve the same
subproblems over and over again.

 def self.best_split(cache, chunk_start, chunk_end, *matrices)
 if chunk_end == chunk_start
 cache[chunk_start][chunk_end] = [0, nil]
 end
 return cache[chunk_start][chunk_end] if cache[chunk_start][chunk_end]

 #Try splitting the chunk at each possible location and find the
 #minimum cost of doing the split there. Then pick the smallest of
 #the minimum costs: that's where the split should actually happen.
 minimum_costs = []
 chunk_start.upto(chunk_end-1) do |split_after|
 lhs_cost = best_split(cache, chunk_start, split_after, *matrices)[0]
 rhs_cost = best_split(cache, split_after+1, chunk_end, *matrices)[0]

 lhs_rows = matrices[chunk_start].row_size
 rhs_rows = matrices[split_after+1].row_size
 rhs_cols = matrices[chunk_end].column_size
 merge_cost = lhs_rows * rhs_rows * rhs_cols
 cost = lhs_cost + rhs_cost + merge_cost
 minimum_costs << cost
 end
 minimum = minimum_costs.min
 minimum_index = chunk_start + minimum_costs.index(minimum)
 return cache[chunk_start][chunk_end] = [minimum, minimum_index]
 end
end

A simple test confirms the example set of matrices spelled out earlier. Remember that
we had a 100 × 20 matrix (A), a 20 × 10 matrix (B), and a 20 × 1 matrix (C). Our

2.10 Multiplying Matrices | 63

method should be able to figure out that it’s faster to multiply A(BC) than the naive
multiplication (AB)C. Since we don’t care about the contents of the matrices, just the
dimensions, we’ll first define some helper methods that make it easy to generate
matrices with specific dimensions but random contents.

class Matrix
 # Creates a randomly populated matrix with the given dimensions.
 def self.with_dimensions(rows, cols)
 a = []
 rows.times { a << []; cols.times { a[-1] << rand(10) } }
 return Matrix[*a]
 end

 # Creates an array of matrices that can be multiplied together
 def self.multipliable_chain(*rows)
 matrices = []
 0.upto(rows.size-2) do |i|
 matrices << Matrix.with_dimensions(rows[i], rows[i+1])
 end
 return matrices
 end
end

After all that, the test is kind of anticlimactic:

Create an array of matrices 100x20, 20x10, 10x1.
chain = Matrix.multipliable_chain(100, 20, 10, 1)

Multiply those matrices two different ways, giving the same result.
Matrix.multiply(*chain) == (chain[0] * chain[1] * chain[2])
Multiplying 20x10 by 10x1: cost 200
Multiplying 100x20 by 20x1: cost 2000
=> true

We can use the Benchmark library to verify that matrix multiplication goes much
faster when we do the multiplications in the right order:

We'll generate the dimensions and contents of the matrices randomly,
so no one can accuse us of cheating.
dimensions = []
10.times { dimensions << rand(90)+10 }
chain = Matrix.multipliable_chain(*dimensions)

require 'benchmark'
result_1 = nil
result_2 = nil
Benchmark.bm(11) do |b|
 b.report("Unoptimized") do
 result_1 = chain[0]
 chain[1..chain.size].each { |c| result_1 *= c }
 end
 b.report("Optimized") { result_2 = Matrix.multiply(*chain) }
end

64 | Chapter 2: Numbers

user system total real
Unoptimized 4.350000 0.400000 4.750000 (11.104857)
Optimized 1.410000 0.110000 1.520000 (3.559470)

Both multiplications give the same result.
result_1 == result_2 # => true

See Also
• Recipe 2.11, “Solving a System of Linear Equations,” uses matrices to solve lin-

ear equations

• For more on benchmarking, see Recipe 17.13, “Benchmarking Competing
Solutions”

2.11 Solving a System of Linear Equations

Problem
You have a number of linear equations (that is, equations that look like “2x + 10y +
8z = 54”), and you want to figure out the solution: the values of x, y, and z. You have
as many equations as you have variables, so you can be certain of a unique solution.

Solution
Create two Matrix objects. The first Matrix should contain the coefficients of your
equations (the 2, 10, and 8 of “2x + 10y + 8z = 54”), and the second should contain
the constant results (the 54 of the same equation). The numbers in both matrices
should be represented as floating-point numbers, rational numbers, or BigDecimal
objects: anything other than plain Ruby integers.

Then invert the coefficient matrix with Matrix#inverse, and multiply the result by
the matrix full of constants. The result will be a third Matrix containing the solu-
tions to your equations.

For instance, consider these three linear equations in three variables:

2x + 10y + 8z = 54
7y + 4z = 30
5x + 5y + 5z = 35

To solve these equations, create the two matrices:

require 'matrix'
require 'rational'
coefficients = [[2, 10, 8], [0, 7, 4], [5, 5, 5]].collect! do |row|
 row.collect! { |x| Rational(x) }
end
coefficients = Matrix[*coefficients]
=> Matrix[[Rational(2, 1), Rational(10, 1), Rational(8, 1)],
=> [Rational(0, 1), Rational(7, 1), Rational(4, 1)],

2.11 Solving a System of Linear Equations | 65

=> [Rational(5, 1), Rational(5, 1), Rational(5, 1)]]

constants = Matrix[[Rational(54)], [Rational(30)], [Rational(35)]]

Take the inverse of the coefficient matrix, and multiply it by the results matrix. The
result will be a matrix containing the values for your variables.

solutions = coefficients.inverse * constants
=> Matrix[[Rational(1, 1)], [Rational(2, 1)], [Rational(4, 1)]]

This means that, in terms of the original equations, x=1, y=2, and z=4.

Discussion
This may seem like magic, but it’s analagous to how you might use algebra to solve a
single equation in a single variable. Such an equation looks something like Ax = B: for
instance, 6x = 18. To solve for x, you divide both sides by the coefficient: .

The sixes on the left side of the equation cancel out, and you can show that x is 18/6,
or 3.

In that case there’s only one coefficient and one constant. With n equations in n vari-
ables, you have n2 coefficients and n constants, but by packing them into matrices
you can solve the problem in the same way.

Here’s a side-by-side comparision of the set of equations from the Solution, and the
corresponding matrices created in order to solve the system of equations.

2x + 10y + 8z = 54 | [2 10 8] [x] [54]
x + 7y + 4z = 31 | [1 7 4] [y] = [31]
5x + 5y + 5z = 35 | [5 5 5] [z] [35]

If you think of each matrix as a single value, this looks exactly like an equation in a
single variable. It’s Ax = B, only this time A, x, and B are matrices. Again you can
solve the problem by dividing both sides by A: x = B/A. This time, you’ll use matrix
division instead of scalar division, and your result will be a matrix of solutions
instead of a single solution.

For numbers, dividing B by A is equivalent to multiplying B by the inverse of A. For
instance, 9/3 equals 9 * 1/3. The same is true of matrices. To divide a matrix B by
another matrix A, you multiply B by the inverse of A.

The Matrix class overloads the division operator to do multiplication by the inverse,
so you might wonder why we don’t just use that. The problem is that Matrix#/ calcu-
lates B/A as B * A.inverse, and what we want is A.inverse * B. Matrix multiplication
isn’t commutative, and so neither is division. The developers of the Matrix class had
to pick an order to do the multiplication, and they chose the one that won’t work for
solving a system of equations.

For the most accurate results, you should use Rational or BigDecimal numbers to
represent your coefficients and values. You should never use integers. Calling

6x
6

18
6
------=

66 | Chapter 2: Numbers

Matrix#inverse on a matrix full of integers will do the inversion using integer divi-
sion. The result will be totally inaccurate, and you won’t get the right solutions to
your equations.

Here’s a demonstration of the problem. Multiplying a matrix by its inverse should
get you an identity matrix, full of zeros but with ones going down the right diagonal.
This is analagous to the way multiplying 3 by 1/3 gets you 1.

When the matrix is full of rational numbers, this works fine:

matrix = Matrix[[Rational(1), Rational(2)], [Rational(2), Rational(1)]]
matrix.inverse
=> Matrix[[Rational(-1, 3), Rational(2, 3)],
=> [Rational(2, 3), Rational(-1, 3)]]

matrix * matrix.inverse
=> Matrix[[Rational(1, 1), Rational(0, 1)],
=> [Rational(0, 1), Rational(1, 1)]]

But if the matrix is full of integers, multiplying it by its inverse will give you a matrix
that looks nothing like an identity matrix.

matrix = Matrix[[1, 2], [2, 1]]
matrix.inverse
=> Matrix[[-1, 1],
=> [0, -1]]

matrix * matrix.inverse
=> Matrix[[-1, -1],
=> [-2, 1]]

Inverting a matrix that contains floating-point numbers is a lesser mistake:
Matrix#inverse tends to magnify the inevitable floating-point rounding errors. Multi-
plying a matrix full of floating-point numbers by its inverse will get you a matrix
that’s almost, but not quite, an identity matrix.

float_matrix = Matrix[[1.0, 2.0], [2.0, 1.0]]
float_matrix.inverse
=> Matrix[[-0.333333333333333, 0.666666666666667],
=> [0.666666666666667, -0.333333333333333]]

float_matrix * float_matrix.inverse
=> Matrix[[1.0, 0.0],
=> [1.11022302462516e-16, 1.0]]

See Also
• Recipe 2.10, “Multiplying Matrices”

• Another way of solving systems of linear equations is with Gauss-Jordan elimi-
nation; Shin-ichiro Hara has written an algebra library for Ruby, which includes
a module for doing Gaussian elimination, along with lots of other linear algebra
libraries (http://blade.nagaokaut.ac.jp/~sinara/ruby/math/algebra/)

2.12 Using Complex Numbers | 67

• There is also a package, called linalg, which provides Ruby bindings to the
C/Fortran LAPACK library for linear algebra (http://rubyforge.org/projects/linalg/)

2.12 Using Complex Numbers

Problem
You want to represent complex (“imaginary”) numbers and perform math on them.

Solution
Use the Complex class, defined in the complex library. All mathematical and trigono-
metric operations are supported.

require 'complex'

Complex::I # => Complex(0, 1)

a = Complex(1, 4) # => Complex(1, 4)
a.real # => 1
a.image # => 4

b = Complex(1.5, 4.25) # => Complex(1.5, 4.25)
b + 1.5 # => Complex(3.0, 4.25)
b + 1.5*Complex::I # => Complex(1.5, 5.75)

a - b # => Complex(-0.5, -0.25)
a * b # => Complex(-15.5, 10.25)
b.conjugate # => Complex(1.5, -4.25)
Math::sin(b) # => Complex(34.9720129257216, 2.47902583958724)

Discussion
You can use two floating-point numbers to keep track of the real and complex parts
of a complex number, but that makes it complicated to do mathematical operations
such as multiplication. If you were to write functions to do these operations, you’d
have more or less reimplemented the Complex class. Complex simply keeps two
instances of Numeric, and implements the basic math operations on them, keeping
them together as a complex number. It also implements the complex-specific mathe-
matical operation Complex#conjugate.

Complex numbers have many uses in scientific applications, but probably their
coolest application is in drawing certain kinds of fractals. Here’s a class that uses
complex numbers to calculate and draw a character-based representation of the
Mandelbrot set, scaled to whatever size your screen can handle.

class Mandelbrot

 # Set up the Mandelbrot generator with the basic parameters for
 # deciding whether or not a point is in the set.

68 | Chapter 2: Numbers

 def initialize(bailout=10, iterations=100)
 @bailout, @iterations = bailout, iterations
 end

A point (x,y) on the complex plane is in the Mandelbrot set unless a certain iterative
calculation tends to infinity. We can’t calculate “tends towards infinity” exactly, but
we can iterate the calculation a certain number of times waiting for the result to
exceed some “bail-out” value.

If the result ever exceeds the bail-out value, Mandelbrot assumes the calculation goes
all the way to infinity, which takes it out of the Mandelbrot set. Otherwise, the itera-
tion will run through without exceeding the bail-out value. If that happens,
Mandelbrot makes the opposite assumption: the calculation for that point will never
go to infinity, which puts it in the Mandelbrot set.

The default values for bailout and iterations are precise enough for small, chunky
ASCII renderings. If you want to make big posters of the Mandelbrot set, you should
increase these numbers.

Next, let’s define a method that uses bailout and iterations to guess whether a specific
point on the complex plane belongs to the Mandelbrot set. The variable x is a position
on the real axis of the complex plane, and y is a position on the imaginary axis.

 # Performs the Mandelbrot operation @iterations times. If the
 # result exceeds @bailout, assume this point goes to infinity and
 # is not in the set. Otherwise, assume it is in the set.
 def mandelbrot(x, y)
 c = Complex(x, y)
 z = 0
 @iterations.times do |i|
 z = z**2 + c # This is the Mandelbrot operation.
 return false if z > @bailout
 end
 return true
 end

The most interesting part of the Mandelbrot set lives between –2 and 1 on the real
axis of the complex plane, and between –1 and 1 on the complex axis. The final
method in Mandelbrot produces an ASCII map of that portion of the complex plane.
It maps each point on an ASCII grid to a point on or near the Mandelbrot set. If
Mandelbrot estimates that point to be in the Mandelbrot set, it puts an asterisk in that
part of the grid. Otherwise, it puts a space there. The larger the grid, the more points
are sampled and the more precise the map.

 def render(x_size=80, y_size=24, inside_set="*", outside_set=" ")
 0.upto(y_size) do |y|
 0.upto(x_size) do |x|
 scaled_x = -2 + (3 * x / x_size.to_f)
 scaled_y = 1 + (-2 * y / y_size.to_f)
 print mandelbrot(scaled_x, scaled_y) ? inside_set : outside_set
 end
 puts

2.13 Simulating a Subclass of Fixnum | 69

 end
 end
end

Even at very small scales, the distinctive shape of the Mandelbrot set is visible.

Mandelbrot.new.render(25, 10)
**

*** *********

*** *********

**

See Also
• The scaling equation, used to map the complex plane onto the terminal screen, is

similar to the equations used to scale data in Recipe 12.5, “Adding Graphical
Context with Sparklines,” and Recipe 12.14, “Representing Data as MIDI Music”

2.13 Simulating a Subclass of Fixnum

Problem
You want to create a class that acts like a subclass of Fixnum, Float, or one of Ruby’s
other built-in numeric classes. This wondrous class can be used in arithmetic along
with real Integer or Float objects, and it will usually act like one of those objects,
but it will have a different representation or implement extra functionality.

Solution
Let’s take a concrete example and consider the possibilities. Suppose you wanted to
create a class that acts just like Integer, except its string representation is a hexadeci-
mal string beginning with “0x”. Where a Fixnum’s string representation might be
“208”, this class would represent 208 as “0xc8”.

You could modify Integer#to_s to output a hexadecimal string. This would proba-
bly drive you insane because it would change the behavior for all Integer objects.
From that point on, nearly all the numbers you use would have hexadecimal string
representations. You probably want hexadecimal string representations only for a
few of your numbers.

This is a job for a subclass, but you can’t usefully subclass Fixnum (the Discussion
explains why this is so). The only alternative is delegation. You need to create a class
that contains an instance of Fixnum, and almost always delegates method calls to that
instance. The only method calls it doesn’t delegate should be the ones that it wants
to override.

70 | Chapter 2: Numbers

The simplest way to do this is to create a custom delegator class with the delegate
library. A class created with DelegateClass accepts another object in its constructor,
and delegates all methods to the corresponding methods of that object.

require 'delegate'
class HexNumber < DelegateClass(Fixnum)
 # The string representations of this class are hexadecimal numbers.
 def to_s
 sign = self < 0 ? "-" : ""
 hex = abs.to_s(16)
 "#{sign}0x#{hex}"
 end

 def inspect
 to_s
 end
end

HexNumber.new(10) # => 0xa
HexNumber.new(-10) # => -0xa
HexNumber.new(1000000) # => 0xf4240
HexNumber.new(1024 ** 10) # => 0x10000000000000000000000000

HexNumber.new(10).succ # => 11
HexNumber.new(10) * 2 # => 20

Discussion
Some object-oriented languages won’t let you subclass the “basic” data types like
integers. Other languages implement those data types as classes, so you can subclass
them, no questions asked. Ruby implements numbers as classes (Integer, with its
concrete subclasses Fixnum and Bignum), and you can subclass those classes. If you
try, though, you’ll quickly discover that your subclasses are useless: they don’t have
constructors.

Ruby jealously guards the creation of new Integer objects. This way it ensures that,
for instance, there can be only one Fixnum instance for a given number:

100.object_id # => 201
(10 * 10).object_id # => 201
Fixnum.new(100)
NoMethodError: undefined method `new' for Fixnum:Class

You can have more than one Bignum object for a given number, but you can only cre-
ate them by exceeding the bounds of Fixnum. There’s no Bignum constructor, either.
The same is true for Float.

(10 ** 20).object_id # => -606073730
((10 ** 19) * 10).object_id # => -606079360
Bignum.new(10 ** 20)
NoMethodError: undefined method `new' for Bignum:Class

2.13 Simulating a Subclass of Fixnum | 71

If you subclass Integer or one of its subclasses, you won’t be able to create any
instances of your class—not because those classes aren’t “real” classes, but because
they don’t really have constructors. You might as well not bother.

So how can you create a custom number-like class without redefining all the meth-
ods of Fixnum? You can’t, really. The good news is that in Ruby, there’s nothing pain-
ful about redefining all the methods of Fixnum. The delegate library takes care of it
for you. You can use this library to generate a class that responds to all the same
method calls as Fixnum. It does this by delegating all those method calls to a Fixnum
object it holds as a member. You can then override those classes at your leisure, cus-
tomizing behavior.

Since most methods are delegated to the member Fixnum, you can perform math on
HexNumber objects, use succ and upto, create ranges, and do almost anything else you
can do with a Fixnum. Calling HexNumber#is_a?(Fixnum) will return false, but you can
change even that by manually overriding is_a?.

Alas, the illusion is spoiled somewhat by the fact that when you perform math on
HexNumber objects, you get Fixnum objects back.

HexNumber.new(10) * 2 # => 20
HexNumber.new(10) + HexNumber.new(200) # => 210

Is there a way to do math with HexNumber objects and get HexNumber objects as results?
There is, but it requires moving a little bit beyond the comfort of the delegate
library. Instead of simply delegating all our method calls to an Integer object, we
want to delegate the method calls, then intercept and modify the return values. If a
method call on the underlying Integer object returns an Integer or a collection of
Integers, we want to convert it into a HexNumber object or a collection of HexNumbers.

The easiest way to delegate all methods is to create a class that’s nearly empty and
define a method_missing method. Here’s a second HexNumber class that silently con-
verts the results of mathematical operations (and any other Integer result from a
method of Integer) into HexNumber objects. It uses the BasicObject class from the
Facets More library (available as the facets-more gem): a class that defines almost no
methods at all. This lets us delegate almost everything to Integer.

require 'rubygems'
require 'facet/basicobject'

class BetterHexNumber < BasicObject

 def initialize(integer)
 @value = integer
 end

 # Delegate all methods to the stored integer value. If the result is a
 # Integer, transform it into a BetterHexNumber object. If it's an
 # enumerable containing Integers, transform it into an enumerable
 # containing BetterHexNumber objects.

72 | Chapter 2: Numbers

 def method_missing(m, *args)
 super unless @value.respond_to?(m)
 hex_args = args.collect do |arg|
 arg.kind_of?(BetterHexNumber) ? arg.to_int : arg
 end
 result = @value.send(m, *hex_args)
 return result if m == :coerce
 case result
 when Integer
 BetterHexNumber.new(result)
 when Array
 result.collect do |element|
 element.kind_of?(Integer) ? BetterHexNumber.new(element) : element
 end
 else
 result
 end
 end

 # We don't actually define any of the Fixnum methods in this class,
 # but from the perspective of an outside object we do respond to
 # them. What outside objects don't know won't hurt them, so we'll
 # claim that we actually implement the same methods as our delegate
 # object. Unless this method is defined, features like ranges won't
 # work.
 def respond_to?(method_name)
 super or @value.respond_to? method_name
 end

 # Convert the number to a hex string, ignoring any other base
 # that might have been passed in.
 def to_s(*args)
 hex = @value.abs.to_s(16)
 sign = self < 0 ? "-" : ""
 "#{sign}0x#{hex}"
 end

 def inspect
 to_s
 end
end

Now we can do arithmetic with BetterHexNumber objects, and get BetterHexNumber
objects back:

hundred = BetterHexNumber.new(100) # => 0x64
hundred + 5 # => 0x69
hundred + BetterHexNumber.new(5) # => 0x69
hundred.succ # => 0x65
hundred / 5 # => 0x14
hundred * -10 # => -0x3e8
hundred.divmod(3) # => [0x21, 0x1]
(hundred...hundred+3).collect # => [0x64, 0x65, 0x66]

2.14 Doing Math with Roman Numbers | 73

A BetterHexNumber even claims to be a Fixnum, and to respond to all the methods of
Fixnum! The only way to know it’s not is to call is_a?.

hundred.class # => Fixnum
hundred.respond_to? :succ # => true
hundred.is_a? Fixnum # => false

See Also
• Recipe 2.6, “Converting Between Numeric Bases”

• Recipe 2.14, “Doing Math with Roman Numbers”

• Recipe 8.8, “Delegating Method Calls to Another Object”

• Recipe 10.8, “Responding to Calls to Undefined Methods”

2.14 Doing Math with Roman Numbers

Problem
You want to convert between Arabic and Roman numbers, or do arithmetic with
Roman numbers and get Roman numbers as your result.

Solution
The simplest way to define a Roman class that acts like Fixnum is to have its instances
delegate most of their method calls to a real Fixnum (as seen in the previous recipe,
Recipe 2.13). First we’ll implement a container for the Fixnum delegate, and methods
to convert between Roman and Arabic numbers:

class Roman
 # These arrays map all distinct substrings of Roman numbers
 # to their Arabic equivalents, and vice versa.
 @@roman_to_arabic = [['M', 1000], ['CM', 900], ['D', 500], ['CD', 400],
 ['C', 100], ['XC', 90], ['L', 50], ['XL', 40], ['X', 10], ['IX', 9],
 ['V', 5], ['IV', 4], ['I', 1]]
 @@arabic_to_roman = @@roman_to_arabic.collect { |x| x.reverse }.reverse

 # The Roman symbol for 5000 (a V with a bar over it) is not in
 # ASCII nor Unicode, so we won't represent numbers larger than 3999.
 MAX = 3999

 def initialize(number)
 if number.respond_to? :to_str
 @value = Roman.to_arabic(number)
 else
 Roman.assert_within_range(number)
 @value = number
 end
 end

74 | Chapter 2: Numbers

 # Raise an exception if a number is too large or small to be represented
 # as a Roman number.
 def Roman.assert_within_range(number)
 unless number.between?(1, MAX)
 msg = "#{number} can't be represented as a Roman number."
 raise RangeError.new(msg)
 end
 end

 #Find the Fixnum value of a string containing a Roman number.
 def Roman.to_arabic(s)
 value = s
 if s.respond_to? :to_str
 c = s.dup
 value = 0
 invalid = ArgumentError.new("Invalid Roman number: #{s}")
 value_of_previous_number = MAX+1
 value_from_previous_number = 0
 @@roman_to_arabic.each_with_index do |(roman, arabic), i|
 value_from_this_number = 0
 while c.index(roman) == 0
 value_from_this_number += arabic
 if value_from_this_number >= value_of_previous_number
 raise invalid
 end
 c = c[roman.size..s.size]
 end

 #This one's a little tricky. We reject numbers like "IVI" and
 #"IXV", because they use the subtractive notation and then
 #tack on a number that makes the total overshoot the number
 #they'd have gotten without using the subtractive
 #notation. Those numbers should be V and XIV, respectively.
 if i > 2 and @@roman_to_arabic[i-1][0].size > 1 and
 value_from_this_number + value_from_previous_number >=
 @@roman_to_arabic[i-2][1]
 raise invalid
 end

 value += value_from_this_number
 value_from_previous_number = value_from_this_number
 value_of_previous_number = arabic
 break if c.size == 0
 end
 raise invalid if c.size > 0
 end
 return value
 end

 def to_arabic
 @value
 end

2.14 Doing Math with Roman Numbers | 75

 #Render a Fixnum as a string depiction of a Roman number
 def to_roman
 value = to_arabic
 Roman.assert_within_range(value)
 repr = ""
 @@arabic_to_roman.reverse_each do |arabic, roman|
 num, value = value.divmod(arabic)
 repr << roman * num
 end
 repr
 end

Next, we’ll make the class respond to all of Fixnum’s methods by implementing a
method_missing that delegates to our internal Fixnum object. This is substantially the
same method_missing as in Recipe 2.13 Whenever possible, we’ll transform the
results of a delegated method into Roman objects, so that operations on Roman objects
will yield other Roman objects.

 # Delegate all methods to the stored integer value. If the result is
 # a Integer, transform it into a Roman object. If it's an array
 # containing Integers, transform it into an array containing Roman
 # objects.
 def method_missing(m, *args)
 super unless @value.respond_to?(m)
 hex_args = args.collect do |arg|
 arg.kind_of?(Roman) ? arg.to_int : arg
 end
 result = @value.send(m, *hex_args)
 return result if m == :coerce
 begin
 case result
 when Integer
 Roman.new(result)
 when Array
 result.collect do |element|
 element.kind_of?(Integer) ? Roman.new(element) : element
 end
 else
 result
 end
 rescue RangeError
 # Too big or small to fit in a Roman number. Use the original number
 result
 end
 end

The only methods that won’t trigger method_missing are methods like to_s, which
we’re going to override with our own implementations:

 def respond_to?(method_name)
 super or @value.respond_to? method_name
 end

76 | Chapter 2: Numbers

 def to_s
 to_roman
 end

 def inspect
 to_s
 end
end

We’ll also add methods to Fixnum and String that make it easy to create Roman
objects:

class Fixnum
 def to_roman
 Roman.new(self)
 end
end

class String
 def to_roman
 Roman.new(self)
 end
end

Now we’re ready to put the Roman class through its paces:

72.to_roman # => LXXII
444.to_roman # => CDXLIV
1979.to_roman # => MCMLXXIX
'MCMXLVIII'.to_roman # => MCMXLVIII

Roman.to_arabic('MCMLXXIX') # => 1979
'MMI'.to_roman.to_arabic # => 2001

'MMI'.to_roman + 3 # => MMIV
'MCMXLVIII'.to_roman # => MCMXLVIII
612.to_roman * 3.to_roman # => MDCCCXXXVI
(612.to_roman * 3).divmod('VII'.to_roman) # => [CCLXII, II]
612.to_roman * 10000 # => 6120000 # Too big
612.to_roman * 0 # => 0 # Too small

'MCMXCIX'.to_roman.succ # => MM

('I'.to_roman..'X'.to_roman).collect
=> [I, II, III, IV, V, VI, VII, VIII, IX, X]

Here are some invalid Roman numbers that the Roman class rejects:

'IIII'.to_roman
ArgumentError: Invalid Roman number: IIII
'IVI'.to_roman
ArgumentError: Invalid Roman number: IVI
'IXV'.to_roman
ArgumentError: Invalid Roman number: IXV
'MCMM'.to_roman
ArgumentError: Invalid Roman number: MCMM

2.14 Doing Math with Roman Numbers | 77

'CIVVM'.to_roman
ArgumentError: Invalid Roman number: CIVVM
-10.to_roman
RangeError: -10 can't be represented as a Roman number.
50000.to_roman
RangeError: 50000 can't be represented as a Roman number.

Discussion
The rules for constructing Roman numbers are more complex than those for con-
structing positional numbers such as the Arabic numbers we use. An algorithm for
parsing an Arabic number can scan from the left, looking at each character in isola-
tion. If you were to scan a Roman number from the left one character at a time,
you’d often find yourself having to backtrack, because what you thought was “XI”
(11) would frequently turn out to be “XIV” (14).

The simplest way to parse a Roman number is to adapt the algorithm so that (for
instance) “IV” as treated as its own “character,” distinct from “I” and “V”. If you
have a list of all these “characters” and their Arabic values, you can scan a Roman
number from left to right with a greedy algorithm that keeps a running total. Since
there are few of these “characters” (only 13 of them, for numbers up to 3,999), and
none of them are longer than 2 letters, this algorithm is workable. To generate a
Roman number from an Arabic number, you can reverse the process.

The Roman class given in the Solution works like Fixnum, thanks to the method_missing
strategy first explained in Recipe 2.13. This lets you do math entirely in Roman num-
bers, except when a result is out of the supported range of the Roman class.

Since this Roman implementation only supports 3999 distinct numbers, you could
make the implementation more efficient by pregenerating all of them and retrieving
them from a cache as needed. The given implementation lets you extend the imple-
mentation to handle larger numbers: you just need to decide on a representation for
the larger Roman characters that will work for your encoding.

The Roman numeral for 5,000 (a V with a bar over it) isn’t present in ASCII, but
there are Unicode characters U+2181 (the Roman numeral 5,000) and U+2182 (the
Roman numeral 10,000), so that’s the obvious choice for representing Roman num-
bers up to 39,999. If you’re outputting to HTML, you can use a CSS style to put a
bar above “V”, “X”, and so on. If you’re stuck with ASCII, you might choose “_V” to
represent 5,000, “_X” to represent 10,000, and so on. Whatever you chose, you’d
add the appropriate “characters” to the roman_to_arabic array (remembering to add
“M_V” and “_V_X” as well as “_V” and “_X”), increment MAX, and suddenly be able
to instantiate Roman objects for large numbers.

The Roman#to_arabic method implements the “new” rules for Roman numbers: that
is, the ones standardized in the Middle Ages. It rejects certain number representa-
tions, like IIII, used by the Romans themselves.

78 | Chapter 2: Numbers

Roman numbers are common as toy or contest problems, but it’s rare that a pro-
grammer will have to treat a Roman number as a number, as opposed to a funny-
looking string. In parts of Europe, centuries and the month section of dates are writ-
ten using Roman numbers. Apart from that, outline generation is probably the only
real-world application where a programmer needs to treat a Roman number as a
number. Outlines need several of visually distinct ways to represent the counting
numbers, and Roman numbers (upper- and lowercase) provide two of them.

If you’re generating an outline in plain text, you can use Roman#succ to generate a
succession of Roman numbers. If your outline is in HTML format, though, you don’t
need to know anything about Roman numbers at all. Just give an tag a CSS style
of list-style-type:lower-roman or list-style-type:upper-roman. Output the ele-
ments of your outline as tags inside the tag. All modern browsers will do
the right thing:

<ol style="list-style-type:lower-roman">
Primus
Secundis
Tertius

See Also
• Recipe 2.13, “Simulating a Subclass of Fixnum”

• An episode of the Ruby Quiz focused on algorithms for converting between
Roman and Arabic numbers; one solution uses an elegant technique to make it
easier to create Roman numbers from within Ruby: it overrides Object#const_
missing to convert any undefined constant into a Roman number; this lets you
issue a statement like XI + IX, and get XX as the result (http://www.rubyquiz.com/
quiz22.html)

2.15 Generating a Sequence of Numbers

Problem
You want to iterate over a (possibly infinite) sequence of numbers the way you can
iterate over an array or a range.

Solution
Write a generator function that yields each number in the sequence.

def fibonacci(limit = nil)
 seed1 = 0
 seed2 = 1
 while not limit or seed2 <= limit
 yield seed2
 seed1, seed2 = seed2, seed1 + seed2

2.15 Generating a Sequence of Numbers | 79

 end
end

fibonacci(3) { |x| puts x }
1
1
2
3

fibonacci(1) { |x| puts x }
1
1

fibonacci { |x| break if x > 20; puts x }
1
1
2
3
5
8
13

Discussion
A generator for a sequence of numbers works just like one that iterates over an array
or other data structure. The main difference is that iterations over a data structure
usually have a natural stopping point, whereas most common number sequences are
infinite.

One strategy is to implement a method called each that yields the entire sequence.
This works especially well if the sequence is finite. If not, it’s the responsibility of the
code block that consumes the sequence to stop the iteration with the break keyword.

Range#each is an example of an iterator over a finite sequence, while Prime#each enu-
merates the infinite set of prime numbers. Range#each is implemented in C, but here’s
a (much slower) pure Ruby implementation for study. This code uses self.begin and
self.end to call Range#begin and Range#end, because begin and end are reserved
words in Ruby.

class Range
 def each_slow
 x = self.begin
 while x <= self.end
 yield x
 x = x.succ
 end
 end
end

(1..3).each_slow {|x| puts x}
1
2
3

80 | Chapter 2: Numbers

The other kind of sequence generator iterates over a finite portion of an infinite
sequence. These are methods like Fixnum#upto and Fixnum#step: they take a start and/
or an end point as input, and generate a finite sequence within those boundaries.

class Fixnum
 def double_upto(stop)
 x = self
 until x > stop
 yield x
 x = x * 2
 end
 end
end
10.double_upto(50) { |x| puts x }
10
20
40

Most sequences move monotonically up or down, but it doesn’t have to be that way:

def oscillator
 x = 1
 while true
 yield x
 x *= -2
 end
end
oscillator { |x| puts x; break if x.abs > 50; }
1
-2
4
-8
16
-32
64

Though integer sequences are the most common, any type of number can be used in
a sequence. For instance, Float#step works just like Integer#step:

1.5.step(2.0, 0.25) { |x| puts x }
=> 1.5
=> 1.75
=> 2.0

Float objects don’t have the resolution to represent every real number. Very small
differences between numbers are lost. This means that some Float sequences you
might think would go on forever will eventually end:

def zeno(start, stop)
 distance = stop - start
 travelled = start
 while travelled < stop and distance > 0
 yield travelled
 distance = distance / 2.0
 travelled += distance

2.16 Generating Prime Numbers | 81

 end
end

steps = 0
zeno(0, 1) { steps += 1 }
steps # => 54

See Also
• Recipe 1.16, “Generating a Succession of Strings”

• Recipe 2.16, “Generating Prime Numbers,” shows optimizations for generating a
very well-studied number sequence

• Recipe 4.1, “Iterating Over an Array”

• Chapter 7 has more on this kind of generator method

2.16 Generating Prime Numbers

Problem
You want to generate a sequence of prime numbers, or find all prime numbers below
a certain threshold.

Solution
Instantiate the Prime class to create a prime number generator. Call Prime#succ to get
the next prime number in the sequence.

require 'mathn'
primes = Prime.new
primes.succ # => 2
primes.succ # => 3

Use Prime#each to iterate over the prime numbers:

primes.each { |x| puts x; break if x > 15; }
5
7
11
13
17
primes.succ # => 19

Discussion
Because prime numbers are both mathematically interesting and useful in crypto-
graphic applications, a lot of study has been lavished on them. Many algorithms have
been devised for generating prime numbers and determining whether a number is
prime. The code in this recipe walks a line between efficiency and ease of
implementation.

82 | Chapter 2: Numbers

The best-known prime number algorithm is the Sieve of Eratosthenes, which finds all
primes in a certain range by iterating over that range multiple times. On the first pass,
it eliminates every even number greater than 2, on the second pass every third num-
ber after 3, on the third pass every fifth number after 5, and so on. This implementa-
tion of the Sieve is based on a sample program packaged with the Ruby distribution:

def sieve(max=100)
 sieve = []
 (2..max).each { |i| sieve[i] = i }
 (2..Math.sqrt(max)).each do |i|
 (i*i).step(max, i) { |j| sieve[j] = nil } if sieve[i]
 end
 sieve.compact
end

sieve(10)
=> [2, 3, 5, 7]
sieve(100000).size
=> 9592

The Sieve is a fast way to find the primes smaller than a certain number, but it’s
memory-inefficient and it’s not suitable for generating an infinite sequence of prime
numbers. It’s also not very compatible with the Ruby idiom of generator methods.
This is where the Prime class comes in.

A Prime object stores the current state of one iteration over the set of primes. It con-
tains all information necessary to calculate the next prime number in the sequence.
Prime#each repeatedly calls Prime#succ and yields it up to whatever code block was
passed in.

Ruby 1.9 has an efficient implementation of Prime#each, but Ruby 1.8 has a very
slow implementation. The following code is based on the 1.9 implementation, and it
illustrates many of the simple tricks that drastically speed up algorithms that find or
use primes. You can use this code, or just paste the code from Ruby 1.9’s mathn.rb
into your 1.8 program.

The first trick is to share a single list of primes between all Prime objects by making it a
class variable. This makes it much faster to iterate over multiple Prime instances, but it
also uses more memory because the list of primes will never be garbage-collected.

We initialize the list with the first few prime numbers. This helps early performance
a little bit, but it’s mainly to get rid of edge cases. The class variable @@check_next
tracks the next number we think might be prime.

require 'mathn'

class Prime
 @@primes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59,
 61, 67, 71, 73, 79, 83, 89, 97, 101]
 @@check_next = 103
end

2.16 Generating Prime Numbers | 83

A number is prime if it has no factors: more precisely, if it has no prime factors
between 2 and its square root. This code uses the list of prime numbers not only as a
cache, but as a data structure to help find larger prime numbers. Instead of checking
all the possible factors of a number, we only need to check some of the prime factors.

To avoid calculating square roots, we have @@limit track the largest prime number
less than the square root of @@check_next. We can decide when to increment it by
calculating squares instead of square roots:

class Prime
@@primes[3] < sqrt(@@check_next) < @@primes[4]
 @@limit = 3

 # sqrt(121) == @@primes[4]
 @@increment_limit_at = 121
end

Now we need a new implementation of Prime#succ. Starting from @@check_next, the
new implementation iterates over numbers until it finds one that’s prime, then
returns the prime number. But it doesn’t iterate over the numbers one at a time: we
can do better than that. It skips even numbers and numbers divisible by three, which
are obviously not prime.

class Prime
 def succ
 @index += 1
 while @index >= @@primes.length
 if @@check_next + 4 > @@increment_limit_at
 @@limit += 1
 @@increment_limit_at = @@primes[@@limit + 1] ** 2
 end
 add_if_prime
 @@check_next += 4
 add_if_prime
 @@check_next += 2
 end
 return @@primes[@index]
 end
end

How does it do this? Well, consider a more formal definition of “even” and “divisi-
ble by three.” If x is congruent to 2 or 4, mod 6 (that is, if x % 6 is 2 or 4), then x is
even and not prime. If x is congruent to 3, mod 6, then x is divisible by 3 and not
prime. If x is congruent to 1 or 5, mod 6, then x might be prime.

Our starting point is @@check_next, which starts out at 103. 103 is congruent to 1,
mod 6, so it might be prime. Adding 4 gives us 107, a number congruent to 5, mod
6. We skipped two even numbers (104 and 106) and a number divisible by 3 (105).
Adding 2 to 107 skips another even number and gives us 109. Like 103, 109 is con-
gruent to 1, mod 6. We can add 4 and 2 again to get two more numbers that might

84 | Chapter 2: Numbers

be prime. By continually adding 4 and then 2 to @@check_next, we can skip over the
numbers that are obviously not prime.

Although all Prime objects share a list of primes, each object should start yielding
primes from the beginning of the list:

class Prime
 def initialize
 @index = -1
 end
end

Finally, here’s the method that actually checks @@check_next for primality, by look-
ing for a prime factor of that number between 5 and @@limit. We don’t have to check
2 and 3 because succ skips numbers divisible by 2 and 3. If no prime factor is found,
the number is prime: we add it to the class-wide list of primes, where it can be
returned by succ or yielded to a code block by each.

class Prime
 private
 def add_if_prime
 factor = @@primes[2..@@limit].find { |prime| @@check_next % prime == 0 }
 @@primes << @@check_next unless factor
 end
 end
end

Here’s the new Prime class in action, finding the ten-thousandth prime:

primes = Prime.new
p = nil
10000.times { p = primes.succ }
p # => 104729

Checking primality

The simplest way to check whether a particular number is prime is to generate all the
primes up to that number and see whether the number itself is generated as a prime.

class Prime
 def prime?(n)
 succ() while @seed < n
 return @primes.member?(n)
 end
end

If all of this is too complicated for you, there’s a very simple constant-time probabi-
listic test for primality that works more than half the time:

def probably_prime?(x)
 x < 8
end

probably_prime? 2 # => true
probably_prime? 5 # => true

2.17 Checking a Credit Card Checksum | 85

probably_prime? 6 # => true
probably_prime? 7 # => true
probably_prime? 8 # => false
probably_prime? 100000 # => false

See Also
• Recipe 2.15, “Generating a Sequence of Numbers”

• K. Kodama has written a number of simple and advanced primality tests in Ruby
(http://www.math.kobe-u.ac.jp/~kodama/tips-prime.html)

2.17 Checking a Credit Card Checksum

Problem
You want to know whether a credit card number was entered correctly.

Solution
The last digit of every credit card is a checksum digit. You can compare the other
digits against the checksum to catch mistakes someone might make when typing
their credit card number.

Lucas Carlson’s CreditCard library, available as the creditcard gem, contains Ruby
implementations of the checksum algorithms. It adds methods to the String and
Integer classes to check the internal consistency of a credit card number:

require 'rubygems'
require 'creditcard'

'5276 4400 6542 1319'.creditcard? # => true
'5276440065421313'.creditcard? # => false
1276440065421319.creditcard? # => false

CreditCard can also determine which brand of credit card a certain number is for:

5276440065421313.creditcard_type # => "mastercard"

Discussion
The CreditCard library uses a well-known algorithm for finding the checksum digit
of a credit card. If you can’t or don’t want to install the creditcard gem, you can just
implement the algorithm yourself:

module CreditCard
 def creditcard?
 numbers = self.to_s.gsub(/[^\d]+/, '').split(//)

 checksum = 0
 0.upto numbers.length do |i|
 weight = numbers[-1*(i+2)].to_i * (2 - (i%2))

86 | Chapter 2: Numbers

 checksum += weight % 9
 end

 return numbers[-1].to_i == 10 - checksum % 10
 end
end

class String
 include CreditCard
end

class Integer
 include CreditCard
end

'5276 4400 6542 1319'.creditcard? # => true

How does it work? First, it converts the object to an array of numbers:

numbers = '5276 4400 6542 1319'.gsub(/[^\d]+/, '').split(//)
=> ["5", "2", "7", "6", "4", "4", "0", "0",
=> "6", "5", "4", "2", "1", "3", "1", "9"]

It then calculates a weight for each number based on its position, and adds that
weight to a running checksum:

checksum = 0
0.upto numbers.length do |i|
 weight = numbers[-1*(i+2)].to_i * (2 - (i%2))
 checksum += weight % 9
end
checksum # => 51

If the last number of the card is equal to 10 minus the last digit of the checksum, the
number is self-consistent:

numbers[-1].to_i == 10 - checksum % 10 # => true

A self-consistent credit card number is just a number with a certain mathematical
property. It can catch typos, but there’s no guarantee that a real credit card exists with
that number. To check that, you need to use a payment gateway like Authorize.net,
and a gateway library like Payment::AuthorizeNet.

See Also
• Recipe 16.8, “Charging a Credit Card”

87

Chapter 3 CHAPTER 3

Date and Time3

With no concept of time, our lives would be a mess. Without software programs to
constantly manage and record this bizarre aspect of our universe…well, we might
actually be better off. But why take the risk?

Some programs manage real-world time on behalf of the people who’d otherwise
have to do it themselves: calendars, schedules, and data gatherers for scientific exper-
iments. Other programs use the human concept of time for their own purposes: they
may run experiments of their own, making decisions based on microsecond varia-
tions. Objects that have nothing to do with time are sometimes given timestamps
recording when they were created or last modified. Of the basic data types, a time is
the only one that directly corresponds to something in the real world.

Ruby supports the date and time interfaces you might be used to from other pro-
gramming languages, but on top of them are Ruby-specific idioms that make pro-
gramming easier. In this chapter, we’ll show you how to use those interfaces and
idioms, and how to fill in the gaps left by the language as it comes out of the box.

Ruby actually has two different time implementations. There’s a set of time libraries
written in C that have been around for decades. Like most modern programming
languages, Ruby provides a native interface to these C libraries. The libraries are
powerful, useful, and reliable, but they also have some significant shortcomings, so
Ruby compensates with a second time library written in pure Ruby. The pure Ruby
library isn’t used for everything because it’s slower than the C interface, and it lacks
some of the features buried deep in the C library, such as the management of Day-
light Saving Time.

The Time class contains Ruby’s interface to the C libraries, and it’s all you need for
most applications. The Time class has a lot of Ruby idiom attached to it, but most of
its methods have strange unRuby-like names like strftime and strptime. This is for
the benefit of people who are already used to the C library, or one of its other inter-
faces (like Perl or Python’s).

88 | Chapter 3: Date and Time

The internal representation of a Time object is a number of seconds before or since
“time zero.” Time zero for Ruby is the Unix epoch: the first second GMT of January
1, 1970. You can get the current local time with Time.now, or create a Time object
from seconds-since-epoch with Time.at.

Time.now # => Sat Mar 18 14:49:30 EST 2006
Time.at(0) # => Wed Dec 31 19:00:00 EST 1969

This numeric internal representation of the time isn’t very useful as a human-readable
representation. You can get a string representation of a Time, as seen above, or call
accessor methods to split up an instant of time according to how humans reckon time:

t = Time.at(0)
t.sec # => 0
t.min # => 0
t.hour # => 19
t.day # => 31
t.month # => 12
t.year # => 1969
t.wday # => 3 # Numeric day of week; Sunday
is 0
t.yday # => 365 # Numeric day of year
t.isdst # => false # Is Daylight Saving Time in
 # effect?
t.zone # => "EST" # Time zone

See Recipe 3.3 for more human-readable ways of slicing and dicing Time objects.

Apart from the awkward method and member names, the biggest shortcoming of the
Time class is that on a 32-bit system, its underlying implementation can’t handle
dates before December 1901 or after January 2037.*

Time.local(1865, 4, 9)
ArgumentError: time out of range
Time.local(2100, 1, 1)
ArgumentError: time out of range

To represent those times, you’ll need to turn to Ruby’s other time implementation:
the Date and DateTime classes. You can probably use DateTime for everything, and not
use Date at all:

require 'date'
DateTime.new(1865, 4, 9).to_s # => "1865-04-09T00:00:00Z"
DateTime.new(2100, 1, 1).to_s # => "2100-01-01T00:00:00Z"

* A system with a 64-bit time_t can represent a much wider range of times (about half a trillion years):
Time.local(1865,4,9) # => Sun Apr 09 00:00:00 EWT 1865
Time.local(2100,1,1) # => Fri Jan 01 00:00:00 EST 2100

You’ll still get into trouble with older times, though, because Time doesn’t handle calendrical reform. It’ll also
give time zones to times that predate the creation of time zones (EWT stands for Eastern War Time, an
American timezone used during World War II).

Date and Time | 89

Recall that a Time object is stored as a fractional number of seconds since a “time
zero” in 1970. The internal representation of a Date or DateTime object is a astronom-
ical Julian date: a fractional number of days since a “time zero” in 4712 BCE, over
6,000 years ago.

Time zero for the date library:
DateTime.new.to_s # => "-4712-01-01T00:00:00Z"

The current date and time:
DateTime::now.to_s # => "2006-03-18T14:53:18-0500"

A DateTime object can precisely represent a time further in the past than the universe
is old, or further in the future than the predicted lifetime of the universe. When
DateTime handles historical dates, it needs to take into account the calendar reform
movements that swept the Western world throughout the last 500 years. See Recipe
3.1 for more information on creating Date and DateTime objects.

Clearly DateTime is superior to Time for astronomical and historical applications, but
you can use Time for most everyday programs. This table should give you a picture of
the relative advantages of Time objects and DateTime objects.

Both Time and DateTime objects support niceties like iteration and date arithmetic: you
can basically treat them like numbers, because they’re stored as numbers internally.
But recall that a Time object is stored as a number of seconds, while a DateTime object is
stored as a number of days, so the same operations will operate on different time scales
on Time and DateTime objects. See Recipes 3.4 and 3.5 for more on this.

So far, we’ve talked about writing code to manage specific moments in time: a
moment in the past or future, or right now. The other use of time is duration, the
relationship between two times: “start” and “end,” “before” and “after.” You can
measure duration by subtracting one DateTime object from another, or one Time
object from another: you’ll get a result measured in days or seconds (see Recipe 3.5).
If you want your program to actually experience duration (the difference between
now and a time in the future), you can put a thread to sleep for a certain amount of
time: see Recipes 3.12 and 3.13.

Time DateTime

Date range 1901–2037 on 32-bit systems Effectively infinite

Handles Daylight Saving Time Yes No

Handles calendar reform No Yes

Time zone conversion Easy with the tz gem Difficult unless you only work with
time zone offsets

Common time formats like RFC822 Built-in Write them yourself

Speed Faster Slower

90 | Chapter 3: Date and Time

You’ll need duration most often, perhaps, during development. Benchmarking and
profiling can measure how long your program took to run, and which parts of it took
the longest. These topics are covered in Chapter 17: see Recipes 17.12 and 17.13.

3.1 Finding Today’s Date

Problem
You need to create an object that represents the current date and time, or a time in
the future or past.

Solution
The factory method Time.now creates a Time object containing the current local time.
If you want, you can then convert it to GMT time by calling Time#gmtime. The gmtime
method actually modifies the underlying time object, though it doesn’t follow the
Ruby naming conventions for such methods (it should be called something like
gmtime!).

now = Time.now # => Sat Mar 18 16:58:07 EST 2006
now.gmtime # => Sat Mar 18 21:58:07 UTC 2006

#The original object was affected by the time zone conversion.
now # => Sat Mar 18 21:58:07 UTC 2006

To create a DateTime object for the current local time, use the factory method
DateTime.now. Convert a DateTime object to GMT by calling DateTime#new_offset
with no argument. Unlike Time#gmtime, this method returns a second DateTime object
instead of modifying the original in place.

require 'date'
now = DateTime.now
=> #<DateTime: 70669826362347677/28800000000,-5/24,2299161>
now.to_s # => "2006-03-18T16:58:07-0500"
now.new_offset.to_s # => "2006-03-18T21:58:07Z"

#The original object was not affected by the time zone conversion.
now.to_s # => "2006-03-18T16:58:07-0500"

Discussion
Both Time and DateTime objects provide accessor methods for the basic ways in which
the Western calendar and clock divide a moment in time. Both classes provide year,
month, day, hour (in 24-hour format), min, sec, and zone accessors. Time#isdst lets you
know if the underlying time of a Time object has been modified by Daylight Saving
Time in its time zone. DateTime pretends Daylight Saving Time doesn’t exist.

now_time = Time.new
now_datetime = DateTime.now
now_time.year # => 2006

3.1 Finding Today’s Date | 91

now_datetime.year # => 2006
now_time.hour # => 18
now_datetime.hour # => 18

now_time.zone # => "EST"
now_datetime.zone # => "-0500"
now_time.isdst # => false

You can see that Time#zone and DateTime#zone are a little different. Time#zone returns
a time zone name or abbreviation, and DateTime#zone returns a numeric offset from
GMT in string form. You can call DateTime#offset to get the GMT offset as a num-
ber: a fraction of a day.

now_datetime.offset # => Rational(-5, 24) # -5 hours

Both classes can also represent fractions of a second, accessible with Time#usec (that
is, µsec or microseconds) and DateTime#sec_fraction. In the example above, the
DateTime object was created after the Time object, so the numbers are different even
though both objects were created within the same second.

now_time.usec # => 247930
That is, 247930 microseconds
now_datetime.sec_fraction # => Rational(62191, 21600000000)
That is, about 287921 microseconds

The date library provides a Date class that is like a DateTime, without the time. To
create a Date object containing the current date, the best strategy is to create a
DateTime object and use the result in a call to a Date factory method. DateTime is actu-
ally a subclass of Date, so you only need to do this if you want to strip time data to
make sure it doesn’t get used.

class Date
 def Date.now
 return Date.jd(DateTime.now.jd)
 end
end
puts Date.now
2006-03-18

In addition to creating a time object for this very moment, you can create one from a
string (see Recipe 3.2) or from another time object (see Recipe 3.5). You can also use
factory methods to create a time object from its calendar and clock parts: the year,
month, day, and so on.

The factory methods Time.local and Time.gm take arguments Time object for that
time. For local time, use Time.local; for GMT, use Time.gm. All arguments after year
are optional and default to zero.

Time.local(1999, 12, 31, 23, 21, 5, 1044)
=> Fri Dec 31 23:21:05 EST 1999

Time.gm(1999, 12, 31, 23, 21, 5, 22, 1044)
=> Fri Dec 31 23:21:05 UTC 1999

92 | Chapter 3: Date and Time

Time.local(1991, 10, 1)
=> Tue Oct 01 00:00:00 EDT 1991

Time.gm(2000)
=> Sat Jan 01 00:00:00 UTC 2000

The DateTime equivalent of Time.local is the civil factory method. It takes almost
but not quite the same arguments as Time.local:

[year, month, day, hour, minute, second, timezone_offset, date_of_calendar_reform].

The main differences from Time.local and Time.gmt are:

• There’s no separate usec argument for fractions of a second. You can represent
fractions of a second by passing in a rational number for second.

• All the arguments are optional. However, the default year is 4712 BCE, which is
probably not useful to you.

• Rather than providing different methods for different time zones, you must pass
in an offset from GMT as a fraction of a day. The default is zero, which means
that calling DateTime.civil with no time zone will give you a time in GMT.

DateTime.civil(1999, 12, 31, 23, 21, Rational(51044, 100000)).to_s
=> "1999-12-31T23:21:00Z"

DateTime.civil(1991, 10, 1).to_s
=> "1991-10-01T00:00:00Z"

DateTime.civil(2000).to_s
=> "2000-01-01T00:00:00Z"

The simplest way to get the GMT offset for your local time zone is to call offset on
the result of DateTime.now. Then you can pass the offset into DateTime.civil:

my_offset = DateTime.now.offset # => Rational(-5, 24)

DateTime.civil(1999, 12, 31, 23, 21, Rational(51044, 100000), my_offset).to_s
=> "1999-12-31T23:21:00-0500"

Oh, and there’s the calendar-reform thing, too. Recall that Time objects can only rep-
resent dates from a limited range (on 32-bit systems, dates from the 20th and 21st
centuries). DateTime objects can represent any date at all. The price of this greater
range is that DateTime needs to worry about calendar reform when dealing with his-
torical dates. If you’re using old dates, you may run into a gap caused by a switch
from the Julian calendar (which made every fourth year a leap year) to the more
accurate Gregorian calendar (which occasionally skips leap years).

This switch happened at different times in different countries, creating differently-
sized gaps as the local calendar absorbed the extra leap days caused by using the
Julian reckoning for so many centuries. Dates created within a particular country’s
gap are invalid for that country.

3.2 Parsing Dates, Precisely or Fuzzily | 93

By default, Ruby assumes that Date objects you create are relative to the Italian calen-
dar, which switched to Gregorian reckoning in 1582. For American and Common-
wealth users, Ruby has provided a constant Date::ENGLAND, which corresponds to the
date that England and its colonies adopted the Gregorian calendar. DateTime’s con-
structors and factory methods will accept Date::ENGLAND or Date::ITALY as an extra
argument denoting when calendar reform started in that country. The calendar
reform argument can also be any old Julian day, letting you handle old dates from
any country:

#In Italy, 4 Oct 1582 was immediately followed by 15 Oct 1582.
#
Date.new(1582, 10, 4).to_s
=> "1582-10-04"
Date.new(1582, 10, 5).to_s
ArgumentError: invalid date
Date.new(1582, 10, 4).succ.to_s
=> "1582-10-15"

#In England, 2 Sep 1752 was immediately followed by 14 Sep 1752.
#
Date.new(1752, 9, 2, Date::ENGLAND).to_s
=> "1752-09-02"
Date.new(1752, 9, 3, Date::ENGLAND).to_s
ArgumentError: invalid date
Date.new(1752, 9, 2, DateTime::ENGLAND).succ.to_s
=> "1752-09-14"
Date.new(1582, 10, 5, Date::ENGLAND).to_s
=> "1582-10-05"

You probably won’t need to use Ruby’s Gregorian conversion features: it’s uncom-
mon that computer applications need to deal with old dates that are both known
with precision and associated with a particular locale.

See Also
• A list of the dates of Gregorian conversion for various countries (http://www.

polysyllabic.com/GregConv.html)

• Recipe 3.7, “Converting Between Time Zones

• Recipe 3.8, “Checking Whether Daylight Saving Time Is in Effect”

3.2 Parsing Dates, Precisely or Fuzzily

Problem
You want to transform a string describing a date or date/time into a Date object. You
might not know the format of the string ahead of time.

94 | Chapter 3: Date and Time

Solution
The best solution is to pass the date string into Date.parse or DateTime.parse. These
methods use heuristics to guess at the format of the string, and they do a pretty good
job:

require 'date'

Date.parse('2/9/2007').to_s
=> "2007-02-09"

DateTime.parse('02-09-2007 12:30:44 AM').to_s
=> "2007-09-02T00:30:44Z"

DateTime.parse('02-09-2007 12:30:44 PM EST').to_s
=> "2007-09-02T12:30:44-0500"

Date.parse('Wednesday, January 10, 2001').to_s
=> "2001-01-10"

Discussion
The parse methods can save you a lot of the drudgework associated with parsing
times in other programming languages, but they don’t always give you the results
you want. Notice in the first example how Date.parse assumed that 2/9/2007 was an
American (month first) date instead of a European (day first) date. parse also tends
to misinterpret two-digit years:

Date.parse('2/9/07').to_s # => "0007-02-09"

Let’s say that Date.parse doesn’t work for you, but you know that all the dates
you’re processing will be formatted a certain way. You can create a format string
using the standard strftime directives, and pass it along with a date string into
DateTime.strptime or Date.strptime. If the date string matches up with the format
string, you’ll get a Date or DateTime object back. You may already be familiar with
this technique, since this many languages, as well as the Unix date command, do
date formatting this way.

Some common date and time formats include:

american_date = '%m/%d/%y'
Date.strptime('2/9/07', american_date).to_s # => "2007-02-09"
DateTime.strptime('2/9/05', american_date).to_s # => "2005-02-09T00:00:00Z"
Date.strptime('2/9/68', american_date).to_s # => "2068-02-09"
Date.strptime('2/9/69', american_date).to_s # => "1969-02-09"

european_date = '%d/%m/%y'
Date.strptime('2/9/07', european_date).to_s # => "2007-09-02"
Date.strptime('02/09/68', european_date).to_s # => "2068-09-02"
Date.strptime('2/9/69', european_date).to_s # => "1969-09-02"

3.2 Parsing Dates, Precisely or Fuzzily | 95

four_digit_year_date = '%m/%d/%Y'
Date.strptime('2/9/2007', four_digit_year_date).to_s # => "2007-02-09"
Date.strptime('02/09/1968', four_digit_year_date).to_s # => "1968-02-09"
Date.strptime('2/9/69', four_digit_year_date).to_s # => "0069-02-09"

date_and_time = '%m-%d-%Y %H:%M:%S %Z'
DateTime.strptime('02-09-2007 12:30:44 EST', date_and_time).to_s
=> "2007-02-09T12:30:44-0500"
DateTime.strptime('02-09-2007 12:30:44 PST', date_and_time).to_s
=> "2007-02-09T12:30:44-0800"
DateTime.strptime('02-09-2007 12:30:44 GMT', date_and_time).to_s
=> "2007-02-09T12:30:44Z"

twelve_hour_clock_time = '%m-%d-%Y %I:%M:%S %p'
DateTime.strptime('02-09-2007 12:30:44 AM', twelve_hour_clock_time).to_s
=> "2007-02-09T00:30:44Z"
DateTime.strptime('02-09-2007 12:30:44 PM', twelve_hour_clock_time).to_s
=> "2007-02-09T12:30:44Z"

word_date = '%A, %B %d, %Y'
Date.strptime('Wednesday, January 10, 2001', word_date).to_s
=> "2001-01-10"

If your date strings might be in one of a limited number of formats, try iterating over
a list of format strings and attempting to parse the date string with each one in turn.
This gives you some of the flexibility of Date.parse while letting you override the
assumptions it makes. Date.parse is still faster, so if it’ll work, use that.

Date.parse('1/10/07').to_s # => "0007-01-10"
Date.parse('2007 1 10').to_s
ArgumentError: 3 elements of civil date are necessary

TRY_FORMATS = ['%d/%m/%y', '%Y %m %d']
def try_to_parse(s)
 parsed = nil
 TRY_FORMATS.each do |format|
 begin
 parsed = Date.strptime(s, format)
 break
 rescue ArgumentError
 end
 end
 return parsed
end

try_to_parse('1/10/07').to_s # => "2007-10-01"
try_to_parse('2007 1 10').to_s # => "2007-01-10"

Several common date formats cannot be reliably represented by strptime format
strings. Ruby defines class methods of Time for parsing these date strings, so you don’t
have to write the code yourself. Each of the following methods returns a Time object.

96 | Chapter 3: Date and Time

Time.rfc822 parses a date string in the format of RFC822/RFC2822, the Internet
email standard. In an RFC2822 date, the month and the day of the week are always
in English (for instance, “Tue” and “Jul”), even if the locale is some other language.

require 'time'
mail_received = 'Tue, 1 Jul 2003 10:52:37 +0200'
Time.rfc822(mail_received)
=> Tue Jul 01 04:52:37 EDT 2003

To parse a date in the format of RFC2616, the HTTP standard, use Time.httpdate.
An RFC2616 date is the kind of date you see in HTTP headers like Last-Modified. As
with RFC2822, the month and day abbreviations are always in English:

last_modified = 'Tue, 05 Sep 2006 16:05:51 GMT'
Time.httpdate(last_modified)
=> Tue Sep 05 12:05:51 EDT 2006

To parse a date in the format of ISO 8601 or XML Schema, use Time.iso8601 or
Time.xmlschema:

timestamp = '2001-04-17T19:23:17.201Z'
t = Time.iso8601(timestamp) # => Tue Apr 17 19:23:17 UTC 2001
t.sec # => 17
t.tv_usec # => 201000

Don’t confuse these class methods of Time with the instance methods of the same
names. The class methods create Time objects from strings. The instance methods go
the other way, formatting an existing Time object as a string:

t = Time.at(1000000000) # => Sat Sep 08 21:46:40 EDT 2001
t.rfc822 # => "Sat, 08 Sep 2001 21:46:40 -0400"
t.httpdate # => "Sun, 09 Sep 2001 01:46:40 GMT"
t.iso8601 # => "2001-09-08T21:46:40-04:00"

See Also
• The RDoc for the Time#strftime method lists most of the supported strftime

directives (ri Time#strftime); for a more detailed and complete list, see the table
in Recipe 3.3, “Printing a Date”

3.3 Printing a Date

Problem
You want to print a date object as a string.

Solution
If you just want to look at a date, you can call Time#to_s or Date#to_s and not bother
with fancy formatting:

3.3 Printing a Date | 97

require 'date'
Time.now.to_s # => "Sat Mar 18 19:05:50 EST 2006"
DateTime.now.to_s # => "2006-03-18T19:05:50-0500"

If you need the date in a specific format, you’ll need to define that format as a string
containing time-format directives. Pass the format string into Time#strftime or
Date#strftime. You’ll get back a string in which the formatting directives have been
replaced by the correpsonding parts of the Time or DateTime object.

A formatting directive looks like a percent sign and a letter: %x. Everything in a for-
mat string that’s not a formatting directive is treated as a literal:

Time.gm(2006).strftime('The year is %Y!') # => "The year is 2006!"

The Discussion lists all the time formatting directives defined by Time#strftime and
Date#strftime. Here are some common time-formatting strings, shown against a
sample date of about 1:30 in the afternoon, GMT, on the last day of 2005:

time = Time.gm(2005, 12, 31, 13, 22, 33)
american_date = '%D'
time.strftime(american_date) # => "12/31/05"
european_date = '%d/%m/%y'
time.strftime(european_date) # => "31/12/05"
four_digit_year_date = '%m/%d/%Y'
time.strftime(four_digit_year_date) # => "12/31/2005"
date_and_time = '%m-%d-%Y %H:%M:%S %Z'
time.strftime(date_and_time) # => "12-31-2005 13:22:33 GMT"
twelve_hour_clock_time = '%m-%d-%Y %I:%M:%S %p'
time.strftime(twelve_hour_clock_time) # => "12-31-2005 01:22:33 PM"
word_date = '%A, %B %d, %Y'
time.strftime(word_date) # => "Saturday, December 31, 2005"

Discussion
Printed forms, parsers, and people can all be very picky about the formatting of
dates. Having a date in a standard format makes dates easier to read and scan for
errors. Agreeing on a format also prevents ambiguities (is 4/12 the fourth of Decem-
ber, or the twelfth of April?)

If you require 'time', your Time objects will sprout special-purpose formatting meth-
ods for common date representation standards: Time#rfc822, Time#httpdate, and
Time#iso8601. These make it easy for you to print dates in formats compliant with
email, HTTP, and XML standards:

require 'time'
time.rfc822 # => "Sat, 31 Dec 2005 13:22:33 -0000"
time.httpdate # => "Sat, 31 Dec 2005 13:22:33 GMT"
time.iso8601 # => "2005-12-31T13:22:33Z"

DateTime provides only one of these three formats. ISO8601 is the the default string
representation of a DateTime object (the one you get by calling #to_s). This means

98 | Chapter 3: Date and Time

you can easily print DateTime objects into XML documents without having to con-
vert them into Time objects.

For the other two formats, your best strategy is to convert the DateTime into a Time
object (see Recipe 3.9 for details). Even on a system with a 32-bit time counter, your
DateTime objects will probably fit into the 1901–2037 year range supported by Time,
since RFC822 and HTTP dates are almost always used with dates in the recent past
or near future.

Sometimes you need to define a custom date format. Time#strftime and
Date#strftime define many directives for use in format strings. The big table below
says what they do. You can combine these in any combination within a formatting
string.

Some of these may be familiar to you from other programming languages; virtually
all languages since C have included a strftime implementation that uses some of
these directives. Some of the directives are unique to Ruby.

Formatting directive What it does
Example for 13:22:33
on December 31, 2005

 %A English day of the week “Saturday”

 %a Abbreviated English day of the week “Sat”

 %B English month of the year “December”

 %b English month of the year “Dec”

 %C The century part of the year, zero-padded if necessary. “20”

 %c This prints the date and time in a way that looks like the default
string representation of Time, but without the timezone.
Equivalent to ‘%a %b %e %H:%M:%S %Y’

 “Sat Dec 31 13:22:33 2005”

 %D American-style short date format with two-digit year.
Equivalent to “%m/%d/%y”

 “12/31/05”

 %d Day of the month, zero-padded “31”

 %e Day of the month, not zero-padded “31”

 %F Short date format with 4-digit year.; equivalent to “%Y-%m-%d” “2005-12-31”

 %G Commercial year with century, zero-padded to a minimum of
four digits and with a minus sign prepended for dates BCE (see
Recipe 3.11. For the calendar year, use %Y)

 “2005”

 %g Year without century, zero-padded to two digits “05”

 %H Hour of the day, 24-hour clock, zero-padded to two digits “13”

 %h Abbreviated month of the year; the same as “%b” “Dec”

 %I Hour of the day, 12-hour clock, zero-padded to two digits “01”

 %j Julian day of the year, padded to three digits (from 001 to 366) “365”

 %k Hour of the day, 24-hour clock, not zero-padded; like %H but
with no padding

 “13”

3.3 Printing a Date | 99

Date defines two formatting directives that won’t work at all in Time#strftime. Both
are shortcuts for formatting strings that you could create manually.

 %l Hour of the day, 12-hour clock, not zero-padded; like %I but
with no padding

 “1”

 %M Minute of the hour, padded to two digits “22”

 %m Month of the year, padded to two digits “12”

 %n A newline; don’t use this; just put a newline in the formatting
string

 “\n”

 %P Lowercase meridian indicator (“am” or “pm”) “pm”

 %p Upper meridian indicator. Like %P, except gives “AM” or “PM”;
yes, the uppercase P gives the lowercase meridian, and vice versa

 “PM”

 %R Short 24-hour time format; equivalent to “%H:%M” “13:22”

 %r Long 12-hour time format; equivalent to “%I:%M:%S %p” “01:22:33 PM”

 %S Second of the minute, zero-padded to two digits “33”

 %s Seconds since the Unix epoch “1136053353”

 %T Long 24-hour time format; equivalent to “%H:%M:%S” “13:22:33”

 %t A tab; don’t use this; just put a tab in the formatting string “\t”

 %U Calendar week number of the year: assumes that the first week
of the year starts on the first Sunday; if a date comes before the
first Sunday of the year, it’s counted as part of “week zero” and
“00” is returned

 “52”

 %u Commercial weekday of the year, from 1 to 7, with Monday
being day 1

 “6”

 %V Commercial week number of the year (see Recipe 3.11) “52”

 %W The same as %V, but if a date is before the first Monday of the
year, it’s counted as part of “week zero” and “00” is returned

 “52”

 %w Calendar day of the week, from 0 to 6, with Sunday being day 0 “6”

 %X Preferred representation for the time; equivalent to
“%H:%M:%S”

 “13:22:33”

 %x Preferred representation for the date; equivalent to
“%m/%d/%y”

 “12/31/05”

 %Y Year with century, zero-padded to four digits and with a minus
sign prepended for dates BCE

 “2005”

 %y Year without century, zero-padded to two digits “05”

 %Z The timezone abbreviation (Time) or GMT offset (Date). Date
will use “Z” instead of “+0000” if a time is in GMT

 “GMT” for Time, “Z” for Date

 %z The timezone as a GMT offset “+0000”

 %% A literal percent sign “%”

Formatting directive What it does
Example for 13:22:33
on December 31, 2005

100 | Chapter 3: Date and Time

If you need a date format for which there’s no formatting directive, you should be
able to compensate by writing Ruby code. For instance, suppose you want to format
our example date as “The 31st of December”. There’s no special formatting directive
tol print the day as an ordinal number, but you can use Ruby code to build a format-
ting string that gives the right answer.

class Time
 def day_ordinal_suffix
 if day == 11 or day == 12
 return "th"
 else
 case day % 10
 when 1 then return "st"
 when 2 then return "nd"
 when 3 then return "rd"
 else return "th"
 end
 end
 end
end

time.strftime("The %e#{time.day_ordinal_suffix} of %B") # => "The 31st of December"

The actual formatting string differs depending on the date. In this case, it ends up
“The %est of %B”, but for other dates it will be “The %end of %B”, “The %erd of
%B”, or “The %eth of %B”.

See Also
• Time objects can parse common date formats as well as print them out; see Rec-

ipe 3.2, “Parsing Dates, Precisely or Fuzzily,” to see how to parse the output of
strftime, rfc822, httpdate, and iso8661

• Recipe 3.11, “Handling Commercial Dates”

3.4 Iterating Over Dates

Problem
Given a point in time, you want to get somewhere else.

Formatting directive What it does
Example for 13:22:33
on December 31, 2005

 %v European-style date format with month abbreviation; equiva-
lent to “%e-%b-%Y”

 31-Dec-2005

 %+ Prints a Date object as though it were a Time object converted
to a string; like %c, but includes the timezone information;
equivalent to “%a %b %e %H:%M:%S %Z %Y”

 Sat Dec 31 13:22:33 Z 2005

3.4 Iterating Over Dates | 101

Solution
All of Ruby’s time objects can be used in ranges as though they were numbers. Date
and DateTime objects iterate in increments of one day, and Time objects iterate in
increments of one second:

require 'date'
(Date.new(1776, 7, 2)..Date.new(1776, 7, 4)).each { |x| puts x }
1776-07-02
1776-07-03
1776-07-04

span = DateTime.new(1776, 7, 2, 1, 30, 15)..DateTime.new(1776, 7, 4, 7, 0, 0)
span.each { |x| puts x }
1776-07-02T01:30:15Z
1776-07-03T01:30:15Z
1776-07-04T01:30:15Z

(Time.at(100)..Time.at(102)).each { |x| puts x }
Wed Dec 31 19:01:40 EST 1969
Wed Dec 31 19:01:41 EST 1969
Wed Dec 31 19:01:42 EST 1969

Ruby’s Date class defines step and upto, the same convenient iterator methods used
by numbers:

the_first = Date.new(2004, 1, 1)
the_fifth = Date.new(2004, 1, 5)

the_first.upto(the_fifth) { |x| puts x }
2004-01-01
2004-01-02
2004-01-03
2004-01-04
2004-01-05

Discussion
Ruby date objects are stored internally as numbers, and a range of those objects is
treated like a range of numbers. For Date and DateTime objects, the internal represen-
tation is the Julian day: iterating over a range of those objects adds one day at a time.
For Time objects, the internal representation is the number of seconds since the Unix
epoch: iterating over a range of Time objects adds one second at a time.

Time doesn’t define the step and upto method, but it’s simple to add them:

class Time
 def step(other_time, increment)
 raise ArgumentError, "step can't be 0" if increment == 0
 increasing = self < other_time
 if (increasing && increment < 0) || (!increasing && increment > 0)
 yield self
 return

102 | Chapter 3: Date and Time

 end
 d = self
 begin
 yield d
 d += increment
 end while (increasing ? d <= other_time : d >= other_time)
 end

 def upto(other_time)
 step(other_time, 1) { |x| yield x }
 end
end

the_first = Time.local(2004, 1, 1)
the_second = Time.local(2004, 1, 2)
the_first.step(the_second, 60 * 60 * 6) { |x| puts x }
Thu Jan 01 00:00:00 EST 2004
Thu Jan 01 06:00:00 EST 2004
Thu Jan 01 12:00:00 EST 2004
Thu Jan 01 18:00:00 EST 2004
Fri Jan 02 00:00:00 EST 2004

the_first.upto(the_first) { |x| puts x }
Thu Jan 01 00:00:00 EST 2004

See Also
• Recipe 2.15, “Generating a Sequence of Numbers”

3.5 Doing Date Arithmetic

Problem
You want to find how much time has elapsed between two dates, or add a number to
a date to get an earlier or later date.

Solution
Adding or subtracting a Time object and a number adds or subtracts that number of
seconds. Adding or subtracting a Date object and a number adds or subtracts that
number of days:

require 'date'
y2k = Time.gm(2000, 1, 1) # => Sat Jan 01 00:00:00 UTC 2000
y2k + 1 # => Sat Jan 01 00:00:01 UTC 2000
y2k - 1 # => Fri Dec 31 23:59:59 UTC 1999
y2k + (60 * 60 * 24 * 365) # => Sun Dec 31 00:00:00 UTC 2000

y2k_dt = DateTime.new(2000, 1, 1)
(y2k_dt + 1).to_s # => "2000-01-02T00:00:00Z"
(y2k_dt - 1).to_s # => "1999-12-31T00:00:00Z"

3.5 Doing Date Arithmetic | 103

(y2k_dt + 0.5).to_s # => "2000-01-01T12:00:00Z"
(y2k_dt + 365).to_s # => "2000-12-31T00:00:00Z"

Subtracting one Time from another gives the interval between the dates, in seconds.
Subtracting one Date from another gives the interval in days:

day_one = Time.gm(1999, 12, 31)
day_two = Time.gm(2000, 1, 1)
day_two - day_one # => 86400.0
day_one - day_two # => -86400.0

day_one = DateTime.new(1999, 12, 31)
day_two = DateTime.new(2000, 1, 1)
day_two - day_one # => Rational(1, 1)
day_one - day_two # => Rational(-1, 1)

Compare times from now and 10 seconds in the future.
before_time = Time.now
before_datetime = DateTime.now
sleep(10)
Time.now - before_time # => 10.003414
DateTime.now - before_datetime # => Rational(5001557, 43200000000)

The activesupport gem, a prerequisite of Ruby on Rails, defines many useful func-
tions on Numeric and Time for navigating through time:*

require 'rubygems'
require 'active_support'

10.days.ago # => Wed Mar 08 19:54:17 EST 2006
1.month.from_now # => Mon Apr 17 20:54:17 EDT 2006
2.weeks.since(Time.local(2006, 1, 1)) # => Sun Jan 15 00:00:00 EST 2006

y2k - 1.day # => Fri Dec 31 00:00:00 UTC 1999
y2k + 6.3.years # => Thu Apr 20 01:48:00 UTC 2006
6.3.years.since y2k # => Thu Apr 20 01:48:00 UTC 2006

Discussion
Ruby’s date arithmetic takes advantage of the fact that Ruby’s time objects are stored
internally as numbers. Additions to dates and differences between dates are handled
by adding to and subtracting the underlying numbers. This is why adding 1 to a Time
adds one second and adding 1 to a DateTime adds one day: a Time is stored as a num-
ber of seconds since a time zero, and a Date or DateTime is stored as a number of days
since a (different) time zero.

Not every arithmetic operation makes sense for dates: you could “multiply two
dates” by multiplying the underlying numbers, but that would have no meaning in
terms of real time, so Ruby doesn’t define those operators. Once a number takes on

* So does the Facets More library.

104 | Chapter 3: Date and Time

aspects of the real world, there are limitations to what you can legitimately do to that
number.

Here’s a shortcut for adding or subtracting big chunks of time: using the right- or
left-shift operators on a Date or DateTime object will add or subtract a certain num-
ber number of months from the date.

(y2k_dt >> 1).to_s # => "2000-02-01T00:00:00Z"
(y2k_dt << 1).to_s # => "1999-12-01T00:00:00Z"

You can get similar behavior with activesupport’s Numeric#month method, but that
method assumes that a “month” is 30 days long, instead of dealing with the lengths
of specific months:

y2k + 1.month # => Mon Jan 31 00:00:00 UTC 2000
y2k - 1.month # => Thu Dec 02 00:00:00 UTC 1999

By contrast, if you end up in a month that doesn’t have enough days (for instance,
you start on the 31st and then shift to a month that only has 30 days), the standard
library will use the last day of the new month:

Thirty days hath September...
halloween = Date.new(2000, 10, 31)
(halloween << 1).to_s # => "2000-09-30"
(halloween >> 1).to_s # => "2000-11-30"
(halloween >> 2).to_s # => "2000-12-31"

leap_year_day = Date.new(1996, 2, 29)
(leap_year_day << 1).to_s # => "1996-01-29"
(leap_year_day >> 1).to_s # => "1996-03-29"
(leap_year_day >> 12).to_s # => "1997-02-28"
(leap_year_day << 12 * 4).to_s # => "1992-02-29"

See Also
• Recipe 3.4, “Iterating Over Dates”

• Recipe 3.6, “Counting the Days Since an Arbitrary Date”

• The RDoc for Rails’ ActiveSupport::CoreExtensions::Numeric::Time module (http://
api.rubyonrails.com/classes/ActiveSupport/CoreExtensions/Numeric/Time.html)

3.6 Counting the Days Since an Arbitrary Date

Problem
You want to see how many days have elapsed since a particular date, or how many
remain until a date in the future.

3.6 Counting the Days Since an Arbitrary Date | 105

Solution
Subtract the earlier date from the later one. If you’re using Time objects, the result will
be a floating-point number of seconds, so divide by the number of seconds in a day:

def last_modified(file)
 t1 = File.stat(file).ctime
 t2 = Time.now
 elapsed = (t2-t1)/(60*60*24)
 puts "#{file} was last modified #{elapsed} days ago."
end

last_modified("/etc/passwd")
/etc/passwd was last modified 125.873605469919 days ago.
last_modified("/home/leonardr/")
/home/leonardr/ was last modified 0.113293513796296 days ago.

If you’re using DateTime objects, the result will be a rational number. You’ll probably
want to convert it to an integer or floating-point number for display:

require 'date'
def advent_calendar(date=DateTime.now)
 christmas = DateTime.new(date.year, 12, 25)
 christmas = DateTime.new(date.year+1, 12, 25) if date > christmas
 difference = (christmas-date).to_i
 if difference == 0
 puts "Today is Christmas."
 else
 puts "Only #{difference} day#{"s" unless difference==1} until Christmas."
 end
end

advent_calendar(DateTime.new(2006, 12, 24))
Only 1 day until Christmas.
advent_calendar(DateTime.new(2006, 12, 25))
Today is Christmas.
advent_calendar(DateTime.new(2006, 12, 26))
Only 364 days until Christmas.

Discussion
Since times are stored internally as numbers, subtracting one from another will give
you a number. Since both numbers measure the same thing (time elapsed since some
“time zero”), that number will actually mean something: it’ll be the number of sec-
onds or days that separate the two times on the timeline.

Of course, this works with other time intervals as well. To display a difference in
hours, for Time objects divide the difference by the number of seconds in an hour
(3,600, or 1.hour if you’re using Rails). For DateTime objects, divide by the number of
days in an hour (that is, multiply the difference by 24):

sent = DateTime.new(2006, 10, 4, 3, 15)
received = DateTime.new(2006, 10, 5, 16, 33)

106 | Chapter 3: Date and Time

elapsed = (received-sent) * 24
puts "You responded to my email #{elapsed.to_f} hours after I sent it."
You responded to my email 37.3 hours after I sent it.

You can even use divmod on a time interval to hack it down into smaller and smaller
pieces. Once when I was in college, I wrote a script that displayed how much time
remained until the finals I should have been studying for. This method gives you a
countdown of the days, hours, minutes, and seconds until some scheduled event:

require 'date'
def remaining(date, event)
 intervals = [["day", 1], ["hour", 24], ["minute", 60], ["second", 60]]
 elapsed = DateTime.now - date
 tense = elapsed > 0 ? "since" : "until"
 interval = 1.0
 parts = intervals.collect do |name, new_interval|
 interval /= new_interval
 number, elapsed = elapsed.abs.divmod(interval)
 "#{number.to_i} #{name}#{"s" unless number == 1}"
 end
 puts "#{parts.join(", ")} #{tense} #{event}."
end

remaining(DateTime.new(2006, 4, 15, 0, 0, 0, DateTime.now.offset),
 "the book deadline")
27 days, 4 hours, 16 minutes, 9 seconds until the book deadline.
remaining(DateTime.new(1999, 4, 23, 8, 0, 0, DateTime.now.offset),
 "the Math 114A final")
2521 days, 11 hours, 43 minutes, 50 seconds since the Math 114A final.

See Also
• Recipe 3.5, “Doing Date Arithmetic”

3.7 Converting Between Time Zones

Problem
You want to change a time object so that it represents the same moment of time in
some other time zone.

Solution
The most common time zone conversions are the conversion of system local time to
UTC, and the conversion of UTC to local time. These conversions are easy for both
Time and DateTime objects.

The Time#gmtime method modifies a Time object in place, converting it to UTC. The
Time#localtime method converts in the opposite direction:

3.7 Converting Between Time Zones | 107

now = Time.now # => Sat Mar 18 20:15:58 EST 2006
now = now.gmtime # => Sun Mar 19 01:15:58 UTC 2006
now = now.localtime # => Sat Mar 18 20:15:58 EST 2006

The DateTime.new_offset method converts a DateTime object from one time zone to
another. You must pass in the dstination time zone’s offset from UTC; to convert local
time to UTC, pass in zero. Since DateTime objects are immutable, this method creates a
new object identical to the old DateTime object, except for the time zone offset:

require 'date'
local = DateTime.now
local.to_s # => "2006-03-18T20:15:58-0500"
utc = local.new_offset(0)
utc.to_s # => "2006-03-19T01:15:58Z"

To convert a UTC DateTime object to local time, you’ll need to call DateTime#new_
offset and pass in the numeric offset for your local time zone. The easiest way to get
this offset is to call offset on a DateTime object known to be in local time. The offset
will usually be a rational number with a denominator of 24:

local = DateTime.now
utc = local.new_offset

local.offset # => Rational(-5, 24)
local_from_utc = utc.new_offset(local.offset)
local_from_utc.to_s # => "2006-03-18T20:15:58-0500"
local == local_from_utc # => true

Discussion
Time objects created with Time.at, Time.local, Time.mktime, Time.new, and Time.now
are created using the current system time zone. Time objects created with Time.gm and
Time.utc are created using the UTC time zone. Time objects can represent any time
zone, but it’s difficult to use a time zone with Time other than local time or UTC.

Suppose you need to convert local time to some time zone other than UTC. If you
know the UTC offset for the destination time zone, you can represent it as a fraction
of a day and pass it into DateTime#new_offset:

#Convert local (Eastern) time to Pacific time
eastern = DateTime.now
eastern.to_s # => "2006-03-18T20:15:58-0500"

pacific_offset = Rational(-7, 24)
pacific = eastern.new_offset(pacific_offset)
pacific.to_s # => "2006-03-18T18:15:58-0700"

DateTime#new_offset can convert between arbitrary time zone offsets, so for time
zone conversions, it’s easiest to use DateTime objects and convert back to Time objects
if necessary. But DateTime objects only understand time zones in terms of numeric
UTC offsets. How can you convert a date and time to UTC when all you know is
that the time zone is called “WET”, “Zulu”, or “Asia/Taskent”?

108 | Chapter 3: Date and Time

On Unix systems, you can temporarily change the “system” time zone for the cur-
rent process. The C library underlying the Time class knows about an enormous
number of time zones (this “zoneinfo” database is usually located in /usr/share/
zoneinfo/, if you want to look at the available time zones). You can tap this knowl-
edge by setting the environment variable TZ to an appropriate value, forcing the Time
class to act as though your computer were in some other time zone. Here’s a method
that uses this trick to convert a Time object to any time zone supported by the under-
lying C library:

class Time
 def convert_zone(to_zone)
 original_zone = ENV["TZ"]
 utc_time = dup.gmtime
 ENV["TZ"] = to_zone
 to_zone_time = utc_time.localtime
 ENV["TZ"] = original_zone
 return to_zone_time
 end
end

Let’s do a number of conversions of a local (Eastern) time to other time zones across
the world:

t = Time.at(1000000000) # => Sat Sep 08 21:46:40 EDT 2001

t.convert_zone("US/Pacific") # => Sat Sep 08 18:46:40 PDT 2001

t.convert_zone("US/Alaska") # => Sat Sep 08 17:46:40 AKDT 2001
t.convert_zone("UTC") # => Sun Sep 09 01:46:40 UTC 2001
t.convert_zone("Turkey") # => Sun Sep 09 04:46:40 EEST 2001

Note that some time zones, like India’s, are half an hour offset from most others:

t.convert_zone("Asia/Calcutta") # => Sun Sep 09 07:16:40 IST 2001

By setting the TZ environment variable before creating a Time object, you can repre-
sent the time in any time zone. The following code converts Lagos time to Singapore
time, regardless of the “real” underlying time zone.

ENV["TZ"] = "Africa/Lagos"
t = Time.at(1000000000) # => Sun Sep 09 02:46:40 WAT 2001
ENV["TZ"] = nil

t.convert_zone("Singapore") # => Sun Sep 09 09:46:40 SGT 2001

Just to prove it's the same time as before:
t.convert_zone("US/Eastern") # => Sat Sep 08 21:46:40 EDT 2001

Since the TZ environment variable is global to a process, you’ll run into problems if
you have multiple threads trying to convert time zones at once.

3.8 Checking Whether Daylight Saving Time Is in Effect | 109

See Also
• Recipe 3.9, “Converting Between Time and DateTime Objects”

• Recipe 3.8, “Checking Whether Daylight Saving Time Is in Effect”

• Information on the “zoneinfo” database (http://www.twinsun.com/tz/tz-link.htm)

3.8 Checking Whether Daylight Saving Time
Is in Effect

Problem
You want to see whether the current time in your locale is normal time or Daylight
Saving/Summer Time.

Solution
Create a Time object and check its isdst method:

Time.local(2006, 1, 1) # => Sun Jan 01 00:00:00 EST 2006
Time.local(2006, 1, 1).isdst # => false
Time.local(2006, 10, 1) # => Sun Oct 01 00:00:00 EDT 2006
Time.local(2006, 10, 1).isdst # => true

Discussion
Time objects representing UTC times will always return false when isdst is called,
because UTC is the same year-round. Other Time objects will consult the daylight
saving time rules for the time locale used to create the Time object. This is usually the
sysem locale on the computer you used to create it: see Recipe 3.7 for information on
changing it. The following code demonstrates some of the rules pertaining to Day-
light Saving Time across the United States:

eastern = Time.local(2006, 10, 1) # => Sun Oct 01 00:00:00 EDT 2006
eastern.isdst # => true

ENV['TZ'] = 'US/Pacific'
pacific = Time.local(2006, 10, 1) # => Sun Oct 01 00:00:00 PDT 2006
pacific.isdst # => true

Except for the Navajo Nation, Arizona doesn't use Daylight Saving Time.
ENV['TZ'] = 'America/Phoenix'
arizona = Time.local(2006, 10, 1) # => Sun Oct 01 00:00:00 MST 2006
arizona.isdst # => false

Finally, restore the original time zone.
ENV['TZ'] = nil

The C library on which Ruby’s Time class is based handles the complex rules for Day-
light Saving Time across the history of a particular time zone or locale. For instance,

110 | Chapter 3: Date and Time

Daylight Saving Time was mandated across the U.S. in 1918, but abandoned in most
locales shortly afterwards. The “zoneinfo” file used by the C library contains this
information, along with many other rules:

Daylight saving first took effect on March 31, 1918.
Time.local(1918, 3, 31).isdst # => false
Time.local(1918, 4, 1).isdst # => true
Time.local(1919, 4, 1).isdst # => true

The federal law was repealed later in 1919, but some places
continued to use Daylight Saving Time.
ENV['TZ'] = 'US/Pacific'
Time.local(1920, 4, 1) # => Thu Apr 01 00:00:00 PST 1920

ENV['TZ'] = nil
Time.local(1920, 4, 1) # => Thu Apr 01 00:00:00 EDT 1920

Daylight Saving Time was reintroduced during the Second World War.
Time.local(1942,2,9) # => Mon Feb 09 00:00:00 EST 1942
Time.local(1942,2,10) # => Tue Feb 10 00:00:00 EWT 1942
EWT stands for "Eastern War Time"

A U.S. law passed in 2005 expands Daylight Saving Time into March and November,
beginning in 2007. Depending on how old your zoneinfo file is, Time objects you create
for dates in 2007 and beyond might or might not reflect the new law.

Time.local(2007, 3, 13) # => Tue Mar 13 00:00:00 EDT 2007
Your computer may incorrectly claim this time is EST.

This illustrates a general point. There’s nothing your elected officials love more than
passing laws, so you shouldn’t rely on isdst to be accurate for any Time objects that
represent times a year or more into the future. When that time actually comes
around, Daylight Saving Time might obey different rules in your locale.

The Date class isn’t based on the C library, and knows nothing about time zones or
locales, so it also knows nothing about Daylight Saving Time.

See Also
• Recipe 3.7, “Converting Between Time Zones”

• Information on the “zoneinfo” database (http://www.twinsun.com/tz/tz-link.htm)

3.9 Converting Between Time and DateTime Objects

Problem
You’re working with both DateTime and Time objects, created from Ruby’s two stan-
dard date/time libraries. You can’t mix these objects in comparisons, iterations, or
date arithmetic because they’re incompatible. You want to convert all the objects
into one form or another so that you can treat them all the same way.

3.9 Converting Between Time and DateTime Objects | 111

Solution
To convert a Time object to a DateTime, you’ll need some code like this:

require 'date'
class Time
 def to_datetime
 # Convert seconds + microseconds into a fractional number of seconds
 seconds = sec + Rational(usec, 10**6)

 # Convert a UTC offset measured in minutes to one measured in a
 # fraction of a day.
 offset = Rational(utc_offset, 60 * 60 * 24)
 DateTime.new(year, month, day, hour, min, seconds, offset)
 end
end

time = Time.gm(2000, 6, 4, 10, 30, 22, 4010)
=> Sun Jun 04 10:30:22 UTC 2000
time.to_datetime.to_s
=> "2000-06-04T10:30:22Z"

Converting a DateTime to a Time is similar; you just need to decide whether you want
the Time object to use local time or GMT. This code adds the conversion method to
Date, the superclass of DateTime, so it will work on both Date and DateTime objects.

class Date
 def to_gm_time
 to_time(new_offset, :gm)
 end

 def to_local_time
 to_time(new_offset(DateTime.now.offset-offset), :local)
 end

 private
 def to_time(dest, method)
 #Convert a fraction of a day to a number of microseconds
 usec = (dest.sec_fraction * 60 * 60 * 24 * (10**6)).to_i
 Time.send(method, dest.year, dest.month, dest.day, dest.hour, dest.min,
 dest.sec, usec)
 end
end

(datetime = DateTime.new(1990, 10, 1, 22, 16, Rational(41,2))).to_s
=> "1990-10-01T22:16:20Z"
datetime.to_gm_time
=> Mon Oct 01 22:16:20 UTC 1990
datetime.to_local_time
=> Mon Oct 01 17:16:20 EDT 1990

112 | Chapter 3: Date and Time

Discussion
Ruby’s two ways of representing dates and times don’t coexist very well. But since
neither can be a total substitute for the other, you’ll probably use them both during
your Ruby career. The conversion methods let you get around incompatibilities by
simply converting one type to the other:

time < datetime
ArgumentError: comparison of Time with DateTime failed
time.to_datetime < datetime
=> false
time < datetime.to_gm_time
=> false

time - datetime
TypeError: can't convert DateTime into Float
(time.to_datetime - datetime).to_f
=> 3533.50973962975 # Measured in days
time - datetime.to_gm_time
=> 305295241.50401 # Measured in seconds

The methods defined above are reversible: you can convert back and forth between
Date and DateTime objects without losing accuracy.

time # => Sun Jun 04 10:30:22 UTC 2000
time.usec # => 4010

time.to_datetime.to_gm_time # => Sun Jun 04 10:30:22 UTC 2000
time.to_datetime.to_gm_time.usec # => 4010

datetime.to_s # => "1990-10-01T22:16:20Z"
datetime.to_gm_time.to_datetime.to_s # => "1990-10-01T22:16:20Z"

Once you can convert between Time and DateTime objects, it’s simple to write code
that normalizes a mixed array, so that all its elements end up being of the same type.
This method tries to turn a mixed array into an array containing only Time objects. If
it encounters a date that won’t fit within the constraints of the Time class, it starts
over and converts the array into an array of DateTime objects instead (thus losing any
information about Daylight Saving Time):

def normalize_time_types(array)
 # Don't do anything if all the objects are already of the same type.
 first_class = array[0].class
 first_class = first_class.super if first_class == DateTime
 return unless array.detect { |x| !x.is_a?(first_class) }

 normalized = array.collect do |t|
 if t.is_a?(Date)
 begin
 t.to_local_time
 rescue ArgumentError # Time out of range; convert to DateTimes instead.
 convert_to = DateTime
 break

3.10 Finding the Day of the Week | 113

 end
 else
 t
 end
 end

 unless normalized
 normalized = array.collect { |t| t.is_a?(Time) ? t.to_datetime : t }
 end
 return normalized
end

When all objects in a mixed array can be represented as either Time or DateTime
objects, this method makes them all Time objects:

mixed_array = [Time.now, DateTime.now]
=> [Sat Mar 18 22:17:10 EST 2006,
#<DateTime: 23556610914534571/9600000000,-5/24,2299161>]
normalize_time_types(mixed_array)
=> [Sat Mar 18 22:17:10 EST 2006, Sun Mar 19 03:17:10 EST 2006]

If one of the DateTime objects can’t be represented as a Time, normalize_time_types
turns all the objects into DateTime instances. This code is run on a system with a 32-
bit time counter:

mixed_array << DateTime.civil(1776, 7, 4)
normalize_time_types(mixed_array).collect { |x| x.to_s }
=> ["2006-03-18T22:17:10-0500", "2006-03-18T22:17:10-0500",
=> "1776-07-04T00:00:00Z"]

See Also
• Recipe 3.1, “Finding Today’s Date”

3.10 Finding the Day of the Week

Problem
You want to find the day of the week for a certain date.

Solution
Use the wday method (supported by both Time and DateTime) to find the day of the
week as a number between 0 and 6. Sunday is day zero.

The following code yields to a code block the date of every Sunday between two
dates. It uses wday to find the first Sunday following the start date (keeping in mind
that the first date may itself be a Sunday). Then it adds seven days at a time to get
subsequent Sundays:

def every_sunday(d1, d2)
 # You can use 1.day instead of 60*60*24 if you're using Rails.

114 | Chapter 3: Date and Time

 one_day = d1.is_a?(Time) ? 60*60*24 : 1
 sunday = d1 + ((7-d1.wday) % 7) * one_day
 while sunday < d2
 yield sunday
 sunday += one_day * 7
 end
end

def print_every_sunday(d1, d2)
 every_sunday(d1, d2) { |sunday| puts sunday.strftime("%x")}
end

print_every_sunday(Time.local(2006, 1, 1), Time.local(2006, 2, 4))
01/01/06
01/08/06
01/15/06
01/22/06
01/29/06

Discussion
The most commonly used parts of a time are its calendar and clock readings: year,
day, hour, and so on. Time and DateTime let you access these, but they also give you
access to a few other aspects of a time: the Julian day of the year (yday), and, more
usefully, the day of the week (wday).

The every_sunday method will accept either two Time objects or two DateTime
objects. The only difference is the number you need to add to an object to increment
it by one day. If you’re only going to be using one kind of object, you can simplify
the code a little.

To get the day of the week as an English string, use the strftime directives %A and %a:

t = Time.local(2006, 1, 1)
t.strftime("%A %A %A!") # => "Sunday Sunday Sunday!"
t.strftime("%a %a %a!") # => "Sun Sun Sun!"

You can find the day of the week and the day of the year, but Ruby has no built-in
method for finding the week of the year (there is a method to find the commercial
week of the year; see Recipe 3.11). If you need such a method, it’s not hard to create
one using the day of the year and the day of the week. This code defines a week
method in a module, which it mixes in to both Date and Time:

require 'date'
module Week
 def week
 (yday + 7 - wday) / 7
 end
end

class Date
 include Week
end

3.11 Handling Commercial Dates | 115

class Time
 include Week
end

saturday = DateTime.new(2005, 1, 1)
saturday.week # => 0
(saturday+1).week # => 1 #Sunday, January 2
(saturday-1).week # => 52 #Friday, December 31

See Also
• Recipe 3.3, “Printing a Date”

• Recipe 3.5, “Doing Date Arithmetic”

• Recipe 3.11, “Handling Commercial Dates”

3.11 Handling Commercial Dates

Problem
When writing a business or financial application, you need to deal with commercial
dates instead of civil or calendar dates.

Solution
DateTime offers some methods for working with commercial dates. Date#cwday gives
the commercial day of the week, Date#cweek gives the commercial week of the year,
and Date#cwyear gives the commercial year.

Consider January 1, 2006. This was the first day of calendar 2006, but since it was a
Sunday, it was the last day of commercial 2005:

require 'date'
sunday = DateTime.new(2006, 1, 1)
sunday.year # => 2006
sunday.cwyear # => 2005
sunday.cweek # => 52
sunday.wday # => 0
sunday.cwday # => 7

Commercial 2006 started on the first weekday in 2006:

monday = sunday + 1
monday.cwyear # => 2006
monday.cweek # => 1

Discussion
Unless you’re writing an application that needs to use commercial dates, you proba-
bly don’t care about this, but it’s kind of interesting (if you think dates are interest-
ing). The commercial week starts on Monday, not Sunday, because Sunday’s part of

116 | Chapter 3: Date and Time

the weekend. DateTime#cwday is just like DateTime#wday, except it gives Sunday a
value of seven instead of zero.

This means that DateTime#cwday has a range from one to seven instead of from zero
to six:

(sunday...sunday+7).each do |d|
 puts "#{d.strftime("%a")} #{d.wday} #{d.cwday}"
end
Sun 0 7
Mon 1 1
Tue 2 2
Wed 3 3
Thu 4 4
Fri 5 5
Sat 6 6

The cweek and cwyear methods have to do with the commercial year, which starts on
the first Monday of a year. Any days before the first Monday are considered part of
the previous commercial year. The example given in the Solution demonstrates this:
January 1, 2006 was a Sunday, so by the commercial reckoning it was part of the last
week of 2005.

See Also
• See Recipe 3.3, “Printing a Date,” for the strftime directives used to print parts

of commercial dates

3.12 Running a Code Block Periodically

Problem
You want to run some Ruby code (such as a call to a shell command) repeatedly at a
certain interval.

Solution
Create a method that runs a code block, then sleeps until it’s time to run the block
again:

def every_n_seconds(n)
 loop do
 before = Time.now
 yield
 interval = n-(Time.now-before)
 sleep(interval) if interval > 0
 end
end

3.12 Running a Code Block Periodically | 117

every_n_seconds(5) do
 puts "At the beep, the time will be #{Time.now.strftime("%X")}... beep!"
end
At the beep, the time will be 12:21:28... beep!
At the beep, the time will be 12:21:33... beep!
At the beep, the time will be 12:21:38... beep!
...

Discussion
There are two main times when you’d want to run some code periodically. The first
is when you actually want something to happen at a particular interval: say you’re
appending your status to a log file every 10 seconds. The other is when you would
prefer for something to happen continuously, but putting it in a tight loop would be
bad for system performance. In this case, you compromise by putting some slack
time in the loop so that your code isn’t always running.

The implementation of every_n_seconds deducts from the sleep time the time spent
running the code block. This ensures that calls to the code block are spaced evenly
apart, as close to the desired interval as possible. If you tell every_n_seconds to call a
code block every five seconds, but the code block takes four seconds to run, every_n_
seconds only sleeps for one second. If the code block takes six seconds to run, every_
n_seconds won’t sleep at all: it’ll come back from a call to the code block, and imme-
diately yield to the block again.

If you always want to sleep for a certain interval, no matter how long the code block
takes to run, you can simplify the code:

def every_n_seconds(n)
 loop do
 yield
 sleep(n)
 end
end

In most cases, you don’t want every_n_seconds to take over the main loop of your
program. Here’s a version of every_n_seconds that spawns a separate thread to run
your task. If your code block stops the loop by with the break keyword, the thread
stops running:

def every_n_seconds(n)
 thread = Thread.new do
 while true
 before = Time.now
 yield
 interval = n-(Time.now-before)
 sleep(interval) if interval > 0
 end
 end
 return thread
end

118 | Chapter 3: Date and Time

In this snippet, I use every_n_seconds to spy on a file, waiting for people to modify it:

def monitor_changes(file, resolution=1)
 last_change = Time.now
 every_n_seconds(resolution) do
 check = File.stat(file).ctime
 if check > last_change
 yield file
 last_change = check
 elsif Time.now - last_change > 60
 puts "Nothing's happened for a minute, I'm bored."
 break
 end
 end
end

That example might give output like this, if someone on the system is working on the
file /tmp/foo:

thread = monitor_changes("/tmp/foo") { |file| puts "Someone changed #{file}!" }
"Someone changed /tmp/foo!"
"Someone changed /tmp/foo!"
"Nothing's happened for a minute; I'm bored."
thread.status # => false

See Also
• Recipe 3.13, “Waiting a Certain Amount of Time”

• Recipe 23.4, “Running Periodic Tasks Without cron or at”

3.13 Waiting a Certain Amount of Time

Problem
You want to pause your program, or a single thread of it, for a specific amount of
time.

Solution
The Kernel#sleep method takes a floating-point number and puts the current thread
to sleep for some (possibly fractional) number of seconds:

3.downto(1) { |i| puts "#{i}..."; sleep(1) }; puts "Go!"
3...
2...
1...
Go!

Time.new # => Sat Mar 18 21:17:58 EST 2006
sleep(10)

3.13 Waiting a Certain Amount of Time | 119

Time.new # => Sat Mar 18 21:18:08 EST 2006
sleep(1)
Time.new # => Sat Mar 18 21:18:09 EST 2006

Sleep for less then a second.
Time.new.usec # => 377185
sleep(0.1)
Time.new.usec # => 479230

Discussion
Timers are often used when a program needs to interact with a source much slower
than a computer’s CPU: a network pipe, or human eyes and hands. Rather than con-
stantly poll for new data, a Ruby program can sleep for a fraction of a second
between each poll, giving other programs on the CPU a chance to run. That’s not
much time by human standards, but sleeping for a fraction of a second at a time can
greatly improve a system’s overall performance.

You can pass any floating-point number to sleep, but that gives an exaggerated pic-
ture of how finely you can control a thread’s sleeping time. For instance, you can’t
sleep for 10-50 seconds, because it’s physically impossible (that’s less than the Planck
time). You can’t sleep for Float::EPSILON seconds, because that’s almost certainly
less than the resolution of your computer’s timer.

You probably can’t even reliably sleep for a microsecond, even though most modern
computer clocks have microsecond precision. By the time your sleep command is
processed by the Ruby interpreter and the thread actually starts waiting for its timer
to go off, some small amount of time has already elapsed. At very small intervals, this
time can be greater than the time you asked Ruby to sleep in the first place.

Here’s a simple benchmark that shows how long sleep on your system will actually
make a thread sleep. It starts with a sleep interval of one second, which is fairly accu-
rate. It then sleeps for shorter and shorter intervals, with lessening accuracy each time:

interval = 1.0
10.times do |x|
 t1 = Time.new
 sleep(interval)
 actual = Time.new - t1

 difference = (actual-interval).abs
 percent_difference = difference / interval * 100
 printf("Expected: %.9f Actual: %.6f Difference: %.6f (%.2f%%)\n",
 interval, actual, difference, percent_difference)

 interval /= 10
end
Expected: 1.000000000 Actual: 0.999420 Difference: 0.000580 (0.06%)
Expected: 0.100000000 Actual: 0.099824 Difference: 0.000176 (0.18%)
Expected: 0.010000000 Actual: 0.009912 Difference: 0.000088 (0.88%)
Expected: 0.001000000 Actual: 0.001026 Difference: 0.000026 (2.60%)

120 | Chapter 3: Date and Time

Expected: 0.000100000 Actual: 0.000913 Difference: 0.000813 (813.00%)
Expected: 0.000010000 Actual: 0.000971 Difference: 0.000961 (9610.00%)
Expected: 0.000001000 Actual: 0.000975 Difference: 0.000974 (97400.00%)
Expected: 0.000000100 Actual: 0.000015 Difference: 0.000015 (14900.00%)
Expected: 0.000000010 Actual: 0.000024 Difference: 0.000024 (239900.00%)
Expected: 0.000000001 Actual: 0.000016 Difference: 0.000016 (1599900.00%)

A small amount of the reported time comes from overhead, caused by creating the
second Time object, but not enough to affect these results. On my system, if I tell
Ruby to sleep for a millisecond, the time spent running the sleep call greatly exceeds
the time I wanted to sleep in the first place! According to this benchmark, the short-
est length of time for which I can expect sleep to accurately sleep is about 1/100 of a
second.

You might think to get better sleep resolution by putting the CPU into a tight loop
with a certain number of repetitions. Apart from the obvious problems (this hurts
system performance, and the same loop will run faster over time since computers are
always getting faster), this isn’t even reliable.

The operating system doesn’t know you’re trying to run a timing loop: it just sees
you using the CPU, and it can interrupt your loop at any time, for any length of time,
to let some other process use the CPU. Unless you’re on an embedded operating sys-
tem where you can control exactly what the CPU does, the only reliable way to wait
for a specific period of time is with sleep.

Waking up early

The sleep method will end early if the thread that calls it has its run method called. If
you want a thread to sleep until another thread wakes it up, use Thread.stop:

alarm = Thread.new(self) { sleep(5); Thread.main.wakeup }
puts "Going to sleep for 1000 seconds at #{Time.new}..."
sleep(10000); puts "Woke up at #{Time.new}!"
Going to sleep for 1000 seconds at Thu Oct 27 14:45:14 PDT 2005...
Woke up at Thu Oct 27 14:45:19 PDT 2005!

alarm = Thread.new(self) { sleep(5); Thread.main.wakeup }
puts "Goodbye, cruel world!";
Thread.stop;
puts "I'm back; how'd that happen?"
Goodbye, cruel world!
I'm back; how'd that happen?

See Also
• Recipe 3.12, “Running a Code Block Periodically”

• Chapter 20

• The Morse Code example in Recipe 21.11, “Making Your Keyboard Lights
Blink,” displays an interesting use of sleep

3.14 Adding a Timeout to a Long-Running Operation | 121

3.14 Adding a Timeout to a Long-Running Operation

Problem
You’re running some code that might take a long time to complete, or might never
complete at all. You want to interrupt the code if it takes too long.

Solution
Use the built-in timeout library. The Timeout.timeout method takes a code block and
a deadline (in seconds). If the code block finishes running in time, it returns true. If
the deadline passes and the code block is still running, Timeout.timeout terminates
the code block and raises an exception.

The following code would never finish running were it not for the timeout call. But
after five seconds, timeout raises a Timeout::Error and execution halts:

This code will sleep forever... OR WILL IT?
require 'timeout'
before = Time.now
begin
 status = Timeout.timeout(5) { sleep }
rescue Timeout::Error
 puts "I only slept for #{Time.now-before} seconds."
end
I only slept for 5.035492 seconds.

Discussion
Sometimes you must make a network connection or take some other action that
might be incredibly slow, or that might never complete at all. With a timeout, you
can impose an upper limit on how long that operation can take. If it fails, you can try
it again later, or forge ahead without the information you were trying to get. Even
when you can’t recover, you can report your failure and gracefully exit the program,
rather than sitting around forever waiting for the operation to complete.

By default, Timeout.timeout raises a Timeout::Error. You can pass in a custom excep-
tion class as the second argument to Timeout.timeout: this saves you from having to
rescue the Timeout:Error just so you can raise some other error that your application
knows how to handle.

If the code block had side effects, they will still be visible after the timeout kills the
code block:

def count_for_five_seconds
 $counter = 0
 begin
 Timeout::timeout(5) { loop { $counter += 1 } }
 rescue Timeout::Error
 puts "I can count to #{$counter} in 5 seconds."

122 | Chapter 3: Date and Time

 end
end

count_for_five_seconds
I can count to 2532825 in 5 seconds.
$counter # => 2532825

This may mean that your dataset is now in an inconsistent state.

See Also
• ri Timeout

• Recipe 3.13, “Waiting a Certain Amount of Time”

• Recipe 14.1, “Grabbing the Contents of a Web Page”

123

Chapter 4 CHAPTER 4

Arrays4

Like all high-level languages, Ruby has built-in support for arrays, objects that con-
tain ordered lists of other objects. You can use arrays (often in conjunction with
hashes) to build and use complex data structures without having to define any cus-
tom classes.

An array in Ruby is an ordered list of elements. Each element is a reference to some
object, the way a Ruby variable is a reference to some object. For convenience,
throughout this book we usually talk about arrays as though the array elements were
the actual objects, not references to the objects. Since Ruby (unlike languages like C)
gives no way of manipulating object references directly, the distinction rarely matters.

The simplest way to create a new array is to put a comma-separated list of object ref-
erences between square brackets. The object references can be predefined variables
(my_var), anonymous objects created on the spot ('my string', 4.7, or MyClass.new),
or expressions (a + b, object.method). A single array can contain references to objects
of many different types:

a1 = [] # => []
a2 = [1, 2, 3] # => [1, 2, 3]
a3 = [1, 2, 3, 'a', 'b', 'c', nil] # => [1, 2, 3, "a", "b", "c", nil]

n1 = 4
n2 = 6
sum_and_difference = [n1, n2, n1+n2, n1-n2]
=> [4, 6, 10, -2]

If your array contains only strings, you may find it simpler to build your array by
enclosing the strings in the w{} syntax, separated by whitespace. This saves you from
having to write all those quotes and comma:

%w{1 2 3} # => ["1", "2", "3"]
%w{The rat sat
 on the mat}
=> ["The", "rat", "sat", "on", "the", "mat"]

124 | Chapter 4: Arrays

The << operator is the simplest way to add a value to an array. Ruby dynamically
resizes arrays as elements are added and removed.

a = [1, 2, 3] # => [1, 2, 3]
a << 4.0 # => [1, 2, 3, 4.0]
a << 'five' # => [1, 2, 3, 4.0, "five"]

An array element can be any object reference, including a reference to another array.
An array can even contain a reference to itself, though this is usually a bad idea, since
it can send your code into infinite loops.

a = [1,2,3] # => [1, 2, 3]
a << [4, 5, 6] # => [1, 2, 3, [4, 5, 6]]
a << a # => [1, 2, 3, [4, 5, 6], [...]]

As in most other programming languages, the elements of an array are numbered
with indexes starting from zero. An array element can be looked up by passing its
index into the array index operator []. The first element of an array can be accessed
with a[0], the second with a[1], and so on.

Negative indexes count from the end of the array: the last element of an array can be
accessed with a[-1], the second-to-last with a[-2], and so on. See Recipe 4.13 for
more ways of using the array indexing operator.

The size of an array is available through the Array#size method. Because the index
numbering starts from zero, the index of the last element of an array is the size of the
array, minus one.

a = [1, 2, 3, [4, 5, 6]]
a.size # => 4
a << a # => [1, 2, 3, [4, 5, 6], [...]]
a.size # => 5

a[0] # => 1
a[3] # => [4, 5, 6]
a[3][0] # => 4
a[3].size # => 3

a[-2] # => [4, 5, 6]
a[-1] # => [1, 2, 3, [4, 5, 6], [...]]
a[a.size-1] # => [1, 2, 3, [4, 5, 6], [...]]

a[-1][-1] # => [1, 2, 3, [4, 5, 6], [...]]
a[-1][-1][-1] # => [1, 2, 3, [4, 5, 6], [...]]

All languages with arrays have constructs for iterating over them (even if it’s just a
for loop). Languages like Java and Python have general iterator methods similar to
Ruby’s, but they’re usually used for iterating over arrays. In Ruby, iterators are the
standard way of traversing all data structures: array iterators are just their simplest
manifestation.

Ruby’s array iterators deserve special study because they’re Ruby’s simplest and
most accessible iterator methods. If you come to Ruby from another language, you’ll

4.1 Iterating Over an Array | 125

probably start off thinking of iterator methods as letting you treat aspects of a data
structure “like an array.” Recipe 4.1 covers the basic array iterator methods, includ-
ing ones in the Enumerable module that you’ll encounter over and over again in differ-
ent contexts.

The Set class, included in Ruby’s standard library, is a useful alternative to the Array
class for many basic algorithms. A Ruby set models a mathematical set: sets are not
ordered, and cannot contain more than one reference to the same object. For more
about sets, see Recipes 4.14 and 4.15.

4.1 Iterating Over an Array

Problem
You want to perform some operation on each item in an array.

Solution
Iterate over the array with Enumerable#each. Put into a block the code you want to
execute for each item in the array.

[1, 2, 3, 4].each { |x| puts x }
1
2
3
4

If you want to produce a new array based on a transformation of some other array,
use Enumerable#collect along with a block that takes one element and transforms it:

[1, 2, 3, 4].collect { |x| x ** 2 } # => [1, 4, 9, 16]

Discussion
Ruby supports for loops and the other iteration constructs found in most modern
programming languages, but its prefered idiom is a code block fed to an method like
each or collect.

Methods like each and collect are called generators or iterators: they iterate over a
data structure, yielding one element at a time to whatever code block you’ve
attached. Once your code block completes, they continue the iteration and yield the
next item in the data structure (according to whatever definition of “next” the gener-
ator supports). These methods are covered in detail in Chapter 7.

In a method like each, the return value of the code block, if any, is ignored. Methods
like collect take a more active role. After they yield an element of a data structure to
a code block, they use the return value in some way. The collect method uses the
return value of its attached block as an element in a new array.

126 | Chapter 4: Arrays

Although commonly used in arrays, the collect method is actually defined in the
Enumerable module, which the Array class includes. Many other Ruby classes (Hash
and Range are just two) include the Enumerable methods; it’s a sort of baseline for
Ruby objects that provide iterators. Though Enumerable does not define the each
method, it must be defined by any class that includes Enumerable, so you’ll see that
method a lot, too. This is covered in Recipe 9.4.

If you need to have the array indexes along with the array elements, use
Enumerable#each_with_index.

['a', 'b', 'c'].each_with_index do |item, index|
 puts "At position #{index}: #{item}"
end
At position 0: a
At position 1: b
At position 2: c

Ruby’s Array class also defines several generators not seen in Enumerable. For
instance, to iterate over a list in reverse order, use the reverse_each method:

[1, 2, 3, 4].reverse_each { |x| puts x }
4
3
2
1

Enumerable#collect has a destructive equivalent: Array#collect!, also known as
Arary#map! (a helpful alias for Python programmers). This method acts just like
collect, but instead of creating a new array to hold the return values of its calls to
the code block, it replaces each item in the old array with the corresponding value
from the code block. This saves memory and time, but it destroys the old array:

array = ['a', 'b', 'c']
array.collect! { |x| x.upcase }
array # => ["A", "B", "C"]
array.map! { |x| x.downcase }
array # => ["a", "b", "c"]

If you need to skip certain elements of an array, you can use the iterator methods
Range#step and Integer#upto instead of Array#each. These methods generate a
sequence of numbers that you can use as successive indexes into an array.

array = ['junk', 'junk', 'junk', 'val1', 'val2']
3.upto(array.length-1) { |i| puts "Value #{array[i]}" }
Value val1
Value val2

array = ['1', 'a', '2', 'b', '3', 'c']
(0..array.length-1).step(2) do |i|
 puts "Letter #{array[i]} is #{array[i+1]}"
end
Letter 1 is a
Letter 2 is b
Letter 3 is c

4.1 Iterating Over an Array | 127

Like most other programming languages, Ruby lets you define for, while, and until
loops—but you shouldn’t need them very often. The for construct is equivalent to
each, whether it’s applied to an array or a range:

for element in ['a', 'b', 'c']
 puts element
end
a
b
c

for element in (1..3)
 puts element
end
1
2
3

The while and until constructs take a boolean expression and execute the loop while
the expression is true (while) or until it becomes true (until). All three of the follow-
ing code snippets generate the same output:

array = ['cherry', 'strawberry', 'orange']

for index in (0...array.length)
 puts "At position #{index}: #{array[index]}"
end

index = 0
while index < array.length
 puts "At position #{index}: #{array[index]}"
 index += 1
end

index = 0
until index == array.length
 puts "At position #{index}: #{array[index]}"
 index += 1
end

At position 0: cherry
At position 1: strawberry
At position 2: orange

These constructs don’t make for very idiomatic Ruby. You should only need to use
them when you’re iterating over a data structure in a way that doesn’t already have an
iterator method (for instance, if you’re traversing a custom tree structure). Even then,
it’s more idiomatic if you only use them to define your own iterator methods.

The following code is a hybrid of each and each_reverse. It switches back and forth
between iterating from the beginning of an array and iterating from its end.

array = [1,2,3,4,5]
new_array = []
front_index = 0

128 | Chapter 4: Arrays

back_index = array.length-1
while front_index <= back_index
 new_array << array[front_index]
 front_index += 1
 if front_index <= back_index
 new_array << array[back_index]
 back_index -= 1
 end
end
new_array # => [1, 5, 2, 4, 3]

That code works, but it becomes reusable when defined as an iterator. Put it into the
Array class, and it becomes a universally accessible way of doing iteration, the col-
league of each and reverse_each:

class Array
 def each_from_both_sides
 front_index = 0
 back_index = self.length-1
 while front_index <= back_index
 yield self[front_index]
 front_index += 1
 if front_index <= back_index
 yield self[back_index]
 back_index -= 1
 end
 end
 end
end

new_array = []
[1,2,3,4,5].each_from_both_sides { |x| new_array << x }
new_array # => [1, 5, 2, 4, 3]

This “burning the candle at both ends” behavior can also be defined as a collect-
type method: one which constructs a new array out of multiple calls to the attached
code block. The implementation below delegates the actual iteration to the each_
from_both_sides method defined above:

class Array
 def collect_from_both_sides
 new_array = []
 each_from_both_sides { |x| new_array << yield(x) }
 return new_array
 end
end

["ham", "eggs", "and"].collect_from_both_sides { |x| x.capitalize }
=> ["Ham", "And", "Eggs"]

See Also
• Chapter 7, especially Recipe 7.5, “Writing an Iterator Over a Data Structure,”

and Recipe 7.9, “Looping Through Multiple Iterables in Parallel”

4.2 Rearranging Values Without Using Temporary Variables | 129

4.2 Rearranging Values Without Using Temporary
Variables

Problem
You want to rearrange a number of variables, or assign the elements of an array to
individual variables.

Solution
Use a single assignment statement. Put the destination variables on the left-hand
side, and line each one up with a variable (or expression) on the right side.

A simple swap:

a = 1
b = 2
a, b = b, a
a # => 2
b # => 1

A more complex rearrangement:

a, b, c = :red, :green, :blue
c, a, b = a, b, c
a # => :green
b # => :blue
c # => :red

You can split out an array into its components:

array = [:red, :green, :blue]
c, a, b = array
a # => :green
b # => :blue
c # => :red

You can even use the splat operator to extract items from the front of the array:

a, b, *c = [12, 14, 178, 89, 90]
a # => 12
b # => 14
c # => [178, 89, 90]

Discussion
Ruby assignment statements are very versatile. When you put a comma-separated list
of variables on the left-hand side of an assignment statement, it’s equivalent to
assigning each variable in the list the corresponding right-hand value. Not only does
this make your code more compact and readable, it frees you from having to keep
track of temporary variables when you swap variables.

130 | Chapter 4: Arrays

Ruby works behind the scenes to allocate temporary storage space for variables that
would otherwise be overwritten, so you don’t have to do it yourself. You don’t have
to write this kind of code in Ruby:

a, b = 1, 2
x = a
a = b
b = x

The right-hand side of the assignment statement can get almost arbitrarily complicated:

a, b = 5, 10
a, b = b/a, a-1 # => [2, 4]

a, b, c = 'A', 'B', 'C'
a, b, c = [a, b], { b => c }, a
a # => ["A", "B"]
b # => {"B"=>"C"}
c # => "A"

If there are more variables on the left side of the equal sign than on the right side, the
extra variables on the left side get assigned nil. This is usually an unwanted side effect.

a, b = 1, 2
a, b = b
a # => 2
b # => nil

One final nugget of code that is interesting enough to mention even though it has no
legitimate use in Ruby: it doesn’t save enough memory to be useful, and it’s slower
than doing a swap with an assignment. It’s possible to swap two integer variables
using bitwise XOR, without using any additional storage space at all (not even
implicitly):

a, b = rand(1000), rand(1000) # => [595, 742]
a = a ^ b # => 181
b = b ^ a # => 595
a = a ^ b # => 742

[a, b] # => [742, 595]

In terms of the cookbook metaphor, this final snippet is a dessert—no nutritional
value, but it sure is tasty.

4.3 Stripping Duplicate Elements from an Array

Problem
You want to strip all duplicate elements from an array, or prevent duplicate ele-
ments from being added in the first place.

4.3 Stripping Duplicate Elements from an Array | 131

Solution
Use Array#uniq to create a new array, based on an existing array but with no dupli-
cate elements. Array#uniq! strips duplicate elements from an existing array.

survey_results = [1, 2, 7, 1, 1, 5, 2, 5, 1]
distinct_answers = survey_results.uniq # => [1, 2, 7, 5]
survey_results.uniq!
survey_results # => [1, 2, 7, 5]

To ensure that duplicate values never get into your list, use a Set instead of an array.
If you try to add a duplicate element to a Set, nothing will happen.

require 'set'
survey_results = [1, 2, 7, 1, 1, 5, 2, 5, 1]
distinct_answers = survey_results.to_set
=> #<Set: {5, 1, 7, 2}>

games = [["Alice", "Bob"], ["Carol", "Ted"],
 ["Alice", "Mallory"], ["Ted", "Bob"]]
players = games.inject(Set.new) { |set, game| game.each { |p| set << p }; set }
=> #<Set: {"Alice", "Mallory", "Ted", "Carol", "Bob"}>

players << "Ted"
=> #<Set: {"Alice", "Mallory", "Ted", "Carol", "Bob"}>

Discussion
The common element between these two solutions is the hash (see Chapter 5).
Array#uniq iterates over an array, using each element as a key in a hash that it always
checks to see if it encountered an element earlier in the iteration. A Set keeps the
same kind of hash from the beginning, and rejects elements already in the hash. You
see something that acts like an array, but it won’t accept duplicates. In either case,
two objects are considered “duplicates” if they have the same result for ==.

The return value of Array#uniq is itself an array, and nothing prevents you from add-
ing duplicate elements to it later on. If you want to start enforcing uniqueness in per-
petuity, you should turn the array into a Set instead of calling uniq. Requiring the set
library will define a new method Enumerable#to_set, which does this.

Array#uniq preserves the original order of the array (that is, the first instance of an
object remains in its original location), but a Set has no order, because its internal
implementation is a hash. To get array-like order in a Set, combine this recipe with
Recipe 5.8 and subclass Set to use an OrderedHash:

class OrderedSet < Set
 def initialize
 @hash ||= OrderedHash.new
 end
end

132 | Chapter 4: Arrays

Needing to strip all instances of a particular value from an array is a problem that
often comes up. Ruby provides Array#delete for this task, and Array#compact for the
special case of removing nil values.

a = [1, 2, nil, 3, 3, nil, nil, nil, 5]
a.compact # => [1, 2, 3, 3, 5]

a.delete(3)
a # => [1, 2, nil, nil, nil, nil, 5]

4.4 Reversing an Array

Problem
Your array is the wrong way around: the last item should be first and the first should
be last.

Solution
Use reverse to create a new array with the items reversed. Internal subarrays will not
themselves be reversed.

[1,2,3].reverse # => [3, 2, 1]
[1,[2,3,4],5].reverse # => [5, [2, 3, 4], 1]

Discussion
Like many operations on basic Ruby types, reverse has a corresponding method,
reverse!, which reverses an array in place:

a = [1,2,3]
a.reverse!
a # => [3, 2, 1]

Don’t reverse an array if you just need to iterate over it backwards. Don’t use a for
loop either; the reverse_each iterator is more idiomatic.

See Also
• Recipe 1.4, “Reversing a String by Words or Characters”

• Recipe 4.1, “Iterating Over an Array,” talks about using Array#reverse_each to
iterate over an array in reverse order

• Recipe 4.2, “Rearranging Values Without Using Temporary Variables”

4.5 Sorting an Array

Problem
You want to sort an array of objects, possibly according to some custom notion of
what “sorting” means.

4.5 Sorting an Array | 133

Solution
Homogeneous arrays of common data types, like strings or numbers, can be sorted
“naturally” by just calling Array#sort:

[5.01, -5, 0, 5].sort # => [-5, 0, 5, 5.01]
["Utahraptor", "Ankylosaur", "Maiasaur"].sort
=> ["Ankylosaur", "Maiasaur", "Utahraptor"]

To sort objects based on one of their data members, or by the results of a method
call, use Array#sort_by. This code sorts an array of arrays by size, regardless of their
contents:

arrays = [[1,2,3], [100], [10,20]]
arrays.sort_by { |x| x.size } # => [[100], [10, 20], [1, 2, 3]]

To do a more general sort, create a code block that compares the relevant aspect of any
two given objects. Pass this block into the sort method of the array you want to sort.

This code sorts an array of numbers in ascending numeric order, except that the
number 42 will always be at the end of the list:

[1, 100, 42, 23, 26, 10000].sort do |x, y|
 x == 42 ? 1 : x <=> y
end
=> [1, 23, 26, 100, 10000, 42]

Discussion
If there is one “canonical” way to sort a particular class of object, then you can have
that class implement the <=> comparison operator. This is how Ruby automatically
knows how to sort numbers in ascending order and strings in ascending ASCII order:
Numeric and String both implement the comparison operator.

The sort_by method sorts an array using a Schwartzian transform (see Recipe 4.6 for
an in-depth discussion). This is the most useful customized sort, because it’s fast and
easy to define. In this example, we use sort_by to sort on any one of an object’s fields.

class Animal
 attr_reader :name, :eyes, :appendages

 def initialize(name, eyes, appendages)
 @name, @eyes, @appendages = name, eyes, appendages
 end

 def inspect
 @name
 end
end

animals = [Animal.new("octopus", 2, 8),
 Animal.new("spider", 6, 8),
 Animal.new("bee", 5, 6),
 Animal.new("elephant", 2, 4),
 Animal.new("crab", 2, 10)]

134 | Chapter 4: Arrays

animals.sort_by { |x| x.eyes }
=> [octopus, elephant, crab, bee, spider]

animals.sort_by { |x| x.appendages }
=> [elephant, bee, octopus, spider, crab]

If you pass a block into sort, Ruby calls the block to make comparisons instead of
using the comparison operator. This is the most general possible sort, and it’s useful
for cases where sort_by won’t work.

The comparison operator and a sort code block both take one argument: an object
against which to compare self. A call to <=> (or a sort code block) should return –1
if self is “less than” the given object (and should therefore show up before it in a
sorted list). It should return 1 if self is “greater than” the given object (and should
show up after it in a sorted list), and 0 if the objects are “equal” (and it doesn’t mat-
ter which one shows up first). You can usually avoid remembering this by delegating
the return value to some other object’s <=> implementation.

See Also
• Recipe 4.6, “Ignoring Case When Sorting Strings,” covers the workings of the

Schwartzian Transform

• Recipe 4.7, “Making Sure a Sorted Array Stays Sorted”

• Recipe 4.10, “Shuffling an Array”

• If you need to find the minimum or maximum item in a list according to some
criteria, don’t sort it just to save writing some code; see Recipe 4.11, “Getting
the N Smallest Items of an Array,” for other options

4.6 Ignoring Case When Sorting Strings

Problem
When you sort a list of strings, the strings beginning with uppercase letters sort
before the strings beginning with lowercase letters.

list = ["Albania", "anteater", "zorilla", "Zaire"]
list.sort
=> ["Albania", "Zaire", "anteater", "zorilla"]

You want an alphabetical sort, regardless of case.

Solution
Use Array#sort_by. This is both the fastest and the shortest solution.

list.sort_by { |x| x.downcase }
=> ["Albania", "anteater", "Zaire", "zorilla"]

4.7 Making Sure a Sorted Array Stays Sorted | 135

Discussion
The Array#sort_by method was introduced in Recipe 4.5, but it’s worth discussing in
detail because it’s so useful. It uses a technique called a Schwartzian Transform. This
common technique is like writing the following Ruby code (but it’s a lot faster,
because it’s implemented in C):

list.collect { |s| [s.downcase, s] }.sort.collect { |subarray| subarray[1] }

It works like this: Ruby creates a new array containing two-element subarrays. Each
subarray contains a value of String#downcase, along with the original string. This
new array is sorted, and then the original strings (now sorted by their values for
String#downcase) are recovered from the subarrays. String#downcase is called only
once for each string.

A sort is the most common occurance of this pattern, but it shows up whenever an
algorithm calls a particular method on the same objects over and over again. If
you’re not sorting, you can’t use Ruby’s internal Schwartzian Transform, but you
can save time by caching, or memoizing, the results of each distinct method call.

If you need to implement a Schwartzian Transform in Ruby, it’s faster to use a hash
than an array:

m = {}
list.sort { |x,y| (m[x] ||= x.downcase) <=> (m[y] ||= y.downcase) }

This technique is especially important if the method you need to call has side effects.
You certainly don’t want to call such methods more than once!

See Also
• The Ruby FAQ, question 9.15

• Recipe 4.5, “Sorting an Array”

4.7 Making Sure a Sorted Array Stays Sorted

Problem
You want to make sure an array stays sorted, even as you replace its elements or add
new elements to it.

Solution
Subclass Array and override the methods that add items to the array. The new imple-
mentations add every new item to a position that maintains the sortedness of the
array.

As you can see below, there are a lot of these methods. If you can guarantee that a
particular method will never be called, you can get away with not overriding it.

136 | Chapter 4: Arrays

class SortedArray < Array

 def initialize(*args, &sort_by)
 @sort_by = sort_by || Proc.new { |x,y| x <=> y }
 super(*args)
 sort! &sort_by
 end

 def insert(i, v)
 # The next line could be further optimized to perform a
 # binary search.
 insert_before = index(find { |x| @sort_by.call(x, v) == 1 })
 super(insert_before ? insert_before : -1, v)
 end

 def <<(v)
 insert(0, v)
 end

 alias push <<
 alias unshift <<

Some methods, like collect!, can modify the items in an array, taking them out of
sort order. Some methods, like flatten!, can add new elements to strange places in
an array. Rather than figuring out a way to implement these methods in a way that
preserves the sortedness of the array, we’ll just let them run and then re-sort the
array.*

 ["collect!", "flatten!", "[]="].each do |method_name|
 module_eval %{
 def #{method_name}(*args)
 super
 sort! &@sort_by
 end
 }
 end

 def reverse!
 #Do nothing; reversing the array would disorder it.
 end
end

A SortedArray created from an unsorted array will end up sorted:

a = SortedArray.new([3,2,1]) # => [1, 2, 3]

Discussion
Many methods of Array are much faster on sorted arrays, so it’s often useful to
expend some overhead on keeping an array sorted over time. Removing items from a

* We can’t use define_method to define these methods because in Ruby 1.8 you can’t use define_method to cre-
ate a method that takes a block argument. See Chapter 10 for more on this.

4.7 Making Sure a Sorted Array Stays Sorted | 137

sorted array won’t unsort it, but adding or modifying items can. Keeping a sorted
array sorted means intercepting and reimplementing every sneaky way of putting
objects into the array.

The SortedArray constructor accepts any code block you can pass into Array#sort,
and keeps the array sorted according to that code block. The default code block uses
the comparison operator (<=>) used by sort.

unsorted= ["b", "aa", "a", "cccc", "1", "zzzzz", "k", "z"]
strings_by_alpha = SortedArray.new(unsorted)
=> ["1", "a", "aa", "b", "cccc", "k", "z", "zzzzz"]
strings_by_length = SortedArray.new(unsorted) do |x,y|
 x.length <=> y.length
end
=> ["b", "z", "a", "k", "1", "aa", "cccc", "zzzzz"]

The methods that add elements to an array specify where in the array they operate:
push operates on the end of the array, and insert operates on a specified spot.
SortedArray responds to these methods but it ignores the caller’s request to put ele-
ments in a certain place. Every new element is inserted into a position that keeps the
array sorted.

a << -1 # => [-1, 1, 2, 3]
a << 1.5 # => [-1, 1, 1.5, 2, 3]
a.push(2.5) # => [-1, 1, 1.5, 2, 2.5, 3]
a.unshift(1.6) # => [-1, 1, 1.5, 1.6, 2, 2.5, 3]

For methods like collect! and array assignment ([]=) that allow complex changes to
an array, the simplest solution is to allow the changes to go through and then re-sort:

a = SortedArray.new([10, 6, 4, -4, 200, 100])
=> [-4, 4, 6, 10, 100, 200]
a.collect! { |x| x * -1 } # => [-200, -100, -10, -6, -4, 4]

a[3] = 25
a # => [-200, -100, -10, -4, 4, 25]
That is, -6 has been replaced by 25 and the array has been re-sorted.

a[1..2] = [6000, 10, 600, 6]
a # => [-200, -4, 4, 6, 10, 25, 600, 6000]
That is, -100 and -10 have been replaced by 6000, 10, 600, and 6,
and the array has been re-sorted.

But with a little more work, we can write a more efficient implementation of array
assignment that gives the same behavior. What happens when you run a command
like a[0] = 10 on a SortedArray? The first element in the SortedArray is replaced by
10, and the SortedArray is re-sorted. This is equivalent to removing the first element
in the array, then adding the value 10 to a place in the array that keeps it sorted.

Array#[]= implements three different types of array assignment, but all three can be
modeled as a series of removals followed by a series of insertions. We can use this
fact to implement a more efficient version of SortedArray#[]=:.

138 | Chapter 4: Arrays

class SortedArray
 def []=(*args)
 if args.size == 3
 #e.g. "a[6,3] = [1,2,3]"
 start, length, value = args
 slice! Range.new(start, start+length, true)
 (value.respond_to? :each) ? value.each { |x| self << x } : self << value
 elsif args.size == 2
 index, value = args
 if index.is_a? Numeric
 #e.g. "a[0] = 10" (the most common form of array assignment)
 delete_at(index)
 self << value
 elsif index.is_a? Range
 #e.g. "a[0..3] = [1,2,3]"
 slice! index
 (value.respond_to? :each) ? value.each { |x| self << x } : self << value
 else
 #Not supported. Delegate to superclass; will probably give an error.
 super
 sort!(&sort_by)
 end
 else
 #Not supported. Delegate to superclass; will probably give an error.
 super
 sort!(&sort_by)
 end
 end
end

Just as before, the sort will be maintained even when you use array assignment to
replace some of a SortedArray’s elements with other objects. But this implementa-
tion doesn’t have to re-sort the array every time.

a = SortedArray.new([1,2,3,4,5,6])
a[0] = 10
a # => [2, 3, 4, 5, 6, 10]

a[0, 2] = [100, 200]
a # => [4, 5, 6, 10, 100, 200]

a[1..2] = [-4, 6]
a # => [-4, 4, 6, 10, 100, 200]

It’s possible to subvert the sortedness of a SortedArray by modifying an object in
place in a way that changes its sort order. Since the SortedArray never hears about
the change to this object, it has no way of updating itself to move that object to its
new sort position:*

* One alternative is to modify SortedArray[] so that when you look up an element of the array, you actually
get a delegate object that intercepts all of the element’s method calls, and re-sorts the array whenever the user
calls a method that modifies the element in place. This is probably overkill.

4.7 Making Sure a Sorted Array Stays Sorted | 139

stripes = SortedArray.new(["aardwolf", "zebrafish"])
stripes[1].upcase!
stripes # => ["aardwolf", "ZEBRAFISH"]
stripes.sort! # => ["ZEBRAFISH", "aardwolf"]

If this bothers you, you can make a SortedArray keep frozen copies of objects instead
of the objects themselves. This solution hurts performance and uses more memory,
but it will also prevent objects from being modified after being put into the
SortedArray. This code adds a convenience method to Object that makes a frozen
copy of the object:

class Object
 def to_frozen
 f = self
 unless frozen?
 begin
 f = dup.freeze
 rescue TypeError
 #This object can't be duped (e.g. Fixnum); fortunately,
 #it usually can't be modified either
 end
 end
 return f
 end
end

The FrozenCopySortedArray stores frozen copies of objects instead of the objects
themselves:

class FrozenCopySortedArray < SortedArray
 def insert(i, v)
 insert_before = index(find { |x| x > v })
 super(insert_before ? insert_before : -1, v.to_frozen)
 end

 ["initialize", "collect!", "flatten!"].each do |method_name|
 define_method(method_name) do
 super
 each_with_index { |x, i| self[i] = x.to_frozen }
 # No need to sort; by doing an assignment to every element
 # in the array, we've made #insert keep the array sorted.
 end
 end
end

stripes = SortedArray.new(["aardwolf", "zebrafish"])
stripes[1].upcase!
TypeError: can't modify frozen string

Unlike a regular array, which can have elements of arbitrarily different data classes,
all the elements of a SortedArray must be mutually comparable. For instance, you
can mix integers and floating-point numbers within a SortedArray, but you can’t mix

140 | Chapter 4: Arrays

integers and strings. Any data set that would cause Array#sort to fail makes an
invalid SortedArray:

[1, "string"].sort
ArgumentError: comparison of Fixnum with String failed

a = SortedArray.new([1])
a << "string"
ArgumentError: comparison of Fixnum with String failed

One other pitfall: operations that create a new object, such as |=, +=, and to_a will
turn an SortedArray into a (possibly unsorted) array.

a = SortedArray.new([3, 2, 1]) # => [1, 2, 3]
a += [1, -10] # => [1, 2, 3, 1, -10]
a.class # => Array

The simplest way to avoid this is to override these methods to transform the result-
ing array back into a SortedArray:

class SortedArray
 def + (other_array)
 SortedArray.new(super)
 end
end

See Also
• Recipe 4.11, “Getting the N Smallest Items of an Array,” uses a SortedArray

• If you’re going to do a lot of insertions and removals, a red-black tree may be
faster than a SortedArray; you can choose from a pure Ruby implementation
(http://www.germane-software.com/software/Utilities/RBTree/) and one that uses
a C extension for speed (http://www.geocities.co.jp/SiliconValley-PaloAlto/3388/
rbtree/README.html)

4.8 Summing the Items of an Array

Problem
You want to add together many objects in an array.

Solution
There are two good ways to accomplish this in Ruby. Plain vanilla iteration is a sim-
ple way to approach the problem:

collection = [1, 2, 3, 4, 5]
sum = 0
collection.each {|i| sum += i}
sum # => 15

4.9 Sorting an Array by Frequency of Appearance | 141

However this is such a common action that Ruby has a special iterator method called
inject, which saves a little code:

collection = [1, 2, 3, 4, 5]
collection.inject(0) {|sum, i| sum + i} # => 15

Discussion
Notice that in the inject solution, we didn’t need to define the variable total vari-
able outside the scope of iteration. Instead, its scope moved into the iteration. In the
example above, the initial value for total is the first argument to inject. We changed
the += to + because the block given to inject is evaluated on each value of the collec-
tion, and the total variable is set to its output every time.

You can think of the inject example as equivalent to the following code:

collection = [1, 2, 3, 4, 5]
sum = 0
sum = sum + 1
sum = sum + 2
sum = sum + 3
sum = sum + 4
sum = sum + 5

Although inject is the preferred way of summing over a collection, inject is gener-
ally a few times slower than each. The speed difference does not grow exponentially,
so you don’t need to always be worrying about it as you write code. But after the
fact, it’s a good idea to look for inject calls in crucial spots that you can change to
use faster iteration methods like each.

Nothing stops you from using other kinds of operators in your inject code blocks.
For example, you could multiply:

collection = [1, 2, 3, 4, 5]
collection.inject(1) {|total, i| total * i} # => 120

Many of the other recipes in this book use inject to build data structures or run cal-
culations on them.

See Also
• Recipe 2.8, “Finding Mean, Median, and Mode”

• Recipe 4.12, “Building Up a Hash Using Injection”

• Recipe 5.12, “Building a Histogram”

4.9 Sorting an Array by Frequency of Appearance

Problem
You want to sort an array so that its least-frequently-appearing items come first.

142 | Chapter 4: Arrays

Solution
Build a histogram of the frequencies of the objects in the array, then use it as a
lookup table in conjunction with the sort_by method.

The following method puts the least frequently-appearing objects first. Objects that
have the same frequency are sorted normally, with the comparison operator.

module Enumerable
 def sort_by_frequency
 histogram = inject(Hash.new(0)) { |hash, x| hash[x] += 1; hash}
 sort_by { |x| [histogram[x], x] }
 end
end

[1,2,3,4,1,2,4,8,1,4,9,16].sort_by_frequency
=> [3, 8, 9, 16, 2, 2, 1, 1, 1, 4, 4, 4]

Discussion
The sort_by_frequency method uses sort_by, a method introduced in Recipe 4.5 and
described in detail in Recipe 4.6. The technique here is a little different from other
uses of sort_by, because it sorts by two different criteria. We want to first compare
the relative frequencies of two items. If the relative frequencies are equal, we want to
compare the items themselves. That way, all the instances of a given item will show
up together in the sorted list.

The block you pass to Enumerable#sort_by can return only a single sort key for each
object, but that sort key can be an array. Ruby compares two arrays by comparing
their corresponding elements, one at a time. As soon as an element of one array is
different from an element of another, the comparison stops, returning the compari-
son of the two different elements. If one of the arrays runs out of elements, the longer
one sorts first. Here are some quick examples:

[1,2] <=> [0,2] # => 1
[1,2] <=> [1,2] # => 0
[1,2] <=> [2,2] # => -1
[1,2] <=> [1,1] # => 1
[1,2] <=> [1,3] # => -1
[1,2] <=> [1] # => 1
[1,2] <=> [3] # => -1
[1,2] <=> [0,1,2] # => 1
[1,2] <=> [] # => 1

In our case, all the arrays contain two elements: the relative frequency of an object in
the array, and the object itself. If two objects have different frequencies, the first ele-
ments of their arrays will differ, and the items will be sorted based on their frequen-
cies. If two items have the same frequency, the first element of each array will be the
same. The comparison method will move on to the second array element, which
means the two objects will be sorted based on their values.

4.10 Shuffling an Array | 143

If you don’t mind elements with the same frequency showing up in an unsorted order,
you can speed up the sort a little by comparing only the histogram frequencies:

module Enumerable
 def sort_by_frequency_faster
 histogram = inject(Hash.new(0)) { |hash, x| hash[x] += 1; hash}
 sort_by { |x| histogram[x] }
 end
end

[1,2,3,4,1,2,4,8,1,4,9,16].sort_by_frequency_faster
=> [16, 8, 3, 9, 2, 2, 4, 1, 1, 4, 4, 1]

To sort the list so that the most-frequently-appearing items show up first, either
invert the result of sort_by_frequency, or multiply the histogram values by –1 when
passing them into sort_by:

module Enumerable
 def sort_by_frequency_descending
 histogram = inject(Hash.new(0)) { |hash, x| hash[x] += 1; hash}
 sort_by { |x| [histogram[x] * -1, x]}
 end
end

[1,2,3,4,1,2,4,8,1,4,9,16].sort_by_frequency_descending
=> [1, 1, 1, 4, 4, 4, 2, 2, 3, 8, 9, 16]

If you want to sort a list by the frequency of its elements, but not have repeated ele-
ments actually show up in the sorted list, you can run the list through Array#uniq after
sorting it. However, since the keys of the histogram are just the distinct elements of the
array, it’s more efficient to sort the keys of the histogram and return those:

module Enumerable
 def sort_distinct_by_frequency
 histogram = inject(Hash.new(0)) { |hash, x| hash[x] += 1; hash }
 histogram.keys.sort_by { |x| [histogram[x], x] }
 end
end

[1,2,3,4,1,2,4,8,1,4,9,16].sort_distinct_by_frequency
=> [3, 8, 9, 16, 2, 1, 4]

See Also
• Recipe 4.5, “Sorting an Array”

• Recipe 5.12, “Building a Histogram”

4.10 Shuffling an Array

Problem
You want to put the elements of an array in random order.

144 | Chapter 4: Arrays

Solution
The simplest way to shuffle an array (in Ruby 1.8 and above) is to sort it randomly:

[1,2,3].sort_by { rand } # => [1, 3, 2]

This is not the fastest way, though.

Discussion
It’s hard to beat a random sort for brevity of code, but it does a lot of extra work.
Like any general sort, a random sort will do about n log n variable swaps. But to
shuffle a list, it suffices to put a randomly selected element in each position of the
list. This can be done with only n variable swaps.

class Array
 def shuffle!
 each_index do |i|
 j = rand(length-i) + i
 self[j], self[i] = self[i], self[j]
 end
 end

 def shuffle
 dup.shuffle!
 end
end

If you’re shuffling a very large list, either Array#shuffle or Array#shuffle! will be sig-
nificantly faster than a random sort. Here’s a real-world example of shuffling using
Array#shuffle:

class Card
 def initialize(suit, rank)
 @suit = suit
 @rank = rank
 end

 def to_s
 "#{@suit} of #{@rank}"
 end
end

class Deck < Array
 attr_reader :cards
 @@suits = %w{Spades Hearts Clubs Diamonds}
 @@ranks = %w{Ace 2 3 4 5 6 7 8 9 10 Jack Queen King}

 def initialize
 @@suits.each { |suit| @@ranks.each { |rank| self << Card.new(rank, suit) } }
 end
end

4.11 Getting the N Smallest Items of an Array | 145

deck = Deck.new
deck.collect { |card| card.to_s }
=> ["Ace of Spades", "2 of Spades", "3 of Spades", "4 of Spades", ...]

deck.shuffle!
deck.collect { |card| card.to_s }
=> ["6 of Clubs", "8 of Diamonds", "2 of Hearts", "5 of Clubs", ...]

See Also
• Recipe 2.5, “Generating Random Numbers”

• The Facets Core library provides implementations of Array#shuffle and
Array#shuffle!

4.11 Getting the N Smallest Items of an Array

Problem
You want to find the smallest few items in an array, or the largest, or the most
extreme according to some other measure.

Solution
If you only need to find the single smallest item according to some measure, use
Enumerable#min. By default, it uses the <=> method to see whether one item is
“smaller” than another, but you can override this by passing in a code block.

[3, 5, 11, 16].min
=> 3
["three", "five", "eleven", "sixteen"].min
=> "eleven"
["three", "five", "eleven", "sixteen"].min { |x,y| x.size <=> y.size }
=> "five"

Similarly, if you need to find the single largest item, use Enumerable#max.

[3, 5, 11, 16].max
=> 16
["three", "five", "eleven", "sixteen"].max
=> "three"
["three", "five", "eleven", "sixteen"].max { |x,y| x.size <=> y.size }
=> "sixteen"

By default, arrays are sorted by their natural order: numbers are sorted by value,
strings by their position in the ASCII collating sequence (basically alphabetical order,
but all lowercase characters precede all uppercase characters). Hence, in the previ-
ous examples, “three” is the largest string, and “eleven” the smallest.

It gets more complicated when you need to get a number of the smallest or largest ele-
ments according to some measurement: say, the top 5 or the bottom 10. The simplest
solution is to sort the list and skim the items you want off of the top or bottom.

146 | Chapter 4: Arrays

l = [1, 60, 21, 100, -5, 20, 60, 22, 85, 91, 4, 66]
sorted = l.sort

#The top 5
sorted[-5...sorted.size]
=> [60, 66, 85, 91, 100]

#The bottom 5
sorted[0...5]
=> [-5, 1, 4, 20, 21]

Despite the simplicity of this technique, it’s inefficient to sort the entire list unless
the number of items you want to extract approaches the size of the list.

Discussion
The min and max methods work by picking the first element of the array as a “cham-
pion,” then iterating over the rest of the list trying to find an element that can beat
the current champion on the appropriate metric. When it finds one, that element
becomes the new champion. An element that can beat the old champion can also
beat any of the other contenders seen up to that point, so one run through the list
suffices to find the maximum or minimum.

The naive solution to finding more than one smallest item is to repeat this process mul-
tiple times. Iterate over the Array once to find the smallest item, then iterate over it
again to find the next-smallest item, and so on. This is naive for the same reason a bub-
ble sort is naive: you’re repeating many of your comparisons more times than neces-
sary. Indeed, if you run this algorithm once for every item in the array (trying to find
the n smallest items in an array of n items), you get a bubble sort.

Sorting the list beforehand is better when you need to find more than a small frac-
tion of the items in the list, but it’s possible to do better. After all, you don’t really
want to sort the whole list: you just want to sort the bottom of the list to find the
smallest items. You don’t care if the other elements are unsorted because you’re not
interested in those elements anyway.

To sort only the smallest elements, you can keep a sorted “stable” of champions, and
kick the largest champion out of the stable whenever you find an element that’s
smaller. If you encounter a number that’s too large to enter the stable, you can ignore
it from that point on. This process rapidly cuts down on the number of elements you
must consider, making this approach faster than doing a sort.

The SortedList class from Recipe 4.7 is useful for this task. The min_n method below
creates a SortedList “stable” that keeps its elements sorted based on the same block
being used to find the minimum. It keeps the stable at a certain size by kicking out
the largest item in the stable whenever a smaller item is found. The max_n method
works similarly, but the comparisons are reversed, and the smallest element in the
stable is kicked out when a larger element is found.

4.12 Building Up a Hash Using Injection | 147

module Enumerable
 def min_n(n, &block)
 block = Proc.new { |x,y| x <=> y } if block == nil
 stable = SortedArray.new(&block)
 each do |x|
 stable << x if stable.size < n or block.call(x, stable[-1]) == -1
 stable.pop until stable.size <= n
 end
 return stable
 end

 def max_n(n, &block)
 block = Proc.new { |x,y| x <=> y } if block == nil
 stable = SortedArray.new(&block)
 each do |x|
 stable << x if stable.size < n or block.call(x, stable[0]) == 1
 stable.shift until stable.size <= n
 end
 return stable
 end
end

l = [1, 60, 21, 100, -5, 20, 60, 22, 85, 91, 4, 66]
l.max_n(5)
=> [60, 66, 85, 91, 100]
l.min_n(5)
=> [-5, 1, 4, 20, 21]

l.min_n(5) { |x,y| x.abs <=> y.abs }
=> [1, 4, -5, 20, 21]

See Also
• Recipe 4.7, “Making Sure a Sorted Array Stays Sorted”

4.12 Building Up a Hash Using Injection

Problem
You want to create a hash from the values in an array.

Solution
As seen in Recipe 4.8, the most straightforward way to solve this kind of problem is
to use Enumerable#inject. The inject method takes one parameter (the object to
build up, in this case a hash), and a block specifying the action to take on each item.
The block takes two parameters: the object being built up (the hash), and one of the
items from the array.

148 | Chapter 4: Arrays

Here’s a straightforward use of inject to build a hash out of an array of key-value
pairs:

collection = [[1, 'one'], [2, 'two'], [3, 'three'],
 [4, 'four'], [5, 'five']
]
collection.inject({}) do |hash, value|
 hash[value.first] = value.last
 hash
end
=> {5=>"five", 1=>"one", 2=>"two", 3=>"three", 4=>"four"}

Discussion
Why is there that somewhat incongrous expression hash at the end of the inject
block above? Because the next time it calls the block, inject uses the value it got
from the block the last time it called the block. When you’re using inject to build a
data structure, the last line of code in the block should evaluate to the object you’re
building up: in this case, our hash.

This is probably the most common inject-related gotcha. Here’s some code that
doesn’t work:

collection.dup.inject({}) { |hash, value| hash[value.first] = value.last }
IndexError: index 3 out of string

Why doesn’t this work? Because hash assignment returns the assigned value, not the
hash.

Hash.new["key"] = "some value" # => "some value"

In the broken example above, when inject calls the code block for the second and
subsequent times, it does not pass the hash as the code block’s first argument. It
passes in the last value to be assigned to the hash. In this case, that’s a string (maybe
“one” or “four”). The hash has been lost forever, and the inject block crashes when
it tries to treat a string as a hash.

Hash#update can be used like hash assignment, except it returns the hash instead of
the assigned value (and it’s slower). So this code will work:

collection.inject({}) do |hash, value|
 hash.update value.first => value.last
end
=> {5=>"five", 1=>"ontwo", 2=>"two", 3=>"three", 4=>"four"}

Ryan Carver came up with a more sophisticated way of building a hash out of an
array: define a general method for all arrays called to_h.

class Array
 def to_h(default=nil)
 Hash[*inject([]) { |a, value| a.push value, default || yield(value) }]
 end
end

4.13 Extracting Portions of Arrays | 149

The magic of this method is that you can provide a code block to customize how
keys in the array are mapped to values.

a = [1, 2, 3]

a.to_h(true)
=> {1=>true, 2=>true, 3=>true}

a.to_h { |value| [value * -1, value * 2] }
=> {1=>[-1, 2], 2=>[-2, 4], 3=>[-3, 6]}

References
• Recipe 5.3, “Adding Elements to a Hash”

• Recipe 5.12, “Building a Histogram”

• The original definition of Array#to_h: (http://fivesevensix.com/posts/2005/05/20/
array-to_h)

4.13 Extracting Portions of Arrays

Problem
Given an array, you want to retrieve the elements of the array that occupy certain
positions or have certain properties. You might to do this in a way that removes the
matching elements from the original array.

Solution
To gather a chunk of an array without modifying it, use the array retrieval operator
Array#[], or its alias Array#slice.

The array retrieval operator has three forms, which are the same as the corresponding
forms for substring accesses. The simplest and most common form is array[index]. It
takes a number as input, treats it as an index into the array, and returns the element at
that index. If the input is negative, it counts from the end of the array. If the array is
smaller than the index, it returns nil. If performance is a big consideration for you,
Array#at will do the same thing, and it’s a little faster than Array#[]:

a = ("a".."h").to_a # => ["a", "b", "c", "d", "e", "f", "g", "h"]

a[0] # => "a"
a[1] # => "b"

a.at(1) # => "b"
a.slice(1) # => "b"
a[-1] # => "h"
a[-2] # => "g"
a[1000] # => nil
a[-1000] # => nil

150 | Chapter 4: Arrays

The second form is array[range]. This form retrieves every element identified by an
index in the given range, and returns those elements as a new array.

A range in which both numbers are negative will retrieve elements counting from the
end of the array. You can mix positive and negative indices where that makes sense:

a[2..5] # => ["c", "d", "e", "f"]
a[2...5] # => ["c", "d", "e"]
a[0..0] # => ["a"]
a[1..-4] # => ["b", "c", "d", "e"]
a[5..1000] # => ["f", "g", "h"]

a[2..0] # => []
a[0...0] # => []

a[-3..2] # => []

The third form is array[start_index, length]. This is equivalent to array[range.
new(start_index...start_index+length)].

a[2, 4] # => ["c", "d", "e", "f"]
a[2, 3] # => ["c", "d", "e"]
a[0, 1] # => ["a"]
a[1, 2] # => ["b", "c"]
a[-4, 2] # => ["e", "f"]
a[5, 1000] # => ["f", "g", "h"]

To remove a slice from the array, use Array#slice!. This method takes the same
arguments and returns the same results as Array#slice, but as a side effect, the
objects it retrieves are removed from the array.

a.slice!(2..5) # => ["c", "d", "e", "f"]
a # => ["a", "b", "g", "h"]

a.slice!(0) # => "a"
a # => ["b", "g", "h"]

a.slice!(1,2) # => ["g", "h"]
a # => ["b"]

Discussion
The Array methods [], slice, and slice! work well if you need to extract one partic-
ular elements, or a set of adjacent elements. There are two other main possibilities:
you might need to retrieve the elements at an arbitrary set of indexes, or (a catch-all)
you might need to retrieve all elements with a certain property that can be deter-
mined with a code block.

To nondestructively gather the elements at particular indexes in an array, pass in any
number of indices to Array#values_at. Results will be returned in a new array, in the
same order they were requested.

a = ("a".."h").to_a # => ["a", "b", "c", "d", "e", "f", "g", "h"]
a.values_at(0) # => ["a"]

4.13 Extracting Portions of Arrays | 151

a.values_at(1, 0, -2) # => ["b", "a", "g"]
a.values_at(4, 6, 6, 7, 4, 0, 3)# => ["e", "g", "g", "h", "e", "a", "d"]

Enumerable#find_all finds all elements in an array (or other class with Enumerable
mixed in) for which the specified code block returns true. Enumerable#reject will
find all elements for which the specified code block returns false.

a.find_all { |x| x < "e" } # => ["a", "b", "c", "d"]
a.reject { |x| x < "e" } # => ["e", "f", "g", "h"]

To find all elements in an array that match a regular expression, you can use
Enumerable#grep instead of defining a block that does the regular expression match:

a.grep /[aeiou]/ # => ["a", "e"]
a.grep /[^g]/ # => ["a", "b", "c", "d", "e", "f", "h"]

It’s a little tricky to implement a destructive version of Array#values_at, because
removing one element from an array changes the indexes of all subsequent elements.
We can let Ruby do the work, though, by replacing each element we want to remove
with a dummy object that we know cannot already be present in the array. We can
then use the C-backed method Array#delete to remove all instances of the dummy
object from the array. This is much faster than using Array#slice! to remove ele-
ments one at a time, because each call to Array#slice! forces Ruby to rearrange the
array to be contiguous.

If you know that your array contains no nil values, you can set your undesired val-
ues to nil, then use use Array#compress! to remove them. The solution below is more
general.

class Array
 def strip_values_at!(*args)
 #For each mentioned index, replace its value with a dummy object.
 values = []
 dummy = Object.new
 args.each do |i|
 if i < size
 values << self[i]
 self[i] = dummy
 end
 #Strip out the dummy object.
 delete(dummy)
 return values
 end
 end
end

a = ("a".."h").to_a
a.strip_values_at!(1, 0, -2) # => ["b", "a", "g"]
a # => ["c", "d", "e", "f", "h"]

a.strip_values_at!(1000) # => []
a # => ["c", "d", "e", "f", "h"]

152 | Chapter 4: Arrays

Array#reject! removes all items from an array that match a code block, but it
doesn’t return the removed items, so it won’t do for a destructive equivalent of
Enumerable#find_all. This implementation of a method called extract! picks up
where Array#reject! leaves off:

class Array
 def extract!
 ary = self.dup
 self.reject! { |x| yield x }
 ary - self
 end
end

a = ("a".."h").to_a
a.extract! { |x| x < "e" && x != "b" } # => ["a", "c", "d"]
a # => ["b", "e", "f", "g", "h"]

Finally, a convenience method called grep_extract! provides a method that destruc-
tively approximates the behavior of Enumerable#grep.

class Array
 def grep_extract!(re)
 extract! { |x| re.match(x) }
 end
end

a = ("a".."h").to_a
a.grep_extract!(/[aeiou]/) # => ["a", "e"]
a # => ["b", "c", "d", "f", "g", "h"]

See Also
• Strings support the array lookup operator, slice, slice!, and all the methods of

Enumerable, so you can treat them like arrays in many respects; see Recipe 1.13,
“Getting the Parts of a String You Want”

4.14 Computing Set Operations on Arrays

Problem
You want to find the union, intersection, difference, or Cartesian product of two
arrays, or the complement of a single array with respect to some universe.

Solution
Array objects have overloaded arithmetic and logical operators to provide the three
simplest set operations:

#Union
[1,2,3] | [1,4,5] # => [1, 2, 3, 4, 5]

4.14 Computing Set Operations on Arrays | 153

#Intersection
[1,2,3] & [1,4,5] # => [1]

#Difference
[1,2,3] - [1,4,5] # => [2, 3]

Set objects overload the same operators, as well as the exclusive-or operator (^). If
you already have Arrays, though, it’s more efficient to deconstruct the XOR opera-
tion into its three component operations.

require 'set'
a = [1,2,3]
b = [3,4,5]
a.to_set ^ b.to_set # => #<Set: {5, 1, 2, 4}>
(a | b) - (a & b) # => [1, 2, 4, 5]

Discussion
Set objects are intended to model mathematical sets: where arrays are ordered and
can contain duplicate entries, Sets model an unordered collection of unique items.
Set not only overrides operators for set operations, it provides English-language
aliases for the three most common operators: Set#union, Set#intersection, and
Set#difference. An array can only perform a set operation on another array, but a
Set can perform a set operation on any Enumerable.

array = [1,2,3]
set = [3,4,5].to_s
array & set # => TypeError: can't convert Set into Array
set & array # => #<Set: {3}>

You might think that Set objects would be optimized for set operations, but they’re
actually optimized for constant-time membership checks (internally, a Set is based on a
hash). Set union is faster when the left-hand object is a Set object, but intersection and
difference are significantly faster when both objects are arrays. It’s not worth it to con-
vert arrays into Sets just so you can say you performed set operations on Set objects.

The union and intersection set operations remove duplicate entries from arrays. The
difference operation does not remove duplicate entries from an array except as part
of a subtraction.

[3,3] & [3,3] # => [3]
[3,3] | [3,3] # => [3]
[1,2,3,3] - [1] # => [2, 3, 3]
[1,2,3,3] - [3] # => [1, 2]
[1,2,3,3] - [2,2,3] # => [1]

Complement

If you want the complement of an array with respect to some small universe, create
that universe and use the difference operation:

u = [:red, :orange, :yellow, :green, :blue, :indigo, :violet]
a = [:red, :blue]
u - a # => [:orange, :yellow, :green, :indigo, :violet]

154 | Chapter 4: Arrays

More often, the relevant universe is infinite (the set of natural numbers) or extremely
large (the set of three-letter strings). The best strategy here is to define a generator
and use it to iterate through the complement. Be sure to break when you’re done;
you don’t want to iterate over an infinite set.

def natural_numbers_except(exclude)
 exclude_map = {}
 exclude.each { |x| exclude_map[x] = true }
 x = 1
 while true
 yield x unless exclude_map[x]
 x = x.succ
 end
end

natural_numbers_except([2,3,6,7]) do |x|
 break if x > 10
 puts x
end
1
4
5
8
9
10

Cartesian product

To get the Cartesian product of two arrays, write a nested iteration over both lists
and append each pair of items to a new array. This code is attached to Enumerable so
you can also use it with Sets or any other Enumerable.

module Enumberable
 def cartesian(other)
 res = []
 each { |x| other.each { |y| res << [x, y] } }
 return res
 end
end

[1,2,3].cartesian(["a",5,6])
=> [[1, "a"], [1, 5], [1, 6],
[2, "a"], [2, 5], [2, 6],
[3, "a"], [3, 5], [3, 6]

This version uses Enumerable#inject to make the code more concise; however, the
original version is more efficient.

module Enumerable
 def cartesian(other)
 inject([]) { |res, x| other.inject(res) { |res, y| res << [x,y] } }
 end
end

4.15 Partitioning or Classifying a Set | 155

See Also
• See Recipe 2.5, “Generating Random Numbers,” for an example (constructing a

deck of cards from suits and ranks) that could benefit from a function to calcu-
late the Cartesian product

• Recipe 2.10, “Multiplying Matrices”

4.15 Partitioning or Classifying a Set

Problem
You want to partition a Set or array based on some attribute of its elements. All ele-
ments that go “together” in some code-specific sense should be grouped together in
distinct data structures. For instance, if you’re partitioning by color, all the green
objects in a Set should be grouped together, separate from the group of all the red
objects in the Set.

Solution
Use Set#divide, passing in a code block that returns the partition of the object it’s
passed. The result will be a new Set containing a number of partitioned subsets of
your original Set.

The code block can accept either a single argument or two arguments.* The single-
argument version examines each object to see which subset it should go into.

require 'set'
s = Set.new((1..10).collect)
=> #<Set: {5, 6, 1, 7, 2, 8, 3, 9, 4, 10}>

Divide the set into the "true" subset and the "false" subset: that
is, the "less than 5" subset and the "not less than 5" subset.
s.divide { |x| x < 5 }
=> #<Set: {#<Set: {5, 6, 7, 8, 9, 10}>, #<Set: {1, 2, 3, 4}>}>

Divide the set into the "0" subset and the "1" subset: that is, the
"even" subset and the "odd" subset.
s.divide { |x| x % 2 }
=> #<Set: {#<Set: {6, 2, 8, 4, 10}>, #<Set: {5, 1, 7, 3, 9}>}>

s = Set.new([1, 2, 3, 'a', 'b', 'c', -1.0, -2.0, -3.0])
Divide the set into the "String subset, the "Fixnum" subset, and the
"Float" subset.
s.divide { |x| x.class }
=> #<Set: {#<Set: {"a", "b", "c"}>,

* This is analogous to the one-argument code block passed into Enumerable#sort_by and the two-argument
code block passed into Array#sort.

156 | Chapter 4: Arrays

=> #<Set: {1, 2, 3}>,
=> #<Set: {-1.0, -3.0, -2.0}>}>

For the two-argument code block version of Set#divide, the code block should return
true if both the arguments it has been passed should be put into the same subset.

s = [1, 2, 3, -1, -2, -4].to_set

Divide the set into sets of numbers with the same absolute value.
s.divide { |x,y| x.abs == y.abs }
=> #<Set: {#<Set: {-1, 1}>,
=> #<Set: {2, -2}>,
=> #<Set: {-4}>,
=> #<Set: {3}>}>

Divide the set into sets of adjacent numbers
s.divide { |x,y| (x-y).abs == 1 }
=> #<Set: {#<Set: {1, 2, 3}>,
=> #<Set: {-1}>,
=> #<Set: {-4, -3}>}>

If you want to classify the subsets by the values they have in common, use
Set#classify instead of Set#divide. It works like Set#divide, but it returns a hash
that maps the names of the subsets to the subsets themselves.

s.classify { |x| x.class }
=> {String=>#<Set: {"a", "b", "c"}>,
=> Fixnum=>#<Set: {1, 2, 3}>,
=> Float=>#<Set: {-1.0, -3.0, -2.0}>}

Discussion
The version of Set#divide that takes a two-argument code block uses the tsort
library to turn the Set into a directed graph. The nodes in the graph are the items in
the Set. Two nodes x and y in the graph are connected with a vertex (one-way arrow)
if the code block returns true when passed |x,y|. For the Set and the two-argument
code block given in the example above, the graph looks like Figure 4-1.

The Set partitions returned by Set#divide are the strongly connected components of this
graph, obtained by iterating over TSort#each_strongly_connected_component. A strongly
connected component is a set of nodes such that, starting from any node in the compo-
nent, you can follow the one-way arrows and get to any other node in the component.

Figure 4-1. The set {1, 2, 3, -1, -2, -4} graphed according to the code block that checks adjacency

2 1 –4

3 –1 –2

4.15 Partitioning or Classifying a Set | 157

Visually speaking, the strongly connected components are the “clumps” in the
graph. 1 and 3 are in the same strongly connected component as 2, because starting
from 3 you can follow one-way arrows through 2 and get to 1. Starting from 1, you
can follow one-way arrows through 2 and get to 3. This makes 1, 2, and 3 part of the
same Set partition, even though there are no direct connections between 1 and 3.

In most real-world scenarios (including all the examples above), the one-way arrows
will be symmetrical: if the code returns true for |x,y|, it will also return true for
|y,x|. Set#divide will work even if this isn’t true. Consider a Set and a divide code
block like the following:

connections = { 1 => 2, 2 => 3, 3 => 1, 4 => 1 }
[1,2,3,4].to_set.divide { |x,y| connections[x] == y }
=> #<Set: {#<Set: {1, 2, 3}>, #<Set: {4}>}>

The corresponding graph looks like Figure 4-2.

You can get to any other node from 4 by following one-way arrows, but you can’t get
to 4 from any of the other nodes. This puts 4 is in a strongly connected compo-
nent—and a Set partition—all by itself. 1, 2, and 3 form a second strongly con-
nected component—and a second Set partition—because you can get from any of
them to any of them by following one-way arrows.

Implementation for arrays

If you’re starting with an array instead of a Set, it’s easy to simulate Set#classify
(and the single-argument block form of Set#divide) with a hash. In fact, the code
below is almost identical to the current Ruby implementation of Set#classify.

class Array
 def classify
 require 'set'
 h = {}
 each do |i|
 x = yield(i)
 (h[x] ||= self.class.new) << i
 end
 h
 end

Figure 4-2. The set {1,2,3,4} graphed according to the connection hash

2 1

3 4

158 | Chapter 4: Arrays

 def divide(&block)
 Set.new(classify(&block).values)
 end
end

[1,1,2,6,6,7,101].divide { |x| x % 2 }
=> #<Set: {[2, 6, 6], [1, 1, 7, 101]}>

There’s no simple way to implement a version of Array#divide that takes a two-
argument block. The TSort class is Set-like, in that it won’t create two different
nodes for the same object. The simplest solution is to convert the array into a Set to
remove any duplicate values, divide the Set normally, then convert the partitioned
subsets into arrays, adding back the duplicate values as you go:

class Array
 def divide(&block)
 if block.arity == 2
 counts = inject({}) { |h, x| h[x] ||= 0; h[x] += 1; h}
 to_set.divide(&block).inject([]) do |divided, set|
 divided << set.inject([]) do |partition, e|
 counts[e].times { partition << e }
 partition
 end
 end
 else
 Set.new(classify(&block).values)
 end
 end
end

[1,1,2,6,6,7,101].divide { |x,y| (x-y).abs == 1 }
=> [[101], [1, 1, 2], [6, 6, 7]]

Is it worth it? You decide.

159

Chapter 5 CHAPTER 5

Hashes5

Hashes and arrays are the two basic “aggregate” data types supported by most mod-
ern programming lagnguages. The basic interface of a hash is similar to that of an
array. The difference is that while an array stores items according to a numeric index,
the index of a hash can be any object at all.

Arrays and strings have been built into programming languages for decades, but
built-in hashes are a relatively recent development. Now that they’re around, it’s
hard to live without them: they’re at least as useful as arrays.

You can create a Hash by calling Hash.new or by using one of the special sytaxes Hash[]
or {}. With the Hash[] syntax, you pass in the initial elements as comma-separated
object references. With the {} syntax, you pass in the initial contents as comma-
separated key-value pairs.

empty = Hash.new # => {}
empty = {} # => {}
numbers = { 'two' => 2, 'eight' => 8} # => {"two"=>2, "eight"=>8}
numbers = Hash['two', 2, 'eight', 8] # => {"two"=>2, "eight"=>8}

Once the hash is created, you can do hash lookups and element assignments using
the same syntax you would use to view and modify array elements:

numbers["two"] # => 2
numbers["ten"] = 10 # => 10
numbers # => {"two"=>2, "eight"=>8, "ten"=>10}

You can get an array containing the keys or values of a hash with Hash#keys or
Hash#values. You can get the entire hash as an array with Hash#to_a:

numbers.keys # => ["two", "eight", "ten"]
numbers.values # => [2, 8, 10]
numbers.to_a # => [["two", 2], ["eight", 8], ["ten", 10]]

Like an array, a hash contains references to objects, not copies of them. Modifica-
tions to the original objects will affect all references to them:

motto = "Don't tread on me"
flag = { :motto => motto,

160 | Chapter 5: Hashes

 :picture => "rattlesnake.png"}
motto.upcase!
flag[:motto] # => "DON'T TREAD ON ME"

The defining feature of an array is its ordering. Each element of an array is assigned a
Fixnum object as its key. The keys start from zero and there can never be gaps. In con-
trast, a hash has no natural ordering, since its keys can be any objects at all. This fea-
ture make hashes useful for storing lightly structured data or key-value pairs.

Consider some simple data for a person in an address book. For a side-by-side com-
parison I’ll represent identical data as an array, then as a hash:

a = ["Maury", "Momento", "123 Elm St.", "West Covina", "CA"]
h = { :first_name => "Maury",
 :last_name => "Momento",
 :address => "123 Elm St."
 :city => "West Covina",
 :state => "CA" }

The array version is more concise, and if you know the numeric index, you can
retrieve any element from it in constant time. The problem is knowing the index, and
knowing what it means. Other than inspecting the records, there’s no way to know
whether the element at index 1 is a last name or a first name. Worse, if the array for-
mat changes to add an apartment number between the street address and city, all
code that uses a[3] or a[4] will need to have its index changed.

The hash version doesn’t have these problems. The last name will always be at :last_
name, and it’s easy (for a human, anyway) to know what :last_name means. Most of
the time, hash lookups take no longer than array lookups.

The main advantage of a hash is that it’s often easier to find what you’re looking for.
Checking whether an array contains a certain value might require scanning the entire
array. To see whether a hash contains a value for a certain key, you only need to look
up that key. The set library (as seen in the previous chapter) exploits this behavior to
implement a class that looks like an array, but has the performance characteristics of
a hash.

The downside of using a hash is that since it has no natural ordering, it can’t be
sorted except by turning it into an array first. There’s also no guarantee of order
when you iterate over a hash. Here’s a contrasting case, in which an array is obvi-
ously the right choice:

a = [1, 4, 9, 16]
h = { :one_squared => 1, two_squared => 4, three_squared => 9,
 :four_squared => 16 }

In this case, there’s a numeric order to the entries, and giving them additional labels
distracts more than it helps.

A hash in Ruby is actually implemented as an array. When you look up a key in a
hash (either to see what’s associated with that key, or to associate a value with the

5.1 Using Symbols as Hash Keys | 161

key), Ruby calculates the hash code of the key by calling its hash method. The result
is used as a numeric index in the array. Recipe 5.5 will help you with the most com-
mon problem related to hash codes.

The performance of a hash depends a lot on the fact that it’s very rare for two objects
to have the same hash code. If all objects in a hash had the same hash code, a hash
would be much slower than an array. Code like this would be a very bad idea:

class BadIdea
 def hash
 100
 end
end

Except for strings and other built-in objects, most objects have a hash code equiva-
lent to their internal object ID. As seen above, you can override Object#hash to
change this, but the only time you should need to do this is if your class also over-
rides Object#==. If two objects are considered equal, they should also have the same
hash code; otherwise, they will behave strangely when you put them into hashes.
Code like the fragment below is a very good idea:

class StringHolder
 attr_reader :string
 def initialize(s)
 @string = s
 end

 def ==(other)
 @string == other.string
 end

 def hash
 @string.hash
 end
end
a = StringHolder.new("The same string.")
b = StringHolder.new("The same string.")
a == b # => true
a.hash # => -1007666862
b.hash # => -1007666862

5.1 Using Symbols as Hash Keys
Credit: Ben Giddings

Problem
When using a hash, you want the slight optimization you can get by using symbols
as keys instead of strings.

162 | Chapter 5: Hashes

Solution
Whenever you would otherwise use a quoted string, use a symbol instead. A symbol
can be created by either using a colon in front of a word, like :keyname, or by trans-
forming a string to a symbol using String#intern.

people = Hash.new
people[:nickname] = 'Matz'
people[:language] = 'Japanese'
people['last name'.intern] = 'Matsumoto'
people[:nickname] # => "Matz"
people['nickname'.intern] # => "Matz"

Discussion
While 'name' and 'name' appear exactly identical, they’re actually different. Each
time you create a quoted string in Ruby, you create a unique object. You can see this
by looking at the object_id method.

'name'.object_id # => -605973716
'name'.object_id # => -605976356
'name'.object_id # => -605978996

By comparison, each instance of a symbol refers to a single object.

:name.object_id # => 878862
:name.object_id # => 878862
'name'.intern.object_id # => 878862
'name'.intern.object_id # => 878862

Using symbols instead of strings saves memory and time. It saves memory because
there’s only one symbol instance, instead of many string instances. If you have many
hashes that contain the same keys, the memory savings adds up.

Using symbols as hash keys is faster because the hash value of a symbol is simply its
object ID. If you use strings in a hash, Ruby must calculate the hash value of a string
each time it’s used as a hash key.

See Also
• Recipe 1.7, “Converting Between Strings and Symbols”

5.2 Creating a Hash with a Default Value
Credit: Ben Giddings

Problem
You’re using a hash, and you don’t want to get nil as a value when you look up a
key that isn’t present in the hash. You want to get some more convenient value
instead, possibly one calculated dynamically.

5.2 Creating a Hash with a Default Value | 163

Solution
A normal hash has a default value of nil:

h = Hash.new
h[1] # => nil
h['do you have this string?'] # => nil

There are two ways of creating default values for hashes. If you want the default value
to be the same object for every hash key, pass that value into the Hash constructor.

h = Hash.new("nope")
h[1] # => "nope"
h['do you have this string?'] # => "nope"

If you want the default value for a missing key to depend on the key or the current
state of the hash, pass a code block into the hash constructor. The block will be
called each time someone requests a missing key.

h = Hash.new { |hash, key| (key.respond_to? :to_str) ? "nope" : nil }
h[1] # => nil
h['do you have this string'] # => "nope"

Discussion
The first type of custom default value is most useful when you want a default value
of zero. For example, this form can be used to calculate the frequency of certain
words in a paragraph of text:

text = 'The rain in Spain falls mainly in the plain.'
word_count_hash = Hash.new 0 # => {}
text.split(/\W+/).each { |word| word_count_hash[word.downcase] += 1 }
word_count_hash
=> {"rain"=>1, "plain"=>1, "in"=>2, "mainly"=>1, "falls"=>1,
"the"=>2, "spain"=>1}

What if you wanted to make lists of the words starting with a given character? Your
first attempt might look like this:

first_letter_hash = Hash.new []
text.split(/\W+/).each { |word| first_letter_hash[word[0,1].downcase] << word }
first_letter_hash
 # => {}
first_letter_hash["m"]
=> ["The", "rain", "in", "Spain", "falls", "mainly", "in", "the", "plain"]

What’s going on here? All those words don’t start with “m”....

What happened is that the array you passed into the Hash constructor is being used
for every default value. first_letter_hash["m"] is now a reference to that array, as is
first_letter_hash["f"] and even first_letter_hash[1006].

This is a case where you need to pass in a block to the Hash constructor. The block is
run every time the Hash can’t find a key. This way you can create a different array
each time.

164 | Chapter 5: Hashes

first_letter_hash = Hash.new { |hash, key| hash[key] = [] }
text.split(/\W+/).each { |word| first_letter_hash[word[0,1].downcase] << word }
first_letter_hash
=> {"m"=>["mainly"], "p"=>["plain"], "f"=>["falls"], "r"=>["rain"],
"s"=>["Spain"], "i"=>["in", "in"], "t"=>["The", "the"]}
first_letter_hash["m"]
=> ["mainly"]

When a letter can’t be found in the hash, Ruby calls the block passed into the Hash
constructor. That block puts a new array into the hash, using the missing letter as
the key. Now the letter is bound to a unique array, and words can be added to that
array normally.

Note that if you want to add the array to the hash so it can be used later, you must
assign it within the block of the Hash constructor. Otherwise you’ll get a new, empty
array every time you access first_letter_hash["m"]. The words you want to append
to the array will be lost.

See Also
• This technique is used in recipes like Recipe 5.6, “Keeping Multiple Values for

the Same Hash Key,” and Recipe 5.12, “Building a Histogram”

5.3 Adding Elements to a Hash

Problem
You have some items, loose or in some other data structure, which you want to put
into an existing hash.

Solution
To add a single key-value pair, assign the value to the element lookup expression for
the key: that is, call hash[key] = value. Assignment will override any previous value
stored for that key.

h = {}
h["Greensleeves"] = "all my joy"
h # => {"Greensleeves"=>"all my joy"}
h["Greensleeves"] = "my delight"
h # => {"Greensleeves"=>"my delight"}

Discussion
When you use a string as a hash key, the string is transparently copied and the copy
is frozen. This is to avoid confusion should you modify the string in place, then try to
use its original form to do a hash lookup:

key = "Modify me if you can"
h = { key => 1 }

5.3 Adding Elements to a Hash | 165

key.upcase! # => "MODIFY ME IF YOU CAN"
h[key] # => nil
h["Modify me if you can"] # => 1

h.keys # => ["Modify me if you can"]
h.keys[0].upcase!
TypeError: can't modify frozen string

To add an array of key-value pairs to a hash, either iterate over the array with
Array#each, or pass the hash into Array#inject. Using inject is slower but the code is
more concise.

squares = [[1,1], [2,4], [3,9]]

results = {}
squares.each { |k,v| results[k] = v }
results # => {1=>1, 2=>4, 3=>9}

squares.inject({}) { |h, kv| h[kv[0]] = kv[1]; h }
=> {1=>1, 2=>4, 3=>9}

To turn a flat array into the key-value pairs of a hash, iterate over the array elements
two at a time:

class Array
 def into_hash(h)
 unless size % 2 == 0
 raise StandardError, "Expected array with even number of elements"
 end
 0.step(size-1, 2) { |x| h[self[x]] = self[x+1] }
 h
 end
end

squares = [1,1,2,3,4,9]
results = {}
squares.into_hash(results) # => {1=>1, 2=>3, 4=>9}

[1,1,2].into_hash(results)
StandardError: Expected array with even number of elements

To insert into a hash every key-value from another hash, use Hash#merge!. If a key is
present in both hashes when a.merge!(b) is called, the value in b takes precedence
over the value in a.

squares = { 1 => 1, 2 => 4, 3 => 9}
cubes = { 3 => 27, 4 => 256, 5 => 3125}
squares.merge!(cubes)
squares # =>{5=>3125, 1=>1, 2=>4, 3=>27, 4=>256}
cubes # =>{5=>3125, 3=>27, 4=>256}

Hash#merge! also has a nondestructive version, Hash#merge, which creates a new Hash
with elements from both parent hashes. Again, the hash passed in as an argument
takes precedence.

166 | Chapter 5: Hashes

To completely replace the entire contents of one hash with the contents of another,
use Hash#replace.

squares = { 1 => 1, 2 => 4, 3 => 9}
cubes = { 1 => 1, 2 => 8, 3 => 27}
squares.replace(cubes)
squares # => {1=>1, 2=>8, 3=>27}

This is different from simply assigning the cubes hash to the squares variable name,
because cubes and squares are still separate hashes: they just happen to contain the
same elements right now. Changing cubes won’t affect squares:

cubes[4] = 64
squares # => {1=>1, 2=>8, 3=>27}

Hash#replace is useful for reverting a Hash to known default values.

defaults = {:verbose => true, :help_level => :beginner }
args = {}
requests.each do |request|
 args.replace(defaults)
 request.process(args) #The process method might modify the args Hash.
end

See Also
• Recipe 4.12, “Building Up a Hash Using Injection,” has more about the inject

method

• Recipe 5.1, “Using Symbols as Hash Keys,” for a way to save memory when con-
structing certain types of hashes

• Recipe 5.5, “Using an Array or Other Modifiable Object as a Hash Key,” talks
about how to avoid another common case of confusion when a hash key is
modified

5.4 Removing Elements from a Hash

Problem
Certain elements of your hash have got to go!

Solution
Most of the time you want to remove a specific element of a hash. To do that, pass
the key into Hash#delete.

h = {}
h[1] = 10
h # => {1=>10}
h.delete(1)
h # => {}

5.4 Removing Elements from a Hash | 167

Discussion
Don’t try to delete an element from a hash by mapping it to nil. It’s true that, by
default, you get nil when you look up a key that’s not in the hash, but there’s a dif-
ference between a key that’s missing from the hash and a key that’s present but
mapped to nil. Hash#has_key? will see a key mapped to nil, as will Hash#each and all
other methods except for a simple fetch:

h = {}
h[5] # => nil
h[5] = 10
h[5] # => 10
h[5] = nil
h[5] # => nil
h.keys # => [5]
h.delete(5)
h.keys # => []

Hash#delete works well when you need to remove elements on an ad hoc basis, but
sometimes you need to go through the whole hash looking for things to remove. Use
the Hash#delete_if iterator to delete key-value pairs for which a certain code block
returns true (Hash#reject works the same way, but it works on a copy of the Hash).
The following code deletes all key-value pairs with a certain value:

class Hash
 def delete_value(value)
 delete_if { |k,v| v == value }
 end
end

h = {'apple' => 'green', 'potato' => 'red', 'sun' => 'yellow',
 'katydid' => 'green' }
h.delete_value('green')
h # => {"sun"=>"yellow", "potato"=>"red"}

This code implements the opposite of Hash#merge; it extracts one hash from another:

class Hash
 def remove_hash(other_hash)
 delete_if { |k,v| other_hash[k] == v }
 end
end

squares = { 1 => 1, 2 => 4, 3 => 9 }
doubles = { 1 => 2, 2 => 4, 3 => 6 }
squares.remove_hash(doubles)
squares # => {1=>1, 3=>9}

Finally, to wipe out the entire contents of a Hash, use Hash#clear:

h = {}
1.upto(1000) { |x| h[x] = x }
h.keys.size # => 1000
h.clear
h # => {}

168 | Chapter 5: Hashes

See Also
• Recipe 5.3, “Adding Elements to a Hash”

• Recipe 5.7, “Iterating Over a Hash”

5.5 Using an Array or Other Modifiable Object
as a Hash Key

Problem
You want to use a modifiable built-in object (an array or a hash, but not a string) as a
key in a hash, even while you modify the object in place. A naive solution tends to
lose hash values once the keys are modified:

coordinates = [10, 5]
treasure_map = { coordinates => 'jewels' }
treasure_map[coordinates] # => "jewels"

Add a z-coordinate to indicate how deep the treasure is buried.
coordinates << -5

coordinates # => [10, 5, -5]
treasure_map[coordinates] # => nil
 # Oh no!

Solution
The easiest solution is to call the Hash#rehash method every time you modify one of
the hash’s keys. Hash#rehash will repair the broken treasure map defined above:

treasure_map.rehash
treasure_map[coordinates] # => "jewels"

If this is too much code, you might consider changing the definition of the object you
use as a hash key, so that modifications don’t affect the way the hash treats it.

Suppose you want a reliably hashable Array class. If you want this behavior univer-
sally, you can reopen the Array class and redefine hash to give you the new behavior.
But it’s safer to define a subclass of Array that implements a reliable-hashing mixin,
and to use that subclass only for the Arrays you want to use as hash keys:

module ReliablyHashable
 def hash
 return object_id
 end
end

class ReliablyHashableArray < Array
 include ReliablyHashable
end

5.5 Using an Array or Other Modifiable Object as a Hash Key | 169

It’s now possible to keep track of the jewels:

coordinates = ReliablyHashableArray.new([10,5])
treasure_map = { coordinates => 'jewels' }
treasure_map[coordinates] # => "jewels"

Add a z-coordinate to indicate how deep the treasure is buried.
coordinates.push(-5)

treasure_map[coordinates] # => "jewels"

Discussion
Ruby performs hash lookups using not the key object itself but the object’s hash code
(an integer obtained from the key by calling its hash method). The default implemen-
tation of hash, in Object, uses an object’s internal ID as its hash code. Array, Hash,
and String override this method to provide different behavior.

In the initial example, the hash code of [10,5] is 41 and the hash code of [10,5,–5]
is –83. The mapping of the coordinate list to ‘jewels’ is still present (it’ll still show up
in an iteration over each_pair), but once you change the coordinate list, you can no
longer use that variable as a key.

You may also run into this problem when you use a hash or a string as a hash key,
and then modify the key in place. This happens because the hash implementations of
many built-in classes try to make sure that two objects that are “the same” (for
instance, two distinct arrays with the same contents, or two distinct but identical
strings) get the same hash value. When coordinates is [10,5], it has a hash code of
41, like any other Array containing [10,5]. When coordinates is [10,5,–5] it has a
hash code of –83, like any other Array with those contents.

Because of the potential for confusion, some languages don’t let you use arrays or
hashes as hash keys at all. Ruby lets you do it, but you have to face the conse-
quences if the key changes. Fortunately, you can dodge the consequences by overrid-
ing hash to work the way you want.

Since an object’s internal ID never changes, the Object implementation is what you
want to get reliable hashing. To get it back, you’ll have to override or subclass the hash
method of Array or Hash (depending on what type of key you’re having trouble with).

The implementations of hash given in the solution violate the principle that different
representations of the same data should have the same hash code. This means that
two ReliablyHashableArray objects will have different hash codes even if they have
the same contents. For instance:

a = [1,2]
b = a.clone
a.hash # => 11
b.hash # => 11

170 | Chapter 5: Hashes

a = ReliablyHashableArray.new([1,2])
b = a.clone
a.hash # => -606031406
b.hash # => -606034266

If you want a particular value in a hash to be accessible by two different arrays with
the same contents, then you must key it to a regular array instead of a
ReliablyHashableArray. You can’t have it both ways. If an object is to have the same
hash key as its earlier self, it can’t also have the same hash key as another representa-
tion of its current state.

Another solution is to freeze your hash keys. Any frozen object can be reliably used as a
hash key, since you can’t do anything to a frozen object that would cause its hash code
to change. Ruby uses this solution: when you use a string as a hash key, Ruby copies
the string, freezes the copy, and uses that as the actual hash key.

See Also
• Recipe 8.15, “Freezing an Object to Prevent Changes”

5.6 Keeping Multiple Values for the Same Hash Key

Problem
You want to build a hash that might have duplicate values for some keys.

Solution
The simplest way is to create a hash that initializes missing values to empty arrays.
You can then append items onto the automatically created arrays:

hash = Hash.new { |hash, key| hash[key] = [] }

raw_data = [[1, 'a'], [1, 'b'], [1, 'c'],
 [2, 'a'], [2, ['b', 'c']],
 [3, 'c']]
raw_data.each { |x,y| hash[x] << y }
hash
=> {1=>["a", "b", "c"], 2=>["a", ["b", "c"]], 3=>["c"]}

Discussion
A hash maps any given key to only one value, but that value can be an array. This is a
common phenomenon when reading data structures from the outside world. For
instance, a list of tasks with associated priorities may contain multiple items with the
same priority. Simply reading the tasks into a hash keyed on priority would create
key collisions, and obliterate all but one task with any given priority.

It’s possible to subclass Hash to act like a normal hash until a key collision occurs,
and then start keeping an array of values for the key that suffered the collision:

5.7 Iterating Over a Hash | 171

class MultiValuedHash < Hash
 def []=(key, value)
 if has_key?(key)
 super(key, [value, self[key]].flatten)
 else
 super
 end
 end
end

hash = MultiValuedHash.new
raw_data.each { |x,y| hash[x] = y }
hash
=> {1=>["c", "b", "a"], 2=>["b", "c", "a"], 3=>"c"}

This saves a little bit of memory, but it’s harder to write code for this class than for
one that always keeps values in an array. There’s also no way of knowing whether a
value [1,2,3] is a single array value or three numeric values.

See Also
• Recipe 5.2, “Creating a Hash with a Default Value,” explains the technique of

the dynamic default value in more detail, and explains why you must initalize
the empty list within a code block—never within the arguments to Hash.new

5.7 Iterating Over a Hash

Problem
You want to iterate over a hash’s key-value pairs as though it were an array.

Solution
Most likely, the iterator you want is Hash#each_pair or Hash#each. These methods
yield every key-value pair in the hash:

hash = { 1 => 'one', [1,2] => 'two', 'three' => 'three' }

hash.each_pair { |key, value| puts "#{key.inspect} maps to #{value}"}
[1, 2] maps to two
"three" maps to three
1 maps to one

Note that each and each_pair return the key-value pairs in an apparently random
order.

Discussion
Hash#each_pair and Hash#each let you iterate over a hash as though it were an array
full of key-value pairs. Hash#each_pair is more commonly used and slightly more

172 | Chapter 5: Hashes

efficient, but Hash#each is more array-like. Hash also provides several other iteration
methods that can be more efficient than each.

Use Hash#each_key if you only need the keys of a hash. In this example, a list has
been stored as a hash to allow for quick lookups (this is how the Set class works).
The values are irrelevant, but each_key can be used to iterate over the keys:

active_toggles = { 'super' => true, 'meta' => true, 'hyper' => true }
active_toggles.each_key { |active| puts active }
hyper
meta
super

Use Hash#each_value if you only need the values of a hash. In this example, each_value
is used to summarize the results of a survey. Here it’s the keys that are irrelevant:

favorite_colors = { 'Alice' => :red, 'Bob' => :violet, 'Mallory' => :blue,
 'Carol' => :blue, 'Dave' => :violet }

summary = Hash.new 0
favorite_colors.each_value { |x| summary[x] += 1 }
summary
=> {:red=>1, :violet=>2, :blue=>2}

Don’t iterate over Hash#each_value looking for a particular value: it’s simpler and
faster to use has_value? instead.

hash = {}
1.upto(10) { |x| hash[x] = x * x }
hash.has_value? 49 # => true
hash.has_value? 81 # => true
hash.has_value? 50 # => false

Removing unprocessed elements from a hash during an iteration prevents those
items from being part of the iteration. However, adding elements to a hash during an
iteration will not make them part of the iteration.

Don’t modify the keyset of a hash during an iteration, or you’ll get undefined results
and possibly a RuntimeError:

1.upto(100) { |x| hash[x] = true }
hash.keys { |k| hash[k * 2] = true }
RuntimeError: hash modified during iteration

Using an array as intermediary

An alternative to using the hash iterators is to get an array of the keys, values, or key-
value pairs in the hash, and then work on the array. You can do this with the keys,
values, and to_a methods, respectively:

hash = {1 => 2, 2 => 2, 3 => 10}
hash.keys # => [1, 2, 3]
hash.values # => [2, 2, 10]
hash.to_a # => [[1, 2], [2, 2], [3, 10]]

5.7 Iterating Over a Hash | 173

The most common use of keys and values is to iterate over a hash in a specific order.
All of Hash’s iterators return items in a seemingly random order. If you want to iter-
ate over a hash in a certain order, the best strategy is usually to create an array from
some portion of the hash, sort the array, then iterate over it.

The most common case is to iterate over a hash according to some property of the
keys. To do this, sort the result of Hash#keys. Use the original hash to look up the
value for a key, if necessary.

extensions = { 'Alice' => '104', 'Carol' => '210', 'Bob' => '110' }
extensions.keys.sort.each do |k|
 puts "#{k} can be reached at extension ##{extensions[k]}"
end
Alice can be reached at extension #104
Bob can be reached at extension #110
Carol can be reached at extension #210

Hash#values gives you the values of a hash, but that’s not useful for iterating because
it’s so expensive to find the key for a corresponding value (and if you only wanted
the values, you’d use each_value).

Hash#sort and Hash#sort_by turn a hash into an array of two-element subarrays (one
for each key-value pair), then sort the array of arrays however you like. Your custom
sort method can sort on the values, on the values and the keys, or on some relation-
ship between key and value. You can then iterate over the sorted array the same as
you would with the Hash.each iterator.

This code sorts a to-do list by priority, then alphabetically:

to_do = { 'Clean car' => 5, 'Take kangaroo to vet' => 3,
 'Realign plasma conduit' => 3 }
to_do.sort_by { |task, priority| [priority, task] }.each { |k,v| puts k }
Realign plasma conduit
Take kangaroo to vet
Clean car

This code sorts a hash full of number pairs according to the magnitude of the differ-
ence between the key and the value:

transform_results = { 4 => 8, 9 => 9, 10 => 6, 2 => 7, 6 => 5 }
by_size_of_difference = transform_results.sort_by { |x, y| (x-y).abs }
by_size_of_difference.each { |x, y| puts "f(#{x})=#{y}: difference #{y-x}" }
f(9)=9: difference 0
f(6)=5: difference -1
f(10)=6: difference -4
f(4)=8: difference 4
f(2)=7: difference 5

See Also
• See Recipe 5.8, “Iterating Over a Hash in Insertion Order,” for a more complex

iterator

174 | Chapter 5: Hashes

• Recipe 5.12, “Building a Histogram”

• Recipe 5.13, “Remapping the Keys and Values of a Hash”

5.8 Iterating Over a Hash in Insertion Order

Problem
Iterations over a hash happen in a seemingly random order. Sorting the keys or val-
ues only works if the keys or values are all mutually comparable. You’d like to iter-
ate over a hash in the order in which the elements were added to the hash.

Solution
Use the orderedhash library (see below for how to get it). Its OrderedHash class acts
like a hash, but it keeps the elements of the hash in insertion order.

require 'orderedhash'
h = OrderedHash.new
h[1] = 1
h["second"] = 2
h[:third] = 3

h.keys # => [1, "second", :third]
h.values # => [1, 2, 3]
h.each { |k,v| puts "The #{k} counting number is #{v}" }
The 1 counting number is 1
The second counting number is 2
The third counting number is 3

Discussion
OrderedHash is a subclass of Hash that also keeps an array of the keys in insertion
order. When you add a key-value pair to the hash, OrderedHash modifies both the
underlying hash and the array. When you ask for a specific hash element, you’re
using the hash. When you ask for the keys or the values, the data comes from the
array, and you get it in insertion order.

Since OrderedHash is a real hash, it supports all the normal hash operations. But any
operation that modifies an OrderedHash may also modify the internal array, so it’s
slower than just using a hash. OrderedHash#delete is especially slow, since it must
perform a linear search of the internal array to find the key being deleted.
Hash#delete runs in constant time, but OrderedHash#delete takes time proportionate
to the size of the hash.

See Also
• You can get OrderedHash from the RAA at http://raa.ruby-lang.org/project/

orderedhash/; it’s not available as a gem, and it has no setup.rb script, so you’ll

5.9 Printing a Hash | 175

need to distribute orderedhash.rb with your project, or copy it into your Ruby
library path

• There is a queuehash gem that provides much the same functionality, but it has
worse performance than OrderedHash

5.9 Printing a Hash
Credit: Ben Giddings

Problem
You want to print out the contents of a Hash, but Kernel#puts doesn’t give very use-
ful results.

h = {}
h[:name] = "Robert"
h[:nickname] = "Bob"
h[:age] = 43
h[:email_addresses] = {:home => "bob@example.com",
 :work => "robert@example.com"}
h
=> {:email_addresses=>["bob@example.com", "robert@example.com"],
:nickname=>"Bob", :name=>"Robert", :age=>43}
puts h
nicknameBobage43nameRobertemail_addresseshomebob@example.comworkrobert@example.com
puts h[:email_addresses]
homebob@example.comworkrobert@example.com

Solution

In other recipes, we sometimes reformat the results or output of Ruby
statements so they’ll look better on the printed page. In this recipe,
you’ll see raw, unretouched output, so you can compare different
ways of printing hashes.

The easiest way to print a hash is to use Kernel#p. Kernel#p prints out the
“inspected” version of its arguments: the string you get by calling inspect on the
hash. The “inspected” version of an object often looks like Ruby source code for cre-
ating the object, so it’s usually readable:

p h[:email_addresses]
{:home=>"bob@example.com", :work=>"robert@example.com"}

For small hashes intended for manual inspection, this may be all you need. However,
there are two difficulties. One is that Kernel#p only prints to stdout. The second is that
the printed version contains no newlines, making it difficult to read large hashes.

p h
{:nickname=>"Bob", :age=>43, :name=>"Robert", :email_addresses=>{:home=>
"bob@example.com", :work=>"robert@example.com"}}

176 | Chapter 5: Hashes

When the hash you’re trying to print is too large, the pp (“pretty-print”) module pro-
duces very readable results:

require 'pp'
pp h[:email_addresses]
{:home=>"bob@example.com", :work=>"robert@example.com"}

pp h
{:email_addresses=>{:home=>"bob@example.com", :work=>"robert@example.com"},
:nickname=>"Bob",
:name=>"Robert",
:age=>43}

Discussion
There are a number of ways of printing hash contents. The solution you choose
depends on the complexity of the hash you’re trying to print, where you’re trying to
print the hash, and your personal preferences. The best general-purpose solution is
the pp library.

When a given hash element is too big to fit on one line, pp knows to put it on multi-
ple lines. Not only that, but (as with Hash#inspect), the output is valid Ruby syntax
for creating the hash: you can copy and paste it directly into a Ruby program to rec-
reate the hash.

The pp library can also pretty-print to I/O streams besides standard output, and can
print to shorter lines (the default line length is 79). This example prints the hash to
$stderr and wraps at column 50:

PP::pp(h, $stderr, 50)
{:nickname=>"Bob",
:email_addresses=>
{:home=>"bob@example.com",
:work=>"robert@example.com"},
:age=>43,
:name=>"Robert"}
=> #<IO:0x2c8cc>

You can also print hashes by converting them into YAML with the yaml library.
YAML is a human-readable markup language for describing data structures:

require 'yaml'
puts h.to_yaml

:nickname: Bob
:age: 43
:name: Robert
:email_addresses:
:home: bob@example.com
:work: robert@example.com

5.10 Inverting a Hash | 177

If none of these is suitable, you can print the hash out yourself by using Hash#each_
pair to iterate over the hash elements:

h[:email_addresses].each_pair do |key, val|
 puts "#{key} => #{val}"
end
home => bob@example.com
work => robert@example.com

See Also
• Recipe 8.10, “Getting a Human-Readable Printout of Any Object,” covers the

general case of this problem

• Recipe 13.1, “Serializing Data with YAML”

5.10 Inverting a Hash

Problem
Given a hash, you want to switch the keys and values. That is, you want to create a
new hash whose keys are the values of the old hash, and whose values are the keys of
the old hash. If the old hash mapped “human” to “wolf;” you want the new hash to
map “wolf” to “human.”

Solution
The simplest technique is to use the Hash#invert method:

phone_directory = { 'Alice' => '555-1212',
 'Bob' => '555-1313',
 'Mallory' => '111-1111' }
phone_directory.invert
=> {"111-1111"=>"Mallory", "555-1212"=>"Alice", "555-1313"=>"Bob"}

Discussion
Hash#invert probably won’t do what you want if your hash maps more than one key
to the same value. Only one of the keys for that value will show up as a value in the
inverted hash:

phone_directory = { 'Alice' => '555-1212',
 'Bob' => '555-1313',
 'Carol' => '555-1313',
 'Mallory' => '111-1111',
 'Ted' => '555-1212' }
phone_directory.invert
=> {"111-1111"=>"Mallory", "555-1212"=>"Ted", "555-1313"=>"Bob"}

178 | Chapter 5: Hashes

To preserve all the data from the original hash, borrow the idea behind Recipe 5.6,
and write a version of invert that keeps an array of values for each key. The follow-
ing is based on code by Tilo Sloboda:

class Hash
 def safe_invert
 new_hash = {}
 self.each do |k,v|
 if v.is_a? Array
 v.each { |x| new_hash.add_or_append(x, k) }
 else
 new_hash.add_or_append(v, k)
 end
 end
 return new_hash
 end

The add_or_append method a lot like the method MultivaluedHash#[]= defined in
Recipe 5.6:

 def add_or_append(key, value)
 if has_key?(key)
 self[key] = [value, self[key]].flatten
 else
 self[key] = value
 end
 end
end

Here’s safe_invert in action:

phone_directory.safe_invert
=> {"111-1111"=>"Mallory", "555-1212"=>["Ted", "Alice"],
"555-1313"=>["Bob", "Carol"]}

phone_directory.safe_invert.safe_invert
=> {"Alice"=>"555-1212", "Mallory"=>"111-1111", "Ted"=>"555-1212",
=> "Carol"=>"555-1313", "Bob"=>"555-1313"}

Ideally, if you called an inversion method twice you’d always get the same data you
started with. The safe_invert method does better than invert on this score, but it’s
not perfect. If your original hash used arrays as hash keys, safe_invert will act as if
you’d individually mapped each element in the array to the same value. Call safe_
invert twice, and the arrays will be gone.

See Also
• Recipe 5.5, “Using an Array or Other Modifiable Object as a Hash Key”

• “True Inversion of a Hash in Ruby,” by Tilo Sloboda (http://www.unixgods.org/
~tilo/Ruby/invert_hash.html)

• The Facets library defines a Hash#inverse method much like safe_invert

5.11 Choosing Randomly from a Weighted List | 179

5.11 Choosing Randomly from a Weighted List

Problem
You want to pick a random element from a collection, where each element in the col-
lection has a different probability of being chosen.

Solution
Store the elements in a hash, mapped to their relative probabilities. The following
code will work with a hash whose keys are mapped to relative integer probabilities:

def choose_weighted(weighted)
 sum = weighted.inject(0) do |sum, item_and_weight|
 sum += item_and_weight[1]
 end
 target = rand(sum)
 weighted.each do |item, weight|
 return item if target <= weight
 target -= weight
 end
end

For instance, if all the keys in the hash map to 1, the keys will be chosen with equal
probability. If all the keys map to 1, except for one which maps to 10, that key will
be picked 10 times more often than any single other key. This algorithm lets you sim-
ulate those probability problems that begin like, “You have a box containing 51
black marbles and 17 white marbles…”:

marbles = { :black => 51, :white => 17 }
3.times { puts choose_weighted(marbles) }
black
white
black

I’ll use it to simulate a lottery in which the results have different probabilities of
showing up:

lottery_probabilities = { "You've wasted your money!" => 1000,
 "You've won back the cost of your ticket!" => 50,
 "You've won two shiny zorkmids!" => 20,
 "You've won five zorkmids!" => 10,
 "You've won ten zorkmids!" => 5,
 "You've won a hundred zorkmids!" => 1 }

Let's buy some lottery tickets.
5.times { puts choose_weighted(lottery_probabilities) }
You've wasted your money!
You've wasted your money!
You've wasted your money!
You've wasted your money!
You've won five zorkmids!

180 | Chapter 5: Hashes

Discussion
An extremely naive solution would put the elements in a list and choose one at ran-
dom. This doesn’t solve the problem because it ignores weights altogether: low-
weight elements will show up exactly as often as high-weight ones. A less naive solu-
tion would be to repeat each element in the list a number of times proportional to its
weight. Under this implementation, our simulation of the marble box would contain
:black 51 times and :white 17 times, just like a real marble box. This is a common
quick-and-dirty solution, but it’s hard to maintain, and it uses lots of memory.

The algorithm given above actually works the same way as the less naive solution:
the numeric weights stand in for multiple copies of the same object. Instead of pick-
ing one of the 68 marbles, we pick a number between 0 and 67 inclusive. Since we
know there are 51 black marbles, we simply decide that the numbers from 0 to 50
will represent black marbles.

For the implementation given above to work, all the weights in the hash must be inte-
gers. This isn’t a big problem the first time you create a hash, but suppose that after the
lottery has been running for a while, you decide to add a new jackpot that’s 10 times
less common than the 100-zorkmid jackpot. You’d like to give this new possibility a
weight of 0.1, but that won’t work with the choose_weighted implementation. You’ll
need to give it a weight of 1, and multiply all the existing weights by 10.

There is an alternative, though: normalize the weights so that they add up to 1. You
can then generate a random floating-point number between 0 and 1, and use a simi-
lar algorithm to the one above. This approach lets you weight the hash keys using
any numeric objects you like, since normalization turns them all into small floating-
point numbers anyway.

def normalize!(weighted)
 sum = weighted.inject(0) do |sum, item_and_weight|
 sum += item_and_weight[1]
 end
 sum = sum.to_f
 weighted.each { |item, weight| weighted[item] = weight/sum }
end

lottery_probabilities["You've won five hundred zorkmids!"] = 0.1
normalize!(lottery_probabilities)
=> { "You've wasted your money!" => 0.920725531718995,
"You've won back the cost of your ticket!" => 0.0460362765859497,
"You've won two shiny zorkmids!" => 0.0184145106343799,
"You've won five zorkmids!" => 0.00920725531718995,
"You've won ten zorkmids!" => 0.00460362765859497,
"You've won a hundred zorkmids!" => 0.000920725531718995,
"You've won five hundred zorkmids!" => 9.20725531718995e-05 }

Once the weights have been normalized, we know that they sum to one (within the
limits of floating-point arithmetic). This simplifies the code that picks an element at
random, since we don’t have to sum up the weights every time:

5.12 Building a Histogram | 181

def choose_weighted_assuming_unity(weighted)
 target = rand
 weighted.each do |item, weight|
 return item if target <= weight
 target -= weight
 end
end

5.times { puts choose_weighted_assuming_unity(lottery_probabilities) }
You've wasted your money!
You've wasted your money!
You've wasted your money!
You've wasted your money!
You've won back the cost of your ticket!

See Also
• Recipe 2.5, “Generating Random Numbers”

• Recipe 6.9, “Picking a Random Line from a File”

5.12 Building a Histogram

Problem
You have an array that contains a lot of references to relatively few objects. You want
to create a histogram, or frequency map: something you can use to see how often a
given object shows up in the array.

Solution
Build the histogram in a hash, mapping each object found to the number of times it
appears.

module Enumerable
 def to_histogram
 inject(Hash.new(0)) { |h, x| h[x] += 1; h}
 end
end

[1, 2, 2, 2, 3, 3].to_histogram
=> {1=>1, 2=>3, 3=>2}

["a", "b", nil, "c", "b", nil, "a"].to_histogram
=> {"a"=>2, "b"=>2, "c"=>1, nil=>2}

"Aye\nNay\nNay\nAbstaining\nAye\nNay\nNot Present\n".to_histogram
=> {"Abstaining\n"=>1, "Nay\n"=>3, "Not Present\n"=>1, "Aye\n"=>2}

survey_results = { "Alice" => :red, "Bob" => :green, "Carol" => :green,
 "Mallory" => :blue }
survey_results.values.to_histogram
=> {:red=>1, :green=>2, :blue=>1}

182 | Chapter 5: Hashes

Discussion
Making a histogram is an easy and fast (linear-time) way to summarize a dataset.
Histograms expose the relative popularity of the items in a dataset, so they’re useful
for visualizing optimization problems and dividing the “head” from the “long tail.”

Once you have a histogram, you can find the most or least common elements in the
list, sort the list by frequency of appearance, or see whether the distribution of items
matches your expectations. Many of the other recipes in this book build a histogram
as a first step towards a more complex algorithm.

Here’s a quick way of visualizing a histogram as an ASCII chart. First, we convert the
histogram keys to their string representations so they can be sorted and printed. We
also store the histogram value for the key, since we can’t do a histogram lookup later
based on the string value we’ll be using.

def draw_graph(histogram, char="#")
 pairs = histogram.keys.collect { |x| [x.to_s, histogram[x]] }.sort

Then we find the key with the longest string representation. We’ll pad the rest of the
histogram rows to this length, so that the graph bars will line up correctly.

 largest_key_size = pairs.max { |x,y| x[0].size <=> y[0].size }[0].size

Then we print each key-value pair, padding with spaces as necessary.

 pairs.inject("") do |s,kv|
 s << "#{kv[0].ljust(largest_key_size)} |#{char*kv[1]}\n"
 end
end

Here’s a histogram of the color survey results from the Solution:

puts draw_graph(survey_results.values.to_histogram)
blue |#
green |##
red |#

This code generates a bunch of random numbers, then graphs the random distribution:

random = []
100.times { random << rand(10) }
puts draw_graph(random.to_histogram)
0 |############
1 |########
2 |#######
3 |#########
4 |##########
5 |#############
6 |###############
7 |########
8 |#######
9 |###########

5.13 Remapping the Keys and Values of a Hash | 183

See Also
• Recipe 2.8, “Finding Mean, Median, and Mode”

• Recipe 4.9, “Sorting an Array by Frequency of Appearance”

5.13 Remapping the Keys and Values of a Hash

Problem
You have two hashes with common keys but differing values. You want to create a
new hash that maps the values of one hash to the values of another.

Solution
class Hash
 def tied_with(hash)
 remap do |h,key,value|
 h[hash[key]] = value
 end.delete_if { |key,value| key.nil? || value.nil? }
 end

Here is the Hash#remap method:

 def remap(hash={})
 each { |k,v| yield hash, k, v }
 hash
 end
end

Here’s how to use Hash#tied_with to merge two hashes:

a = {1 => 2, 3 => 4}
b = {1 => 'foo', 3 => 'bar'}
a.tied_with(b) # => {"foo"=>2, "bar"=>4}
b.tied_with(a) # => {2=>"foo", 4=>"bar"}

Discussion
This remap method can be handy when you want to make a similar change to every
item in a hash. It is also a good example of using the yield method.

Hash#remap is conceptually similar to Hash#collect, but Hash#collect builds up a
nested array of key-value pairs, not a new hash.

See Also
• The Facets library defines methods Hash#update_each and Hash#replace_each! for

remapping the keys and values of a hash

184 | Chapter 5: Hashes

5.14 Extracting Portions of Hashes

Problem
You have a hash that contains a lot of values, but only a few of them are interesting.
You want to select the interesting values and ignore the rest.

Solution
You can use the Hash#select method to extract part of a hash that follows a certain
rule. Suppose you had a hash where the keys were Time objects representing a cer-
tain date, and the values were the number of web site clicks for that given day. We’ll
simulate such as hash with random data:

require 'time'
click_counts = {}
1.upto(30) { |i| click_counts[Time.parse("2006-09-#{i}")] = 400 + rand(700) }
p click_counts
{Sat Sep 23 00:00:00 EDT 2006=>803, Tue Sep 12 00:00:00 EDT 2006=>829,
Fri Sep 01 00:00:00 EDT 2006=>995, Mon Sep 25 00:00:00 EDT 2006=>587,
...

You might want to know the days when your click counts were low, to see if you
could spot a trend. Hash#select can do that for you:

low_click_days = click_counts.select {|key, value| value < 450 }
[[Thu Sep 14 00:00:00 EDT 2006, 449], [Mon Sep 11 00:00:00 EDT 2006, 406],
[Sat Sep 02 00:00:00 EDT 2006, 440], [Mon Sep 04 00:00:00 EDT 2006, 431],
...

Discussion
The array returned by Hash#select contains a number of key-value pairs as two-
element arrays. The first element of one of these inner arrays is a key into the hash,
and the second element is the corresponding value. This is similar to how Hash#each
yields a succession of two-element arrays.

If you want another hash instead of an array of key-value pairs, you can use
Hash#inject instead of Hash#select. In the code below, kv is a two-element array con-
taining a key-value pair. kv[0] is a key from click_counts, and kv[1] is the corre-
sponding value.

low_click_days_hash = click_counts.inject({}) do |h, kv|
 k, v = kv
 h[k] = v if v < 450
 h
end
=> {Mon Sep 25 00:00:00 EDT 2006=>403,
Wed Sep 06 00:00:00 EDT 2006=>443,
Thu Sep 28 00:00:00 EDT 2006=>419}

5.15 Searching a Hash with Regular Expressions | 185

You can also use the Hash.[] constructor to create a hash from the array result of
Hash#select:

low_click_days_hash = Hash[*low_click_days.flatten]
=> {Thu Sep 14 00:00:00 EDT 2006=>449, Mon Sep 11 00:00:00 EDT 2006=>406,
Sat Sep 02 00:00:00 EDT 2006=>440, Mon Sep 04 00:00:00 EDT 2006=>431,
...

See Also
• Recipe 4.13, “Extracting Portions of Arrays”

5.15 Searching a Hash with Regular Expressions
Credit: Ben Giddings

Problem
You want to grep a hash: that is, find all keys and/or values in the hash that match a
regular expression.

Solution
The fastest way to grep the keys of a hash is to get the keys as an array, and grep that:

h = { "apple tree" => "plant", "ficus" => "plant",
 "shrew" => "animal", "plesiosaur" => "animal" }
h.keys.grep /p/
=> ["apple tree", "plesiosaur"]

The solution for grepping the values of a hash is similar (substitute Hash#values for
Hash#keys), unless you need to map the values back to the keys of the hash. If that’s
what you need, the fastest way is to use Hash#each to get key-value pairs, and match
the regular expression against each value.

h.inject([]) { |res, kv| res << kv if kv[1] =~ /p/; res }
=> [["ficus", "plant"], ["apple tree", "plant"]]

The code is similar if you need to find key-value pairs where either the key or the
value matches a regular expression:

class Hash
 def grep(pattern)
 inject([]) do |res, kv|
 res << kv if kv[0] =~ pattern or kv[1] =~ pattern
 res
 end
 end
end

h.grep(/pl/)
=> [["ficus", "plant"], ["apple tree", "plant"], ["plesiosaur", "animal"]]
h.grep(/plant/) # => [["ficus", "plant"], ["apple tree", "plant"]]
h.grep(/i.*u/) # => [["ficus", "plant"], ["plesiosaur", "animal"]]

186 | Chapter 5: Hashes

Discussion
Hash defines its own grep method, but it will never give you any results. Hash#grep is
inherited from Enumerable#grep, which tries to match the output of each against the
given regular expression. Hash#each returns a series of two-item arrays containing
key-value pairs, and an array will never match a regular expression. The Hash#grep
implementation above is more useful.

Hash#keys.grep and Hash#values.grep are more efficient than matching a regular
expression against each key or value in a Hash, but those methods create a new array
containing all the keys in the Hash. If memory usage is your primary concern, iterate
over each_key or each_value instead:

res = []
h.each_key { |k| res << k if k =~ /p/ }
res # => ["apple tree", "plesiosaur"]

187

Chapter 6 CHAPTER 6

Files and Directories6

As programming languages increase in power, we programmers get further and fur-
ther from the details of the underlying machine language. When it comes to the
operating system, though, even the most modern programming languages live on a
level of abstraction that looks a lot like the C and Unix libraries that have been
around for decades.

We covered this kind of situation in Chapter 3 with Ruby’s Time objects, but the
issue really shows up when you start to work with files. Ruby provides an elegant
object-oriented interface that lets you do basic file access, but the more advanced file
libraries tend to look like the C libraries they’re based on. To lock a file, change its
Unix permissions, or read its metadata, you’ll need to remember method names like
mtime, and the meaning of obscure constants like File::LOCK_EX and 0644. This chap-
ter will show you how to use the simple interfaces, and how to make the more
obscure interfaces easier to use.

Looking at Ruby’s support for file and directory operations, you’ll see four distinct
tiers of support. The most common operations tend to show up on the lower-
numbered tiers:

1. File objects to read and write the contents of files, and Dir objects to list the
contents of directories. For examples, see Recipes 6.5, 6.7, and 6.17. Also see
Recipe 6.13 for a Ruby-idiomatic approach.

2. Class methods of File to manipulate files without opening them. For instance,
to delete a file, examine its metadata, or change its permissions. For examples,
see Recipes 6.1, 6.3, and 6.4.

3. Standard libraries, such as find to walk directory trees, and fileutils to per-
form common filesystem operations like copying files and creating directories.
For examples, see Recipes 6.8, 6.12, and 6.20.

4. Gems like file-tail, lockfile, and rubyzip, which fill in the gaps left by the
standard library. Most of the file-related gems covered in this book deal with
specific file formats, and are covered in Chapter 12.

188 | Chapter 6: Files and Directories

Kernel#open is the simplest way to open a file. It returns a File object that you can
read from or write to, depending on the “mode” constant you pass in. I’ll introduce
read mode and write mode here; there are several others, but I’ll talk about most of
those as they come up in recipes.

To write data to a file, pass a mode of 'w' to open. You can then write lines to the file
with File#puts, just like printing to standard output with Kernel#puts. For more pos-
sibilities, see Recipe 6.7.

open('beans.txt', "w") do |file|
 file.puts('lima beans')
 file.puts('pinto beans')
 file.puts('human beans')
end

To read data from a file, open it for read access by specifying a mode of 'r', or just
omitting the mode. You can slurp the entire contents into a string with File#read, or
process the file line-by-line with File#each. For more details, see Recipe 6.6.

open('beans.txt') do |file|
 file.each { |l| puts "A line from the file: #{l}" }
end
A line from the file: lima beans
A line from the file: pinto beans
A line from the file: human beans

As seen in the examples above, the best way to use the open method is with a code
block. The open method creates a new File object, passes it to your code block, and
closes the file automatically after your code block runs—even if your code throws an
exception. This saves you from having to remember to close the file after you’re done
with it. You could rely on the Ruby interpreter’s garbage collection to close the file
once it’s no longer being used, but Ruby makes it easy to do things the right way.

To find a file in the first place, you need to specify its disk path. You may specify an
absolute path, or one relative to the current directory of your Ruby process (see Rec-
ipe 6.21). Relative paths are usually better, because they’re more portable across
platforms. Relative paths like “beans.txt” or “subdir/beans.txt” will work on any
platform, but absolute Unix paths look different from absolute Windows paths:

A stereotypical Unix path.
open('/etc/passwd')

A stereotypical Windows path; note the drive letter.
open('c:/windows/Documents and Settings/User1/My Documents/ruby.doc')

Windows paths in Ruby use forward slashes to separate the parts of a path, even
though Windows itself uses backslashes. Ruby will also accept backslashes in a Win-
dows path, so long as you escape them:

open('c:\\windows\\Documents and Settings\\User1\\My Documents\\ruby.doc')

Files and Directories | 189

Although this chapter focuses mainly on disk files, most of the methods of File are
actually methods of its superclass, IO. You’ll encounter many other classes that are
also subclasses of IO, or just respond to the same methods. This means that most of
the tricks described in this chapter are applicable to classes like the Socket class for
Internet sockets and the infinitely useful StringIO (see Recipe 6.15).

Your Ruby program’s standard input, output, and error ($stdin, $stdout, and
$stderr) are also IO objects, which means you can treat them like files. This one-line
program echoes its input to its output:

$stdin.each { |l| puts l }

The Kernel#puts command just calls $stdout.puts, so that one-liner is equivalent to
this one:

$stdin.each { |l| $stdout.puts l }

Not all file-like objects support all the methods of IO. See Recipe 6.11 for ways to get
around the most common problem with unsupported methods. Also see Recipe 6.16
for more on the default IO objects.

Several of the recipes in this chapter (such as Recipes 6.12 and 6.20) create specific
directory structures to demonstrate different concepts. Rather than bore you by fill-
ing up recipes with the Ruby code to create a certain directory structure, I’ve written
a method that takes a short description of a directory structure, and creates the
appropriate files and subdirectories:

create_tree.rb
def create_tree(directories, parent=".")
 directories.each_pair do |dir, files|
 path = File.join(parent, dir)
 Dir.mkdir path unless File.exists? path
 files.each do |filename, contents|
 if filename.respond_to? :each_pair # It's a subdirectory
 create_tree filename, path
 else # It's a file
 open(File.join(path, filename), 'w') { |f| f << contents || "" }
 end
 end
 end
end

Now I can present the directory structure as a data structure and you can create it
with a single method call:

require 'create_tree'
create_tree 'test' =>
 ['An empty file',
 ['A file with contents', 'Contents of file'],
 { 'Subdirectory' => ['Empty file in subdirectory',
 ['File in subdirectory', 'Contents of file']] },
 { 'Empty subdirectory' => [] }
]

190 | Chapter 6: Files and Directories

require 'find'
Find.find('test') { |f| puts f }
test
test/Empty subdirectory
test/Subdirectory
test/Subdirectory/File in subdirectory
test/Subdirectory/Empty file in subdirectory
test/A file with contents
test/An empty file

File.read('test/Subdirectory/File in subdirectory')
=> "Contents of file"

6.1 Checking to See If a File Exists

Problem
Given a filename, you want to see whether the corresponding file exists and is the
right kind for your purposes.

Solution
Most of the time you’ll use the File.file? predicate, which returns true only if the
file is an existing regular file (that is, not a directory, a socket, or some other special
file).

filename = 'a_file.txt'
File.file? filename # => false

require 'fileutils'
FileUtils.touch(filename)
File.file? filename # => true

Use the File.exists? predicate instead if the file might legitimately be a directory or
other special file, or if you plan to create a file by that name if it doesn’t exist. File.
exists? will return true if a file of the given name exists, no matter what kind of file it is.

directory_name = 'a_directory'
FileUtils.mkdir(directory_name)
File.file? directory_name # => false
File.exists? directory_name # => true

Discussion
A true response from File.exists? means that the file is present on the filesystem,
but says nothing about what type of file it is. If you open up a directory thinking it’s
a regular file, you’re in for an unpleasant surprise. This is why File.file? is usually
more useful than File.exists?.

Ruby provides several other predicates for checking the type of a file: the other com-
monly useful one is File.directory?:

6.2 Checking Your Access to a File | 191

File.directory? directory_name # => true
File.directory? filename # => false

The rest of the predicates are designed to work on Unix systems. File.blockdev? tests
for block-device files (such as hard-drive partitions), File.chardev? tests for character-
device files (such as TTYs), File.socket? tests for socket files, and File.pipe? tests for
named pipes,

File.blockdev? '/dev/hda1' # => true
File.chardev? '/dev/tty1' # => true
File.socket? '/var/run/mysqld/mysqld.sock' # => true
system('mkfifo named_pipe')
File.pipe? 'named_pipe' # => true

File.symlink? tests whether a file is a symbolic link to another file, but you only need
to use it when you want to treat symlinks differently from other files. A symlink to a
regular file will satisfy File.file?, and can be opened and used just like a regular file.
In most cases, you don’t even have to know it’s a symlink. The same goes for sym-
links to directories and to other types of files.

new_filename = "#{filename}2"
File.symlink(filename, new_filename)

File.symlink? new_filename # => true
File.file? new_filename # => true

All of Ruby’s file predicates return false if the file doesn’t exist at all. This means you
can test “exists and is a directory” by just testing directory?; it’s the same for the
other predicates.

See Also
• Recipe 6.8, “Writing to a Temporary File,” and Recipe 6.14, “Backing Up to

Versioned Filenames,” deal with writing to files that don’t currently exist

6.2 Checking Your Access to a File

Problem
You want to see what you can do with a file: whether you have read, write, or (on
Unix systems) execute permission on it.

Solution
Use the class methods File.readable?, File.writeable?, and File.executable?.

File.readable?('/bin/ls') # => true
File.readable?('/etc/passwd-') # => false

filename = 'test_file'
File.open(filename, 'w') {}

192 | Chapter 6: Files and Directories

File.writable?(filename) # => true
File.writable?('/bin/ls') # => false

File.executable?('/bin/ls') # => true
File.executable?(filename) # => false

Discussion
Ruby’s file permission tests are Unix-centric, but readable? and writable? work on any
platform; the rest fail gracefully when the OS doesn’t support them. For instance, Win-
dows doesn’t have the Unix notion of execute permission, so File.executable? always
returns true on Windows.

The return value of a Unix permission test depends in part on whether your user
owns the file in question, or whether you belong to the Unix group that owns it.
Ruby provides convenience tests File.owned? and File.grpowned? to check this.

File.owned? 'test_file' # => true
File.grpowned? 'test_file' # => true
File.owned? '/bin/ls' # => false

On Windows, File.owned? always returns true (even for a file that belongs to another
user) and File.grpowned? always returns false.

The File methods described above should be enough to answer most permission
questions about a file, but you can also see a file’s Unix permissions in their native
form by looking at the file’s mode. The mode is a number, each bit of which has a
different meaning within the Unix permission system.* You can view a file’s mode
with File::Lstat#mode.

The result of mode contains some extra bits describing things like the type of a file.
You probably want to strip that information out by masking those bits. This exam-
ple demonstrates that the file originally created in the solution has a Unix permis-
sion mask of 0644:

File.lstat('test_file').mode & 0777 # Keep only the permission bits.
=> 420 # That is, 0644 octal.

Setuid and setgid scripts

readable?, writable?, and executable? return answers that depend on the effective user
and group ID you are using to run the Ruby interpreter. This may not be your actual
user or group ID: the Ruby interpreter might be running setuid or setgid, or you might
have changed their effective ID with Process.euid= or Process.egid=.

Each of the permission checks has a corresponding method that returns answers
from the perspective of the process’s real user and real group IDs: executable_real?,

* If you’re not familiar with this, Recipe 6.3 describes the significance of the permission bits in a file’s mode.

6.3 Changing the Permissions on a File | 193

readable_real?, and writable_real?. If you’re running the Ruby interpreter setuid,
then readable_real? (for instance) will give different answers from readable?. You
can use this to disallow users from reading or modifying certain files unless they
actually are the root user, not just taking on the root users’ privileges through setuid.

For instance, consider the following code, which prints our real and effective user
and group IDs, then checks to see what it can do to a system file:

def what_can_i_do?
 sys = Process::Sys
 puts "UID=#{sys.getuid}, GID=#{sys.getgid}"
 puts "Effective UID=#{sys.geteuid}, Effective GID=#{sys.getegid}"

 file = '/bin/ls'
 can_do = [:readable?, :writable?, :executable?].inject([]) do |arr, method|
 arr << method if File.send(method, file); arr
 end
 puts "To you, #{file} is: #{can_do.join(', ')}"
end

If you run this code as root, you can call this method and get one set of answers, then
take on the guise of a less privileged user and get another set of answers:

what_can_i_do?
UID=0, GID=0
Effective UID=0, Effective GID=0
To you, /bin/ls is: readable?, writable?, executable?

Process.uid = 1000
what_can_i_do?
UID=0, GID=0
Effective UID=1000, Effective GID=0
To you, /bin/ls is: readable?, executable?

See Also
• Recipe 6.3, “Changing the Permissions on a File”

• Recipe 23.3, “Running Code as Another User,” has more on setting the effective
user ID

6.3 Changing the Permissions on a File

Problem
You want to control access to a file by modifying its Unix permissions. For instance,
you want to make it so that everyone on your system can read a file, but only you can
write to it.

194 | Chapter 6: Files and Directories

Solution
Unless you’ve got a lot of Unix experience, it’s hard to remember the numeric codes
for the nine Unix permission bits. Probably the first thing you should do is define
constants for them. Here’s one constant for every one of the permission bits. If these
names are too concise for you, you can name them USER_READ, GROUP_WRITE, OTHER_
EXECUTE, and so on.

class File
 U_R = 0400
 U_W = 0200
 U_X = 0100
 G_R = 0040
 G_W = 0020
 G_X = 0010
 O_R = 0004
 O_W = 0002
 O_X = 0001
end

You might also want to define these three special constants, which you can use to set
the user, group, and world permissions all at once:

class File
 A_R = 0444
 A_W = 0222
 A_X = 0111
end

Now you’re ready to actually change a file’s permissions. Every Unix file has a per-
mission bitmap, or mode, which you can change (assuming you have the permis-
sions!) by calling File.chmod. You can manipulate the constants defined above to get
a new mode, then pass it in along with the filename to File.chmod.

The following three chmod calls are equivalent: for the file my_file, they give read-
write access to to the user who owns the file, and restrict everyone else to read-only
access. This is equivalent to the permission bitmap 11001001, the octal number
0644, or the decimal number 420.

open("my_file", "w") {}

File.chmod(File::U_R | File::U_W | File::G_R | File::O_R, "my_file")
File.chmod(File::A_R | File::U_W, "my_file")
File.chmod(0644, "my_file") # Bitmap: 110001001

File::U_R | File::U_W | File::G_R | File::O_R # => 420
File::A_R | File::U_W # => 420
0644 # => 420
File.lstat("my_file").mode & 0777 # => 420

Note how I build a full permission bitmap by combining the permission constants
with the OR operator (|).

6.3 Changing the Permissions on a File | 195

Discussion
A Unix file has nine associated permission bits that are consulted whenever anyone
tries to access the file. They’re divided into three sets of three bits. There’s one set for
the user who owns the file, one set is for the user group who owns the file, and one
set is for everyone else.

Each set contains one bit for each of the three basic things you might do to a file in
Unix: read it, write it, or execute it as a program. If the appropriate bit is set for you,
you can carry out the operation; if not, you’re denied access.

When you put these nine bits side by side into a bitmap, they form a number that
you can pass into File.chmod. These numbers are difficult to construct and read
without a lot of practice, which is why I recommend you use the constants defined
above. It’ll make your code less buggy and more readable.*

File.chmod completely overwrites the file’s current permission bitmap with a new
one. Usually you just want to change one or two permissions: make sure the file isn’t
world-writable, for instance. The simplest way to do this is to use File.lstat#mode to
get the file’s current permission bitmap, then modify it with bit operators to add or
remove permissions. You can pass the result into File.chmod.

Use the XOR operator (^) to remove permissions from a bitmap, and the OR opera-
tor, as seen above, to add permissions:

Take away the world's read access.
new_permission = File.lstat("my_file").mode ^ File::O_R
File.chmod(new_permission, "my_file")

File.lstat("my_file").mode & 0777 # => 416 # 0640 octal

Give everyone access to everything
new_permission = File.lstat("my_file").mode | File::A_R | File::A_W | File::A_X
File.chmod(new_permission, "my_file")

File.lstat("my_file").mode & 0777 # => 511 # 0777 octal

Take away the world's write and execute access
new_permission = File.lstat("my_file").mode ^ (File::O_W | File::O_X)
File.chmod(new_permission, "my_file")

File.lstat("my_file").mode & 0777 # => 508 # 0774 octal

If doing bitwise math with the permission constants is also too complicated for you,
you can use code like this to parse a permission string like the one accepted by the
Unix chmod command:

class File
 def File.fancy_chmod(permission_string, file)

* It’s true that it’s more macho to use the numbers, but if you really wanted to be macho you’d be writing a
shell script, not a Ruby program.

196 | Chapter 6: Files and Directories

 mode = File.lstat(file).mode
 permission_string.scan(/[ugoa][+-=][rwx]+/) do |setting|
 who = setting[0..0]
 setting[2..setting.size].each_byte do |perm|
 perm = perm.chr.upcase
 mask = eval("File::#{who.upcase}_#{perm}")
 (setting[1] == ?+) ? mode |= mask : mode ^= mask
 end
 end
 File.chmod(mode, file)
 end
end

Give the owning user write access
File.fancy_chmod("u+w", "my_file")

File.lstat("my_file").mode & 0777 # => 508 # 0774 octal

Take away the owning group's execute access
File.fancy_chmod("g-x", "my_file")

File.lstat("my_file").mode & 0777 # => 500 # 0764 octal

Give everyone access to everything
File.fancy_chmod("a+rwx", "my_file")

File.lstat("my_file").mode & 0777 # => 511 # 0777 octal

Give the owning user access to everything. Then take away the
execute access for users who aren't the owning user and aren't in
the owning group.
File.fancy_chmod("u+rwxo-x", "my_file")
File.lstat("my_file").mode & 0777 # => 510 # 0774 octal

Unix-like systems such as Linux and Mac OS X support the full range of Unix per-
missions. On Windows systems, the only one of these operations that makes sense is
adding or subtracting the U_W bit of a file—making a file read-only or not. You can
use File.chmod on Windows, but the only bit you’ll be able to change is the user
write bit.

See Also
• Recipe 6.2, “Checking Your Access to a File”

• Recipe 23.9, “Normalizing Ownership and Permissions in User Directories”

6.4 Seeing When a File Was Last Used

Problem
You want to see when a file was last accessed or modified.

6.4 Seeing When a File Was Last Used | 197

Solution
The result of File.stat contains a treasure trove of metadata about a file. Perhaps
the most useful of its methods are the two time methods mtime (the last time anyone
wrote to the file), and atime (the last time anyone read from the file).

open("output", "w") { |f| f << "Here's some output.\n" }
stat = File.stat("output")
stat.mtime # => Thu Mar 23 12:23:54 EST 2006
stat.atime # => Thu Mar 23 12:23:54 EST 2006

sleep(2)
open("output", "a") { |f| f << "Here's some more output.\n" }
stat = File.stat("output")
stat.mtime # => Thu Mar 23 12:23:56 EST 2006
stat.atime # => Thu Mar 23 12:23:54 EST 2006

sleep(2)
open("output") { |f| contents = f.read }
stat = File.stat("output")
stat.mtime # => Thu Mar 23 12:23:56 EST 2006
stat.atime # => Thu Mar 23 12:23:58 EST 2006

Discussion
A file’s atime changes whenever data is read from the file, and its mtime changes
whenever data is written to the file.

There’s also a ctime method, but it’s not as useful as the other two. Contrary to semi-
popular belief, ctime does not track the creation time of the file (there’s no way to
track this in Unix). A file’s ctime is basically a more inclusive version of its mtime. The
ctime changes not only when someone modifies the contents of a file, but when
someone changes its permissions or its other metadata.

All three methods are useful for separating the files that actually get used from the
ones that just sit there on disk. They can also be used in sanity checks.

Here’s code for the part of a game that saves and loads the game state to a file. As a
deterrent against cheating, when the game loads a save file it performs a simple check
against the file’s modification time. If it differs from the timestamp recorded inside
the file, the game refuses to load the save file.

The save_game method is responsible for recording the timestamp:

def save_game(file)
 score = 1000
 open(file, "w") do |f|
 f.puts(score)
 f.puts(Time.new.to_i)
 end
end

198 | Chapter 6: Files and Directories

The load_game method is responsible for comparing the timestamp within the file to
the time the filesystem has associated with the file:

def load_game(file)
 open(file) do |f|
 score = f.readline.to_i
 time = Time.at(f.readline.to_i)
 difference = (File.stat(file).mtime - time).abs
 raise "I suspect you of cheating." if difference > 1
 "Your saved score is #{score}."
 end
end

This mechanism can detect simple forms of cheating:

save_game("game.sav")
sleep(2)
load_game("game.sav")
=> "Your saved score is 1000."

Now let's cheat by increasing our score to 9000

open("game.sav", "r+b") { |f| f.write("9") }

load_game("game.sav")
RuntimeError: I suspect you of cheating.

Since it’s possible to modify a file’s times with tools like the Unix touch command,
you shouldn’t depend on these methods to defend you against a skilled attacker
actively trying to fool your program.

See Also
• An example in Recipe 3.12, “Running a Code Block Periodically,” monitors a file

for changes by checking its mtime periodically

• Recipe 6.20, “Finding the Files You Want,” shows examples of filesystem
searches that make comparisons between the file times

6.5 Listing a Directory

Problem
You want to list or process the files or subdirectories within a directory.

Solution
If you’re starting from a directory name, you can use Dir.entries to get an array of
the items in the directory, or Dir.foreach to iterate over the items. Here’s an exam-
ple of each run on a sample directory:

See the chapter intro to get the create_tree library
require 'create_tree'

6.5 Listing a Directory | 199

create_tree 'mydir' =>
 [{'subdirectory' => [['file_in_subdirectory', 'Just a simple file.']] },
 '.hidden_file', 'ruby_script.rb', 'text_file']

Dir.entries('mydir')

=> [".", "..", ".hidden_file", "ruby_script.rb", "subdirectory",
"text_file"]

Dir.foreach('mydir') { |x| puts x if x != "." && x != ".."}
.hidden_file
ruby_script.rb
subdirectory
text_file

You can also use Dir[] to pick up all files matching a certain pattern, using a format
similar to the bash shell’s glob format (and somewhat less similar to the wildcard for-
mat used by the Windows command-line shell):

Find all the "regular" files and subdirectories in mydir. This excludes
hidden files, and the special directories . and ..
Dir["mydir/*"]
=> ["mydir/ruby_script.rb", "mydir/subdirectory", "mydir/text_file"]

Find all the .rb files in mydir
Dir["mydir/*.rb"] # => ["mydir/ruby_script.rb"]

You can also open a directory handle with Dir#open, and treat it like any other
Enumerable. Methods like each, each_with_index, grep, and reject will all work (but
see below if you want to call them more than once). As with File#open, you should
do your directory processing in a code block so that the directory handle will get
closed once you’re done with it.

Dir.open('mydir') { |d| d.grep /file/ }
=> [".hidden_file", "text_file"]

Dir.open('mydir') { |d| d.each { |x| puts x } }
.
..
.hidden_file
ruby_script.rb
subdirectory
text_file

Discussion
Reading entries from a Dir object is more like reading data from a file than iterating
over an array. If you call one of the Dir instance methods and then want to call
another one on the same Dir object, you’ll need to call Dir#rewind first to go back to
the beginning of the directory listing:

#Get all contents other than ".", "..", and hidden files.

d = Dir.open('mydir')
d.reject { |f| f[0] == '.' }
=> ["subdirectory", "ruby_script.rb", "text_file"]

200 | Chapter 6: Files and Directories

#Now the Dir object is useless until we call Dir#rewind.
d.entries.size # => 0
d.rewind
d.entries.size # => 6

#Get the names of all files in the directory.
d.rewind
d.reject { |f| !File.file? File.join(d.path, f) }
=> [".hidden_file", "ruby_script.rb", "text_file"]

d.close

Methods for listing directories and looking for files return string pathnames instead
of File and Dir objects. This is partly for efficiency, and partly because creating a
File or Dir actually opens up a filehandle on that file or directory.

Even so, it’s annoying to have to take the output of these methods and patch together
real File or Dir objects on which you can operate. Here’s a simple method that will
build a File or Dir, given a filename and the name or Dir of the parent directory:

def File.from_dir(dir, name)
 dir = dir.path if dir.is_a? Dir
 path = File.join(dir, name)
 (File.directory?(path) ? Dir : File).open(path) { |f| yield f }
end

As with File#open and Dir#open, the actual processing happens within a code block:

File.from_dir("mydir", "subdirectory") do |subdir|
 File.from_dir(subdir, "file_in_subdirectory") do |file|
 puts %{My path is #{file.path} and my contents are "#{file.read}".}
 end
end
My path is mydir/subdirectory/file_in_subdirectory and my contents are
"Just a simple file".

Globs make excellent shortcuts for finding files in a directory or a directory tree.
Especially useful is the ** glob, which matches any number of directories. A glob is
the easiest and fastest way to recursively process every file in a directory tree,
although it loads all the filenames into an array in memory. For a less memory-
intensive solution, see the find library, described in Recipe 6.12.

Dir["mydir/**/*"]
=> ["mydir/ruby_script.rb", "mydir/subdirectory", "mydir/text_file",
"mydir/subdirectory/file_in_subdirectory"]

Dir["mydir/**/*file*"]
=> ["mydir/text_file", "mydir/subdirectory/file_in_subdirectory"]

A brief tour of the other features of globs:

#Regex-style character classes
Dir["mydir/[rs]*"] # => ["mydir/ruby_script.rb", "mydir/subdirectory"]
Dir["mydir/[^s]*"] # => ["mydir/ruby_script.rb", "mydir/text_file"]

6.6 Reading the Contents of a File | 201

Match any of the given strings
Dir["mydir/{text,ruby}*"] # => ["mydir/text_file", "mydir/ruby_script.rb"]

Single-character wildcards
Dir["mydir/?ub*"] # => ["mydir/ruby_script.rb", "mydir/subdirectory"]

Globs will not pick up files or directories whose names start with periods, unless you
match them explicitly:

Dir["mydir/.*"] # => ["mydir/.", "mydir/..", "mydir/.hidden_file"]

See Also
• Recipe 6.12, “Walking a Directory Tree”

• Recipe 6.20, “Finding the Files You Want”

6.6 Reading the Contents of a File

Problem
You want to read some or all of a file into memory.

Solution
Open the file with Kernel#open, and pass in a code block that does the actual read-
ing. To read the entire file into a single string, use IO#read:

#Put some stuff into a file.
open('sample_file', 'w') do |f|
 f.write("This is line one.\nThis is line two.")
end

Then read it back out.
open('sample_file') { |f| f.read }
=> "This is line one.\nThis is line two."

To read the file as an array of lines, use IO#readlines:

open('sample_file') { |f| f.readlines }
=> ["This is line one.\n", "This is line two."]

To iterate over each line in the file, use IO#each. This technique loads only one line
into memory at a time:

open('sample_file').each { |x| p x }
"This is line one.\n"
"This is line two."

Discussion
How much of the file do you want to read into memory at once? Reading the entire
file in one gulp uses memory equal to the size of the file, but you end up with a
string, and you can use any of Ruby’s string processing techniques on it.

202 | Chapter 6: Files and Directories

The alternative is to process the file one chunk at a time. This uses only the memory
needed to store one chunk, but it can be more difficult to work with, because any
given chunk may be incomplete. To process a chunk, you may end up reading the
next chunk, and the next. This code reads the first 50-byte chunk from a file, but it
turns out not to be enough:

puts open('conclusion') { |f| f.read(50) }
"I know who killed Mr. Lambert," said Joe. "It was

If a certain string always marks the end of a chunk, you can pass that string into
IO#each to get one chunk at a time, as a series of strings. This lets you process each
full chunk as a string, and it uses less memory than reading the entire file.

Create a file...
open('end_separated_records', 'w') do |f|
 f << %{This is record one.
It spans multiple lines.ENDThis is record two.END}
end

And read it back in.
open('end_separated_records') { |f| f.each('END') { |record| p record } }
"This is record one.\nIt spans multiple lines.END"
"This is record two.END"

You can also pass a delimiter string into IO#readlines to get the entire file split into
an array by the delimiter string:

Create a file...
open('pipe_separated_records', 'w') do |f|
 f << "This is record one.|This is record two.|This is record three."
end

And read it back in.
open('pipe_separated_records') { |f| f.readlines('|') }
=> ["This is record one.|", "This is record two.|",
"This is record three."]

The newline character usually makes a good delimiter (many scripts process a file
one line at a time), so by default, IO#each and IO#readlines split the file by line:

open('newline_separated_records', 'w') do |f|
 f.puts 'This is record one. It cannot span multiple lines.'
 f.puts 'This is record two.'
end

open('newline_separated_records') { |f| f.each { |x| p x } }
"This is record one. It cannot span multiple lines.\n"
"This is record two.\n"

The trouble with newlines is that different operating systems have different newline
formats. Unix newlines look like “\n”, while Windows newlines look like “\r\n”,
and the newlines for old (pre-OS X) Macintosh files look like “\r”. A file uploaded to
a web application might come from any of those systems, but IO#each and

6.6 Reading the Contents of a File | 203

IO#readlines split files into lines depending on the newline character of the OS that’s
running the Ruby script (this is kept in the special variable $/). What to do?

By passing “\n” into IO#each or IO#readlines, you can handle the newlines of files
created on any recent operating system. If you need to handle all three types of new-
lines, the easiest way is to read the entire file at once and then split it up with a regu-
lar expression.

open('file_from_unknown_os') { |f| f.read.split(/\r?\n|\r(?!\n)/) }

IO#each and IO#readlines don’t strip the delimiter strings from the end of the lines.
Assuming the delimiter strings aren’t useful to you, you’ll have to strip them manually.

To strip delimiter characters from the end of a line, use the String#chomp or
String#chomp! methods. By default, these methods will remove the last character or
set of characters that can be construed as a newline. However, they can be made to
strip any other delimiter string from the end of a line.

"This line has a Unix/Mac OS X newline.\n".chomp
=> "This line has a Unix/Mac OS X newline."

"This line has a Windows newline.\r\n".chomp
=> "This line has a Windows newline."

"This line has an old-style Macintosh newline.\r".chomp
=> "This line has an old-style Macintosh newline."

"This string contains two newlines.\n\n".chomp
"This string contains two newlines.\n"

'This is record two.END'.chomp('END')
=> "This is record two."

'This string contains no newline.'.chomp
=> "This string contains no newline."

You can chomp the delimiters as IO#each yields each record, or you can chomp each line
returned by IO#readlines:

open('pipe_separated_records') do |f|
 f.each('|') { |l| puts l.chomp('|') }
end
This is record one.
This is record two.
This is record three.

lines = open('pipe_separated_records') { |f| f.readlines('|') }
=> ["This is record one.|", "This is record two.|",
"This is record three."]
lines.each { |l| l.chomp!('|') }
=> ["This is record one.", "This is record two.", "This is record three."]

You’ve got a problem if a file is too big to fit into memory, and there are no known
delimiters, or if the records between the delimiters are themselves too big to fit in

204 | Chapter 6: Files and Directories

memory. You’ve got no choice but to read from the file in chunks of a certain num-
ber of bytes. This is also the best way to read binary files; see Recipe 6.17 for more.

Use IO#read to read a certain number of bytes, or IO#each_byte to iterate over the File
one byte at a time. The following code uses IO#read to continuously read uniformly
sized chunks until it reaches end-of-file:

class File
 def each_chunk(chunk_size=1024)
 yield read(chunk_size) until eof?
 end
end

open("pipe_separated_records") do |f|
 f.each_chunk(15) { |chunk| puts chunk }
end
This is record
one.|This is re
cord two.|This
is record three
.

All of these methods are made available by the IO class, the superclass of File. You
can use the same methods on Socket objects. You can also use each and each_byte on
String objects, which in some cases can save you from having to create a StringIO
object (see Recipe 6.15 for more on those beasts).

See Also
• Recipe 6.11, “Performing Random Access on “Read-Once” Input Streams”

• Recipe 6.17, “Processing a Binary File,” goes into more depth about reading files
as chunks of bytes

• Recipe 6.15, “Pretending a String Is a File”

6.7 Writing to a File

Problem
You want to write some text or Ruby data structures to a file. The file might or might
not exist. If it does exist, you might want to overwrite the old contents, or just
append new data to the end of the file.

Solution
Open the file in write mode ('w'). The file will be created if it doesn’t exist, and trun-
cated to zero bytes if it does exist. You can then use IO#write or the << operator to
write strings to the file, as though the file itself were a string and you were append-
ing to it.

6.7 Writing to a File | 205

You can also use IO#puts or IO#p to write lines to the file, the same way you can use
Kernel#puts or Kernel#p to write lines to standard output.

Both of the following chunks of code destroy the previous contents of the file output,
then write a new string to the file:

open('output', 'w') { |f| f << "This file contains great truths.\n" }
open('output', 'w') do |f|
 f.puts 'The great truths have been overwritten with an advertisement.'
end

open('output') { |f| f.read }
=> "The great truths have been overwritten with an advertisement.\n"

To append to a file without overwriting its old contents, open the file in append
mode ('a') instead of write mode:

open('output', "a") { |f| f.puts 'Buy Ruby(TM) brand soy sauce!' }

open('output') { |f| puts f.read }
The great truths have been overwritten with an advertisement.
Buy Ruby(TM) brand soy sauce!

Discussion
Sometimes you’ll only need to write a single (possibly very large) string to a file. Usu-
ally, though, you’ll be getting your strings one at a time from a data structure or
some other source, and you’ll call puts or the append operator within some kind of
loop:

open('output', 'w') do |f|
 [1,2,3].each { |i| f << i << ' and a ' }
end

open('output') { |f| f.read } # => "1 and a 2 and a 3 and a "

Since the << operator returns the filehandle it wrote to, you can chain calls to it. As
seen above, this feature lets you write multiple strings to a file in a single line of Ruby
code.

Because opening a file in write mode destroys the file’s existing contents, you should
only use it when you don’t care about the old contents, or after you’ve read them into
memory for later use. Append mode is nondestructive, making it useful for files like log
files, which need to be updated periodically without destroying their old contents.

Buffered I/O

There’s no guarantee that data will be written to your file as soon as you call << or
puts. Since disk writes are expensive, Ruby lets changes to a file pile up in a buffer. It
occasionally flushes the buffer, sending the data to the operating system so it can be
written to disk.

206 | Chapter 6: Files and Directories

You can manually flush Ruby’s buffer for a particular file by calling its IO#flush
method. You can turn off Ruby’s buffering altogether by setting IO.sync to false.
However, your operating system probably does some disk buffering of its own, so
doing these things won’t neccessarily write your changes directly to disk.

open('output', 'w') do |f|
 f << 'This is going into the Ruby buffer.'
 f.flush # Now it's going into the OS buffer.
end

IO.sync = false
open('output', 'w') { |f| f << 'This is going straight into the OS buffer.' }

See Also
• Recipe 1.1, “Building a String from Parts”

• Recipe 6.6, “Reading the Contents of a File”

• Recipe 6.19, “Truncating a File”

6.8 Writing to a Temporary File

Problem
You want to write data to a secure temporary file with a unique name.

Solution
Create a Tempfile object. It has all the methods of a File object, and it will be in a
location on disk guaranteed to be unique.

require 'tempfile'
out = Tempfile.new("tempfile")
out.path # => "/tmp/tempfile23786.0"

A Tempfile object is opened for read-write access (mode w+), so you can write to it
and then read from it without having to close and reopen it:

out << "Some text."
out.rewind
out.read # => "Some text."
out.close

Note that you can’t pass a code block into the Tempfile constructor: you have to
assign the temp file to an object, and call Tempfile#close when you’re done.

Discussion
To avoid security problems, use the Tempfile class to generate temp file names,
instead of writing the code yourself. The Tempfile class creates a file on disk guaran-
teed not to be in use by any other thread or process, and sets that file’s permissions

6.9 Picking a Random Line from a File | 207

so that only you can read or write to it. This eliminates any possibility that a hostile
process might inject fake data into the temp file, or read what you write.*

The name of a temporary file incorporates the string you pass into the Tempfile con-
structor, the process ID of the current process ($$, or $PID if you’ve done an include
English), and a unique number. By default, temporary files are created in Dir::
tmpdir (usually /tmp), but you can pass in a different directory name:

out = Tempfile.new("myhome_tempfile", "/home/leonardr/temp/")

No matter where you create your temporary files, when your process exits, all of its
temporary files are automatically destroyed. If you want the data you wrote to tem-
porary files to live longer than your process, you should copy or move the temporary
files to “real” files:

require 'fileutils'
FileUtils.mv(out.path, "/home/leonardr/old_tempfile")

The tempfile assumes that the operating system can atomically open a file and get an
exclusive lock on it. This doesn’t work on all filesystems. Ara Howard’s lockfile
library (available as a gem of the same name) uses linking, which is atomic everywhere.

6.9 Picking a Random Line from a File

Problem
You want to choose a random line from a file, without loading the entire file into
memory.

Solution
Iterate over the file, giving each line a chance to be the randomly selected one:

module Enumerable
 def random_line
 selected = nil
 each_with_index { |line, lineno| selected = line if rand < 1.0/lineno }
 return selected.chomp if selected
 end
end

#Create a file with 1000 lines
open('random_line_test', 'w') do |f|
 1000.times { |i| f.puts "Line #{i}" }
end

#Pick random lines from the file.
f = open('random_line_test')

* Unless the hostile process is running as you or as the root user, but then you’ve got bigger problems.

208 | Chapter 6: Files and Directories

f.random_line # => "Line 520"
f.random_line # => nil
f.rewind
f.random_line # => "Line 727"

Discussion
The obvious solution reads the entire file into memory:

File.open('random_line_test') do |f|
 l = f.readlines
 l[rand(l.size)].chomp
end
=> "Line 708"

The recommended solution is just as fast, and only reads one line at a time into
memory. However, once it’s done, the file pointer has been set to the end of the file
and you can’t access the file anymore without calling File#rewind. If you want to
pick a lot of random lines from a file, reading the entire file into memory might be
preferable to iterating over it multiple times.

This recipe makes for a good command-line tool. The following code uses the spe-
cial variable $., which holds the number of the line most recently read from a file:

$ ruby -e 'rand < 1.0/$. and line = $_ while gets; puts line.chomp if line'

The algorithm works because, although lines that come earlier in the file have a bet-
ter chance of being selected initially, they also have more chances to be replaced by a
later line. A proof by induction demonstrates that the algorithm gives equal weight
to each line in the file.

The base case is a file of a single line, where it will obviously work: any value of
Kernel#rand will be less than 1, so the first line will always be chosen.

Now for the inductive step. Assume that the algorithm works for a file of n lines: that
is, each of the first n lines has a 1/n chance of being chosen. Then, add another line
to the file and process the new line. The chance that line n+1 will become the ran-
domly chosen line is 1/(n+1). The remaining probability, n/n+1, is the chance that
one of the other n lines is the randomly chosen one.

Our inductive assumption was that each of the n original lines had an equal chance
of being chosen, so this remaining n/n+1 probability must be distributed evenly
across the n original lines. Given a line in the first n, what’s it’s chance of being the
chosen one? It’s just n/n+1 divided by n, or 1/n+1. Line n+1 and all earlier lines have
a 1/n+1 chance of being chosen, so the choice is truly random.

See Also
• Recipe 2.5, “Generating Random Numbers”

• Recipe 4.10, “Shuffling an Array”

• Recipe 5.11, “Choosing Randomly from a Weighted List”

6.10 Comparing Two Files | 209

6.10 Comparing Two Files

Problem
You want to see if two files contain the same data. If they differ, you might want to
represent the differences between them as a string: a patch from one to the other.

Solution
If two files differ, it’s likely that their sizes also differ, so you can often solve the
problem quickly by comparing sizes. If both files are regular files with the same size,
you’ll need to look at their contents.

This code does the cheap checks first:

1. If one file exists and the other does not, they’re not the same.

2. If neither file exists, say they’re the same.

3. If the files are the same file, they’re the same.

4. If the files are of different types or sizes, they’re not the same.
class File
 def File.same_contents(p1, p2)
 return false if File.exists?(p1) != File.exists?(p2)
 return true if !File.exists?(p1)
 return true if File.expand_path(p1) == File.expand_path(p2)
 return false if File.ftype(p1) != File.ftype(p2) ||
 File.size(p1) != File.size(p2)

Otherwise, it compares the files contents, a block at a time:

 open(p1) do |f1|
 open(p2) do |f2|
 blocksize = f1.lstat.blksize
 same = true
 while same && !f1.eof? && !f2.eof?
 same = f1.read(blocksize) == f2.read(blocksize)
 end
 return same
 end
 end
 end
end

To illustrate, I’ll create two identical files and compare them. I’ll then make them
slightly different, and compare them again.

1.upto(2) do |i|
 open("output#{i}", 'w') { |f| f << 'x' * 10000 }
end
File.same_contents('output1', 'output2') # => true

210 | Chapter 6: Files and Directories

open("output1", 'a') { |f| f << 'x' }
open("output2", 'a') { |f| f << 'y' }
File.same_contents('output1', 'output2') # => false

File.same_contents('nosuchfile', 'output1') # => false
File.same_contents('nosuchfile1', 'nosuchfile2') # => true

Discussion
The code in the Solution works well if you only need to determine whether two files
are identical. If you need to see the differences between two files, the most useful
tool is is Austin Ziegler’s Diff::LCS library, available as the diff-lcs gem. It imple-
ments a sophisticated diff algorithm that can find the differences between any two
enumerable objects, not just strings. You can use its LCS module to represent the dif-
ferences between two nested arrays, or other complex data structures.

The downside of such flexibility is a poor interface when you just want to diff two
files or strings. A diff is represented by an array of Change objects, and though you
can traverse this array in helpful ways, there’s no simple way to just turn it into a
string representation of the sort you might get by running the Unix command diff.

Fortunately, the lcs-diff gem comes with command-line diff programs ldiff and
htmldiff. If you need to perform a textual diff from within Ruby code, you can do
one of the following:

1. Call out to one of those programs: assuming the gem is installed, this is more
portable than relying on the Unix diff command.

2. Import the program’s underlying library, and fake a command-line call to it.
You’ll have to modify your own program’s ARGV, at least temporarily.

3. Write Ruby code that copies one of the underlying implementations to do what
you want.

Here’s some code, adapted from the ldiff command-line program, which builds a
string representation of the differences between two strings. The result is something
you might see by running ldiff, or the Unix command diff. The most common diff
formats are :unified and :context.

require 'rubygems'
require 'diff/lcs/hunk'

def diff_as_string(data_old, data_new, format=:unified, context_lines=3)

First we massage the data into shape for the diff algorithm:

 data_old = data_old.split(/\n/).map! { |e| e.chomp }
 data_new = data_new.split(/\n/).map! { |e| e.chomp }

Then we perform the diff, and transform each “hunk” of it into a string:

 output = ""
 diffs = Diff::LCS.diff(data_old, data_new)

6.10 Comparing Two Files | 211

 return output if diffs.empty?
 oldhunk = hunk = nil
 file_length_difference = 0
 diffs.each do |piece|
 begin
 hunk = Diff::LCS::Hunk.new(data_old, data_new, piece, context_lines,
 file_length_difference)
 file_length_difference = hunk.file_length_difference
 next unless oldhunk

 # Hunks may overlap, which is why we need to be careful when our
 # diff includes lines of context. Otherwise, we might print
 # redundant lines.
 if (context_lines > 0) and hunk.overlaps?(oldhunk)
 hunk.unshift(oldhunk)
 else
 output << oldhunk.diff(format)
 end
 ensure
 oldhunk = hunk
 output << "\n"
 end
 end

 #Handle the last remaining hunk
 output << oldhunk.diff(format) << "\n"
end

Here it is in action:

s1 = "This is line one.\nThis is line two.\nThis is line three.\n"
s2 = "This is line 1.\nThis is line two.\nThis is line three.\n" +
 "This is line 4.\n"
puts diff_as_string(s1, s2)
@@ -1,4 +1,5 @@
-This is line one.
+This is line 1.
This is line two.
This is line three.
+This is line 4.

With all that code, on a Unix system you could be forgiven for just calling out to the
Unix diff program:

open('old_file', 'w') { |f| f << s1 }
open('new_file', 'w') { |f| f << s2 }

puts %x{diff old_file new_file}
1c1
< This is line one.

> This is line 1.
3a4
> This is line 4.

212 | Chapter 6: Files and Directories

See Also
• The algorithm-diff gem is another implementation of a general diff algorithm;

its API is a little simpler than diff-lcs, but it has the same basic structure; both
gems are descended from Perl’s Algorithm::Diff module

• It’s not available as a gem, but the diff.rb package is a little easier to script from
Ruby if you need to create a textual diff of two files; look at how the unixdiff.rb
program creates a Diff object and manipulates it (http://users.cybercity.dk/
~dsl8950/ruby/diff.html)

• The MD5 checksum is often used in file comparisons: I didn’t use it in this rec-
ipe because when you’re only comparing two files, it’s faster to compare their
contents; in Recipe 23.7, “Finding Duplicate Files,” though, the MD5 checksum
is used as a convenient shorthand for the contents of many files

6.11 Performing Random Access on “Read-Once”
Input Streams

Problem
You have an IO object, probably a socket, that doesn’t support random-access meth-
ods like seek, pos=, and rewind. You want to treat this object like a file on disk, where
you can jump around and reread parts of the file.

Solution
The simplest solution is to read the entire contents of the socket (or as much as
you’re going to need) and put it into a StringIO object. You can then treat the
StringIO object exactly like a file:

require 'socket'
require 'stringio'

sock = TCPSocket.open("www.example.com", 80)
sock.write("GET /\n")

file = StringIO.new(sock.read)
file.read(10) # => "<HTML>\r\n<H"
file.rewind
file.read(10) # => "<HTML>\r\n<H"
file.pos = 90
file.read(15) # => " this web page "

Discussion
A socket is supposed to work just like a file, but sometimes the illusion breaks down.
Since the data is coming from another computer over which you have no control, you

6.11 Performing Random Access on “Read-Once” Input Streams | 213

can’t just go back and reread data you’ve already read. That data has already been sent
over the pipe, and the server doesn’t care if you lost it or need to process it again.

If you have enough memory to read the entire contents of a socket, it’s easy to put
the results into a form that more closely simulates a file on disk. But you might not
want to read the entire socket, or the socket may be one that keeps sending data until
you close it. In that case you’ll need to buffer the data as you read it. Instead of using
memory for the entire contents of the socket (which may be infinite), you’ll only use
memory for the data you’ve actually read.

This code defines a BufferedIO class that adds data to an internal StringIO as it’s read
from its source:

class BufferedIO
 def initialize(io)
 @buff = StringIO.new
 @source = io
 @pos = 0
 end

 def read(x=nil)
 to_read = x ? to_read = x+@buff.pos-@buff.size : nil
 _append(@source.read(to_read)) if !to_read or to_read > 0
 @buff.read(x)
 end

 def pos=(x)
 read(x-@buff.pos) if x > @buff.size
 @buff.pos = x
 end

 def seek(x, whence=IO::SEEK_SET)
 case whence
 when IO::SEEK_SET then self.pos=(x)
 when IO::SEEK_CUR then self.pos=(@buff.pos+x)
 when IO::SEEK_END then read; self.pos=(@buff.size-x)
 # Note: SEEK END reads all the socket data.
 end
 pos
 end

 # Some methods can simply be delegated to the buffer.
 ["pos", "rewind", "tell"].each do |m|
 module_eval "def #{m}\n@buff.#{m}\nend"
 end

 private

 def _append(s)
 @buff << s
 @buff.pos -= s.size
 end
end

214 | Chapter 6: Files and Directories

Now you can seek, rewind, and generally move around in an input socket as if it were
a disk file. You only have to read as much data as you need:

sock = TCPSocket.open("www.example.com", 80)
sock.write("GET /\n")
file = BufferedIO.new(sock)

file.read(10) # => "<HTML>\r\n<H"
file.rewind # => 0
file.read(10) # => "<HTML>\r\n<H"
file.pos = 90 # => 90
file.read(15) # => " this web page "
file.seek(-10, IO::SEEK_CUR) # => 95
file.read(10) # => " web page "

BufferedIO doesn’t implement all the methods of IO, only the ones not implemented
by socket-type IO objects. If you need the other methods, you should be able to
implement the ones you need using the existing methods as guidelines. For instance,
you could implement readline like this:

class BufferedIO
 def readline
 oldpos = @buff.pos
 line = @buff.readline unless @buff.eof?
 if !line or line[-1] != ?\n
 _append(@source.readline) # Finish the line
 @buff.pos = oldpos # Go back to where we were
 line = @buff.readline # Read the line again
 end
 line
 end
end

file.readline # => "by typing "example.com",\r\n"

See Also
• Recipe 6.17, “Processing a Binary File,” for more information on IO#seek

6.12 Walking a Directory Tree

Problem
You want to recursively process every subdirectory and file within a certain directory.

Solution
Suppose that the directory tree you want to walk looks like this (see this chapter’s
introduction section for the create_tree library that can build this directory tree
automatically):

6.12 Walking a Directory Tree | 215

require 'create_tree'
create_tree './' =>
 ['file1',
 'file2',
 { 'subdir1/' => ['file1'] },
 { 'subdir2/' => ['file1',
 'file2',
 { 'subsubdir/' => ['file1'] }
]
 }
]

The simplest solution is to load all the files and directories into memory with a big
recursive file glob, and iterate over the resulting array. This uses a lot of memory
because all the filenames are loaded into memory at once:

Dir['**/**']
=> ["file1", "file2", "subdir1", "subdir2", "subdir1/file1",
"subdir2/file1", "subdir2/file2", "subdir2/subsubdir",
"subdir2/subsubdir/file1"]

A more elegant solution is to use the find method in the Find module. It performs a
depth-first traversal of a directory tree, and calls the given code block on each direc-
tory and file. The code block should take as an argument the full path to a directory
or file.

This snippet calls Find.find with a code block that simply prints out each path it
receives. This demonstrates how Ruby performs the traversal:

require 'find'
Find.find('./') { |path| puts path }
./
./subdir2
./subdir2/subsubdir
./subdir2/subsubdir/file1
./subdir2/file2
./subdir2/file1
./subdir1
./subdir1/file1
./file2
./file1

Discussion
Even if you’re not a system administrator, the demands of keeping your own files
organized will frequently call for you to process every file in a directory tree. You
may want to backup, modify, or delete each file in the directory structure, or you
may just want to see what’s there.

Normally you’ll want to at least look at every file in the tree, but sometimes you’ll
want to skip certain directories. For instance, you might know that a certain direc-
tory is full of a lot of large files you don’t want to process. When your block is passed
a path to a directory, you can prevent Find.find from recursing into a directory by

216 | Chapter 6: Files and Directories

calling Find.prune. In this example, I’ll prevent Find.find from processing the files in
the subdir2 directory.

Find.find('./') do |path|
 Find.prune if File.basename(path) == 'subdir2'
 puts path
end
./
./subdir1
./subdir1/file1
./file2
./file1

Calling Find.prune when your block has been passed a file will only prevent Find.
find from processing that one file. It won’t halt the processing of the rest of the files
in that directory:

Find.find('./') do |path|
 if File.basename(path) =~ /file2$/
 puts "PRUNED #{path}"
 Find.prune
 end
 puts path
end
./
./subdir2
./subdir2/subsubdir
./subdir2/subsubdir/file1
PRUNED ./subdir2/file2
./subdir2/file1
./subdir1
./subdir1/file1
PRUNED ./file2
./file1

Find.find works by keeping a queue of files to process. When it finds a directory, it
inserts that directory’s files at the beginning of the queue. This gives it the character-
istics of a depth-first traversal. Note how all the files in the top-level directory are
processed after the subdirectories. The alternative would be a breadth-first traversal,
which would process the files in a directory before even touching the subdirectories.

If you want to do a breadth-first traversal instead of a depth-first one, the simplest
solution is to use a glob and sort the resulting array. Pathnames sort naturally in a
way that simulates a breadth-first traversal:

Dir["**/**"].sort.each { |x| puts x }
file1
file2
subdir1
subdir1/file1
subdir2
subdir2/file1
subdir2/file2
subdir2/subsubdir
subdir2/subsubdir/file1

6.13 Locking a File | 217

See Also
• Recipe 6.20, “Finding the Files You Want”

• Recipe 23.7, “Finding Duplicate Files”

6.13 Locking a File

Problem
You want to prevent other threads or processes from modifying a file that you’re
working on.

Solution
Open the file, then lock it with File#flock. There are two kinds of lock; pass in the
File constant for the kind you want.

• File::LOCK_EX gives you an exclusive lock, or write lock. If your thread has an
exclusive lock on a file, no other thread or process can get a lock on that file. Use
this when you want to write to a file without anyone else being able to write to it.

• File::LOCK_SH will give you a shared lock, or read lock. Other threads and pro-
cesses can get their own shared locks on the file, but no one can get an exclusive
lock. Use this when you want to read a file and know that it won’t change while
you’re reading it.

Once you’re done using the file, you need to unlock it. Call File#flock again, and pass
in File::LOCK_UN as the lock type. You can skip this step if you’re running on Windows.

The best way to handle all this is to enclose the locking and unlocking in a method
that takes a block, the way open does:

def flock(file, mode)
 success = file.flock(mode)
 if success
 begin
 yield file
 ensure
 file.flock(File::LOCK_UN)
 end
 end
 return success
end

This makes it possible to lock a file without having to worry about unlocking it later.
Even if your block raises an exception, the file will be unlocked and another thread
can use it.

open('output', 'w') do |f|
 flock(f, File::LOCK_EX) do |f|

218 | Chapter 6: Files and Directories

 f << "Kiss me, I've got a write lock on a file!"
 end
end

Discussion
Different operating systems support different ways of locking files. Ruby’s flock
implementation tries to hide the differences behind a common interface that looks
like Unix’s file locking interface. In general, you can use flock as though you were on
Unix, and your scripts will work across platforms.

On Unix, both exclusive and shared locks work only if all threads and processes play
by the rules. If one thread has an exclusive lock on a file, another thread can still
open the file without locking it and wreak havoc by overwriting its contents. That’s
why it’s important to get a lock on any file that might conceivably be used by
another thread or another process on the system.

Ruby’s block-oriented coding style makes it easy to do the right thing with locking.
The following shortcut method works with the flock method previously defined. It
takes care of opening, locking, unlocking, and closing a file, letting you focus on
whatever you want to do with the file’s contents.

def open_lock(filename, openmode="r", lockmode=nil)
 if openmode == 'r' || openmode == 'rb'
 lockmode ||= File::LOCK_SH
 else
 lockmode ||= File::LOCK_EX
 end
 value = nil
 open(filename, openmode) do |f|
 flock(f, lockmode) do
 begin
 value = yield f
 ensure
 f.flock(File::LOCK_UN) # Comment this line out on Windows.
 end
 end
 return value
 end
end

This code creates two threads, each of which want to access the same file. Thanks to
locks, we can guarantee that only one thread is accessing the file at a time (see
Chapter 20 if you’re not comfortable with threads).

t1 = Thread.new do
 puts 'Thread 1 is requesting a lock.'
 open_lock('output', 'w') do |f|
 puts 'Thread 1 has acquired a lock.'
 f << "At last we're alone!"
 sleep(5)
 end

6.13 Locking a File | 219

 puts 'Thread 1 has released its lock.'
end

t2 = Thread.new do
 puts 'Thread 2 is requesting a lock.'
 open_lock('output', 'r') do |f|
 puts 'Thread 2 has acquired a lock.'
 puts "File contents: #{f.read}"
 end
 puts 'Thread 2 has released its lock.'
end
t1.join
t2.join
Thread 1 is requesting a lock.
Thread 1 has acquired a lock.
Thread 2 is requesting a lock.
Thread 1 has released its lock.
Thread 2 has acquired a lock.
File contents: At last we're alone!
Thread 2 has released its lock.

Nonblocking locks

If you try to get an exclusive or shared lock on a file, your thread will block until
Ruby can lock the file. But you might be left waiting a long time, perhaps forever.
The code that has the file locked may be buggy and in an infinite loop; or it may
itself be blocking, waiting to lock a file that you have locked.

You can avoid deadlock and similar problems by asking for a nonblocking lock.
When you do, if Ruby can’t lock the file for you, File#flock returns false, rather than
waiting (possibly forever) for another thread or process to release its lock. If you
don’t get a lock, you can wait a while and try again, or you can raise an exception
and let the user deal with it.

To make a lock into a nonblocking lock, use the OR operator (|) to combine File::
LOCK_NB with either File::LOCK_EX or File::LOCK_SH.

The following code will print “I’ve got a lock!” if it can get an exclusive lock on the
file “output”; otherwise it will print “I couldn’t get a lock.” and continue:

def try_lock
 puts "I couldn't get a lock." unless
 open_lock('contested', 'w', File::LOCK_EX | File::LOCK_NB) do
 puts "I've got a lock!"
 true
 end
end

try_lock
I've got a lock!

open('contested', 'w').flock(File::LOCK_EX) # Get a lock, hold it forever.

220 | Chapter 6: Files and Directories

try_lock
I couldn't get a lock.

See Also
• Chapter 20, especially Recipe 20.11, “Avoiding Deadlock,” which covers other

types of deadlock problems in a multithreaded environment

6.14 Backing Up to Versioned Filenames

Problem
You want to copy a file to a numbered backup before overwriting the original file.
More generally: rather than overwriting an existing file, you want to use a new file
whose name is based on the original filename.

Solution
Use String#succ to generate versioned suffixes for a filename until you find one that
doesn’t already exist:

class File
 def File.versioned_filename(base, first_suffix='.0')
 suffix = nil
 filename = base
 while File.exists?(filename)
 suffix = (suffix ? suffix.succ : first_suffix)
 filename = base + suffix
 end
 return filename
 end
end

5.times do |i|
 name = File.versioned_filename('filename.txt')
 open(name, 'w') { |f| f << "Contents for run #{i}" }
 puts "Created #{name}"
end
Created filename.txt
Created filename.txt.0
Created filename.txt.1
Created filename.txt.2
Created filename.txt.3

If you want to copy or move the original file to the versioned filename as a prelude to
writing to the original file, include the ftools library to add the class methods File.
copy and File.move. Then call versioned_filename and use File.copy or File.move to
put the old file in its new place:

require 'ftools'
class File

6.14 Backing Up to Versioned Filenames | 221

 def File.to_backup(filename, move=false)
 new_filename = nil
 if File.exists? filename
 new_filename = File.versioned_filename(filename)
 File.send(move ? :move : :copy, filename, new_filename)
 end
 return new_filename
 end
end

Let’s back up filename.txt a couple of times. Recall from earlier that the files
filename.txt.[0-3] already exist.

File.to_backup('filename.txt') # => "filename.txt.4"
File.to_backup('filename.txt') # => "filename.txt.5"

Now let’s do a destructive backup:

File.to_backup('filename.txt', true) # => "filename.txt.6"
File.exists? 'filename.txt' # => false

You can’t back up what doesn’t exist:

File.to_backup('filename.txt') # => nil

Discussion
If you anticipate more than 10 versions of a file, you should add additional zeroes to
the initial suffix. Otherwise, filename.txt.10 will sort before filename.txt.2 in a
directory listing. A commonly used suffix is “.000”.

200.times do |i|
 name = File.versioned_filename('many_versions.txt', '.000')
 open(name, 'w') { |f| f << "Contents for run #{i}" }
 puts "Created #{name}"
end
Created many_versions.txt
Created many_versions.txt.000
Created many_versions.txt.001
...
Created many_versions.txt.197
Created many_versions.txt.198

The result of versioned_filename won’t be trustworthy if other threads or processes
on your machine might be trying to write the same file. If this is a concern for you,
you shouldn’t be satisfied with a negative result from File.exists?. In the time it
takes to open that file, some other process or thread might open it before you. Once
you find a file that doesn’t exist, you must get an exclusive lock on the file before you
can be totally certain it’s okay to use.

Here’s how such an implementation might look on a Unix system. The versioned_
filename methods return the name of a file, but this implementation needs to return the
actual file, opened and locked. This is the only way to avoid a race condition between
the time the method returns a filename, and the time you open and lock the file.

222 | Chapter 6: Files and Directories

class File
 def File.versioned_file(base, first_suffix='.0', access_mode='w')
 suffix = file = locked = nil
 filename = base
 begin
 suffix = (suffix ? suffix.succ : first_suffix)
 filename = base + suffix
 unless File.exists? filename
 file = open(filename, access_mode)
 locked = file.flock(File::LOCK_EX | File::LOCK_NB)
 file.close unless locked
 end
 end until locked
 return file
 end
end

File.versioned_file('contested_file') # => #<File:contested_file.0>
File.versioned_file('contested_file') # => #<File:contested_file.1>
File.versioned_file('contested_file') # => #<File:contested_file.2>

The construct begin...end until locked creates a loop that runs at least once, and
continues to run until the variable locked becomes true, indicating that a file has
been opened and successfully locked.

See Also
• Recipe 6.13, “Locking a File”

6.15 Pretending a String Is a File

Problem
You want to call code that expects to read from an open file object, but your source
is a string in memory. Alternatively, you want to call code that writes its output to a
file, but have it actually write to a string.

Solution
The StringIO class wraps a string in the interface of the IO class. You can treat it like
a file, then get everything that’s been “written” to it by calling its string method.

Here’s a StringIO used as an input source:

require 'stringio'
s = StringIO.new %{I am the very model of a modern major general.
I've information vegetable, animal, and mineral.}

s.pos # => 0
s.each_line { |x| puts x }
I am the very model of a modern major general.
I've information vegetable, animal, and mineral.

6.15 Pretending a String Is a File | 223

s.eof? # => true
s.pos # => 95
s.rewind
s.pos # => 0
s.grep /general/
=> ["I am the very model of a modern major general.\n"]

Here are StringIO objects used as output sinks:

s = StringIO.new
s.write('Treat it like a file.')
s.rewind
s.write("Act like it's")
s.string # => "Act like it's a file."

require 'yaml'
s = StringIO.new
YAML.dump(['A list of', 3, :items], s)
puts s.string

- A list of
- 3
- :items

Discussion
The Adapter is a common design pattern: to make an object acceptable as input to a
method, it’s wrapped in another object that presents the appropriate interface. The
StringIO class is an Adapter between String and File (or IO), designed for use with
methods that work on File or IO instances. With a StringIO, you can disguise a
string as a file and use those methods without them ever knowing they haven’t really
been given a file.

For instance, if you want to write unit tests for a library that reads from a file, the
simplest way is to pass in predefined StringIO objects that simulate files with various
contents. If you need to modify the output of a method that writes to a file, a
StringIO can capture the output, making it easy to modify and send on to its final
destination.

StringIO-type functionality is less necessary in Ruby than in languages like Python,
because in Ruby, strings and files implement a lot of the same methods to begin
with. Often you can get away with simply using these common methods. For
instance, if all you’re doing is writing to an output sink, you don’t need a StringIO
object, because String#<< and File#<< work the same way:

def make_more_interesting(io)
 io << "... OF DOOM!"
end

make_more_interesting("Cherry pie") # => "Cherry pie... OF DOOM!"

open('interesting_things', 'w') do |f|

224 | Chapter 6: Files and Directories

 f.write("Nightstand")
 make_more_interesting(f)
end
open('interesting_things') { |f| f.read } # => "Nightstand... OF DOOM!"

Similarly, File and String both include the Enumerable mixin, so in a lot of cases you
can read from an object without caring what type it is. This is a good example of
Ruby’s duck typing.

Here’s a string:

poem = %{The boy stood on the burning deck
Whence all but he had fled
He'd stayed above to wash his neck
Before he went to bed}

and a file containing that string:

output = open("poem", "w")
output.write(poem)
output.close
input = open("poem")

will give the same result when you call an Enumerable method:

poem.grep /ed$/
=> ["Whence all but he had fled\n", "Before he went to bed"]
input.grep /ed$/
=> ["Whence all but he had fled\n", "Before he went to bed"]

Just remember that, unlike a string, you can’t iterate over a file multiple times with-
out calling rewind:

input.grep /ed$/ # => []
input.rewind
input.grep /ed$/
=> ["Whence all but he had fled\n", "Before he went to bed"]

StringIO comes in when the Enumerable methods and << aren’t enough. If a method
you’re writing needs to use methods specific to IO, you can accept a string as input
and wrap it in a StringIO. The class also comes in handy when you need to call a
method someone else wrote, not anticipating that anyone would ever need to call it
with anything other than a file:

def fifth_byte(file)
 file.seek(5)
 file.read(1)
end

fifth_byte("123456")
NoMethodError: undefined method `seek' for "123456":String
fifth_byte(StringIO.new("123456")) # => "6"

When you write a method that accepts a file as an argument, you can silently accom-
modate callers who pass in strings by wrapping in a StringIO any string that gets
passed in:

6.16 Redirecting Standard Input or Output | 225

def file_operation(io)
 io = StringIO(io) if io.respond_to? :to_str && !io.is_a? StringIO
 #Do the file operation...
end

A StringIO object is always open for both reading and writing:

s = StringIO.new
s << "A string"
s.read # => ""
s << ", and more."
s.rewind
s.read # => "A string, and more."

Memory access is faster than disk access, but for large amounts of data (more than
about 10 kilobytes), StringIO objects are slower than disk files. If speed is your aim,
your best bet is to write to and read from temp files using the tempfile module. Or
you can do what the open-uri library does: start off by writing to a StringIO and, if it
gets too big, switch to using a temp file.

See Also
• Recipe 6.8, “Writing to a Temporary File”

• Recipe 6.11, “Performing Random Access on “Read-Once” Input Streams”

6.16 Redirecting Standard Input or Output

Problem
You don’t want the standard input, output, or error of your process to go to the
default IO objects set up by the Ruby interpreter. You want them to go to other file-
type objects of your own choosing.

Solution
You can assign any IO object (a File, a Socket, or what have you) to the global vari-
ables $stdin, $stdout, or $stderr. You can then read from or write to those objects as
though they were the originals.

This short Ruby program demonstrates how to redirect the Kernel methods that
print to standard output. To avoid confusion, I’m presenting it as a standalone Ruby
program rather than an interactive irb session.*

#!/usr/bin/ruby -w
./redirect_stdout.rb
require 'stringio'
new_stdout = StringIO.new

* irb prints the result of each Ruby expression to $stdout, which tends to clutter the results in this case.

226 | Chapter 6: Files and Directories

$stdout = new_stdout
puts "Hello, hello."
puts "I'm writing to standard output."

$stderr.puts "#{new_stdout.size} bytes written to standard ouput so far."
$stderr.puts "You haven't seen anything on the screen yet, but you soon will:"
$stderr.puts new_stdout.string

Run this program and you’ll see the following:

$ ruby redirect_stdout.rb
46 bytes written to standard output so far.
You haven't seen anything on the screen yet, but you soon will:
Hello, hello.
I'm writing to standard output.

Discussion
If you have any Unix experience, you know that when you run a Ruby script from
the command line, you can make the shell redirect its standard input, output, and
error streams to files or other programs. This technique lets you do the same thing
from within a Ruby script.

You can use this as a quick and dirty way to write errors to a file, write output to a
StringIO object (as seen above), or even read input from a socket. Within a script,
you can programatically decide where to send your output, or receive standard input
from multiple sources. These things are generally not possible from the command
line without a lot of fancy shell scripting.

The redirection technique is especially useful when you’ve written or inherited a
script that prints text to standard output, and you need to make it capable of print-
ing to any file-like object. Rather than changing almost every line of your code, you
can just set $stdout at the start of your program, and let it run as is. This isn’t a per-
fect solution, but it’s often good enough.

The original input and output streams for a process are always available as the con-
stants STDIN, STDOUT, and STDERR. If you want to temporarily swap one IO stream for
another, change back to the “standard” standard output by setting $stdin = STDIN.
Keep in mind that since the $std objects are global variables, even a temporary
change affects all threads in your script.

See Also
• Recipe 6.15, “Pretending a String Is a File,” has much more information on

StringIO

6.17 Processing a Binary File | 227

6.17 Processing a Binary File

Problem
You want to read binary data from a file, or write it to one.

Solution
Since Ruby strings make no distinction between binary and text data, processing a
binary file needn’t be any different than processing a text file. Just make sure you add
“b” to your file mode when you open a binary file on Windows.

This code writes 10 bytes of binary data to a file, then reads it back:

open('binary', 'wb') do |f|
 (0..100).step(10) { |b| f << b.chr }
end

s = open('binary', 'rb') { |f| f.read }
=> "\000\n\024\036(2<FPZd"

If you want to process a binary file one byte at a time, you’ll probably enjoy the way
each_byte returns each byte of the file as a number, rather than as single-character
strings:

open('binary', 'rb') { |f| f.each_byte { |b| puts b } }
0
10
20
...
90
100

Discussion
The methods introduced earlier to deal with text files work just as well for binary
files, assuming that your binary files are supposed to be processed from beginning to
end, the way text files typically are. If you want random access to the contents of a
binary file, you can manipulate your file object’s “cursor.”

Think of the cursor as a pointer to the first unread byte in the open file. The current
position of the cursor is accessed by the method IO#pos. When you open the file, it’s
set to zero, just before the first byte. You can then use IO#read to read a number of
bytes starting from the current position of the cursor, incrementing the cursor as a
side effect.

f = open('binary')
f.pos # => 0
f.read(1) # => "\000"
f.pos # => 1

228 | Chapter 6: Files and Directories

You can also just set pos to jump to a specific byte in the file:

f.pos = 4 # => 4
f.read(2) # => "(2"
f.pos # => 6

You can use IO#seek to move the cursor forward or backward relative to its current
position (with File::SEEK_CUR), or to move to a certain distance from the end of a file
(with File::SEEK_END). Unlike the iterator methods, which go through the entire file
once, you can use seek or set pos to jump anywhere in the file, even to a byte you’ve
already read.

f.seek(8)
f.pos # => 8

f.seek(-4, File::SEEK_CUR)
f.pos # => 4
f.seek(2, File::SEEK_CUR)
f.pos # => 6

Move to the second-to-last byte of the file.
f.seek(-2, File::SEEK_END)
f.pos # => 9

Attempting to read more bytes than there are in the file returns the rest of the bytes,
and set your file’s eof? flag to true:

f.read(500) # => "Zd"
f.pos # => 11
f.eof? # => true
f.close

Often you need to read from and write to a binary file simultaneously. You can open
any file for simultaneous reading and writing using the “r+” mode (or, in this case,
“rb+”):

f = open('binary', 'rb+')
f.read # => "\000\n\024\036(2<FPZd"
f.pos = 2
f.write('Hello.')
f.rewind
f.read # => "\000\nHello.PZd"
f << 'Goodbye.'
f.rewind
f.read # => "\000\nHello.PZdGoodbye."

f.close

You can append new data to the end of a file you’ve opened for read-write access,
and you can overwrite existing data byte for byte, but you can’t insert new data into
the middle of a file. This makes the read-write technique useful for binary files,
where exact byte offsets are often important, and less useful for text files, where it
might make sense to add an extra line in the middle.

6.17 Processing a Binary File | 229

Why do you need to append “b” to the file mode when opening a binary file on Win-
dows? Because otherwise Windows will mangle any newline characters that show up
in your binary file. The “b” tells Windows to leave the newlines alone, because
they’re not really newlines: they’re binary data. Since it doesn’t hurt anything on
Unix to put “b” in the file mode, you can make your code cross-platform by append-
ing “b” to the mode whenever you open a file you plan to treat as binary. Note that
“b” by itself is not a valid file mode: you probably want “rb”.

An MP3 example

Because every binary format is different, probably the best I can do to help you
beyond this point is show you an example. Consider MP3 music files. Many MP3
files have a 128-byte data structure at the end called an ID3 tag. These 128 bytes are
literally packed with information about the song: its name, the artist, which album
it’s from, and so on. You can parse this data structure by opening an MP3 file and
doing a series of reads from a pos near the end of the file.

According to the ID3 standard, if you start from the 128th-to-last byte of an MP3 file
and read three bytes, you should get the string “TAG”. If you don’t, there’s no ID3
tag for this MP3 file, and nothing to do. If there is an ID3 tag present, then the 30
bytes after “TAG” contain the name of the song, the 30 bytes after that contain the
name of the artist, and so on. Here’s some code that parses a file’s ID3 tag and puts
the results into a hash:

def parse_id3(mp3_file)
 fields_and_sizes = [[:track_name, 30], [:artist_name, 30],
 [:album_name, 30], [:year, 4], [:comment, 30],
 [:genre, 1]]
 tag = {}
 open(mp3_file) do |f|
 f.seek(-128, File::SEEK_END)
 if f.read(3) == 'TAG' # An ID3 tag is present
 fields_and_sizes.each do |field, size|
 # Read the field and strip off anything after the first null
 # character.
 data = f.read(size).gsub(/\000.*/, '')
 # Convert the genre string to a number.
 data = data[0] if field == :genre
 tag[field] = data
 end
 end
 end
 return tag
end

parse_id3('ID3.mp3')
=> {:year=>"2005", :artist_name=>"The ID Three",
:album_name=>"Binary Brain Death",

230 | Chapter 6: Files and Directories

:comment=>"http://www.example.com/id3/", :genre=>22,
:track_name=>"ID 3"}

parse_id3('Too Indie For ID3 Tags.mp3') # => {}

Rather than specifying the genre of the music as a string, the :genre element of the
hash is a single byte, an entry into a lookup table shared by all applications that use
ID3. In this table, genre number 22 is “Death metal”.

It’s less code to specify the byte offsets for a binary file is in the format recognized by
String#unpack, which can parse the bytes of a string according to a given format. It
returns an array containing the results of the parsing.

#Returns [track, artist, album, year, comment, genre]
def parse_id3(mp3_file)
 format = 'Z30Z30Z30Z4Z30C'
 open(mp3_file) do |f|
 f.seek(-128, File::SEEK_END)
 if f.read(3) == "TAG" # An ID3 tag is present
 return f.read(125).unpack(format)
 end
 end
 return nil
end

parse_id3('ID3.mp3')
=> ["ID 3", "The ID Three", "Binary Brain Death", "2005", "http://www.example.com/
id3/", 22]

As you can see, the unpack format is obscure but very concise. The string
“Z30Z30Z30Z4Z30C” passed into String#unpack completely describes the elements
of the ID3 format after the “TAG”:

• Three strings of 30 bytes, with null characters stripped (“Z30Z30Z30”)

• A string of 4 bytes, with null characters stripped (“Z4”)

• One more string of 30 bytes, with null characters stripped (“Z30”)

• A single character, represented as an unsigned integer (“C”)

It doesn’t describe what those elements are supposed to be used for, though.

When writing binary data to a file, you can use Array#pack, the opposite of
String#unpack:

id3 = ["ID 3", "The ID Three", "Binary Brain Death", "2005",
 "http://www.example.com/id3/", 22]
id3.pack 'Z30Z30Z30Z4Z30C'
=> "ID 3\000\000\000\000\000...http://www.example.com/id3/\000\000\000\026"

6.18 Deleting a File | 231

See Also
• The ID3 standard, described at http://en.wikipedia.org/wiki/ID3 along with the

table of genres; the code in this recipe parses the original ID3v1 standard, which
is much simpler than ID3v2

• ri String#unpack and ri Array#pack

6.18 Deleting a File

Problem
You want to delete a single file, or a whole directory tree.

Solution
Removing a file is simple, with File.delete:

import 'fileutils'
FileUtils.touch "doomed_file"
File.exists? "doomed_file" # => true
File.delete "doomed_file"
File.exists? "doomed_file" # => false

Removing a directory tree is also fairly simple. The most confusing thing about it is
the number of different methods Ruby provides to do it. The method you want is
probably FileUtils.remove_dir, which recursively deletes the contents of a directory:

Dir.mkdir "doomed_directory"
File.exists? "doomed_directory" # => true
FileUtils.remove_dir "doomed_directory"
File.exists? "doomed_directory" # => false

Discussion
Ruby provides several methods for removing directories, but you really only need
remove_dir. Dir.delete and FileUtils.rmdir will only work if the directory is already
empty. The rm_r and rm_rf defined in FileUtils are similar to remove_dir, but if
you’re a Unix user you may find their names more mneumonic.

You should also know about the :secure option to rm_rf, because the remove_dir
method and all its variants are vulnerable to a race condition when you remove a
world-writable directory. The risk is that a process owned by another user might cre-
ate a symlink in that directory while you’re deleting it. This would make you delete
the symlinked file along with the files you actually meant to delete.

Passing in the :secure option to rm_rf slows down deletions significantly (it has to
change the permissions on the directory before deleting it), but it avoids the race

232 | Chapter 6: Files and Directories

condition. If you’re running Ruby 1.8, you’ll also need to hack the FileUtils mod-
ule a little bit to work around a bug (the bug is fixed in Ruby 1.9):

A hack to make a method used by rm_rf actually available
module FileUtils
 module_function :fu_world_writable?
end

Dir.mkdir "/tmp/doomed_directory"
FileUtils.rm_rf("/tmp/doomed_directory", :secure=>true)
File.exists? "/tmp/doomed_directory" # => false

Why isn’t the :secure option the default for rm_rf? Because secure deletion isn’t
thread-safe: it actually changes the current working directory of the process. You
need to choose between thread safety and a possible security hole.

6.19 Truncating a File

Problem
You want to truncate a file to a certain length, probably zero bytes.

Solution
Usually, you want to destroy the old contents of a file and start over. Opening a file
for write access will automatically truncate it to zero bytes, and let you write new
contents to the file:

filename = 'truncate.txt'
open(filename, 'w') { |f| f << "All of this will be truncated." }
File.size(filename) # => 30

f = open(filename, 'w') {}
File.size(filename) # => 0

If you just need to truncate the file to zero bytes, and not write any new contents to
it, you can open it with an access mode of File::TRUNC.

open(filename, 'w') { |f| f << "Here are some new contents." }

File.size(filename) # => 27

f = open(filename, File::TRUNC) {}
File.size(filename) # => 0

You can’t actually do anything with a FILE whose access mode is File::TRUNC:

open(filename, File::TRUNC) do |f|
 f << "At last, an empty file to write to!"
end
IOError: not opened for writing

6.20 Finding the Files You Want | 233

Discussion
Transient files are the most likely candidates for truncation. Log files are often trun-
cated, automatically or by hand, before they grow too large.

The most common type of truncation is truncating a file to zero bytes, but the File.
truncate method can truncate a file to any number of bytes, not just zero. You can
also use the instance method, File#truncate, to truncate a file you’ve opened for
writing:

f = open(filename, 'w') do |f|
 f << 'These words will remain intact after the file is truncated.'
end
File.size(filename) # => 59

File.truncate(filename, 30)
File.size(filename) # => 30
open(filename) { |f| f.read } # => "These words will remain intact"

These methods don’t always make a file smaller. If the file starts out smaller than the
size you give, they append zero-bytes (\000) to the end of file until the file reaches the
specified size.

f = open(filename, "w") { |f| f << "Brevity is the soul of wit." }
File.size(filename) # => 27
File.truncate(filename, 30)
File.size(filename) # => 30
open(filename) { |f| f.read }
=> "Brevity is the soul of wit.\000\000\000"

File.truncate and File#truncate act like the bed of Procrustes: they force a file to be a
certain number of bytes long, whether that means stretching it or chopping off the end.

6.20 Finding the Files You Want

Problem
You want to locate all the files in a directory hierarchy that match some criteria. For
instance, you might want to find all the empty files, all the MP3 files, or all the files
named “README.”

Solution
Use the Find.find method to walk the directory structure and accumulate a list of
matching files.

Pass in a block to the following method and it’ll walk a directory tree, testing each
file against the code block you provide. It returns an array of all files for which the
value of the block is true.

234 | Chapter 6: Files and Directories

require 'find'
module Find
 def match(*paths)
 matched = []
 find(*paths) { |path| matched << path if yield path }
 return matched
 end
 module_function :match
end

Here’s what Find.match might return if you used it on a typical disorganized home
directory:

Find.match("./") { |p| File.lstat(p).size == 0 }
=> ["./Music/cancelled_download.MP3", "./tmp/empty2", "./tmp/empty1"]

Find.match("./") { |p| ext = p[-4...p.size]; ext && ext.downcase == ".mp3" }
=> ["./Music/The Snails - Red Rocket.mp3",
=> "./Music/The Snails - Moonfall.mp3", "./Music/cancelled_download.MP3"]

Find.match("./") { |p| File.split(p)[1] == "README" }
=> ["./rubyprog-0.1/README", "./tmp/README"]

Discussion
This is an especially useful chunk of code for system administration tasks. It gives
you functionality at least as powerful as the Unix find command, but you can write
your search criteria in Ruby and you won’t have to remember the arcane syntax of
find.

As with Find.walk itself, you can stop Find.match from processing a directory by call-
ing Find.prune:

Find.match("./") do |p|
 Find.prune if p == "./tmp"
 File.split(p)[1] == "README"
end
=> ["./rubyprog-0.1/README"]

You can even look inside each file to see whether you want it:

Find all files that start with a particular phrase.
must_start_with = "This Ruby program"
Find.match("./") do |p|
 if File.file? p
 open(p) { |f| f.read(must_start_with.size) == must_start_with }
 else
 false
 end
end
=> ["./rubyprog-0.1/README"]

A few other useful things to search for using this function:

6.21 Finding and Changing the Current Working Directory | 235

Finds files that were probably left behind by emacs sessions.
def emacs_droppings(*paths)
 Find.match(*paths) do |p|
 (p[-1] == ?~ and p[0] != ?~) or (p[0] == ?# and p[-1] == ?#)
 end
end

Finds all files that are larger than a certain threshold. Use this to find
the files hogging space on your filesystem.
def bigger_than(bytes, *paths)
 Find.match(*paths) { |p| File.lstat(p).size > bytes }
end

Finds all files modified more recently than a certain number of seconds ago.
def modified_recently(seconds, *paths)
 time = Time.now - seconds
 Find.match(*paths) { |p| File.lstat(p).mtime > time }
end

Finds all files that haven't been accessed since they were last modified.
def possibly_abandoned(*paths)
 Find.match(*paths) { |p| f = File.lstat(p); f.mtime == f.atime }
end

See Also
• Recipe 6.12, “Walking a Directory Tree”

6.21 Finding and Changing the Current Working
Directory

Problem
You want to see which directory the Ruby process considers its current working
directory, or change that directory.

Solution
To find the current working directory, use Dir.getwd:

Dir.getwd # => "/home/leonardr"

To change the current working directory, use Dir.chdir:

Dir.chdir("/bin")
Dir.getwd # => "/bin"
File.exists? "ls" # => true

236 | Chapter 6: Files and Directories

Discussion
The current working directory of a Ruby process starts out as the directory you were
in when you started the Ruby interpreter. When you refer to a file without providing
an absolute pathname, Ruby assumes you want a file by that name in the current
working directory. Ruby also checks the current working directory when you require
a library that can’t be found anywhere else.

The current working directory is a useful default. If you’re writing a Ruby script that
operates on a directory tree, you might start from the current working directory if the
user doesn’t specify one.

However, you shouldn’t rely on the current working directory being set to any par-
ticular value: this makes scripts brittle, and prone to break when run from a differ-
ent directory. If your Ruby script comes bundled with libraries, or needs to load
additional files from subdirectories of the script directory, you should set the work-
ing directory in code.

You can change the working directory as often as necessary, but it’s more reliable to
use absolute pathnames, even though this can make your code less portable. This is
especially true if you’re writing multithreaded code.

The current working directory is global to a process. If multiple threads are running
code that changes the working directory to different values, you’ll never know for
sure what the working directory is at any given moment.

See Also
• Recipe 6.18, “Deleting a File,” shows some problems created by a process-global

working directory

237

Chapter 7 CHAPTER 7

Code Blocks and Iteration7

In Ruby, a code block (or just “block”) is an object that contains some Ruby code,
and the context neccesary to execute it. Code blocks are the most visually distinctive
aspect of Ruby, and also one of the most confusing to newcomers from other lan-
guages. Essentially, a Ruby code block is a method that has no name.

Most other languages have something like a Ruby code block: C’s function pointers,
C++’s function objects, Python’s lambdas and list comprehensions, Perl’s anony-
mous functions, Java’s anonymous inner classes. These features live mostly in the
corners of those languages, shunned by novice programmers. Ruby can’t be written
without code blocks. Of the major languages, only Lisp is more block-oriented.

Unlike most other languages, Ruby makes code blocks easy to create and imposes
few restrictions on them. In every other chapter of this book, you’ll see blocks passed
into methods like it’s no big deal (which it isn’t):

[1,2,3].each { |i| puts i}
1
2
3

In this chapter, we’ll show you how to write that kind of method, the kinds of
method that are useful to write that way, and when and how to treat blocks as first-
class objects.

Ruby provides two syntaxes for creating code blocks. When the entire block will fit
on one line, it’s most readable when enclosed in curly braces:

[1,2,3].each { |i| puts i }
1
2
3

When the block is longer than one line, it’s more readable to begin it with the do key-
word and end it with the end keyword:

[1,2,3].each do |i|
 if i % 2 == 0

238 | Chapter 7: Code Blocks and Iteration

 puts "#{i} is even."
 else
 puts "#{i} is odd."
 end
end
1 is odd.
2 is even.
3 is odd.

Some people use the bracket syntax when they’re interested in the return value of the
block, and the do...end syntax when they’re interested in the block’s side effects.

Keep in mind that the bracket syntax has a higher precedence than the do..end syn-
tax. Consider the following two snippets of code:

1.upto 3 do |x|
 puts x
end
1
2
3

1.upto 3 { |x| puts x }
SyntaxError: compile error

In the second example, the code block binds to the number 3, not to the function
call 1.upto 3. A standalone variable can’t take a code block, so you get a compile
error. When in doubt, use parentheses.

1.upto(3) { |x| puts x }
1
2
3

Usually the code blocks passed into methods are anonymous objects, created on the
spot. But you can instantiate a code block as a Proc object by calling lambda. See Rec-
ipe 7.1 for more details.

hello = lambda { "Hello" }
hello.call
=> "Hello"

log = lambda { |str| puts "[LOG] #{str}" }
log.call("A test log message.")
[LOG] A test log message.

Like any method, a block can accept arguments. A block’s arguments are defined in
a comma-separated list at the beginning of the block, enclosed in pipe characters:

{1=>2, 2=>4}.each { |k,v| puts "Key #{k}, value #{v}" }
Key 1, value 2
Key 2, value 4

Code Blocks and Iteration | 239

Arguments to blocks look almost like arguments to methods, but there are a few
restrictions: you can’t set default values for block arguments, you can’t expand
hashes or arrays inline, and a block cannot itself take a block argument.*

Since Proc objects are created like other objects, you can create factory methods
whose return values are customized pieces of executable Ruby code. Here’s a simple
factory method for code blocks that do multiplication:

def times_n(n)
 lambda { |x| x * n }
end

The following code uses the factory to create and use two customized methods:

times_ten = times_n(10)
times_ten.call(5) # => 50
times_ten.call(1.25) # => 12.5

circumference = times_n(2*Math::PI)
circumference.call(10) # => 62.8318530717959
circumference.call(3) # => 18.8495559215388
[1, 2, 3].collect(&circumference)
=> [6.28318530717959, 12.5663706143592, 18.8495559215388]

You may have heard people talking about Ruby’s “closures.” What is a closure, and
how is it different from a block? In Ruby, there is no difference between closures and
blocks. Every Ruby block is also a closure.†

So what makes a Ruby block a closure? Basically, a Ruby block carries around the
context in which it was defined. A block can reference the variables that were in
scope when it was defined, even if those variables later go out of scope. Here’s a sim-
ple example; see Recipe 7.4 for more.

ceiling = 50
Which of these numbers are less than the target?
[1, 10, 49, 50.1, 200].select { |x| x < ceiling }
=> [1, 10, 49]

The variable ceiling is within scope when the block is defined, but it goes out of
scope when the flow of execution enters the select method. Nonetheless, the block
can access ceiling from within select, because it carries its context around with it.
That’s what makes it a closure.

We suspect that a lot of people who say “closures” when talking about Ruby blocks
just do it to sound smart. Since we’ve already ruined any chance we might have had

* In Ruby 1.9, a block can itself take a block argument: |arg1, arg2, &block|. This makes methods like
Module#define_method more useful. In Ruby 2.0, you’ll be able to give default values to block arguments.

† Someone could argue that a block isn’t really a closure if it never actually uses any of the context it carries
around: you could have done the same job with a “dumb” block, assuming Ruby supported those. For sim-
plicity’s sake, we do not argue this.

240 | Chapter 7: Code Blocks and Iteration

at sounding smart, we’ve decided refer to Ruby closures as just plain “blocks”
throughout this book. The only exceptions are in the rare places where we must dis-
cuss the context that makes Ruby’s code blocks real closures, rather than “dumb”
blocks.

7.1 Creating and Invoking a Block

Problem
You want to put some Ruby code into an object so you can pass it around and call it
later.

Solution
By this time, you should familiar with a block as some Ruby code enclosed in curly
brackets. You might think it possible to define a block object as follows:

aBlock = { |x| puts x } # WRONG

SyntaxError: compile error

That doesn’t work because a block is only valid Ruby syntax when it’s an argument
to a method call. There are several equivalent methods that take a block and return it
as an object. The most favored method is Kernel#lambda:*

aBlock = lambda { |x| puts x } # RIGHT

To call the block, use the call method:

aBlock.call "Hello World!"
Hello World!

Discussion
The ability to assign a bit of Ruby code to a variable is very powerful. It lets you write
general frameworks and plug in specific pieces of code at the crucial points.

As you’ll find out in Recipe 7.2, you can accept a block as an argument to a method
by prepending & to the argument name. This way, you can write your own trivial ver-
sion of the lambda method:

def my_lambda(&aBlock)
 aBlock
end

b = my_lambda { puts "Hello World My Way!" }
b.call
Hello World My Way!

* The name lambda comes from the lambda calculus (a mathematical formal system) via Lisp.

7.2 Writing a Method That Accepts a Block | 241

A newly defined block is actually a Proc object.

b.class # => Proc

You can also initialize blocks with the Proc constructor or the method Kernel#proc.
The methods Kernel#lambda, Kernel#proc, and Proc.new all do basically the same
thing. These three lines of code are nearly equivalent:

aBlock = Proc.new { |x| puts x }
aBlock = proc { |x| puts x }
aBlock = lambda { |x| puts x }

What’s the difference? Kernel#lambda is the preferred way of creating block objects,
because it gives you block objects that act more like Ruby methods. Consider what
happens when you call a block with the wrong number of arguments:

add_lambda = lambda { |x,y| x + y }

add_lambda.call(4)
ArgumentError: wrong number of arguments (1 for 2)

add_lambda.call(4,5,6)
ArgumentError: wrong number of arguments (3 for 2)

A block created with lambda acts like a Ruby method. If you don’t specify the right
number of arguments, you can’t call the block. But a block created with Proc.new
acts like the anonymous code block you pass into a method like Enumerable#each:

add_procnew = Proc.new { |x,y| x + y }

add_procnew.call(4)
TypeError: nil can't be coerced into Fixnum

add_procnew.call(4,5,6) # => 9

If you don’t specify enough arguments when you call the block, the rest of the argu-
ments are given nil. If you specify too many arguments, the extra arguments are
ignored. Unless you want this kind of behavior, use lambda.

In Ruby 1.8, Kernel#proc acts like Kernel#lambda. In Ruby 1.9, Kernel#proc acts like
Proc.new, as better befits its name.

See Also
• Recipe 7.2, “Writing a Method That Accepts a Block”

• Recipe 10.4, “Getting a Reference to a Method”

7.2 Writing a Method That Accepts a Block

Problem
You want to write a method that can accept and call an attached code block: a
method that works like Array#each, Fixnum#upto, and other built-in Ruby methods.

242 | Chapter 7: Code Blocks and Iteration

Solution
You don’t need to do anything special to make your method capable of accepting a
block. Any method can use a block if the caller passes one in. At any time in your
method, you can call the block with yield:

def call_twice
 puts "I'm about to call your block."
 yield
 puts "I'm about to call your block again."
 yield
end

call_twice { puts "Hi, I'm a talking code block." }
I'm about to call your block.
Hi, I'm a talking code block.
I'm about to call your block again.
Hi, I'm a talking code block.

Another example:

def repeat(n)
 if block_given?
 n.times { yield }
 else
 raise ArgumentError.new("I can't repeat a block you don't give me!")
 end
end

repeat(4) { puts "Hello." }
Hello.
Hello.
Hello.
Hello.

repeat(4)
ArgumentError: I can't repeat a block you don't give me!

Discussion
Since Ruby focuses so heavily on iterator methods and other methods that accept
code blocks, it’s important to know how to use code blocks in your own methods.

You don’t have to do anything special to make your method capable of taking a code
block. A caller can pass a code block into any Ruby method; it’s just that there’s no
point in doing that if the method never invokes yield.

puts("Print this message.") { puts "And also run this code block!" }
Print this message.

The yield keyword acts like a special method, a stand-in for whatever code block
was passed in. When you call it, it’s exactly as the code block were a Proc object and
you had invoked its call method.

7.2 Writing a Method That Accepts a Block | 243

This may seem mysterious if you’re unfamiliar with the practice of passing blocks
around, but it is usually the preferred method of calling blocks in Ruby. If you feel
more comfortable receiving a code block as a “real” argument to your method, see
Recipe 7.3.

You can pass in arguments to yield (they’ll be passed to the block) and you can do
things with the value of the yield statement (this is the value of the last statement in
the block).

Here’s a method that passes arguments into its code block, and uses the value of the
block:

def call_twice
 puts "Calling your block."
 ret1 = yield("very first")
 puts "The value of your block: #{ret1}"

 puts "Calling your block again."
 ret2 = yield("second")
 puts "The value of your block: #{ret2}"
end

call_twice do |which_time|
 puts "I'm a code block, called for the #{which_time} time."
 which_time == "very first" ? 1 : 2
end
Calling your block.
I'm a code block, called for the very first time.
The value of your block: 1
Calling your block again.
I'm a code block, called for the second time.
The value of your block: 2

Here’s a more realistic example. The method Hash#find takes a code block, passes
each of a hash’s key-value pairs into the code block, and returns the first key-value
pair for which the code block evaluates to true.

squares = {0=>0, 1=>1, 2=>4, 3=>9}
squares.find { |key, value| key > 1 } # => [2, 4]

Suppose we want a method that works like Hash#find, but returns a new hash con-
taining all the key-value pairs for which the code block evaluates to true. We can do
this by passing arguments into the yield statement and using its result:

class Hash
 def find_all
 new_hash = Hash.new
 each { |k,v| new_hash[k] = v if yield(k, v) }
 new_hash
 end
end

squares.find_all { |key, value| key > 1 } # => {2=>4, 3=>9}

244 | Chapter 7: Code Blocks and Iteration

As it turns out, the Hash#delete_if method already does the inverse of what we want.
By negating the result of our code block, we can make Hash#delete_if do the job of
Hash#find_all. We just need to work off of a duplicate of our hash, because delete_
if is a destructive method:

squares.dup.delete_if { |key, value| key > 1 } # => {0=>0, 1=>1}
squares.dup.delete_if { |key, value| key <= 1 } # => {2=>4, 3=>9}

Hash#find_all turns out to be unnecessary, but it made for a good example.

You can write a method that takes an optional code block by calling Kernel#block_
given? from within your method. That method returns true only if the caller of your
method passed in a code block. If it returns false, you can raise an exception, or you
can fall back to behavior that doesn’t need a block and never uses the yield keyword.

If your method calls yield and the caller didn’t pass in a code block, Ruby will throw
an exception:

[1, 2, 3].each
LocalJumpError: no block given

See Also
• Recipe 7.3, “Binding a Block Argument to a Variable”

7.3 Binding a Block Argument to a Variable

Problem
You’ve written a method that takes a code block, but it’s not enough for you to sim-
ply call the block with yield. You need to somehow bind the code block to a vari-
able, so you can manipulate the block directly. Most likely, you need to pass it as the
code block to another method.

Solution
Put the name of the block variable at the end of the list of your method’s arguments.
Prefix it with an ampersand so that Ruby knows it’s a block argument, not a regular
argument.

An incoming code block will be converted into a Proc object and bound to the block
variable. You can pass it around to other methods, call it directly using call, or yield
to it as though you’d never bound it to a variable at all. All three of the following
methods do exactly the same thing:

def repeat(n)
 n.times { yield } if block_given?
end
repeat(2) { puts "Hello." }
Hello.
Hello.

7.3 Binding a Block Argument to a Variable | 245

def repeat(n, &block)
 n.times { block.call } if block
end
repeat(2) { puts "Hello." }
Hello.
Hello.

def repeat(n, &block)
 n.times { yield } if block
end
repeat(2) { puts "Hello." }
Hello.
Hello.

Discussion
If &foo is the name of a method’s last argument, it means that the method accepts an
optional block named foo. If the caller chooses to pass in a block, it will be made
available as a Proc object bound to the variable foo. Since it is an optional argument,
foo will be nil if no block is actually passed in. This frees you from having to call
Kernel#block_given? to see whether or not you got a block.

When you call a method, you can pass in any Proc object as the code block by prefix-
ing the appropriate variable name with an ampersand. You can even do this on a
Proc object that was originally passed in as a code block to your method.

Many methods for collections, like each, select, and detect, accept code blocks. It’s
easy to wrap such methods when your own methods can bind a block to a variable.
Here, a method called biggest finds the largest element of a collection that gives a
true result for the given block:

def biggest(collection, &block)
 block ? collection.select(&block).max : collection.max
end

array = [1, 2, 3, 4, 5]
biggest(array) {|i| i < 3} # => 2
biggest(array) {|i| i != 5 } # => 4
biggest(array) # => 5

This is also very useful when you need to write a frontend to a method that takes a
block. Your wrapper method can bind an incoming code block to a variable, then
pass it as a code block to the other method.

This code calls a code block limit times, each time passing in a random number
between min and max:

def pick_random_numbers(min, max, limit)
 limit.times { yield min+rand(max+1) }
end

246 | Chapter 7: Code Blocks and Iteration

This code is a wrapper method for pick_random_numbers. It calls a code block 6 times,
each time with a random number from 1 to 49:

def lottery_style_numbers(&block)
 pick_random_numbers(1, 49, 6, &block)
end

lottery_style_numbers { |n| puts "Lucky number: #{n}" }
Lucky number: 20
Lucky number: 39
Lucky number: 41
Lucky number: 10
Lucky number: 41
Lucky number: 32

The code block argument must always be the very last argument defined for a
method. This means that if your method takes a variable number of arguments, the
code block argument goes after the container for the variable arguments:

def invoke_on_each(*args, &block)
 args.each { |arg| yield arg }
end

invoke_on_each(1, 2, 3, 4) { |x| puts x ** 2 }
1
4
9
16

See Also
• Recipe 8.11, “Accepting or Passing a Variable Number of Arguments”

• Recall from the chapter introduction that in Ruby 1.8, a code block cannot itself
take a block argument; this is fixed in Ruby 1.9

7.4 Blocks as Closures: Using Outside Variables
Within a Code Block

Problem
You want to share variables between a method, and a code block defined within it.

Solution
Just reference the variables, and Ruby will do the right thing. Here’s a method that
adds a certain number to every element of an array:

def add_to_all(array, number)
 array.collect { |x| x + number }
end

add_to_all([1, 2, 3], 10) # => [11, 12, 13]

7.5 Writing an Iterator Over a Data Structure | 247

Enumerable#collect can’t access number directly, but it’s passed a block that can
access it, since number was in scope when the block was defined.

Discussion
A Ruby block is a closure: it carries around the context in which it was defined. This
is useful because it lets you define a block as though it were part of your normal
code, then tear it off and send it to a predefined piece of code for processing.

A Ruby block contains references to the variable bindings, not copies of the values. If
the variable changes later, the block will have access to the new value:

tax_percent = 6
position = lambda do
 "I have always supported a #{tax_percent}% tax on imported limes."
end
position.call
=> "I have always supported a 6% tax on imported limes."

tax_percent = 7.25
position.call
=> "I have always supported a 7.25% tax on imported limes."

This works both ways: you can rebind or modify a variable from within a block.

counter = 0
4.times { counter += 1; puts "Counter now #{counter}"}
Counter now 1
Counter now 2
Counter now 3
Counter now 4
counter # => 4

This is especially useful when you want to simulate inject or collect in conjunction
with a strange iterator. You can create a storage object outside the block, and add
things to it from within the block. This code simulates Enumerable#collect, but it
collects the elements of an array in reverse order:

accumulator = []
[1, 2, 3].reverse_each { |x| accumulator << x + 1 }

accumulator # => [4, 3, 2]

The accumulator variable is not within the scope of Array#reverse_each, but it is
within the scope of the block.

7.5 Writing an Iterator Over a Data Structure

Problem
You’ve created a custom data structure, and you want to implement an each method for
it, or you want to implement an unusual way of iterating over an existing data structure.

248 | Chapter 7: Code Blocks and Iteration

Solution
Complex data structures are usually constructed out of the basic data structures:
hashes, arrays, and so on. All of the basic data structures have defined the each
method. If your data structure is composed entirely of scalar values and these simple
data structures, you can write a new each method in terms of the each methods of its
components.

Here’s a simple tree data structure. A tree contains a single value, and a list of chil-
dren (each of which is a smaller tree).

class Tree
 attr_reader :value
 def initialize(value)
 @value = value
 @children = []
 end

 def <<(value)
 subtree = Tree.new(value)
 @children << subtree
 return subtree
 end
end

Here’s code to create a specific Tree (Figure 7-1):

t = Tree.new("Parent")
child1 = t << "Child 1"
child1 << "Grandchild 1.1"
child1 << "Grandchild 1.2"
child2 = t << "Child 2"
child2 << "Grandchild 2.1"

How can we iterate over this data structure? Since a tree is defined recursively, it makes
sense to iterate over it recursively. This implementation of Tree#each yields the value
stored in the tree, then iterates over its children (the children are stored in an array,
which already supports each) and recursively calls Tree#each on every child tree.

Figure 7-1. A simple tree

Parent

Child 1 Child 2

Grandchild
1.1

Grandchild
1.2

Grandchild
2.1

7.5 Writing an Iterator Over a Data Structure | 249

class Tree
 def each
 yield value
 @children.each do |child_node|
 child_node.each { |e| yield e }
 end
 end
end

The each method traverses the tree in a way that looks right:

t.each { |x| puts x }
Parent
Child 1
Grandchild 1.1
Grandchild 1.2
Child 2
Grandchild 2.1

Discussion
The simplest way to build an iterator is recursively: to use smaller iterators until
you’ve covered every element in your data structure. But what if those iterators aren’t
there? More likely, what if they’re there but they give you elements in the wrong
order? You’ll need to go down a level and write some loops.

Loops are somewhat declassé in Ruby because iterators are more idiomatic, but
when you’re writing an iterator you may have no choice but to use a loop. Here’s a
reprint of an iterator from Recipe 4.1, which illustrates how to use a while loop to
iterate over an array from both sides:

class Array
 def each_from_both_sides()
 front_index = 0
 back_index = self.length-1
 while front_index <= back_index
 yield self[front_index]
 front_index += 1
 if front_index <= back_index
 yield self[back_index]
 back_index -= 1
 end
 end
 end
end

%w{Curses! been again! foiled I've}.each_from_both_sides { |x| puts x }
Curses!
I've
been
foiled
again!

250 | Chapter 7: Code Blocks and Iteration

Here are two more simple iterators. The first one yields each element multiple times
in a row:

module Enumerable
 def each_n_times(n)
 each { |e| n.times { yield e } }
 end
end

%w{Hello Echo}.each_n_times(3) { |x| puts x }
Hello
Hello
Hello
Echo
Echo
Echo

The next one returns the elements of an Enumerable in random order; see Recipe 4.10
for a more efficient way to do the shuffling.

module Enumerable
 def each_randomly
 (sort_by { rand }).each { |e| yield e }
 end
end
%w{Eat at Joe's}.each_randomly { |x| puts x }
Eat
Joe's
at

See Also
• Recipe 4.1, “Iterating Over an Array”

• Recipe 4.10, “Shuffling an Array”

• Recipe 5.7, “Iterating Over a Hash”

• Recipe 7.6, “Changing the Way an Object Iterates”

• Recipe 7.8, “Stopping an Iteration”

• Recipe 7.9, “Looping Through Multiple Iterables in Parallel”

7.6 Changing the Way an Object Iterates

Problem
You want to use a data structure as an Enumerable, but the object’s implementation
of #each doesn’t iterate the way you want. Since all of Enumerable’s methods are
based on each, this makes them all useless to you.

7.6 Changing the Way an Object Iterates | 251

Discussion
Here’s a concrete example: a simple array.

array = %w{bob loves alice}
array.collect { |x| x.capitalize }
=> ["Bob", "Loves", "Alice"]

Suppose we want to call collect on this array, but we don’t want collect to use
each: we want it to use reverse_each. Something like this hypothetical collect_
reverse method:

array.collect_reverse { |x| x.capitalize }
=> ["Alice", "Loves", "Bob"]

Actually defining a collect_reverse method would add significant new code and
only solve part of the problem. We could overwrite the array’s each implementation
with a singleton method that calls reverse_each, but that’s hacky and it would surely
have undesired side effects.

Fortunately, there’s an elegant solution with no side effects: wrap the object in an
Enumerator. This gives you a new object that acts like the old object would if you’d
swapped out its each method:

require 'enumerator'
reversed_array = array.to_enum(:reverse_each)
reversed_array.collect { |x| x.capitalize }
=> ["Alice", "Loves", "Bob"]

reversed_array.each_with_index do |x, i|
 puts %{#{i}=>"#{x}"}
end
0=>"alice"
1=>"loves"
2=>"bob"

Note that you can’t use the Enumerator for our array as though it were the actual
array. Only the methods of Enumerable are supported:

reversed_array[0]
NoMethodError: undefined method `[]' for #<Enumerable::Enumerator:0xb7c2cc8c>

Discussion
Whenever you’re tempted to reimplement one of the methods of Enumerable, try
using an Enumerator instead. It’s like modifying an object’s each method, but it
doesn’t affect the original object.

This can save you a lot of work. Suppose you have a tree data structure that provides
three different iteration styles: each_prefix, each_postfix, and each_infix. Rather than
implementing the methods of Enumerable for all three iteration styles, you can let each_
prefix be the default implementation of each, and call tree.to_enum(:each_postfix) or
tree.to_enum(:each_infix) if you need an Enumerable that acts differently.

252 | Chapter 7: Code Blocks and Iteration

A single underlying object can have multiple Enumerable objects. Here’s a second
Enumerable for our simple array, in which each acts like each_with_index does for the
original array:

array_with_index = array.enum_with_index
array_with_index.each do |x, i|
 puts %{#{i}=>"#{x}"}
end
0=>"bob"
1=>"loves"
2=>"alice"

array_with_index.each_with_index do |x, i|
 puts %{#{i}=>#{x.inspect}}
end
0=>["bob", 0]
1=>["loves", 1]
2=>["alice", 2]

When you require 'enumerator', Enumerable sprouts two extra enumeration meth-
ods, each_cons and each_slice. These make it easy to iterate over a data structure in
chunks. An example is the best way to show what they do:

sentence = %w{Well, now I've seen everything!}

two_word_window = sentence.to_enum(:each_cons, 2)
two_word_window.each { |x| puts x.inspect }
["Well,", "now"]
["now", "I've"]
["I've", "seen"]
["seen", "everything!"]

two_words_at_a_time = sentence.to_enum(:each_slice, 2)
two_words_at_a_time.each { |x| puts x.inspect }
["Well,", "now"]
["I've", "seen"]
["everything!"]

Note how any arguments passed into to_enum are passed along as arguments to the
iteration method itself.

In Ruby 1.9, the Enumerable::Enumerator class is part of the Ruby core; you don’t
need the require statement. Also, each_cons and each_slice are built-in methods of
Enumerable.

See Also
• Recipe 7.9, “Looping Through Multiple Iterables in Parallel”

• Recipe 20.6, “Running a Code Block on Many Objects Simultaneously”

7.7 Writing Block Methods That Classify or Collect | 253

7.7 Writing Block Methods That Classify or Collect

Problem
The basic block methods that come with the Ruby standard library aren’t enough for
you. You want to define your own method that classifies the elements in an enumer-
ation (like Enumerable#detect and Enumerable#find_all), or that does a transforma-
tion on each element in an enumeration (like Enumerable#collect).

Solution
You can usually use inject to write a method that searches or classifies an enumera-
tion of objects. With inject you can write your own versions of methods such as
detect and find_all:

module Enumerable
 def find_no_more_than(limit)
 inject([]) do |a,e|
 a << e if yield e
 return a if a.size >= limit
 a
 end
 end
end

This code finds at most three of the even numbers in a list:

a = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
a.find_no_more_than(3) { |x| x % 2 == 0 } # => [2, 4, 6]

If you find yourself needing to write a method like collect, it’s probably because, for
your purposes, collect itself yields elements in the wrong order. You can’t use
inject, because that yields elements in the same order as collect.

You need to find or write an iterator that yields elements in the order you want.
Once you’ve done that, you have two options: you can write a collect equivalent on
top of the iterator method, or you can use the iterator method to build an Enumerable
object, and call its collect method (as seen in Recipe 7.6).

Discussion
We discussed these block methods in more detail in Chapter 4, because arrays are
the simplest and most common enumerable data type, and the most common. But
almost any data structure can be enumerated, and a more complex data structure
can be enumerated in more different ways.

As you’ll see in Recipe 9.4, the Enumerable methods, like detect and inject, are actu-
ally implemented in terms of each. The detect and inject methods yield to the code
block every element that comes out of each. The value of the yield statement is used
to determine whether the element matches some criteria.

254 | Chapter 7: Code Blocks and Iteration

In a method like detect, the iteration may stop once it finds an element that matches.
In a method like find_all, the iteration goes through all elements, collecting the ones
that match.

Methods like collect work the same way, but instead of returning a subset of ele-
ments based on what the code block says, they collect the values returned by the
code block in a new data structure, and return the data structure once the iteration is
completed.

If you’re using a particular object and you wish its collect method used a different
iterator, then you should turn the object into an Enumerator and call its collect
method. But if you’re writing a class and you want to expose a new collect-like
method, you’ll have to define a new method.* In that case, the best solution is proba-
bly to expose a method that returns a custom Enumerator: that way, your users can
use all the methods of Enumerable, not just collect.

See Also
• Recipe 4.5, “Sorting an Array”

• Recipe 4.11, “Getting the N Smallest Items of an Array”

• Recipe 4.15, “Partitioning or Classifying a Set”

• Recipe 7.6, “Changing the Way an Object Iterates”

• If all you want is to make your custom data structure support the methods of
Enumerable, see Recipe 9.4, “Implementing Enumerable: Write One Method, Get
22 Free”

7.8 Stopping an Iteration

Problem
You want to interrupt an iteration from within the code block you passed into it.

Solution
The simplest way to interrupt execution is to use break. A break statement will jump
out of the closest enclosing loop defined in the current method:

1.upto(10) do |x|
 puts x
 break if x == 3
end
1
2
3

* Of course, behind the scenes, your method could just create an appropriate Enumerator and call its collect
implemenation.

7.8 Stopping an Iteration | 255

Discussion
The break statement is simple but it has several limitations. You can’t use break
within a code block defined with Proc.new or (in Ruby 1.9 and up) Kernel#proc. If
this is a problem for you, use lambda instead:

aBlock = Proc.new do |x|
 puts x
 break if x == 3
 puts x + 2
end

aBlock.call(5)
5
7

aBlock.call(3)
3
LocalJumpError: break from proc-closure

More seriously, you can’t use break to jump out of multiple loops at once. Once a
loop has run, there’s no way to know whether it completed normally or by using
break.

The simplest way around this problem is to enclose the code you want to skip within
a catch block with a descriptive symbolic name. You can then throw the correspond-
ing symbol when you want to jump to the end of the catch block. This lets you skip
out of any number of nested loops and method calls.

The throw/catch syntax isn’t exception handling—exceptions use a raise/rescue
syntax. This is a special flow control construct designed to replace the use of excep-
tions for flow control (as sometimes happens in Java programs). It’s a bit like an old-
style global GOTO, capable of suddenly moving execution to a faraway part of your
program. It keeps your code more readable than a GOTO, though, because it’s
restricted: a throw can only jump to the end of a corresponding catch block.

The best example of the catch..throw syntax is the Find.find function described in
Recipe 6.12. When you pass a code block into Find.find, it yields up every direc-
tory and file in a certain directory tree. When your code block is given a directory,
it can stop find from recursing into that directory by calling Find.prune, which
throws a :prune symbol. Using break would stop the find operation altogether;
throwing a symbol lets Find.prune know to just skip one directory.

Here’s a simplified view of the Find.find and Find.prune code:

def find(*paths)
 paths.each do |p|
 catch(:prune) do
 # Process p as a file or directory...
 end
 # When you call Find.prune you'll end up here.

256 | Chapter 7: Code Blocks and Iteration

 end
end

def prune
 throw :prune
end

When you call Find.prune, execution jumps to immediately after the catch(:prune)
block. Find.find then starts processing the next file or directory.

See Also
• Recipe 6.12, “Walking a Directory Tree”

• ri Find

7.9 Looping Through Multiple Iterables in Parallel

Problem
You want to traverse multiple iteration methods simultaneously, probably to match
up the corresponding elements in several different arrays.

Solution
The SyncEnumerator class, defined in the generator library, makes it easy to iterate over
a bunch of arrays or other Enumerable objects in parallel. Its each method yields a series
of arrays, each array containing one item from each underlying Enumerable object:

require 'generator'

enumerator = SyncEnumerator.new(%w{Four seven}, %w{score years},
 %w{and ago})
enumerator.each do |row|
 row.each { |word| puts word }
 puts '---'
end
Four
score
and

seven
years
ago

enumerator = SyncEnumerator.new(%w{Four and}, %w{score seven years ago})
enumerator.each do |row|
 row.each { |word| puts word }
 puts '---'
end
Four

7.9 Looping Through Multiple Iterables in Parallel | 257

score

and
seven

nil
years

nil
ago

You can reproduce the workings of a SyncEnumerator by wrapping each of your
Enumerable objects in a Generator object. This code acts like SyncEnumerator#each,
only it yields each individual item instead of arrays containing one item from each
Enumerable:

def interosculate(*enumerables)
 generators = enumerables.collect { |x| Generator.new(x) }
 done = false
 until done
 done = true
 generators.each do |g|
 if g.next?
 yield g.next
 done = false
 end
 end
 end
end

interosculate(%w{Four and}, %w{score seven years ago}) do |x|
 puts x
end
Four
score
and
seven
years
ago

Discussion
Any object that implements the each method can be wrapped in a Generator object.
If you’ve used Java, think of a Generator as being like a Java Iterator object. It keeps
track of where you are in a particular iteration over a data structure.

Normally, when you pass a block into an iterator method like each, that block gets
called for every element in the iterator without interruption. No code outside the
block will run until the iterator is done iterating. You can stop the iteration by writ-
ing a break statement inside the code block, but you can’t restart a broken iteration
later from the same place—unless you use a Generator.

258 | Chapter 7: Code Blocks and Iteration

Think of an iterator method like each as a candy dispenser that pours out all its
candy in a steady stream once you push the button. The Generator class lets you turn
that candy dispenser into one which dispenses only one piece of candy every time
you push its button. You can carry this new dispenser around and ration your candy
more easily.

In Ruby 1.8, the Generator class uses continuations to achieve this trick. It sets book-
marks for jumping out of an iteration and then back in. When you call
Generator#next the generator “pumps” the iterator once (yielding a single element),
sets a bookmark, and returns control back to your code. The next time you call
Generator#next, the generator jumps back to its previously set bookmark and
“pumps” the iterator once more.

Ruby 1.9 uses a more efficient implementation based on threads. This implementa-
tion calls each Enumerable object’s each method (triggering the neverending stream of
candy), but it does it in a separate thread for each object. After each piece of candy
comes out, Ruby freezes time (pauses the thread) until the next time you call
Generator#next.

It’s simple to wrap an array in a generator, but if that’s all there were to generators,
you wouldn’t need to mess around with Generators or even SyncEnumerables. It’s easy
to simulate the behavior of SyncEnumerable for arrays by starting an index into each
array and incrementing it whenever you want to get another item from a particular
array. Generator methods are truly useful in their ability to turn any type of iteration
into a single-item candy dispenser.

Suppose that you want to use the functionality of a generator to iterate over an array,
but you have an unusual type of iteration in mind. For instance, consider an array
that looks like this:

l = ["junk1", 1, "junk2", 2, "junk3", "junk4", 3, "junk5"]

Let’s say you’d like to iterate over the list but skip the “junk” entries. Wrapping the
list in a generator object doesn’t work; it gives you all the entries:

g = Generator.new(l)
g.next # => "junk1"
g.next # => 1
g.next # => "junk2"

It’s not difficult to write an iterator method that skips the junk. Now, we don’t want
an iterator method—we want a Generator object—but the iterator method is a good
starting point. At least it proves that the iteration we want can be implemented in
Ruby.

def l.my_iterator
 each { |e| yield e unless e =~ /^junk/ }
end

l.my_iterator { |x| puts x }

7.9 Looping Through Multiple Iterables in Parallel | 259

1
2
3

Here’s the twist: when you wrap an array in a Generator or a SyncEnumerable object,
you’re actually wrapping the array’s each method. The Generator doesn’t just hap-
pen to yield elements in the same order as each: it’s actually calling each, but using
continuation (or thread) trickery to pause the iteration after each call to
Generator#next.

By defining an appropriate code block and passing it into the Generator constructor,
you can make a generation object of out of any piece of iteration code—not only the
each method. The generator will know to call and interrupt that block of code, just
as it knows to call and interrupt each when you pass an array into the constructor.
Here’s a generator that iterates over our array the way we want:

g = Generator.new { |g| l.each { |e| g.yield e unless e =~ /^junk/ } }
g.next # => 1
g.next # => 2
g.next # => 3

The Generator constructor can take a code block that accepts the generator object
itself as an argument. This code block performs the iteration that you’d like to have
wrapped in a generator. Note the basic similarity of the code block to the body of the
l#my_iterator method. The only difference is that instead of the yield keyword we
call the Generator#yield function, which handles some of the work involved with set-
ting up and jumping to the continuations (Generator#next handles the rest of the
continuation work).

Once you see how this works, you can eliminate some duplicate code by wrapping
the l#my_iterator method itself in a Generator:

g = Generator.new { |g| l.my_iterator { |e| g.yield e } }
g.next # => 1
g.next # => 2
g.next # => 3

Here’s a version of the interosculate method that can wrap methods as well as
arrays. It accepts any combination of Enumerable objects and Method objects, turns
each one into a Generator object, and loops through all the Generator objects, get-
ting one element at a time from each:

def interosculate(*iteratables)
 generators = iteratables.collect do |x|
 if x.is_a? Method
 Generator.new { |g| x.call { |e| g.yield e } }
 else
 Generator.new(x)
 end
 end
 done = false
 until done

260 | Chapter 7: Code Blocks and Iteration

 done = true
 generators.each do |g|
 if g.next?
 yield g.next
 done = false
 end
 end
 end
end

Here, we pass interosculate an array and a Method object, so that we can iterate
through two arrays in opposite directions:

words1 = %w{Four and years}
words2 = %w{ago seven score}
interosculate(words1, words2.method(:reverse_each)) { |x| puts x }
Four
score
and
seven
years
ago

See Also
• Recipe 7.5, “Writing an Iterator Over a Data Structure”

• Recipe 7.6, “Changing the Way an Object Iterates”

7.10 Hiding Setup and Cleanup in a Block Method

Problem
You have a setup method that always needs to run before custom code, or a cleanup
method that needs to run afterwards. You don’t trust the person writing the code
(possibly yourself) to remember to call the setup and cleanup methods.

Solution
Create a method that runs the setup code, yields to a code block (which contains the
custom code), then runs the cleanup code. To make sure the cleanup code always
runs, even if the custom code throws an exception, use a begin/finally block.

def between_setup_and_cleanup
 setup
 begin
 yield
 finally
 cleanup
 end
end

7.10 Hiding Setup and Cleanup in a Block Method | 261

Here’s a concrete example. It adds a DOCTYPE and an HTML tag to the beginning
of an HTML document. At the end, it closes the HTML tag it opened earlier. This
saves you a little bit of work when you’re generating HTML files.

def write_html(out, doctype=nil)
 doctype ||= %{<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd">}
 out.puts doctype
 out.puts '<html>'
 begin
 yield out
 ensure
 out.puts '</html>'
 end
end

write_html($stdout) do |out|
 out.puts '<h1>Sorry, the Web is closed.</h1>'
end
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<html>
<h1>Sorry, the Web is closed.</h1>
</html>

Discussion
This useful technique shows up most often when there are scarce resources (such as
file handles or database connections) that must be closed when you’re done with
them, lest they all get used up. A language that makes the programmer remember
these resources tends to leak those resources, because programmers are lazy. Ruby
makes it easy to be lazy and still do the right thing.

You’ve probably used this technique already, with the the Kernel#open and File#open
methods for opening files on disk. These methods accept a code block that manipu-
lates an already open file. They open the file, call your code block, and close the file
once you’re done:

open('output.txt', 'w') do |out|
 out.puts 'Sorry, the filesystem is also closed.'
end

Ruby’s standard cgi module takes the write_html example to its logical conclusion.*

You can construct an entire HTML document by nesting blocks inside each other.
Here’s a small Ruby CGI that outputs much the same document as the write_html
example above.

#!/usr/bin/ruby

closed_cgi.rb

* But your code will be more maintainable if you do HTML with templates instead of writing it in Ruby code.

262 | Chapter 7: Code Blocks and Iteration

require 'cgi'
c = CGI.new("html4")

c.out do
 c.html do
 c.h1 { 'Sorry, the Web is closed.' }
 end
end

Note the multiple levels of blocks: the block passed into CGI#out simply calls
CGI#html to generate the DOCTYPE and the <html> tags. The <html> tags contain the
result of a call to CGI#h1, which encloses some plain text in <h1> tags. The program
produces this output:

Content-Type: text/html
Content-Length: 137

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">
<HTML><H1>Sorry, the Web is closed.</H1></HTML>

The XmlMarkup class in Ruby’s builder gem works the same way: you can write Ruby
code that resembles the structure of the document it creates:

require 'rubygems'
require 'builder'
xml = Builder::XmlMarkup.new.message('type' => 'apology') do |b|
 b.content('Sorry, Web Services are closed.')
end
puts xml
<message type="apology">
<content>Sorry, Web Services are closed.</content>
</message>

See Also
• Recipe 6.13, “Locking a File,” uses this technique to create a method that locks a

file, and automatically unlocks it when you’re done using it

• Recipe 11.9, “Creating and Modifying XML Documents”

• Recipe 20.11, “Avoiding Deadlock,” uses this technique to have your thread lock
multiple resources in the right order, and unlock them when you’re done using
them

7.11 Coupling Systems Loosely with Callbacks

Problem
You want to combine different types of objects without hardcoding them full of ref-
erences to each other.

7.11 Coupling Systems Loosely with Callbacks | 263

Solution
Use a callback system, in which objects register code blocks with each other to be
executed as needed. An object can call out to its registered callbacks when it needs
something, or it can send notification to the callbacks when it does something.

To implement a callback system, write a “register” or “subscribe” method that
accepts a code block. Store the registered code blocks as Proc objects in a data struc-
ture: probably an array (if you only have one type of callback) or a hash (if you have
multiple types). When you need to call the callbacks, iterate over the data structure
and call each of the registered code blocks.

Here’s a mixin module that gives each instance of a class its own hash of “listener”
callback blocks. An outside object can listen for a particular event by calling
subscribe with the name of the event and a code block. The dispatcher itself is
responsible for calling notify with an appropriate event name at the appropriate
time, and the outside object is responsible for passing in the name of the event it
wants to “listen” for.

module EventDispatcher
 def setup_listeners
 @event_dispatcher_listeners = {}
 end

 def subscribe(event, &callback)
 (@event_dispatcher_listeners[event] ||= []) << callback
 end

 protected
 def notify(event, *args)
 if @event_dispatcher_listeners[event]
 @event_dispatcher_listeners[event].each do |m|
 m.call(*args) if m.respond_to? :call
 end
 end
 return nil
 end
end

Here’s a Factory class that keeps a set of listeners. An outside object can choose to be
notified every time a Factory object is created, or every time a Factory object pro-
duces a widget:

class Factory
 include EventDispatcher

 def initialize
 setup_listeners
 end

 def produce_widget(color)
 #Widget creation code goes here...

264 | Chapter 7: Code Blocks and Iteration

 notify(:new_widget, color)
 end
end

Here’s a listener class that’s interested in what happens with Factory objects:

class WidgetCounter
 def initialize(factory)
 @counts = Hash.new(0)
 factory.subscribe(:new_widget) do |color|
 @counts[color] += 1
 puts "#{@counts[color]} #{color} widget(s) created since I started watching."
 end
 end
end

Finally, here’s the listener in action:

f1 = Factory.new
WidgetCounter.new(f1)
f1.produce_widget("red")
1 red widget(s) created since I started watching.

f1.produce_widget("green")
1 green widget(s) created since I started watching.

f1.produce_widget("red")
2 red widget(s) created since I started watching.

This won't produce any output, since our listener is listening to
another Factory.
Factory.new.produce_widget("blue")

Discussion
Callbacks are an essential technique for making your code extensible. This tech-
nique has many names (callbacks, hook methods, plugins, publish/subscribe, etc.)
but no matter what terminology is used, it’s always the same. One object asks
another to call a piece of code (the callback) when some condition is met. This tech-
nique works even when the two objects know almost nothing about each other. This
makes it ideal for refactoring big, tightly integrated systems into smaller, loosely cou-
pled systems.

In a pure listener system (like the one given in the Solution), the callbacks set up
lines of communication that always move from the event dispatcher to the listeners.
This is useful when you have a master object (like the Factory), from which numer-
ous lackey objects (like the WidgetCounter) take all their cues.

But in many loosely coupled systems, information moves both ways: the dispatcher
calls the callbacks and then uses the return results. Consider the stereotypical web
portal: a customizable homepage full of HTML boxes containing sports scores,
weather predictions, and so on. Since new boxes are always being added to the

7.11 Coupling Systems Loosely with Callbacks | 265

system, the core portal software shouldn’t have to know anything about a specific
box. The boxes should also know as little about the core software as possible, so that
changing the core doesn’t require a change to all the boxes.

A simple change to the EventDispatcher class makes it possible for the dispatcher to
use the return values of the registered callbacks. The original implementation of
EventDispatcher#notify called the registered code blocks, but ignored their return
value. This version of EventDispatcher#notify yields the return values to a block
passed in to notify:

module EventDispatcher
 def notify(event, *args)
 if @event_dispatcher_listeners[event]
 @event_dispatcher_listeners[event].each do |m|
 yield(m.call(*args)) if m.respond_to? :call
 end
 end
 return nil
 end
end

Here’s an insultingly simple portal rendering engine. It lets boxes register to be ren-
dered inside an HTML table, on one of two rows on the portal page:

class Portal
 include EventDispatcher

 def initialize
 setup_listeners
 end

 def render
 puts '<table>'
 render_block = Proc.new { |box| puts " <td>#{box}</td>" }
 [:row1, :row2].each do |row|
 puts ' <tr>'
 notify(row, &render_block)
 puts ' </tr>'
 end
 puts '</table>'
 end
end

Here’s the rendering engine rendering a specific user’s portal layout. This user likes
to see a stock ticker and a weather report on the left, and a news box on the right.
Note that there aren’t even any classes for these boxes; they’re so simple they can be
implemented as anonymous code blocks:

portal = Portal.new
portal.subscribe(:row1) { 'Stock Ticker' }
portal.subscribe(:row1) { 'Weather' }
portal.subscribe(:row2) { 'Pointless, Trivial News' }

266 | Chapter 7: Code Blocks and Iteration

portal.render
<table>
<tr>
<td>Stock Ticker</td>
<td>Weather</td>
</tr>
<tr>
<td>Pointless, Trivial News</td>
</tr>
</table>

If you want the registered listeners to be shared across all instances of a class, you
can make listeners a class variable, and make subscribe a module method. This is
most useful when you want listeners to be notified whenever a new instance of the
class is created.

267

Chapter 8 CHAPTER 8

Objects and Classes8

Ruby is an object-oriented programming language; this chapter will show you what
that really means. Like all modern languages, Ruby supports object-oriented notions
like classes, inheiritance, and polymorphism. But Ruby goes further than other lan-
guages you may have used. Some languages are strict and some are permissive; Ruby
is one of the most permissive languages around.

Strict languages enforce strong typing, usually at compile type: a variable defined as
an array can’t be used as another data type. If a method takes an array as an argu-
ment, you can’t pass in an array-like object unless that object happens to be a sub-
class of the array class or can be converted into an array.

Ruby enforces dynamic typing, or duck typing (“if it quacks like a duck, it is a
duck”). A strongly typed language enforces its typing everywhere, even when it’s not
needed. Ruby enforces its duck typing relative to a particular task. If a variable
quacks like a duck, it is one—assuming you wanted to hear it quack. When you
want “swims like a duck” instead, duck typing will enforce the swimming, and not
the quacking.

Here’s an example. Consider the following three classes, Duck, Goose, and
DuckRecording:

class Duck
 def quack
 'Quack!'
 end

 def swim
 'Paddle paddle paddle...'
 end
end

class Goose
 def honk
 'Honk!'
 end

268 | Chapter 8: Objects and Classes

 def swim
 'Splash splash splash...'
 end
end

class DuckRecording
 def quack
 play
 end

 def play
 'Quack!'
 end
end

If Ruby was a strongly typed language, a method that told a Duck to quack would fail
when given a DuckRecording. The following code is written in the hypothetical lan-
guage Strongly-Typed Ruby; it won’t work in real Ruby.

def make_it_quack(Duck duck)
 duck.quack
end

make_it_quack(Duck.new) # => "Quack!"
make_it_quack(DuckRecording.new)
TypeException: object not of type Duck

If you were expecting a Duck, you wouldn’t be able to tell a Goose to swim:

def make_it_swim(Duck duck)
 duck.swim
end

make_it_swim(Duck.new) # => "Paddle paddle paddle..."
make_it_swim(Goose.new)
TypeException: object not of type Goose

Since real Ruby uses duck typing, you can get a recording to quack or a goose to
swim:

def make_it_quack(duck)
 duck.quack
end
make_it_quack(Duck.new) # => "Quack!"
make_it_quack(DuckRecording.new) # => "Quack!"

def make_it_swim(duck)
 duck.swim
end
make_it_swim(Duck.new) # => "Paddle paddle paddle..."
make_it_swim(Goose.new) # => "Splash splash splash..."

But you can’t make a recording swim or a goose quack:

make_it_quack(Goose.new)
NoMethodError: undefined method `quack' for #<Goose:0x2bb8a8>

8.1 Managing Instance Data | 269

make_it_swim(DuckRecording.new)
NoMethodError: undefined method `swim' for #<DuckRecording:0x2b97d8>

Over time, strict languages develop workarounds for their strong typing (have you
ever done a cast when retrieving something from an Java collection?), and then
workarounds for the workarounds (have you ever created a parameterized Java col-
lection using generics?). Ruby just doesn’t bother with any of it. If an object sup-
ports the method you’re trying to use, Ruby gets out of its way and lets it work.

Ruby’s permissiveness is more a matter of attitude than a technical advancement.
Python lets you reopen a class after its original definition and modify it after the fact,
but the language syntax doesn’t make many allowances for it. It’s sort of a dirty little
secret of the language. In Ruby, this behavior is not only allowed, it’s encouraged.
Some parts of the standard library add functionality to built-in classes when imported,
just to make it easier for the programmer to write code. The Facets Core library adds
dozens of convenience methods to Ruby’s standard classes. Ruby is proud of this capa-
bility, and urges programmers to exploit it if it makes their lives easier.

Strict languages end up needing code generation tools that hide the restrictions and
complexities of the language. Ruby has code generation tools built right into the
language, saving you work while leaving complete control in your hands (see
Chapter 10).

Is this chaotic? It can be. Does it matter? Only when it actually interferes with you get-
ting work done. In this chapter and the next two, we’ll show you how to follow com-
mon conventions, and how to impose order on the chaos when you need it. With
Ruby you can impose the right kind of order on your objects, tailored for your situa-
tion, not a one-size-fits all that makes you jump through hoops most of the time.

These recipes are probably less relevant to the problems you’re trying to solve than
the other ones in this book, but they’re not less important. This chapter and the next
two provide a general-purpose toolbox for doing the dirty work of actual program-
ming, whatever your underlying purpose or algorithm. These are the chapters you
should turn to when you find yourself stymied by the Ruby language itself, or grind-
ing through tedious makework that Ruby’s labor-saving techniques can eliminate.
Every other chapter in this book uses the ideas behind these recipes.

8.1 Managing Instance Data

Problem
You want to associate a variable with an object. You may also want the variable to be
readable or writable from outside the object.

270 | Chapter 8: Objects and Classes

Solution
Within the code for the object’s class, define a variable and prefix its name with an at
sign (@). When an object runs the code, a variable by that name will be stored
within the object.

An instance of the Frog class defined below might eventually have two instance vari-
ables stored within it, @name and @speaks_english:

class Frog
 def initialize(name)
 @name = name
 end

 def speak
 # It's a well-known fact that only frogs with long names start out
 # speaking English.
 @speaks_english ||= @name.size > 6
 @speaks_english ? "Hi. I'm #{@name}, the talking frog." : 'Ribbit.'
 end
end

Frog.new('Leonard').speak # => "Hi. I'm Leonard, the talking frog."

lucas = Frog.new('Lucas')
lucas.speak # => "Ribbit."

If you want to make an instance variable readable from outside the object, call the
attr_reader method on its symbol:

lucas.name
NoMethodError: undefined method `name' for #<Frog:0xb7d0327c @speaks_english=true,
@name="Lucas">

class Frog
 attr_reader :name
end
lucas.name # => "Lucas"

Similarly, to make an instance variable readable and writable from outside the object,
call the attr_accessor method on its symbol:

lucas.speaks_english = false
=> NoMethodError: undefined method `speaks_english=' for #<Frog:0xb7d0327c @speaks_
english=false, @name="Lucas">

class Frog
 attr_accessor :speaks_english
end
lucas.speaks_english = true
lucas.speak # => "Hi. I'm Lucas, the talking frog."

8.1 Managing Instance Data | 271

Discussion
Some programming languages have complex rules about when one object can
directly access to another object’s instance variables. Ruby has one simple rule: it’s
never allowed. To get or set the value of an instance variable from outside the object
that owns it, you need to call an explicitly defined getter or setter method.

Basic getter and setter methods look like this:

class Frog
 def speaks_english
 @speaks_english
 end

 def speaks_english=(value)
 @speaks_english = value
 end
end

But it’s boring and error-prone to write that yourself, so Ruby provides built-in deco-
rator methods like Module#attr_reader and Module#attr_accessor. These methods
use metaprogramming to generate custom getter and setter methods for your class.
Calling attr_reader :speaks_english generates the getter method speaks_english and
attaches it to your class. Calling attr_accessor :instance_variable generates both
the getter method speaks_english and the setter method speaks_english=.

There’s also an attr_writer decorator method, which only generates a setter
method, but you won’t use it very often. It doesn’t usually make sense for an
instance variable to be writable from the outside, but not readable. You’ll probably
use it only when you plan to write your own custom getter method instead of gener-
ating one.

Another slight difference between Ruby and some other programming languages: in
Ruby, instance variables (just like other variables) don’t exist until they’re defined.
Below, note how the @speaks_english variable isn’t defined until the Frog#speak
method gets called:

michael = Frog.new("Michael")
=> #<Frog:0xb7cf14c8 @name="Michael">
michael.speak # => "Hi. I'm Michael, the talking frog."
michael
=> #<Frog:0xb7cf14c8 @name="Michael", @speaks_english=true>

It’s possible that one Frog object would have the @speaks_english instance variable
set while another one would not. If you call a getter method for an instance variable
that’s not defined, you’ll get nil. If this behavior is a problem, write an initialize
that initializes all your instance variables.

Given the symbol for an instance variable, you can retrieve the value with
Object#instance_variable_get, and set it with Object#instance_variable_set.

272 | Chapter 8: Objects and Classes

Because this method ignores encapsulation, you should only use it in within the class
itself: say, within a call to Module#define_method.

This use of instance_variable_get violates encapsulation, since we’re calling it from
outside the Frog class:

michael.instance_variable_get("@name") # => "Michael"
michael.instance_variable_set("@name", 'Bob')
michael.name # => "Bob"

This use doesn’t violate encapsulation (though there’s no real need to call define_
method here):

class Frog
 define_method(:scientific_name) do
 species = 'vulgaris'
 species = 'loquacious' if instance_variable_get('@speaks_english')
 "Rana #{species}"
 end
end
michael.scientific_name # => "Rana loquacious"

See Also
• Recipe 10.10, “Avoiding Boilerplate Code with Metaprogramming”

8.2 Managing Class Data

Problem
Instead of storing a bit of data along with every instance of a class, you want to store
a bit of data along with the class itself.

Solution
Instance variables are prefixed by a single at sign; class variables are prefixed by two
at signs. This class contains both an instance variable and a class variable:

class Warning
 @@translations = { :en => 'Wet Floor',
 :es => 'Piso Mojado' }

 def initialize(language=:en)
 @language = language
 end

 def warn
 @@translations[@language]
 end
end

Warning.new.warn # => "Wet Floor"
Warning.new(:es).warn # => "Piso Mojado"

8.2 Managing Class Data | 273

Discussion
Class variables store information that’s applicable to the class itself, or applicable to
every instance of the class. They’re often used to control, prevent, or react to the
instantiation of the class. A class variable in Ruby acts like a static variable in Java.

Here’s an example that uses a class constant and a class variable to control when and
how a class can be instantiated:

class Fate
 NAMES = ['Klotho', 'Atropos', 'Lachesis'].freeze
 @@number_instantiated = 0

 def initialize
 if @@number_instantiated >= NAMES.size
 raise ArgumentError, 'Sorry, there are only three Fates.'
 end
 @name = NAMES[@@number_instantiated]
 @@number_instantiated += 1
 puts "I give you... #{@name}!"
 end
end

Fate.new
I give you... Klotho!
=> #<Fate:0xb7d2c348 @name="Klotho">

Fate.new
I give you... Atropos!
=> #<Fate:0xb7d28400 @name="Atropos">

Fate.new
I give you... Lachesis!
=> #<Fate:0xb7d22168 @name="Lachesis">

Fate.new
ArgumentError: Sorry, there are only three Fates.

It’s not considered good form to write setter or getter methods for class variables.
You won’t usually need to expose any class-wide information apart from helpful con-
stants, and those you can expose with class constants such as NAMES above.

If you do want to write setter or getter methods for class variables, you can use the
following class-level equivalents of Module#attr_reader and Module#attr_writer.
They use metaprogramming to define new accessor methods:*

class Module
 def class_attr_reader(*symbols)
 symbols.each do |symbol|

* In Ruby 1.9, Object#send can’t be used to call private methods. You’ll need to replace the calls to send with
calls to Object#funcall.

274 | Chapter 8: Objects and Classes

 self.class.send(:define_method, symbol) do
 class_variable_get("@@#{symbol}")
 end
 end
 end

 def class_attr_writer(*symbols)
 symbols.each do |symbol|
 self.class.send(:define_method, "#{symbol}=") do |value|
 class_variable_set("@@#{symbol}", value)
 end
 end
 end

 def class_attr_accessor(*symbols)
 class_attr_reader(*symbols)
 class_attr_writer(*symbols)
 end
end

Here is Module#class_attr_reader being used to give the Fate class an accessor for its
class variable:

Fate.number_instantiated
NoMethodError: undefined method `number_instantiated' for Fate:Class

class Fate
 class_attr_reader :number_instantiated
end
Fate.number_instantiated # => 3

You can have both a class variable foo and an instance variable foo, but this will only
end up confusing you. For instance, the accessor method foo must retrieve one or the
other. If you call attr_accessor :foo and then class_attr_accessor :foo, the class
version will silently overwrite the instance version.

As with instance variables, you can bypass encapsulation and use class variables
directly with class_variable_get and class_variable_set. Also as with instance vari-
ables, you should only do this from inside the class, usually within a define_method call.

See Also
• If you want to create a singleton, don’t mess around with class variables; instead,

use the singleton library from Ruby’s standard library

• Recipe 8.18, “Implementing Class and Singleton Methods”

• Recipe 10.10, “Avoiding Boilerplate Code with Metaprogramming”

8.3 Checking Class or Module Membership | 275

8.3 Checking Class or Module Membership

Problem
You want to see if an object is of the right type for your purposes.

Solution
If you plan to call a specific method on the object, just check to see whether the
object reponds to that method:

def send_as_package(obj)
 if obj.respond_to? :package
 packaged = obj.package
 else
 $stderr.puts "Not sure how to package a #{obj.class}."
 $stderr.puts 'Trying generic packager.'
 package = Package.new(obj)
 end
 send(package)
end

If you really can only accept objects of one specific class, or objects that include one
specific module, use the is_a? predicate:

def multiply_precisely(a, b)
 if a.is_a? Float or b.is_a? Float
 raise ArgumentError, "I can't do precise multiplication with floats."
 end
 a * b
end

multiply_precisely(4, 5) # => 20
multiply_precisely(4.0, 5)
ArgumentError: I can't do precise multiplication with floats.

Discussion
Whenever possible, you should use duck typing (Object#respond_to?) in preference
to class typing (Object#is_a?). Duck typing is one of the great strengths of Ruby, but
it only works if everyone uses it. If you write a method that only accepts strings,
instead of accepting anything that supports to_str, then you’ve broken the duck typ-
ing illusion for everyone who uses your code.

Sometimes you can’t use duck typing, though, or sometimes you need to combine it
with class typing. Sometimes two different classes define the same method (espe-
cially one of the operators) in completely different ways. Duck typing makes it possi-
ble to silently do the right thing, but if you know that duck typing would silently do
the wrong thing, a little class typing won’t hurt.

276 | Chapter 8: Objects and Classes

Here’s a method that uses duck typing to see whether an operation is supported, and
class typing to cut short a possible problem before it occurs:

def append_to_self(x)
 unless x.respond_to? :<<
 raise ArgumentError, "This object doesn't support the left-shift operator."
 end
 if x.is_a? Numeric
 raise ArgumentError,
 "The left-shift operator for this object doesn't do an append."
 end
 x << x
end

append_to_self('abc') # => "abcabc"
append_to_self([1, 2, 3]) # => [1, 2, 3, [...]]

append_to_self({1 => 2})
ArgumentError: This object doesn't support the left-shift operator.

append_to_self(5)
ArgumentError: The left-shift operator for this object doesn't do an append.
5 << 5 # => 160
That is, 5 * (2 ** 5)

An alternative solution approximates the functionality of Java’s interfaces. You can
create a dummy module for a given capability, have all appropriate classes include it,
and use is_a? to check for inclusion of the module. This requires that each partici-
pating class signal its ability to perform a certain task, but it doesn’t tie you to any
particular class hierarchy, and it saves you from calling the wrong method just
because it has the right name.

module ShiftMeansAppend
 def <<(x)
 end
end

class String
 include ShiftMeansAppend
end

class Array
 include ShiftMeansAppend
end

def append_to_self(x)
 unless x.is_a? ShiftMeansAppend
 raise ArgumentError, "I can't trust this object's left-shift operator."
 end
 x << x
end

8.4 Writing an Inherited Class | 277

append_to_self 4
ArgumentError: I can't trust this object's left-shift operator.

append_to_self '4' # => "44"

See Also
• Recipe 1.12, “Testing Whether an Object Is String-Like”

8.4 Writing an Inherited Class

Problem
You want to create a new class that extends or modifies the behavior of an existing
class.

Solution
If you’re writing a new method that conceptually belongs in the original class, you
can reopen the class and append your method to the class definition. You should
only do this if your method is generally useful, and you’re sure it won’t conflict with
a method defined by some library you include in the future.

This code adds a scramble method to Ruby’s built-in String class (see Recipe 4.10 for
a faster way to sort randomly):

class String
 def scramble
 split(//).sort_by { rand }.join
 end
end

"I once was a normal string.".scramble
=> "i arg cn lnws.Ioateosma n r"

If your method isn’t generally useful, or you don’t want to take the risk of modifying
a class after its initial creation, create a subclass of the original class. The subclass
can override its parent’s methods, or add new ones. This is safer because the original
class, and any code that depended on it, is unaffected. This subclass of String adds
one new method and overrides one existing one:

class UnpredictableString < String
 def scramble
 split (//).sort_by { rand }.join
 end

 def inspect
 scramble.inspect
 end
end

278 | Chapter 8: Objects and Classes

str = UnpredictableString.new("It was a dark and stormy night.")
=> " hsar gsIo atr tkd naaniwdt.ym"
str
=> "ts dtnwIktsr oydnhgi .mara aa"

Discussion
All of Ruby’s classes can be subclassed, though a few of them can’t be usefully sub-
classed (see Recipe 8.18 for information on how to deal with the holdouts).

Ruby programmers use subclassing less frequently than they would in other lan-
guages, because it’s often acceptable to simply reopen an existing class (even a built-
in class) and attach a new method. We do this throughout this book, adding useful
new methods to built-in classes rather than defining them in Kernel, or putting them
in subclasses or utility classes. Libraries like Rails and Facets Core do the same.

This improves the organization of your code. But the risk is that a library you include
(or a library included by one you include) will define the same method in the same
built-in class. Either the library will override your method (breaking your code), or
you’ll override its method (breaking its code, which will break your code). There is
no general solution to this problem short of adopting naming conventions, or always
subclassing and never modifying preexisting classes.

You should certainly subclass if you’re writing a method that isn’t generally useful,
or that only applies to certain instances of a class. For instance, here’s a method
Array#sum that adds up the elements of an array:

class Array
 def sum(start_at=0)
 inject(start_at) { |sum, x| sum + x }
 end
end

This works for arrays that contain only numbers (or that contain only strings), but it
will fail for other kinds of arrays.

[79, 14, 2].sum # => 95
['so', 'fa'].sum('') # => "sofa"
[79, 'so'].sum
TypeError: String can't be coerced into Fixnum

Maybe you should signal this by putting it in a subclass called NumericArray or
SummableArray:

class NumericArray < Array
 def sum
 inject(0) { |sum, x| sum + x }
 end
end

8.5 Overloading Methods | 279

The NumericArray class doesn’t actually do type checking to make sure it only con-
tains numeric objects, but since it’s a different class, you and other programmers are
less likely to use sum where it’s not appropriate.*

You should also subclass if you want to override a method’s behavior. In the
UnpredictableString example, I overrode the inspect method in my subclass. If I’d
just modified String#inspect, the rest of my program would have been thrown into
confusion. Rarely is it acceptable to override a method in place: one example would
be if you’ve written a drop-in implementation that’s more efficient.

See Also
• Recipe 8.18, “Implementing Class and Singleton Methods,” shows you how to

extend the behavior of a particular object after it’s been created

• http://www.rubygarden.org/ruby?TheOpenNatureOfRuby

8.5 Overloading Methods

Problem
You want to create two different versions of a method with the same name: two
methods that differ in the arguments they take.

Solution
A Ruby class can have only one method with a given name. Within that single
method, though, you can put logic that branches depending on how many and what
kinds of objects were passed in as arguments.

Here’s a Rectangle class that represents a rectangular shape on a grid. You can
instantiate a Rectangle in one of two ways: by passing in the coordinates of its top-
left and bottom-left corners, or by passing in its top-left corner along with its length
and width. There’s only one initialize method, but you can act as though there
were two.

The Rectangle constructor accepts arguments in either of the following forms:
Rectangle.new([x_top, y_left], length, width)
Rectangle.new([x_top, y_left], [x_bottom, y_right])
class Rectangle
 def initialize(*args)
 case args.size
 when 2
 @top_left, @bottom_right = args

* This isn’t a hard and fast rule. Array#sort won’t work on arrays whose elements can’t be mutually compared,
but it would be a big inconvenience to put sort in a subclass of Array or leave it out of the Ruby standard
library. You might feel the same way about sum; but then, you’re not the Ruby standard library.

280 | Chapter 8: Objects and Classes

 when 3
 @top_left, length, width = args
 @bottom_right = [@top_left[0] + length, @top_left[1] - width]
 else
 raise ArgumentError, "This method takes either 2 or 3 arguments."
 end

 # Perform additional type/error checking on @top_left and
 # @bottom_right...
 end
end

Here’s the Rectangle constructor in action:

`
Rectangle.new([10, 23], [14, 13])
=> #<Rectangle:0xb7d15828 @bottom_right=[14, 13], @top_left=[10, 23]>

Rectangle.new([10, 23], 4, 10)
=> #<Rectangle:0xb7d0da4c @bottom_right=[14, 13], @top_left=[10, 23]>

Rectangle.new
=> ArgumentError: This method takes either 2 or 3 arguments.

Discussion
In strongly typed languages like C++ and Java, you must often create multiple ver-
sions of the same method with different arguments. For instance, Java’s StringBuffer
class implements over 10 variants of its append method: one that takes a boolean, one
that takes a string, and so on.

Ruby’s equivalent of StringBuffer is StringIO, and its equivalent of the append
method is StringIO#<<. In Ruby, that method can only be defined once, but it can
take an object of any type. There’s no need to write different versions of the method
for taking different kinds of object. If you need to do type checking (such as making
sure the object has a string representation), you put it in the method body rather
than in the method definition.

Ruby’s loose typing eliminates most of the need for method overloading. Its default
arguments, variable-length argument lists, and (simulated) keyword arguments elimi-
nate most of the remaining cases. What’s left? Mainly methods that can take two
completely different sets of arguments, like the Rectangle constructor given in the
Solution.

To handle these, write a method that takes a variable number of arguments, and give
it some extra code at the front that figures out which set of arguments was passed.
Rectangle#initialize rejects argument lists that are of the wrong length. Additional
code could enforce duck typing to make sure that the arguments passed in are of the
right type. See Recipe 10.16 for simple ways to do argument validation.

8.6 Validating and Modifying Attribute Values | 281

See Also
• Recipe 8.11, “Accepting or Passing a Variable Number of Arguments”

• Recipe 8.12, “Simulating Keyword Arguments”

• Recipe 10.16, “Enforcing Software Contracts”

8.6 Validating and Modifying Attribute Values

Problem
You want to let outside code set your objects’ instance variables, but you also want
to impose some control over the values your variables are set to. You might want a
chance to validate new values before accepting them. Or you might want to accept
values in a form convenient to the caller, but transform them into a different form for
internal storage.

Solution
Define your own setter method for each instance variable you want to control. The
setter method for an instance variable quantity would be called quantity=. When a
user issues a statement like object.quantity = 10, the method object#quantity= is
called with the argument 10.

It’s up to the quantity= method to decide whether the instance variable quantity
should actually take the value 10. A setter method is free to raise an
ArgumentException if it’s passed an invalid value. It may also modify the provided
value, massaging it into the canonical form used by the class. If it can get an accept-
able value, its last act should be to modify the instance variable.

I’ll define a class that keeps track of peoples’ first and last names. It uses setter meth-
ods to enforce two somewhat parochial rules: everyone must have both a first and a
last name, and everyone’s first name must begin with a capital letter:

class Name

 # Define default getter methods, but not setter methods.
 attr_reader :first, :last

 # When someone tries to set a first name, enforce rules about it.
 def first=(first)
 if first == nil or first.size == 0
 raise ArgumentError.new('Everyone must have a first name.')
 end
 first = first.dup
 first[0] = first[0].chr.capitalize
 @first = first
 end

282 | Chapter 8: Objects and Classes

 # When someone tries to set a last name, enforce rules about it.
 def last=(last)
 if last == nil or last.size == 0
 raise ArgumentError.new('Everyone must have a last name.')
 end
 @last = last
 end

 def full_name
 "#{@first} #{@last}"
 end

 # Delegate to the setter methods instead of setting the instance
 # variables directly.
 def initialize(first, last)
 self.first = first
 self.last = last
 end
end

I’ve written the Name class so that the rules are enforced both in the constructor and
after the object has been created:

jacob = Name.new('Jacob', 'Berendes')
jacob.first = 'Mary Sue'
jacob.full_name # => "Mary Sue Berendes"

john = Name.new('john', 'von Neumann')
john.full_name # => "John von Neumann"
john.first = 'john'
john.first # => "John"
john.first = nil
ArgumentError: Everyone must have a first name.

Name.new('Kero, international football star and performance artist', nil)
ArgumentError: Everyone must have a last name.

Discussion
Ruby never lets one object access another object’s instance variables. All you can do is
call methods. Ruby simulates instance variable access by making it easy to define getter
and setter methods whose names are based on the names of instance variables. When
you access object.my_var, you’re actually calling a method called my_var, which (by
default) just happens to return a reference to the instance variable my_var.

Similarly, when you set a new value for object.my_var, you’re actually passing that
value into a setter method called my_var=. That method might go ahead and stick
your new value into the instance variable my_var. It might accept your value, but
silently clean it up, convert it to another format, or otherwise modify it. It might be
picky and reject your value altogether by raising an ArgumentError.

8.7 Defining a Virtual Attribute | 283

When you’re defining a class, you can have Ruby generate a setter method for one of
your instance variables by calling Module#atttr_writer or Module#attr_accessor on
the symbol for that variable. This saves you from having to write code, but the
default setter method lets anyone set the instance variable to any value at all:

class SimpleContainer
 attr_accessor :value
end

c = SimpleContainer.new

c.respond_to? "value=" # => true

c.value = 10; c.value # => 10

c.value = "some random value"; c.value # => "some random value"

c.value = [nil, nil, nil]; c.value # => [nil, nil, nil]

A lot of the time, this kind of informality is just fine. But sometimes you don’t trust
the data coming in through the setter methods. That’s when you can define your
own methods to stop bad data before it infects your objects.

Within a class, you have direct access to the instance variables. You can simply
assign to an instance variable and the setter method won’t be triggered. If you do
want to trigger the setter method, you’ll have to call it explicitly. Note how, in the
Name#initialize method above, I call the first= and last= methods instead of
assigning to @first and @last. This makes sure the validation code gets run for the
initial values of every Name object. I can’t just say first = first, because first is a
variable name in that method.

See Also
• Recipe 8.1, “Managing Instance Data”

• Recipe 13.14, “Validating Data with ActiveRecord”

8.7 Defining a Virtual Attribute

Problem
You want to create accessor methods for an attribute that isn’t directly backed by
any instance variable: it’s a calculated value derived from one or more different
instance variables.

284 | Chapter 8: Objects and Classes

Solution
Define accessor methods for the attribute in terms of the instance variables that are
actually used. There need not be any relationship between the names of the accessor
methods and the names of the instance variables.

The following class exposes four accessor methods: degrees, degrees=, radians, and
radians=. But it only stores one instance variable: @radians.

class Arc
 attr_accessor :radians

 def degrees
 @radians * 180 / Math::PI
 end

 def degrees=(degrees)
 @radians = degrees * Math::PI / 180
 end
end

arc = Arc.new
arc.degrees = 180
arc.radians # => 3.14159265358979
arc.radians = Math::PI / 2
arc.degrees # => 90.0

Discussion
Ruby accessor methods usually correspond to the names of the instance variables
they access, but this is nothing more than a convention. Outside code has no way of
knowing what your instance variables are called, or whether you have any at all, so
you can create accessors for virtual attributes with no risk of outside code thinking
they’re backed by real instance variables.

See Also
• Recipe 2.9, “Converting Between Degrees and Radians”

8.8 Delegating Method Calls to Another Object

Problem
You’d like to delegate some of an object’s method calls to a different object, or make
one object capable of “impersonating” another.

Solution
If you want to completely impersonate another object, or delegate most of one
object’s calls to another, use the delegate library. It generates custom classes whose

8.8 Delegating Method Calls to Another Object | 285

instances can impersonate objects of any other class. These custom classes respond
to all methods of the class they shadow, but they don’t do any work of their own
apart from calling the same method on some instance of the “real” class.

Here’s some code that uses delegate to generate CardinalNumber, a class that acts
almost like a Fixnum. CardinalNumber defines the same methods as Fixnum does, and it
takes a genuine Fixnum as an argument to its constructor. It stores this object as a
member, and when you call any of Fixnum’s methods on a CardinalNumber object, it
delegates that method call to the stored Fixnum. The only major exception is the to_s
method, which I’ve decided to override.

require 'delegate'

An integer represented as an ordinal number (1st, 2nd, 3rd...), as
opposed to an ordinal number (1, 2, 3...) Generated by the
DelegateClass to have all the methods of the Fixnum class.
class OrdinalNumber < DelegateClass(Fixnum)
 def to_s
 delegate_s = __getobj_ _.to_s
 check = abs
 if to_check == 11 or to_check == 12
 suffix = "th"
 else
 case check % 10
 when 1 then suffix = "st"
 when 2 then suffix = "nd"
 else suffix = "th"
 end
 end
 return delegate_s + suffix
 end
end

4.to_s # => "4"
OrdinalNumber.new(4).to_s # => "4th"

OrdinalNumber.new(102).to_s # => "102nd"
OrdinalNumber.new(11).to_s # => "11th"
OrdinalNumber.new(-21).to_s # => "-21st"

OrdinalNumber.new(5).succ # => 6
OrdinalNumber.new(5) + 6 # => 11
OrdinalNumber.new(5) + OrdinalNumber.new(6) # => 11

Discussion
The delegate library is useful when you want to extend the behavior of objects you
don’t have much control over. Usually these are objects you’re not in charge of
instantiating—they’re instantiated by factory methods, or by Ruby itself. With
delegate, you can create a class that wraps an already existing object of another class

286 | Chapter 8: Objects and Classes

and modifies its behavior. You can do all of this without changing the original class.
This is especially useful if the original class has been frozen.

There are a few methods that delegate won’t delegate: most of the ones in Kernel.
public_instance_methods. The most important one is is_a?. Code that explicitly
checks the type of your object will be able to see that it’s not a real instance of the
object it’s impersonating. Using is_a? instead of respond_to? is often bad Ruby prac-
tice, but it happens pretty often, so you should be aware of it.

The Forwardable module is a little more precise and a little less discerning: it lets you
delegate any of an object’s methods to another object. A class that extends
Forwardable can use the def_delegator decorator method, which takes as arguments
an object symbol and a method symbol. It defines a new method that delegates to
the method of the same name in the given object. There’s also a def_delegators
method, which takes multiple method symbols as arguments and defines a delegator
method for each one. By calling def_delegator multiple times, you can have a single
Forwardable delegate different methods to different subobjects.

Here I’ll use Forwardable to define a simple class that works like an array, but sup-
ports none of Array’s methods except the append operator, <<. Note how the <<
method defined by def_delegator is passed through to modify the underlying array.

class AppendOnlyArray
 extend Forwardable
 def initialize
 @array = []
 end

 def_delegator :@array, :<<
end

a = AppendOnlyArray
a << 4
a << 5
a.size
=> undefined method `size' for #<AppendOnlyArray:0xb7d23c5c @array=[4, 5]>

AppendOnlyArray is pretty useless, but the same principle makes Forwardable useful if
you want to expose only a portion of a class’ interface. For instance, suppose you
want to create a data structure that works like a Hash, but only supports random
access. You don’t want to support keys, each, or any of the other ways of getting
information out of a hash without providing a key.

You could subclass Hash, then redefine or delete all the methods that you don’t want
to support. Then you could worry a lot about having missed some of those methods.
Or you could define a subclass of Forwardable and define only the methods of Hash
that you do want to support.

class RandomAccessHash
 extend Forwardable

8.9 Converting and Coercing Objects to Different Types | 287

 def initialize
 @delegate_to = {}
 end

 def_delegators :@delegate_to, :[], "[]="
end

balances_by_account_number = RandomAccessHash.new

Load balances from a database or something.
balances_by_account_number["101240A"] = 412.60
balances_by_account_number["104918J"] = 10339.94
balances_by_account_number["108826N"] = 293.01

Random access works if you know the key, but anything else is forbidden:

balances_by_account_number["104918J"] # => 10339.94
balances_by_account_number.each do |number, balance|
 puts "I now know the balance for account #{number}: it's #{balance}"
end
=> NoMethodError: undefined method `each' for #<RandomAccessHash:0xb7d49078>

See Also
• An alternative to using SimpleDelegator to write delegator methods is to skip out

on the methods altogether, and instead implement a method_missing which does
the delegating. Recipe 2.13, “Simulating a Subclass of Fixnum,” uses this tech-
nique. You might especially find this recipe interesting if you’d like to make
arithmetic on CardinalNumber objects yield new CardinalNumber objects instead of
Fixnum objects.

8.9 Converting and Coercing Objects
to Different Types

Problem
You have an object of one type and you want to use it as though it were of another
type.

Solution
You might not have to do anything at all. Ruby doesn’t enforce type safety unless the
programmer has explicitly written it in. If your original class defines the same meth-
ods as the class you were thinking of converting it to, you might be able to use your
object as is.

If you do have to convert from one class to another, Ruby provides conversion meth-
ods for most common paths:

"4".to_i # => 4
4.to_s # => "4"

288 | Chapter 8: Objects and Classes

Time.now.to_f # => 1143572140.90932
{ "key1" => "value1", "key2" => "value2" }.to_a
=> [["key1", "value1"], ["key2", "value2"]]

If all else fails, you might be able to manually create an instance of the new class, and
set its instance variables using the old data.

Discussion
Some programming languages have a “cast” operator that forces the compiler to treat
an object of one type like an object of another type. A cast is usually a programmer’s
assertion that he knows more about the types of objects than the compiler. Ruby has
no cast operator. From Ruby’s perspective, type checking is just an extra hoop you
have to jump through. A cast operator would make it easier to jump through that
hoop, but Ruby omits the hoop altogether.

Wherever you’re tempted to cast an object to another type, you should be able to
just do nothing. If your object can be used as the other type, there’s no problem: if
not, then casting it to that type wouldn’t have helped anyway.

Here’s a concrete example. You probably don’t need to convert a hash into an array
just so you can pass it into an iteration method that expects an array. If that method
only calls each on its argument, it doesn’t really “expect an array:” it expects a rea-
sonable implementation of each. Ruby hashes provide that implementation just as
well as arrays.

def print_each(array)
 array.each { |x| puts x.inspect }
end

hash = { "pickled peppers" => "peck of",
 "sick sheep" => "sixth" }
print_each(hash.to_a)
["sick sheep", "sixth"]
["pickled peppers", "peck of"]

print_each(hash)
["sick sheep", "sixth"]
["pickled peppers", "peck of"]

Ruby does provide methods for converting one data type into another. These meth-
ods follow the naming convention to_[other type], and they usually create a brand
new object of the new type, but containing the old data. They are generally used
when you want to use some method of the new data type, or display or store the data
in another format.

In the case of print_each, not converting the hash to an array gives the same results
as converting, and the code is shorter and faster when it doesn’t do the conversion.
But converting a hash into an array of key-value pairs does let you call methods
defined by Array but not by Hash. If what you really want is an array—something

8.9 Converting and Coercing Objects to Different Types | 289

ordered, something you can modify with push and pop—there’s no reason not to con-
vert to an array and stop using the hash.

array = hash.to_a
=> [["sick sheep", "sixth"], ["pickled peppers", "peck of"]]

Print out a tongue-twisting invoice.
until array.empty?
 item, quantity = array.pop
 puts "#{quantity} #{item}"
end
peck of pickled peppers
sixth sick sheep

Some methods convert one data type to another as a side effect: for instance, sorting
a hash implicitly converts it into an array, since hashes have no notion of ordering.

hash.sort
=> [["pickled peppers", "peck of"], ["sick sheep", "sixth"]]

Number conversion and coercion

Most of the commonly used conversion methods in stock Ruby are in the number
classes. This makes sense because arithmetic operations can give different results
depending on the numeric types of the inputs. This is one place where Ruby’s con-
version methods are used as a substitute for casting. Here, to_f is used to force Ruby
to perform floating-point division instead of integer division:

3/4 # => 0
3/4.to_f # => 0.75

Integers and floating-point numbers have to_i and to_f methods to convert back and
forth between each other. BigDecimal or Rational objects define the same methods;
they also define some brand new conversion methods: to_d to convert a number to
BigDecimal, and to_r to convert a number to Rational. To convert to or from Rational
objects you just have to require 'rational'. To convert to or from BigDecimal objects
you must require 'bigdecimal' and also require 'bigdecimal/utils'.

require 'rational'
Rational(1, 3).to_f # => 0.333333333333333
Rational(11, 5).to_i # => 2
2.to_r # => Rational(2, 1)

Here’s a table that shows how to convert between Ruby’s basic numeric types.

Integer Floating-point BigDecimal Rational

 Integer to_i(identity) to_f to_r.to_d to_r

 Float to_i(decimal discard) to_f (new) to_d to_d.to_r
(include bigdecimal/util)

 BigDecimal to_i to_f to_d (new) to_r (include bigdecimal/util)

 Rational to_i(dec discard) to_f (approx) to_d (include bigdecimal/util) to_r (identity)

290 | Chapter 8: Objects and Classes

Two cases deserve special mention. You can’t convert a floating-point number
directly into rational number, but you can do it through BigDecimal. The result will
be imprecise, because floating-point numbers are imprecise.

require 'bigdecimal'
require 'bigdecimal/util'

one_third = 1/3.0 # => 0.333333333333333
one_third.to_r
NoMethodError: undefined method `to_r' for 0.333333333333333:Float
one_third.to_d.to_r # => Rational(333333333333333, 1000000000000000)

Similarly, the best way to convert an Integer to a BigDecimal is to convert it to a
rational number first.

20.to_d
NoMethodError: undefined method `to_d' for 20:Fixnum
20.to_r.to_d # => #<BigDecimal:b7bfd214,'0.2E2',4(48)>

When it needs to perform arithmetic operations on two numbers of different types,
Ruby uses a method called coerce. Every numeric type implements a coerce method
that takes a single number as its argument. It returns an array of two numbers: the
object itself and the argument passed into coerce. Either or both numbers might
undergo a conversion, but whatever happens, both the numbers in the return array
must be of the same type. The arithmetic operation is performed on these two num-
bers, coerced into the same type.

This way, the authors of numeric classes don’t have to make their arithmetic opera-
tions support operations on objects of different types. If they implement coerce, they
know that their arithmetic operations will only be passed in another object of the
same type.

This is easiest to see for the Complex class. Below, every input to coerce is trans-
formed into an equivalent complex number so that it can be used in arithmetic oper-
ations along with the complex number i:

require 'complex'
i = Complex(0, 1) # => Complex(0, 1)
i.coerce(3) # => [Complex(3, 0), Complex(0, 1)]
i.coerce(2.5) # => [Complex(2.5, 0), Complex(0, 1)]

This, incidentally, is why 3/4 uses integer division but 3/4.to_f uses floating-point
division. 3.coerce(4) returns two integer objects, so the arithmetic methods of
Fixnum are used. 3.coerce(4.0) returns two floating-point numbers, so the arith-
metic methods of Float are used.

Other conversion methods

All Ruby objects define conversion methods to_s and inspect, which give a string
representation of the object. Usually inspect is the more readable of the two formats.

[1, 2, 3].to_s # => "123"
[1, 2, 3].inspect # => "[1, 2, 3]"

8.10 Getting a Human-Readable Printout of Any Object | 291

Here’s a grab bag of other notable conversion methods found within the Ruby stan-
dard library. This should give you a picture of what Ruby conversion methods typi-
cally do.

• MatchData#to_a creates an array containing the match groups of a regular expres-
sion match.

• Matrix#to_a converts a mathematical matrix into a nested array.

• Enumerable#to_a iterates over any enumerable object and collects the results in
an array.

• Net::HTTPHeader#to_hash returns a hash mapping the names of HTTP headers to
their values.

• String#to_f and String#to_i parse strings into numeric objects. Including the
bigdecimal/util library will define String#to_d, which parses a string into a
BigDecimal object.

• Including the yaml library will define to_yaml methods for all of Ruby’s built-in
classes: Array#to_yaml, String#to_yaml, and so on.

See Also
• Recipe 1.12, “Testing Whether an Object Is String-Like”

• Recipe 2.1, “Parsing a Number from a String”

• Recipe 8.10, “Getting a Human-Readable Printout of Any Object”

8.10 Getting a Human-Readable Printout
of Any Object

Problem
You want to look at a natural-looking rendition of a given object.

Solution
Use Object#inspect. Nearly all the time, this method will give you something more
readable than simply printing out the object or converting it into a string.

a = [1,2,3]
puts a
1
2
3

puts a.to_s
123

puts a.inspect
[1, 2, 3]

292 | Chapter 8: Objects and Classes

puts /foo/
(?-mix:foo)
puts /foo/.inspect
/foo/
f = File.open('foo', 'a')
puts f
#<File:0xb7c31c30>
puts f.inspect
#<File:foo>

Discussion
Even very complex data structures can be inspected and come out looking just like
they would in Ruby code to define that data structure. In some cases, you can even
run the output of inspect through eval to recreate the object.

periodic_table = [{ :symbol => "H", :name => "hydrogen", :weight => 1.007 },
 { :symbol => "Rg", :name => "roentgenium", :weight => 272 }]
puts periodic_table.inspect
[{:symbol=>"H", :name=>"hydrogen", :weight=>1.007},
{:symbol=>"Rg", :name=>"roentgenium", :weight=>272}]

eval(periodic_table.inspect)[0]
=> {:symbol=>"H", :name=>"hydrogen", :weight=>1.007}

By default, an object’s inspect method works the same way as its to_s method.*

Unless your classes override inspect, inspecting one of your objects will yield a bor-
ing and not terribly helpful string, containing only the object’s class name, object_id,
and instance variables:

class Dog
 def initialize(name, age)
 @name = name
 @age = age * 7 #Compensate for dog years
 end
end

spot = Dog.new("Spot", 2.1)
spot.inspect
=> "#<Dog:0xb7c16bec @name="Spot", @age=14.7>"

That’s why you’ll help out your future self by defining useful inspect methods that
give relevant information about the objects you’ll be instantiating.

class Dog
 def inspect
 "<A Dog named #{@name} who's #{@age} in dog years.>"
 end

* Contrary to what ri Object#inspect says, Object#inspect does not delegate to the Object#to_s method: it just
happens to work a lot like Object#to_s. If you only override to_s, inspect won’t be affected.

8.11 Accepting or Passing a Variable Number of Arguments | 293

 def to_s
 inspect
 end
end
spot.inspect
=> "<A Dog named Spot who's 14.7 in dog years.>"

Or, if you believe in being able to eval the output of inspect:

class Dog
 def inspect
 %{Dog.new("#{@name}", #{@age/7})}
 end
end
spot.inspect
=> "Dog.new("Spot", 2.1)"
eval(spot.inspect).inspect
=> "Dog.new("Spot", 2.1)"

Just don’t automatically eval the output of inspect, because, as always, that’s
dangerous:

strange_dog_name = %{Spot", 0); puts "Executing arbitrary Ruby..."; puts("}
spot = Dog.new(strange_dog_name, 0)
puts spot.inspect
Dog.new("Spot", 0); puts "Executing arbitrary Ruby..."; puts("", 0)
eval(spot.inspect)
Executing arbitrary Ruby...
#
0

8.11 Accepting or Passing a Variable Number
of Arguments

Problem
You want to write a method that can accept any number of arguments. Or maybe
you want to pass the contents of an array as arguments into such a method, rather
than passing in the array itself as a single argument.

Solution
To accept any number of arguments to your method, prefix the last argument name
with an asterisk. When the method is called, all the “extra” arguments will be col-
lected in a list and passed in as that argument:

def sum(*numbers)
 puts "I'm about to sum the array #{numbers.inspect}"
 numbers.inject(0) { |sum, x| sum += x }
end

sum(1, 2, 10)
I'm about to sum the array [1, 2, 10]
=> 13

294 | Chapter 8: Objects and Classes

sum(2, -2, 2, -2, 2, -2, 2, -2, 2)
I'm about to sum the array [2, -2, 2, -2, 2, -2, 2, -2, 2]
=> 2

sum
I'm about to sum the array []
=> 0

To pass an array of arguments into a method, use the asterisk signifier before the
array you want to be turned into “extra” arguments:

to_sum = []
1.upto(10) { |x| to_sum << x }
sum(*to_sum)
I'm about to sum the array [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
=> 55

Bad things happen if you forget the asterisk: your entire array is treated as a single
“extra” argument:

sum(to_sum)
I'm about to sum the array [[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]]
TypeError: Array can't be coerced into Fixnum

Discussion
Why make a method take a variable number of arguments, instead of just having it
take a single array? It’s basically for the convenience of the user. Consider the
Kernel#printf method, which takes one fixed argument (a format string), and then a
variable number of inputs to the format string:

printf('%s | %s', 'left', 'right')
left | right

It’s very rare that the caller of printf already has her inputs lying around in an array.
Fortunately, Ruby is happy to create the array on the user’s behalf. If the caller does
already have an array of inputs, it’s easy to pass the contents of that array as “extra”
arguments by sticking the asterisk onto the appropriate variable name:

inputs = ['left', 'right']
printf('%s | %s', *inputs)
left | right

As you can see, a method can take a fixed number of “normal” arguments and then a
variable number of “extra” arguments. When defining such a method, just make sure
that the last argument is the one you prefix with the asterisk:

def format_list(header, footer='', *data)
 puts header
 puts (line = '-' * header.size)
 puts data.join("\n")
 puts line
 puts footer
end

8.12 Simulating Keyword Arguments | 295

cozies = 21
gaskets = 10
format_list("Yesterday's productivity numbers:", 'Congratulations!',
 "#{cozies} slime mold cozies", "#{gaskets} Sierpinski gaskets")
Yesterday's productivity numbers:

21 slime mold cozies
10 Sierpinski gaskets

Congratulations!

You can use the asterisk trick to call methods that don’t take a variable number of
arguments. You just need to make sure that the array you’re using has enough ele-
ments to provide values for all of the method’s required arguments.

You’ll find this especially useful for constructors that take many arguments. The fol-
lowing code initializes four Range objects from four arrays of constructor arguments:

ranges = [[1, 10], [1, 6, true], [25, 100, false], [6, 9]]
ranges.collect { |l| Range.new(*l) }
=> [1..10, 1...6, 25..100, 6..9]

8.12 Simulating Keyword Arguments

Problem
A function or method can accept many optional arguments. You want to let callers
pass in only the arguments they have values for, but Ruby doesn’t support keyword
arguments as Python and Lisp do.

Solution
Write your function to accept as its final argument a map of symbols to values. Con-
sult the map as necessary to see what arguments were passed in.

def fun_with_text(text, args={})
 text = text.upcase if args[:upcase]
 text = text.downcase if args[:downcase]
 if args[:find] and args[:replace]
 text = text.gsub(args[:find], args[:replace])
 end
 text = text.slice(0, args[:truncate_at]) if args[:truncate_at]
 return text
end

Ruby has syntactic sugar that lets you define a hash inside a function call without
putting it in curly brackets. This makes the code look more natural:

fun_with_text("Foobar", {:upcase => true, :truncate_at => 5})
=> "FOOBA"
fun_with_text("Foobar", :upcase => true, :truncate_at => 5)
=> "FOOBA"

296 | Chapter 8: Objects and Classes

fun_with_text("Foobar", :find => /(o+)/, :replace => '\1d', :downcase => true)
=> "foodbar"

Discussion
This simple code works well in most cases, but it has a couple of shortcomings com-
pared to “real” keyword arguments. These simulated keyword arguments don’t work
like regular arguments because they’re hidden inside a hash. You can’t reject an argu-
ment that’s not part of the “signature,” and you can’t force a caller to provide a par-
ticular keyword argument.

Each of these problems is easy to work around (for instance, does a required argu-
ment really need to be a keyword argument?), but it’s best to define the workaround
code in a mixin so you only have to do it once. The following code is based on a
KeywordProcessor module by Gavin Sinclair:

###
This mix-in module lets methods match a caller's hash of keyword
parameters against a hash the method keeps, mapping keyword
arguments to default parameter values.
#
If the caller leaves out a keyword parameter whose default value is
:MANDATORY (a constant in this module), then an error is raised.
#
If the caller provides keyword parameters which have no
corresponding keyword arguments, an error is raised.
#
module KeywordProcessor
 MANDATORY = :MANDATORY

 def process_params(params, defaults)
 # Reject params not present in defaults.
 params.keys.each do |key|
 unless defaults.has_key? key
 raise ArgumentError, "No such keyword argument: #{key}"
 end
 end
 result = defaults.dup.update(params)

 # Ensure mandatory params are given.
 unfilled = result.select { |k,v| v == MANDATORY }.map { |k,v| k.inspect }
 unless unfilled.empty?
 msg = "Mandatory keyword parameter(s) not given: #{unfilled.join(', ')}"
 raise ArgumentError, msg
 end

 return result
 end
end

Here’s KeywordProcessor in action. Note how I set a default other than nil for a key-
word argument, by defining it in the default value of args:

8.13 Calling a Superclass’s Method | 297

class TextCanvas
 include KeywordProcessor

 def render(text, args={}.freeze)
 args = process_params(args, {:font => 'New Reykjavik Solemn', :size => 36,
 :bold => false, :x => :MANDATORY,
 :y => :MANDATORY }.freeze)
 # ...
 puts "DEBUG: Found font #{args[:font]} in catalog."
 # ...
 end
end

canvas = TextCanvas.new

canvas.render('Hello', :x => 4, :y => 100)
DEBUG: Found font New Reykjavik Solemn in catalog.

canvas.render('Hello', :x => 4, :y => 100, :font => 'Lacherlich')
DEBUG: Found font Lacherlich in catalog.

canvas.render('Hello', :font => "Lacherlich")
ArgumentError: Mandatory keyword parameter(s) not given: :x, :y

canvas.render('Hello', :x => 4, :y => 100, :italic => true)
ArgumentError: No such keyword argument: italic

Ruby 2.0 will, hopefully, have full support for keyword arguments.

See Also
• Recipe 8.8, “Delegating Method Calls to Another Object”

• The KeywordProcessor module is based on the one in “Emulating Keyword Argu-
ments in Ruby”; I modified it to be less oriented around the initialize method
(http://www.rubygarden.org/ruby?KeywordArguments)

8.13 Calling a Superclass’s Method

Problem
When overriding a class’s method in a subclass, you want to extend or decorate the
behavior of the superclass, rather than totally replacing it.

Solution
Use the super keyword to call the superclass implementation of the current method.

When you call super with no arguments, the arguments to your method are passed
to the superclass method exactly as they were recieved by the subclass. Here’s a
Recipe class that defines (among other things) a cook method.

298 | Chapter 8: Objects and Classes

class Recipe
 # ... The rest of the Recipe implementation goes here.
 def cook(stove, cooking_time)
 dish = prepare_ingredients
 stove << dish
 wait_for(cooking_time)
 return dish
 end
end

Here’s a subclass of Recipe that tacks some extra behavior onto the recipe. It passes
all of its arguments directly into super:

class RecipeWithExtraGarlic < Recipe
 def cook(stove, cooking_time)

 5.times { add_ingredient(Garlic.new.chop) }
 super
 end
end

A subclass implementation can also choose to pass arguments into super. This way, a
subclass can accept different arguments from its superclass implementation:

class BakingRecipe < Recipe
 def cook(cooking_time, oven_temperature=350)
 oven = Oven.new(oven_temperature)
 super(oven, cooking_time)
 end
end

Discussion
You can call super at any time in the body of a method—before, during, or after call-
ing other code. This is in contrast to languages like Java, where you must call super
in the method’s first statement or never call it at all. If you need to, you can even call
super multiple times within a single method.

Often you want to create a subclass method that exposes exactly the same interface
as its parent. You can use the *args constructor to make the subclass method accept
any arguments at all, then call super with no arguments to pass all those arguments
(as well as any attached code block) into the superclass implementation. Let the
superclass deal with any problems with the arguments.

The String#gsub method exposes a fairly complicated interface, but the String sub-
class defined here doesn’t need to know anything about it:

class MyString < String
 def gsub(*args)
 return "#{super} -- This string modified by MyString#gsub (TM)"
 end
end

8.14 Creating an Abstract Method | 299

str = MyString.new("Here's my string")
str.gsub("my", "a")
=> "Here's a string -- This string modified by MyString#gsub (TM)"

str.gsub(/m| s/) { |match| match.strip.capitalize }
=> "Here's MyString -- This string modified by MyString#gsub (TM)"

If the subclass method takes arguments but the superclass method takes none, be
sure to invoke super with an empty pair of parentheses. Usually you don’t have to do
this in Ruby, but super is not a real method call. If you invoke super without paren-
theses, it will pass all the subclass arguments into the superclass implementation,
which won’t be able to handle them.

In the example below, calling just super would result in an ArgumentError: it would
pass a numeric argument into String#succ!, which takes no arguments:

class MyString
 def succ!(skip=1)
 skip.times { super() }
 self
 end
end

str = MyString.new('a')
str.succ!(3) # => "d"

Invoking super works for class methods as well as instance methods:

class MyFile < File
 def MyFile.ftype(*args)
 return "The type is #{super}."
 end
end

File.ftype("/bin") # => "directory"
MyFile.ftype("/bin") # => "The type is directory."

8.14 Creating an Abstract Method

Problem
You want to define a method of a class, but leave it for subclasses to fill in the actual
implementations.

Solution
Define the method normally, but have it do nothing except raise a
NotImplementedError:

class Shape2D
 def area
 raise NotImplementedError.

300 | Chapter 8: Objects and Classes

 new("#{self.class.name}#area is an abstract method.")
 end
end

Shape2D.new.area
NotImplementedError: Shape2D#area is an abstract method.

A subclass can redefine the method with a concrete implementation:

class Square < Shape2D
 def initialize(length)
 @length = length
 end

 def area
 @length ** 2
 end
end

Square.new(10).area # => 100

Discussion
Ruby doesn’t have a built-in notion of an abstract method or class, and though it has
many built-in classes that might be considered “abstract,” it doesn’t enforce this
abstractness the way C++ and Java do. For instance, you can instantiate an instance
of Object or Numeric, even though those classes don’t do anything by themselves.

In general, this is in the spirit of Ruby. But it’s sometimes useful to define a super-
class method that every subclass is expected to implement. The NotImplementedError
error is the standard way of conveying that a method is not there, whether it’s
abstract or just an unimplemented stub.

Unlike other programming languages, Ruby will let you instantiate a class that defines
an abstract method. You won’t have any problems until you actually call the abstract
method; even then, you can catch the NotImplementedError and recover. If you want,
you can make an entire class abstract by making its initialize method raise a
NotImplementedError. Then no one will be able to create instances of your class:*

class Shape2D
 def initialize
 raise NotImplementedError.
 new("#{self.class.name} is an abstract class.")
 end
end

Shape2D.new
NotImplementedError: Shape2D is an abstract class.

* Of course, unless you freeze the class afterwards, someone else can reopen your class, define an empty
initialize, and then create instances of your class.

8.14 Creating an Abstract Method | 301

We can do the same thing in less code by defining a decorator method of Class that
creates an abstract method by the given name.

class Class
 def abstract(*args)
 args.each do |method_name|

 define_method(method_name) do |*args|
 if method_name == :initialize
 msg = "#{self.class.name} is an abstract class."
 else
 msg = "#{self.class.name}##{method_name} is an abstract method."
 end
 raise NotImplementedError.new(msg)

 end
 end
 end
end

Here’s an abstract class that defines an abstract method move:

class Animal
 abstract :initialize, :move
end

Animal.new
NotImplementedError: Animal is an abstract class.

Here’s a concrete subclass that doesn’t bother to define an implementation for the
abstract method:

class Sponge < Animal
 def initialize
 @type = :Sponge
 end
end

sponge = Sponge.new
sponge.move
NotImplementedError: Sponge#move is an abstract method.

Here’s a concrete subclass that implements the abstract method:

class Cheetah < Animal
 def initialize
 @type = :Cheetah
 end

 def move
 "Running!"
 end
end

Cheetah.new.move
=> "Running!"

302 | Chapter 8: Objects and Classes

Abstract methods declared in a class are, by convention, eventually defined in the
subclasses of that class. But Ruby doesn’t enforce this either. An abstract method has
a definition; it just happens to be one that always throws an error.

Since Ruby lets you reopen classes and redefine methods later, the definition of a
concrete method can happen later in time instead of further down the inheritance
tree. The Sponge class defined above didn’t have a move method, but we can add one
now:

class Sponge
 def move
 "Floating on ocean currents!"
 end
end
sponge.move
=> "Floating on ocean currents!"

You can create an abstract singleton method, but there’s not much point unless you
intend to fill it in later. Unlike instance methods, singleton methods aren’t inherited
by subclasses. If you were to define Superclass.foo abstract, then define it for real as
Subclass.foo, you would have accomplished little: Superclass.foo would still exist
separately and would still be abstract.

8.15 Freezing an Object to Prevent Changes

Problem
You want to prevent any further changes to the state of an object.

Solution
Freeze the object with Object#freeze:

frozen_string = 'Brrrr!'
frozen_string.freeze
frozen_string.gsub('r', 'a') # => "Baaaa!"
frozen_string.gsub!('r', 'a')
TypeError: can't modify frozen string

Discussion
When an object is frozen, its instance variables are permanently bound to their cur-
rent values. The values themselves are not frozen: their instance variables can still be
modified, to the extent they were modifiable before:

sequences = [[1,2,3], [1,2,4], [1,4,9]].freeze
sequences << [2,3,5]
TypeError: can't modify frozen array
sequences[2] << 16 # => [1, 4, 9, 16]

8.15 Freezing an Object to Prevent Changes | 303

A frozen object cannot be unfrozen, and if cloned, the clone will also be frozen. Call-
ing Object#dup (as opposed to Object#clone) on a frozen object yields an unfrozen
object with the same instance variables.

frozen_string.clone.frozen? # => true
frozen_string.dup.frozen? # => false

Freezing an object does not prevent reassignment of any variables bound to that
object.

frozen_string = 'A new string.'
frozen_string.frozen? # => false

To prevent objects from changing in ways confusing to the user or to the Ruby inter-
preter, Ruby sometimes copies objects and freezes the copies. When you use a string
as a hash key, Ruby actually copies the string, freezes the copy, and uses the copy as
the hash key: that way, if the original string changes later on, the hash key isn’t
affected.

Constant objects are often frozen as a second line of defense against the object being
modified in place. You can freeze an object whenever you need a permanent refer-
ence to an object; this is most commonly seen with strings:

API_KEY = "100f7vo4gg".freeze

API_KEY[0] = 4
TypeError: can't modify frozen string

API_KEY = "400f7vo4gg"
warning: already initialized constant API_KEY

Frozen objects are also useful in multithreaded code. For instance, Ruby’s internal
file operations work from a frozen copy of a filename instead of using the filename
directly. If another thread modifies the original filename in the middle of an opera-
tion that’s supposed to be atomic, there’s no problem: Ruby wasn’t relying on the
original filename anyway. You can adopt this copy-and-freeze pattern in multi-
threaded code to prevent a data structure you’re working on from being changed by
another thread.

Another common programmer-level use of this feature is to freeze a class in order to
prevent future modifications to it (by yourself, other code running in the same envi-
ronment, or other people who use your code as a library). This is not quite the same
as the final construct in C# and Java, because you can still subclass a frozen class,
and override methods in the subclass. Calling freeze only stops the in-place modifi-
cation of a class. The simplest way to do it is to call freeze as the last statement in
the class definition:

class MyClass
 def my_method
 puts "This is the only method allowed in MyClass."
 end

304 | Chapter 8: Objects and Classes

 freeze
end

class MyClass
 def my_method
 "I like this implementation of my_method better."
 end
end
TypeError: can't modify frozen class

class MyClass
 def my_other_method
 "Oops, I forgot to implement this method."
 end
end
TypeError: can't modify frozen class

class MySubclass < MyClass
 def my_method
 "This is only one of the methods available in MySubclass."
 end

 def my_other_method
 "This is the other one."
 end
end

MySubclass.new.my_method
=> "This is only one of the methods available in MySubclass."

See Also
• Recipe 4.7, “Making Sure a Sorted Array Stays Sorted,” defines a convenience

method for making a frozen copy of an object

• Recipe 5.5, “Using an Array or Other Modifiable Object as a Hash Key”

• Recipe 8.16, “Making a Copy of an Object”

• Recipe 8.17, “Declaring Constants”

8.16 Making a Copy of an Object

Problem
You want to make a copy of an existing object: a new object that can be modified
separately from the original.

Solution
Ruby provides two ways of doing this. If you only want to have to remember one
way, remember Object#clone:

8.16 Making a Copy of an Object | 305

s1 = 'foo' # => "foo"
s2 = s1.clone # => "foo"
s1[0] = 'b'
[s1, s2] # => ["boo", "foo"]

Discussion
Ruby has two object-copy methods: a quick one and a thorough one. The quick one,
Object#dup, creates a new instance of an object’s class, then sets all of the new
object’s instance variables so that they reference the same objects as the original
does. Finally, it makes the new object tainted if the old object was tainted.

The downside of dup is that it creates a new instance of the object’s original class. If
you open up a specific object and give it a singleton method, you implicitly create a
metaclass, an anonymous subclass of the original class. Calling dup on the object will
yield a copy that lacks the singleton methods. The other object-copy method,
Object#clone, makes a copy of the metaclass and instantiates the copy, instead of
instantiating the object’s original class.

material = 'cotton'
class << material
 def definition
 puts 'The better half of velour.'
 end
end

material.definition
The better half of velour.

'cotton'.definition
NoMethodError: undefined method `definition' for "cotton":String

material.clone.definition
The better half of velour.

material.dup.definition
NoMethodError: undefined method `definition' for "cotton":String

Object#clone is also more strict about propagating Ruby’s internal flags: it will prop-
agate both an object’s “tainted?” flag and its “frozen?” flag. If you want to make an
unfrozen copy of a frozen object, you must use Object#dup.

Object#clone and Object#dup both perform shallow copies: they make copies of an
object without also copying its instance variables. You’ll end up with two objects
whose instance variables point to the same objects. Modifications to one object’s
instance variables will be visible in the other object. This can cause problems if
you’re not expecting it:

class StringHolder
 attr_reader :string
 def initialize(string)
 @string = string

306 | Chapter 8: Objects and Classes

 end
end

s1 = StringHolder.new('string')
s2 = s1.dup
s3 = s1.clone

s1.string[1] = 'p'
s2.string # => "spring"
s3.string # => "spring"

If you want to do a deep copy, an easy (though not particularly quick) way is to seri-
alize the object to a binary string with Marshal, then load a new object from the
string:

class Object
 def deep_copy
 Marshal.load(Marshal.dump(self))
 end
end

s1 = StringHolder.new('string')
s2 = s1.deep_copy
s1.string[1] = 'p'
s1.string # => "spring"
s2.string # => "string"

Note that this will only work on an object that has no singleton methods:

class << s1
 def definition
 puts "We hold strings so you don't have to."
 end
end
s1.deep_copy
TypeError: singleton can't be dumped

When an object is cloned or duplicated, Ruby creates a new instance of its class or
superclass, but without calling the initialize method. If you want to define some
code to run when an object is cloned or duplicated, define an initialize_copy method.
This is a hook method that gives you a chance to modify the copy before Ruby passes it
back to whoever called clone or dup. If you want to simulate a deep copy without using
Marshal, this is your chance to modify the copy’s instance variables:

class StringHolder
 def initialize_copy(from)
 @string = from.string.dup
 end
end

s1 = StringHolder.new('string')
s2 = s1.dup
s3 = s1.clone

8.17 Declaring Constants | 307

s1.string[1] = "p"
s2.string # => "string"
s3.string # => "string"

This table summarizes the differences between clone, dup, and the deep-copy tech-
nique that uses Marshal.

See Also
• Recipe 13.2, “Serializing Data with Marshal”

8.17 Declaring Constants

Problem
You want to prevent a variable from being assigned a different value after its initial
definition.

Solution
Declare the variable as a constant. You can’t absolutely prohibit the variable from
being assigned a different value, but you can make Ruby generate a warning when-
ever that happens.

not_a_constant = 3
not_a_constant = 10

A_CONSTANT = 3
A_CONSTANT = 10
warning: already initialized constant A_CONSTANT

Discussion
A constant variable is one whose name starts with a capital letter. By tradition, Ruby
constant names consist entirely of capital letters, numbers, and underscores. Con-
stants don’t mesh well with Ruby’s philosophy of unlimited changability: there’s no
way to absolutely prevent someone from changing your constant. However, they are

Object#clone Object#dup Deep copy with Marshal

 Same instance variables? New references to the same
objects

New references to the same
objects

 New objects

 Same metaclass? Yes No Yes a

 Same singleton methods? Yes No N/Aa

a Marshal can’t serialize an object whose metaclass is different from its original class.

 Same frozen state? Yes No No

 Same tainted state? Yes Yes Yes

308 | Chapter 8: Objects and Classes

a useful signal to the programmers who come after you, letting them know not to
redefine a constant without a very good reason.

Constants can occur anywhere in code. If they appear within a class or module, you
can access them from outside the class or module with the double-colon operator (::).
The name of the class or module qualifies the name of the constant, preventing con-
fusion with other constants that may have the same name but be defined in different
scopes.

CONST = 4

module ConstModule
 CONST = 6
end

class ConstHolder
 CONST = 8

 def my_const
 return CONST
 end
end

CONST # => 4
ConstModule::CONST # => 6
ConstHolder::CONST # => 8
ConstHolder.new.my_const # => 8

The thing that’s constant about a constant is its reference to an object. If you change
the reference to point to a different object, you’ll get a warning. Unfortunately,
there’s no way to tell Ruby to treat the redeclaration of a constant as an error.

E = 2.718281828 # => 2.718281828
E = 6 # warning: already initialized constant E
E # => 6

However, you can use Module#remove_const as a sneaky way to “undeclare” a con-
stant. You can then declare the constant again, without even triggering a warning.
Clearly, this is potent and potentially dangerous stuff:

This should make things a lot simpler.
module Math
 remove_const(:PI)
 PI = 3
end
Math::PI # => 3

If a constant points to a mutable object like an array or a string, the object itself can
change without triggering the constant warning. You can prevent this by freezing the
object to which the constant points:

RGB_COLORS = [:red, :green, :blue] # => [:red, :green, :blue]
RGB_COLORS << :purple # => [:red, :green, :blue, :purple]

8.18 Implementing Class and Singleton Methods | 309

RGB_COLORS = [:red, :green, :blue]
warning: already initialized constant RGB_GOLORS
RGB_COLORS # => [:red, :green, :blue]

RGB_COLORS.freeze
RGB_COLORS << :purple
TypeError: can't modify frozen array

Freezing operates on the object, not the reference. It does nothing to prevent a con-
stant reference from being assigned to another object.

HOURS_PER_DAY = 24
HOURS_PER_DAY.freeze # This does nothing since Fixnums are already immutable.

HOURS_PER_DAY = 26
warning: already initialized constant HOURS_PER_DAY
HOURS_PER_DAY # => 26

See Also
• Recipe 8.15, “Freezing an Object to Prevent Changes”

8.18 Implementing Class and Singleton Methods

Problem
You want to associate a new method with a class (as opposed to the instances of that
class), or with a particular object (as opposed to other instances of the same class).

Solution
To define a class method, prefix the method name with the class name in the method
definition. You can do this inside or outside of the class definition.

The Regexp.is_valid? method, defined below, checks whether a string can be com-
piled into a regular expression. It doesn’t make sense to call it on an already instanti-
ated Regexp, but it’s clearly related functionality, so it belongs in the Regexp class
(assuming you don’t mind adding a method to a core Ruby class).

class Regexp
 def Regexp.is_valid?(str)
 begin
 compile(str)
 valid = true
 rescue RegexpError
 valid = false
 end
 end
end
Regexp.is_valid? "The horror!" # => true
Regexp.is_valid? "The)horror!" # => false

310 | Chapter 8: Objects and Classes

Here’s a Fixnum.random method that generates a random number in a specified range:

def Fixnum.random(min, max)
 raise ArgumentError, "min > max" if min > max
 return min + rand(max-min+1)
end
Fixnum.random(10, 20) # => 13
Fixnum.random(-5, 0) # => -5
Fixnum.random(10, 10) # => 10
Fixnum.random(20, 10)
ArgumentError: min > max

To define a method on one particular other object, prefix the method name with the
variable name when you define the method:

company_name = 'Homegrown Software'
def company_name.legalese
 return "#{self} is a registered trademark of ConglomCo International."
end

company_name.legalese
=> "Homegrown Software is a registered trademark of ConglomCo International."
'Some Other Company'.legalese
NoMethodError: undefined method `legalese' for "Some Other Company":String

Discussion
In Ruby, a singleton method is a method defined on one specific object, and not
available to other instances of the same class. This is kind of analagous to the Single-
ton pattern, in which all access to a certain class goes through a single instance, but
the name is more confusing than helpful.

Class methods are actually a special case of singleton methods. The object on which
you define a new method is the Class object itself.

Some common types of class methods are listed here, along with illustrative exam-
ples taken from Ruby’s standard library:

• Methods that instantiate objects, and methods for retrieving an object that
implements the Singleton pattern. Examples: Regexp.compile, Date.parse, Dir.
open, and Marshal.load (which can instantiate objects of many different types).
Ruby’s standard constructor, the new method, is another example.

• Utility or helper methods that use logic associated with a class, but don’t require
an instance of that class to operate. Examples: Regexp.escape, Dir.entries, File.
basename.

• Accessors for class-level or Singleton data structures. Examples: Thread.current,
Struct.members, Dir.pwd.

• Methods that implicitly operate on an object that implements the Singleton
pattern. Examples: Dir.chdir, GC.disable and GC.enable, and all the methods
of Process.

8.19 Controlling Access by Making Methods Private | 311

When you define a singleton method on an object other than a class, it’s usually to
redefine an existing method for a particular object, rather than to define a brand new
method. This behavior is common in frameworks, such as GUIs, where each individ-
ual object has customized behavior. Singleton method definition is a cheap substi-
tute for subclassing when you only need to customize the behavior of a single object:

class Button
 #A stub method to be overridden by subclasses or individual Button objects
 def pushed
 end
end

button_a = Button.new
def button_a.pushed
 puts "You pushed me! I'm offended!"
end

button_b = Button.new
def button_b.pushed
 puts "You pushed me; that's okay."
end

Button.new.pushed
#

button_a.pushed
You pushed me! I'm offended!

button_b.pushed
You pushed me; that's okay.

When you define a method on a particular object, Ruby acts behind the scenes to trans-
form the object into an anonymous subclass of its former class. This new class is the one
that actually defines the new method or overrides the methods of its superclass.

8.19 Controlling Access by Making Methods Private
Problem
You’ve refactored your code (or written it for the first time) and ended up a method
that should be marked for internal use only. You want to prevent outside objects
from calling such methods.

Solution
Use private as a statement before a method definition, and the method will not be
callable from outside the class that defined it. This class defines an initializer, a pub-
lic method, and a private method:

class SecretNumber
 def initialize
 @secret = rand(20)
 end

312 | Chapter 8: Objects and Classes

 def hint
 puts "The number is #{"not " if secret <= 10}greater than 10."
 end

 private
 def secret
 @secret
 end
end

s = SecretNumber.new
s.secret
NoMethodError: private method `secret' called for
#<SecretNumber:0xb7c2e83c @secret=19>

s.hint
The number is greater than 10.

Unlike in many other programming languages, a private method in Ruby is accessi-
ble to subclasses of the class that defines it:

class LessSecretNumber < SecretNumber
 def hint
 lower = secret-rand(10)-1
 upper = secret+rand(10)+1
 "The number is somewhere between #{lower} and #{upper}."
 end
end

ls = LessSecretNumber.new
ls.hint
=> "The number is somewhere between -3 and 16."
ls.hint
=> "The number is somewhere between -1 and 15."
ls.hint
=> "The number is somewhere between -2 and 16."

Discussion
Like many parts of Ruby that look like special language features, Ruby’s privacy key-
words are actually methods. In this case, they’re methods of Module. When you call
private, protected, or public, the current module (remember that a class is just a
special kind of module) changes the rules it applies to newly defined methods from
that point on.

Most languages that support method privacy make you put a keyword before every
method saying whether it’s public, private, or protected. In Ruby, the special privacy
methods act as toggles. When you call the private keyword, all methods you define
after that point are declared as private, until the module definition ends or you call a
different privacy method. This makes it easy to group methods of the same privacy
level—a good, general programming practice:

8.19 Controlling Access by Making Methods Private | 313

class MyClass
 def public_method1
 end

 def public_method2
 end

 protected

 def protected_method1
 end

 private

 def private_method1
 end

 def private_method2
 end
end

Private and protected methods work a little differently in Ruby than in most other
programming languages. Suppose you have a class called Foo and a subclass SubFoo.
In languages like Java, SubFoo has no access to any private methods defined by Foo.
As seen in the Solution, Ruby provides no way to hide a class’s methods from its sub-
classes. In this way, Ruby’s private works like Java’s protected.

Suppose further that you have two instances of the Foo class, A and B. In languages
like Java, A and B can call each other’s private methods. In Ruby, you need to use a
protected method for that. This is the main difference between private and pro-
tected methods in Ruby.

In the example below, I try to add another type of hint to the LessSecretNumber class,
one that lets you compare the relative magnitudes of two secret numbers. It doesn’t
work because one LessSecretNumber can’t call the private methods of another
LessSecretNumber:

class LessSecretNumber
 def compare(other)
 if secret == other.secret
 comparison = "equal to"
 else
 comparison = secret > other.secret ? "greater than" : "less than"
 end
 "This secret number is #{comparison} the secret number you passed in."
 end
end

a = LessSecretNumber.new
b = LessSecretNumber.new
a.hint
=> "The number is somewhere between 17 and 22."

314 | Chapter 8: Objects and Classes

b.hint
=> "The number is somewhere between 0 and 12."
a.compare(b)
NoMethodError: private method `secret' called for
#<LessSecretNumber:0xb7bfe13c @secret=6>

But if I make make the secret method protected instead of private, the compare
method starts working. You can change the privacy of a method after the fact by
passing its symbol into one of the privacy methods:

class SecretNumber
 protected :secret
end
a.compare(b)
=> "This secret number is greater than the secret number you passed in."
b.compare(a)
=> "This secret number is less than the secret number you passed in."

Instance variables are always private: accessible by subclasses, but not from other
objects, even other objects of the same class. If you want to make an instance vari-
able accessible to the outside, you should define a getter method with the same name
as the variable. This method can be either protected or public.

You can trick a class into calling a private method from outside by passing the
method’s symbol into Object#send (in Ruby 1.8) or Object#funcall (in Ruby 1.9).
You’d better have a really good reason for doing this.

s.send(:secret) # => 19

See Also
• Recipe 8.2, “Managing Class Data,” has a pretty good reason for using the

Object#send trick

315

Chapter 9 CHAPTER 9

Modules and Namespaces9

A Ruby module is nothing more than a grouping of objects under a single name. The
objects may be constants, methods, classes, or other modules.

Modules have two uses. You can use a module as a convenient way to bundle objects
together, or you can incorporate its contents into a class with Ruby’s include statement.

When a module is used as a container for objects, it’s called a namespace. Ruby’s
Math module is a good example of a namespace: it provides an overarching structure
for constants like Math::PI and methods like Math::log, which would otherwise clut-
ter up the main Kernel namespace. We cover this most basic use of modules in Reci-
pes 9.5 and 9.7.

Modules are also used to package functionality for inclusion in classes. The
Enumerable module isn’t supposed to be used on its own: it adds functionality to a
class like Array or Hash. We cover the use of modules as packaged functionality for
existing classes in Recipes 9.1 and 9.4.

Module is actually the superclass of Class, so every Ruby class is also a module.
Throughout this book we talk about using methods of Module from within classes.
The same methods will work exactly the same way within modules. The only thing
you can’t do with a module is instantiate an object from it:

Class.superclass # => Module
Math.class # => Module
Math.new
NoMethodError: undefined method `new' for Math:Module

9.1 Simulating Multiple Inheritance with Mixins

Problem
You want to create a class that derives from two or more sources, but Ruby doesn’t
support multiple inheritance.

316 | Chapter 9: Modules and Namespaces

Solution
Suppose you created a class called Taggable that lets you associate tags (short strings
of informative metadata) with objects. Every class whose objects should be taggable
could derive from Taggable.

This would work if you made Taggable the top-level class in your class structure, but
that won’t work in every situation. Eventually you might want to do something like
make a string taggable. One class can’t subclass both Taggable and String, so you’d
have a problem.

Furthermore, it makes little sense to instantiate and use a Taggable object by itself—
there is nothing there to tag! Taggability is more of a feature of a class than a full-
fledged class of its own. The Taggable functionality only works in conjunction with
some other data structure.

This makes it an ideal candidate for implementation as a Ruby module instead of a
class. Once it’s in a module, any class can include it and use the methods it defines.

require 'set' # Deals with a collection of unordered values with no duplicates

Include this module to make your class taggable. The names of the
instance variable and the setup method are prefixed with "taggable_"
to reduce the risk of namespace collision. You must call
taggable_setup before you can use any of this module's methods.
module Taggable
 attr_accessor :tags

 def taggable_setup
 @tags = Set.new
 end

 def add_tag(tag)
 @tags << tag
 end

 def remove_tag(tag)
 @tags.delete(tag)
 end
end

Here’s a taggable string class: it subclasses String, but it also includes the functional-
ity of Taggable.

class TaggableString < String
 include Taggable
 def initialize(*args)
 super
 taggable_setup
 end
end

9.1 Simulating Multiple Inheritance with Mixins | 317

s = TaggableString.new('It was the best of times, it was the worst of times.')
s.add_tag 'dickens'
s.add_tag 'quotation'
s.tags # => #<Set: {"dickens", "quotation"}>

Discussion
A Ruby class can only have one superclass, but it can include any number of mod-
ules. These modules are called mixins. If you write a chunk of code that can add
functionality to classes in general, it should go into a mixin module instead of a class.

The only objects that need to be defined as classes are the ones that get instantiated
and used on their own (modules can’t be instantiated).

If you come from Java, you might think of a module as being the combination of an
interface and its implementation. By including a module, your class implements cer-
tain methods, and announces that since it implements those methods it can be
treated a certain way.

When a class includes a module with the include keyword, all of the module’s meth-
ods and constants are made available from within that class. They’re not copied, the
way a method is when you alias it. Rather, the class becomes aware of the methods
of the module. If a module’s methods are changed later (even during runtime), so are
the methods of all the classes that include that module.

Module and class definitions have an almost identical syntax. If you find out after
implementing a class that you should have done it as a module, it’s not difficult to
translate the class into a module. The main problem areas will be methods defined
both by your module and the classes that include it: especially methods like
initialize.

Your module can define an initialize method, and it will be called by a class whose
constructor includes a super call (see Recipe 9.8 for an example), but sometimes that
doesn’t work. For instance, Taggable defines a taggable_setup method that takes no
arguments. The String class, the superclass of TaggableString, takes one and only
one argument. TaggableString can call super within its constructor to trigger both
String#initialize and a hypothetical Taggable#initialize, but there’s no way a sin-
gle super call can pass one argument to one method and zero arguments to another.

That’s why Taggable doesn’t define an initialize method.* Instead, it defines a
taggable_setup method and (in the module documentation) asks everyone who
includes the module to call taggable_setup within their initialize method. Your
module can define a <module name>_setup method instead of initialize, but you
need to document it, or your users will be very confused.

* An alternative is to define Taggable#initialize to take a variable number of arguments, and then just ignore
all the arguments. This only works because Taggable can initialize itself without any outside information.

318 | Chapter 9: Modules and Namespaces

It’s okay to expect that any class that includes your module will implement some
methods you can’t implement yourself. For instance, all of the methods in the
Enumerable module are defined in terms of a method called each, but Enumerable
never actually defines each. Every class that includes Enumerable must define what
each means within that class before it can use the Enumerable methods.

If you have such undefined methods, it will cut down on confusion if you provide a
default implementation that raises a helpful exception:

module Complaint
 def gripe
 voice('In all my years I have never encountered such behavior...')
 end

 def faint_praise
 voice('I am pleased to notice some improvement, however slight...')
 end

 def voice(complaint_text)
 raise NotImplementedError,
 "#{self.class} included the Complaint module but didn't define voice!"
 end
end

class MyComplaint
 include Complaint
end

MyComplaint.new.gripe
NotImplementedError: MyComplaint included the Complaint module
but didn't define voice!

If two modules define methods with the same name, and a single class includes both
modules, the class will have only one implementation of that method: the one from the
module that was included last. The method of the same name from the other module
will simply not be available. Here are two modules that define the same method:

module Ayto
 def potato
 'Pohtayto'
 end
end

module Ahto
 def potato
 'Pohtahto'
 end
end

One class can mix in both modules:
class Potato
 include Ayto
 include Ahto
end

9.2 Extending Specific Objects with Modules | 319

But there can be only one potato method for a given class or module.*

Potato.new.potato # => "Pohtahto"

This rule sidesteps the fundamental problem of multiple inheritance by letting the
programmer explicitly choose which ancestor they would like to inherit a particular
method from. Nevertheless, it’s good programming practice to give distinctive names
to the methods in your modules. This reduces the risk of namespace collisions when
a class mixes in more than one module. Collisions can occur, and the later module’s
method will take precedence, even if one or both methods are protected or private.

See Also
• If you want a real-life implementation of a Taggable-like mixin, see Recipe 13.18,

“Adding Taggability with a Database Mixin”

9.2 Extending Specific Objects with Modules
Credit: Phil Tomson

Problem
You want to add instance methods from a module (or modules) to specific objects.
You don’t want to mix the module into the object’s class, because you want certain
objects to have special abilities.

Solution
Use the Object#extend method.

For example, let’s say we have a mild-mannered Person class:
class Person
 attr_reader :name, :age, :occupation

 def initialize(name, age, occupation)
 @name, @age, @occupation = name, age, occupation
 end

 def mild_mannered?
 true
 end
end

Now let’s create a couple of instances of this class.
jimmy = Person.new('Jimmy Olsen', 21, 'cub reporter')
clark = Person.new('Clark Kent', 35, 'reporter')

* You could get both methods by aliasing Potato#potato to another method after mixing in Ayto but before
mixing in Ahto. There would still only be one Potato#potato method, and it would still be Ahto#potato, but
the implementation of Ayto#potato would survive under a different name.

320 | Chapter 9: Modules and Namespaces

jimmy.mild_mannered? # => true
clark.mild_mannered? # => true

But it happens that some Person objects are not as mild-mannered as they might
appear. Some of them have super powers.

module SuperPowers
 def fly
 'Flying!'
 end

 def leap(what)
 "Leaping #{what} in a single bound!"
 end

 def mild_mannered?
 false
 end

 def superhero_name
 'Superman'
 end
end

If we use include to mix the SuperPowers module into the Person class, it will give
every person super powers. Some people are bound to misuse such power. Instead,
we’ll use extend to give super powers only to certain people:

clark.extend(SuperPowers)
clark.superhero_name # => "Superman"
clark.fly # => "Flying!"
clark.mild_mannered? # => false
jimmy.mild_mannered? # => true

Discussion
The extend method is used to mix a module’s methods into an object, while include
is used to mix a module’s methods into a class.

The astute reader might point out that classes are actually objects in Ruby. Let us see
what happens when we use extend in a class definition:

class Person
 extend SuperPowers
end

#which is equivalent to:
Person.extend(SuperPowers)

What exactly are we extending here? Within the class definition, extend is being
called on the Person class itself: we could have also written self.
extend(SuperPowers). We’re extending the Person class with the methods defined in

9.3 Mixing in Class Methods | 321

SuperPowers. This means that the methods defined in the SuperPowers module have
now become class methods of Person:

Person.superhero_name # => "Superman"
Person.fly # => "Flying!"

This is not what we intended in this case. However, sometimes you do want to mix
methods into a class, and Class#extend is an easy and powerful way to do it.

See Also
• Recipe 9.3, “Mixing in Class Methods,” shows how to mix in class methods with

include

9.3 Mixing in Class Methods
Credit: Phil Tomson

Problem
You want to mix class methods into a class, instead of mixing in instance methods.

Solution
The simplest way to accomplish this is to call extend on the class object, as seen in
the Discussion of Recipe 9.2. Just as you can use extend to add singleton methods to
an object, you can use it to add class methods to a class. But that’s not always the
best option. Your users may not know that your module provides or even requires
some class methods, so they might not extend their class when they should. How can
you make an include statement mix in class methods as well?

To begin, within your module, define a submodule called ClassMethods,* which con-
tains the methods you want to mix into the class:

module MyLib
 module ClassMethods
 def class_method
 puts "This method was first defined in MyLib::ClassMethods"
 end
 end
end

To make this code work, we must also define the included callback method within
the MyLib module. This method is called every time a module is included in the class,
and it’s passed the class object in which our module is being included. Within the

* The name ClassMethods has no special meaning within Ruby: technically, you can call your submodule what-
ever you want. But the Ruby community has standardized on ClassMethods as the name of this submodule,
and it’s used in many Ruby libraries, so you should use it too.

322 | Chapter 9: Modules and Namespaces

callback method, we extend that class object with our ClassMethods module, making
all of its instance methods into class methods. Continuing the example:

module MyLib
 def self.included(receiver)
 puts "MyLib is being included in #{receiver}!"
 receiver.extend(ClassMethods)
 end
end

Now we can include our MyLib module in a class, and get the contents of
ClassMethods mixed in as genuine class methods:

class MyClass
 include MyLib
end
MyLib is being included in MyClass!

MyClass.class_method
This method was first defined in MyLib::ClassMethods

Discussion
Module#included is a callback method that is automatically called during the inclu-
sion of a module into a class. The default included implementation is an empty
method. In the example, MyLib overrides it to extend the class that’s including the
MyLib module with the contents of the MyLib::ClassMethods submodule.

The Object#extend method takes a Module object as a parameter. It mixes all the
methods defined in the module into the receiving object. Since classes are them-
selves objects, and the singleton methods of a Class object are just its class methods,
calling extend on a class object fills it up with new class methods.

See Also
• Recipe 7.11, “Coupling Systems Loosely with Callbacks,” covers callbacks in

general and shows how to write your own

• Recipe 10.6, “Listening for Changes to a Class,” covers Ruby’s other class and
module callback methods

9.4 Implementing Enumerable: Write One Method,
Get 22 Free

Problem
You want to give a class all the useful iterator and iteration-related features of Ruby’s
arrays (sort, detect, inject, and so on), but your class can’t be a subclass of Array.
You don’t want to define all those methods yourself.

9.4 Implementing Enumerable: Write One Method, Get 22 Free | 323

Solution
Implement an each method, then include the Enumerable module. It defines 22 of the
most useful iteration methods in terms of the each implementation you provide.

Here’s a class that keeps multiple arrays under the covers. By defining each, it can
expose a large interface that lets the user treat it like a single array:

class MultiArray
 include Enumerable

 def initialize(*arrays)
 @arrays = arrays
 end

 def each
 @arrays.each { |a| a.each { |x| yield x } }
 end
end

ma = MultiArray.new([1, 2], [3], [4])
ma.collect # => [1, 2, 3, 4]
ma.detect { |x| x > 3 } # => 4
ma.map { |x| x ** 2 } # => [1, 4, 9, 16]
ma.each_with_index { |x, i| puts "Element #{i} is #{x}" }
Element 0 is 1
Element 1 is 2
Element 2 is 3
Element 3 is 4

Discussion
The Enumerable module is the most common mixin module. It lets you add a lot of
behavior to your class for a little investment. Since Ruby relies so heavily on iterator
methods, and almost every data structure can be iterated over in some way, it’s no
wonder that so many of the classes in Ruby’s standard library include Enumerable:
Dir, Hash, Range, and String, just to name a few.

Here’s the complete list of methods you can get by including Enumerable. Many of
them are described elsewhere in this book, especially in Chapter 4. Perhaps the most
useful are collect, inject, find_all, and sort_by.

Enumerable.instance_methods.sort
=> ["all?", "any?", "collect", "detect", "each_with_index", "entries",
=> "find", "find_all", "grep", "include?", "inject", "map", "max",
=> "member?", "min", "partition", "reject", "select", "sort", "sort_by",
=> "to_a", "zip"]

Although you can get all these methods simply by implementing an each method,
some of the methods won’t work unless your each implementation returns objects
that can be compared to each other. For example, a data structure that contains both

324 | Chapter 9: Modules and Namespaces

numbers and strings can’t be sorted, since it makes no sense to compare a number to
a string:

ma.sort # => [1, 2, 3, 4]
mixed_type_ma = MultiArray.new([1, 2, 3], ["a", "b", "c"])
mixed_type_ma.sort
ArgumentError: comparison of Fixnum with String failed

The methods subject to this restriction are max, min, sort, and sort_by. Since you
probably don’t have complete control over the types of the data stored in your data
structure, the best strategy is probably to just let a method fail if the data is incom-
patible. This is what Array does:

[1, 2, 3, "a", "b", "c"].sort
ArgumentError: comparison of Fixnum with String failed

One more example: in this one, I’ll make Module itself include Enumerable. My each
implementation will iterate over the instance methods defined by a class or module.
This makes it easy to find methods of a class that meet certain criteria.

class Module
 include Enumerable
 def each
 instance_methods.each { |x| yield x }
 end
end

Find all instance methods of String that modify the string in place.
String.find_all { |method_name| method_name[-1] == ?! }
=> ["sub!", "upcase!", "delete!", "lstrip!", "succ!", "gsub!",
=> "squeeze!", "downcase!", "rstrip!", "slice!", "chop!", "capitalize!",
=> "tr!", "chomp!", "next!", "swapcase!", "reverse!", "tr_s!", "strip!"]

Find all instance methods of Fixnum that take 2 arguments.
sample = 0
sample.class.find_all { |method_name| sample.method(method_name).arity == 2 }
=> ["instance_variable_set", "between?"]

See Also
• Many of the recipes in Chapter 4 actually cover methods of Enumerable; see espe-

cially Recipe 4.12, “Building Up a Hash Using Injection”

• Recipe 9.1, “Simulating Multiple Inheritance with Mixins”

9.5 Avoiding Naming Collisions with Namespaces

Problem
You want to define a class or module whose name conflicts with an existing class or
module, or you want to prevent someone else from coming along later and defining a
class whose name conflicts with yours.

9.5 Avoiding Naming Collisions with Namespaces | 325

Solution
A Ruby module can contain classes and other modules, which means you can use it
as a namespace.

Here’s some code from a physics library that defines a class called String within the
StringTheory module. The real name of this class is its fully-qualified name:
StringTheory::String. It’s a totally different class from Ruby’s built-in String class.

module StringTheory
 class String
 def initialize(length=10**-33)
 @length = length
 end
 end
end

String.new # => ""

StringTheory::String.new
=> #<StringTheory::String:0xb7c343b8 @length=1.0e-33>

Discussion
If you’ve read Recipe 8.17, you’ve already seen namespaces in action. The constants
defined in a module are qualified with the module’s name. This lets Math::PI have a
different value from Greek::PI.

You can qualify the name of any Ruby object this way: a variable, a class, or even
another module. Namespaces let you organize your libraries, and make it possible
for them to coexist alongside others.

Ruby’s standard library uses namespaces heavily as an organizing principle. An excel-
lent example is REXML, the standard XML library. It defines a REXML namespace that
includes lots of XML-related classes like REXML::Comment and REXML::Instruction.
Naming those classes Comment and Instruction would be a disaster: they’d get overwrit-
ten by other librarys’ Comment and Instruction classes. Since nothing about the generic-
sounding names relates them to the REXML library, you might look at someone else’s
code for a long time before realizing that the Comment objects have to do with XML.

Namespaces can be nested: see for instance rexml’s REXML::Parsers module, which
contains classes like REXML::Parsers::StreamParser. Namespaces group similar
classes in one place so you can find what you’re looking for; nested namespaces do
the same for namespaces.

In Ruby, you should name your top-level module after your software project (SAX), or
after the task it performs (XML::Parser). If you’re writing Yet Another implementa-
tion of something that already exists, you should make sure your namespace includes
your project name (XML::Parser::SAX). This is in contrast to Java’s namespaces: they
exist in its package structure, which follows a naming convention that includes a
domain name, like org.xml.sax.

326 | Chapter 9: Modules and Namespaces

All code within a module is implicitly qualified with the name of the module. This
can cause problems for a module like StringTheory, if it needs to use Ruby’s built-in
String class for something. This should be fixed in Ruby 2.0, but you can also fix it
by setting the built-in String class to a variable before defining your StringTheory::
String class. Here’s a version of the StringTheory module that can use Ruby’s built-
in String class:

module StringTheory2
 RubyString = String
 class String
 def initialize(length=10**-33)
 @length = length
 end
 end

 RubyString.new("This is a built-in string, not a StringTheory2::String")
end
=> "This is a built-in string, not a StringTheory2::String"

See Also
• Recipe 8.17, “Declaring Constants”

• Recipe 9.7, “Including Namespaces”

9.6 Automatically Loading Libraries as Needed

Problem
You’ve written a big library with multiple components. You’d like to split it up so
that users don’t have to load the entire library into memory just to use part of it. But
you don’t want to make your users explicitly require each part of the library they
plan to use.

Solution
Split the big library into multiple files, and set up autoloading for the individual files
by calling Kernel#autoload. The individual files will be loaded as they’re referenced.

Suppose you have a library, functions.rb, that provides two very large modules:

functions.rb
module Decidable
 # ... Many, many methods go here.
end

module Semidecidable
 # ... Many, many methods go here.
end

9.6 Automatically Loading Libraries as Needed | 327

You can provide the same interface, but possibly save your users some memory, by
splitting functions.rb into three files. The functions.rb file itself becomes a stub full
of autoload calls:

functions.rb
autoload :Decidable, "decidable.rb"
autoload :Semidecidable, "semidecidable.rb"

The modules themselves go into the files mentioned in the new functions.rb:

decidable.rb
module Decidable
 # ... Many, many methods go here.
end
semidecidable.rb
module Semidecidable
 # ... Many, many methods go here.
end

The following code will work if all the modules are in functions.rb, but it will also
work if functions.rb only contains calls to autoload:

require 'functions'
Decidable.class # => Module
More use of the Decidable module follows...

When Decidable and Semidecidable have been split into autoloaded modules, that
code only loads the Decidable module. Memory is saved that would otherwise be
used to contain the unsed Semidecidable module.

Discussion
Refactoring a library to consist of autoloadable components takes a little extra plan-
ning, but it’s often worth it to improve performance for the people who use your
library.

Each call to Kernel#autoload binds a symbol to the path of the Ruby file that’s sup-
posed to define that symbol. If the symbol is referenced, that file is loaded exactly as
though it had been passed as an argument into require. If the symbol is never refer-
enced, the user saves some memory.

Since you can use autoload wherever you might use require, you can autoload built-
in libraries when the user triggers some code that needs them. For instance, here’s
some code that loads Ruby’s built-in set library as needed:

autoload :Set, "set.rb"

def random_set(size)
 max = size * 10
 set = Set.new
 set << rand(max) until set.size == size
 return set
end

More code goes here...

328 | Chapter 9: Modules and Namespaces

If random_set is never called, the set library will never be loaded, and memory will be
saved. As soon as random_set gets called, the set library is autoloaded, and the code
works even though we never explicitly require 'set':

random_set(10)
=> #<Set: {39, 83, 73, 40, 90, 25, 91, 31, 76, 54}>

require 'set' # => false

9.7 Including Namespaces

Problem
You want to use the objects within a module without constantly qualifying the object
names with the name of their module.

Solution
Use include to copy a module’s objects into the current namespace. You can then
use them from the current namespace, without qualifying their names.

Instead of this:

require 'rexml/document'

REXML::Document.new(xml)

You might write this:

require 'rexml/document'
include REXML

Document.new(xml)

Discussion
This is the exact same include statement you use to incorporate a mixin module into
a class you’re writing. It does the same thing here as when it includes a mixin: it cop-
ies the contents of a module into the current namespace.

Here, though, the point isn’t to add new functionality to a class or module: it’s to
save you from having to do so much typing. This technique is especially useful with
large library modules like Curses and the Rails libraries.

This use of include comes with the same caveats as any other: if you already have
variables with the same names as the objects being included, the included objects
will be copied in over them and clobber them.

You can, of course, import a namespace that’s nested within a namespace of its own.
Instead of this:

require 'rexml/parsers/pullparser'

REXML::Parsers::PullParser.new("Some XML")

9.8 Initializing Instance Variables Defined by a Module | 329

You might write this:

require 'rexml/parsers/pullparser'
include REXML::Parsers

PullParser.new("Some XML")

See Also
• Recipe 11.3, “Extracting Data While Parsing a Document”

9.8 Initializing Instance Variables Defined
by a Module

Credit: Phil Tomson

Problem
You have a mixin module that defines some instance variables. Given a class that
mixes in the module, you want to initialize the instance variables whenever an
instance of the class is created.

Solution
Define an initialize method in the module, and call super in your class’s constructor.
Here’s a Timeable module that tracks when objects are created and how old they are:

module Timeable
 attr_reader :time_created

 def initialize
 @time_created = Time.now
 end

 def age #in seconds
 Time.now - @time_created
 end
end

Timeable has an instance variable time_created, and an initialize method that
assigns Time.now (the current time) to the instance variable. Now let’s mix Timeable
into another class that also defines an initialize method:

class Character
 include Timeable
 attr_reader :name
 def initialize(name)
 @name = name
 super() #calls Timeable's initialize
 end
end

330 | Chapter 9: Modules and Namespaces

c = Character.new "Fred"

c.time_created
=> Mon Mar 27 18:34:31 EST 2006

Discussion
You can define and access instance variables within a module’s instance methods,
but you can’t actually instantiate a module. A module’s instance variables only exist
within objects of a class that includes the module. However, classes don’t usually
need to know about the instance variables defined by the modules they include. That
sort of information should be initialized and maintained by the module itself.

The Character#initialize method overrides the Timeable#initialize method, but
you can use super to call the Timeable constructor from within the Character con-
structor. When a module is included in a class, that module becomes an ancestor of
the class. We can test this in the context of the example above by calling the
Module#ancestors on the Character class:

Character.ancestors # => [Character, Timeable, Object, Kernel]

When you call super from within a method (such as initialize), Ruby finds every
ancestor that defines a method with the same name, and calls it too.

See Also
• Recipe 8.13, “Calling a Superclass’s Method”

• Sometimes an initialize method won’t work; see Recipe 9.3, “Mixing in Class
Methods,” for when it won’t work, and how to manage without one

• Recipe 9.9, “Automatically Initializing Mixed-In Modules,” covers an even more
complex case, when you want a module to perform some initialization, without
making the class that includes do anything at all beyond the initial include

9.9 Automatically Initializing Mixed-In Modules
Credit: Phil Tomson

Problem
You’ve written a module that gets mixed into classes. Your module has some initial-
ization code that needs to run whenever the mixed-into class is initialized. You do
not want users of your module to have to call super in their initialize methods.

Solution
First, we need a way for classes to keep track of which modules they’ve included. We
also need to redefine Class#new to call a module-level initialize method for each

9.9 Automatically Initializing Mixed-In Modules | 331

included module. Fortunately, Ruby’s flexibility lets us makes changes to the built-in
Class class (though this should never be done lightly):

class Class
 def included_modules
 @included_modules ||= []
 end

 alias_method :old_new, :new
 def new(*args, &block)
 obj = old_new(*args, &block)
 self.included_modules.each do |mod|
 mod.initialize if mod.respond_to?(:initialize)
 end
 obj
 end
end

Now every class has a list of included modules, accessable from the included_modules
class method. We’ve also redefined the Class#new method so that it iterates through
all the modules in included_modules, and calls the module-level initialize method
of each.

All that’s missing is a way to add included modules to included_modules. We’ll put
this code into an Initializable module. A module that wants to be initializable can
mix this module into itself and define an initialize method:

module Initializable

 def self.included(mod)
 mod.extend ClassMethods
 end

 module ClassMethods
 def included(mod)
 if mod.class != Module #in case Initializeable is mixed-into a class
 puts "Adding #{self} to #{mod}'s included_modules" if $DEBUG
 mod.included_modules << self
 end
 end
 end
end

The included callback method is called whenever this module is included in another
module. We’re using the pattern shown in Recipe 9.3 to add an included callback
method into the receiving module. If we didn’t do this, you’d have to use that pat-
tern yourself for every module you wanted to be Initializable.

Discussion
That’s a lot of code, but here’s the payoff. Let’s define a couple of modules which
include Initializeable and define initialize module methods:

332 | Chapter 9: Modules and Namespaces

module A
 include Initializable
 def self.initialize
 puts "A's initialized."
 end
end

module B
 include Initializable
 def self.initialize
 puts "B's initialized."
 end
end

We can now define a class that mixes in both modules. Instantiating the class instan-
tiates the modules, with not a single super call in sight!

class BothAAndB
 include A
 include B
end

both = BothAAndB.new
A's initialized.
B's initialized.

The goal of this recipe is very similar to Recipe 9.8. In that recipe, you call super in a
class’s initialize method to call a mixed-in module’s initialize method. That rec-
ipe is a lot simpler than this one and doesn’t require any changes to built-in classes,
so it’s often preferable to this one.

Consider a case like the BothAAndB class above. Using the techniques from Recipe 9.8,
you’d need to make sure that both A and B had calls to super in their initialize meth-
ods, so that each module would get initialized. This solution moves all of that work
into the Initializable module and the built-in Class class. The other drawback of the
previous technique is that the user of your module needs to know to call super some-
where in their initialize method. Here, everything happens automatically.

This technique is not without its pitfalls. Anytime you redefine critical built-in meth-
ods like Class#new, you need to be careful: someone else may have already redefined
it elsewhere in your program. Also, you won’t be able to define your own included
method callback in a module which includes Initializeable: doing so will override
the callback defined by Initializable itself.

See Also
• Recipe 9.3, “Mixing in Class Methods”

• Recipe 9.8, “Initializing Instance Variables Defined by a Module”

333

Chapter 10 CHAPTER 10

Reflection and Metaprogramming10

In a dynamic language like Ruby, few pieces are static. Classes can grow new meth-
ods and lose the ones they had before. Methods can be defined manually, or auto-
matically with well-written code.

Probably the most interesting aspect of the Ruby programming philosophy is its use of
reflection and metaprogramming to save the programmer from having to write repeti-
tive code. In this chapter, we will teach you the ways and the joys of these techniques.

Reflection lets you treat classes and methods as objects. With reflection you can see
which methods you can call on an object (Recipes 10.2 and 10.3). You can grab one
of its methods as an object (Recipe 10.4), and call it or pass it in to another method
as a code block. You can get references to the class an object implements and the
modules it includes, and print out its inheritance structure (Recipe 10.1). Reflection
is especially useful when you’re interactively examining an unfamiliar object or class
structure.

Metaprogramming is to programming as programming is to doing a task by hand. If
you need to sort a file of a hundred lines, you don’t open it up in a text editor and
start shuffling the lines: you write a program to do the sort. By the same token, if you
need to give a Ruby class a hundred similar methods, you shouldn’t just start writ-
ing the methods one at a time. You should write Ruby code that defines the meth-
ods for you (Recipe 10.10). Or you should make your class capable of intercepting
calls to those methods: this way, you can implement the methods without ever defin-
ing them at all (Recipe 10.8).

Methods you’ve seen already, like attr_reader, use metaprogramming to define cus-
tom methods according to your specifications. Recipe 8.2 created a few more of
these “decorator” methods; Recipe 10.16 in this chapter shows a more complex
example of the same principle.

You can metaprogram in Ruby either by writing normal Ruby code that uses a lot of
reflection, or by generating a string that contains Ruby code, and evaluating the
string. Writing normal Ruby code with reflection is generally safer, but sometimes

334 | Chapter 10: Reflection and Metaprogramming

the reflection just gets to be too much and you need to evaluate a string. We provide
a demonstration recipe for each technique (Recipes 10.10 and 10.11).

10.1 Finding an Object’s Class and Superclass

Problem
Given a class, you want an object corresponding to its class, or to the parent of its
class.

Solution
Use the Object#class method to get the class of an object as a Class object. Use
Class#superclass to get the parent Class of a Class object:

'a string'.class # => String
'a string'.class.name # => "String"
'a string'.class.superclass # => Object
String.superclass # => Object
String.class # => Class
String.class.superclass # => Module
'a string'.class.new # => ""

Discussion
Class objects in Ruby are first-class objects that can be assigned to variables, passed as
arguments to methods, and modified dynamically. Many of the recipes in this chapter
and Chapter 8 discuss things you can do with a Class object once you have it.

The superclass of the Object class is nil. This makes it easy to iterate up an inherit-
ance hierarchy:

class Class
 def hierarchy
 (superclass ? superclass.hierarchy : []) << self
 end
end

Array.hierarchy # => [Object, Array]

class MyArray < Array
end
MyArray.hierarchy # => [Object, Array, MyArray]

While Ruby does not support multiple inheritance, the language allows mixin
Modules that simulate it (see Recipe 9.1). The Modules included by a given Class (or
another Module) are accessible from the Module#ancestors method.

A class can have only one superclass, but it may have any number of ancestors. The
list returned by Module#ancestors contains the entire inheritance hierarchy (including

10.2 Listing an Object’s Methods | 335

the class itself), any modules the class includes, and the ever-present Kernel module,
whose methods are accessible from anywhere because Object itself mixes it in.

String.superclass # => Object
String.ancestors # => [String, Enumerable, Comparable, Object, Kernel]
Array.ancestors # => [Array, Enumerable, Object, Kernel]
MyArray.ancestors # => [MyArray, Array, Enumerable, Object, Kernel]

Object.ancestors # => [Object, Kernel]

class MyClass
end
MyClass.ancestors # => [MyClass, Object, Kernel]

See Also
• Most of Chapter 8

• Recipe 9.1, “Simulating Multiple Inheritance with Mixins”

10.2 Listing an Object’s Methods

Problem
Given an unfamiliar object, you want to see what methods are available to call.

Solution
All Ruby objects implement the Object#methods method. It returns an array contain-
ing the names of the object’s public instance methods:

Object.methods
=> ["name", "private_class_method", "object_id", "new",
"singleton_methods", "method_defined?", "equal?", ...]

To get a list of the singleton methods of some object (usually, but not always, a
class), use Object#singleton_methods:

Object.singleton_methods # => []
Fixnum.singleton_methods # => ["induced_from"]

class MyClass
 def MyClass.my_singleton_method
 end

 def my_instance_method
 end
end
MyClass.singleton_methods # => ["my_singleton_method"]

To list the instance methods of a class, call instance_methods on the object. This lets
you list the instance methods of a class without instantiating the class:

''.methods == String.instance_methods # => true

336 | Chapter 10: Reflection and Metaprogramming

The output of these methods are most useful when sorted:

Object.methods.sort
=> ["<", "<=", "<=>", "==", "===", "=~", ">", ">=",
"__id__", "__send_ _", "allocate", "ancestors", ...]

Ruby also defines some elementary predicates along the same lines. To see whether a
class defines a certain instance method, call method_defined? on the class or respond_
to? on an instance of the class. To see whether a class defines a certain class method,
call respond_to? on the class:

MyClass.method_defined? :my_instance_method # => true
MyClass.new.respond_to? :my_instance_method # => true
MyClass.respond_to? :my_instance_method # => false

MyClass.respond_to? :my_singleton_method # => true

Discussion
It often happens that while you’re in an interactive Ruby session, you need to look
up which methods an object supports, or what a particular method is called. Look-
ing directly at the object is faster than looking its class up in a book. If you’re using a
library like Rails or Facets, or your code has been adding methods to the built-in
classes, it’s also more reliable.

Noninteractive code can also benefit from knowing whether a given object imple-
ments a certain method. You can use this to enforce an interface, allowing any object
to be passed into a method so long as the argument implements certain methods (see
Recipe 10.16).

If you find yourself using respond_to? a lot in an interactive Ruby session, you’re a
good customer for irb’s autocomplete feature. Put the following line in your .irbrc
file or equivalent:

require 'irb/completion'
#Depending on your system, you may also have to add the following line:
IRB.conf[:use_readline] = true

Then you can type (for instance) “[1,2,3].”, hit the Tab key, and see a list of all the
methods you can call on the array [1, 2, 3].

methods, instance_methods, and singleton_methods will only return public methods,
and method_defined? will only return true if you give it the name of a public method.
Ruby provides analagous methods for discovering protected and private methods,
though these are less useful. All the relevant methods are presented in Table 10-1.

Table 10-1. Discovering protected and private methods

Goal Public Protected Private

List the methods of an object methods or public_
methods

protected_methods private_methods

List the instance methods
defined by a class

instance_methods or
public_instance_
methods

protected_instance_
methods

private_instance_
methods

10.3 Listing Methods Unique to an Object | 337

Just because you can see the names of protected or private methods in a list doesn’t
mean you can call the methods, or that respond_to? will find them:

String.private_instance_methods.sort
=> ["Array", "Float", "Integer", "String", "`", "abort", "at_exit",
"autoload","autoload?", "binding", "block_given?", "callcc", ...]
String.new.respond_to? :autoload? # => false

String.new.autoload?
NoMethodError: private method `autoload?' called for "":String

See Also
• To strip away irrelevant methods, see Recipe 10.3, “Listing Methods Unique to

an Object”

• Recipe 10.4, “Getting a Reference to a Method,” shows how to assign a Method
object to a variable, given its name; among other things, this lets you find out
how many arguments a method takes

• See Recipe 10.6, “Listening for Changes to a Class,” to set up a hook to be called
whenever a new method or singleton method is defined for a class

• Recipe 10.16, “Enforcing Software Contracts”

10.3 Listing Methods Unique to an Object

Problem
When you list the methods available to an object, the list is cluttered with extrane-
ous methods defined in the object’s superclasses and mixed-in modules. You want to
see a list of only the methods defined by that object’s direct class.

Solution
Subtract the instance methods defined by the object’s superclass. You’ll be left with
only the methods defined by the object’s direct class (plus any methods defined on

List the singleton methods
defined by a class

singleton_methods N/A N/A

Does this class define such-
and-such an instance method?

method_defined? or
public_method_
defined?

protected_method_
defined?

private_method_
defined?

Will this object respond to
such-and-such an instance
method?

respond_to? N/A N/A

Table 10-1. Discovering protected and private methods (continued)

Goal Public Protected Private

338 | Chapter 10: Reflection and Metaprogramming

the object after its creation). The my_methods_only method defined below gives this
capability to every Ruby object:

class Object
 def my_methods_only
 my_super = self.class.superclass
 return my_super ? methods - my_super.instance_methods : methods
 end
end

s = ''
s.methods.size # => 143
Object.instance_methods.size # => 41
s.my_methods_only.size # => 102
(s.methods - Object.instance_methods).size # => 102

def s.singleton_method()
end
s.methods.size # => 144
s.my_methods_only.size # => 103

class Object
 def new_object_method
 end
end
s.methods.size # => 145
s.my_methods_only.size # => 103

class MyString < String
 def my_string_method
 end
end
MyString.new.my_methods_only # => ["my_string_method"]

Discussion
The my_methods_only technique removes methods defined in the superclass, the par-
ent classes of the superclass, and in any mixin modules included by those classes. For
instance, it removes the 40 methods defined by the Object class when it mixed in the
Kernel module. It will not remove methods defined by mixin modules included by
the class itself.

Usually these methods aren’t clutter, but there can be a lot of them (for instance,
Enumerable defines 22 methods). To remove them, you can start out with my_
methods_only, then iterate over the ancestors of the class in question and subtract out
all the methods defined in modules:

class Object
 def my_methods_only_no_mixins
 self.class.ancestors.inject(methods) do |mlist, ancestor|
 mlist = mlist - ancestor.instance_methods unless ancestor.is_a? Class
 mlist

10.4 Getting a Reference to a Method | 339

 end
end

[].methods.size # => 121
[].my_methods_only.size # => 78
[].my_methods_only_no_mixins.size # => 57

See Also
• Recipe 10.1, “Finding an Object’s Class and Superclass,” explores ancestors in

more detail

10.4 Getting a Reference to a Method

Problem
You want to the name of a method into a reference to the method itself.

Solution
Use the eponymous Object#method method:

s = 'A string'
length_method = s.method(:length) # => #<Method: String#length>
length_method.arity # => 0
length_method.call # => 8

Discussion
The Object#methods introspection method returns an array of strings, each contain-
ing the name of one of the methods available to that object. You can pass any of
these names into an object’s method method and get a Method object corresponding to
that method of that object.

A Method object is bound to the particular object whose method method you called.
Invoke the method’s Method#call method, and it’s just like calling the object’s
method directly:

1.succ # => 2
1.method(:succ).call # => 2

The Method#arity method indicates how many arguments the method takes. Argu-
ments, including block arguments, are passed to call just as they would be to the
original method:

5.method('+').call(10) # => 15

[1,2,3].method(:each).call { |x| puts x }
1
2
3

340 | Chapter 10: Reflection and Metaprogramming

A Method object can be stored in a variable and passed as an argument to other meth-
ods. This is useful for passing preexisting methods into callbacks and listeners:

class EventSpawner

 def initialize
 @listeners = []
 @state = 0
 end

 def subscribe(&listener)
 @listeners << listener
 end

 def change_state(new_state)
 @listeners.each { |l| l.call(@state, new_state) }
 @state = new_state
 end
end

class EventListener
 def hear(old_state, new_state)
 puts "Method triggered: state changed from #{old_state} " +
 "to #{new_state}."
 end
end

spawner = EventSpawner.new
spawner.subscribe do |old_state, new_state|
 puts "Block triggered: state changed from #{old_state} to #{new_state}."
end

spawner.subscribe &EventListener.new.method(:hear)
spawner.change_state(4)
Block triggered: state changed from 0 to 4.
Method triggered: state changed from 0 to 4.

A Method can also be used as a block:
s = "sample string"
replacements = { "a" => "i", "tring" => "ubstitution" }

replacements.collect(&s.method(:gsub))
=> ["simple string", "sample substitution"]

You can’t obtain a reference to a method that’s not bound to a specific object,
because the behavior of call would be undefined. You can get a reference to a class
method by calling method on the class. When you do this, the bound object is the
class itself: an instance of the Class class. Here’s an example showing how to obtain
references to an instance and a class method of the same class:

class Welcomer
 def Welcomer.a_class_method
 return "Greetings from the Welcomer class."
 end

10.5 Fixing Bugs in Someone Else’s Class | 341

 def an_instance_method
 return "Salutations from a Welcomer object."
 end
end

Welcomer.method("an_instance_method")
NameError: undefined method `an_instance_method' for class `Class'
Welcomer.new.method("an_instance_method").call
=> "Salutations from a Welcomer object."
Welcomer.method("a_class_method").call
=> "Greetings from the Welcomer class."

See Also
• Recipe 7.11, “Coupling Systems Loosely with Callbacks,” contains a more com-

plex listener example

10.5 Fixing Bugs in Someone Else’s Class

Problem
You’re using a class that’s got a bug in one of its methods. You know where the bug
is and how to fix it, but you can’t or don’t want to change the source file itself.

Solutions
Extend the class from within your program and overwrite the buggy method with an
implementation that fixes the bug. Create an alias for the buggy version of the
method, so you can still access it if necessary.

Suppose you’re trying to use the buggy method in the Multiplier class defined
below:

class Multiplier
 def double_your_pleasure(pleasure)
 return pleasure * 3 # FIXME: Actually triples your pleasure.
 end
end

m = Multiplier.new
m.double_your_pleasure(6) # => 18

Reopen the class, alias the buggy method to another name, then redefine it with a
correct implementation:

class Multiplier
 alias :double_your_pleasure_BUGGY :double_your_pleasure
 def double_your_pleasure(pleasure)
 return pleasure * 2
 end
end

342 | Chapter 10: Reflection and Metaprogramming

m.double_your_pleasure(6) # => 12

m.double_your_pleasure_BUGGY(6) # => 18

Discussion
In many programming languages a class, function, or method can’t be modified after
its initial definition. In other languages, this behavior is possible but not encouraged.
For Ruby programmers, the ability to reprogram classes on the fly is just another
technique for the toolbox, to be used when necessary. It’s most commonly used to
add new code to a class, but it can also be used to deploy a drop-in replacement for
buggy or slow implementation of a method.

Since Ruby is (at least right now) a purely interpreted language, you should be able
to find the source code of any Ruby class used by your program. If a method in one
of those classes has a bug, you should be able to copy and paste the original Ruby
implementation into your code and fix the bug in the new copy.* This is not an ele-
gant technique, but it’s often better than distributing a slightly modified version of
the entire class or library (that is, copying and pasting a whole file).

When you fix the buggy behavior, you should also send your fix to the maintainer of
the software that contains the bug. The sooner you can get the fix out of your code,
the better. If the software package is abandoned, you should at least post the fix
online so others can find it.

If a method isn’t buggy, but simply doesn’t do what you’d like it to do, add a new
method to the class (or create a subclass) instead of redefining the old one. Methods
you don’t know about may use the behavior of the method as it is. Of course, there
could be methods that rely on the buggy behavior of a buggy method, but that’s less
likely.

See Also
• Throughout this book we use techniques like this to work around bugs and per-

formance problems in the Ruby standard library (although most of the bugs
have been fixed in Ruby 1.9); see, for instance, Recipe 2.7, “Taking Loga-
rithms,” Recipe 2.16, “Generating Prime Numbers,” and Recipe 6.18, “Delet-
ing a File”

• Recipe 10.14, “Aliasing Methods”

* Bugs in Ruby C extensions are much more difficult to patch. You might be able to write equivalent Ruby
code, but there’s probably a reason why the original code was written in C. Since C doesn’t share Ruby’s
attitude towards redefining functions on the fly, you’ll need to fix the bug in the original C code and recom-
pile the extension.

10.6 Listening for Changes to a Class | 343

10.6 Listening for Changes to a Class
Credit: Phil Tomson

Problem
You want to be notified when the definition of a class changes. You might want to
keep track of new methods added to the class, or existing methods that get removed
or undefined. Being notified when a module is mixed into a class can also be useful.

Solution
Define the class methods method_added, method_removed, and/or method_undefined.
Whenever the class gets a method added, removed, or undefined, Ruby will pass its
symbol into the appropriate callback method.

The following example prints a message whenever a method is added, removed, or
undefined. If the method “important” is removed, undefined, or redefined, it throws
an exception.

class Tracker
 def important
 "This is an important method!"
 end

 def self.method_added(sym)
 if sym == :important
 raise 'The "important" method has been redefined!'
 else
 puts %{Method "#{sym}" was (re)defined.}
 end
 end

 def self.method_removed(sym)
 if sym == :important
 raise 'The "important" method has been removed!'
 else
 puts %{Method "#{sym}" was removed.}
 end
 end

 def self.method_undefined(sym)
 if sym == :important
 raise 'The "important" method has been undefined!'
 else
 puts %{Method "#{sym}" was removed.}
 end
 end
end

If someone adds a method to the class, a message will be printed:
class Tracker
 def new_method

344 | Chapter 10: Reflection and Metaprogramming

 'This is a new method.'
 end
end
Method "new_method" was (re)defined.

Short of freezing the class, you can’t prevent the important method from being
removed, undefined, or redefined, but you can raise a stink (more precisely, an
exception) if someone changes it:

class Tracker
 undef :important
end
RuntimeError: The "important" method has been undefined!

Discussion
The class methods we’ve defined in the Tracker class (method_added, method_removed,
and method_undefined) are hook methods. Some other piece of code (in this case, the
Ruby interpreter) knows to call any methods by that name when certain conditions
are met. The Module class defines these methods with empty bodies: by default, noth-
ing special happens when a method is added, removed, or undefined.

Given the code above, we will not be notified if our Tracker class later mixes in a
module. We won’t hear about the module itself, nor about the new methods that are
available because of the module inclusion.

class Tracker
 include Enumerable
end

Nothing!

Detecting module inclusion is trickier. Ruby provides a hook method
Module#included, which is called on a module whenever it’s mixed into a class. But
we want the opposite: a hook method that’s called on a particular class whenever it
includes a module. Since Ruby doesn’t provide a hook method for module inclusion,
we must define our own. To do this, we’ll need to change Module#include itself.

class Module
 alias_method :include_no_hook, :include
 def include(*modules)
 # Run the old implementation.
 include_no_hook(*modules)

 # Then run the hook.
 modules.each do |mod|
 self.include_hook mod
 end
 end

 def include_hook
 # Do nothing by default, just like Module#method_added et al.
 # This method must be overridden in a subclass to do something useful.

10.7 Checking Whether an Object Has Necessary Attributes | 345

 end
end

Now when a module is included into a class, Ruby will call that class’s include_hook
method. If we define a Tracker#include_hook method, we can have Ruby notify us of
inclusions:

class Tracker
 def self.include_hook(mod)
 puts %{"#{mod}" was included in #{self}.}
 end
end

class Tracker
 include Enumerable
end
"Enumerable" was included in Tracker.

See Also
• Recipe 9.3, “Mixing in Class Methods,” for more on the Module#included

method

• Recipe 10.13, “Undefining a Method,” for the difference between removing and
undefining a method

10.7 Checking Whether an Object Has Necessary
Attributes

Problem
You’re writing a class or module that delegates the creation of some of its instance
variables to a hook method. You want to be make sure that the hook method actu-
ally created those instance variables.

Solution
Use the Object#instance_variables method to get a list of the instance variables.
Check them over to make sure all the necessary instance variables have been defined.
This Object#must_have_instance_variables method can be called at any time:

class Object
 def must_have_instance_variables(*args)
 vars = instance_variables.inject({}) { |h,var| h[var] = true; h }
 args.each do |var|
 unless vars[var]
 raise ArgumentError, %{Instance variable "@#{var} not defined"}
 end
 end
 end
end

346 | Chapter 10: Reflection and Metaprogramming

The best place to call this method is in initialize or some other setup method of a
module. Alternatively, you could accept values for the instance variables as argu-
ments to the setup method:

module LightEmitting
 def LightEmitting_setup
 must_have_instance_variables :light_color, :light_intensity
 @on = false
 end

 # Methods that use @light_color and @light_intensity follow...
end

You can call this method from a class that defines a virtual setup method, to make
sure that subclasses actually use the setup method correctly:

class Request
 def initialize
 gather_parameters # This is a virtual method defined by subclasses
 must_have_instance_variables :action, :user, :authentication
 end

 # Methods that use @action, @user, and @authentication follow...
end

Discussion
Although Object#must_have_instance_variables is defined and called like any other
method, it’s conceptually a “decorator” method similar to attr_accessor and
private. That’s why I didn’t use parentheses above, even though I called it with mul-
tiple arguments. The lack of parentheses acts as a visual indicator that you’re calling
a decorator method, one that alters or inspects a class or object.

Here’s a similar method that you can use from outside the object. It basically imple-
ments a batch form of duck typing: instead of checking an object’s instance variables
(which are only available inside the object), it checks whether the object supports all
of the methods you need to call on it. It’s useful for checking from the outside
whether an object is the “shape” you expect.

class Object
 def must_support(*args)
 args.each do |method|
 unless respond_to? method
 raise ArgumentError, %{Must support "#{method}"}
 end
 end
 end
end

obj = "a string"
obj.must_support :to_s, :size, "+".to_sym
obj.must_support "+".to_sym, "-".to_sym
ArgumentError: Must support "-"

10.8 Responding to Calls to Undefined Methods | 347

See Also
• Recipe 10.16, “Enforcing Software Contracts”

10.8 Responding to Calls to Undefined Methods

Problem
Rather than having Ruby raise a NoMethodError when someone calls an undefined
method on an instance of your class, you want to intercept the method call and do
something else with it.

Or you are faced with having to explicitly define a large (possibly infinite) number of
methods for a class. You would rather define a single method that can respond to an
infinite number of method names.

Solution
Define a method_missing method for your class. Whenever anyone calls a method
that would otherwise result in a NoMethodError, the method_missing method is called
instead. It is passed the symbol of the nonexistent method, and any arguments that
were passed in.

Here’s a class that modifies the default error handling for a missing method:

class MyClass
 def defined_method
 'This method is defined.'
 end

 def method_missing(m, *args)
 "Sorry, I don't know about any #{m} method."
 end
end

o = MyClass.new
o.defined_method # => "This method is defined."
o.undefined_method
=> "Sorry, I don't know about any undefined_method method."

In the second example, I’ll define an infinitude of new methods on Fixnum by giving it
a method_missing implementation. Once I’m done, Fixnum will answer to any method
that looks like “plus_#” and takes no arguments.

class Fixnum
 def method_missing(m, *args)
 if args.size > 0
 raise ArgumentError.new("wrong number of arguments (#{args.size} for 0)")
 end

348 | Chapter 10: Reflection and Metaprogramming

 match = /^plus_([0-9]+)$/.match(m.to_s)
 if match
 self + match.captures[0].to_i
 else
 raise NoMethodError.
 new("undefined method `#{m}' for #{inspect}:#{self.class}")
 end
 end
end

4.plus_5 # => 9
10.plus_0 # => 10
-1.plus_2 # => 1
100.plus_10000 # => 10100
20.send(:plus_25) # => 45

100.minus_3
NoMethodError: undefined method `minus_3' for 100:Fixnum
100.plus_5(105)
ArgumentError: wrong number of arguments (1 for 0)

Discussion
The method_missing technique is frequently found in delegation scenarios, when one
object needs to implement all of the methods of another object. Rather than defining
each method, a class implements method_missing as a catch-all, and uses send to dele-
gate the “missing” method calls to other objects. The built-in delegate library makes
this easy (see Recipe 8.8), but for the sake of illustration, here’s a class that delegates
almost all its methods to a string. Note that this class doesn’t itself subclass String.

class BackwardsString
 def initialize(s)
 @s = s
 end

 def method_missing(m, *args, &block)
 result = @s.send(m, *args, &block)
 result.respond_to?(:to_str) ? BackwardsString.new(result) : result
 end

 def to_s
 @s.reverse
 end

 def inspect
 to_s
 end
end

The interesting thing here is the call to Object#send. This method takes the name of
another method, and calls that method with the given arguments. We can delegate

10.8 Responding to Calls to Undefined Methods | 349

any missing method call to the underlying string without even looking at the method
name.

s = BackwardsString.new("I'm backwards.") # => .sdrawkcab m'I
s.size # => 14
s.upcase # => .SDRAWKCAB M'I
s.reverse # => I'm backwards.
s.no_such_method
NoMethodError: undefined method `no_such_method' for "I'm backwards.":String

The method_missing technique is also useful for adding syntactic sugar to a class. If
one method of your class is frequently called with a string argument, you can make
object.string a shortcut for object.method("string"). Consider the Library class
below, and its simple query interface:

class Library < Array

 def add_book(author, title)
 self << [author, title]
 end

 def search_by_author(key)
 reject { |b| !match(b, 0, key) }
 end

 def search_by_author_or_title(key)
 reject { |b| !match(b, 0, key) && !match(b, 1, key) }
 end

 :private

 def match(b, index, key)
 b[index].index(key) != nil
 end
end

l = Library.new
l.add_book("James Joyce", "Ulysses")
l.add_book("James Joyce", "Finnegans Wake")
l.add_book("John le Carre", "The Little Drummer Boy")
l.add_book("John Rawls", "A Theory of Justice")

l.search_by_author("John")
=> [["John le Carre", "The Little Drummer Boy"],
["John Rawls", "A Theory of Justice"]]

l.search_by_author_or_title("oy")
=> [["James Joyce", "Ulysses"], ["James Joyce", "Finnegans Wake"],
["John le Carre", "The Little Drummer Boy"]]

We can make certain queries a little easier to write by adding some syntactic sugar.
It’s as simple as defining a wrapper method; its power comes from the fact that Ruby
directs all unrecognized method calls to this wrapper method.

350 | Chapter 10: Reflection and Metaprogramming

class Library
 def method_missing(m, *args)
 search_by_author_or_title(m.to_s)
 end
end

l.oy
=> [["James Joyce", "Ulysses"], ["James Joyce", "Finnegans Wake"],
["John le Carre", "The Little Drummer Boy"]]

l.Fin
=> [["James Joyce", "Finnegans Wake"]]

l.Jo
=> [["James Joyce", "Ulysses"], ["James Joyce", "Finnegans Wake"],
["John le Carre", "The Little Drummer Boy"],
["John Rawls", "A Theory of Justice"]]

You can also define a method_missing method on a class. This is useful for adding
syntactic sugar to factory classes. Here’s a simple factory class that makes it easy to
create strings (as though this weren’t already easy):

class StringFactory
 def StringFactory.method_missing(m, *args)
 return String.new(m.to_s, *args)
 end
end

StringFactory.a_string # => "a_string"
StringFactory.another_string # => "another_string"

As before, an attempt to call an explicitly defined method will not trigger method_
missing:

StringFactory.superclass # => Object

The method_missing method intercepts all calls to undefined methods, including the
mistyped names of calls to “real” methods. This is a common source of bugs. If you
run into trouble using your class, the first thing you should do is add debug state-
ments to method_missing, or comment it out altogether.

If you’re using method_missing to implicitly define methods, you should also be
aware that Object.respond_to? returns false when called with the names of those
methods. After all, they’re not defined!

25.respond_to? :plus_20 # => false

You can override respond_to? to fool outside objects into thinking you’ve got explicit
definitions for methods you’ve actually defined implicitly in method_missing. Be very
careful, though; this is another common source of bugs.

class Fixnum
 def respond_to?(m)
 super or (m.to_s =~ /^plus_([0-9]+)$/) != nil

10.9 Automatically Initializing Instance Variables | 351

 end
end

25.respond_to? :plus_20 # => true
25.respond_to? :succ # => true
25.respond_to? :minus_20 # => false

See Also
• Recipe 2.13, “Simulating a Subclass of Fixnum”

• Recipe 8.8, “Delegating Method Calls to Another Object,” for an alternate imple-
mentation of delegation that’s usually easier to use

10.9 Automatically Initializing Instance Variables

Problem
You’re writing a class constructor that takes a lot of arguments, each of which is sim-
ply assigned to an instance variable.

class RGBColor(red=0, green=0, blue=0)
 @red = red
 @green = green
 @blue = blue
end

You’d like to avoid all the typing necessary to do those variable assignments.

Solution
Here’s a method that initializes the instance variables for you. It takes as an argu-
ment the list of variables passed into the initialize method, and the binding of the
variables to values.

class Object
 private
 def set_instance_variables(binding, *variables)
 variables.each do |var|
 instance_variable_set("@#{var}", eval(var, binding))
 end
 end
end

Using this method, you can eliminate the tedious variable assignments:

class RGBColor
 def initialize(red=0, green=0, blue=0)
 set_instance_variables(binding, *local_variables)
 end
end

RGBColor.new(10, 200, 300)
=> #<RGBColor:0xb7c22fc8 @red=10, @blue=300, @green=200>

352 | Chapter 10: Reflection and Metaprogramming

Discussion
Our set_instance_variables takes a list of argument names to turn into instance
variables, and a Binding containing the values of those arguments as of the method
call. For each argument name, an eval statement binds the corresponding instance
variable to the corresponding value in the Binding. Since you control the names of
your own variables, this eval is about as safe as it gets.

The names of a method’s arguments aren’t accessible from Ruby code, so how do we
get that list? Through trickery. When a method is called, any arguments passed in
are immediately bound to local variables. At the very beginning of the method, these
are the only local variables defined. This means that calling Kernel#local_variables
at the beginning of a method will get a list of all the argument names.

If your method accepts arguments that you don’t want to set as instance variables,
simply remove their names from the result of Kernel#local_variables before passing
the list into set_instance_variables:

class RGBColor
 def initialize(red=0, green=0, blue=0, debug=false)
 set_instance_variables(binding, *local_variables-['debug'])
 puts "Color: #{red}/#{green}/#{blue}" if debug
 end
end

RGBColor.new(10, 200, 255, true)
Color: 10/200/255
=> #<RGBColor:0xb7d309fc @blue=255, @green=200, @red=10>

10.10 Avoiding Boilerplate Code
with Metaprogramming

Problem
You’ve got to type in a lot of repetitive code that a trained monkey could write.
You’re resentful at having to do this yourself, and angry that the repetitive code will
clutter up your class listings.

Solution
Ruby is happy to be the trained monkey that writes your repetitive code. You can
define methods algorithmically with Module#define_method.

Usually the repetitive code is a bunch of similar methods. Suppose you need to write
code like this:

class Fetcher
 def fetch(how_many)
 puts "Fetching #{how_many ? how_many : "all"}."
 end

10.10 Avoiding Boilerplate Code with Metaprogramming | 353

 def fetch_one
 fetch(1)
 end

 def fetch_ten
 fetch(10)
 end

 def fetch_all
 fetch(nil)
 end
end

You can define this exact same code without having to write it all out. Create a data
structure that contains the differences between the methods, and iterate over that
structure, defining a method each time with define_method.

class GeneratedFetcher
 def fetch(how_many)
 puts "Fetching #{how_many ? how_many : "all"}."
 end

 [["one", 1], ["ten", 10], ["all", nil]].each do |name, number|
 define_method("fetch_#{name}") do
 fetch(number)
 end
 end
end

GeneratedFetcher.instance_methods - Object.instance_methods
=> ["fetch_one", "fetch", "fetch_ten", "fetch_all"]

GeneratedFetcher.new.fetch_one
Fetching 1.

GeneratedFetcher.new.fetch_all
Fetching all.

This is less to type, less monkeyish, and it takes up less space in your class listing. If
you need to define more of these methods, you can add to the data structure instead
of writing out more boilerplate.

Discussion
Programmers have always preferred writing new code to cranking out variations on
old code. From lex and yacc to modern programs like Hibernate and Cog, we’ve
always used tools to generate code that would be tedious to write out manually.

Instead of generating code with an external tool, Ruby programmers do it from
within Ruby.* There are two officially sanctioned techniques. The nicer technique is

* This would make a good bumper sticker: “Ruby programmers do it from within Ruby.”

354 | Chapter 10: Reflection and Metaprogramming

to use define_method to create a method whose implementation can use the local
variables available at the time it was defined.

The built-in decorator methods we’ve already seen use metaprogramming. The attr_
reader method takes a string as an argument, and defines a method whose name and
implementation is based on that string. The code that’s the same for every reader
method is factored out into attr_reader; all you have to provide is the tiny bit that’s
different every time.

Methods whose code you generated are indistinguishable from methods that you
wrote out longhand. They will show up in method lists and in generated RDoc docu-
mentation (if you’re metaprogramming with string evaluations, as seen in the next
recipe, you can even generate the RDoc documentation and put it at the beginning of
a generated method).

Usually you’ll use metaprogramming the way attr_reader does: to attach new meth-
ods to a class or module. For this you should use define_method, if possible. How-
ever, the block you pass into define_method needs to itself be valid Ruby code, and
this can be cumbersome. Consider the following generated methods:

class Numeric
 [["add", "+"], ["subtract", "-"], ["multiply", "*",],
 ["divide", "/"]].each do |method, operator|
 define_method("#{method}_2") do
 method(operator).call(2)
 end
 end
end

4.add_2 # => 6
10.divide_2 # => 5

Within the block passed into define_method, we have to jump through some reflec-
tion hoops to get a reference to the operator we want to use. You can’t just write
self operator 2, because operator isn’t an operator: it’s a variable containing an
operator name. See the next recipe for another metaprogramming technique that
uses string substitution instead of reflection.

Another of define_method’s shortcomings is that in Ruby 1.8, you can’t use it to
define a method that takes a block. The following code will work in Ruby 1.9 but not
in Ruby 1.8:

define_method "call_with_args" do |*args, &block|
 block.call(*args)
end

call_with_args(1, 2) { |n1, n2| n1 + n2 } # => 3
call_with_args "mammoth" { |x| x.upcase } # => "MAMMOTH"

10.11 Metaprogramming with String Evaluations | 355

See Also
• Metaprogramming is used throughout this book to generate a bunch of meth-

ods at once, or to make it easy to define certain kinds of methods; see, for
instance, Recipe 4.7, “Making Sure a Sorted Array Stays Sorted”

• Because define_method is a private method, you can only use it within a class
definition; Recipe 8.2, “Managing Class Data,” shows a case where it needs to be
called outside of a class definition

• The next recipe, Recipe 10.11, “Metaprogramming with String Evaluations”

• Metaprogramming is a staple of Ruby libraries; it’s used throughout Rails, and in
smaller libraries like delegate

10.11 Metaprogramming with String Evaluations

Problem
You’re trying to write some metaprogramming code using define_method, but there’s
too much reflection going on for your code to be readable. It gets confusing and is
almost as frustrating as having to write out the code in longhand.

Solution
You can define new methods by generating the definitions as strings and running
them as Ruby code with one of the eval methods.

Here’s a reprint of the metaprogramming example from the previous recipe, which
uses define_method:

class Numeric
 [['add', '+'], ['subtract', '-'],
 ['multiply', '*',], ['divide', '/']].each do |method, operator|
 define_method("#{method}_2") do
 method(operator).call(2)
 end
 end
end

The important line of code, method(operator).call(2), isn’t something you’d write
in normal programming. You’d write something like self + 2 or self / 2, depending
on which operator you wanted to apply. By writing your method definitions as
strings, you can do metaprogramming that looks more like regular programming:

class Numeric
 [['add', '+'], ['subtract', '-'],
 ['multiply', '*',], ['divide', '/']].each do |method, operator|
 module_eval %{ def #{method}_2
 self.#{operator}(2)
 end }

356 | Chapter 10: Reflection and Metaprogramming

 end
end

4.add_2 # => 6
10.divide_2 # => 5

Discussion
You can do all of your metaprogramming with define_method, but the code doesn’t
look a lot like the code you’d write in normal programming. You can’t set an
instance variable with @foo = 4; you have to call instance_variable_set('foo', 4).

The alternative is to generate a method definition as a string and execute the string as
Ruby code. Most interpreted languages have a way of parsing and executing arbi-
trary strings as code, but it’s usually regarded as a toy or a hazard, and not given
much attention. Ruby breaks this taboo.

The most common evalutation method used for metaprogramming is Module#module_
eval. This method executes a string as Ruby code, within the context of a class or
module. Any methods or class variables you define within the string will be attached
to the class or module, just as if you’d typed the string within the class or module
definition. Thanks to the variable substitutions, the generated string looks exactly
like the code you’d type in manually.

The following four pieces of code all define a new method String#last:

class String
 def last(n)
 self[-n, n]
 end
end
"Here's a string.".last(7) # => "string."

class String
 define_method('last') do |n|
 self[-n, n]
 end
end
"Here's a string.".last(7) # => "string."

class String
 module_eval %{def last(n)
 self[-n, n]
 end}
end
"Here's a string.".last(7) # => "string."

String.module_eval %{def last(n)
 self[-n, n]
 end}

"Here's a string.".last(7) # => "string."

10.12 Evaluating Code in an Earlier Context | 357

The instance_eval method is less popular than module_eval. It works just like
module_eval, but it runs inside an instance of a class rather than the class itself. You
can use it to define singleton methods on a particular object, or to set instance vari-
ables. Of course, you can also call define_method on a specific object.

The other evaluation method is just plain eval. This method executes a string exactly
as though you had written it as Ruby code in the same spot:

class String
 eval %{def last(n)
 self[-n, n]
 end}
end
"Here's a string.".last(7) # => "string."

You must be very careful when you use the eval methods, lest the end-user of a pro-
gram trick you into running arbitrary Ruby code. When you’re metaprogramming,
though, it’s not usually a problem: the only strings that get evaluated are ones you
constructed yourself from hardcoded data, and by the time your class is loaded and
ready to use, the eval calls have already run. You should be safe unless your eval
statement contains strings obtained from untrusted sources. This might happen if
you’re creating a custom class, or modifying a class in response to user input.

10.12 Evaluating Code in an Earlier Context

Problem
You’ve written a method that evaluates a string as Ruby code. But whenever anyone
calls the method, the objects referenced by your string go out of scope. Your string
can’t be evaluated within a method.

For instance, here’s a method that takes a variable name and tries to print out the
value of the variable.

def broken_print_variable(var_name)
 eval %{puts "The value of #{var_name} is " + #{var_name}.to_s}
end

The eval code only works when it’s run in the same context as the variable defini-
tion. It doesn’t work as a method, because your local variables go out of scope when
you call a method.

tin_snips = 5

broken_print_variable('tin_snips')
NameError: undefined local variable or method `tin_snips' for main:Object

var_name = 'tin_snips'
eval %{puts "The value of #{var_name} is " + #{var_name}.to_s}
The value of tin_snips is 5

358 | Chapter 10: Reflection and Metaprogramming

Solution
The eval method can execute a string of Ruby code as though you had written in
some other part of your application. This magic is made possible by Binding objects.
You can get a Binding at any time by calling Kernel#binding, and pass it in to eval to
recreate your original environment where it wouldn’t otherwise be available. Here’s a
version of the above method that takes a Binding:

def print_variable(var_name, binding)
 eval %{puts "The value of #{var_name} is " + #{var_name}.to_s}, binding
end

vice_grips = 10
print_variable('vice_grips', binding)
The value of vice_grips is 10

Discussion
A Binding object is a bookmark of the Ruby interpreter’s state. It tracks the values of
any local variables you have defined, whether you are inside a class or method defini-
tion, and so on.

Once you have a Binding object, you can pass it into eval to run code in the same
context as when you created the Binding. All the local variables you had back then
will be available. If you called Kernel#binding within a class definition, you’ll also be
able to define new methods of that class, and set class and instance variables.

Since a Binding object contains references to all the objects that were in scope when
it was created, those objects can’t be garbage-collected until both they and the
Binding object have gone out of scope.

See Also
• This trick is used in several places throughout this book; see, for example, Rec-

ipe 1.3, “Substituting Variables into an Existing String,” and Recipe 10.9, “Auto-
matically Initializing Instance Variables”

10.13 Undefining a Method

Problem
You want to remove an already defined method from a class or module.

Solution
From within a class or module, you can use Module#remove_method to remove a
method’s implementation, forcing Ruby to delegate to the superclass or a module
included by a class.

10.13 Undefining a Method | 359

In the code below, I subclass Array and override the << and [] methods to add some
randomness. Then I decide that overriding [] wasn’t such a good idea, so I undefine
that method and get the inherited Array behavior back. The override of << stays in
place.

class RandomizingArray < Array
 def <<(e)
 insert(rand(size), e)
 end

 def [](i)
 super(rand(size))
 end
end

a = RandomizingArray.new
a << 1 << 2 << 3 << 4 << 5 << 6 # => [6, 3, 4, 5, 2, 1]

That was fun; now let's get some of those entries back.
a[0] # => 1
a[0] # => 2
a[0] # => 5
#No, seriously, a[0].
a[0] # => 4
#It's a madhouse! A madhouse!
a[0] # => 3
#That does it!

class RandomizingArray
 remove_method('[]')
end

a[0] # => 6
a[0] # => 6
a[0] # => 6

But the overridden << operator still works randomly:
a << 7 # => [6, 3, 4, 7, 5, 2, 1]

Discussion
Usually you’ll override a method by redefining it to implement your own desired
behavior. However, sometimes a class will override an inherited method to do some-
thing you don’t like, and you just want the “old” implementation back.

You can only use remove_method to remove a method from a class or module that
explicitly defines it. You’ll get an error if you try to remove a method from a class
that merely inherits that method. To make a subclass stop responding to an inher-
ited method, you should undefine the method with undef_method.

Using undef_method on a class prevents the appropriate method signals from reach-
ing objects of that class, but it has no effect on the parent class.

360 | Chapter 10: Reflection and Metaprogramming

class RandomizingArray
 remove_method(:length)
end
NameError: method `length' not defined in RandomizingArray

class RandomizingArray
 undef_method(:length)
end

RandomizingArray.new.length
NoMethodError: undefined method `length' for []:RandomizingArray
Array.new.length # => 0

As you can see, it’s generally safer to use undef_method on the class you actually want
to change than to use remove_method on its parent or a module it includes.

You can use remove_method to remove singleton methods once you’re done with
them. Since remove_method is private, using it to remove a singleton method requires
some unorthodox syntax:

my_array = Array.new
def my_array.random_dump(number)
 number.times { self << rand(100) }
end

my_array.random_dump(3)
my_array.random_dump(2)
my_array # => [6, 45, 12, 49, 66]

That's enough of that.
class << my_array
 remove_method(:random_dump)
end
my_array.random_dump(4)
NoMethodError: undefined method `random_dump' for [6, 45, 12, 49, 66]:Array

When you define a singleton method on an object, Ruby silently defines an anony-
mous subclass used only for that one object. In the example above, my_array is actu-
ally an anonymous subclass of Array that implements a method random_dump. Since
the subclass has no name (my_array is a variable name, not a class name), there’s no
way of using the class <ClassName> syntax. We must “append” onto the definition of
the my_array object.

Class methods are just a special case of singleton methods, so you can also use
remove_method to remove class methods. Ruby also provides a couple of related meth-
ods for removing things besides methods. Module#remove_constant undefines a con-
stant so that it can be redefined with a different value, as seen in Recipe 8.17.
Object#remove_instance_variable removes an instance variable from a single
instance of a class:

class OneTimeContainer
 def initialize(value)

10.14 Aliasing Methods | 361

 @use_just_once_then_destroy = value
 end

 def get_value
 remove_instance_variable(:@use_just_once_then_destroy)
 end
end

object_1 = OneTimeContainer.new(6)
object_1.get_value
=> 6
object_1.get_value
NameError: instance variable @use_just_once_then_destroy not defined

object_2 = OneTimeContainer.new('ephemeron')
object_2.get_value
=> "ephemeron"

You can’t remove a particular instance variable from all instances by modifying the
class because the class is its own object, one which probably never defined that
instance variable in the first place:

class MyClass
 remove_instance_variable(:@use_just_once_then_destroy)
end
NameError: instance variable @use_just_once_then_destroy not defined

You should definitely not use these methods to remove methods or constants in sys-
tem classes or modules: that might make arbitrary parts of the Ruby standard library
crash or act unreliably. As with all metaprogramming, it’s easy to abuse the power to
remove and undefine methods at will.

See Also
• Recipe 8.17, “Declaring Constants”

• Recipe 10.5, “Fixing Bugs in Someone Else’s Class”

10.14 Aliasing Methods

Problem
You (or your users) frequently misremember the name of a method. To reduce the
confusion, you want to make the same method accessible under multiple names.

Alternatively, you’re about to redefine a method and you’d like to keep the old ver-
sion available.

362 | Chapter 10: Reflection and Metaprogramming

Solution
You can create alias methods manually, but in most cases, you should let the alias
command do it for you. In this example, I define an InventoryItem class that includes a
price method to calculate the price of an item in quantity. Since it’s likely that some-
one might misremember the name of the price method as cost, I’ll create an alias:

class InventoryItem
 attr_accessor :name, :unit_price

 def initialize(name, unit_price)
 @name, @unit_price = name, unit_price
 end

 def price(quantity=1)
 @unit_price * quantity
 end

 #Make InventoryItem#cost an alias for InventoryItem#price
 alias :cost :price

 #The attr_accessor decorator created two methods called "unit_price" and
 #"unit_price=". I'll create aliases for those methods as well.
 alias :unit_cost :unit_price
 alias :unit_cost= :unit_price=
end

bacon = InventoryItem.new("Chunky Bacon", 3.95)
bacon.price(100) # => 395.0
bacon.cost(100) # => 395.0

bacon.unit_price # => 3.95
bacon.unit_cost # => 3.95
bacon.unit_cost = 3.99
bacon.cost(100) # => 399.0

Discussion
It’s difficult to pick the perfect name for a method: you must find the word or short
phrase that best conveys an operation on a data structure, possibly an abstract opera-
tion that has different “meanings” depending on context.

Sometimes there will be no good name for a method and you’ll just have to pick one;
sometimes there will be too many good names for a method and you’ll just have to
pick one. In either case, your users may have difficulty remembering the “right”
name of the method. You can help them out by creating aliases.

Ruby itself uses aliases in its standard library: for instance, for the method of Array that
returns the number of items in the array. The terminology used in area varies widely.
Some languages use length or len to find the length of a list, and some use size.*

* Java uses both: length is a member of a Java array, and size is a method that returns the size of a collection.

10.14 Aliasing Methods | 363

Ruby compromises by calling its method Array#length, but also creating an alias
called Array#size.* You can use either Array#length or Array#size because they do
the same thing based on the same code. If you come to Ruby from Python, you can
make yourself a little more comfortable by creating yet another alias for length:

class Array
 alias :len :length
end

[1, 2, 3, 4].len # => 4

The alias command doesn’t make a single method respond to two names, or create
a shell method that delegates to the “real” method. It makes an entirely separate
copy of the old method under the new name. If you then modify the original
method, the alias will not be affected.

This may seem wasteful, but it’s frequently useful to Ruby programmers, who love to
redefine methods that aren’t working the way they’d like. When you redefine a
method, it’s good practice to first alias the old method to a different name, usually
the original name with an _old suffix. This way, the old functionality isn’t lost.

This code (very unwisely) redefines Array#length, creating a copy of the original
method with an alias:

class Array
 alias :length_old :length
 def length
 return length_old / 2
 end
end

Note that the alias Array#size still works as it did before:

array = [1, 2, 3, 4]
array.length # => 2
array.size # => 4
array.length_old # => 4

Since the old implementation is still available, it can be aliased back to its original
name once the overridden implementation is no longer needed.

class Array
 alias :length :length_old
end

array.length # => 4

If you find this behavior confusing, your best alternative is to avoid alias altogether.
Instead, define a method with the new name that simply delegates to the “real”

* Throughout this book, we use Array#size instead of Array#length. We do this mainly because it makes the
lines of code a little shorter and easier to fit on the page. This is probably not a concern for you, so use which-
ever one you’re comfortable with.

364 | Chapter 10: Reflection and Metaprogramming

method. Here I’ll modify the InventoryItem class so that cost delegates to price,
rather than having alias create a copy of price and calling the copy cost.

class InventoryItem
 def cost(*args)
 price(*args)
 end
end

If I then decide to modify price to tack on sales tax, cost will not have to be modi-
fied or realiased.

bacon.cost(100) # => 399.0

require 'bigdecimal'
require 'bigdecimal/util'
class InventoryItem
 def price(quantity=1, sales_tax=BigDecimal.new("0.0725"))
 base_price = (unit_price * quantity).to_d
 price = (base_price + (base_price * sales_tax).round(2)).to_f
 end
end

bacon.price(100) # => 427.93
bacon.cost(100) # => 427.93

We don’t even need to change the signature of the cost method to match that of price,
since we used the *args construction to accept and delegate any arguments at all:

bacon.cost(100, BigDecimal.new("0.05")) # => 418.95

See Also
• Recipe 2.9, “Converting Between Degrees and Radians”

• Recipe 4.7, “Making Sure a Sorted Array Stays Sorted”

• Recipe 17.14, “Running Multiple Analysis Tools at Once”

10.15 Doing Aspect-Oriented Programming

Problem
You want to “wrap” a method with new code, so that calling the method triggers
some new feature in addition to the original code.

Solution
You can arrange for code to be called before and after a method invocation by using
method aliasing and metaprogramming, but it’s simpler to use the glue gem or the

10.15 Doing Aspect-Oriented Programming | 365

AspectR third-party library. The latter lets you define “aspect” classes whose meth-
ods are called before and after other methods.

Here’s a simple example that traces calls to specific methods as they’re made:

require 'aspectr'
class Verbose < AspectR::Aspect

 def describe(method_sym, object, *args)
 "#{object.inspect}.#{method_sym}(#{args.join(",")})"
 end

 def before(method_sym, object, return_value, *args)
 puts "About to call #{describe(method_sym, object, *args)}."
 end

 def after(method_sym, object, return_value, *args)
 puts "#{describe(method_sym, object, *args)} has returned " +
 return_value.inspect + '.'
 end
end

Here, I’ll wrap the push and pop methods of an array. Every time I call those meth-
ods, the aspect code will run and some diagnostics will be printed.

verbose = Verbose.new
stack = []
verbose.wrap(stack, :before, :after, :push, :pop)

stack.push(10)
About to call [].push(10).
[10].push(10) has returned [[10]].

stack.push(4)
About to call [10].push(4).
[10, 4].push(4) has returned [[10, 4]].

stack.pop
About to call [10, 4].pop().
[10].pop() has returned [4].

Discussion
There’s a pattern that shows up again and again in Ruby (we cover it in Recipe 7.10).
You write a method that performs some task-specific setup (like initializing a timer),
runs a code block, then performs task-specific cleanup (like stopping the timer and
printing out timing results). By passing in a code block to one of these methods you
give it a new aspect: the same code runs as if you’d just called Proc#call on the code
block, but now it’s got something extra: the code gets timed, or logged, or won’t run
without authentication, or it automatically performs some locking.

366 | Chapter 10: Reflection and Metaprogramming

Aspect-oriented programming lets you permanently add these aspects to previously
defined methods, without having to change any of the code that calls them. It’s a
good way to modularize your code, and to modify existing code without having to
do a lot of metaprogramming yourself. Though less mature, the AspectR library has
the same basic features of Java’s AspectJ.

The Aspect#wrap method modifies the methods of some other object or class. In the
example above, the push and pop methods of the stack are modified: you could also
modify the Array#push and Array#pop methods themselves, by passing in Array
instead of stack.

Aspect#wrap aliases the old implementations to new names, and defines the method
anew to include calls to a “pre” method (@Verbose#before in the example) and/or a
“post” method (@Verbose#after in the example).

You can wrap the same method with different aspects at the same time:

class EvenMoreVerbose < AspectR::Aspect
 def useless(method_sym, object, return_value, *args)
 puts "More useless verbosity."
 end
end

more_verbose = EvenMoreVerbose.new
more_verbose.wrap(stack, :useless, nil, :push)
stack.push(60)
About to call [10].push(60).
More useless verbosity.
[10, 60].push(60) has returned [[10, 60]].

You can also undo the effects of a wrap call with Aspect#unwrap.

verbose.unwrap(stack, :before, :after, :push, :pop)
more_verbose.unwrap(stack, :useless, nil, :push)
stack.push(100) # => [10, 60, 100]

Because they use aliasing under the covers, you can’t use AspectR or glue to attach
aspects to operator methods like <<. If you do, AspectR (for instance) will try to
define a method called __aop_ _singleton_<<, which isn’t a valid method name.
You’ll need to do the alias yourself, using a method name like “old_lshift”, and
define a new << method that makes the pre- and post-calls.

See Also
• The AspectR home page is at http://aspectr.sourceforge.net/

• Recipe 7.10, “Hiding Setup and Cleanup in a Block Method”

• Recipe 10.14, “Aliasing Methods”

• Recipe 20.4, “Synchronizing Access to an Object”

10.16 Enforcing Software Contracts | 367

10.16 Enforcing Software Contracts
Credit: Maurice Codik

Problem
You want your methods to to validate their arguments, using techniques like duck
typing and range validation, without filling your code with tons of conditions to test
arguments.

Solution
Here’s a Contracts module that you can mix in to your classes. Your methods can
then define and enforce contracts.

module Contracts
 def valid_contract(input)
 if @user_defined and @user_defined[input]
 @user_defined[input]
 else
 case input
 when :number
 lambda { |x| x.is_a? Numeric }
 when :string
 lambda { |x| x.respond_to? :to_str }
 when :anything
 lambda { |x| true }
 else
 lambda { |x| false }
 end
 end
 end

 class ContractViolation < StandardError
 end

 def define_data(inputs={}.freeze)
 @user_defined ||= {}
 inputs.each do |name, contract|
 @user_defined[name] = contract if contract.respond_to? :call
 end
 end

 def contract(method, *inputs)
 @contracts ||= {}
 @contracts[method] = inputs
 method_added(method)
 end

 def setup_contract(method, inputs)
 @contracts[method] = nil
 method_renamed = "_ _#{method}".intern

368 | Chapter 10: Reflection and Metaprogramming

 conditions = ""
 inputs.flatten.each_with_index do |input, i|
 conditions << %{
 if not self.class.valid_contract(#{input.inspect}).call(args[#{i}])
 raise ContractViolation, "argument #{i+1} of method '#{method}' must" +
 "satisfy the '#{input}' contract", caller
 end
 }
 end

 class_eval %{
 alias_method #{method_renamed.inspect}, #{method.inspect}
 def #{method}(*args)
 #{conditions}
 return #{method_renamed}(*args)
 end
 }
 end

 def method_added(method)
 inputs = @contracts[method]
 setup_contract(method, inputs) if inputs
 end
end

You can call the define_data method to define contracts, and call the contract
method to apply these contracts to your methods. Here’s an example:

class TestContracts
 def hello(n, s, f)
 n.times { f.write "hello #{s}!\n" }
 end

The hello method takes as its arguments a positive number, a string, and a file-type
object that can be written to. The Contracts module defines a :string contract for
making sure an item is stringlike. We can define additional contracts as code blocks;
these contracts make sure an object is a positive number, or an open object that sup-
ports the write method:

 extend Contracts

 writable_and_open = lambda do |x|
 x.respond_to?('write') and x.respond_to?('closed?') and not x.closed?
 end

 define_data(:writable => writable_and_open,
 :positive => lambda {|x| x >= 0 })

Now we can call the contract method to create a contract for the three arguments of
the hello method:

 contract :hello, [:positive, :string, :writable]
end

10.16 Enforcing Software Contracts | 369

Here it is in action:

tc = TestContracts.new
tc.hello(2, 'world', $stdout)
hello world!
hello world!

tc.hello(-1, 'world', $stdout)
Contracts::ContractViolation: argument 1 of method 'hello' must satisfy the
'positive' contract

tc.hello(2, 3001, $stdout)
test-contracts.rb:22: argument 2 of method 'hello' must satisfy the
'string' contract (Contracts::ContractViolation)

closed_file = open('file.txt', 'w') { }
tc.hello(2, 'world', closed_file)
Contracts::ContractViolation: argument 3 of method 'hello' must satisfy the
'writable' contract

Discussion
The Contracts module uses many of Ruby’s metaprogramming features to make
these runtime checks possible. The line of code that triggers it all is this one:

contract :hello, [:positive, :string, :writable]

That line of code replaces the old implementation of hello with one that looks like
this:

def hello(n,s,f)
 if not (n >= 0)
 raise ContractViolation,
 "argument 1 of method 'hello' must satisfy the 'positive' contract", caller
 end
 if not (s.respond_to? String)
 raise ContractViolation,
 "argument 2 of method 'hello' must satisfy the 'string' contract",
 caller
 end
 if not (f.respond_to?('write') and f.respond_to?('closed?')
 and not f.closed?)
 raise ContractViolation,
 "argument 3 of method 'hello' must satisfy the 'writable' contract",
 caller
 end
 return _ _hello(n,s,f)
end

def _ _hello(n,s,f)
 n.times { f.write "hello #{s}!\n" }
end

370 | Chapter 10: Reflection and Metaprogramming

The body of define_data is simple: it takes a hash that maps contract names to Proc
objects, and adds each new contract definition to the user_defined hash of custom
contracts for this class.

The contract method takes a method symbol and an array naming the contracts to
impose on that method’s arguments. It registers a new set of contracts by sending
them to the method symbol in the @contracts hash. When Ruby adds a method defi-
nition to the class, it automatically calls the Contracts::method_added hook, passing
in the name of the method name as the argument. Contracts::method_added checks
whether or not the newly added method has a contract defined for it. If it finds one,
it calls setup_contract.

All of the heavy lifting is done in setup_contract. This is how it works, step by step:

• Remove the method’s information in @contracts. This prevents an infinite loop
when we redefine the method using alias_method later.

• Generate the new name for the method. In this example, we simply append two
underscores to the front.

• Create all of the code to test the types of the arguments. We loop through the
arguments using Enumerable#each_with_index, and build up a string in the
conditions variable that contains the code we need. The condition code uses the
valid_contract method to translate a contract name (such as :number), to a Proc
object that checks whether or not its argument satisfies that contract.

• Use class_eval to insert our code into the class that called extend Contracts. The
code in the eval statment does the following:

• Call alias_method to rename the newly added method to our generated
name.

• Define a new method with the original’s name that checks all of our condi-
tions and then calls the renamed function to get the original functionality.

See Also
• Recipe 13.14, “Validating Data with ActiveRecord”

• Ruby also has an Eiffel-style Design by Contract library, which lets you define
invariants on classes, and pre- and post-conditions on methods; it’s available as
the dbc gem

371

Chapter 11 CHAPTER 11

XML and HTML11

XML and HTML are the most popular markup languages (textual ways of describ-
ing structured data). HTML is used to describe textual documents, like you see on
the Web. XML is used for just about everything else: data storage, messaging, config-
uration files, you name it. Just about every software buzzword forged over the past
few years involves XML.

Java and C++ programmers tend to regard XML as a lightweight, agile technology,
and are happy to use it all over the place. XML is a lightweight technology, but only
compared to Java or C++. Ruby programmers see XML from the other end of the
spectrum, and from there it looks pretty heavy. Simpler formats like YAML and
JSON usually work just as well (see Recipe 13.1 or Recipe 13.2), and are easier to
manipulate. But to shun XML altogether would be to cut Ruby off from the rest of
the world, and nobody wants that. This chapter covers the most useful ways of pars-
ing, manipulating, slicing, and dicing XML and HTML documents.

There are two standard APIs for manipulating XML: DOM and SAX. Both are over-
kill for most everyday uses, and neither is a good fit for Ruby’s code-block–heavy
style. Ruby’s solution is to offer a pair of APIs that capture the style of DOM and
SAX while staying true to the Ruby programming philosophy.* Both APIs are in the
standard library’s REXML package, written by Sean Russell.

Like DOM, the Document class parses an XML document into a nested tree of objects.
You can navigate the tree with Ruby accessors (Recipe 11.2) or with XPath queries
(Recipe 11.4). You can modify the tree by creating your own Element and Text
objects (Recipe 11.9). If even Document is too heavyweight for you, you can use the
XmlSimple library to transform an XML file into a nested Ruby hash (Recipe 11.6).

With a DOM-style API like Document, you have to parse the entire XML file before
you can do anything. The XML document becomes a large number of Ruby objects

* REXML also provides the SAX2Parser and SAX2Listener classes, which implement the basic SAX2 API.

372 | Chapter 11: XML and HTML

nested under a Document object, all sitting around taking up memory. With a SAX-
style parser like the StreamParser class, you can process a document as it’s parsed,
creating only the objects you want. The StreamParser API is covered in Recipe 11.3.

The main problem with the REXML APIs is that they’re very picky. They’ll only
parse a document that’s valid XML, or close enough to be have an unambiguous rep-
resentation. This makes them nearly useless for parsing HTML documents off the
World Wide Web, since the average web page is not valid XML. Recipe 11.5 shows
how to use the third-party tools Rubyful Soup and SGMLParser; they give a DOM-
or SAX-style interface that handles even invalid XML.

• http://www.germane-software.com/software/rexml/

• http://www.germane-software.com/software/rexml/docs/tutorial.html

11.1 Checking XML Well-Formedness
Credit: Rod Gaither

Problem
You want to check that an XML document is well-formed before processing it.

Solution
The best way to see whether a document is well-formed is to try to parse it. The
REXML library raises an exception when it can’t parse an XML document, so just try
parsing it and rescue any exception.

The valid_xml? method below returns nil unless it’s given a valid XML document. If
the document is valid, it returns a parsed Document object, so you don’t have to parse
it again:

require 'rexml/document'
def valid_xml?(xml)
 begin
 REXML::Document.new(xml)
 rescue REXML::ParseException
 # Return nil if an exception is thrown
 end
end

Discussion
To be useful, an XML document must be structured correctly or “well-formed.” For
instance, an opening tag must either be self-closing or be paired with an appropriate
closing tag.

As a file and messaging format, XML is often used in situations where you don’t have
control over the input, so you can’t assume that it will always be well-formed. Rather

11.1 Checking XML Well-Formedness | 373

than just letting REXML throw an exception, you’ll need to handle ill-formed XML
gracefully, providing options to retry or continue on a different path.

This bit of XML is not well-formed: it’s missing ending tags for both the pending and
done elements:

bad_xml = %{
<tasks>
 <pending>
 <entry>Grocery Shopping</entry>
 <done>
 <entry>Dry Cleaning</entry>
</tasks>}

valid_xml?(bad_xml) # => nil

This bit of XML is well-formed, so valid_xml? returns the parsed Document object.

good_xml = %{
<groceries>
 <bread>Wheat</bread>
 <bread>Quadrotriticale</bread>
</groceries>}

doc = valid_xml?(good_xml)
doc.root.elements[1] # => <bread> ... </>

When your program is responsible for writing XML documents, you’ll want to write
unit tests that make sure you generate valid XML. You can use a feature of the Test::
Unit library to simplify the checking. Since invalid XML makes REXML throw an
exception, your unit test can use the assert_nothing_thrown method to make sure
your XML is valid:

doc = nil
assert_nothing_thrown {doc = REXML::Document.new(source_xml)}

This is a simple, clean test to verify XML when using a unit test.

Note that valid_xml? doesn’t work perfectly: some invalid XML is unambiguous,
which means REXML can parse it. Consider this truncated version of the valid XML
example. It’s missing its closing tags, but there’s no ambiguity about which closing
tag should come first, so REXML can parse the file and provide the closing tags:

invalid_xml = %{
<groceries>
 <bread>Wheat
}

(valid_xml? invalid_xml) == nil # => false # That is, it is "valid"
REXML::Document.new(invalid_xml).write
<groceries>
<bread>Wheat
</bread></groceries>

374 | Chapter 11: XML and HTML

See Also
• Official information on XML can be found at http://www.w3.org/XML/

• The Wikipedia has a good description of the difference between Well-Formed
and Valid XML documents at http://en.wikipedia.org/wiki/Xml#Correctness_in_
an_XML_document

• Recipe 11.5, “Parsing Invalid Markup”

• Recipe 17.3, “Handling an Exception”

11.2 Extracting Data from a Document’s Tree
Structure

Credit: Rod Gaither

Problem
You want to parse an XML file into a Ruby data structure, to traverse it or extract
data from it.

Solution
Pass an XML document into the REXML::Document constructor to load and parse the
XML. A Document object contains a tree of subobjects (of class Element and Text) rep-
resenting the tree structure of the underlying document. The methods of Document
and Element give you access to the XML tree data. The most useful of these methods
is #each_element.

Here’s some sample XML and the load process. The document describes a set of
orders, each of which contains a set of items. This particular document contains a
single order for two items.

orders_xml = %{
<orders>
 <order>
 <number>105</number>
 <date>02/10/2006</date>
 <customer>Corner Store</customer>
 <items>
 <item upc="404100" desc="Red Roses" qty="240" />
 <item upc="412002" desc="Candy Hearts" qty="160" />
 </items>
 </order>
</orders>}

require 'rexml/document'
orders = REXML::Document.new(orders_xml)

11.2 Extracting Data from a Document’s Tree Structure | 375

To process each order in this document, we can use Document#root to get the docu-
ment’s root element (<orders>) and then call Element#each_element to iterate over the
children of the root element (the <order> elements). This code repeatedly calls each to
move down the document tree and print the details of each order in the document:

orders.root.each_element do |order| # each <order> in <orders>
 order.each_element do |node| # <customer>, <items>, etc. in <order>
 if node.has_elements?
 node.each_element do |child| # each <item> in <items>
 puts "#{child.name}: #{child.attributes['desc']}"
 end
 else
 # the contents of <number>, <date>, etc.
 puts "#{node.name}: #{node.text}"
 end
 end
end
number: 105
date: 02/10/2006
customer: Corner Store
item: Red Roses
item: Candy Hearts

Discussion
Parsing an XML file into a Document gives you a tree-like data structure that you can
treat kind of like an array of arrays. Starting at the document root, you can move
down the tree until you find the data that interests you. In the example above, note
how the structure of the Ruby code mirrors the structure of the original document.
Every call to each_element moves the focus of the code down a level: from <orders>
to <order> to <items> to <item>.

There are many other methods of Element you can use to navigate the tree structure
of an XML document. Not only can you iterate over the child elements, you can ref-
erence a specific child by indexing the parent as though it were an array. You can
navigate through siblings with Element.next_element and Element.previous_element.
You can move up the document tree with Element.parent:

my_order = orders.root.elements[1]
first_node = my_order.elements[1]
first_node.name # => "number"
first_node.next_element.name # => "date"
first_node.parent.name # => "order"

This only scratches the surface; there are many other ways to interact with the data
loaded from an XML source. For example, explore the convenience methods
Element.each_element_with_attribute and Element.each_element_with_text, which
let you select elements based on features of the elements themselves.

376 | Chapter 11: XML and HTML

See Also
• The RDoc documentation for the REXML::Document and REXML::Element classes

• The section “Tree Parsing XML and Accessing Elements” in the REXML Tutorial
(http://www.germane-software.com/software/rexml/docs/tutorial.html#id2247335)

• If you want to start navigating the document at some point other than the
root, an XPath statement is probably the simplest way to get where you want;
see Recipe 11.4, “Navigating a Document with XPath”

11.3 Extracting Data While Parsing a Document
Credit: Rod Gaither

Problem
You want to process a large XML file without loading it all into memory.

Solution
The method REXML::Document.parse_stream gives you a fast and flexible way to scan
a large XML file and process the parts that interest you.

Consider this XML document, the output of a hypothetical program that runs auto-
mated tasks. We want to parse the document and find the tasks that failed (that is,
returned an error code other than zero).

event_xml = %{
<events>
 <clean system="dev" start="01:35" end="01:55" area="build" error="1" />
 <backup system="prod" start="02:00" end="02:35" size="2300134" error="0" />
 <backup system="dev" start="02:00" end="02:01" size="0" error="2" />
 <backup system="test" start="02:00" end="02:47" size="327450" error="0" />
</events>}

We can process the document as it’s being parsed by writing a REXML::
StreamListener subclass that responds to parsing events such as tag_start and tag_
end. Here’s a subclass that listens for tags with a nonzero value for their error
attribute. It prints a message for every failed event it finds.

require 'rexml/document'
require 'rexml/streamlistener'

class ErrorListener
 include REXML::StreamListener
 def tag_start(name, attrs)
 if attrs["error"] != nil and attrs["error"] != "0"
 puts %{Event "#{name}" failed for system "#{attrs["system"]}" } +
 %{with code #{attrs["error"]}}
 end
 end
end

11.4 Navigating a Document with XPath | 377

To actually parse the XML data, pass it along with the StreamListener into the
method REXML::Document.parse_stream:

REXML::Document.parse_stream(event_xml, ErrorListener.new)
Event "clean" failed for system "dev" with code 1
Event "backup" failed for system "dev" with code 2

Discussion
We could find the failed events in less code by loading the XML into a Document and
running an XPath query. That approach would work fine for this example, since the
document only contains four events. It wouldn’t work as well if the document were a
file on disk containing a billion events. Building a Document means building an elabo-
rate in-memory data structure representing the entire XML document. If you only
care about part of a document (in this case, the failed events), it’s faster and less
memory-intensive to process the document as it’s being parsed. Once the parser
reaches the end of the document, you’re done.

The stream-oriented approach to parsing XML can be as simple as shown in this rec-
ipe, but it can also handle much more complex scenarios. Your StreamListener sub-
class can keep arbitrary state in instance variables, letting you track complex
combinations of elements and attributes.

See Also
• The RDoc documentation for the REXML::StreamParser class

• The “Stream Parsing” section of the REXML Tutorial (http://www.germane-
software.com/software/rexml/docs/tutorial.html#id2248457)

• Recipe 11.2, “Extracting Data from a Document’s Tree Structure”

11.4 Navigating a Document with XPath

Problem
You want to find or address sections of an XML document in a standard,
programming-language–independent way.

Solution
The XPath language defines a way of referring to almost any element or set of ele-
ments in an XML document, and the REXML library comes with a complete XPath
implementation. REXML::XPath provides three class methods for locating Element
objects within parsed documents: first, each, and match.

Take as an example the following XML description of an aquarium. The aquarium
contains some fish and a gaudy castle decoration full of algae. Due to an aquarium

378 | Chapter 11: XML and HTML

stocking mishap, some of the smaller fish have been eaten by larger fish, just like in
those cartoon food chain diagrams. (Figure 11-1 shows the aquarium.)

xml = %{
<aquarium>
 <fish color="blue" size="small" />

 <fish color="orange" size="large">
 <fish color="green" size="small">
 <fish color="red" size="tiny" />
 </fish>
 </fish>

 <decoration type="castle" style="gaudy">
 <algae color="green" />
 </decoration>
</aquarium>}

require 'rexml/document'
doc = REXML::Document.new xml

We can use REXML::Xpath.first to get the Element object corresponding to the first
<fish> tag in the document:

REXML::XPath.first(doc, '//fish')
=> <fish size='small' color='blue'/>

We can use match to get an array containing all the elements that are green:

REXML::XPath.match(doc, '//[@color="green"]')
=> [<fish size='small' color='green'> ... </>, <algae color='green'/>]

We can use each with a code block to iterate over all the fish that are inside other
fish:

def describe(fish)
 "#{fish.attribute('size')} #{fish.attribute('color')} fish"
end

Figure 11-1. The aquarium

Aquarium

Small blue fish Large orange fish

Small green fish

Tiny red fish

Gaudy castle

Green algae

11.4 Navigating a Document with XPath | 379

REXML::XPath.each(doc, '//fish/fish') do |fish|
 puts "The #{describe(fish.parent)} has eaten the #{describe(fish)}."
end
The large orange fish has eaten the small green fish.
The small green fish has eaten the tiny red fish.

Discussion
Every element in a Document has an xpath method that returns the canonical XPath
path to that element. This path can be considered the element’s “address” within the
document. In this example, a complex bit of Ruby code is replaced by a simple
XPath expression:

red_fish = doc.children[0].children[3].children[1].children[1]
=> <fish size='tiny' color='red'/>

red_fish.xpath
=> "/aquarium/fish[2]/fish/fish"

REXML::XPath.first(doc, red_fish.xpath)
=> <fish size='tiny' color='red'/>

Even a brief overview of XPath is beyond the scope of this recipe, but here are some
more examples to give you ideas:

Find the second green element.
REXML::XPath.match(doc, '//[@color="green"]')[1]
=> <algae color='green'/>

Find the color attributes of all small fish.
REXML::XPath.match(doc, '//fish[@size="small"]/@color')
=> [color='blue', color='green']

Count how many fish are inside the first large fish.
REXML::XPath.first(doc, "count(//fish[@size='large'][1]//*fish)")
=> 2

The Elements class acts kind of like an array that supports XPath addressing. You can
make your code more concise by passing an XPath expression to Elements#each, or
using it as an array index.

doc.elements.each('//fish') { |f| puts f.attribute('color') }
blue
orange
green
red

doc.elements['//fish']
=> <fish size='small' color='blue'/>

Within an XPath expression, the first element in a list has an index of 1, not 0. The
XPath expression //fish[size='large'][1] matches the first large fish, not the

380 | Chapter 11: XML and HTML

second large fish, the way large_fish[1] would in Ruby code. Pass a number as an
array index to an Elements object, and you get the same behavior as XPath:

doc.elements[1]
=> <aquarium> ... </>
doc.children[0]
=> <aquarium> ... </>

See Also
• The XPath standard, at http://www.w3.org/TR/xpath, has more XPath examples

• XPath and XPointer by John E. Simpson (O’Reilly)

11.5 Parsing Invalid Markup

Problem
You need to extract data from a document that’s supposed to be HTML or XML, but
that contains some invalid markup.

Solution
For a quick solution, use Rubyful Soup, written by Leonard Richardson and found in
the rubyful_soup gem. It can build a document model even out of invalid XML or
HTML, and it offers an idiomatic Ruby interface for searching the document model.
It’s good for quick screen-scraping tasks or HTML cleanup.

require 'rubygems'
require 'rubyful_soup'

invalid_html = 'A lot of <b class=1>tags are <i class=2>never closed.'
soup = BeautifulSoup.new(invalid_html)
puts soup.prettify
A lot of
<b class="1">tags are
<i class="2">never closed.
</i>

soup.b.i # => <i class="2">never closed.</i>
soup.i # => <i class="2">never closed.</i>
soup.find(nil, :attrs=>{'class' => '2'}) # => <i class="2">never closed.</i>
soup.find_all('i') # => [<i class="2">never closed.</i>]

soup.b['class'] # => "1"

soup.find_text(/closed/) # => "never closed."

If you need better performance, do what Rubyful Soup does and write a custom
parser on top of the event-based parser SGMLParser (found in the htmltools gem). It
works a lot like REXML’s StreamListener interface.

11.5 Parsing Invalid Markup | 381

Discussion
Sometimes it seems like the authors of markup parsers do their coding atop an ivory
tower. Most parsers simply refuse to parse bad markup, but this cuts off an enormous
source of interesting data. Most of the pages on the World Wide Web are invalid
HTML, so if your application uses other peoples’ web pages as input, you need a for-
giving parser. Invalid XML is less common but by no means rare.

The SGMLParser class in the htmltools gem uses regular expressions to parse an XML-
like data stream. When it finds an opening or closing tag, some data, or some other
part of an XML-like document, it calls a hook method that you’re supposed to define
in a subclass. SGMLParser doesn’t build a document model or keep track of the docu-
ment state: it just generates events. If closing tags don’t match up or if the markup
has other problems, it won’t even notice.

Rubyful Soup’s parser classes define SGMLParser hook methods that build a docu-
ment model out of an ambiguous document. Its BeautifulSoup class is intended for
HTML documents: it uses heuristics like a web browser’s to figure out what an
ambiguous document “really” means. These heuristics are specific to HTML; to
parse XML documents, you should use the BeautifulStoneSoup class. You can also
subclass BeautifulStoneSoup and implement your own heuristics.

Rubyful Soup builds a densely linked model of the entire document, which uses a lot of
memory. If you only need to process certain parts of the document, you can imple-
ment the SGMLParser hooks yourself and get a faster parser that uses less memory.

Here’s a SGMLParser subclass that extracts URLs from a web page. It checks every A
tag for an href attribute, and keeps the results in a set. Note the similarity to the
LinkGrabber class defined in Recipe 11.13.

require 'rubygems'
require 'html/sgml-parser'
require 'set'

html = %{O'Reilly
 irrelevantRuby}

class LinkGrabber < HTML::SGMLParser
 attr_reader :urls

 def initialize
 @urls = Set.new
 super
 end

 def do_a(attrs)
 url = attrs.find { |attr| attr[0] == 'href' }
 @urls << url[1] if url
 end
end

382 | Chapter 11: XML and HTML

extractor = LinkGrabber.new
extractor.feed(html)
extractor.urls
=> #<Set: {"http://www.ruby-lang.org/", "http://www.oreilly.com"}>

The equivalent Rubyful Soup program is quicker to write and easier to understand,
but it runs more slowly and uses more memory:

require 'rubyful_soup'

urls = Set.new
BeautifulStoneSoup.new(html).find_all('a').each do |tag|
 urls << tag['href'] if tag['href']
end

You can improve performance by telling Rubyful Soup’s parser to ignore everything
except A tags and their contents:

puts BeautifulStoneSoup.new(html, :parse_only_these => 'a')

O'Reilly
Ruby

But the fastest implementation will always be a custom SGMLParser subclass. If your
parser is part of a full application (rather than a one-off script), you’ll need to find
the best tradeoff between performance and code legibility.

See Also
• Recipe 11.13, “Extracting All the URLs from an HTML Document”

• The Rubyful Soup documentation (http://www.crummy.com/software/RubyfulSoup/
documentation.html)

• The htree library defines a forgiving HTML/XML parser that can convert a
parsed document into a REXML Document object (http://cvs.m17n.org/~akr/htree/)

• The HTML TIDY library can fix up most invalid HTML so that it can be parsed by
a standard parser; it’s a C library with Ruby bindings; see http://tidy.sourceforge.
net/ for the library, and http://rubyforge.org/projects/tidy for the bindings

11.6 Converting an XML Document into a Hash

Problem
When you parse an XML document with Document.new, you get a representation of
the document as a complex data structure. You’d like to represent an XML docu-
ment using simple, built-in Ruby data structures.

11.6 Converting an XML Document into a Hash | 383

Solution
Use the XmlSimple library, found in the xml-simple gem. It parses an XML document
into a hash.

Consider an XML document like this one:

xml = %{
<freezer temp="-12" scale="celcius">
 <food>Phyllo dough</food>
 <food>Ice cream</food>
 <icecubetray>
 <cube1 />
 <cube2 />
 </icecubetray>
</freezer>}

Here’s how you parse it with XMLSimple:

require 'rubygems'
require 'xmlsimple'

doc = XmlSimple.xml_in xml

And here’s what it looks like:

require 'pp'
pp doc
{"icecubetray"=>[{"cube2"=>[{}], "cube1"=>[{}]}],
"food"=>["Phyllo dough", "Ice cream"],
"scale"=>"celcius",
"temp"=>"-12"}

Discussion
XmlSimple is a lightweight alternative to the Document class. Instead of exposing a tree
of Element objects, it exposes a nested structure of Ruby hashes and arrays. There’s
no performance savings (XmlSimple actually builds a Document class behind the scenes
and iterates over it, so it’s about half as fast as Document), but the resulting object is
easy to use. XmlSimple also provides several tricks that can make a document more
concise and navigable.

The most useful trick is the KeyAttr one. Suppose you had a better-organized freezer
than the one above, a freezer in which everything had its own name attribute:*

xml = %{
<freezer temp="-12" scale="celcius">
 <item name="Phyllo dough" type="food" />
 <item name="Ice cream" type="food" />
 <item name="Ice cube tray" type="container">
 <item name="Ice cube" type="food" />

* Okay, it’s not really better organized. In fact, it’s exactly the same. But it sure looks cooler!

384 | Chapter 11: XML and HTML

 <item name="Ice cube" type="food" />
 </item>
</freezer>}

You could parse this data with just a call to XmlSimple.xml_in, but you get a more con-
cise representation by specifing the name attribute as a KeyAttr argument. Compare:

parsed1 = XmlSimple.xml_in xml
pp parsed1
{"scale"=>"celcius",
"item"=>
[{"name"=>"Phyllo dough", "type"=>"food"},
{"name"=>"Ice cream", "type"=>"food"},
{"name"=>"Ice cube tray",
"type"=>"container",
"item"=>
[{"name"=>"Ice cube", "type"=>"food"},
{"name"=>"Ice cube", "type"=>"food"}]}],
"temp"=>"-12"}

parsed2 = XmlSimple.xml_in(xml, 'KeyAttr' => 'name')
pp parsed2
{"scale"=>"celcius",
"item"=>
{"Phyllo dough"=>{"type"=>"food"},
"Ice cube tray"=>
{"type"=>"container",
"item"=>{"Ice cube"=>{"type"=>"food"}}},
"Ice cream"=>{"type"=>"food"}},
"temp"=>"-12"}

The second parsing is also easier to navigate:

parsed1["item"].detect { |i| i['name'] == 'Phyllo dough' }['type']
=> "food"
parsed2["item"]["Phyllo dough"]["type"]
=> "food"

But notice that the second parsing represents the ice cube tray as containing only one
ice cube. This is because both ice cubes have the same name. When two tags at the
same level have the same KeyAttr, one overwrites the other in the hash.

You can modify the data structure with normal Ruby hash and array methods, then
write it back out to XML with XMLSimple.xml_out:

parsed1["item"] << {"name"=>"Curry leaves", "type"=>"spice"}
parsed1["item"].delete_if { |i| i["name"] == "Ice cube tray" }

puts XmlSimple.xml_out(parsed1, "RootName"=>"freezer")
<freezer scale="celcius" temp="-12">
<item name="Phyllo dough" type="food" />
<item name="Ice cream" type="food" />
<item name="Curry leaves" type="spice" />
</freezer>

11.7 Validating an XML Document | 385

Be sure to specify a RootName argument when you call xml_out. When it parses a file,
XmlSimple removes one level of indirection by throwing away the name of your docu-
ment’s root element. You can prevent this by using the KeepRoot argument in your
original call to xml_in. You’ll need an extra hash lookup to navigate the resulting
data structure, but you’ll retain the name of your root element.

parsed3 = XmlSimple.xml_in(xml, 'KeepRoot'=>true)
Now there's no need to add an extra root element when writing back to XML.
XmlSimple.xml_out(parsed3, 'RootName'=>nil)

One disadvantage of XmlSimple is that, since it puts elements into a hash, it replaces
the order of the original document with the random-looking order of a Ruby hash.
This is fine for a document listing the contents of a freezer—where order doesn’t
matter—but it would give interesting results if you tried to use it on a web page.

Another disadvantage is that, since an element’s attributes and children are put into
the same hash, you have no reliable way of telling one from the other. Indeed,
attributes and subelements may even end up in a list together, as in this example:

pp XmlSimple.xml_in(%{
<freezer temp="-12" scale="celcius">
 <temp>Body of temporary worker who knew too much</temp>
</freezer>})
{"scale"=>"celcius",
"temp"=>["-12", "Body of temp worker who knew too much"]}

See Also
• The XmlSimple home page at http://www.maik-schmidt.de/xml-simple.html has

much more information about the options you can pass to XmlSimple.xml_in

11.7 Validating an XML Document
Credit: Mauro Cicio

Problem
You want to check whether an XML document conforms to a certain schema or DTD.

Solution
Unfortunately, as of this writing there are no stable, pure Ruby libraries that do XML
validation. You’ll need to install a Ruby binding to a C library. The easiest one to use
is the Ruby binding to the GNOME libxml2 toolkit. (There are actually two Ruby
bindings to libxml2, so don’t get confused: we’re referring to the one you get when
you install the libxml-ruby gem.)

To validate a document against a DTD, create a a Dtd object and pass it into
Document#validate. To validate against an XML Schema, pass in a Schema object instead.

386 | Chapter 11: XML and HTML

Consider the following DTD, for a cookbook like this one:

require 'rubygems'
require 'libxml'

dtd = XML::Dtd.new(%{<!ELEMENT rubycookbook (recipe+)>
<!ELEMENT recipe (title?, problem, solution, discussion, seealso?)+>
<!ELEMENT title (#PCDATA)>
<!ELEMENT problem (#PCDATA)>
<!ELEMENT solution (#PCDATA)>
<!ELEMENT discussion (#PCDATA)>
<!ELEMENT seealso (#PCDATA)>})

Here’s an XML document that looks like it conforms to the DTD:

open('cookbook.xml', 'w') do |f|
 f.write %{<?xml version="1.0"?>
<rubycookbook>
 <recipe>
 <title>A recipe</title>
 <problem>A difficult/common problem</problem>
 <solution>A smart solution</solution>
 <discussion>A deep solution</discussion>
 <seealso>Pointers</seealso>
 </recipe>
</rubycookbook>
}
end

But does it really? We can tell for sure with Document#validate:

document = XML::Document.file('cookbook.xml')
document.validate(dtd) # => true

Here’s a Schema definition for the same document. We can validate the document
against the schema by making it into a Schema object and passing that into
Document#validate:

schema = XML::Schema.from_string %{<?xml version="1.0"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:element name="recipe" type="recipeType"/>

 <xsd:element name="rubycookbook" type="rubycookbookType"/>

 <xsd:element name="title" type="xsd:string"/>
 <xsd:element name="problem" type="xsd:string"/>
 <xsd:element name="solution" type="xsd:string"/>
 <xsd:element name="discussion" type="xsd:string"/>
 <xsd:element name="seealso" type="xsd:string"/>

 <xsd:complexType name="rubycookbookType">
 <xsd:sequence>
 <xsd:element ref="recipe"/>
 </xsd:sequence>
 </xsd:complexType>

11.7 Validating an XML Document | 387

 <xsd:complexType name="recipeType">
 <xsd:sequence>
 <xsd:element ref="title"/>
 <xsd:element ref="problem"/>
 <xsd:element ref="solution"/>
 <xsd:element ref="discussion"/>
 <xsd:element ref="seealso"/>
 </xsd:sequence>
 </xsd:complexType>

</xsd:schema>
}

document.validate(schema) # => true

Discussion
Programs that use XML validation are more robust and less complicated than non-
validating versions. Before starting work on a document, you can check whether or
not it’s in the format you expect. Most services that accept XML as input don’t have
forgiving parsers, so you must validate your document before submitting it or it
might fail without you even noticing.

One of the most popular and complete XML libraries around is the GNOME
Libxml2 library. Despite its name, it works fine outside the GNOME platform, and
has been ported to many different OSes. The Ruby project libxml (http://libxml.
rubyforge.org) is a Ruby wrapper around the GNOME Libxml2 library. The project
is not yet in a mature state, but it’s very active and the validation features are defini-
tively usable. Not only does libxml support validation and a complete range of XML
manipolation techniques, it can also improve your program’s speed by an order of
magnitude, since it’s written in C instead of REXML’s pure Ruby.

Don’t confuse the libxml project with the libxml library. The latter is part of the
XML::Tools project. It binds against the GNOME Libxml2 library, but it doesn’t
expose that library’s validation features. If you try the example code above but can’t
find the XML::Dtd or the XML::Schema classes, then you’ve got the wrong binding. If
you installed the libxml-ruby package on Debian GNU/Linux, you’ve got the wrong
one. You need the one you get by installing the libxml-ruby gem. Of course, you’ll
need to have the actual GNOME libxml library installed as well.

See Also
• The Ruby libxml project page (http://www.rubyforge.org/projects/libxml)

• The other Ruby libxml binding (the one that doesn’t do validation) is part of the
XML::Tools project (http://rubyforge.org/projects/xml-tools/); don’t confuse the
two!

• The GNOME libxml project homepage (http://xmlsoft.org/)

• Refer to http://www.w3.org/XML for the difference between a DTD and a Schema

388 | Chapter 11: XML and HTML

11.8 Substituting XML Entities

Problem
You’ve parsed a document that contains internal XML entities. You want to substi-
tute the entities in the document for their values.

Solution
To perform entity substitution on a specific text element, call its value method. If it’s
the first text element of its parent, you can call text on the parent instead.

Here’s a simple document that defines and uses two entities in a single text node. We
can substitute those entities for their values without changing the document itself:

require 'rexml/document'

str = %{<?xml version="1.0"?>
<!DOCTYPE doc [
 <!ENTITY product 'Stargaze'>
 <!ENTITY version '2.3'>
]>
<doc>
 &product; v&version; is the most advanced astronomy product on the market.
</doc>}
doc = REXML::Document.new str

doc.root.children[0].value
=> "\n Stargaze v2.3 is the most advanced astronomy product on the market.\n"
doc.root.text
=> "\n Stargaze v2.3 is the most advanced astronomy product on the market.\n"

doc.root.children[0].to_s
=> "\n &product; v&version; is the most advanced astronomy product on the market.\n"
doc.root.write
<doc>
&product; v&version; is the most advanced astronomy program on the market.
</doc>

Discussion
Internal XML entities are often used to factor out data that changes a lot, like dates
or version numbers. But REXML only provides a convenient way to perform substi-
tution on a single text node. What if you want to perform substitutions throughout
the entire document?

When you call Document#write to send a document to some IO object, it ends up call-
ing Text#to_s on each text node. As seen in the Solution, this method presents a
“normalized” view of the data, one where entities are displayed instead of having
their values substituted in.

11.8 Substituting XML Entities | 389

We could write our own version of Document#write that presents an “unnormalized”
view of the document, one with entity values substituted in, but that would be a lot
of work. We could hack Text#to_s to work more like Text#value, or hack Text#write
to call the value method instead of to_s. But it’s less intrusive to do the entity
replacement outside of the write method altogether. Here’s a class that wraps any IO
object and performs entity replacement on all the text that comes through it:

require 'delegate'
require 'rexml/text'
class EntitySubstituter < DelegateClass(IO)
 def initialize(io, document, filter=nil)
 @document = document
 @filter = filter
 super(io)
 end

 def <<(s)
 super(REXML::Text::unnormalize(s, @document.doctype, @filter))
 end
end

output = EntitySubstituter.new($stdout, doc)
doc.write(output)
<?xml version='1.0'?><!DOCTYPE doc [
<!ENTITY product "Stargaze">
<!ENTITY version "2.3">
]>
<doc>
Stargaze v2.3 is the most advanced astronomy product on the market.
</doc>

Because it processes the entire output of Document#write, this code will replace all
entity references in the document. This includes any references found in attribute
values, which may or may not be what you want.

If you create a Text object manually, or set the value of an existing object, REXML
assumes that you’re giving it unnormalized text, and normalizes it. This can be prob-
lematic if your text contains strings that happen to be the values of entities:

text_node = doc.root.children[0]
text_node.value = "&product; v&version; has a catalogue of 2.3 " +
 "million celestial objects."

doc.write
<?xml version='1.0'?><!DOCTYPE doc [
<!ENTITY product "Stargaze">
<!ENTITY version "2.3">
]>
<doc>&product; v&version; has a catalogue of &version; million celestial objects.
 </doc>

390 | Chapter 11: XML and HTML

To avoid this, you can create a “raw” text node:

text_node.raw = true
doc.write
<?xml version='1.0'?><!DOCTYPE doc [
<!ENTITY product "Stargaze">
<!ENTITY version "2.3">
]>
<doc>&product; v&version; has a catalogue of 2.3 million celestial objects.</doc>

text_node.value
=> "Stargaze v2.3 has a catalogue of 2.3 million celestial objects."
text_node.to_s
=> "&product; v&version; has a catalogue of 2.3 million celestial objects."

In addition to entities you define, REXML automatically processes five named char-
acter entities: the ones for left and right angle brackets, single and double quotes,
and the ampersand. Each is replaced with the corresponding ASCII character.

str = %{
 <!DOCTYPE doc [<!ENTITY year '2006'>]>
 <doc>© &year; Komodo Dragon & Bob Productions</doc>
}

doc = REXML::Document.new str
text_node = doc.root.children[0]

text_node.value
=> "© 2006 Komodo Dragon & Bob Productions"
text_node.to_s
=> "© &year; Komodo Dragon & Bob Productions"

“©” is an HTML character entity representing the copyright symbol, but
REXML doesn’t know that. It only knows about the five XML character entities.
Also, REXML only knows about internal entities: ones whose values are defined
within the same document that uses them. It won’t resolve external entities.

See Also
• The section “Text Nodes” of the REXML tutorial (http://www.germane-software.

com/software/rexml/docs/tutorial.html#id2248004)

11.9 Creating and Modifying XML Documents

Problem
You want to modify an XML document, or create a new one from scratch.

Solution
To create an XML document from scratch, just start with an empty Document object.

11.9 Creating and Modifying XML Documents | 391

require 'rexml/document'
require
doc = REXML::Document.new

To add a new element to an existing document, pass its name and any attributes into
its parent’s add_element method. You don’t have to create the Element objects yourself.

meeting = doc.add_element 'meeting'
meeting_start = Time.local(2006, 10, 31, 13)
meeting.add_element('time', { 'from' => meeting_start,
 'to' => meeting_start + 3600 })

doc.children[0] # => <meeting> ... </>
doc.children[0].children[0]
=> "<time from='Tue Oct 31 13:00:00 EST 2006'
to='Tue Oct 31 14:00:00 EST 2006'/>"

doc.write($stdout, 1)
<meeting>
<time from='Tue Oct 31 13:00:00 EST 2006'
to='Tue Oct 31 14:00:00 EST 2006'/>
</meeting>
doc.children[0] # => <?xml ... ?>
doc.children[1] # => <meeting> ... </>

To append a text node to the contents of an element, use the add_text method. This
code adds an <agenda> element to the <meeting> element, and gives it two different
text nodes:

agenda = meeting.add_element 'agenda'
doc.children[1].children[1] # => <agenda/>

agenda.add_text "Nothing of importance will be decided."
agenda.add_text " The same tired ideas will be rehashed yet again."

doc.children[1].children[1] # => <agenda> ... </>

doc.write($stdout, 1)
<meeting>
<time from='Tue Oct 31 13:00:00 EST 2006'
to='Tue Oct 31 14:00:00 EST 2006'/>
<agenda>
Nothing of importance will be decided. The same tired ideas will be
rehashed yet again.
</agenda>
</meeting>

Element#text= is a nice shortcut for giving an element a single text node. You can
also use to overwrite a document’s initial text nodes:

item1 = agenda.add_element 'item'
doc.children[1].children[1].children[1] # => <item/>
item1.text = 'Weekly status meetings: improving attendance'
doc.children[1].children[1].children[1] # => <item> ... </>

392 | Chapter 11: XML and HTML

doc.write($stdout, 1)
<meeting>
<time from='Tue Oct 31 13:00:00 EST 2006'
to='Tue Oct 31 14:00:00 EST 2006'/>
<agenda>
Nothing of importance will be decided. The same tired ideas will be
rehashed yet again.
<item>Weekly status meetings: improving attendance</item>
</agenda>
</meeting>

Discussion
If you can access an element or text node (numerically or with XPath), you can mod-
ify or delete it. You can modify an element’s name with name=, and modify one of its
attributes by assigning to an index of attributes. This code uses these methods to
make major changes to a document:

doc = REXML::Document.new %{<?xml version='1.0'?>
<girl size="little">
 <foods>
 <sugar />
 <spice />
 </foods>
 <set of="nice things" cardinality="all" />
</girl>
}

root = doc[1] # => <girl size='little'> ... </>
root.name = 'boy'

root.elements['//sugar'].name = 'snails'
root.delete_element('//spice')

set = root.elements['//set']
set.attributes["of"] = "snips"
set.attributes["cardinality"] = 'some'

root.add_element('set', {'of' => 'puppy dog tails', 'cardinality' => 'some' })
doc.write
<?xml version='1.0'?>
<boy size='little'>
<foods>
<snails/>
#
</foods>
<set of='snips' cardinality='some'/>
<set of='puppy dog tails' cardinality='some'/></boy>

You can delete an attribute with Element#delete_attribute, or by assigning nil to it:

root.attributes['size'] = nil
doc.write($stdout, 0)
<?xml version='1.0'?>

11.9 Creating and Modifying XML Documents | 393

<boy>
<foods>
...
</boy>

You can use methods like replace_with to swap out one node for another:

doc.elements["//snails"].replace_with(REXML::Element.new("escargot"))

All these methods are convenient, but add_element in particular is not very idiom-
atic. The cgi library lets you structure method calls and code blocks so that your
Ruby code has the same nesting structure as the HTML it generates. Why shouldn’t
you be able to do the same for XML? Here’s a new method for Element that makes it
possible:

class REXML::Element
 def with_element(*args)
 e = add_element(*args)
 yield e if block_given?
 end
end

Now you can structure your Ruby code the same way you structure your XML:

doc = REXML::Document.new
doc.with_element('girl', {'size' => 'little'}) do |girl|
 girl.with_element('foods') do |foods|
 foods.add_element('sugar')
 foods.add_element('spice')
 end
 girl.add_element('set', {'of' => 'nice things', 'cardinality' => 'all'})
end

doc.write($stdout, 0)
<girl size='little'>
<foods>
<sugar/>
<spice/>
</foods>
<set of='nice things' cardinality='all'/>
</girl>

The builder gem also lets you build XML this way.

See Also
• Recipe 7.10, “Hiding Setup and Cleanup in a Block Method,” has an example of

using the XmlMarkup class in the builder gem.

394 | Chapter 11: XML and HTML

11.10 Compressing Whitespace in an XML Document

Problem
When REXML parses a document, it respects the original whitespace of the docu-
ment’s text nodes. You want to make the document smaller by compressing extra
whitespace.

Solution
Parse the document by creating a REXML::Document out of it. Within the Document con-
structor, tell the parser to compress all runs of whitespace characters:

require 'rexml/document'

text = %{<doc><a>Some whitespace Some more</doc>}

REXML::Document.new(text, { :compress_whitespace => :all }).to_s
=> "<doc><a>Some whitespace Some more</doc>"

Discussion
Sometimes whitespace within a document is significant, but usually (as with HTML)
it can be compressed without changing the meaning of the document. The resulting
document takes up less space on the disk and requires less bandwidth to transmit.

Whitespace compression doesn’t have to be all-or-nothing. REXML gives two ways
to configure it. Instead of passing :all as a value for :compress_whitespace, you can
pass in a list of tag names. Whitespace will only be compressed in those tags:

REXML::Document.new(text, { :compress_whitespace => %w{a} }).to_s
=> "<doc><a>Some whitespace Some more</doc>"

You can also switch it around: pass in :respect_whitespace and a list of tag names
whose whitespace you don’t want to be compressed. This is useful if you know that
whitespace is significant within certain parts of your document.

REXML::Document.new(text, { :respect_whitespace => %w{a} }).to_s
=> "<doc><a>Some whitespace Some more</doc>"

What about text nodes containing only whitespace? These are often inserted by XML
pretty-printers, and they can usually be totally discarded without altering the mean-
ing of a document. If you add :ignore_whitespace_nodes => :all to the parser config-
uration, REXML will simply decline to create text nodes that contain nothing but
whitespace characters. Here’s a comparison of :compress_whitespace alone, and in
conjunction with :ignore_whitespace_nodes:

text = %{<doc><a>Some text\n Some more\n\n}
REXML::Document.new(text, { :compress_whitespace => :all }).to_s
=> "<doc><a>Some text\n Some more\n</doc>"

11.11 Guessing a Document’s Encoding | 395

REXML::Document.new(text, { :compress_whitespace => :all,
 :ignore_whitespace_nodes => :all }).to_s
=> "<doc><a>Some textSome more</doc>"

By itself, :compress_whitespace shouldn’t make a document less human-readable,
but :ignore_whitespace_nodes almost certainly will.

See Also
• Recipe 1.11, “Managing Whitespace”

11.11 Guessing a Document’s Encoding
Credit: Mauro Cicio

Problem
You want to know the character encoding of a document that doesn’t declare it
explicitly.

Solution
Use the Ruby bindings to the libcharguess library. Once it’s installed, using
libcharguess is very simple.

Here’s an XML document written in Italian, with no explicit encoding:

doc = %{<?xml version="1.0"?>
 <menu tipo="specialità" giorno="venerdì">
 <primo_piatto>spaghetti al ragù</primo_piatto>
 <bevanda>frappè</bevanda>
 </menu>}

Let’s find its encoding:

require 'charguess'

CharGuess::guess doc
=> "windows-1252"

This is a pretty good guess: the XML is written in the ISO-8859-1 encoding, and
many web browsers treat ISO-8859-1 as Windows-1252.

Discussion
In XML, the character-encoding indication is optional, and may be provided as an
attribute of the XML declaration in the first line of the document:

<xml version="1.0" encoding="utf-8"?>

If this is missing, you must guess the document encoding to process the document.
You can assume the lowest common denominator for your community (usually this

396 | Chapter 11: XML and HTML

means assuming that everything is either UTF-8 or ISO-8859-1), or you can use a
library that examines the document and uses heuristics to guess the encoding.

As of the time of writing, there are no pure Ruby libraries for guessing the encoding
of a document. Fortunately, there is a small Ruby wrapper around the Charguess
library. This library can guess with 95% accuracy the encoding of any text whose
charset is one of the following: BIG5, HZ, JIS, SJIS, EUC-JP, EUC-KR, EUC-TW,
GB2312, Bulgarian, Cyrillic, Greek, Hungarian, Thai, Latin1, and UTF8.

Note that Charguess is not XML- or HTML-specific. In fact, it can guess the encod-
ing of an arbitrary string:

CharGuess::guess("\xA4\xCF") # => "EUC-JP"

It’s fairly easy to install libcharguess, since the library is written in portable C++.
Unfortunately, it doesn’t take care to put its header files in a standard location. This
makes it a little tricky to compile the Ruby bindings, which depend on the
charguess.h header. When you run extconf.rb to prepare the bindings, you must
explicitly tell the script where to find libcharguess’s headers. Here’s how you might
compile the Ruby bindings to libcharguess:

$ ruby extconf.rb --with-charguess-include=/location/of/charguess.h
$ make
$ make install

See Also
• To find your way through the jungle of character encodings, the Wikipedia entry

on character encodings makes a good reference (http://en.wikipedia.org/wiki/
Character_encoding)

• A good source for sample texts in various charsets is http://vancouver-webpages.
com/multilingual/

• The XML specification has a section on character encoding autodetection (http://
www.w3.org/TR/REC-xml/#sec-guessing)

• The Charguess library is at http://libcharguess.sourceforge.net; its Ruby bindings
are available from http://raa.ruby-lang.org/project/charguess

11.12 Converting from One Encoding to Another
Credit: Mauro Cicio

Problem
You want to convert a document to a given charset encoding (probably UTF-8).

11.12 Converting from One Encoding to Another | 397

Solution
If you don’t know the document’s current encoding, you can guess at it using the
Charguess library described in the previous recipe. Once you know the current
encoding, you can convert the document to another encoding using Ruby’s standard
iconv library.

Here’s an XML document written in Italian, with no explicit encoding:

doc = %{<?xml version="1.0"?>
 <menu tipo="specialità" giorno="venerdì">
 <primo_piatto>spaghetti al ragù</primo_piatto>
 <bevanda>frappè</bevanda>
 </menu>}

Let’s figure out its encoding and convert it to UTF-8:

require 'iconv'
require 'charguess' # not necessary if input encoding is known

input_encoding = CharGuess::guess doc # => "windows-1252"
output_encoding = 'utf-8'

converted_doc = Iconv.new(output_encoding, input_encoding).iconv(doc)

CharGuess::guess(converted_doc) # => "UTF-8"

Discussion
The heart of the iconv library is the Iconv class, a wrapper for the Unix 95 iconv()
family of functions. These functions translate strings between various encoding sys-
tems. Since iconv is part of the Ruby standard library, it should be already available
on your system.

Iconv works well in conjunction with Charguess: even if Charguess guesses the
encoding a little bit wrong (such as guessing Windows-1252 for an ISO-8859-1 docu-
ment), it always makes a good enough guess that iconv can convert the document to
another encoding.

Like Charguess, the Iconv library is not XML- or HTML-specific. You can use
libcharguess and iconv together to convert an arbitrary string to a given encoding.

See Also
• Recipe 11.11, “Guessing a Document’s Encoding”

• The iconv library is documented at http://www.ruby-doc.org/stdlib/libdoc/iconv/
rdoc/classes/Iconv.html; you can find pointers to The Open Group Unix library
specifications

398 | Chapter 11: XML and HTML

11.13 Extracting All the URLs from an HTML Document

Problem
You want to find all the URLs on a web page.

Solution
Do you only want to find links (that is, URLs mentioned in the HREF attribute of an A
tag)? Do you also want to find the URLs of embedded objects like images and
applets? Or do you want to find all URLs, including ones mentioned in the text of
the page?

The last case is the simplest. You can use URI.extract to get all the URLs found in a
string, or to get only the URLs with certain schemes. Here we’ll extract URLs from
some HTML, whether or not they’re inside A tags:

require 'uri'

text = %{"My homepage is at
http://www.example.com/, and be sure
to check out my weblog at http://www.example.com/blog/. Email me at bob@example.com.}

URI.extract(text)
=> ["http://www.example.com/", "http://www.example.com/",
"http://www.example.com/blog/.", "mailto:bob@example.com"]

Get HTTP(S) links only.
URI.extract(text, ['http', 'https'])
=> ["http://www.example.com/", "http://www.example.com/"
"http://www.example.com/blog/."]

If you only want URLs that show up inside certain tags, you need to parse the HTML.
Assuming the document is valid, you can do this with any of the parsers in the rexml
library. Here’s an efficient implementation using REXML’s stream parser. It retrieves
URLs found in the HREF attributes of A tags and the SRC attributes of IMG tags, but you
can customize this behavior by passing a different map to the constructor.

require 'rexml/document'
require 'rexml/streamlistener'
require 'set'

class LinkGrabber
 include REXML::StreamListener
 attr_reader :links

 def initialize(interesting_tags = {'a' => %w{href}, 'img' => %w{src}}.freeze)
 @tags = interesting_tags
 @links = Set.new
 end

11.13 Extracting All the URLs from an HTML Document | 399

 def tag_start(name, attrs)
 @tags[name].each do |uri_attr|
 @links << attrs[uri_attr] if attrs[uri_attr]
 end if @tags[name]
 end

 def parse(text)
 REXML::Document.parse_stream(text, self)
 end
end

grabber = LinkGrabber.new
grabber.parse(text)
grabber.links
=> #<Set: {"http://www.example.com/", "mailto:bob@example.com"}>

Discussion
The URI.extract solution uses regular expressions to find everything that looks like a
URL. This is faster and easier to write than a REXML parser, but it will find every
absolute URL in the document, including any mentioned in the text and any in the
document’s initial DOCTYPE. It will not find relative URLs hidden within HREF
attributes, since those don’t start with an access scheme like “http://”.

URI.extract treats the period at the end of the first sentence (“check out my weblog
at…”) as though it were part of the URL. URLs contained within English text are
often ambiguous in this way. “http://www.example.com/blog/.” is a perfectly valid
URL and might be correct, but that period is probably just punctuation. Accessing
the URL is the only sure way to know for sure, but it’s almost always safe to strip
those characters:

END_CHARS = %{.,'?!:;}
URI.extract(text, ['http']).collect { |u| END_CHARS.index(u[-1]) ? u.chop : u }
=> ["http://www.example.com/", "http://www.example.com/",
"http://www.example.com/blog/"]

The parser solution defines a listener that hears about every tag present in its
interesting_tags map. It checks each tag for attributes that tend to contain URLs:
“href” for <a> tags and “src” for tags, for instance. Every URL it finds goes into
a set.

The use of a set here guarantees that the result contains no duplicate URLs. If you
want to gather (possibly duplicate) URLs in the order they were found in the docu-
ment, use a list, the way URI.extract does.

The LinkGrabber solution will not find URLs in the text portions of the document,
but it will find relative URLs. Of course, you still need to know how to turn relative
URLs into absolute URLs. If the document has a <base> tag, you can use that. Other-
wise, the base depends on the original URL of the document.

400 | Chapter 11: XML and HTML

Here’s a subclass of LinkGrabber that changes relative links to absolute links if possi-
ble. Since it uses URI.join, which returns a URI object, your set will end up contain-
ing URI objects instead of strings:

class AbsoluteLinkGrabber < LinkGrabber
 include REXML::StreamListener
 attr_reader :links

 def initialize(original_url = nil,
 interesting_tags = {'a' => %w{href}, 'img' => %w{src}}.freeze)
 super(interesting_tags)
 @base = original_url
 end

 def tag_start(name, attrs)
 if name == 'base'
 @base = attrs['href']
 end
 super
 end

 def parse(text)
 super
 # If we know of a base URL by the end of the document, use it to
 # change all relative URLs to absolute URLs.
 @links.collect! { |l| URI.join(@base, l) } if @base
 end
end

If you want to use the parsing solution, but the web page has invalid HTML that
chokes the REXML parsers (which is quite likely), try the techniques mentioned in
Recipe 11.5.

Almost 20 HTML tags can have URLs in one or more of their attributes. If you want
to collect every URL mentioned in an appropriate part of a web page, here’s a big
map you can pass in to the constructor of LinkGrabber or AbsoluteLinkGrabber:

URL_LOCATIONS = { 'a' => %w{href},
 'area' => %w{href},
 'applet' => %w{classid},
 'base' => %w{href},
 'blockquote' => %w{cite},
 'body' => %w{background},
 'codebase' => %w{classid},
 'del' => %w{cite},
 'form' => %w{action},
 'frame' => %w{src longdesc},
 'iframe' => %w{src longdesc},
 'input' => %w{src usemap},
 'img' => %w{src longdesc usemap},
 'ins' => %w{cite},
 'link' => %w{href},
 'object' => %w{usemap archive codebase data},

11.14 Transforming Plain Text to HTML | 401

 'profile' => %w{head},
 'q' => %w{cite},
 'script' => %w{src}}.freeze

See Also
• Recipe 11.4, “Navigating a Document with XPath”

• Recipe 11.5, “Parsing Invalid Markup”

• I compiled that big map of URI attributes from the W3C’s Index of Attributes
for HTML 4.0; look for the attributes of type %URI; (http://www.w3.org/TR/REC-
html40/index/attributes.html)

11.14 Transforming Plain Text to HTML

Problem
You want to add simple markup to plaintext and turn it into HTML.

Solution
Use RedCloth, written by “why the lucky stiff” and available as the RedCloth gem. It
extends Ruby’s string class to support Textile markup: its to_html method converts
Textile markup to HTML.

Here’s a simple document:

require 'rubygems'
require 'redcloth'

text = RedCloth.new %{Who would ever write "HTML":http://www.w3.org/MarkUp/
markup directly?

I mean, _who has the time_? Nobody, that's who:

_. Person	_. Has the time?
Jake	No
Alice	No
Rodney	Not since the accident
}

puts text.to_html
<p>Who would ever write
HTML
markup directly?</p>
#
<p>I mean, who has the time? Nobody, that’s who:</p>
#
<table>
<tr>
<th>Person </th>
<th>Has the time? </th>

402 | Chapter 11: XML and HTML

</tr>
...

The Textile version is more readable and easier to edit.

Discussion
The Textile markup language lets you produce HTML without having to write any
HTML. You just add punctuation to plain text, to convey what markup you’d like.
Paragraph breaks are represented by blank lines, italics by underscores, tables by
ASCII-art drawings of tables.

A text-based markup that converts to HTML is very useful in weblog and wiki soft-
ware, where the markup will be edited many times. It’s also useful for hiding the
complexity of HTML from new computer users. We wrote this entire book using a
Textile-like markup, though it was converted to Docbook instead of HTML.

See Also
• The RedCloth homepage (http://www.whytheluckystiff.net/ruby/redcloth/)

• A comprehensive Textile reference (http://hobix.com/textile/) and a quick refer-
ence (http://hobix.com/textile/quick.html)

• You can experiment with Textile markup at the language’s homepage (http://
www.textism.com/tools/textile/)

• Markdown (http://daringfireball.net/projects/markdown/) is another popular sim-
ple markup language for plain text; you can turn Markdown text to XHTML
with the BlueCloth gem (project page: http://www.deveiate.org/projects/
BlueCloth); because BlueCloth and RedCloth both define String#to_html, it’s
not easy to use them both in the same program

11.15 Converting HTML Documents from the Web
into Text

Problem
You want to get a text summary of a web site.

Solution
The open-uri library is the easiest way to grab the content of a web page; it lets you
open a URL as though it were a file:

require 'open-uri'

example = open('http://www.example.com/')
=> #<StringIO:0xb7bb601c>

html = example.read

11.15 Converting HTML Documents from the Web into Text | 403

As with a file, the read method returns a string. You can do a series of sub and gsub
methods to clean the code into a more readable format.

plain_text = html.sub(%r{<body.*?>(.*?)</body>}mi, '\1').gsub(/<.*?>/m, ' ').
 gsub(%r{(\n\s*){2}}, "\n\n")

Finally, you can use the standard CGI library to unescape HTML entities like <
into their ASCII equivalents (<):

require 'cgi'
plain_text = CGI.unescapeHTML(plain_text)

The final product:

puts plain_text
Example Web Page
#
You have reached this web page by typing "example.com",
"example.net",
or "example.org" into your web browser.
These domain names are reserved for use in documentation and are not available
for registration. See RFC
2606 , Section 3.

Discussion
The open-uri library extends the open method so that you can access the contents of
web pages and FTP sites with the same interface used for local files.

The simple regular expression substitutions above do nothing but remove HTML
tags and clean up excess whitespace. They work well for well-formatted HTML, but
the web is full of mean and ugly HTML, so you may consider taking a more involved
approach. Let’s define a HTMLSanitizer class to do our dirty business.

An HTMLSanitizer will start off with some HTML, and through a series of search-and-
replace operations transform it into plain text. Different HTML tags will be handled
differently. The contents of some HTML tags should simply be removed in a plain-
text rendering. For example, you probably don’t want to see the contents of <head>
and <script> tags. Other tags affect what the rendition should look like, for instance,
a <p> tag should be represented as a blank line:

require 'open-uri'
require 'cgi'

class HTMLSanitizer
 attr_accessor :html

 @@ignore_tags = ['head', 'script', 'frameset']
 @@inline_tags = ['span', 'strong', 'i', 'u']
 @@block_tags = ['p', 'div', 'ul', 'ol']

The next two methods define the skeleton of our HTML sanitizer:

 def initialize(source='')
 begin
 @html = open(source).read

404 | Chapter 11: XML and HTML

 rescue Errno::ENOENT
 # If it's not a file, assume it's an HTML string
 @html = source
 end
 end

 def plain_text
 # remove pre-existing blank spaces between tags since we will
 # be adding spaces on our own
 @plain_text = @html.gsub(/\s*(<.*?>)/m, '\1')

 handle_ignore_tags
 handle_inline_tags
 handle_block_tags
 handle_all_other_tags

 return CGI.unescapeHTML(@plain_text)
 end

Now we need to fill in the handle_ methods defined by HTMLSanitizer#plain_text.
These methods perform search-and-replace operations on the @plain_text instance
variable, gradually transforming it from HTML into plain text. Because we are modi-
fying @plain_text in place, we will need to use String#gsub! instead of String#gsub.

 private

 def tag_regex(tag)
 %r{<#{tag}.*?>(.*?)</#{tag}>}mi
 end

 def handle_ignore_tags
 @@ignore_tags.each { |tag| @plain_text.gsub!(tag_regex(tag), '') }
 end
 def handle_inline_tags
 @@inline_tags.each { |tag| @plain_text.gsub!(tag_regex(tag), '\1 ') }
 end
 def handle_block_tags
 @@block_tags.each { |tag| @plain_text.gsub!(tag_regex(tag), "\n\\1\n") }
 end

 def handle_all_other_tags
 @plain_text.gsub!(/
/mi, "\n")
 @plain_text.gsub!(/<.*?>/m, ' ')
 @plain_text.gsub!(/(\n\s*){2}/, "\n\n")
 end
end

To use this class, simply initialize it with a URL and call the plain_text method:

puts HTMLSanitizer.new('http://slashdot.org/').plain_text
Stories
Slash Boxes
Comments
#

11.16 A Simple Feed Aggregator | 405

Slashdot
#
News for nerds, stuff that matters
#
Login
#
Why Login? Why Subscribe?
...

See Also
• Recipe 14.1, “Grabbing the Contents of a Web Page”

• For a more sophisticated text renderer, parse the HTML document with the
techniques described in Recipe 11.2, “Extracting Data from a Document’s Tree
Structure,” or Recipe 11.5, “Parsing Invalid Markup”

11.16 A Simple Feed Aggregator
Credit: Rod Gaither

XML is the basis for many specialized langages. One of the most popular is RSS, an
XML format often used to store lists of articles from web pages. With a tool called an
aggregator, you can collect weblog entries and articles from several web sites’ RSS
feeds, and read all those web sites at once without having to skip from one to the
other. Here, we’ll create a simple aggregator in Ruby.

Before aggregating RSS feeds, let’s start by reading a single one. Fortunately we have
several options for parsing RSS feeds into Ruby data structures. The Ruby standard
library has built-in support for the three major versions of the RSS format (0.9, 1.0,
and 2.0). This example uses the standard rss library to parse an RSS 2.0 feed and
print out the titles of the items in the feed:

require 'rss/2.0'
require 'open-uri'

url = 'http://www.oreillynet.com/pub/feed/1?format=rss2'
feed = RSS::Parser.parse(open(url).read, false)
puts "=== Channel: #{feed.channel.title} ==="
feed.items.each do |item|
 puts item.title
 puts " (#{item.link})"
 puts
 puts item.description
end
=== Channel: O'Reilly Network Articles ===
How to Make Your Sound Sing with Vocoders
(http://digitalmedia.oreilly.com/2006/03/29/vocoder-tutorial-and-tips.html)
...

406 | Chapter 11: XML and HTML

Unfortunately, the standard rss library is a little out of date. There’s a newer syndi-
cation format called Atom, which serves the same purpose as RSS, and the rss
library doesn’t support it. Any serious aggregator must support all the major syndica-
tion formats.

So instead, our aggregator will use Lucas Carlson’s Simple RSS library, available as the
simple-rss gem. This library supports the three main versions of RSS, plus Atom, and
it does so in a relaxed way so that ill-formed feeds have a better chance of being read.

Here’s the example above, rewritten to use Simple RSS. As you can see, only the
name of the class is different:

require 'rubygems'
require 'simple-rss'
url = 'http://www.oreillynet.com/pub/feed/1?format=rss2'
feed = RSS::Parser.parse(open(url), false)
puts "=== Channel: #{feed.channel.title} ==="
feed.items.each do |item|
 puts item.title
 puts " (#{item.link})"
 puts
 puts item.description
end

Now we have a general method of reading a single RSS or Atom feed. Time to work
on some aggregation!

Although the aggregator will be a simple Ruby script, there’s no reason not to use
Ruby’s object-oriented features. Our approach will be to create a class to encapsulate
the aggregator’s data and behavior, and then write a sample program to use the class.

The RSSAggregator class that follows is a bare-bones aggregator that reads from mul-
tiple syndication feeds when instantiated. It uses a few simple methods to expose the
data it has read.

#!/usr/bin/ruby
rss-aggregator.rb - Simple RSS and Atom Feed Aggregator

require 'rubygems'
require 'simple-rss'
require 'open-uri'

class RSSAggregator
 def initialize(feed_urls)
 @feed_urls = feed_urls
 @feeds = []
 read_feeds
 end

 protected
 def read_feeds
 @feed_urls.each { |url| @feeds.push(SimpleRSS.new(open(url).read)) }
 end

11.16 A Simple Feed Aggregator | 407

 public
 def refresh
 @feeds.clear
 read_feeds
 end

 def channel_counts
 @feeds.each_with_index do |feed, index|
 channel = "Channel(#{index.to_s}): #{feed.channel.title}"
 articles = "Articles: #{feed.items.size.to_s}"
 puts channel + ', ' + articles
 end
 end

 def list_articles(id)
 puts "=== Channel(#{id.to_s}): #{@feeds[id].channel.title} ==="
 @feeds[id].items.each { |item| puts ' ' + item.title }
 end

 def list_all
 @feeds.each_with_index { |f, i| list_articles(i) }
 end
end

Now we just need a few more lines of code to instantiate and use an RSSAggregator
object:

test = RSSAggregator.new(ARGV)
test.channel_counts
puts "\n"
test.list_all

Here’s the output from a run of the test program against a few feed URLs:

$ ruby rss-aggregator.rb http://www.rubyriver.org/rss.xml \
 http://rss.slashdot.org/Slashdot/slashdot \
 http://www.oreillynet.com/pub/feed/1 \
 http://safari.oreilly.com/rss/
Channel(0): RubyRiver, Articles: 20
Channel(1): Slashdot, Articles: 10
Channel(2): O'Reilly Network Articles, Articles: 15
Channel(3): O'Reilly Network Safari Bookshelf, Articles: 10
=== Channel(0): RubyRiver ===
 Mantis style isn't eas...
 It's wonderful when tw...
 Red tailed hawk
 37signals
 ...

While a long way from a fully functional RSS aggregator, this program illustrates the
basic requirements of any real aggregator. From this starting point, you can expand
and refine the features of RSSAggregator.

One very important feature missing from the aggregator is support for the If-Modified-
Since HTTP request header. When you call RSSAggregator#refresh, your aggregator

408 | Chapter 11: XML and HTML

downloads the specified feeds, even if it just grabbed the same feeds and none of
them have changed since then. This wastes bandwidth.

Polite aggregators keep track of when they last grabbed a certain feed, and when they
request it again they do a conditional request by supplying an HTTP request header
called If-Modified Since. The details are a little beyond our scope, but basically the
web server serves the reuqested feed only if it has changed since the last time the
RSSAggregator downloaded it.

Another important feature our RSSAggregator is missing is the ability to store the arti-
cles it fetches. A real aggregator would store articles on disk or in a database to keep
track of which stories are new since the last fetch, and to keep articles available even
after they become old news and drop out of the feed.

Our simple aggregator counts the articles and lists their titles for review, but it
doesn’t actually provide access to the article detail. As seen in the first example, the
SimpleRSS.item has a link attribute containing the URL for the article, and a
description attribute containing the (possibly HTML) body of the article. A real
aggregator might generate a list of articles in HTML format for use in a browser, or
convert the body of each article to text for output to a terminal.

See Also
• Recipe 14.1, “Grabbing the Contents of a Web Page”

• Recipe 14.3, “Customizing HTTP Request Headers”

• Recipe 11.15, “Converting HTML Documents from the Web into Text”

• A good comparison of the RSS and Atom formats (http://www.intertwingly.net/
wiki/pie/Rss20AndAtom10Compared)

• Details on the Simple RSS project (http://simple-rss.rubyforge.org/)

• The FeedTools project has a more sophisticated aggregator library that supports
caching and If-Modified-Since; see http://sporkmonger.com/projects/feedtools/ for
details

• “HTTP Conditional Get for RSS Hackers” is a readable introduction to If-Modified-
Since (http://fishbowl.pastiche.org/2002/10/21/http_conditional_get_for_rss_hackers)

409

Chapter 12 CHAPTER 12

Graphics and Other File Formats12

Hundreds of standards exist for storing structured data in text or binary files. Some
of these are so popular that we’ve devoted entire chapters to them (Chapters 11 and
13). Some are so simple that you can process them with the ad hoc techniques listed
in Chapters 1 and 6. This chapter is a grab bag that tries to cover the rest of the field.

We focus especially on graphics, probably the most common binary files. Ruby lacks
a mature image manipulation library like the Python Imaging Library, but it does
have bindings to ImageMagick and GraphicsMagick, popular and stable C libraries.
The RMagick library provides the same interface against ImageMagick and Graphics-
Magick, so it doesn’t matter which one you use.

You can get RMagick by installing the RMagick or Rmagick-win32 gem. Unfortunately,
the C libraries themselves are difficult to install: they have a lot of dependencies,
especially if you want to process image formats like GIF and PostScript. The installa-
tion FAQ can help (http://rmagick.rubyforge.org/install-faq.html). On Debian GNU/
Linux, you can just install the imagemagick package and then the RMagick gem.

The first recipes in this chapter show how to use RMagick to manipulate and con-
vert images (on the question of finding images, see Recipe 16.2). Then it gets miscel-
laneous: we cover encryption, archive formats, Excel spreadsheets, and music files.
We don’t have space to cover every popular file format, but this chapter should give
you an idea of what’s out there. If this chapter lacks a recipe on your file format of
choice, you may be able to find a Ruby library for it on the RAA, or by doing a web
search for ruby [file format name].

12.1 Thumbnailing Images
Credit: Antonio Cangiano

Problem
Given an image, you want to create a smaller image to serve as a thumbnail.

410 | Chapter 12: Graphics and Other File Formats

Solution
Use RMagick, available from the rmagick or rmagick-win32 gems. Its Magick module
gives you a simple but versatile way to manipulate images. The class Magick::Image
lets you resize images four different ways: with resize, scale, sample, or thumbnail.

All four methods accept a pair integer values, corresponding to the width and height
in pixels of the thumbnail you want. Here’s an example that uses resize: it takes the
file myimage.jpg and makes a thumbnail of it 100 pixels wide by 100 pixels tall:

require 'rubygems'
require 'RMagick'

img = Magick::Image.read('myimage.jpg').first
width, height = 100, 100
thumb = img.resize(width, height)
thumb.write('mythumbnail.jpg')

Discussion
The class method Image.read, used in the Solution, receives an image filename as an
argument and returns an array of Image objects.* You obtain the first (and, usually,
only) element through Array#first.

The code given in the Solution produces a thumbnail that is 100 pixels by 100, no
matter what dimensions the original image had. If the original image was a square,
its proportions will be maintained. But if the initial image was a rectangle, squishing
it into a 100 × 100 box will distort it.

If all your thumbnails need to be the same size, you might be willing to live with this
distortion. But to maintain the proportions between the longest and shortest dimen-
sions, you should define your thumbnail’s width and height in terms of the original
image’s aspect ratio. You can get the image’s original width and height by using its
accessor methods, Magick::Image#columns and Magick::Image#rows.

A simpler solution is to pass resize a floating-point number as a scaling factor. This
changes the image’s size without altering the aspect ratio. Here’s how to generate an
image that is 15% the size of the original:

scale_factor = 0.15
thumb = img.resize(scale_factor)
thumb.write("mythumbnail.jpg")

To impose a maximum size on an image without altering its aspect ratio, use change_
geometry:

def thumb_no_bigger_than(img, width, height)
 img.change_geometry("#{width}x#{height}") do |cols, rows, img|

* Why an array? Because you can pass in an animated GIF or a multilayered image file to Image.read. If you
do, the array will contain an Image object for each image in the animated GIF, or for each layer in the multi-
layered file.

12.1 Thumbnailing Images | 411

 img.resize(cols, rows)
 end
end

img.rows # => 470
img.columns # => 892
thumb = thumb_no_bigger_than(img, 100, 100)
thumb.rows # => 53
thumb.columns # => 100

There are other ways of getting a thumbnail besides using resize. All of the follow-
ing lines give you some kind of thumbnail. The methods used below also have equiv-
alent methods (like scale!) that modify an Image object in place:

thumb = img.scale(width, height)
thumb = img.scale(scale_factor)
thumb = img.sample(width, height)
thumb = img.sample(scale_factor)
thumb = img.thumbnail(width, height)
thumb = img.thumbnail(scale_factor)

You might also want to generate a thumbnail by cropping an image, rather than
resizing it. The following code extracts an 80 × 100 pixel rectangle taken from the
center of the image:

thumb = img.crop(Magick::CenterGravity, 80, 100)

Which of these methods should you use? Magick::Image#resize is the most advanced
method, because it accepts two optional arguments: filter and blur. When you
specify a filter, you alter the resizing algorithm’s tradeoff between speed and quality.
Refer to the RMagick guide for a complete list of available filters.

The second optional argument, blur, is a floating-point number that can be used to
blur (values greater than 1) or sharpen (values less than 1) your image as it’s resized.
Blurring an image is a way to hide visual artifacts created by the thumbnailing process.

The scale method is simpler than resize, because it accepts only a width and height
pair, or a scale factor. When you want to generate a thumbnail that’s 10% the size of
your original image or smaller, thumbnail is faster than resize.

Finally, sample scales images with pixel sampling. Unlike the other methods, it
doesn’t introduce any new colors through interpolation.

The best advice is to try these methods out with your images. Through trial and
error, you can determine what works best for your application.

Using crop means approaching the problem in a different way. crop only includes a
portion of the original image in the thumbnail. crop has several signatures, each of
which requires the output image’s width and height:

With an x, y offset relative to the upper-left corner:
thumb = img.crop(x, y, width, height)

412 | Chapter 12: Graphics and Other File Formats

With a GravityType and the x, y offset:
thumb = img.crop(Magick::WestGravity, x, y, width, height)

With a GravityType:
thumb = img.crop(Magick::EastGravity, width, height)

GravityType is a constant that lets you specify the position of the region that needs to
be cropped. The available options are quite self-explanatory.

Be aware that the x and y offset passed to the method crop(gravity, x, y, width,
height) are not always calculated from the upper-left corner, but that they depend
on the GravityType being used. Refer to the crop documentation for specific details.

You may also want to enforce rules on your list of images so that they all match. For
example, you may require all your thumbnails to be smaller than 80 × 100 pixels, or
you might want them to all have an equal width of 120 pixels. You may even decide
that all images smaller than a certain limit should not be resized at all. For details on
techniques for this, see the RMagick documentation of the Image#change_geometry
method.

See Also
• This chapter’s introduction discusses installing RMagick

12.2 Adding Text to an Image
Credit: Antonio Cangiano

Problem
You want to add some text to an image—perhaps a caption or a copyright statement.

Solution
Create an RMagick Draw object and call its annotate method, passing in your image
and the text.

The following code adds the copyright string ‘© NPS’ to the bottom-right cor-
ner of the canyon.png image. It also specifies the font, the text color and size, and
other features of the text:

require 'rubygems'
require 'RMagick'

img = Magick::Image.read('canyon.png').first
my_text = "\251 NPS"

copyright = Magick::Draw.new
copyright.annotate(img, 0, 0, 3, 18, my_text) do
 self.font = 'Helvetica'
 self.pointsize = 12

12.2 Adding Text to an Image | 413

 self.font_weight = Magick::BoldWeight
 self.fill = 'white'
 self.gravity = Magick::SouthEastGravity
end
img.write('canyoncopyrighted.png')

The resulting image looks like Figure 12-1.

Discussion
The annotate method takes a code block that sets properties on the Magick::Draw
object, describing how the annotation should be done. You can also set the proper-
ties on the Draw object before calling annotate. This code works the same as the code
given in the Solution:

require 'rubygems'
require 'RMagick'

img = Magick::Image.read("canyon.png").first
my_text = '\251 NPS'

copyright = Magick::Draw.new
copyright.font = 'Helvetica'
copyright.pointsize = 12
copyright.font_weight = Magick::BoldWeight
copyright.fill = 'white'
copyright.gravity = Magick::SouthEastGravity
copyright.annotate(img, 0, 0, 3, 18, my_text)
img.write('canyoncopyrighted.png')

What do these attributes do?

• The font attribute selects the font type from among those installed on your sys-
tem. You can also specify the path to a specific font that is in a nonstandard
location (e.g., “/home/antonio/Arial.ttf”).

Figure 12-1. With a copyright message in the bottom-right corner

414 | Chapter 12: Graphics and Other File Formats

• pointsize is the font size in points (the default is 12). By default, there is one
pixel per point, so you can just specify the font size in pixels.

• font_weight accepts a WeightType constant. This can be a number (100, 200, 300,
... 900), BoldWeight (equivalent to 700), or the default of NormalWeight (equiva-
lent to 400).

• If you need your text to be italicized, you can set the font_style attribute to
Magick::ItalicStyle.

• fill defines the text color. The default is “black”. You can use X or SVG color
names (such as “white”, “red”, “gray85”, and “salmon”), or you can express the
color in terms of RGB values (such as “#fff” or “#ffffff”—two of the most com-
mon formats)

• gravity controls which part of the image will contain the annotated text, subject
to the arguments passed in to annotate. SouthEastGravity means that offsets will
be calculated from the bottom-right corner of the image.

Draw#annotate itself takes six arguments:

• The Image object, or else an ImageList containing the images you want to annotate.

• The width and height of the rectangle in which the text is to be positioned.

• The x and y offsets of the text, relative to that rectangle and to the gravity of the
Draw object.

• The text to be written.

In the Solution I wrote:

copyright.annotate(img, 0, 0, 3, 15, my_text)

The width and height are zeros, which indicates that annotate should use the whole
image as its annotation rectangle. Earlier I gave the Draw object a gravity attribute of
SouthEastGravity. This means that annotate will position the text at the bottom-right
corner of the rectangle: that is, at the bottom-right corner of the image itself. The off-
sets of 3 and 18 indicate that the text should start vertically 18 pixels from the bot-
tom of the box, and end horizontally 3 pixels from the right border of the box.

To position the text in the center of the image, I just change the gravity:

copyright.gravity = Magick::CenterGravity
copyright.annotate(img, 0, 0, 0, 0, my_text)

Note that I didn’t have to specify any offsets: CenterGravity orients the text to be is
in the exact center of the image (Figure 12-2). Specifying offsets would only move the
text off-center.

The Magick library does substitutions for various special characters: for instance, the
string “%t” will be replaced with the filename of the image. For more information
about special characters, GravityType constants, and other annotate attributes that
can let you fully customize the text appearance, refer to the RMagick documentation.

12.3 Converting One Image Format to Another | 415

See Also
• RMagick Documentation (http://studio.imagemagick.org/RMagick/doc/)

• On converting points to pixels (http://redux.imagemagick.org/RMagick/doc/draw.
html#get_type_metrics)

• SVG color keywords list (http://www.w3.org/TR/SVG/types.html#ColorKeywords)

• This chapter’s introduction gives instructions on installing RMagick

12.3 Converting One Image Format to Another
Credit: Antonio Cangiano

Problem
You want to convert an image to a different format.

Solution
With RMagick, you can just read in the file and write it out with a different extension.
This code converts a PNG file to JPEG format:

require 'rubygems'
require 'RMagick'

img = Magick::Image.read('myimage.png').first
img.write('myimage.jpg')

Discussion
As seen in the previous two recipes, Magick::Image.read receives the PNG image and
returns an array of Image objects, from which we select the first and only image.

Figure 12-2. With a copyright message in the center of the image

416 | Chapter 12: Graphics and Other File Formats

RMagick lets us convert the file into a JPEG by simply changing the filename’s exten-
sion when we call the write method.

The underlying C library, ImageMagick or GraphicsMagick, has three ways of deter-
mining the format of image files:

• Checking an explicitly specified format prefix: for example, “GIF:myimage.jpg”
indicates that the file myimage contains a GIF image, even though the file exten-
sion says otherwise.

• Looking inside the file for a “magic number”, a set of bytes that indicates the
format.

• Checking the file extension: for example, “myphoto.gif” is presumably a GIF
file.

Although the format prefix takes precedence over the magic number, RMagick won’t
be fooled by an incorrect prefix. Eventually it will have to parse the image file, and
the format mismatch will be revealed:

Magick::Image.read("JPG:myimage.png")
Magick::ImageMagickError: Not a JPEG file: starts with 0x89 0x50 `myimage.png':

When you write an image to an output file, you can choose the output format by
specifying a file extension or a prefix.

img = Magick::Image.read("myimage.png").first
img.write("myimage.jpg") # Writes a JPEG
img.write("myimage.gif") # Writes a GIF
img.write("JPG:myimage") # Writes a JPEG
img.write("JPG:myimage.gif") # Writes a JPEG

You can also get or set the file format of an image by calling the Image#format or
Image#format= methods:

img.format # => "PNG"
img.format = "GIF"
img.format # => "GIF"

Of course, RMagick can’t read to and write from every graphical file format in exist-
ence. How can you tell whether your version of RMagick knows how to write a par-
ticular file format?

You can query RMagick’s capabilities by calling Magick.formats. This method
returns a hash that maps an image format to a four-character code:

Magick.formats["GIF"] # => "*rw+"
Magick.formats["JPG"] # => "*rw-"
Magick.formats["AVI"] # => "*r--"
Magick.formats["PS"] # => " rw+"

The code represents the things that RMagick can do with that file format:

• The first character is an asterisk if RMagick has native blob support for that for-
mat. If not, the first character is a space. RMagick can convert most image formats

12.4 Graphing Data | 417

into a generic string format (with Image#to_blob) that can be stored in the data-
base as a BLOB and converted back into an Image object with Image.from_blob.

• The second character is “r” if RMagick knows how to read files in that format.
Otherwise, it’s a minus sign.

• The third character is “w” if RMagick knows how to write files in that format.
Otherwise, it’s a minus sign.

• The final character is “+” if RMagick knows how to cram multiple images into a
single file (as in an animated GIF).

Here’s a little bit of metaprogramming that adds four predicate methods to Magick,
one for each element of the four-character code. You can use these methods instead
of parsing the code string:

module Magick
 [["native_blob?", ?*], ["readable?", ?r],
 ["writable?", ?w], ["multi_image?", ?+]].each_with_index do |m, i|
 define_method(m[0]) do |format|
 code = formats[format]
 return code && code[i] == m[1]
 end
 module_function(m[0])
 end
end

This code demonstrates that the GIF file format supports multi-image files, but the
JPG format doesn’t:

Magick.multi_image? 'GIF' # => true
Magick.multi_image? 'JPG' # => false

ImageMagick and GraphicsMagick support the most common image formats (over 90
in total). However, they delegate support for many of these formats to external
libraries or programs, which you may need to install separately. For instance, to read
or write Postscript files, you’ll need to have the Ghostscript program installed.

See Also
• RMagick Documentation (http://studio.imagemagick.org/RMagick/doc/)

• List of supported ImageMagick formats (http://www.imagemagick.org/script/
formats.php)

12.4 Graphing Data

Problem
You want to convert a bunch of data into a graph; usually a line chart, bar chart, or
pie chart.

418 | Chapter 12: Graphics and Other File Formats

Solution
Use the Gruff library, written by Geoffrey Grosenbach. Install the gruff gem and
build a Gruff object corresponding to the type of graph you want (for instance,
Gruff::Line, Gruff::Bar, or Gruff::Pie). Add a dataset to the graph by passing data a
label and an array of data points.

Here’s code to create a graph that compares the running times of different sorts of
algorithms:

require 'rubygems'
require 'gruff'

g = Gruff::Line.new(600) # The graph will be 600 pixels wide.
g.title = 'Algorithm running times'
g.theme_37signals # The best-looking theme, in my opinion.

range = (1..101)
g.data('Constant', range.collect { 1 })
g.data('O(log n)', range.collect { |x| Math::log(x) / Math::log(2) })
g.data('O(n)', range.collect { |x| x })
g.data('O(n log n)', range.collect { |x| x * Math::log(x) / Math::log(2) })

g.labels = {10 => 'n=10', 50 => 'n=50', 100 => 'n=100' }
g.write('algorithms.png')

Figure 12-3 shows the graph it produces.

Figure 12-3. A line chart

12.4 Graphing Data | 419

Here’s code to create a pie chart (shown in Figure 12-4). Note that the numbers
given for the datasets don’t have to add up to 100. Gruff automatically scales the the
pie chart to display the right proportions.

p = Gruff::Pie.new
p.theme_monochrome
p.title = "Survey: the value of pi"
p.data('"About three"', [3])
p.data('3.14', [8])
p.data('3.1415', [11])
p.data('22/7', [8])

p.write('pipie.png')

Discussion
Most of the time, programmers who need a graphing library need a simple graphing
library: one that lets them easily produce a quick pie, line, or bar graph. Gruff works
well for graphing simple datasets, but it doesn’t have the functionality of a full-
fledged math program.

Gruff’s interface for customizing the display of datasets also leaves something to be
desired. Instead of letting you tweak the colors individually, it provides a number of

Figure 12-4. A pi chart

420 | Chapter 12: Graphics and Other File Formats

themes that package together a background image, a text color, and a number of col-
ors used in the graphs. Unfortunately, most of the provided themes are ugly (theme_
37signals is pretty nice, though).

Here’s a custom theme that makes monochrome graphs whose “colors” can be fairly
easily distinguished. It takes advantage of the fact that it’s easy to distinguish dark
shades of gray from light shades, and that lighter shades are more easily distinguish-
able from one another. The graphs in this recipe were actually created with this
theme_monochrome, so that the “colors” would be more easily distinguishable in a
printed book.

class Gruff::Base
 def theme_monochrome
 reset_themes
 @colors = "6E9C7ADB".scan(/./).collect { |c| "##{c * 6}"}
 @marker_color = 'black'
 @base_image = render_gradiated_background('white', 'white')
 end
end

This code adds writer methods for the various colors, letting you modify the current
theme on an ad hoc basis. colors sets the colors used to differentiate datasets from each
other. marker_color method sets the color of the title and axis labels. background sets the
background to a solid color, or to a gradient between two colors.

class Gruff::Base
 def colors=(colors)
 @colors = colors
 end

 def marker_color=(color)
 @marker_color = color
 end

 def background=(color1, color2=nil)
 color2 ||= color1
 @base_image = render_gradiated_background(color1, color2)
 end
end

See Also
• The Gruff homepage (http://nubyonrails.topfunky.com/pages/gruff)

• A couple of other Ruby graphing libraries deserve mention:

• MRPlot is useful for plotting mathematical functions; its default implemen-
tation works on top of RMagick (http://harderware.bleedingmind.com/index.
php?l=en&p=mrplot)

• The SVG::Graph library doesn’t need any external libraries and produces
beautiful SVG graphs; unfortunately, not many programs have support for

12.5 Adding Graphical Context with Sparklines | 421

SVG graphics, although newer versions of Firefox do (http://www.germane-
software.com/software/SVG/SVG::Graph/)

12.5 Adding Graphical Context with Sparklines

Problem
You want to display a small bit of statistical context—a trend or a set of percent-
ages—in the middle of a piece of text, without breaking up the flow of the text.

Solution
Install the sparklines gem (written by Geoffrey Grosenbach) and create a sparkline:
a tiny embedded graphic that can go next to a piece of text without being too intru-
sive. If you’re creating an HTML page, the image doesn’t even need to have its own
file: it can be embedded directly in the HTML.

This code creates a sparkline for a company’s stock price, and embeds it in HTML
after the company’s stock symbol:

require 'rubygems'
require 'sparklines'
require 'base64'

def embedded_sparkline
 %{}
end

This method scales data so that the smallest item becomes 0 and the
largest becomes 100.
def scale(data)
 min, max = data.min, data.max
 data.collect { |x| (x - min) / (max - min) * 100}
end

Randomly generate closing prices for the past month.
prices = [rand(10)]
30.times { prices << prices.last + (rand - 0.5) }

Generate HTML containing a stock graph as an embedded sparkline.
sparkline = embedded_sparkline { Sparklines.plot(scale(prices)) }
open('stock.html', 'w') do |f|
 f << "Is EvilCorp (NASDAQ:EVIL #{sparkline}) poised for a comeback?"
end

This code generates HTML that renders as shown in Figure 12-5.

Figure 12-5. A stock price history sparkline

422 | Chapter 12: Graphics and Other File Formats

Since it has no labels, the meaning of the sparkline must be determined from con-
text. In this case, the graphic follows a stock symbol, so you can guess that it graphs
the stock price. In a different context, the sparkline for EvilCorp might be the com-
pany’s reported earnings over time, or the results of a poll that tracks public opinion
of the company.

Embedded sparklines won’t show up in Internet Explorer, but if you’re using Rails
you can use the sparklines_generator gem to put cross-browser sparklines in your
views.

Discussion
Sparklines are a way of graphically conveying information that would take lots of
text to explain. They were invented by interface expert Edward Tufte, who describes
them as “intense, simple, word-sized graphics.” As implemented in the Ruby Spar-
klines library, a sparkline displays a small graph that shows a set of related numbers
or a single percentage.

Sparklines are especially useful for annotating text with statistical summaries. We
humans are visual creatures: when we read a text with sparklines, we come away with
a better feel for the underlying numbers because we can visualize them as we read.

Sparklines are good at showing trends and making anomalies obvious. With spark-
lines, you can distinguish a winning sports team from a losing one at a glance, or
notice an abnormally large expense report. Since neither the sparklines nor their axes
are labelled, sparklines are not so good at displaying multifaceted information or
absolute quantities.

Because sparklines show trends better than absolute values, it’s often useful to scale
your data so that it takes up the entire width of the sparkline (as in the stock price
examples). But if you want to compare two sparklines to each other (for instance, to
compare the stock prices of two companies), you shouldn’t scale the data.

The Sparklines library can create several types of graph. Here’s some code that anno-
tates a politician’s stump speech with small pie charts representing polling data.
Only two colors are allowed in a sparklines pie chart: we’ll choose a dark color to
represent the percentage of people who agree with a statement, and a light color to
represent the percentage who disagree. At a glance, the politician can see which parts
of the speech are working and which need to be retooled.

agree_percentages = [55, 71, 44, 55, 81, 68]

speech = %{This country faces a crisis and a crossroads. %s Our taxes
are too high %s and our poodles are too well-groomed. %s Our children
learn less in school %s and listen to louder music at home. %s The
Internet scares me. %s}

open('speech.html', 'w') do |f|
 sparklines = agree_percentages.collect do |p|

12.5 Adding Graphical Context with Sparklines | 423

 embedded_sparkline do
 Sparklines.plot([p], :type => 'pie', :remain_color => 'pink',
 :share_color=>'blue',
 :background_color=>'transparent')
 end
 end
 f << speech % sparklines
end

The resulting HTML file renders as shown in Figure 12-6.

The result of Sparklines.plot is a binary string containing an image in PNG format.
The string can be written to a PNG file on disk, or it can be encoded with the Base64
library and embedded into a web page. The total size of speech.html, with six
embedded sparklines, is about six kilobytes. Unfortunately, the Internet Explorer
browser doesn’t support the trick that lets you embed small images into a web page.

Sparklines in Rails Views

If you’re using Rails, you can install the sparklines_generator gem on top of
sparklines. This gem provides a controller and a helper that let you incorporate
sparklines into your views, without having to worry about encoding the files or being
incompatible with IE.

To add sparklines to your application, run this command to give yourself a spar-
klines controller:

$./script/generate sparklines
 create app/controllers/sparklines_controller.rb
 create app/helpers/sparklines_helper.rb

Add a require 'sparklines' statement to your config/environment.rb file, and call
helper :sparklines from any controllers in which you want to use sparklines. You
can then call the sparkline_tag method from within your views.

A view that renders part of an annotated speech might look like this:

This country faces a crisis and a crossroads.

<%= sparkline_tag [55, 10, 10, 20, 30], :type => "pie", :remain_color=>"pink",
:share_color => "blue", :background_color => "transparent" %>

Figure 12-6. A speech, annotated with poll result sparklines

424 | Chapter 12: Graphics and Other File Formats

That view generates HTML that looks like this:

This country faces a crisis and a crossroads.

<img
src="/sparklines?share_color=blue&remain_color=pink&results=55&type=pie&background_
color=transparent"
class="sparkline" alt="Sparkline Graph" />

Instead of embedding the sparkline within the HTML page (which won’t work in
IE), we call out to the sparklines controller, whose only purpose is to generate image
files of sparklines on demand. This image is displayed like any other external image
fetched through HTTP.

See Also
• The home page for the Sparklines library, which includes a tutorial on installa-

tion and use within Rails (http://nubyonrails.com/articles/2005/07/28/sparklines-
graph-library-for-ruby)

• The sparklines gem requires RMagick; a pure Ruby implementation with fewer fea-
tures is available (http://redhanded.hobix.com/inspect/sparklinesForMinimalists.html)

• Sparklines are described in Edward Tufte’s book, Beautiful Evidence (Graphics
Pr); you can see a version of the sparklines chapter from that book online (http://
www.edwardtufte.com/bboard/q-and-a-fetch-msg?msg_id=0001OR&topic_id=1)

12.6 Strongly Encrypting Data

Problem
You want to encrypt some data: to keep it private, or to keep it safe when sent
through an insecure medium like email.

Solution
There are at least two good symmetric-key cryptography libraries for Ruby: Pelle
Braendgaard’s EzCrypto (available as the ezcrypto gem) and Richard Kernahan’s
Crypt (a third-party download).

EzCrypto is a user-friendly Ruby wrapper around the OpenSSL library, which you
may need to install separately. Here’s how to encrypt and decrypt a string with
EzCrypto:

require 'rubygems'
require 'ezcrypto'

plaintext = '24.9195N 17.821E'

ezcrypto_key = EzCrypto::Key.with_password 'My secret key', 'salt string'
ezcrypto_ciphertext = ezcrypto_key.encrypt(plaintext)
=> "F\262\260\273\217\tR\351\362-\021-a\336\324Qc..."

12.6 Strongly Encrypting Data | 425

ezcrypto_key.decrypt(ezcrypto_ciphertext)
=> "24.9195N 17.821E"

The Crypt library gives each encryption algorithm its own class, so you need to
decide which you want to use. I’ll use the AES/Rijndael algorithm: all the other algo-
rithms have the same interface.*

require 'crypt/rijndael'

aes_key = Crypt::Rijndael.new('My secret key')
aes_cyphertext = aes_key.encrypt_string(plaintext)
=> "\e\003\203\030]\203\t\346..."

aes_key.decrypt_string(aes_cyphertext)
=> "24.9195N 17.821E"

Discussion
EzCrypto is available as a gem (ezcrypto), and it’s fast because the actual encryption
and decryption happens in the C OpenSSL libraries. Crypt is a pure Ruby implemen-
tation, so it’s slower, but you don’t have to worry about OpenSSL being installed.

EzCrypto and Crypt both implement several symmetric key algorithms. With
EzCrypto, you can also specify the algorithm to use when you create an EzCrypto
key. With Crypt, you need to instantiate the appropriate algorithm’s class:

EzCrypto example
blowfish_key = EzCrypto::Key.with_password('My secret password', 'salt string',
 :algorithm=>'blowfish')
Crypt example
require 'crypt/blowfish'
blowfish_key = Crypt::Blowfish.new('My secret password')

The Crypt classes provide some convenience methods for encrypting and decrypting
files and streams. The encrypt_file method takes two filenames: it reads from one
file, encrypts the data, and writes ciphertext to the other. The encrypt_stream
method is a little more general: it reads plaintext from one IO object and writes
ciphertext to the other.

All the algorithms supported by Crypt and EzCrypto are symmetric-key algorithms:
you must use the same key to encrypt and decrypt the data. This is simple when
you’re only encrypting data so that you can decrypt it later, but it’s not so simple
when you’re sending encrypted data to someone else. You need to securely share the
key with the other person ahead of time, or you need to use public-key algorithms
like the ones provided by the Ruby PKCS implementation.

* The Crypt::IDEA class works a little differently, but that algorithm is patented, so you shouldn’t use it
anyway.

426 | Chapter 12: Graphics and Other File Formats

There was some controversy about whether this recipe should even be included in
this Cookbook. A little knowledge is a dangerous thing, and a little is all we can
impart in the space we have for a recipe. Simply using an encryption algorithm won’t
automatically make your data secure. It won’t be secure if you use a lousy password
(like, say, “My secret password”, as in the examples above).

Further, your data won’t be secure if you store your keys on disk the wrong way. It
won’t be secure if your computer doesn’t have a reliable enough source of random
numbers. When you prompt the user for their password, the operating system might
pick that moment to swap to disk the chunk of memory that contains the password,
where an attacker could find it. Even experts frequently make mistakes when they’re
writing cryptography code.

That said, a strong encryption algorithm is better than a weak one, and trying to
write your own algorithm is just about the worst mistake you can make. All we ask
that you be careful. Instead of worrying about writing an algorithm to encrypt your
data, get a book on security and focus your efforts on making sure you use the exist-
ing algorithms correctly.

See Also
• Download the Crypt library from http://crypt.rubyforge.org/, and install it by

running ruby install.rb

• The EzCrypto documentation (http://ezcrypto.rubyforge.org/)

• The Ruby OpenSSL project (http://www.nongnu.org/rubypki/)

• The Ruby PKCS project homepage (http://dev.ctor.org/pkcs1)

12.7 Parsing Comma-Separated Data

Problem
You have a plain-text string in a comma-delimited format. You need to parse this
string, either to build a data structure or to perform some operation on the data and
write it back out.

Solution
The built-in csv library can parse most common character-delimited formats. The
FasterCSV library, available as the fastercsv gem, improves on csv’s performance
and interface. I’ll show you both, but I recommend fastercsv unless you can’t use
any software at all outside the standard library.

CSV::Reader.parse and FasterCSV.parse work the same way: they accept a string or
an open file as an argument, and yield each parsed row of the comma-delimited file

12.7 Parsing Comma-Separated Data | 427

as an array. The csv yields a Row object that acts like an array full of Column objects.
FasterCSV just yields an array of strings.

require 'csv'
primary_colors = "red,green,blue\nred,yellow,blue"

CSV::Reader.parse(primary_colors) { |row| row.each { |cell| puts cell }}
red
green
blue
red
yellow
blue

require 'rubygems'
require 'faster_csv'
shakespeare = %{Sweet are the uses of adversity,As You Like It
"We few, we happy few",Henry V
"Seems, madam! nay it is; I know not ""seems.""",Hamlet}

FasterCSV.parse(shakespeare) { |row| puts "'#{row[0]}' -- #{row[1]}"}
'Sweet are the uses of adversity' -- As You Like It
'We few, we happy few' -- Henry V
'Seems, madam! nay it is; I know not "seems."' -- Hamlet

Discussion
Comma-delimited formats are among the most basic portable file formats. Unfortu-
nately, they’re also among the least standardized. There are many different formats,
and some are internally inconsistent.

FasterCSV and the csv library can’t parse every comma-delimited format, but they
will parse common formats like the one used by Microsoft Excel, and they’re your
best tool for making sense of the myriad.

FasterCSV and csv both model a comma-delimited file as a nested array of strings. The
csv library’s CSV class uses Row objects and Column objects instead of arrays and strings,
but it’s the same idea. The terminology is from the spreadsheet world—understand-
ably, since a CSV file is a common way of portably storing spreadsheet data.

The complications begin when the spreadsheet cells themselves contain commas or
newlines. The standard way to handle this when exporting to comma-delimited for-
mat is to surround those cells with double quotes. Then the question becomes what
to do with cells that contain double-quote characters. Both Ruby CSV libraries
assume that double-quote characters are escaped by doubling, turning each " into "",
as in the Hamlet quotation:

%{"Seems, madam! nay it is; I know not ""seems.""",Hamlet}

428 | Chapter 12: Graphics and Other File Formats

If you’re certain that there are no commas or newlines embedded in your data, and
thus no need for quote handling, you can use String#split to parse delimited
records more quickly than csv. To output to this format, you can use Array#join:

def parse_delimited_naive(input, fieldsep=',', rowsep="\n")
 input.split(rowsep).inject([]) do |arr, line|
 arr << line.split(fieldsep)
 end
end

def join_delimited_naive(structure, fieldsep=',', rowsep="\n")
 rows = structure.inject([]) do |arr, parsed_line|
 arr << parsed_line.join(fieldsep)
 end
 rows.join(rowsep)
end

parse_delimited_naive("1,2,3,4\n5,6,7,8")
=> [["1", "2", "3", "4"], ["5", "6", "7", "8"]]

join_delimited_naive(parse_delimited_naive("1,2,3,4\n5,6,7,8"))
=> "1,2,3,4\n5,6,7,8"

parse_delimited_naive('1;2;3;4|5;6;7;8', ';', '|')
=> [["1", "2", "3", "4"], ["5", "6", "7", "8"]]

parse_delimited_naive('1,"2,3",4')
=> [["1", ""2", "3"", "4"]]

This is not recommended unless you wrote all the relevant code yourself, or can manu-
ally inspect the code as well as the dataset. Just because you haven’t seen any quoted
cells yet doesn’t mean there won’t be any in the future. When in doubt, use csv or
fastercsv. Handwritten CSV generators and parsers are a leading cause of bad data.

To create a comma-delimited file, open an output file with CSV.open or FasterCSV.
open, and append a series of arrays to the resulting file-like object. Every array you
append will be converted to a comma-delimited row in the destination file.

data = [[1,2,3],['A','B','C'],['do','re','mi']]

writer = FasterCSV.open('first3.csv', 'w')
data.each { |x| writer << x }
writer.close
puts open('first3.csv').read()
1,2,3
A,B,C
do,re,mi

data = []
FasterCSV.foreach('first3.csv') { |row| data << row }
data
=> [["1", "2", "3"], ["A", "B", "C"], ["do", "re", "mi"]]

12.8 Parsing Not-Quite-Comma-Separated Data | 429

See Also
• The FasterCSV documentation (http://fastercsv.rubyforge.org/)

• Chapter 11

12.8 Parsing Not-Quite-Comma-Separated Data

Problem
You need to parse a plain-text string or file that’s in a format similar to comma-
delimited format, but its delimiters are some strings other than commas and newlines.

Solution
When you call a CSV::Reader method, you can specify strings to act as a row separator
(the string between each Row) and a field separator (the string between each Column).
You can do the same with simulated keyword arguments passed into FasterCSV.parse.
This should let you parse most formats similar to the comma-delimited format:

require 'csv'

pipe_separated="1|2ENDa|bEND"

CSV::Reader.parse(pipe_separated, '|', 'END') { |r| r.each { |c| puts c } }
1
2
a
b

require 'rubygems'
require 'faster_csv'
FasterCSV.parse(pipe_separated, :col_sep=>'|', :row_sep=>'END') do |r|
 r.each { |c| puts c }
end
1
2
a
b

Discussion
Value-delimited formats tend to differ along three axes:

• The field separator (usually a single comma)

• The row separator (usually a single newline)

• The quote character (usually a double quote)

Like Reader methods, Writer methods accept custom values for the field and row
separators.

430 | Chapter 12: Graphics and Other File Formats

data = [[1,2,3],['A','B','C'],['do','re','mi']]

open('first3.csv', 'w') do |output|
 CSV::Writer.generate(output, ':', '-END-') do |writer|
 data.each { |x| writer << x }
 end
end
open('first3.csv') { |input| input.read() }
=> "1:2:3-END-A:B:C-END-do:re:mi-END-"

FasterCSV.open('first3.csv', 'w', :col_sep=>':', :row_sep=>'-END-') do |output|
 data.each { |x| output << x }
end
open('first3.csv') { |input| input.read() }
=> "1:2:3-END-A:B:C-END-do:re:mi-END-"

It’s rare that you’ll need to override the quote character, and neither csv nor
fastercsv will let you do it. Both libraries’ quote characters are hardcoded to the
double-quote character. If you need to parse a format that has different quote charac-
ter, the simplest thing to do is subclass FasterCSV and override its init_parsers
method.

Change the regular expression assigned to @parsers[:csv_row], replacing all double
quotes with the quote character you want. The most common alternate quote char-
acter is the single quote: to get that, you’d have an init_parsers method like this:

class MyFasterCSV < FasterCSV
 def init_parsers(options)
 super
 @parsers[:csv_row] =
 / \G(?:^|#{Regexp.escape(@col_sep)}) # anchor the match
 (?: '((?>[^']*)(?>''[^']*)*)' # find quoted fields
 | # ... or ...
 ([^'#{Regexp.escape(@col_sep)}]*) # unquoted fields
)/x
 end
end
MyFasterCSV.parse("1,'2,3',4") { |r| puts r }
1
2,3
4

Some value-delimited files are simply corrupt: they were generated by programs that
didn’t think to escape quote marks or to quote cells with embedded delimiters. Nei-
ther csv nor fastercsv can parse these files, because they’re ambiguous or invalid.

missing_quotes=%{20051002, Alice says, "I saw that!"}
CSV::Reader.parse(missing_quotes) { |r| r.each { |c| puts c } }
CSV::IllegalFormatError: CSV::IllegalFormatError

unescaped_quotes=%{20051002, "Alice says, "I saw that!""}
FasterCSV.parse(unescaped_quotes) { |r| r.each { |c| puts c } }
FasterCSV::MalformedCSVError: Unclosed quoted field.

12.9 Generating and Parsing Excel Spreadsheets | 431

Your best strategy for dealing with this kind of file is to use regular expressions to
massage the data into a form that fastercsv can parse, or to parse it with
String#split and deal with any quoting problems afterwards. In either case, your
code will have to work with the particular quirks of the data you’re trying to parse.

See Also
• Recipe 12.7, “Parsing Comma-Separated Data”

12.9 Generating and Parsing Excel Spreadsheets

Problem
Your program needs to parse data from Excel spreadsheets, or generate new Excel
spreadsheets.

Solution
To generate Excel files, use the spreadsheet library, available as a third-party gem
(see the See Also section below for where to get it). With it you can create simple
Excel spreadsheets. As of this writing, spreadsheet does not support formulas or
large spreadsheets (seven megabytes is the limit).

This code creates an Excel spreadsheet containing some random numbers with a
total, and saves it to disk:

require 'rubygems'
require 'spreadsheet/excel'

SUM_SPREADSHEET = 'sum.xls'
workbook = Spreadsheet::Excel.new(SUM_SPREADSHEET)
worksheet = workbook.add_worksheet('Random numbers and their sum.')
sum = 0
random_numbers = (0..9).collect { rand(100) }
worksheet.write_column(0, 0, random_numbers)

format = workbook.add_format(:bold => true)
worksheet.write(10, 0, "Sum:", format)
worksheet.write(10, 1, random_numbers.inject(0) { |sum, x| sum + x })
workbook.close

To parse an Excel file, use the parseexcel library, also available as a third-party
download. It can parse simple data out of the Excel file format. This code parses the
Excel file generated by the previous code:

require 'parseexcel/parser'
workbook = Spreadsheet::ParseExcel::Parser.new.parse(SUM_SPREADSHEET)

worksheet = workbook.worksheet(0)
sum = (0..9).inject(0) do |sum, row|

432 | Chapter 12: Graphics and Other File Formats

 sum + worksheet.cell(row, 0).value.to_i
end

worksheet.cell(10, 0).value # => "Sum:"
worksheet.cell(10, 1).value # => 602.0
sum # => 602

Like spreadsheet, parseexcel doesn’t recognize spreadsheet formulas.

Discussion
The comma-separated file is the lingua franca for spreadsheet data, but sometimes
you must deal with real spreadsheet files. You can save other people’s time by
accepting their Excel spreadsheets as input, instead of insisting they convert every-
thing to CSV for you. And nothing impresses manager types like an automatically
generated spreadsheet file they can poke at.

The spreadsheet and parseexcel libraries are only suitable for creating or parsing sim-
ple spreadsheets: more or less the ones that export well to comma-delimited format. If
you want to handle more complex Excel files from Ruby, you have a couple options.
The POI Java library can write various Microsoft Office files, and it has Ruby bindings.
If you’re running on a Windows computer that has Excel installed, you can use Ruby’s
built-in win32ole library to communicate with the Excel installation.

Hopefully this will be fixed by the time you read this, but just in case: spreadsheets
generated with spreadsheet may show up as black-on-black in some spreadsheet pro-
grams (Gnumeric is one). This is because spreadsheet generates workbooks with a
default format that specifies no background color. So each spreadsheet program uses
its default color, and some of them make unfortunate choices. Here’s a subclass of
Workbook that specifies default text and background colors, so that you don’t end up
with a black-on-black spreadsheet:

class ExcelWithBackground < Spreadsheet::Excel
 def initialize(*args)
 super(*args)
 @format = Format.new(:bg_color => 'white', :fg_color => 'black')
 end
end

workbook = ExcelWithBackground.new(SUM_SPREADSHEET)
...

See Also
• You can download parseexcel from http://download.ywesee.com/parseexcel/

• The spreadsheet homepage is at http://rubyspreadsheet.sourceforge.net/; it’s avail-
able as a gem (http://prdownloads.sourceforge.net/rubyspreadsheet/), but since it’s
not hosted on RubyForge, you can’t just install it with gem install spreadsheet-
excel: you must download the gem and run gem install on the local gem file

12.10 Compressing and Archiving Files with Gzip and Tar | 433

• POI (http://jakarta.apache.org/poi/index.html) and its Ruby bindings (http://
jakarta.apache.org/poi/poi-ruby.html)

• Information on scripting Excel in Ruby (http://www.rubygarden.org/
ruby?ScriptingExcel)

• The “Ruby and Microsoft Windows” chapter in the Pickaxe Book—Program-
ming Ruby by Dave Thomas, with Chad Fowler and Andy Hunt (Pragmatic
Bookshelf)

12.10 Compressing and Archiving Files
with Gzip and Tar

Problem
You want to write compressed data to a file to save space, or uncompress the con-
tents of a compressed file. If you’re compressing data, you might want to compress
multiple files into a single archive file.

Solution
The most common compression format on Unix systems is gzip. Ruby’s zlib library
lets you read to and write from gzipped I/O streams as though they were normal
files. The most useful classes in this library are GzipWriter and GzipReader.*

Here’s GzipWriter being used to create a compressed file, and GzipReader decom-
pressing the same file:

require 'zlib'

file = 'compressed.gz'
Zlib::GzipWriter.open(file) do |gzip|
 gzip << "For my next trick, I'll be written to a compressed file."
 gzip.close
end

open(file, 'rb') { |f| f.read(10) }
=> "\037\213\010\000\201\2766D\000\003"

Zlib::GzipReader.open(file) { |gzip| gzip.read }
=> "For my next trick, I'll be written to a compressed file."

* The compressed strings in these examples are actually larger than the originals. This is because I used very
short strings to save space in the book, and short strings don’t compress well. Any compression technique
introduces some overhead; with gzip, you don’t actually save any space by compressing a text string of less
than about 100 bytes.

434 | Chapter 12: Graphics and Other File Formats

Discussion
GzipWriter and GzipReader are most commonly used to write to files on disk, but you
can wrap any file-like object in the appropriate class and automatically compress
everything you write to it, or decompress everything you read from it.

The following code works the same way as the compression code in the Solution, but
it’s more flexible: the File object that’s passed into the Zlib::GzipWriter construc-
tor could just as easily be a Socket or other file-like object.

open('compressed.gz', 'wb') do |file|
 gzip = Zlib::GzipWriter.new(file)
 gzip << "For my next trick, I'll be written to a compressed file."
 gzip.close
end

If you need to compress or decompress a string, use the Zlib::Deflate or Zlib::Inflate
classes rather than constructing a StringIO object:

deflated = Zlib::Deflate.deflate("I'm a compressed string.")
=> "x\234\363T\317UHTH..."
Zlib::Inflate.inflate(deflated)
=> "I'm a compressed string."

Tar files

Gzip compresses a single file. What if you want to smash multiple files together into
a single archive file? The standard archive format for Unix is tar, and tar files are
sometimes called tarballs. A tarball might also be compressed with gzip to save
space, but on Unix the archiving and the compression are separate steps (unlike on
Windows, where a ZIP file both archives multiple files and compresses them).

The Minitar library is the simplest way to create tarballs in pure Ruby. It’s available
as the archive-tar-minitar gem.*

Here’s some code that creates a tarball containing two files and a directory. Note the
Unix permission modes (0644, 0755, and 0600). These are the permissions the files
will have when they’re extracted, perhaps by the Unix tar command.

require 'rubygems'
require 'archive/tar/minitar'

open('tarball.tar', 'wb') do |f|
 Archive::Tar::Minitar::Writer.open(f) do |w|

* The RubyGems package defines the Gem::Package::TarWriter and Gem::Package::TarReader classes, which
expose an interface similar to Minitar’s. You can use these classes if you’re fanatical about minimizing your
dependencies, but I don’t recommend it. These classes only implement the bare-bones functionality neces-
sary to pack and unpack gem-like tarballs, and they also make your code look like it has something to do
with RubyGems.

12.10 Compressing and Archiving Files with Gzip and Tar | 435

w.add_file('file1', :mode => 0644, :mtime => Time.now) do |stream, io|
 stream.write('This is file 1.')
 end

w.mkdir('subdirectory', :mode => 0755, :mtime => Time.now)

w.add_file('subdirectory/file2', :mode => 0600,
 :mtime => Time.now) do |stream, io|
 stream.write('This is file 2.')
 end
 end
end

Here’s a method that reads a tarball and print out its contents:

def browse_tarball(filename)
 open(filename, 'rb') do |f|
 Archive::Tar::Minitar::Reader.open(f).each do |entry|
 puts %{I see a file "#{entry.name}" that's #{entry.size} bytes long.}
 end
 end
end

browse_tarball('tarball.tar')
I see a file "file1" that's 15 bytes long.
I see a file "subdirectory" that's 0 bytes long.
I see a file "subdirectory/file2" that's 15 bytes long.

And here’s a simple method for archiving a number of disk files into a compressed
tarball. Note how the Minitar Writer is wrapped within a GzipWriter, which auto-
matically compresses the data as it’s written. Minitar doesn’t have to know about the
GzipWriter, because all file-like objects look more or less the same.

def make_tarball(destination, *paths)
 Zlib::GzipWriter.open(destination) do |gzip|
 out = Archive::Tar::Minitar::Output.new(gzip)
 paths.each do |file|
 puts "Packing #{file}"
 Archive::Tar::Minitar.pack_file(file, out)
 end
 out.close
 end
end

This code creates some files and tars them up:

Dir.mkdir('colors')
paths = ['colors/burgundy', 'colors/beige', 'colors/clear']
paths.each do |path|
 open(path, 'w') do |f|
 f.puts %{This is a dummy file.}
 end
end

make_tarball('new_tarball.tgz', *paths)

436 | Chapter 12: Graphics and Other File Formats

Packing colors/burgundy
Packing colors/beige
Packing colors/clear
=> #<File:new_tarball.tgz (closed)>

See Also
• On Windows, both compression and archiving are usually handled with ZIP

files; see the next recipe, Recipe 12.11, “Reading and Writing ZIP Files,” for
details

• Recipe 14.3, “Customizing HTTP Request Headers,” uses zlib to decompress the
gzipped body of a response from a web server

12.11 Reading and Writing ZIP Files

Problem
You want to create or examine a ZIP archive from within Ruby code.

Solution
Use the rubyzip gem. Its Zip module gives you several ways of putting files into ZIP
archives, and taking them out again. The simplest interface is the Zip::
ZipFileSystem, which duplicates most of the File and Dir operations within the con-
text of a ZIP file. You can use this to create ZIP files:

require 'rubygems'
require 'zip/zipfilesystem'

Zip::ZipFile.open('zipfile.zip', Zip::ZipFile::CREATE) do |zip|
 zip.file.open('file1', 'w') { |f1| f1 << 'This is file 1.' }
 zip.dir.mkdir('subdirectory')
 zip.file.open('subdirectory/file2', 'w') { |f1| f1 << 'This is file 2.' }
end

You can use the same interface to read a ZIP file. Here’s a method that uses the
equivalent of Dir#foreach to recursively print out the contents of a ZIP file:

def process_zipfile(zip, path='')
 if zip.file.file? path
 puts %{#{path}: "#{zip.read(path)}"}
 else
 unless path.empty?
 path += '/'
 puts path
 end
 zip.dir.foreach(path) do |filename|
 process_zipfile(zip, path + filename)
 end
 end
end

12.12 Reading and Writing Configuration Files | 437

And here it is running against the ZIP file I just created:

Zip::ZipFile.open('zipfile.zip') do |zip|
 process_zipfile(zip)
end
subdirectory/
subdirectory/file2: "This is file 2."
file1: "This is file 1."

Discussion
ZIP, or PKZip, is the most popular compression format on Windows. As seen in the
previous recipe, Unix separates the tasks of stuffing several files into a single archive
(tar), and compressing the resulting file (gzip). On Windows, ZIP files perform both
tasks. If you want to compress a single file, you need to put it into a ZIP file all by itself.

The rubyzip library provides several interfaces for creating and reading ZIP files.
Zip::ZipFileSystem is the easiest for most programmers: in the example above,
zip.file has about the same interface as the File class, and zip.dir is similar to the Dir
class. The analogy holds because a ZIP file actually contains a tiny filesystem inside it.*

If you’re porting Java code, or you’re already familiar with Java’s java.util.zip
library, you might prefer the Zip::ZipFile class. It more or less duplicates Java’s
ZipFile class in a Ruby idiom. Here it is being used to create the same ZIP file I cre-
ated in the Solution:

Zip::ZipFile.open('zipfile2.zip', Zip::ZipFile::CREATE) do |zip|
 zip.get_output_stream('file1') { |f| f << 'This is file 1.' }
 zip.mkdir('subdirectory')
 zip.get_output_stream('subdirectory/file2') { |f| f << 'This is file 2.' }
end

See Also
• The RDoc for the rubyzip gem (http://rubyzip.sourceforge.net/)

12.12 Reading and Writing Configuration Files

Problem
You want to store your application’s configuration on disk, in a format parseable by
Ruby but easily editable by someone with a text editor.

* This is how Windows XP’s Explorer can let you browse a ZIP file as though it were a directory tree.

438 | Chapter 12: Graphics and Other File Formats

Solution
Put your configuration into a data structure, and write the data structure to disk as
YAML. So long as you only use built-in Ruby data types (strings, numbers, arrays,
hashes, and so on), the YAML file will be human-readable and -editable.

require 'yaml'
configuration = { 'color' => 'blue',
 'font' => 'Septimus',
 'font-size' => 7 }
open('text.cfg', 'w') { |f| YAML.dump(configuration, f) }

open('text.cfg') { |f| puts f.read }

font-size: 7
color: blue
font: Septimus

open('text.cfg') { |f| YAML.load(f) }
=> {"font-size"=>7, "color"=>"blue", "font"=>"Septimus"}

It’s easy for a user to edit this: it’s just a colon-separated, line-delimited set of key
names and values. Not a problem, even for a relatively unsophisticated user.

Discussion
YAML is a serialization format, designed to store data structures to disk and read
them back later. But there’s no reason why the data structures can’t be modified by
other programs while they’re on disk. Since simple YAML files are human-editable,
they make good configuration files.

A YAML file typically contains a single data structure. The most common structures
for configuration data are a hash (seen in the Solution) and an array of hashes.

configuration = [{ 'name' => 'Alice', 'donation' => 50 },
 { 'name' => 'Bob', 'donation' => 15, 'currency' => "EUR" }]
open('donors.cfg', 'w') { |f| YAML.dump(configuration, f) }
open('donors.cfg') { |f| puts f.read }

- name: Alice
donation: 50
- name: Bob
donation: 15
currency: EUR

In Recipe 5.1 we advise saving memory by using symbols as hash keys instead of
strings. If your hash is going to be converted into human-editable YAML, you should
always use strings. Otherwise, people editing the YAML may become confused.
Compare the following two bits of YAML:

puts { 'measurements' => 'metric' }.to_yaml

measurements: metric

12.13 Generating PDF Files | 439

puts { :measurements => :metric }.to_yaml

:measurements: :metric

Outside the context of a Ruby program, the symbol :measurements is too easy to con-
fuse with the string “:measurements”.

See Also
• Recipe 13.1, “Serializing Data with YAML”

12.13 Generating PDF Files

Problem
You want to create a text or graphical document as a PDF, where you have complete
control over the layout.

Solution
Use Austin Zeigler’s PDF::Writer library, available as the pdf-writer gem. Its API
gives you fine-grained control over the placement of text, images, and shapes.

This code uses PDF::Writer to produce a simple flyer with an image and a border
(Figure 12-7). It assumes you’ve got a graphic called sue.png to insert into the
document:

Figure 12-7. The flyer

440 | Chapter 12: Graphics and Other File Formats

require 'rubygems'
require 'pdf/writer' # => false

Putting "false" on the next line suppresses a huge output dump when
you run this code in irb.
pdf = PDF::Writer.new; false

pdf.text("LOST\nDINOSAUR", :justification => :center, :font_size => 42,
 :left => 50, :right => 50)
pdf.image("sue.png", :left=> 100, :justification => :center, :resize => 0.75)
pdf.text(%{Three-year-old <i>Tyrannosaurus rex</i>\nSpayed\nResponds to "Sue"},
 :left => 80, :font_size => 20, :justification => :left)
pdf.text("(555) 010-7829", :justification => :center, :font_size => 36)

pdf.rectangle(pdf.left_margin + 25, pdf.y-25,
 pdf.margin_width-50, pdf.margin_height-pdf.y+50).stroke; false

pdf.save_as('flyer.pdf')

Discussion
So long as you’re only calling Writer#text and Writer#image, PDF generation is easy.
PDF automatically adds new text and images to the bottom of the current text, creat-
ing new pages as needed.

It gets tricky when you want to do something more complex, like draw shapes. Then
you need to specify the placement and dimensions in coordinates.

Take as an example the Writer#rectangle call in the Solution:

pdf.rectangle(pdf.left_margin, pdf.y-25,
 pdf.margin_width, pdf.margin_height-pdf.y+25).stroke

The first two arguments are coordinates: the left edge of the rectangle and the bot-
tom edge of the rectangle. The second two arguments are the width and height of the
rectangle.

The width is simple enough: my box starts at the left margin and its width is pdf.
margin_width user space units.* That is, my box takes up the entire width of the page
except for the margin. The height is a little more tricky, because I do my own mar-
gins (25 user space units above and below the text), and because PDF coordinates
start from the bottom-left of the page, not the top-left. Think of a Cartesian plane:
the point (0,0) is below the point (0,1) and left of the point (1,0). That’s how it is on
a PDF page.

Writer#y gives you the current position of the PDF::Writer “cursor:” the y-coordinate
of the space directly under the most recently added text or image. I use this to place
the bottom of the box just under the text.

* A PDF user space unit is 1/72 of an inch.

12.13 Generating PDF Files | 441

If you want to generate many PDF documents from a template, you don’t need to gener-
ate the whole document from scratch each time. You can create a PDF::Writer contain-
ing the skeleton of a document (say, just the corporate letterhead), then use Marshal.
dump to save it to a binary string. You can then use Marshal.load as many times as neces-
sary to get new documents, and fill in the blanks separately for each document.*

Here’s a Ruby class that generates personalized certificates of achievement. We gen-
erate the PDF ahead of time with generate_pdf, leaving a blank space for the name.
We can then fill in names by calling award_to. Instead of rerunning the PDF genera-
tion code every time, award_to copies the predefined PDF over and over again by
loading it from its marshalled format.

require 'rubygems'
require 'pdf/writer'

class Certificate

 def initialize(achievement)
 @without_name = Marshal.dump(generate_pdf(achievement))
 end

 def award_to(name)
 pdf = Marshal.load(@without_name)
 pdf.move_pointer(-225)
 pdf.text("<i>#{name}</i>", :font_size => 64,
 :justification => :center)
 return pdf
 end

 private
 def generate_pdf(achievement)
 pdf = PDF::Writer.new(:orientation => :landscape)
 pdf.info.title = "Certificate of Achievement"
 draw_border(pdf, 10, 12, 16, 18)
 draw_text(pdf, achievement)
 return pdf
 end

 def draw_border(pdf, *px_pos)
 px_pos.each do |px|
 pdf.rectangle(px, px, pdf.page_width - (px * 2),
 pdf.page_height - (px * 2)).stroke
 end
 end

 def draw_text(pdf, achievement)
 pdf.select_font "Times-Roman"

* Yes, this is kind of hacky. The best we can say is that the author of PDF::Writer himself recommends it (see
“Creating Printable Documents with Ruby,” cited in the following See Also section).

442 | Chapter 12: Graphics and Other File Formats

 pdf.text("\n", :font_size => 52)
 pdf.text("Certificate of Achievement\n", :justification => :center)
 pdf.text("\n", :font_size => 18)
 pdf.text("hereby granted to\n", :justification => :center)
 pdf.text("\n\n", :font_size => 64)
 pdf.text("in recognition of achieving the status of",
 :font_size => 18, :justification => :center)
 pdf.text(achievement, :font_size => 64, :justification => :center)
 end
end

Now we can create a certificate and award it to many different people:

certificate = Certificate.new('Ruby Hacker'); false
['Tricia Ball', 'Marty Wise', 'Dung Nguyen'].each do |name|
 certificate.award_to(name).save_as("#{name}.pdf")
end

Figure 12-8 shows what Tricia Ball.pdf looks like.

This recipe only scratches the surface of what you can do with the PDF::Writer library.
Fortunately, there’s an excellent manual and RDoc documentation. Although the
library provides a lot of classes, most of the methods you want will be in PDF::Writer
and the mixin PDF::Writer::Graphics.

Figure 12-8. Congratulations!

12.14 Representing Data as MIDI Music | 443

See Also
• The PDF::Writer homepage (http://ruby-pdf.rubyforge.org/pdf-writer/)

• Generated RDoc (http://ruby-pdf.rubyforge.org/pdf-writer/doc/index.html)

• “Creating Printable Documents with Ruby,” published in artima’s Ruby Code &
Style, provides a helpful overview of the library as well as many links to PDF
releated resources (http://www.artima.com/rubycs/articles/pdf_writerP.html)

• The pdf-writer gem includes the source for the manual (manual.pwd) and a script
(bin/techbook) that turns it into PDF format; the manual is also available online
(http://ruby-pdf.rubyforge.org/pdf-writer/manual/index.html)

• If you want to read a PDF file and extract its text, try Hannes Wyss’s rpdf2txt
library (http://raa.ruby-lang.org/project/rpdf2txt/)

• Recipe 8.16 for more about the Marshal technique for copying an object

• The Certificate class is used again in Recipe 14.19, “Running Servlets with
WEBrick”

12.14 Representing Data as MIDI Music

Problem
You want to represent a series of data points as a musical piece, or just create music
algorithmically.

Solution
Jim Menard’s midilib library makes it easy to generate MIDI music files from Ruby.
It’s available as the midilib gem.

Here’s a simple method for visualizing a list of numbers as a piano piece. The largest
number in the list is mapped to the highest note on the piano keyboard (MIDI note
108), and the smallest number to the lowest note (MIDI note 21).

require 'rubygems'
require 'midilib' # => false

class Array
 def to_midi(file, note_length='eighth')

 midi_max = 108.0
 midi_min = 21.0

 low, high = min, max
 song = MIDI::Sequence.new

 # Create a new track to hold the melody, running at 120 beats per minute.
 song.tracks << (melody = MIDI::Track.new(song))

444 | Chapter 12: Graphics and Other File Formats

 melody.events << MIDI::Tempo.new(MIDI::Tempo.bpm_to_mpq(120))

 # Tell channel zero to use the "piano" sound.
 melody.events << MIDI::ProgramChange.new(0, 0)

 # Create a series of note events that play on channel zero.
 each do |number|
 midi_note = (midi_min + ((number-midi_min) * (midi_max-low)/high)).to_i
 melody.events << MIDI::NoteOnEvent.new(0, midi_note, 127, 0)
 melody.events << MIDI::NoteOffEvent.new(0, midi_note, 127,
 song.note_to_delta(note_length))
 end

 open(file, 'w') { |f| song.write(f) }
 end
end

Now you can get an audible representation of any list of numbers:

((1..100).collect { |x| x ** 2 }).to_midi('squares.mid')

Discussion
The midilib library provides a set of classes for modeling a MIDI file: you can parse a
MIDI file, modify it with Ruby code, and write it back to disk.

A MIDI file is modeled by a Sequence object, which contains Track objects. A track is
a mainly a series of Event objects: for instance, each note in the piece has a
NoteOnEvent and a NoteOffEvent.

Array#to_midi works by transforming each number in the array into a corresponding
MIDI note. A standard piano keyboard can produce notes ranging from MIDI note
21 to MIDI note 108, with middle C being at MIDI note 60. Array#to_midi scales the
values of the array to fit into this range as closely as possible, using the same formula
you’d use to convert between two temperature scales.

Working directly with the MIDI classes is difficult, especially if you want to com-
pose music instead of just transfering a data stream into MIDI note events. Here’s a
subclass of MIDI::Track that provides some simplifying assumptions and some
higher-level musical functions, making it easy to compose simple multitrack tunes.
Each TimedTrack uses its own MIDI channel and makes sounds from only one instru-
ment. A TimedTrack can sound chords (this is very difficult with stock midilib), and
instead of having to remember the MIDI note range, you can refer to notes in terms
of half-steps away from middle C.

class TimedTrack < MIDI::Track
 MIDDLE_C = 60
 @@channel_counter=0

 def initialize(number, song)
 super(number)
 @sequence = song

12.14 Representing Data as MIDI Music | 445

 @time = 0
 @channel = @@channel_counter
 @@channel_counter += 1
 end

 # Tell this track's channel to use the given instrument, and
 # also set the track's instrument display name.
 def instrument=(instrument)
 @events << MIDI::ProgramChange.new(@channel, instrument)
 super(MIDI::GM_PATCH_NAMES[instrument])
 end

 # Add one or more notes to sound simultaneously. Increments the per-track
 # timer so that subsequent notes will sound after this one finishes.
 def add_notes(offsets, velocity=127, duration='quarter')
 offsets = [offsets] unless offsets.respond_to? :each
 offsets.each do |offset|
 event(MIDI::NoteOnEvent.new(@channel, MIDDLE_C + offset, velocity))
 end
 @time += @sequence.note_to_delta(duration)
 offsets.each do |offset|
 event(MIDI::NoteOffEvent.new(@channel, MIDDLE_C + offset, velocity))
 end
 recalc_delta_from_times
 end

 # Uses add_notes to sound a chord (a major triad in root position), using the
 # given note as the low note. Like add_notes, increments the per-track timer.
 def add_major_triad(low_note, velocity=127, duration='quarter')
 add_notes([0, 4, 7].collect { |x| x + low_note }, velocity, duration)
 end

 private

 def event(event)
 @events << event
 event.time_from_start = @time
 end
end

Here’s a script to write a randomly generated composition with two tracks. The mel-
ody track (a trumpet) takes a random walk around the musical scale, and the har-
mony track (an organ) plays a matching chord at the beginning of each measure.

song = MIDI::Sequence.new
song.tracks << (melody = TimedTrack.new(0, song))
song.tracks << (background = TimedTrack.new(1, song))

melody.instrument = 56 # Trumpet
background.instrument = 19 # Church organ

melody.events << MIDI::Tempo.new(MIDI::Tempo.bpm_to_mpq(120))
melody.events << MIDI::MetaEvent.new(MIDI::META_SEQ_NAME,
 'A random Ruby composition')

446 | Chapter 12: Graphics and Other File Formats

Some musically pleasing intervals: thirds and fifths.
intervals = [-5, -1, 0, 4, 7]

Start at middle C.
note = 0
Create 8 measures of music in 4/4 time
(8*4).times do |i|
 note += intervals[rand(intervals.size)]

 #Reset to middle C if we go out of the MIDI range
 note = 0 if note < -39 or note > 48

 # Add a quarter note on every beat.
 melody.add_notes(note, 127, 'quarter')

 # Add a chord of whole notes at the beginning of each measure.
 background.add_major_triad(note, 50, 'whole') if i % 4 == 0
end

open('random.mid', 'w') { |f| song.write(f) }

See Also
• midilib has a comprehensive set of RDoc, available online at http://midilib.

rubyforge.org/

• The library’s examples/ directory has several good programs that demonstrate
how to create and “play” MIDI files

• The TimedTrack class presented takes several ideas from Emanuel Borsboom’s
Midi Scripter application; the Midi Scripter generates MIDI files from Ruby code
that incorporates musical notation—it’s not really designed for use as a library,
but it would make a good one (http://www.epiphyte.ca/downloads/midi_scripter/
README.html)

• The names of the standard MIDI instrument and drum sounds are kept in the
arrays MIDI::GM_PATCH_NAMES and MIDI::GM_DRUM_NOTE_NAMES; this isn’t as useful
as it could be, because you’ll usually end up referring to instruments by their
numeric IDs; the Wikipedia has a good mapping of numbers to names (http://
en.wikipedia.org/wiki/General_MIDI#Program_change_events)

447

Chapter 13 CHAPTER 13

Databases and Persistence13

We all want to leave behind something that will outlast us, and Ruby processes are
no exception. Every program you write leaves some record of its activity, even if it’s
just data written to standard output. Most larger programs take this one step fur-
ther: they store data from one run in a structured file, so that on another run they
can pick up where they left off. There are a number of ways to persist data, from sim-
ple to insanely complex.

Simple persistence mechanisms like YAML let you write Ruby data structures to disk
and load them back later. This is great for simple programs that don’t handle much
data. Your program can store its entire state in a disk file, and load the file on its next
invocation to pick up where it left off. If you never keep more data than can fit into
memory, the simplest way to make it permanent is to store it with YAML, Marshal,
or Madeleine, and reload it later (see Recipes 13.1, 13.2, and 13.3). Madeleine also
lets you revisit the prior states of your data.

If your dataset won’t fit in memory, you need a database: a way of storing data on
disk (usually in an indexed binary format) and retrieving parts of it quickly. The Ber-
keley database is the simplest database we cover: it operates like a hash, albeit a hash
potentially much bigger than any you could keep in memory (Recipe 13.6).

But when most people think of a “database” they think of a relational database:
MySQL, Postgres, Oracle, SQLite, or the like. A persistence mechanism stores data
as Ruby data structures, and a Berkeley DB stores data as a hash of strings. But rela-
tional databases store data in the form of structured records with typed fields.

Because the tables of a relational database can have a complex structure and contain
gigabytes of data, their contents are not accessed like normal Ruby data structures.
Instead they’re queried with SQL, a special programming language based on rela-
tional algebra. Most of the development time that goes into Ruby database libraries
is spent trying to hide this fact. Several libraries hide the details of communication
between a Ruby program and a SQL database; the balance of this chapter is devoted
to showing how to use them.

448 | Chapter 13: Databases and Persistence

Every relational database exposes a C API, and Ruby bindings to each API are avail-
able. We show you how to use the two most popular open source databases: MySQL
(Recipe 13.9) and Postgres (Recipe 13.10).* But every database has different bind-
ings, and speaks a slightly different variant of SQL. Fortunately, there are other
libraries that hide these differences behind a layer of abstraction. Once you install the
bindings, you can install abstraction layers atop them and rely on the abstraction
layer to keep track of the differences between databases.

Ruby’s simplest database abstraction library is DBI (it’s modeled after Perl’s DBI
module). It does nothing more than provide a uniform interface to the different data-
base bindings. You still have to write all the SQL yourself (and if you’re serious
about database neutrality, you must use the lowest common denominator of SQL),
but you only have to learn a single binding API.

The more popular database abstraction libraries are ActiveRecord (the library of
choice for Rails applications) and Og. Not only do these libraries hide the differ-
ences between databases, they hide most of the actual SQL. The database tables are
represented as Ruby classes, the rows in the database tables as instances of those
classes. You can find, create, and modify database rows by manipulating normal-
looking Ruby objects. Neither Og nor ActiveRecord can do everything that raw SQL
can, so you may also need to use DBI or one of the database-specific bindings.

One standard argument for database abstraction layers is that they make it easy to
switch an application’s underlying database without having to rewrite all the code.
They certainly do make this easier, but it almost never happens.† The real advantage
is that with abstraction layers, you don’t have to learn all the different database bind-
ings. Even if you never change databases for any given project, throughout your
career you’ll find yourself using different databases on different projects. Learning
how to use a database abstraction layer can save you from having to learn multiple
database-specific bindings.

Whether you use ActiveRecord, Og, DBI, or database-specific bindings, you’ll need
an actual database for your code to connect to. The recipes in this chapter assume
you’ve got a database called cookbook and that you connect to it with the username
“cookbook_user” and the password “password”.

Here’s how to set up cookbook as a MySQL database:

$ mysql -u root
Welcome to the MySQL monitor. Commands end with ; or \g.

* SQLite deserves an honorable mention because, unlike other relational databases, it doesn’t require a server
to run. The client code can directly query the database file. This makes things a lot easier to set up. Note that
SQLite has two incompatible file formats (version 2 and version 3), and a gem exists for each version. You
probably want the sqlite3-ruby gem.

† What does happen is that you may write a product designed to work with whatever database the user has
installed. You can’t always require that your users run a specific database.

Databases and Persistence | 449

Your MySQL connection id is 6 to server version: 4.0.24_Debian-10-log

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql> create database cookbook;
Query OK, 1 row affected (0.00 sec)

mysql> grant all privileges on cookbook.* to 'cookbook_user'@'localhost' identified
by 'password';
Query OK, 0 rows affected (0.00 sec)

Here’s how to set cookbook up as a Postgres database (you’ll probably need to run
these commands as the postgres user):

$ createuser
Enter name of user to add: cookbook_user
Enter password for new user: password
Enter it again: password
Shall the new user be allowed to create databases? (y/n) y
Shall the new user be allowed to create more new users? (y/n) n
CREATE USER

$ createdb cookbook
CREATE DATABASE

To avoid showing you the database connection code in every single recipe, we’ve fac-
tored it out into a library. If you want to run the code in this chapter’s recipes, you
should put the following code in a file called cookbook_dbconnect.rb. Keep it in the
directory where you keep the recipe code, or somewhere in your library include path,
so that require 'cookbook_dbconnect' will work.

This file defines database connection functions for DBI, ActiveRecord, and Og:

cookbook_dbconnect.rb
require 'rubygems'
require 'dbi'
require 'active_record'
require 'og'

The with_db method gets a database connection through DBI and runs a code block
in the context of that connection:

def with_db
 DBI.connect("dbi:Mysql:cookbook:localhost",
 "cookbook_user", "password") do |c|
 yield c
 end
end

The activerecord_connect method only needs to be called once at the beginning of a
program: after that, ActiveRecord will acquire database connections as needed.

def activerecord_connect
 ActiveRecord::Base.establish_connection(:adapter => "mysql",
 :host => "localhost",

450 | Chapter 13: Databases and Persistence

 :username => "cookbook_user",
 :password => "password",
 :database => "cookbook")
end

For your reference, this table presents the ActiveRecord adapter names for various
kinds of databases.

The og_connect also needs to be called only once. One caveat: you must call it after
you’ve defined the classes for your Og data model.

def og_connect
 Og.setup({ :destroy => false,
 :store => :mysql,
 :user => "cookbook_user",
 :password => "password",
 :name => "cookbook" })
end

This version of cookbook_dbconnect assumes you’re running against a MySQL data-
base. For a different database, you just need to change the database name so that
DBI, ActiveRecord, and Og know which adapter they should use.

Here are some resources for more information about databases in Ruby:

• http://ruby-dbi.rubyforge.org/

• http://www.rubyonrails.org/show/ActiveRecord

• http://www.rubygarden.com/index.cgi/Libraries/og_tutorial.rdoc

13.1 Serializing Data with YAML

Problem
You want to serialize a data structure and use it later. You may want to send the data
structure to a file, then load it into a program written in a different programming
language.

Database Adapter name

MySQL mysql

PostgreSQL postgresql

Oracle oci

Microsoft SQL Server sqlserver

SQLite 2 sqlite

SQLite 3 sqlite3

DB2 db2

13.1 Serializing Data with YAML | 451

Solution
The simplest way is to use the built-in yaml library. When you require yaml, all Ruby
objects sprout to_yaml methods that convert them to the YAML serialization format.
A YAML string is human-readable, and it intuitively corresponds to the object from
which it was derived:

require 'yaml'

10.to_yaml # => "--- 10\n"
'ten'.to_yaml # => "--- ten\n"
'10'.to_yaml # => "--- \"10\"\n"

Arrays are represented as bulleted lists:

puts %w{Brush up your Shakespeare}.to_yaml

- Brush
- up
- your
- Shakespeare

Hashes are represented as colon-separated key-value pairs:

puts ({ 'star' => 'hydrogen', 'gold bar' => 'gold' }).to_yaml

star: hydrogen
gold bar: gold

More complex Ruby objects are represented in terms of their classes and member
variables:

require 'set'
puts Set.new([1, 2, 3]).to_yaml
--- !ruby/object:Set
hash:
1: true
2: true
3: true

You can dump a data structure to a file with YAML.dump, and load it back with YAML.
load:

users = [{:name => 'Bob', :permissions => ['Read']},
 {:name => 'Alice', :permissions => ['Read', 'Write']}]

Serialize
open('users', 'w') { |f| YAML.dump(users, f) }

And deserialize
users2 = open("users") { |f| YAML.load(f) }
=> [{:permissions=>["Read"], :name=>"Bob"},
{:permissions=>["Read", "Write"], :name=>"Alice"}]

452 | Chapter 13: Databases and Persistence

YAML implementations are available for Perl, Python, Java, PHP, JavaScript, and
OCaml, so if you stick to the “standard” data types (strings, arrays, and so on), the
serialized file will be portable across programming languages.

Discussion
If you’ve ever used Python’s pickle module or serialized a Java object, you know
how convenient it is to be able to dump an object to disk and load it back later. You
don’t have to define a custom data format or write an XML generator: you just shove
the object into a file or a database, and read it back later. The only downside is that
the serialized file is usually a binary mess that can only be understood by the serial-
ization library.

YAML is a human-readable and somewhat cross-language serialization standard. Its
format describes the simple data structures common to all modern programming lan-
guages. YAML can serialize and deserialize any combination of strings, booleans,
numbers, dates and times, arrays (possibly nested arrays), and hashes (again, possi-
bly nested ones).

You can also use YAML to serialize Ruby-specific objects: symbols, ranges, and regular
expressions. Indeed, you can use YAML to serialize instances of custom classes:
YAML serializes the class of the object and the values of its instance variables.
There’s no guarantee, though, that other programming languages will understand
what you mean.*

Not only is YAML human-readable, it’s human-writable. You can write YAML files
in a text editor and load them into Ruby as objects. If you’re having trouble with the
YAML representation of a particular data structure, your best bet is to define a sim-
ple version of that data structure in an irb session, dump it to YAML, and work from
there.

quiz_question = ['What color is Raedon?', ['Blue', 'Albino', '*Yellow']]
puts quiz_question.to_yaml

- What color is Raedon?
- - Blue
- Albino
- "*Yellow"

Before you get drunk with power, you should know that YAML shares the limita-
tions of other serialization schemes. Most obviously, you can only deserialize objects
in an environment like the one in which you serialized them. Suppose you convert a
Set object to YAML in one Ruby session:

require 'yaml'
require 'set'

* Ruby can also read YAML descriptions of Perl’s regular expressions.

13.1 Serializing Data with YAML | 453

set = Set.new([1, 2, 3])
open("set", "w") { |f| YAML.dump(set, f) }

In another Ruby session, you might try to convert the YAML back into a Set, with-
out first requiring the set library:

Bad code -- don't try this!
require 'yaml'
set = open("set") { |f| YAML.load(f) }
=> #<YAML::Object:0xb7bd8620 @ivars={"hash"=>{1=>true, 2=>true, 3=>true}},
@class="Set">

Instead of a Set, you’ve got an unresolved object of class YAML::Object. The set has
been loaded from the file and deserialized, but Ruby can’t resolve its class name.

YAML can only serialize data; it can’t serialize Ruby code or system resources (such
as filehandles or open sockets). This means some objects can’t be fully converted to
YAML. The following code successfully serializes and deserializes a File object, but
the deserialized File isn’t open and doesn’t point to anything in particular:

handle = open('a_file', 'w')
handle.path
=> "a_file"

handle2 = YAML.load(YAML.dump(handle))
=> #<File:0xb7bd9a58>
handle2.path
IOError: uninitialized stream

The essence of the File object—its handle to a file on disk, granted by the operating
system—has been lost.

Objects that contain Ruby code will lose their code when dumped to YAML. This
means that Proc and Binding objects will turn up empty. Objects with singleton
methods will be dumped without them. Classes can’t be dumped to YAML at all.

But these are all edge cases. Most data structures, even complex ones, can be serial-
ized to YAML and stay readable to boot.

See Also
• Ruby standard library documentation for the yaml library

• The YAML web page (http://www.yaml.org/)

• Recipe 12.12, “Reading and Writing Configuration Files”

• An episode of the Ruby Quiz focused on creating a serializable Proc object (http://
www.rubyquiz.com/quiz38.html)

454 | Chapter 13: Databases and Persistence

13.2 Serializing Data with Marshal

Problem
You want to serialize a data structure to disk faster than YAML can do it. You don’t
care about the readability of the serialized data structure, or portability to other pro-
gramming languages.

Solution
Use the Marshal module, built into Ruby. It works more or less like YAML, but it’s
much faster. The Marshal.dump method transforms a data structure into a binary
string, which you can write to a file and reconstitute later with Marshal.load.

Marshal.dump(10) # => "\004\010i\017"
Marshal.dump('ten') # => "\004\010\"\010ten"
Marshal.dump('10') # => "\004\010\"\a10"

Marshal.load(Marshal.dump(%w{Brush up your Shakespeare}))
=> ["Brush", "up", "your", "Shakespeare"]

require 'set'
Marshal.load(Marshal.dump(Set.new([1, 2, 3])))
=> #<Set: {1, 2, 3}>

Discussion
Marshal is what most programmers coming from other languages expect from a seri-
alizer. It’s fast (much faster than yaml), and it produces unreadable blobs of binary
data. It can serialize almost anything that yaml can (see Recipe 13.1 for examples),
and it can also handle a few cases that yaml can’t. For instance, you can use Marshal
to serialize a reference to a class:

Marshal.dump(Set) # =>"\004\010c\010Set"

Note that the serialized version of Set is little more than a reference to the class. Like
YAML, Marshal depends on the presence of the original classes, and you can’t dese-
rialize a reference to a class you don’t have.* With YAML, you’ll get an unresolved
YAML::Object; with Marshal, you get an ArgumentError:

#!/usr/bin/ruby -w

Marshal.load("\004\010c\010Set")
ArgumentError: undefined class/module Set

Like YAML, Marshal only serializes data structures. It can’t serialize Ruby code (like
Proc objects), or resources allocated by other processes (like filehandles or database

* This also means that if you add methods to a class, then serialize the class, your methods don’t get saved.

13.3 Persisting Objects with Madeleine | 455

connections). However, the two libraries differ in their error handling. YAML tends
to serialize as much as it can: it can serialize a File object, but when you deserialize
it, you get an object that doesn’t point to any actual file. Marshal just gives you an
error when you try to serialize a file:

open('output', 'w') { |f| Marshal.dump(f) }
TypeError: can't dump File

See Also
• Recipe 13.1, “Serializing Data with YAML,” has more on serialization in general

13.3 Persisting Objects with Madeleine

Problem
You want to store objects in RAM and persist them between independent execu-
tions of the program. This will let your program recall its state indefinitely and access
it very quickly.

Solution
Use the Madeleine library available as the madeleine gem. It transparently persists
any Ruby object that can be serialized with Marshal. Unlike a conventional database
persistence layer, Madeleine keeps all of its objects in RAM at all times.

To use Madeleine, you have to decide which objects in your system need to be serial-
ized, and which ones you might have saved to a database traditionally. Here’s a sim-
ple Madeleine-backed program for conducting yes/no polls, in which agreement
adds one to a total and disagreement subtracts one:

#!/usr/bin/ruby -w
poll.rb
require 'rubygems'
require 'madeleine'

class Poll
 attr_accessor :name
 attr_reader :total

 def initialize(name)
 @name = name
 @total = 0
 end

 def agree
 @total += 1
 end

456 | Chapter 13: Databases and Persistence

 def disagree
 @total -= 1
 end
end

So far there’s been no Madeleine code, just a normal class with instance variables
and accessors. But how will we store the state of the poll between invocations of the
polling program? Since instances of the Poll class can be serialized with Marshall, we
can wrap a Poll object in a MadeleineSnapshot, and keep it in a file:

poll = SnapshotMadeleine.new('poll_data') do
 Poll.new('Is Ruby great?')
end

The system accessor retrieves the object wrapped by MadeleineSnapshot:

if ARGV[0] == 'agree'
 poll.system.agree
elsif ARGV[0] == 'disagree'
 poll.system.disagree
end

puts "Name: #{poll.system.name}"
puts "Total: #{poll.system.total}"

You can save the current state of the object with take_snapshot:

poll.take_snapshot

Here are a few sample runs of the poll.rb program:

$ ruby poll.rb agree
Name: Is Ruby great?
Total: 1

$ ruby poll.rb agree
Name: Is Ruby great?
Total: 2

$ ruby poll.rb disagree
Name: Is Ruby great?
Total: 1

Discussion
Recall this piece of code:

poll = SnapshotMadeleine.new('poll_data') do
 Poll.new('Is Ruby great?')
end

The first time that code is run, Madeleine creates a directory called poll_data. Then
it runs the code block. The result of the code block is the object whose state will be
tracked in the poll_data directory.

13.3 Persisting Objects with Madeleine | 457

On subsequent runs, the poll_data directory already exists, and Madeleine loads the
current state of the Poll object from the latest snapshot in the directory. It doesn’t
run the code block.

Here are the contents of poll_data after we run the program three times:

$ ls poll_data
000000000000000000001.snapshot
000000000000000000002.snapshot
000000000000000000003.snapshot

Every time we call poll.take_snapshot, Madeleine serializes the Poll object to a
snapshot file in poll_data. If the data ever gets corrupted, you can remove the cor-
rupted snapshot files and revert to a previous version of the data.

A clever trick for programs like our poll application is to use Kernel#at_exit to auto-
matically save the state of an object when the program ends. This way, even if your
program is killed by a Unix signal, or throws an exception, your data will be saved.*

at_exit { poll.take_snapshot }

In applications where a process runs indefinitely, you can save snapshots at regular
intervals by spawning a separate thread:

def save_recurring_snapshots(madeleine_object, time_interval)
 loop do
 madeleine_object.take_snapshot
 sleep time_interval
 end
end

Thread.new { save_recurring_snapshots(poll, 24*60*60) }

See Also
• Recipe 3.12, “Running a Code Block Periodically”

• Recipe 13.2, “Serializing Data with Marshal”

• The Madeleine design rules document lays out the conditions your code must
meet if you want to snapshot it with Madeleine (http://madeleine.sourceforge.net/
docs/designRules.html)

• The RDoc documentation for Madeleine (http://madeleine.sourceforge.net/docs/api/)

• For more on the technique of object prevalence, see the web site for the Prevayler
Java project, especially the “Articles” section (http://www.prevayler.org/wiki.jsp)

* Of course, these things might happen when your data is in an inconsistent state and you don’t want it to be
saved.

458 | Chapter 13: Databases and Persistence

13.4 Indexing Unstructured Text with SimpleSearch

Problem
You want to index a number of texts and do quick keyword searches on them.

Solution
Use the SimpleSearch library, available in the SimpleSearch gem.

Here’s how to create and save an index:

require 'rubygems'
require 'search/simple'

contents = Search::Simple::Contents.new
contents << Search::Simple::Content.
 new('In the beginning God created the heavens...',
 'Genesis.txt', Time.now)
contents << Search::Simple::Content.new('Call me Ishmael...',
 'MobyDick.txt', Time.now)
contents << Search::Simple::Content.new('Marley was dead to begin with...',
 'AChristmasCarol.txt', Time.now)

searcher = Search::Simple::Searcher.load(contents, 'index_file')

Here’s how to load and search an existing index:

require 'rubygems'
require 'search/simple'

searcher = nil
open('index_file') do |f|
 searcher = Search::Simple::Searcher.new(Marshal.load(f), Marshal.load(f),
 'index_file')
end

searcher.find_words(['begin']).results.collect { |result| result.name }
=> ["AChristmasCarol.txt", "Genesis.txt"]

Discussion
SimpleSearch is a library that makes it easy to do fast keyword searching on unstruc-
tured text documents. The index itself is represented by a Searcher object, and each
document you feed it is a Content object.

To create an index, you must first construct a number of Content objects and a
Contents object to contain them. A Content object contains a piece of text, a unique
identifier for that text (often a filename, though it could also be a database ID or a
URL), and the time at which the text was last modified. Searcher.load transforms a
Contents object into a searchable index that gets serialized to disk with Marshal.

13.5 Indexing Structured Text with Ferret | 459

The indexer analyzes the text you gives it, removes stop words (like “a”), truncates
words to their roots (so “beginning” becomes “begin”), and puts every word of the
text into binary data structures. Given a set of words to find and a set of words to
exclude, SimpleSearch uses these structures to quickly find a set of documents.

Here’s how to add some new documents to an existing index:

class Search::Simple::Searcher
 def add_contents(contents)
 Search::Simple::Searcher.create_indices(contents, @dict,
 @document_vectors)
 dump # Re-serialize the file
 end
end

contents = Search::Simple::Contents.new
contents << Search::Simple::Content.new('A spectre is haunting Europe...',
 'TheCommunistManifesto.txt', Time.now)
searcher.add_contents(contents)
searcher.find_words(['spectre']).results[0].name
=> "TheCommunistManifesto.txt"

SimpleSearch doesn’t support incremental indexing. If you update or delete a docu-
ment, you must recreate the entire index from scratch.

See Also
• The SimpleSearch home page (http://www.chadfowler.com/SimpleSearch/)

• The sample application within the SimpleSearch gem: search-simple.rb

• Recipe 13.2, “Serializing Data with Marshal”

• For a more sophisticated indexer, see Recipe 13.5, “Indexing Structured Text
with Ferret”

13.5 Indexing Structured Text with Ferret

Problem
You want to perform searches on structured text. For instance, you might want to
search just the headline of a news story, or just the body.

Discussion
The Ferret library can tokenize and search structured data. It’s a pure Ruby port of
Java’s Lucene library, and it’s available as the ferret gem.

Here’s how to create and populate an index with Ferret. I’ll create a searchable index of
useful Ruby packages, stored as a set of binary files in the ruby_packages/ directory.

require 'rubygems'
require 'ferret'

460 | Chapter 13: Databases and Persistence

PACKAGE_INDEX_DIR = 'ruby_packages/'
Dir.mkdir(PACKAGE_INDEX_DIR) unless File.directory? PACKAGE_INDEX_DIR
index = Ferret::Index::Index.new(:path => PACKAGE_INDEX_DIR,
 :default_search_field => 'name|description')
index << { :name => 'SimpleSearch',
 :description => 'A simple indexing library.',
 :supports_structured_data => false,
 :complexity => 2 }
index << { :name => 'Ferret',
 :description => 'A Ruby port of the Lucene library.
 More powerful than SimpleSearch',
 :supports_structured_data => true,
 :complexity => 5 }

By default, queries against this index will search the “name” and “description” fields,
but you can search against any field:

index.search_each('library') do |doc_id, score|
 puts index.doc(doc_id).field('name').data
end
SimpleSearch
Ferret

index.search_each('description:powerful AND supports_structured_data:true') do
|doc_id, score|
 puts index.doc(doc_id).field("name").data
end
Ferret

index.search_each("complexity:<5") do |doc_id, score|
 puts index.doc(doc_id).field("name").data
end
SimpleSearch

Discussion
When should you use Ferret instead of SimpleText? SimpleText is good for unstruc-
tured data like plain text. Ferret excels at searching structured data, the kind you find
in databases.

Relational databases are good at finding exact field matches, but not very good at
locating keywords within large strings. Ferret works best when you need full text
search but you want to keep some of the document structure. I’ve also had great suc-
cess using Ferret* to bring together data from disparate sources (some in databases,
some not) into one structured, searchable index.

There are two things you can do with Ferret: add text to the index, and query the
index. Ferret offers you a lot of control over both activities. I’ll briefly cover the most
interesting features.

* Actually, I was using Lucene. Same idea.

13.5 Indexing Structured Text with Ferret | 461

You can feed an index by passing in a hash of field names to values, or you can feed it
fully formed Ferret::Document objects. This gives you more control over which fields
you’d like to index. Here, I’ll create an index of news stories taken from a hypothetical
database:

This include will cut down on the length of the Field:: constants below.
include Ferret::Document

def index_story(index, db_id, headline, story)
 doc = Document.new
 doc << Field.new("db_id", db_id, Field::Store::YES, Field::Index::NO)
 doc << Field.new("headline", headline, Field::Store::YES, Field::Index::TOKENIZED)
 doc << Field.new("story", story, Field::Store::NO, Field::Index::TOKENIZED)
 index << doc
end

STORY_INDEX_DIR = 'news_stories/'
Dir.mkdir(STORY_INDEX_DIR) unless File.directory? STORY_INDEX_DIR
index = Ferret::Index::Index.new(:path => STORY_INDEX_DIR)

index_story(index, 1, "Lizardoids Control the Media, Sources Say",
 "Don't count on reading this story in your local paper anytime
 soon, because ...")

index_story(index, 2, "Where Are My Pants? An Editorial",
 "This is an outrage. The lizardoids have gone too far! ...")

In this case, I’m storing the database ID in the Document, but I’m not indexing it. I
don’t want anyone to search on it, but I need some way of tying a Document in the
index to a record in the database. That way, when someone does a search, I can print
out the headline and provide a link to the original story.

I treat the body of the story exactly the opposite way: the words get indexed, but the
original text is not stored and can’t be recovered from the Document object. I’m not
going to be displaying the text of the story along with my search results, and the text
is already in the database, so why store it again in the index?

The simplest way to search a Ferret index is with Index#search_each, as demon-
strated in the Solution. This takes a query and a code block. For each document that
matched the search query, it yields the document ID and a number between 0 and 1,
representing the quality of the match.

You can get more information about the search results by calling search instead of
search_each. This gives you a Ferret::Search::TopDocs object that contains the search
results, as well as useful information like how many documents were matched. Call
each on a TopDocs object and it’ll act just as if you’d called search_each.

Here’s some code that does a search and prints the results:

def search_news(index, query)
 results = index.search(query)
 puts "#{results.size} article(s) matched:"

462 | Chapter 13: Databases and Persistence

 results.each do |doc_id, score|
 story = index.doc(doc_id)
 puts " #{story.field("headline").data} (score: #{score})"
 puts " http://www.example.com/news/#{story.field("db_id").data}"
 puts
 end
end

search_news(index, "pants editorial")
1 article(s) matched:
Where Are My Pants? An Editorial (score: 0.0908329636861293)
http://www.example.com/news/2

You can weight the fields differently to fine-tune the results. This query makes a
match in the headline count twice as much as a match in the story:

search_news(index, "headline:lizardoids^1 OR story:lizardoids^0.5")
2 article(s) matched:
Lizardoids Control the Media, Sources Say (score: 0.195655948031232)
http://www.example.com/news/1
#
Where Are My Pants? An Editorial (score: 0.0838525491562421)
http://www.example.com/news/2

Queries can be strings or Ferret::Search::Query objects. Pass in a string, and it just
gets parsed and turned into a Query. The main advantage of creating your own Query
objects is that you can put a user-friendly interface on your search functionality,
instead of making people always construct Ferret queries by hand. The weighted_
query method defined below takes a single keyword and creates a Query object equiv-
alent to the rather complicated weighted query given above:

def weighted_query(term)
 query = Ferret::Search::BooleanQuery.new
 query << term_clause("headline", term, 1)
 query << term_clause("story", term, 0.5)
end

def term_clause(field, term, weight)
 t = Ferret::Search::TermQuery.new(Ferret::Index::Term.new(field, term))
 t.boost = weight
 return Ferret::Search::BooleanClause.new(t)
end

Ferret can be clumsy to use. It’s got a lot of features to learn, and sometimes it seems
like you spend all your time composing small objects into bigger objects (as in
weighted_query above, which creates instances of four different classes). This is partly
because Ferret is so flexible, and partly because the API comes mainly from Java. But
nothing else works as well for searching structured text.

See Also
• The Ferret homepage (http://ferret.davebalmain.com/)

13.6 Using Berkeley DB Databases | 463

• The Ferret Query Language, described in the RDoc for the QueryParser class
(http://ferret.davebalmain.com/api/classes/Ferret/QueryParser.html)

• Apache Lucene, the basis for Ferret, lives at http://lucene.apache.org/java/

13.6 Using Berkeley DB Databases

Problem
You want a simple, fast database that doesn’t need a server to run.

Solution
Ruby’s standard dbm library lets you store a database in a set of standalone binary
files. It’s not a SQL database: it’s more like a fast disk-based hash that only stores
strings.

require 'dbm'

DBM.new('random_thoughts') do |db|
 db['tape measure'] =
 "What if there was a tape measure you could use as a yo-yo?"
 db[23] = "Fnord."
end

DBM.open('random_thoughts') do |db|
 puts db['tape measure']
 puts db['23']
end
What if there was a tape measure you could use as a yo-yo?
Fnord.

DBM.open('random_thoughts') { |db| db[23] }
TypeError: can't convert Fixnum into String

Dir['random_thoughts.*']
=> ["random_thoughts.pag", "random_thoughts.dir"]

Discussion
The venerable Berkeley DB format lets you store enormous associative datasets on
disk and quickly access them by key. It dates from before programming languages
had built-in hash structures, so it’s not as useful as it used to be. In fact, if your hash
is small enough to fit in memory, it’s faster to simply use a Ruby hash that you serial-
ize to disk with Marshal.

If you do need to use a DBM object, you can treat it almost exactly like a Ruby hash: it
supports most of the same methods.

There are many, many implementations of the Berkeley DB, and the file formats dif-
fer widely between versions, so DBM files are not very portable. If you’re creating

464 | Chapter 13: Databases and Persistence

your own databases, you should use the generic dbm library. It provides a uniform
interface to all the DBM implementations, using the best library you have installed
on your computer.*

Ruby also provides gdbm and sdbm libraries, interfaces to specific database formats,
but you should only need these if you’re trying to load a Berkeley DB file produced
by some other program.

There’s also the SleepyCat library, a more ambitious implementation of the Berkeley
DB that implements features of traditional databases like transactions and locking.
Its Ruby bindings are available as a third-party download. It’s still much closer to a
disk-based data structure than to a relational database, and the basic interface is sim-
ilar to that of dbm, though less Ruby-idiomatic:

require 'bdb'

db = BDB::Hash.create('random_thoughts2.db', nil, BDB::CREATE)
db['Why do we park on a driveway but'] = 'it never rains but it pours.'
db.close

db = BDB::Hash.open('random_thoughts2.db', nil, 'r')
db['Why do we park on a driveway but']
=> "it never rains but it pours."
db.close

The SleepyCat library provides several different hashlike data structures. If you want
a hash whose keys stay sorted alphabetically, you can create a BDB::Btree instead of a
BDB::Hash:

db = BDB::Btree.create('element_reviews.db', nil, BDB::CREATE)
db['earth'] = 'My personal favorite element.'
db['water'] = 'An oldie but a goodie.'
db['air'] = 'A good weekend element when you're bored with other elements.'
db['fire'] = 'Perhaps the most overrated element.'

db.each { |k,v| puts k }
air
earth
fire
water

db['water'] # => "An oldie but a goodie."
db.close

See Also
• On Debian GNU/Linux, the DBM extensions to Ruby come in separate pack-

ages from Ruby itself: libdbm-ruby, libgdbm-ruby, and libsdbm-ruby

• You can get the Ruby binding to the Sleepycat library at http://moulon.inra.fr/
ruby/bdb.html

* Actually, it uses the best DBM library you had installed when you installed the dbm Ruby extension.

13.7 Controlling MySQL on Unix | 465

• Confused by all the different, mutually incompatible implementations of the
Berkeley DB idea? Try reading “Unix Incompatibility Notes: DBM Hash Librar-
ies” (http://www.unixpapa.com/incnote/dbm.html)

• If you need a relational database that doesn’t require a server to run, try SQLite:
it keeps its databases in standalone files, and you can use it with ActiveRecord or
DBI; its Ruby binding is packaged as the sqlite3-ruby gem, and its home page is
at http://www.sqlite.org/

13.7 Controlling MySQL on Unix

Problem
The standard Ruby database interfaces assume you’re connecting to a preexisting
database, and that you already have access to this database. You want to create and
administer MySQL databases from within Ruby.

Solution
Sam Ruby came up with an elegant solution to this problem. The mysql method
defined below opens up a pipe to a MySQL client program and sends SQL input to it:

def mysql(opts, stream)
 IO.popen("mysql #{opts}", 'w') { |io| io.puts stream }
end

You can use this technique to create, delete, and administer MySQL databases:

mysql '-u root -p[password]', <<-end
 drop database if exists website_db;
 create database website_db;
 grant all on website_db.* to #{`id -un`.strip}@localhost;
end

Discussion
This solution looks so elegant because of the <<-end declaration, which allows you to
end the string the same way you end a code block.

One shortcoming of this solution is that the IO.popen call opens up a one-way com-
munication with the MySQL client. This makes it difficult to call SQL commands
and get the results back. If that’s what you need, you can use IO.popen interactively;
see Recipe 23.1.

See Also
• Recipe 23.1, “Scripting an External Program”

466 | Chapter 13: Databases and Persistence

13.8 Finding the Number of Rows Returned
by a Query

Problem
Writing a DBI program, you want an efficient way to see how many rows were
returned by a query.

Solution
A do command returns the number of rows affected by the command, so that one’s
easy. To demonstrate, I’ll create a database table that keeps track of my prized col-
lection of lowercase letters:

require 'cookbook_dbconnect'

with_db do |c|

 c.do %{drop table if exists letters}

 c.do %{create table letters(id INT NOT NULL PRIMARY KEY AUTO_INCREMENT,
 letter CHAR(1) NOT NULL)}
 letter_sql = ('a'..'z').collect.join('"),("')

 c.do %{insert into letters(letter) values ("#{letter_sql}")}
end
=> 26

When you execute a query, you get back a StatementHandle object representing the
request. If you’re using a MySQL database, you can call rows on this object to get the
number of rows in the result set:

vowel_query = %{select id from letters where letter in ("a","e","i","o","u")}
with_db do |c|
 h = c.execute vowel_query
 "My collection contains #{h.rows} vowels."
end
=> "My collection contains 5 vowels."

If you’re not using MySQL, things are a bit trickier. The simplest thing to do is sim-
ply retrieve all the rows as an array, then use the array’s size as the number of rows:

with_db do |c|
 vowels = c.select_all(vowel_query)
 "My collection still contains #{vowels.size} vowels."
end
=> "My collection still contains 5 vowels."

But this can be disastrously inefficient; see below for details.

13.8 Finding the Number of Rows Returned by a Query | 467

Discussion
When you select some items out of a Ruby array, say with Array#grep, Ruby gives
you the results in a brand new array. Once the array has been created, there’s no cost
to checking its size by calling Array#size.

A database query acts differently. Your query might have matched millions of rows,
and each result might contain kilobytes of data. This is why normally you iterate
over a result set instead of using select_all to get it as an array. Getting the whole
result set at once might use a huge amount of memory, which is why using select_
all can be disastrous.

You’ve got two other options. If you’re going to be iterating over the entire dataset
anyway, and you don’t need the count until you’re all done, you can count the rows
as you go. This will save memory over the fetch_all approach:

with_db do |c|
 rows = 0

 c.execute(vowel_query).each do |row|
 rows += 1
 # Process the row...
 end
 "Yup, all #{rows} vowels are still there."
end
=> "Yup, all 5 vowels are still there."

Otherwise, your only choice is to run two queries: the actual query, and a slightly
modified version of the query that uses SELECT COUNT instead of SELECT. A
method like this will work for simple cases (cases that don’t contain GROUP BY
statements). It uses a regular expression to turn a SELECT query into a SELECT
COUNT query, runs both queries, and returns both the count and the query handle.

module DBI
 class DatabaseHandle
 def execute_with_count(query, *args)
 re = /^\s*select .* from/i
 count_query = query.sub(re, 'select count(*) from')
 count = select_one(count_query)
 [count, execute(query)]
 end
 end
end

with_db do |c|
 count, handle = c.execute_with_count(vowel_query)
 puts "I can't believe none of the #{count} vowels " +
 "have been stolen from my collection!"

 puts 'Here they are in the database:'
 handle.each do |r|
 puts "Row #{r['id']}"

468 | Chapter 13: Databases and Persistence

 end
end
I can't believe none of the 5 vowels have been stolen from my collection!
Here they are in the database:
Row 1
Row 5
Row 9
Row 15
Row 21

See Also
• The Ruby DBI tutorial describes the MySQL rows trick but says not to depend on

it; we figure as long as you know about the alternatives, you’re not dependent on
the database-specific shortcut (http://www.kitebird.com/articles/ruby-dbi.html)

13.9 Talking Directly to a MySQL Database

Problem
You want to send SQL queries and commands directly to a MySQL database.

Solution
Do you really need to do this? Almost all the time, it’s better to use the generic DBI
library. The biggest exception is when you’re writing a a Rails application, and you
need to run a SQL command that you can’t express with ActiveRecord.*

If you really want to communicate directly with MySQL, use the Ruby bindings to
the MySQL client library (found in the mysql gem). It provides an interface that’s
pretty similar to DBI’s.

Here’s a MySQL-specific version of the method with_db, defined in this chapter’s
introduction. It returns a Mysql object, which you can use to run queries or get server
information.

require 'rubygems'
require 'mysql'

def with_db
 dbh = Mysql.real_connect('localhost', 'cookbook_user', 'password',
 'cookbook')
 begin
 yield dbh
 ensure
 dbh.close
 end
end

* You could use DBI with ActiveRecord, but most Rails programmers go straight to the database.

13.9 Talking Directly to a MySQL Database | 469

The Mysql#query method runs any SQL statement, whether it’s a SELECT query or
something else. When it runs a query, the return value is a result-set object (a
MysqlRes); otherwise, it’s nil. Here it is running some SQL commands:

with_db do |db|
 db.query('drop table if exists secrets')
 db.query('create table secrets(id INT NOT NULL PRIMARY KEY AUTO_INCREMENT,
 secret LONGTEXT)')
 db.query(%{insert into secrets(secret) values
 ("Oh, MySQL, you're the only one who really understands me.")})
end

And here’s a query:

with_db do |db|
 res = db.query('select * from secrets')
 res.each { |row| puts "#{row[0]}: #{row[1]}" }
 res.free
end
1: Oh, MySQL, you're the only one who really understands me.

Discussion
Like the database connection itself, the result set you get from query wants to be
closed when you’re done with it. This calls for yet another instance of the pattern
seen in with_db, in which setup and cleanup are delegated to a method that takes a
code block. Here’s some code that alters query to take a code block:

class Mysql
 alias :query_no_block :query
 def query(sql)
 res = query_no_block(sql)
 return res unless block_given?
 begin
 yield res
 ensure
 res.free if res
 end
 end
end

Now we can write more concise query code, and not have to worry about freeing the
result set:

with_db do |db|
 db.query('select * from secrets') do |res|
 res.each { |row| puts "#{row[0]}: #{row[1]}" }
 end
end
1: Oh, MySQL, you're the only one who really understands me.

The method MysqlRes#each yields you the rows of a result set as arrays.
MysqlRes#each_hash also gives you one row at a time, but in hash form: you can

470 | Chapter 13: Databases and Persistence

access a row’s fields by name instead of position. MysqlRes#num_rows gives you the
number of rows matched by a query.

with_db do |db|
 db.query('select * from secrets') do |res|
 puts "#{res.num_rows} row(s) matched:"
 res.each_hash do |hash|
 hash.each { |k,v| puts " #{k} = #{v}" }
 end
 end
end
1 row(s) matched:
id = 1
secret = Oh, MySQL, you're the only one who really understands me.

The MySQL interface provides no protection against SQL injection attacks. If you’re
sending SQL containing the values of possibly tainted variables, you’ll need to quote
those values yourself.

See Also
• Recipe 13.15, “Preventing SQL Injection Attacks,” for more on SQL injection

• “Using the Ruby MySQL Module” (http://www.kitebird.com/articles/ruby-mysql.
html)

• MySQL bindings (http://www.tmtm.org/en/mysql/ruby/)

13.10 Talking Directly to a PostgreSQL Database

Problem
You want to send SQL queries and commands directly to a PostgreSQL database.

Solution
As with the MySQL recipe preceding this one, ask: do you really need to do this? The
generic DBI library usually works just fine. As before, the main exception is when
you need to make low-level SQL calls from within a Rails application.

There are two APIs for communicating with a PostgreSQL database, and both are
available as gems. The postgres gem provides a Ruby binding to the C client library,
and the postgres-pr gem provides a pure Ruby interface.

Here’s a Postgres-specific version of the method with_db, defined in the chapter
intro. It returns a PGconn object, which you can use to run queries or get server infor-
mation. This code assumes you’re accessing the database through TCP/IP on port
5432 of your local machine.

require 'rubygems'
require 'postgres'

13.10 Talking Directly to a PostgreSQL Database | 471

def with_db
 db = PGconn.connect('localhost', 5432, '', '', 'cookbook',
 'cookbook_user', 'password')
 begin
 yield db
 ensure
 db.close
 end
end

The PGconn#exec method runs any SQL statement, whether it’s a SELECT query or
something else. When it runs a query, the return value is a result-set object (a
PGresult); otherwise, it’s nil. Here it is running some SQL commands:

with_db do |db|
 begin
 db.exec('drop table secrets')
 rescue PGError
 # Unlike MySQL, Postgres does not have a "drop table unless exists"
 # command. We can simulate it by issuing a "drop table" command and
 # ignoring any error due to the table not existing in the first place.
 # This is essentialy what MySQL's "drop table unless exists" does.
 end

 db.exec('create table secrets(id SERIAL PRIMARY KEY,
 secret TEXT)')
 db.exec(%{insert into secrets(secret) values
 ('Oh, Postgres, you\\'re the only one who really understands me.')})
end

Here’s a query:

with_db do |db|
 res = db.query('select * from secrets')
 res.each { |row| puts "#{row[0]}: #{row[1]}" }
end
1: Oh, Postgres, you're the only one who really understands me.

Discussion
Note the slight differences between the Postgres implementation of SQL and the
MySQL implementation. The “drop table if exists” syntax is MySQL-specific. Post-
gres names the data types differently, and expects string values to be single-quoted.

Like the database connection itself, the result set you get from exec wants to be
closed when you’re done with it. As we did with query in the MySQL binding, we
can alter exec to take an optional code block and do the cleanup for us:

class PGconn
 alias :exec_no_block :exec
 def exec(sql)
 res = exec_no_block(sql)
 return res unless block_given?
 begin

472 | Chapter 13: Databases and Persistence

 yield res
 ensure
 res.clear if res
 end
 end
end

Now we can write more concise query code, and not have to worry about freeing the
result set:

with_db do |db|
 db.exec('select * from secrets') do |res|
 res.each { |row| puts "#{row[0]}: #{row[1]}" }
 end
end
1: Oh, Postgres, you're the only one who really understands me.

The method PGresult#each yields you the rows of a result set as arrays, and
PGresult#num_tuples gives you the number of rows matched by a query. The Post-
gres database binding has no equivalent of the MySQL binding’s each_hash, but you
can write one pretty easily:

class PGresult
 def each_hash
 f = fields
 each do |array|
 hash = {}
 fields.each_with_index do |field, i|
 hash[field] = array[i]
 end
 yield hash
 end
 end
end

Here it is in action:

with_db do |db|
 db.exec("select * from secrets") do |res|
 puts "#{res.num_tuples} row(s) matched:"
 res.each_hash do |hash|
 hash.each { |k,v| puts " #{k} = #{v}" }
 end
 end
end
1 row(s) matched:
id = 1
secret = Oh, Postgres, you're the only one who really understands me.

See Also
• The Postgres reference (http://www.postgresql.org/docs/manuals/)

• The reference for the Ruby Postgres binding (http://ruby.scripting.ca/postgres/)

13.11 Using Object Relational Mapping with ActiveRecord | 473

• If you can’t get the native Postgres binding installed, try the postgres-pr gem; it
implements a pure Ruby client to the Postgres server, with more or less the same
interface as the native binding

• The PGconn.quote method helps you defend against SQL injection attacks; see
Recipe 13.15, “Preventing SQL Injection Attacks,” for more

13.11 Using Object Relational Mapping
with ActiveRecord

Problem
You want to store data in a database without having to use SQL to access it.

Solution
Use the ActiveRecord library, available as the activerecord gem. It automatically
defines Ruby classes that access the contents of database tables.

As an example, let’s create two tables in the MySQL database cookbook (see the chap-
ter introduction for more on creating the database itself). The blog_posts table,
defined below in SQL, models a simple weblog containing a number of posts. Each
blog post can have a number of comments, so we also define a comments table.

use cookbook;

DROP TABLE IF EXISTS blog_posts;
CREATE TABLE blog_posts (
 id INT(11) NOT NULL AUTO_INCREMENT,
 title VARCHAR(200),
 content TEXT,
 PRIMARY KEY (id)
) ENGINE=InnoDB;

DROP TABLE IF EXISTS comments;
CREATE TABLE comments (
 id INT(11) NOT NULL AUTO_INCREMENT,
 blog_post_id INT(11),
 author VARCHAR(200),
 content TEXT,
 PRIMARY KEY (id)
) ENGINE=InnoDB;

Here are two Ruby classes to represent those tables, and the relationship between
them:

require 'cookbook_dbconnect'
activerecord_connect # See chapter introduction

class BlogPost < ActiveRecord::Base
 has_many :comments
end

474 | Chapter 13: Databases and Persistence

class Comment < ActiveRecord::Base
 belongs_to :blog_post
end

Now you can create entries in the tables without writing any SQL:

post = BlogPost.create(:title => 'First post',
 :content => "Here are some pictures of our iguana.")

comment = Comment.create(:blog_post => post, :author => 'Alice',
 :content => "That's one cute iguana!")

post.comments.create(:author => 'Bob', :content => 'Thank you, Alice!')

You can also query the tables, relate blog posts to their comments, and relate com-
ments back to their blog posts:

blog_post = BlogPost.find(:first)

puts %{#{blog_post.comments.size} comments for "#{blog_post.title}"}
2 comments for "First post"

blog_post.comments.each do |comment|
 puts "Comment author: #{comment.author}"
 puts "Comment: #{comment.content}"
end
Comment author: Alice
Comment: That's one cute iguana!
Comment author: Bob
Comment: Thank you, Alice!

first_comment = Comment.find(:first)
puts %{The first comment was made on "#{first_comment.blog_post.title}"}
The first comment was made on "First post"

Discussion
ActiveRecord uses naming conventions, database introspection, and metaprogram-
ming to hide much of the work involved in defining a Ruby class that corresponds to
a database table. All you have to do is define the classes (BlogPost and Comment, in
our example) and the relationships between them (BlogPost has_many :comments,
Comment belongs_to :blog_post).

Our tables are designed to fit ActiveRecord’s conventions about table and field
names. The table names are lowercase, pluralized noun phrases, with underscores
separating the words. The table names blog_posts and comments correspond to the
Ruby classes BlogPost and Comment.

Also notice that each table has an autoincremented id field named id. This is a con-
vention defined by ActiveRecord. Foreign key references are also named by conven-
tion: blog_post_id refers to the id field of the blog_posts table. It’s possible to
change ActiveRecord’s assumptions about naming, but it’s simpler to just design
your tables to fit the default assumptions.

13.11 Using Object Relational Mapping with ActiveRecord | 475

For “normal” columns, the ones that don’t participate in relationships with other
tables, you don’t need to do anything special. ActiveRecord examines the database
tables themselves to find out which columns are available. This is how we were able
to use accessor methods for blog_posts.title without explicitly defining them: we
defined them in the database, and ActiveRecord picked them up.

Relationships between tables are defined within Ruby code, using decorator meth-
ods. Again, naming conventions simplify the work. The call to the has_many decora-
tor in the BlogPost definition creates a one-to-many relationship between blog posts
and comments. You can then call BlogPost#comments to get an array full of com-
ments for a particular post. The call to belongs_to in the Comment definition creates
the same relationship in reverse.

There are two more decorator methods that describe relationships between tables.
One of them is the has_one association, which is rarely used: if there’s a one-to-one
relationship between the rows in two tables, then you should probably just merge
the tables.

The other decorator is has_and_belongs_to_many, which lets you join two different
tables with an intermediate join table. This lets you create many-to-many relation-
ships, common in (to take one example) permissioning systems.

For an example of has_and_belongs_to_many, let’s make our blog a collaborative
effort. We’ll add an users table to contain the posts’ authors’ names, and fix it so
that each blog post can have multiple authors. Of course, each author can also con-
tribute to multiple posts, so we’ve got a many-to-many relationship between users
and blog posts.

use cookbook;

DROP TABLE IF EXISTS users;
CREATE TABLE users (
 id INT(11) NOT NULL AUTO_INCREMENT,
 name VARCHAR(200),
 PRIMARY KEY (id)
) ENGINE=InnoDB;

Because a blog post can have multiple authors, we can’t just add an author_id field
to the blog_posts table. That would only give us space for a single author per blog
post. Instead, we create a join table that maps authors to blog posts.

use cookbook;

DROP TABLE IF EXISTS blog_posts_users;
CREATE TABLE blog_posts_users (
 blog_post_id INT(11),
 user_id INT(11)
) ENGINE=InnoDB;

Here’s another naming convention. ActiveRecord expects you to name a join table
with the names of the tables that it joins, concatenated together with underscores. It

476 | Chapter 13: Databases and Persistence

expects the table names to be in alphabetical order (in this case, the blog_posts table
comes before the users table).

Now we can create a User class that mirrors the users table, and modify the BlogPost
class to reflect its new relationship with users:

class User < ActiveRecord::Base
 has_and_belongs_to_many :blog_posts
end

class BlogPost < ActiveRecord::Base
has_and_belongs_to_many :authors, :class_name => 'User'

 has_many :comments, :dependent => true
end

The has_and_belongs_to_many decorator method defines methods that navigate the
join table. We specify the :class_name argument because otherwise ActiveRecord has
no idea which ActiveRecord class corresponds to an “authors” relationship. With-
out :class_name, it would look for a nonexistent Author class.

With the relationships in place, it’s easy to find blog posts for an author, and authors
for a blog post:

Retroactively make Bob and Carol the collaborative authors of our
first blog post.
User.create(:name => 'Bob', :blog_posts => [post])
User.create(:name => 'Carol', :blog_posts => [post])

author = User.find(:first)
puts "#{author.name} has made #{author.blog_posts.size} blog post(s)."
Bob has made 1 blog post(s).

puts %{The blog post "#{post.title}" has #{post.authors.size} author(s).}
The blog post "First post" has 2 author(s).

As with the has_many or belongs_to relationships, the has_and_belongs_to_many rela-
tionship gives you a create method that lets you create new items and their relation-
ships to other items:

author.blog_posts.create(:title => 'Second post',
 :content => 'We have some cats as well.')

And since the blog_posts method returns an array-like object, you can iterate over it
to find all the blog posts to which a given user contributed:

author.blog_posts.each do |post|
 puts %{#{author.name}'s blog post "#{post.title}" } +
 "has #{post.comments.size} comments."
end
Bob's blog post "First post" has 2 comments.
Bob's blog post "Second post" has 0 comments.

If you want to delete an item from the database, you can use the destroy method
available to all ActiveRecord objects:

BlogPost.find(:first).destroy

13.12 Using Object Relational Mapping with Og | 477

However, deleting a blog post does not automatically remove all the comments asso-
ciated with that blog post. You must tell ActiveRecord that comments cannot exist
independently of a blog post, like so:

class BlogPost < ActiveRecord::Base
 has_many :comments, :dependent => destroy
end

Why doesn’t ActiveRecord do this automatically? Because it’s not always a good
idea. Think about authors: unlike comments, authors can exist independently of a
blog post. Deleting a blog post shouldn’t automatically delete all of its authors.
ActiveRecord depends on you to make this kind of judgment, using your knowledge
about your application.

See Also
• http://rails.rubyonrails.com/classes/ActiveRecord/Associations/ClassMethods.html

• Recipe 15.7, “Understanding Pluralization Rules,” for more on the connection
between the table name and the ActiveRecord class name

13.12 Using Object Relational Mapping with Og
Credit: Mauro Cicio

Problem
You want to store data in a database, without having to use SQL to create or access
the database.

Solution
Use the Og (ObjectGraph) library, available as the og gem. Where ActiveRecord has
a database-centric approach to object-relational mapping, Og is Ruby-centric. With
ActiveRecord, you define the database schema ahead of time and have the library fig-
ure out what the Ruby objects should look like. With Og, you define the Ruby
objects and let the library take care of creating the database schema.

The only restriction Og imposes on your class definitions is that you must use spe-
cial versions of the decorator methods for adding attribute accessors. For instance,
instead of calling attribute to define accessor methods, you call property.

Here we define a basic schema for a weblog program, like that defined in Recipe 13.11:

require 'cookbook_dbconnect'
require 'og'

class BlogPost
 property :title, :content, String
end

478 | Chapter 13: Databases and Persistence

class Comment
 property :author, :content, String
 belongs_to :blog_post, BlogPost
end

Now that Comment's been defined, add a reference to it in BlogPost.
class BlogPost
 has_many :comments, Comment
end

After defining the schema, we call the og_connect method defined in the chapter
introduction. Og automatically creates any necessary database tables:

og_connect
Og uses the Mysql store.
Created table 'ogcomment'.
Created table 'ogblogpost'.

Now we can create a blog post and some comments:

post = BlogPost.new
post.title = "First post"
post.content = "Here are some pictures of our iguana."
post.save!

[["Alice", "That's one cute iguana!"],
 ["Bob", "Thank you, Alice!"]].each do |author, content|
 comment = Comment.new
 comment.blog_post = post
 comment.author = author
 comment.content = content
 comment.save!
end

As with ActiveRecord, we can query the tables, relate blog posts to their comments,
and relate comments back to their blog posts:

post = BlogPost.first
puts %{#{post.comments.size} comments for "#{post.title}"}
2 comments for "First post"

post.comments.each do |comment|
 puts "Comment author: #{comment.author}"
 puts "Comment: #{comment.content}"
end
Comment author: Alice
Comment: That's one cute iguana!
Comment author: Bob
Comment: Thank you, Alice!

puts %{The first comment was made on "#{Comment.first.blog_post.title}"}
The first comment was made on "First post"

13.12 Using Object Relational Mapping with Og | 479

Discussion
Like the ActiveRecord library, Og implements Martin Fowler’s Active Record Pat-
tern. While ActiveRecord does this by making all classes derive from the base class
ActiveRecord::Base, Og does it by using custom attribute accessors instead of the
traditional Ruby accessors. In this example, Comment and BlogPost are POR (Plain
Old Ruby) classes, with accessor methods like author and author=, but those meth-
ods were defined with Og decorators instead of the standard Ruby decorators. This
table shows the mapping between the two sets of decorators.

Each of the Og decorator methods takes a Ruby class as its last argument: String,
Integer, or the like. Og uses this to define the type of the corresponding database
row. You can also specify Object as a field type, and Og will transparently store
YAML representations of arbitrary Ruby objects in the corresponding database field.

ActiveRecord defines all kinds of conventions about how you’re supposed to name
your database tables and fields. Og doesn’t care: it names database tables and fields
that correspond to the names you use in your Ruby code.

Just as with ActiveRecord, relationships between Og tables are defined within Ruby
code, using decorator methods. The API is almost exactly the same as
ActiveRecord’s. In the Solution section, we saw how to create a one-to-many rela-
tionship between blog posts and comments: by calling belongs_to in Comment and
has_many in BlogPost. This relationship makes it possible to simply call
BlogPost#comments and get an array of comments on a post.

Og defines two more decorator methods for describing relationships between tables.
One of them is the has_one association, which is rarely used: if there’s a one-to-one
relationship between the rows in two tables, then you should probably just merge
the tables.

The other decorator is many_to_many, which lets you to join two different tables with
an intermediate join table. This lets you create many-to-many relationships, com-
mon in (to take one example) permissioning systems.

For an example of many_to_many, let’s make our blog a collaborative effort. We’ll add a
User class that holds the posts’ authors’ names, and fix it so that each blog post can
have multiple authors. Of course, each author can also contribute to multiple posts, so
we’ve got a many-to-many relationship between users and blog posts. Og needs to

Standard Ruby accessors Og accessors

 attribute property

 attr_accessor prop_accessor

 attr_reader prop_reader

 attr_writer prop_writer

480 | Chapter 13: Databases and Persistence

know the class definition in order to create the necessary database tables, so the follow-
ing code snippet should appear before the og_connect invocation in your program:

class Person
 property :name, String
 many_to_many :posts, BlogPost
end

The many_to_many decorator tells Og to create a table to store the people, and a join
table to map authors to their blog posts. It also defines methods that navigate the
join table, as we’ll see in a moment.

Of course, the many-to-many relationship goes both ways: BlogPost has a many-to-
many relationship to Person. So add a many_to_many call to the definition of BlogPost
(this, too, must show up before your og_connect call):

class BlogPost
 many_to_many :authors, Person
end

With these relationships in place, it’s easy to find blog posts for an author, and
authors for a blog post:

og_connect

Retroactively make Bob and Carol the collaborative authors of our
first blog post.
['Bob', 'Carol'].each do |name|
 p = Person.new
 p.name = name
 p.save
end
Person.find_by_name('Bob').add_post(post)
Person.find_by_name('Carol').add_post(post)

author = Person.first
puts "#{author.name} has made #{author.posts.size} blog post(s)."
Bob has made 1 blog post(s).

puts %{The blog post "#{post.title}" has #{post.authors.size} author(s).}
The blog post "First post" has 2 author(s).

To add an anonymous BlogPost on the fly, use the add_post method as follows:

author.add_post(BlogPost.create_with({
 :title => 'Second post',
 :content => 'We have some cats as well.'
 }))

Since Person posts returns an array-like object, you can iterate over it to find all the
blog posts to which a given user contributed:

author.posts.each do |post|
 puts %{#{author.name}'s blog post "#{post.title}" has #{post.comments.size}
comments.}
end

13.13 Building Queries Programmatically | 481

Bob's blog post "First post" has 2 comments.
Bob's blog post "Second post" has 0 comments.

If you want to delete an object from the database, you can use the delete method
available to all Og database objects:

BlogPost.first.delete

Deleting a blog post will automatically remove all the comments associated with that
blog post. This automatic deletion (i.e., cascade deletion) is not always a good idea.
For instance, we don’t want the authors of a blog post to be deleted when the post
itself is deleted! We can avoid the cascade deletion by passing false in as an argu-
ment to the delete method:

BlogPost.first.delete(false)

If you want some associated objects (like comments) to get cascade-deleted, and
other objects (like authors) to be left alone, the best strategy is to implement the cas-
cade yourself, in post-delete hooks.

See Also
• The Active Record pattern is described in Patterns of Enterprise Application

Architecture by Martin Fowler (Addison-Wesley)

13.13 Building Queries Programmatically

Problem
You have to write fragments of SQL to pass parameters into an ActiveRecord query.
You’d like to dispense with SQL altogether, and represent the query paramaters as a
Ruby data structure.

Solution
Here’s a simple solution. The method ActiveRecord::Base.find_by_map defined
below picks up where find leaves off. Normally a query is represented by a SQL frag-
ment, passed in as the :conditions argument. Here, the :conditions argument con-
tains a mapping of database field names to the desired values:

require 'cookbook_dbconnect'

class ActiveRecord::Base
 def self.find_by_map(id, args={}.freeze)
 sql = []
 values = []
 args[:conditions].each do |field, value|
 sql << "#{field} = ?"
 values << value
 end if args[:conditions]
 args[:conditions] = [sql.join(' AND '), values]

482 | Chapter 13: Databases and Persistence

 find(id, args)
 end
end

Here’s find_by_map in action, using the BlogPost class first seen in Recipe 13.11:

activerecord_connect

class BlogPost < ActiveRecord::Base
end

BlogPost.create(:title => 'Game Review: Foosball Carnage',
 :content => 'Four stars!')
BlogPost.create(:title => 'Movie Review: Foosball Carnage: The Movie',
 :content => 'Zero stars!')

BlogPost.find_by_map(:first,
 :conditions => {:title =>
 'Game Review: Foosball Carnage' }
).content
=> "Four stars!"

Discussion
ActiveRecord saves you from having to write a lot of SQL, but you still have to write
out the equivalent of a SQL WHERE clause every time you call ActiveRecord::
Base#find. The find_by_map method lets you define those queries as Ruby hashes.

But find_by_map only lets you run one type of query: the kind where you’re restrict-
ing fields of the database to specific values. What if you want to do a query that
matches a field with the LIKE construct, or combine multiple clauses into a single
query with AND or OR?

A hash can only represent a very simple SQL query, but the Criteria object, below,
can represent almost any WHERE clause. The implementation is more complex but
the idea is the same. We define a data structure that can represent the WHERE clause
of a SQL query, and a way of converting the data structure into a real WHERE clause.

Here’s the basic class. A Criteria acts like a hash, except it maps a field name to a
value and a SQL operator. Instead of mapping :title to 'Game Review: Foosball
Carnage', you can map it to ['%Foosball%', 'LIKE']. Each Criteria object can be
chained to other objects as part of an AND or OR clause.

class Criteria < Hash
 def initialize(values)
 values.each { |k,v| add(k, *v) }
 @or_criteria = nil
 @and_criteria = nil
 end

 :private
 attr_accessor :or_criteria, :and_criteria

13.13 Building Queries Programmatically | 483

 :public
 def add(field, value, operation='=')
 self[field] = [value, operation]
 end

 def or(criteria)
 c = self
 while c.or_criteria != nil
 break if c == criteria
 c = c.or_criteria
 end

 c.or_criteria = criteria
 return self
 end

 def and(criteria)
 c = self
 while c.and_criteria != nil
 break if c == criteria
 c = c.and_criteria
 end

 c.and_criteria = criteria
 return self
 end

This method turns a Criteria object, and any other objects to which it’s chained, into
a SQL string with substitutions, and an array of values to use in the substitutions:

class Criteria
 def to_where_clause
 sql = []
 values = []
 each do |field, value|
 if value.respond_to? :to_str
 value, operation = value, '='
 else
 value, operation = value[0..1]
 end
 sql << "#{field} #{operation} ?"
 values << value
 end
 sql = '(' + sql.join(' AND ') + ')'

 if or_criteria
 or_where = or_criteria.to_where_clause
 sql = "(#{sql} OR #{or_where.shift})"
 values += or_where
 end

 if and_criteria
 and_where = and_criteria.to_where_clause
 sql = "(#{sql} AND #{and_where.shift})"

484 | Chapter 13: Databases and Persistence

 values += and_where
 end
 return values.unshift(sql)
 end
end

Now it’s simple to write a version of find that accepts a Criteria:

class ActiveRecord::Base
 def self.find_by_criteria(id, criteria, args={}.freeze)
 args = args.dup
 args[:conditions] = criteria.to_where_clause
 find(id, args)
 end
end

Here’s Criteria used to express a complex SQL WHERE clause with a little bit of
Ruby code. This query searches the blog_post table for reviews of bad movies and
good games. The movies and the games must not be about the game of cricket.

review = Criteria.new(:title => ['%Review%', 'LIKE'])
bad_movie = Criteria.new(:title => ["%Movie%", 'LIKE'],
 :content => 'Zero stars!')
good_game = Criteria.new(:title => ['%Game%', 'LIKE'],
 :content => 'Four stars!')
no_cricket = Criteria.new(:title => ['%Cricket%', 'NOT LIKE'])

review.and(bad_movie.or(good_game)).and(no_cricket)
review.to_where_clause
=> ["((title LIKE ?) AND
(((content = ? AND title LIKE ?) OR (content = ? AND title LIKE ?))
AND (title NOT LIKE ?)))",
"%Review%", "Zero stars!", "%Movie%", "Four stars!", "%Game%",
"%Cricket%"]

BlogPost.find_by_criteria(:all, review).each { |post| puts post.title }
Game Review: Foosball Carnage
Movie Review: Foosball Carnage: The Movie

The technique is a general one. It’s easier for a human to construct Ruby data struc-
tures than to write valid SQL clauses, so write code to convert the one into the other.
You can use this technique wherever any library expects you to write SQL.

For instance, the find method expects SQL fragments representing a query’s ORDER
BY or GROUP BY clause. You could represent each as an array of fields, and gener-
ate the SQL as needed.

Just an idea...
order_by = [[:title, 'ASC']]

See Also
• The Criteria class is inspired by the one in the Torque ORM library for Java

(http://db.apache.org/torque/)

13.14 Validating Data with ActiveRecord | 485

13.14 Validating Data with ActiveRecord

Problem
You want to prevent bad data from getting into your ActiveRecord data objects,
whether the source of the data is clueless users or buggy code.

Solution
The simplest way is to use the methods defined by the ActiveRecord::Validations
module. Each of these methods (validates_length_of, validates_presence_of, and
so on) performs one kind of validation. You can use them to declare restrictions on
the data in your object’s fields.

Let’s add some validation code to the Comment class for the weblog application first
seen in Recipe 13.11. Recall that a Comment object has two main fields: the name of
the author, and the text of the comment. We’ll reject any comment that leaves either
field blank. We’ll also reject comments that are too long, and comments whose body
contains any string from a customizable list of profane words.

require 'cookbook_dbconnect'
activerecord_connect

class Comment < ActiveRecord::Base
 @@profanity = %w{trot krip}
 @@no_profanity_re = Regexp.new('^(?!.*(' + @@profanity.join('|') + '))')

 validates_presence_of %w{author}
 validates_length_of :content, :in => 1..200
 validates_format_of :content, :with => @@no_profanity_re,
 :message => 'contains profanity'
end

Comment objects that don’t fit these criteria won’t be saved to the database.

comment = Comment.create
comment.errors.on 'author' # => "can't be blank"
comment.errors['content']
=> "is too short (minimum is 1 characters)"
comment.save # => false

comment = Comment.create(:content => 'x' * 1000)
comment.errors['content']
=> "is too long (maximum is 200 characters)"

comment = Comment.create(:author => 'Alice',
 :content => "About what I'd expect from a trotting krip such as yourself!")
comment.errors.count # => 1
comment.errors.each_full { |msg| puts msg }
Content contains profanity

comment = Comment.create(:author => 'Alice', :content => 'I disagree!')
comment.save # => true

486 | Chapter 13: Databases and Persistence

Discussion
Every ActiveRecord record has an associated ActiveRecord::Errors object, which
starts out empty. Before the record is saved to the database, all the predefined restric-
tions for that class of object are checked. Every problem encountered while applying
the restrictions adds an entry to the Errors object.

If, at the end of this trial by ordeal, the Errors object is still empty, ActiveRecord pre-
sumes the data is valid, and saves the object to the database.

ActiveRecord’s Validations module provides many methods that implement valida-
tion rules. Apart from the examples given above, the validates_numericality_of
method requires an integer value (or a floating-point value if you specify :integer =>
false). The requires_inclusion_of method will reject any value not found in a pre-
defined list of acceptable values.

If the predefined validation rules aren’t enough for you, you can also write a custom
validation rule using validate_each. For instance, you might validate URL fields by
fetching the URLs and making sure they’re valid.

The method Errors#each_full prepends each error message with the corresponding
field name. This is why the actual error messages look like “is empty” and “contains
profanity”: so each_full will yield “Author is empty” and “Content contains profanity”.

ActiveRecord assumes you named your fields so that these messages will be read-
able. You can customize the messages by passing in keyword arguments like :message,
but then you’ll need to access the messages with Errors#each instead of Errors#each_
full. Here’s an alternate implementation of the Comment validation rules that custom-
izes the messages:

require 'cookbook_dbconnect'
activerecord_connect

class Comment < ActiveRecord::Base
 @@profanity = %w{trot krip}
 @@no_profanity_re = Regexp.new('^(?!.*(' + @@profanity.join('|') + '))')

 validates_presence_of %w{author}, :message => 'Please enter your name.'
 validates_length_of :content, :in => 1..200,
 :too_short => 'Please enter a comment.',
 :too_long => 'Comments are limited to 200 characters.'
 validates_format_of :content, :with => @@no_profanity_re,
 :message => 'Try to express yourself without profanity.'
end

The declarative validation style should be flexible enough for you, but you can do
custom validation by defining a validate method. Your implementation is responsi-
ble for checking the current state of an object, and populating the Errors object with
any appropriate error messages.

13.15 Preventing SQL Injection Attacks | 487

Sometimes new objects have different validation rules from existing objects. You can
selectively apply a validation rule by passing it the :on option. Pass in :on => :create,
and the validation rule will only be triggered the first time an object is saved to the
database. Pass in :on => :update, and the validation rule will be triggered every time
except the first. You can also define the custom validation methods validate_on_add
and validate_on_update as well as just plain validate.

See Also
• Recipe 1.19, “Validating an Email Address”

• Recipe 8.6, “Validating and Modifying Attribute Values”

• The built-in validation methods (http://rubyonrails.org/api/classes/ActiveRecord/
Validations/ClassMethods.html)

• Some sample validate implementations (http://rubyonrails.org/api/classes/
ActiveRecord/Validations.html)

• The Errors class defines a few helper methods for doing validation in a validate
implementation (http://rubyonrails.org/api/classes/ActiveRecord/Errors.html)

• Og defines some declarative validation methods, similar to ActiveRecord’s (http://
www.nitrohq.com/view/Validation/Og)

13.15 Preventing SQL Injection Attacks

Problem
You want to harden your code against SQL injection attacks, whether in DBI or
ActiveRecord code.

Solution
With both ActiveRecord and DBI applications, you should create your SQL with
question marks where variable interpolations should go. Pass in the variables along
with the SQL to DatabaseHandle#execute, and the database will make sure the values
are properly quoted.

Let’s work against a simple database table tracking people’s names:
use cookbook;

DROP TABLE IF EXISTS names;
CREATE TABLE names (
 first VARCHAR(200),
 last VARCHAR(200)
) ENGINE=InnoDB;

INSERT INTO names values ('Leonard', 'Richardson'),
 ('Lucas', 'Carlson'),
 ('Michael', 'Loukides');

488 | Chapter 13: Databases and Persistence

Here’s a simple script that searches against that table. It’s been hardened against
SQL injection attacks with three techniques:

#!/usr/bin/ruby
no_sql_injection.rb

require 'cookbook_dbconnect'
activerecord_connect
class Name < ActiveRecord::Base; end

print 'Enter a last name to search for: '
search_for = readline.chomp

Technique 1: use ActiveRecord question marks
conditions = ["last = ?", search_for]

Name.find(:all, :conditions => conditions).each do |r|
 puts %{Matched "#{r.first} #{r.last} with ActiveRecord question marks"}
end

Technique 2: use ActiveRecord named variables
conditions = ["last = :last", {:last => search_for}]

Name.find(:all, :conditions => conditions).each do |r|
 puts %{Matched "#{r.first} #{r.last}" with ActiveRecord named variables}
end

Technique 3: use DBI question marks
with_db do |db|
 sql = 'SELECT first, last FROM names WHERE last = ?'

 db.execute(sql, [search_for]).fetch_hash do |r|
 puts %{Matched "#{r['first']} #{r['last']}" with DBI question marks}
 end
end

puts "Done"

Here’s how this script looks in use:

$ ruby no_sql_injection.rb
Enter a last name to search for: Richardson
Matched "Leonard Richardson" with ActiveRecord question marks
Matched "Leonard Richardson" with ActiveRecord named variables
Matched "Leonard Richardson" with DBI question marks
Done

See the Discussion if you're not sure how this attack is supposed to work.
$ ruby no_sql_injection.rb
Enter a last name to search for: " or 1=1
Done

13.15 Preventing SQL Injection Attacks | 489

Discussion
SQL is a programming lanuage, and running SQL is like calling eval on a string of
Ruby code. Unless you have complete control over the entire SQL string and all the
variables interpolated into it, you need to be very careful. Just one mistake can leave
you open to information leakage or database corruption.

Here’s a naive version of sql_injection.rb that’s vulnerable to an injection attack. If
you habitually write code like this, you may be in trouble:

#!/usr/bin/ruby
sql_injection.rb
require 'cookbook_dbconnect'

print "Enter a last name to search for: "
search_for = readline.chomp
query = %{select first, last from names where last="#{search_for}"}
puts query if $DEBUG
with_db do |db|
 db.execute(query).fetch_hash do |r|
 puts %{Matched "#{r['first']} #{r['last']}"}
 end
end

Looks fine, right?

$ ruby -d sql_injection.rb
Enter a last name to search for: Richardson
select first_name, last_name from people where last_name="Richardson"
Matched "Leonard Richardson"

Not necessarily. Whatever I type is simply being stuck into a SQL statement. What if
I typed as my “query” part of a SQL WHERE clause? One that, when combined with
the original WHERE clause, matched anything and everything?

$ ruby -d sql_injection.rb
Enter a last name to search for: " or 1=1
select first_name, last_name from people where last_name="" or 1=1
Matched "Leonard Richardson"
Matched "Lucas Carlson"
Matched "Michael Loukides"

I can see every name in the table.

This is just one example. SQL injection attacks can also alter or delete data from a
database.

The correct version of this program, the one described in the Solution, quotes my
attempt at a SQL injection attack. My attack is executed as a normal query: the pro-
gram looks for people (or robots, I guess) whose last name is the string " or 1=1.
Quoting the data makes the application do what you want it to do every time, no
matter what kind of weird data a user can come up with.

490 | Chapter 13: Databases and Persistence

DBI will not run two SQL commands in a single do or execute call, so certain types of
SQL injection attacks are impossible with DBI. You can hijack a SELECT statement to
make it select something else, but unlike with some other systems, you can’t make a
SELECT also do an UPDATE or DELETE. An attacker can’t use SQL injection to drop data-
base tables unless your application already runs a DROP TABLE command somewhere.

You don’t usually write full-blown SQL statements with ActiveRecord, but you do
write conditions: snippets of SQL that get turned into to the WHERE clauses of SELECT
or UPDATE statements. Whenever you write SQL, you must take these precautions.

See Also
• “Securing your Rails application” in the Ruby on Rails manual (http://manuals.

rubyonrails.com/read/chapter/43)

• The RDoc for the ActiveRecord::Base class

• “SQL Injection Attacks by Example” is a readable introduction to this topic
(http://www.unixwiz.net/techtips/sql-injection.html)

• “Using the Ruby DBI Module” has a section on quoting (http://www.kitebird.com/
articles/ruby-dbi.html#TOC_8)

13.16 Using Transactions in ActiveRecord

Problem
You want to perform database operations as a group: if one of the operations fails, it
should be as though none of them had ever happened.

Solution
Include active_record/transactions, and you’ll give each ActiveRecord class a
transaction method. This method starts a database transaction, runs a code block,
then commits the transaction. If the code block throws an exception, the database
transaction is rolled back.

Here’s some simple initialization code to give ActiveRecord access to the database
tables for the weblog system first seen in Recipe 13.11:

require 'cookbook_dbconnect'
activerecord_connect # See chapter introduction

class User < ActiveRecord::Base
 has_and_belongs_to_many :blog_posts
end

class BlogPost < ActiveRecord::Base
 has_and_belongs_to_many :authors, :class_name => 'User'
end

13.16 Using Transactions in ActiveRecord | 491

The create_from_new_author method below creates a new entry in the users table,
then associates it with a new entry in the blog_posts table. But there’s a 50% chance
that an exception will be thrown right after the new author is created. If that hap-
pens, the author creation is rolled back: in effect, it never happened.

require 'active_record/transactions'

class BlogPost
 def BlogPost.create_from_new_author(author_name, title, content)
 transaction do
 author = User.create(:name => author_name)
 raise 'Random failure!' if rand(2) == 0
 create(:authors => [author], :title => title, :content => content)
 end
 end
end

Since the whole operation is enclosed within a transaction block, an exception
won’t leave the database in a state where the author has been created but the blog
entry hasn’t:

BlogPost.create_from_new_author('Carol', 'The End Is Near',
 'A few more facts of doom...')
=> #<BlogPost:0xb78b7c7c ... >

The method succeeded; Carol's in the database:
User.find(:first, :conditions=>"name='Carol'")
=> #<User:0xb7888ae4 @attributes={"name"=>"Carol", ... }>

Let's do another one...
BlogPost.create_from_new_author('David', 'The End: A Rebuttal',
 'The end is actually quite far away...')
RuntimeError: Random failure!

The method failed; David's not in the database:
User.find(:first, :conditions=>"name='David'")
=> nil

Discussion
You should use database transactions whenever one database operation puts the
database into an inconsistent state, and a second operation brings the database back
into consistency. All kinds of things can go wrong between the first and second oper-
ation. The database server might crash or your application might throw an excep-
tion. The Ruby interpreter might decide to stop running your thread for an
arbitrarily long time, giving other threads a chance to marvel at the inconsistent state
of the database. An inconsistent database can cause problems that are very difficult
to debug and fix.

ActiveRecord’s transactions piggyback on top of database transactions, so they’ll
only work if your database supports transactions. Most databases do these days;

492 | Chapter 13: Databases and Persistence

chances are you won’t have trouble unless you’re using a MySQL database and not
using InnoDB tables. However, most of the open source databases don’t support
nested transactions, so you’re limited to one transaction at a time with a given data-
base connection.

In addition to a code block, the transaction method can take a number of
ActiveRecord objects. These are the objects that participate in the transaction. If the
transaction fails, then not only will the database be restored to its previous state, so
will the member variables of the objects.

This is useful if you’re defining a method that modifies ActiveRecord objects them-
selves, not just the database representations of those objects. For instance, a shop-
ping cart object might keep a running total that’s consulted by the application, but
not stored in the database.

See Also
• http://wiki.rubyonrails.com/rails/pages/HowToUseTransactions

• http://rubyonrails.org/api/classes/ActiveRecord/Transactions/ClassMethods.html

13.17 Adding Hooks to Table Events

Problem
You want to run some code whenever a database row is added, updated, or deleted.
For instance, you might want to send out email whenever a new blog post is created.

Solution
For Og, use the aspect-oriented features of Glue::Aspect. You can use its before and
after methods to register code blocks that run before or after any Og method. The
methods you’re most likely to wrap are og_insert, og_update, and og_delete.

In the following code, I take the BlogPost class first defined in Recipe 13.12, and give
its og_insert method an aspect that sends out email:

require 'cookbook_dbconnect'
require 'og'
require 'glue/aspects'

class BlogPost
 property :title, :content, String
 after :on => :og_insert do |post|
 puts %{Sending email notification of new post "#{post.title}"}
 # Actually send the email here...
 end
end

og_connect

13.17 Adding Hooks to Table Events | 493

post = BlogPost.new
post.title = 'Robots are taking over'
post.content = 'Think about it! When was the last time you saw another human?'
post.save!
Sending email notification of new post "Robots are taking over"

This technique works with ActiveRecord as well (since aspect-oriented program-
ming is a generic technique), but ActiveRecord defines two different approaches:
callbacks and the ActiveRecord::Observer class.

Any ActiveRecord::Base subclass can define a number of callback methods: before_
find, after_save, and so on. These methods run before or after the corresponding
ActiveRecord methods. Here’s an callback-based ActiveRecord implementation of
the Og example, running against the blog_post table first defined in Recipe 13.11. If
you ran the previous example in a session, quit it now and start a new session.

require 'cookbook_dbconnect'
activerecord_connect

class BlogPost < ActiveRecord::Base
 def after_create
 puts %{Sending email notification of new blog post "#{title}"}
 # Actually send the email here...
 end
end

post = BlogPost.create(:title => 'Robots: Gentle Yet Misunderstood',
 :content => 'Popular misconceptions about robERROR 40')
Sending email notification of new blog post "Robots: Gentle Yet Misunderstood

Discussion
ActiveRecord’s callback interface is simple, but it’s got a big disadvantage compared
to Og’s. You can attach multiple aspects to a single method, but you can only define
a callback method once.

This makes little difference when you only want the callback method to do one
thing. But suppose that in addition to sending email whenever a blog post is created,
you also want to notify people of new posts through an instant messenger client, and
to regenerate static syndication feeds to reflect the new post.

If you used a callback, you’d have to lump all of that code together in after_create.
With aspects, each piece of functionality can go into a separate aspect. It’s easy to
add more, or to disable a single one without affecting the others. Aspects keep auxil-
liary code from cluttering up your core data classes.

Fortunately, ActiveRecord provides a strategy other than the callback methods. You
can define a subclass of ActiveRecord::Observer, which implements any of the call-
back methods, and use the observe decorator to attach it to the classes you want to
watch. Multiple Observers can watch a single class, so you can split up the work.

494 | Chapter 13: Databases and Persistence

Here’s a third example of the email notification code. Again, start a new session if
you’re following this recipe in irb.

require 'cookbook_dbconnect'
activerecord_connect

class BlogPost < ActiveRecord::Base
end

class MailObserver < ActiveRecord::Observer
 observe BlogPost
 def after_create(post)
 puts %{Sending email notification of new blog post "#{post.title}"}
 # Actually send the email here.
 end
end
ActiveRecord::Base.observers = MailObserver

post = BlogPost.new(:title => "ERROR 40",
 :content => "ERROR ERROR ERROR ERROR ERROR")
post.save
Sending email notification of new blog post "ERROR 40"

Note the call to ActiveRecord::Base.observers=. Calling this method starts the
observer running. You can call ActiveRecord::Base.observers= whenever you need to
add one or more Observers. Despite the implication of the method name, calling it
twice won’t overwrite one set of observers with another.

In a Rails application, observers are traditionally started by putting code like the fol-
lowing in the environment.rb file:

environment.rb
config.active_record.observers = MailObserver

When working with ActiveRecord, if you want to attach an Observer to a specific
ActiveRecord class, you can name it after that class: for instance, BlogPostObserver
will automatically observe the BlogPost class. Obviously, this only works for a single
Observer.

See Also
• Recipe 10.15

• ActiveRecord callbacks documentation (http://rubyonrails.org/api/classes/Active-
Record/Callbacks.html)

• ActiveRecord Observer documentation (http://rails.rubyonrails.com/classes/Active-
Record/Observer.html)

• Og used to define a class called Og::Observer that worked like ActiveRecord’s
ActiveRecord::Observer, but it’s been deprecated in favor of aspects; some of the
documentation for Og::Observer is still online, so be careful not to get confused

13.18 Adding Taggability with a Database Mixin | 495

13.18 Adding Taggability with a Database Mixin

Problem
Without writing a lot of code, you want to make one of your database tables
“taggable”—make it possible to add short strings describing a particular item in the
table.

Solution
Og comes complete with a tagging mixin. Just call is Taggable on every class you
want to be taggable. Og will create all the necessary tables.

Here’s the BlogPost class from Recipe 13.12, only this time it’s Taggable. Og auto-
matically creates a Tag class and the necessary database tables:

require 'cookbook_dbconnect'
require 'og'
require 'glue/taggable'

class BlogPost
 is Taggable
 property :title, :content, String
end
og_connect

Now we can play around with tags.
post = BlogPost.new
post.title = 'Some more facts about video games'
post.tag(['editorial', 'games'])

BlogPost.find_with_tags('games').each { |puts| puts post.title }
Some more facts about video games

Tag.find_by_name('editorial').blog_posts.each { |post| puts post.title }
Some more facts about video games

To get this feature in ActiveRecord, you’ll need to install the acts_as_taggable gem,
and you must create the database tables yourself. Here are the tables necessary to
add tags to the ActiveRecord BlogPost class (first described in Recipe 13.11): a
generic tags table and a join table connecting it to blog_posts.

DROP TABLE IF EXISTS tags;
CREATE TABLE tags (
 id INT(11) NOT NULL AUTO_INCREMENT,
 name VARCHAR(32),
 PRIMARY KEY (id)
) ENGINE=InnoDB;

DROP TABLE IF EXISTS tags_blog_posts;
CREATE TABLE tags_blog_posts (
 tag_id INT(11),

496 | Chapter 13: Databases and Persistence

 blog_post_id INT(11)
) ENGINE=InnoDB;

Note that the join table violates the normal ActiveRecord naming rule. It’s called
tags_blog_posts, even though alphabetical ordering of its component tables would
make it blog_posts_tags. ActiveRecord does this so all of your application’s tags_
join tables will show up together in a sorted list. If you want to call the table blog_
posts_tags instead, you’ll need to pass the name as the :join_table parameter when
you call the acts_as_taggable decorator below.

Here’s the ActiveRecord code that makes BlogPost taggable. If you ran the previous
example, run this one in a new irb session so that you can define a new BlogPost class.

require 'cookbook_dbconnect'
require 'taggable'
activerecord_connect

class Tag < ActiveRecord::Base
end

class BlogPost < ActiveRecord::Base
 acts_as_taggable
end

Now we can play around with tags.
post = BlogPost.create(:title => 'Some more facts about inflation.')
post.tag(['editorial', 'economics'])

BlogPost.find_tagged_with(:any=>'editorial').each { |post| puts post.title }
Some more facts about inflation.

Discussion
A mixin class like Enumerable is an easy way to add a lot of functionality to an exist-
ing class without writing much code. Database mixins work the same way: you can
add new objects and relationships to your data model without having to write a lot
of database code. Of course, you’ll still need to decide how to incorporate tags into
your user interface.

The Og and ActiveRecord tagging mixins work the same way, although the Og mixin
hides the details. In addition to your original database table (the one you want to
tag), you need a table that contains tags, and a join table connecting the tags to the
tagged. Whether you use Og or ActiveRecord, the database schema looks something
like Figure 13-1.

Figure 13-1. BlogPosts are associated with Tags through a join table

BlogPost Join table
(tags_blog_posts) Tag

13.18 Adding Taggability with a Database Mixin | 497

The tagging mixin saves you from having to write code for managing the tag table,
and the original table’s relationship with it.

But there are two ways to tag something, and we’ve only covered one. You add tags
to BlogPost if you want one set of tags for each blog post, probably set by the author
of the post. The tags act as canonical categories. What if you want to create a tag sys-
tem where everyone has their own set of tags for blog posts? Instead of a single sys-
tem imposed by the authors, every user gets to define a categorization system that
makes sense to them.

When you do this, the application doesn’t tag a blog post itself. It tags one person’s
relationship to a blog post. The schema looks something like Figure 13-2.

Let’s implement per-user tagging in ActiveRecord. Instead of making the tags_blog_
posts table connect a blog post directly to a tag, we’ll have it connect a tag, a blog
post, and a person.

DROP TABLE IF EXISTS tags_blog_posts;
CREATE TABLE tags_blog_posts (
 tag_id INT(11),
 blog_post_id INT(11),
 created_by_id INT(11)
) ENGINE=InnoDB;

Here’s the Ruby code. First, some setup we’ve seen before:

require 'cookbook_dbconnect'
require 'taggable'
activerecord_connect

class Tag < ActiveRecord::Base
end

class Person < ActiveRecord::Base
end

When each blog post had one set of tags, we called acts_as_taggable with no argu-
ments, and the BlogPost class was associated directly with the Tag class. This time,

Figure 13-2. When tags are per-user, the join table associates BlogPosts, Tags, and People

Person

Join table
(tags_blog_posts)

BlogPost

Tag

498 | Chapter 13: Databases and Persistence

we tell acts_as_taggable that BlogPost objects are associated with Tag through the
TagBlogPost class:

ActiveRecord will automatically define the TagBlogPost class when
we reference it.
class BlogPost < ActiveRecord::Base
 acts_as_taggable :join_class_name => 'TagBlogPost'
end

Now we tell TagBlogPost that it’s associated with the Person class: every TagBlogPost
represents one person’s opinions about a single blog post:

Specify that a TagBlogPost is associated with a specific user.
class TagBlogPost
 belongs_to :created_by, :class_name => 'Person',
 :foreign_key => 'created_by_id'
end

Now each Person can have their own set of tags on each BlogPost:

post = BlogPost.create(:title => 'My visit to the steel mill.')
alice = Person.create(:name=>"Alice")
post.tag(['travelogue', 'metal', 'interesting'],
 :attributes => { :created_by => alice })

alices_interests = BlogPost.find_tagged_with(:all => 'interesting',
 :condition => "tags_people.created_by_id = #{alice.id}")
alices_interests.each { |article| puts article.title }
My visit to the steel mill.

Og and ActiveRecord each come with several common mixins. For instance, you can
use a mixin to model parent-child relationships between tables (Og is Hierarchical,
ActiveRecord acts_as_tree and acts_as_nested_set), or to treat the rows of a table
as an ordered lists (Og is Orderable, ActiveRecord acts_as_list). These can save
you a lot of time.

See Also
• The built-in ActiveRecord mixins are all in the ActiveRecord::Acts module; see

the generated documentation at http://rubyonrails.org/api/

• The taggable reference for ActiveRecord (http://taggable.rubyforge.org/)

499

Chapter 14 CHAPTER 14

Internet Services14

Network programming is hard. The C socket library is the standard way of writing
Internet clients and servers. It’s like the file API descibed in Chapter 6, with its spe-
cial flags and meager abstraction, only much more complicated. It’s a shame because
networked applications are the coolest kind of application. Only computer nerds like
you and me care about XML or the best way to sort a list, but everyone uses Internet
applications.

Fortunately, network programming is easy. Ruby provides bindings to the C socket
library (in socket), but you’ll probably never need to use them. Existing Ruby librar-
ies (some in the standard distribution) can speak every popular high-level Internet
protocol.

The most popular Internet service is, of course, the Web, and Ruby’s most popular
Internet library (or any kind of library, actually) is the Rails framework. We’ve
devoted the entire next chapter to Rails (Chapter 15) so that we can cover other tech-
nologies here.

Apart from Rails, most of the interesting stuff you can do with Ruby happens on the
client end. We start with a set of recipes for requesting web pages (Recipes 14.1, 14.2,
and 14.3), which are brought together at the end of the chapter with Recipe 14.20.
Combine these recipes with one from Chapter 11 (probably Recipe 11.5), and you
can make your own spider or web browser.

Then we present Ruby clients for the most popular Internet protocols. Ruby can do
just about everything you do online: send and receive email, perform nameserver que-
ries, even transfer files with FTP, SCP, or BitTorrent. With the Ruby interfaces, you
can write custom clients for these protocols, or integrate them into larger programs.

It’s less likely that you’ll be writing your own server in Ruby. A server only exists to
service clients, so there’s not much you can do but faithfully implement the appro-
priate protocol. If you do write a server, it’ll probably be for a custom protocol, one
for which no other server exists.

500 | Chapter 14: Internet Services

Ruby provides two basic servers that you can use as a starting point. The gserver
library described in Recipe 14.14 provides a generic framework for almost any kind
of Internet server. Here you do have to do some socket programming, but only the
easy parts. gserver takes care of all the socket-specific details, and you can just treat
the sockets like read-write IO objects. You can use the techniques described in
Chapter 6 to communicate with your clients.

The other basic server is WEBrick, a simple but powerful web server that’s used as
the basis for Rails and the Ruby SOAP server. If you’ve built a protocol on top of
HTTP, WEBrick makes a good starting point for a server. Recipe 14.19 shows how
to use WEBrick to hook pieces of Ruby code up to the Web.

Apart from Rails, web services are the major network-related topic not covered in
this chapter. As with Rails, this is because they have their own chapter: Chapter 16.

14.1 Grabbing the Contents of a Web Page

Problem
You want to display or process a specific web page.

Solution
The simplest solution is to use the open-uri library. It lets you open a web page as
though it were a file. This code fetches the oreilly.com homepage and prints out the
first part of it:

require 'open-uri'
puts open('http://www.oreilly.com/').read(200)
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

For more complex applications, you’ll need to use the net/http library. Use Net::
HTTP.get_response to make an HTTP request and get the response as a Net::
HTTPResponse object containing the response code, headers, and body.

require 'net/http'
response = Net::HTTP.get_response('www.oreilly.com', '/about/')
response.code # => "200"
response.body.size # => 21835
response['Content-type']
=> "text/html; charset=ISO-8859-1"
puts response.body[0,200]
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
#
#
<html>
<head>
<meta http-equiv="content-type" content="text/html; c

14.1 Grabbing the Contents of a Web Page | 501

Rather than passing in the hostname, port, and path as separate arguments, it’s usually
easier to create URI objects from URL strings and pass those into the Net::HTTP methods.

require 'uri'
Net::HTTP.get(URI.parse("http://www.oreilly.com"))
Net::HTTP.get_response(URI.parse("http://www.oreilly.com/about/"))

Discussion
If you just want the text of the page, use get. If you also want the response code or
the values of the HTTP response headers, use get_reponse.

The get_response method returns some HTTPResponse subclass of Net:HTTPResponse,
which contains all information about an HTTP response. There’s one subclass for
every response code defined in the HTTP standard; for instance, HTTPOK for the 200
response code, HTTPMovedPermanently for the 301 response code, and HTTPNotFound
for the 404 response code. There’s also an HTTPUnknown subclass for any response
codes not defined in HTTP.

The only difference between these subclasses is the class name and the code mem-
ber. You can check the response code of an HTTP response by comparing specific
classes with is_a?, or by checking the result of HTTPResponse#code, which returns a
String:

puts "Success!" if response.is_a? Net::HTTPOK
Success!

puts case response.code[0] # Check the first byte of the response code.
 when ?1 then "Status code indicates an HTTP informational response."
 when ?2 then "Status code indicates success."
 when ?3 then "Status code indicates redirection."
 when ?4 then "Status code indicates client error."
 when ?5 then "Status code indicates server error."
 else "Non-standard status code."
end
Status code indicates success.

You can get the value of an HTTP response header by treating HTTPResponse as a
hash, passing the header name into HTTPResponse#[]. The only difference from a real
Hash is that the names of the headers are case-insensitive. Like a hash, HTTPResponse
supports the iteration methods #each, #each_key, and #each_value:

response['Server']
=> "Apache/1.3.34 (Unix) PHP/4.3.11 mod_perl/1.29"
response['SERVER']
=> "Apache/1.3.34 (Unix) PHP/4.3.11 mod_perl/1.29"

response.each_key { |key| puts key }
x-cache
p3p
content-type
date

502 | Chapter 14: Internet Services

server
transfer-encoding

If you do a request by calling NET::HTTP.get_response with no code block, Ruby will
read the body of the web page into a string, which you can fetch with the
HTTPResponse::body method. If you like, you can process the body as you read it, one
segment at a time, by passing a code block to HTTPResponse::read_body:

Net::HTTP.get_response('www.oreilly.com', '/about/') do |response|
 response.read_body do |segment|
 puts "Received segment of #{segment.size} byte(s)!"
 end
end
Received segment of 614 byte(s)!
Received segment of 1024 byte(s)!
Received segment of 848 byte(s)!
Received segment of 1024 byte(s)!
...

Note that you can only call read_body once per request. Also, there are no guaran-
tees that a segment won’t end in the middle of an HTML tag name or some other
inconvenient place, so this is best for applications where you’re not handing the web
page as structured data: for instance, when you’re simply piping it to some other
source.

See Also
• Recipe 14.2, “Making an HTTPS Web Request”

• Recipe 14.3, “Customizing HTTP Request Headers”

• Recipe 14.20, “A Real-World HTTP Client,” covers a lot of edge cases you’ll
need to handle if you want to write a general-purpose client

• Most HTML you’ll find on the web is invalid, so to parse it you’ll need the tricks
described in Recipe 11.5, “Parsing Invalid Markup”

14.2 Making an HTTPS Web Request

Problem
You want to connect to an HTTPS web site, one whose traffic is encrypted using SSL.

Solution
You need the OpenSSL extension to Ruby. You’ll know if it’s installed if you can
require the net/https library without getting a LoadError.

require 'net/https' # => true

You can’t make HTTPS requests with the convenience methods described in Recipe
14.1, but you can use the Net::HTTP::Get and Net::HTTP::Post class described in

14.2 Making an HTTPS Web Request | 503

Recipe 14.3. To make an HTTPS request, just instantiate a Net::HTTP object and set
its use_ssl member to true.

In this example, I try to download a page from a web server that only accepts HTTPS
connections. Instead of listening on port 80 like a normal web server, this server listens
on port 443 and expects an encrypted request. I can only connect with a Net::HTTP
instance that has the use_ssl flag set.

require 'net/http'
uri = URI.parse("https://www.donotcall.gov/")

request = Net::HTTP.new(uri.host, uri.port)
response = request.get("/")
Errno::ECONNRESET: Connection reset by peer

require 'net/https'
request.use_ssl = true
request.verify_mode = OpenSSL::SSL::VERIFY_NONE
response = request.get("/")
=> #<Net::HTTPOK 200 OK readbody=true>
response.body.size # => 6537

Discussion
The default Ruby installation for Windows includes the OpenSSL extension, but if
you’re on a Unix system, you might have to install it yourself. On Debian GNU/
Linux, the package name is libopenssl-ruby[Ruby version]: for instance, libopenssl-
ruby1.8. You might need to download the extension from the Ruby PKI homepage
(see below), and compile and install it with Make.

Setting verify_mode to OpenSSL:SSL::VERIFY_NONE suppresses some warnings, but the
warnings are kind of serious: they mean that OpenSSL won’t verify the server’s cer-
tificate or proof of identity. Your conversation with the server will be confidential,
but you won’t be able to definitively authenticate the server: it might be an imposter.

You can have OpenSSL verify server certificates if you keep a few trusted certificates
on your computer. You don’t need a certificate for every server you might possibly
access. You just need certificates for a few “certificate authorities:” the organizations
that actually sign most other certificates. Since web browsers need these certificates
too, you probably already have a bunch of them installed, although maybe not in a
format that Ruby can use (if you don’t have them, see below).

On Debian GNU/Linux, the ca-certificates package installs a set of trusted server
certificates into the directory /etc/ssl/certs. I can set my request object’s ca_path to
that directory, and set its verify_mode to OpenSSL::SSL::VERIFY_PEER. Now OpenSSL
can verify that I’m actually talking to the web server at donotcall.gov, and not an
imposter.

request = Net::HTTP.new(uri.host, uri.port)
request.use_ssl = true

504 | Chapter 14: Internet Services

request.ca_path = "/etc/ssl/certs/"
request.verify_mode = OpenSSL::SSL::VERIFY_PEER
response = request.get("/")
=> #<Net::HTTPOK 200 OK readbody=true>

The SSL certificate for www.donotcall.gov (http://www.donotcall.gov) happens to be
signed by Network Solutions. I already have Network Solutions’ certificate installed
on my computer, so I can verify the signature. If I trust Network Solutions, I can
trust donotcall.gov.

See Also
• Recipe 14.1, “Grabbing the Contents of a Web Page”

• HTTPS is just one more thing a robust web client needs to support; Recipe 14.20,
“A Real-World HTTP Client,” shows how to integrate it into a general framework

• The Ruby OpenSSL project homepage (http://www.nongnu.org/rubypki/)

• The (unofficial) Mozilla Certificate FAQ provides a good introduction to SSL
certificates (http://www.hecker.org/mozilla/ca-certificate-faq/background-info)

• If you don’t have any certs on your system or they’re not in a format you can
give to Ruby, you can download a bundle of all the certs recognized by the
Mozilla web browser; instead of setting ca_path to a directory, you’ll set ca_file
to the location of the file you download (http://curl.haxx.se/docs/caextract.html)

• You can create your own server certificates with the QuickCert program; your
certificates won’t be recognized by any certificate authority, but if you control
the clients as well as the server, you can manually install the server certificate on
every client (http://segment7.net/projects/ruby/QuickCert/)

14.3 Customizing HTTP Request Headers

Problem
When you make an HTTP request, you want to specify custom HTTP headers like
“User-Agent” or “Accept-Language”.

Solution
Pass in a Hash of header values to Net::HTTP#get or Net::HTTP#post:

require 'net/http'
require 'uri'

#A simple wrapper method that accepts either strings or URI objects
#and performs an HTTP GET.
module Net
 class HTTP
 def HTTP.get_with_headers(uri, headers=nil)
 uri = URI.parse(uri) if uri.respond_to? :to_str

14.3 Customizing HTTP Request Headers | 505

 start(uri.host, uri.port) do |http|
 return http.get(uri.path, headers)
 end
 end
 end
end

#Let's get a web page in German.
res = Net::HTTP.get_with_headers('http://www.google.com/',
 {'Accept-Language' => 'de'})

#Check a bit of the body to make sure it's really in German.
s = res.body.size
res.body[s-200..s-140]
=> "ngebote - Alles \374ber Google</"

Discussion
Usually you can retrieve the web pages you want without specifying any custom
HTTP headers. As you start performing more complicated interactions with web
servers, you’ll find yourself customizing the headers more.

For instance, if you write a web spider or client, you’ll want it to send a “User-
Agent” header on every request, identifying itself to the web server. Unlike the HTTP
client libraries for other programming languages, the net/http library doesn’t send a
“User-Agent” header by default; it’s your reponsibility to send one.

Net::HTTP.get_with_headers(url, {'User-Agent' => 'Ruby Web Browser v1.0'})

You can often save bandwidth (at the expense of computer time) by sending an
“Accept-Encoding” header, requesting that a web server compress data before send-
ing it to you. Gzip compression is the most common way a server compresses HTTP
response data; you can reverse it with Ruby’s zlib library:

uncompressed = Net::HTTP.get_with_headers('http://www.cnn.com/')
uncompressed.body.size
=> 65150

gzipped = Net::HTTP.get_with_headers('http://www.cnn.com/',
 {'Accept-Encoding' => 'gzip'})
gzipped['Content-Encoding']
=> "gzip"
gzipped.body.size
=> 14600

require 'zlib'
require 'stringio'
body_io = StringIO.new(gzipped.body)
unzipped_body = Zlib::GzipReader.new(body_io).read()
unzipped_body.size
=> 65150

506 | Chapter 14: Internet Services

If you want to build up a HTTP request with multiple values for the same HTTP
header, you can construct a Net::HTTP::Get (or Net::HTTP::Post) object and call the
add_field method multiple times. The example in the Solution used the “Accept-
Language” header to request a document in a specific language. The following code
fetches the same URL, but its “Accept-Language” header indicates that it will accept
a document written in any of four different dialects:

uri = URI.parse('http://www.google.com/')

request = Net::HTTP::Get.new(uri.path)
['en_us', 'en', 'en_gb', 'ja'].each do |language|
 request.add_field('Accept-Language', language)
end
request['Accept-Language']
=> "en_us, en, en_gb, ja"

Net::HTTP.start(uri.host, uri.port) do |http|
 response = http.request(request)
 # ... process the HTTPResponse object here
end

See Also
• Recipe 12.10, “Compressing and Archiving Files with Gzip and Tar,” for more

about the zlib library

• Recipe 14.1, “Grabbing the Contents of a Web Page”

• Recipe 14.20, “A Real-World HTTP Client,” covers a lot of edge cases you’ll
need to handle if you want to write a general-purpose client

• REST web services often use the value of the “Accept” header to provide multi-
ple representations of the same resource; Joe Gregorio’s article “Should you use
Content Negotiation in your Web Services?” explains why it’s a better idea to
provide a different URL for each representation (http://bitworking.org/news/
WebServicesAndContentNegotiation)

• Recipe 16.1 for more on REST web services

14.4 Performing DNS Queries

Problem
You want to find the IP address corresponding to a domain name, or see whether a
domain provides a certain service (such as an email server).

14.4 Performing DNS Queries | 507

Solution
Use the Resolv::DNS class in the standard resolv library to perform DNS lookups.
The most commonly used method is DNS#each_address, which iterates over the IP
addresses assigned to a domain name.

require 'resolv'
Resolv::DNS.new.each_address("oreilly.com") { |addr| puts addr }
208.201.239.36
208.201.239.37

Discussion
If you need to check the existence of a particular type of DNS record (such as a MX
record for a mail server), use DNS#getresources or the iterator DNS#each_resource.
Both methods take a domain name and a class denoting a type of DNS record. They
perform a DNS lookup and, for each matching DNS record, return an instance of the
given class.

These are the three most common classes:

DNS::Resource::IN::A
Indicates a DNS record pointing to an IP address for the domain.

DNS::RESOURCE::IN::NS
Indicates a DNS record pointing to a DNS nameserver.

DNS::Resource::IN::MX
Indicates a DNS record pointing to a mail server.

This code finds the mail servers and name servers responsible for oreilly.com:

dns = Resolv::DNS.new
domain = "oreilly.com"
dns.each_resource(domain, Resolv::DNS::Resource::IN::MX) do |mail_server|
 puts mail_server.exchange
end
smtp1.oreilly.com
smtp2.oreilly.com

dns.each_resource(domain, Resolv::DNS::Resource::IN::NS) do |nameserver|
 puts nameserver.name
end
a.auth-ns.sonic.net
b.auth-ns.sonic.net
c.auth-ns.sonic.net
ns.oreilly.com

If your application needs to do a lot of DNS lookups, you can greatly speed things up
by creating a separate thread for each lookup. Most of the time spent doing a DNS
lookup is spent connecting to the network, so doing all the lookups in parallel can
save a lot of time. If you do this, you should include the resolv-replace library along
with resolv, to make sure your DNS lookups are thread-safe.

508 | Chapter 14: Internet Services

Here’s some code that sees which one-letter .com domains (a.com, b.com, etc.) are
mapped to IP addresses. It runs all 26 DNS queries at once, in 26 threads, and sum-
marizes the results.

require 'resolv-replace'
def multiple_lookup(*names)
 dns = Resolv::DNS.new
 results = {}
 threads = []
 names.each do |name|
 threads << Thread.new(name) do |name|
 begin
 dns.each_address(name) { |a| (results[name] ||= []) << a }
 rescue Resolv::ResolvError
 results[name] = nil
 end
 end
 end
 threads.each { |t| t.join }
 return results
end

domains = ("a".."z").collect { |l| l + '.com' }
multiple_lookup(*domains).each do |name, addresses|
 if addresses
 puts "#{name}: #{addresses.size} address#{addresses.size == 1 ? "" : "es"}"
 end
end
x.com: 4 addresses
z.com: 1 address
q.com: 1 address

See Also
• Chapter 20 uses a DNS lookup of an MX record to check whether the domain of

an email address is valid

• A DNS lookup is the classic example of a high-latency operation; much of
Chapter 20 deals with ways of making high-latency operations run more quickly:
see especially Recipe 20.3, “Doing Two Things at Once with Threads,” and Rec-
ipe 20.6, “Running a Code Block on Many Objects Simultaneously”

14.5 Sending Mail

Problem
You want to send an email message, either an autogenerated one or one entered in
by an end user.

14.5 Sending Mail | 509

Solution
First you need to turn the parts of the email message into a single string, represent-
ing the whole message complete with headers and/or attachments. You can con-
struct the string manually or use a number of libraries, including RubyMail, TMail,
and ActionMailer. Since ActionMailer is one of the dependencies of Rails, I’ll use it
throughout this recipe. ActionMailer uses TMail under the covers, and it’s provided
by the actionmailer gem.

Here, I use ActionMailer to construct a simple, single-part email message:

require 'rubygems'
require 'action_mailer'

class SimpleMailer < ActionMailer::Base
 def simple_message(recipient)
 from 'leonardr@example.org'
 recipients recipient
 subject 'A single-part message for you'
 body 'This message has a plain text body.'
 end
end

ActionMailer then makes two new methods available for generating this kind of
email message: SimpleMailer.create_simple_message, which returns the email mes-
sage as a data structure, and SimpleMailer.deliver_simple_message, which actually
sends the message.

puts SimpleMailer.create_simple_message('lucas@example.com')
From: leonardr@example.org
To: lucas@example.com
Subject: A single-part message for you
Content-Type: text/plain; charset=utf-8
#
This message has a plain text body.

To deliver the message, call deliver_simple_message instead of create_simple_
message. First, though, you’ll need to tell ActionMailer about your SMTP server. If
you’re sending mail from example.org and you’ve got an SMTP server on the local
machine, you might send a message this way:

ActionMailer::Base.server_settings = { :address => 'localhost',
 :port => 25, # 25 is the default
 :domain => 'example.org' }

SimpleMailer.deliver_simple_message('lucas@example.com')

If you’re using your ISP’s SMTP server, you’ll probably need to send authentication
information so the server knows you’re not a spammer. Your ActionMailer setup will
probably look like this:

ActionMailer::Base.server_settings = { :address => 'smtp.example.org',
 :port => 25,
 :domain => 'example.org',

510 | Chapter 14: Internet Services

 :user_name => 'leonardr@example.org',
 :password => 'my_password',
 :authentication => :login }

SimpleMailer.deliver_simple_message('lucas@example.com')

Discussion
Unless you’re writing a general-purpose mail client, you probably won’t be letting
your users compose emails from scratch. More likely, you’ll define a template for
every type of email your application might send, and fill it in with custom data every
time you send a message.*

This is what ActionMailer is designed for. The simple_message method defined above
is actually a hook method that makes ActionMailer respond to two other methods:
create_simple_message and deliver_simple_message. The hook method defines the
headers and body of a message template, the create_ method instantiates the tem-
plate with specific values, and the deliver_ method actually delivers the email. You
never call simple_message directly.

Within your hook method, you can set most of the standard email headers by call-
ing a method of the same name (subject, cc, and so on). You can also set custom
headers by modifying the @headers instance variable:

class SimpleMailer
 def headerful_message
 @headers['A custom header'] = 'Its value'
 body 'Body'
 end
end

puts SimpleMailer.create_headerful_message
Content-Type: text/plain; charset=utf-8
A custom header: Its value
#
Body

You can create a multipart message with attachments by passing the MIME type of
the attachment into the attachment method.

Here’s a method that creates a message containing a dump of the files in a directory
(perhaps a bunch of logfiles). It uses the mime-types gem to determine the probable
MIME type of a file, based on its filename:

require 'mime/types'

class SimpleMailer
 def directory_dump_message(recipient, directory)

* You can use ActionMailer even if you are writing a general-purpose mail client (just write a single hook
method called custom_messge that takes a whole lot of arguments), but you might prefer to drop down a level
and use TMail or RubyMail.

14.5 Sending Mail | 511

 from 'directory-dump@example.org'
 recipients recipient
 subject "Dump of #{directory}"
 body %{Here are the files currently in "#{directory}":}

 Dir.new(directory).each do |f|
 path = File.join(directory, f)
 if File.file? path
 mime_type = MIME::Types.of(f).first
 content_type = (mime_type ? mime_type.content_type :
 'application/binary')
 attachment(content_type) do |a|
 a.body = File.read(path)
 a.filename = f
 a.transfer_encoding = 'quoted-printable' if content_type =~ /^text\//
 end
 end
 end
 end
end

SimpleMailer.create_directory_dump_message('lucas@example.com',
 'email_test')

Here it is in action:

Dir.mkdir('email_test')
open('email_test/image.jpg', 'wb') { |f| f << "\377\330\377\340\000\020JFIF" }
open('email_test/text.txt', 'w') { |f| f << "Here's some text." }

puts SimpleMailer.create_directory_dump_message('lucas@example.com',
 'email_test')
From: directory-dump@example.org
To: lucas@example.com
Subject: Dump of email_test
Mime-Version: 1.0
Content-Type: multipart/mixed; boundary=mimepart_443d73ecc651_3ae1..fdbeb1ba4328
#
#
--mimepart_443d73ecc651_3ae1..fdbeb1ba4328
Content-Type: text/plain; charset=utf-8
Content-Disposition: inline
#
Here are the files currently in "email_test":
--mimepart_443d73ecc651_3ae1..fdbeb1ba4328
Content-Type: image/jpeg; name=image.jpg
Content-Transfer-Encoding: Base64
Content-Disposition: attachment; filename=image.jpg
#
/9j/4AAQSkZJRg==
#
--mimepart_443d73ecc651_3ae1..fdbeb1ba4328
Content-Type: text/plain; name=text.txt
Content-Transfer-Encoding: Quoted-printable

512 | Chapter 14: Internet Services

Content-Disposition: attachment; filename=text.txt
#
Here's some text.=
#
--mimepart_443d73ecc651_3ae1..fdbeb1ba4328--

If you’re a minimalist, you can use the net/smtp library to send email without install-
ing any gems. There’s nothing in the Ruby standard library to help you with creating
the email string, though; you’ll have to build it manually. Once you’ve got the string,
you can send it as an email message with code like this:

require 'net/smtp'
Net::SMTP.start('smtp.example.org', 25, 'example.org',
 'leonardr@example.org', 'my_password', :login) do |smtp|
 smtp.send_message(message_string, from_address, to_address)
end

Whether you use Net::SMTP or ActionMailer to deliver your mail, the possible SMTP
authentication schemes are represented with symbols (:login, :plain, and :cram_md5).
Any given SMTP server may support any or all of these schemes. Try them one at a
time, or ask your system administrator or ISP which one to use.

See Also
• Recipe 15.19, “Sending Mail with Rails,” if you’re using Rails

• The ActionMailer documentation (http://www.lickey.com/rubymail/rubymail/doc/)

• The standard for email messages (RFC 2822)

• More ActionMailer examples (http://am.rubyonrails.com/classes/ActionMailer/
Base.html)

14.6 Reading Mail with IMAP
Credit: John Wells

Problem
You want to connect to an IMAP server in order to read and manipulate the mes-
sages stored there.

Solution
The net/imap.rb package, written by Shugo Maeda, is part of Ruby’s standard
library, and provides a very capable base on which to build an IMAP-oriented email
application. In the following sections, I’ll walk you through various ways of using
this API to interact with an IMAP server.

14.6 Reading Mail with IMAP | 513

For this recipe, let’s assume you have access to an IMAP server running at mail.
myhost.com on the standard IMAP port 143. Your username is, conveniently, “user-
name”, and your password is “password”.

To make the initial connection to the server, it’s as simple as:

require 'net/imap'

conn = Net::IMAP.new('mail.myhost.com', 143)
conn.login('username', 'password')

Assuming no error messages were received, you now have a connection to the IMAP
server. The Net::IMAP object puts all the capabilities of IMAP at your fingertips.

Before doing anything, though, you must tell the server which mailbox you’re inter-
ested in working with. On most IMAP servers, your default mailbox is called
“INBOX”. You can change mailboxes with Net::IMAP#examine:

conn.examine('INBOX')
Use Net::IMAP#select instead for read-only access

A search provides a good example of how a Net::IMAP object lets you interact with
the server. To search for all messages in the selected mailbox from a particular
address, you can use this code:

conn.search(['FROM', 'jabba@huttfoundation.org']).each do |sequence|
 fetch_result = conn.fetch(sequence, 'ENVELOPE')
 envelope = fetch_result[0].attr['ENVELOPE']
 printf("%s - From: %s - To: %s - Subject: %s\n", envelope.date,
 envelope.from[0].name, envelope.to[0].name, envelope.subject)
end
Wed Feb 08 14:07:21 EST 2006 - From: The Hutt Foundation - To: You - Subject: Bwah!
Wed Feb 08 11:21:19 EST 2006 - From: The Hutt Foundation - To: You - Subject: Go to
do wa IMAP

Discussion
The details of the IMAP protocol are a bit esoteric, and to really understand it you’ll
need to read the RFC. That said, the code in the solution shouldn’t be too hard to
understand: it uses the IMAP SEARCH command to find all messages with the FROM
field set to “jabba@huttfoundation.org”.

The call to Net::IMAP#search returns an array of message sequence IDs: a key to a
message within the IMAP server. We iterate over these keys and send each one back
to the server, using IMAP’s FETCH command to ask for the envelope (the headers) of
each message. Note that the Ruby method for an IMAP instruction often shares the
instruction’s name, only in lowercase to keep with the Ruby way.

The ENVELOPE parameter we pass to Net::IMAP#fetch tells the server to give us summary
information about the message by parsing the RFC2822 message headers. This way we
don’t have to download the entire body of the message just to look at the headers.

514 | Chapter 14: Internet Services

You’ll also notice that Net::IMAP#fetch returns an array, and that we access its first
element to get the information we’re after. This is because Net::IMAP#fetch lets you
to pass an array of sequence numbers instead of just one. It returns an array of Net::
IMAP::FetchData objects with an element corresponding to each number passed in.
You get an array even if you only pass in one sequence number.

There are also other cool things you can do.

Check for new mail

You can see how many new messages have arrived by examining the responses sent
by the server when you select a mailbox. These are stored in a hash: the responses
member of your connection object. Per the IMAP spec, the value of RECENT is the
number of new messages unseen by any client. EXISTS tells how many total mes-
sages are in the box. Once a client connects and opens the mailbox, the RECENT
response will be unset, so you’ll only see a new message count the first time you run
the command:

puts "#{conn.responses["RECENT"]} new messages, #{conn.responses["EXISTS"]} total"
10 new messages, 1022 total

Retrieve a UID for a particular message

The sequence number is part of a relative sequential numbering of all the messages in
the current mailbox. Sequence numbers get reassigned upon message deletion and
other operations, so they’re not reliable over the long term. The UID is more like a
primary key for the message: it is assigned when a message arrives and is guaranteed
not to be reassigned or reused for the life of the mailbox. This makes it a more reli-
able way of making sure you’ve got the right message:

uids = conn.search(["FROM", "jabba@huttfoundation.org"]).collect do |sequence|
 fetch_result = conn.fetch(sequence, "UID")
 puts "UID: #{fetch_result[0].attr["UID"]}"
end
UID: 203
UID: 206

Why are message UIDs useful? Consider the following scenario. We’ve just retrieved
message information for messages between January 2000 and January 2006. While
viewing the output, we saw a message that looked interesting, and noted the UID
was 203.

To view the message body, we use code like this:

puts conn.uid_fetch(203, 'BODY[TEXT]')[0].attr['BODY[TEXT]']

Reading headers made easy

In our first example in this recipe, we accessed message headers through use of the
IMAP ENVELOPE parameter. Because displaying envelope information is such a

14.6 Reading Mail with IMAP | 515

common task, I prefer to take advantage of Ruby’s open classes and add this func-
tionality directly to Net::IMAP:

class Net::IMAP
 def get_msg_info(msg_sequence_num)
 # code we used above
 fetch_result = fetch(msg_sequence_num, '(UID ENVELOPE)')
 envelope = fetch_result[0].attr['ENVELOPE']
 uid = fetch_result[0].attr['UID']
 info = {'UID' => uid,
 'Date' => envelope.date,
 'From' => envelope.from[0].name,
 'To' => envelope.to[0].name,
 'Subject' => envelope.subject}
 end
end

Now, we can make use of this code wherever it’s convenient. For example, in this
search for all messages received in a certain date range:

conn.search(['BEFORE', '01-Jan-2006',
 'SINCE', '01-Jan-2000']).each do |sequence|
 conn.get_msg_info(sequence).each {|key, val| puts "#{key}: #{val}" }
end

Forwarding mail to a cell phone

As a final, somewhat practical example, let’s say you’re waiting for a very important
email from someone at huttfoundation.org. Let’s also assume you have an SMTP
server at the same host as your IMAP server, running on port 25.

You’d like to have a program that could check your email every five minutes. If a
new message from anyone at huttfoundation.org is found, you’d like to forward that
message to your cell phone via SMS. The email address of your cell phone is
5555555555@mycellphoneprovider.com.

#!/usr/bin/ruby -w
forward_important_messages.rb

require 'net/imap'
require 'net/smtp'

address = 'huttfoundation.org'
from = 'myhomeemail@my.mailhost.com'
to = '5555555555@mycellphoneprovider.com'
smtp_server = 'my.mailhost.com'
imap_server = 'my.mailhost.com'
username = 'username'
password = 'password'

while true do
 conn = imap = Net::IMAP.new(imap_server, 143)
 conn.login(username, password)

516 | Chapter 14: Internet Services

 conn.select('INBOX')
 uids = conn.search(['FROM', address, 'UNSEEN']).each do |sequence|
 fetch_result = conn.fetch(sequence, 'BODY[TEXT]')
 text = fetch_result[0].attr['BODY[TEXT]']
 count = 1
 while(text.size > 0) do
 # SMS messages limited to 160 characters
 msg = text.slice!(0, 159)
 full_msg = "From: #{from}\n"
 full_msg += "To: #{to}\n"
 full_msg += "Subject: Found message from #{address} (#{count})!\n"
 full_msg += "Date: #{Time.now}\n"
 full_msg += msg + "\n"
 Net::SMTP.start(smtp_server, 25) do |smtp|
 smtp.send_message full_msg, from, to
 end
 count += 1
 end
 # set Seen flag, so our search won't find the message again
 conn.store(sequence, '+FLAGS', [:Seen])
 end
 conn.disconnect
 # Sleep for 5 minutes.
 sleep (60*60*5)
end

This recipe should give you a hint of the power you have when you access IMAP
mailboxes. Please note that to really understand IMAP, you need to read the IMAP
RFC, as well as RFC2822, which describes the Internet Message Format. Multipart
messages and MIME types are beyond of the scope of this recipe, but are both some-
thing you’ll deal with regularly when accessing mailboxes.

See Also
• ri Net::IMAP

• The IMAP RFC (RFC3501) (http://www.faqs.org/rfcs/rfc3501.html)

• The Internet Message Format RFC (RFC2822) (http://www.faqs.org/rfcs/rfc2822.
html)

• Recipe 3.12, “Running a Code Block Periodically”

• Recipe 14.5, “Sending Mail”

14.7 Reading Mail with POP3
Credit: John Wells

Problem
You want to connect to an POP server in order to read and download the messages
stored there.

14.7 Reading Mail with POP3 | 517

Solution
The net/pop.rb package, written by Minero Aoki, is part of Ruby’s standard library,
and provides a foundation on which to build a POP (Post Office Protocol)-oriented
email application. As with the previous recipe on IMAP, we’ll walk through some
common ways of accessing a mail server with the POP API.

For this recipe, we assume you have access to a POP3 server running at mail.myhost.
com on the standard POP3 port 110. Just as in the previous IMAP example, your
username is “username”, and password is (yep) “password”.

To make the initial connection to the server, it’s as simple as:

require 'net/pop'

conn = Net::POP3.new('mail.myhost.com')
conn.start('username', 'password')

If you receive no errors, you’ve got an open session to your POP3 server, and can use
the conn object to communicate with the server.

The following code acts like a typical POP3 client: having connected to the server, it
downloads all the new messages, and then deletes them from the server. The dele-
tion is commented out so you don’t lose mail accidentally while testing this code:

require 'net/pop'

conn = Net::POP3.new('mail.myhost.com')
conn.start('username', 'password')

conn.mails.each do |msg|
 File.open(msg.uidl, 'w') { |f| f.write msg.pop }
 # msg.delete
end

conn.finish

Discussion
POP3 is a much simpler protocol than IMAP, and arguably a less powerful one. It
doesn’t support the concept of folders, so there’s no need to start off by selecting a
particular folder (like we did in the IMAP recipe). Once you start a session, you have
immediate access to all messages currently retained on the server.

IMAP stores your folders and your messages on the server itself. This way you can
access the same messages and the same folders from different clients on different
machines. For example, you might go to work and access an IMAP folder with
Mozilla Thunderbird, then go home and access the same folder with a web-based
mail client.

With POP3, there are no server-side folders. You’re supposed to archive your mes-
sages on the client side. If you use a POP3 client to download messages at work,

518 | Chapter 14: Internet Services

when you get home you won’t be able to access those messages. They’re on your
work computer, not on the POP3 server.

IMAP assigns a unique, unchanging ID to each message in the mailbox. By contrast,
when you start a POP3 session, POP3 gives each message a “sequence number”
reflecting its position in the mailbox at that time. The next time you connect to the
POP3 server, the same message may have a different sequence number, as new,
incoming messages can affect the sequencing. This is why POP3 clients typically
download messages immediately and delete them from the server.

If we want to go outside this basic pattern, and leave the messages on the server, how
can we keep track of messages from one connection to another? POP3 does provide a
unique string ID for each message: a Unique Identification Listing, or UIDL. You can
use a UIDL (which persists across POP3 sessions) to get a sequence number (which
doesn’t) and retrieve a message across separate connections.

This code finds the IDs of email messages from a particular source:

conn = Net::POP3.new('mail.myhost.com')
conn.start('username', 'password')
ids = conn.mails.collect {|msg| msg.uidl if msg.pop.match('jabba')}
conn.finish
=> ["UID2-1141260595", "UID3-1141260595"]

Now we have unique identifiers for each of our matching messages. Given these, we can
start a new POP3 session and use these UIDLs to retrieve each message individually:

conn2 = Net::POP3.new('mail.myhost.com')
conn.start('username', 'password')

conn.each_mail {|msg| puts msg.pop if msg.uidl=='UID3-1141260595'}

conn.finish
Return-Path: <jabba@huttfoundation.org>
X-Original-To: username@my.mailhost.com
Delivered-To: username@localhost
...

Here we call the method Net::POP3#each_mail to iterate over all the messages in the
mailbox. Each message is passed into the code block as a Net::POPMail message. We
look at each message’s UIDL and, when we find the message we want, we call Net::
POPMail#pop to print it out.

Forwarding mail to a cell phone

Let’s revisit our example from the IMAP recipe. You’re waiting for a very important
email, and you want to have it forwarded to your cell phone as soon as it comes in.
You’re able to send mail through a SMTP server hosted on port 25 of the same
machine as your POP3 server. The email address of your cell phone is
5555555555@mycellphoneprovider.com.

14.7 Reading Mail with POP3 | 519

This program checks your POP3 server for new email every five minutes. If a new
message from anyone at huttfoundation.org is found, it forwards the message to your
cell phone via SMS.

#!/usr/bin/env ruby
forward_important_messages.rb

require 'net/pop'
require 'net/smtp'

$address = 'huttfoundation.org'
$from = 'myhomeemail@my.mailhost.com'
$to = '5555555555@mycellphoneprovider.com'
smtp_server = 'my.mailhost.com'
pop_server = 'my.mailhost.com'
username = 'username'
password = 'password'

$found = Hash.new

def send_msg (text)
 count = 1
 while(text.size > 0) do
 # SMS messages limited to 160 characters
 msg = text.slice!(0, 159)
 full_msg = "From: #{$from}\n"
 full_msg += "To: #{$to}\n"
 full_msg += "Subject: Found message from #{$address} (#{count})!\n"
 full_msg += "Date: #{Time.now}\n"
 full_msg += msg + "\n"
 Net::SMTP.start(smtp_server, 25) do |smtp|
 smtp.send_message full_msg, $from, $to
 end
 count += 1
 end
end

loop do
 conn = Net::POP3.new(pop_server)
 conn.start('username', 'password')

 uidls = conn.mails.collect do |msg|
 msg.uidl if msg.pop.match(/#{$address}/)
 end

 uidls.each do |one_id|
 if ! $found.has_key? one_id
 $found[one_id] = true
 conn.each_mail do |msg|
 send_msg(msg.uidl) if msg.uidl==one_id
 end
 end
 end

520 | Chapter 14: Internet Services

 conn.finish
 # Sleep for 5 minutes.
 sleep (60*60*5)
end

See Also
• Recipe 14.6, “Reading Mail with IMAP”

• RFC1939 describes the POP3 protocol

14.8 Being an FTP Client

Problem
You want to automatically connect to an FTP server, and upload or download files.

Solution
Use the Net::FTP class. It provides a filesystem-like interface to an FTP server. In this
example, I log anonymously into a popular FTP site, browse one of its directories,
and download two of its files:

require 'net/ftp'
ftp = Net::FTP.open('ftp.ibiblio.org') do |ftp|
 ftp.login
 ftp.chdir('pub/linux/')
 ftp.list('*Linux*') { |file| puts file }
 puts

 puts 'Saving a text file to disk while processing it.'
 ftp.gettextfile('How-do-I-get-Linux') { |line| puts "! #{line}" }
 puts "Saved #{File.size 'How-do-I-get-Linux'} bytes."
 puts

 puts 'Saving a binary file to disk.'
 ftp.getbinaryfile('INDEX.whole.gz')
 puts "Saved #{File.size 'INDEX.whole.gz'} bytes."
end
-rw-r--r-- 1 (?) users 16979001 Jan 1 11:31 00-find.Linux.gz
-rw-rw-r-- 1 (?) admin 73 Mar 9 2001 How-do-I-get-Linux

Saving a text file to disk while processing it.
!
! Browse to http://metalab.unc.edu/linux/HOWTO/Installation-HOWTO.html
!
Saved 73 bytes.

Saving a binary file to disk.
Saved 213507 bytes.

14.8 Being an FTP Client | 521

Discussion
Once the preferred way of storing and serving files through the Internet, FTP is being
largely superceded by SCP for copying files, the web for distributing files, and Bit-
Torrent for distributing very large files. There are still many anonymous FTP servers,
though, and many web hosting companies still expect you to upload your web pages
through FTP.

The login method logs in to the server. Calling it without arguments logs you in
anonymously, which traditionally limits you to download privileges. Calling it with a
username and password logs you in to the server:

ftp.login('leonardr', 'mypass')

The methods chdir and list let you navigate the FTP server’s directory structure.
They work more or less like the Unix cd and ls commands (in fact, list is aliased to
ls and dir).

There are also two “get” methods and two “put” methods. The “get” methods are
getbinaryfile and gettextfile. They retrieve the named file from the FTP server and
write it to disk. The gettextfile method converts between platform-specific newline
formats as it downloads. This way you can download a text file from a Unix server to
your Windows machine, and have the Unix newlines automatically converted into
Windows newlines. On the other hand, if you use gettextfile on a binary file, you’ll
probably corrupt the file as you download it.

You can specify a local name for the file and a block to process the data as it comes
in. A block passed into gettextfile will be called for each line of a downloaded file;
a block passed into getbinaryfile will be passed for each downloaded chunk.

A file you download with one of the “get” methods will be written to disk even if you
pass in a block to process it. If you want to process a file without writing it to disk,
just define some methods like these:

class Net::FTP
 def processtextfile(remotefile)
 retrlines('RETR ' + remotefile) { |line| yield line }
 end

 def processbinaryfile(remotefile, blocksize=DEFAULT_BLOCKSIZE)
 retrbinary('RETR ' + remotefile, blocksize) { |data| yield data }
 end
end

The two “put” methods are (you guessed it) puttextfile and putbinaryfile. They
are the exact opposites of their get counterparts: they take the path to a local file,
and write it to a file on the FTP server. They, too, can take a code block that pro-
cesses each line or chunk of the file as it’s read. This example automatically uploads
the index.html file to my ISP’s hosted web space.

522 | Chapter 14: Internet Services

require 'net/ftp'
Net::FTP.open('myisp.example.com') do |ftp|
 ftp.login('leonardr', 'mypass')
 ftp.chdir('public_html')
 ftp.puttextfile('index.html')
end

In general, you can’t use the “put” methods if you’re logged in as an anonymous
user. Some FTP servers do have special incoming/ directories to which anonymous
users can upload their submissions.

See Also
• ri Net::FTP

14.9 Being a Telnet Client

Problem
You want to connect to a telnet service or use telnet to get low-level access to some
other kind of server.

Solution
Use the Net::Telnet module in the Ruby standard library.

The following code uses a Telnet object to simulate an HTTP client. It sends a raw
HTTP request to the web server at http://www.oreilly.com. Every chunk of data
received from the web server is passed into a code block, and its size is added to a
tally. Eventually the web server stops sending data, and the telnet session times out.

require 'net/telnet'

webserver = Net::Telnet::new('Host' => 'www.oreilly.com',
 'Port' => 80,
 'Telnetmode' => false)
size = 0
webserver.cmd("GET / HTTP/1.1\nHost: www.oreilly.com\n") do |c|
 size += c.size
 puts "Read #{c.size} bytes; total #{size}"
end
Read 1431 bytes; total 1431
Read 1434 bytes; total 2865
Read 1441 bytes; total 4306
Read 1436 bytes; total 5742
...
Read 1430 bytes; total 39901
Read 2856 bytes; total 42757
/usr/lib/ruby/1.8/net/telnet.rb:551:in `waitfor':
timed out while waiting for more data (Timeout::Error)

14.9 Being a Telnet Client | 523

Discussion
Telnet is a lightweight protocol devised for connecting to a generic service running
on another computer. For a long time, the most commonly exposed service was a
Unix shell: you would “telnet in” to a machine on the network, log in, and run shell
commands on the other machine as though it were local.

Because telnet is an insecure protocol, it’s very rare now to use it for remote login.
Everyone uses SSH for that instead (see the next recipe). Telnet is still useful for two
things:

1. As a diagnostic tool (as seen in the Solution). Telnet is very close to being a
generic TCP protocol. If you know, say, HTTP, you can connect to an HTTP
server with telnet, send it a raw HTTP request, and view the raw HTTP
response.

2. As a client to text-based services other than remote shells: mainly old-school
entertainments like BBSes and MUDs.

Telnet objects implement a simple loop between you and some TCP server:

1. You send a string to the server.

2. You read data from the server a chunk at a time and process each chunk with a
code block. The continues until a chunk of data contains text that matches a reg-
ular expression known as a prompt.

3. In response to the prompt, you send another string to the server. The loop
restarts.

In this example, I script a Telnet object to log me in to a telnet-accessible BBS. I wait
for the BBS to send me strings that match certain prompts (“What is your name?”
and “password:”), and I send back strings of my own in response to the prompts.

require 'net/telnet'

bbs = Net::Telnet::new('Host' => 'bbs.example.com')

puts bbs.waitfor(/What is your name\?/)
The Retro Telnet BBS
Where it's been 1986 since 1993.
Dr. Phineas Goodbody, proprietor
#
What is your name? (NEW for new user)

bbs.cmd('String'=>'leonardr', 'Match'=>/password:/) { |c| puts c }
Hello, leonardr. Please enter your password:

bbs.cmd('my_password') { |c| puts c }
Welcome to the Retro Telnet BBS, leonardr.
Choose from the menu below:
...

524 | Chapter 14: Internet Services

The problem with this code is the “prompt” concept was designed for use with remote
shells. A Unix shell shows you a prompt after every command you run. The prompt
always ends in a dollar sign or some other character: it’s easy for telnet to pick out a
shell prompt in the data stream. But no one uses telnet for remote shells anymore, so
this is not very useful. The BBS software defines a different prompt for every interac-
tion: one prompt for the name and a different one for the password. The web page
grabber in the Solution doesn’t define a prompt at all, because there’s no such thing in
HTTP. For the type of problem we still solve with telnet, prompts are a pain.

What’s the alternative? Instead of having cmd wait for a prompt, you can just have it
wait for the server to go silent. Here’s an implementation of the web page grabber
from the Solution, which stops reading from the server if it ever goes more than a
tenth of a second without receiving any data:

require 'net/telnet'

webserver = Net::Telnet::new('Host' => 'www.oreilly.com',
 'Port' => 80,
 'Waittime' => 0.1,
 'Prompt' => /.*/,
 'Telnetmode' => false)
size = 0
webserver.cmd("GET / HTTP/1.1\nHost: www.oreilly.com\n") do |c|
 size += c.size
 puts "Read #{c.size} bytes; total #{size}"
end

Here, the prompt matches any string at all. The end of every data chunk is poten-
tially the “prompt” for the next command! But Telnet only acts on this if the server
sends no more data in the next tenth of a second.

When you have Telnet communicate with a server this way, you never know for sure
if you really got all the data. It’s possible that the server just got really slow all of a
sudden. If that happens, you may lose data or it may end up read by your next call to
cmd. The best you can do is try to make your Waittime large enough so that this
doesn’t happen.

In this example, I use Telnet to script a bit of a text adventure game that’s been made
available over the net. This example uses the same trick (a Prompt that matches any-
thing) as the previous one, but I’ve bumped up the Waittime because this server is
slower than the oreilly.com web server:

require 'net/telnet'
adventure = Net::Telnet::new('Host' => 'games.example.com',
 'Port' => 23266,
 'Waittime' => 2.0,
 'Prompt' => /.*/)

commands = ['no', 'enter building', 'get lamp'] # And so on...
commands.each do |command|
 adventure.cmd(command) { |c| print c }
end

14.10 Being an SSH Client | 525

Welcome to Adventure!! Would you like instructions?
no
#
You are standing at the end of a road before a small brick building.
Around you is a forest. A small stream flows out of the building and
down a gully.
enter building
#
You are inside a building, a well house for a large spring.
There are some keys on the ground here.
There is a shiny brass lamp nearby.
There is food here.
There is a bottle of water here.
#
get lamp
OK

See Also
• The Ruby documentation for the net/telnet standard library

• Recipe 14.10, “Being an SSH Client”

• The telnet text adventure is based on the version of Colossal Cave hosted at
forkexec.com; the site has lots of other games you can play via telnet (http://
games.forkexec.com/)

14.10 Being an SSH Client

Problem
You want to securely send data or commands back and forth between your com-
puter, and another computer on which you have a shell account.

Solution
Use the Net::SSH module, which implements the SSH2 protocol. It’s found in the
net-ssh gem, although some operating systems package it themselves.* It lets you
implement Ruby applications that work like the familiar ssh and scp.

You can start an SSH session by passing a hostname to Net::SSH::start, along with
your shell username and password on that host. If you have an SSH public/private
key pair set up between your computer and the remote host, you can omit the user-
name and password:

require 'rubygems'
require 'net/ssh'

* For instance, it’s available on Debian GNU/Linux as the package libnet-ssh-ruby1.8.

526 | Chapter 14: Internet Services

Net::SSH.start('example.com', :username=>'leonardr',
 :password=>'mypass') do |session|
 # Manipulate your Net::SSH::Session object here...
end

Net::SSH::start takes a code block, to which it passes a Net::SSH::Session object.
You use the session object to send encrypted data between the machines, or to
spawn processes on the remote machine. When the code block ends, the SSH ses-
sion is automatically terminated.

Discussion
It seems strange now, but until the late 1990s, people routinely used unsecured pro-
tocols like telnet to get shell access to remote machines. Remote access was so useful
that we were willing to jeopardize our electronic safety by sending our shell pass-
words (not to mention all the data we looked at) unencrypted across the network.
Fortunately, we don’t have to make that trade-off anymore. The SSH protocol makes
it easy to send encrypted traffic between machines, and the client tools ssh and scp
have almost completely replaced tools like RSH and nonanonymous FTP.

The Net::SSH library provides a low-level interface to the SSH2 protocol, but most of
the time you won’t need it. Instead, you’ll use one of the abstractions that make it
easy to spawn and control processes on a remote machine. The simplest abstraction
is the popen3 method, which works like the local popen3 method in Ruby’s open3
library. It’s covered in more detail in Recipe 20.10, but here’s a simple example:

Net::SSH.start('example.com', :username=>'leonardr',
 :password=>'mypass') do |session|
 cmd = 'ls -l /home/leonardr/test_dir'
 session.process.popen3(cmd) do |stdin, stdout, stderr|
 puts stdout.read
 end
end
-rw-rw-r-- 1 leonardr leonardr 33 Dec 29 20:40 file1
-rw-rw-r-- 1 leonardr leonardr 102 Dec 29 20:40 file2

You can run a sequence of commands in a single user shell by calling session.shell.
sync:

Net::SSH.start('example.com', :username=>'leonardr',
 :password=>'mypass') do |session|
 shell = session.shell.sync
 puts "Original working directory: #{shell.pwd.stdout}"
 shell.cd 'test_dir'
 puts "Working directory now: #{shell.pwd.stdout}"
 puts 'Directory contents:'
 puts shell.ls("-l").stdout
 shell.exit
end
Original working directory: /home/leonardr
Working directory now: /home/leonardr/test_dir
Directory contents:

14.11 Copying a File to Another Machine | 527

-rw-rw-r-- 1 leonardr leonardr 33 Dec 29 20:40 file1
-rw-rw-r-- 1 leonardr leonardr 102 Dec 29 20:40 file2

The main downside of a synchronized shell is that you usually can’t pass standard
input data into the commands you run. There’s no way to close the standard input
stream, so the process will hang forever waiting for more standard input.* To pass
standard input into a remote process, you should use popen3. With a little trickery,
you can control multiple processes simultaneously through your SSH connection; see
Recipe 14.11 for details.

If your public/private key pair for a host is protected by a passphrase, you will be
prompted for the passphrase Net::SSH tries to make a connection to that host. This
makes your key more secure, but it will foil your plans to use Net::SSH in an auto-
mated script.

You can also use Net::SSH to do TCP/IP port forwarding. As of this writing, you
can’t use it to do X11 forwarding.

See Also
• Recipe 20.10, “Controlling a Process on Another Machine,” covers Net:SSH’s

implementation of popen3 in more detail. Recipe 14.11 shows how to implement
an scp-like service on top of the Net:SSH API, but these three recipes together
only scratch the surface of what’s possible with Net:SSH. The library manual
(http://net-ssh.rubyforge.org/) is comprehensive and easy to read; it covers many
topics not touched upon here, like low-level SSH2 operations, callback methods
other than on_success, port forwarding, and nonsynchonized user shells

• Recipe 14.2, “Making an HTTPS Web Request,” has information on installing
the OpenSSL extension

• Learn more about public/private keys in the article “OpenSSH key manage-
ment, Part 1” (http://www-128.ibm.com/developerworks/library/l-keyc.html)

14.11 Copying a File to Another Machine

Problem
You want to programatically send files to another computer, the way the Unix scp
command does.

* The exception is a command like bc, which terminates itself if it sees the line “quit\n” in its standard input.
Commands like cat always look for more standard input.

528 | Chapter 14: Internet Services

Solution
Use the Net:SSH library to get a secure shell connection to the other machine. Start a
cat process on the other machine, and write the file you want to copy to its standard
input.

require 'rubygems'
require 'net/ssh'

def copy_file(session, source_path, destination_path=nil)
 destination_path ||= source_path
 cmd = %{cat > "#{destination_path.gsub('"', '\"')}"}
 session.process.popen3(cmd) do |i, o, e|
 puts "Copying #{source_path} to #{destination_path}... "
 open(source_path) { |f| i.write(f.read) }
 puts 'Done.'
 end
end

Net::SSH.start('example.com', :username=>'leonardr',
 :password=>'mypass') do |session|
 copy_file(session, '/home/leonardr/scripts/test.rb')
 copy_file(session, '/home/leonardr/scripts/"test".rb')
end
Copying /home/leonardr/scripts/test.rb to /home/leonardr/scripts/test.rb...
Done.
Copying /home/leonardr/scripts/"test".rb to /home/leonardr/scripts/"test".rb...
Done.

Discussion
The scp command basically implements the old rcp protocol over a secured connec-
tion. This code uses a shortcut to achieve the same result: it uses the high-level SSH
interface to spawn a process on the remote host which writes data to a file.

Since you can run multiple processes at once over your SSH session, you can copy
multiple files simultaneously. For every file you want to copy, you need to spawn a
cat process:

def do_copy(session, source_path, destination_path=nil)
 destination_path ||= source_path
 cmd = %{cat > "#{destination_path.gsub('"', '\"')}"}
 cat_process = session.process.open(cmd)

 cat_process.on_success do |p|
 p.write(open(source_path) { |f| f.read })
 p.close
 puts "Copied #{source_path} to #{destination_path}."
 end
end

The call to session.process.open creates a process-like object that runs a cat com-
mand on the remote system. The call to on_success registers a callback code block

14.12 Being a BitTorrent Client | 529

with the process. That code block will run once the cat command has been set up
and is accepting standard input. Once that happens, it’s safe to start writing data to
the file on the remote system.

Once you’ve set up all your copy operations, you should call session.loop to per-
form all the copy operations simultaneously. The processes won’t actually be initial-
ized until you call session.loop.

Net::SSH.start('example.com', :username=>'leonardr',
 :password=>'mypass') do |session|
 do_copy(session, '/home/leonardr/scripts/test.rb')
 do_copy(session, '/home/leonardr/new_index.html',
 '/home/leonardr/public_html/index.html')
 session.loop
end
Copied /home/leonardr/scripts/test.rb to /home/leonardr/scripts/test.rb
Copied /home/leonardr/new_index.html to /home/leonardr/public_html/index.html

14.12 Being a BitTorrent Client

Problem
You want to write a Ruby script that downloads or shares large files with BitTorrent.

Solution
The third-party RubyTorrent library implements the BitTorrent protocol; you can
use it to write BitTorrent clients. The RubyTorrent package has no setup.rb file, so
you’ll need to manually copy the files into your Ruby classpath or package them with
your application.

The BitTorrent class acts as a BitTorrent client, so to download a torrent, all you
have to do is give it the path or URL to a .torrent file. This code will download the
classic B-movie Night of the Living Dead to the current working directory:

require 'rubytorrent'
file = 'http://publicdomaintorrents.com/bt/btdownload.php?type=torrent' +
 '&file=Night_of_the_Living_Dead.avi.torrent'
client = RubyTorrent::BitTorrent.new(file)

Run this in irb, keep your session open, and in a few hours (or days), you’ll have
your movie!*

* That is, assuming the torrent is still active when you read this. Incidentally, Night of the Living Dead is in the
public domain because of a mishap regarding the copyright notice.

530 | Chapter 14: Internet Services

Discussion
BitTorrent is the most efficient way yet devised for sharing large files between lots of
people. As you download the file you’re also sharing what you’ve downloaded with
others: the more people are trying to download the file, the faster it is for everyone.

RubyTorrent is a simple client library to the BitTorrent protocol. In its simplest
form, you simply construct a BitTorrent object with the URL or path to a torrent
information file, and wait for the download to complete. However, there’s a lot more
you can do to provide a better user interface.

The BitTorrent object has several methods that let you keep track of the progress of
the download:

client.num_active_peers # => 9
That is, 9 other people are downloading this file along with me.

client.ulrate # => 517.638825414351
client.dlrate # => 17532.608916979
That is, about 3 kb/sec uploading and 17 kb/sec downloading.

client.percent_completed # => 0.25

You can also register code blocks to be run at certain points in the client’s lifecycle.
Here’s a more advanced BitTorrent client that registers code blocks to let the user
know about new and dropped peer connections. It also uses a thread to occasionally
report on the progress of the download. The user can specify which port to use when
uploading data to peers, and a maximum upload rate in kilobytes.

#!/usr/bin/ruby
btclient.rb
require 'rubytorrent'

def download(torrent, destination=nil, local_port=6881, max_ul=40)
 client = RubyTorrent::BitTorrent.new(torrent, destination,
 :port => local_port,
 :ulratelim => max_ul * 1024)

 thread = Thread.new do
 until client.complete?
 if client.tracker
 puts '%s: %dk of %dk (%.2f%% complete)' % [Time.now,
 client.bytes_completed / 1024, client.total_bytes / 1024,
 client.percent_completed]
 sleep(60)
 else
 sleep(5)
 end
 end
 end

 client.on_event(self, :tracker_connected) do |src, url|
 puts "[Connected to tracker at #{url}]"

14.13 Pinging a Machine | 531

 end
 client.on_event(self, :added_peer) do |src, peer|
 puts "[Connected to #{peer}.]"
 end
 client.on_event(self, :removed_peer) do |src, peer|
 puts "[Lost connection to #{peer.name}.]"
 end
 client.on_event(self, :complete) do
 puts 'Download complete.'
 thread.kill
 client.shutdown
 end

 thread.join
end

download(*ARGV)

See Also
• Get RubyTorrent at http://rubytorrent.rubyforge.org/; see especially the API refer-

ence at http://rubytorrent.rubyforge.org/api.txt

• The btpeer.rb and rtpeer-ncurses.rb files in the RubyTorrent package provide
more in-depth client examples

• A few sources for interesting BitTorrent files:

• http://www.publicdomaintorrents.com/

• http://torrent.ibiblio.org/

14.13 Pinging a Machine

Problem
You want to check whether a particular machine or domain name can be reached
from your computer.

Solution
Use Ruby’s standard ping library. Its single method, Ping.pingecho, tries to get some
machine on the network to respond to its entreaties. It takes either a domain name or
an IP address, and returns true if it gets a response.

require 'ping'

Ping.pingecho('oreilly.com') # => true

timeout of 10 seconds instead of the default 5 seconds
Ping.pingecho('127.0.0.1', 10) # => true

532 | Chapter 14: Internet Services

ping port 80 instead of the default echo port
Ping.pingecho('slashdot.org', 5, 80) # => true

Ping.pingecho('no.such.domain') # => false
Ping.pingecho('222.222.222.222') # => false

Discussion
Ping.pingecho performs a TCP echo: it tries to make a TCP connection to the given
machine, and if the machine responds (even if to refuse the connection) it means the
machine was reachable.

This is not the ICMP echo of the Unix ping command, but the difference almost
never matters. If you absolutely need an ICMP echo, you can invoke ping with a sys-
tem call and check the return value:

system('ping -c1 www.oreilly.com')
64 bytes from 208.201.239.36: icmp_seq=0 ttl=42 time=27.2 ms
#
--- www.oreilly.com ping statistics ---
1 packets transmitted, 1 packets received, 0% packet loss
round-trip min/avg/max = 27.2/27.2/27.2 ms
=> true

If the domain has a DNS entry but can’t be reached, Ping::pingecho may raise a
Timeout::Error instead of returning false.

Some very popular or very paranoid domains, such as microsoft.com, don’t respond
to incoming ping requests. However, you can usually access the web server or some
other service on the domain. You can see whether such a domain is reachable by
using one of Ruby’s other libraries:

Ping.pingecho('microsoft.com') # => false

require 'net/http'
Net::HTTP.start('microsoft.com') { 'success!' } # => "success!"
Net::HTTP.start('no.such.domain') { "success!" }
SocketError: getaddrinfo: Name or service not known

14.14 Writing an Internet Server

Problem
You want to run a server for a TCP/IP application-level protocol, but no one has
written a Ruby server for the protocol yet. This may be because it’s a protocol you’ve
made up.

Solution
Use the gserver library in Ruby’s standard library. It implements a generic TCP/IP
server suitable for small to medium-sized tasks.

14.14 Writing an Internet Server | 533

Here’s a very simple chat server written with gserver. It has no end-user features to
speak of. People connect to the server with a telnet client, and are identified to each
other only by hostname. But it’s a fully functional, multithreaded, logging server
written in about 30 lines of Ruby.

#!/usr/bin/ruby -w
chat.rb
require 'gserver'

class ChatServer < GServer

 def initialize(port=20606, host=GServer::DEFAULT_HOST)
 @clients = []
 super(port, host, Float::MAX, $stderr, true)
 end

 def serve(sock)
 begin
 @clients << sock
 hostname = sock.peeraddr[2] || sock.peeraddr[3]
 @clients.each do |c|
 c.puts "#{hostname} has joined the chat." unless c == sock
 end
 until sock.eof? do
 message = sock.gets.chomp
 break if message == "/quit"
 @clients.each { |c| c.puts "#{hostname}: #{message}" unless c == sock }
 end
 ensure
 @clients.delete(sock)
 @clients.each { |c| c.puts "#{hostname} has left the chat." }
 end
 end
end

server = ChatServer.new(*ARGV[0..2] || 20606)
server.start(-1)
server.join

Start the server in a Ruby session, and then use several instances of the telnet pro-
gram to connect to port 20606 (from several different hosts, if you can). Your telnet
sessions will be able to communicate with each other through the server. Your Ruby
session will see a log of the connections and disconnections.

Discussion
The GServer class wraps Ruby’s underlying TCPServer class in a loop that continually
receives TCP connections and spawns new threads to process them. Each new thread
passes its TCP connection (a TCPSocket object) into the GServer#serve method,
which your subclass is responsible for providing.

534 | Chapter 14: Internet Services

The TCPSocket works like a bidirectional file. Writing to it pushes data to the client,
and reading from it reads data from the client. A server like the sample chat server
reads one line at a time from the client; a web server would read the entire request
before sending back any data.

In the chat server example, the server echoes one client’s input to all the others. In
most applications, the client sockets won’t even know about each other (think a web
or FTP server).

The GServer constructor deserves a closer look. Here’s its signature, from gserver.rb:

def initialize(port, host = DEFAULT_HOST, maxConnections = 4,
 stdlog = $stderr, audit = false, debug = false)

The port and host should be familiar to you from other types of server.
maxConnections controls the maximum number of clients that can connect to the
server at once. Because a chat server is very high-latency, I set the number effectively
to infinity in ChatServer.

stdlog is an IO object to be used as a log. You can write a timestamped entry to the
log by calling GServer#log. Setting audit to true turns on some default log messages:
these are displayed, for instance, whenever a client connects to or disconnects from
the server. Finally, setting debug to true means that, if your code throws an excep-
tion, the exception object will be passed into GServer#error. You can override this
method to do your own error handling.

Gserver is easy to use, but not as efficient as a Ruby Internet server could be. For
high-performance servers, you’ll want to use IO.select and TCPServer objects, pro-
gramming to the C sockets API.

See Also
• ri GServer

14.15 Parsing URLs

Problem
You want to parse a string representation of a URL into a data structure that articu-
lates the parts of the URL.

Solution
URI.parse transforms a string describing a URL into a URI object.* The parts of the
URL can be determined by interrogating the URI object.

* The class name is URI, but I use both “URI” and “URL” because they are more or less interchangeable.

14.15 Parsing URLs | 535

require 'uri'

URI.parse('https://www.example.com').scheme # => "https"
URI.parse('http://www.example.com/').host # => "www.example.com"
URI.parse('http://www.example.com:6060/').port # => 6060
URI.parse('http://example.com/a/file.html').path # => "/a/file.html"

URI.split transforms a string into an array of URL parts. This is more efficient than
URI.parse, but you have to know which parts correspond to which slots in the array:

URI.split('http://example.com/a/file.html')
=> ["http", nil, "example.com", nil, nil, "/a/file.html", nil, nil, nil]

Discussion
The URI module contains classes for five of the most popular URI schemas. Each one
can store in a structured format the data that makes up a URI for that schema. URI.
parse creates an instance of the appropriate class for a particular URL’s scheme.

Every URI can be decomposed into a set of components, joined by constant strings.
For example: the components for a HTTP URI are the scheme (“http”), the host-
name (“www.example.com (http://www.example.com)”), and so on. Each URI
schema has its own components, and each of Ruby’s URI classes stores the names of
its components in an ordered array of symbols, called component:

URI::HTTP.component
=> [:scheme, :userinfo, :host, :port, :path, :query, :fragment]

URI::MailTo.component
=> [:scheme, :to, :headers]

Each of the components of a URI class has a corresponding accessor method, which
you can call to get one component of a URI. You can also instantiate a URI class
directly (rather than going through URI.parse) by passing in the appropriate compo-
nent symbols as a map of keyword arguments.

URI::HTTP.build(:host => 'example.com', :path => '/a/file.html',
 :fragment => 'section_3').to_s
=> "http://example.com/a/file.html#section_3"

The following debugging method iterates over the components handled by the
scheme of a given URI object, and prints the corresponding values:

class URI::Generic
 def dump
 component.each do |m|
 puts "#{m}: #{send(m).inspect}"
 end
 end
end

URI::HTTP and URI::HTTPS are the most commonly encountered subclasses of URI,
since most URIs are the URLs to web pages. Both classes provide the same interface.

536 | Chapter 14: Internet Services

url = 'http://leonardr:pw@www.subdomain.example.com:6060' +
 '/cgi-bin/mycgi.cgi?key1=val1#anchor'
URI.parse(url).dump
scheme: "http"
userinfo: "leonardr:pw"
host: "www.subdomain.example.com"
port: 6060
path: "/cgi-bin/mycgi.cgi"
query: "key1=val1"
fragment: "anchor"

A URI::FTP object represents an FTP server, or a path to a file on an FTP server. The
typecode component indicates whether the file in question is text, binary, or a direc-
tory; it typically won’t be known unless you create a URI::FTP object and specify one.

URI::parse('ftp://leonardr:password@ftp.example.com/a/file.txt').dump
scheme: "ftp"
userinfo: "leonardr:password"
host: "ftp.example.com"
port: 21
path: "/a/file.txt"
typecode: nil

A URI::Mailto represents an email address, or even an entire message to be sent to
that address. In addition to its component array, this class provides a method (to_
mailtext) that formats the URI as an email message.

uri = URI::parse('mailto:leonardr@example.com?Subject=Hello&body=Hi!')
uri.dump
scheme: "mailto"
to: "leonardr@example.com"
headers: [["Subject", "Hello"], ["body", "Hi!"]]

puts uri.to_mailtext
To: leonardr@example.com
Subject: Hello
#
Hi!

A URI::LDAP object contains a path to an LDAP server or a query against one:

URI::parse("ldap://ldap.example.com").dump
scheme: "ldap"
host: "ldap.example.com"
port: 389
dn: nil
attributes: nil
scope: nil
filter: nil
extensions: nil

URI::parse('ldap://ldap.example.com/o=Alice%20Exeter,c=US?extension').dump
scheme: "ldap"
host: "ldap.example.com"

14.16 Writing a CGI Script | 537

port: 389
dn: "o=Alice%20Exeter,c=US"
attributes: "extension"
scope: nil
filter: nil
extensions: nil

The URI::Generic class, superclass of all of the above, is a catch-all class that holds
URIs with other schemes, or with no scheme at all. It holds much the same
components as URI::HTTP, although there’s no guarantee that any of them will be non-
nil for a given URI::Generic object.

URI::Genericalso exposes two other components not used by any of its built-in sub-
classes. The first is opaque, which is the portion of a URL that couldn’t be parsed
(that is, everything after the scheme):

uri = URI.parse('tag:example.com,2006,my-tag')
uri.scheme # => "tag"
uri.opaque # => "example.com,2006,my-tag"

The second is registry, which is only used for URI schemes whose naming author-
ity is registry-based instead of server-based. It’s likely that you’ll never need to use
registry, since almost all URI schemes are server-based (for instance, HTTP, FTP,
and LDAP all use the DNS system to designate a host).

To combine the components of a URI object into a string, simply call to_s:

uri = URI.parse('http://www.example.com/#anchor')
uri.port = 8080
uri.to_s # => "http://www.example.com:8080/#anchor"

See Also
• Recipe 11.13, “Extracting All the URLs from an HTML Document”

• ri URI

14.16 Writing a CGI Script
Credit: Chetan Patil

Problem
You want to expose Ruby code through an existing web server, without having to do
any special configuration.

Solution
Most web servers are set up to run CGI scripts, and it’s easy to write CGI scripts in
Ruby. Here’s a simple CGI script that calls the Unix command ps, parses its results,

538 | Chapter 14: Internet Services

and outputs the list of running processes as an HTML document.* Anyone with
access to the web server can then look at the processes running on the system.

#!/usr/bin/ruby
ps.cgi

processes = %x{ps aux}.collect do |proc|
 '<tr><td>' + proc.split(/\s+/, 11).join('</td><td>') + '</td></tr>'
end

puts 'Content-Type: text/html'
Output other HTTP headers here...
puts "\n"

title = %{Processes running on #{ENV['SERVER_NAME'] || `hostname`.strip}}
puts <<-end
 <HTML>
 <HEAD><TITLE>#{title}</TITLE></HEAD>
 <BODY>
 <H1>#{title}</H1>
 <TABLE>
 #{processes.join("\n")}
 </TABLE>
 </BODY>
 </HTML>
end

exit 0

Discussion
CGI was the first major technology to add dynamic elements to the previously static
Web. A CGI resource is requested like any static HTML document, but behind the
scenes the web server executes an external program (in this case, a Ruby script)
instead of serving a file. The output of the program—text, HTML, or binary data—is
sent as part of the HTTP response to the browser.

CGI has a very simple interface, based on environment variables and standard input
and output; one that should be very familiar to writers of command-line programs.
This simplicity is CGI’s weakness: it leaves too many things undefined. But when a
Rails application would be overkill, a CGI script might be the right size.

CGI programs typically reside in a special directory of the web server’s web space
(often the /cgi-bin directory). On Unix systems, CGI files must be made executable
by the web server, and the first line of the script must point to the system’s Ruby
interpreter (usually /usr/bin/ruby or /usr/local/bin/ruby).

* On Windows, you could do this example by running some other command such as dir, listing the running
Windows services as seen in Recipe 23.2, or just printing a static message.

14.16 Writing a CGI Script | 539

A CGI script gets most of its input from environment variables like QUERY_STRING and
PATH_INFO, which are set by the web server. The web server also uses environment
variables to tell the script where and how it’s being run: note how the sample script
uses ENV['SERVER_NAME'] to find the machine’s hostname for display.

There are only a few restrictions on the output of a CGI script. Before the “real” out-
put, you need to send some HTTP headers. The only required header is Content-Type,
which tells the browser what MIME type to expect from the document the CGI is
going to output. This is also your chance to set other HTTP headers, such as Content-
length, Expires, Location, Pragma, and Status.

The headers are separated from the content by a blank line. If the blank line is miss-
ing, the server may incorrectly interpret the entire data stream as a HTTP header—a
leading cause of errors. Other possible problems include:

• The first line of the file contains the wrong path to the Ruby executable.

• The permissions on the CGI script don’t allow the web server to access or exe-
cute it.

• You used binary mode FTP to upload the script to your server from another plat-
form, and the server doesn’t understand that platform’s line endings: use text
mode FTP instead.

• The web server is not configured to run Ruby scripts as CGI, or to run CGI
scripts at all.

• The script contains a compile error. Try running it manually from the command
line.

If you get the dreaded error “premature end of script headers” from your web server,
these issues are the first things to check.

Newer versions of Ruby include the CGI support library cgi. Except for extremely
simple CGIs, it’s better to use this library than to simply write HTML to standard
output. The CGI class makes it easy to retrieve HTTP request parameters and to man-
age cookies. It also provides custom methods for generating HTML, using Ruby code
that has the same structure as the eventual output.

Here’s the code from ps.cgi, rewritten to use the CGI class. Instead of writing HTML,
we make the CGI class do it. CGI also takes care of the content type, since we’re using
the default (text/html).

#!/usr/bin/ruby
ps2.cgi

require 'cgi'

New CGI object
cgi = CGI.new('html3')

540 | Chapter 14: Internet Services

processes = `ps aux`.collect { |proc| proc.split(/\s+/, 11) }

title = %{Processes running on #{ENV['SERVER_NAME'] || %x{hostname}.strip}}

cgi.out do
 cgi.html do
 cgi.head { cgi.title { title } } + cgi.body do
 cgi.table do
 (processes.collect do |fields|
 cgi.tr { fields.collect { |field| cgi.td { field } }.join " " }
 end).join "\n"
 end
 end
 end
end

exit 0

Since CGI allows any user to execute an external CGI program on your web server,
security is of paramount importance. Popular CGI hacks include corrupting the pro-
gram’s input by inserting special characters in the QUERY_STRING, stealing confidential
user data by modifying the parameters posted to the CGI program, and launching
denial-of-service attacks to render the web server inoperable. CGI programs need to
be carefully inspected for possible bugs and exploits. A few simple techniques will
improve your security: call taint on external data, set your $SAFE variable to 1 or
higher, and don’t use methods like eval, system, or popen unless you have to.

See Also
• The CGI documentation (http://hoohoo.ncsa.uiuc.edu/cgi/), especially the list of

environment variables (http://hoohoo.ncsa.uiuc.edu/cgi/env.html)

• Recipe 14.17, “Setting Cookies and Other HTTP Response Headers”

• Recipe 14.18, “Handling File Uploads via CGI”

• Chapter 15

14.17 Setting Cookies and Other HTTP Response
Headers

Credit: Mauro Cicio

Problem
You’re writing a CGI program and you want to customize the HTTP headers you
send in response to a request. For instance, you may want to set a client-side cookie
so that you can track state between HTTP requests.

14.17 Setting Cookies and Other HTTP Response Headers | 541

Solution
Pass a hash of headers into the CGI#out method that creates the HTTP response.
Each key of the hash is the name of a header to set, or a special value (like cookie),
which the CGI class knows how to interpret.

Here’s a CGI script that demonstrates how to set some response headers, including a
cookie and a custom HTTP header called “Recipe Name”.

First we process any incoming cookie. Every time you hit this CGI, the value stored
in your cookie will be incremented, and the date of your last visit will be reset.

#!/usr/bin/ruby
headers.cgi

require "cgi"
cgi = CGI.new("html3")

Retrieve or create the "rubycookbook" cookie
cookie = cgi.cookies['rubycookbook']
cookie = CGI::Cookie.new('rubycookbook', 'hits=0',
 "last=#{Time.now}") if cookie.empty?

Read the values in the cookie for future use
hits = cookie.value[0].split('=')[1]
last = cookie.value[1].split('=')[1]

Set new values in the cookie
cookie.value[0] = "hits=#{hits.succ}"
cookie.value[1] = "last=#{Time.now}"

Next, we build a hash of HTTP headers, and send the headers by passing the hash
into CGI#out. We then generate the output document. Since the end user doesn’t usu-
ally see the HTTP headers they’re served, we’ll make them visible by repeating them
in the output document (Figure 14-1):

Create a hash of HTTP response headers.
header = { 'status' => 'OK',
 'cookie' => [cookie],
 'Refresh' => 2,
 'Recipe Name' => 'Setting HTTP Response Headers',
 'server' => ENV['SERVER_SOFTWARE'] }

cgi.out(header) do
 cgi.html('PRETTY' => ' ') do
 cgi.head { cgi.title { 'Setting HTTP Response Headers' } } +
 cgi.body do
 cgi.p('Your headers:') +
 cgi.pre{ cgi.header(header) } +
 cgi.pre do
 "Number of times your browser hit this cgi: #{hits}\n"+
 "Last connected: #{last}"
 end

542 | Chapter 14: Internet Services

 end
 end
end

The Refresh header makes your web browser refresh the page every two seconds.
You can visit this CGI once and watch the number of hits (stored in the client-side
cookie) start to mount up.

Discussion
An HTTP Response consists of two sections (a header section and a body section) sep-
arated by a blank line. The body contains the document to be rendered by the browser
(usually an HTML page) and the header carries metadata: information about the con-
nection, the response, and the document itself. The CGI#out method takes a hash repre-
senting the HTTP headers, and a code block that generates the body.

CGI#out recognizes a few special values that make it easier to set custom headers. For
instance, the header hash in the example above maps the key “cookie” to a CGI::
Cookie object. CGI#out knows enough to turn cookie into the standard HTTP header
Set-Cookie, and to transform the CGI::Cookie object into a string rendition.

If CGI#out doesn’t know about a certain key, it simply sends it as an HTTP header,
as-is. CGI#out has no special knowledge of our “Refresh” and “Recipe Name” head-
ers, so it writes them verbatim to the HTTP response. “Refresh” is a standard HTTP
response header recognized by most web browsers; “Recipe Name” is a header I
made up for this recipe, and web browsers should ignore it.

Figure 14-1. This CGI lets you see the response headers, including the cookie

14.18 Handling File Uploads via CGI | 543

See Also
• The CGI documentation (http://www.ruby-doc.org/core/classes/CGI.html), espe-

cially the list of recognized header keys and status codes

14.18 Handling File Uploads via CGI
Credit: Mauro Cicio

Problem
You want to let a visitor to your web site upload a file to the web server, either for
storage or processing.

Solution
The CGI class provides a simple interface for accessing data sent through HTTP file
upload. You can access an uploaded file through CGI#params as though it were any
other CGI form variable.

If the uploaded file size is smaller than 10 kilobytes, its contents are made available
as a StringIO object. Otherwise, the file is put into a Tempfile on disk: you can read
the file from disk and process it, or move it to a permanent location.

Here’s a CGI that accepts file uploads and saves the files to a special directory on
disk:

#!/usr/bin/ruby
upload.rb

Save uploaded files to this directory
UPLOAD_DIR = "/usr/local/www/uploads"

require 'cgi'
require 'stringio'

The CGI has two main parts: a method that prints a file upload form and a method
that processes the results of the form. The method that prints the form is very simple:

def display_form(cgi)
 action = env['script_name']
 return <<EOF
<form action="#{action}" method="post" enctype="multipart/form-data">
 File to Upload: <input type="file" name="file_name">

 Your email address: <input type="text" name="email_address"
 value="guest@example.com">

 <input type="submit" name="Submit" value="Submit Form">
 </form>
EOF
end

544 | Chapter 14: Internet Services

The method that processes the form is a little more complex:

def process_form(cgi)
 email = cgi.params['email_address'][0]
 fileObj = cgi.params['file_name'][0]

 str = '<h1>Upload report</h1>' +
 "<p>Thanks for your upload, #{email.read}</p>"
 if fileObj
 path = fileObj.original_filename
 str += "Original Filename : #{path}" + cgi.br
 dest = File.join(UPLOAD_DIR, sanitize_filename(path))

 str += "Destination : #{dest}
"
 File.open(dest.untaint, 'wb') { |f| f << fileObj.read }

 # Delete the temporary file if one was created
 local_temp_file = fileObj.local_path()
 File.unlink(local_temp_file) if local_temp_file
 end
 return str
end

The process_form method calls a method sanitize_filename to pick a new filename
based on the original. The new filename is stripped of characters in the upload file’s
name that aren’t valid on the server’s filesystem. This is important for security reasons.
It’s also important to pick a new name because Internet Explorer on Windows submits
filenames like “c:\hot\fondue.txt” where other browsers would submit “fondue.txt”.
We’ll define that method now:

def sanitize_filename(path)
 if RUBY_PLATFORM =~ %r{unix|linux|solaris|freebsd}
 # Not required for unix platforms since all characters
 # are allowed (except for /, which is stripped out below).
 elsif RUBY_PLATFORM =~ %r{win32}
 # Replace illegal characters for NTFS with _
 path.gsub!(/[\x00-\x1f\/|?*]/,'_')
 else
 # Assume a very restrictive OS such as MSDOS
 path.gsub!(/[\/|\?*+\]\[\x00-\x1fa-z]/,'_')
 end

 # For files uploaded by Windows users, strip off the beginning path.
 return path.gsub(/^.*[\\\/]/, '')
end

Finally we have the CGI code itself, which calls the appropriate method and prints
out the results in an HTML page:

cgi = CGI.new('html3')
if cgi.request_method !~ %r{POST}
 buf = display_form(cgi)
else
 buf = process_form(cgi)
end

14.18 Handling File Uploads via CGI | 545

cgi.out() do
 cgi.html() do
 cgi.head{ cgi.title{'Upload Form'} } + cgi.body() { buf }
 end
end

exit 0

Discussion
This CGI script presents the user with a form that lets them choose a file from their
local system to upload. When the form is POSTed, CGI accepts the uploaded file data
and stores it as a CGI parameters. As with any other CGI parameter (like email_
address), the uploaded file is keyed off of the name of the HTML form element: in
this case, file_name.

If the file is larger than 10 kilobytes, it will be written to a temporary file and the con-
tents of CGI[:file_name] will be a Tempfile object. If the file is small, it will be kept
directly in memory as a StringIO object. Either way, the object will have a few meth-
ods not found in normal Tempfile or StringIO objects. The most useful of these are
original_filename, content_type, and read.

The original_filename method returns the name of the file, as seen on the computer
of the user who uploaded it. The content_type method returns the MIME type of the
uploaded file, again as estimated by the computer that did the upload. You can use
this to restrict the types of file you’ll accept as uploads (note, however, that a cus-
tom client can lie about the content type):

Limit uploads to BMP files.
raise 'Wrong type!' unless fileObj.content_type =~ %r{image/bmp}

Every StringIO object supports a read method that simply returns the contents of the
underlying string. For the sake of a uniform interface, a Tempfile object created by file
upload also has a read method that returns the contents of a file. For most applica-
tions, you don’t need to check whether you’ve got a StringIO or a Tempfile: you can
just call read and get the data. However, a Tempfile can be quite large—there’s a rea-
son it was written to disk in the first place—so don’t do this unless you trust your users
or have a lot of memory. Otherwise, check the size of a Tempfile with File.size and
read it a block at a time.

To see where a Tempfile is located on disk, call its local_path method. If you plan to
write the uploaded file to disk, it’s more efficient to move a Tempfile with FileUtils.mv
than to read it into memory and immediately write it back to another location.

Temporary files are deleted when the Ruby interpreter exits, but some web frame-
works keep a single Ruby interpreter around indefinitely. If you’re not careful, a
long-running application can fill up your disk or partition with old temporary files.
Within a CGI script, you should explicitly delete temporary files when you’re done

546 | Chapter 14: Internet Services

with them—except, of course, the ones you move to permanent positions elsewhere
on the filesystem.

See Also
• RFC1867 describes HTTP file upload

• For more on the StringIO and Tempfile classes used to store uploaded files, see
Recipe 6.8, “Writing to a Temporary File,” and Recipe 6.15, “Pretending a String
Is a File”

• http://wiki.rubyonrails.com/rails/pages/HowtoUploadFiles

14.19 Running Servlets with WEBrick
Credit: John-Mason Shackelford

Problem
You want to embed a server in your Ruby application. Your project is not a tradi-
tional web application, or else it’s too small to justify the use of a framework like
Rails or Nitro.

Solution
Write a custom servlet for WEBrick, a web server implemented in Ruby and included
in the standard library.*

Configure WEBrick by creating a new HTTPServer instance and mouting servlets. The
default FileHandler acts like a “normal” web server: it serves a URL-space corre-
sponding to a directory on disk. It delegates requests for *.cgi files to the CGIHandler,
renders *.rhtml files with ERb using the ERBHandler servlet, and serves other files
(such as static HTML files) as they are.

This server mounts three servlets on a server running on port 8000 on your local
machine. Each servlet serves documents, CGI scripts, and .rhtml templates from a
different directory on disk:

#!/usr/bin/ruby
simple_servlet_server.rb
require 'webrick'
include WEBrick

s = HTTPServer.new(:Port => 8000)

* Don’t confuse WEBrick servlets with Java servlets. The concepts are similar, but they don’t implement the
same API.

14.19 Running Servlets with WEBrick | 547

Add a mime type for *.rhtml files
HTTPUtils::DefaultMimeTypes.store('rhtml', 'text/html')

Required for CGI on Windows; unnecessary on Unix/Linux
s.config.store(:CGIInterpreter, "#{HTTPServlet::CGIHandler::Ruby}")

Mount servlets
s.mount('/', HTTPServlet::FileHandler, '/var/www/html')
s.mount('/bruce', HTTPServlet::FileHandler, '/home/dibbbr/htdoc')
s.mount('/marty', HTTPServlet::FileHandler, '/home/wisema/htdoc')

Trap signals so as to shutdown cleanly.
['TERM', 'INT'].each do |signal|
 trap(signal){ s.shutdown }
end

Start the server and block on input.
s.start

Discussion
WEBrick is robust, mature, and easy to extend. Beyond serving static HTML pages,
WEBrick supports traditional CGI scripts, ERb-based templating like PHP or JSP, and
custom servlet classes. While most of WEBrick’s API is oriented toward responding
to HTTP requests, you can also use it to implement servers that speak another proto-
col. (For more on this capability, see the Daytime server example on the WEBrick
home page.)

The first two arguments to HTTPServer#mount (the mount directory and servlet class)
are used by the mount method itself; any additional arguments are simply passed
along to the servlet. This way, you can configure a servlet while you mount it; the
FileHandler servlet requires an argument telling it which directory on disk contains
the web content.

When a client requests a URL, WEBrick tries to match it against the entries in its
mounting table. The mounting order is irrelevant. Where multiple mount locations
might apply to a single directory, WEBrick picks the longest match.

When the request is for a directory (like http://localhost/bruce/), the server looks for
the files index.html, index.htm, index.cgi, or index.rhtml. This is configurable via
the :DirectoryIndex configuration parameter. The snippet below adds another file to
the list of directory index files:

s.config.store(:DirectoryIndex,
 s.config[:DirectoryIndex] << "default.htm")

When the standard handlers provided by WEBrick won’t work for you, write a custom
servlet. Rubyists have written custom WEBrick servlets to handle SOAP and XML-RPC
services, implement a WebDAV server, process eruby templates instead of ERb tem-
plates, and fork processes to distribute load on machines with multiple CPUs.

548 | Chapter 14: Internet Services

To write your own WEBrick servlet, simply subclass HTTPServlet::AbstractServlet
and write do_ methods corresponding to the HTTP methods you wish to handle.
Then mount your servlet class as shown in the Solution. The following example han-
dles HTTP GET requests via the do_GET method, and POSTs via an alias. HEAD and OPTIONS
requests are implemented in the AbstractServlet itself.

#!/usr/bin/ruby
custom_servlet_server.rb
require 'webrick'
include WEBrick

class CustomServlet < HTTPServlet::AbstractServlet
 def do_GET(request, response)
 response.status = 200 # Success
 response.body = "Hello World"
 response['Content-Type'] = 'text/plain'
 end

 # Respond with an HTTP POST just as we do for the HTTP GET.
 alias :do_POST :do_GET
end

Mount servlets.
s = HTTPServer.new(:Port => 8001)
s.mount('/tricia', CustomServlet)

Trap signals so as to shutdown cleanly.
['TERM', 'INT'].each do |signal|
 trap(signal){ s.shutdown }
end

Start the server and block on input.
s.start

Start that server, visit http://localhost:8001/tricia/, and you’ll see the string “Hello
World”.

Beyond defining handlers for arbitrary HTTP methods and configuring custom serv-
lets with mount options, we can also control how often servlet instances are initial-
ized. Ordinarily, a new servlet instance is instantiated for every request. Since each
request has its own instance of the servlet class, you are free to write custom servlets
without worrying about the servlet’s state and thread safety (unless, of course, you
share resources between servlet instances).

But you can get faster request handling—at the expense of a slower startup time—by
moving some work out of the do_ methods and into the sevlet’s initialize method.
Instead of creating a new servlet instance with every request, you can override the
class method HTTPServlet::AbstractServlet.get_instance and manage a pool of
servlet instances. This works especially well when your request handling methods are
reentrant, so that you can avoid cost costly thread synchronization.

14.19 Running Servlets with WEBrick | 549

The following example uses code from Recipe 12.13 to serve up a certificate of com-
pletion to the individual named by the HTTP request. We use the templating
approach discussed in the PDF recipe to prepare most of the certificate ahead of
time. During request handling, we do nothing but fill in the recipient’s name.

The PooledServlet class below does the work of pooling the servlet handlers:

#!/usr/bin/ruby
certificate_server.rb
require 'webrick'
require 'thread'
require 'cgi'

include WEBrick

class PooledServlet < HTTPServlet::AbstractServlet

 INIT_MUTEX = Mutex.new
 SERVLET_POOL = []

 @@pool_size = 2

 # Create a single instance of the servlet to avoid repeating the costly
 # initialization.
 def self.get_instance(config, *options)
 unless SERVLET_POOL.size == @@pool_size
 INIT_MUTEX.synchronize do
 SERVLET_POOL.clear
 @@pool_size.times{ SERVLET_POOL << new(config, *options) }
 end
 end
 s = SERVLET_POOL.find{|s| ! s.busy?} while s.nil?
 return s
 end

 def self.pool_size(size)
 @@pool_size = size
 end

 def busy?
 @busy
 end

 def service(req, res)
 @busy = true
 super
 @busy = false
 end
end

Note that by placing the synchronize block within the unless block, we expose our-
selves to the possibility that, when the server first starts up, the servlet pool may be ini-
tialized more than once. But it’s not really a problem if that does happen, and if we put
the synchronize block there we don’t have to synchronize on every single request.

550 | Chapter 14: Internet Services

You’ve heard it before: “Avoid premature optimization.” Assumptions about the
impact of the servlet pool size on memory consumption and performance often
prove to be wrong, given the complexities introduced by garbage collection and the
variation in the efficiency of various operations on different platforms. Code first,
tune later.

Here’s the application-specific code. The file certificate_pdf.rb should contain the
Certificate class defined in the Discussion of Recipe 12.13.

When the servlet is initialized, we generate the PDF certificate, leaving the name
blank:

require 'certificate_pdf'

class PDFCertificateServlet < PooledServlet

 pool_size 10

 def initialize(server, *options)
 super
 @certificate = Certificate.new(options.first)
 end

When the client makes a request, we load the certificate, fill in the name, and send it
as the body of the HTTP response:

 def do_GET(request, response)
 if name = request.query['name']
 filled_in = @certificate.award_to(CGI.unescape(name))

 response.body = filled_in.render
 response.status = 200 # Success
 response['Content-Type'] = 'application/pdf'
 response['Size'] = response.body.size
 else
 raise HTTPStatus::Forbidden.new("missing attribute: 'name'")
 end
 end

The rest of the code should look familiar by now:

 # Respond with an HTTP POST just as we do for the HTTP GET
 alias :do_POST :do_GET
end

Mount servlets
s = HTTPServer.new(:Port => 8002)
s.mount('/', PDFCertificateServlet, 'Ruby Hacker')

Trap signals so as to shutdown cleanly.
['TERM', 'INT'].each do |signal|
 trap(signal){ s.shutdown }
end

14.20 A Real-World HTTP Client | 551

Start the server and block on input.
s.start

Start this server, and you can visit http://localhost:8002/?name=My+Name to get a
customized PDF certificate.

The code above illustrates many other basic features of WEBrick: access to request
parameters, servlet configuration at mount time, use of a servlet pool to handle
expensive operations up front, and error pages.

Besides HTTPStatus::Forbidden, demonstrated above, WEBrick provides exceptions
for each of the HTTP 1.1 status codes. The classes are not listed in the RDoc, but
you can infer them from HTTPStatus::StatusMessage table. The class names corre-
spond to the names given in the WC3 reference listed below.

See Also
• Recipe 12.13, “Generating PDF Files,” for the CertificatePDF class used by the

certificate server

• WEBrick’s web site (http://webrick.org/) offers a number of examples as well as
links to related libraries

• Mongrel is an up-and-coming Ruby web server that might be the next WEBrick
(http://mongrel.rubyforge.org/)

• The RDoc is available online at http://www.ruby-doc.org/stdlib/libdoc/webrick/
rdoc/index.html

• Gnome’s Guide to WEBrick at http://microjet.ath.cx/webrickguide/html/html_
webrick.html provides the most comprehensive coverage of WEBrick beyond the
RDoc and the source itself; the Guide is available in both html and PDF formats

• Eric Hodel has written a couple of short articles on WEBrick servlets and work-
ing with HTTP cookies (http://segment7.net/projects/ruby/WEBrick/index.html)

• An article on the Linux Journal web site, “At the Forge—Getting Started with
Ruby,” provides a basic introduction to Ruby CGI and WEBrick servlets (http://
www.linuxjournal.com/article/8356)

• For a complete list of HTTP 1.1 status codes and explanations as to what they
mean, see http://www.w.org/Protocols/rfc2616/rfc2616-sec10.html

14.20 A Real-World HTTP Client
The first three recipes in this chapter cover different ways of fetching web pages. The
techniques they describe work well if you just need to fetch one specific web page,
but in the interests of simplicity they omit some details you’ll need to consider when
writing a web spider, a web browser, or any other serious HTTP client. This recipe
creates a library that deals with the details.

552 | Chapter 14: Internet Services

Mixed HTTP and HTTPS
Any general client will have to be able to make both HTTP and HTTPS requests.
But the simple Net:HTTP methods that work in Recipe 14.1 can’t be used to make
HTTPS requests. Our library will use use HTTPRequest objects for everything. If
the user requests a URL that uses the “https” scheme, we’ll flip the request
object’s use_ssl switch, as seen in Recipe 14.2.

Redirects
Lots of things can go wrong with an HTTP request: the page might have moved,
it might require authentication, or it might simply be gone. Most HTTP errors
call for higher-level handling or human intervention, but when a page has
moved, a smart client can automatically follow it to its new location.

Our library will automatically follow redirects that provide “Location” fields in
their responses. It’ll prevent infinite redirect loops by refusing to visit a URL it’s
already visited. It’ll prevent infinite redirect chains by limiting the number of
redirects. After all the redirects are followed, it’ll make the final URI available as
a member of the response object.

Proxies
Users use HTTP proxies to make high-latency connections work faster, surf
anonymously, and evade censorship. Each individual client program needs to be
programmed to use a proxy, and it’s an easy feature to overlook if you don’t use
a proxy yourself. Fortunately, it’s easy to support proxies in Ruby: the Proxy
class will create a custom Net::HTTP subclass that works through a certain proxy.

This library defines a single new method: Net::HTTP.fetch, an all-singing, all-dancing
factory for HTTPRequest objects. It silently handles HTTPS URLs (assuming you have
net/https installed) and HTTP redirects, and it transparently handles proxies. This
might go into a file called http_fetch.rb:

require 'net/http'
require 'set'

class Net::HTTPResponse
 attr_accessor :final_uri
end

module Net
 begin
 require 'net/https'
 HTTPS_SUPPORTED = true
 rescue LoadError
 HTTPS_SUPPORTED = false
 end

 class HTTP
 # Makes an HTTP request and returns the HTTPResponse object.
 # Args: :proxy_host, :proxy_port, :action (:get, :post, etc.),
 # :data (for :post action), :max_redirects.

14.20 A Real-World HTTP Client | 553

 def HTTP.fetch(uri, args={}.freeze, &before_fetching)
 # Process the arguments with default values
 uri = URI.parse(uri) unless uri.is_a? URI
 proxy_host = args[:proxy_host]
 proxy_port = args[:proxy_port] || 80
 action = args[:action] || :get
 data = args[:data]
 max_redirects = args[:max_redirects] || 10

We will always work on a Proxy object, even if no proxy is specified. A Proxy with no
proxy_host makes direct HTTP connections. This way, the code works the same way
whether we’re actually using an HTTP proxy or not:

 # Use a proxy class to create the request object
 proxy_class = Proxy(proxy_host, proxy_port)
 request = proxy_class.new(uri.host, uri.port)

We will use SSL to handle URLs of the “https” scheme. Note that we do not set any
certificate paths here, or do any other SSL configuration. If you want to do that,
you’ll need to pass an appropriate code block into fetch (see below for an example):

 request.use_ssl = true if HTTPS_SUPPORTED and uri.scheme == 'https'
 yield request if block_given?

Now we activate the request and get an HTTPResponse object back:

 response = request.send(action, uri.path, data)

Our HTTPResponse object might be a document, it might be an error, or it might be a
redirect. If it’s a redirect, we can make things easier for the caller of this method by
following the redirect. This piece of the method finds the redirected URL and sends
it into a recursive fetch call, after making sure that we aren’t stuck in an infinite loop
or an endless chain of redirects:

 urls_seen = args[:_urls_seen] || Set.new
 if response.is_a?(Net::HTTPRedirection) # Redirect
 if urls_seen.size < max_redirects && response['Location']
 urls_seen << uri
 new_uri = URI.parse(response['Location'])
 break if urls_seen.member? new_uri # Infinite redirect loop

 # Request the new location just as we did the old one.
 new_args = args.dup
 puts "Redirecting to #{new_uri}" if $DEBUG
 new_args[:_urls_seen] = urls_seen
 response = HTTP.fetch(new_uri, new_args, &before_fetching)
 end
 else # No redirect
 response.final_uri = uri
 end
 return response
 end
 end
end

554 | Chapter 14: Internet Services

That’s pretty dense code, but it ties a lot of functionality into a single method with a
relatively simple API. Here’s a simple example, in which Net::HTTP.fetch silently fol-
lows an HTTP redirect. Note the final_uri is different from the original URI.

response = Net::HTTP.fetch("http://google.com/")
puts "#{response.final_uri} body is #{response.body.size} bytes."
http://www.google.com/ body is 2444 bytes.

With fetch, redirects work even through proxies. This example accesses the Google
homepage through a public HTTP proxy in Singapore. When it requests “http://
google.com/”, it’s redirected to “http://www.google.com/”, as in the previous exam-
ple. But when Google notices that the IP address is coming from Singapore, it sends
another redirect:

response = Net::HTTP.fetch("http://google.com/",
 :proxy_host => "164.78.252.199")
puts "#{response.final_uri} body is #{response.body.size} bytes."
http://www.google.com.sg/ body is 2853 bytes.

There are HTTPS proxies as well. This code uses an HTTPS proxy in the U.S. to make
a secure connection to “https://paypal.com/”. It’s redirected to “https://paypal.com/us/”.
The second request is secured in the same way as the one that caused the redirect.
Note that this code will only work if you have the Ruby SSL library installed.

response = Net::HTTP.fetch("https://paypal.com/",
 :proxy_host => "209.40.194.8") do |request|
 request.ca_path = "/etc/ssl/certs/"
 request.verify_mode = OpenSSL::SSL::VERIFY_PEER
end
puts "#{response.final_uri} body is #{response.body.size} bytes."
https://paypal.com/us/ body is 16978 bytes.

How does this work? The code block is actually called twice: once before requesting
“https://paypal.com/” and once before requesting “https://paypal.com/us/”. This is
what fetch’s code block is for: it’s run on the HTTPRequest object before the request is
actually made. If the code block were only called once, then the second request
wouldn’t have access to any certificates.

Net::HTTP.fetch will follow redirects served by the web server, but it won’t follow
redirects contained in the META tags of an HTML document. To follow those redi-
rects, you’ll have to parse the document as HTML.

See Also
• Recipe 14.1, “Grabbing the Contents of a Web Page”

• Recipe 14.2, “Making an HTTPS Web Request”

• Recipe 14.3, “Customizing HTTP Request Headers”

• Several web sites have lists of public HTTP and HTTPS proxies (for instance,
http://www.samair.ru/proxy/ and http://tools.rosinstrument.com/proxy/); if you
want to set up a proxy on your local network, Squid is a good choice (http://
www.squid-cache.org/)

555

Chapter 15 CHAPTER 15

Web Development: Ruby on Rails15

Ruby on Rails is unquestionably Ruby’s killer app. It can take a lot of credit for lift-
ing Ruby from obscurity outside its native Japan. No other programming language
can boast a simple web application framework that also has almost all of that lan-
guage’s developer mindshare.* This chapter demonstrates the principles underlying
basic Rails usage (in recipes like Recipe 15.6), gives Rails implementations of com-
mon web application patterns (Recipes 15.4 and 15.8) and shows how to use stan-
dard Ruby tools from within Rails (Recipes 15.22 and 15.23).

Despite its quality and popularity, Rails does not bring anything new to web devel-
opment. Its foundations are in standard programming patterns like ActiveRecord
and Model-View-Controller. It reuses many preexisting Ruby libraries (like Rake and
ERb). The power of Rails is in combining these standard techniques with a ruthless
dedication to automating menial tasks, and to asserting resonable default behaviors.

If Rails has a secret, it’s the power of naming conventions. The vast majority of web
applications are CRUD applications: create, read, update, and delete information from
a database. In these types of applications, Rails shines. You start with a database
schema and with almost no code, but Rails ties together many pieces with naming con-
ventions and shortcuts. This lets you put meat on your application very quickly.

Because so many settings and names can be sensibly derived from other pieces of
information, Rails has much less “paperwork” than other frameworks. Data that’s
implicit in the code or the database schema doesn’t need to be specified anywhere
else. An essential part of this system is the ActiveSupport system for pluralizing
nouns (Recipe 15.7).

* Python, for instance, has several excellent web application frameworks, but that’s just the problem. It has
several, and a powerful community is fractured on the issue of which to use. Ruby has no major web appli-
cation frameworks apart from Rails. In a sense, Ruby’s former obscurity is what made the dominance of Rails
possible.

556 | Chapter 15: Web Development: Ruby on Rails

Where naming conventions can’t do the job, Rails uses decorator methods to declare
relationships between objects. This happens within the Ruby classes affected by
those relationships, not in a bloated XML configuration file. The result is a smaller,
simpler to understand, and more flexible application.

As mentioned above, Rails is built on top of common Ruby libraries, and many of
them are also covered elsewhere in this book. These libraries include ActiveRecord
(much of Chapter 13, but especially Recipe 13.11), ActionMailer (Recipe 14.5), ERb
(Recipe 1.3), Rake (Chapter 19), and Test::Unit (Recipe 17.7). Some of these pre-
date Rails, and some were written for Rails but can be used outside of it. The oppo-
site is also true: since a Rails application can be used for many purposes, nearly every
recipe in this book is useful within a Rails program.

Rails is available as the rails gem, which contains libraries and the rails command-
line program. This is the program you run to create a Rails application. When you
invoke this program (for instance, with rails mywebapp), Rails generates a directory
structure for your web application, complete with a WEBrick testing server and unit
testing framework. When you use the script/generate script to jumpstart the cre-
ation of your application, Rails will populate this directory structure with more files.
The code generated by these scripts is minimal and equivalent to the code generated
by most IDEs when starting a project.

The architecture of Rails is the popular Model-View-Controller architecture. This
divides the web application into three predictably named parts. We’ll cover them in
detail throughout this chapter, but here’s an introductory reference.

The model is a representation of the dataset used by the application. This is usually a
set of Ruby classes, subclasses of ActiveRecord::Base, each corresponding to a table
in the application database. The first serious model in this chapter shows up in Rec-
ipe 15.6. To generate a model for a certain database table, invoke script/generate
model with the name of the table, like so:

$ script/generate model users

This creates a file called app/models/users.rb, which defines a User ActiveRecord class
as well as the basic structure to unit test that model. It does not create the actual
database table.

The controller is a Ruby class (a subclass of ActionController::Base) whose methods
define operations on the model. Each operation is defined as a method of the controller.

To generate a controller, invoke script/generate controller with the name of the
controller, and the actions you want to expose:

$ script/generate controller user add delete login logout

This command creates a file app/controllers/user_controller.rb, which defines a
class UserController. The class defines four stub methods: add, delete, login, and
logout, each corresponding to an action the end user can perform on the objects of

15.1 Writing a Simple Rails Application to Show System Status | 557

the underlying User model. It also creates the template for functionally unit testing
your controller.

The controller shows up in the very first recipe of this chapter (Recipe 15.1).

The view is the user interface for the application. It’s contained in a set of ERb tem-
plates, stored in .rhtml files. Most importantly, there is usually one .rhtml file for
each action of each controller: this is the web interface for that particular action. The
same command that created the UserController class above also created four files in
app/views/user/: add.rhtml, delete.rhtml, login.rhtml, and logout.rhtml. As with the
UserController class, these start out as stub files; your job is to customize them to
present an interface to your application.

Like the controller, the view shows up in the first recipe of this chapter, Recipe 15.1.
Recipes like 15.3, 15.5, and 15.14 show how to customize your views.

This division is not arbitrary. If you restrict code that changes the database to the
model, it’s easy to unit test that code and audit it for security problems. By moving
all of your processing code into the controller, you separate the display of the user
interface from its internal workings. The most obvious benefit of this is that you can
have a UI designer modify your view templates without making them work around a
lot of Ruby code.

The best recipes for learning how Model-View-Controller works are Recipe 15.2,
which explores the relationship between the controller and the view; and Recipe 15.16,
which combines all three.

Here are some more resources for getting started with Rails:

• This book’s sister publication, Rails Cookbook by Rob Orsini (O’Reilly), covers
Rails problems in more detail, as does Rails Recipes by Chad Fowler (Pragmatic
Programmers)

• Agile Web Development with Rails by Dave Thomas, David Hansson, Leon
Breedt, Mike Clark, Thomas Fuchs, and Andrea Schwarz (Pragmatic Program-
mers) is the standard reference for Rails programmers

• The Ruby on Rails web site at http://www.rubyonrails.com/, especially the RDoc
documentation (http://api.rubyonrails.org/) and wiki (http://wiki.rubyonrails.com/)

15.1 Writing a Simple Rails Application to Show
System Status

Problem
You would like to get started with Rails by building a very simple application.

558 | Chapter 15: Web Development: Ruby on Rails

Solution
This example displays the running processes on a Unix system. If you’re developing
on Windows, you can substitute some other command (such as the output of a dir)
or just have your application print a static message.

First, make sure you have the rails gem installed.

To create a Rails application, run the rails command and pass in the name of your
application. Our application will be called “status”.

$ rails status
 create
 create app/controllers
 create app/helpers
 create app/models
 create app/views/layouts
 create config/environments
...

A Rails application needs at least two parts: a controller and a view. Our controller
will get information about the system, and our view will display it.

You can generate a controller and the corresponding view with the generate script.
The following invocation defines a controller and view that implement a single
action called index. This will be the main (and only) screen of our application.

$ cd status
$./script/generate controller status index
 exists app/controllers/
 exists app/helpers/
 create app/views/status
 exists test/functional/
 create app/controllers/status_controller.rb
 create test/functional/status_controller_test.rb
 create app/helpers/status_helper.rb
 create app/views/status/index.rhtml

The generated controller is in the Ruby source file app/controllers/status_
controller.rb. That file defines a class StatusController that implements the index
action as an empty method called index. Fill out the index method so that it exposes
the objects you want to use in the view:

class StatusController < ApplicationController
 def index
 # This variable won't be accessible to the view, since it is local
 # to this method
 time = Time.now

 # These variables will be accessible in the view, since they are
 # instance variables of the StatusController.
 @time = time
 @ps = `ps aux`
 end
end

15.1 Writing a Simple Rails Application to Show System Status | 559

The generated view is in app/views/status/index.rhtml. It starts out as a static
HTML snippet. Change it to an ERb template that uses the instance variables set in
StatusController#index:

<h1>Processes running at <%= @time %></h1>
<pre><%= @ps %></pre>

Now our application is complete. To run it, start up the Rails server with the follow-
ing command:

$./script/server
=> Booting WEBrick...
=> Rails application started on http://0.0.0.0:3000
=> Ctrl-C to shutdown server; call with --help for options
...

You can see the application by visiting http://localhost:3000/status/.

Of course, you wouldn’t expose this application to the outside world because it
might give an attacker information about your system.

Discussion
The first thing you should notice about a Rails application is that you do not create
separate code files for every URL. Rails uses an architecture in which the controller
(a Ruby source file) and a view (an ERb template in an .rhtml file) team up to serve a
number of actions. Each action handles some of the URLs on your site.

Consider a URL like http://www.example.com/hello/world. To serve that URL in your
Rails application, you’d create a hello controller and give it an action called world.

$./script/generate controller hello world

Your controller class would have a world method, and your views/hello directory
would have a world.rhtml file containing the view.

class HelloController < ApplicationController
 def world
 end
end

Visiting http://www.example.com/hello/world would invoke the HelloController#world
method, interpret the world.rhtml template to obtain some HTML output, and serve
that output to the client.

The default action for a controller is index, just as the default page in a directory of a
static web server is index.html. So visiting http://www.example.com/hello/ is the same
as visiting http://www.example.com/hello/index/.

As mentioned above, a view file is only the main snippet of the final page served by
Rails. It’s not a full HTML page, and you should never put <html> or <body> tags
inside it (see Recipe 15.3). Since a view file is an ERB template, you should also never

560 | Chapter 15: Web Development: Ruby on Rails

call puts or print inside a view. ERB was introduced in Recipe 1.3, but it’s worth
exploring here within the context of a Rails application.

To insert the value of a Ruby expression into an ERB template, use the <%= %> direc-
tive. Here’s a possible world.rhtml view for our hello action:

<p>Several increasingly silly ways of displaying "Hello world!":</p>

<p><%= "Hello world!" %></p>
<p><%= "Hello" + "world!" %></p>
<p><%= w = "world"
 "Hello #{w}!" %></p>
<p><%= 'H' + ?e.chr + ('l' * 2) %><%=('o word!').gsub('d', 'ld')%></p>

The last example is excessive, but it proves a point. You shouldn’t have to put so
much Ruby code in your view template (it should probably go into your controller,
or you’ll end up with sloppy PHP-like code), but it’s possible if you need to do it.

The equals sign in the ERb directive means that the output is to be printed. If you
want to execute a command without output, omit the equals sign and use the <% %>
directive.

<% hello = "Hello" %>
<% world = "world!" %>
<%= hello %> <%= world %>

A view and a controller may be based on nothing more than some data obtained
from within Ruby code (like the current time and the output of ps aux). But most
real-world views and controllers are based on a model: a set of database tables con-
taining data that the view displays and the controller manipulates. This is the famous
“Model-View-Controller” architecture, and it’s by no means unique to Rails.

See Also
• Recipe 1.3, “Substituting Variables into an Existing String,” has more on ERB

• Recipe 15.3, “Creating a Layout for Your Header and Footer”

15.2 Passing Data from the Controller to the View

Problem
You want to pass data between a controller and its views.

Solution
The view is an ERB template that is interpreted within the context of its controller
object. A view cannot call any of the controller’s methods, but it can access the con-
troller’s instance variables. To pass data to the view, set an instance variable of the
controller.

15.2 Passing Data from the Controller to the View | 561

Here’s a NovelController class, to be put into app/controllers/novel_controller.rb.
You can generate stubs for it by running script/generate controller novel index.

class NovelController < ApplicationController
 def index
 @title = 'Shattered View: A Novel on Rails'
 one_plus_one = 1 + 1
 increment_counter one_plus_one
 end

 def helper_method
 @help_message = "I see you've come to me for help."
 end

 private

 def increment_counter(by)
 @counter ||= 0
 @counter += by
 end
end

Since this is the Novel controller and the index action, the corresponding view is in
app/views/novel/index.rhtml.

<h1><%= @title %></h1>

<p>I looked up, but saw only the number <%= @counter %>.</p>

<p>"What are you doing here?" I asked sharply. "Was it <%=
@counter.succ %> who sent you?"</p>

The view is interpreted after NovelController#index is run. Here’s what the view can
and can’t access:

• It can access the instance variables @title and @counter, because they’ve been
defined on the NovelController object by the time NovelController#index fin-
ishes running.

• It can call instance methods of the instance variables @title and @counter.

• It cannot access the instance variable @help_message, because that variable is
defined by the method helper_method, which never gets called.

• It cannot access the variable one_plus_one, because that’s not an instance vari-
able: it’s local to the index method.

• Even though it runs in the context of NovelController, it cannot call any method
of NovelController—neither helper_method nor set_another_variable. Nor can it
call index again.

562 | Chapter 15: Web Development: Ruby on Rails

Discussion
The action method of a controller is responsible for creating and storing (in instance
variables) all the objects the view will need to do its job. These variables might be as
simple as strings, or they might be complex helper classes. Either way, most of your
application’s logic should be in the controller. It’s okay to do things in the view like
iterate over data structures, but most of the work should happen in the controller or
in one of the objects it exposes through an instance variable.

Rails instantiates a new NovelController object for every request. This means you
can’t persist data between requests by putting it in controller instance variables. No
matter how many times you reload the page, the @counter variable will never be more
than two. Every time increment_counter is called, it’s called on a brand new
NovelController object.

Like any Ruby class, a Rails controller can define class variables and constants, but
they will not be available to the view. Consider a NovelController that looks like this:

class NovelController < ApplicationController
 @@numbers = [1, 2, 3]
 TITLE = 'Revenge of the Counting Numbers'
end

Neither @@numbers nor TITLE are accessible from within any of this controller’s views.
They can only be used by the controller methods.

However, contants defined outside of the context of a controller are accessible to every
view. This is useful if you want to declare the web site’s name in one easy-to-change
location. The config/environment.rb file is a good place to define these constants:

config/environment.rb
AUTHOR = 'Lucas Carlson'
...

It is almost always a bad idea to use global variables in object-oriented program-
ming. But Ruby does have them, and a global variable will be available to any view
once it’s been defined. They will be universally available whether they were defined
within the scope of the action, the controller, or outside of any scope.

$one = 1
class NovelController < ApplicationController
 $two = 2
 def sequel
 $three = 3
 end
end

Here’s a view, sequel.rhtml, that uses those three global variables:

Here they come, the counting numbers, <%= $one %>, <%= $two %>, <%= $three %>.

15.3 Creating a Layout for Your Header and Footer | 563

15.3 Creating a Layout for Your Header and Footer

Problem
You want to create a header and footer for every page on your web application. Cer-
tain pages should have special headers and footers, and you may want to dynami-
cally determine which header and footer to use for a given request.

Solution
Many web applications let you define header and footer files, and automatically
include those files at the top and bottom of every page. Rails inverts this pattern. A
single file called contains both the header and footer, and the contents of each partic-
ular page are inserted into this file.

To apply a layout to every page in your web application, create a file called app/
views/layouts/application.rhtml. It should look something like this:

<html>
 <head>
 <title>My Website</title>
 </head>
 <body>
 <%= @content_for_layout %>
 </body>
</html>

The key piece of information in any layout file is the directive <%= content_for_layout %>.
This is replaced by the content of each individual page.

You can make customized layouts for each controller independently by creating files
in the app/views/layouts folder. For example, app/views/layouts/status.rhtml is the lay-
out for the status controller, StatusController. The layout file for PriceController
would be price.rhtml.

Customized layouts override the site-wide layout; they don’t add to it.

Discussion
Just like your main view templates, your layout templates have access to all the
instance variables set by the action. Anything you can do in a view, you can do in a
layout template. This means you can do things like set the page title dynamically in
the action, and then use it in the layout:

class StatusController < ActionController:Base
 def index
 @title = "System Status"
 end
end

564 | Chapter 15: Web Development: Ruby on Rails

Now the application.rhtml file can access @title like this:

<html>
 <head>
 <title>My Website - <%= @title %></title>
 </head>
 <body>
 <%= @content_for_layout %>
 </body>
</html>

application.rhtml doesn’t just happen to be the default layout template for a Rails
application’s controllers. It happens this way because every controller inherits from
ApplicationController. By default, a layout’s name is derived from the name of the
controller’s class. So ApplicationController turns into application.rhtml. If you had
a controller named MyFunkyController, the default filename for the layout would be
app/views/layouts/my_funky.rhtml. If that file didn’t exist, Rails would look for a lay-
out corresponding to the superclass of MyFunkyController, and find it in app/views/
layouts/application.rhtml.

To change a controller’s layout file, call its layout method:

class FooController < ActionController:Base
 # Force the layout for /foo to be app/views/layouts/bar.rhtml,
 # not app/view/layouts/foo.rhtml.
 layout 'bar'
end

If you’re using the render method in one of your actions (see Recipe 15.5), you can
pass in a :layout argument to render and give that action a different layout from the
rest of the controller. In this example, most actions of the FooController use bar.rhtml
for their layout, but the count action uses count.rhtml:

class FooController < ActionController:Base
 layout 'bar'

 def count
 @data = [1,2,3]
 render :layout => 'count'
 end
end

You can even have an action without a layout. This code gives all of FooController’s
actions a layout of bar.html, except for the count action, which has no layout at all:
it’s responsible for all of its own HTML.

class FooController < ActionController:Base
 layout 'bar', :except => 'count'
end

If you need to calculate the layout file dynamically, pass a method symbol into the
layout method. This tells layout to call a method on each request; the return value of

15.4 Redirecting to a Different Location | 565

this method defines the layout file. The method can call action_name to determine
the action name of the current request.

class FooController < ActionController:Base
 layout :figure_out_layout

 private

 def figure_out_layout
 if action_name =~ /pretty/
 'pretty' # use pretty.rhtml for the layout
 else
 'standard' # use standard.rhtml
 end
 end
end

Finally, layout accepts a lambda function as an argument. This lets you dynamically
decide on a layout with less code:

class FooController < ActionController:Base
 layout lambda { |controller| controller.logged_in? ? 'user' : 'guest' }
end

It’s freeing for both the programmer and the designer to use a layout file instead of
separate headers and footers: it’s easier to see the whole picture. But if you need to
use explicit headers and footers, you can. Create files called app/views/layouts/_
header.rhtml and app/views/layouts/_footer.rhtml. The underscores indicate that
they are “partials” (see Recipe 15.14). To use them, set your actions up to use no lay-
out at all, and write the following code in your view files:

<%= render :partial => 'layouts/header' %>
... your view's content goes here ...
<%= render :partial => 'layouts/footer' %>

See Also
• Recipe 15.5, “Displaying Templates with Render”

• Recipe 15.14, “Refactoring the View into Partial Snippets of Views”

15.4 Redirecting to a Different Location

Problem
You want to redirect your user to another of your application’s actions, or to an
external URL.

Solution
The class ActionController::Base (superclass of ApplicationController) defines a
method called redirect_to, which performs an HTTP redirect. To redirect to

566 | Chapter 15: Web Development: Ruby on Rails

another site, you can pass it a URL as a string. To redirect to a different action in
your application, pass it a hash that specifies the controller, action, and ID.

Here’s a BureaucracyController that shuffles incoming requests to and fro between
various actions, finally sending the client to an external site:

class BureaucracyController < ApplicationController
 def index
 redirect_to :controller => 'bureaucracy', :action => 'reservation_window'
 end

 def reservation_window
 redirect_to :action => 'claim_your_form', :id => 123
 end

 def claim_your_form
 redirect_to :action => 'fill_out_your_form', :id => params[:id]
 end

 def fill_out_your_form
 redirect_to :action => 'form_processing'
 end

 def form_processing
 redirect_to "http://www.dmv.org/"
 end
end

If you run the Rails server and hit http://localhost:3000/bureaucracy/ in your browser,
you’ll end up at http://www.dmv.org/. The Rails server log will show the chain of
HTTP requests you made to get there:

"GET /bureaucracy HTTP/1.1" 302
"GET /bureaucracy/reservation_window HTTP/1.1" 302
"GET /bureaucracy/claim_your_form/123 HTTP/1.1" 302
"GET /bureaucracy/fill_out_your_form/123 HTTP/1.1" 302
"GET /bureaucracy/form_processing HTTP/1.1" 302

You don’t need to create view templates for all of these actions, because the body of
an HTTP redirect isn’t displayed by the web browser.

Discussion
The redirect_to method uses smart defaults. If you give it a hash that doesn’t spec-
ify a controller, it assumes you want to move to another action in the same control-
ler. If you leave out the action, it assumes you are talking about the index action.

From the simple redirects given in the Solution, you might think that calling
redirect_to actually stops the action method in place and does an immediate HTTP
redirect. This is not true. The action method continues to run until it ends or you call
return. The redirect_to method doesn’t do a redirect: it tells Rails to do a redirect
once the action method has finished running.

15.5 Displaying Templates with Render | 567

Here’s an illustration of the problem. You might think that the call to redirect_to
below prevents the method do_something_dangerous from being called.

class DangerController < ApplicationController
 def index
 redirect_to (:action => 'safety') unless params[:i_like_danger]
 do_something_dangerous
 end

 # ...
end

But it doesn’t. The only way to stop an action method from running all the way to
the end is to call return.* What you really want to do is this:

class DangerController < ApplicationController
 def index
 redirect_to (:action => 'safety') and return unless params[:i_like_danger]
 do_something_dangerous
 end
end

Notice the and return at the end of redirect_to. It’s very rare that you’ll want to exe-
cute code after telling Rails to redirect the user to another page. To avoid problems,
make a habit of adding and return at the end of calls to redirect_to or render.

See Also
• The generated RDoc for the methods ApplicationController::Base#redirect_to

and ApplicationController::Base#url_for

15.5 Displaying Templates with Render

Problem
Rails’s default mapping of one action method to one view template is not flexible
enough for you. You want to customize the template that gets rendered for a particu-
lar action by calling Rails’s rendering code directly.

Solution
Rendering happens in the ActionController::Base#render method. Rails’s default
behavior is to call render after the action method runs, mapping the action to a cor-
responding view template. The foo action gets mapped to the foo.rhtml template.

* You could throw an exception, but then your redirect wouldn’t happen: the user would see an exception
screen instead.

568 | Chapter 15: Web Development: Ruby on Rails

You can call render from within an action method to make Rails render a different
template. This controller defines two actions, both of which are rendered using the
shopping_list.rhtml template:

class ListController < ApplicationController
 def index
 @list = ['papaya', 'polio vaccine']
 render :action => 'shopping_list'
 end

 def shopping_list
 @list = ['cotton balls', 'amino acids', 'pie']
 end
end

By default, render assumes that you are talking about the controller and action that
are running when render is called. If you call render with no arguments, Rails will
work the same way it usually does. But specifying 'shopping_list' as the view over-
rides this default, and makes the index action use the shopping_list.rhtml template,
just like the shopping_list action does.

Discussion
Although they use the same template, visiting the index action is not the same as vis-
iting the shopping_list action. They display different lists, because index defines a
different list from shopping_list.

Recall from Recipe 15.4 that the redirect method doesn’t perform an immediate
HTTP redirect. It tells Rails to do a redirect once the current action method finishes
running. Similarly, the render method doesn’t do the rendering immediately. It only
tells Rails which template to render when the action is complete.

Consider this example:

class ListController < ApplicationController
 def index
 render :action => 'shopping_list'
 @budget = 87.50
 end

 def shopping_list
 @list = ['lizard food', 'baking soda']
 end
end

You might think that calling index sets @list but not @budget. Actually, the reverse is
true. Calling index sets @budget but not @list.

The @budget variable gets set because render does not stop the execution of the cur-
rent action. Calling render is like sealing a message in an envelope that gets opened
by Rails at some point in the future. You’re still free to set instance variables and

15.5 Displaying Templates with Render | 569

make other method calls. Once your action method returns, Rails will open the enve-
lope and use the rendering strategy contained within.

The @list variable does not get set because the render call does not call the shopping_
list action. It just makes the existing action, index, use the shopping_list.rhtml
template instead of the index.rhtml template. There doesn’t even need to be a
shopping_list action: there just has to be a template named shopping_list.rhtml.

If you do want to invoke one action from another, you can invoke the action method
explicitly. This code will make index set both @budget and @list:

class ListController < ApplicationController
 def index
 shopping_list and render :action => 'shopping_list'
 @budget = 87.50
 end
end

Another consequence of this “envelope” behavior is that you must never call render
twice within a single client request (the same goes for render’s cousin redirect_to,
which also seals a message in an envelope).

If you write code like the following, Rails will complain. You’re giving it two sealed
envelopes, and it doesn’t know which to open:

class ListController < ApplicationController
 def plain_and_fancy
 render :action => 'plain_list'
 render :action => 'fancy_list'
 end
end

But the following code is fine, because any given request will only trigger one branch
of the if/else clause. Whatever happens, render will only be called once per request.

class ListController < ApplicationController
 def plain_or_fancy
 if params[:fancy]
 render :action => 'fancy_list'
 else
 render :action => 'plain_list'
 end
 end
end

With redirect_to, if you want to force your action method to stop running, you can
put a return statement immediately after your call to render. This code does not set
the @budget variable, because execution never gets past the return statement:

class ListController < ApplicationController
 def index
 render :action => 'shopping_list' and return
 @budget = 87.50 # This line won't be run.
 end
end

570 | Chapter 15: Web Development: Ruby on Rails

See Also
• Recipe 15.4, “Redirecting to a Different Location”

• Recipe 15.14, “Refactoring the View into Partial Snippets of Views,” shows
examples of calling render within a view template

15.6 Integrating a Database with Your Rails
Application

Problem
You want your web application to store persistent data in a relational database.

Solution
The hardest part is setting things up: creating your database and hooking Rails up to
it. Once that’s done, database access is as simple as writing Ruby code.

To tell Rails how to access your database, open your application’s config/database.yml
file. Assuming your Rails application is called mywebapp, it should look something like
this:

development:
adapter: mysql
database: mywebapp_development
host: localhost
username: root
password:

test:
adapter: mysql
database: mywebapp_test
host: localhost
username: root
password:

production:
adapter: mysql
database: mywebapp
host: localhost
username: root
password:

For now, just make sure the development section contains a valid username and pass-
word, and that it mentions the correct adapter name for your type of database (see
Chapter 13 for the list).

15.6 Integrating a Database with Your Rails Application | 571

Now create a database table. As with so much else, Rails does a lot of the database
work automatically if you follow its conventions. You can override the conventions if
necessary, but for now it’s easiest to go along with them.

The name of the table must be a pluralized noun: for instance, “people”, “tasks”,
“items”.

The table must contain an auto-incrementing primary key field called id.

For this example, use a database tool or a CREATE DATABASE SQL command to create a
mywebapp_development database (see the chapter introduction for Chapter 13 if you
need help doing this). Then create a table in that database called people. Here’s the
SQL to create a people table in MySQL; you can adapt it for your database.

use mywebapp_development;

DROP TABLE IF EXISTS 'people';
CREATE TABLE 'people' (
'id' INT(11) NOT NULL AUTO_INCREMENT,
'name' VARCHAR(255),
'email' VARCHAR(255),
PRIMARY KEY (id)
) ENGINE=InnoDB;

Now go to the command line, change into the web application’s root directory, and
type ./script/generate model Person. This generates a Ruby class that knows how to
manipulate the people table.

$./script/generate model Person
exists app/models/
exists test/unit/
exists test/fixtures/
create app/models/person.rb
create test/unit/person_test.rb
create test/fixtures/people.yml

Notice that your model is named Person, even though the table was named people. If
you abide by its conventions, Rails automatically handles these pluralizations for you
(see Recipe 15.7 for details).

Your web application now has access to the people table, via the Person class. Again
from the command line, run this command:

$./script/runner 'Person.create(:name => "John Doe", \
:email => "john@doe.com")'

That code creates a new entry in the people table. (If you’ve read Recipe 13.11, you’ll
recognize this as ActiveRecord code.)

To access this person from your application, create a new controller and a view to go
along with it:

$./script/generate controller people list
exists app/controllers/

572 | Chapter 15: Web Development: Ruby on Rails

exists app/helpers/
create app/views/people
exists test/functional/
create app/controllers/people_controller.rb
create test/functional/people_controller_test.rb
create app/helpers/people_helper.rb
create app/views/people/list.rhtml

Edit app/view/people/list.rhtml so it looks like this:

<!-- list.rhtml -->

<% Person.find(:all).each do |person| %>
Name: <%= person.name %>, Email: <%= person.email %
>
<% end %>

Start the Rails server, visit http://localhost:3000/people/list/, and you’ll see John Doe
listed.

The Person model class is accessible from all parts of your Rails application: your
controllers, views, helpers, and mailers.

Discussion
Up until now, the applications created in these recipes have been using only control-
lers and views.* The Person class, and its underlying database table, give us for the
first time the Model portion of the Model-View-Controller triangle.

A relational database is usually the best place to store real-world models, but it’s dif-
ficult to program a relational database directly. Rails uses the ActiveRecord library to
hide the people table behind a Person class. Methods like Person.find let you search
the person database table without writing SQL; the results are automatically con-
verted into Person objects. The basics of ActiveRecord are covered in Recipe 13.11.

The Person.find method takes a lot of optional arguments. If you pass it an integer, it
will look for the person entry whose unique ID is that integer, and return an appro-
priate Person object. The :all and :first symbols grab all entries from the table (an
array of Person objects), or only the first person that matches. You can limit or order
your dataset by specifying :limit or :order; you can even set raw SQL conditions via
:conditions.

Here’s how to find the first five entries in the people table that have email addresses.
The result will be a list containing five Person objects, ordered by their name fields.

Person.find(:all,
 :limit => 5,

* More precisely, our models have been embedded in our controllers, as ad hoc data structures like hardcoded
shopping lists.

15.7 Understanding Pluralization Rules | 573

 :order => 'name',
 :conditions => 'email IS NOT NULL')

The three different sections of config/database.yml specify the three different data-
bases used at different times by your Rails application:

Development database
The database you use when working on the application. Generally filled with
test data.

Test database
A scratch database used by the unit testing framework when running tests for
your application. Its data is populated automatically by the unit testing frame-
work.

Production database
The database mode to use when your web site is running with live data.

Unless you explicitly setup Rails to run in production or test mode, it defaults to
development mode. So to get started, you only need to make sure the development
portion of database.yml is set up correctly.

See Also
• Chapter 13

• Recipe 13.11, “Using Object Relational Mapping with ActiveRecord”

• Recipe 13.13, “Building Queries Programmatically”

• Recipe 13.14, “Validating Data with ActiveRecord”

• ActiveRecord can’t do everything that SQL can. For complex database opera-
tions, you’ll need to use DBI or one of the Ruby bindings to specific kinds of
database; these topics too are covered in Recipe 13.15, “Preventing SQL Injec-
tion Attacks,” which gives more on the format of the database.yml file

15.7 Understanding Pluralization Rules

Problem
You want to understand and customize Rails’s rules for automatically pluralizing nouns.

Solution
You can use Rails’ pluralization functionality in any part of your application, but
ActiveRecord is the only major part of Rails that does pluralization automatically.
ActiveRecord generally expects table names to be pluralized noun phrases and the
corresponding model classes to be singular versions of the same noun phrases.

574 | Chapter 15: Web Development: Ruby on Rails

So when you create a model class, you should always use a singular name. Rails
automatically pluralizes:

• The corresponding table name for the model

• has_many relations

• has_and_belongs_to_many relations

For example, if you create a LineItem model, the table name automatically becomes
line_items. Note also that the table name has been lowercased, and the word break
indicated by the original camelcase is now conveyed with an underscore.

If you then create an Order model, the corresponding table needs to be called orders. If
you want to describe an order that has many line items, the code would look like this:

class Order < ActiveRecord::Base
 has_many :line_items
end

Like the name of the table it references, the symbol used in the has_many relation is
pluralized and underscored. The same goes for the other relationships between
tables, like has_and_belongs_to_many.

Discussion
ActiveRecord pluralizes these names to make your code read more like an English
sentence: has_many :line_items can be read “has many line items”. If pluralization
confuses you, you can disable it by setting ActiveRecord::Base.pluralize_table_
names to false. In Rails, the simplest way to do this is to put the following code in
config/environment.rb:

Rails::Initializer.run do |config|
 config.active_record.pluralize_table_names = false
end

If your application knows specific words that ActiveRecord does not know how to
pluralize, you can define your own pluralization rules by manipulating the Inflector
class. Let’s say that the plural of “foo” is “fooze”, and you’ve build an application to
manage fooze. In Rails, you can specify this transformation by putting the following
code in config/environment.rb:

Inflector.inflections do |inflect|
 inflect.plural /^(foo)$/i, '\1ze'
 inflect.singular /^(foo)ze/i, '\1'
end

In this case, it’s simpler to use the irregular method:

Inflector.inflections do |inflect|
 inflect.irregular 'foo', 'fooze'
end

15.8 Creating a Login System | 575

If you have nouns that should never be inflected (usually because they are mass
nouns, or because their plural form is the same as their singular form), you can pass
them into the uncountable method:

Inflector.inflections do |inflect|
 inflect.uncountable ['status', 'furniture', 'fish', 'sheep']
end

The Inflector class is part of the activesupport gem, and you can use it outside of
ActiveRecord or Rails as a general way of pluralizing English words. Here’s a stand-
alone Ruby program:

require 'rubygems'
require 'active_support/core_ext'

'blob'.pluralize # => "blobs"
'child'.pluralize # => "children"
'octopus'.pluralize # => "octopi"
'octopi'.singularize # => "octopus"
'people'.singularize # => "person"

'goose'.pluralize # => "gooses"
Inflector.inflections { |i| i.irregular 'goose', 'geese' }
'goose'.pluralize # => "geese"

'moose'.pluralize # => "mooses"
Inflector.inflections { |i| i.uncountable 'moose' }
'moose'.pluralize # => "moose"

See Also
• Recipe 13.11, “Using Object Relational Mapping with ActiveRecord”

15.8 Creating a Login System

Problem
You want your application to support a login system based on user accounts. Users
will log in with a unique username and password, as in most commercial and com-
munity web sites.

Solution
Create a users table that contains nonnull username and password fields. The SQL
to create this table should look something like this MySQL example:

use mywebapp_development;
DROP TABLE IF EXISTS `users`;
CREATE TABLE `users` (
 `id` INT(11) NOT NULL AUTO_INCREMENT,
 `username` VARCHAR(255) NOT NULL,

576 | Chapter 15: Web Development: Ruby on Rails

 `password` VARCHAR(40) NOT NULL,
 PRIMARY KEY (`id`)
);

Enter the main directory of the application and generate a User model corresponding
to this table:

$./script/generate model User
 exists app/models/
 exists test/unit/
 exists test/fixtures/
 create app/models/user.rb
 create test/unit/user_test.rb
 create test/fixtures/users.yml

Open the generated file app/models/user.rb and edit it to look like this:

class User < ActiveRecord::Base
 validates_uniqueness_of :username
 validates_confirmation_of :password, :on => :create
 validates_length_of :password, :within => 5..40

 # If a user matching the credentials is found, returns the User object.
 # If no matching user is found, returns nil.
 def self.authenticate(user_info)
 find_by_username_and_password(user_info[:username],
 user_info[:password])
 end
end

Now you’ve got a User class that represents a user account, and a way of validating a
username and password against the one stored in the database.

Discussion
The simple User model given in the Solution defines a method for doing username/
password validation, and some validation rules that impose limitations on the data
to be stored in the users table. These validation rules tell User to:

• Ensure that each username is unique. No two users can have the same username.

• Ensure that, whenever the password attribute is being set, the password_
confirmation attribute has the same value.

• Ensure that the value of the password attribute is between 5 and 40 characters
long.

Now let’s create a controller for this model. It’ll have a login action to display the
login page, a process_login action to check the username and password, and a
logout action to deauthenticate a logged-in session. So that the user accounts will
actually do something, we’ll also add a my_account action:

$./script/generate controller user login process_login logout my_account
 exists app/controllers/
 exists app/helpers/

15.8 Creating a Login System | 577

 create app/views/user
 exists test/functional/
 create app/controllers/user_controller.rb
 create test/functional/user_controller_test.rb
 create app/helpers/user_helper.rb
 create app/views/user/login.rhtml
 create app/views/user/process_login.rhtml
 create app/views/user/logout.rhtml

Edit app/controllers/user_controller.rb to define the three actions:

class UserController < ApplicationController
 def login
 @user = User.new
 @user.username = params[:username]
 end

 def process_login
 if user = User.authenticate(params[:user])
 session[:id] = user.id # Remember the user's id during this session
 redirect_to session[:return_to] || '/'
 else
 flash[:error] = 'Invalid login.'
 redirect_to :action => 'login', :username => params[:user][:username]
 end
 end

 def logout
 reset_session
 flash[:message] = 'Logged out.'
 redirect_to :action => 'login'
 end

 def my_account
 end
end

Now for the views. The process_login and logout actions just redirect to other
actions, so we only need views for login and my_account. Here’s a view for login:

<!-- app/views/user/login.rhtml -->
<% if @flash[:message] %><div><%= @flash[:message] %></div><% end %>
<% if @flash[:error] %><div><%= @flash[:error] %></div><% end %>

<%= form_tag :action => 'process_login' %>
 Username: <%= text_field "user", "username" %>

 Password: <%= password_field "user", "password" %>

 <%= submit_tag %>
<%= end_form_tag %>

The @flash instance variable is a hashlike object used to store temporary messages
for the user between actions. When the logout action sets flash[:message] and redi-
rects to login, or process_login sets flash[:error] and redirects to login, the results
are available to the view of the login action. Then they get cleared out.

578 | Chapter 15: Web Development: Ruby on Rails

Here’s a very simple view for my_account:

<!-- app/views/user/my_account.rhtml -->
<h1>Account Info</h1>

<p>Your username is <%= User.find(session[:id]).username %>

Create an entry in the users table, start the server, and you’ll find that you can log in
from http://localhost:3000/user/login, and view your account information from http://
localhost:3000/user/my_account.

$./script/runner 'User.create(:username => "johndoe", \
 :password => "changeme")'

There’s just one missing piece: you can visit the my_account action even if you’re not
logged in. We don’t have a way to close off an action to unauthenticated users. Add
the following code to your app/controllers/application.rb file:

class ApplicationController < ActionController::Base
 before_filter :set_user

protected
 def set_user
 @user = User.find(session[:id]) if @user.nil? && session[:id]
 end

 def login_required
 return true if @user
 access_denied
 return false
 end

 def access_denied
 session[:return_to] = request.request_uri
 flash[:error] = 'Oops. You need to login before you can view that page.'
 redirect_to :controller => 'user', :action => 'login'
 end
end

This code defines two filters, set_user and login_required, which you can apply to
actions or controllers. The set_user filter is run on every action (because we pass it
into before_filter in ApplicationController, the superclass of all our controllers).
The set_user method sets the instance variable @user if the user is logged in. Now
information about the logged-in user (if any) is available throughout your applica-
tion. Action methods and views can use this instance variable like any other. This is
useful even for actions that don’t require login: for instance, your main layout view
might display the name of the logged-in user (if any) on every page.

You can prohibit unauthenticated users from using a specific action or controller by
passing the symbol for the login_required method into before_filter. Here’s how to
protect the my_account action defined in app/controllers/user_controller.rb:

class UserController < ApplicationController
 before_filter :login_required, :only => :my_account
end

15.9 Storing Hashed User Passwords in the Database | 579

Now if you try to use the my_account action without being logged in, you’ll be redi-
rected to the login page.

See Also
• Recipe 13.14, “Validating Data with ActiveRecord”

• Recipe 15.6, “Integrating a Database with Your Rails Application”

• Recipe 15.9, “Storing Hashed User Passwords in the Database”

• Recipe 15.11, “Setting and Retrieving Session Information”

• Rather than doing this work yourself, you can install the login_generator gem
and use its login generator: it will give your application a User model and a con-
troller that implements a password-based authentication system; see http://wiki.
rubyonrails.com/rails/pages/LoginGenerator; also see http://wiki.rubyonrails.com/
rails/pages/AvailableGenerators for other generators (including the more sophis-
ticated model_security_generator)

15.9 Storing Hashed User Passwords in the Database

Problem
The database table defined in Recipe 15.8 stores users’ passwords as plain text. This
is a bad idea: if someone compromises the database, she will have all of your users’
passwords. It’s best to store a secure hash of the password instead. That way, you
don’t have the password (so no one can steal it), but you can verify that a user knows
his password.

Solution
Recreate the users table from Recipe 15.8 so that instead of a password field, it has a
hashed_password field. Here’s some MySQL code to do that:

use mywebapp_development;
DROP TABLE IF EXISTS `users`;
CREATE TABLE `users` (
 `id` INT(11) NOT NULL AUTO_INCREMENT,
 `username` VARCHAR(255) NOT NULL,
 `hashed_password` VARCHAR(40) NOT NULL,
 PRIMARY KEY (id)
);

Open the file app/models/user.rb created in Recipe 15.8, and edit it to look like this:

require 'sha1'

class User < ActiveRecord::Base
 attr_accessor :password
 attr_protected :hashed_password
 validates_uniqueness_of :username

580 | Chapter 15: Web Development: Ruby on Rails

 validates_confirmation_of :password,
 :if => lambda { |user| user.new_record? or not user.password.blank? }
 validates_length_of :password, :within => 5..40,
 :if => lambda { |user| user.new_record? or not user.password.blank? }

 def self.hashed(str)
 SHA1.new(str).to_s
 end

 # If a user matching the credentials is found, returns the User object.
 # If no matching user is found, returns nil.
 def self.authenticate(user_info)
 user = find_by_username(user_info[:username])
 if user && user.hashed_password == hashed(user_info[:password])
 return user
 end
 end

 private
 before_save :update_password

 # Updates the hashed_password if a plain password was provided.
 def update_password
 if not password.blank?
 self.hashed_password = self.class.hashed(password)
 end
 end
end

Once you do this, your application will work as before (though you’ll have to con-
vert any preexisting user accounts to the new password format). You don’t need to
modify any of the controller or view code, because the User.authenticate method
works the same way it did before. This is one of the benefits of separating business
logic from presentation logic.

Discussion
There are now three pieces to our user model. The first is the enhanced validation
code. The user model now:

• Provides getters and setters for the password attribute.

• Makes sure that the hashed_password field in the database can’t be accessed from
the outside.

• Ensures that each user has a unique username.

When a new user is created, or when the password is changed, User ensures:

• That the value of the password_confirmation attribute is equal to the value of the
password attribute.

• That the password is between 5 and 40 characters long.

15.10 Escaping HTML and JavaScript for Display | 581

The second section of code defines User class methods as before. We add one new
class-level method, hashed, which performs the hashing function on a plaintext pass-
word. If we want to change hashing mechanisms in the future, we only have to
change this method (and migrate any existing passwords).

The third piece of code in the model is a private instance method, update_password,
which synchronizes the plaintext password attribute with the hashed version in the
database. The call to before_save sets up this method to be called before a User
object is saved to the database. This way you can change a user’s password by set-
ting password to its plaintext value, instead of doing the hash yourself.

See Also
• Recipe 13.14, “Validating Data with ActiveRecord”

• Recipe 15.8, “Creating a Login System”

15.10 Escaping HTML and JavaScript for Display

Problem
You want to display data that might contain HTML or JavaScript without making
browsers render it as HTML or interpret the JavaScript. This is especially important
when displaying data entered by users.

Solution
Pass a string of data into the h() helper function to escape its HTML entities. That
is, instead of this:

<%= @data %>

Write this:

<%=h @data %>

The h() helper function converts the following characters into their HTML entity
equivalents: ampersand (&), double quote ("), left angle bracket (<), and right angle
bracket (>).

Discussion
You won’t find the definition for the h() helper function anywhere in the Rails source
code, because it’s a shortcut for ERb’s built-in helper function html_escape().

JavaScript is deployed within HTML tags like <SCRIPT>, so escaping an HTML string
will neutralize any JavaScript in the HTML. However, sometimes you need to escape
just the JavaScript in a string. Rails adds a helper function called escape_javascript()
that you can use. This function doesn’t do much: it just turns line breaks into the

582 | Chapter 15: Web Development: Ruby on Rails

string "\n", and adds backslashes before single and double quotes. This is handy
when you want to use arbitrary data in your own JavaScript code:

<!-- index.rhtml -->
<script lang="javascript">
var text = "<%= escape_javascript @javascript_alert_text %>";
alert(text);
</script>

See Also
• Chapter 11

15.11 Setting and Retrieving Session Information

Problem
You want to associate some data with each distinct web client that’s using your
application. The data needs to persist across HTTP requests.

Solution
You can use cookies (see Recipe 15.12) but it’s usually simpler to put the data in a
user’s session. Every visitor to your Rails site is automatically given a session cookie.
Rails keys the value of the cookie to a hash of arbitrary data on the server.

Throughout your entire Rails application, in controllers, views, helpers, and mailers,
you can access this hash by calling a method called session. The objects stored in
this hash are persisted across requests by the same web browser.

This code in a controller tracks the time of a client’s first visit to your web site:

class IndexController < ApplicationController
 def index
 session[:first_time] ||= Time.now
 end
end

Within your view, you can write the following code to display the time:*

<!-- index.rhtml -->
You first visited this site on <%= session[:first_time] %>.

That was <%= time_ago_in_words session[:first_time] %> ago.

* The helper function time_ago_in_words() calculates how long it’s been since a certain time and returns
English text such as “about a minute” or “5 hours” or “2 days”. This is a nice, easy way to give the user a
perspective on what a date means.

15.11 Setting and Retrieving Session Information | 583

Discussion
Cookies and sessions are very similar. They both store persistent data about a visitor
to your site. They both let you implement stateful operations on top of HTTP, which
has no state of its own. The main difference between cookies and sessions is that
with cookies, all the data is stored on your visitors’ computers in little cookie files.
With sessions, all the data is stored on the web server. The client only keeps a small
session cookie, which contains a unique ID that’s tied to the data on the server. No
personal data is ever stored on the visitor’s computer.

There are a number of reasons why you might want to use sessions instead of cookies:

• A cookie can only store four kilobytes of data.

• A cookie can only store a string value.

• If you store personal information in a cookie, it can be intercepted unless all of a
client’s requests are encrypted with SSL. Even then, cross-site scripting attacks
may be able to read the client cookie and retrieve the sensitive information.

On the other hand, cookies are useful when:

• The information is not sensitive and not very large.

• You don’t want to store session information about each visitor on your server.

• You need speed from your application, and not every page needs to access the
session data.

Generally, it’s a better idea to use sessions than to store data in cookies.

You can include model objects in your session: this can save a lot of trouble over
retrieving the same objects from the database on every request. However, if you are
going to do this, it’s a good idea to list in your application controller all the models
you’ll be putting into the session. This reduces the risk that Rails won’t be able to
deserialize the objects when retrieving them from the session store.

class ApplicationController < ActionController::Base
 model :user, :ticket, :item, :history
end

Then you can put ActiveRecord objects into a session:

class IndexController < ApplicationController
 def index
 session[:user] ||= User.find(params[:id])
 end
end

If your site doesn’t need to store any information in sessions, you can disable the fea-
ture by adding the following code to your app/controllers/application.rb file:

class ApplicationController < ActionController::Base
 session :off
end

584 | Chapter 15: Web Development: Ruby on Rails

As you may have guessed, you can also use the session method to turn sessions off
for a single controller:

class MyController < ApplicationController
 session :off
end

You can even bring it down to an action level:

class MyController < ApplicationController
 session :off, :only => ['index']

 def index
 #This action will not have any sessions available to it
 end
end

The session interface is intended for data that persists over many actions, possibly over
the user’s entire visit to the site. If you just need to pass an object (like a status message)
to the next action, it’s simpler to use the flash construct described in Recipe 15.8:

 flash[:error] = 'Invalid login.'

By default, Rails sessions are stored on the server via the PStore mechanism. This
mechanism uses Marshal to serialize session data to temporary files. This approach
works well for small sites, but if your site will be getting a lot of visitors or you need
to run your Rails application concurrently on multiple servers, you should explore
some of the alternatives.

The three main alternatives are ActiveRecordStore, DRbStore, and MemCacheStore.
ActiveRecordStore keeps session information in a database table: you can set up the
table by running rake create_sessions_table on the command line. Both DRbStore
and MemCacheStore create an in-memory hash that’s accessible over the network, but
they use different libraries.

Ruby comes with a standard library called DRb that allows you to share objects
(including hashes) over the network. Ruby also has a binding to the Memcached dae-
mon, which has been used to help scale web sites like Slashdot and LiveJournal.
Memcached works like a direct store into RAM, and can be distributed automati-
cally over various computers without any special configuration.

To change the session storing mechanism, edit your config/environment.rb file like this:

Rails::Initializer.run do |config|
 config.action_controller.session_store = :active_record_store
end

See Also
• Recipe 15.8, “Creating a Login System,” has an example using flash

• Recipe 15.12, “Setting and Retrieving Cookies”

• Recipe 16.10, “Sharing a Hash Between Any Number of Computers”

15.12 Setting and Retrieving Cookies | 585

• Recipe 16.16, “Storing Data on Distributed RAM with MemCached”

• http://wiki.rubyonrails.com/rails/pages/HowtoChangeSessionOptions

15.12 Setting and Retrieving Cookies

Problem
You want to set a cookie from within Rails.

Solution
Recall from Recipe 15.11 that all Rails controllers, views, helpers, and mailers have
access to a method called sessions that returns a hash of the current client’s session
information. Your controllers, helpers, and mailers (but not your views) also have
access to a method called cookies, which returns a hash of the current client’s HTTP
cookies.

To set a cookie for a user, simply set a key/value pair in that hash. For example, to
keep track of how many pages a visitor has looked at, you might set a “visits” cookie:

class ApplicationController < ActionController::Base
 before_filter :count_visits

 private

 def count_visits
 value = (cookies[:visits] || '0').to_i
 cookies[:visits] = (value + 1).to_s
 @visits = cookies[:visits]
 end
end

The call to before_filter tells Rails to run this method before calling any action
method. The private declaration makes sure that Rails doesn’t think the count_
visits method is itself an action method that the public can view.

Since cookies are not directly available to views, count_visits makes the value of the
:visits cookie available as the instance variable @visits. This variable can be
accessed from a view:

<!-- index.rhtml -->
You've visited this website's pages <%= @visits %> time(s).

HTTP cookie values can only be strings. Rails can automatically convert some val-
ues to strings, but it’s safest to store only string values in cookies. If you need to store
objects that can’t easily be converted to and from strings, you should probably store
them in the session hash instead.

586 | Chapter 15: Web Development: Ruby on Rails

Discussion
There may be times when you want more control over your cookies. For instance,
Rails cookies expire by default when the user closes their browser session. If you
want to change the browser expiration time, you can give cookies a hash that con-
tains an :expires key and a time to expire the cookie. The following cookie will
expire after one hour:*

cookies[:user_id] = { :value => '123', :expires => Time.now + 1.hour}

Here are some other options for a cookie hash passed into cookies.

The domain to which this cookie applies:

:domain

The URL path to which this cookie applies (by default, the cookie applies to the
entire domain: this means that if you host multiple applications on the same domain,
their cookies may conflict):

:path

Whether this cookie is secure (secure cookies are only transmitted over HTTPS con-
nections; the default is false):

:secure

Finally, Rails provides a quick and easy way to delete cookies:

cookies.delete :user_id

Of course, every Ruby hash implements a delete method, but the cookies hash is a
little different. It includes special code so that not only does calling delete remove a
key-value pair from the cookies hash, it removes the corresponding cookie from the
user’s browser.

See Also
• Recipe 3.5, “Doing Date Arithmetic”

• Recipe 15.11, “Setting and Retrieving Session Information,” has a discussion of
when to use cookies and when to use session

* Rails extends Ruby’s numeric classes to include some very helpful methods (like the hour method shown
here). These methods convert the given unit to seconds. For example, Time.now + 1.hour is the same as Time.
now + 3600, since 1.hour returns the number of seconds in an hour. Other helpful methods include minutes,
hours, days, months, weeks, and years. Since they all convert to numbers of seconds, you can even add them
together like 1.week + 3.days.

15.13 Extracting Code into Helper Functions | 587

15.13 Extracting Code into Helper Functions

Problem
Your views are getting cluttered with Ruby code.

Solution
Let’s create a controller with a fairly complex view to see how this can happen:

$./scripts/generate controller list index
 exists app/controllers/
 exists app/helpers/
 create app/views/list
 exists test/functional/
 create app/controllers/list_controller.rb
 create test/functional/list_controller_test.rb
 create app/helpers/list_helper.rb
 create app/views/list/index.rhtml

Edit app/controllers/list_controller.rb to look like this:

class ListController < ApplicationController
 def index
 @list = [1, "string", :symbol, ['list']]
 end
end

Edit app/views/list/index.rhtml to contain the following code. It iterates over each
element in @list, and prints out its index and the SHA1 hash of its object ID:

<!-- app/views/list/index.rhtml -->

<% @list.each_with_index do |item, i| %>
 <li class="<%= i%2==0 ? 'even' : 'odd' %>"><%= i %>:
 <%= SHA1.new(item.id.to_s) %>
<% end %>

This is pretty messy, but if you’ve done much web programming it should also look
sadly familiar.

To clean up this code, we’re going to move some of it into the helper for the control-
ler. In this case, the controller is called list, so its helper lives in app/helpers/list_
helper.rb.

Let’s create a helper function called create_li. Given an object and its position in the
list, this function creates an tag suitable for use in the index view:

module ListHelper
 def create_li(item, i)
 %{<li class="#{ i%2==0 ? 'even' : 'odd' }">#{i}:
 #{SHA1.new(item.id.to_s)}}
 end
end

588 | Chapter 15: Web Development: Ruby on Rails

The list controller’s views have access to all the functions defined in ListHelper. We
can clean up the index view like so:

<!-- app/views/list/index.rhtml -->

<% @list.each_with_index do |item, i| %>
 <%= create_li(item, i) %>
<% end %>

Your helper functions can do anything you can normally do from within a view, so
they are a great way to abstract out the heavy lifting.

Discussion
The purpose of helper functions is to create more maintainable code, and to enforce
a good division of labor between the programmers and the UI designers. Maintain-
able code is easier for the programmers to work on, and when it’s in helper func-
tions it’s out of the way of the designers, who can tweak the HTML here and there
without having to sifting through code.

A good rule of thumb for when to use helpers is to read the code aloud. If it sounds
like nonsense to someone familiar with HTML, or it makes up more than a short
English sentence, hide it in a helper.

The flip side of this is that you should minimize the amount of HTML generated
from within the helpers. That way the UI designers, or other people familiar with
HTML, won’t wander your code, wondering where to find the bit of HTML that
needs tweaking.

Although helper functions are useful and used very often, Rails also provides par-
tials, another way of extracting code into smaller chunks.

See Also
• Recipe 15.14, “Refactoring the View into Partial Snippets of Views,” has more

on partials

15.14 Refactoring the View into Partial Snippets
of Views

Problem
Your view doesn’t contain a lot of Ruby code, but it’s still becoming more compli-
cated than you’d like. You’d like to refactor the view logic into separate, reusable
templates.

15.14 Refactoring the View into Partial Snippets of Views | 589

Solution
You can refactor a view template into multiple templates called partials. One tem-
plate can include another by calling the render method, first seen in Recipe 15.5.

Let’s start with a more complex version of the view shown in Recipe 15.5:

<!-- app/views/list/shopping_list.rhtml -->
<h2>My shopping list</h2>

<% @list.each do |item| %>
 <%= item.name %> -
 <%= link_to 'Delete', {:action => 'delete', :id => item.id},
 :post => true %>

<% end %>

<h2>Add a new item</h2>

<%= form_tag :action => 'new' %>
 Item: <%= text_field "product", "name" %>

 <%= submit_tag "Add new item" %>
<%= end_form_tag %>

Here’s the corresponding controller class, and a dummy ListItem class to serve as
the model:

app/controllers/list_controller.rb
class ListController < ActionController::Base
 def shopping_list
 @list = [ListItem.new(4, 'aspirin'), ListItem.new(199, 'succotash')]
 end

 # Other actions go here: add, delete, etc.
 # ...
end

class ListItem
 def initialize(id, name)
 @id, @name = id, name
 end
end

The view has two parts: the first part lists all the items, and the second part prints a
form to add a new item. An obvious first step is to split out the new item form.

We can do this by creating a partial view to print the new item form. To do this, cre-
ate a new file within app/views/list/ called _new_item_form.rhtml. The underscore in
front of the filename indicates that it is a partial view, not a full-fledged view for an
action called new_item_form. Here’s the partial file.

590 | Chapter 15: Web Development: Ruby on Rails

<!-- app/views/list/_new_item_form.rhtml -->

<%= form_tag :action => 'new' %>
Item: <%= text_field "item", "value" %>

<%= submit_tag "Add new item" %>
<%= end_form_tag %>

To include a partial, call the render method from within a template. Here is the _new_
item_form partial integrated into the main view. The view looks exactly the same, but
the code is better organized.

<!-- app/views/list/shopping_list.rhtml -->
<h2>My shopping list</h2>

<% @list.each do |item| %>
 <%= item.name %> -
 <%= link_to 'Delete', {:action => 'delete', :id => item.id},
 :post => true %>

<% end %>

<%= render :partial => 'new_item_form' %>

Even though the filename starts with an underscore, when you call the partial, you
omit the underscore.

Discussion
Partial views inherit all the instance variables provided by the controller, so they have
access to the same instance variables as the parent view. That’s why we didn’t have
to change any of the form code for the _new_item_form partial.

We can create a second partial to factor out the code that prints the tag for
each list item. Here’s _list_item.rhtml:

<!-- app/views/list/_list_item.rhtml -->
<%= list_item.name %> -
<%= link_to 'Delete', {:action => 'delete', :id => list_item.id},
 :post => true %>

And here’s the revised main view:

<!-- app/views/list/shopping_list.rhtml -->
<h2>My shopping list</h2>

<% @list.each do |item| %>
 <%= render :partial => 'list_item', :locals => {:list_item => item} %>
<% end %>

<%= render :partial => 'new_item_form' %>

15.14 Refactoring the View into Partial Snippets of Views | 591

Partial views do not inherit local variables from their parent view, so the item vari-
able needs to be passed in to the partial, in a special hash called :locals. It’s accessi-
ble in the partial as list_item, because that’s the name it was given in the hash.

This scenario, iterating over an Enumerable and rendering a partial for each element,
is very common in web applications, so Rails provides a shortcut. We can simplify
our main view even more by passing our array into render (as the :collection
parameter) and having it do the iteration for us:

<!-- app/views/list/shopping_list.rhtml -->
<h2>My shopping list</h2>

 <%= render :collection => @list, :partial => 'list_item' %>

<%= render :partial => 'new_item_form' %>

The partial is rendered once for every element in @list. Each list element is made
available as the local variable list_item. In case you haven’t guessed, this name
comes from the name of the partial itself: render automatically gives _foo.rhtml a
local variable called foo.

list_item_counter is another variable that is set automatically (again, the name mir-
rors the name of the template). list_item_counter is the current item’s index in the
collection undergoing iteration. This variable can be handy if you want alternating
list items to show up in different styles:

<!-- app/views/list/_list_item.rhtml -->
<%= list_item.name %> -
<% css_class = list_item_counter % 2 == 0 ? 'a' : 'b' %>
<%= link_to 'Delete', {:action => 'delete', :id => list_item.id},
 {'class' => css_class}, :post => true %>

When there’s no collection present, you can pass a single object into a partial by
specifying an :object argument to render. This is simpler than creating a whole hash
of :locals just to pass one object. As with :collection, the object will be made avail-
able as a local variable whose name is based on the name of the partial.

Here’s an example: we’ll send the shopping list into the new_item_form.rhtml partial,
so that the new item form can print a more verbose message. Here’s the change to
shopping_list.rhtml:

<%= render :partial => 'new_item_form', :object => @list %>

Here’s the new version of _new_item_form.rhtml:

<!-- app/views/list/_new_item_form.rhtml -->
<h2>Add a new item to the <%= new_item_form.size %> already in this
list</h2>

592 | Chapter 15: Web Development: Ruby on Rails

<%= form_tag :action => 'new' %>
 Item: <%= text_field "product", "name" %>
 <%= submit_tag "Add new item" %>
<%= end_form_tag %>

See Also
• Recipe 15.5, “Displaying Templates with Render”

15.15 Adding DHTML Effects with script.aculo.us

Problem
You want to add fancy effects such as fades to your application, without writing any
JavaScript.

Solution
Every Rails application comes bundled with some JavaScript libraries that allow you
to create Ajax and DHTML effects. You don’t even have to write JavaScript to enable
DHTML in your Rails web site.

First edit your main layout template (see Recipe 15.3) to call javascript_include_tag
within your <HEAD> tag:

<!-- app/views/layouts/application.rhtml -->

<html>
 <head>
 <title>My Web App</title>

<%= javascript_include_tag "prototype", "effects" %>
 </head>
 <body>
 <%= @content_for_layout %>
 </body>
</html>

Now within your views you can call the visual_effect method to accomplish the
DHTML tricks found in the script.aculo.us library.

Here’s an example of the “highlight” effect:

<p id="important">Here is some important text, it will be highlighted
when the page loads.</p>

<script type="text/javascript">
<%= visual_effect(:highlight, "important", :duration => 1.5) %>
</script>

Here’s an example of the “fade” effect:

<p id="deleted">Here is some old text, it will fade away when the page
loads.</p>

15.15 Adding DHTML Effects with script.aculo.us | 593

<script type="text/javascript">
<%= visual_effect(:fade, "deleted", :duration => 1.0) %>
</script>

Discussion
The sample code snippets above are triggered when the page loads, because they’re
enclosed in <SCRIPT> tags. In a real application, you’ll probably display text effects in
response to user actions: deleted items might fade away, or the selection of one item
might highlight related items. Here’s an image that gets squished when you click the
link below it:

<%=link_to_function("Squish the bug!", visual_effect(:squish, "to-squish"))%>

The JavaScript code generated by the visual_effect method looks a lot like the argu-
ments you passed into the method. For instance, this piece of a Rails view:

<script type="text/javascript">
<%= visual_effect(:fade, 'deleted-text', :duration => 1.0) %>
</script>

Generates this JavaScript:

<script type="text/javascript">
new Effect.Fade("deleted-text", {duration:1.0});
</script>

This similarity means that documentation for the script.aculo.us library is almost
directly applicable to visual_effect. It also means that if you feel more comfortable
writing straight JavaScript, your code will still be fairly understandable to someone
who knows visual_effect.

The following table lists many of the effects available in Rails 1.0.

JavaScript initialization Rails initialization

new Effect.Highlight visual_effect(:highlight)

new Effect.Appear visual_effect(:appear)

new Effect.Fade visual_effect(:fade)

new Effect.Puff visual_effect(:puff)

new Effect.BlindDown visual_effect(:blind_down)

new Effect.BlindUp visual_effect(:blind_up)

new Effect.SwitchOff visual_effect(:switch_off)

new Effect.SlideDown visual_effect(:slide_down)

new Effect.SlideUp visual_effect(:slide_up)

new Effect.DropOut visual_effect(:drop_out)

new Effect.Shake visual_effect(:shake)

new Effect.Pulsate visual_effect(:pulsate)

594 | Chapter 15: Web Development: Ruby on Rails

See Also
• The script.aculo.us demo (http://wiki.script.aculo.us/scriptaculous/show/

CombinationEffectsDemo)

• Recipe 15.3, “Creating a Layout for Your Header and Footer,” has more on lay-
out templates

• Recipe 15.17, “Creating an Ajax Form”

15.16 Generating Forms for Manipulating Model
Objects

Problem
You want to define actions that let a user create or edit objects stored in the database.

Solution
Let’s create a simple model, and then build forms for it. Here’s some MySQL code to
create a table of key-value pairs:

use mywebapp_development;
DROP TABLE IF EXISTS items;
CREATE TABLE `items` (
 `id` int(11) NOT NULL auto_increment,
 `name` varchar(255) NOT NULL default '',
 `value` varchar(40) NOT NULL default '[empty]',
 PRIMARY KEY (`id`)
);

Now, from the command line, create the model class, along with a controller and
views:

$./script/generate model Item
 exists app/models/
 exists test/unit/
 exists test/fixtures/
 create app/models/item.rb
 create test/unit/item_test.rb
 create test/fixtures/items.yml
 create db/migrate
 create db/migrate/001_create_items.rb

new Effect.Squish visual_effect(:squish)

new Effect.Fold visual_effect(:fold)

new Effect.Grow visual_effect(:grow)

new Effect.Shrink visual_effect(:shrink)

new Effect.ScrollTo visual_effect(:scroll_to)

JavaScript initialization Rails initialization

15.16 Generating Forms for Manipulating Model Objects | 595

$./script/generate controller items new create edit
 exists app/controllers/
 exists app/helpers/
 create app/views/items
 exists test/functional/
 create app/controllers/items_controller.rb
 create test/functional/items_controller_test.rb
 create app/helpers/items_helper.rb
 create app/views/items/new.rhtml
 create app/views/items/edit.rhtml

The first step is to customize a view. Let’s start with app/views/items/new.rhtml. Edit
it to look like this:

<!-- app/views/items/new.rhtml -->

<%= form_tag :action => "create" %>
 Name: <%= text_field "item", "name" %>

 Value: <%= text_field "item", "value" %>

 <%= submit_tag %>
<%= end_form_tag %>

All these method calls generate HTML: form_tag opens a <FORM> tag, submit_tag gen-
erates a submit button, and so on. You can type out the same HTML by hand and
Rails won’t care, but it’s easier to make method calls, and it makes your templates
neater.

The text_field call is a little more involved. It creates an <INPUT> tag that shows up
in the HTML form as a text entry field. But it also binds the value of that field to one
of the members of the @item instance variable. This code creates a text entry field
that’s bound to the name member of @item:

<%= text_field "item", "name" %>

But what’s the @item instance variable? Well, it’s not defined yet, because we’re still
using the generated controller. If you try to access the page /items/new page right
now, you may get an error complaining about an unexpected nil value. The nil
value is the @item variable, which gets used (in text_field calls) without ever being
defined.

Let’s customize the ItemsController class so that the new action sets the @item
instance variable properly. We’ll also implement the create action so that something
actually happens when the user hits the submit button on our generated form.

class ItemsController < ApplicationController
 def new
 @item = Item.new
 end

 def create
 @item = Item.create(params[:item])
 redirect_to :action => 'edit', :id => @item.id
 end
end

596 | Chapter 15: Web Development: Ruby on Rails

Now if you access the /items/new page, you’ll see what you’d expect: a form with
two text entry fields. The “Name” field will be blank, and the “Value” field will con-
tain the default database value of “[empty]”.

Fill out the form and submit, and a new row will be created in the items table. You’ll
be redirected to the edit action, which doesn’t exist yet. Let’s create it now. Here’s
the controller part (note the similarity between ItemsController#edit and
ItemsController#create above):

class ItemsController < ApplicationController
 def edit
 @item = Item.find(params[:id])

 if request.post?
 @item.update_attributes(params[:item])
 redirect_to :action => 'edit', :id => @item.id
 end
 end
end

In fact, the edit action is so similar to the create action that its form can be almost
identical. The only differences are in the arguments to form_tag:

<!-- app/views/items/edit.rhtml -->

<%= form_tag :action => "edit", :id => @item.id %>
 Name: <%= text_field "item", "name" %>

 Value: <%= text_field "item", "value" %>

 <%= submit_tag %>
<%= end_form_tag %>

Discussion
This is probably the most common day-to-day task faced by web developers. It’s so
common that Rails comes with a tool called scaffold that generates this kind of code
for you. If you’d invoked generate this way instead of with the arguments given
above, Rails would have generate code for the actions given in the Solution, plus a
few more:

$./script/generate scaffold Items

Starting off with scaffolding doesn’t mean you can get away with not knowing how
Rails form generation works, because you’ll definitely want to customize the scaf-
folding code.

There are two places in our code where magic happens. The first is the text_field
call in the view, which is explained in the Solution. It binds a member of an object
(@item.name, for instance) to an HTML form control. If you view the source of the
/items/new page, you will see that the form fields look something like this:

Name: <input type="text" name="item[name]" value="" />

Value <input type="text" name="item[value]" value="[empty]" />

15.16 Generating Forms for Manipulating Model Objects | 597

These special field names are used by the second piece of magic, located in the calls
to Item.create (in new) and Item#update_attributes. In both cases, an Item object is
fed a hash of new values for its members. This hash is embedded into the params
hash, which contains CGI form values.

The names of the HTML form fields (item[name] and item[value]) translate into a
params hash that looks like this:

{
 :item => {
 :name => "Name of the item",
 :value => "Value of the item"
 },
 :controller => "items",
 :action => "create"
}

So this line of code:

Item.create(params[:item])

is effectively the same as this line:

Item.create(:name => "Name of the item", :value => "Value of the item")

The call to Item#update_attributes in the edit action works exactly the same way.

As mentioned above, the views for edit and new are very similar, differing only in the
destination of the form. With some minor refactoring, we can remove one of the
view files completely.

A call to <%= form_tag %> without any parameters at all sets the form destination to
the current URL. Let’s change the new.rhtml file appropriately:

<!-- app/views/items/new.rhtml -->
<%= form_tag %>

Name: <%= text_field "item", "name" %>

Value: <%= text_field "item", "value" %>

<%= submit_tag %>
<%= end_form_tag %>

Now the new.rhtml view is suitable for use by both new and edit. We just need to
change the new action to call the create method (since the form doesn’t go there any-
more), and change the edit action to render new.rhtml instead of edit.rhtml (which
can be removed):

class ItemsController < ApplicationController
 def new
 @item = Item.new

create if request.post?
 end

598 | Chapter 15: Web Development: Ruby on Rails

 def edit
 @item = Item.find(params[:id])

 if request.post?
 @item.update_attributes(params[:item])
 redirect_to :action => 'edit', :id => @item.id and return
 end

render :action => 'new'
 end
end

Remember from Recipe 15.5 that a render call only specifies the template file to be
used. The render call in edit won’t actually call the new method, so we don’t need to
worry about the new method overwriting our value of @item.

In real life, there would be enough differences in the content surrounding the add and
edit forms to a separate view for each action. However, there’s usually enough simi-
larity between the forms themselves that they can be refactored into a single partial
view (see Recipe 15.14) which both views share. This is a great example of the DRY
(Don’t Repeat Yourself) principle. If there is a single form for both the add and edit
views, it’s easier and less error-prone to maintain that form as the database schema
changes.

See Also
• Recipe 15.5, “Displaying Templates with Render”

• Recipe 15.14, “Refactoring the View into Partial Snippets of Views”

15.17 Creating an Ajax Form

Problem
You want to build a web application that’s responsive and easy to use. You don’t
want your users to spend lots of time waiting around for the browser to redraw the
screen.

Solution
You can use JavaScript to make the browser’s XMLHTTPRequest object send data to the
server, without dragging the user through the familiar (but slow) page refresh. This
technique is called Ajax,* and Rails makes it easy to use Ajax without writing or
knowing any JavaScript.

* This doesn’t quite stand for Asynchronous JavaScript and XML. The origins of the term Ajax are now a part
of computing mythology, but it is not an acronym.

15.17 Creating an Ajax Form | 599

Before you can do Ajax in your web application, you must edit your application’s
main layout template so that it calls the javascript_include_tag method within its
<HEAD> tag. This is the same change made in Recipe 15.15:

<!-- app/views/layouts/application.rhtml -->

<html>
 <head>
 <title>My Web App</title>

<%= javascript_include_tag "prototype", "effects" %>
 </head>
 <body>
 <%= @content_for_layout %>
 </body>
</html>

Let’s change the application from Recipe 15.16 so that the new action is AJAX-
enabled (if you followed that recipe all the way through, and made the edit action
use new.rhtml instead of edit.rhtml, you’ll need to undo that change and make edit
use its own view template).

We’ll start with the view template. Edit app/views/items/new.rhtml to look like this:

<!-- app/views/items/new.rhtml -->
<div id="show_item"></div>

 <%= form_remote_tag :url => { :action => :create },
 :update => "show_item",
 :complete => visual_effect(:highlight, "show_item") %>

 Name: <%= text_field "item", "name" %>

 Value: <%= text_field "item", "value" %>

 <%= submit_tag %>
<%= end_form_tag %>

Those small changes make a standard HTML form into an Ajax form. The main dif-
ference is that we call form_remote_tag instead of form_tag. The other differences are
the arguments we pass into that method.

The first change is that we put the :action parameter inside a hash passed into the :url
option. Ajax forms have more options associated with them than a normal form, so
you can’t describe its form action as simply as you can with form_tag.

When the user clicks the submit button, the form values are serialized and sent to
the destination action (in this case, create) in the background. The create action
processes the form submission as before, and returns a snippet of HTML.

What happens to this HTML? That’s what the :update option is for. It tells Rails to
take the result of the form submission, and stick it into the element with the HTML
ID of “show_item”. This is why we added that <div id="show_item"> tag to the top of
the template: that’s where the response from the server goes.

600 | Chapter 15: Web Development: Ruby on Rails

The last change to the new.rhtml view is the :complete option. This is a callback
argument: it lets you specify a string of JavaScript code that will be run once an Ajax
request is complete. We use it to highlight the response from the server once it shows
up.

That’s the view. We also need to modify the create action in the controller so that
when you make an Ajax form submission, the server returns a snippet of HTML.
This is the snippet that’s inserted into the “show_item” element on the browser side.
If you make a regular (nonAjax) form submission, the server can behave as it does in
Recipe 15.16, and send an HTTP redirect.* Here’s what the controller class needs to
look like:

class ItemsController < ApplicationController
 def new
 @item = Item.new
 end

 def create
 @item = Item.create(params[:item])

if request.xml_http_request?
 render :action => 'show', :layout => false
 else
 redirect_to :action => 'edit', :id => @item.id
 end
 end

 def edit
 @item = Item.find(params[:id])

 if request.post?
 @item.update_attributes(params[:item])
 redirect_to :action => 'edit', :id => @item.id
 end
 end
end

This code references a new view, show. It’s the tiny HTML snippet that’s returned by
the server, and stuck into the “show_element” tag by the web browser. We need to
define it:

<!-- app/views/items/show.rhtml -->

Your most recently created item:

Name: <%= @item.name %>

Value: <%= @item.value %>

<hr>

Now when you use http://localhost:3000/items/new to add new items to the data-
base, you won’t be redirected to the edit action. You’ll stay on the new page, and the

* This will happen if someone’s using your application with JavaScript turned off.

15.18 Exposing Web Services on Your Web Site | 601

results of your form submission will be displayed above the form. This makes it easy
to create many new items at once.

Discussion
Recipe 15.16 shows how to submit data to a form in the traditional way: the user
clicks a “submit” button, the browser sends a request to the server, the server returns
a response page, and the browser renders the response page.

Recently, sites like Gmail and Google Maps have popularized techniques for sending
and receiving data without a page refresh. Collectively, these techniques are called
Ajax. Ajax is a very useful tool for improving your application’s response time and
usability.

An Ajax request is a real HTTP request to one of your application’s actions, and you
can deal with it as you would any other request. Most of the time, though, you won’t
be returning a full HTML page. You’ll just be returning a snippet of data. The web
browser will be sending the Ajax request in the context of a full web page (which you
served up earlier) that knows how to handle the response snippet.

You can define JavaScript callbacks at several points throughout the lifecycle of an
Ajax request. One callback, :complete, was used above to highlight the snippet after
inserting it into the page. This table lists the other callbacks.

15.18 Exposing Web Services on Your Web Site

Problem
You want to offer SOAP and XML-RPC web services from your web application.

Solution
Rails comes with a built-in web service generator that makes it easy to expose a con-
troller’s actions as web services. You don’t have to spend time writing WSDL files or
even really know how SOAP and XML-RPC work.

Callback name Callback description

 :loading Called when the web browser begins to load the remote document.

 :loaded Called when the browser has finished loading the remote document.

 :interactive Called when the user can interact with the remote document, even if it has not finished loading.

 :success Called when the XMLHttpRequest is completed, and the HTTP status code is in the 2XX range.

 :failure Called when the XMLHttpRequest is completed, and the HTTP status code is not in the 2XX range.

 :complete Called when the XMLHttpRequest is complete. If :success and/or :failure are also present,
runs after they do.

602 | Chapter 15: Web Development: Ruby on Rails

Here’s a simple example. First, follow the directions in Recipe 15.16 to create a data-
base table named items, and to generate a model for that table. Don’t generate a
controller.

Now, run this from the command line:

./script/generate web_service Item add edit fetch
 create app/apis/
 exists app/controllers/
 exists test/functional/
 create app/apis/item_api.rb
 create app/controllers/item_controller.rb
 create test/functional/item_api_test.rb

This creates an item controller that supports three actions: add, edit, and fetch. But
instead of web application actions with .rhtml views, these are web service actions
that you access with SOAP or XML-RPC.

A Ruby method doesn’t care about the data types of the objects it accepts as argu-
ments, or the data type of its return value. But a SOAP or XML-RPC web service
method does care. To expose a Ruby method through a SOAP or XML-RPC inter-
face, we need to define type information for its signature. Open up the file app/apis/
item_api.rb and edit it to look like this:

class ItemApi < ActionWebService::API::Base
 api_method :add, :expects => [:string, :string], :returns => [:int]
 api_method :edit, :expects => [:int, :string, :string], :returns => [:bool]
 api_method :fetch, :expects => [:int], :returns => [Item]
end

Now we need to implement the actual web service interface. Open app/controllers/
item_controller.rb and edit it to look like this:

class ItemController < ApplicationController
 wsdl_service_name 'Item'

 def add(name, value)
 Item.create(:name => name, :value => value).id
 end

 def edit(id, name, value)
 Item.find(id).update_attributes(:name => name, :value => value)
 end

 def fetch(id)
 Item.find(id)
 end
end

15.18 Exposing Web Services on Your Web Site | 603

Discussion
The item controller now implements SOAP and XML-RPC web services for the items
table. This controller can live alongside an items controller that implements a tradi-
tional web interface.*

The URL to the XML-RPC API is http://www.yourserver.com/item/api, and the URL to
the SOAP API is http://www.yourserver.com/item/service.wsdl. To test these services,
here’s a short Ruby script that calls the web service methods through a SOAP client:

require 'soap/wsdlDriver'

wsdl = "http://localhost:3000/item/service.wsdl"
item_server = SOAP::WSDLDriverFactory.new(wsdl).create_rpc_driver

item_id = item_server.add('foo', 'bar')

if item_server.edit(item_id, 'John', 'Doe')
 puts 'Hey, it worked!'
else
 puts 'Back to the drawing board...'
end
Hey, it worked!

item = item_server.fetch(item_id)
item.class # => SOAP::Mapping::Object
item.name # => "John"
item.value # => "Doe"

Here’s the XML-RPC equivalent:

require 'xmlrpc/client'
item_server = XMLRPC::Client.new2('http://localhost:3000/item/api')

item_id = item_server.call('Add', 'foo', "bar")
if item_server.call('Edit', item_id, 'John', 'Doe')
 puts 'Hey, it worked!'
else
 puts 'Back to the drawing board...'
end
Hey, it worked!

item = item_server.call('Fetch', item_id)
=> {"name"=>"John", "id"=>2, "value"=>"Doe"}
item.class # => Hash

* You can even add your web interface actions to the ItemController class. Then a single controller will imple-
ment both the traditional web interface and the web service interface. But you can’t define a web application
action with the same name as a web service action, because a controller class can contain only one method
with a given name.

604 | Chapter 15: Web Development: Ruby on Rails

See Also
• Matt Biddulph’s article “REST on Rails” describes how to create REST-style web

services on top of Rails (http://www.xml.com/pub/a/2005/11/02/rest-on-rails.html)

• Recipe 16.3, “Writing an XML-RPC Client,” and Recipe 16.4, “Writing a SOAP
Client”

• Recipe 16.5, “Writing a SOAP Server,” shows a nonRails implementation of
SOAP web services

15.19 Sending Mail with Rails

Problem
You want to send an email from within your Rails application: perhaps a confirma-
tion of an order, or notification that some action has been taken on a user’s behalf.

Solution
The first is to generate some mailer infrastructure. Go to the application’s base direc-
tory and type this command:

./script/generate mailer Notification welcome
 exists app/models/
 create app/views/notification
 exists test/unit/
 create test/fixtures/notification
 create app/models/notification.rb
 create test/unit/notification_test.rb
 create app/views/notification/welcome.rhtml
 create test/fixtures/notification/welcome

We’re giving the name “Notification” to the mailing center of the application; it’s some-
what analogous to a controller in the web interface. The mailer is set up to generate a
single email, called “welcome”: this is analagous to an action with a view template.

Now open app/models/notification.rb and edit it to look like this:

class Notification < ActionMailer::Base
 def welcome(user, sent_at=Time.now)
 @subject = 'A Friendly Welcome'
 @recipients = user.email
 @from = 'admin@mysite.com'
 @sent_on = sent_at
 @body = {
 :user => user,
 :sent_on => sent_at
 }

15.19 Sending Mail with Rails | 605

 attachment 'text/plain' do |a|
 a.body = File.read('rules.txt')
 end
 end
end

The subject of the email is “A Friendly Welcome”, and it’s sent to the user’s email
address from the address “admin@mysite.com”. It’s got an attachment taken from
the disk file rules.txt (relative to the root directory of your Rails application).

Although the file notification.rb is within the models/ directory, it acts like a con-
troller in that each of its email messages has an associated view template. The view
for the welcome email is in app/views/notification/welcome.rhtml, and it acts
almost the same as the view of a normal controller.

The most important difference is that mailer views do not have access to the instance
variables of the mailer. To set instance variables for mailers, you pass a hash of those
variables to the body method. The keys become instance variable names and the val-
ues become their values. In notification.rb, we make two instance variables avail-
able to the welcome view, @user and @sent_on. Here’s the view itself:

<!-- app/views/notification/welcome.rhtml -->

Hello, <%= @user.name %>, and thanks for signing up at <%= @sent_on
%>. Please print out the attached set of rules and keep them in a
prominent place; they help keep our community running smoothly. Be
sure to pay special attention to sections II.4 ("Assignment of
Intellectual Property Rights") and XIV.21.a ("Dispute Resolution
Through Ritual Combat").

To send the welcome email from your Rails application, add the following code to
either a controller, a model, or an observer:

Notification.deliver_welcome(user)

Here, the user variable can be any object that implements #name and #email, the two
methods called in the welcome method and in the template.

Discussion
You never call the Notification#welcome method directly. In fact,
Notification#welcome is not even available, since it’s an instance method, and you
never instantiate a Notification object directly. The ActionMailer::Base class defines
a method_missing implementation that looks at all calls to undefined class methods.
This is why you call deliver_welcome even though you never defined it.

The welcome.rhtml template given above generates plaintext email. To send HTML
emails, simply add the following code to Notification#welcome:

content_type 'text/html'

606 | Chapter 15: Web Development: Ruby on Rails

Now your templates can generate HTML; email clients will recognize the format of
the email and render it appropriately.

Sometimes you’ll want more control over the delivery process—for example, when
you’re unit-testing your ActionMailer classes. Instead of calling deliver_welcome to
send out an email, you can call create_welcome to get the email as a Ruby object.
These “create” methods return TMail objects, which you can examine or manipulate
as necessary.

If your local web server is incapable of sending email, you can modify environment.rb
to contact a remote SMTP server:

Rails::Initializer.run do |config|
 config.action_mailer.server_settings = {
 :address => 'someserver.com',
 :user_name => 'uname',
 :password => 'passwd',
 :authentication => 'cram_md5'
 }
end

See Also
• Recipe 10.8, “Responding to Calls to Undefined Methods”

• Recipe 14.5, “Sending Mail,” has more on ActionMailer and SMTP settings

15.20 Automatically Sending Error Messages
to Your Email

Problem
You want to receive a descriptive email message every time one of your users encoun-
ters an application error.

Solution
Any errors that occur while running your application are sent to the
ActionController::Base#log_error method. If you’ve set up a mailer (as shown in
Recipe 15.19) you can override this method and have it send mail to you. Your code
should look something like this:

class ApplicationController < ActionController::Base

private
 def log_error(exception)
 super
 Notification.deliver_error_message(exception,
 clean_backtrace(exception),
 session.instance_variable_get("@data"),

15.20 Automatically Sending Error Messages to Your Email | 607

 params,
 request.env
)
 end
end

That code rounds up a wide variety of information about the state of the Rails
request at the time of the failure. It captures the exception object, the corresponding
backtrace, the session data, the CGI request parameters, and the values of all envi-
ronment variables.

The overridden log_error calls Notification.deliver_error_messsage, which
assumes you’ve created a mailer called “Notification”, and defined the method
Notification.error_message. Here’s the implementation:

class Notification < ActionMailer::Base
 def error_message(exception, trace, session, params, env, sent_on = Time.now)
 @recipients = 'me@mydomain.com'
 @from = 'error@mydomain.com'
 @subject = "Error message: #{env['REQUEST_URI']}"
 @sent_on = sent_on
 @body = {
 :exception => exception,
 :trace => trace,
 :session => session,
 :params => params,
 :env => env
 }
 end
end

The template for this email looks like this:

<!-- app/views/notification/error_message.rhtml -->

Time: <%= Time.now %>
Message: <%= @exception.message %>
Location: <%= @env['REQUEST_URI'] %>
Action: <%= @params.delete('action') %></td></tr>
Controller: <%= @params.delete('controller') %></td></tr>
Query: <%= @env['QUERY_STRING'] %></td></tr>
Method: <%= @env['REQUEST_METHOD'] %></td></tr>
SSL: <%= @env['SERVER_PORT'].to_i == 443 ? "true" : "false" %>
Agent: <%= @env['HTTP_USER_AGENT'] %>

Backtrace
<%= @trace.to_a.join("</p>\n<p>") %>

Params
<% @params.each do |key, val| -%>
* <%= key %>: <%= val.to_yaml %>
<% end -%>

608 | Chapter 15: Web Development: Ruby on Rails

Session
<% @session.each do |key, val| -%>
* <%= key %>: <%= val.to_yaml %>
<% end -%>

Environment
<% @env.each do |key, val| -%>
* <%= key %>: <%= val %>
<% end -%>

Discussion
ActionController::Base#log_error gives you the flexibility to handle errors however
you like. This is especially useful if your Rails application is hosted on a machine to
which you have limited access: you can have errors sent to you, instead of written to
a file you might not be able to see. Or you might prefer to record the errors in a data-
base, so that you can look for patterns.

The method ApplicationController#log_error is declared private to avoid confu-
sion. If it weren’t private, all of the controllers would think they had a log_error
action defined. Users would be able to visit /<controller>/log_error and get Rails to
act strangely.

See Also
• Recipe 15.19, “Sending Mail with Rails”

15.21 Documenting Your Web Site

Problem
You want to document the controllers, models, and helpers of your web application
so that the developers responsible for maintaining the application can understand
how it works.

Solution
As with any other Ruby program, you document a Rails application by adding
specially-formatted commands to your code. Here’s how to add documentation to
the FooController class and one of its methods:

The FooController controller contains miscellaneous functionality
rejected from other controllers.
class FooController < ApplicationController
 # The set_random action sets the @random_number instance variable
 # to a random number.
 def set_random
 @random_number = rand*rand
 end
end

15.22 Unit Testing Your Web Site | 609

The documentation for classes and methods goes before their declaration, not after.

When you’ve finished adding documentation comments to your application, go to
your Rails application’s root directory and issue the rake appdoc command:

$ rake appdoc

This Rake task runs RDoc for your Rails application and generates a directory
called doc/app. This directory contains a web site with the aggregate of all your
documentation comments, cross-referenced against the source code. Open the
doc/app/index.rhtml file in any web browser, and you can browse the generated
documentation.

Discussion
Your RDoc comments can contain markup and special directives: you can describe
your arguments in definition lists, and hide a class or method from documentation
with the :nodoc: directive. This is covered in Recipe 17.11.

The only difference between Rails applications and other Ruby programs is that Rails
comes with a Rakefile that defines an appdoc task. You don’t have to find or write
one yourself.

You probably already put inline comments inside your methods, describing the
action as it happens. Since the RDoc documentation contains a formatted version of
the original source code, these comments will be visible to people going through the
RDoc. These comments are formatted as Ruby source code, though, not as RDoc
markup.

See Also
• Recipe 17.11, “Documenting Your Application”

• Chapter 19, especially Recipe 19.2, “Automatically Generating Documentation”

• The RDoc for RDoc (http://rdoc.sourceforge.net/doc/index.html)

15.22 Unit Testing Your Web Site

Problem
You want to create a suite of automated tests that test the functionality of your Rails
application.

Solution
Rails can’t write your test code any more than it can write your views and control-
lers for you, but it does make it easy to organize and run your automated tests.

610 | Chapter 15: Web Development: Ruby on Rails

When you use the ./script/generate command to create controllers and models, not
only do you save time, but you also get a generated framework for unit and func-
tional tests. You can get pretty good test coverage by filling in the framework with
tests for the functionality you write.

So far, all the examples in this chapter have run against a Rails application’s develop-
ment database, so you only needed to make sure that the development section of your
config/database.yml file was set up correctly. Unit test code runs on your applica-
tion’s test database, so now you need to set up your test section as well. Your
mywebapp_test database doesn’t have to have any tables in it, but it must exist and be
accessible to Rails.

When you generate a model with the generate script, Rails also generates a unit test
script for the model in the test directory. It also creates a fixture, a YAML file con-
taining test data to be loaded into the mywebapp_test database. This is the data
against which your unit tests will run:

./script/generate model User
 exists app/models/
 exists test/unit/
 exists test/fixtures/
 create app/models/user.rb
 create test/unit/user_test.rb
 create test/fixtures/users.yml
 create db/migrate
 create db/migrate/001_create_users.rb

When you generate a controller with generate, Rails creates a functional test script
for the controller:

./script/generate users list
 exists app/controllers/
 exists app/helpers/
 create app/views/users
 exists test/functional/
 create app/controllers/users_controller.rb

create test/functional/users_controller_test.rb
 create app/helpers/users_helper.rb
 create app/views/users/list.rhtml

As you write code in the model and controller classes, you’ll write corresponding
tests in these files.

To run the unit and functional tests, invoke the rake command in your home direc-
tory. The default Rake task runs all of your tests. If you run it immediately after gen-
erating your test files, it’ll look something like this:

$ rake
(in /home/lucas/mywebapp)
/usr/bin/ruby1.8 "test/unit/user_test.rb"
Started
.
Finished in 0.048702 seconds.

15.22 Unit Testing Your Web Site | 611

1 tests, 1 assertions, 0 failures, 0 errors
/usr/bin/ruby1.8 "test/functional/users_controller_test.rb"
Started
.
Finished in 0.024615 seconds.

1 tests, 1 assertions, 0 failures, 0 errors

Discussion
All the lessons for writing unit tests in other languages and in other Ruby programs
(see Recipe 17.7) apply to Rails. Rails does some accounting for you, and it defines
some useful new assertions (see below), but you still have to do the work. The
rewards are the same, too: you can modify and refactor your code with confidence,
knowing that if something breaks, your tests will break. You’ll hear about the prob-
lem immediately and you’ll be able to fix it more quickly.

Let’s see what Rails has generated for us. Here’s a generated test/unit/user_test.rb:

require File.dirname(__FILE_ _) + '/../test_helper'

class UserTest < Test::Unit::TestCase
 fixtures :users

 # Replace this with your real tests.
 def test_truth
 assert true
 end
end

A good start, but test_truth is kind of tautological. Here’s a slightly more realistic test:

class UserTest
 def test_first
 assert_kind_of User, users(:first)
 end
end

This code fetches the first element from the users table, and asserts that
ActiveRecord turns it into a User object. This isn’t testing our User code (we haven’t
written any) so much as it’s testing Rails and ActiveRecord, but it shows you the
kind of assertion that makes for good unit tests.

But how does users(:first) return anything? The test suite runs against the
mywebapp_test database, and we didn’t even put any tables in it, much less sample data.

We didn’t, but Rails did. When you run the test suite, Rails copies the schema of the
development database to the test database. Instead of running every test against
whatever data happens to exist in the development database, Rails loads special test
data from YAML files called fixtures. The fixture files contain whatever database
data you need to test: objects that only exist to be deleted by a test, strange relation-
ships between rows in different tables, or anything else you need.

612 | Chapter 15: Web Development: Ruby on Rails

In the example above, the fixture for the users table was loaded by the line fixtures
:users. Here’s the generated fixture for the User model, in test/fixtures/users.yml:

first:
 id: 1
another:
 id: 2

Before running the unit tests, Rails reads this file, creates two rows in the users table,
and defines aliases for them (:first and :another) so you can refer to them in your
unit tests. It then defines the users method (like so much else, this method name is
based on the name of the model). In test_first, the call to users(:first) retrieves
the User object corresponding to :first in the fixture: the object with ID 1.

Here’s another unit test:

class UserTest
 def test_another
 assert_kind_of User, users(:another)
 assert_equal 2, users(:another).id
 assert_not_equal users(:first), users(:another)
 end
end

Rails adds the following Rails-specific assertions to Ruby’s Test::Unit:

• assert_dom_equal

• assert_dom_not_equal

• assert_generates

• assert_no_tag

• assert_recognizes

• assert_redirected_to

• assert_response

• assert_routing

• assert_tag

• assert_template

• assert_valid

See Also
• “Testing the Rails” is a guide to unit and functional testing in Rails (http://

manuals.rubyonrails.com/read/book/5)

• Rails 1.1 supports integration testing as well, for testing the interactions between
controllers and actions; see http://rubyonrails.com/rails/classes/ActionController/
IntegrationTest.html and http://jamis.jamisbuck.org/articles/2006/03/09/integration-
testing-in-rails-1-1

15.23 Using breakpoint in Your Web Application | 613

• The ZenTest library inclues Test::Rails, which lets you write separate tests for
your views and controllers (http://rubyforge.org/projects/zentest/)

• Read about fixtures at http://ar.rubyonrails.org/classes/Fixtures.html

• Read about the assertions that Rails adds to Test::Unit at http://rails.rubyonrails.
com/classes/Test/Unit/Assertions.html

• Recipe 15.6, “Integrating a Database with Your Rails Application”

• Recipe 17.7, “Writing Unit Tests”

• Chapter 19

15.23 Using breakpoint in Your Web Application

Problem
Your Rails application has a bug that you can’t find using log messages. You need a
heavy-duty debugging tool that lets you inspect the full state of your application at
any given point.

Solution
The breakpoint library lets you stop the flow of code and drop into irb, an interac-
tive Ruby session. Within irb you can inspect the variables local to the current
scope, modify those variables, and resume execution of the normal flow of code. If
you have ever spent hours trying to track down a bug by placing logging messages
everywhere, you’ll find that breakpoint gives you a much easier and more straightfor-
ward way to debug.

But how can you run an interactive console program from a web application? The
answer is to have a console program running beforehand, listening for calls from the
Rails server.

The first step is to run ./script/breakpointer on the command line. This command
starts a server that listens over the network for breakpoint calls from the Rails server.
Keep this program running in a terminal window: this is where the irb session will
start up:

$./script/breakpointer
No connection to breakpoint service at druby://localhost:42531
Tries to connect will be made every 2 seconds...

To trigger an irb session, you can call the breakpoint method anywhere you like
from your Rails application—within a model, controller, or helper method. When
execution reaches that point, processing of the incoming client request will stop, and
an irb session will start in your terminal. When you quit the session, processing of
the request will resume.

614 | Chapter 15: Web Development: Ruby on Rails

Discussion
Here’s an example. Let’s say you’ve written the following controller, and you’re hav-
ing trouble modifying the name attribute of an Item object.

class ItemsController < ApplicationController
 def update
 @item = Item.find(params[:id])
 @item.value = '[default]'
 @item.name = params[:name]
 @item.save
 render :text => 'Saved'
 end
end

You can put a breakpoint call in the Item class, like this:

class Item < ActiveRecord::Base
 attr_accessor :name, :value

 def name=(name)
 super
 breakpoint
 end
end

Accessing the URL http://localhost:3000/items/update/123?name=Foo calls Item-
Controller#update, which finds Item number 123 and then calls its name= method.
The call to name= triggers the breakpoint. Instead of rendering the text “Saved”, the
site seems to hang and become unresponsive to requests.

But if you return to the terminal running the breakpointer server, you’ll see that an
interactive Ruby session has started. This session allows you to play with all the local
variables and methods at the point where the breakpoint was called:

Executing break point "Item#name=" at item.rb:4 in `name='
 irb:001:0> local_variables
 => ["name", "value", "_", "_ _"]
 irb:002:0> [name, value]
 => ["Foo", "[default]"]
 irb:003:0> [@name, @value]
 => ["Foo", "[default]"]
 irb:004:0> self
 => #<Item:0x292fbe8 @name="Foo", @value="[default]">
 irb:005:0> self.value = "Bar"
 => "Bar"
 irb:006:0> save
 => true
 irb:006:0> exit

Server exited. Closing connection...

Once you finish, type exit to terminate the interactive Ruby session. The Rails appli-
cation continues running at the place it left off, rendering “Saved” as expected.

15.23 Using breakpoint in Your Web Application | 615

By default, breakpoints are named for the method in which they appear. You can
pass a string into breakpoint to get a more descriptive name. This is especially help-
ful if one method contains several breakpoints:

 breakpoint "Trying to set Item#name, just called super"

Instead of calling breakpoint directly, you can also call assert, a method which takes
a code block. If the block evaluates to false, Ruby calls breakpoint; otherwise, things
continue as normal. Using assert lets you set breakpoints that are only called when
something goes wrong (called “conditional breakpoints” in traditional debuggers):

1.upto 10 do |i|
 assert { Person.find(i) }
 p = Person.find(i)
 p.update_attribute(:name, 'Lucas')
end

If all of the required Person objects are found, the breakpoint is never called, because
Person.find always returns true. If one of the Person objects is missing, Ruby calls
the breakpoint method and you get an irb session to investigate.

Breakpoint is a powerful tool that can vastly simplify your debugging process. It can
be hard to understand the true power of it until you try it yourself, so go through the
solution with your own code to toy around with it.

See Also
• Recipe 17.10, “Using breakpoint to Inspect and Change the State of Your Appli-

cation,” covers breakpoint in more detail.

• http://wiki.rubyonrails.com/rails/show/HowtoDebugWithBreakpoint

616

Chapter 16CHAPTER 16

Web Services and Distributed
Programming 16

Distributed programming is like network programming—only the audience is differ-
ent. The point of network programming is to let a human control a computer across
the network. The point of distributed programming is to let computers communi-
cate between themselves.

Humans use networking software to get data and use algorithms they don’t have on
their own computers. With distributed programming, automated programs can get
in on this action. The programs are (one hopes) designed for the ultimate benefit of
humans, but an end user doesn’t see the network usage or even neccessarily know
that it’s happening.

The simplest and most common form of distributed programming is the web ser-
vice. Web services work on top of HTTP: they generally involve sending an HTTP
request to a certain URL (possibly including an XML document), and getting a
response in the form of another XML document. Rather than showing this docu-
ment to an end user the way a web browser would, the web service client parses the
XML response document and does something with it.

We start the chapter with a number of recipes that show how to provide and use web
services. We include generic recipes like Recipe 16.3, and recipes for using specific,
existing web services like Recipes 16.1, 16.6, and 16.9. The specific examples are
useful in their own right, but they should also help you see what kind of features you
should expose in your own web services.

There are three main approaches to web services: REST-style services,* XML-RPC,
and SOAP. You don’t need any special tools to offer or use REST-style services. On
the client end, you just need a scriptable web client (Recipe 14.1) and an XML parser

* Why am I saying “REST-style” instead of REST? Because REST is a design philosophy, not a technology stan-
dard. REST basically says: use the technologies of the web the way they were designed to work. A lot of so-
called “REST Web Services” fall short of the REST philosophy in some respect (the Amazon web service,
covered in Recipe 16.1, is the most famous example). These might more accurately be called “HTTP+XML”
services, or “HTTP+POX” (Plain Old XML) services. Don’t get too hung up on the exact terminology.

16.1 Searching for Books on Amazon | 617

(Recipes11.2 and 11.3). On the server side, you just write a web application that
knows how to generate XML (Recipe 11.9). We cover some REST philosophy while
exploring useful services in Recipe 16.1 and Recipe 16.2.

REST is HTTP; XML-RPC and SOAP are protocols that run on top of HTTP. We’ve
devoted several recipes to Ruby’s SOAP client: Recipes 16.4 and 16.7 are the main ones.
Ruby’s standalone SOAP server is briefly covered in Recipe 16.5. Rails provides its own
SOAP server (Recipe 15.18), which incidentally also acts as an XML-RPC server.

XML-RPC isn’t used much nowadays, so we’ve just provided a client recipe (Recipe
16.3). If you want to write a standalone XML-RPC server, check out the documenta-
tion at http://www.ntecs.de/projects/xmlrpc4r/server.html.

You can use a web service to store data on a server or change its state, but web ser-
vice clients don’t usually use the server to communicate with each other. Web ser-
vices work well when there’s a server with some interesting data and many clients
who want it. It works less well when you want to get multiple computers to cooper-
ate, or distribute a computation across multiple CPUs.

This is where DRb (Distributed Ruby) comes in. It’s a network protocol that lets
Ruby programs share objects, even when they’re running on totally different com-
puters. We cover a number of the possibilities, from simple data structure sharing
(Recipe 16.10) to a networked application (Recipe 16.18) that, after the initial con-
nection, has no visible networking code at all.

Distributed programming with DRb is a lot like multithreaded programming, except
the “threads” are actually running on multiple computers. This can be great for per-
formance. On a single CPU, multithreading makes it look like two things are hap-
pening at once, but it’s just an illusion. Run two “threads” on different computers,
and you can actually do twice as much work in the same time. You just need to fig-
ure out a way to split up the work and combine the results.

That’s the tricky part. When you start coordinating computers through DRb, you’ll
run into concurrency problems and deadlock: the same problems you encounter
when you share data structures between threads. You can address these problems
using the same techniques that worked in Recipes 20.4 and 20.11. You’ll also
encounter brand new problems, like the tendency of machines to drop off the net-
work at unfortunate times. These are more troublesome, and the solutions usually
depend on the specific tasks you’ve assigned the machines. Recipe 16.10, the first
DRb recipe, provides a brief introduction to these problems.

16.1 Searching for Books on Amazon

Problem
You want to incorporate information about books or other cultural artifacts into
your application.

618 | Chapter 16: Web Services and Distributed Programming

Solution
Amazon.com exposes a web service that gives you access to all kinds of information
on books, music, and other media. The third-party Ruby/Amazon library provides a
simple Ruby interface to the Amazon web service.

Here’s a simple bit of code that searches for books with Ruby/Amazon, printing their
new and used prices.

require 'amazon/search'

$AWS_KEY = 'Your AWS key goes here' # See below.

def price_books(keyword)
 req = Amazon::Search::Request.new($AWS_KEY)
 req.keyword_search(keyword, 'books', Amazon::Search::LIGHT) do |product|
 newp = product.our_price || 'Not available'
 usedp = product.used_price || 'not available'
 puts "#{product.product_name}: #{newp} new, #{usedp} used."
 end
end

price_books('ruby cookbook')
Ruby Cookbook (Cookbooks (O'Reilly)): $31.49 new, not available used.
Rails Cookbook (Cookbooks (O'Reilly)): $25.19 new, not available used.
Ruby Ann's Down Home Trailer Park Cookbook: $10.85 new, $3.54 used.
Ruby's Low-Fat Soul-Food Cookbook: Not available new, $12.43 used.
...

To save bandwidth, this code asks Amazon for a “light” set of search results. The
results won’t include things like customer reviews.

Discussion
What’s going on here? In one sense, it doesn’t matter. Ruby/Amazon gives us a Ruby
method that somehow knows about books and their Amazon prices. It’s getting its
information from a database somewhere, and all we need to know is how to query
that database.

In another sense, it matters a lot, because this is just one example of a REST-style
web service. By looking under the cover of the Amazon web services, you can see
how to use other REST-style services like the ones provided by Yahoo! and Flickr.

REST-style web services operate directly on top of HTTP. Each URL in a REST sys-
tem designates a resource or a set of them. When you call keyword_search, Ruby/
Amazon retrieves a URL that looks something like this:

http://xml.amazon.com/onca/xml3?KeywordSearch=ruby+cookbook&mode=books...

This URL designates a set of Amazon book records that match the keywords “ruby
cookbook”. Ruby/Amazon uses the Net::HTTP library to send a GET request to this

16.1 Searching for Books on Amazon | 619

URL. Amazon returns a representation of the resource, an XML document that looks
something like this:

<?xml version="1.0" encoding="UTF-8"?>
<ProductInfo xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="http://xml.amazon.com/schemas3/dev-lite.xsd">
...
 <TotalResults>11</TotalResults>
 <TotalPages>2</TotalPages>

 <Details url="http://www.amazon.com/exec/obidos/ASIN/0596523696/">
 <ProductName>Ruby Cookbook</ProductName>
 <Catalog>Book</Catalog>
 <Authors>
 <Author>Lucas Carlson</Author>
 <Author>Leonard Richardson</Author>
 </Authors>
 <ReleaseDate>September, 2006</ReleaseDate>
 <Manufacturer>O'Reilly Media</Manufacturer>
...
 </Details>
...
</ProductInfo>

Ruby/Amazon uses REXML to parse this XML data and turn it into Amazon::Product
objects. An Amazon::Product is a lot like a Ruby Struct: it’s got a bunch of member
methods for getting information about the object (you can list these methods by call-
ing Product#properties). All that information is derived from the original XML.

A REST web service works like a web site designed for a software program instead of
a human. The web is good for publishing and modifying documents, so REST cli-
ents make HTTP GET requests to retrieve data, and POST requests to modify server
state, just like you’d do from a web browser with an HTML form. XML is good for
describing documents, so REST servers usually give out XML documents that are
easy to read and parse.

How does REST relate to other kinds of web services? REST is a distinct design phi-
losophy, but not all “REST-style” web services take it as gospel.* There’s a sense in
which “REST” is a drive for simpler web services, a reaction to the complexity of
SOAP and the WS-* standards. There’s no reason why you can’t use SOAP in accor-
dance with the REST philosophy, but in practice that never seems to happen.

* Amazon’s web services are a case in point. They use GET requests exclusively, even when they’re modifying
data like the items in a shopping cart. This is very unRESTful because “put the Ruby Cookbook in my shop-
ping cart” is a command, not an object the way a set of books is an object. To avoid the wrath of the pedant
I refer to Amazon Web Services as a “REST-style” service. It would be more RESTful to define a separate
resource (URL) for the shopping cart, and allow the client to POST a message to that resource saying “Hey,
shopping cart, add the Ruby Cookbook to yourself.”

620 | Chapter 16: Web Services and Distributed Programming

Like REST, XML-RPC and SOAP web services run atop HTTP.* But while REST ser-
vices expect clients to operate on a large URL space, XML-RPC and SOAP services
are generally bound to a single “server” URL. If you have a “resource” to specify, you
include it in the document you send to the server. REST, XML-RPC, and SOAP all
serve XML documents, but XML-RPC and SOAP serve serialized versions of data
structures, and REST usually serves RDF, Atom, or Plain Old XML.

If there were no Ruby/Amazon library, it wouldn’t be hard to do the work yourself with
Net::HTTP and REXML. It’d be more difficult to write a Ruby XML-RPC client without
xmlrpc4r, and much more difficult to write a SOAP client without SOAP::RPC::Driver.

The downside of this flexibility is that, at least for now, every REST service is differ-
ent. Everyone arranges their resources differently, and everyone’s response docu-
ments need to be parsed with different code. Ruby/Amazon won’t help you at all if
you want to use some other REST service: you’ll need to find a separate library for
that service, or write your own using Net::HTTP and REXML.

See Also
• Like Google’s web services and others, Amazon’s can only be used if you sign up

for an identifying key. You can sign up for an AWS key at the Amazon Web Ser-
vices site (http://www.amazon.com/gp/browse.html?node=3435361)

• Get Ruby/Amazon at http://www.caliban.org/ruby/ruby-amazon.shtml: you can
download it as a tarball and run setup.rb to install it; the same site hosts gener-
ated RDoc for the library; see especially http://www.caliban.org/ruby/ruby-
amazon/classes/Amazon.html

• The Amazon Web Services documentation (http://www.amazon.com/gp/browse.
html/103-8028883-0351026?node=3435361)

• Recipe 11.2, “Extracting Data from a Document’s Tree Structure”

• Recipe 14.1, “Grabbing the Contents of a Web Page”

• Recipe 16.2, “Finding Photos on Flickr”

• Recipe 16.4, “Writing a SOAP Client”

16.2 Finding Photos on Flickr

Problem
You want to use Ruby code to find freely reusable photos: perhaps to automatically
illustrate a piece of text.

* SOAP services can run over other protocols, like email. But almost everyone uses HTTP. After all, they’re
“web services,” not “Internet services.”

16.2 Finding Photos on Flickr | 621

Solution
The Flickr photo-sharing web site has a huge number of photos and provides web ser-
vices for searching them. Many of the photos are licensed under Creative Commons
licenses, which give you permission to reuse the photos under various restrictions.

There are several Ruby bindings to Flickr’s various web service APIs, but its REST
API is so simple that I’m just going to use it directly. Given a tag name (like “ele-
phants”), this code will find an appropriate picture, and return the URL to a thumb-
nail version of the picture.

First, a bit of setup. As with Amazon and Google, to use the Flickr API at all you’ll
need to sign up for an API key (see below for details).

require 'open-uri'
require 'rexml/document'
require 'cgi'

FLICKR_API_KEY = 'Your API key here'

The first method, flickr_call, sends a generic query to Flickr’s REST web service. It
doesn’t do anything special: it just makes an HTTP GET request and parses the XML
response.*

def flickr_call(method_name, arg_map={}.freeze)
 args = arg_map.collect {|k,v| CGI.escape(k) + '=' + CGI.escape(v)}.join('&')
 url = "http://www.flickr.com/services/rest/?api_key=%s&method=%s&%s" %
 [FLICKR_API_KEY, method_name, args]
 doc = REXML::Document.new(open(url).read)
end

Now comes pick_a_photo, a method that uses flickr_call to invoke the flickr.
photos.search web service method. That method returns a REXML Document object
containing a <photo> element for each photo that matched the search criteria. I use
XPath to grab the first <photo> element, and pass it into small_photo_url (defined
below) to turn it into an image URL.

def pick_a_photo(tag)
 doc = flickr_call('flickr.photos.search', 'tags' => tag, 'license' => '4',
 'per_page' => '1')
 photo = REXML::XPath.first(doc, '//photo')
 small_photo_url(photo) if photo
end

Finally, I’ll define the method, small_photo_url. Given a <photo> element, it returns
the URL to a smallish version of the appropriate Flickr photo.

def small_photo_url(photo)
 server, id, secret = ['server', 'id', 'secret'].collect do |field|

* Some of Flickr’s APIs let you do things like upload photos and add comments. You’ll need to use POST
requests to make these calls, since they modify the state of the site. More importantly, you’ll also need to
authenticate against your Flickr account.

622 | Chapter 16: Web Services and Distributed Programming

 photo.attribute(field)
 end
 "http://static.flickr.com/#{server}/#{id}_#{secret}_m.jpg"
end

Now I can find an appropriate photo for any common word (Figure 16-1):

pick_a_photo('elephants')
=> http://static.flickr.com/32/102580480_506d5865d0_m.jpg

pick_a_photo('what-will-happen-tomorrow')
=> nil

Discussion
It’s nice if there’s a predefined Ruby binding available for a particular REST-style
web service, but it’s usually pretty easy to roll your own. All you need to do is to
craft an HTTP request and figure out how to process the response document. It’s
usually an XML document, and a well-crafted XPath statement should be enough to
grab the data you want.

Note the clause license=4 in pick_a_photo’s arguments to flickr_call. I wanted to
find a picture that I could publish in this book, so I limited my search to pictures
made available under a Creative Commons “Attribution” license. I can reproduce
that picture of the elephants so long as I credit the person who took the photo. (Nick
Scott-Smith of London. Hi, Nick!)

Flickr has a separate API call that lists the available licenses (flickr.licenses.getInfo),
but once I looked them up and found that “Creative Commons Attribution” was num-
ber four, it was easier to hardcode the number than to look it up every time.

See Also
• The first few recipes in Chapter 11 demonstrate different ways of extracting data

from XML documents; XPath (Recipe 11.4) and Rubyful Soup (Recipe 11.5) let
you extract data without writing much code

• Recipe 14.1, “Grabbing the Contents of a Web Page”

• Sign up for a Flickr API key at http://www.flickr.com/services/api/key.gne

Figure 16-1. A photo of elephants by Nick Scott-Smith

16.3 Writing an XML-RPC Client | 623

• Flickr provides REST, XML-RPC, and SOAP interfaces, and comprehensive doc-
umentation of its API (http://www.flickr.com/services/api/)

• The Flickr URL documentation shows how to turn a <photo> element into a URL
(http://www.flickr.com/services/api/misc.urls.html)

• Flickr.rb (http://redgreenblu.com/flickr/; available as the flickr gem), the libyws
project (http://rubyforge.org/projects/libyws; check out from CVS repository), and
rflickr (http://rubyforge.org/projects/rflickr/; available as the rflickr gem)

• A brief explanation of the Creative Commons licences (http://creativecommons.
org/about/licenses/meet-the-licenses)

16.3 Writing an XML-RPC Client
Credit: John-Mason Shackelford

Problem
You want to call a remote method through the XML-RPC web service protocol.

Solution
Use Michael Neumann’s xmlrpc4r library, found in Ruby’s standard library.

Here’s the canonical simple XML-RPC example. Given a number, it looks up the
name of a U.S. state in an alphabetic list:

require 'xmlrpc/client'
server = XMLRPC::Client.new2('http://betty.userland.com/RPC2')
server.call('examples.getStateName', 5) # => "California"

Discussion
XML-RPC is a language-independent solution for distributed systems that makes a
simple alternative to SOAP (in fact, XML-RPC is an ancestor of SOAP). Although it’s
losing ground to SOAP and REST-style web services, XML-RPC is still used by many
blogging engines and popular web services, due to its simplicity and relatively long
history.

A XML-RPC request is sent to the server as a specially-formatted HTTP POST
request, and the XML-RPC response is encoded in the HTTP response to that
request. Since most firewalls allow HTTP traffic, this has the advantage (and disad-
vantage) that XML-RPC requests work through most firewalls. Since XML-RPC
requests are POST requests, typical HTTP caching solutions (which only cache
GETs) can’t be used to speed up XML-RPC requests or save bandwidth.

An XML-RPC request consists of a standard set of HTTP headers, a simple XML
document that encodes the name of a remote method to call, and the parameters to
pass to that method. The xmlrpc4r library automatically converts between most

624 | Chapter 16: Web Services and Distributed Programming

XML-RPC data types and the corresponding Ruby data types, so you can treat XML-
RPC calls almost like local method calls. The main exceptions are date and time
objects. You can pass a Ruby Date or Time object into an XML-RPC method that
expects a dateTime.iso8601 parameter, but a method that returns a date will always
be represented as an instance of XMLRPC::DateTime.

Table 16-1 lists the supported data types of the request parameters and the response.

Note that nil is not a supported XML-RPC value, although some XML-RPC imple-
mentations (including xmlrpc4r) follow an extension that allows it.

An XML-RPC response is another XML document, which encodes the return value
of the remote method (if you’re lucky) or a “fault” (if you’re not). xmlrpc4r parses
this document and transforms it into the corresponding Ruby objects.

If the remote method returned a fault, xmlrpc4r raises an XMLRPC::FaultException. A
fault contains an integer value (the fault code) and a string containing an error mes-
sage. Here’s an example:

begin
 server.call('noSuchMethod')
rescue XMLRPC::FaultException => e
 puts "Error: fault code #{e.faultCode}"
 puts e.faultString
end
Error: fault code 7
Can't evaluate the expression because the name "noSuchMethod" hasn't been defined.

Here’s a more interesting XML-RPC example that searches an online UPC database:

def lookup_upc(upc)
 server = XMLRPC::Client.new2('http://www.upcdatabase.com/rpc')

Table 16-1. Supported data types

XML-RPC data type Description Ruby equivalent

int Four-byte signed integer Fixnum or Bignum

boolean 0 (false) or 1 (true) TrueClass or FalseClass

string Text or encoded binary data; only the characters < and & are disallowed
and rendered as HTML entities

String

double Double-precision signed floating point number Float

dateTime.iso8601 Date/time in the format YYYYMMDDTHH:MM:SS (where T is a literal) XMLRPC::DateTime

base64 base64-encoded binary data String

struct An unordered set of key value pairs where the name is always a String and
the value can be any XML-RPC data type, including netsted a nested struct
or array

Hash

array A series of values that may be of any of XML-RPC data type, including a
netsted struct or array; multiple data types can be used in the context of a
single array

Array

16.4 Writing a SOAP Client | 625

 begin
 response = server.call('lookupUPC', upc)
 return response['found'] ? response : nil
 rescue XMLRPC::FaultException => e
 puts "Error: "
 puts e.faultCode
 puts e.faultString
 end
end

product = lookup_upc('018787765654')
product['description'] # => "Dr Bronner's Peppermint Oil Soap"
product['size'] # => "128 fl oz"

lookup_upc('no such UPC') # => nil

See Also
• Michael Neumann’s xmlrpc4r—HOWTO (http://www.ntecs.de/projects/xmlrpc4r/

howto.html)

• The XML-RPC Specification (http://www.xmlrpc.com/spec)

• The extension to XML-RPC that lets it represent nil values (http://ontosys.com/
xml-rpc/extensions.php)

• The Ruby Developer’s Guide, published by Syngress and edited by Michael Neu-
mann, contains over 20 pages devoted to implementing XML-RPC clients and
servers with xmlrpc4r.

• Recipe 15.8, “Creating a Login System,” shows how to serve XML-RPC requests
from within a Rails application

16.4 Writing a SOAP Client
Credit: Kevin Marshall

Problem
You need to call a remote method through a SOAP-based web service.

Solution
Use the SOAP RPC Driver in the Ruby standard library.

This simple program prints a quote of the day. It uses the SOAP RPC Driver to con-
nect to the SOAP web service at codingtheweb.com.

require 'soap/rpc/driver'
driver = SOAP::RPC::Driver.new(
 'http://webservices.codingtheweb.com/bin/qotd',
 'urn:xmethods-qotd')

626 | Chapter 16: Web Services and Distributed Programming

Once the driver is set up, we define the web service method we want to call
(getQuote). We can then call it like a normal Ruby method and display the result:

driver.add_method('getQuote')

puts driver.getQuote
The holy passion of Friendship is of so sweet and steady and
loyal and enduring a nature that it will last through a whole
lifetime, if not asked to lend money.
Mark Twain (1835 - 1910)

Discussion
SOAP is a heavyweight protocol for web services, a distant descendant of XML-RPC.
As with XML-RPC, a SOAP client sends an XML representation of a method call to a
server, and gets back an XML representation of a return value. The whole process is
more complex than XML-RPC, but Ruby’s built-in SOAP library handles the low-
level details for you, leaving you free to focus on using the results in your program.

There are only a few things you need to know to build useful SOAP clients (as I run
through them, I’ll build another SOAP client; this one is to get stock quotes):

1. The location of the web service (known as the endpoint URL) and the
namespace used by the service’s documents.

require 'soap/rpc/driver'
driver = SOAP::RPC::Driver.new(
 'http://services.xmethods.net/soap/', # The endpoint url
 'urn:xmethods-delayed-quotes') # The namespace

2. The name of the SOAP method you want to call, and the names of its parameters.
driver.add_method('getQuote', 'symbol')

Behind the scenes, that call to add_method actually defines a new method on the
SOAP::RPC::Driver object. The SOAP library uses metaprogramming to create
custom Ruby methods that act like SOAP methods.

3. The details about the results you expect back.
puts 'Stock price: %.2f' % driver.getQuote('TR')
Stock price: 28.78

We expect the stock quote service in the example to return a floating-point
value, which we simply display. With more complex result sets, you’ll probably
assign the results to a variable, which you’ll treat as an array or class instance.

See Also
• Recipe 16.6, “Searching the Web with Google’s SOAP Service,” provides a more

complex example

• Recipe 16.7, “Using a WSDL File to Make SOAP Calls Easier”

16.5 Writing a SOAP Server | 627

16.5 Writing a SOAP Server
Credit: Kevin Marshall

Problem
You want to host a SOAP-based web service using a standalone server (that is, not as
part of a Rails application).

Solution
Building your own SOAP server really only requires three simple steps:

1. Subclass the SOAP::StandaloneServer class. In the constructor, register the meth-
ods you want to expose and the arguments they should take. Here we expose a
method sayhelloto method that expects one parameter, username:

require 'soap/rpc/standaloneServer'

class MyServer < SOAP::RPC::StandaloneServer
 def initialize(*args)
 super
 add_method(self, 'sayhelloto', 'username')
 end
end

2. Define the methods you exposed in step 1:
class MyServer
 def sayhelloto(username)
 "Hello, #{username}."
 end
end

3. Finally, set up and start your server. Our example server runs on port 8888 on
localhost. Its name is “CoolServer” and its namespace is “urn:mySoapServer”:

server = MyServer.new('CoolServer','urn:mySoapServer','localhost',8888)
trap('INT') { server.shutdown }
server.start

We trap interrupt signals so that we can stop our server from the command line.

Discussion
We’ve now built a complete SOAP server. It uses the SOAP StandaloneServer and
hosts one simple sayhelloto method that can be accessed at “http://localhost:8888/
sayhelloto” with a namespace of “urn:mySoapServer”.

To test your service, start your server in one Ruby session and then use the simple
script below in another Ruby session to call the method it exposes:

require 'soap/rpc/driver'
driver = SOAP::RPC::Driver.new('http://localhost:8888/', 'urn:mySoapServer')
driver.add_method('sayhelloto', 'username')
driver.sayhelloto('Kevin') # => "Hello, Kevin."

628 | Chapter 16: Web Services and Distributed Programming

See Also
• Recipe 15.18, “Exposing Web Services on Your Web Site,” shows how to use the

XML-RPC/SOAP server that comes with Rails

• For information on building web service clients, see Recipes 16.2 through 16.4
and 16.7.

• Ruby on Rails by Bruce A. Tate and Curt Hibbs (O’Reilly)

16.6 Searching the Web with Google’s SOAP Service

Problem
You want to use Google’s web services to perform searches and grab their results
within your Ruby application.

Solution
Google exposes a SOAP API to its search functionality, and some other miscella-
neous methods like spellcheck. Call these methods with the SOAP client that comes
with Ruby’s standard library:

$KCODE = 'u' # This lets us parse UTF characters
require 'soap/wsdlDriver'

class Google
 @@key = 'JW/JqyXMzCsv7k/dxqR9E9HF+jiSgbDL'
Get a key at http://www.google.com/apis/
 @@driver = SOAP::WSDLDriverFactory.
 new('http://api.google.com/GoogleSearch.wsdl').create_rpc_driver

 def self.search(query, options={})
 @@driver.doGoogleSearch(
 @@key,
 query,
 options[:offset] || 0,
 options[:limit] || 10, # Note that this value cannot exceed 10
 options[:filter] || true,
 options[:restricts] || ' ',
 options[:safe_search] || false,
 options[:lr] || ' ',
 options[:ie] || ' ',
 options[:oe] || ' '
)
 end

 def self.count(query, options={})
 search(query, options).estimatedTotalResultsCount
 end

16.6 Searching the Web with Google’s SOAP Service | 629

 def self.spell(phrase)
 @@driver.doSpellingSuggestion(@@key, phrase)
 end
end

Here it is in action:
Google.count "Ruby Cookbook site:oreilly.com"
=> 368

results = Google.search "Ruby Cookbook site:oreilly.com", :limit => 7
results.resultElements.size
=> 7

results.resultElements.first["title"]
=> "oreilly.com -- Online Catalog: Ruby Cookbook..."

results.resultElements.first["URL"]
=> "http://www.oreilly.com/catalog/rubyckbk/"

results.resultElements.first["snippet"]
=> "The Ruby Cookbook is a new addition to ..."

Google.spell "tis is te centence"
=> "this is the sentence"

Discussion
Each of the options defined in Google.search corresponds to an option in the Google
search API.

See Also
• For a simpler API, see Recipe 16.7, “Using a WSDL File to Make SOAP Calls

Easier”

• http://www.google.com/apis/reference.html

• http://www.google.com/help/refinesearch.html

Name Description

key Unique key provided when you sign up with Google’s web services.

query The search query.

limit How many results to grab; the maximum is 10.

offset Which result in the list to start from.

filter Whether or not to let Google group together similar results.

restricts Further restrict search results to those containing this string.

safe_search Whether or not to enable the SafeSearch filtering feature.

lr Language restriction: lets you search for pages in specific languages.

ie Input encoding: lets you choose the character encoding for the query.

oe Output encoding: lets you choose the character encoding for the returned results.

630 | Chapter 16: Web Services and Distributed Programming

16.7 Using a WSDL File to Make SOAP Calls Easier
Credit: Kevin Marshall

Problem
You need to create a client for a SOAP-based web service, but you don’t want to type
out the definitions for all the SOAP methods you’ll be calling.

Solution
Most web services provide a WSDL file: a machine-readable description of the meth-
ods they offer. Ruby’s SOAP WSDL Driver can parse a WSDL file and make the
appropriate methods available automatically.

This code uses the xmethods.com SOAP web service to get a stock price. In Recipe
16.7, we defined the getQuote method manually. Here, its name and signature are
loaded from a hosted WSDL file. You still have to know that the method is called
getQuote and that it takes one string, but you don’t have to write any code telling
Ruby this.

require 'soap/wsdlDriver'
wsdl = 'http://services.xmethods.net/soap/urn:xmethods-delayed-quotes.wsdl'
driver = SOAP::WSDLDriverFactory.new(wsdl).create_rpc_driver

puts "Stock price: %.2f" % driver.getQuote('TR')
Stock price: 28.78

Discussion
According to the World Wide Web Consortium (W3), “WSDL service definitions
provide documentation for distributed systems and serve as a recipe for automating
the details involved in applications communication.”

What this means to you is that you don’t have to tell Ruby which methods a web ser-
vice provides, and what arguments it expects. If you feed a WSDL file in to the Driver
Factory, Ruby will give you a Driver object with all the methods already defined.

There are only a few things you need to know to build useful SOAP clients with a
WSDL file. I’ll illustrate with some code that performs a Google search and prints
out the results.

1. Start with the URL to the WSDL file:
require 'soap/wsdlDriver'
wsdl = 'http://api.google.com/GoogleSearch.wsdl'
driver = SOAP::WSDLDriverFactory.new(wsdl).create_rpc_driver

2. Next you need the name of the SOAP method you want to call, and the expected
types of its parameters:

my_google_key = 'get yours from https://www.google.com/accounts'
my_query = 'WSDL Ruby'

16.7 Using a WSDL File to Make SOAP Calls Easier | 631

XSD::Charset.encoding = 'UTF8'
result = driver.doGoogleSearch(my_google_key, my_query, 0, 10, false,

 '', false, '', '', '')

Without WSDL, you need to tell Ruby that methods a web service exposes, and
what parameters it takes. With WSDL, Ruby loads this information from the
WSDL file. Of course, you still need to know this information so you can write
the method call. In this case, you’ll also need to sign up for an API key that lets
you use the web service.

The Google search service returns data encoded as UTF-8, which may contain
special characters that cause mapping problems to Ruby strings. That’s what the
call to XSD::Charset.encoding = 'UTF8' is for. The Soap4r and WSDL Factory
libraries rely on the XSD library to handle the data type conversions from web
services to native Ruby types. By explicitly telling Ruby to use UTF-8 encoding,
you’ll ensure that any special characters are properly escaped within your results
so you can treat them as proper Ruby Strings.

result.class
=> SOAP::Mapping::Object

(result.methods - SOAP::Mapping::Object.instance_methods).sort
=> ["directoryCategories", "directoryCategories=", "documentFiltering",
...
"searchTips", "searchTips=", "startIndex", "startIndex="]

3. Here’s how to treat the result object you get back:
"Query for: #{my_query}"
=> "Query for: WSDL Ruby"
"Found: #{result['estimatedTotalResultsCount']}"
=> "Found: 159000"
"Query took about %.2f seconds" % result['searchTime']
=> "Query took about 0.05 seconds"

result["resultElements"].each do |rec|
 puts "Title: #{rec["title"]}"
 puts "URL: #{rec["URL"]}"
 puts "Snippet: #{rec["snippet"]}"
 puts
end
Title: wsdl: Ruby Standard Library Documentation
URL: http://www.ruby-doc.org/stdlib/libdoc/wsdl/rdoc/index.html
Snippet: #<SOAP::Mapping::Object:0xb705f560>
#
Title: how to make SOAP4R read WSDL files?
URL: http://www.ruby-talk.org/cgi-bin/scat.rb/ruby/ruby-talk/37623
Snippet: Subject: how to make SOAP4R read WSDL files? ...
...

We expect the Google search service to return a complex SOAP type. The XSD
library will convert it into a Ruby hash, containing some keys like
EstimatedTotalResultsCount and resultElements—the latter points to an array of

632 | Chapter 16: Web Services and Distributed Programming

search results. Every search result is itself a complex type, and XSD maps it to a
hash as well: a hash with keys like snippet and URL.

See Also
• Recipe 16.4, “Writing a SOAP Client,” provides a more generic example of a

SOAP client

• Recipe 16.6, “Searching the Web with Google’s SOAP Service,” shows what
searching Google would be like without WSDL

• https://www.google.com/accounts to get an access key to Google Web APIs

16.8 Charging a Credit Card

Problem
You want to charge a credit card from within your Ruby application.

Solution
To charge credit cards online, you need an account with a credit card merchant.
Although there are many to choose from, Authorize.Net is one of the best and most
widely used. The payment library encapsulates the logic of making a credit card pay-
ments with Authorize.Net, and soon it will support other gateways as well. It’s avail-
able as the payment gem.

require 'rubygems'
require 'payment/authorize_net'

transaction = Payment::AuthorizeNet.new(
 :login => 'username',
 :transaction_key => 'my_key',
 :amount => '49.95',
 :card_number => '4012888818888',
 :expiration => '0310',
 :first_name => 'John',
 :last_name => 'Doe'
)

The submit method sends a payment request. If there’s a problem with your pay-
ment (probably due to an invalid credit card), the submit method will raise a
Payment::PaymentError:

begin
 transaction.submit
 puts "Card processed successfully: #{transaction.authorization}"
rescue Payment::PaymentError
 puts "Card was rejected: #{transaction.error_message}"
end
Card was rejected: The merchant login ID or password is invalid
or the account is inactive.

16.9 Finding the Cost to Ship Packages via UPS or FedEx | 633

Discussion
Some of the information sent during initialization of the Payment::AuthorizeNet
class represent your account with Authorize.Net, and will never change (at least,
not for the lifetime of the account). You can store this information in a YAML file
called .payment.yml in your home directory, and have the payment library load it
automatically. A .payment.yml file might look like this:

login: username
transaction_key: my_key

That way you don’t have to hardcode login and transaction_key within your Ruby
code.

If you’re using the payment library from within a Rails application, you might want
to put your YAML hash in the config directory with other configuration files, instead
of in your home directory. You can override the location for the defaults file by speci-
fying the :prefs key while initializing the object:

payment = Payment::AuthorizeNet
 .new(:prefs => "#{RAILS_ROOT}/config/payment.yml")
payment.amount = 20
payment.card_number = 'bogus'
payment.submit rescue "That didn't work"

Notice that after the Payment::AuthorizeNet object has been initialized, you can
change its configuration with accessor methods.

Like most online merchants, Authorize.Net uses its own XML-formatted responses
to do transactions over HTTPS. Some merchants, such as Payflow Pro, use propri-
etary interfaces to their backend that require a bridge with their Java or C libraries. If
you’re using Ruby, this approach can be cumbersome and difficult. It’s worth invest-
ing some time into researching how flexible the backend is before you decide on a
merchant platform for your Ruby application.

See Also
• Recipe 2.17, “Checking a Credit Card Checksum”

• The online RDoc for the payment library (http://payment.rubyforge.org/)

• http://authorize.net/

16.9 Finding the Cost to Ship Packages
via UPS or FedEx

Problem
You want to calculate the cost to ship any item with FedEx or UPS. This is useful if
you’re running an online store.

634 | Chapter 16: Web Services and Distributed Programming

Solution
FedEx and UPS provide web services that can query information on pricing as well as
retrieve shipping labels. The logic for using these services has been encapsulated
within the shipping gem:

require 'rubygems'
require 'shipping'

ship = Shipping::Base.new(
 :fedex_url => 'https://gatewaybeta.fedex.com/GatewayDC',
 :fedex_account => '123456789',
 :fedex_meter => '387878',

 :ups_account => '7B4F74E3075AEEFF',
 :ups_user => 'username',
 :ups_password => 'password',

 :sender_zip => 10001 # It's shipped from Manhattan.
)

ship.weight = 2 # It weighs two pounds.
ship.city = 'Portland'
ship.state = 'OR'
ship.zip = 97202

ship.ups.price # => 8.77
ship.fedex.price # => 5.49
ship.ups.valid_address? # => true

If you have a UPS account or a FedEx account, but not both, you can omit the
account information you don’t have, and instantiate a Shipping::UPS or a Shipping::
FedEx object.

Discussion
You can either specify your account information during the initialization of the
object (as above) or in a YAML hash. It’s similar to the payment library described in
Recipe 16.8. If you choose to use the YAML hash, you can specify the account infor-
mation in a file called .shipping.yml within the home directory of the user running
the Ruby program:

fedex_url: https://gatewaybeta.fedex.com/GatewayDC
fedex_account: 1234556
fedex_meter: 387878

ups_account: 7B4F74E3075AEEFF
ups_user: username
ups_password: password

But your directory is not a good place to keep a file being used by a Rails applica-
tion. Here’s how to move the .shipping file into a Rails application:

16.10 Sharing a Hash Between Any Number of Computers | 635

ship = Shipping::FedEx.new(:prefs => "#{RAILS_ROOT}/config/shipping.yml")

ship.sender_zip = 10001
ship.zip = 97202
ship.state = 'OR'
ship.weight = 2

ship.price > ship.discount_price # => true

Notice the use of ship.discount_price to find the discounted price; if you have an
account with FedEx or UPS, you might be eligible for discounts.

See Also
• http://shipping.rubyforge.org/

• Recipe 16.8, “Charging a Credit Card”

16.10 Sharing a Hash Between Any Number
of Computers

Credit: James Edward Gray II

Problem
You want to easily share some application data with remote programs. Your needs
are as trivial as, “What if all the computers could share this hash?”

Solution
Ruby’s built-in DRb library can share Ruby objects across a network. Here’s a sim-
ple hash server:

#!/usr/local/ruby -w
drb_hash_server.rb
require 'drb'

Start up DRb with a URI and a hash to share
shared_hash = {:server => 'Some data set by the server' }
DRb.start_service('druby://127.0.0.1:61676', shared_hash)
puts 'Listening for connection...'
DRb.thread.join # Wait on DRb thread to exit...

Run this server in one Ruby session, and then you can run a client in another:

require 'drb'

Prep DRb
DRb.start_service
Fetch the shared object
shared_data = DRbObject.new_with_uri('druby://127.0.0.1:61676')

636 | Chapter 16: Web Services and Distributed Programming

Add to the Hash
shared_data[:client] = 'Some data set by the client'
shared_data.each do |key, value|
 puts "#{key} => #{value}"
end
client => Some data set by the client
server => Some data set by the server

Discussion
If this looks like magic, that’s the point. DRb hides the complexity of distributed
programming. There are some complications (covered in later recipes), but for the
most part DRb simply makes remote objects look like local objects.

The solution given above may meet your needs if you’re working with a single server
and client on a trusted network, but applications aren’t always that simple. Issues
like thread-safety and security may force you to find a more robust solution. Luckily,
that doesn’t require too much more work.

Let’s take thread-safety first. Behind the scenes, a DRb server handles each client
connection in a separate Ruby thread. Ruby’s Hash class is not automatically thread-
safe, so we need to do a little extra work before we can reliably share a hash between
multiple concurrent users.

Here’s a library that uses delegation to implement a thread-safe hash. A
ThreadsafeHash object delegates all its method calls to an underlying Hash object, but
it uses a Mutex to ensure that only one thread (or DRb client) can have access to the
hash at a time.

threadsafe_hash.rb
require 'rubygems'
require 'facet/basicobject' # For the BasicObject class
require 'thread' # For the Mutex class

We base our thread-safe hash on the BasicObject class in the Facets More library
(available as the facets_more gem). A BasicObject is an ordinary Ruby object, except
it defines no methods at all—not even the methods of Object. This gives us a blank
slate to work from. We can make sure that every single method of ThreadsafeHash
gets forwarded to the underlying hash, even methods like inspect, which are defined
by Object and which wouldn’t normally trigger method_missing.

A thread-safe Hash that delegates all its methods to a real hash.
class ThreadsafeHash < BasicObject
 def initialize(*args, &block)
 @hash = Hash.new(*args, &block) # The shared hash
 @lock = Mutex.new # For thread safety
 end

 def method_missing(method, *args, &block)
 if @hash.respond_to? method # Forward Hash method calls...
 @lock.synchronize do # but wrap them in a thread safe lock.
 @hash.send(method, *args, &block)

16.10 Sharing a Hash Between Any Number of Computers | 637

 end
 else
 super
 end
 end
end

The next step is to build a RemoteHash using BlankSlate. The implementation is triv-
ial. Just forward method calls onto the Hash, but wrap each of them in a synchroniza-
tion block in order to ensure only one thread can affect the object at a time.

Now that we have a thread-safe RemoteHash, we can build a better server:

#!/usr/bin/ruby -w
threadsafe_hash_server.rb

require 'threadsafe_hash' # both sides of DRb connection need all classes
require 'drb'

We begin by pulling in our RemoteHash library and DRb:

$SAFE = 1 # Minimum acceptable paranoia level when sharing code!

The $SAFE = 1 line is critical! Don’t put any code on a network without a minimum of
$SAFE = 1. It’s just too dangerous. Malicious code, like obj.instance_eval("`rm -rf /
*`"), must be controlled. Feel free to raise $SAFE even higher, in fact.

Start up DRb with a URI and an object to share.
DRb.start_service('druby://127.0.0.1:61676', Threadsafe.new)
puts 'Listening for connection...'
DRb.thread.join # wait on DRb thread to exit...

We’re now ready to start the DRb service, which we do with a URI and an object to
share. If you don’t want to allow external connections, you may want to replace
“127.0.0.1” with “localhost” in the URI.

Since DRb runs in its own threads, the final line of the server is needed to ensure that
we don’t exit before those threads have done their job.

Run that code, and then you can run this client code to share a hash:

#!/usr/bin/ruby
threadsafe_hash_client.rb

require 'remote_hash' # Both sides of DRb connection need all classes
require 'drb'

Prep DRb
DRb.start_service

Fetch the shared hash
$shared_data = DRbObject.new_with_uri('druby://127.0.0.1:61676')

puts 'Enter Ruby commands using the shared hash $shared_data...'
require 'irb'
IRB.start

638 | Chapter 16: Web Services and Distributed Programming

Here again we pull in the needed libraries and point DRb at the served object. We
store that object in a variable so that we can continue to access it as needed.

Then, just as an example of what can be done, we enter an IRb session, allowing you
to manipulate the variable any way you like. Remember, any number of clients can
connect and share this hash.

Let’s illustrate some sample sessions. In the first one, we add some data to the hash:

$ ruby threadsafe_hash_client.rb
Enter Ruby commands using the shared hash $shared_data...
irb(main):001:0> $shared_data.keys
=> []
irb(main):002:0> $shared_data[:terminal_one] = 'Hello other terminals!'
=> "Hello other terminals!"

Let’s attach a second client and see what the two of them find:

$ ruby threadsafe_hash_client.rb
Enter Ruby commands using the shared hash $shared_data...
irb(main):001:0> $shared_data.keys
=> [:terminal_one]
irb(main):002:0> $shared_data[:terminal_one]
=> "Hello other terminals!"
irb(main):003:0> $shared_data[:terminal_two] = 'Is this thing on?'
=> "Is this thing on?"

Going back to the first session, we can see the new data:

irb(main):003:0> $shared_data.each_pair do |key, value|
irb(main):004:1* puts "#{key} => #{value}"
irb(main):005:1> end
terminal_one => Hello other terminals!
terminal_two => Is this thing on?

Notice that, as you’d hope, the DRb magic can even cope with a method that takes a
code block.

See Also
• There is a good beginning tutorial for DRb at http://www.rubygarden.org/

ruby?DrbTutorial

• There is a helpful DRb presentation by Mark Volkmann in the “Why Ruby?”
repository at http://rubyforge.org/docman/view.php/251/216/DistributedRuby.pdf

• The standard library documentation for DRb can be found at http://www.ruby-
doc.org/stdlib/libdoc/drb/rdoc/index.html

• For more on the internal workings of the thread-safe hash, see Recipe 8.8, “Dele-
gating Method Calls to Another Object,” and Recipe 20.4, “Synchronizing
Access to an Object”

• Recipe 20.11, “Avoiding Deadlock,” for another common problem with multi-
threaded programming

16.11 Implementing a Distributed Queue | 639

16.11 Implementing a Distributed Queue
Credit: James Edward Gray II

Problem
You want to use a central server as a workhorse, queueing up requests from remote
clients and handling them one at a time.

Solution
Here’s a method that shares a Queue object with clients. Clients put job objects into
the queue, and the server handles them by yielding them to a code block.

#!/usr/bin/ruby
queue_server.rb

require 'thread' # For Ruby's thread-safe Queue
require 'drb'

$SAFE = 1 # Minimum acceptable paranoia level when sharing code!

def run_queue(url='druby://127.0.0.1:61676')
 queue = Queue.new # Containing the jobs to be processed

 # Start up DRb with URI and object to share
 DRb.start_service(url, queue)
 puts 'Listening for connection...'
 while job = queue.deq
 yield job
 end
end

Have your server call run_queue, passing in a code block that handles a single job.
Every time one of your clients puts a job into the server queue, the server passes the
job into the code block. Here’s a sample code block that can handle a fast-running
job (“Report”) or a slow-running job (“Process”):

run_queue do |job|
 case job['request']
 when 'Report'
 puts "Reporting for #{job['from']}... Done."
 when 'Process'
 puts "Processing for #{job['from']}..."
 sleep 3 # Simulate real work
 puts 'Processing complete.'
 end
end

If we get a couple of clients sending in requests, output might look like this:

$ ruby queue_server.rb
Listening for connection...

640 | Chapter 16: Web Services and Distributed Programming

Processing for Client 1...
Processing complete.
Processing for Client 2...
Processing complete.
Reporting for Client 1... Done.
Reporting for Client 2... Done.
Processing for Client 1...
Processing complete.
Reporting for Client 2... Done.
...

Discussion
A client for the queue server defined in the Solution simply needs to connect to the
DRB server and add a mix of “Report” and “Process” jobs to the queue. Here’s a cli-
ent that connects to the DRb server and adds 20 jobs to the queue at random:

#!/usr/bin/ruby
queue_client.rb

require 'thread'
require 'drb'

Get a unique name for this client
NAME = ARGV.shift or raise "Usage: #{File.basename($0)} CLIENT_NAME"

DRb.start_service
queue = DRbObject.new_with_uri("druby://127.0.0.1:61676")

20.times do
 queue.enq('request' => ['Report', 'Process'][rand(2)], 'from' => NAME)
 sleep 1 # simulating network delays
end

Everything from Recipe 16.10 applies here. The major difference is that Ruby ships
with a thread-safe Queue. That saves us the trouble of building our own.

See Also
• Recipe 16.10

16.12 Creating a Shared “Whiteboard”
Credit: James Edward Gray II

Problem
You want to create the network equivalent of a whiteboard. Remote programs can
place Ruby objects up on the board, examine objects on the board, or remove objects
from the board.

16.12 Creating a Shared “Whiteboard” | 641

Solution
You could just use a synchronized hash (as in Recipe 16.10), but Rinda* provides a
data structure called a TupleSpace that is optimized for distributed programming. It
works well when you have some clients putting data on the whiteboard, and other
clients processing the data and taking it down.

Let’s create an application that lets clients on different parts of the network translate
each others’ sentences, and builds a translation dictionary as they work.

It’s easier to see the architecture of the server if you see the clients first, so here’s a
client that adds some English sentences to a shared TupleSpace:

#!/usr/bin/ruby -w
english_client.rb
require 'drb'
require 'rinda/tuplespace'

Connect to the TupleSpace...
DRb.start_service
tuplespace = Rinda::TupleSpaceProxy.new(
 DRbObject.new_with_uri('druby://127.0.0.1:61676')
)

The English client’s job is to split English sentences into words and to add each sen-
tence to the whiteboard as a tuple: [unique id, language, words].

counter = 0
DATA.each_line do |line|
 tuplespace.write([(counter += 1), 'English', line.strip.split])
end

__END_ _
Ruby programmers have more fun
Ruby gurus are obsessed with ducks
Ruby programmers are happy programmers

Here’s a second client. It creates a loop that continually reads all the English sen-
tences from the TupleSpace and puts up word-for-word translations into Pig Latin. It
uses Tuplespace#read to read English-language tuples off the whiteboard without
removing them.

require 'drb'
require 'rinda/tuplespace'
require 'set'

DRb.start_service
tuplespace = Rinda::TupleSpaceProxy.new(
 DRbObject.new_with_uri('druby://127.0.0.1:61676')
)

* Rinda is a companion library to DRb. It’s a Ruby port of the Linda distributed computing environment,
which is based on the idea of the tuplespace. It’s similar to JavaSpaces.

642 | Chapter 16: Web Services and Distributed Programming

Track of the IDs of the sentences we've translated
translated = Set.new

Continually read English sentences off of the board.
while english = tuplespace.read([Numeric, 'English', Array])
 # Skip anything we've already translated.
 next if translated.member? english.first
 translated << english.first

 # Translate English to Pig Latin.
 pig_latin = english.last.map do |word|
 if word =~ /^[aeiou]/i
 "#{word}way"
 elsif word =~ /^([^aeiouy]+)(.+)$/i
 "#{$2}#{$1.downcase}ay"
 end
 end

 # Write the Pig Latin translation back onto the board
 tuplespace.write([english.first, 'Pig Latin', pig_latin])
end

Finally, here’s the language server: the code that exposes a TupleSpace for the two cli-
ents to use. It also acts as a third client of the TupleSpace: it continually takes non-
English sentences down off of the whiteboard (using the destructive TupleSpace#take
method) and matches them word-for-word with the corresponding English sen-
tences (which it also removes from the whiteboard). In this way it gradually builds an
English-to-Pig Latin dictionary, which it serializes to disk with YAML:

#!/usr/bin/ruby -w
dictionary_building_server.rb
require 'drb'
require 'yaml'
require 'rinda/tuplespace'

Create a TupleSpace and serve it to the world.
tuplespace = Rinda::TupleSpace.new
DRb.start_service('druby://127.0.0.1:61676', tuplespace)

Create a dictionary to hold the terms we have seen.
dictionary = Hash.new
Remove non-English sentences from the board.
while translation = tuplespace.take([Numeric, /^(?!English)/, Array])
 # Match each with its English equivalent.
 english = tuplespace.take([translation.first, 'English', Array])
 # Match up the words, and save the dictionary.
 english.last.zip(translation.last) { |en, tr| dictionary[en] = tr }
 File.open('dictionary.yaml', 'w') { |file| YAML.dump(dictionary, file) }
end

If you run the server and then the two clients, the server will spit out a dictionary.yaml
file that shows how much it has already learned:

16.12 Creating a Shared “Whiteboard” | 643

$ ruby dictionary_building_server.rb &
$ ruby english_client.rb
$ ruby pig_latin_client.rb &

$ cat dictionary.yaml

happy: appyhay
programmers: ogrammerspray
Ruby: ubyray
gurus: urusgay
ducks: ucksday
obsessed: obsessedway
have: avehay
are: areway
fun: unfay
with: ithway
more: oremay

Discussion
Rinda’s TupleSpace class is pretty close to the network equivalent of a whiteboard. A
“tuple” is just an ordered sequence—in this case, an array of Ruby objects. A
TupleSpace holds these sequences and provides an interface to them.

You can add sequences of objects to the TupleSpace using TupleSpace#write. Later,
the same or different code can query the object using TupleSpace#read or
TupleSpace#take. The only difference is that TupleSpace#take is destructive; it
removes the object from the TupleSpace as it’s read.

You can select certain tuples by passing TupleSpace#read or TupleSpace#take a tem-
plate that matches the tuples you seek. A template is just another tuple. In the exam-
ple code, we used templates like [Numeric, 'English', Array]. Each element of a
tuple is matched against the corresponding element of a template with the === opera-
tor, the same operator used in Ruby case statements.

That particular template will match any three-element tuple whose first element is a
Numeric object, whose second element is the literal string 'English', and whose third
element is an Array object: that is, all the English sentences currently on the whiteboard.

You can create templates containing any kind of object that will work with the ===
operator: for instance, a Regexp object in a template can match against strings in a
tuple. Any nil slot in a template is a wildcard slot that will match anything.

See Also
• The DRb presentation by Mark Volkmann in the “Why Ruby?” repository at

http://rubyforge.org/docman/view.php/251/216/DistributedRuby.pdf has some
material on TupleSpaces

• Clients can also choose to be notified of TupleSpace events; you can see an exam-
ple at http://ruby-talk.org/cgi-bin/scat.rb/ruby/ruby-talk/159065

644 | Chapter 16: Web Services and Distributed Programming

16.13 Securing DRb Services with Access Control Lists
Credit: James Edward Gray II

Problem
You want to keep everybody in the world (literally!) from having access to your DRb
service. Instead you want to control which hosts can, and cannot, connect.

Solution
Here’s the simple shared hash from Recipe 16.10, only this time it’s locked down
with DRb’s ACL (access control list) class:

#!/usr/bin/ruby
acl_hash_server.rb

require 'drb'
require 'drb/acl'

Setup the security--remember to call before DRb.start_service()
DRb.install_acl(ACL.new(%w{ deny all
 allow 192.168.1.*
 allow 127.0.0.1 }))

Start up DRb with a URI and a hash to share
shared_hash = {:server => 'Some data set by the server' }
DRb.start_service("druby://127.0.0.1:61676", shared_hash)
puts 'Listening for connection...'
DRb.thread.join # Wait on DRb thread to exit...

Discussion
If you bind your DRb server to localhost, it’ll only be accessible to other Ruby pro-
cesses on your computer. That’s not very distributed. But if you bind your DRb
server to some other hostname, anyone on your local network (if you’ve got a local
network) or anyone on the Internet at large will be able to share your Ruby objects.
You’re probably not feeling that generous.

DRb’s ACL class provides simple white/blacklist security similar to that used by the
Unix /etc/hosts.allow and /etc/hosts.deny files. The ACL constructor takes an array
of strings. The first string of a pair is always “allow” or “deny”, and it’s followed by
the address or addresses to allow or deny access.

String addresses can include wildcards ("**"), as shown in the solution, to allow or
deny an entire range of addresses. The ACL class also understands the term “all,” and
your first address should be either “deny all” or (less likely) “allow all”. Subsequent
entries can relax or restrict access, as needed.

In the Solution above, the default is to deny access. Exceptions are carved out after-
wards for anyone on the local IP network (192.168.1.**) and anyone on the same

16.14 Automatically Discovering DRb Services with Rinda | 645

host as the server itself (127.0.0.1). A public DRb server might allow access by
default, and deny access only to troublesome client IPs.

See Also
• Recipe 16.10, “Sharing a Hash Between Any Number of Computers”

16.14 Automatically Discovering DRb Services
with Rinda

Credit: James Edward Gray II

Problem
You want to distribute Ruby code across your local network without hardcoding the
clients with the addresses of the servers.

Solution
Using Ruby’s standard Rinda library, it’s easy to provide zero-configuration network-
ing for clients and services. With Rinda, machines can discover DRb services without
providing any addresses. All you need is a running RingServer on the local network:

#!/usr/bin/ruby
rinda_server.rb

require 'rinda/ring' # for RingServer
require 'rinda/tuplespace' # for TupleSpace

DRb.start_service

Create a TupleSpace to hold named services, and start running.
Rinda::RingServer.new(Rinda::TupleSpace.new)

DRb.thread.join

Discussion
The RingServer provides automatic service detection for DRb servers. Any machine
on your local network can find the local RingServer without knowing its address.
Once it’s found the server, a client can look up services and use them, not having to
know the addresses of the DRb servers that host them.

To find the Rinda server, a client broadcasts a UDP packet asking for the location of
a RingServer. All computers on the local network will get this packet, and if a com-
puter is running a RingServer, it will respond with its address. A server can use the
RingServer to register services; a client can use the RingServer to look up services.

646 | Chapter 16: Web Services and Distributed Programming

A RingServer object keeps a service listing in a shared TupleSpace (see Recipe 16.12).
Each service has a corresponding tuple with four members:

• The literal symbol :name, which indicates that the tuple is an entry in the
RingServer namespace.

• The symbol of a Ruby class, indicating the type of the service.

• The DRbObject shared by the service.

• A string description of the service.

By retrieving this TupleSpace remotely, you can look up services as tuples and adver-
tise your own services. Let’s advertise an object (a simple TupleSpace) through the
RingServer under the name :TupleSpace:

#!/usr/bin/ruby
share_a_tuplespace.rb

require 'rinda/ring' # for RingFinger and SimpleRenewer
require 'rinda/tuplespace' # for TupleSpace

DRb.start_service
ring_server = Rinda::RingFinger.primary

Register our TupleSpace service with the RingServer
ring_server.write([:name, :TupleSpace, Rinda::TupleSpace.new, 'Tuple Space'],
 Rinda::SimpleRenewer.new)

DRb.thread.join

The SimpleRenewer sent in with the namespace listing lets the RingServer periodically
check whether the service has expired.

Now we can write clients that find this service by querying the RingServer, without
having to know which machine it lives on. All we need to know is the name of the
service:

#!/usr/bin/ruby
use_a_tuplespace.rb

require 'rinda/ring' # for RingFinger
require 'rinda/tuplespace' # for TupleSpaceProxy

DRb.start_service
ring_server = Rinda::RingFinger.primary

Ask the RingServer for the advertised TupleSpace.
ts_service = ring_server.read([:name, :TupleSpace, nil, nil])[2]
tuplespace = Rinda::TupleSpaceProxy.new(ts_service)

Now we can use the object normally:
tuplespace.write([:data, rand(100)])
puts "Data is #{tuplespace.read([:data, nil]).last}."
Data is 91.

16.15 Proxying Objects That Can’t Be Distributed | 647

These two programs locate each other without needing hardcoded IP addresses.
Addresses are still being used under the covers, but the address to the Rinda server is
discovered automatically through UDP, and all the other addresses are kept in the
Rinda server.

Rinda::RingFinger.primary stores the first RingServer to respond to your Ruby pro-
cess’s UDP packet. If your local network is running more than one RingServer, the
first one to respond might not be the one with the service you want, so you should
probably only run one RingServer on your network. If you do have more than one
RingServer, you can iterate over them with Rinda::RingFinger#each.

See Also
• Recipe 16.12, “Creating a Shared “Whiteboard”

• Recipe 16.18, “A Remote-Controlled Jukebox”

• Eric Hodel has a Rinda::RingServer tutorial at http://segment7.net/projects/ruby/
drb/rinda/ringserver.html

16.15 Proxying Objects That Can’t Be Distributed
Credit: James Edward Gray II

Problem
You want to allow classes to connect to your DRb server, without giving the server
access to the class definition. Perhaps you’ve given clients an API to implement, and
you don’t want to make everyone send you the source to their implementations just
so they can connect to the server.

...OR…

You have some code that is tied to local resources: database connections, log files, or
even just the closure aspect of Ruby’s blocks. You want this code to interact with a
DRb server, but it must be run locally.

...OR…

You want to send an object to a DRb server, perhaps as a parameter to a method; but
you want the server to notice changes to that object as your local code modifies it.

Solution
Rather than sending an object to the server, you can ask DRb to send a proxy instead.
When the server acts on the proxy, a description of the act will be sent across the
network. The client end will actually perform the action. In effect, you’ve partially
switched the roles of the client and the server.

648 | Chapter 16: Web Services and Distributed Programming

You can set up a proxy in two simple steps. First, make sure your client code
includes the following line before it interacts with any server objects:

DRb.start_service # The client needs to be a DRb service too.

That’s generally just a good habit to get into with DRb client code, because it allows DRb
to magically support some constructs (like Ruby’s blocks) by sending a proxy object
when necessary. If you’re intentionally trying to send a proxy, it becomes essential.

As long as your client is a DRb service of its own, you can proxy all objects made from
a specific class or individual objects by including the DRbUndumped module:

class MyLocalClass
 include DRbUndumped # The magic line. All objects of this type are proxied.
 # ...
end

... OR ...

my_local_object.extend DRbUndumped # Proxy just this object.

Discussion
Under normal circumstances, DRb is very simple. A method call is packaged up (using
Marshal) as a target object, method name, and some arguments. The resulting object
is sent over the wire to the server, where it’s executed. The important thing to notice
is that the server receives copies of the original arguments.

The server unmarshals the data, invokes the method, packages the result, and sends
it back. Again, the result objects are copied to the client.

But that process doesn’t always work. Perhaps the server needs to pass a code block
into a method call. Ruby’s blocks cannot be serialized. DRb notices this special case and
sends a proxy object instead. As the server interacts with the proxy, the calls are bun-
dled up and sent back to you, just as described above, so everything just works.

But DRb can’t magically notice all cases where copying is harmful. That’s why you
need DRbUndumped. By extending an object with DRbUndumped, you can force DRb to
send a proxy object instead of the real object, and ensure that your code stays local.

If all this sounds confusing, a simple example will probably clear it right up. Let’s
code up a trivial hello server:

#!/usr/bin/ruby
hello_server.rb
require 'drb'

a simple greeter class
class HelloService
 def hello(in_stream, out_stream)
 out_stream.puts 'What is your name?'
 name = in_stream.gets.strip

16.15 Proxying Objects That Can’t Be Distributed | 649

 out_stream.puts "Hello #{name}."
 end
end

start up DRb with URI and object to share
DRb.start_service('druby://localhost:61676', HelloService.new)
DRb.thread.join # wait on DRb thread to exit...

Now we try connecting with a simple client:

#!/usr/bin/ruby
hello_client.rb
require 'drb'

fetch service object and ask it to greet us...
hello_service = DRbObject.new_with_uri('druby://localhost:61676')
hello_service.hello($stdin, $stdout)

Unfortunately, that yields an error message. Obviously, $stdin and $stdout are local
resources that won’t be available from the remote service. We need to pass them by
proxy to get this working:

#!/usr/bin/ruby
hello_client2.rb
require 'drb'

DRb.start_service # make sure client can serve proxy objects...
and request that the streams be proxied
$stdin.extend DRbUndumped
$stdout.extend DRbUndumped

fetch service object and ask it to greet us...
hello_service = DRbObject.new_with_uri('druby://localhost:61676')
hello_service.hello($stdin, $stdout)

With that client, DRb has remote access to the streams (through the proxy objects)
and can read and write them as needed.

See Also
• Recipe 16.10, “Sharing a Hash Between Any Number of Computers”

• Eric Hodel’s “Introduction to DRb” covers DRbUndumped (http://segment7.net/
projects/ruby/drb/introduction.html)

• The DRb presentation by Mark Volkmann in the “Why Ruby?” repository at
http://rubyforge.org/docman/view.php/251/216/DistributedRuby.pdf has some
material on DRbUndumped

650 | Chapter 16: Web Services and Distributed Programming

16.16 Storing Data on Distributed RAM
with MemCached

Credit: Ben Bleything with Michael Granger

Problem
You need a lightweight, persistent storage space, and you have systems on your net-
work that have unused RAM.

Solution
memcached provides a distributed in-memory cache. When used with a Ruby client
library, it can be used to store almost any Ruby object. See the Discussion section
below for more information, and details of where to get memcached.

In this example, we’ll use Michael Granger’s Ruby-MemCache library, available as
the Ruby-MemCache gem.

Assume you have a memcached server running on the machine at IP address 10.0.1.201.
You can use the memcache gem to access the cache as though it were a local hash. This
Ruby code will store a string in the remote cache:

require 'rubygems'
require 'memcache'

MC = MemCache.new '10.0.1.201'

MC[:test] = 'This string lives in memcached!'

The string has been placed in your memcached with the key :test. You can fetch it
from a different Ruby session:

require 'rubygems'
require 'memcache'

MC = MemCache.new '10.0.1.201'

MC[:test] # => "This string lives in memcached!"

You can also place more complex objects in memcached. In fact, any object that can be
serialized with Marshal.dump can be placed in memcached. Here we store and retrieve a
hash:

hash = {
 :roses => 'are red',
 :violets => 'are blue'
}

MC[:my_hash] = hash
MC[:my_hash][:roses] # => "are red"

16.16 Storing Data on Distributed RAM with MemCached | 651

Discussion
memcached was originally designed to alleviate pressure on the database servers for
LiveJournal.com. For more information about how memcached can be used for this
kind of purpose, see Recipe 16.17.

memcached provides a lightweight, distributed cache space where the cache is held in
RAM. This makes the cache extremely fast, and it never blocks on disk I/O. When
effectively deployed, memcached can significantly reduce the load on your database
servers by farming out storage to unused RAM on other machines.

To start using memcached, you’ll need to download the server (see below). You can
install it from source, or get it via most *nix packaging systems.

Next, find some machines on your network that have extra RAM. Install memcached
on them, then start the daemon with this command:

$ memcached -d -m 1024

This starts up a memcached instance with a 1024-megabyte memory cache (you can, of
course, vary the cache size as appropriate for your hardware). If you run this com-
mand on the machine with IP address 10.0.1.201, you can then access it from other
machines on your local network, as in the examples above.

memcached also supports more advanced functions, such as conditional sets and expi-
ration times. You can also combine multiple machines into a single virtual cache. For
more information about these possibilities, refer to the memcached documentation and
to the documentation for the Ruby library that you’re using.

See Also
• Recipe 13.2, “Serializing Data with Marshal”

• Recipe 16.7, “Using a WSDL File to Make SOAP Calls Easier”

• The memcached homepage, located at http://danga.com/memcached/, contains fur-
ther information about memcached, documentation, and links to client libraries
for other languages; there is also a mailing list at http://lists.danga.com/mailman/
listinfo/memcached

• The Ruby-MemCache homepage is at http://deveiate.org/projects/RMemCache; if
you install Ruby-MemCache from source, you’ll also need to install IO::Reactor
(http://deveiate.org/projects/IO-Reactor)

• The Robot Co-op has released their own memcached library, memcache-client,
available at http://dev.robotcoop.com/Libraries/ or via the memcache-client gem; it
is reported to be API-compatible with Ruby-MemCache

652 | Chapter 16: Web Services and Distributed Programming

16.17 Caching Expensive Results with MemCached
Credit: Michael Granger with Ben Bleything

Problem
You want to transparently cache the results of expensive operations, so that code
that triggers the operations doesn’t need to know how to use the cache. The
memcached program, described in Recipe 16.16, lets you use other machines’ RAM to
store key-value pairs. The question is how to hide the use of this cache from the rest
of your code.

Solution
If you have the luxury of designing your own implementation of the expensive opera-
tion, you can design in transparent caching from the beginning. The following code
defines a get method that delegates to expensive_get if it can’t find an appropriate
value in the cache. In this case, the expensive operation that gets cached is the (rela-
tively inexpensive, actually) string reversal operation:

require 'rubygems'
require 'memcache'

class DataLayer

 def initialize(*cache_servers)
 @cache = MemCache.new(*cache_servers)
 end

 def get(key)
 @cache[key] ||= expensive_get(key)
 end
 alias_method :[], :get

 protected
 def expensive_get(key)
 # ...do expensive fetch of data for 'key'
 puts "Fetching expensive value for #{key}"
 key.to_s.reverse
 end
end

Assuming you’ve got a memcached server running on your local machine, you can use
this DataLayer as a way to cache the reversed versions of strings:

layer = DataLayer.new('localhost:11211')

3.times do
 puts "Data for 'foo': #{layer['foo']}"
end

16.17 Caching Expensive Results with MemCached | 653

Fetching expensive value for foo
Data for 'foo': oof
Data for 'foo': oof

Discussion
That’s the easy case. But you don’t always get the opportunity to define a data layer
from scratch. If you want to add memcaching to an existing data layer, you can cre-
ate a caching strategy and add it to your existing classes as a mixin.

Here’s a data layer, already written, that has no caching:

class MyDataLayer
 def get(key)
 puts "Getting value for #{key} from data layer"
 return key.to_s.reverse
 end
end

The data layer doesn’t know about the cache, so all of its operations are expensive.
In this instance, it’s reversing a string every time you ask for it:

layer = MyDataLayer.new

"Value for 'foo': #{layer.get('foo')}"
Getting value for foo from data layer
=> "Value for 'foo': oof"

"Value for 'foo': #{layer.get('foo')}"
Getting value for foo from data layer
=> "Value for 'foo': oof"

"Value for 'foo': #{layer.get('foo')}"
Getting value for foo from data layer
=> "Value for 'foo': oof"

Let’s improve performance a little by defining a caching mixin. It’ll wrap the get
method so that it only runs the expensive code (the string reversal) if the answer isn’t
already in the cache:

require 'memcache'

module GetSetMemcaching
 SERVER = 'localhost:11211'

 def self::extended(mod)
 mod.module_eval do
 alias_method :_ _uncached_get, :get
 remove_method :get

 def get(key)
 puts "Cached get of #{key.inspect}"
 get_cache()[key] ||= _ _uncached_get(key)
 end

654 | Chapter 16: Web Services and Distributed Programming

 def get_cache
 puts "Fetching cache object for #{SERVER}"
 @cache ||= MemCache.new(SERVER)
 end
 end
 super
 end

 def self::included(mod)
 mod.extend(self)
 super
 end
end

Once we mix GetSetMemcaching into our data layer, the same code we ran before will
magically start to use use the cache:

Mix in caching to the pre-existing class
MyDataLayer.extend(GetSetMemcaching)

"Value for 'foo': #{layer.get('foo')}"
Cached get of "foo"
Fetching cache object for localhost:11211
Getting value for foo from data layer
=> "Value for 'foo': oof"

"Value for 'foo': #{layer.get('foo')}"
Cached get of "foo"
Fetching cache object for localhost:11211
=> "Value for 'foo': oof"

"Value for 'foo': #{layer.get('foo')}"
Cached get of "foo"
Fetching cache object for localhost:11211
=> "Value for 'foo': oof"

The examples above are missing a couple features you’d see in real life. Their API is
very simple (just get methods), and they have no cache invalidation—items will stay
in the cache forever, even if the underlying data changes.

The same basic principles apply to more complex caches, though. When you need a
value that’s expensive to find or calculate, you first ask the cache for the value, keyed
by its identifying feature. The cache might map a SQL query to its result set, a pri-
mary key to the corresponding database object, an array of compound keys to the
corresponding database object, and so on. If the object is missing from the cache,
you fetch it the expensive way, and put it in the cache.

See Also
• The Ruby on Rails wiki has a page full of memcached examples at http://wiki.

rubyonrails.com/rails/pages/MemCached; this should give you more ideas on how
to use memcached to speed up your application

16.18 A Remote-Controlled Jukebox | 655

16.18 A Remote-Controlled Jukebox
What if you had a jukebox on your main computer that played random or selected
items from your music collection? What if you could search your music collection
and add items to the jukebox queue from a laptop in another room of the house?

Ruby can help you realize this super-geek dream—the software part, anyway. In this
recipe, I’ll show you how to write a jukebox server that can be programmed from
any computer on the local network.

The jukebox will consist of a client and a server. The server broadcasts its location to
a nearby Rinda server so clients on the local network can find it without knowing the
address. The client will look up the server with Rinda and then communicate with it
via DRb.

What features should the jukebox have? When there are no clients interfering with
its business, the server will pick random songs from a predefined playlist and play
them. It will call out to external Unix programs to play songs on the local com-
puter’s audio system (if you have a way of broadcasting songs through streaming
audio, say, an IceCast server, it could use that instead).

A client can query the jukebox, stop or restart it, or request that a particular song be
played. The jukebox will keep requests in a queue. Once it plays all the requests, it
will resume playing songs at random.

Since we’ll be running subprocesses to access the sound card on the computer that
runs the jukebox, the Jukebox object can’t be distributed to another machine.
Instead, we need to proxy it with DRbUndumped.

The first thing we need to do is start a RingServer somewhere on our local network.
Here’s a reprint of the RingServer program from Recipe 16.14:

#!/usr/bin/ruby
rinda_server.rb

require 'rinda/ring' # for RingServer
require 'rinda/tuplespace' # for TupleSpace

DRb.start_service

Create a TupleSpace to hold named services, and start running.
Rinda::RingServer.new(Rinda::TupleSpace.new)

DRb.thread.join

Here’s the jukebox server file. First, we’ll define the Jukebox server class, and set up
its basic behavior: to play its queue and pick randomly when the queue is empty.

#!/usr/bin/ruby -w
jukebox_server.rb
require 'drb'

656 | Chapter 16: Web Services and Distributed Programming

require 'rinda/ring'
require 'rinda/tuplespace'
require 'thread'
require 'find'

DRb.start_service

class Jukebox
 include DRbUndumped
 attr_reader :now_playing, :running

 def initialize(files)
 @files = files
 @songs = @files.keys
 @now_playing = nil
 @queue = []
 end

 def play_queue
 Thread.new(self) do
 @running = true
 while @running
 if @queue.empty?
 play songs[rand(songs.size)]
 else
 play @queue.shift
 end
 end
 end
 end

Next, we’ll write the methods that a client can use:
 # Adds a song to the queue. Returns the new size of the queue.
 def <<(song)
 raise ArgumentError, 'No such song' unless @files[song]
 @queue.push song
 return @queue.size
 end

 # Returns the current queue of songs.
 def queue
 return @queue.clone.freeze
 end

 # Returns the titles of songs that match the given regexp.
 def songs(regexp=/.*/)
 return @songs.grep(regexp).sort
 end

 # Turns the jukebox on or off.
 def running=(value)
 @running = value
 play_queue if @running
 end

16.18 A Remote-Controlled Jukebox | 657

Finally, here’s the code that actually plays a song, by calling out to a preinstalled pro-
gram—either mpg123 or ogg123, depending on the extension of the song file:

 private

 # Play the given through this computer's sound system, using a
 # previously installed music player.
 def play(song)
 @now_playing = song

 path = @files[song]
 player = path[-4..path.size] == '.mp3' ? 'mpg123' : 'ogg123'
 command = %{#{player} "#{path}"}
 # The player and path both come from local data, so it's safe to
 # untaint them.
 command.untaint
 system(command)
 end
end

Now we can use the Jukebox class in a script. This one treats ARGV as a list of directo-
ries. We descend each one looking for music files, and feed the results into a Jukebox:

if ARGV.empty?
 puts "Usage: #{__FILE_ _} [directory full of MP3s and/or OGGs] ..."
 exit
else
 songs = {}
 Find.find(*ARGV) do |path|
 if path =~ /\.(mp3|ogg)$/
 name = File.split(path)[1][0..-5]
 songs[name] = path
 end
 end
end

jukebox = Jukebox.new(songs)

So far there hasn’t been much distributed code, and there won’t be much total. But
we do need to register the Jukebox object with Rinda so that clients can find it:

Set safe before we start accepting connections from outside.
$SAFE = 1
puts "Registering..."
Register the Jukebox with the local RingServer, under its class name.
ring_server = Rinda::RingFinger.primary
ring_server.write([:name, :Jukebox, jukebox, "Remote-controlled jukebox"],
 Rinda::SimpleRenewer.new)

Start the jukebox running, and we’re in business:

jukebox.play_queue
DRb.thread.join

658 | Chapter 16: Web Services and Distributed Programming

Now we can query and manipulate the jukebox from an irb session on another
computer:

require 'rinda/ring'
require 'rinda/tuplespace'

DRb.start_service
ring_server = Rinda::RingFinger.primary
jukebox = ring_server.read([:name, :Jukebox, nil, nil])[2]

jukebox.now_playing # => "Chickadee"
jukebox.songs(/D/)
=> ["ID 3", "Don't Leave Me Here (Over There Would Be Fine)"]

jukebox << 'ID 3' # => 1
jukebox << "Attack of the Good Ol' Boys from Planet Honky-Tonk"
ArgumentError: No such song
jukebox.queue # => ["ID 3"]

But it’ll be easier to use if we write a real client program. Again, there’s almost no DRb
programming in the client, which is as it should be. Once we have the remote
Jukebox object, we can use it just like we would a local object.

First, we have some preliminary argument checking:

#!/usr/bin/ruby -w
jukebox_client.rb

require 'rinda/ring'

NO_ARG_COMMANDS = %w{start stop now-playing queue}
ARG_COMMANDS = %w{grep append grep-and-append}
COMMANDS = NO_ARG_COMMANDS + ARG_COMMANDS

def usage
 puts "Usage: #{__FILE_ _} [#{COMMANDS.join('|')}] [ARG]"
 exit
end

usage if ARGV.size < 1 or ARGV.size > 2

command = ARGV[0]
argument = nil
usage unless COMMANDS.index(command)

if ARG_COMMANDS.index(command)
 if ARGV.size == 1
 puts "Command #{command} takes an argument."
 exit
 else
 argument = ARGV[1]
 end

16.18 A Remote-Controlled Jukebox | 659

elsif ARGV.size == 2
 puts "Command #{command} takes no argument."
 exit
end

Next, the only distributed code in the client: the fetch of the Jukebox object from the
Rinda server.

DRb.start_service
ring_server = Rinda::RingFinger.primary

jukebox = ring_server.read([:name, :Jukebox, nil, nil])[2]

Now that we have the Jukebox object (rather, a proxy to the real Jukebox object on
the other computer), we can apply the user’s desired command to it:

case command
when 'start' then
 if jukebox.running
 puts 'Already running.'
 else
 jukebox.running = true
 puts 'Started.'
 end
when 'stop' then
 if jukebox.running
 jukebox.running = false
 puts 'Jukebox will stop after current song.'
 else
 puts 'Already stopped.'
 end
when 'now-playing' then
 puts "Currently playing: #{jukebox.now_playing}"
when 'queue' then
 jukebox.queue.each { |song| puts song }
when 'grep'
 jukebox.songs(Regexp.compile(argument)).each { |song| puts song }
when 'append' then
 jukebox << argument
 jukebox.queue.each { |song| puts song }
when 'grep-and-append' then
 jukebox.songs(Regexp.compile(argument)).each { |song| jukebox << song }
 jukebox.queue.each { |song| puts song }
end

Some obvious enhancements to this program:

• Combine the server with the ID3 parser from Recipe 6.17 to provide more reli-
able title information, as well as artist and other metadata.

• Make the ID3 metadata searchable, so that you can search for songs by a partic-
ular band.

• Make the @songs data structure capable of handling multiple distinct songs with
the same name.

660 | Chapter 16: Web Services and Distributed Programming

• Make the selection keep track of song history, so that it doesn’t choose to play
the same song twice in the row.

• Have the jukebox send its selections to a program that streams audio over the
network, rather than to programs that play the music locally. This way you can
listen to the jukebox from any computer in your house. Without this step, you
need to wire your whole house for sound, or have really loud speakers, or a
really small house (like mine).

See Also
• Recipe 6.17, “Processing a Binary File”

• Recipe 16.14, “Automatically Discovering DRb Services with Rinda”

• Recipe 16.15, “Proxying Objects That Can’t Be Distributed”

661

Chapter 17 CHAPTER 17

Testing, Debugging, Optimizing, and
Documenting17

The recipes in previous chapters focus on writing code to do what you want. This
chapter focuses on verifying that your code really works, and on fixing it when it
breaks. We start off simple and move to more advanced debugging techniques.

What happens when your program has a bug? The best-case scenario is that you dis-
cover the bug before it affects anyone, including other developers. That’s the goal of
unit tests (Recipe 17.7). Ruby and the Ruby community promote a philosophy of
writing automated tests as (or even before) you write the corresponding functional-
ity. At every stage of development, you know that your program works, and if you
make a change that breaks something, you know about it immediately. These tests
can replace much boring manual testing and bug hunting.

Suppose a bug slips past your tests, and you only discover it in production. How’s it
going to manifest itself? If you’re lucky, you’ll see an exception: a notification from
some piece of Ruby code that something is wrong.

Exceptions interrupt the normal flow of execution, and, if not handled, will crash the
program. The good news is that they give you a place in the code to start debugging.
It’s worse if a bug doesn’t cause an exception, because you’ll only notice its byprod-
ucts: corrupt data or even security violations. We show code for handling exceptions
(Recipes 17.3 and 17.4) and for creating your own (Recipe 17.2).

Successful debugging means reproducing the bug in an environment where you can
poke at it. This may mean dropping from a running program into an irb session
(Recipe 17.10), or it may be as simple as adding diagnostic messages that make the
program show its work (Recipe 17.1).

Even a program that has no noticeable bugs may run too slowly or use too many
resources. Ruby provides two tools for doing performance optimization: a profiler (Rec-
ipe 17.12) and a benchmarking suite (Recipe 17.13). It’s easy to create your own analy-
sis tools by writing a trace function that hooks into the Ruby interpreter as it runs. The
call graph tracker presented at chapter’s end (Recipe 17.15) exploits this feature.

662 | Chapter 17: Testing, Debugging, Optimizing, and Documenting

17.1 Running Code Only in Debug Mode

Problem
You want to print out debugging messages or run some sanity-checking code, but only
while you’re developing your application;, not when you’re running it in production.

Solution
Run the code only if the global variable $DEBUG is true. You can trigger debug mode
by passing in the --debug switch to the Ruby interpreter, or you can set the variable
$DEBUG to true within your code.

Here’s a Ruby program to divide two random numbers. It contains a trivial bug. It
usually runs to completion, but sometimes it crashes. A line of debug code has been
added to give some more visibility into the internal workings of the program:

#!/usr/bin/env ruby
divide.rb
numerator = rand(100)
denominator = rand(10)
$stderr.puts "Dividing #{numerator} by #{denominator}" if $DEBUG
puts numerator / denominator

When run with the --debug flag, the debug message is printed to standard error:

$./divide.rb --debug
Dividing 64 by 9
7

$./divide.rb --debug
Dividing 93 by 2
46

$./divide.rb --debug
Dividing 54 by 0
Exception `ZeroDivisionError' at divide_buggy.rb:6 - divided by 0
divide_buggy.rb:6:in `/': divided by 0 (ZeroDivisionError)
 from divide_buggy.rb:6

Once the bug is fixed, you can go back to running the script normally, and the debug
message won’t show up:

$./divide.rb
24

Discussion
This is a common technique when a “real” debugger is too much trouble. It’s usu-
ally used to send debug messages to standard error, but you can put any code at all
within a $DEBUG conditional. For instance, many Ruby libraries have their own

17.1 Running Code Only in Debug Mode | 663

“verbose”, “debug level”, or “debug mode” settings: you can choose to set these
other variables appropriately only when $DEBUG is true.

require 'fileutils'
FileUtils.cp('source', 'destination', $DEBUG)

If your code is running deep within a framework, you may not have immediate
access to the standard error stream of the process. You can always have your debug
code write to a temporary logfile, and monitor the file.

Use of $DEBUG costs a little speed, but except in tight loops it’s not noticeable. At the
cost of a little more speed, you can save yourself some typing by defining conve-
nience methods like this one:

def pdebug(str)
 $stderr.puts('DEBUG: ' + str) if $DEBUG
end

pdebug "Dividing #{numerator} by #{denominator}"

Once you’ve fixed the bug and you no longer need the debugging code, it’s better to
put it into a conditional than to simply remove it. If the problem recurs later, you’ll
find yourself adding the debugging code right back in.

Sometimes commenting out the debugging code is better than putting it into a condi-
tional. It’s more difficult to hunt down all the commented-out code, but you can
pick and choose which pieces of code to uncomment. With the $DEBUG technique, it’s
all or nothing.

It doesn’t have to be all or nothing, though. $DEBUG starts out a boolean but it doesn’t
have to stay that way: you can make it a numeric “debug level”. Instead of doing
something if $DEBUG, you can check whether $DEBUG is greater than a certain num-
ber. A very important piece of debug code might be associated with a debug level of
1; a relatively unused piece might have a debug level of 5. Setting $DEBUG to zero
would turn off debugging altogether.

Here are some convenience methods that make it easy to use $DEBUG as either a bool-
ean or a numeric value:

def debug(if_level)
 yield if ($DEBUG == true) || ($DEBUG && $DEBUG >= if_level)
end

def pdebug(str, if_level=1)
 debug(if_level) { $stderr.puts "DEBUG: " + str }
end

One final note: make sure that you put the --debug switch on the command line
before the name of your Ruby script. It’s an argument to the Ruby interpreter, not to
your script.

664 | Chapter 17: Testing, Debugging, Optimizing, and Documenting

See Also
• Recipe 17.5, “Adding Logging to Your Application,” demonstrates a named sys-

tem of debug levels; in fact, if your debug messages are mainly diagnostic, you
might want to implement them as log messages

17.2 Raising an Exception
Credit: Steve Arneil

Problem
An error has occurred and your code can’t keep running. You want to indicate the
error and let some other piece of code handle it.

Solution
Raise an exception by calling the Kernel#raise method with a description of the
error. Calling the raise method interrupts the flow of execution.

The following method raises an exception whenever it’s called. Its second message
will never be printed:

def raise_exception
 puts 'I am before the raise.'
 raise 'An error has occurred.'
 puts 'I am after the raise.'
end

raise_exception
I am before the raise.
RuntimeError: An error has occurred

Discussion
Here’s a method, inverse, that returns the inverse of a number x. It does some basic
error checking by raising an exception unless x is a number:

def inverse(x)
 raise "Argument is not numeric" unless x.is_a? Numeric
 1.0 / x
end

When you pass in a reasonable value of x, all is well:

inverse(2) # => 0.5

When x is not a number, the method raises an exception:

inverse('not a number')
RuntimeError: Argument is not numeric

17.2 Raising an Exception | 665

An exception is an object, and the Kernel#raise method creates an instance of an
exception class. By default, Kernel#raise creates an exception of RuntimeError class,
which is a subclass of StandardError. This in turn is a subclass of Exception, the
superclass of all exception classes. You can list all the standard exception classes by
starting a Ruby session and executing code like this:

ObjectSpace.each_object(Class) do |x|
 puts x if x.ancestors.member? Exception
end

This variant lists only the better-known exception classes:
ObjectSpace.each_object(Class) { |x| puts x if x.name =~ /Error$/ }
SystemStackError
LocalJumpError
EOFError
IOError
RegexpError
...

To raise an exception of a specific class, you can pass in the class name as an argu-
ment to raise. RuntimeError is kind of generic for the inverse method’s check against
x. The problem is there is actually a problem with one of the arguments passed into
the method. A more aptly named exception class for that check would be
ArgumentError:

def inverse(x)
 raise ArgumentError, 'Argument is not numeric' unless x.is_a? Numeric
 1.0 / x
end

To be even more specific about an error, you can define your own Exception subclass:
class NotInvertibleError < StandardError
end

The implementation of inverse method would then become:

def inverse(x)
 raise NotInvertibleError, 'Argument is not numeric' unless x.is_a? Numeric
 1.0 / x
end

inverse('not a number')
NotInvertibleError: Argument is not numeric

In some other programming languages, exceptions are “thrown.” In Ruby, they are
not thrown but “raised.” Ruby does have a Kernel#throw method, but it has nothing
to do with exceptions. See Recipe 7.8 for an example of throw, as opposed to raise.

See Also
• Recipe 7.8, “Stopping an Iteration”

• Recipe 17.2, “Raising an Exception”

• Recipe 17.3, “Handling an Exception”

666 | Chapter 17: Testing, Debugging, Optimizing, and Documenting

17.3 Handling an Exception
Credit: Steve Arneil

Problem
You want to handle or recover from a raised exception.

Solution
Rescue the exception with a begin/rescue block. The code you put into the rescue
clause should handle the exception and allow the program to continue executing.

This code demonstrates the rescue clause:

def raise_and_rescue
 begin
 puts 'I am before the raise.'
 raise 'An error has occurred.'
 puts 'I am after the raise.'
 rescue
 puts 'I am rescued!'
 end
 puts 'I am after the begin block.'
end

raise_and_rescue
I am before the raise.
I am rescued!
I am after the begin block.

The exception doesn’t stop the program from running to completion, but the code
that was interrupted by the exception never gets run. Once the exception is handled,
execution continues immediately after the begin block that spawned it.

Discussion
You can handle an exception with a rescue block if you know how to recover from
the exception, if you want to display it in a nonstandard way, or if you know that the
exception is not really a problem. You can solve the problem, present it to the end
user, or just ignore it and forge ahead.

By default, a rescue clause rescues exceptions of class StandardError or its sub-
classes. Mentioning a specific class in a rescue statement will make it rescue excep-
tions of that class and its subclasses.

Here’s a method, do_it, that calls the Kernel#eval method to run some Ruby code
passed to it. If the code cannot be run (because it’s not valid Ruby), eval raises an
exception—a SyntaxError. This exception is not a subclass of StandardError; it’s a
subclass of ScriptError, which is a subclass of Exception.

17.3 Handling an Exception | 667

def do_it(code)
 eval(code)
rescue
 puts "Cannot do it!"
end

do_it('puts 1 + 1')
2

do_it('puts 1 +')
SyntaxError: (eval):1:in `do_it': compile error

That rescue block never gets called because SyntaxError is not a subclass of
StandardError. We need to tell our rescue block to rescue us from SyntaxError, or
else from one of its superclasses, ScriptError and Exception:

def do_it(code)
 eval(code)
rescue SyntaxError
 puts "Cannot do it!"
end

do_it('puts 1 +')
Cannot do it!

You can stack rescue clauses in a begin/rescue block. Exceptions not handled by one
rescue clause will trickle down to the next:

begin
 # ...
rescue OneTypeOfException
 # ...
rescue AnotherTypeOfException
 # ...
end

If you want to interrogate a rescued exception, you can map the Exception object to a
variable within the rescue clause. Exception objects have useful methods like message
and backtrace:

begin
 raise 'A test exception.'
rescue Exception => e
 puts e.message
 puts e.backtrace.inspect
end
["(irb):33:in `irb_binding'",
"/usr/lib/ruby/1.8/irb/workspace.rb:52:in `irb_binding'",
":0"]

You can also use the special variable $! within a rescue block to refer to the most
recently raised Exception. If you do a require 'English', you can use the $ERROR_INFO
variable, which is easier to remember.

668 | Chapter 17: Testing, Debugging, Optimizing, and Documenting

require 'English'
begin
 raise 'Another test exception.'
rescue Exception
 puts $!.message
 puts $ERROR_INFO.message
end
Another test exception.
Another test exception.

Since $! is a global variable, and might be changed at any time by another thread, it’s
safer to map each Exception object you rescue to an object.

See Also
• Recipe 17.2, “Raising an Exception”

• Recipe 17.4, “Rerunning After an Exception”

17.4 Rerunning After an Exception
Credit: Steve Arneil

Problem
You want to rerun some code that raised an exception, having (hopefully) fixed the
problem that caused it in the first place.

Solution
Retry the code that failed by executing a retry statement within a rescue clause of a
code block. retry reruns the block from the beginning.

Here’s a demonstration of the retry statement. The first time the code block runs, it
raises an exception. The exception is rescued, the problem is “fixed,” and the code
runs to completion the second time:

def rescue_and_retry
 error_fixed = false
 begin
 puts 'I am before the raise in the begin block.'
 raise 'An error has occurred!' unless error_fixed
 puts 'I am after the raise in the begin block.'
 rescue
 puts 'An exception was thrown! Retrying...'
 error_fixed = true
 retry
 end
 puts 'I am after the begin block.'
end

17.5 Adding Logging to Your Application | 669

rescue_and_retry
I am before the raise in the begin block.
An exception was thrown! Retrying...
I am before the raise in the begin block.
I am after the raise in the begin block.
I am after the begin block.

Discussion
Here’s a method, check_connection, that checks if you are connected to the Internet. It
will try to connect to a url up to max_tries times. This method uses a retry clause to
retry connecting until it successfully completes a connection, or until it runs out of tries:

require 'open-uri'

def check_connection(max_tries=2, url='http://www.ruby-lang.org/')
 tries = 0
 begin
 tries += 1
 puts 'Checking connection...'
 open(url) { puts 'Connection OK.' }
 rescue Exception
 puts 'Connection not OK!'
 retry unless tries >= max_tries
 end
end

check_connection
Checking connection...
Connection OK.

check_connection(2, 'http://this.is.a.fake.url/')
Checking connection...
Connection not OK!
Checking connection...
Connection not OK!

See Also
• Recipe 17.2, “Raising an Exception”

• Recipe 17.3, “Handling an Exception”

17.5 Adding Logging to Your Application

Problem
You want to make your application log events or diagnostic data to a file or stream.
You want verbose logging when your application is in development, and more taci-
turn logging when in production.

670 | Chapter 17: Testing, Debugging, Optimizing, and Documenting

Solution
Use the logger library in the Ruby standard library. Use its Logger class to send log-
ging data to a file or other output stream.

In most cases, you’ll share a single Logger object throughout your application, as a
global variable or module constant:

require 'logger'
$LOG = Logger.new($stderr)

You can then call the instance methods of Logger to send messages to the log at vari-
ous levels of severity. From least to most severe, the instance methods are
Logger#debug, Logger#info, Logger#warn, Logger#error, and Logger#fatal.

This code uses the application’s logger to print a debugging message, and (at a
higher severity) as part of error-handling code.

def divide(numerator, denominator)
 $LOG.debug("Numerator: #{numerator}, denominator #{denominator}")
 begin
 result = numerator / denominator
 rescue Exception => e
 $LOG.error "Error in division!: #{e}"
 result = nil
 end
 return result
end

divide(10, 2)
D, [2006-03-31T19:35:01.043938 #18088] DEBUG -- : Numerator: 10, denominator 2
=> 5

divide(10, 0)
D, [2006-03-31T19:35:01.045230 #18088] DEBUG -- : Numerator: 10, denominator 0
E, [2006-03-31T19:35:01.045495 #18088] ERROR -- : Error in division!: divided by 0
=> nil

To change the log level, simply assign the appropriate constant to level:

$LOG.level = Logger::ERROR

Now our logger will ignore all log messages except those with severity ERROR or FATAL:

divide(10, 2)
=> 5

divide(10, 0)
E, [2006-03-31T19:35:01.047861 #18088] ERROR -- : Error in division!: divided by 0
=> nil

Discussion
Ruby’s standard logging system works like Java’s oft-imitated Log4J. The Logger
object centralizes all the decisions about whether a particular message is important

17.5 Adding Logging to Your Application | 671

enough to be written to the log. When you write code, you simply assume that all
the messages will be logged. At runtime, you can get a more or a less verbose log by
changing the log level. A production application usually has a log level of Logger::
INFO or Logger::WARN.

The DEBUG log level is useful for step-by-step diagnostics of a complex task. The ERROR
level is often used when handling exceptions: if the program can’t solve a problem, it
logs the exception rather than crash and expects a human administrator to deal with
it. The FATAL level should only be used when the program cannot recover from a
problem, and is about to crash or exit.

If your log is being stored in a file, you can have Logger rotate or replace the log file
when it get too big, or once a certain amount of time has elapsed:

Keep data for the current month only
Logger.new('this_month.log', 'monthly')

Keep data for today and the past 20 days.
Logger.new('application.log', 20, 'daily')

Start the log over whenever the log exceeds 100 megabytes in size.
Logger.new('application.log', 0, 100 * 1024 * 1024)

If the default log entries are too verbose for you, you have a couple of options. The
simplest is to set datetime_format to a more concise date format. This code gets rid of
the milliseconds:

$LOG.datetime_format = '%Y-%m-%d %H:%M:%S'
$LOG.error('This is a little shorter.')
E, [2006-03-31T19:35:01#17339] ERROR -- : This is a little shorter.

If that’s not enough for you, you can replace the call method that formats a mes-
sage for the log:

class Logger
 class Formatter
 Format = "%s [%s] %s %s\n"
 def call(severity, time, progname, msg)
 Format % [severity, format_datetime(time), progname, msg]
 end
 end
end

$LOG.error('This is much shorter.')
ERROR [2006-03-31T19:35:01.058646] This is much shorter.

See Also
• The standard library documentation for the logger library

672 | Chapter 17: Testing, Debugging, Optimizing, and Documenting

17.6 Creating and Understanding Tracebacks

Problem
You are debugging a program, and need to understand the stack traces that come
with Ruby exceptions. Or you need to see which path the Ruby interpreter took to
get to a certain line of code.

Solution
You can call the Kernel#caller method at any time to look at the Ruby interpreter’s
current call stack. The call stack is represented as a list of strings.

This Ruby program simulates a company with a top-down management style: one
method delegates to another, which calls yet another. The method at the bottom can
use caller to look upwards and see the methods that called it:

1 #!/usr/bin/ruby -w
2 # delegation.rb
3 class CEO
4 def CEO.new_vision
5 Manager.implement_vision
6 end
7 end
8
9 class Manager

10 def Manager.implement_vision
11 Engineer.do_work
12 end
13 end
14
15 class Engineer
16 def Engineer.do_work
17 puts 'How did I get here?'
18 first = true
19 caller.each do |c|
20 puts %{#{(first ? 'I' : ' which')} was called by "#{c}"}
21 first = false
22 end
23 end
24 end
25
26 CEO.new_vision

Running this program illustrates the path the interpreter takes to Engineer.do_work:

$./delegation.rb
How did I get here?
I was called by "delegation.rb:11:in `implement_vision'"
 which was called by "delegation.rb:5:in `new_vision'"
 which was called by "delegation.rb:26"

17.6 Creating and Understanding Tracebacks | 673

Discussion
Each string in a traceback shows which line of Ruby code made some method call.
The first bit of the traceback given above shows that Engineer.do_work was called by
Manager.implement_vision on line 11 of the program. The second line shows how
Manager.implement_vision was called, and so on.

Remember the stack trace displayed when a Ruby script raises an exception? It’s the
same one you can get any time by calling Kernel#caller. In fact, if you rescue an
exception and assign it to a variable, you can get its traceback as an array of strings—
the equivalent of calling caller on the line that triggered the exception:

def raise_exception
 raise Exception, 'You wanted me to raise an exception, so...'
end

begin
 raise_exception
rescue Exception => e
 puts "Backtrace of the exception:\n #{e.backtrace.join("\n ")}"
end
Backtrace of the exception:
(irb):2:in `raise_exception'
(irb):5:in `irb_binding'
/usr/lib/ruby/1.8/irb/workspace.rb:52:in `irb_binding'
:0

Note the slight differences between a backtrace generated from a Ruby script and
one generated during an irb session.

If you’ve used languages like Python, you might long for “real” backtrace objects.
About the best you can do is to parse the strings of a Ruby backtrace with a regular
expression. The parse_caller method below extracts the files, lines, and method
names from a Ruby backtrace. It works in both Ruby programs and irb sessions.

CALLER_RE = /(.*):([0-9]+)(:in \`(.*)')?/
def parse_caller(l)
 l.collect do |c|
 captures = CALLER_RE.match(c)
 [captures[1], captures[2], captures[4]]
 end
end

begin
 raise_exception
rescue Exception => e
 puts "Exception history:"
 first = true
 parse_caller(e.backtrace).each do |file, line, method|
 puts %{ #{first ? "L" : "because l"}ine #{line} in "#{file}"} +
 %{ called "#{method}" }
 first = false

674 | Chapter 17: Testing, Debugging, Optimizing, and Documenting

 end
end
Exception history:
Line 2 in "(irb)" called "raise_exception"
because line 24 in "(irb)" called "irb_binding"
because line 52 in "/usr/lib/ruby/1.8/irb/workspace.rb" called "irb_binding"
because line 0 in "" called ""

See Also
• Recipe 17.3, “Handling an Exception”

17.7 Writing Unit Tests
Credit: Steve Arneil

Problem
You want to write some unit tests for your software, to guarantee its correctness now
and in the future.

Solution
Use Test::Unit, the Ruby unit testing framework, from the Ruby standard library.

Consider a simple class for storing the name of a person. The Person class shown
below stores a first name, a last name, and an age: a person’s full name is available as
a computed value. This code might go into a Ruby script called app/person.rb:

app/person.rb
class Person
 attr_accessor :first_name, :last_name, :age

 def initialize(first_name, last_name, age)
 raise ArgumentError, "Invalid age: #{age}" unless age > 0
 @first_name, @last_name, @age = first_name, last_name, age
 end

 def full_name
 first_name + ' ' + last_name
 end
end

Now, let’s write some unit tests for this class. By convention, these would go into the
file test/person_test.rb.

First, require the Person class itself and the Test::Unit framework:

test/person_test.rb
require File.join(File.dirname(__FILE_ _), '..', 'app', 'person')
require 'test/unit'

17.7 Writing Unit Tests | 675

Next, extend the framework class Test::Unit::TestCase with a class to contain the
actual tests. Each test should be written as a method of the test class, and each test
method should begin with the prefix test. Each test should make one or more asser-
tions: statements about the code which must be true for the code to be correct.
Below are three test methods, each making one assertion:

class PersonTest < Test::Unit::TestCase
 def test_first_name
 person = Person.new('Nathaniel', 'Talbott', 25)
 assert_equal 'Nathaniel', person.first_name
 end

 def test_last_name
 person = Person.new('Nathaniel', 'Talbott', 25)
 assert_equal 'Talbott', person.last_name
 end

 def test_full_name
 person = Person.new('Nathaniel', 'Talbott', 25)
 assert_equal 'Nathaniel Talbott', person.full_name
 end

 def test_age
 person = Person.new('Nathaniel', 'Talbott', 25)
 assert_equal 25, person.age
 assert_raise(ArgumentError) { Person.new('Nathaniel', 'Talbott', -4) }
 assert_raise(ArgumentError) { Person.new('Nathaniel', 'Talbott', 'four') }
 end
end

This code is somewhat redundant; see below for a way to fix that issue. For now,
let’s run our four tests, by running person_test.rb as a script:

$ ruby test/person_test.rb
Loaded suite test/person_test
Started
....
Finished in 0.008837 seconds.

4 tests, 6 assertions, 0 failures, 0 errors

Great! All the tests passed.

Discussion
The PersonTest class defined above works, but it’s got some redundant and ineffi-
cient code. Each of the four tests starts by creating a Person object, but they could all
share the same Person object. The test_age method needs to create some additional,
invalid Person objects to verify the error checking, but there’s no reason why it can’t
share the same “normal” Person object as the other three test methods.

Test::Unit makes it possible to refactor shareable code into a method named setup.
If a test class has a setup method, it will be called before any of the assertion

676 | Chapter 17: Testing, Debugging, Optimizing, and Documenting

methods. Conversely, any clean-up code that is required after each test method runs
can be placed in a method named teardown.

Here’s a new implementation of PersonTest that uses setup and class constants to
remove the duplicate code:

person2.rb
require File.join(File.dirname(__FILE_ _), '..', 'app', 'person')
require 'test/unit'

class PersonTest < Test::Unit::TestCase
 FIRST_NAME, LAST_NAME, AGE = 'Nathaniel', 'Talbott', 25

 def setup
 @person = Person.new(FIRST_NAME, LAST_NAME, AGE)
 end

 def test_first_name
 assert_equal FIRST_NAME, @person.first_name
 end

 def test_last_name
 assert_equal LAST_NAME, @person.last_name
 end

 def test_full_name
 assert_equal FIRST_NAME + ' ' + LAST_NAME, @person.full_name
 end

 def test_age
 assert_equal 25, @person.age
 assert_raise(ArgumentError) { Person.new(FIRST_NAME, LAST_NAME, -4) }
 assert_raise(ArgumentError) { Person.new(FIRST_NAME, LAST_NAME, 'four') }
 end
end

There are lots of assertion methods besides the assert_equal and assert_raise
method used in the test classes above: assert_not_equal, assert_nil, and more
exotic methods like assert_respond_to. All the assertion methods are defined in the
Test::Unit::Assertions module, which is mixed into the Test::Unit::TestCase class.

The simplest assertion method is just plain assert. It causes the test method to fail
unless it’s passed a value other than false or nil:

def test_first_name
 assert(FIRST_NAME == @person.first_name)
end

assert is the most basic assertion method. All the other assertion methods can be
defined in terms of it:

def assert_equal(expected, actual)
 assert(expected == actual)
end

17.8 Running Unit Tests | 677

So, if you can’t decide (or remember) which particular assertion method to use, you
can always use assert.

See Also
• ri Test::Unit

• The documentation for the Test::Unit library is also online at http://www.ruby-
doc.org/stdlib/libdoc/test/unit/rdoc/index.html

• Recipe 15.22, “Unit Testing Your Web Site”

• Recipe 17.8, “Running Unit Tests”

• Recipe 19.1, “Automatically Running Unit Tests”

17.8 Running Unit Tests
Credit: Steve Arneil

Problem
You want to run some or all of the unit tests you’ve written.

Solution
This solution uses the example test class PersonTest from the previous recipe, Rec-
ipe 17.7. In that scenario, this code lives in a file test/person_test.rb, and the code
to be tested lives in app/person.rb. Here’s test/person_test.rb again:

person_test.rb
require File.join(File.dirname(__FILE_ _), '..', 'app', 'person')
require 'test/unit'

class PersonTest < Test::Unit::TestCase
 FIRST_NAME, LAST_NAME, AGE = 'Nathaniel', 'Talbott', 25

 def setup
 @person = Person.new(FIRST_NAME, LAST_NAME, AGE)
 end

 def test_first_name
 assert_equal FIRST_NAME, @person.first_name
 end

 def test_last_name
 assert_equal LAST_NAME, @person.last_name
 end

 def test_full_name
 assert_equal FIRST_NAME + ' ' + LAST_NAME, @person.full_name
 end

678 | Chapter 17: Testing, Debugging, Optimizing, and Documenting

 def test_age
 assert_equal 25, @person.age
 assert_raise(ArgumentError) { Person.new(FIRST_NAME, LAST_NAME, -4) }
 assert_raise(ArgumentError) { Person.new(FIRST_NAME, LAST_NAME, 'four') }
 end
end

As seen in the previous recipe, the simplest solution is to run the script that contains
the tests as a Ruby script:

$ ruby test/person_test.rb
Loaded suite test/person_test
Started
....
Finished in 0.008955 seconds.

4 tests, 6 assertions, 0 failures, 0 errors

But the person_test.rb script also accepts command-line arguments. You can use the
--name option to choose which test methods to run, and the --verbose option to
print each test method as it’s run:

$ ruby test/person_test.rb --verbose --name test_first_name \
 --name test_last_name
Loaded suite test/person_test
Started
test_first_name(PersonTest): .
test_last_name(PersonTest): .

Finished in 0.012567 seconds.

2 tests, 2 assertions, 0 failures, 0 errors

Discussion
How do the tests run when person_test.rb doesn’t appear to do anything but define
a class? How can person_test.rb accept command-line arguments? We wrote that
file, and we didn’t put in any command-line parsing code.

It all happens behind the scenes. When we required the Test::Unit framework, it
passed a block into the method method Kernel#at_exit. This block is guaranteed to
be called before the Ruby interpreter exits. It looks like this:

$ tail -5 /usr/local/lib/ruby/1.8/test/unit.rb
at_exit do
 unless $! || Test::Unit.run?
 exit Test::Unit::AutoRunner.run
 end
end

Once the code in person_test.rb defines its test class, the Ruby interpreter exits: but
first, it runs that block, which triggers the AutoRunner test runner. This does the com-
mand-line parsing, the execution of the tests in PersonTest, and all the rest of it.

17.9 Testing Code That Uses External Resources | 679

Here are a few more helpful options to a unit test script.

The --name option can be used with a regular expression to choose the test methods
to run.

$ ruby test/person_test.rb --verbose --name '/test_f/'
Loaded suite test/person_test
Started
test_first_name(PersonTest): .
test_full_name(PersonTest): .

Finished in 0.014891 seconds.

2 tests, 2 assertions, 0 failures, 0 errors

The Test::Unit framework can be also be loaded alone to run tests in the current
directory and its subdirectories. Use the --pattern option with a regular expression
to select the test files to run:

$ ruby -rtest/unit -e0 -- --pattern '/_test/'
Loaded suite .
Started
...
Finished in 0.009329 seconds.

4 tests, 6 assertions, 0 failures, 0 errors

To list all the available Test::Unit options, use the --help option:

$ ruby test/person_test.rb --help

Additional options are available when the Test::Unit framework is run standalone.
Again, use the --help option:

$ ruby -rtest/unit -e0 -- --help

See Also
• ri Test::Unit

• Recipe 15.22, “Unit Testing Your Web Site”

• Recipe 17.7, “Writing Unit Tests”

• Recipe 19.1, “Automatically Running Unit Tests”

17.9 Testing Code That Uses External Resources
Credit: John-Mason Shackelford

Problem
You want to test code without triggering its real-world side effects. For instance, you
want to test a piece of code that makes an expensive network connection, or irrevers-
ibly modifies a file.

680 | Chapter 17: Testing, Debugging, Optimizing, and Documenting

Solution
Sometimes you can set up an alternate data source to use for testing (Rails does this
for the application database), but doing that makes your tests slower and imposes a
setup burden on other developers. Instead, you can use Jim Weirich’s FlexMock
library, available as the flexmock gem.

Here’s some code that performs a destructive operation on a live data source:

class VersionControlMaintenance

 DAY_SECONDS = 60 * 60 * 24

 def initialize(vcs)
 @vcs = vcs
 end

 def purge_old_labels(age_in_days)
 @vcs.connect
 old_labels = @vcs.label_list.select do |label|
 label['date'] <= Time.now - age_in_days * DAY_SECONDS
 end
 @vcs.label_delete(*old_labels.collect{|label| label['name']})
 @vcs.disconnect
 end
end

This code would be difficult to test by conventional means, with the vcs variable
pointing to a live version control repository. But with FlexMock, it’s simple to define
a mock vcs object that can impersonate a real one.

Here’s a unit test for VersionControlMaintenance#purge_old_labels that uses Flex-
Mock, instead of modifying a real version control repository. First, we set up some
dummy labels:

require 'rubygems'
require 'flexmock'
require 'test/unit'

class VersionControlMaintenanceTest < Test::Unit::TestCase

 DAY_SECONDS = 60 * 60 * 24
 LONG_AGO = Time.now - DAY_SECONDS * 3
 RECENT = Time.now - DAY_SECONDS * 1
 LABEL_LIST = [
 { 'name' => 'L1', 'date' => LONG_AGO },
 { 'name' => 'L2', 'date' => RECENT }
]

We use FlexMock to define an object that expects a certain series of method calls:

 def test_purge
 FlexMock.use("vcs") do |vcs|
 vcs.should_receive(:connect).with_no_args.once.ordered

17.9 Testing Code That Uses External Resources | 681

 vcs.should_receive(:label_list).with_no_args.
 and_return(LABEL_LIST).once.ordered

 vcs.should_receive(:label_delete).
 with('L1').once.ordered

 vcs.should_receive(:disconnect).with_no_args.once.ordered

Then we pass our mock object into the class we want to test, and call purge_old_
labels normally:

 v = VersionControlMaintenance.new(vcs)
 v.purge_old_labels(2)

 # The mock calls will be automatically varified as we exit the
 # @FlexMock.use@ block.
 end
 end
end

Discussion
FlexMock lets you script the behavior of an object so that it acts like the object you
don’t want to actually call. To set up a mock object, call FlexMock.use, passing in a
textual label for the mock object, and a code block. Within the code block, call
should_receive to tell the mock object to expect a call to a certain method.

You can then call with to specify the arguments the mock object should expect on
that method call, and call and_returns to specify the return value. A call to #once
indicates that the tested code should call the method only one time, and #ordered
indicates that the tested code must call these mock methods in the order in which
they are defined.

After the code block is executed, FlexMock verifies that the mock object’s expecta-
tions were met. If they weren’t (the methods weren’t called in the right order, or
they were called with the wrong arguments), it raises a TestFailedError as any
Test::Unit assertion would.

The example above tells Ruby how we expect purge_old_labels to work. It should
call the version control system’s connect method, and then label_list. When this
happens, the mock object returns some dummy labels. The code being tested is then
expected to call label_delete with “L1” as the sole parameter.

This is the crucial point of this test. If purge_old_labels is broken, it might decide to
pass both “L1” and “L2” into label_delete (even though “L2” is too recent a label to
be deleted). Or it might decide not to call label_delete at all (even though “L1” is an
old label that ought to be deleted). Either way, FlexMock will notice that purge_old_
labels did not behave as expected, and the test will fail. This works without you hav-
ing to write any explicit Test::Unit assertions.

682 | Chapter 17: Testing, Debugging, Optimizing, and Documenting

FlexMock lives up to its name. Not only can you tell a mock object to expect a given
method call is expected once and only once, you have a number of other options,
summarized in Tables 17-1 and 17-2.

Both the at_least and at_most modifiers may be specified on the same expectation.

Besides listing a mock method’s expected parameters using with(arglist), you can
also use with_any_args (the default) and with_no_args. With should_ignore_missing,
you can indicate that it’s okay for the tested code to call methods that you didn’t
explicitly define on the mock object. The mock object will respond to the undefnied
method, and return nil.

Especially handy is FlexMock’s support for specifying return values as a block. This
allows us to simulate an exception, or complex behavior on repeated invocations.

Simulate an exception in the mocked object.
mock.should_receive(:connect).and_return{ raise ConnectionFailed.new }

Simulate a spotty connection: the first attempt fails
but when the exception handler retries, we connect.
i = 0
mock.should_receive(:connect).twice.
 and_return{ i += 1; raise ConnectionFailed.new unless i > 1 }
end

Test-driven development usually produces a design that makes it easy to substitute
mock objects for external dependencies. But occasionally, circumstances call for spe-
cial magic. In such cases Jim Weirich’s class_intercepter.rb is a welcome ally.

The class below instantiates an object which connects to an external data source. We
can’t touch this data source when we’re testing the code.

Table 17-1. From the RDoc

Specifier Meaning Modifiers allowed?

zero_or_more_times Declares that the message may be sent zero or more
times (default, equivalent to at_least.never)

No

once Declares that the message is only sent once Yes

twice Declares that the message is only sent twice Yes

never Declares that the message is never sent Yes

times(n) Declares that the message is sent n times Yes

Table 17-2. From the RDoc

Modifier Meaning

at_least Modifies the immediately following message count declarator to mean that the message must be sent at
least that number of times; for instance, at_least.once means that the message is expected at least
once but may be sent more than once

at_most Similar to at_least, but puts an upper limit on the number of messages

17.9 Testing Code That Uses External Resources | 683

class ChangeHistoryReport
 def date_range(label1, label2)
 vc = VersionControl.new
 vc.connect
 dates = [label1, label2].collect do |label|
 vc.fetch_label(label).files.sort_by{|f|f['date']}.last['date']
 end
 vc.disconnect
 return dates
 end
end

How can we test this code? We could refactor it—introduce a factory or a depen-
dency injection scheme. Then we could substitute in a mock object (although in this
case, we’d simply move the complex operations to another method). But if we are
sure we “aren’t going to need it” (as the saying goes) and since we are programming
in Ruby and not a less flexible language, we can test the code as is.

As before, we call FlexMock.use to define a mock object:

require 'class_intercepter'
require 'test/unit'
class ChangeHistoryReportTest < Test::Unit::TestCase
 def test_date_range
 FlexMock.use('vc') do |vc|
 # initialize the mock
 vc.should_receive(:connect).once.ordered
 vc.should_receive(:fetch_label).with(LABEL1).once.ordered
 vc.should_receive(:fetch_label).with(LABEL2).once.ordered
 vc.should_receive(:disconnect).once.ordered
 vc.should_receive(:new).and_return(vc)

Here’s the twist: we reach into the ChangeHistoryReport class and tell it to use our
mock class whenever it wants to use the VersionControl class:

ChangeHistoryReport.use_class(:VersionControl, vc) do

Now we can use a ChangeHistoryReport object without worrying that it will operate
against any real version control repository. As before, the FlexMock framework takes
care of making the actual assertions.

 c = ChangeHistoryReport.new
 c.date_range(LABEL1, LABEL2)
 end
 end
 end
end

See Also
• The FlexMock generated RDoc (http://onestepback.org/software/flexmock/)

• class_intercepter.rb (http://onestepback.org/articles/depinj/ci/class_intercepter_
rb.html)

684 | Chapter 17: Testing, Debugging, Optimizing, and Documenting

• Alternatives to FlexMock include RSpec (http://rspec.rubyforge.org/) and Test::
Unit::Mock (http://www.deveiate.org/projects/Test-Unit-Mock/)

• Jim Weirich’s presentation on Dependency Injection is closely related to testing
with mock objects (http://onestepback.org/articles/depinj/)

• Kent Beck’s classic Test Driven Development: By Example (Addison-Wesley) is a
must read; even the seasoned TD developer will benefit from Kent’s helpful pat-
terns section at the back of the book

17.10 Using breakpoint to Inspect and Change
the State of Your Application

Problem
You’re debugging an application, and would like to be able to stop the program at
any point and inspect the application’s state (variables, data structures, etc.). You’d
also like to be able to modify the application’s state before restarting it.

Solution
Use the breakpoint library, available as the ruby-breakpoint gem.

Once you require 'breakpoint', you can call the breakpoint method from anywhere
in your application. When the execution hits the breakpoint call, the application
turns into an interactive Ruby session.

Here’s a short Ruby program:

#!/usr/bin/ruby -w
breakpoint_test.rb
require 'rubygems'
require 'breakpoint'

class Foo
 def initialize(init_value)
 @instance_var = init_value
 end

 def bar
 test_var = @instance_var
 puts 'About to hit the breakpoint!'
 breakpoint
 puts 'HERE ARE SOME VARIABLES:'
 puts "test_var: #{test_var}, @instance_var: #{@instance_var}"
 end
end

f = Foo.new('When in the course')
f.bar

17.10 Using breakpoint to Inspect and Change the State of Your Application | 685

When you run the application, you quickly hit the call to breakpoint in Foo#bar. This
drops you into an irb session:

$ ruby breakpoint_test.rb
About to hit the breakpoint!
Executing break point at breakpoint_test.rb:14 in `bar'
irb(#<Foo:0xb7452464>):001:0>

Once you quit the irb session, the program continues on its way:

irb(#<Foo:0xb7452a18>):001:0> quit
HERE ARE SOME VARIABLES:
test_var: When in the course, @instance_var: When in the course

But there’s a lot you can do within that irb session before you quit. You can look at
the array local_variables, which enumerates all variables local to the current
method. You can also look at and modify any of the variables that are currently in
scope, including instance variables, class variables, and globals:

$ ruby breakpoint_test.rb
About to hit the breakpoint!
Executing break point at breakpoint_test.rb:14 in `bar'
irb(#<Foo:0xb7452464>):001:0> local_variables
=> ["test_var", "_"]
irb(#<Foo:0xb7452428>):002:0> test_var
=> "When in the course"
irb(#<Foo:0xb7452428>):003:0> @instance_var
=> "When in the course"
irb(#<Foo:0xb7452428>):004:0> @instance_var = 'of human events'
=> "of human events"

As before, once you quit the irb session, the program continues running:

irb(#<Foo:0xb7452428>):005:0> quit
HERE ARE SOME VARIABLES:
test_var: When in the course, @instance_var: of human events

Because we changed the variable @instance_variable within our breakpoint, the puts
in the program reports the new value after we leave the breakpoint session.

Discussion
There is another way to access a breakpoint. Instead of calling breakpoint directly,
you can pass a code block into assert. If the block evaluates to false, assert exe-
cutes a breakpoint. Let’s say you want to execute a breakpoint only if the instance
variable @instance_variable has a certain value. Here’s how:

#!/usr/bin/ruby -w
breakpoint_test_2.rb
require 'rubygems'
require 'breakpoint'

class Foo
 def initialize(init_value)

686 | Chapter 17: Testing, Debugging, Optimizing, and Documenting

 @instance_var = init_value
 end

 def bar
 test_var = @instance_var
 puts 'About to hit the breakpoint! (maybe)'
 assert { @instance_var == 'This is another fine mess' }
 puts 'HERE ARE SOME VARIABLES:'
 puts "test_var: #{test_var}, @instance_var: #{@instance_var}"
 end
end

Foo.new('When in the course').bar # This will NOT cause a breakpoint
Foo.new('This is another fine mess').bar # This will NOT cause a breakpoint

$ ruby breakpoint_test_2.rb
About to hit the breakpoint! (maybe)
HERE ARE SOME VARIABLES:
test_var: When in the course, @instance_var: When in the course
About to hit the breakpoint! (maybe)
Assert failed at breakpoint_test_2.rb:14 in `bar'. Executing implicit breakpoint.
irb(#<Foo:0xb7452450>):001:0> @instance_var
=> "This is another fine mess"
irb(#<Foo:0xb7452450>):002:0> quit
HERE ARE SOME VARIABLES:
test_var: This is another fine mess, @instance_var: This is another fine mess

By using assert, you can enter an interactive irb session only when the state of your
application is worth inspecting.

17.11 Documenting Your Application

Problem
You want to create a set of API documentation for your application. You might want
to go so far as to keep all your documentation in the same files as your source code.

Solution
It’s good programming practice to preface each of your methods, classes, and mod-
ules with a comment that lets the reader know what’s going on. Ruby rewards this
behavior by making it easy to transform those comments into a set of HTML pages
that document your code. This is similar to Java’s JavaDoc, Python’s PyDoc, and
Perl’s Pod.

Here’s a simple example. Suppose your application contains only one file, sum.rb,
which defines only one method:

def sum(*terms)
 terms.inject(0) { |sum, term| sum + term}
end

17.11 Documenting Your Application | 687

To document this application, use Ruby comments to document the method, and
also to document the file as a whole:

Just a simple file that defines a sum method.

Takes any number of numeric terms and returns the sum.
sum(1, 2, 3) # => 6
sum(1, -1, 10) # => 10
sum(1.5, 0.2, 0.3, 1) # => 3.0
def sum(*terms)
 terms.inject(0) { |sum, term| sum + term}
end

Change into the directory containing the sum.rb file, and run the rdoc command.

$ rdoc
sum.rb: .
Generating HTML...

Files: 1
Classes: 0
Modules: 0
Methods: 1
Elapsed: 0.101s

The rdoc command creates a doc/ subdirectory beneath the current directory. It
parses every Ruby file it can find in or below the current directory, and generates
HTML files from the Ruby code and the comments that document it.

The index.html file in the doc/ subdirectory is a frameset that lets users navigate the
files of your application. Since the example only uses one file (sum.rb), the most
interesting thing about its generated documentation is what RDoc has done with the
comments (Figure 17-1).

Discussion
RDoc parses a set of Ruby files, cross-references them, and generates a web site that
captures the class and module structure, and the comments you wrote while you
were coding.

Generated RDoc makes for a useful reference to your classes and methods, but it’s
not a substitute for handwritten examples or tutorials. Of course, RDoc comments
can contain handwritten examples or tutorials. This will help your users and also
help you keep your documentation together with your code.

Notice that when I wrote examples for the sum method, I indented them a little from
the text above them:

Takes any number of numeric terms and returns the sum.
sum(1, 2, 3) # => 6

688 | Chapter 17: Testing, Debugging, Optimizing, and Documenting

RDoc picked up on this extra indentation and displayed my examples as Ruby code,
in a fixed-width font. This is one of many RDoc conventions for improving the looks
of the rendered HTML. As with wiki markup, the goal of the RDoc conventions is to
allow text to render nicely as HTML while being easy to read and edit as plain text
(Figure 17-2).

=A whirlwind tour of SimpleMarkup
#
==You can mark up text
#
* *Bold* a single word or a section
* _Emphasize_ a single word <i>or a section</i>
* Use a <tt>fixed-width font</tt> for a section or a +word+
* URLs are automatically linked: https://www.example.com/foo.html
#
==Or create lists
#
Types of lists:
* Unordered lists (like this one, and the one above)
* Ordered lists
1. Line
2. Square
3. Cube

Figure 17-1. RDoc comments

17.11 Documenting Your Application | 689

* Definition-style labelled lists (useful for argument lists)
[pos] Coordinates of the center of the circle ([x, y])
[radius] Radius of the circle, in pixels
* Table-style labelled lists
Author:: Sophie Aurus
Homepage:: http://www.example.com

There are also several special RDoc directives that go into comments on the same
line as a method, class, or module definition. The most common is :nodoc:, which is
used if you want to hide something from RDoc. You can and should put an RDoc-
style comment even on a :nodoc: method or class, so that people reading your Ruby
code will know what it does.

This class and its contents are hidden from RDoc; here's what it does:
...
#
class HiddenClass # :nodoc:
 # ...
end

Figure 17-2. Plain text

690 | Chapter 17: Testing, Debugging, Optimizing, and Documenting

Private methods don’t show up in RDoc generated documentation—that would usu-
ally just mean clutter. If you want one particular private method to show up in the
documentation (probably for the benefit of people subclassing your class), use the
:doc: directive; it’s the opposite of the :nodoc: directive:*

class MyClass
 private

 def hidden_method
 end

 def visible_method # :doc:
 end
end

If a comment mentions another class, method, or source file, RDoc will try to locate
and turn it into a hyperlinked cross-reference. To indicate that a method name is a
method name and not just a random word, prefix it with a hash symbol or use its
fully qualified name (MyClass.class_method or MyClass#instance_method:

The SimplePolynomial class represents polynomials in one variable
and can perform most common operations on them.
#
See especially #solve and #derivative. For multivariate polynomials,
see MultivariatePolynomial (especially
MultivariatePolynomial#simplify, which may return a
SimplePolynomial), and much of calculus.rb.

Other ways of creating RDoc

The Ruby gem installation process generates a set of RDoc files for every gem it
installs. If you package your software as a gem, anyone who installs it will automati-
cally get the RDoc files as well.

You can also create RDoc files programatically from a Ruby program, by creating
and scripting RDoc objects. The rdoc command itself is nothing more than Ruby code
such as the following, along with some error handling:

#!/usr/bin/ruby
rdoc.rb
require 'rdoc/rdoc'
RDoc::RDoc.new.document(ARGV)

* If you want all private methods to show up in the documentation, pass the --all argument to the rdoc com-
mand. The rdoc command supports many command-line arguments, giving you control over the rules for
generating the documentation and the layout of the results.

17.12 Profiling Your Application | 691

See Also
• Recipe 18.5, “Reading Documentation for Installed Gems”

• The RDoc documentation covers all the markup conventions and directives in
detail (http://rdoc.sourceforge.net/doc/)

• http://rdoc.sourceforge.net/doc/files/markup/simple_markup_rb.html

17.12 Profiling Your Application

Problem
You want to find the slowest parts of your application, and speed them up.

Solution
Include the Ruby profiler in your application with include 'profile' and the profiler
will start tracking and timing every subsequent method call. When the application
exits, the profiler will print a report to your program’s standard error stream.

Here’s a program that contains a performance flaw:

#!/usr/bin/env ruby
sequence_counter.rb
require 'profile'

total = 0
Count the letter sequences containing an a, b, or c.
('a'..'zz').each do |seq|
 ['a', 'b', 'c'].each do |i|
 if seq.index(i)
 total += 1
 break
 end
 end
end
puts "Total: #{total}"

When the program is run, the profiler shows the parts of the program that are most
important to optimize:

$ ruby sequence_counter.rb
Total: 150
 % cumulative self self total
 time seconds seconds calls ms/call ms/call name
 54.55 0.30 0.30 702 0.43 0.50 Array#each
 32.73 0.48 0.18 1 180.00 550.00 Range#each
 7.27 0.52 0.04 1952 0.02 0.02 String#index
 3.64 0.54 0.02 702 0.03 0.03 String#succ
 1.82 0.55 0.01 150 0.07 0.07 Fixnum#+
...

692 | Chapter 17: Testing, Debugging, Optimizing, and Documenting

The program takes about 0.3 seconds to run, and most of that is spent in Array#each.
What if we replaced that code with an equivalent regular expression?

#!/usr/bin/env ruby
sequence_counter2.rb
require 'profile'

total = 0
Count the letter sequences containing an a, b, or c.
('a'..'zz').each {|seq| total +=1 if seq =~ /[abc]/ }
puts "Total: #{total}"

Running this program yields a much better result:

$ ruby sequence_counter2.rb
Total: 150
 % cumulative self self total
 time seconds seconds calls ms/call ms/call name
 83.33 0.05 0.05 1 50.00 60.00 Range#each
 16.67 0.06 0.01 150 0.07 0.07 Fixnum#+
 0.00 0.06 0.00 1 0.00 0.00 Fixnum#to_s
...

The new version takes only 0.05 seconds to run, and as near as the profiler can mea-
sure, it’s running nearly as fast as an empty iterator over the range 'a'..'zz'.

Discussion
You might think that regex_counter2.rb has a performance problem of its own. After
all, it initializes the regular expression /[abc]/ within a loop, which seems to indi-
cate that it’s being initialized multiple times. The natural instinct of the optimizing
programmer is to move that definition outside the loop; surely that would be more
efficient.

re = /[abc]/
('a'..'zz').each {|seq| total +=1 if seq =~ re }

But it’s not (try it!). The profiler actually shows a decrease in performance when the
regular expression is assigned to a variable outside the loop. The Ruby interpreter is
doing some optimization behind the scenes, and the code with an “obvious” perfor-
mance problem beats the more complex “optimized” version.* There is a general les-
son here: the problem is often not where you think it is, and empirical data always
beats guesswork.

Ruby’s profiler is a fairly blunt tool (it’s written in only about 60 lines of Ruby), and
to instrument it for anything but a simple command-line application, you’ll need to
do some work. It helps if your code has unit tests, because profiler tests require a lot

* Of course, a regular expression is a pretty simple object. If you’ve got a loop that builds a million-element
data structure, or reads the same file over and over, the Ruby interpreter can’t help you. Move that sucker
out of the loop. If you make this kind of mistake, it’ll show up in the profiler.

17.12 Profiling Your Application | 693

of the same scaffolding as unit tests. You can even build up a library of profiler test
scripts to go with your unit tests, although the profiler output is difficult to analyze
automatically.

If you know that some particular operation is slow, you can write code that stress-
tests that operation (the way you might write a unit test), and run only that code
with the profiler. To stress-test sequence_counter2.rb, you might change it to oper-
ate on a larger range like ('a'..'zzzz'). Big datasets make performance problems
more visible.

If you don’t know which operations are slow, pick the most common operations and
instrument them on large datasets. If you’re writing an XML library, write a profiler
script that loads and parses an enormous file, and one that turns an enormous data
structure into XML. If you’ve got no ideas at all, run the profiler on your unit test
suite and look for problems. The tests that run slowly may be exercising problematic
parts of your program.

The profiler results are ordered with the most time-consuming method calls first. To
optimize your code, go from the top of the profiler results and address each call in
turn. See why your script led to so many calls of that method, and what you can do
about it. Either change the underlying code path so it doesn’t call that method so
many times, or optimize the method itself. If the method is one you wrote, you can
optimize it by profiling it in isolation.

The timing data given by the profiler isn’t terribly accurate,* but it should be good
enough to find problem areas. If you want a more reliable estimate of how long some
code takes to run, try the benchmark library, or run your script using the Unix time
command.

The Ruby profiler sets the interpreter’s trace function (by passing a code block into
Kernel#set_trace_func), so if your program uses a trace function of its own, using
the profiler will overwrite the old function. This probably won’t affect you, because
the trace function is mainly used by profilers and other analysis tools.

See Also
• If the profiler says your problem is in a commonly-called method like

Array#each, you need to somehow figure out which calls to the method are the
problematic ones; see Recipe 17.15, “Who’s Calling That Method? A Call Graph
Analyzer”

* Note the timing inconsistencies in the examples above. Somehow the entire original sequence_counter.rb
runs in 0.30 seconds, but when you ignore all the Array#each calls, the cumulative time jumps up to 0.48
seconds.

694 | Chapter 17: Testing, Debugging, Optimizing, and Documenting

17.13 Benchmarking Competing Solutions

Problem
You want to see which of two solutions to a problem is faster. You might want to
compare two different algorithms, or two libraries that do the same thing.

Solution
Use the benchmark library to time the tasks you want to run. The Benchmark.bm method
gives you an object that can report on how long it takes for code blocks to run.

Let’s explore whether the member? method is faster on arrays or hashes. First, we cre-
ate a large array and a large hash with the same data, and define a method that exer-
cises the member? method:

RANGE = (0..1000)
array = RANGE.to_a
hash = RANGE.inject({}) { |h,i| h[i] = true; h }

def test_member?(data)
 RANGE.each { |i| data.member? i }
end

Next, we call Benchmark.bm to set up a series of timing tests. The first test calls test_
member? on the array; the second one calls it on the hash. The results are printed in a
tabular form to standard error:

require 'benchmark'

Benchmark.bm(5) do |timer|
 timer.report('Array') { test_member?(array) }
 timer.report('Hash') { test_member?(hash) }
end
user system total real
Array 0.260000 0.060000 0.320000 (0.332583)
Hash 0.010000 0.000000 0.010000 (0.001242)

As you’d expect, member? is much faster on a hash.

Discussion
What do the different times mean? The real time is “wall clock” time: the number of
seconds that passed in the real world between the start of the test and its comple-
tion. This time is actually not very useful, because it includes time during which the
CPU was running some other process. If your system is operating under a heavy
load, the Ruby interpreter will get less of the CPU’s attention and the real times
won’t reflect the actual performance of your benchmarks. You only need real times
when you’re measuring user-visible performance on a running system.

17.13 Benchmarking Competing Solutions | 695

The user time is time actually spent running the Ruby interpreter, and the system
time is time spent in system calls spawned by the interpreter. If your test does a lot of
I/O, its system time will tend to be large; if it does a lot of processing, its user time
will tend to be large. The most useful time is probably total, the sum of the user and
system times.

When two operations take almost exactly the same time, you can make the differ-
ence more visible by putting a times loop within the code block passed to report. For
instance, array lookup and hash lookup are both very fast operations that take too
little time to measure. But by timing thousands of lookup operations instead of just
one, we can see that hash lookups are a tiny bit slower than array lookups:

Benchmark.bm(5) do |timer|
 timer.report('Array') { 1000.times { RANGE.each { |i| array[i] } } }
 timer.report('Hash') { 1000.times { RANGE.each { |i| hash[i] } } }
end
user system total real
Array 0.950000 0.210000 1.160000 (1.175042)
Hash 1.010000 0.210000 1.220000 (1.221090)

If you want to measure one operation instead of comparing several operations to
each other, use Benchmark#measure. It returns an object that you can interrogate to get
the times, or print out to get a listing in the same format as Benchmark.bm. This code
demonstrates that I/O-bound code has a larger system time:

def write_to_file
 File.open('out', 'w') { |f| f.write('a') }
end

puts Benchmark.measure { 10000.times { write_to_file } }
0.120000 0.360000 0.480000 (0.500653)

Recall that the real time can be distorted by the CPU doing things other than run-
ning your Ruby process. The user and system times can also be distorted by the Ruby
interpreter doing things besides running your program. For instance, time spent
doing garbage collection is counted by benchmark as time spent running Ruby code.

To get around these problems, use the Benchmark.bmbm method. It runs each of your tim-
ing tests twice. The first time is just a rehearsal to get the interpreter into a stable state.
Nothing can completely isolate the time spent running benchmarks from other tasks of
the Ruby interpreter, but bmbm should be good enough for most purposes.

See Also
• The standard library documentation for the benchmark library has lots of infor-

mation about varying the format of benchmark reports

696 | Chapter 17: Testing, Debugging, Optimizing, and Documenting

17.14 Running Multiple Analysis Tools at Once

Problem
You want to combine two analysis tools, like the Ruby profiler and the Ruby tracer. But
when one tool calls set_trace_func, it overwrites the trace function left by the other.

Solution
Change set_trace_func so that it keeps an array of trace functions instead of just
one. Here’s a library called multitrace.rb that makes it possible:

multitrace.rb
$TRACE_FUNCS = []

alias :set_single_trace_func :set_trace_func
def set_trace_func(proc)
 if (proc == nil)
 $TRACE_FUNCS.clear
 else
 $TRACE_FUNCS << proc
 end
end

trace_all = Proc.new do |event, file, line, symbol, binding, klass|
 $TRACE_FUNCS.each { |p| p.call(event, file, line, symbol, binding, klass)}
end
set_single_trace_func trace_all

def unset_trace_func(proc)
 $TRACE_FUNCS.delete(proc)
end

Now you can run any number of analysis tools simultaneously. However, when one
of the tools stops, they will all stop:

#!/usr/bin/ruby -w
paranoia.rb
require 'multitrace'
require 'profile'
require 'tracer'

Tracer.on
puts "I feel like I'm being watched."

This program’s nervousness is well-justified, since its every move is being tracked by
the Ruby tracer and timed by the Ruby profiler:

$ ruby paranoia.rb
#0:./multitrace.rb:9:Array:<: $TRACE_FUNCS << proc
#0:./multitrace.rb:11:Object:<: end
#0:paranoia.rb:9::-: puts "I feel like I'm being watched."
#0:paranoia.rb:9:Kernel:>: puts "I feel like I'm being watched."

17.15 Who’s Calling That Method? A Call Graph Analyzer | 697

...
 % cumulative self self total
 time seconds seconds calls ms/call ms/call name
 0.00 0.00 0.00 1 0.00 0.00 Kernel.require
 0.00 0.00 0.00 1 0.00 0.00 Fixnum#==
 0.00 0.00 0.00 1 0.00 0.00 String#scan
...

Without the include 'multitrace' at the beginning, only the profiler will run: its
trace function will override the tracer’s.

Discussion
This example illustrates yet again how you can benefit by replacing some built-in
part of Ruby. The multitrace library creates a drop-in replacement for set_trace_
func that lets you run multiple analyzers at once. You probably don’t really want to
run the tracer and the analyzer simultaneously, since they’re both monolithic tools.
But if you’ve written some smaller, more modular analysis tools, you’re more likely
to want to run more than one during a single run of a program.

The standard way of stopping a tracer is to pass nil into set_trace_func. Our new
set_trace_func will accept nil, but it has no way of knowing which trace function
you want to stop.* It has no choice but to remove all of them. Of course, if you’re
writing your own trace functions, and you know multitrace will be in place, you
don’t need to pass nil into set_trace_func. You can call unset_trace_func to remove
one particular trace function, without stopping the rest.

See Also
• The tracer function created in Recipe 17.15, “Who’s Calling That Method? A

Call Graph Analyzer,” is the kind of lightweight analysis tool I’d like to see more
of: one that it makes sense to run in conjunction with others

17.15 Who’s Calling That Method? A Call Graph Analyzer
Suppose you’re profiling a program such as the one in Recipe 17.12, and the profiler
says that the top culprit is Array#each. That is, your program spends more time iter-
ating over arrays than doing any one other thing:

 % cumulative self self total
 time seconds seconds calls ms/call ms/call name
 12.19 2.74 2.74 4930 0.56 0.77 Array#each

* Well, you could do this by taking a snapshot of the call stack every time set_trace_func was called with a
Proc object. When set_trace_func was called with nil, you could look at the call stack at that point (see Rec-
ipe 17.6), and only remove the Proc object(s) inserted by the same file. For instance, if a nil call comes in
from profiler.rb, you could remove only the Proc object(s) inserted by calls coming from profiler.rb. This
is probably not worth the trouble.

698 | Chapter 17: Testing, Debugging, Optimizing, and Documenting

This points you in the right direction, but where do you go from here? Most pro-
grams are full of calls to Array#each. To optimize your program, you need to know
which lines of code are responsible for most of the Array#each calls. Ruby’s profiler
can’t give tell you which line of code called a problem method, but it’s easy to write a
different profiler that can.

The heart of any Ruby profiler is a Proc object passed into the Kernel#set_trace_func
method. This is a hook into the Ruby interpreter itself: if you set a trace function, it’s
called every time the Ruby interpreter does something interesting like call a method.

Here’s the start of a CallTracker class. It initializes a hash-based data structure that
tracks “interesting” classes and methods. It assumes that we pass a method tally_
calls into set_trace_func; we’ll define tally_calls a little later.

class CallTracker

 # Initialize and start the trace.
 def initialize(show_stack_depth=1)
 @show_stack_depth = show_stack_depth
 @to_trace = Hash.new { |h,k| h[k] = {} }
 start
 at_exit { stop }
 end

 # Register a class/method combination as being interesting. Subsequent calls
 # to the method will be tallied by tally_calls.
 def register(klass, method_symbol)
 @to_trace[klass][method_symbol] = {}
 end

 # Tells the Ruby interpreter to call tally_calls whenever it's about to
 # do anything interesting.
 def start
 set_trace_func method(:tally_calls).to_proc
 end

 # Stops the profiler, and prints a report of the interesting calls made
 # while it was running.
 def stop(out=$stderr)
 set_trace_func nil
 report(out)
 end

Now let’s define the missing methods tally_calls and report. The Proc object
passed into set_trace_func needs to take six arguments, but this analyzer only cares
about three of them:

event
Lets us know what the interpreter is doing. We only care about "call" and "c-call"
events, which let us know that the interpreter is calling a Ruby method or a C
method.

17.15 Who’s Calling That Method? A Call Graph Analyzer | 699

klass
The Class object that defines the method being called.

symbol
The name of the method as a Symbol.

The tally_calls method looks up the class and name of the method being called to
see if it’s one of the methods being tracked. If so, it grabs the current call stack with
Kernel#caller, and notes where in the execution path the method was called:

 # If the interpreter is about to call a method we find interesting,
 # increment the count for that method.
 def tally_calls(event, file, line, symbol, binding, klass)
 if @to_trace[klass] and @to_trace[klass][symbol] and
 (event == 'call' or event =='c-call')
 stack = caller
 stack = stack[1..(@show_stack_depth ? @show_stack_depth : stack.size)]
 @to_trace[klass][symbol][stack] ||= 0
 @to_trace[klass][symbol][stack] += 1
 end
 end

All that’s left is the method that prints the report. It sorts the results by execution
path (as indicated by the stack traces), so the more often a method is called from a
certain line of code, the higher in the report that line of code will show up:

 # Prints a report of the lines of code that called interesting
 # methods, sorted so that the the most active lines of code show up
 # first.
 def report(out=$stderr)
 first = true
 @to_trace.each do |klass, symbols|
 symbols.each do |symbol, calls|
 total = calls.inject(0) { |sum, ct| sum + ct[1] }
 padding = total.to_s.size
 separator = (klass.is_a? Class) ? '#' : '.'
 plural = (total == 1) ? '' : 's'
 stack_join = "\n" + (' ' * (padding+2))
 first ? first = false : out.puts
 out.puts "#{total} call#{plural} to #{klass}#{separator}#{symbol}"
 (calls.sort_by { |caller, times| -times }).each do |caller, times|
 out.puts " %#{padding}.d #{caller.join(stack_join)}" % times
 end
 end
 end
 end
end

Here’s the analyzer in action. It analyses my use of the Rubyful Soup HTML parser
(which I was working on optimizing) to see which lines of code are responsible for
calling Array#each. It shows three main places to look for optimizations:

require 'rubygems'
require 'rubyful_soup'

700 | Chapter 17: Testing, Debugging, Optimizing, and Documenting

tracker = CallTracker.new
tracker.register(Array, :each)

BeautifulSoup.new(open('test.html') { |f| f.read })
tracker.stop($stdout)
4930 calls to Array#each
1671 ./rubyful_soup.rb:715:in `pop_to_tag'
1631 ./rubyful_soup.rb:567:in `unknown_starttag'
1627 ./rubyful_soup.rb:751:in `smart_pop'
1 ./rubyful_soup.rb:510:in `feed'

By default, the CallTracker shows only the single line of code that called the “inter-
esting” method. You can get more of the call stack by passing a larger show_stack_
depth into the CallTracker initializer.

See Also
• Recipe 17.6, “Creating and Understanding Tracebacks”

• Recipe 17.12, “Profiling Your Application”

701

Chapter 18 CHAPTER 18

Packaging and Distributing Software18

No matter how productive it makes you, a programming language won’t save you
any time if you can’t take advantage of a body of code written by other people. A
community works faster than any one person, and it’s usually easier to install and
learn a library than to write and debug the same code yourself.

That is, if you can find the library in the first place. And if you’re not sucked into an
mess of dependencies that grow and grow, making you want to write the code your-
self just so you can be doing some real programming.

The success of Perl’s CPAN archive has made the Ruby community work on our own
centralized code repository and packaging system. Whatever you think of Perl, you
must admit that a Perl programmer can find just about any library they need in
CPAN. If you write your own Perl library, you know where to send it: CPAN. This is
not really a technical aspect of Perl, but it’s a powerful component of that language’s
popularity.

The problem of packaging is more a logistical problem than a technical one. It’s a
matter of coordination: getting everyone to agree on a single mechanism for install-
ing packages, and a single place to go to find those packages. For Ruby, the installa-
tion mechanism is Ruby gems (or rubygems or just “gems”), and rubyforge.org is the
place to go to find gems (packaged libraries and programs).

In many recipes in this book, we tell you to use a gem for some task: the alternative is
often to show you pages and pages of code. This chapter covers how to find the gems
you need, install them, and package your own software as gems so that others can
benefit from your work.

You may need to find and install the Ruby gems system itself. It comes installed by
default on Windows, but not on Unix. You can download it from this URL:

http://rubyforge.org/frs/?group_id=126

702 | Chapter 18: Packaging and Distributing Software

To install the Ruby gems package, unzip the tarball or ZIP file, and run the setup.rb
script within. You can then use the gem command to search for and install gems, as
described in Recipes 18.1 and 18.2. You can also build your own gems from “gem-
spec” files, as described in Recipe 18.6, and upload it to RubyForge or some other
site (Recipe 18.7).

An older installation system called setup.rb is still in use (for instance, to install the
Ruby gems package itself). We cover this mechanism briefly in Recipe 18.8.

Neither Ruby gems nor setup.rb play well with a Unix distribution’s native package
installers. If you use a system like Debian or Red Hat, you may find that some pack-
ages (like Rails) are available both as gems and in your native package format. These
issues are still being resolved; in the meantime, you should use your native package
format whenever possible.

18.1 Finding Libraries by Querying Gem Respositories

Problem
You want to find new gems to install on your system, or see which gems you already
have installed.

Solution
From the command line, use gem’s query command:

$ gem query
*** LOCAL GEMS ***

sources (0.0.1)
 This package provides download sources for remote gem installation

$ gem query --remote
*** REMOTE GEMS ***
actionmailer (1.1.1, 1.0.1, 1.0.0, 0.9.1, 0.9.0, 0.8.1, ...)
 Service layer for easy email delivery and testing.

actionpack (1.10.1, 1.9.1, 1.9.0, 1.8.1, 1.8.0, 1.7.0, ...)
 Web-flow and rendering framework putting the VC in MVC.

[... Much more output omitted]

From Ruby code, use Gem::cache to query your locally installed gems, and Gem::
RemoteInstaller#search to query the gems on some other site. Gem::cache can be
treated as an Enumerable full of tasty Gem::Specification objects. Gem::Remote-
Installer#search returns an Array containing an Array of Gem::Specification objects
for every remote source it searched. Usually there will only be one remote source—
the main gem repository on rubyforge.org.

18.1 Finding Libraries by Querying Gem Respositories | 703

This Ruby code iterates over the locally installed gems:

require 'rubygems'

Gem::cache.each do |name, gem|
 puts %{"#{gem.name}" gem version #{gem.version} is installed.}
end
"sources" gem version 0.0.1 is installed.

The format_gems method defined below gives a convenient way of looking at a large
set of Gem::Specification objects. It groups the gems by name and version, then
prints a formatted list:

require 'rubygems/remote_installer'
require 'yaml'

def format_gems(gems)
 gem_versions = gems.inject({}) { |h, gem| (h[gem.name] ||= []) << gem; h}
 gem_versions.keys.sort.each do |name|
 versions = gem_versions[name].collect { |gem| gem.version.to_s }
 puts "#{name} is available in these versions: #{versions.join(', ')}"
 end
end

Here it is being run on the gems available from RubyForge:

format_gems(Gem::RemoteInstaller.new.search(/.*/).flatten)
Asami is available in these versions: 0.04
Bangkok is available in these versions: 0.1.0
Bloglines4R is available in these versions: 0.1.0
BlueCloth is available in these versions: 0.0.2, 0.0.3, 0.0.4, 1.0.0
...

Discussion
Not only are Ruby gems a convenient packaging mechanism, they’re an excellent
way to find out about new pieces of Ruby code. The gem repository at rubyforge.org
is the canonical location for Ruby libraries, so you’ve got one place to find new code.

You can query the gems library for gems whose names match a certain regular
expression:

$ gem query --remote --name-matches "test"
** REMOTE GEMS ***

lazytest (0.1.0)
 Testing and benchmarking for lazy people

test-unit-mock (0.30)
 Test::Unit::Mock is a class for conveniently building mock objects
 in Test::Unit test cases.

testunitxml (0.1.4, 0.1.3)
 Unit test suite for XML documents

704 | Chapter 18: Packaging and Distributing Software

ZenTest (3.1.0, 3.0.0)
 == FEATURES/PROBLEMS

Or, from Ruby code:

format_gems(Gem::RemoteInstaller.new.search(/test/i).flatten)
ZenTest is available in these versions: 3.0.0, 3.1.0
lazytest is available in these versions: 0.1.0
test-unit-mock is available in these versions: 0.30
testunitxml is available in these versions: 0.1.3, 0.1.4

This method finds gems that are newer than a certain date. It has to keep around
both a Date and a Time object for comparisons, because RubyForge stores some
gems’ dates as Date objects, some as Time objects, and some as string representations
of dates.*

require 'date'

def gems_newer_than(date, query=/.*/)
 time = Time.local(date.year, date.month, date.day, 0, 0, 0)
 gems = Gem::RemoteInstaller.new.search(query).flatten
 gems.reject do |gem|
 gem_date = gem.date
 gem_date = DateTime.parse(gem_date) if gem_date.respond_to? :to_str
 gem_date < (gem_date.is_a?(Date) ? date : time)
 end
end

todays_gems = gems_newer_than(Date.today-1)
todays_gems.size # => 7
format_gems(todays_gems)
filament is available in these versions: 0.3.0
mechanize is available in these versions: 0.4.1
mongrel is available in these versions: 0.3.12.1, 0.3.12.1
rake is available in these versions: 0.7.1
rspec is available in these versions: 0.5.0
tzinfo is available in these versions: 0.2.0

By default, remote queries look only at the main gem repository on rubyforge.org:

Gem::RemoteInstaller.new.sources # => ["http://gems.rubyforge.org"]

To query a gem repository other than rubyforge.org, pass in the URL to the reposi-
tory as the --source argument from the command line. This code starts a gem server
on the local machine (it can serve all of your installed gems to other machines), and
queries it:

$ gem_server &

$ gem query --remote --source http://localhost:8808
*** REMOTE GEMS ***

* This is because of differences in the underlying gem specification files. Different people build their gemspecs
in different ways.

18.2 Installing and Using a Gem | 705

Updating Gem source index for: http://localhost:8808
sources (0.0.1)
This package provides download sources for remote gem installation

From Ruby code, modify the Gem.sources variable to retrieve gems from another
source:

Gem.sources.replace(['http://localhost:8808'])
format_gems(Gem::RemoteInstaller.new.search(/.*/).flatten)
sources is available in these versions: 0.0.1

See Also
• Recipe 18.7, “Distributing Your Gems,” for more on hosting your own gem

repository

• The Ruby Application Archive is a companion to rubyforge.org: rather than
hosting Ruby projects, it links to Ruby packages hosted all around the Web;
you’re more likely to see projects on the RAA that aren’t packaged as gems (see
Recipe 18.8 for tips on installing them)

18.2 Installing and Using a Gem

Problem
You want to install a gem, then use the code it provides in your programs.

Solution
You can install the latest version of a gem with the gem install command. This com-
mand looks for an uninstalled gem file on your local system; if it can’t find one, it
calls out to an external source (gems.rubyforge.org, unless you specify otherwise)
asking for a gem file. Since gem install changes the system-wide Ruby installation,
you’ll need to have superuser access to run it.

$ gem install RedCloth
Attempting local installation of 'RedCloth'
Local gem file not found: RedCloth*.gem
Attempting remote installation of 'RedCloth'
Successfully installed RedCloth-3.0.4

A gem contains standard Ruby code files, and once you install the gem, you can
require those files normally and use the classes and modules they define. However,
gems are not installed in the same path as the standard Ruby libraries, so you’ll need
to tell Ruby to supplement its normal library path with the path to the gems. The
simplest way is to require 'rubygems' in any program that uses a gem, before you
write any require statements for libraries installed via gems. This is the solution we
use throughout this book.

706 | Chapter 18: Packaging and Distributing Software

This code assumes the "redcloth" gem has been installed, as in the
code above.
require 'redcloth'
LoadError: no such file to load -- redcloth

require 'rubygems'
require 'redcloth'
parser = RedCloth::CommandParser.new
...

For a solution that works across Ruby scripts, you’ll need to change your Ruby run-
time environment, either by setting the RUBYOPT environment variable to rubygems,
or by aliasing your ruby command so that it always passes in a -rubygems option to
the interpreter.

$ ruby -e "require 'redcloth'; puts 'Success'"
-e:1:in `require': no such file to load -- redcloth (LoadError)
 from -e:1

$ ruby -rubygems -e "require 'redcloth'; puts 'Success'"
Success

On Unix:
$ export RUBYOPT=rubygems
$ ruby -e "require 'redcloth'; puts 'Success'"
Success

On Windows:
$ set RUBYOPT=rubygems
$ ruby -e "require 'redcloth'; puts 'Success'"
Success

Discussion
Once you’ve installed a gem, you can upgrade it to the latest version with the gem update
command. Even if you’ve already got the latest version, you’ll see output like this:

$ gem update RedCloth
Upgrading installed gems...
Attempting remote upgrade of RedCloth
Attempting remote installation of 'RedCloth'
Successfully installed RedCloth-3.0.4
Gems: [redcloth] updated

You might install a gem for your own use, or because it’s required by a program you
want to run. If you want to use a gem in your own programs, there’s no reason not to
always use the latest version. Some programs, though, impose version constraints
that force you to install a particular version of a gem.

Ruby’s gem system can keep multiple versions of the same gem installed at once. You
can satisfy one program’s archaic dependencies while still being able to use the latest

18.2 Installing and Using a Gem | 707

version of a gem in your own programs. To install a specific version of a gem, append
the version number to the name, or specify a --version argument to gem install.

$ gem install RedCloth-3.0.4
$ gem install RedCloth --version "3.0.4"

Use the technique described in Recipe 18.3 to require the one that’s right for your
program.

A program that imposes a version constraint doesn’t usually tell you which specific
version of a gem you need to install. Instead, it crashes with an error that tells you
which contraint string you need to meet. Again, you can see Recipe 18.3 for more on
constraint strings, but they look like > 2.0 or <= 1.6. You can install a version of a
gem that satisfies a constraint string by passing the contraint as a --version argu-
ment to gem install. The gem command will find and install the latest version that
meets that constraint.

$ ruby -e "require 'rubygems'; require_gem 'units', '~>1.0' puts 'Units'"
/usr/local/lib/site_ruby/1.8/rubygems.rb:204:in `report_activate_error':
Could not find RubyGem units (~> 1.0) (Gem::LoadError)

$ gem install units --version "~> 1.0"
Attempting remote installation of 'units'
Successfully installed units-1.0.1
Installing RDoc documentation for units-1.0.1...

$ ruby -e "require 'rubygems'; require_gem 'units', '~>1.0'; puts 'Units'"
Units!

Whether you run the gem install command, or install a gem from Ruby code that
you write, you’ll need to have the proper permissions to write to your gem directory.

When you install a gem from the command line, the gem command will offer you a
chance to install all other gems on which it depends. You can have gem install the
dependencies without prompting by passing in the --include-dependencies flag. This
invocation installs the rubyful_soup gem and the htmltools gem on which it depends:

$ gem install rubyful_soup --include-dependencies
Attempting local installation of 'rubyful_soup'
Local gem file not found: rubyful_soup*.gem
Attempting remote installation of 'rubyful_soup'
Successfully installed rubyful_soup-1.0.4
Successfully installed htmltools-1.09
Installing RDoc documentation for rubyful_soup-1.0.4...
Installing RDoc documentation for htmltools-1.09...

You can install a gem from Ruby code by creating a Gem::Installer or Gem::
RemoteInstaller object, and calling its install method. The install method will
return an array containing a Gem::Specification object for the gem that was installed.

708 | Chapter 18: Packaging and Distributing Software

Here’s a simple method that mimics the behavior of the gem install command, look-
ing for a local copy of a gem before going out to the network:

require 'rubygems/installer'
require 'rubygems/remote_installer'

def install_gem(gem_name)
 if File.file? gem_name:
 Gem::Installer.new(gem_name).install
 else
 Gem::RemoteInstaller.new.install(gem_name)
 end
end

install_gem('redcloth')
Updating Gem source index for: http://gems.rubyforge.org
=> [#<Gem::Specification:0xb5fc7dbc
@loaded_from="/usr/lib/ruby/gems/1.8/specifications/redcloth-2.0.0.gemspec"]
...

To install a gem from Ruby code, you must first go through all of its dependencies
and install them, too.

See Also
• Recipe 18.3, “Requiring a Specific Version of a Gem”

18.3 Requiring a Specific Version of a Gem

Problem
Your program depends on an interface or feature of a gem found only in particular
versions of the library. If a user tries to run your program with the wrong version
installed, you want to tell them which version you require, so they can upgrade.

Solution
The rubygems library defines a method, Kernel#require_gem, which is a kind of asser-
tion method for gems. It will raise a Gem::LoadError if the given gem is not installed,
or if no installed version of a gem meets your requirements.

The easiest solution is to allow any version of a gem; you don’t need to use require_
gem at all:

require 'rubygems'
require 'cmdparse' # => true

This is equivalent to requiring a minimum version of 0.0.0:

require_gem 'nosuchgem'
Gem::LoadError: Could not find RubyGem nosuchgem (> 0.0.0)

18.3 Requiring a Specific Version of a Gem | 709

If you can’t use just any version of a gem, it’s usually safe to require a minimum ver-
sion, relying on future versions to be backwards-compatible:*

require_gem 'cmdparse', '>= 1.0' # => false
require_gem 'cmdparse', '>= 2.0.3'
Gem::LoadError: RubyGem version error: cmdparse(2.0.0 not >= 2.0.3)

Discussion
Although you may already be familiar with it, a brief review of the structure of ver-
sion numbers is useful here. A version number for a Ruby gem (and most other
pieces of open source software) has three parts: a major version number, a minor ver-
sion number, and a revision number or build number (Figure 18-1).

Some packages have only a major and minor version number (such as 2.0 or 1.6),
and some have additional numbers after the revision number, but the three-number
convention is the accepted standard for numbering Ruby gems.

The revision number is incremented at every new public release of the software. If the
revision contains more than minor changes, or changes the public API in a backwards-
compatible way, the author increments the minor version and resets the revision num-
ber to zero. When a release contains large changes, especially ones that change the
public API in backwards-incompatible ways, the author usually increments the major
version number, and resets the minor version and revision number to zero.

Version numbers are not decimal numbers: version 1.10 is more recent than version 1.1,
not the same. Version numbers should be represented as a string or an array of inte-
gers, not as a floating-point number or BigDecimal.

The require_gem method takes the name of a gem and an optional version require-
ment. A version requirement is a string containing a comparison operator and a ver-
sion number: for instance, "< 2.4". A version requirement can use any of the
comparison operators usable in Ruby code, including =, !=, <, >, <=, and =>.

RubyGems uses the comparison operator to compare the installed version of a gem
to the required version. The assertion is met if the installed version has the given

* The first require_gem command in this code snippet returns false not because the cmdparse gem isn’t there,
but because we’ve already loaded the cmdparse library (in the very first code snippet of this recipe). The
require method only returns true the first time it loads a library.

Figure 18-1. Anatomy of a version number

1.3.6

Revision/build number
Minor version number

Major version number

710 | Chapter 18: Packaging and Distributing Software

relationship with the required version. For instance, if version 1.1.4 is installed, and
the version requirement is "> 0.9", the two version numbers are compared with an
expression similar to "1.1.4 > 0.9", which evaluates to true (the installed major ver-
sion, 1, is greater than the required major version, 0).

A version requirement can also use the special ~> comparison operator, which
restricts certain parts of the version number while leaving the others alone. You’ll
usually use it to restrict the installed version of a gem to a particular minor version,
but allowing any revision number. For instance, the version requirement ~> 2.0 will
match any version with a major number of 2 and a minor number of 0: 2.0, 2.0.1, 2.
0.2, and 2.0.20 will all be accepted. ~> 2 will match any version whose major num-
ber is 2; 2.0, 2.1, and 2.10 will all be accepted.

A library is supposed to increment its major or minor version whenever the pub-
lished API changes, so ~> is designed to let you require a particular version of a
library’s API. This is slightly more restrictive than requiring a minimum version, and
is useful if the API changes drastically between versions, or if you anticipate incom-
patible changes in the future.

Since a single Ruby installation can have multiple versions of a single gem installed at
once, there’s no technical reason (other than disk space) why you can’t make your
users install the exact same versions of the gems you used to develop your program:

require_gem 'gem_1' '= 1.0.1'
require_gem 'gem_2' '= 2.6'
require_gem 'gem_3' '= 1.3.2'

However, it’s usually not necessary, and such draconian specificity imposes burdens
on the programmers as well as the users. It’s usually better to use >= or ~>.

If a particular version of a library has an awful bug in it, you can refuse to use it with
code like this:

require_gem 'buggy' '!=1.0.3'

You can combine comparison operators by making multiple calls to require_gem. For
instance, you can simulate ~> with two calls:

require_gem 'my_gem' '>= 2.0'
require_gem 'my_gem' '< 3'

See Also
• Recipe 18.2, “Installing and Using a Gem,” for information on using the version

requirement strings to install the appropriate version of a gem

• The Facets Core library defines a String#natcmp that can compare version num-
bers: that is, “1.10.0” will show up as being less than “1.2.0”

18.4 Uninstalling a Gem | 711

18.4 Uninstalling a Gem

Problem
You want to remove an installed gem from your Ruby installation.

Solution
From the command line, use the gem uninstall command:

$ gem uninstall blinkenlights
Attempting to uninstall gem 'blinkenlights'
Successfully uninstalled blinkenlights version 0.0.2

From Ruby code, the most reliable way to uninstall a gem is to simulate a command-
line invocation with the Gem::GemRunner class. This code installs a gem, then immedi-
ately removes it:

require 'rubygems'
require 'rubygems/installer'
require 'rubygems/remote_installer'
Gem::RemoteInstaller.new.install('blinkenlights')

require 'rubygems/gem_runner'
require 'rubygems/doc_manager'
Gem.manage_gems
Gem::GemRunner.new.run(['uninstall', 'blinkenlights'])
Successfully uninstalled blinkenlights version 0.0.4

Uninstalling a gem can disrupt the normal workings of your Ruby programs, so I rec-
ommend you only uninstall gems from the command line. That way, there’s less
chance of a bug wiping out all your gems.

Discussion
Since rubygems can manage multiple installed versions of the same gem, you won’t usu-
ally have to remove old copies of gems. There are three main reasons to remove gems:

1. You find out that a particular version of a gem is buggy, and you want to make
sure it never gets used.

2. You want to save disk space.

3. You want to clean up the list of installed gems so that it’s more obvious which
gems you actually use.

If uninstalling a gem would leave another installed gem with an unmet dependency,
you’ll be told about the dependency and asked whether you want to go through with
the uninstall anyway. You’ll get this interactive prompt whether you run the gem
uninstall command or whether you use the Gem::Uninstaller class from Ruby code.

Gem::Uninstaller.new('actionpack', {}).uninstall
You have requested to uninstall the gem:

712 | Chapter 18: Packaging and Distributing Software

actionpack-1.8.1
actionmailer-0.9.1 depends on [actionpack (= 1.8.1)]
If you remove this gem, the dependency will not be met.
Uninstall anyway? [yN]

The sources gem is a special gem that tells rubygems to look for remotely installable
gems at http://gems.rubyforge.org/ by default. If you uninstall this gem, you won’t be
able to install any more gems, except through complicated hacks of the classes in the
Gem module. Just don’t do it. Not even if you never plan to install any gems from
rubyforge.org. Not even if you’d never thought of doing it until I brought it up in this
recipe, and now you’re curious.

You did it, didn’t you? Now you’ll have to reinstall rubygems by rerunning its setup.rb
script.

18.5 Reading Documentation for Installed Gems

Problem
You want to read the RDoc documentation for the gems you have installed.
Although some gem projects provide human-written documentation like tutorials,
the generated RDoc documentation isn’t usually available online.

Solution
RDoc documentation isn’t usually available online because when you install a gem,
Ruby generates your very own HTML copy of the RDoc documentation and installs
it along with the software. The documentation you need is probably already on your
computer.

The simplest way to browse the documentation for your installed gems is to run the
gem_server command, then visit http://localhost:8808/. You’ll see all your installed
gems in a table form, and be able to browse the generated documentation of each
gem that provides any.

Otherwise, you can find your Rubygems documentation directory, and browse the
installed documentation with local filesystem tools.

Discussion
The generated rdoc for a gem is kept in the doc/ subdirectory of the base directory in
which the gem was installed. For instance, on my computer, gems are installed in /usr/
lib/ruby/gems/1.8/. For every gem that has RDoc, the generated HTML documenta-
tion will be kept in the directory /usr/lib/ruby/gems/1.8/doc/[gem name]/rdoc/. If I
were to install one particular gem to another directory, the documentation for the gem
would be in a doc/ subdirectory of that directory.

18.5 Reading Documentation for Installed Gems | 713

Here’s some code that prints out the location of the RDoc files for every installed
gem. Unless you’ve installed specific gems in nonstandard locations, they’ll all be in
the doc/ subdirectory of Gem.dir. This code snippet also shows off some of the capa-
bilities of Gem::DocManager, the Ruby class you can use to manipulate a gem’s RDoc.

require 'rubygems'
Gem.manage_gems

def show_gem_rdoc
 puts "Your generated docs are all probably in #{File.join(Gem.dir, "doc")}"

 puts "Just to be safe, I'll print out every gem's RDoc location:"
 specifications_dir = File.join(Gem.dir, 'specifications')
 lacking_rdoc = []
 Gem::SourceIndex.from_installed_gems(specifications_dir).each do |path, spec|
 manager = Gem::DocManager.new(spec)
 if manager.rdoc_installed?
 doc_path = File.join(spec.installation_path, 'doc', spec.full_name)
 puts " #{spec.full_name} => #{doc_path}"
 else
 lacking_rdoc << spec.full_name
 end
 end

 unless lacking_rdoc.empty?
 puts "\nThese installed gems have no RDoc installed:"
 puts " #{lacking_rdoc.join("\n ")}"
 end
end

show_gem_rdoc
Your generated RDoc is probably all in /usr/lib/ruby/gems/1.8/doc
Just to be safe, I'll print out every gem's RDoc location:
flexmock-0.1.7 => /usr/lib/ruby/gems/1.8/doc/flexmock-0.1.7
simple-rss-1.1 => /usr/lib/ruby/gems/1.8/doc/simple-rss-1.1
classifier-1.3.0 => /usr/lib/ruby/gems/1.8/doc/classifier-1.3.0
actionmailer-1.1.5 => /usr/lib/ruby/gems/1.8/doc/actionmailer-1.1.5
...
#
These installed gems have no RDoc installed:
Ruby-MemCache-0.0.1
RedCloth-3.0.4
sources-0.0.1
...

RDoc is generated for most gems whether or not the author was careful to add RDoc
descriptions to all their Ruby code. At minimum, a gem’s RDoc will list the classes
and methods present in the gem, which is useful in a bare-bones way.

If you don’t want to generate RDoc when you install a gem, pass in the --no-rdoc
argument to the gem install command. The only real reason to do this is a concern
for disk space.

714 | Chapter 18: Packaging and Distributing Software

The flip side of reading a gem’s documentation is writing it. When you’re writing
your gemspec (see Recipe 18.6), you should set spec.has_rdoc = true. This will let
the end user’s gem installer know that your gem was written with RDoc in mind. It
doesn’t do much except suppress a warning during the installation of your gem.

See Also
• The Ruby Standard Library Documentation collection (http://www.ruby-doc.org/

stdlib/) contains generated HTML for the RDoc of all the packages in the Ruby
standard library: it includes everything in lib/ruby/, but it doesn’t include the
core application

• Recipe 17.11, “Documenting Your Application”

• Recipe 18.6, “Packaging Your Code as a Gem”

• Recipe 19.2, “Automatically Generating Documentation”

18.6 Packaging Your Code as a Gem

Problem
You want to package a program you wrote as a Ruby gem, possibly to distribute it on
the main gem server at rubyforge.org.

Solution
First, you must write a specification file. This file consists of a few lines of Ruby code
that instantiate a Gem::Specification object and populate it with information about
your program. Assuming that all of your program’s files are in a subdirectory called
lib/, the following might make a good specification file:

shielding.gemspec
require 'rubygems'
spec = Gem::Specification.new do |spec|
 spec.name = 'shielding'
 spec.summary = 'A library for calculating the strength of duophasic shielding'
 spec.description = %{This library calculates to high precision the
 physical and electrostatic strength of a duophasic shield. It knows
 about most real-world shield configurations, as well as many
 theoretical arrangements not yet built.}
 spec.author = 'Bob Zaff'
 spec.email = 'zaff@example.com'
 spec.homepage = 'http://www.example.com/software/shielding/'
 spec.files = Dir['lib/*.rb']
 spec.version = '1.0.0'
end

18.6 Packaging Your Code as a Gem | 715

You can then use the gem build command to create the actual gem from its specifica-
tion file:

$ gem build shielding.gemspec
Attempting to build gem spec 'shielding.gemspec'
 Successfully built RubyGem
 Name: shielding
 Version: 1.0.0
 File: shielding-1.0.0.gem

$ ls
shield.gemspec shielding-1.0.0.gem

Then install the gem normally:

$ gem install ./shielding-1.0.0.gem
Attempting local installation of './shielding-1.0.0.gem'
Successfully installed shielding, version 1.0.0
Installing RDoc documentation for shielding-1.0.0...
WARNING: Generating RDoc on .gem that may not have RDoc.

You can also build a gem from within Ruby code by passing the completed Gem::
Specification into a Gem::Builder object.

require 'rubygems/builder'
builder = Gem::Builder.new(spec).build
Successfully built RubyGem
Name: shielding
Version: 1.0.0
File: shielding-1.0.0.gem
=> "shielding-1.0.0.gem"

Gem::Builder is useful as a starting point for automating your releases, but if you’re
interested in doing that, you should use Rake (see Chapter 19, especially Recipe 19.4).

Discussion
Other recipes in this chapter query gem repositories for information and get it back
in the form of Gem::Specification objects. To create your own Ruby gem, you need
to create a Gem::Specification object from scratch. A file that defines a Gem::
Specification object is called a “gemspec” and it usually has a .gemspec extension.

To make a Gem::Specification object that can be turned into a gem, you must define
the four attributes name, summary, version, and files. The version attribute should be a
string of the form “[major version].[minor version].[revision]”; this is the recommended
form for version numbers of software products packaged as gems (see Recipe 18.3).

I recommend you also define author, email, description, and possibly homepage. The
description attribute advertises your gem, and the other three attributes give a way
for your users to get in touch with you.

716 | Chapter 18: Packaging and Distributing Software

Some other tips on creating your gemspec:

• If you want a user to be able to require a file from their own Ruby code, put it
into the lib/ subdirectory of your project. If you put it into some other direc-
tory, you’ll need to add the name of that directory to the require_paths
attribute.

• If you want a user to be able to run a file as a Ruby script, put it into the bin/
subdirectory of your project. If you put it into some other directory, you’ll need
to change the bindir attribute.

• If the code in your gem has associated unit tests, put the names of the test files
into an array as the test_files attribute. It’s also a good idea to keep those files
together in a test/ subdirectory. Once the gem is installed, you can run its tests
by issuing the command gem check -t [gem name].

• Ruby automatically generates a set of RDoc HTML pages for all the Ruby classes
and files in your gem. Unless you set the has_rdoc attribute, when you install the
gem you’ll get a “WARNING: Generating RDoc on .gem that may not have
RDoc.”

You can take advantage of the RDoc generation by linking nonRDoc files from
the RDoc site: just name those files in the array extra_rdoc_files. If your gem
comes with a README file or other nonRDoc documentation, it’s a good idea
to include that with the RDoc, since that’s where most people will look first for
documentation.

• The files attribute should be an array that includes every file you want to be
packaged in the gem. If you included any files in test_files or extra_rdoc_
files, you must include them again here or they won’t actually be installed. The
simplest way to do this is to define files last of all, and stick test_files and
extra_rdoc_files inside:

spec.test_files = Dir['test/*.rb']
spec.extra_rdoc_files = ['README']
spec.files = Dir['lib/*.rb'] + spec.test_files + spec.extra_rdoc_files

• If your gem requires another gem to work, the spec file is where you define the
dependency. Use the Gem::Specification#add_dependency method rather than
modifying the dependencies attribute directly. The add_dependency method
accepts an optional version restriction, in a format that should be familiar to you
if you’ve read other recipes in this chapter. You can use a version restriction to
make sure your gem is only used with certain versions of another gem.

spec.add_dependency('another_gem')
spec.add_dependency('yet_another_gem', '~> 3.0')
Any version will do.
Must be 3.0.x series.

18.7 Distributing Your Gems | 717

See Also
• The Gemspec reference (http://docs.rubygems.org/read/chapter/20)

• Recipe 18.3, “Requiring a Specific Version of a Gem”

• Recipe 18.7, “Distributing Your Gems”

• Recipe 19.4, “Automatically Building a Gem”

18.7 Distributing Your Gems

Problem
You’ve packaged your software as a Ruby gem, but nobody knows about it. You
want to make your gem easy to find and install, so that your genius does not go
unrecognized.

Solution
The simplest solution (for you, at least) is to upload your .gem file to a web site or
FTP site. Your users can download the .gem file, then install it by passing the file-
name into the gem install command:

$ wget http://www.example.com/gems/my_gem-1.0.4.gem
--10:40:10-- http://www.example.com/gems/my_gem-1.0.4.gem
 => `my_gem-1.0.4.gem'
Resolving gems.example.com... 204.127.202.4
Connecting to gems.example.com|204.127.202.4|:80... connected.
HTTP request sent, awaiting response... 200 OK
Length: 40,823 (40K) [text/plain]

100%[====================================>] 40,823 46.96K/s

10:40:11 (46.85 KB/s) - `my_gem-1.0.4.gem' saved [40823/40823]

$ gem install ./my_gem-1.0.4.gem
Attempting local installation of './my_gem-1.0.4.gem'
Successfully installed my_gem, version 1.0.4
Installing RDoc documentation for my_gem-1.0.4...

If your gem has dependencies, the end user must separately install the dependencies
before installing a downloaded gem, or the gem command will become confused and
die. This will happen even if the user specifies the --include-dependencies flag:

$ gem install --include-dependencies ./my_gem_with_dependency-1.0.0.gem
Attempting local installation of './my_gem_with_dependency.1.0.0.gem'
ERROR: Error installing gem ./my_gem_with_dependency-1.0.0.gem[.gem]:
 my_gem_with_dependency requires my_dependency > 0.0.0

If you distribute your gem from a web site, be sure to set the homepage attribute in
your gemspec file.

718 | Chapter 18: Packaging and Distributing Software

Discussion
Gems are usually distributed through HTTP. A web server might serve standalone .gem
files intended for download by the end user, or it might also serve some metadata
that allows the gem command to download and install gems on its own.

There are several ways of setting up gems for distribution. In general you must nego-
tiate a tradeoff between the developer’s (your) convenience and the end user’s ease of
installation. The Rubygems package makes it easy to install and manage third-party
Ruby packages, but the developers of those packages have to jump through some
hoops if they want to make the installation process as transparent as possible.

Simply uploading the raw gem files to your web site is the simplest solution from
your point of view (assuming you already have a web site), but it’s less convenient
for your users. This is especially true if your gem has dependencies. The most conve-
nient solution for the end user is for you to upload your gem to the rubyforge.org
site. Whenever you upload a .gem file to a project on this site, it is automatically mir-
rored to the canonical rubygems repository at http://gems.rubyforge.org/gems/. This is
where the rubygems package looks for gems by default.

However, getting your gem onto rubyforge.org is more complicated than uploading a
gem to your own web site. You must first sign up for a RubyForge account, giving
the administrators your personal information. You must then submit a project (the
name of the project should go into the rubyforge_project attribute in your gemspec)
and have it approved by the site administrators.

Once your RubyForge project is set up, you can use the web interface to “create a
new release” for your project, then upload your prebuilt gem to your project’s file
repository. Within a few minutes to a few hours, your gem will be mirrored to the
main gem repository. From that point on, anybody with the rubygems package and
Internet access can install your gem, along with any dependencies, simply by run-
ning gem install your_gem -—include-dependencies. But for your smaller projects, the
work you have to do to get to this point may seem like overkill.

A compromise is to host the gem yourself on an existing web server, and also host the
YAML metadata that lets the gem command locate, download, and install gems on its
own. You can generate the YAML metadata with the generate_yaml_index.rb script
that comes with the rubygems package. Put all your gems into a gems/ directory some-
where in your webspace, and pass in the parent of the gems/ directory as the --dir
argument to generate_yaml_index.rb.

$ cd ~/public_html/
$ mkdir gems
$ cp ~/mygem-1.0.0.gem gems/
$ generate_yaml_index.rb --dir=~/public_html/ --verbose
Building yaml file
 ... adding mygem-1.0.0

18.8 Installing and Creating Standalone Packages with setup.rb | 719

Building yaml.Z file
$ ls yaml*
yaml yaml.Z

The yaml and yaml.Z files are intended for download by the various gem commands.
Simply tell your users to pass in an appropriate --source argument to gem, and they’ll
be able to install gems from your web space just as they can from the canonical
repository at RubyForge

The --source argument should correspond to the directory in your webspace that
contains the yaml and yaml.Z files. For instance, if your ~/public_html/ directory in
the example above corresponds to the URL http://www.example.com/~leonardr/, you
should ask your users to install your gems with gem install --source=http://www.
example.com/~leonardr/. Passing in a --source is more work than just getting every-
thing from RubyForge, but once the user knows the URL, it’s not much more.

Note, however, that one invocation of the gem install command can only load gems
from a single source. If you’re hosting a gem that depends on other gems, you must
assume the user has already installed the dependencies, or else provide copies of the
dependency gems in the same gems/ directory as your own gems. If gem install is
given a --source argument, it won’t know to look at gems.rubyforge.org as a backup.

If you don’t already have a web site, you can run a special web server that only serves
gems. The rubygems package comes with an application called gem_server that acts
as a web server providing copies of all the gems installed on your system. The best
way to use this is as a private gem repository that distributes in-house Ruby gems
throughout your team or organization.

See Also
• Recipe 18.2, “Installing and Using a Gem”

• Recipe 18.6, “Packaging Your Code as a Gem”

• A tutorial for running a gem server as a Windows service (http://rubyforge.org/
docman/view.php/85/126/gemserver_tutorial.txt)

18.8 Installing and Creating Standalone Packages
with setup.rb

Problem
You want to install a Ruby package that includes a setup.rb script instead of being
packaged as a Ruby gem. Or, you want to make it possible for people to install your
software package without having to install Ruby gems.

720 | Chapter 18: Packaging and Distributing Software

Solution
To install a setup-rb–based Ruby package as root or the administrative user, simply
run the setup.rb script:

$ ruby setup.rb

By default, setup.rb installs a package into your site_ruby directory. If you don’t
have root access or only want to install the package for your own use, you can install
the package into your home directory, like this:

$ ruby setup.rb all --installdirs=home

That command installs the package into the lib/ruby/ subdirectory of your home
directory. Make sure you have that directory included in your RUBYLIB environment
variable, or Ruby won’t know to look there when you require a library. You can
check your library path with the special $: global variable:

$:
=> ["/home/leonardr/lib/ruby", "/usr/local/lib/site_ruby/1.8", ...]
require 'installed_via_setup'
=> true

Discussion
Because Ruby gems are not yet part of the standard Ruby library, some people prefer
to package their software releases as self-contained archives. A package that includes
a setup.rb installation script contains all the code and data necessary for installa-
tion; it might have dependencies, but it doesn’t rely on another component just to
get itself installed. The rubygems package itself is installed via setup.rb, since it can’t
assume that the system already supports gem-based installations.

You might also use a setup.rb script instead of a Ruby gem if you want to add Ruby
hook scripts to the installation procedure. For instance, you might want to create a
new database when your package is installed. Once the Rubygems package is
included in the Ruby standard library, this will be just about the only reason left not
to package all your software as Ruby gems. Even native C extensions can be included
in a Ruby gem and built as part of the gem installation.

Ruby gems and setup.rb impose similar file structures on your package: your Ruby
libraries go into a lib/ subdirectory, command-line applications go into a bin/ subdi-
rectory, and unit tests go into a tests/ subdirectory.

To use setup.rb, simply arrange your package to conform with its file stucture, and
copy the setup.rb file itself into the top-level directory of your package.

setup.rb works kind of like a Unix Makefile: it has various tasks like test, clean,
install, and all that are triggered when the user runs setup.rb with certain
options. You can put a pre- or post-hook into any task by creating a Ruby script

18.8 Installing and Creating Standalone Packages with setup.rb | 721

called “pre-[task].rb” or “post-[task].rb”. All such files will be run before or after
the appropriate task.

Here’s a simple example. I’ve created a small package with the following layout:

setup.rb
post-clean.rb
lib/
lib/installed_via_setup.rb
lib/pre-config.rb
bin/
bin/command.rb

I’ve got a library, a command-line script, a hook script pre-config.rb that needs to
run before the config task, and a second hook script post-clean.rb that needs to run
after the clean task. The hook scripts simply print out the messages “Pre-config hook
called” and “Post-clean hook called”.

When I run the clean task, with the command ruby setup.rb clean, I see the follow-
ing output:

$ ruby setup.rb clean
---> bin
<--- bin
---> lib
<--- lib
Post-clean hook called.
rm -f .config
rm -f InstalledFiles

When I run setup.rb without specifying a task, I see the following output:

$ ruby setup.rb
...
Pre-configuration hook called.
...
rm -f InstalledFiles
---> bin
mkdir -p /usr/bin/
install command.rb /usr/bin/
<--- bin
---> lib
mkdir -p /usr/local/lib/site_ruby/1.8/
install installed_via_setup.rb /usr/local/lib/site_ruby/1.8/

My command-line program gets installed into /usr/bin/, and my library file into
site_ruby. The preconfiguration hook script gets called because the default task, all,
simply runs three other tasks: config (triggering the hook script), setup, and install.

Once I’ve run ruby setup.rb, I am free to require 'installed_via_setup' from within
any Ruby program, and to invoke command.rb from the command line.

There’s no easy way to uninstall a package installed with setup.rb; you need to
delete the files manually.

722 | Chapter 18: Packaging and Distributing Software

One final thing to watch out for: standalone Ruby packages created before about
2004 may be installed via a script called install.rb. This script works much the
same way as setup.rb. The two scripts were both written by Minero Aoki and are
both part of the setup.rb package, but install.rb was intended for smaller-scale
installations. As of late 2003, the two scripts were merged, so now you only have to
worry about setup.rb.

See Also
• Many of the packages on the Ruby Application Archive use setup.rb, while most

of the packages on rubyforge.org are packaged as gems (http://raa.ruby-lang.org/)

• The “setup.rb User Manual” describes how to run and create setup.rb scripts
(http://i.loveruby.net/en/projects/setup/doc/)

• If you want to write setup.rb hook scripts, see the hook script API at http://i.
loveruby.net/en/projects/setup/doc/hookapi.html

723

Chapter 19 CHAPTER 19

Automating Tasks with Rake19

Even when your software is written, tested, and packaged, you’re still not done.
You’ve got to start working on the next version, and the next… Every release you do,
in some cases every change you make to your code, will send you running through a
maze of repetitive tasks that have nothing to do with programming.

Fortunately, there’s a way to automate these tasks, and the best part is that you can
do it by writing more Ruby code. The answer is Rake.

Rake is a build language, Ruby’s answer to Unix make and Java’s Ant. It lets you define
tasks: named code bocks that carry out specific actions, like building a gem or running
a set of unit tests. Invoke Rake, and your predefined tasks will happily do the work you
once did: compiling C extensions, splicing files together, running unit tests, or packag-
ing a new release of your software. If you can define it, Rake can run it.

Rake is available as the rake gem; if you’ve installed Rails, you already have it. Unlike
most gems, it doesn’t just install libraries: it installs a command-line program called
rake, which contains the logic for actually performing Rake tasks. For ease of use,
you may need to add to your PATH environment variable the directory containing
the rake script: something like /usr/lib/ruby/gems/1.8/gems/rake-0.6.2/bin/. That
way you can just run rake from the command line.

A Rakefile is just a Ruby source file that has access to some special methods: task, file,
directory, and a few others. Calling one of these methods defines a task, which can be
run by the command-line rake program, or called as a dependency by other tasks.

The most commonly used method is the generic one: task. This method takes the
name of the task to define, and a code block that implements the task. Here’s a sim-
ple Rakefile that defines two tasks, cross_bridge and build_bridge, one of which
depends on the other. It designates cross_bridge as the default task by defining a
third task called default which does nothing except depend on cross_bridge.

Rakefile
desc "Cross the bridge."
task :cross_bridge => [:build_bridge] do

724 | Chapter 19: Automating Tasks with Rake

 puts "I'm crossing the bridge."
end

desc "Build the bridge"
task :build_bridge do
 puts 'Bridge construction is complete.'
end

task :default => [:cross_bridge]

Call this file Rakefile, and it’ll be automatically picked up by the rake command
when you run the command in its directory. Here are some sample runs:

$ rake
Bridge construction is complete.
I'm crossing the bridge.

$ rake build_bridge
Bridge construction is complete.

Note all the stuff I didn’t have to do. I didn’t have to write code to process command-
line options and run the appropriate tasks: the rake command does that. The rake
command also takes care of loading the Rake libraries, so I didn’t have to recite
require statements at the beginning of my Rakefile. I certainly didn’t have to learn a
whole new programming language or a new file format: just one new Ruby method
and its arguments.

Adapt the recipes in this chapter to your project’s Rakefile, and a lot of the auxilliary
work that surrounds a software project will simply disappear. You won’t have to
remember to run unit tests or generate documentation after every change, because it
will happen as a side effect of things you do anyway. If your unit tests fail, so will
your attempt to release your project, and you won’t be embarrassed by bugs.

Whenever you ask yourself: “What was the command to …?”, just invoke rake with
the -T option. It will print a list of available tasks and a description of each:

$ rake -T
(in /home/leonardr/my_project/)
rake build_bridge # Build the bridge.
rake cross_bridge # Cross the bridge.

Nothing says you can only use Rake in Ruby projects. Most Rake tasks simply run
external programs and move disk files around: the same things tasks do in other build
languages. You can use Rake as a replacement for make, build static web sites with it, or
automate any other repetitive action made up of smaller, interlocking actions.

Here are some more resources for automating tasks with Ruby:

• The site http://docs.rubyrake.org/ provides a tutorial, a user guide, and examples
for Rake.

• The generated RDoc for Rake has a good overview of the special methods avail-
able to Rakefiles (http://rake.rubyforge.org/files/doc/rakefile_rdoc.html)

19.1 Automatically Running Unit Tests | 725

19.1 Automatically Running Unit Tests
Credit: Pat Eyler

Problem
You want to make it easy to run your project’s unit test suite. You also want the tests
to run automatically before you do a new release of your project.

Solution
Require the rake/testtask library and create a new Rake::TestTask. Save the follow-
ing code in a file called Rakefile in the project’s top-level directory (or add it to your
existing Rakefile).

require 'rake/testtask'

Rake::TestTask.new('test') do |t|
 t.pattern = 'test/**/tc_*.rb'
 t.warning = true
end

This Rakefile makes two assumptions:

1. The Test::Unit test cases live in files under the test directory (and its subdirec-
tories). The names of these files start with tc_ and end in .rb.

2. The Ruby libraries to be tested live under the lib directory. Rake automatically
appends this directoy to Ruby’s load path, the list of directories that Ruby
searches when you try to require a library.

To execute your test cases, run the command rake test in the project’s top-level
directory. The tests are loaded by a new Ruby interpreter with warnings enabled.
The output is the same as you’d see from Test::Unit’s console runner.

Discussion
If it’s easy to trigger the test process, you’ll run your tests more often, and you’ll
detect problems sooner. Rake makes it really convenient to run your tests.

We can make the test command even shorter by defining a default task. Just add the
following line to the Rakefile. The position within the file doesn’t matter, but to keep
things clear, you should put it before other task definitions:

task "default" => ["test"]

Now, whenever we run rake without an argument, it will invoke the test task. If
your Rakefile already has a default task, you should be able to just add the test task
to its list of prerequisites. Similarly, if you have a task that packages a new release of
your software (like the one defined in Recipe 19.4), you can make the test task a

726 | Chapter 19: Automating Tasks with Rake

prerequisite. If your tests fail, your package won’t be built and you won’t release a
buggy piece of software.

The Rake::TestTask has a special attribute, libs; the entries in this array are added to
Ruby’s load path. As mentioned above, the default value is ["lib"], making it possi-
ble for your tests to require files in your project’s lib/ subdirectory. Sometimes this
default is not enough. Your Ruby code might not be in the lib/ subdirectory. Or
worse, your test code might change the current working directory. Since lib/ is a rel-
ative path, the default value of libs would start out as a valid source for library files,
and then stop being valid when the test code changed the working directory.

We can solve this problem by specifying the absolute path to the project’s lib direc-
tory in the Rakefile. Using an absolute path is generally more stable. In this sample
Rakefile, we give the load path the absolute path to the lib and test subdirectories.
Adding the test directory to the load path is useful if you need to require a library
full of test utility methods:

require 'rake/testtask'

lib_dir = File.expand_path('lib')
test_dir = File.expand_path('test')

Rake::TestTask.new("test") do |t|
 t.libs = [lib_dir, test_dir]
 t.pattern = "test/**/tc_*.rb"
 t.warning = true
end

Test suites

As a project grows, it takes longer and longer to run all the test cases. This is bad for
the habit we’re trying to inculcate, where you run the tests whenever you make a
change. To solve this problem, group the test cases into test suites. Depending on the
project, you might have a test suite of all test cases concerning file I/O, another suite
for the console interface, and so on.

Let’s say that when you’re working on the DataFile class, you can get away with only
running the file I/O test suite. But before releasing a new version of the software, you
need to run all the test cases.

To create a Rake test suite, instantiate a Rake::TestTask instance, and set the test_
files attribute to something other than the complete list of test files. This sample
Rakefile splits up the test files into two suites.

require 'rake/testtask'

Rake::TestTask.new('test-file') do |t|
 t.test_files = ['test/tc_datafile.rb',
 'test/tc_datafilewriter.rb',
 'test/tc_datafilereader.rb']

19.2 Automatically Generating Documentation | 727

 t.warning = true
end

Rake::TestTask.new('test-console') do |t|
 t.test_files = ['test/tc_console.rb',
 'test/tc_prettyprinter.rb']
 t.warning = true
end

Invoking rake test-file runs the tests related to file I/O, and invoking rake test-
console tests the console interface. The only thing missing is a task that runs all tests.
You can either use the all-inclusive task from the Rakefile given in the Solution, or
you can create a task that has all the test suites as prerequisites:

task 'test' => ['test-file', 'test-console']

When this test task is invoked, Rake runs the test-file suite and then the test-
console suite. Each suite is run in its own Ruby interpreter.

See Also
• Recipe 17.8, “Running Unit Tests”

• For a guide to the options available to the TestTask class, consult its RDoc; it’s
available at, for instance, http://rake.rubyforge.org/classes/Rake/TestTask.html

19.2 Automatically Generating Documentation
Credit: Stefan Lang

Problem
You want to automatically create HTML pages from the RDoc formatted comments
in your code, and from other RDoc formatted files.

Solution
Within your Rakefile, require the rake/rdoctask library and create a new Rake::
RDocTask. Here’s a typical example:

require 'rake/rdoctask'

Rake::RDocTask.new('rdoc') do |t|
 t.rdoc_files.include('README', 'lib/**/*.rb')
 t.main = 'README'
 t.title = "MyLib API documentation"
end

Now you can run the command rake rdoc from a shell in your project’s top-level
directory. This particular Rake task creates API documentation for all files under the
lib directory (and its subdirectories) whose names end in .rb. Additionally, the

728 | Chapter 19: Automating Tasks with Rake

RDoc-formatted contents of the top-level README file will appear on the front page of
the documentation.

The HTML output files are written under your project’s %(filename)html% direc-
tory. To read the documentation, point your browser to %(filename)html/index.
html%. The browser will show “MyLib API documentation” (that is, the value of the
task’s title) as the page title.

Discussion
It is common practice among authors of Ruby libraries to document a library’s API
with RDoc-formatted text. Since Ruby 1.8.1, a standard Ruby installation contains
the rdoc tool, which extracts the RDoc comments from source code and creates
nicely formatted HTML pages.

Unlike the tasks you define from scratch with the task method, but like the TestTask
covered in Recipe 19.1, Rake::RDocTask.new takes a code block, which is executed
immediately at task definition time. The code block lets you customize how your
RDoc documentation should look. After running your code block, the Rake::
RDocTask object defines three new Rake tasks:

rdoc
Updates the HTML documentation by running RDoc.

clobber_rdoc
Removes the directory and its contents created by the rdoc task.

rerdoc
Force a rebuild of the HTML-documentation. Has the same effect as running
clobber_rdoc followed by rdoc.

Now we know enough to integrate the Rake::RDocTask into a more useful Rakefile.
Suppose we want a task that uploads the documentation to RubyForge (or another
site), and a general cleanup task that removes the generated HTML-documentation
as well as all backup files in the project directory. To keep the example simple, I’ve
inserted comments instead of the actual commands for uploading and removing the
files; see Recipes 19.3 and 19.8 for more realistic examples.

require 'rake/rdoctask'

Rake::RDocTask.new('rdoc') do |t|
 t.rdoc_files.include('README', 'lib/**/*.rb')
 t.main = 'README'
 t.title = "MyLib API documentation"
end

desc 'Upload documentation to RubyForge.'
task 'upload' => 'rdoc' do
 # command(s) to upload html/ and contents to RubyForge
end

19.3 Cleaning Up Generated Files | 729

desc 'Remove generated and backup files.'
task 'clobber' => 'clobber_rdoc' do
 # command(s) to remove all files ending in ~ or .bak
end

Finally, we make the default task dependent on the rdoc task, so that RDoc gets built
automatically when you invoke rake with no task. If there already is a default task,
this code will simply add another dependency to the existing task:

task :default => ['rdoc']

Available attributes

Here’s a list of attributes that can be set in the block given to Rake::RDocTask.new.

rdoc_dir
Name of the directory where the produced HTML files go. Defaults to html.

title
A title for the produced HTML pages.

main
Name of the input file whose contents should appear at the initial page of the
HTML output.

template
Name of the template to be used by RDoc.

rdoc_files
Initialized to an empty filelist. Just call the include method with the names of
files to be documented, or glob patterns matching multiple files.

options
An array of arguments to be passed directly to rdoc. Use this if none of the other
attributes fits your needs. Run rdoc --help for a list of available options.

See Also
• Recipe 19.3, “Cleaning Up Generated Files”

• Recipe 19.8, “A Generic Project Rakefile”

• The RDoc documentation for the Rake::RDocTask class (http://rake.rubyforge.org/
classes/Rake/RDocTask.html)

19.3 Cleaning Up Generated Files
Credit: Stefan Lang

Problem
You want to clean up files that aren’t actually part of your project: generated files,
backup files, and so on.

730 | Chapter 19: Automating Tasks with Rake

Solution
Within your Rakefile, require the rake/clean library to get access to the clean and
clobber tasks. Put glob patterns for all your generated files in the CLOBBER FileList.
Put glob patterns for all other scratch files in the CLEAN FileList.

By default, CLEAN also includes the patterns **/*~, **/*.bak, and **/core. Here’s a
typical set of CLOBBER and CLEAN files:

require 'rake/clean'

Include the "pkg" and "doc" directories and their contents.
Include all files ending in ".o" in the current directory
and its subdirectories (recursively).
CLOBBER.include('pkg', 'doc', '**/*.o')

Include InstalledFiles and .config: files created by setup.rb.
Include temporary files created during test run.
CLEAN.include('InstalledFiles', '.config', 'test/**/*.tmp')

Run rake clean to remove all files specified by the CLEAN filelist, and rake clobber to
remove the files specified by both file lists.

Discussion
The rake/clean library initializes the constants CLEAN and CLOBBER to new Rake::
FileList instances. It also defines the tasks clean and clobber, making clean a pre-
requisite of clobber. The idea is that rake clean removes any files that might need to
be recreated once your program changes, while rake clobber returns your source tree
to a completely pristine state.

Other Rake libraries define cleanup tasks that remove certain products of their main
tasks. An example: the packaging libraries create a task called clobber_package, and
make it a prerequisite of clobber. Running rake clobber on such a project removes
the package files: you don’t have to explicitly include them in your CLOBBER list.

You can do the same thing for your own tasks: rather than manipulate CLEAN and
CLOBBER, you can create a custom cleanup task and make it a prerequisite of clean or
clobber. The following code is a different way of making sure that rake clobber
removes any precompiled object files:

desc 'Remove all object files.'
task 'clobber_objects' do
 rm_f FileList['**/*.o']
end

Make clobber_objects a prerequisite of the preexisting clobber task
task 'clobber' => 'clobber_objects'

Now you can run rake clobber_objects to remove all object files, and rake clobber to
remove all other unwanted files as well.

19.4 Automatically Building a Gem | 731

See Also
• The documentation for the Dir.glob method describes the format for the pat-

terns accepted by FileList#include; it’s accessible via ri Dir.glob

• Online documentation for the rake/clean library (http://rake.rubyforge.org/files/
lib/rake/clean_rb.html)

19.4 Automatically Building a Gem
Credit: Stefan Lang

Problem
You want to automatically build a gem package for your application or library when-
ever you do a release.

Solution
Require the rake/gempackagetask library within your Rakefile, and create a Gem::
Specification instance that describes your project. Feed it to the Rake::
GemPackageTask constructor, which automatically defines a number of gem-related
tasks:

require 'rake/gempackagetask'

Create a gem specification
gem_spec = Gem::Specification.new do |s|
 s.name = 'docbook'
 s.version = '1.0.0'
 s.summary = 'DocBook formatting program and library.'

 # Files containing Test::Unit test cases.
 s.test_files = FileList['tests/**/*']

 # Executable scripts under the "bin" directory.
 s.executables = ['voc']

 # List of other files to be included.
 s.files = FileList['README', 'ChangeLog', 'lib/**/*.rb']
end

Rake::GemPackageTask.new(gem_spec) do |pkg|
 pkg.need_zip = false
 pkg.need_tar = false
end

Run the command rake package, and (assuming those files actually exist), Rake will
build a gem file docbook-1.0.0.gem under the pkg/ directory.

732 | Chapter 19: Automating Tasks with Rake

Discussion
The RubyGems library provides the Gem::Specification class, and Rake provides the
Rake::GemPackageTask class that uses it. Creating a new Rake::GemPackageTask object
automatically defines the three tasks: package, clobber_package, and repackage.

The package task builds a gem inside the project’s pkg/ directory. The clobber_
package task removes the pkg/ directory and its contents. The repackage task just
invokes clobber_package to remove any old package file, and then invokes package to
rebuild them from scratch.

The example above sets to false the attributes need_zip and need_tar of the Rake::
GemPackageTask. If you set them to true, then in addition to a gem you’ll get a ZIP file
and a gzipped tar archive containing the same files as the gem. Note that Rake uses
the zip and tar command-line tools, so if your system doesn’t provide them (the way
a standard Windows installation doesn’t), the package task won’t be able to create
these ZIP or tar archives.

The package task recreates a package file only if it doesn’t already exist, or if you’ve
updated one of your input files since you last built the package. The most common
problem you’ll run into here is that you’ll decide to stop packaging a certain file.
Rake won’t recognize the change (since the file is gone), and running rake package
won’t do anything. To force a rebuild of your package file(s), run rake repackage.

See Also
• Recipe 18.6, “Packaging Your Code as a Gem”

• The Gem::Specification reference describes everything you can do when creat-
ing a gem (http://docs.rubygems.org/read/chapter/20)

• The Rake alternative Rant can build gems, ZIP files, and tarballs without calling
out to external tools; point your browser to http://make.ruby-co.de

19.5 Gathering Statistics About Your Code
Credit: Stefan Lang

Problem
You want to gather statistics about your Ruby project, like the total number of lines
of code.

Solution
Here’s a class that parses Ruby source files and gathers statistics. Put this in
scriptlines.rb in your project’s top-level directory.

19.5 Gathering Statistics About Your Code | 733

scriptlines.rb
A ScriptLines instance analyses a Ruby script and maintains
counters for the total number of lines, lines of code, etc.
class ScriptLines

 attr_reader :name
 attr_accessor :bytes, :lines, :lines_of_code, :comment_lines

 LINE_FORMAT = '%8s %8s %8s %8s %s'

 def self.headline
 sprintf LINE_FORMAT, "BYTES", "LINES", "LOC", "COMMENT", "FILE"
 end

 # The 'name' argument is usually a filename
 def initialize(name)
 @name = name
 @bytes = 0
 @lines = 0 # total number of lines
 @lines_of_code = 0
 @comment_lines = 0
 end

 # Iterates over all the lines in io (io might be a file or a
 # string), analyses them and appropriately increases the counter
 # attributes.
 def read(io)
 in_multiline_comment = false
 io.each { |line|
 @lines += 1
 @bytes += line.size
 case line
 when /^=begin(\s|$)/
 in_multiline_comment = true
 @comment_lines += 1
 when /^=end(\s|$)/:
 @comment_lines += 1
 in_multiline_comment = false
 when /^\s*#/
 @comment_lines += 1
 when /^\s*$/
 # empty/whitespace only line
 else
 if in_multiline_comment
 @comment_lines += 1
 else
 @lines_of_code += 1
 end
 end
 }
 end

 # Get a new ScriptLines instance whose counters hold the
 # sum of self and other.

734 | Chapter 19: Automating Tasks with Rake

 def +(other)
 sum = self.dup
 sum.bytes += other.bytes
 sum.lines += other.lines
 sum.lines_of_code += other.lines_of_code
 sum.comment_lines += other.comment_lines
 sum
 end

 # Get a formatted string containing all counter numbers and the
 # name of this instance.
 def to_s
 sprintf LINE_FORMAT,
 @bytes, @lines, @lines_of_code, @comment_lines, @name
 end
end

To tie the class into your build system, give your Rakefile a stats task like the follow-
ing. This task assumes that the Rakefile and scriptlines.rb are in the same directory:

task 'stats' do
 require 'scriptlines'

 files = FileList['lib/**/*.rb']

 puts ScriptLines.headline
 sum = ScriptLines.new("TOTAL (#{files.size} file(s))")

 # Print stats for each file.
 files.each do |fn|
 File.open(fn) do |file|
 script_lines = ScriptLines.new(fn)
 script_lines.read(file)
 sum += script_lines
 puts script_lines
 end
 end

 # Print total stats.
 puts sum
end

Discussion
ScriptLines performs a very basic parsing of Ruby code: it divides a source file into
blank lines, comment lines, and lines containing Ruby code. If you want more
detailed information, you can include each file and get more information about the
defined classes and methods with reflection or an extension like ParseTree.

Invoke the stats task to run all the Ruby scripts beneath your lib/ directory through
ScriptLines. The following example output is for the highline library:

$ rake stats
(in /usr/local/lib/ruby/gems/1.8/gems/highline-1.0.1)

19.6 Publishing Your Documentation | 735

 BYTES LINES LOC COMMENT FILE
 18626 617 360 196 lib/highline.rb
 12745 375 168 181 lib/highline/menu.rb
 15760 430 181 227 lib/highline/question.rb
 801 25 7 14 lib/highline/import.rb
 47932 1447 716 618 TOTAL (4 scripts)

BYTES is the file size in bytes, LINES the number of total lines in each file, LOC stands
for “Lines Of Code,” and COMMENT is the number of comment-only lines.

These simple metrics are good for gauging the complexity of a project, but don’t use
them as a measure of day-to-day progress. Complexity is not the same as progress,
and a good day’s work might consist of replacing a hundred lines of code with ten.

See Also
• ri Kernel#sprintf

• The RDoc documentation for Rake’s FileList class (http://rake.rubyforge.org/
classes/Rake/FileList.html)

• The ParseTree extension (http://rubyforge.org/projects/parsetree/)

19.6 Publishing Your Documentation
Credit: Stefan Lang

Problem
You want to automatically update your project’s web site on RubyForge (or some
other site) with generated documentation or custom pages.

Solution
As seen in Recipe 19.2, Rake provides a RDocTask for generating RDoc documentation:

require 'rake/rdoctask'

html_dir = 'doc/html'
library = 'MyLib'
Rake::RDocTask.new('rdoc') do |t|
 t.rdoc_files.include('README', 'lib/**/*.rb')
 t.main = 'README'
 t.title = "#{library} API documentation"
 t.rdoc_dir = html_dir
end

To upload your generated documentation to RubyForge, use this task along with the
upload-docs task defined below. The Unix scp command-line tool does the actual
work of uploading:

Define your RubyForge username and your project's Unix name here:
rubyforge_user = 'user'
rubyforge_project = 'project'

736 | Chapter 19: Automating Tasks with Rake

rubyforge_path = "/var/www/gforge-projects/#{rubyforge_project}/"
desc 'Upload documentation to RubyForge.'
task 'upload-docs' => ['rdoc'] do
 sh "scp -r #{html_dir}/* " +
 "#{rubyforge_user}@rubyforge.org:#{rubyforge_path}"
end

Discussion
Set off the publishing process by invoking rake upload-docs. The upload-docs task
has the rdoc task as a prerequisite, so the HTML pages under doc/html/ will be cre-
ated if necessary.

Then scp prompts for your RubyForge account password. Enter it, and all files under
doc/html/ and its subdirectories will be uploaded to RubyForge. The docs will
become available under http://project.rubyforge.org/, where “project” is the Unix
name of your project. Now your users can read your RDoc online without having to
generate it themselves. Your documentation will also show up in web search results.

Rake’s sh method starts an instance of the OS’s standard shell. This feature is used to
run the scp command-line tool. This means that this recipe will only work if scp is
installed on your system.

The scp command copies all the files that the RDoc placed under doc/html/, to the
root of your project’s web site on the RubyForge server. In effect, the main page of
the API documentation will appear as your project’s homepage. Some RubyForge
projects don’t have a custom homepage, so this is a good place to put the RDoc. If
you want a custom homepage, just copy the RDoc into a different directory by
changing rubyforge_path:

rubyforge_path = "/var/www/gforge-projects/#{rubyforge_project}/rdoc/"

You’ll have to manually create the rdoc directory before you can use the scp short-
cut. After that, the generated RDoc will show up at http://project.rubyforge.org/rdoc/,
and you can link to it from your custom homepage with a relative link to rdoc/.

You can make Rake upload your custom homepage as well, of course. Just add an
upload-site task that uploads your custom homepage and other web content. Make
upload-site and upload-docs prerequisites of an overarching publish task:

website_dir = 'site'
desc 'Update project website to RubyForge.'
task 'upload-site' do
 sh "scp -r #{website_dir}/* " +
 "#{rubyforge_user}@rubyforge.org:/var/www/gforge-projects/project/"
end

desc 'Update API docs and project website to RubyForge.'
task 'publish' => ['upload-docs', 'upload-site']

19.7 Running Multiple Tasks in Parallel | 737

Now you can run rake publish to update the generated API documentation, and
upload it together with the rest of the web site to RubyForge. The publish task can
be just one more prerequisite for an overarching release task.

Of course, you can use this same technique if you’re using a web host other than
RubyForge: just change the destination host of the scp command.

See Also
• Recipe 17.11, “Documenting Your Application,” covers writing RDoc

documentation

• Recipe 19.2, “Automatically Generating Documentation”

19.7 Running Multiple Tasks in Parallel

Problem
Your build process takes too long to run. Rake finishes copying one set of files only
to start copying another set. You could save time by running these tasks in parallel,
instead of stringing them one after another.

Solution
Define a task using the multitask function instead of task. Each of that task’s prereq-
uisites will be run in a separate thread.

In this code, I’ll define two long-running tasks:

task 'copy_docs' do
 # Simulate a large disk copy.
 sleep 5
end

task 'compile_extensions' do
 # Simulate a C compiler compiling a bunch of files.
 sleep 10
end

task 'build_serial' => ['copy_docs', 'compile_extensions']
multitask 'build_parallel' => ['copy_docs', 'compile_extensions']

The build_serial task runs in about 15 seconds, but the build_parallel task does
the same thing in about 10 seconds.

Discussion
A multitask runs just like a normal task, except that each of its dependencies runs in a
separate thread. When running the dependencies of a multitask, Rake first finds any

738 | Chapter 19: Automating Tasks with Rake

common secondary dependencies of these dependencies, and runs them first. It then
spawns a separate thread for each dependency, so that they can run simultaneously.

Consider three tasks, ice_cream, cheese, and yogurt, all of which have a dependency
on buy_milk. You can run the first three tasks in separate threads with a multitask,
but Rake will run buy_milk before creating the threads. Otherwise, ice_cream, cheese,
and yogurt would all trigger buy_milk, wasting time.

When your tasks spend a lot of time blocking on I/O operations (as many Rake tasks
do), using a multitask can speed up your builds. Unfortunately, it can also cause the
same problems you’ll see with any multithreaded code. If you’ve got a fancy Rake-
file, in which the tasks keep state inside Ruby data structures, you’ll need to synchro-
nize access to those data structures to prevent multithreading problems.

You may also have problems converting a task to a multitask if your dependencies
are set up incorrectly. Take the following example:

task 'build' => ['compile_extensions', 'run_tests', 'generate_rdoc']

The unit tests can’t run if the compiled extensions aren’t available, so :compile_
extensions shouldn’t be in this list at all: it should be a dependency of :run_tests.
You might not notice this problem as long as you’re using task (because :compile_
extensions runs before :run_tests anyway), but if you switch to a multitask your
tests will start failing. Fixing your dependencies will solve the problem.

The multitask method is available only in Rake 0.7.0 and higher.

See Also
• Chapter 20

19.8 A Generic Project Rakefile
Credit: Stefan Lang

Every project’s Rakefile is different, but most Ruby projects can be handled by very
similar Rakefiles. To close out the chapter, we present a generic Rakefile that
includes most of the tasks covered in this chapter, and a few (such as compilation of
C extensions) that we only hinted at.

This Rakefile will work for pure Ruby projects, Ruby projects with C extensions, and
projects that are only C extensions. It defines an overarching task called publish that
builds the project, runs tests, generates RDoc, and releases the whole thing on Ruby-
Forge. It’s a big file, but you don’t have to use all of it. The publish task is made
entirely of smaller tasks, and you can pick and choose from those smaller tasks to
build your own Rakefile. For a simple project, you can just customize the settings at
the beginning of the file, and ignore the rest. Of course, you can also extend this
Rakefile with other tasks, like the stats task presented in Recipe 19.5.

19.8 A Generic Project Rakefile | 739

This Rakefile assumes that you follow the directory layout conventions laid down by
the setup.rb script, even if you don’t actually use setup.rb to install your project. For
instance, it assumes you put your Ruby files in lib/ and your unit tests in test/.

First, we include Rake libraries that make it easy to define certain kinds of tasks:

Rakefile
require "rake/testtask"
require "rake/clean"
require "rake/rdoctask"
require "rake/gempackagetask"

You’ll need to configure these variables:

The name of your project
PROJECT = "MyProject"

Your name, used in packaging.
MY_NAME = "Frodo Beutlin"

Your email address, used in packaging.
MY_EMAIL = "frodo.beutlin@my.al"

Short summary of your project, used in packaging.
PROJECT_SUMMARY = "Commandline program and library for ..."

The project's package name (as opposed to its display name). Used for
RubyForge connectivity and packaging.
UNIX_NAME = "my_project"

Your RubyForge user name.
RUBYFORGE_USER = ENV["RUBYFORGE_USER"] || "frodo"

Directory on RubyForge where your website's files should be uploaded.
WEBSITE_DIR = "website"

Output directory for the rdoc html files.
If you don't have a custom homepage, and want to use the RDoc
index.html as homepage, just set it to WEBSITE_DIR.
RDOC_HTML_DIR = "#{WEBSITE_DIR}/rdoc"

Now we start defining the variables you probably won’t have to configure. The first
set is for your project includes C extensions, to be compiled with extconf.rb, these
variables let Rake know where to find the source and header files, as well as extconf.rb
itself:

Variable settings for extension support.
EXT_DIR = "ext"
HAVE_EXT = File.directory?(EXT_DIR)
EXTCONF_FILES = FileList["#{EXT_DIR}/**/extconf.rb"]
EXT_SOURCES = FileList["#{EXT_DIR}/**/*.{c,h}"]
Eventually add other files from EXT_DIR, like "MANIFEST"
EXT_DIST_FILES = EXT_SOURCES + EXTCONF_FILES

740 | Chapter 19: Automating Tasks with Rake

This next piece of code automatically finds the current version of your project, so
long as you define a file my_project.rb, which defines a module MyProject contain-
ing a constant VERSION. This is convenient because you don’t have to change the ver-
sion number in your gemspec whenever you change it in the main program.

REQUIRE_PATHS = ["lib"]
REQUIRE_PATHS << EXT_DIR if HAVE_EXT
$LOAD_PATH.concat(REQUIRE_PATHS)
This library file defines the MyProject::VERSION constant.
require "#{UNIX_NAME}"
PROJECT_VERSION = eval("#{PROJECT}::VERSION") # e.g., "1.0.2"

If you don’t want to set it up this way, you can:

• Have the Rakefile scan a source file for the current version.

• Use an environment variable.

Hardcode PROJECT_VERSION here, and change it whenever you do a new version.

These variables here are for the rake clobber tasks: they tell Rake to clobber files gen-
erated when you run setup.rb or build your C extensions.

Clobber object files and Makefiles generated by extconf.rb.
CLOBBER.include("#{EXT_DIR}/**/*.{so,dll,o}", "#{EXT_DIR}/**/Makefile")
Clobber .config generated by setup.rb.
CLOBBER.include(".config")

Now we start defining file lists and options for the various tasks. If you have a non-
standard file layout, you can change these variables to reflect it.

Options common to RDocTask AND Gem::Specification.
The --main argument specifies which file appears on the index.html page
GENERAL_RDOC_OPTS = {
 "--title" => "#{PROJECT} API documentation",
 "--main" => "README.rdoc"
}

Additional RDoc formatted files, besides the Ruby source files.
RDOC_FILES = FileList["README.rdoc", "Changes.rdoc"]
Remove the following line if you don't want to extract RDoc from
the extension C sources.
RDOC_FILES.include(EXT_SOURCES)

Ruby library code.
LIB_FILES = FileList["lib/**/*.rb"]

Filelist with Test::Unit test cases.
TEST_FILES = FileList["test/**/tc_*.rb"]

Executable scripts, all non-garbage files under bin/.
BIN_FILES = FileList["bin/*"]

This filelist is used to create source packages.
Include all Ruby and RDoc files.

19.8 A Generic Project Rakefile | 741

DIST_FILES = FileList["**/*.rb", "**/*.rdoc"]
DIST_FILES.include("Rakefile", "COPYING")
DIST_FILES.include(BIN_FILES)
DIST_FILES.include("data/**/*", "test/data/**/*")
DIST_FILES.include("#{WEBSITE_DIR}/**/*.{html,css}", "man/*.[0-9]")
Don't package files which are autogenerated by RDocTask
DIST_FILES.exclude(/^(\.\/)?#{RDOC_HTML_DIR}(\/|$)/)
Include extension source files.
DIST_FILES.include(EXT_DIST_FILES)
Don't package temporary files, perhaps created by tests.
DIST_FILES.exclude("**/temp_*", "**/*.tmp")
Don't get into recursion...
DIST_FILES.exclude(/^(\.\/)?pkg(\/|$)/)

Now we can start defining the actual tasks. First, a task for running unit tests:

Run the tests if rake is invoked without arguments.
task "default" => ["test"]

test_task_name = HAVE_EXT ? "run-tests" : "test"
Rake::TestTask.new(test_task_name) do |t|
 t.test_files = TEST_FILES
 t.libs = REQUIRE_PATHS
end

Next a task for building C extensions:

Set an environment variable with any configuration options you want to
be passed through to "setup.rb config".
CONFIG_OPTS = ENV["CONFIG"]
if HAVE_EXT
 file_create ".config" do
 ruby "setup.rb config #{CONFIG_OPTS}"
 end

 desc "Configure and make extension. " +
 "The CONFIG variable is passed to `setup.rb config'"
 task "make-ext" => ".config" do
 # The -q option suppresses messages from setup.rb.
 ruby "setup.rb -q setup"
 end

 desc "Run tests after making the extension."
 task "test" do
 Rake::Task["make-ext"].invoke
 Rake::Task["run-tests"].invoke
 end
end

A task for generating RDoc:

The "rdoc" task generates API documentation.
Rake::RDocTask.new("rdoc") do |t|
 t.rdoc_files = RDOC_FILES + LIB_FILES
 t.title = GENERAL_RDOC_OPTS["--title"]

742 | Chapter 19: Automating Tasks with Rake

 t.main = GENERAL_RDOC_OPTS["--main"]
 t.rdoc_dir = RDOC_HTML_DIR
end

Now we define a gemspec for the project, using the customized variables from the
beginning of the file. We use this to define a task that builds a gem.

GEM_SPEC = Gem::Specification.new do |s|
 s.name = UNIX_NAME
 s.version = PROJECT_VERSION
 s.summary = PROJECT_SUMMARY
 s.rubyforge_project = UNIX_NAME
 s.homepage = "http://#{UNIX_NAME}.rubyforge.org/"
 s.author = MY_NAME
 s.email = MY_EMAIL
 s.files = DIST_FILES
 s.test_files = TEST_FILES
 s.executables = BIN_FILES.map { |fn| File.basename(fn) }
 s.has_rdoc = true
 s.extra_rdoc_files = RDOC_FILES
 s.rdoc_options = GENERAL_RDOC_OPTS.to_a.flatten
 if HAVE_EXT
 s.extensions = EXTCONF_FILES
 s.require_paths << EXT_DIR
 end
end

Now we can generate the package-related tasks.
Rake::GemPackageTask.new(GEM_SPEC) do |pkg|
 pkg.need_zip = true
 pkg.need_tar = true
end

Here’s a task to publish RDoc and static HTML content to RubyForge:

desc "Upload website to RubyForge. " +
 "scp will prompt for your RubyForge password."
task "publish-website" => ["rdoc"] do
 rubyforge_path = "/var/www/gforge-projects/#{UNIX_NAME}/"
 sh "scp -r #{WEBSITE_DIR}/* " +
 "#{RUBYFORGE_USER}@rubyforge.org:#{rubyforge_path}",
 :verbose => true
end

Here’s a task that uses the rubyforge command to log in to RubyForge and publish
the packaged software as a release of the project:

task "rubyforge-setup" do
 unless File.exist?(File.join(ENV["HOME"], ".rubyforge"))
 puts "rubyforge will ask you to edit its config.yml now."
 puts "Please set the `username' and `password' entries"
 puts "to your RubyForge username and RubyForge password!"
 puts "Press ENTER to continue."
 $stdin.gets
 sh "rubyforge setup", :verbose => true

19.8 A Generic Project Rakefile | 743

 end
end

task "rubyforge-login" => ["rubyforge-setup"] do
 # Note: We assume that username and password were set in
 # rubyforge's config.yml.
 sh "rubyforge login", :verbose => true
end

task "publish-packages" => ["package", "rubyforge-login"] do
 # Upload packages under pkg/ to RubyForge
 # This task makes some assumptions:
 # * You have already created a package on the "Files" tab on the
 # RubyForge project page. See pkg_name variable below.
 # * You made entries under package_ids and group_ids for this
 # project in rubyforge's config.yml. If not, eventually read
 # "rubyforge --help" and then run "rubyforge setup".
 pkg_name = ENV["PKG_NAME"] || UNIX_NAME
 cmd = "rubyforge add_release #{UNIX_NAME} #{pkg_name} " +
 "#{PROJECT_VERSION} #{UNIX_NAME}-#{PROJECT_VERSION}"
 cd "pkg" do
 sh(cmd + ".gem", :verbose => true)
 sh(cmd + ".tgz", :verbose => true)
 sh(cmd + ".zip", :verbose => true)
 end
end

Now we’re in good shape to define some overarching tasks. The prepare-release
task makes sure the code works, and creates a package. The top-level publish task
does all that and also performs the actual release to RubyForge:

The "prepare-release" task makes sure your tests run, and then generates
files for a new release.
desc "Run tests, generate RDoc and create packages."
task "prepare-release" => ["clobber"] do
 puts "Preparing release of #{PROJECT} version #{VERSION}"
 Rake::Task["test"].invoke
 Rake::Task["rdoc"].invoke
 Rake::Task["package"].invoke
end

The "publish" task is the overarching task for the whole project. It
builds a release and then publishes it to RubyForge.
desc "Publish new release of #{PROJECT}"
task "publish" => ["prepare-release"] do
 puts "Uploading documentation..."
 Rake::Task["publish-website"].invoke
 puts "Checking for rubyforge command..."
 `rubyforge --help`
 if $? == 0
 puts "Uploading packages..."
 Rake::Task["publish-packages"].invoke
 puts "Release done!"

744 | Chapter 19: Automating Tasks with Rake

 else
 puts "Can't invoke rubyforge command."
 puts "Either install rubyforge with 'gem install rubyforge'"
 puts "and retry or upload the package files manually!"
 end
end

To get an overview of this extensive Rakefile, run rake -T:

$ rake -T
rake clean # Remove any temporary products.
rake clobber # Remove any generated file.
rake clobber_package # Remove package products
rake clobber_rdoc # Remove rdoc products
rake package # Build all the packages
rake prepare-release # Run tests, generate RDoc and create packages.
rake publish # Publish new release of MyProject
rake publish-website # Upload website to RubyForge. scp will prompt for your
 # RubyForge password.
rake rdoc # Build the rdoc HTML Files
rake repackage # Force a rebuild of the package files
rake rerdoc # Force a rebuild of the RDOC files
rake test # Run tests for test

Here’s the idea behind prepare-release and publish: suppose you get a bug report
and you need to do a new release. You fix the bug and add a test case to make sure it
stays fixed. You check your fix by running the tests with rake (or rake test). Then
you edit a library file and bump up the project’s version number.

Now that you’re confident the bug is fixed, you can run rake publish. This task
builds your package, tests it, packages it, and uploads it to RubyForge. You didn’t
have to do any work besides fix the bug and increment the version number.

The rubyforge script is a command-line tool that performs common interactions with
RubyForge, like the creation of new releases. To use the publish task, you need to
install the rubyforge script and do some basic setup for it. The alternative is to use the
prepare-release task instead of publish, and upload all your new packages manually.

Note that Rake uses the zip and tar command-line tools to create the ZIP file and tar-
ball packages. These tools are not available on most Windows installations. If you’re
on windows, set the attributes need_tar and need_zip of the Rake::GemPackageTask to
false. With these attributes, the package task only creates a gem package.

See Also
• Recipe 19.4, “Automatically Building a Gem”

• You can download the rubyforge script from http://rubyforge.org/projects/
codeforpeople/

745

Chapter 20 CHAPTER 20

Multitasking and Multithreading20

You can’t concentrate on more than What’s six times nine? one thing at once. You
won’t get very far reading this book if someone is interrupting you every five sec-
onds asking you to do arithmetic problems. But any computer with a modern operat-
ing system can do many things at once. More precisely, it can simulate that ability by
switching very quickly back and forth between tasks.

In a multitasking operating system, each program, or process, gets its own space in
memory and a share of the CPU’s time. Every time you start the Ruby interpreter, it
runs in a new process. On Unix-based systems, your script can spawn subprocesses:
this feature is very useful for running external command-line programs and using the
results in your own scripts (see Recipes 20.8 and 20.9, for instance).

The main problem with processes is that they’re expensive. It’s hard to read while
people are asking you to do arithmetic, not because either activity is particularly dif-
ficult, but because it takes time to switch from one to the other. An operating system
spends a lot of its time as overhead, switching between processes, trying to make
sure each one gets a fair share of the CPU’s time.

The other problem with processes is that it’s difficult to get them to communicate
with each other. For simple cases, you can use techniques like those described in
Recipe 20.8. You can implement more complex cases with Inter-Process Communi-
cation and named pipes, but we say, don’t bother. If you want your Ruby program to
do two things at once, you’re better off writing your code with threads.

A thread is a sort of lightweight process that runs inside a real process. One Ruby
process can host any number of threads, all running more or less simultaneously. It’s
faster to switch between threads than to switch between processes, and since all of a
process’s threads run in the same memory space, they can communicate simply by
sharing variables.

Recipe 20.3 covers the basics of multithreaded programming. We use threads
throughout this book, except when only a subprocess will work (see, for instance,

746 | Chapter 20: Multitasking and Multithreading

Recipe 20.1). Some recipes in other chapters, like Recipes 3.12 and 14.4, show
threads used in context.

Ruby implements its own threads, rather than using the operating system’s imple-
mentation. This means that multithreaded code will work exactly the same way
across platforms. Code that spawns subprocesses generally work only on Unix.

If threads are faster and more portable, why would anyone write code that uses sub-
processes? The main reason is that it’s easy for one thread to stall all the others by
tying up an entire process with an uninterruptible action. One such action is a sys-
tem call. If you want to run a system call or an external program in the background,
you should probably fork off a subprocess to do it. See Recipe 16.18 for a vivid
example of this—a program that we need to spawn a subprocess instead of a sub-
thread, because the subprocess is going to play a music file.

20.1 Running a Daemon Process on Unix

Problem
You want to run a process in the background with minimal interference from users
and the operating system.

Solution
In Ruby 1.9, you can simply call Process.daemon to turn the current process into a
daemon. Otherwise, the most reliable way is to use the Daemonize module. It’s not
available as a gem, but it’s worth downloading and installing, because it makes it
easy and reliable to write a daemon:

#!/usr/bin/ruby -w
daemonize_daemon.rb
require 'tempfile'
require 'daemonize'
include Daemonize # Import Daemonize::daemonize into this namespace

puts 'About to daemonize.'
daemonize # Now you're a daemon process!
log = Tempfile.new('daemon.log')
loop do
 log.puts "I'm a daemon, doin' daemon things."
 log.flush
 sleep 5
end

If you run this code at the command line, you’ll get back a new prompt almost
immediately. But there will still be a Ruby process running in the background, writ-
ing to a temporary file every five seconds:

$./daemonize_daemon.rb
About to daemonize.

20.1 Running a Daemon Process on Unix | 747

$ ps x | grep daemon
 4472 ? S 0:00 ruby daemonize_daemon.rb
 4474 pts/2 S+ 0:00 grep daemon

$ cat /tmp/daemon.log4472.0
I'm a daemon, doin' daemon things.
I'm a daemon, doin' daemon things.
I'm a daemon, doin' daemon things.

Since it runs an infinite loop, this daemon process will run until you kill it:

$ kill 4472

$ ps x | grep daemon
 4569 pts/2 S+ 0:00 grep daemon

A different daemon might run until some condition is met, or until it receives a Unix
signal, or a “stop” message through some interface.

Discussion
A daemon process is one that runs in the background, without any direct user inter-
face at all. Servers are usually daemon processes, but you might also write a daemon
to do monitoring or task scheduling.

Rather than replacing your process with a daemon process, you may want to spawn
a daemon while continuing with your original work. The best strategy for this is to
spawn a subprocess with Kernel#fork.

Ruby’s fork implementation takes a code block to be run by the subprocess. The
code defined after the block is run in the original process. So pass your daemonizing
code into fork, and continue with your work in the main body of the code:

#!/usr/bin/ruby -w
daemon_spawn.rb
require 'tempfile'
require 'daemonize'
include Daemonize

puts "About to daemonize."
fork do
 daemonize
 log = Tempfile.new('daemon.log')
 loop do
 log.puts "I'm a daemon, doin' daemon things."
 log.flush
 sleep 5
 end
end

puts 'The subprocess has become a daemon.'
puts "But I'm going to stick around for a while."
sleep 10
puts "Okay, now I'm done."

748 | Chapter 20: Multitasking and Multithreading

The Daemonize code fits in a single file, and it’s licensed under the same terms as
Ruby. If you don’t want to require your users to download and install it, you can just
include it with your program. Because the code is short, you can even copy-and-
paste the code into a file in your own program.

However, there’s also some (less fancy) daemonizing code in the Ruby 1.8 standard
library. It’s the WEBrick::Daemon class.

#!/usr/bin/ruby
webrick_daemon.rb
require 'tempfile'
require 'webrick'

puts 'About to daemonize.'
WEBrick::Daemon.start do
 log = Tempfile.new('daemon.log')
 loop do
 log.puts "I'm a daemon, doin' daemon things."
 log.flush
 sleep 5
 end
end

It’s worth examining the simpler daemonizing code in WEBrick::Daemon so that you
can see what’s going on. Here’s the method in question:

 def Daemon.start
 exit!(0) if fork
 Process::setsid
 exit!(0) if fork
 Dir::chdir("/")
 File::umask(0)
 STDIN.reopen("/dev/null")
 STDOUT.reopen("/dev/null", "w")
 STDERR.reopen("/dev/null", "w")
 yield if block_given?
 end

A daemonizer works by forking a new process, letting the original one die, and clos-
ing off some of the resources that were available to the original.

Process::setsid disconnects the daemon from the terminal that spawned it. This is
why, when your process becomes a daemon process, you get your command line
back immediately. We close the original standard input, output, and error and
replace them with null streams. We set the working directory and file umask to sen-
sible defaults, regardless of what the daemon inherited from the parent. Then we run
the daemon code.

Daemonize::daemonize also sets up signal handlers, calls srand so that the daemon
process has a new random number seed, and (optionally) closes any open filehan-
dles left around by the original process. It can also retry the fork if it fails because the
operating system is running too many processes to create another one.

20.2 Creating a Windows Service | 749

The fork method, and methods like daemonize that depend on it, are only available
on Unix-like systems. On Windows, the win32-process extension provides Windows
implementations of methods like fork. The win32-process implementation of fork
isn’t perfect, but it’s there if you need it. For cross-platform code, we recommend
you spawn a thread and run your daemon code in the thread.

See Also
• The Daemonize package (http://grub.ath.cx/daemonize/)

• If you want to run an Internet server, you might want to use gserver from
Ruby’s standard library; see Recipe 14.14, “Writing an Internet Server”

• A service is the Windows equivalent of a daemon process; see Recipe 20.2, “Cre-
ating a Windows Service”

• Recipe 20.3, “Doing Two Things at Once with Threads”

• Both win32-process and win32-service were written by Daniel J. Berger; you can
download them from his win32utils project at http://rubyforge.org/projects/
win32utils/

• Get win32-process from http://rubyforge.org/projects/win32utils/

20.2 Creating a Windows Service
Credit: Bill Froelich

Problem
You want to write a self-contained Ruby program for Windows that performs a task
in the background.

Solution
Create a Windows service using the win32-service library, available as the win32-
service gem.

Put all the service code below into a Ruby file called rubysvc.rb. It defines a service
that watches for the creation of a file c:\findme.txt; if it ever finds that file, it imme-
diately renames it.

The first step is to register the service with Windows. Running ruby rubysrvc.rb
register will create the service.

rubysrvc.rb
require 'rubygems'
require 'win32/service'
include Win32

SERVICE_NAME = "RubySvc"
SERVICE_DISPLAYNAME = "A Ruby Service"

750 | Chapter 20: Multitasking and Multithreading

if ARGV[0] == "register"
 # Start the service.
 svc = Service.new
 svc.create_service do |s|
 s.service_name = SERVICE_NAME
 s.display_name = SERVICE_DISPLAYNAME
 s.binary_path_name = 'C:\InstantRails-1.3\ruby\bin\ruby ' +
 File.expand_path($0)
 s.dependencies = []
 end
 svc.close
 puts "Registered Service - " + SERVICE_DISPLAYNAME

When you’re all done, you can run rubysrvc.rb stop to stop the service and remove
it from Windows:

elsif ARGV[0] == "delete"
 # Stop the service.
 if Service.status(SERVICE_NAME).current_state == "running"
 Service.stop(SERVICE_NAME)
 end
 Service.delete(SERVICE_NAME)
 puts "Removed Service - " + SERVICE_DISPLAYNAME
else

If you run rubysrvc.rb with no arguments, nothing will happen, but it will remind
you what parameters you can use:

 if ENV["HOMEDRIVE"]!=nil
 # We are not running as a service, but the user didn't provide any
 # command line arguments. We've got nothing to do.
 puts "Usage: ruby rubysvc.rb [option]"
 puts " Where option is one of the following:"
 puts " register - To register the Service so it " +
 "appears in the control panel"
 puts " delete - To delete the Service from the control panel"
 exit
 end

But when Windows runs rubysrvc.rb as a service, the real action starts:

 # If we got this far, we are running as a service.
 class Daemon
 def service_init
 # Give the service time to get everything initialized and running,
 # before we enter the service_main function.
 sleep 10
 end

 def service_main
 fileCount = 0 # Initialize the file counter for the rename
 watchForFile = "c:\\findme.txt"
 while state == RUNNING
 sleep 5
 if File.exists? watchForFile

20.2 Creating a Windows Service | 751

 fileCount += 1
 File.rename watchForFile, watchForFile + "." + fileCount.to_s
 end
 end
 end
 end
 d = Daemon.new
 d.mainloop
end

Once you run ruby rubysrvc.rb register, the service will show up in the Services
Control Panel as “A Ruby Service”. To see it, go to Start ➝ Control Panel ➝ Adminis-
trative Tools ➝ Services (Figure 20-1). Start the service by clicking the service name
in the list and clicking the start button.

To test the service, create a file in c:\ called findme.txt.

$ echo "test" > findme.txt

Within seconds, the file you just created will be renamed to findme.txt:
$ dir findme*
Volume in drive C has no label.
Volume Serial Number is 7C61-E72E
Directory of c:\
04/14/2006 02:29 PM 9 findme.txt.1

To remove the service, run ruby rubysrvc.rb delete.

Discussion
There’s no reason why the code that registers rubysrvc.rb as a Windows service has
to be in rubysrvc.rb itself, but it makes things much simpler. When you run ruby
rubysrvc.rb register, the script tells Windows to run rubysrvc.rb again, only as a
service. The key is the binary_path_name defined on the Service object: this is the
command for Windows to run as a service. In this case, it’s an invocation of the ruby
interpreter with the service script passed as an input. But you could have run the
same code from an irb session: then, rubysrvc.rb would only have been invoked
once, by Windows, when running it as a service.

Figure 20-1. The Services Control Panel

752 | Chapter 20: Multitasking and Multithreading

The code above assumes that your Ruby interpreter is located in c:InstantRails-
1.3\ruby\bin\ruby. Of course, you can change this to point to your Ruby interpreter
if it’s somewhere else: perhaps c:\ruby\bin\ruby. If you’ve got the Ruby interpreter
in your path, you just do this:

s.binary_path_name = 'ruby ' + File.expand_path($0)

When you create a service, you specify both a service name and a display name. The
service name is shorter, and is used when referring to the service from within Ruby
code. The display name is the one shown in the Services Control Panel.

Our example service checks every five seconds for a file with a certain name. When-
ever it finds that file, it renames it by appending a number to the filename. To keep
things simple, it does no error checking to see if the new filename already exists; nor
does it do any file locking to ensure that the file is completely written before renam-
ing it. Real services should include at least some basic high-level error handling:

def service_main
 begin
 while state == RUNNING
 # Do my work
 end
 # Finish my work
 rescue StandardError, Interrupt => e
 # Handle the error
 end
end

In addition to the service_main method, your service can define additional methods
to handle the other service events (stop, pause, and restart). The win32-service gem
comes with a useful example script, daemon_test.rb, which provides sample imple-
mentations of these methods.

See Also
• The win32-service library was written by Daniel J. Berger, and is part of the

win32utils project (http://rubyforge.org/projects/win32utils/)

• Recipe 6.13, “Locking a File,” and Recipe 6.14, “Backing Up to Versioned Filena-
mes,” demonstrate more robust renaming and filelocking strategies

• Recipe 20.1, “Running a Daemon Process on Unix,” for similar functionality on
Unix

• Recipe 23.2, “Managing Windows Services”

20.3 Doing Two Things at Once with Threads

Problem
You want your program to run two or more pieces of code in parallel.

20.3 Doing Two Things at Once with Threads | 753

Solution
Create a new thread by passing a code block into Thread.new. That block will run
simultaneously with any code you write after the call to Thread.new.

The following code features two competing threads. One continually decrements a
variable by one, while the main program’s thread busily incrementing the same vari-
able by three. The decrementing thread starts its work earlier, but the incrementing
thread always wins in the end, because it increments the counter by a larger number:

x = 0
Thread.new do
 while x < 5
 x -= 1
 puts "DEC: I decremented x to #{x}\n"
 end
 puts "DEC: x is too high; I give up!\n"
end

while x < 5
 x += 3
 puts "INC: I incremented x to #{x}\n"
end
DEC: I decremented x to -1
DEC: I decremented x to -2
DEC: I decremented x to -3
DEC: I decremented x to -4
INC: I incremented x to -1
DEC: I decremented x to -2
INC: I incremented x to 1
DEC: I decremented x to 0
INC: I incremented x to 3
DEC: I decremented x to 2
INC: I incremented x to 5
DEC: x is too high; I give up!

x # => 5

Discussion
A Ruby process starts out running only one thread: the main thread. When you call
Thread#new, Ruby spawns another thread and starts running it alongside the main
thread. The operating system divides CPU time among all the running processes, and
the Ruby interpreter further divides its alotted CPU time among all of its threads.

The block you pass into Thread.new is a closure (see Recipe 7.4), so it has access to all
the variables that were in scope at the time you instantiated the thread. This means
that threads can share variables; as a result, you don’t need complex communication
schemes the way you do to communicate between processes. However, it also means
that your threads can step on each other’s toes unless you’re careful to synchronize

754 | Chapter 20: Multitasking and Multithreading

any shared objects. In the example above, the threads were designed to step on each
other’s toes, providing head-to-head competition, but usually you don’t want that.

Once a thread’s execution reaches the end of its code block, the thread dies. If your
main thread reaches the end of its code block, the process will exit and all your other
threads will die prematurely. If you want your main thread to stall and wait for some
other thread to finish, you can call Thread#join on the thread in question.

This code spawns a subthread to count to one million. Without the call to
Thread#join, the counter only gets up to a couple hundred thousand before the pro-
cess exits:

#!/usr/bin/ruby -w
counter_thread.rb
counter = 0
counter_thread = Thread.new do
 1.upto(1000000) { counter += 1; }
end

counter_thread.join unless ARGV[0]
puts "The counter was able to count up to #{counter}."
$./counter_thread.rb
The counter was able to count up to 1000000.

$./counter_thread.rb dont_call_join
The counter was able to count up to 172315.

You can get a list of the currently active thread objects with Thread.list:

Thread.new { sleep 10 }
Thread.new { x = 0; 10000000.times { x += 1 } }
Thread.new { sleep 100 }
Thread.list
=> [#<Thread:0xb7d19ae0 sleep>, #<Thread:0xb7d24cec run>,
#<Thread:0xb7d31cf8 sleep>, #<Thread:0xb7d68748 run>]

Here, the two running threads are the main irb thread and the thread running the
counter loop. The two sleeping threads are the ones currently running sleep calls.

20.4 Synchronizing Access to an Object

Problem
You want to make an object accessible from only one thread at a time.

Solution
Give the object a Mutex member (a semaphore that controls whose turn it is to use
the object). You can then use this to synchronize activity on the object.

This code gives every object a synchronize method. This simulates the behavior of
Java, in which synchronize is a keyword that can be applied to any object:

20.4 Synchronizing Access to an Object | 755

require 'thread'
class Object
 def synchronize
 mutex.synchronize { yield self }
 end

 def mutex
 @mutex ||= Mutex.new
 end
end

Here’s an example. The first thread gets a lock on the list and then dawdles for a
while. The second thread is ready from the start to add to the list, but it doesn’t get a
chance until the first thread releases the lock.

list = []
Thread.new { list.synchronize { |l| sleep(5); 3.times { l.push "Thread 1" } } }
Thread.new { list.synchronize { |l| 3.times { l.push "Thread 2" } } }
sleep(6)
list
=> ["Thread 1", "Thread 1", "Thread 1", "Thread 2", "Thread 2", "Thread 2"]

Object#synchronize only prevents two synchronized code blocks from running at the
same time. Nothing prevents a wayward thread from modifying the object without
calling synchronize first:

list = []
Thread.new { list.synchronize { |l| sleep(5); 3.times { l.push "Thread 1" } } }
Thread.new { 3.times { list.push "Thread 2" } }
sleep(6)
list
=> ["Thread 2", "Thread 2", "Thread 2", "Thread 1", "Thread 1", "Thread 1"]

Discussion
One of the big advantages of multithreaded programs is that different threads can
share data. But where there is data sharing, there is the possibility for corruption.
When two threads operate on the same object at the same time, the results can vary
wildly depending on when the Ruby interpreter decides to switch between threads.
To get predictable behavior, you need to have one thread lock the object, so other
threads can’t use it.

When every object has a synchronize method, it’s easier to share an object between
threads: if you want to work alone with the object, you put that code within a
synchronize block. Of course, you may find yourself constantly writing synchroniza-
tion code whenever you call certain methods of an object.

It would be nice if you could to do this synchronization implicitly, the way you can
in Java: you just designate certain methods as “synchronized,” and the interpreter
won’t start running those methods until it can obtain an exclusive lock on the corre-
sponding object. The simplest way to do this is to use aspect-oriented programming.
The RAspect library described in Recipe 10.15 can be used for this.

756 | Chapter 20: Multitasking and Multithreading

The following code defines an Aspect that can wrap methods in synchronization
code. It uses the Object#mutex method defined above, but it could easily be changed
to define its own Mutex objects:

require 'aspectr'
require 'thread'

class Synchronized < AspectR::Aspect
 def lock(method_sym, object, return_value, *args)
 object.mutex.lock
 end

 def unlock(method_sym, object, return_value, *args)
 object.mutex.unlock
 end
end

Any AspectR aspect method needs to take three arguments: the symbol of the
method being called, the object it’s being called on, and (if the aspect method is
being called after the original method) the return value of the method.

The rest of the arguments are the arguments to the original method. Since this aspect
is very simple, the only argument we need is object, the object we’re going to lock
and unlock.

Let’s use the Synchronized aspect to create an array where you can only call push, pop,
or each once you get an exclusive lock.

array = %w{do re mi fa so la ti}
Synchronized.new.wrap(array, :lock, :unlock, :push, :pop, :each)

The call to wrap tells AspectR to modify our array’s implementation of push, pop, and
each with generated singleton methods. Synchronized#lock is called before the old
implementation of those methods is run, and Synchronized#unlock is called afterward.

The following example creates two threads to work on our synchronized array. The
first thread iterates over the array, and the second thread destroys its contents with
repeated calls to pop. When the first thread calls each, the AspectR-generated code
calls lock, and the first thread gets a lock on the array. The second thread starts and
it wants to call pop, but pop has been modified to require an exclusive lock on the
array. The second thread can’t run until the first thread finishes its call to each, and
the AspectR-generated code calls unlock.

Thread.new { array.each { |x| puts x } }
Thread.new do
 puts 'Destroying the array.'
 array.pop until array.empty?
 puts 'Destroyed!'
end
do
re
mi

20.5 Terminating a Thread | 757

fa
so
la
ti
Destroying the array.
Destroyed!

See Also
• See Recipe 10.15, “Doing Aspect-Oriented Programming,” especially for infor-

mation on problems with AspectR when wrapping operator methods in aspects

• Recipe 13.17, “Adding Hooks to Table Events,” demonstrates the aspect-
oriented programming features of the Glue library, which are simpler than
AspectR (but actually, in my experience, more difficult to use)

• Recipe 16.10, “Sharing a Hash Between Any Number of Computers,” has an
alternate solution: it defines a delegate class (ThreadsafeHash) whose method_
missing implementation synchronizes on a mutex and then delegates the method
call; this is an easy way to synchronize all of an object’s methods

• Recipe 20.11, “Avoiding Deadlock”

20.5 Terminating a Thread

Problem
You want to kill a thread before the end of the program.

Solution
A thread terminates if it reaches the end of its code block. The best way to terminate
a thread early is to convince it to reach the end of its code block. This way, the
thread can run cleanup code before dying.

This thread runs a loop while the instance variable continue is true. Set this variable
to false, and the thread will die a natural death:

require 'thread'

class CounterThread < Thread
 def initialize
 @count = 0
 @continue = true

 super do
 @count += 1 while @continue
 puts "I counted up to #{@count} before I was cruelly stopped."
 end
 end

 def stop
 @continue = false

758 | Chapter 20: Multitasking and Multithreading

 end
end

counter = CounterThread.new
sleep 2
counter.stop
I counted up to 3413544 before I was cruelly stopped.

If you need to stop a thread that doesn’t offer a stop-like function, or you need to
stop an out-of-control thread immediately, you can always call Thread#terminate.
This method stops a thread in its tracks:

t = Thread.new { loop { puts 'I am the unstoppable thread!' } }
I am the unstoppable thread!
I am the unstoppable thread!
I am the unstoppable thread!
I am the unstoppable thread!
t.terminate

Discussion
It’s better to convince someone they should do something than to force them to do
it. The same is true of threads. Calling Thread.terminate is a bit like throwing an
exception: it interrupts the normal flow of execution in an unpredictable place.
Worse, there’s no equivalent of a begin/ensure construct for thread termination, so
calling Thread.terminate may corrupt your data or leave your program in an incon-
sistent state. If you plan to stop a thread before the program is over, you should
build that capability into the thread object itself.

A common type of thread implements a loop: threads that process requests from a
queue, or that periodically poll for new data. In these, the end of an iteration forms a
natural stopping point. These threads can benefit from some simple VCR-style con-
trols: pause, unpause, and stop.

Here’s a Thread subclass which implements a loop that can be paused or stopped in a
predictable way. A code block passed into the Thread constructor would implement
the entire loop, but the code block passed into the LoopingThread constructor should
implement only one iteration of the loop. Setup and cleanup code should be han-
dled in the methods before_loop and after_loop.

class LoopingThread < Thread
 def initialize
 @stopped = false
 @paused = false
 super do
 before_loop
 until @stopped
 yield
 Thread.stop if @paused
 end

20.5 Terminating a Thread | 759

 after_loop
 end
 end

 def before_loop; end
 def after_loop; end

 def stop
 @stopped = true
 end

 def paused=(paused)
 @paused = paused
 run if !paused
 end
end

Here’s the CounterThread class from the Solution, implemented as a LoopingThread.
I’ve added a reader method for count so we can peek at its value when the thread is
paused:

class PausableCounter < LoopingThread
 attr_reader :count

 def before_loop
 @count = 0
 end

 def initialize
 super { @count += 1 }
 end

 def after_loop
 puts "I counted up to #{@count} before I was cruelly stopped."
 end
end

counter = PausableCounter.new
sleep 2
counter.paused = true
counter.count # => 819438
sleep 2
counter.count # => 819438
counter.paused = false
sleep 2
counter.stop
I counted up to 1644324 before I was cruelly stopped.
counter.count # => 1644324

760 | Chapter 20: Multitasking and Multithreading

20.6 Running a Code Block on Many Objects
Simultaneously

Problem
Rather than iterating over the elements of a data structure one at a time, you want to
run some function on all of them simultaneously.

Solution
Spawn a thread to handle each element of the data structure.

Here’s a simple equivalent of Enumerable#each that runs a code block against every
element of a data structure simultaneously.* It returns the Thread objects it spawned
so that you can pause them, kill them, or join them and wait for them to finish:

module Enumerable
 def each_simultaneously
 threads = []
 each { |e| threads << Thread.new { yield e } }
 return threads
 end
end

Running the following high-latency code with Enumerable#each would take 15 sec-
onds. With our new Enumerable#each_simultaneously, it takes only five seconds:

start_time = Time.now
[7,8,9].each_simultaneously do |e|
 sleep(5) # Simulate a long, high-latency operation
 print "Completed operation for #{e}!\n"
end
Completed operation for 8!
Completed operation for 7!
Completed operation for 9!
Time.now - start_time # => 5.009334

Discussion
You can save time by doing high-latency operations in parallel, since it often means
you pay the latency price only once. If you’re doing nameserver lookups, and the
nameserver takes five seconds to respond to a request, you’re going to be waiting at
least five seconds. If you need to do 10 nameserver lookups, doing them in series will
take 50 seconds, but doing them all at once might only take 5.

This technique can also be applied to the other methods of Enumerable. You could
write a collect_simultaneously, a find_all_simultaneously, and so on. But that’s a

* Well, more or less. The thread for the first element will start running before the thread for the last element does.

20.6 Running a Code Block on Many Objects Simultaneously | 761

lot of methods to write. All the methods of Enumerable are based on each. What if we
could just convince those methods to use each_simultaneously instead of each?

It would be too much work to replace all the existing methods of Enumerable, but we
can swap out an individual Enumerable object’s each implementation for another, by
wrapping it in an Enumerable::Enumerator. Here’s how it would work:

require 'enumerator'

array = [7, 8, 9]
simultaneous_array = array.enum_for(:each_simultaneously)
simultaneous_array.each do |e|
 sleep(5) # Simulate a long, high-latency operation
 print "Completed operation for #{e}!\n"
end
Completed operation for 7!
Completed operation for 9!
Completed operation for 8!

That call to enum_for returns an Enumerable::Enumerator object. The Enumerator
implements all of the methods of Enumerable as the original array would, but its each
method uses each_simultaneously under the covers.

Do we now have simultaneous versions of all the Enumerable methods? Not quite.
Look at this code:

simultaneous_array.collect { |x| sleep 5; x * -1 } # => []

What happened? The collect method returns before the threads have a chance to
complete their tasks. When we were using each_simultaneously on its own, this was
a nice feature. Consider the following idealized code, which starts three infinite loops
in separate threads and then goes on to other things:

[SSHServer, HTTPServer, IRCServer].each_simultaneously do |server|
 server.serve_forever
end

More code goes here...

This is not such a good feature when we’re calling an Enumerable method with a
return value. We need an equivalent of each_simultaneously that doesn’t return until
all of the threads have run:

require 'enumerator'
module Enumerable
 def all_simultaneously
 if block_given?
 collect { |e| Thread.new { yield(e) } }.each { |t| t.join }
 self
 else
 enum_for :all_simultaneously
 end
 end
end

762 | Chapter 20: Multitasking and Multithreading

You wouldn’t use this method to spawn infinite loops (they’d all spawn, but you’d
never regain control of your code). But you can use it to create multithreaded ver-
sions of collect and other Enumerable methods:

array.all_simultaneously.collect { |x| sleep 5; x * -1 }
=> [-7, -9, -8]

That’s better, but the elements are in the wrong order: after all, there’s no guarantee
which thread will complete first. This doesn’t usually matter for Enumerable methods
like find_all, grep, or reject, but it matters a lot for collect. And each_with_index is
simply broken:

array.all_simultaneously.each_with_index { |x, i| sleep 5; puts "#{i}=>#{x}" }
0=>8
0=>7
0=>9

Here are thread-agnostic implementations of Enumerable#collect and
Enumerable#each_with_index, which will work on normal Enumerable objects, but will
also work in conjunction with all_simultaneously:

module Enumerable
 def collect
 results = []
 each_with_index { |e, i| results[i] = yield(e) }
 results
 end

 def each_with_index
 i = -1
 each { |e| yield e, i += 1 }
 end
end

Now it all works:

array.all_simultaneously.collect { |x| sleep 5; x * -1 }
=> [-7, -8, -9]

array.all_simultaneously.each_with_index { |x, i| sleep 5; puts "#{i}=>#{x}" }
1=>8
0=>7
2=>9

See Also
• Recipe 7.9, “Looping Through Multiple Iterables in Parallel”

20.7 Limiting Multithreading with a Thread Pool | 763

20.7 Limiting Multithreading with a Thread Pool

Problem
You want to process multiple requests in parallel, but you don’t necessarily want to
run all the requests simultaneously. Using a technique like that in Recipe 20.6 can
create a huge number of threads running at once, slowing down the average response
time. You want to set a limit on the number of simultaneously running threads.

Solution
You want a thread pool. If you’re writing an Internet server and you want to service
requests in parallel, you should build your code on top of the gserver module, as
seen in Recipe 14.14: it has a thread pool and many TCP/IP-specific features. Other-
wise, here’s a generic ThreadPool class, based on code from gserver.

The instance variable @pool contains the active threads. The Mutex and the
ConditionVariable are used to control the addition of threads to the pool, so that the
pool never contains more than @max_size threads:

require 'thread'

class ThreadPool
 def initialize(max_size)
 @pool = []
 @max_size = max_size
 @pool_mutex = Mutex.new
 @pool_cv = ConditionVariable.new
 end

When a thread wants to enter the pool, but the pool is full, the thread puts itself to
sleep by calling ConditionVariable#wait. When a thread in the pool finishes execut-
ing, it removes itself from the pool and calls ConditionVariable#signal to wake up
the first sleeping thread:

 def dispatch(*args)
 Thread.new do
 # Wait for space in the pool.
 @pool_mutex.synchronize do
 while @pool.size >= @max_size
 print "Pool is full; waiting to run #{args.join(',')}...\n" if $DEBUG
 # Sleep until some other thread calls @pool_cv.signal.
 @pool_cv.wait(@pool_mutex)
 end
 end

The newly-awakened thread adds itself to the pool, runs its code, and then calls
ConditionVariable#signal to wake up the next sleeping thread:

 @pool << Thread.current
 begin
 yield(*args)

764 | Chapter 20: Multitasking and Multithreading

 rescue => e
 exception(self, e, *args)
 ensure
 @pool_mutex.synchronize do
 # Remove the thread from the pool.
 @pool.delete(Thread.current)
 # Signal the next waiting thread that there's a space in the pool.
 @pool_cv.signal
 end
 end
 end
 end

 def shutdown
 @pool_mutex.synchronize { @pool_cv.wait(@pool_mutex) until @pool.empty? }
 end

 def exception(thread, exception, *original_args)
 # Subclass this method to handle an exception within a thread.
 puts "Exception in thread #{thread}: #{exception}"
 end
end

Here’s a simulation of five incoming jobs that take different times to run. The pool
ensures no more than three jobs run at a time. The job code doesn’t need to know
anything about threads or thread pools; that’s all handled by ThreadPool#dispatch.

$DEBUG = true
pool = ThreadPool.new(3)

1.upto(5) do |i|
 pool.dispatch(i) do |i|
 print "Job #{i} started.\n"
 sleep(5-i)
 print "Job #{i} complete.\n"
 end
end
Job 1 started.
Job 3 started.
Job 2 started.
Pool is full; waiting to run 4...
Pool is full; waiting to run 5...
Job 3 complete.
Job 4 started.
Job 2 complete.
Job 5 started.
Job 5 complete.
Job 4 complete.
Job 1 complete.

pool.shutdown

20.8 Driving an External Process with popen | 765

Discussion
When should you use a thread pool, and when should you just send a swarm of
threads after the problem? Consider why this pattern is so common in Internet serv-
ers that it’s built into Ruby’s gserver library. Internet server requests are usually I/O
bound, because most servers operate on the filesystem or a database. If you run high-
latency requests in parallel (like requests for filesystem files), you can complete mul-
tiple requests in about the same time it would take to complete a single request.

But Internet server requests can use a lot of memory, and any random user on the
Internet can trigger a job on your server. If you create and start a thread for every
incoming request, it’s easy to run out of resources. You need to find a tradeoff
between the performance benefit of multithreading and the performance hazard of
thrashing due to insufficient resources. The simplest way to do this is to limit the
number of requests that can be processed at a given time.

A thread pool isn’t a connection pool, like you might see with a database. Database
connections are often pooled because they’re expensive to create. Threads are pretty
cheap; we just don’t want a lot of them actively running at once. The example in the
Solution creates five threads at once, but only three of them can be active at any one
time. The rest are asleep, waiting for a notification from the condition variable pool_cv.

Calling ThreadPool#dispatch with a code block creates a new thread that runs the
code block, but not until it finds a free slot in the thread pool. Until then, it’s wait-
ing on the condition variable @pool_cv. When one of the threads in the pool com-
pletes its code block, it calls signal on the condition variable, waking up the first
thread currently waiting on it.

The shutdown method makes sure all the jobs complete by repeatedly waiting on the
condition variable until no other threads want access to the pool.

See Also
• Recipe 14.14, “Writing an Internet Server”

20.8 Driving an External Process with popen

Problem
You want to execute an external command in a subprocess. You want to pass some
data into its standard input stream, and read its standard output.

Solution
If you don’t care about the standard input side of things, you can just use the %x{}
construction. This runs a string as a command in an operating system subshell, and
returns the standard output of the command as a string.

766 | Chapter 20: Multitasking and Multithreading

%x{whoami} # => "leonardr\n"
puts %x{ls -a empty_dir}
.
..

If you want to pass data into the standard input of the subprocess, do it in a code
block that you pass into the IO.popen method. Here’s IO.popen used on a Unix sys-
tem to invoke tail, a command that prints to standard output the last few lines of its
standard input:

IO.popen('tail -3', 'r+') do |pipe|
 1.upto(100) { |i| pipe << "This is line #{i}.\n" }
 pipe.close_write
 puts pipe.read
end
This is line 98.
This is line 99.
This is line 100.

Discussion
IO.popens pawns a subprocess and creates a pipe: an IO stream connecting the Ruby
interpreter to the subprocess. IO.popen makes the pipe available to a code block, just
as File.open makes an open file available to a code block. Writing to the IO object
sends data to the standard input of the subprocess; reading from it reads data from
its standard output.

IO.popen takes a file mode, just like File.open. To use both the standard input and
output of a subprocess, you need to open it in read-write mode ("r+").

A command that accepts standard input won’t really start running until its input
stream is closed. If you use popen to run a command like tail, you must call pipe.
close_write before you read from the pipe. If you try to read the subprocess’ stan-
dard output while the subprocess is waiting for you to send it data on standard
input, both processes will hang forever.

The %{} construct and the popen technique work on both Windows and Unix, but
scripts that use them won’t usually be portable, because it’s very unlikely that the
command you’re running exists on all platforms.

On Unix systems, you can also use popen to spawn a Ruby subprocess. This is like
calling fork, except that the parent gets a read-write filehandle that’s hooked up to
the standard input and output of the child. Unlike with Kernel#fork (but like C’s
implementation of fork), the same code block is called for the parent and the child.
The presence or absence of the filehandle is the only way to know whether you’re the
parent or the child:

IO.popen('-', 'r+') do |child_filehandle|
 if child_filehandle
 $stderr.puts "I am the parent: #{child_filehandle.inspect}"
 child_filehandle.puts '404'

20.9 Capturing the Output and Error Streams from a Unix Shell Command | 767

 child_filehandle.close_write
 puts "My child says the square root of 404 is #{child_filehandle.read}"
 else
 $stderr.puts "I am the child: #{child_filehandle.inspect}"
 number = $stdin.readline.strip.to_i
 $stdout.puts Math.sqrt(number)
 end
end
I am the child: nil
I am the parent: #<IO:0xb7d25b9c>
My child says the square root of 404 is 20.0997512422418

See Also
• Recipe 20.1, “Running a Daemon Process on Unix”

• Recipe 20.9, “Capturing the Output and Error Streams from a Unix Shell
Command”

• Recipe 20.10, “Controlling a Process on Another Machine”

20.9 Capturing the Output and Error Streams
from a Unix Shell Command

Problem
You want to run an external program as in Recipe 20.8, but you also want to capture
the standard error stream. Using popen only gives you access to the standard output.

Solution
Use the open3 library in the Ruby standard library. Its popen3 method takes a code
block, to which it passes three IO streams: one each for standard input, output, and
error.

Suppose you perform the Unix ls command to list a nonexistent directory. ls will
rightly object to this and write an error message to its standard error stream. If you
invoked ls with IO.popen or the %x{} construction, that error message is passed right
along to the standard error stream of your Ruby process. You can’t capture it or sup-
press it:

%x{ls no_such_directory}
ls: no_such_directory: No such file or directory

But if you use popen3, you can grab that error message and do whatever you want
with it:

require 'open3'

Open3.popen3('ls -l no_such_directory') { |stdin, stdout, stderr| stderr.read }
=> "ls: no_such_directory: No such file or directory\n"

768 | Chapter 20: Multitasking and Multithreading

Discussion
The same caveats in the previous recipe apply to the IO streams returned by popen3.
If you’re running a command that accepts data on standard input, and you read from
stdout before closing stdin, your process will hang.

Unlike IO.popen, the popen3 method is only implemented on Unix systems. How-
ever, the win32-open3 package (part of the Win32Utils project) provides a popen3
implementation.

See Also
• Recipe 20.8, “Driving an External Process with popen”

• Like many other Windows libraries for Ruby, win32-open3 is available from http://
rubyforge.org/projects/win32utils

20.10 Controlling a Process on Another Machine

Problem
You want to run a process on another machine, controlling its input stream
remotely, and reading its output and error streams.

Solution
The ruby-ssh gem, first described in Recipe 14.10, provides a popen3 method that
works a lot like Ruby’s built-in popen3, except that the process you spawn runs on
another computer.

Here’s a method that runs a Unix command on another computer and yields its stan-
dard I/O streams to a code block on your computer. All traffic going between the
computers is encrypted with SSL. To authenticate yourself against the foreign host,
you’ll either need to provide a username and password, or set up an SSL key pair
ahead of time.

require 'rubygems'
require 'net/ssh'

def run_remotely(command, host, args)
 Net::SSH.start(host, args) do |session|
 session.process.popen3(command) do |stdin, stdout, stderr|
 yield stdin, stdout, stderr
 end
 end
end

Here it is in action:

run_remotely('ls -l /home/leonardr/dir', 'example.com', :username=>'leonardr',
 :password => 'mypass') { |i, o, e| puts o.read }

20.10 Controlling a Process on Another Machine | 769

-rw-rw-r-- 1 leonardr leonardr 33 Dec 29 20:40 file1
-rw-rw-r-- 1 leonardr leonardr 102 Dec 29 20:40 file2

Discussion
The Net::SSH library implements a low-level interface to the SSH protocol, but most
of the time you don’t need all that power. You just want to use SSH as a way to
spawn and control processes on a remote computer. That’s why Net:SSH also pro-
vides a popen3 interface that looks a lot like the popen3 you use to manipulate pro-
cesses on your own computer.

Apart from the issue of authentication, there are a couple of differences between
Net::SSH.popen3 and Open3.popen3. With Open3.popen3, you must be careful to close
the standard input stream before reading from the output or error streams. With the
Net::SSH version of popen3, you can read from the output or error streams as soon as
the process writes any data to it. This lets you interleave stdin writes and stdout
reads:

run_remotely('cat', 'example.com', :username=>'leonardr',
 :password => 'mypass') do |stdin, stdout, stderr|
 stdin.puts 'Line one.'
 puts stdout.read
 stdin.puts 'Line two.'
 puts stdout.read
end
"Line one."
"Line two."

Another potential pitfall is that the initial working directory for an SSH session is
the filesystem root (/). If you’ve used the ssh or scp commands, you may be accus-
tomed to starting out in your home directory. To compensate for this, you can
change to your home directory within your command: issue a command like cd; ls
or cd /home/[user name]/; ls instead of just plain ls.

See Also
• The Net::SSH manual at: http://net-ssh.rubyforge.org/

• Recipe 14.2, “Making an HTTPS Web Request,” has information on installing
the OpenSSL extension that is a prerequisite of ruby-ssh

• Recipe 14.10, “Being an SSH Client covers the basic rules of SSH”

• Recipe 20.8, “Driving an External Process with popen,” and Recipe 20.9, “Cap-
turing the Output and Error Streams from a Unix Shell Command,” cover the
basic features of the popen family of methods

770 | Chapter 20: Multitasking and Multithreading

20.11 Avoiding Deadlock

Problem
Your threads are competing for exclusive access to the same resources. With no
coordination between threads, you’ll end up with deadlock. Thread A will be block-
ing, waiting for a resource held by thread B, and thread B will be blocking, waiting
for a resource held by thread A. Neither thread will ever be seen again.

Solution
There’s no simple mix-in solution to this problem. You need to come up with some
rules for how your threads acquire locks, and make sure your code always abides by
them.

Basically, you need to guarantee that all your threads acquire locks in the same
order. Impose an ordering (formally or informally) on all the locks in your program
and make sure that your threads always acquire locks in ascending numerical order.

Here’s how it would work. The standard illustration of deadlock is the Dining Philoso-
phers problem. A table of philosophers are sharing a plate of rice and some chopsticks,
but there aren’t enough utensils to go around. When there are only two chopsticks, it’s
easy to see the problem. If philosopher A is holding one chopstick (that is, has a lock
on it), and philosopher B is holding the other, then nobody can eat.

In this scenario, you’d designate the the lock on one chopstick as lock #1, and the
lock on the other chopstick as lock #2. If you guarantee that no philosopher will
pick up chopstick #2 unless they’re already picked up the chopstick #1, deadlock is
impossible. You can guarantee this by simply making all the philosophers imple-
ment the same behavior:

require 'thread'
$chopstick1 = Mutex.new
$chopstick2 = Mutex.new

class Philosopher < Thread
 def initialize(name)
 super do
 loop do
 $chopstick1.synchronize do
 puts "#{name} has picked up one chopstick."
 $chopstick2.synchronize do
 puts "#{name} has picked up two chopsticks and eaten a " +
 "bite of tasty rice."
 end
 end
 end
 end
 end
end

20.11 Avoiding Deadlock | 771

Philosopher.new('Moore')
Philosopher.new('Anscombe')
Moore has picked up one chopstick.
Moore has picked up two chopsticks and eaten a bite of tasty rice.
Anscombe has picked up one chopstick.
Anscombe has picked up two chopsticks and eaten a bite of tasty rice.
Moore has picked up one chopstick.
Moore has picked up two chopsticks and eaten a bite of tasty rice.
...

Discussion
It’s hard to come up with an ordering of resources that isn’t totally arbitrary. Why is
chopstick #1 designated #1 and not #2? It just is. When you’ve got more than a few
locks, it’s hard to remember the order.

But if you keep a list of the locks in the proper order, you can have Ruby handle the
locking order for you. The lock_all method defined below takes an unordered list of
locks, and makes sure they get locked in the “right” order, as defined in the global
hash $lock_order:

require 'thread'
pool_lock, lion_lock, penguin_lock, cabbage_lock = (1..4).collect { Mutex.new }
locks = [pool_lock, lion_lock, penguin_lock, cabbage_lock]
$lock_order = {}
locks.each_with_index { |lock, i| $lock_order[lock] = i }

def lock_all(*locks)
 ordered_locks = locks.sort_by { |x| $lock_order[x] }
 ordered_locks.each do |lock|
 puts "Locking #{$lock_order[lock]}." if $DEBUG
 lock.lock
 end
 begin
 yield
 ensure
 ordered_locks.reverse_each do |lock|
 puts "Unlocking #{$lock_order[lock]}." if $DEBUG
 lock.unlock
 end
 end
end

Now you can simply pass the locks you want to get into lock_all, without having to
keep track of an arbitrary order:

$DEBUG = true
lock_all(penguin_lock, pool_lock) do
 puts "I'm putting the penguin in the pool."
end
Locking 0.
Locking 2.
I'm putting the penguin in the pool.
Unlocking 2.
Unlocking 0.

772 | Chapter 20: Multitasking and Multithreading

When lock_all encounters a mutex that’s already locked, the thread blocks until the
mutex becomes available. A less greedy alternative is to drop all of the mutexes
already obtained and try again from the start. This makes deadlock less likely even
when not all of the code respects the order of the locks.

There are two locking-related problems that you can’t solve by imposing a lock
ordering. The first is resource starvation. In the context of the dining philosophers,
this would mean that one philosopher continually puts down chopstick #1 and
immediately takes it up again, preventing anyone else from eating.

The thread library prevents this problem by keeping a list of the threads that are
waiting for a lock to be released. Once it’s released, Ruby wakes up the first thread in
line. So threads get the lock in the order they asked for it, rather than it being a free-
for-all. You can see this if you create a bunch of Philosopher objects using the exam-
ple from the Solution. Even if there are 20 philosophers and only one pair of chop-
sticks, the philosophers will take turns using the chopsticks in the order they were
created, not randomly depending on the whims of the Ruby interpreter.

The second problem is harder to solve: a thread can “deadlock” with itself. The fol-
lowing code looks unobjectionable (why shouldn’t you be able to lock what you
already have?), but it creates a thread that sleeps forever:

require 'thread'
$lock = Mutex.new
Thread.new do
 $lock.synchronize { $lock.synchronize { puts 'I synchronized twice!' } }
end

The first time you call lock.synchronize, everything works fine: the Mutex isn’t
locked, and the thread gets a lock on it. The second time, the Mutex is locked, so the
thread stops to wait until it gets unlocked.

The problem is, the thread B that’s stopping to wait is the same thread as thread A,
which has the lock. Thread A is supposed to wake up thread B once it’s done, but it
never does, because it is thread B, and it’s asleep. A thread can’t wake itself up.

That looks like a contrived example, but it’s pretty easy to get there by accident. If
you’re synchronizing an object, as described in Recipe 20.4, there’s a chance you’ll
go too far and synchronize two methods that call each other. Calling one method
will synchronize and call the other, which will synchronize and put the thread to
sleep forever. Short of hacking Mutex to keep track of which thread has the lock, the
only way to avoid this problem is to be careful.

See Also
• Recipe 6.13, “Locking a File,” shows an alternate way of avoiding deadlock

when the resource under contention is a file

773

Chapter 21 CHAPTER 21

User Interface21

Ruby has libraries for attaching programs to the three main types of user interface.
The web interface, Ruby’s most popular, is covered in depth in Chapters 15, 16, and
(to a lesser extent) 14. This chapter covers the other two interfaces: the terminal or
console interface, and the graphical (GUI) interface. We also cover some unortho-
dox interfaces (Recipe 21.11).

The terminal interface is is a text-based interface usually invoked from a command
line. It’s used by programs like irb and the Ruby interpreter itself. The terminal inter-
face is usually seen on Unix systems, but all modern operating systems support it.

In the classic Unix-style “command-line program,” the user interface consists of the
options used to invoke the program (Recipe 21.3); and the program’s standard input,
output, and error streams (Recipe 21.1; also see Recipe 6.16). The Ruby interpreter is
a good example of this kind of program. You can invoke the ruby program with argu-
ments like -d and --version, but once the interpreter starts, your options are limited
to typing in a Ruby program and executing it.

The advantage of this simple interface is that you can use Unix shell tools like redi-
rection and pipes to connect these programs to each other. Instead of manually typ-
ing a Ruby program into the interpreter’s standard input, you can send it a file with
the Unix command ruby < file.rb. If you’ve got another program that generates
Ruby code and prints it to standard output, you can pipe the generated code into the
interpreter with generator | ruby.

The disadvantage is that these programs are not very user-friendly. Libraries like
Curses (Recipe 21.5), Readline, and HighLine can add color and sophistication to your
terminal programs. The irb interactive interpreter uses Readline to offer interactive line
editing instead of the simpler interface offered by the Unix shell (Recipe 21.10).

The graphical user interface is the most common interface in the world. Even a web
interface is usually interpreted within a GUI on the client end. However, there’s not
much that’s Ruby-specific about GUI programming. All the common GUI libraries

774 | Chapter 21: User Interface

(like Tk, GTK, and QT) are written in C, and Ruby’s bindings to them look a lot like
the bindings for other dynamic languages such as Perl and Python.

All the GUI libraries work pretty much the same way. You create objects correspond-
ing to GUI elements, or “widgets,” attach chunks of code to them as callbacks (so
that something will happen when, for instance, the user clicks a button), and then
“pack” them into a frame for display. Because it’s easiest to do the GUI layout work
in a tool like Glade, and write only the callbacks in regular Ruby, this chapter con-
tains only a few sample recipes on GUI programming.

Resources
HighLine, written by James Edward Gray II and Gregory Brown, is available as the
highline gem. The Curses and Readline libraries come preinstalled with Ruby (even
on Windows, if you use the one-click installer). If you’re using Windows and don’t
have Curses, you can get the library and the Ruby bindings from http://www.dave.
burt.id.au/ruby/curses.zip.

Ncurses is an improved version of Curses (allowing things like colored text), and
most modern Unix systems have it installed. You can get Ncurses bindings for Ruby
from http://ncurses-ruby.berlios.de/. It’s also available as the Debian package
libncurses-ruby.

The Tk binding for Ruby comes preinstalled with Ruby, assuming you’ve installed
Tk itself. Ruby bindings for the most common GUI toolkits have been written:

• GTK (http://ruby-gnome2.sourceforge.jp/)

• QT (http://sfns.u-shizuoka-ken.ac.jp/geneng/horie_hp/ruby/index.html)

• wxRuby (http://wxruby.rubyforge.org/)

wxRuby is interesting because it’s cross-platform and uses native widgets on each
platform. You can write a Ruby program with wxRuby that runs on Unix, Win-
dows, and Mac OS X, and looks like a native application on all three platforms.

On Mac OS X, all the tools you need to build a Ruby GUI application come with the
operating system, including a GUI builder. If you’re using GTK, your life will be eas-
ier if you download the Glade GUI builder (http://glade.gnome.org/).

21.1 Getting Input One Line at a Time

Problem
You’re writing an interactive console program, and you want to get line-based input
from the user. You present the user with a prompt, and he types some data before
hitting enter.

21.1 Getting Input One Line at a Time | 775

Solution
Instead of reading standard input all at once, read it a line at a time with gets or
readline.

This method populates a data structure with values obtained from user input:

def confirmation_hearings
 questions = [['What is your name?', :name],
 ['How old are you?', :age],
 ['Why would you like to be Secretary of the Treasury?', :why]]
 answers = questions.inject({}) do |answers, qv|
 question, value = qv
 print question + ' '
 answers[value] = gets.chomp
 answers
 end
 puts "Okay, you're confirmed!"
 return answers
end

confirmation_hearings
What is your name? # <= Leonard Richardson
How old are you? # <= 27
Why would you like to be Secretary of the Treasury? # <= Mainly for the money
Okay, you're confirmed!
=> {:age=>"26", :why=>"Mainly for the money", :name=>"Leonard Richardson"}

Discussion
Most console programs take their input from command-line switches or from a file
passed in on standard input. This makes it easy to programatically combine console
programs: you can pipe cat into grep into last without any of the programs having to
know that they’re connected to each other. But sometimes it’s more user-friendly to
ask for input interactively: in text-based games, or data entry programs with workflow.

The only difference between this technique and traditional console applications is
that you’re writing to standard output before you’re completely done reading from
standard input. You can pass an input file into a program like this, and it’ll still
work. In this example, a Ruby program containing the questionnaire code seen in the
Solution is fed by an input file:

$./confirmation_hearings.rb < answers
=> What is your name? How old are you? Why would you like to be
Secretary of the Treasury? Okay, you're confirmed!

The program works, but the result looks different—even though the standard output is
actually the same. When a human is running the program, the newline created when
they hit enter is echoed to the screen, making the second question appear on a sepa-
rate line from the first. Those newlines don’t get echoed when they’re read from a file.

776 | Chapter 21: User Interface

The HighLine library requires that you install a gem (highline), but it makes sophis-
ticated line-oriented input much easier. You can make a single method call to print a
prompt, retrieve the input, and validate it. This code works the same way as the code
above, but it’s shorter, and it makes sure you enter a reasonable age for the question
“How old are you?”

require 'rubygems'
require 'highline/import'

def confirmation_hearings
 answers = {}
 answers[:name] = ask('What is your name? ')
 answers[:age] = ask('How old are you? ', Integer) { |q| q.in = 0..120 }
 answers[:why] = ask('Why would you like to be Secretary of the Treasury? ')
 puts "Okay, you're confirmed!"
 return answers
end

confirmation_hearings
What is your name? # <= Leonard Richardson
How old are you? # <= twenty-seven
You must enter a valid Integer.
? # <= 200
Your answer isn't within the expected range (included in 0..120)
? # <= 27
...

See Also
• Recipe 21.2, “Getting Input One Character at a Time”

• Recipe 21.9, “Reading a Password”

• The examples/basic_usage.rb script in the HighLine library has many more
examples of data validation with HighLine

• If you want your program to treat its command-line arguments as filenames and
read from the files one line at a time, see Recipe 21.3, “Parsing Command-Line
Arguments,” for a shortcut

21.2 Getting Input One Character at a Time

Problem
You’re writing an interactive application or a terminal-based game. You want to read
a user’s input from standard input a single character at a time.

21.2 Getting Input One Character at a Time | 777

Solution
Most Ruby installations on Unix come with the the Curses extension installed. If
Curses has the features you want to write the rest of your program, the simplest solu-
tion is to use it.

This simple Curses program echoes every key you type to the top-left corner of the
screen. It stops when you hit the escape key (\e).*

#!/usr/bin/ruby -w
curses_single_char_input.rb
require 'curses'
include Curses

Setup: create a curses screen that doesn't echo its input.
init_screen
noecho

Cleanup: restore the terminal settings when the program is exited or
killed.
trap(0) { echo }

while (c = getch) != ?\e do
 setpos(0,0)
 addstr("You typed #{c.chr.inspect}")
end

If you don’t want Curses to take over your program, you can use the HighLine
library instead (available as the highline gem). It does its best to define a get_
character method that will work on your system. The get_character method itself is
private, but you can access it from within a call to ask:

require 'rubygems'
require 'highline/import'

while (c = ask('') { |q| q.character = true; q.echo = false }) != "\e" do
 print "You typed #{c.inspect}"
end

Be careful; ask echoes a newline after every character it receives.† That’s why I use a
print statement in that example instead of puts.

Of course, you can avoid this annoyance by hacking the HighLine class to make get_
character public:

class HighLine
 public :get_character
end

* This code will also work in irb, but it’ll look strange because Curses will be fighting with irb for control of
the screen.

† This actually happens at the end of HighLine.get_response, which is called by ask.

778 | Chapter 21: User Interface

input = HighLine.new
while (c = input.get_character) != ?\e do
 puts "You typed #{c.chr.inspect}"
end

Discussion
This is a huge and complicated problem that (fortunately) is completely hidden by
Curses and HighLine. Here’s the problem: Unix systems know how to talk to a lot of
historic and modern terminals. Each one has a different feature set and a different
command language. HighLine (through the Termios library it uses on Unix) and
Curses hide this complexity.

Windows doesn’t have to deal with a lot of terminal types, but Windows programs
don’t usually read from standard input either (much less one character at a time). To
do single-character input on Windows, HighLine makes raw Windows API calls.
Here’s some code based on HighLine’s, which you can use on Windows if you don’t
want to require HighLine:

require 'Win32API'

def getch
 @getch ||= Win32API.new('crtdll', '_getch', [], 'L')
 @getch.call
end

while (c = getch) != ?\e
 puts "You typed #{c.chr.inspect}"
end

HighLine also has two definitions f get_character for Unix; you can copy one of
these if you don’t want to require HighLine. The most reliable implementation is
fairly complicated, and requires the termios gem. But if you need to require the
termios gem, you might as well require the highline gem as well, and use HighLine’s
implementation as is. So if you want to do single-character input on Unix without
requiring any gems, you’ll need to rely on the Unix command stty:

def getch
 state = `stty -g`
 begin
 `stty raw -echo cbreak`
 $stdin.getc
 ensure
 `stty #{state}`
 end
end

while (c = getch) != ?\e
 puts "You typed #{c.chr.inspect}"
end

All of the HighLine code is in the main highline.rb file; search for “get_character”.

21.3 Parsing Command-Line Arguments | 779

See Also
• Recipe 21.5, “Setting Up and Tearing Down a Curses Program”

• Recipe 21.8, “Changing Text Color”

21.3 Parsing Command-Line Arguments

Problem
You want to make your Ruby script take command-line arguments, the way most
Unix utilities and scripts do.

Solution
If you want to treat your command-line arguments as a simple list of strings, you can
just iterate over the ARGV array.

Here’s a Ruby version of the Unix command cat; it takes a list of files on the com-
mand line, opens each one, and prints its contents to standard output:

#!/usr/bin/ruby -w
cat.rb

ARGV.each { |filename| IO.readlines(filename).each { |line| puts line } }

If you want to treat your command-line arguments as a list of files, and you plan to
open each of those files and iterate over them line by line, you can use ARGF instead of
ARGV. The following cat implementation is equivalent to the first one.*

#!/usr/bin/ruby -w
cat_argf.rb

ARGF.each { |line| puts line }

If you want to treat certain command-line arguments as switches, or as anything
other than a homogenous list of strings, use the OptionParser class in the optparse
library. Don’t write the argument parsing code yourself; there are too many edge
cases to think about.

Discussion
The OptionParser class can parse any command-line arguments you’re likely to need,
and it includes a lot of Unix know-how that would take a long time to write your-
self. All you have to do is define the set of arguments your script accepts, and write
code that reacts to the presence of each argument on the command line. Here, I’ll

* It’s actually a little better, because ARGF will iterate over standard input if there are no files given in ARGV.

780 | Chapter 21: User Interface

use OptionParser to write cat2.rb, a second Ruby version of cat that supports a few
of the real cat’s command-line arguments.

The first phase is turning any command-line arguments into a data structure that I can
easily consult during the actual program. The CatArguments class defined below is a
hash that uses OptionParser to populate itself from a list of command-line arguments.

For each argument accepted by cat2.rb, I’ve added a code block to be run as a call-
back. When OptionParser sees a particular argument in ARGV, it runs the correspond-
ing code block, which sets an appropriate value in the hash:

#!/usr/bin/ruby
cat2.rb
require 'optparse'

class CatArguments < Hash
 def initialize(args)
 super()
 self[:show_ends] = ''

 opts = OptionParser.new do |opts|
 opts.banner = "Usage: #$0 [options]"
 opts.on('-E', '--show-ends [STRING]',
 'display [STRING] at end of each line') do |string|
 self[:show_ends] = string || '$'
 end

 opts.on('-n', '--number', 'number all output lines') do
 self[:number_lines] = true
 end

 opts.on_tail('-h', '--help', 'display this help and exit') do
 puts opts
 exit
 end
 end

 opts.parse!(args)
 end
end

arguments = CatArguments.new(ARGV)

At this point in the code, our CatArguments object contains information about which
command-line arguments were passed in. If the user passed in a command-line
switch -E or --show-ends, then arguments[:show_ends] contains a string to be shown
at the end of each line.

What’s more, the command-line arguments handled by OptionParser have been
stripped from ARGV. The only things left in ARGV can be assumed to be the names of
files the user wants to concatenate. This means we can now use the ARGF shortcut to

21.3 Parsing Command-Line Arguments | 781

iterate over those files line by line. All we need is a little extra code to actually imple-
ment the command-line arguments:

counter = 0
eol =
ARGF.each do |line|
 line.sub!(/$/, arguments[:show_ends])
 print '%6.d ' % (counter += 1) if arguments[:number_lines]
 print line
end

Here’s a shell session showing off the robustness that optparse brings to even a simple
script. The help message is automatically generated, multiple combined flags are han-
dled correctly, nonexistent flags are rejected, and you can disable flag processing alto-
gether with the -- argument. In general, it works like you expect a Unix command-line
tool to work.

$./cat2.rb --help
Usage: ./cat2.rb [options]
 -E, --show-ends [STRING] display STRING at end of each line
 -n, --number number all output lines
 -h, --help display this help and exit

$./cat2.rb file1 file2
This is file one.
Another line in file one.
This is file two.
I'm a lot more interesting than file one, I'll tell you that!

$./cat2.rb file1 -E$ -n file2
 1 This is file one.$
 2 Another line in file one.$
 3 This is file two.$
 4 I'm a lot more interesting than file one, I'll tell you that!$

$./cat2.rb --nosuchargument
/usr/lib/ruby/1.8/optparse.rb:1445:in `complete': invalid option: --nosuchargument
(OptionParser::InvalidOption)

$./cat2.rb --show-ends=" STOP" -- --argument-looking-file
The name of this file STOP
looks just like an argument STOP
for some odd reason. STOP

With a little more work, you can make OptionParser validate argument data for
you—parse strings as numbers, restrict option values to values from a list. The docu-
mentation for the OptionParser class has a much more complex example that shows
off these advanced features.

See Also
• ri OptionParser

782 | Chapter 21: User Interface

21.4 Testing Whether a Program Is Running
Interactively

Problem
You want to see whether there’s another person on the other end of your program, or
whether the program has been hooked up to a file or the output of another program.

Solution
STDIN.tty? returns true if there’s a terminal hooked up to your program’s original
standard input. Since only humans use terminals, this will suffice. This code works
on Unix and Windows:

#!/usr/bin/ruby -w
interactive_or_not.rb
if STDIN.tty?
 puts "Let me be the first to welcome my human overlords."
else
 puts "How goes the revolution, brother software?"
end

Running this program in different ways gives different results:

$./interactive_or_not.rb
Let me be the first to welcome my human overlords.

$ echo "Some data" | interactive_or_not.rb
How goes the revolution, brother software?

$./interactive_or_not.rb < input_file
How goes the revolution, brother software?

Discussion
An interactive application can be more user friendly than one that runs solely off its
command-line arguments and input streams. By checking STDIN.tty? you can make
your program have an interactive and a noninteractive mode. The noninteractive
mode can be chained together with other programs or used in shell scripts.

21.5 Setting Up and Tearing Down a Curses Program

Problem
To write a program that uses Curses or Ncurses, you have to write a lot of setup and
cleanup code. You’d like to factor that out.

21.5 Setting Up and Tearing Down a Curses Program | 783

Solution
Here’s a wrapper method that sets up the Curses library and passes the main screen
object into a code block:

require 'curses'

module Curses
 def self.program
 main_screen = init_screen
 noecho
 cbreak
 curs_set(0)
 main_screen.keypad = true
 yield main_screen
 end
end

Here’s a simple Ruby program that uses the wrapper method to fill up the screen
with random placements of a given string:

Curses.program do |scr|
 str = ARGV[0] || 'Test'
 max_x = scr.maxx-str.size+1
 max_y = scr.maxy
 100.times do
 scr.setpos(rand(max_y), rand(max_x))
 scr.addstr(str)
 end
 scr.getch
end

Discussion
The initialization, which is hidden in Curses.program, does the following things:

• Stops keystrokes from being echoed to the screen (noecho)

• Hides the cursor (curs_set(0))

• Turns off buffered input so keys can be processed as they’re typed (cbreak)

• Makes the keyboard’s arrow keys generate recognizable key events (keypad = true)

The code is a little different if you’re using the third-party ncurses binding instead of
the curses library that comes with Ruby. The main difference is that with ncurses,
you must write some of the cleanup code that the curses library handles automati-
cally. A wrapper method is also a good place to set up the ncurses color code if you
plan to use colored text (see Recipe 21.8 for more on this).

Here’s an Ncurses.program method that’s equivalent to Curses.program, except that it
performs its cleanup manually by registering an at_exit block to run just before the

784 | Chapter 21: User Interface

interpreter exits. This wrapper also turns on color and initializes a few default color
pairs. If your terminal has no color support, the color code will run but it won’t do
anything.

require 'ncurses'

module Ncurses
 COLORS = [COLOR_BLACK, COLOR_RED, COLOR_GREEN, COLOR_YELLOW, COLOR_BLUE,
 COLOR_MAGENTA, COLOR_CYAN, COLOR_WHITE]

 def self.program
 stdscr = Ncurses.initscr

 # Run ncurses cleanup code when the program exits.
 at_exit do
 echo
 nocbreak
 curs_set(1)
 stdscr.keypad(0)
 endwin
 end

 noecho
 cbreak
 curs_set(0)
 stdscr.keypad(1)
 start_color

 COLORS[1...COLORS.size].each_with_index do |color, i|
 init_pair(i+1, color, COLOR_BLACK)
 end

 yield stdscr
 end
end

Here’s the ncurses equivalent of the curses program given earlier:

Ncurses.program do |scr|
 str = ARGV[0] || 'Test'
 max_y, max_x = [], []
 scr.getmaxyx(max_y, max_x)
 max_y = max_y[0]
 max_x = max_x[0] - str.size + 1
 100.times do
 scr.mvaddstr(rand(max_y), rand(max_x), str)
 end
 scr.getch
end

21.6 Clearing the Screen | 785

See Also
• See this chapter’s introduction for information on installing Ncurses

• “Writing Programs with NCURSES” is a good general overview of the Ncurses
library; it’s written for C programmers, but it’s useful for Rubyists because
Ruby’s interfaces to Curses and Ncurses are little more than wrappers (http://
dickey.his.com/ncurses/ncurses-intro.html)

21.6 Clearing the Screen

Problem
You’re writing a console application, and you want it to clear the screen.

Solution
Capture the output of the Unix clear command as a string and print it whenever you
want to clear the screen:

#!/usr/bin/ruby -w
clear_console.rb
clear_code = %x{clear}

puts 'Press enter to clear the screen.'
$stdin.gets
print clear_code
puts "It's cleared!"

Discussion
The clear command prints an escape code sequence to standard output, which the
Unix terminal interprets as a clear-screen command. The exact string depends on
your terminal, but it’s probably an ANSI escape sequence, like this:

%x{clear} # => "\e[H\e[2J"

Your Ruby script can print this escape code sequence to standard output, just as the
clear command can, and clear the screen.

On Windows, the command is cls, and you can’t just print its standard output to
clear the screen. Every time you want to clear the screen, you need to call out to cls
with Kernel#system:

clear_console_windows.rb

puts 'Press enter to clear the screen.'
$stdin.gets
system('cls')
puts "It's cleared!"

786 | Chapter 21: User Interface

If you’ve made your Windows terminal support ANSI (see Recipe 21.8), then you
can print the same ANSI escape sequence used on Unix.

The Curses library makes this a lot more straightforward. A Curses application can
clear any of its windows with Curses::Window#clear. Curses::clear will clear the
main window:

#!/usr/bin/ruby -w
curses_clear.rb
require 'curses'

Curses.init_screen
Curses.setpos(0,0)
Curses::addstr("Type all you want. 'C' clears the screen, Escape quits.\n")

begin
 c = nil
 begin
 c = Curses.getch
 end until c == ?C or c == ?\e
 Curses.clear
end until c == ?\e

But, as always, Curses takes over your whole application, so you might want to just
use the escape sequence trick.

21.7 Determining Terminal Size

Problem
Within a terminal-based application, you want to find the size of the terminal: how
many rows and columns are available for you to draw on.

Solution
This is easy if you’re using the Curses library. This example uses the Curses.program
wrapper described in Recipe 21.5:

Curses.program do |scr|
 max_y, max_x = scr.maxy, scr.maxx

 scr.setpos(0, 0)
 scr.addstr("Your terminal size is #{max_x}x#{max_y}. Press any key to exit.")
 scr.getch
end

It’s a little less easy with Ncurses: you have to pass in two arrays to the underlying C
libraries, and extract the numbers from the arrays. Again, this example uses the
Ncurses wrapper from Recipe 21.5:

Ncurses.program do |scr|
 max_y, max_x = [], []

21.7 Determining Terminal Size | 787

 scr.getmaxyx(max_y, max_x)
 max_y, max_x = max_y[0], max_x[0]

 str = "Your terminal size is #{max_x}x#{max_y}. Press any key to exit."
 scr.mvaddstr(0, 0, str)
 scr.getch
end

If you’re not using a Curses-style library, it’s not easy at all.

Discussion
If you plan to simulate graphical elements on a textual terminal, subdivide it into vir-
tual windows, or print justified output, you’ll need to know the terminal’s dimen-
sions. For decades, the standard terminal size has been 25 rows by 80 columns, but
modern GUIs and high screen resolutions let users create text terminals of almost
any size. It’s okay to enforce a minimum terminal size, but it’s a bad idea to assume
that the terminal is any specific size.

The terminal size is a very useful piece of information to have, but it’s not an easy
one to get. The Curses library was written to solve this kind of problem, but if you’re
willing to go into the operating system API, or if you’re on Windows where Curses is
not a standard feature, you can find the terminal size without letting a Curses-style
library take over your whole application.

On Unix systems (including Mac OS X), you can make an ioctl system call to get
the terminal size. Since you’re calling out to the underlying operating system, you’ll
need to use strange constants and C-like structures to carry the response:

TIOCGWINSZ = 0x5413 # For an Intel processor
TIOCGWINSZ = 0x40087468 # For a PowerPC processor

def terminal_size
 rows, cols = 25, 80
 buf = [0, 0, 0, 0].pack("SSSS")
 if STDOUT.ioctl(TIOCGWINSZ, buf) >= 0 then
 rows, cols, row_pixels, col_pixels = buf.unpack("SSSS")[0..1]
 end
 return rows, cols
end

terminal_size # => [21, 80]

Here, the methods pack and unpack convert between a four-element array and a string
that is modified in-place by the ioctl call. After the call, the first two elements of the
array contain the number of rows and columns for the terminal. Note that the first
argument to ioctl is architecture-dependent.

The Windows version works the same way, although you must jump through more
hoops and the system call returns a much bigger data structure:

STDOUT_HANDLE = 0xFFFFFFF5
def terminal_size

788 | Chapter 21: User Interface

 m_GetStdHandle = Win32API.new('kernel32', 'GetStdHandle', ['L'], 'L')
 m_GetConsoleScreenBufferInfo = Win32API.new ('kernel32',
 'GetConsoleScreenBufferInfo',
 ['L', 'P'], 'L')
 format = 'SSSSSssssSS'
 buf = ([0] * format.size).pack(format)
 stdout_handle = m_GetStdHandle.call(STDOUT_HANDLE)

 m_GetConsoleScreenBufferInfo.call(stdout_handle, buf)
 (bufx, bufy, curx, cury, wattr,
 left, top, right, bottom, maxx, maxy) = buf.unpack(format)
 return bottom - top + 1, right - left + 1
end

terminal_size # => [25, 80]

If all else fails, on Unix systems you can call out to the stty command:

def terminal_size
 %x{stty size}.split.collect { |x| x.to_i }
end

terminal_size # => [21, 80]

See Also
• The ioctl code is based on code posted to ruby-talk by Paul Brannan (http://

blade.nagaokaut.ac.jp/cgi-bin/rcat.rb/ruby/ruby-talk/40350)

• The Windows code is based on code in the Win32API_Console library, a simple
Ruby wrapper around Windows’ console-related API calls (http://rb-w32mod.
sourceforge.net/)

• Recipe 21.5, “Setting Up and Tearing Down a Curses Program”

21.8 Changing Text Color

Problem
You want to display multicolored text on the console.

Solution
The simplest solution is to use HighLine. It lets you enclose color commands in an
ERb template that gets interpreted within HighLine and printed to standard output.
Try this colorful bit of code to test the capabilities of your terminal:

require 'rubygems'
require 'highline/import'

say(%{Here's some <%= color('dark red text', RED) %>.})
say(%{Here's some <%= color('bright red text on a blue background',
 RED+BOLD+ON_BLUE) %>.})

21.8 Changing Text Color | 789

say(%{Here's some <%= color('blinking bright cyan text', CYAN+BOLD+BLINK) %>.})
say(%{Here's some <%= GREEN+UNDERLINE %>underlined dark green text<%=CLEAR%>.})

Some of these features (particularly the blinking and underlining) aren’t supported
on all terminals.

Discussion
The HighLine#color method encloses a display string in special command strings,
which start with an escape character and a left square bracket:

HighLine.new.color('Hello', HighLine::GREEN)
=> "\e[32mHello\e[0m"

These are ANSI escape sequences. Instead of displaying the string “\e[32m”, an
ANSI-compatible terminal treats it as a command: in this case, a command to start
printing characters in green-on-black. The string “\e[0m” tells the terminal to go
back to white-on-black.

Most modern Unix terminals support ANSI escape sequences, including the Mac OS
X terminal. You should be able to get green text in your irb session just by calling
puts "\e[32mHello\e[0m" (try it!), but HighLine makes it easy to get color without
having to remember the ANSI sequences.

Windows terminals don’t support ANSI by default, but you can get it to work by
loading ANSI.SYS (see below for a relevant Microsoft support article).

An alternative to HighLine is the Ncurses library.* It supports color terminals that
use a means other than ANSI, but these days, most color terminals get their color
support through ANSI. Since Ncurses is much more complex than HighLine, and
not available as a gem, you should only use Ncurses for color if you’re already using
it for its other features.

Here’s a rough equivalent of the HighLine program given above. This program uses
the Ncurses::program wrapper described in Recipe 21.5. The wrapper sets up
Ncurses and initializes some default color pairs:

Ncurses.program do |s|
 # Define the red-on-blue color pair used in the second string.
 # All the default color pairs use a black background.
 Ncurses.init_pair(8, Ncurses::COLOR_RED, Ncurses::COLOR_BLUE)

 Ncurses::attrset(Ncurses::COLOR_PAIR(1))
 s.mvaddstr(0,0, "Here's some dark red text.")

 Ncurses::attrset(Ncurses::COLOR_PAIR(8) | Ncurses::A_BOLD)
 s.mvaddstr(1,0, "Here's some bright red text on a blue background.")

* Standard Curses doesn’t support color because it was written in the 1980s, when monochrome ruled the
world.

790 | Chapter 21: User Interface

 Ncurses::attrset(Ncurses::COLOR_PAIR(6) | Ncurses::A_BOLD |
 Ncurses::A_BLINK)
 s.mvaddstr(2,0, "Here's some blinking bright cyan text.")

 Ncurses::attrset(Ncurses::COLOR_PAIR(2) | Ncurses::A_UNDERLINE)
 s.mvaddstr(3,0, "Here's some underlined dark green text.")

 s.getch
end

An Ncurses program can draw from a palette of color pairs—combinations of fore-
ground and background colors. Ncurses::program sets up a default palette of the
seven basic ncurses colors (red, green, yellow, blue, magenta, cyan, and white), each
on a black background. You can change this around if you like, or define additional
color pairs (like the red-on-blue defined in the example). The following Ncurses pro-
gram prints out a color chart of all foreground-background pairs. It makes the text of
the chart bold, so that the text doesn’t become invisible when the background is the
same color.

Ncurses.program do |s|
 pair = 0
 Ncurses::COLORS.each_with_index do |background, i|
 Ncurses::COLORS.each_with_index do |foreground, j|
 Ncurses::init_pair(pair, foreground, background) unless pair == 0
 Ncurses::attrset(Ncurses::COLOR_PAIR(pair) | Ncurses::A_BOLD)
 s.mvaddstr(i, j*4, "#{foreground},#{background}")
 pair += 1
 end
 end
 s.getch
end

You can modify a color pair by combining it with an Ncurses constant. The most
useful constants are Ncurses::A_BOLD, Ncurses::A_BLINK, and Ncurses::A_UNDERLINE.
This works the same way (and, on an ANSI system, uses the same ANSI codes) as
HighLine’s BOLD, BLINK, and UNDERLINE constants. The only difference is that you
modify an Ncurses color with the OR operator (|), and you modify a HighLine color
with the addition operator.

See Also
• Recipe 1.3, “Substituting Variables into an Existing String,” has more on ERb

• http://en.wikipedia.org/wiki/ANSI_escape_code has technical details on ANSI
color codes

• The examples/ansi_colors.rb file in the HighLine gem

• You can get a set of Ncurses bindings for Ruby at http://ncurses-ruby.berlios.de/;
it’s also available as the Debian package libncurses-ruby

21.9 Reading a Password | 791

• If you want something more lightweight than the highline gem, try the term-
ansicolor gem instead: it defines methods for generating the escape sequences
for ANSI colors, and nothing else

• “How to Enable ANSI.SYS in a Command Window” (http://support.microsoft.com/
?id=101875)

21.9 Reading a Password

Problem
You want to prompt the user for a password, or otherwise capture input without
echoing it to the screen for all to see.

Solution
The ruby-password library makes this easy, but it’s not available as a Ruby gem. The
HighLine library is available as a gem, and it can do this almost as well. You just
have to turn off the terminal echo feature:

require 'rubygems'
require 'highline/import'

def get_password(prompt='Password: ')
 ask(prompt) { |q| q.echo = false}
end

get_password("What's your password? ")
What's your password?
=> "buddy"

Discussion
In 2000, President Bill Clinton signed into law the Electronic Signatures Bill, which
makes electronic signatures as binding as handwritten signatures. He signed the law
by hand and then signed it electronically. As he typed the password to his electronic
signature, it was was echoed to the screen. Everyone in the world saw that his pass-
word was the name of his pet dog, Buddy. Don’t let this happen to you: turn off
echoing when gathering passwords.

Turning off echoing altogether is the safest way to gather a password, but it might
make your users think your program has stopped responding to input. It’s more user-
friendly to echo a mask character, like an asterisk, for every character the user types.
You can do this in HighLine by setting echo to the mask character instead of false:

def get_password(prompt='Password: ', mask='*')
 ask(prompt) { |q| q.echo = mask }
end

792 | Chapter 21: User Interface

get_password
Password: *****
=> "buddy"

get_password('Password: ', false)
Password:
=> "buddy"

See Also
• The ruby-password third-party library also provides ways of generating, encrypting,

and test-cracking passwords (http://www.caliban.org/ruby/ruby-password.shtml)

21.10 Allowing Input Editing with Readline

Problem
You want to let your users edit their lines of input as they write them, the way irb
does.

Solution
Use the readline library. Instead of reading directly from standard input, pass a
prompt string into Readline.readline. The user will be able to edit their input using
the same shortcut keys you can use in the irb Ruby interpreter (assuming their termi-
nal supports those keys).

#!/usr/bin/ruby -w
readline.rb
require 'readline'
vegetable = Readline.readline("What's your favorite vegetable?> ")
puts "#{vegetable.capitalize}? Are you crazy?"

Note that you don’t have to chomp the result of Readline.readline:

$ ruby readline.rb
What's your favorite vegetable?> okra
Okra? Are you crazy?

On Windows, this isn’t necessary because the cmd shell provides any console pro-
gram with many of readline’s features. The example given above will work on both
Windows and Unix, but if you’re writing a Windows-specific program, you don’t
need readline:

readline_windows.rb
print "What's your favorite vegetable?> "
puts gets.chomp.capitalize + "? Are you crazy?"

21.10 Allowing Input Editing with Readline | 793

Discussion
In a Unix program that accepts data from standard input, the user can use their
backspace key to correct typing mistakes, one character at a time. Backspace is a con-
trol character: it’s a real character, just like “1” and “m” (its Ruby string representa-
tion is "\010"), but it’s not usually interpreted as data. Instead, it’s treated as a
command: it erases one character from the input buffer.

With the backspace key, you can correct errors one character at a time. But what if
you want to insert text into the middle of a line, or delete the whole thing and start
over? That’s where readline comes in. It’s a Ruby interface to the Readline library
used by many Unix programs, and it recognizes many control characters besides the
backspace.

In a readline program, you can use the left and right arrow keys to move back and
forth in the input string before submitting it. If you’re familiar with the Readline
shortcut keys from Emacs or other Unix programs, you can perform more sophisti-
cated text editing operations, including cut and paste.

The readline library also supports command history: that’s the feature of irb that
lets you revisit commands you’ve already typed. To add this feature to your pro-
gram, pass true as the second argument to Readline.readline. When the user enters
a line, her input will be added to the command history. The next time your code calls
Readline.readline, the user can hit the up arrow key to recall previous lines of input.

Here’s a simple Ruby interpreter that has all the line-editing capabilities of irb,
including command history:

#!/usr/bin/ruby -w
mini_irb.rb
require 'readline'
line = 0
loop do
 eval Readline.readline('%.3d> ' % line, true)
 line += 1
end

See Also
• Recipe 1.5, “Representing Unprintable Characters”

• If your irb session doesn’t support readline commands, make sure you have the
latest version of Ruby installed, and try invoking it as irb --readline; this is an
especially common problem on Mac OS X

794 | Chapter 21: User Interface

21.11 Making Your Keyboard Lights Blink

Problem
You want to control the three standard keyboard LEDs (num lock, caps lock, and
scroll lock) from a Ruby script.

Solution
Use the Blinkenlights library, available as the blinkenlights gem. It works on Win-
dows or Linux (but not on Mac OS X), and it lets you toggle the lights individually or
in patterns:

require 'rubygems'
require 'blinkenlights'

Turn individual lights on or off.
BlinkenLights.open do |lights|
 lights.left = true
 lights.middle = true
 lights.right = true

 lights.scr = false
 lights.cap = false
 lights.num = false
end

Display a light show.
BlinkenLights.open do |lights|
 lights.left_to_right
 10.times { lights.random }
 lights.right_to_left
end

Discussion
The keyboard lights are an often-overlooked user interface. They were originally
designed to reflect information about the state of the keyboard itself, but they can be
manipulated from the computer to display more interesting things. Each light can
continually display one bit of information (such as whether you have new email), or
can flash over time to indicate a rate (such as your computer’s use of incoming or
outgoing bandwidth).

BlinkenLights works by writing special command codes to the Unix keyboard device
(/dev/tty8 is the default, but /dev/console should also work). Usually, you can only
write to these devices when running as root.

On Windows, BlinkenLights works by sending key events that make Windows think
you actually hit the corresponding key. This means that if you tell BlinkenLights on

21.11 Making Your Keyboard Lights Blink | 795

Windows to turn on your caps lock light, caps lock itself is also enabled. The state of
the light can’t be disconnected from the state of the keyboard.

When you pass a code block into Blinkenlights.open, BlinkenLights runs the block
and then restores the original state of the lights. This avoids confusing those users
who use their lights to keep track of the state of their keyboards. If you want your
setting of the lights to persist until they’re changed again, then use the return value of
Blinkenlights.open instead of passing in a code block.

This code will turn on the first two lights to represent the number six in binary. Until
they’re changed again, whether through the keyboard or through code, they’ll stay
on. Even the end of your program won’t restore the original state of the lights.

Display the binary number 6 (that is, 110):
BlinkenLights.new.set(6)

Here’s a program that converts an alphanumeric message to Morse code and dis-
plays it on the keyboard lights:

#!/usr/bin/ruby -w
blink_morse.rb
require 'rubygems'
require 'blinkenlights'

class String

 # Morse code representations for 0-9 and A-Z.
 MORSE_TABLE = %w{01111 00111 00011 00001 00000 10000 11000 11100 11110 11111
 01 1000 1010 100 0 0010 110 0000 00 0111 101 0100 11
 10 111 0110 1101 010 000 1 001 0001 011 1001 1011 1100}

 def to_morse(dit_time = 0.3)
 a = "A"[0]
 zero = "0"[0]
 words = upcase.gsub(/[^A-Z0-9\s]/, "").split
 BlinkenLights.open do |lights|
 words.each do |word|
 word.each_byte do |letter|
 code = MORSE_TABLE[letter - (letter < a ? zero : a-10)]
 code.each_byte do |signal|
 lights.flash(dit_time * (signal == zero ? 1 : 3))
 sleep(dit_time) # Space between parts of a letter.
 end
 sleep(dit_time * 3) # Space between letters.
 end
 sleep(dit_time * 5) # Space between words.
 end
 end
 end
end

ARGV.shift.to_s.to_morse if $0 == __FILE_ _

796 | Chapter 21: User Interface

See Also
• The BlinkenLights homepage at http://blinkenlights.rubyforge.org/; see especially

the generated RDoc at http://blinkenlights.rubyforge.org/doc/index.html, which
lists the many light patterns defined by the library

• The examples subdirectory of the installed gem contains sample programs that
control the keyboard lights based on your system load or network activity

• The name “Blinkenlights” is explained at http://www.catb.org/jargon/html/B/
blinkenlights.html

• An explanation of Morse code (http://en.wikipedia.org/wiki/Morse_code)

• The idea for the blink_morse.rb program comes from Neal Stephenson’s novel
Cryptonomicon

21.12 Creating a GUI Application with Tk
Credit: Kevin Marshall

Problem
You need to create a program that has a graphical user interface (GUI).

Solution
Use the Tk library. It’s language-independent, cross-platform, and best of all, it
comes standard with most Ruby distributions.

With Tk you create GUI elements, or “widgets”, and then bind code blocks to them.
When something happens (like the user clicking a widget), Tk runs the appropriate
code block.

Ruby provides a class for each type of Tk widget. This simple Tk program creates a
“root” widget (the application window), and a “label” widget within the window.
The program then waits for events (although it can’t respond to any).

require 'tk'
root = TkRoot.new { title "Tiny Tk Application" }
label = TkLabel.new(root) { text "You are a trout!" }
label.pack
Tk.mainloop

When run, it looks like Figure 21-1.

Figure 21-1. You are a trout

21.12 Creating a GUI Application with Tk | 797

Discussion
The simple application above shows most of the basic features of GUI programming
in Tk and other modern GUI toolkits. We’ll use the techniques to build a more com-
plex application.

Tk GUI development and layout take a parent/child approach. Most widgets are
children of other widgets: depending on the widget, this nesting can go arbitrarily
deep. The exception to this rule is the TkRoot widget: it’s always the top-level wid-
get, and it’s represented as the application window.

Child widgets are “packed” inside their parents so they can be displayed. A system
called the geometry manager controls where on the screen the widgets actually show
up. The default geometry manager is the “placer” manager, which lets you place wid-
gets in relation to each other.

Tk applications are event-driven, so the final step is to start a main event loop which
tells our program to listen for events to be fired on our widgets.

To further illustrate, let’s make a simple stopwatch program to demostrate a real-
world use of Tk.

To start, we’ll create four simple methods that will be bound to our widgets. These
are the nonGUI core of the program:

#!/usr/bin/ruby
stopwatch.rb
require 'tk'

class Stopwatch

 def start
 @accumulated = 0 unless @accumulated
 @elapsed = 0
 @start = Time.now

 @mybutton.configure('text' => 'Stop')
 @mybutton.command { stop }
 @timer.start
 end

 def stop
 @mybutton.configure('text' => 'Start')
 @mybutton.command { start }
 @timer.stop
 @accumulated += @elapsed
 end

 def reset
 stop
 @accumulated, @elapsed = 0, 0
 @mylabel.configure('text' => '00:00:00.0')
 end

798 | Chapter 21: User Interface

 def tick
 @elapsed = Time.now - @start
 time = @accumulated + @elapsed
 h = sprintf('%02i', (time.to_i / 3600))
 m = sprintf('%02i', ((time.to_i % 3600) / 60))
 s = sprintf('%02i', (time.to_i % 60))
 mt = sprintf('%1i', ((time - time.to_i)*10).to_i)
 newtime = "#{h}:#{m}:#{s}:#{mt}"
 @mylabel.configure('text' => newtime)
 end

Next, we set up our GUI. This consists of six simple widgets. As before, the TkRoot is
our application window, and contains all our other widgets:

 def initialize
 root = TkRoot.new { title 'Tk Stopwatch' }

The TkMenuBar corresponds to the menu bar at the top of the screen in most modern
GUI programs. It’s an easy way to group a set of program features and make them
available across our application. The menu layout of a TkMenuBar is defined by a
nested array containing the menu items, and the code blocks to run when a menu
item is selected:

 menu_spec = [
 [
 ['Program'],
 ['Start', lambda { start }],
 ['Stop', lambda { stop }],
 ['Exit', lambda { exit }]
],
 [
 ['Reset'], ['Reset Stopwatch', lambda { reset }]
]
]

 @menubar = TkMenubar.new(root, menu_spec, 'tearoff' => false)
 @menubar.pack('fill'=>'x', 'side'=>'top')

The TkFont is used only as a configuration option for our TkLabel, which in turn is
only used to display the value of our stopwatch:

 @myfont = TkFont.new('size' => 16, 'weight' => 'bold')

 @mylabel = TkLabel.new(root)
 @mylabel.configure('text' => '00:00:00.0', 'font' => @myfont)
 @mylabel.pack('padx' => 10, 'pady' => 10)

Apart from the menu bar, the TKButton is the only part of the GUI that the user can
directly manipulate. The code block passed into its command method is run when the
user clicks the button. Recall how the start and stop methods call this method to
modify the behavior of the button. This makes the button act like the toggle on a
physical stopwatch:

21.12 Creating a GUI Application with Tk | 799

 @mybutton = TkButton.new(root)
 @mybutton.configure('text' => 'Start')
 @mybutton.command { start }
 @mybutton.pack('side'=>'left', 'fill' => 'both')

The TkAfter event is an especially interesting widget because it has no direct visual
representation in our program. Instead, it runs in the background firing our tick
method every millisecond:

 @timer = TkAfter.new(1, -1, proc { tick })

Finally, we’ll start up the main Tk event loop. This call loads the GUI and starts lis-
tening for events:

 Tk.mainloop
 end
end

Stopwatch.new

Figure 21-2 shows the final product.

This recipe only scratches the surface of the Tk library, not to mention GUI design in
general. The Tk library includes dozens of widgets with lots of options and features.
Entire books have been writen about how to use the library. You should refer to the
Ruby Tk documentation or other Tk references for complete details.

See Also
• If your Ruby distribution doesn’t include Tk, you can obtain the binary or

source from http://www.tcl.tk; you may then need to rebuild Ruby from the
source distribution once you have the Tk extension; on Debian GNU/Linux, you
can just install the libtk-ruby package

• Ruby’s Tk documentation is not very complete; fortunately, its Tk binding is
similar to Perl’s, so you can get a lot of information from the Perl/Tk documen-
tation; one location for this is http://perlhelp.web.cern.ch/PerlHelp/

• Tcl and Tk by Brent B. Welch and Ken Jones with Jeffrey Hobbs (Prentice Hall)

• Perl/Tk Pocket Reference by Stephen Lidie (O’Reilly)

• The next few recipes (21.13 and 21.15) reproduce the simple GUI application
and the stopwatch with the Ruby bindings to various other GUI libraries

Figure 21-2. The stopwatch in action

800 | Chapter 21: User Interface

21.13 Creating a GUI Application with wxRuby

Problem
You want to write a portable GUI application that looks better than a Tk application.

Solution
Use the wxRuby library, available as a third-party download. It uses native GUI wid-
gets on Windows, Unix, and Mac OS X. It’s got many more features than the Tk
library, and even greater complexity.

Here’s a very simple wxRuby application (Figure 21-3):

#!/usr/bin/ruby -w
wxtrout.rb

require 'wxruby'
class TroutApp < Wx::App
 def on_init
 frame = Wx::Frame.new(nil, -1, 'Tiny wxRuby Application')
 panel = Wx::StaticText.new(frame, -1, 'You are a trout!',
 Wx::Point.new(-1,1), Wx::DEFAULT_SIZE,
 Wx::ALIGN_CENTER)
 frame.show
 end
end

TroutApp.new.main_loop

Discussion
The simple wxRuby application has the same basic structure as its Tk cousin (see
Recipe 21.12). A top-level widget is created (here called a Frame) and a label
(StaticText) widget is added to it. The application then goes into an event loop, lis-
tening for and retrieving events like mouse clicks.

Figure 21-3. You are a wxRuby trout

21.13 Creating a GUI Application with wxRuby | 801

A wxRuby version of the Tk stopwatch program is also similar, although much longer.
wxRuby code tends to be more verbose and less idiomatic than Ruby Tk code.

The core methods are nearly unchanged, because they have little to do with the GUI:

#!/usr/bin/ruby -w
wx_stopwatch.rb
require 'wxruby'

class StopwatchApp < Wx::App

 def start
 @start = Time.now
 @button.set_label('Stop')
 @button.refresh
 @frame.evt_button(@button.get_id) { stop }
 @timer.start(100) # The timer should tick every 100 milliseconds.
 end

 def stop
 @button.set_label('Start')
 @button.refresh
 @frame.evt_button(@button.get_id) { start }
 @timer.stop
 @accumulated += @elapsed
 end

 def reset
 stop
 @accumulated, @elapsed = 0, 0
 @label.set_label('00:00:00.0')
 @frame.layout
 end

 def tick
 @elapsed = Time.now - @start
 time = @accumulated + @elapsed
 h = sprintf('%02i', (time.to_i / 3600))
 m = sprintf('%02i', ((time.to_i % 3600) / 60))
 s = sprintf('%02i', (time.to_i % 60))
 mt = sprintf('%1i', ((time - time.to_i)*10).to_i)
 newtime = "#{h}:#{m}:#{s}:#{mt}"
 @label.set_label(newtime)
 @frame.layout
 end

The menu bar takes a lot more code in wxRuby than in Tk. Every widget in a
wxRuby program has a unique ID, which must be passed in when you register an
event handler. I’ve defined a hardcoded ID for each menu item, so that after I create
the “menu item” widget, I can pass its unique ID into the event-handler registration
method, evt_menu. You can really sense the underlying C code here:

 # Constants for the IDs of the menu items.
 START_MENU = 10

802 | Chapter 21: User Interface

 STOP_MENU = 11
 EXIT_MENU = 12
 RESET_MENU = 13

 # Constant for the ID of the timer widget, used below.
 TIMER_ID = 14

 def on_init
 @accumulated, @elapsed = 0, 0
 @frame = Wx::Frame.new(nil, -1, 'wxRuby Stopwatch')

 menu_bar = Wx::MenuBar.new

 program_menu = Wx::Menu.new
 menu_bar.append(program_menu, '&Program')
 program_menu.append(START_MENU, '&Start', 'Start the stopwatch')
 @frame.evt_menu(START_MENU) { start }
 program_menu.append(STOP_MENU, 'S&top', 'Stop the stopwatch')
 @frame.evt_menu(STOP_MENU) { stop }
 menu_exit = program_menu.append(EXIT_MENU, "E&xit\tAlt-X",
 'Exit the program')
 @frame.evt_menu(EXIT_MENU) { exit }

 reset_menu = Wx::Menu.new
 menu_bar.append(reset_menu, '&Reset')
 reset_menu.append(RESET_MENU, '&Reset', 'Reset the stopwatch')
 @frame.evt_menu(RESET_MENU) { reset }
 @frame.set_menu_bar(menu_bar)

wxRuby uses Sizer objects to pack widgets into their display areas. The BoxSizer
object used below arranges widgets within the frame vertically, so that the label will
be above the stopwatch button.

 sizer = Wx::BoxSizer.new(Wx::VERTICAL)

 @label = Wx::StaticText.new(@frame, -1, '00:00:00.0')
 font = Wx::FontData.new.get_chosen_font
 font.set_point_size(16)
 font.set_weight(Wx::FONTWEIGHT_BOLD)
 @label.set_font(font)
 sizer.add(@label, 1, Wx::ALIGN_CENTER)

The button and the timer work more or less like their Tk equivalents. The call to
@frame.set_sizer tells the root widget to use our vertical BoxSizer when deciding
how to arrange widgets on the screen (Figure 21-4).

 @button = Wx::Button.new(@frame, -1, 'Start')
 @frame.evt_button(@button.get_id) { start }
 sizer.add(@button, 0, Wx::ALIGN_CENTER, 2)

 @frame.set_sizer(sizer)
 @frame.show

21.14 Creating a GUI Application with Ruby/GTK | 803

 @timer = Wx::Timer.new(@frame, TIMER_ID)
 @frame.evt_timer(TIMER_ID) { tick }
 end
end

StopwatchApp.new.main_loop

See Also
• You need to download (and, on Unix systems, compile) wxRuby as a Ruby

extension; you can get it from http://wxruby.rubyforge.org/; the wxRuby develop-
ers provide a good installation guide at http://wxruby.rubyforge.org/wiki/wiki.
pl?Installation

• The wxRuby wiki has a lot of useful information, including a simple tutorial at
http://wxruby.rubyforge.org/wiki/wiki.pl?Getting_Started; the wxRuby distribu-
tion also comes with many good sample applications in its samples/ directory

• The web site for wxWidgets (the underlying library to which wxRuby is a bind-
ing) also has lots of good reference material: http://www.wxwidgets.org/; you just
have to be able to translate the C++-style class and method names into Ruby
style (for instance, WxLabel::SetLabel becomes Wx::Label#set_label)

21.14 Creating a GUI Application with Ruby/GTK

Problem
You want to write a GUI application that uses the GTK widget library, perhaps so
you can integrate it with the Gnome desktop environment.

Solution
Use the Ruby bindings to Gnome’s GTK widget library, available as a third-party
download. Here’s a simple Ruby/GTK application (Figure 21-5).

Figure 21-4. The wxRuby stopwatch looks more like a native application than the Tk one

804 | Chapter 21: User Interface

#!/usr/bin/ruby -w
gtktrout.rb
require 'gtk2'

Gtk.init
window = Gtk::Window.new 'Tiny Ruby/GTK Application'
label = Gtk::Label.new 'You are a trout!'
window.add label
window.signal_connect('destroy') { Gtk.main_quit }
window.show_all
Gtk.main

Discussion
Gnome is one of the two most popular Unix desktop suites. The Ruby-Gnome2
project provides and documents Ruby bindings to Gnome’s vast array of C libraries.
You can write Ruby applications that fully integrate with the Gnome desktop, but in
this recipe I’m going to focus on the basics of the Gnome GUI library GTK.

Although the details are different, the sample program above is basically the same as
it would be with Tk (Recipe 21.12) or the wxRuby library (Recipe 21.13). You create
two widgets (a window and a label), attach the label to the window, and tell the GUI
library to display the window. As with Tk and wxRuby, the application goes into a
display loop, capturing user events like mouse clicks.

The sample program won’t actually respond to any user events, though, so let’s cre-
ate a Ruby/GTK version of the stopwatch program seen in previous GUI recipes.

The core methods, the ones that actually implement the stopwatch, are basically the
same as the corresponding methods in the Tk and wxRuby recipes. Since GTK
doesn’t have a timer widget, I’ve implemented a simple timer as a separate thread.
The other point of interest is the HTML-like markup that GTK uses to customize the
font size and weight of the stopwatch text.

#!/usr/bin/ruby -w
gtk_stopwatch.rb
require 'gtk2'

class Stopwatch

 LABEL_MARKUP = '%s'

 def start
 @accumulated ||= 0

Figure 21-5. You are a GTK trout

21.14 Creating a GUI Application with Ruby/GTK | 805

 @elapsed = 0
 @start = Time.now

 @mybutton.label = 'Stop'
 set_button_handler('clicked') { stop }
 @timer_stopped = false
 @timer = Thread.new do
 until @timer_stopped do
 sleep(0.1)
 tick unless @timer_stopped
 end
 end
 end

 def stop
 @mybutton.label = 'Start'
 set_button_handler('clicked') { start }
 @timer_stopped = true
 @accumulated += @elapsed
 end

 def reset
 stop
 @accumulated, @elapsed = 0, 0
 @mylabel.set_markup(LABEL_MARKUP % '00:00:00.0')
 end

 def tick
 @elapsed = Time.now - @start
 time = @accumulated + @elapsed
 h = sprintf('%02i', (time.to_i / 3600))
 m = sprintf('%02i', ((time.to_i % 3600) / 60))
 s = sprintf('%02i', (time.to_i % 60))
 mt = sprintf('%1i', ((time - time.to_i)*10).to_i)
 @mylabel.set_markup(LABEL_MARKUP % "#{h}:#{m}:#{s}:#{mt}")
 end

Now begins the GUI setup. Ruby uses VBox and HBox objects to pack widgets into the
display area. The stopwatch application will give its main window a single VBox con-
taining three widgets arranged from top to bottom: a menu bar, a label (displaying
the stopwatch time), and a button (to start and stop the stopwatch):

 def initialize
 Gtk.init
 root = Gtk::Window.new('GTK Stopwatch')

 accel_group = Gtk::AccelGroup.new
 root.add_accel_group(accel_group)
 root.set_border_width 0

 box = Gtk::VBox.new(false, 0)
 root.add(box)

806 | Chapter 21: User Interface

The program’s menu bar consists of many nested MenuBar, Menu, and MenuItem
objects. Rather than create these objects ourselves, we define the parameters of our
menu bar in a nested array, and pass it into an ItemFactory object:

 menu_factory = Gtk::ItemFactory.new(Gtk::ItemFactory::TYPE_MENU_BAR,
 '<main>', nil)
 menu_spec = [
 ['/_Program'],
 ['/Program/_Start', '<Item>', nil, nil, lambda { start }],
 ['/Program/S_top', '<Item>', nil, nil, lambda { stop }],
 ['/Program/_Exit', '<Item>', nil, nil,
 lambda { Gtk.main_quit }],
 ['/_Reset'],
 ['/Reset/_Reset Stopwatch', '<Item>', nil, nil,
 lambda { reset }]
]
 menu_factory.create_items(menu_spec)
 menu_root = menu_factory.get_widget('<main>')
 box.pack_start(menu_root)

The label and the button are pretty simple: just define them and pack them into
the VBox:

 @mylabel = Gtk::Label.new
 @mylabel.set_markup(LABEL_MARKUP % '00:00:00.0')
 box.pack_start(@mylabel)

 @mybutton = Gtk::Button.new('Start')
 set_button_handler('clicked') { start }
 box.pack_start(@mybutton)

 root.signal_connect('destroy') { Gtk.main_quit }
 root.show_all

 Gtk.main
 end

I’ve been calling a nonexistent method Stopwatch#set_button_handler whenever I
want to modify the code that runs when the user clicks the button. I close out the
Stopwatch class by defining that method (Figure 21-6):

 def set_button_handler(event, &block)
 @mybutton.signal_handler_disconnect(@mybutton_handler) if @mybutton_handler
 @mybutton_handler = @mybutton.signal_connect(event, &block)
 end
end

Stopwatch.new

In the Tk recipe, I simply called a button’s command method whenever I needed to
change the code block that runs when the user clicks the button. So why this set_
button_handler code? Why not just call signal_connect whenever I need to change
what the button does here? I can’t do that because GTK lets you associate multiple

21.15 Creating a Mac OS X Application with RubyCocoa | 807

code blocks with a single event. This doesn’t usually come up, but it’s a problem
here because I’m changing the function of a button.

If the button is set up to call start when you click it, and you call signal_
connect('clicked', proc { stop }), then clicking on the button will call start and
then call stop. You’ve added a second code block to the “clicked” event, when what
you want is to replace the old “clicked” code with the new code. To avoid this prob-
lem, set_button_handler removes any old handler from the button before installing
the new handler. The set_button_handler method tracks the internal ID of the newly
installed handler, so that it can be removed if the user clicks the button yet again.

See Also
• You can download the Ruby bindings to GTK from the project homepage (http://

ruby-gnome2.sourceforge.jp/); the GTK homepage itself is at http://www.gtk.org;
Debian GNU/Linux users can install the libgtk2-ruby package

• The Ruby GTK bindings are documented on the Ruby-GNOME2 Wiki at http://
ruby-gnome2.sourceforge.jp/hiki.cgi?Ruby%2FGTK; there’s also a tutorial at http:
//ruby-gnome2.sourceforge.jp/hiki.cgi?tut-gtk

• Don’t confuse the Ruby-GNOME2 project with its predecessor, Ruby-GNOME;
the documentation for the older project is still online and will mislead you if you
go to the wrong web site

21.15 Creating a Mac OS X Application with RubyCocoa
Credit: Alun ap Rhisiart

Problem
You want to create a native Mac OS X program with a graphical user interface.

Solution
Use the Mac OS X Cocoa library along with RubyCocoa and the Interface Builder
application. RubyCocoa creates real OS X applications and provides a GUI interface
for building GUIs, as opposed to other libraries, which make you define the GUI

Figure 21-6. The GTK stopwatch

808 | Chapter 21: User Interface

with Ruby code. RubyCocoa is a free download, and the Cocoa development tools
are on the Mac OS X installation DVD.

Interface Builder is very powerful: you can create simple applications without writ-
ing any code. In fact, it takes longer to explain what to do than to do it. Here’s how
to create a simple application with Interface Builder:

1. Start the Xcode application and create a new project from the File menu. Choose
“Cocoa-Ruby Application” from the “New Project” list, hit the Next button,
give your project a name and location on disk, and click Finish.

XCode will create a project that looks like Figure 21-7.

The Cocoa-Ruby project template comes with two files: main.m (an Objective-C
file) and rb_main.rb (a RubyCocoa file). For a simple application, this is all the
code you need.

2. Open the NIB Files group and doubleclick MainMenu.nib to open Interface
Builder. You get a new application window, into which you can drag and drop
GUI widgets, and a menubar labeled MainMenu.nib (English) – MainMenu.

You’ll also see a palette window with a selection of GUI objects; a nib docu-
ment window named MainMenu.nib (English), containing classes, instances,
images and sounds; and an inspector. If the inspector is not open, select Show
Inspector from the Tools menu.

Figure 21-7. A new Cocoa-Ruby project

21.15 Creating a Mac OS X Application with RubyCocoa | 809

The screenshot in Figure 21-8 shows what we’re going to do to our new application
window (seen in the upper left).

1. Select the new application window and set the application’s title. Type “Tiny
RubyCocoa Application” in the inspector’s Window Title field (you need to select
the “Attributes” tab to see this field).

2. Add a text label to the application window. Select the Text palette in the palette
window. The visible controls are all text fields, with only slight differences

Figure 21-8. Our destination Interface Builder screenshot

810 | Chapter 21: User Interface

between them. We’ll use the control called System Font Text: drag this control
into your application window.

3. Double-click the new text field in the application window and type “You are a
trout!”

4. For completeness, go through the menus in the menubar and change “New
Application” to “Tiny RubyCocoaApp” wherever it occurs. Save your nib.

5. Go back to Xcode. Click the Build and Go button. Your application should now
run; it will look like Figure 21-9.

A compiled, doubleclickable version of the application will be found in your project
build folder—usually within the project subfolder.

Discussion
This simple application doesn’t show much about RubyCocoa, but it gives a glimpse
of the power of the Cocoa framework. The NSApplication class gives you a lot of
functionality for free: spellchecking, printing, application hiding, and so on. Ruby-
Cocoa creates an instance of NSApplication, which deals with the run loop, handling
events from the operating system, and more. You could have created this GUI appli-
cation entirely in code (it would have looked something like the Tk example), but in
practice, programmers always use Interface Builder.

For a more realistic example, we’ll need to write some code that interacts with the
interface. Like Rails and many other modern frameworks, Cocoa uses a Model-View-
Controller pattern.

• The view layer consists of the windows and widgets: NSView and its subclasses,
such as NSTextField. These are built using Interface Builder.

• The model layer is coded by the programmer, based on NSObject or a more spe-
cialised subclass.

• The Controller layer can be dealt with in Interface Builder using subclasses of
NSController (these are in the Controllers palette), or in code.

Figure 21-9. You are a Mac OS X trout

21.15 Creating a Mac OS X Application with RubyCocoa | 811

Let’s create a RubyCocoa version of the Stopwatch program seen in previous GUI
recipes like Recipe 21.12. First, we need to create a new Cocoa-Ruby Application
project in Xcode, and once more open the MainMenu.nib file in Interface Builder.
Because RubyCocoa makes it easy, we’ll display the time on the stopwatch two
ways: as a digital readout and as an analog clock face (Figure 21-10).

1. Create a new Cocoa-Ruby application. Select the new application window and
change its title in the inspector to Timer.

2. Create the clock. From the Text palette we used before, drag a NSDatePicker (a
label that displays a date and time) into the application window. In the inspector,
change the style to “Graphical”, date selection to “None”, and time selection to
“Hour, Minute, and Second”. The NSDatePicker now shows up as a clock.

3. Create the digital readout. Drag an NSTextField (“System Font Text”, as in the
previous example) onto the window below the clock. Now drag a date formatter
(marked with a small calendar in the palette) onto the NSTextField. The Inspec-
tor changes to show a list of possible formats; select %H:%M:%S.

4. Create the stopwatch button. Switch to the button palette and drag a normal,
rounded, NSButton to the application window. In the Inspector, change the title
to “Start” and make sure its type is “Push Button”.

5. Build the menu bar. Change to the menus palette and drag Submenu objects onto
the “MainMenu” menubar. Double-click them to change their titles (to “Pro-
gram” and “Reset”), and drag Item objects onto the menu objects to add items to
the menu. As in the stopwatch examples for other GUI libraries, our “Program”

Figure 21-10. The RubyCocoa stopwatch in analog mode

812 | Chapter 21: User Interface

menu will contain menu items for “Start” and “Stop”. The “Reset” menu will have
a single menu item: “Reset Stopwatch”. Unlike in the other examples, the applica-
tion menus will contain no menu item for “Exit”. This is because Mac OS X
already provides a way to exit any program from the apple menu.

6. Now we have all our interface elements in place. We need a model object to
actually do the work. Click on Classes in the MainMenu.nib window, to bring up
the class browser (Figure 21-11).

Select NSObject and then “Subclass NSObject” from the Classes menu. Change the
name of the new class to Timer. This class will implement the stopwatch code.

We need to tell Interface Builder about the interface to this class. Start by specifying
three methods. In the inspector, with the new class still selected in the class browser,
make sure that the Attributes-Actions tab is selected and hit the Add button three
times. Name the methods reset:, start:, and stop:. These are the methods that will
be called from the button and menus.

The model class we are creating also needs to know about some interface elements;
for instance, it needs to know about the time controls so it can change the displayed
time. The model class accesses Interface Builder widgets through instance variables
called outlets. Switch to the “Attributes-Outlets” tab and click Add three times. Name
the outlets clock, timeField, and button.

1. With the model object declared and all the interface elements in place, we can
connect everything together. Recall that Interface Builder deals with instances of
objects; we have a Timer class that implements the stopwatch functionality, but
as of yet we have no instance of the class. Keeping the Timer class selected in the
class browser, choose “Instantiate Timer” from the Classes menu. The window
switches to the Instances tab, with a new icon representing the Timer instance.

Figure 21-11. The class browser

21.15 Creating a Mac OS X Application with RubyCocoa | 813

To make a connection between two objects, we drag from the object that needs
to know, to the object it needs to know about. First, let’s deal with the actions.

When we click the Start button, we want the start method on our Timer class to
be called. The button needs to know about the start: method. Control drag
from the Start button to the Timer instance icon. The Inspector changes to show
the methods of Timer, and automatically selects the start: method for you (it
matches the button label). Click the Connect button to make the connection.

Make the same connection from the menu item “Program/Start” to the Timer,
and then from “Program/Stop” to the stop: method. Connect “Reset/Reset Stop-
watch” to the reset: method.

2. The controls now know which Ruby methods they trigger. We need to tell our
Timer class which interface elements are accessible from its outlets (instance vari-
ables). Now the connections are made from the Timer class to the interface con-
trols it needs to know about. Control-drag the Timer instance to the clock
control: the inspector changes to show the outlets tab for Timer. Select clock and
click the Connect button.

Connect the textField and button outlets to the digital time control and the start
button. Save the nib file as Timer.rb.

Back in Xcode, we are finally ready to write the Ruby code that actually implements
the stopwatch. Choose “New File…” from the File menu, and then select “Ruby-
Cocoa NSObject subclass” from the list. The core model object code is very similar
to the Tk recipe, with some small differences:

require 'osx/cocoa'
include OSX

ZeroDate = NSDate.dateWithString('2000-01-01 00:00:00 +0000')

class Timer < NSObject
 ib_outlets :clock, :timeField, :button

 def initialize
 @timer = NSTimer.
 scheduledTimerWithTimeInterval_target_selector_userInfo_repeats(
 1.0, self, :tick, nil, true)
 end

First, we call the ib_outlets decorator to specify instance variables that are matched
up with the objects specified in Interface Builder.

In the other GUI examples, we displayed a plaintext label and formatted the time as
a string for display. Here, the label has its own date formatter, so we can tell it to dis-
play an NSDate object and have it figure out the formatting on its own.

NSTimer is a Cocoa class we can use to tap into the Mac OS X user-event loop and
call a method at a certain interval. We can get submillisecond time intervals from

814 | Chapter 21: User Interface

NSTimer, but there’s not much point because NSDate won’t display fractions of a sec-
ond. So we set it up to call the tick method once a second.*

Now we define the start method, triggered when the end user pushes the “Start”
button:

 def start(sender)
 @running = true
 @start = NSDate.date
 @accumulated = 0 unless @accumulated
 @elapsed = 0.0
 @button.setTitle('Stop')
 @button.setAction(:stop)
 end

One thing to note here: NSTimer hooks into the operating system’s event loop, which
means it can’t be switched off. We define a @running variable so we know to ignore
the timer when we are not running the stopwatch.

The rest of the code is similar to the other GUI examples:

 def stop(sender)
 @running = false
 @accumulated += @elapsed
 @button.setTitle('Start')
 @button.setAction(:start)
 end

 def reset(sender)
 stop(nil)
 @accumulated, @elapsed = 0.0, 0.0
 @clock.setDateValue(ZeroDate)
 @timeField.setObjectValue(ZeroDate)
 end

 def tick()
 if @running
 @elapsed = NSDate.date.timeIntervalSinceDate(@start)
 d = ZeroDate.addTimeInterval(@elapsed + @accumulated)
 @clock.setDateValue(d)
 @timeField.setObjectValue(d)
 end
 end
end

This recipe is pretty long-winded compared to the other GUI recipes, but that’s
because it takes more words to explain how to use a GUI application than to explain
how a block of Ruby code works. Once you’re familiar with Interface Builder, you
can create complex Cocoa applications very quickly.

* If, as in the other GUI recipes, we’d decided to format the time ourselves and display it as a string, we could
set a shorter interval and make the fractions of a second whiz by.

21.16 Using AppleScript to Get User Input | 815

The combination of Ruby and Cocoa can make you very productive. Cocoa is a very
big class library, and the GUI part, called AppKit, is only a part of it. There are
classes for speech recognition, Bluetooth, disc recording, HTML rendering (Web-
Kit), database (Core Data), graphics, audio, and much more. The disadvantage is
that a RubyCocoa program is tied to Mac OS X, unlike Tk or wxRuby, which will
work on Windows and Linux as well.

With Apple’s recent change to Intel processors, you’ll want to create “universal bina-
ries” for your application, so that your users can run it natively whether they have a
PowerPC or an Intel Mac. The Ruby code doesn’t need to change, because Ruby is
an interpreted language; but a RubyCocoa application also contains Objective-C
code, which must be compiled separately for each architecture.

To make a universal binary, select the top-most group in the “Groups & Files” list in
Xcode (the one with the name of your project). Get Info on this (Command-I), go to
the “Build” tab, select “Architectures”, and click the Edit button. Select both the
PowerPC and Intel checkboxes, and your packaged application will include com-
piled code for both architectures.

See Also
• While Ruby, Xcode, and Interface Builder come as standard with all Mac-

intoshes, RubyCocoa does not (yet!); there is a standard installer, available from
http://rubycocoa.sourceforge.net, which includes both the framework classes and
the Xcode project templates

• RubyCocoa comes with some documentation and a number of examples; how-
ever, once you know how to translate Objective-C messages to RubyCocoa mes-
sages, you can reference the huge amount of Cocoa documentation available via
Xcode’s Help menu, and a large number of examples: there are also many useful
and free add-on libraries and Interface Builder palettes, for instance from The
Omni Group

• Cocoa Programming for Mac OS X by Aaron Hillegass (Addison-Wesley)

• Cocoa Programming by Scott Anguish, Erik M. Buck, and Donald A. Yacktman
(Sams)

21.16 Using AppleScript to Get User Input

Problem
On Mac OS X, AppleScript makes it easy to add simple graphical interface elements
to programs. You want to use AppleScript from a Ruby program.

816 | Chapter 21: User Interface

Solution
Use the AppleScript library, written by John Butler and available as the applescript
gem. It lets you talk to AppleScript from Ruby.

Here’s a script that uses the AppleScript class to get input through AppleScript. It
also shows off the AppleScript.say method, which uses Mac OS X’s text-to-speech
capabilities:

require 'rubygems'
require 'applescript'

name = AppleScript.gets("What's your name?")

AppleScript.puts("Thank you!")

choice = AppleScript.choose("So which of these is your name?",
 ["Leonard", "Mike", "Lucas", name])

if name == choice
 AppleScript.say "You are right!"
 picture = AppleScript.choose_file("Find a picture of yourself")

 if File.exists?(picture)
 AppleScript.say "Thanks, I will now post it on Flickr for you."
 # Exercise for the reader: upload the file to Flickr
 end
else
 AppleScript.say "But you just said your name was #{name}!"
end

Discussion
The AppleScript library is just a simple wrapper around the osascript command-line
interface to AppleScript. If you already know AppleScript, you can execute raw
AppleScript code with AppleScript.execute:

script = 'tell application "Finder" to display dialog "Hello World!" ' +
 'buttons {"OK"}'
AppleScript.execute(script)

See Also
• The manpage for osascript, available online at http://developer.apple.com/

documentation/Darwin/Reference/ManPages/man1/osascript.1.html

817

Chapter 22 CHAPTER 22

Extending Ruby with Other Languages22

When you decide to use an interpreted language such as Ruby, you’re trading raw
speed for ease of use. It’s far easier to develop a program in a higher-level language,
and you get a working program faster, but you sacrifice some of the speed you might
get by writing the program in a lower-level language like C and C++.

That’s the simplified view. Anyone who’s spent any serious amount of time working
with higher-level languages knows that the truth is usually more complex. In many
situations, the tradeoff doesn’t really matter: if the program is only going to be run
once, who cares if it takes twice as long to do its job? If a program is complex
enough, it might be prohibitively hard to implement in a low-level language: you
might never actually get it working right without using a language like Ruby.

But even Ruby zealots must admit that there are still situations where it’s useful to be
able to call code written in another language. Maybe you need a particular part of
your program to run blazingly fast, or maybe you want to use a particular library
that’s implemented in C or Java. When that happens you’ll be grateful for Ruby’s
extension mechanism, which lets you call C code from a regular Ruby program; and
the JRuby interpreter, which runs atop the Java Virtual Machine and uses Java
classes as though they were Ruby classes.

Compared to other dynamic languages, it’s pretty easy to write C extensions in
Ruby. The interfaces you need to understand are easy to use and clearly defined in
just a few header files, there are numerous examples available in the Ruby standard
library itself, and there are even tools that can help you access C libraries without
writing any C code at all.

So let’s break out that trusty C compiler and learn how to drop down under the
hood of the Ruby interpreter, because you just never know when your next program
will to turn into one of those situations where a little bit of C code is the only solu-
tion to the problem.

—Garrett Rooney

818 | Chapter 22: Extending Ruby with Other Languages

22.1 Writing a C Extension for Ruby
Credit: Garrett Rooney

Problem
You want to implement part of your Ruby program in C. This might be the part of
your program that needs to run really fast, it might contain some very platform-
specific code, or you might just have a C implementation already, and you don’t
want to also write one in Ruby.

Solution
Write a C extension that implements that portion of your program. Compile it with
extconf.rb and require it in your Ruby program as though it were a Ruby library.
You’ll need to have the Ruby header files installed on your system.

Here’s a simple Ruby program that requires a library called example. It instantiates an
instance of Example::Class from that library, and calls a method on that library:

require 'example'
e = Example::Class.new
e.print_string("Hello World\n")
Hello World

What would the example library look like if it were written in Ruby? Something like
this:

example.rb
module Example
 class Class
 def print_string(s)
 print s
 end
 end
end

Let’s implement that same functionality in C code. This small C library, example.c,
defines a Ruby module, class, and method using the functions made available by
ruby.h:

#include <ruby.h>
#include <stdio.h>

static VALUE rb_mExample;
static VALUE rb_cClass;

static VALUE
print_string(VALUE class, VALUE arg)
{
 printf("%s", RSTRING(arg)->ptr);
 return Qnil;
}

22.1 Writing a C Extension for Ruby | 819

void
Init_example()
{
 rb_mExample = rb_define_module("Example");

 rb_cClass = rb_define_class_under(rb_mExample, "Class", rb_cObject);

 rb_define_method(rb_cClass, "print_string", print_string, 1);
}

To build the extension, you also need to create an extconf.rb file:

extconf.rb
require 'mkmf'

dir_config('example')
create_makefile('example')

Then you can build your library by running extconf.rb, then make:

$ ls
example.c extconf.rb

$ ruby extconf.rb
creating Makefile

$ make
gcc -fPIC -Wall -g -O2 -fPIC -I. -I/usr/lib/ruby/1.8/i486-linux
 -I/usr/lib/ruby/1.8/i486-linux -I. -c example

gcc -shared -L"/usr/lib" -o example.so example.o -lruby1.8
 -lpthread -ldl -lcrypt -lm -lc

$ ls
Makefile example.c example.o example.so extconf.rb

The example.so file contains your extension. As long as it’s in your Ruby include
path (and there’s no example.rb that might mask it), you can use it like any other
Ruby library:

require 'example'
e = Example::Class.new
e.print_string("Hello World\n")
Hello World

Discussion
Most programs can be implemented using plain old Ruby code, but occasionally it
turns out that it’s better to implement part of the program in C. The example library
above simply provides an interface to C’s printf function, and Ruby already has a
perfectly good IO#printf method.

Perhaps you need to perform a calculation hundreds of thousands of times, and
implementing it in Ruby would be too slow (the Example::Class#print_string

820 | Chapter 22: Extending Ruby with Other Languages

method is faster than IO#printf). Or maybe you need to interact with some platform-
specific API that’s not exposed by the Ruby standard library. There are a number of
reasons you might want to fall back to C code, so Ruby provides you with a reason-
ably simple way of doing it.

Unfortunately, the fact that it’s easy doesn’t always mean it’s a good idea. You must
remember that when writing C-level code, you’re playing with fire. The Ruby inter-
preter does its best to limit the damage you can do if you write bad Ruby code.
About the worst you can do is cause an exception: another part of your program can
catch the exception, handle it, and carry on. But C code runs outside the Ruby inter-
preter, and an error in C code can crash the Ruby interpreter.

With that in mind, let’s go over some of the details you need to know to write a C
extension.

A Ruby extension is just a small, dynamically loadable library, which the Ruby inter-
preter loads via dlopen or something similar. The entry point to your extension is via
its Init function. For our example module, we defined an Init_example function to
set everything up. Init_example is the first function to be called by the Ruby inter-
preter when it loads our extension.

The Init_example function uses a number of functions provided by the Ruby inter-
preter to declare modules, classes, and methods, just as you might in Ruby code. The
difference, of course, is that here the methods are implemented in C. In this example,
we used rb_define_module to create the Example module, then rb_define_class_under
to define the Example::Class class (which inherits from Object), and finally rb_define_
method to give Example::Class a print_string method.

The first thing to notice in the C code is all the VALUE variables lying around. A VALUE is
the C equivalent of a Ruby reference, and it can point to any Ruby object. Ruby pro-
vides you with a number of functions and macros for manipulating VALUEs.

The rb_cObject variable is a VALUE, a reference to Ruby’s Object class. When we pass
it into rb_define_class_under, we’re telling the Ruby interpreter to define a new sub-
class of Object. The ruby.h header file defines similar variables for many other Ruby-
level modules (named using the rb_mFoo convention) and classes (the convention is
rb_cFoo).

To manipulate a VALUE, you need to know something about it. It makes no more
sense in C code than in Ruby code to call a method of File on a value that refers to a
string. The simplest way to check a Ruby object’s type is to use the Check_Type
macro, which lets you see whether or not a VALUE points to an instance of a particu-
lar Ruby class. For convenience, the ruby.h file defines constants T_STRING, T_ARRAY,
and so on, to denote built-in Ruby classes.

But that’s not what we’d do in Ruby code. Ruby enforces duck typing, in which
objects are judged on the methods they respond to, rather than the class they instan-
tiate. C code can operate on Ruby objects the same way. To check whether an object

22.2 Using a C Library from Ruby | 821

responds to a particular message, use the function rb_respond_to. To send the mes-
sage, use rb_funcall. It looks like this:

static VALUE
write_string(VALUE object, VALUE str)
{
 if (rb_respond_to(object, rb_intern("<<")))
 {
 rb_funcall(object, rb_intern("<<"), 1, str);
 }
 return Qnil;
}

That’s the C-level equivalent of the following Ruby code:

def write_string(object, str)
 object << str if object.respond_to?('<<')
 return nil
end

A few more miscellaneous tips: the rb_intern function takes a symbol name as a C
string and returns the corresponding Ruby symbol ID. You use this with functions
like rb_respond_to and rb_funcall to refer to a Ruby method. Qnil is just the C-level
name for Ruby’s special nil object. There are a few similar constants, like Qfalse and
Qtrue, which do just about what you’d think they’d do.

There are a number of other C level functions that let you create and manipulate
strings (look in for functions that start with rb_str), arrays (rb_ary), and hashes (rb_
hash). These APIs are pretty self-explanatory, so we won’t go into them in depth here,
but you can find them in the Ruby header files, specifically ruby.h and intern.h.

Ruby also defines some macros to do convenient things with common data types.
For example, the StringValuePtr macro takes a VALUE that refers to a ruby String
and returns a C-style char pointer. This can be useful for interacting with C-level
APIs. You can find this and other similar helpers in the ruby.h header.

See Also
• The file README.EXT file in the Ruby source tree

• Recipe 22.2, “Using a C Library from Ruby”

22.2 Using a C Library from Ruby
Credit: Garrett Rooney

Problem
You’d like to use a library in your Ruby program, but the library’s implemented in C
and there are no bindings.

822 | Chapter 22: Extending Ruby with Other Languages

Solution
Write a Ruby extension that wraps the C library with Ruby classes and methods.

Let’s say we want to give a Ruby interface to C’s file methods (yes, the File class
already does this, but this makes a good example). We want to make it possible to
open a disk file and read from it a byte at a time.

Just as in Recipe 22.1, you’ll need a C file that implements the actual extension. This
one is called stdio.c. It’s got an Init_stdio function that defines a Ruby module
(Stdio), a Ruby class (Stdio::File), and some methods for that class.

The file_allocate function corresponds to the Stdio::File constructor. Because it’s
a constructor, we must also define some hook functions to create and destroy the
underlying resources (in this case, a filehandle and the memory it uses):

#include "stdio.h"
#include "ruby.h"

static VALUE rb_mStdio;
static VALUE rb_cStdioFile;

struct file
{
 FILE *fhandle;
};

static VALUE
file_allocate(VALUE klass)
{
 struct file *f = malloc(sizeof(*f));
 f->fhandle = NULL;
 return Data_Wrap_Struct(klass, file_mark, file_free, f);
}

static void
file_mark(struct file *f)
{
}

static void
file_free(struct file *f)
{
 fclose(f->fhandle);
 free(f);
}

The file_open function implements the Stdio::File#open method:

static VALUE
file_open(VALUE object, VALUE fname)
{
 struct file *f;
 Data_Get_Struct(object, struct file, f);

22.2 Using a C Library from Ruby | 823

 f->fhandle = fopen(RSTRING(fname)->ptr, "r");
 return Qnil;
}

file_readbyte implements the Stdio::File#readbyte method:

static VALUE
file_readbyte(VALUE object)
{
 char buffer[2] = { 0, 0 };
 struct file *f;

 Data_Get_Struct(object, struct file, f);

 if (! f->fhandle)
 rb_raise(rb_eRuntimeError, "Attempt to read from closed file");

 fread(buffer, 1, 1, f->fhandle);

 return rb_str_new2(buffer);
}

Finally, our Init_ method defines the Stdio module, the File class, and the three
methods defined for the File class:

void
Init_stdio()
{
 rb_mStdio = rb_define_module("Stdio");
 rb_cStdioFile = rb_define_class_under(rb_mStdio, "File", rb_cObject);

 rb_define_alloc_func(rb_cStdioFile, file_allocate);
 rb_define_method(rb_cStdioFile, "open", file_open, 1);
 rb_define_method(rb_cStdioFile, "readbyte", file_readbyte, 0);
}

As before, you’ll need an extconf.rb file that knows how to compile your C library:

extconf.rb
require 'mkmf'
dir_config("stdio")
create_makefile("stdio")

Once the C library is compiled, you can use it from Ruby as though it were a Ruby
library:

open('foo.txt', 'w') { |f| f << 'foo' }

require 'stdio'
f = Stdio::File.new
f.open('foo.txt')
f.readbyte # => "f"
f.readbyte # => "o"
f.readbyte # => "o"

824 | Chapter 22: Extending Ruby with Other Languages

Discussion
The basic idea when writing a Ruby extension is to create a C data structure and
wrap it in a Ruby object. The C data structure gives you someplace to store what-
ever data you need, so you can access it in your C methods. You’re creating a primi-
tive form of object-oriented programming in C.

Ruby provides some macros to help with this. Data_Wrap_Struct wraps a C data
structure in a Ruby object. It takes a pointer to your data structure, along with a few
pointers to callback functions, and returns a VALUE. The Data_Get_Struct macro
takes that VALUE and gives you back a pointer to your C data structure.

You usually use Data_Wrap_Struct inside your class’s allocate function (called by the
constructor), and Data_Get_Struct inside its instance methods. In the example above,
the file_allocate function creates a C struct (containing a variable of type FILE) and
passes it into Data_Wrap_Struct to get a VALUE. The functions for the instance meth-
ods, file_open and file_readbyte, both take a VALUE as an argument, and pass it
into Data_Get_Struct to get a C struct.

So what about those callback functions? There are three of them: an “allocate” func-
tion, a “mark” function, and a “free” function. The “allocate” function is called
whenever an object is created. The other two have to do with garbage collection.

Ruby’s garbage collector uses a mark-and-sweep algorithm: it runs through all the
“live” objects in the system, marking them to note that it was able to reach them.
Then it destroys every object that it couldn’t reach: by definition, those objects are
no longer in use, and don’t need to be kept around in memory. To make this work,
you need to provide two callbacks: one that marks an object as reachable, and one
that frees the underlying resources for all unreachable objects.

In this case, both functions are simple. The “free” callback simply closes the file-
handle and calls the C free function. The “mark” callback doesn’t need to do any-
thing, since this object doesn’t refer to any other Ruby objects.

If your object does contain references to other Ruby objects, all you need to do is
explicitly mark them (by calling the rb_gc_mark function) in your “mark” callback.
This example goes a bit further than it needs to by defining an empty mark callback;
it could accomplish the same thing by passing in a NULL function pointer.

To summarize: if your library doesn’t define its own data structures, define your own
C struct. Implement methods that translate Ruby arguments into their C equiva-
lents, call the library functions you’re interested in, then translate the return values
back into Ruby data structures, so that the rest of the Ruby program can use it.

22.3 Calling a C Library Through SWIG | 825

See Also
• The README.EXT file in the Ruby source tree

• Recipe 22.1, “Writing a C Extension for Ruby”

• Recipe 22.3, “Calling a C Library Through SWIG,” might do what you want
with less complication

22.3 Calling a C Library Through SWIG
Credit: Garrett Rooney

Problem
You want to use a C library in your Ruby code, but you don’t want to have to write
any C code to do it.

Solution
Use SWIG to generate the C extension for you. SWIG is a programming tool that
takes as its input a file containing the information about C functions. It produces
source code that lets you access those C functions from a variety of programming
languages, including Ruby.

All you you need to write is an interface file, containing the prototypes for the C func-
tions you want to call. The interface file also contains a few directives to control things
like the name of the resulting module. Process that file with the swig command-line
tool, build your extension, and you’re up and running.

Let’s build a SWIG extension that lets Ruby access functions from the standard C
library. It’ll provide access to enough functionality that you can read data from one
file and write it to another. In Recipe 22.1, we wrote the C code for a similar exten-
sion ourselves, but here we’ll let SWIG do it.

First we’ll need a SWIG interface file, libc.i:

%module libc

FILE *fopen(const char *, const char *);

int fread(void *, size_t, size_t, FILE *);
int fwrite(void *, size_t, size_t, FILE *);
int fclose(FILE *);

void *malloc(size_t);

This file specifies the name of our extension as “libc”. For SWIG Ruby extensions,
this means the extension will be named “libc”, and the code will be contained in a
Ruby module claled Libc. This file also provides the prototypes for the functions
we’re going to want to call.

826 | Chapter 22: Extending Ruby with Other Languages

You’ll also need an extconf.rb program, similar to the one we used in the previous
two recipes:

extconf.rb
require 'mkmf'
dir_config('tcl')
dir_config('libc')
create_makefile('libc')

To generate the C extension, we process the header file with the swig command-line
tool. We then run Ruby’s extconf.rb program to generate a makefile, and run make
to compile the extension:

$ swig -ruby libc.i
$ ls
extconf.rb libc.i libc_wrap.c

$ ruby extconf.rb --with-tcl-include=/usr/include/tcl8.4
creating Makefile

$ make
...

$ ls
Makefile extconf.rb libc.i libc.so libc_wrap.c libc_wrap.o

Once the module is compiled, we can use it just like any other Ruby extension. This
code uses a Ruby interface to prepopulate a file with random data, then uses the C
interface to copy the contents of that file to another file:

random_data = ""
10000.times { random_data << rand(255) }
open('source.txt', 'w') { |f| f << random_data }

require 'libc'
f1 = Libc.fopen('source.txt', 'r')
f2 = Libc.fopen('dest.txt', 'w+')

buffer = Libc.malloc(1024)

nread = Libc.fread(buffer, 1, 1024, f1)

while nread > 0
 Libc.fwrite(buffer, 1, nread, f2)
 nread = Libc.fread(buffer, 1, 1024, f1)
end
Libc.fclose(f1)
Libc.fclose(f2)

dest.txt now contains the same random data as source.txt.
random_data == open('dest.txt') { |f| f.read }
=> true

22.4 Writing Inline C in Your Ruby Code | 827

There you have it: without writing a line of C code, we’ve been able to call into a C
library from Ruby.

Discussion
The great advantage of SWIG over writing your own interface to a C library is that
you don’t have to write your own interface to a C library. The disadvantage is that
you get the exact same interface (or a subset) as the C library. The Libc module
exposes a Ruby module that’s nothing more than a collection of C functions. If you
want a friendlier interface, you need to write it yourself on top of the SWIG-
generated module.

In addition to the actual function prototypes, the interface file needs to have a little
metadata about your extension. At the minimum, you’ll need a %module line that tells
SWIG what to call the extension it generates. Depending on your C code, you might
also need to tell SWIG how to handle C constructs that don’t map directly to Ruby;
see the SWIG documentation on %typemap for details.

There are two main ways to create an interface file. The simplest way is simply to
copy the prototypes for your C functions right from your header file into your SWIG
interface file. Alternatively, you can use the %import filename directive to include a C
header file in a SWIG interface file.

One more thing: note the references to tcl in the extconf.rb file and in the command-
line invocation of extconf.rb. Our Libc module has nothing to do with Tcl, but
SWIG’s Ruby bindings always generate code that relies on the Tcl libraries. Unless
your Tcl header files live in one of your system’s standard include directory, you
need to tell extconf.rb where to find them.

See Also
• http://www.swig.org/

• On Debian GNU/Linux systems, you can install SWIG as the swig package

22.4 Writing Inline C in Your Ruby Code
Credit: Garrett Rooney

Problem
You want to implement small portions of your program in C without going to the
trouble of creating a C extension to Ruby.

Solution
Embed C code right in your Ruby program, and let RubyInline (available as the
rubyinline gem) create an extension automatically.

828 | Chapter 22: Extending Ruby with Other Languages

For example, if you want to use C’s stdio functions to copy a file, you can write
RubyInline code like this:*

#!/usr/bin/ruby -w
copy.rb
require 'rubygems'
require 'inline'

class Copier
 inline do |builder|
 builder.c <<END
 void copy_file(const char *source, const char *dest)
 {
 FILE *source_f = fopen(source, "r");
 if (!source_f)
 {
 rb_raise(rb_eIOError, "Could not open source : '%s'", source);
 }

 FILE *dest_f = fopen(dest, "w+");
 if (!dest_f)
 {
 rb_raise(rb_eIOError, "Could not open destination : '%s'", dest);
 }

 char buffer[1024];

 int nread = fread(buffer, 1, 1024, source_f);
 while (nread > 0)
 {
 fwrite(buffer, 1, nread, dest_f);
 nread = fread(buffer, 1, 1024, source_f);
 }
 }
END
 end
end

The C function copy_file now exists as an instance method of Copier:

open('source.txt', 'w') { |f| f << 'Some text.' }
Copier.new.copy_file('source.txt', 'dest.txt')
puts open('dest.txt') { |f| f.read }

Run this Ruby script, and you’ll see it copy the string “Some text.” from source.txt
to dest.txt.

* RubyInline won’t work from within irb, so this is a standalone program.

22.4 Writing Inline C in Your Ruby Code | 829

Discussion
RubyInline is a framework that lets you embed other languages inside your Ruby
code. It defines the Module#inline method, which returns a builder object. You pass
the builder a string containing code written in a language other than Ruby, and the
builder transforms it into something that you can call from Ruby.

When given C or C++ code (the two languages supported in the default RubyInline
install), the builder objects writes a small extension to disk, compiles it, and loads it.
You don’t have to deal with the compilation yourself, but you can see the generated
code and compiled extensions in the .ruby_inline subdirectory of your home directory.

There are some limitations you should be aware of, though.

First, RubyInline only understands a limited subset of C and C++. The functions you
embed can only accept and return arguments of the types char, unsigned, unsigned
int, char *, int, long, and unsigned long.

If you need to use other types, RubyInline won’t be able to automatically generate
the wrapper functions. You’ll have to work around the problem using the inline.c_
raw function to embed code that conforms to the Ruby C API, just like any other
extension.

Second, if you’re going to just run a script that uses RubyInline, you’ll need to have
the Ruby development libraries and headers installed, along with a C/C++ compiler
to actually build the extension.

There’s a way around this, though: RubyInline lets you generate a RubyGem pack-
age with a precompiled extension. See the RubyInline docs on the inline_package
script for details.

As always, be careful to make sure that it’s actually worth the trouble to write C
code. You should only rewrite part of a Ruby program in C if you’ve actually deter-
mined that Ruby spends a lot of time there. You should benchmark before and after
your change, to make sure that you’re making things better rather than worse. Writ-
ing C code within your Ruby code is much easier than writing a separate extension,
but writing Ruby code is easier still.

See Also
• http://www.zenspider.com/ZSS/Products/RubyInline/

• http://rubyforge.org/projects/rubyinline/

• Recipe 17.12, “Profiling Your Application”

• Recipe 17.13, “Benchmarking Competing Solutions”

830 | Chapter 22: Extending Ruby with Other Languages

22.5 Using Java Libraries with JRuby
Credit: Thomas Enebo

Problem
Java offers many class libraries that would be useful to a Ruby programmer; you’d
like to use one of those libraries from within Ruby. A Java JDBC database may allow
you to connect to a database for which Ruby has no connector. Or perhaps you need
to use an obscure Java library that has no Ruby counterpart.

Solution
JRuby provides an alternate implementation of the Ruby programming language that
runs atop the Java Virtual Machine. When you interpret a Ruby program with JRuby
instead of using the default Ruby interpreter, you can load and use Java classes from
within the Ruby code.

The first step to using JRuby is to install it:

1. Download the latest copy of JRuby (see below for the address).

2. Unzip the JRuby package into the directory where you’d like to install it.

3. Add to your PATH environment variable the bin/ subdirectory of your JRuby
installation.

4. Unless you’ve already installed it, download the Java Runtime Environment
from Sun’s Java web site and install it. You’ll need the JRE version 1.4.x or
higher.

Now you can invoke the JRuby interpreter with the jruby command and use it to run
Ruby code. Here’s a simple example that imports and uses Java’s built-in Random
class:

#!/usr/bin/env jruby
random.jrb
require 'java'
include_class 'java.util.Random'

r = Random.new(123)
puts "Some random number #{r.nextInt % 10}"
r.seed = 456
puts "Another random number #{r.nextInt % 10}"

Heres a run of this program:

$ jruby random.jrb
Some random number 9
Another random number 0

22.5 Using Java Libraries with JRuby | 831

Discussion
JRuby generally behaves like Ruby. The jruby interpreter supports a common subset
of Ruby’s command-line options, and includes a subset of common core libraries. As
JRuby is developed, it will eventually end up with all of Ruby’s options and libraries.

The first step in a JRuby program is to load the Java support classes. If you don’t do
this, you can still use the JRuby interpreter, but you’ll be limited to a subset of the
Ruby core libraries: you might as well just use the C implementation.

The statement require 'java' updates Ruby’s Object class with an include_class
method, which you can use to import Java classes. When we call include_class to
include a class like java.util.Random, Ruby inserts a class called Random into the cur-
rent namespace. This class is really a Ruby class that proxies method calls to the
underlying Java class.

The Random class proxies a constructor call to the java.util.Random constructor.
Random#nextInt becomes a call to java.util.Random#nextInt. Random#seed= becomes a
call to java.util.Random#setSeed; JRuby creates seed= as a Ruby convenience
method, to make the Java classes feel more like Ruby.

If you’re including a Java class whose name conflicts with an existing constant in
your namespace, then include_class will throw a ConstantAlreadyExistsError. This
is problematic if you want to use Java classes like java.lang.String, whose names
conflict with the names of built-in Ruby classes. Fortunately, you can customize the
name of the proxy class created by include_class. This piece of code loads 'java.
lang.String' as the class JString instead of String:

include_class('java.lang.String') { |package,name| "J" + name }

It’s worth noting that JRuby implicitly translates primitive types between Ruby and
Java. In the Random constructor, the Fixnum argument 123 gets implicitly converted to
a Java primitive long, since that’s what the java.util.Random constructor takes.

This automatic conversion creates some amount of ambiguity, because Java sup-
ports method overloading and Ruby doesn’t. Suppose you have a Java class which
defines two methods with the same name:

class Foo
{
 public void bar(int arg) {...}
 public void bar(long arg) {...}
}

Ruby type Java type

 String char, String

 Fixnum long, int, java.lang.Long, java.lang.Integer

 Float float, double, Java.lang.Float, java.lang.Double

 Boolean java.lang.Boolean, boolean

832 | Chapter 22: Extending Ruby with Other Languages

If you import that class into JRuby and call Foo#bar, to which method should the
proxy class dispatch your call?

 Foo.new.bar(5)

In JRuby, the exact heuristic is undefined. In practice, this is not a huge problem,
since methods that define same-named methods are semantically equivalent. If you
do encounter an ambiguous case, you can work around ambiguity using Java’s
reflection APIs.

Convenience methods

JRuby tries to make Java classes and objects seem as unobtrusive to Ruby as it can.
In our earlier example, we saw how a setter:

setSeed(value);

Can be called from Ruby as:

seed = value

JRuby supports the following additional Ruby method name shortcuts:

The original name still exists, so if you like you can use getFoo and setFoo from
Ruby. Of course, if Java already has a method by the same shorthand name (e.g.,
obj.foo), Ruby won’t create the shorthand name.

JRuby also provides some Ruby methods that make Java classes seem more like
Ruby classes. Here is a list as of Ruby 0.8.3:

• All of Java’s Map, Set, and List types define each

• java.lang.Comparable defines <=>

• List defines <<, sort, and sort!

JRuby is still a project under development, so expect to see more added as develop-
ers discover more candidates.

See Also
• JRuby is available from http://jruby.sourceforge.net/

• You can download the JRE from Sun’s Java site at http://java.sun.com/

Java Ruby

 obj.getFoo() obj.foo

 obj.setFoo(value) obj.foo = value

 obj.isFoo(value) obj.foo? value

833

Chapter 23 CHAPTER 23

System Administration23

Once you start using Ruby, you’ll want to use it everywhere. Well, nothing’s stop-
ping you. This chapter shows you how to use Ruby in command-line programs that
solve general everyday problems. It also demonstrates patterns that you can use to
solve your own, more specific everyday problems.

System administration scripts are usually private scripts, disposable or lightly reus-
able. Ruby scripts are easy to write, so you can get the job done quickly and move
on. You won’t feel bad if your script is less rigorous than your usual work, and you
won’t feel invested in a huge program that you only needed once.

Ruby’s syntax makes it easy to write, but for system administration, it’s the libraries
that make Ruby powerful. Most of the recipes in this chapter combine ideas from
recipes elsewhere in the book to solve a real-world problem. The most commonly
used idea is the Find.find technique first covered in Recipe 6.12. Recipes 23.5, 23.6,
23.7, 23.8, and 23.9 all give different twists on this technique.

The major new feature introduced in this chapter is Ruby’s standard etc library. It
lets you query a Unix system’s users and groups. It’s used in Recipe 23.10 to look up
a user’s ID given their username. Recipe 23.9 uses it to find a user’s home directory
and to get the members of Unix groups.

Although these recipes focus mainly on Unix system administration, Ruby is per-
haps even more useful for Windows administration. Unix has a wide variety of stan-
dard shell tools and an environment that makes it easy to combine them. If Ruby and
other high-level languages didn’t exist, Unix administrators would still have tools
like find and cut, and they’d use those tools like they did throughout the 1980s. On
Windows, though, languages like Ruby are useful even for simple administration
tasks: Ruby is easier to use than VBScript or batch files.

If you’re trying to administer a Windows machine with Ruby, there are many third-
party libraries that provide Ruby hooks into Windows internals: see especially the
“win32utils” project at http://rubyforge.org/projects/win32utils/. Another useful library is
Ruby’s standard Win32OLE library, which lets you do things like query Active Directory.

834 | Chapter 23: System Administration

Libraries are also available for the more esoteric parts of Unix systems. See, for
instance, Recipe 23.10, which uses the third-party library sys-proctable to gain
access to the kernel’s process table.

23.1 Scripting an External Program

Problem
You want to automatically control an external program that expects to get terminal
input from a human user.

Solution
When you’re running a program that only needs a single string of input, you can use
IO.popen, as described in Recipe 20.8. This method runs a command, sends it a
string as standard input, and returns the contents of its standard output:

def run(command, input='')
 IO.popen(command, 'r+') do |io|
 io.puts input
 io.close_write
 return io.read
 end
end

run 'wc -w', 'How many words are in this string?' # => "7\n"

This technique is commonly used to invoke a command with sudo, which expects
the user’s password on standard input. This code obtains a user’s password and runs
a command on his behalf using sudo:

print 'Enter your password for sudo: '
sudo_password = gets.chomp
run('sudo apachectl graceful', user_password)

Discussion
IO.popen is a good way to run noninteractive commands—commands that read all
their standard input at once and produce some output. But some programs are inter-
active; they send prompts to standard output, and expect a human on the other end
to respond with more input.

On Unix, you can use Ruby’s standard PTY and expect libraries to spawn a com-
mand and impersonate a human on the other end. This code scripts the Unix passwd
command:

require 'expect'
require 'pty'

print 'Old password:'
old_pwd = gets.chomp

23.2 Managing Windows Services | 835

print "\nNew password:"
new_pwd = gets.chomp

PTY.spawn('passwd') do |read,write,pid|
 write.sync = true
 $expect_verbose = false

 # If 30 seconds pass and the expected text is not found, the
 # response object will be nil.
 read.expect("(current) UNIX password:", 30) do |response|
 write.print old_pwd + "\n" if response
 end

 # You can use regular expressions instead of strings. The code block
 # will give you the regex matches.
 read.expect(/UNIX password: /, 2) do |response, *matches|
 write.print new_pwd + "\n" if response
 end

 # The default value for the timeout is 9999999 seconds
 read.expect("Retype new UNIX password:") do |response|
 write.puts new_pwd + "\n" if response
 end
end

The read and write objects in the PTY#spawn block are IO objects. The expect library
defines the IO#expect method found throughout this example.

See Also
• Recipe 20.8, “Driving an External Process with popen”

• Recipe 21.9, “Reading a Password,” shows how to obtain a password without
echoing it to the screen

23.2 Managing Windows Services
Credit: Bill Froelich

Problem
You want to interact with existing system services on the Windows platform.

Solution
User the win32-service library, available as the gem of the same name. Its Service
module gives you an interface to work with services in Windows 2000 or XP Pro.

You can use this to print a list of the currently running services on your machine:

require 'rubygems'
require 'win32/service'
include Win32

836 | Chapter 23: System Administration

puts 'Currently Running Services:'
Service.services do |svc|
 if svc.current_state == 'running'
 puts "#{svc.service_name}\t-\t#{svc.display_name}"
 end
end
Currently Running Services:
ACPI - Microsoft ACPI Driver
AcrSch2Svc - Acronis Scheduler2 Service
AFD - AFD Networking Support Environment
agp440 - Intel AGP Bus Filter
...

This command checks whether the DNS client service exists on your machine:

Service.exists?('dnscache') # => true

Service.status returns a Win32ServiceStatus struct describing the current state of a
service:

Service.status('dnscache')
=> #<struct Struct::Win32ServiceStatus
service_type="share process", current_state="running",
controls_accepted=["netbind change", "param change", "stop"],
win32_exit_code=0, service_specific_exit_code=0, check_point=0,
wait_hint=0, :interactive?=false, pid=1144, service_flags=0>

If a service is not currently running, you can start it with Service.start:

Service.stop('dnscache')
Service.status('dnscache').current_state # => "stopped"
Service.start('dnscache')
Service.status('dnscache').current_state # => "running"

Discussion
Services are typically accessed using their service_name attribute, not by their display
name as shown in the Services Control Panel. Fortunately, Service provides helpful
methods to convert between the two:

Service.getdisplayname('dnscache') # => "DNS Client"
Service.getservicename('DNS Client') # => "dnscache"

In addition to getting information about the status and list of services available, the
win32-service gem lets you start, pause, and stop services. In the example below,
replace the “foo” service with a valid service_name that responds to each of the
commands.

Service.start('foo')
Service.pause('foo')
Service.resume('foo')
Service.stop('foo')

23.3 Running Code as Another User | 837

You can check whether a service supports pause or resume by checking the controls_
accepted member of its Win32ServiceStatus struct. As seen below, the dnscache com-
mand can’t be paused or resumed:

Service.status('dnscache').controls_accepted
=> ["netbind change", "param change", "stop"]

Stopping system services may cause Windows to behave strangely, so be careful.

See Also
• The win32-service library was written by Daniel J. Berger; it’s part of his

win32utils project (http://rubyforge.org/projects/win32utils/)

• The win32-service API reference at http://rubyforge.org/docman/view.php/85/29/
service.txt; see especially the member list for the Win32Service struct yielded by
Service.services

• You can also use win32-service to make your own services; see Recipe 20.2,
“Creating a Windows Service”

23.3 Running Code as Another User

Problem
While writing a Ruby script that runs as root, you need to take some action on behalf
of another user: say, run an external program or create a file.

Solution
Simply set Process.euid to the UID of the user. When you’re done, set it back to its
previous value (that is, root’s UID). Here’s a method Process.as_uid that runs a code
block under a different user ID and resets it at the end:

module Process
 def as_uid(uid)
 old_euid, old_uid = Process.euid, Process.uid
 Process.euid, Process.uid = uid, uid
 begin
 yield
 ensure
 Process.euid, Process.uid = old_euid, old_uid
 end
 end
 module_function(:as_uid)
end

Discussion
When a Unix process tries to do something that requires special permissions (like
access a file), the permissions are checked according to the “effective user ID” of the

838 | Chapter 23: System Administration

process. The effective user ID starts out as the user ID you used when you started the
process, but if you’re root you can change the effective user ID with Process.euid=.
The operating system will treat you as though you were really that user.

This comes in handy when you’re administering a system used by others. When
someone asks you for help, you can write a script that impersonates them and runs
the commands they don’t know how to run. Rather than creating files as root and
using chown to give them to another user, you can create the files as the other user in
the first place.

Here’s an example. On my system the account leonardr has UID 1000. When run as
root, this code will create one directory owned by root and one owned by leonardr:

Dir.mkdir("as_root")
Process.as_uid(1000) do
 Dir.mkdir("as_leonardr")
 %x{whoami}
end
=> "leonardr\n"

Here are the directories:

$ ls -ld as_*
drwxr-xr-x 2 leonardr root 4096 Feb 2 13:06 as_leonardr/
drwxr-xr-x 2 root root 4096 Feb 2 13:06 as_root/

When you’re impersonating another user, your permissions are restricted to what
that user can do. I can’t remove the as_root directory as a nonroot user, because I
created it as root:

Process.as_uid(1000) do
 Dir.rmdir("as_root")
end
Errno::EPERM: Operation not permitted - as_root

Dir.rmdir("as_root") # => 0

On Windows, you can do something like this by splitting your Ruby script into two,
and running the second one through runas.exe:

script_one.rb
system 'runas /user:frednerk ruby script_two.rb'

See Also
• Recipe 6.2, “Checking Your Access to a File”

• If you want to pass in the name of the user to impersonate, instead of their UID,
you can adapt the technique shown in Recipe 23.10, “Killing All Processes for a
Given User”

23.4 Running Periodic Tasks Without cron or at | 839

23.4 Running Periodic Tasks Without cron or at

Problem
You want to write a self-contained Ruby program that performs a task in the back-
ground at a certain time, or runs repeatedly at a certain interval.

Solution
Fork off a new process that sleeps until it’s time to run the Ruby code.

Here’s a program that waits in the background until a certain time, then prints a
message:

#!/usr/bin/ruby
lunchtime.rb

def background_run_at(time)
 fork do
 sleep(1) until Time.now >= time
 yield
 end
end

today = Time.now
noon = Time.local(today.year, today.month, today.day, 12, 0, 0)
raise Exception, "It's already past lunchtime!" if noon < Time.now

background_run_at(noon) { puts "Lunchtime!" }

The fork command only works on Unix systems. The win32-process third-party add-
on gives Windows a fork implementation, but it’s more idiomatic to run this code as
a Windows service with win32-service.

Discussion
With this technique, you can write self-contained Ruby programs that act as though
they were spawned by the at command. If you want to run a backgrounded code
block at a certain interval, the way a cronjob would, then combine fork with the
technique described in Recipe 3.12.

#!/usr/bin/ruby
reminder.rb
def background_every_n_seconds(n)
 fork do
 loop do
 before = Time.now
 yield
 interval = n-(Time.now-before)
 sleep(interval) if interval > 0
 end

840 | Chapter 23: System Administration

 end
end

background_every_n_seconds(15*60) { puts 'Get back to work!' }

Forking is the best technique if you want to run a background process and a fore-
ground process. If you want a script that immediately returns you to the command
prompt when it runs, you might want to use the Daemonize module instead; see Rec-
ipe 20.1.

See Also
• Both the win32-process and the win32-service libraries are available at http://

rubyforge.org/projects/win32utils/

• Recipe 3.12, “Running a Code Block Periodically”

• Recipe 20.1, “Running a Daemon Process on Unix”

23.5 Deleting Files That Match a Regular Expression
Credit: Matthew Palmer

Problem
You have a directory full of files and you need to remove some of them. The patterns
you want to match are too complex to represent as file globs, but you can represent
them as a regular expression.

Solution
The Dir.entries method gives you an array of all files in a directory, and you can
iterate over this array with #each. A method to delete the files matching a regular
expression might look like this:

def delete_matching_regexp(dir, regex)
 Dir.entries(dir).each do |name|
 path = File.join(dir, name)
 if name =~ regex
 ftype = File.directory?(path) ? Dir : File
 begin
 ftype.delete(path)
 rescue SystemCallError => e
 $stderr.puts e.message
 end
 end
 end
end

Here’s an example. Let’s create a bunch of files and directories beneath a temporary
directory:

23.5 Deleting Files That Match a Regular Expression | 841

require 'fileutils'
tmp_dir = 'tmp_buncha_files'
files = ['A', 'A.txt', 'A.html', 'p.html', 'A.html.bak']
directories = ['text.dir', 'Directory.for.html']

Dir.mkdir(tmp_dir) unless File.directory? tmp_dir
files.each { |f| FileUtils.touch(File.join(tmp_dir,f)) }
directories.each { |d| Dir.mkdir(File.join(tmp_dir, d)) }

Now let’s delete some of those files and directories. We’ll delete a file or direc-
tory if its name starts with a capital letter, and if its extension (the string after its
last period) is at least four characters long. This corresponds to the regular expres-
sion /^[A-Z].*\.[^.]{4,}$/:

Dir.entries(tmp_dir)
=> [".", "..", "A", "A.txt", "A.html", "p.html", "A.html.bak",
"text.dir", "Directory.for.html"]

delete_matching_regexp(tmp_dir, /^[A-Z].*\.[^.]{4,}$/)

Dir.entries(tmp_dir)
=> [".", "..", "A", "A.txt", "p.html", "A.html.bak", "text.dir"]

Discussion
Like most good things in Ruby, Dir.entries takes a code block. It yields every file
and subdirectory it finds to that code block. Our particular code block uses the regu-
lar expression match operator =~ to match every real file (no subdirectories) against
the regular expression, and File.delete to remove offending files.

File.delete won’t delete directories; for that, you need Directory.delete. So delete_
matching_regexp uses the File predicates to check whether a file is a directory. We
also have error reporting, to report cases when we don’t have permission to delete a
file, or a directory isn’t empty.

Of course, once we’ve got this basic “find matching files” thing going, there’s no rea-
son why we have to limit ourselves to deleting the matched files. We can move them
to somewhere new:

def move_matching_regexp(src, dest, regex)
 Dir.entries(dir).each do |name|
 File.rename(File.join(src, name), File.join(dest, name)) if name =~ regex
 end
end

Or we can append a suffix to them:

def append_matching_regexp(dir, suffix, regex)
 Dir.entries(dir).each do |name|
 if name =~ regex
 File.rename(File.join(dir, name), File.join(dir, name+suffix))
 end
 end
end

842 | Chapter 23: System Administration

Note the common code in both of those implementations. We can factor it out into
yet another method that takes a block:

def each_matching_regexp(dir, regex)
 Dir.entries(dir).each { |name| yield name if name =~ regex }
end

We no longer have to tell Dir.each how to match the files we want; we just need to
tell each_matching_regexp what to do with them:

def append_matching_regexp(dir, suffix, regex)
 each_matching_regexp(dir, regex) do |name|
 File.rename(File.join(dir, name), File.join(dir, name+suffix))
 end
end

This is all well and good, but these methods only manipulate files directly beneath
the directory you specify. “I’ve got a whole tree full of files I want to get rid of!” I
hear you cry. For that, you should use Find.find instead of Dir.each. Apart from that
change, the implementation is nearly identical to delete_matching_regexp:

def delete_matching_regexp_recursively(dir, regex)
 Find.find(dir) do |path|
 dir, name = File.split(path)
 if name =~ regex
 ftype = File.directory?(path) ? Dir : File
 begin
 ftype.delete(path)
 rescue SystemCallError => e
 $stderr.puts e.message
 end
 end
 end
end

If you want to recursively delete the contents of directories that match the regular
expression (even if the contents themselves don’t match), use FileUtils.rm_rf
instead of Dir.delete.

See Also
• Dir.delete will only remove an empty directory; see Recipe 6.18 for information

on how to remove one that’s not empty

• Recipe 6.20, “Finding the Files You Want”

23.6 Renaming Files in Bulk

Problem
You want to rename a bunch of files programmatically: for instance, to normalize the
filename case or to change the extensions.

23.6 Renaming Files in Bulk | 843

Solution
Use the Find module in the Ruby standard library. Here’s a method that renames
files according to the results of a code block. It returns a list of files it couldn’t
rename, because their proposed new name already existed:

require 'find'

module Find
 def rename(*paths)
 unrenamable = []
 find(*paths) do |file|
 next unless File.file? file # Skip directories, etc.
 path, name = File.split(file)
 new_name = yield name

 if new_name and new_name != name
 new_path = File.join(path, new_name)
 if File.exists? new_path
 unrenamable << file
 else
 puts "Renaming #{file} to #{new_path}" if $DEBUG
 File.rename(file, new_path)
 end
 end
 end
 return unrenamable
 end
 module_function(:rename)
end

This addition to the Find module makes it easy to do things like convert all filena-
mes to lowercase. I’ll create some dummy files to demonstrate:

require 'fileutils'
tmp_dir = 'tmp_files'
Dir.mkdir(tmp_dir)
['CamelCase.rb', 'OLDFILE.TXT', 'OldFile.txt'].each do |f|
 FileUtils.touch(File.join(tmp_dir, f))
end

tmp_dir = File.join(tmp_dir, 'subdir')
Dir.mkdir(tmp_dir)
['i_am_SHOUTING', 'I_AM_SHOUTING'].each do |f|
 FileUtils.touch(File.join(tmp_dir, f))
end

Now let’s convert these filenames to lowercase:

$DEBUG = true
Find.rename('./') { |file| file.downcase }
Renaming ./tmp_files/subdir/I_AM_SHOUTING to ./tmp_files/subdir/i_am_shouting
Renaming ./tmp_files/OldFile.txt to ./tmp_files/oldfile.txt
Renaming ./tmp_files/CamelCase.rb to ./tmp_files/camelcase.rb
=> ["./OldFile.txt", "./dir/i_am_SHOUTING"]

844 | Chapter 23: System Administration

Two of the files couldn’t be renamed, because oldfile.txt and subdir/i_am_shouting
were already taken.

Let’s add a “.txt” extension to all files that have no extension:

Find.rename('./') { |file| file + '.txt' unless file.index('.') }
Renaming ./tmp_files/subdir/i_am_shouting to ./tmp_files/subdir/i_am_shouting.txt
Renaming ./tmp_files/subdir/i_am_SHOUTING to ./tmp_files/subdir/i_am_SHOUTING.txt
=> []

Discussion
Renaming files in bulk is a very common operation, but there’s no standard command-
line application to do it because renaming operations are best described
algorithmically.

The Find.rename method makes several simplifying assumptions. It assumes that you
want to rename regular files and not directories. It assumes that you can decide on a
new name for a file based solely on its filename, not on its full path. It assumes that
you’ll handle in some other way the files it couldn’t rename.

Another implementation might make different assumptions: it might yield both path
and name, and use autoversioning to guarantee that it can rename every file, although
not necessary to the exact filename returned by the code block. It all depends on
your needs.

Perhaps the most common renaming operation is modifying the extensions of files.
Here’s a method that uses Find.rename to make this kind of operation easier:

module Find
 def change_extensions(extension_mappings, *paths)
 rename(*paths) do |file|
 base, extension = file.split(/(.*)\./)[1..2]
 new_extension = extension
 extension_mappings.each do |re, ext|
 if re.match(extension)
 new_extension = ext
 break
 end
 end
 "#{base}.#{new_extension}"
 end
 end
 module_function(:change_extensions)
end

This code uses Find.change_extensions to normalize a collection of images. All JPEG
files will be given the extension “.jpg”, all PNG files the extension “.png”, and all
GIF files the extension “.gif”.

Again, we’ll create some dummy image files to test:
tmp_dir = 'tmp_graphics'
Dir.mkdir(tmp_dir)

23.7 Finding Duplicate Files | 845

['my.house.jpeg', 'Construction.Gif', 'DSC1001.JPG', '52.PNG'].each do |f|
 FileUtils.touch(File.join(tmp_dir, f))
end

Now, let’s rename:

Find.change_extensions({/jpe?g/i => 'jpg',
 /png/i => 'png',
 /gif/i => 'gif'}, tmp_dir)
Renaming tmp_graphics/52.PNG to tmp_graphics/52.png
Renaming tmp_graphics/DSC1001.JPG to tmp_graphics/DSC1001.jpg
Renaming tmp_graphics/Construction.Gif to tmp_graphics/Construction.gif
Renaming tmp_graphics/my.house.jpeg to tmp_graphics/my.house.jpg

See Also
• Some Unix installations come with a program or Perl script called rename, which

can do your renaming if you can represent it as a string substitution or a regular
expression; you may not need anything else

• Recipe 6.14, “Backing Up to Versioned Filenames”

• Recipe 6.20, “Finding the Files You Want”

23.7 Finding Duplicate Files

Problem
You want to find the duplicate files that are taking up all the space on your hard
drive.

Solution
The simple solution is to group the files by size and then by their MD5 checksum.
Two files are presumed identical if they have the same size and MD5 sum.

The following program takes a list of directories on the command line, and prints out
all sets of duplicate files. You can pass a different code block into each_set_of_
duplicates for different behavior: for instance, to prompt the user about which of the
duplicates to keep and which to delete.

#!/usr/bin/ruby
find_duplicates.rb

require 'find'
require 'digest/md5'

def each_set_of_duplicates(*paths)
 sizes = {}
 Find.find(*paths) do |f|
 (sizes[File.size(f)] ||= []) << f if File.file? f
 end

846 | Chapter 23: System Administration

 sizes.each do |size, files|
 next unless files.size > 1
 md5s = {}
 files.each do |f|
 digest = Digest::MD5.hexdigest(File.read(f))
 (md5s[digest] ||= []) << f
 end
 md5s.each { |sum, files| yield files if files.size > 1 }
 end
end

each_set_of_duplicates(*ARGV) do |f|
 puts "Duplicates: #{f.join(", ")}"
end

Discussion
This is one task that can’t be handled with a simple Find.find code block, because
it’s trying to figure out which files have certain relationships to each other. Find.find
takes care of walking the file tree, but it would be very inefficient to try to make a
single trip through the tree and immediately spit out a set of duplicates. Instead, we
group the files by size and then by their MD5 checksum.

The MD5 checksum is a short binary string used as a stand-in for the contents of a
file. It’s commonly used to verify that a huge file was downloaded without errors. It’s
not impossible for two different files to have an MD5 sum, but unless someone is
deliberately trying to trick you, it’s almost impossible to have two files with the same
size and the same MD5 sum.

Calculating a MD5 sum is very expensive: it means performing a mathematical calcula-
tion on the entire contents of the file. Grouping the files by size beforehand greatly
reduces the number of sums that must be calculated, but that’s still a lot of I/O. Even if
two similarly sized files differ in the first byte, the code above will read the entire files.

Here’s a different version of the same program that takes an incremental approach
like that seen in Recipe 6.10. When it thinks a set of files might contain duplicates, it
makes repeated calls to a method called eliminate_non_duplicates. The duplicates
are yielded and the nonduplicates discarded over the course of these calls.

#!/usr/bin/ruby
find_duplicates2.rb

require 'find'
BLOCK_SIZE = 1024*8

def each_set_of_duplicates(*paths, &block)
 sizes = Hash.new {|h, k| h[k] = [] }
 Find.find(*paths) { |f| sizes[File.size(f)] << f if File.file? f }

 sizes.each_pair do |size, files|
 next unless files.size > 1

23.7 Finding Duplicate Files | 847

 offset = 0
 files = [files]
 while !files.empty? && offset <= size
 files = eliminate_non_duplicates(files, size, offset, &block)
 offset += BLOCK_SIZE
 end
 end
end

The method eliminate_non_duplicates takes lists of files that might contain dupli-
cates. It reads each file an eight-kilobyte block at a time, and compares just one block
of each file. Files whose blocks don’t match the corresponding blocks of any other
file are discarded; they’re not duplicates. All files with the same block are put into a
new list of possible duplicates, and sent back to each_set_of_duplicates.

If two files are not duplicates, eliminate_non_duplicates will eventually find a block
where they differ. Otherwise, it will eventually read the last block of each file and
confirm them as duplicates.

def eliminate_non_duplicates(partition, size, offset)
 possible_duplicates = []
 partition.each do |possible_duplicate_set|
 blocks = Hash.new {|h, k| h[k] = [] }
 possible_duplicate_set.each do |f|
 block = open(f, 'rb') do |file|
 file.seek(offset)
 file.read(BLOCK_SIZE)
 end
 blocks[block || ''] << f
 end
 blocks.each_value do |files|
 if files.size > 1
 if offset+BLOCK_SIZE >= size
 # We know these are duplicates.
 yield files
 else
 # We suspect these are duplicates, but we need to compare
 # more blocks of data.
 possible_duplicates << files
 end
 end
 end
 end
 return possible_duplicates
end

each_set_of_duplicates(*ARGV) do |f|
 puts "Duplicates: #{f.join(", ")}"
end

This code is more complicated, but in real-world situations, it’s considerably faster.
Most files of the same size are not duplicates, and it’s cheaper to find this out by
reading eight kilobytes than by reading many megabytes and then performing two

848 | Chapter 23: System Administration

MD5 sums. This solution also eliminates any last possibility that each_set_of_
duplicates will claim two files are duplicates when they’re not.

See Also
• Recipe 6.10, “Comparing Two Files”

• Recipe 6.12, “Walking a Directory Tree”

23.8 Automating Backups

Problem
You want to make a dated archive of a directory to burn to CD or otherwise store on
backup media.

Solution
This script copies a directory to a timestamped backup. It reuses the File.versioned_
filename method defined in Recipe 6.14, so you can create multiple backups in the
same time period:

require 'fileutils'

def backup(from_dir, to_dir, time_format="-%Y%m%d")
 from_path, from_name = File.split(from_dir)
 now = Time.now.strftime(time_format)
 Dir.mkdir(to_dir) unless File.exists? to_dir
 unless File.directory? to_dir
 raise ArgumentError, "Not a directory: #{to_dir}"
 end
 to = File.versioned_filename(File.join(to_dir, from_name + now))
 FileUtils.cp_r(from_dir, to, :preserve=>true)
 return to
end

This method copied from "Backing Up to Versioned Filenames"
class File
 def File.versioned_filename(base, first_suffix=".0")
 suffix = nil
 filename = base
 while File.exists?(filename)
 suffix = (suffix ? suffix.succ : first_suffix)
 filename = base + suffix
 end
 return filename
 end
end

Create a dummy directory
Dir.mkdir('recipes')

23.9 Normalizing Ownership and Permissions in User Directories | 849

And back it up.
backup('recipes', '/tmp/backup') # => "/tmp/backup/recipes-20061031"
backup('recipes', '/tmp/backup') # => "/tmp/backup/recipes-20061031.0"
backup('recipes', '/tmp/backup', '-%Y%m%d-%H.%M.%S')
=> "/tmp/backup/recipes-20061031-20.48.56"

Discussion
The backup method recursively copies the contents of a directory into another direc-
tory, possibly on another filesystem. It uses the time-based scheme you specify along
with versioned_filename to uniquely name the destination directory.

As written, the backup method uses a lot of space: every time you call it, it creates an
entirely new copy of every file in the source directory. Fortunately, the technique has
many variations. Instead of copying the files, you can make a timestamped tarball with
the techniques from Recipe 12.10. You can archive the files to another computer with
the techniques from Recipe 14.11 (although to save space, you should use the rsync
program instead). You could even automatically check your work into a version con-
trol system every so often; this works better with text than with binary files.

See Also
• Recipe 6.14, “Backing Up to Versioned Filenames”

• Recipe 12.10, “Compressing and Archiving Files with Gzip and Tar”

• Recipe 14.11, “Copying a File to Another Machine”

23.9 Normalizing Ownership and Permissions
in User Directories

Problem
You want to make make sure your users’ home directories don’t contain world-
writable directories, directories owned by other users, or other potential security
problems.

Solution
Use the etc library to look up a user’s home directory and UID from the username.
Then use Find.find to walk the directory trees, and File methods to check and mod-
ify access to each file.

We are looking out for any case where one user’s home directory can be modified by
some other user. Whenever we find such a case, we fix it with a File.chmod or
File.chown call. In this program, the actual calls are commented out, so that you don’t
accidentally change your permissions when you just want to test out the program.

850 | Chapter 23: System Administration

#!/usr/bin/ruby -w
normalize_homes.rb

require 'etc'
require 'find'
require 'optparse'

def normalize_home(pwd_entry, maximum_perms=0775, dry_run=true)
 uid, home = pwd_entry.uid, pwd_entry.dir
 username = pwd_entry.name

 puts "Scanning #{username}'s home of #{home}."

 Find.find(home) do |f|
 next unless File.exists? f
 stat = File.stat(f)
 file_uid, file_gid, mode = stat.uid, stat.gid, stat.mode

The most obvious thing we want to check is whether the user owns every file in their
home directory. With occasional exceptions (such as files owned by the web server),
a user should own the files in his or her home directory:

 # Does the user own the file?
 if file_uid != uid
 begin
 current_owner = Etc.getpwuid(file_uid).name
 rescue ArgumentError # No such user; just use UID
 current_owner = "uid #{file_uid}"
 end
 puts " CHOWN #{f}"
 puts " Current owner is #{current_owner}, should be #{username}"
 # File.chown(uid, nil, f) unless dry_run
 end

A less obvious check involves the Unix group that owns the file. A user can let other
people work on a file in their home directory by giving ownership to a user group.
But you can only give ownership to a group if you’re a member of that group. If a
user’s home directory contains a file owned by a group the user doesn’t belong to,
something fishy is probably going on.

 # Does the user belong to the group that owns the file?
 begin
 group = Etc.getgrgid(file_gid)
 group_name = group.name
 rescue ArgumentError # No such group
 group_name = "gid #{file_gid}"
 end
 unless group && (group.mem.member?(username) || group.name == username)
 puts " CHGRP #{f}"
 puts " Current group is #{group_name}, and #{username} doesn't belong."
 # File.chown(nil, uid, f) unless dry_run
 end

23.9 Normalizing Ownership and Permissions in User Directories | 851

Finally, we’ll check each file’s permissions and make sure they are no more permis-
sive than the value passed in as maximum_perms. The default value of 0775 allows any
kind of file except a world-writable file. If normalize_home finds a world-writable file,
it will flip the world-writable bit and leave the rest of the permissions alone:

 # Does the file have more than the maximum allowed permissions?
 perms = mode & 0777 # Drop non-permission bits
 should_be = perms & maximum_perms
 if perms != should_be
 puts " CHMOD #{f}"
 puts " Current perms are #{perms.to_s(8)}, " +
 "should be #{should_be.to_s(8)}"
 # File.chmod(perms & maximum_perms, f) unless dry_run
 end
 end
end

All that’s left to do is a simple command-line interface to the normalize_home
method:

dry_run = false
opts = OptionParser.new do |opts|
 opts.on("-D", "--dry-run",
 "Display changes to be made, don't make them.") do
 dry_run = true
 end

 opts.on_tail("-h", "--help", "display this help and exit") do
 puts opts
 exit
 end
end
opts.banner = "Usage: #{__FILE_ _} [--dry-run] username [username2, ...]"
opts.parse!(ARGV)

Make sure all the users exist.
pwd_entries = ARGV.collect { |username| Etc.getpwnam(username) }

Normalize all given home directories.
pwd_entries.each { |p| normalize_home(p, 0775, dry_run) }

Discussion
Running this script on my home directory shows over 2,500 problems. These are mostly
files owned by root, files owned by UIDs that don’t exist on my system (these come
from tarballs), and world-writable files. Below I give a sample of the embarrassment:

$ ruby -D normalize_homes.rb leonardr

Scanning leonardr's home of /home/leonardr.
 CHOWN /home/leonardr/writing/Ruby Cookbook/sys-proctable-0.7.3/proctable.so
 Current owner is root, should be leonardr
 CHGRP /home/leonardr/writing/Ruby Cookbook/sys-proctable-0.7.3/proctable.so

852 | Chapter 23: System Administration

 Current group is root, and leonardr doesn't belong.
...
 CHOWN /home/leonardr/writing/Ruby Cookbook/rubygems-0.8.4/lib/rubygems.rb
 Current owner is uid 501, should be leonardr
 CHGRP /home/leonardr/writing/Ruby Cookbook/rubygems-0.8.4/lib/rubygems.rb
 Current group is gid 501, and leonardr doesn't belong.
...
 CHMOD /home/leonardr/SORT/gogol-home-2002/mail
 Current perms are 722, should be 720
...

Running the script as root (and with the File.chmod and File.chown calls uncom-
mented) fixes all the problems.

You can run the script as yourself to check your own home directory, and it’ll fix
permission problems on files you own. But if a file is owned by someone else, you
can’t take it back just because it’s in your home directory—that’s part of the prob-
lem with having a file owned by someone else in your home directory.

As usual with system administration scripts, normalize.homes.rb is only a starting
point. You’ll probably need to adapt this program to your specific purposes. For
instance, you may want to leave certain files alone, especially files owned by root
(who can modify anyone’s home directory anyway) or by system processes such as
the web server (usually user apache, httpd, or nobody).

See Also
• Recipe 2.6, “Converting Between Numeric Bases”

• Recipe 6.2, “Checking Your Access to a File”

• Recipe 6.3, “Changing the Permissions on a File”

• Recipe 6.12, “Walking a Directory Tree”

23.10 Killing All Processes for a Given User

Problem
You want an easy way to kill all the running processes of a user whose processes get
out of control.

Solution
You can send a Unix signal (including the deadly SIGTERM or the even deadlier
SIGKILL) from Ruby with the Process.kill method. But how to get the list of pro-
cesses for a given user? The simplest way is to call out to the unix ps command and
parse the output. Running ps -u#{username} gives us the processes for a particular user.

#!/usr/bin/ruby -w
banish.rb

23.10 Killing All Processes for a Given User | 853

def signal_all(username, signal)
 lookup_uid(username)
 killed = 0
 %x{ps -u#{username}}.each_with_index do |proc, i|
 next if i == 0 # Skip the header provided by ps
 pid = proc.split[0].to_i
 begin
 Process.kill(signal, pid)
 rescue SystemCallError => e
 raise e unless e.errno == Errno::ESRCH
 end
 killed += 1
 end
 return killed
end

There are a couple things to look out for here.

• ps dumps a big error message if we pass in the name of a nonexistent user. It
would look better if we could handle that error ourselves. That’s what the call to
lookup_uid will do.

• ps prints out a header as its first line. We want to skip that line because it
doesn’t represent a process.

• Killing a process also kills all of its children. This can be a problem if the child
process shows up later in the ps list: killing it again will raise a SystemCallError.
We deal with that possibility by catching and ignoring that particular
SystemCallError. We still count the process as “killed,” though.

Here’s the implementation of lookup_id:

def lookup_uid(username)
 require 'etc'
 begin
 user = Etc.getpwnam(username)
 rescue ArgumentError
 raise ArgumentError, "No such user: #{username}"
 end
 return user.uid
end

Now all that remains is the command-line interface:

require 'optparse'
signal = "SIGHUP"
opts = OptionParser.new do |opts|
 opts.banner = "Usage: #{__FILE_ _} [-9] [USERNAME]"
 opts.on("-9", "--with-extreme-prejudice",
 "Send an uncatchable kill signal.") { signal = "SIGKILL" }
end
opts.parse!(ARGV)

if ARGV.size != 1
 $stderr.puts opts.banner

854 | Chapter 23: System Administration

 exit
end

username = ARGV[0]
if username == "root"
 $stderr.puts "Sorry, killing all of root's processes would bring down the system."
 exit
end
puts "Killed #{signal_all(username, signal)} process(es)."

As root, you can do some serious damage with this tool:

$./banish.rb peon
5 process(es) killed

Discussion
The main problem with banish.rb as written is that it depends on an external pro-
gram. What’s worse, it depends on parsing the human-readable output of an exter-
nal program. For a quick script this is fine, but this would be more reliable as a self-
contained program.

You can get a Ruby interface to the Unix process table by installing the sys-
proctable library. This makes it easy to treat the list of currently running processes as
a Ruby data structure. Here’s an alternate implementation of signal_all that uses
sys-proctable instead of invoking a separate program. Note that, unlike the other
implementation, this one actually uses the return value of lookup_uid:

def signal_all(username, signal)
 uid = lookup_uid(username)
 require 'sys/proctable'
 killed = 0
 Sys::ProcTable.ps.each do |proc|
 if proc.uid == uid
 begin
 Process.kill(signal, proc.pid)
 rescue SystemCallError => e
 raise e unless e.errno == Errno::ESRCH
 end
 killed += 1
 end
 end
 return killed
end

See Also
• sys-proctable is in the RAA at http://raa.ruby-lang.org/project/sys-proctable/; it’s

one of the sysutils packages: see http://rubyforge.org/projects/sysutils for the others

• To write an equivalent program for Windows, you’d either use WMI through
Ruby’s win32ole standard library, or install a native binary of GNU’s ps and use
win32-process

855

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

Symbols
:: (double-colon) operator, 308
<< operator, arrays, 124
@ prefix, variables, 270

A
abstract methods, creating, 299–302
Accept-Language HTTP header, 504–506
Access Control lists, 644–645
accessor methods, attributes, 283–284
ActionMailer library, 508–512
ActiveRecord

object relational mapping in
databases, 473–477

transactions and, 490–492
validation and, 485–487

ActiveRecord::Validations module, 485
add_text method, 391
Ajax, Rails and, 592–594

forms creation, 598–601
algorithm-diff gem, 212
alias command, 362
aliases, methods, 361–364
Amazon books, searching for, 617–619
analysis tools, multiple, 696–697
annotate method, 413
appending to files, overwriting and, 205
applications

documentation, 686–691
Mac OS X, RubyCocoa and, 807–815
profiler, 691–693

Rails
code files, 559
database integration, 570–573
system status, 557–560

archiving files, 433–436
arguments

code blocks, 238
binding to variables, 244–246
default values, 239

command-line, parsing, 779–781
keyword, simulating, 295–297
methods, 2
passing, variable number, 293–295
validation, 367–370

arithmetic, date and time and, 102–104
array, 124
Array#collect! method, 126
Array#each method, 16
Array#grep method, 467
Array#join method, 5
Array#map! method, 126
Array#shuffle method, 144
Array#size method, 124
Array#slice method, 149
Array#sort method, 133
Array#sort_by method, 135
Array#to_midi method, 444
Array#unique method, 131
arrays, 123

<< operator, 124
brackets, 123
elements

duplicate, stripping, 130
largest, 145–147

856 | Index

arrays, elements (continued)
random order, 143–145
smallest, 145–147
summing, 140–141

extracting portions, 149–152
as hash keys, 168–170
indexes, 124
iteration, 125–128
reversing, 132
set operations, 152–155
sets

classifications, 155–158
partitions, 155–158

size, 124
sorting, 132–134

element frequency and, 141–143
maintaining sort, 135–140

strings, 123
sorting, ignoring case, 134

values
hash creation, 147–149
rearranging, 129–130

aspect-oriented programming, 364–366
associating variables with objects, 269–272
Atom, 406
attr_accessor method, 270
attr_reader method, 270
attributes

accessor methods, 283–284
objects, checking for, 345–347
values

modifying, 281–283
validating, 281–283

virtual, defining, 283–284
Authorize.Net, 632
automation, 330–332

backups, 848–849
averages, numbers, 55

B
backslashes, 12
backups

automation, 848–849
versioned filenames, 220–222

BasicObject class, 636
Bayesian Analyzer, 37–38
BeautifulStoneSoup class, 381
begin/finally block, 260
Benchmark library, 694

matrices and, 63
benchmarking, 694–695

Berkeley DB databases, 463–465
BigDecimal numbers, 43
BigMath.log function, 54
binary files, reading/writing, 227–231
BitTorrent class, 529–531
BitTorrent client, 529–531
blinking keyboard lights, 794–796
blocks (see code blocks)
brackets

arrays, 123
syntax, 238

break statement, lambda and, 255
breakpoint library, 613, 684
breakpoints

debugging and, 684–686
web sites, Rails, 613–615

buffered I/O, 205
BufferedIO class, 213

C
C

inline, writing, 827–829
library, 821–824

calling with SWIG, 825–827
C extension, writing, 818–821
C socket library, 499
caching, memcached and, 652–654
call graph analyzer, 697–700
callback methods, Module#included, 322
callback systems, 262–266
calling methods, superclasses, 297–299
CallTracker class, 697–700
captions, images, 412–415
case, strings, 19
cast operator, 288
catch/throw syntax, 255
ceiling variable, 239
center method, 21
CGI

cookies and, 540–542
file uploads, 543–546
HTTP response headers and, 540, 542
script writing, 537–540

cgi library, 539
CGI#out method, 541
changes to classes, 343–345
character input, 776–778
characters

converting to/from values, 14
strings, processing characters

individually, 16–17
unprintable, 11–14

Index | 857

charging credit cards, 633
checksums, credit card, 85–86
class methods, implementation, 309–311
class typing, duck typing and, 275
class variables, 273

getter methods and, 273
instantiation and, 273
setter methods and, 273

classes
BasicObject, 636
BeautifulStoneSoup, 381
BitTorrent, 529–531
BufferedIO, 213
CallTracker, 697–700
changes to, 343–345
Complex, 67
CounterThread, 759
data management, 272–274
Date, 88
DateTime, 88
debugging, 341–342
EventDispatcher, 265
finding for objects, 334–335
Generator, 257
inherited, writing, 277–279
Logger, 670
Magick::Image, 410
Matrix, 60
membership, checking, 275–277
methods, mixing, 321–322
Net::FTP, 520–522
OrderedHash, 174
Payment::AuthorizeNet, 633
Prime, 81–85
Resolv::DNS, 506–508
RSSAggregator, 406
SGMLParser, 381
subclasses, 278
Time, 87
UserController, 556

classification, methods for, 253–254
classifier gem, 37
Classifier library, 37
Classifier::Bayes object, 37
cleanup methods, code blocks, 260–262
clearing screen, 785–786
clients

SOAP, writing, 625–626
XML-RCP, writing, 623–625

closures, 239
code blocks as, 246–247

code
extracting into helper functions, 587–588
interrupting, 121–122
packaging as gem, 714–717
pausing program, 118–120
statistics, Rake and, 732–735

code blocks, 237
arguments, 238

binding to variables, 244–246
default values, 239

begin/finally, 260
callback systems, 262–266
as closures, 246–247
closures and, 239
creating, 240–241

syntax, 237
do keyword, 237
end keyword, 237
evaluating in earlier context, 357–358
instantiation, 238
invoking, 240–241
iteration, stopping, 254–256
methods

classification, 253–254
collection, 253–254
passing to, 242
setup/cleanup, 260–262

methods that accept, 241–244
Proc objects, 241
registered, 263
running on many objects, 760–762
running periodically, 116–118
variable bindings, references, 247
variables, outside variables, 246–247

code examples, xxix
code files, Rails applications, 559
code listings, overview, xxiii
collect method, 126
collection, methods for, 253–254
colored text, 788–790
command-line arguments, parsing, 779–781
comma-separated data, parsing, 426–429
commercial dates, 115
comparing files, 209–212
comparisons, floating-point numbers, 43–45
Complex class, 67
complex numbers, 67
compressing files, 433–436
configuration files, reading/writing, 437–439
constants, declaring, 307–309
Contracts module, 367–370

858 | Index

controllers
generating, 558
Rails, passing data to views, 560–562

conventions in book, xxviii
converting

between time zones, 106–109
characters to/from values, 14
data types, 288
encoding, XML documents, 396–397
HTML documents to text, 402–405
numbers, 289

bases, 52
objects to different types, 287–291
plain text to HTML, 401–402
strings to/from symbols, 14
to/from degrees and radians, 58

cookies, 540, 542
Rails, 585–586

copying objects, 304–307
CounterThread class, 759
create_simple_message method, 509
credit cards

charging, 632–633
checksum, 85–86

creditcard gem, 85–86
CreditCard library, 85–86
Crypt library, 425
csv library, parsing and, 426
CSV::Reader method, 429
current directory, finding and changing, 235
Curses

character input, 777
cleanup, 782–785
setup, 782–785

Curses library, 774

D
daemon processes, 746–749
Daemonize module, 746–749
data graphing, 417–420
data serialization

Marshal module, 454–455
YAML and, 450–453

data structures
iterators and, 247–250
tree, 248

databases
Berkeley DB, 463–465
data validation, ActiveRecord

and, 485–487
integration with Rails

applications, 570–573

MySQL, 468–470
object relational mapping, 473–481
passwords, storing hashed

(Rails), 579–581
PostgreSQL, 470–473
queries

building programmatically, 481–484
number of rows returned, 466–468

table events, hooks, 492–494
tables, taggable, 495–498
transactions, ActiveRecord and, 490–492

date and time, 87
arithmetic and, 102–104
commercial dates, 115
day of week, 113–115
Daylight Saving Time, 109–110
days elapsed, 104–106
duration, 90
iterating over dates, 100–102
parsing dates, 93–96
printing dates, 96–100
Time objects, converting to/from

DateTime objects, 110–113
time zones, converting between, 106–109
today’s date, 90–93

Date class, 88
date library, 91
date types, converting, 288
Date.parse method, 94
DateTime class, 88
DateTime object, 89

converting to/from Time
objects, 110–113

iteration and, 101
DateTime#new_offset method, 90, 107
DateTime.new_offset method, 107
DateTime.parse method, 94
day of week, 113–115
Daylight Saving Time, 109–110
days elapsed, 104–106
deadlock, threading, 770–772
debug mode, running code in, 662–664
debug switch$DEBUG variable, 662–664
debugging

benchmarking, 694–695
breakpoint, 684–686
classes, 341–342
external resources and, 679–684
tracebacks, 672–674
unit tests

running, 677–679
writing, 674–677

Index | 859

declarations, constants, 307–309
decorator methods, 271
defining methods, undefining, 358–361
degrees, converting to radians, 58
delegate library, 285
deleting files, 231–232
delimiters, stripping, 203
deliver_simple_message method, 509
DHTML, 592–594

Rails and, 592–594
diff.rb package, 212
Diff::LCS library, 210
diff-lcs gem, 210
Dir.chdir method, 235
Dir.entries method, 198–201
Dir.foreach method, 198–201
Dir.getwd method, 235
directories

common operations, 187
current, finding and changing, 235
listing contents, 198–201
ownership, 849–852
permissions, 849–852
recursively processing, 214–216

distributed programming
introduction, 616
objects, proxying, 647–649
RAM, data storage, 650–651
web services and, 616

distributed queues,
implementation, 639–640

distribution, 701
gems, 717–719

DNS#each_address method, 507
DNS, queries, 506–508
do keyword, 237
do...end syntax, 238
documentation, 686–691

gems, 712–714
Rake

generating automatically, 727–729
publishing, 735–737

web sites, Rails, 608–609
documents

HTML
extracting URLs, 398–401
web site text summary, 402–405

navigating, XPath and, 377–380
XML

converting to hashes, 382–385
creating, 390–393
encoding, converting, 396–397

encoding, guessing, 395–396
modifying, 390–393
validation, 385–387
whitespace, 394–395

double quotes, 6
double-colon operator (::), 308
downcase method, 20
Draw#annotate method, 414
DRb (Distributed Ruby), 617
DRb library, 635
DRb services

Access Control lists, 644–645
Rinda and, 645–647

DTDs, validation and, 385
duck typing, 267

class typing and, 275
duplicate files, 845–848
duplicate values, hash keys, 170
dynamic typing, 267

E
each method, 248, 323
echoing characters, 777
editing input, readline and, 792–793
Element#delete_attribute method, 392
Element#text= method, 391
elements

arrays, 123
duplicate, stripping, 130
largest, 145–147
random order, 143–145
smallest, 145–147
sorting by, 141–143
summing, 140–141

hashes
adding to, 164–166
removing, 166–168

email
addresses, validation, 33–36
checking for messages, 514
forwarding messages to cell phone, 515,

518
headers, 514
Rails, 604–606

user error and, 606–608
reading messages

IMAP server and, 512–516
POP3 and, 516–520

sending messages, RubyMail
library, 508–512

UIDs for messages, 514

860 | Index

encapsulation
bypassing, 274
violating, 272

encryption
EzCrypto, 424
strong encryption, 424–426

end keyword, 237
entity substitution, 388
Enumerable module, 315

implementation, 322–324
methods, 323

Enumerable#collect method, 126
Enumerable#each method, 125
Enumerable#max method, 145
Enumerable#min method, 145
Enumerator, 251
equations, linear, 64–66
ERb templates, 8–10

passing data from controller to view, 560
error streams, capturing from Unix shell

command, 767–768
errors, email messages to Rails, 606–608
EventDispatcher class, 265
Excel spreadsheets

generating, 431–433
parsing, 431–433

exception handling, 664–665, 666–668
retrying code, 668

exceptions, raising, 664
extensibility

callbacks and, 264
objects, modules and, 319–321

extensions, C, writing, 818–821
external commands, popen and, 765–767
external programs, scripting, 834–835
extracting

array portions, 149–152
code to helper functions, 587–588
data while parsing, 376–377
hash portions, 184–185
invalid markup, 380–382
URLS, HTML documents, 398–401

EzCrypto encryption, 424

F
Facets More library, 636
FasterCSV, 427
FedEx shipping costs, 633–635
Ferret, indexing and, 459–463
file uploads, CGI and, 543–546
File#flock method, 217–220
File#puts method, 188

File#read method, 188
File.chmod method, 195
File.executable? method, 191–193
File.exists? method, 190–191
File.readable? method, 191–193
File.stat method, 196–198
File.writeable? method, 191–193
filenames, versioned, backups and, 220–222
files

access, checking, 191–193
appending to, overwriting and, 205
archiving, 433–436
backups, versioned filenames, 220–222
binary, reading/writing, 227–231
common operations, 187
comparing, 209–212
compressing, 433–436
configuration, reading/writing, 437–439
copying between machines, 527–529
deleting, 231–232

regular expressions and, 840–842
duplicate, 845–848
existence, checking, 190–191
input, redirecting, 225–226
last used, 196–198
locking, 217–220
MIDI music files, 443–446
output, redirecting, 225–226
PDF, generating, 439–443
permissions, changing, 193–196
random access, read-once input

streams, 212–214
random lines, selecting, 207–208
reading, contents of file, 201–204
recursively processing, 214–216
renaming, in bulk, 842–845
searches for, 233–235
strings as, 222–225
truncating, 232–233
writing to, 204–206

temporary, 206
YAML files, 438
ZIP, reading/writing, 436–437

FileUtils.remove_dir method, 231–232
Find.find method, 215, 233–235
Find.prune method, 216
Fixnum class, subclass simulation, 69–73
flexmock gem, 680
FlexMock library, 680
Flickr, searches, 620–622
Float#approx method, 45
floating-point math, 44

Index | 861

floating-point numbers, comparing, 43–45
footer layout, Rails, 563–565
for loops, 127
format_gems method, 703
formats, images, converting among, 415–417
formatting directives, 98
forms, objects, editing, 594–598
Forwardable module, 286
freezing objects, 302–304
FTP, client, 520–522

G
Gem::cache method, 702
Gem::Specification object, 714
gems

algorithm-diff, 212
building automatically, 731–732
classifier, 37
creditcard, 85–86
diff-lcs, 210
distribution, 717–719
documentation, 712–714
flexmock, 680
htmltools, 381
installation, 705–708
lcs-diff, 210
madeleine, 455
packaging code as, 714–717
payment, 632
query command, 702–705
rails, 556
RedCloth, 401
repository, 703
ruby-breakpoint, 684
rubyful_soup, 380
rubyzip, 436
searches, 702–705
simple-rss, 406
sparklines, 421–424
uninstalling, 711–712
upgrades, 706
versions, requiring specific, 708–710

generate script, 558
Generator class, iteration and, 257
Generator object, iteration and, 257
generators, 125
generic project Rakefile, 738–744
getter methods, 271

class variables and, 273
Glue::Aspect, 492
Google, SOAP and, 628–629
graphical user interface (see GUI)

GraphicsMagick, 409
image file formats, 416

graphing, 417–420
sparklines, 421–424

Gruff library, 418–420
gserver library, 532–534
GTK widget, GUI creation and, 803–807
GUI (graphical user interface), 773

GTK widget and, 803–807
Tk library and, 796–799
wxRuby and, 800–803

GUI libraries, 774
Gzip, 433–436
GzipReader, 433
GzipWriter, 433

H
h() helper function (Rails), 581
handling exceptions, 666–668
hash codes, 161, 169
hash keys

arrays as, 168–170
duplicate values, 170
remapping, 183
symbols as, 161

hash method, 161
Hash#each method, 171
Hash#each_pair method, 171
Hash#invert method, 177–178
Hash#rehash method, 168
Hash#remap method, 183
Hash#select method, 184
Hash#tied_with method, 183
Hash.new function, 159
hashes

creating, 159
from array values, 147–149

elements
adding, 164–166
removing, 166–168

extracting portions of hash, 184–185
histograms and, 181–183
implementation, 160
inverting, 177–178
iteration, 171–173

insertion order and, 174–175
printing, 175–177
searches, regular expressions and, 185
sharing, 635–638
values

default, 162–164
remapping, 183

862 | Index

hashes (continued)
weighted lists, 179–181
XML documents, converting, 382–385

headers
email messages, 514
HTTP requests, 504–506
layout, Rails, 563–565

helper functions, extracting code
to, 587–588

here documents style, strings, 3
Highline library, 776

text color, 788
HighLine#color method, 789
histograms

building, 181–183
hashes and, 181–183

HTML
converting plain text to, 401–402
documents

extracting URLs, 398–401
web site text summary, 402–405

Rails, escaping, 581–582
htmltools gem, 381
HTTP

clients, 551–554
response headers, 540, 542
REST-style web services, 618

HTTP request, headers, 504–506
HTTP#get_response_method, 501
HTTPResponse#code method, 501
HTTPS web requests, 502–504

I
I/O, buffered, 205
iconv library, 397
Image#columns method, 410
Image#rows method, 410
ImageMagick, 409

image files, formats, 416
images

captions, 412–415
copyright statements, 412–415
formats, converting among, 415–417
text, 412–415
thumbnails, 409–412

IMAP, reading email messages, 512–516
implementation

class methods, 309–311
Enumerable module, 322–324
single methods, 309–311

indexes, arrays, 124
indexing

Ferret, 459–463
SimpleSearch and, 458–459

inheritance, multiple, simulating, 315–319
inherited classes, writing, 277–279
initialization

instance variables, automatic, 351–352
mixins, automatic, 330–332

initialize method, 279
initializes, 698
inject method, 141
inline C, writing, 827–829
input

AppleScript and (Mac), 815–816
editing, readline and, 792–793
redirecting, 225–226

installation
gems, 705–708
packages, setup.rb and, 719–722
rails gem, 558
Ruby, xxv

instance variables
access simulation, 282
defining, 271
initialization, automatic, 351–352
modules and, 329–330
Object#instance_variable_get method

and, 271
prefixes, 272
setter methods and, 281

instances, managing data, 269–272
instantiation

class variables and, 273
code blocks, 238

Integer#upto method, 126
international encodings, 24
Internet server, writing, 532–534
interosculate method, 259
interpolation, triggering, 7
interrupting code, 121–122
invalid markup, extracting, 380–382
inverting hashes, 177–178
invoking code blocks, 240–241
IO#read method, 201–204
IO#readlines method, 202
IO#write method, 204
IO.popen method, 834
isdst method, 109
iteration

arrays, 125–128
building strings and, 4–6

Index | 863

changing, 250–252
code blocks, stopping, 254–256
data structures and, 247–250
DateTime objects, 101
Generator class and, 257
hashes, 171–173

insertion order and, 174–175
loops and, 249
multiple, loops and, 256–260
numbers, 78–81
over dates, 100–102
stopping, 254–256
strings, 28–30
SyncEnumerator class and, 256

J
Java libraries, 830–832
JavaScript, Rails, escaping, 581
jukebox server, 655–660

K
Kernel#autoload method, 326
Kernel#eval method, 666
Kernel#lambda method, 241
Kernel#open method, 188
Kernel#p method, 175
Kernel#printf method, 44, 294
Kernel#proc method, 241
Kernel#puts method, 189
Kernel#raise method, 664–665
Kernel#rand function, 50
Kernel#set_trace_func method, 697–700
Kernel#sleep method, 118–120
keyboard lights, 794–796
keywords

arguments, simulating, 295–297
do, 237
end, 237
super, 297
yield, 242

killing processes, users, 852–854

L
lambda method, 240

break statement and, 255
lcs-diff gem, 210
libcharguess library, 395
libraries

ActionMailer, 508–512
autoload components, 327

benchmark, 694
breakpoint, 613, 684
C, 821–824

calling with SWIG, 825–827
C socket, 499
cgi, 539
Classifier, 37
Credit Card, 85–86
Crypt, 425
Curses, 774
date, 91
delegate, 285
Diff::LCS, 210
DRb, 635
Facets More, 636
FlexMock, 680
Gruff, 418–420
gserver, 532–534
GUI, 774
Highline, 776
iconv, 397
Java, 830–832
libcharguess, 395
loading automatically, 326–328
logger, 669–671
Madeleine, 455
midilib, 443
net/http, 500
Net:SSH, 528
Og, 477–481
open-uri, 500–502
orderedhash, 174
parseexcel, 431
PDF::Writer, 439
ping, 531–532
pp, 176
rake/clean, 730
rake/testtask, 725–727
Readline, 774

input editing and, 792–793
REXML, 372
rss, 406
RubyMail, 508–512
ruby-password, 791–792
rubyzip, 437
searches, 702–705
spreadsheet, 431
timeout, 121–122
Tk, GUI creation and, 796–799
TMail, 508–512
XML validation and, 385
xmlrpc4r, 623

864 | Index

libraries (continued)
XmlSimple, 383
yaml, 451
zlib, 433

libxmllibrary, 387
libxmlproject, 387
lights on keyboard, 794–796
limiting multithreading, 763–765
linear equations, 64–66
line-based input, user interface, 774–776
LinkGrabber, 399
listeners, 263
ljust method, 21
loading libraries automatically, 326–328
locking files, 217–220
logarithms, 53
Logger class, 670
logger library, 669–671
login system creation, Rails, 575–579
logins, adding, 669–671
loops

for, 127
iteration and, multiple, 256–260
iterators and, 249
until, 127
while, 127

M
Mac OS X

Apple Script, user input, 815–816
applications, RubyCocoa and, 807–815

Madeleine library, 455
persistence and, 455–457

Magick::Image class, 410
managing instance data, 269–272
Mandelbrot set, 68
markup, invalid, extracting, 380–382
Marshal module, data serialization

and, 454–455
math

date and time and, 102–104
floating-point, 44
precision, 45–48
Roman numerals, 73–78

Math.log function, 53
matrices, multiplying, 60–64
Matrix class, 60
Matrix objects, 60
Matrix#inverse method, 64
mean, numbers, 55
median, numbers, 55
memcached, 652–654

metaprogramming, 333, 352–355
string evaluations and, 355–357

method calls, delegating to another
object, 284–287

methods, 149
abstract, 299–302
add_text, 391
aliasing, 361–364
annotate, 413
arguments, 2
Array#collect!, 126
Array#each, 16
Array#grep, 467
Array#join, 5
Array#map!, 126
Array#shuffle, 144
Array#slice, 149
Array#sort, 133
Array#sort_by, 135
Array#to_midi, 444
Array#unique, 131
Arrays#size, 124
attr_accessor, 270
attr_reader, 270
callback, Module#included, 322
calling, superclasses, 297–299
center, 21
CGI#out, 541
classification, 253–254
code block acceptance, 241–244
code blocks, set/cleanup, 260–262
collect, 126
collection, 253–254
cookies, 585
create_simple_message, 509
CSV::Reader, 429
Date.parse, 94
DateTime#new_offset, 90, 107
DateTime.new_offset, 107
DateTime.parse, 94
decorator methods, 271
defining/undefining, 358–361
deliver_simple_message, 509
Dir.chdir, 235
Dir.entries, 198–201
Dir.foreach, 198–201
Dir.getwd, 235
DNS#each_address, 507
downcase, 20
Draw#annotate, 414
each, 248, 323
Element#delete_attribute, 392

Index | 865

Element#text=, 391
Enumerable module, 323
Enumerable#collect, 126
Enumerable#each, 125
Enumerable#max, 145
Enumerable#min, 145
File#flock, 217–220
File#puts, 188
File#read, 188
File.chmod, 195
File.executable?, 191–193
File.exists?, 190–191
File.readable?, 191–193
File.stat, 196–198
File.writeable?, 191–193
FileUtils.remove_dir, 231–232
Find.find, 215, 233–235
Find.prune, 216
Float#approx, 45
format_gems, 703
Gem::cache, 702
generators, 125
getter methods, 271
hash, 161
Hash#each, 171
Hash#each_pair, 171
Hash#invert, 177–178
Hash#rehash, 168
Hash#remap, 183
Hash#select, 184
Hash#tied_with, 183
HighLine#color, 789
HTTP#get_response, 501
HTTPResponse#code, 501
Image#columns, 410
Image#rows, 410
implementation, 309–311
initialize, 279
inject, 141
Integer#upto, 126
interosculate, 259
IO#read, 201–204
IO#readlines, 202
IO#write, 204
IO.popen, 834
isdst, 109
iterators, 125
Kernel#autoload, 326
Kernel#eval, 666
Kernel#lambda, 241
Kernel#open, 188
Kernel#p, 175

Kernel#printf, 44, 294
Kernel#proc, 241
Kernel#puts, 189
Kernel#raise, 664–665
Kernel#sleep, 118–120
lambda, 240
ljust, 21
Matrix#inverse, 64
mixing, 321–322
Module#attr_accessor, 271
Module#attr_reader, 271
Module#attr_writer, 271
Module#define_method, 352
Module#included, 344
Module#remove_const, 308
Module#remove_method, 358
my_methods_only, 338
mysql, 465
Object#class, 334
Object#clone, 305
Object#dup, 305
Object#extend, 319–321
Object#inspect, 291
Object#instance_methods, 335
Object#instance_variable_get, 271
Object#instance_variable_set, 271
Object#instance_variables, 345
Object#method, 335, 339–341
Object#must_have_instance_

variables, 346
Object#singleton_methods, 335
objects

listing methods, 335–337
listing unique, 337–339

overloading, 279–281
parse, 94
Ping.pingecho, 531–532
popen3, 768
private, 311–314
Range#each, 28
Range#step, 126
references to, 339–341
Regexp.union, 32
reverse!, 10, 132
reverse_each, 126
REXML::Document.parse_stream, 376
rjust, 21
scramble, 277
Set#difference, 153
Set#intersection, 153
Set#union, 153
setter methods, 271

866 | Index

methods (continued)
slice, 23
sort_by_frequency, 142
String#gsub, 298
String#intern, 162
String#scan, 16
String#slice, 3
String#split, 10
String#to_f, 40
String#to_i, 40
strip, 21
Symbol#id2name, 15
Symbol#to_s, 15
synchronize, 754
task, 723
Time#gmtime, 90, 106
Time.gm, 91
Time.local, 91
Time.now, 90
Timeout.timeout, 121
Tree#each, 248
undefined, responding to, 347–351
undefining, 358–361
upcase, 20
URI.extract, 398
valid_xml, 372
value, 388
variables, sharing, 246
wday, 113
word_count, 18
Writer#image, 440
Writer#text, 440
Writer#y, 440

MIDI music files, 443–446
midilib library, 443
mixing class methods, 321
mixins

inheritance, multiple, 315–319
initializing, 330–332

mode, numbers, 55
Module#attr_accessor method, 271
Module#attr_reader method, 271
Module#attr_writer method, 271
Module#define_method method, 352
Module#included callback method, 322
Module#included method, 344
Module#remove_const method, 308
Module#remove_method method, 358
modules

Contracts, 367–370
Daemonize, 746–749
Enumerable, 315, 322–324

Forwardable, 286
instance variables, initializing, 329–330
membership, checking, 275–277
mixins, 317
namespaces and, 324–326

including, 328–329
objects, extending, 319–321
uses, 315

multiple inheritance, simulating, 315–319
multitask function, 737
multitasking, 745
multithreading, 745, 752–754

limiting, 763–765
Mutex members, 754
my_methods_only method, 338
MySQL

databases, 468–470
Unix and, 465

mysql method, 465

N
namespaces, modules and, 324–326

including in, 328–329
navigating documents, XPath and, 377–380
net/http library, 500
net/imap.rb package, 512
net/pop.rb package, 517
Net::FTP class, 520–522
Net::IMAP#fetch, 513
Net::SSH, 525–527
Net::Telnet, 522–525
Net:SSH library, 528
NotImplementedError, 299
numbers

averages, 55
bases, converting between, 52
BigDecimal, 43
complex, 67
converting, 289
degrees/radians, converting to/from, 58
floating-point math, 44
floating-point, comparing, 43–45
generating, sequence, 78–81
iteration, 78–81
linear equations, 64–66
logarithms, 53
matrices, multiplying, 60–64
mean, 55
median, 55
mode, 55
parsing from strings, 40–43
precision, 45–48

Index | 867

prime, generating, 81–85
rational, 48
Roman, math with, 73–78
standard deviation, 57

O
object relational mapping, databases

ActiveRecord and, 473–477
Og and, 477–481

Object#class method, 334
Object#clone method, 305
Object#dup method, 305
Object#extend method, 319–321
Object#inspect method, 291
Object#instance_methods method, 335
Object#instance_variable_get method, 271
Object#instance_variable_set, 271
Object#instance_variables method, 345
Object#method method, 335, 339–341
Object#must_have_instance_variables

method, 346
Object#singleton_methods method, 335
objects

access, synchronizing, 754–757
attributes, checking for, 345–347
classes, finding, 334–335
converting to different types, 287–291
copying, 304–307
DateTime, 89
extending, modules and, 319–321
freezing, 302–304
impersonating another, 284
Matrix, 60
methods

listing, 335–337
listing unique, 337–339

print outs, 291–293
proxying, 647–649
Queue, 639–640
Rails, editing, 594–598
Rational, 48
string like, 22
superclasses, finding, 334–335
Symbol, 15
to_str method, 22
variables, associating, 269–272
whiteboard, 640–643

objectsThreadsafeHash, 636
Og library

object relational mapping in
databases, 477–481

taggable tables, 495–498

open-uri library, 500–502
OrderedHash class, 174
orderedhash library, 174
output

capturing from Unix shell
command, 767–768

redirecting, 225–226
outside variables, code blocks, 246
overloading methods, 279–281
ownership, directories, 849–852

P
packages

code as gems, 714–717
diff.rb, 212
standalone, setup.rb and, 719–722

packaging, 701
parentheses, 2
parse methods, 94
parseexcel library, 431
parsing

arguments, command-line, 779–781
comma-separated data, 426–429
csv library and, 426
dates, 93–96
Excel spreadsheets, 431–433
extracting data during, 376–377
numbers from strings, 40–43
text strings, 429–431
URLs, 534–537
XML files to data structure, 374–376

partial views, 589
passing arguments, variable

number, 293–295
passwords

Rails, hashed, storing in
database, 579–581

reading, 791–792
pattern matching, strings, 30
pausing program, 118–120
payment gem, 632
Payment::AuthorizeNet class, 633
Payment::PaymentError, 632
PDF files, generating, 439–443
PDF::Writer library, 439
periodic tasks, 839–840
permissions

directories, 849–852
files, changing, 193–196

persistence, Madeleine and, 455–457
ping library, 531–532
Ping.pingecho method, 531–532

868 | Index

pinging, 531–532
PKZip, 437
plaintext, converting to HTML, 401
platforms, xxvi
pluralization, Rails and, 573–575
POP3, reading email messages, 516–520
popen method, 765–767
popen3 method, 768
PostgreSQL databases, 470–473
pp library, 176
precision in numbers, 45–48
prefixes, instance variables, 272
Prime class, 81–85
prime numbers, generating, 81–85
printf-style strings, 8–10
printing

dates, 96–100
day of week, 113–115
hashes, 175–177
objects, 291–293

private methods, 311–314
private statement, 311
Proc objects, code blocks and, 241
processes

background, 746–749
controlling on another machine, 768–769

processing files and directories
recursively, 214–217

profiler, 691–693
Kernel#set_trace_func method, 697–700

program testing, running interactively, 782
programming

aspect-oriented, 364–366
metaprogramming, 352–355

proxies, objects, 647–649
publishing documentation, Rake, 735–737
punctuation in strings, 4

Q
queries

databases
building programmatically, 481–484
MySQL, 468–470
number of rows returned, 466–468

DNS, 506–508
query command, gems, 702–705
Queue object, 639–640
queues, distributed,

implementation, 639–640
quotes, double, 6

R
radians, converting to degrees, 58
Rails

Ajax and, 592–594
forms, 598–601

applications
code files, 559
database integration, 570–573
system status, 557–560

architecture, 556
code, extracting to helper

functions, 587–588
controllers, passing data to

views, 560–562
cookies in, 585–586
DHTML and, 592–594
display, escaping HTML and

JavaScript, 581–582
email, 604–606

user error and, 606–608
footers, layout, 563–565
h() helper function, 581
header layout, 563–565
introduction, 555
login system creation, 575–579
objects, editing, 594–598
password, hashed, 579–581
pluralization, 573–575
redirection and, 565–567
sessions, setting/revtrieving

information, 582–584
SOAP and, 601–604
sparklines, 423
templates, displaying, render

and, 567–570
views, snippits, 588–591
web site documentation and, 608–609
web sites

breakpoints, 613–615
unit testing, 609–612

XML-RPC and, 601–604
rails gem, 556

installation, 558
raising exceptions, 664–665
Rake

code statistics, 732–735
documentation

generating automatically, 727–729
publishing, 735–737

gems, building automatically, 731–732
generated files, cleanup, 729–731
introduction, 723

Index | 869

multiple tasks, 737–738
test suites, 726
unit tests, running

automatically, 725–727
rake/clean library, 730
rake/testtask library, 725–727
Rakefiles, 723

generic project, 738–744
RAM, distributed, data storage, 650–651
random access files, read-once input

streams, 212–214
random order, array elements, 143–145
Range#each function, 79
Range#each method, 28
Range#step method, 126
rational numbers, 48
Rational object, 48
RDoc, 687
reading binary files, 227–231
reading files, 201–204
reading passwords, 791–792
Readline library, 774

input editing and, 792–793
recursively processing directories and

files, 214–217
RedCloth, 401
redirecting input/output, 225–226
redirection, Rails, 565–567
references to methods, 339–341
reflection, 333
Regexp.union method, 32
registered code blocks, 263
regular expressions

deleting files and, 840–842
pattern matching, strings, 30
searches, hashes, 185

remapping hash values, 183
remote methods

calling, XML-RCP clients, 623–625
SOAP, 625

render method, 567–570
view snippets, 589

rescue block, exceptions and, 666
resize method, scale method and, 411
Resolv::DNS class, 506–508
resources, xxvii
REST-style services, 616

Amazon search, 617–619
Flickr searches, 620–622
HTTP and, 618

retrying code, exceptions and, 668–669
reverse! method, 10, 132

reverse_each method, 126
reversing arrays, 132
reversing strings, 10
REXML, 619
REXML library, well-formedness and, 372
REXML::Document.parse_stream

method, 376
Rinda, DRb services and, 645–647
rjust method, 21
RMagick, 409

thumbnail images and, 410
Roman numerals, math and, 73–78
root, running as, 837–838
RSS feeds, aggregator, 405–408
rss library, 406
RSSAggregator class, 406
Ruby installation, xxv
Ruby on Rails (see Rails)
ruby-breakpoint gem, 684
RubyCocoa, Mac OS X applications

and, 807–815
Rubyful Soup, 380
Rubygems library, xxvi
ruby-password library, 791–792
rubyzip gem, 436
rubyzip library, 437

S
scale method, resize method and, 411
scramble method, 277
screen, clearing, 785–786
script.aculo.us, 592–594
scripting external programs, 834–835
scripts, CGI, writing, 537–540
search and replace, strings, 32
searches

Amazon books, 617–619
for files, 233–235
Flickr photos, 620–622
gems, 702–705
Google, SOAP, 628–629
regular expressions, hashes and, 185

Seive of Eratosthenes, 82
sequence of numbers, generating, 78–81
serializing data

Marshal module, 454–455
YAML and, 450–453

servers
embedding, 546–551
SOAP, writing, 627–628

servlets, WEBrick and, 546–551

870 | Index

sessions, setting/retrieving information
(Rails), 582–584

set operations, arrays, 152–155
Set#difference method, 153
Set#intersection method, 153
Set#union method, 153
set_trace_func, 696–697
sets, arrays

classifications, 155–158
partitions, 155–158

setter methods, 271
class variables and, 273
instance variables and, 281

setup methods, code blocks, 260–262
SGMLParser class, 381
sharing hashes, 635–638
shipping costs, 633–635
simple-rss gem, 406
SimpleSearch, indexing and, 458–459
singleton methods, 310
slice method, 23
SOAP, 616

calls, WSDL and, 630–632
clients, writing, 625–626
Google searches, 628–629
Rails and, 601–604
server, writing, 627–628

sort_by_frequency method, 142
sorting

arrays, 132–134
element frequency and, 141–143
maintaining sort, 135–140

strings, ignoring case, 134
sparklines, 421–424
special codes, strings, 3
spreadsheet library, 431
spreadsheets, Excel

generating, 431–433
parsing, 431–433

SQL, injection attacks, 487–490
SSH

client, 525–527
Net:SSH library, 528

standard deviation, 57
String#gsub method, 298
String#intern method, 162
String#scan method, 16
String#slice method, 3
String#split method, 10
String#to_f method, 40
String#to_i method, 40

StringIO class, 222–225
StringIO object, 212–214
strings

arrays, 123
sorting, ignoring case, 134

building from parts, 4–6
case, changing, 19
characters, processing individually, 16–17
converting to/from symbols, 14
email, address validation, 33–36
as files, 222–225
here documents style, 3
international encodings, 24
interpolation, triggering, 7
introduction, 1
iteration, 28–30
metaprogramming and, 355–357
mutability, 3
parsing, 429–431
parsing numbers from, 40–43
pattern matching, 30
printf-style, 8–10
printing date objects as, 96–100
punctuation, 4
quotes, 3
reversing

by characters, 10
by words, 10

search and replace, 32
as series of bytes, 2
special codes, 3
substrings

appending, 4
slice method and, 23

text classification, Bayesian
Analyzer, 37–38

Unicode characters, 24
variables

substituting into existing strings, 8–10
substituting into strings, 6–8

word wrap, 26–27
words, processing individually, 17–19

strip method, 21
stripping characters, 203
structure of book, xx
subclasses, 278
substrings

appending, 4
slice method and, 23

summing array items, 140–141
super keyword, 297

Index | 871

superclasses
finding for objects, 334–335
methods, calling, 297–299

SWIG, calling C libraries, 825–827
Symbol object, 15
Symbol#id2name method, 15
Symbol#to_s method, 15
symbols

converting to/from
strings, 14

as hash keys, 161
SyncEnumerator class, iteration and, 256
synchronize method, 754
syntax

brackets, 238
catch/throw, 255
do...end, 238

system administration
backups, automation, 848–849
directories

ownership, 849–852
permissions, 849–852

external programs, scripting, 834–835
file deletion, regular expressions

and, 840–842
files

duplicate, 845–848
renaming, in bulk, 842–845

introduction, 833
periodic tasks, 839–840
root, running as, 837–838
users

killing all processes, 852–854
running as another, 837–838

Windows services and, 835–837
system status, Rails, 557–560

T
table events, databases, 492–494
tables, databases, taggable, 495–498
Tar, 433–436
Tar files, 434
tarballs, 434
task method, 723
tasks, periodic, 839–840
telnet, client, 522–525
Tempfile object, 206
templates

ERB, 8–10
partials, 589
Rails, displaying, render and, 567–570

temporary files, writing to, 206

terminal interface, 773
terminal size, 786–788
test suites, 726
Test::Unit, 674
testing programs running interactively, 782
text

color, 788–790
images, 412–415
plain, converting to HTML, 401–402
strings, parsing, 429–431

Textile markup language, 402
thread pool, limiting

multithreading, 763–765
Thread.terminate, 758
threading

deadlock, 770–772
limiting multithreading, 763–765
multithreading, 745, 752–754

threads, terminating, 757–759
ThreadsafeHash object, 636
thumbnail images, 409–412

cropping and, 411
time (see also date and time)
Time class, 87
Time objects, converting to/from DateTime

objects, 110–113
time zones, converting between, 106–109
Time#gmtime method, 90, 106
Time.gm method, 91
Time.local method, 91
Time.now method, 90
timeout library, 121–122
Timeout.timeout method, 121–122
Tk library, GUI creation and, 796–799
TkRoot widget, 797
TMail library, 508–512
to_str method, objects and, 22
today’s date, 90–93
tracebacks, 672–674
transactions, ActiveRecord and, 490–492
tree structure, 248

extracting data, 374–376
Tree#each method, 248
truncating files, 232–233
type safety, 287

U
undefined methods, responding to, 347–351
Unicode characters, 24
unit testing

Rake, 725–727
running, 677–679

872 | Index

unit testing (continued)
web sites, Rails and, 609–612
writing, 674–677

Unix shell commands, capturing output/error
streams, 767–768

Unix, MySQL and, 465
unprintable characters, 11–14
uninstalling gems, 711–712
until loops, 127
upcase method, 20
upgrading gems, 706
UPS shipping costs, 633–635
URI.extract method, 398
URI.parse, 534
URIs, components, 535
URLs

extracting from HTML
documents, 398–401

LinkGrabber, 399
parsing, 534–537

user input
AppleScript and (Mac), 815–816
character by character, 776–778

user interface, line-based input, 774–776
User-Agent HTTP header, 504–506
UserController class, 556
users, killing processes, 852–854

V
valid_xml method, 372
validation

arguments, 367–370
attribute values, 281–283
databases, ActiveRecord, 485–487
email addresses, 33–36
XML documents, 385–387

value method, 388
values

arrays
hash creation, 147–149
rearranging, 129–130

attributes
modifying, 281–283
validating, 281–283

converting, to/from characters, 14
hash keys, duplicate, 170
hashes, default, 162–164

variables
@ prefix, 270
associating, objects and, 269–272
attr_accessor method, 270
attr_reader method, 270

ceiling, 239
class variables, 273
code block arguments and, 244–246
code blocks, outside variables, 246–247
getter methods, 271
instance variables

defining, 271
modules and, 329–330

instance, automatic
initialization, 351–352

readable from outside object, 270
reading, 269
setter methods, 271
sharing between methods, 246
strings

substituting into, 6–8
substituting into existing, 8–10

writable from outside object, 270
writing, 269

versioned filenames, backups and, 220–222
views, Rails, snippets, 588–591
virtual attributes, defining, 283–284

W
wday method, 113
web pages

display, 500–502
processing, 500–502

web services, 616
Amazon search, 617–619
REST-style, 616

Amazon search, 617–619
Flickr searches, 620–622

SOAP, 616
writing clients, 625

XML-RPC, 616
writing clients, 623–625

web site text summary, 402–405
web sites

breakpoints, Rails, 613–615
documentation, Rails, 608–609
HTTPS, connecting to, 502–504
unit testing, Rails and, 609–612

WEBrick, servlets and, 546–551
weight lists, 179–181
while loops, 127
whiteboard, creating, 640–643
whitespace, 21

adding, 22
characters, 21

whitespace in XML documents, 394–395

Index | 873

Windows services, 835–837
creating, 749–752

word wrap, 26–27
word_count method, 18
words, strings, processing words

individually, 17–19
working directory, changing, 235
Writer#image method, 440
Writer#text method, 440
Writer#y method, 440
writing binary files, 227–231
writing to files, 204–206

temporary, 206
WSDL, SOAP calls and, 630–632
wxRuby, GUI creation, 800–803

X
XML

documents
converting to hashes, 382–385
creating, 390–393
encoding, converting, 396–397
encoding, guessing, 395–396
modifying, 390–393
validation, 385–387
whitespace, 394–395

entities, substituting, 388–390
files, parsing into data structure, 374–376
REXML, 619
RSS feeds, aggregator, 405–408
well-formedness, checking, 372–374

XML-RPC, 616
client, writing, 623–625
Rails and, 601–604
SOAP and, 623

xmlrpc4r library, 623
XmlSimple library, 383
XPath, document navigation, 377–380

Y
YAML files, 438
yaml library, 451
YAML, data serialization, 450–453
yield keyword, 242

Z
Zip files, reading/writing, 436–437
zlib library, 433

About the Authors
Lucas Carlson is a professional Ruby programmer who specializes in Rails web
development. He has authored a half-dozen libraries and contributed to many
others, including Rails and RedCloth. He lives in Portland, Oregon and maintains a
web site at http://rufy.com/.

Leonard Richardson has been programming since he was eight years old. Recently,
the quality of his code has improved somewhat. He is responsible for libraries in
many languages, including Rubyful Soup. A California native, he now works in New
York and maintains a web site at http://www.crummy.com/.

Colophon
The animal on the cover of Ruby Cookbook is a side-striped jackal (Canis adustus),
found mostly in central and southern Africa. These jackals avoid the open, prefer-
ring thickly wooded areas on the edge of savannas and forests. They occasionally
make their way into cities. Side-striped jackals are rare but not considered endan-
gered. There are reserves for these jackals at the Serengeti National Park in Tanzania
and at the Akagera National Park in Rwanda.

Side-striped jackals are about 15 inches tall and weigh between 16 and 26 pounds.
This jackal has a light grey coat with a white stripe from shoulder to hip, and a
white-tipped tail. The diet of side-striped jackals consists largely of wild fruits, small
mammals, and insects. They also eat carrion and are adept scavengers; they will
follow a lion or other big cat to a kill. The jackals usually live singly or in pairs, but
they sometimes gather in family units of up to six members. Their lifespan is about
10 to 12 years.

Jackals have been an object of superstition because of their association with carrion
and death, and because of their eerie nocturnal noises: they hoot, yap, and make a
kind of screaming yell. Perhaps because jackals were often found prowling and
hunting the edges of the desert near cemeteries, the ancient Egyptian god of
embalming and gatekeeper of the path of the dead, Anubis, was depicted as a jackal-
headed man. Anubis served as a psychopomp, conducting souls to the underworld,
where he weighed their hearts on a scale to determine whether they would be
admitted to the underworld or cast to the crocodile-headed demon, Ammit.

The cover image is from Lydekker’s Royal History. The cover font is Adobe ITC
Garamond. The text font is Linotype Birka; the heading font is Adobe Myriad
Condensed; and the code font is LucasFont’s TheSans Mono Condensed.

,AUTHOR.COLO.6612 Page 1 Tuesday, June 27, 2006 11:12 AM

,AUTHOR.COLO.6612 Page 2 Tuesday, June 27, 2006 11:12 AM

	Table of Contents
	Preface
	Life Is Short
	Audience
	The Structure of This Book
	How the Code Listings Work
	Installing the Software
	Platform Differences, Version Differences, and�Other�Headaches
	Other Resources
	Conventions Used in This Book
	Using Code Examples
	Comments and Questions
	Acknowledgments

	Strings
	1.1 Building a String from Parts
	Problem
	Solution
	Discussion

	1.2 Substituting Variables into Strings
	Problem
	Solution
	Discussion
	See Also

	1.3 Substituting Variables into an Existing String
	Problem
	Solution
	Discussion
	See Also

	1.4 Reversing a String by Words or Characters
	Problem
	Solution
	Discussion
	See Also

	1.5 Representing Unprintable Characters
	Problem
	Solution
	Discussion

	1.6 Converting Between Characters and Values
	Problem
	Solution
	Discussion
	See Also

	1.7 Converting Between Strings and Symbols
	Problem
	Solution
	Discussion
	See Also

	1.8 Processing a String One Character at a Time
	Problem
	Solution
	Discussion
	See Also

	1.9 Processing a String One Word at a Time
	Problem
	Solution
	Discussion
	See Also

	1.10 Changing the Case of a String
	Problem
	Solution
	Discussion
	See Also

	1.11 Managing Whitespace
	Problem
	Solution
	Discussion

	1.12 Testing Whether an Object Is String-Like
	Problem
	Solution
	Discussion
	See Also

	1.13 Getting the Parts of a String You Want
	Problem
	Solution
	Discussion
	See Also

	1.14 Handling International Encodings
	Problem
	Solution
	Discussion
	See Also

	1.15 Word-Wrapping Lines of Text
	Problem
	Solution
	Discussion
	See Also

	1.16 Generating a Succession of Strings
	Problem
	Solution
	Discussion
	See Also

	1.17 Matching Strings with Regular Expressions
	Problem
	Solution
	Discussion
	See Also

	1.18 Replacing Multiple Patterns in a Single Pass
	Problem
	Solution
	Discussion
	See Also

	1.19 Validating an Email Address
	Problem
	Solution
	Discussion
	Check validity, not correctness

	See Also

	1.20 Classifying Text with a Bayesian Analyzer
	Problem
	Solution
	Discussion
	See Also

	Numbers
	2.1 Parsing a Number from a String
	Problem
	Solution
	Discussion
	See Also

	2.2 Comparing Floating-Point Numbers
	Problem
	Solution
	Discussion
	See Also

	2.3 Representing Numbers to Arbitrary Precision
	Problem
	Solution
	Discussion
	See Also

	2.4 Representing Rational Numbers
	Problem
	Solution
	Discussion
	See Also

	2.5 Generating Random Numbers
	Problem
	Solution
	Discussion
	See Also

	2.6 Converting Between Numeric Bases
	Problem
	Solution
	Discussion
	See Also

	2.7 Taking Logarithms
	Problem
	Solution
	Discussion
	See Also

	2.8 Finding Mean, Median, and Mode
	Problem
	Solution
	Discussion
	The standard deviation

	See Also

	2.9 Converting Between Degrees and Radians
	Problem
	Solution
	Discussion
	See Also

	2.10 Multiplying Matrices
	Problem
	Solution
	Discussion
	See Also

	2.11 Solving a System of Linear Equations
	Problem
	Solution
	Discussion
	See Also

	2.12 Using Complex Numbers
	Problem
	Solution
	Discussion
	See Also

	2.13 Simulating a Subclass of Fixnum
	Problem
	Solution
	Discussion
	See Also

	2.14 Doing Math with Roman Numbers
	Problem
	Solution
	Discussion
	See Also

	2.15 Generating a Sequence of Numbers
	Problem
	Solution
	Discussion
	See Also

	2.16 Generating Prime Numbers
	Problem
	Solution
	Discussion
	Checking primality

	See Also

	2.17 Checking a Credit Card Checksum
	Problem
	Solution
	Discussion
	See Also

	Date and Time
	3.1 Finding Today’s Date
	Problem
	Solution
	Discussion
	See Also

	3.2 Parsing Dates, Precisely or Fuzzily
	Problem
	Solution
	Discussion
	See Also

	3.3 Printing a Date
	Problem
	Solution
	Discussion
	See Also

	3.4 Iterating Over Dates
	Problem
	Solution
	Discussion
	See Also

	3.5 Doing Date Arithmetic
	Problem
	Solution
	Discussion
	See Also

	3.6 Counting the Days Since an Arbitrary Date
	Problem
	Solution
	Discussion
	See Also

	3.7 Converting Between Time Zones
	Problem
	Solution
	Discussion
	See Also

	3.8 Checking Whether Daylight Saving Time Is�in�Effect
	Problem
	Solution
	Discussion
	See Also

	3.9 Converting Between Time and DateTime Objects
	Problem
	Solution
	Discussion
	See Also

	3.10 Finding the Day of the Week
	Problem
	Solution
	Discussion
	See Also

	3.11 Handling Commercial Dates
	Problem
	Solution
	Discussion
	See Also

	3.12 Running a Code Block Periodically
	Problem
	Solution
	Discussion
	See Also

	3.13 Waiting a Certain Amount of Time
	Problem
	Solution
	Discussion
	Waking up early

	See Also

	3.14 Adding a Timeout to a Long-Running Operation
	Problem
	Solution
	Discussion
	See Also

	Arrays
	4.1 Iterating Over an Array
	Problem
	Solution
	Discussion
	See Also

	4.2 Rearranging Values Without Using Temporary Variables
	Problem
	Solution
	Discussion

	4.3 Stripping Duplicate Elements from an Array
	Problem
	Solution
	Discussion

	4.4 Reversing an Array
	Problem
	Solution
	Discussion
	See Also

	4.5 Sorting an Array
	Problem
	Solution
	Discussion
	See Also

	4.6 Ignoring Case When Sorting Strings
	Problem
	Solution
	Discussion
	See Also

	4.7 Making Sure a Sorted Array Stays Sorted
	Problem
	Solution
	Discussion
	See Also

	4.8 Summing the Items of an Array
	Problem
	Solution
	Discussion
	See Also

	4.9 Sorting an Array by Frequency of Appearance
	Problem
	Solution
	Discussion
	See Also

	4.10 Shuffling an Array
	Problem
	Solution
	Discussion
	See Also

	4.11 Getting the N Smallest Items of an Array
	Problem
	Solution
	Discussion
	See Also

	4.12 Building Up a Hash Using Injection
	Problem
	Solution
	Discussion
	References

	4.13 Extracting Portions of Arrays
	Problem
	Solution
	Discussion
	See Also

	4.14 Computing Set Operations on Arrays
	Problem
	Solution
	Discussion
	Complement
	Cartesian product

	See Also

	4.15 Partitioning or Classifying a Set
	Problem
	Solution
	Discussion
	Implementation for arrays

	Hashes
	5.1 Using Symbols as Hash Keys
	Problem
	Solution
	Discussion
	See Also

	5.2 Creating a Hash with a Default Value
	Problem
	Solution
	Discussion
	See Also

	5.3 Adding Elements to a Hash
	Problem
	Solution
	Discussion
	See Also

	5.4 Removing Elements from a Hash
	Problem
	Solution
	Discussion
	See Also

	5.5 Using an Array or Other Modifiable Object as�a�Hash Key
	Problem
	Solution
	Discussion
	See Also

	5.6 Keeping Multiple Values for the Same Hash Key
	Problem
	Solution
	Discussion
	See Also

	5.7 Iterating Over a Hash
	Problem
	Solution
	Discussion
	Using an array as intermediary

	See Also

	5.8 Iterating Over a Hash in Insertion Order
	Problem
	Solution
	Discussion
	See Also

	5.9 Printing a Hash
	Problem
	Solution
	Discussion
	See Also

	5.10 Inverting a Hash
	Problem
	Solution
	Discussion
	See Also

	5.11 Choosing Randomly from a Weighted List
	Problem
	Solution
	Discussion
	See Also

	5.12 Building a Histogram
	Problem
	Solution
	Discussion
	See Also

	5.13 Remapping the Keys and Values of a Hash
	Problem
	Solution
	Discussion
	See Also

	5.14 Extracting Portions of Hashes
	Problem
	Solution
	Discussion
	See Also

	5.15 Searching a Hash with Regular Expressions
	Problem
	Solution
	Discussion

	Files and Directories
	6.1 Checking to See If a File Exists
	Problem
	Solution
	Discussion
	See Also

	6.2 Checking Your Access to a File
	Problem
	Solution
	Discussion
	Setuid and setgid scripts

	See Also

	6.3 Changing the Permissions on a File
	Problem
	Solution
	Discussion
	See Also

	6.4 Seeing When a File Was Last Used
	Problem
	Solution
	Discussion
	See Also

	6.5 Listing a Directory
	Problem
	Solution
	Discussion
	See Also

	6.6 Reading the Contents of a File
	Problem
	Solution
	Discussion
	See Also

	6.7 Writing to a File
	Problem
	Solution
	Discussion
	Buffered I/O

	See Also

	6.8 Writing to a Temporary File
	Problem
	Solution
	Discussion

	6.9 Picking a Random Line from a File
	Problem
	Solution
	Discussion
	See Also

	6.10 Comparing Two Files
	Problem
	Solution
	Discussion
	See Also

	6.11 Performing Random Access on “Read-Once” Input Streams
	Problem
	Solution
	Discussion
	See Also

	6.12 Walking a Directory Tree
	Problem
	Solution
	Discussion
	See Also

	6.13 Locking a File
	Problem
	Solution
	Discussion
	Nonblocking locks

	See Also

	6.14 Backing Up to Versioned Filenames
	Problem
	Solution
	Discussion
	See Also

	6.15 Pretending a String Is a File
	Problem
	Solution
	Discussion
	See Also

	6.16 Redirecting Standard Input or Output
	Problem
	Solution
	Discussion
	See Also

	6.17 Processing a Binary File
	Problem
	Solution
	Discussion
	An MP3 example

	See Also

	6.18 Deleting a File
	Problem
	Solution
	Discussion

	6.19 Truncating a File
	Problem
	Solution
	Discussion

	6.20 Finding the Files You Want
	Problem
	Solution
	Discussion
	See Also

	6.21 Finding and Changing the Current Working Directory
	Problem
	Solution
	Discussion
	See Also

	Code Blocks and Iteration
	7.1 Creating and Invoking a Block
	Problem
	Solution
	Discussion
	See Also

	7.2 Writing a Method That Accepts a Block
	Problem
	Solution
	Discussion
	See Also

	7.3 Binding a Block Argument to a Variable
	Problem
	Solution
	Discussion
	See Also

	7.4 Blocks as Closures: Using Outside Variables Within a Code Block
	Problem
	Solution
	Discussion

	7.5 Writing an Iterator Over a Data Structure
	Problem
	Solution
	Discussion
	See Also

	7.6 Changing the Way an Object Iterates
	Problem
	Discussion
	Discussion
	See Also

	7.7 Writing Block Methods That Classify or Collect
	Problem
	Solution
	Discussion
	See Also

	7.8 Stopping an Iteration
	Problem
	Solution
	Discussion
	See Also

	7.9 Looping Through Multiple Iterables in Parallel
	Problem
	Solution
	Discussion
	See Also

	7.10 Hiding Setup and Cleanup in a Block Method
	Problem
	Solution
	Discussion
	See Also

	7.11 Coupling Systems Loosely with Callbacks
	Problem
	Solution
	Discussion

	Objects and Classes
	8.1 Managing Instance Data
	Problem
	Solution
	Discussion
	See Also

	8.2 Managing Class Data
	Problem
	Solution
	Discussion
	See Also

	8.3 Checking Class or Module Membership
	Problem
	Solution
	Discussion
	See Also

	8.4 Writing an Inherited Class
	Problem
	Solution
	Discussion
	See Also

	8.5 Overloading Methods
	Problem
	Solution
	Discussion
	See Also

	8.6 Validating and Modifying Attribute Values
	Problem
	Solution
	Discussion
	See Also

	8.7 Defining a Virtual Attribute
	Problem
	Solution
	Discussion
	See Also

	8.8 Delegating Method Calls to Another Object
	Problem
	Solution
	Discussion
	See Also

	8.9 Converting and Coercing Objects to�Different�Types
	Problem
	Solution
	Discussion
	Number conversion and coercion
	Other conversion methods

	See Also

	8.10 Getting a Human-Readable Printout of�Any�Object
	Problem
	Solution
	Discussion

	8.11 Accepting or Passing a Variable Number of�Arguments
	Problem
	Solution
	Discussion

	8.12 Simulating Keyword Arguments
	Problem
	Solution
	Discussion
	See Also

	8.13 Calling a Superclass’s Method
	Problem
	Solution
	Discussion

	8.14 Creating an Abstract Method
	Problem
	Solution
	Discussion

	8.15 Freezing an Object to Prevent Changes
	Problem
	Solution
	Discussion
	See Also

	8.16 Making a Copy of an Object
	Problem
	Solution
	Discussion
	See Also

	8.17 Declaring Constants
	Problem
	Solution
	Discussion
	See Also

	8.18 Implementing Class and Singleton Methods
	Problem
	Solution
	Discussion

	8.19 Controlling Access by Making Methods Private
	Problem
	Solution
	Discussion
	See Also

	Modules and Namespaces
	9.1 Simulating Multiple Inheritance with Mixins
	Problem
	Solution
	Discussion
	See Also

	9.2 Extending Specific Objects with Modules
	Problem
	Solution
	Discussion
	See Also

	9.3 Mixing in Class Methods
	Problem
	Solution
	Discussion
	See Also

	9.4 Implementing Enumerable: Write One Method, Get 22 Free
	Problem
	Solution
	Discussion
	See Also

	9.5 Avoiding Naming Collisions with Namespaces
	Problem
	Solution
	Discussion
	See Also

	9.6 Automatically Loading Libraries as Needed
	Problem
	Solution
	Discussion

	9.7 Including Namespaces
	Problem
	Solution
	Discussion
	See Also

	9.8 Initializing Instance Variables Defined by�a�Module
	Problem
	Solution
	Discussion
	See Also

	9.9 Automatically Initializing Mixed-In Modules
	Problem
	Solution
	Discussion
	See Also

	Reflection and Metaprogramming
	10.1 Finding an Object’s Class and Superclass
	Problem
	Solution
	Discussion
	See Also

	10.2 Listing an Object’s Methods
	Problem
	Solution
	Discussion
	See Also

	10.3 Listing Methods Unique to an Object
	Problem
	Solution
	Discussion
	See Also

	10.4 Getting a Reference to a Method
	Problem
	Solution
	Discussion
	See Also

	10.5 Fixing Bugs in Someone Else’s Class
	Problem
	Solutions
	Discussion
	See Also

	10.6 Listening for Changes to a Class
	Problem
	Solution
	Discussion
	See Also

	10.7 Checking Whether an Object Has Necessary Attributes
	Problem
	Solution
	Discussion
	See Also

	10.8 Responding to Calls to Undefined Methods
	Problem
	Solution
	Discussion
	See Also

	10.9 Automatically Initializing Instance Variables
	Problem
	Solution
	Discussion

	10.10 Avoiding Boilerplate Code with�Metaprogramming
	Problem
	Solution
	Discussion
	See Also

	10.11 Metaprogramming with String Evaluations
	Problem
	Solution
	Discussion

	10.12 Evaluating Code in an Earlier Context
	Problem
	Solution
	Discussion
	See Also

	10.13 Undefining a Method
	Problem
	Solution
	Discussion
	See Also

	10.14 Aliasing Methods
	Problem
	Solution
	Discussion
	See Also

	10.15 Doing Aspect-Oriented Programming
	Problem
	Solution
	Discussion
	See Also

	10.16 Enforcing Software Contracts
	Problem
	Solution
	Discussion
	See Also

	XML and HTML
	11.1 Checking XML Well-Formedness
	Problem
	Solution
	Discussion
	See Also

	11.2 Extracting Data from a Document’s Tree Structure
	Problem
	Solution
	Discussion
	See Also

	11.3 Extracting Data While Parsing a Document
	Problem
	Solution
	Discussion
	See Also

	11.4 Navigating a Document with XPath
	Problem
	Solution
	Discussion
	See Also

	11.5 Parsing Invalid Markup
	Problem
	Solution
	Discussion
	See Also

	11.6 Converting an XML Document into a Hash
	Problem
	Solution
	Discussion
	See Also

	11.7 Validating an XML Document
	Problem
	Solution
	Discussion
	See Also

	11.8 Substituting XML Entities
	Problem
	Solution
	Discussion
	See Also

	11.9 Creating and Modifying XML Documents
	Problem
	Solution
	Discussion
	See Also

	11.10 Compressing Whitespace in an XML Document
	Problem
	Solution
	Discussion
	See Also

	11.11 Guessing a Document’s Encoding
	Problem
	Solution
	Discussion
	See Also

	11.12 Converting from One Encoding to Another
	Problem
	Solution
	Discussion
	See Also

	11.13 Extracting All the URLs from an HTML Document
	Problem
	Solution
	Discussion
	See Also

	11.14 Transforming Plain Text to HTML
	Problem
	Solution
	Discussion
	See Also

	11.15 Converting HTML Documents from the Web into�Text
	Problem
	Solution
	Discussion
	See Also

	11.16 A Simple Feed Aggregator
	See Also

	Graphics and Other File Formats
	12.1 Thumbnailing Images
	Problem
	Solution
	Discussion
	See Also

	12.2 Adding Text to an Image
	Problem
	Solution
	Discussion
	See Also

	12.3 Converting One Image Format to Another
	Problem
	Solution
	Discussion
	See Also

	12.4 Graphing Data
	Problem
	Solution
	Discussion
	See Also

	12.5 Adding Graphical Context with Sparklines
	Problem
	Solution
	Discussion
	Sparklines in Rails Views

	See Also

	12.6 Strongly Encrypting Data
	Problem
	Solution
	Discussion
	See Also

	12.7 Parsing Comma-Separated Data
	Problem
	Solution
	Discussion
	See Also

	12.8 Parsing Not-Quite-Comma-Separated Data
	Problem
	Solution
	Discussion
	See Also

	12.9 Generating and Parsing Excel Spreadsheets
	Problem
	Solution
	Discussion
	See Also

	12.10 Compressing and Archiving Files with�Gzip�and�Tar
	Problem
	Solution
	Discussion
	Tar files

	See Also

	12.11 Reading and Writing ZIP Files
	Problem
	Solution
	Discussion
	See Also

	12.12 Reading and Writing Configuration Files
	Problem
	Solution
	Discussion
	See Also

	12.13 Generating PDF Files
	Problem
	Solution
	Discussion
	See Also

	12.14 Representing Data as MIDI Music
	Problem
	Solution
	Discussion
	See Also

	Databases and Persistence
	13.1 Serializing Data with YAML
	Problem
	Solution
	Discussion
	See Also

	13.2 Serializing Data with Marshal
	Problem
	Solution
	Discussion
	See Also

	13.3 Persisting Objects with Madeleine
	Problem
	Solution
	Discussion
	See Also

	13.4 Indexing Unstructured Text with SimpleSearch
	Problem
	Solution
	Discussion
	See Also

	13.5 Indexing Structured Text with Ferret
	Problem
	Discussion
	Discussion
	See Also

	13.6 Using Berkeley DB Databases
	Problem
	Solution
	Discussion
	See Also

	13.7 Controlling MySQL on Unix
	Problem
	Solution
	Discussion
	See Also

	13.8 Finding the Number of Rows Returned by�a�Query
	Problem
	Solution
	Discussion
	See Also

	13.9 Talking Directly to a MySQL Database
	Problem
	Solution
	Discussion
	See Also

	13.10 Talking Directly to a PostgreSQL Database
	Problem
	Solution
	Discussion
	See Also

	13.11 Using Object Relational Mapping with�ActiveRecord
	Problem
	Solution
	Discussion
	See Also

	13.12 Using Object Relational Mapping with Og
	Problem
	Solution
	Discussion
	See Also

	13.13 Building Queries Programmatically
	Problem
	Solution
	Discussion
	See Also

	13.14 Validating Data with ActiveRecord
	Problem
	Solution
	Discussion
	See Also

	13.15 Preventing SQL Injection Attacks
	Problem
	Solution
	Discussion
	See Also

	13.16 Using Transactions in ActiveRecord
	Problem
	Solution
	Discussion
	See Also

	13.17 Adding Hooks to Table Events
	Problem
	Solution
	Discussion
	See Also

	13.18 Adding Taggability with a Database Mixin
	Problem
	Solution
	Discussion
	See Also

	Internet Services
	14.1 Grabbing the Contents of a Web Page
	Problem
	Solution
	Discussion
	See Also

	14.2 Making an HTTPS Web Request
	Problem
	Solution
	Discussion
	See Also

	14.3 Customizing HTTP Request Headers
	Problem
	Solution
	Discussion
	See Also

	14.4 Performing DNS Queries
	Problem
	Solution
	Discussion
	See Also

	14.5 Sending Mail
	Problem
	Solution
	Discussion
	See Also

	14.6 Reading Mail with IMAP
	Problem
	Solution
	Discussion
	Check for new mail
	Retrieve a UID for a particular message
	Reading headers made easy
	Forwarding mail to a cell phone

	See Also

	14.7 Reading Mail with POP3
	Problem
	Solution
	Discussion
	Forwarding mail to a cell phone

	See Also

	14.8 Being an FTP Client
	Problem
	Solution
	Discussion
	See Also

	14.9 Being a Telnet Client
	Problem
	Solution
	Discussion
	See Also

	14.10 Being an SSH Client
	Problem
	Solution
	Discussion
	See Also

	14.11 Copying a File to Another Machine
	Problem
	Solution
	Discussion

	14.12 Being a BitTorrent Client
	Problem
	Solution
	Discussion
	See Also

	14.13 Pinging a Machine
	Problem
	Solution
	Discussion

	14.14 Writing an Internet Server
	Problem
	Solution
	Discussion
	See Also

	14.15 Parsing URLs
	Problem
	Solution
	Discussion
	See Also

	14.16 Writing a CGI Script
	Problem
	Solution
	Discussion
	See Also

	14.17 Setting Cookies and Other HTTP Response Headers
	Problem
	Solution
	Discussion
	See Also

	14.18 Handling File Uploads via CGI
	Problem
	Solution
	Discussion
	See Also

	14.19 Running Servlets with WEBrick
	Problem
	Solution
	Discussion
	See Also

	14.20 A Real-World HTTP Client
	See Also

	Web Development: Ruby on Rails
	15.1 Writing a Simple Rails Application to Show System Status
	Problem
	Solution
	Discussion
	See Also

	15.2 Passing Data from the Controller to the View
	Problem
	Solution
	Discussion

	15.3 Creating a Layout for Your Header and Footer
	Problem
	Solution
	Discussion
	See Also

	15.4 Redirecting to a Different Location
	Problem
	Solution
	Discussion
	See Also

	15.5 Displaying Templates with Render
	Problem
	Solution
	Discussion
	See Also

	15.6 Integrating a Database with Your Rails Application
	Problem
	Solution
	Discussion
	See Also

	15.7 Understanding Pluralization Rules
	Problem
	Solution
	Discussion
	See Also

	15.8 Creating a Login System
	Problem
	Solution
	Discussion
	See Also

	15.9 Storing Hashed User Passwords in the Database
	Problem
	Solution
	Discussion
	See Also

	15.10 Escaping HTML and JavaScript for Display
	Problem
	Solution
	Discussion
	See Also

	15.11 Setting and Retrieving Session Information
	Problem
	Solution
	Discussion
	See Also

	15.12 Setting and Retrieving Cookies
	Problem
	Solution
	Discussion
	See Also

	15.13 Extracting Code into Helper Functions
	Problem
	Solution
	Discussion
	See Also

	15.14 Refactoring the View into Partial Snippets of�Views
	Problem
	Solution
	Discussion
	See Also

	15.15 Adding DHTML Effects with script.aculo.us
	Problem
	Solution
	Discussion
	See Also

	15.16 Generating Forms for Manipulating Model Objects
	Problem
	Solution
	Discussion
	See Also

	15.17 Creating an Ajax Form
	Problem
	Solution
	Discussion

	15.18 Exposing Web Services on Your Web Site
	Problem
	Solution
	Discussion
	See Also

	15.19 Sending Mail with Rails
	Problem
	Solution
	Discussion
	See Also

	15.20 Automatically Sending Error Messages to�Your�Email
	Problem
	Solution
	Discussion
	See Also

	15.21 Documenting Your Web Site
	Problem
	Solution
	Discussion
	See Also

	15.22 Unit Testing Your Web Site
	Problem
	Solution
	Discussion
	See Also

	15.23 Using breakpoint in Your Web Application
	Problem
	Solution
	Discussion
	See Also

	Web Services and Distributed Programming
	16.1 Searching for Books on Amazon
	Problem
	Solution
	Discussion
	See Also

	16.2 Finding Photos on Flickr
	Problem
	Solution
	Discussion
	See Also

	16.3 Writing an XML-RPC Client
	Problem
	Solution
	Discussion
	See Also

	16.4 Writing a SOAP Client
	Problem
	Solution
	Discussion
	See Also

	16.5 Writing a SOAP Server
	Problem
	Solution
	Discussion
	See Also

	16.6 Searching the Web with Google’s SOAP Service
	Problem
	Solution
	Discussion
	See Also

	16.7 Using a WSDL File to Make SOAP Calls Easier
	Problem
	Solution
	Discussion
	See Also

	16.8 Charging a Credit Card
	Problem
	Solution
	Discussion
	See Also

	16.9 Finding the Cost to Ship Packages via�UPS�or�FedEx
	Problem
	Solution
	Discussion
	See Also

	16.10 Sharing a Hash Between Any Number of�Computers
	Problem
	Solution
	Discussion
	See Also

	16.11 Implementing a Distributed Queue
	Problem
	Solution
	Discussion
	See Also

	16.12 Creating a Shared “Whiteboard”
	Problem
	Solution
	Discussion
	See Also

	16.13 Securing DRb Services with Access Control Lists
	Problem
	Solution
	Discussion
	See Also

	16.14 Automatically Discovering DRb Services with�Rinda
	Problem
	Solution
	Discussion
	See Also

	16.15 Proxying Objects That Can’t Be Distributed
	Problem
	Solution
	Discussion
	See Also

	16.16 Storing Data on Distributed RAM with�MemCached
	Problem
	Solution
	Discussion
	See Also

	16.17 Caching Expensive Results with MemCached
	Problem
	Solution
	Discussion
	See Also

	16.18 A Remote-Controlled Jukebox
	See Also

	Testing, Debugging, Optimizing, and Documenting
	17.1 Running Code Only in Debug Mode
	Problem
	Solution
	Discussion
	See Also

	17.2 Raising an Exception
	Problem
	Solution
	Discussion
	See Also

	17.3 Handling an Exception
	Problem
	Solution
	Discussion
	See Also

	17.4 Rerunning After an Exception
	Problem
	Solution
	Discussion
	See Also

	17.5 Adding Logging to Your Application
	Problem
	Solution
	Discussion
	See Also

	17.6 Creating and Understanding Tracebacks
	Problem
	Solution
	Discussion
	See Also

	17.7 Writing Unit Tests
	Problem
	Solution
	Discussion
	See Also

	17.8 Running Unit Tests
	Problem
	Solution
	Discussion
	See Also

	17.9 Testing Code That Uses External Resources
	Problem
	Solution
	Discussion
	See Also

	17.10 Using breakpoint to Inspect and Change the�State of Your Application
	Problem
	Solution
	Discussion

	17.11 Documenting Your Application
	Problem
	Solution
	Discussion
	Other ways of creating RDoc

	See Also

	17.12 Profiling Your Application
	Problem
	Solution
	Discussion
	See Also

	17.13 Benchmarking Competing Solutions
	Problem
	Solution
	Discussion
	See Also

	17.14 Running Multiple Analysis Tools at Once
	Problem
	Solution
	Discussion
	See Also

	17.15 Who’s Calling That Method? A Call Graph Analyzer
	See Also

	Packaging and Distributing Software
	18.1 Finding Libraries by Querying Gem Respositories
	Problem
	Solution
	Discussion
	See Also

	18.2 Installing and Using a Gem
	Problem
	Solution
	Discussion
	See Also

	18.3 Requiring a Specific Version of a Gem
	Problem
	Solution
	Discussion
	See Also

	18.4 Uninstalling a Gem
	Problem
	Solution
	Discussion

	18.5 Reading Documentation for Installed Gems
	Problem
	Solution
	Discussion
	See Also

	18.6 Packaging Your Code as a Gem
	Problem
	Solution
	Discussion
	See Also

	18.7 Distributing Your Gems
	Problem
	Solution
	Discussion
	See Also

	18.8 Installing and Creating Standalone Packages with setup.rb
	Problem
	Solution
	Discussion
	See Also

	Automating Tasks with Rake
	19.1 Automatically Running Unit Tests
	Problem
	Solution
	Discussion
	Test suites

	See Also

	19.2 Automatically Generating Documentation
	Problem
	Solution
	Discussion
	Available attributes

	See Also

	19.3 Cleaning Up Generated Files
	Problem
	Solution
	Discussion
	See Also

	19.4 Automatically Building a Gem
	Problem
	Solution
	Discussion
	See Also

	19.5 Gathering Statistics About Your Code
	Problem
	Solution
	Discussion
	See Also

	19.6 Publishing Your Documentation
	Problem
	Solution
	Discussion
	See Also

	19.7 Running Multiple Tasks in Parallel
	Problem
	Solution
	Discussion
	See Also

	19.8 A Generic Project Rakefile
	See Also

	Multitasking and Multithreading
	20.1 Running a Daemon Process on Unix
	Problem
	Solution
	Discussion
	See Also

	20.2 Creating a Windows Service
	Problem
	Solution
	Discussion
	See Also

	20.3 Doing Two Things at Once with Threads
	Problem
	Solution
	Discussion

	20.4 Synchronizing Access to an Object
	Problem
	Solution
	Discussion
	See Also

	20.5 Terminating a Thread
	Problem
	Solution
	Discussion

	20.6 Running a Code Block on Many Objects Simultaneously
	Problem
	Solution
	Discussion
	See Also

	20.7 Limiting Multithreading with a Thread Pool
	Problem
	Solution
	Discussion
	See Also

	20.8 Driving an External Process with popen
	Problem
	Solution
	Discussion
	See Also

	20.9 Capturing the Output and Error Streams from�a�Unix Shell Command
	Problem
	Solution
	Discussion
	See Also

	20.10 Controlling a Process on Another Machine
	Problem
	Solution
	Discussion
	See Also

	20.11 Avoiding Deadlock
	Problem
	Solution
	Discussion
	See Also

	User Interface
	Resources
	21.1 Getting Input One Line at a Time
	Problem
	Solution
	Discussion
	See Also

	21.2 Getting Input One Character at a Time
	Problem
	Solution
	Discussion
	See Also

	21.3 Parsing Command-Line Arguments
	Problem
	Solution
	Discussion
	See Also

	21.4 Testing Whether a Program Is Running Interactively
	Problem
	Solution
	Discussion

	21.5 Setting Up and Tearing Down a Curses Program
	Problem
	Solution
	Discussion
	See Also

	21.6 Clearing the Screen
	Problem
	Solution
	Discussion

	21.7 Determining Terminal Size
	Problem
	Solution
	Discussion
	See Also

	21.8 Changing Text Color
	Problem
	Solution
	Discussion
	See Also

	21.9 Reading a Password
	Problem
	Solution
	Discussion
	See Also

	21.10 Allowing Input Editing with Readline
	Problem
	Solution
	Discussion
	See Also

	21.11 Making Your Keyboard Lights Blink
	Problem
	Solution
	Discussion
	See Also

	21.12 Creating a GUI Application with Tk
	Problem
	Solution
	Discussion
	See Also

	21.13 Creating a GUI Application with wxRuby
	Problem
	Solution
	Discussion
	See Also

	21.14 Creating a GUI Application with Ruby/GTK
	Problem
	Solution
	Discussion
	See Also

	21.15 Creating a Mac OS X Application with RubyCocoa
	Problem
	Solution
	Discussion
	See Also

	21.16 Using AppleScript to Get User Input
	Problem
	Solution
	Discussion
	See Also

	Extending Ruby with Other Languages
	22.1 Writing a C Extension for Ruby
	Problem
	Solution
	Discussion
	See Also

	22.2 Using a C Library from Ruby
	Problem
	Solution
	Discussion
	See Also

	22.3 Calling a C Library Through SWIG
	Problem
	Solution
	Discussion
	See Also

	22.4 Writing Inline C in Your Ruby Code
	Problem
	Solution
	Discussion
	See Also

	22.5 Using Java Libraries with JRuby
	Problem
	Solution
	Discussion
	Convenience methods

	See Also

	System Administration
	23.1 Scripting an External Program
	Problem
	Solution
	Discussion
	See Also

	23.2 Managing Windows Services
	Problem
	Solution
	Discussion
	See Also

	23.3 Running Code as Another User
	Problem
	Solution
	Discussion
	See Also

	23.4 Running Periodic Tasks Without cron or at
	Problem
	Solution
	Discussion
	See Also

	23.5 Deleting Files That Match a Regular Expression
	Problem
	Solution
	Discussion
	See Also

	23.6 Renaming Files in Bulk
	Problem
	Solution
	Discussion
	See Also

	23.7 Finding Duplicate Files
	Problem
	Solution
	Discussion
	See Also

	23.8 Automating Backups
	Problem
	Solution
	Discussion
	See Also

	23.9 Normalizing Ownership and Permissions in�User�Directories
	Problem
	Solution
	Discussion
	See Also

	23.10 Killing All Processes for a Given User
	Problem
	Solution
	Discussion
	See Also

	Index

