

Ruby Cookbook

Other resources from 0'Reilly

Related titles

oreilly.com

’af!' FOREILLY
NETWORK,

Conferences

O’REILLY N_ETWORK
Safari
Bookshelf.

Ajax Hacks™ Rails Cookbook™

Ajax Design Patterns Ruby on Rails: Up and

Head Rush Ajax Running

oreilly.com is more than a complete catalog of O’Reilly books.

You’ll also find links to news, events, articles, weblogs, sample
chapters, and code examples.

oreillynet.com is the essential portal for developers interested in
open and emerging technologies, including new platforms, pro-
gramming languages, and operating systems.

O’Reilly brings diverse innovators together to nurture the ideas
that spark revolutionary industries. We specialize in document-
ing the latest tools and systems, translating the innovator’s
knowledge into useful skills for those in the trenches. Visit con-
ferences.oreilly.com for our upcoming events.

Safari Bookshelf (safari.oreilly.com) is the premier online refer-
ence library for programmers and IT professionals. Conduct
searches across more than 1,000 books. Subscribers can zero in
on answers to time-critical questions in a matter of seconds.
Read the books on your Bookshelf from cover to cover or sim-
ply flip to the page you need. Try it today for free.

Ruby Cookbook

Lucas Carlson and Leonard Richardson

O’REILLY"

Beijing + Cambridge - Farnham « KéIn - Paris « Sebastopol - Taipei - Tokyo

Ruby Cookbook

by Lucas Carlson and Leonard Richardson

Copyright © 2006 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Mike Loukides Cover Designer: Karen Montgomery
Production Editor: Colleen Gorman Interior Designer: David Futato
Proofreader: Colleen Gorman lllustrators: Robert Romano and Jessamyn Read

Indexer: Johnna VanHoose Dinse

Printing History:
July 2006: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. The Cookbook series designations, Ruby Cookbook, the image of a side-striped
jackal, and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

ISBN: 0-596-52369-6
(M]

For Tess, who sat by me the whole time.

For John and Rael, the best programmers [know.

—Lucas Carlson

For Sumana.

—Leonard Richardson

Preface ...

1. Strings

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10
1.11
1.12
1.13
1.14
1.15
1.16
1.17
1.18
1.19
1.20

2. Numbers

2.1
2.2

Table of Contents

Building a String from Parts

Substituting Variables into Strings
Substituting Variables into an Existing String
Reversing a String by Words or Characters
Representing Unprintable Characters
Converting Between Characters and Values
Converting Between Strings and Symbols
Processing a String One Character at a Time
Processing a String One Word at a Time
Changing the Case of a String

Managing Whitespace

Testing Whether an Object Is String-Like
Getting the Parts of a String You Want
Handling International Encodings
Word-Wrapping Lines of Text

Generating a Succession of Strings
Matching Strings with Regular Expressions
Replacing Multiple Patterns in a Single Pass
Validating an Email Address

Classifying Text with a Bayesian Analyzer

Parsing a Number from a String
Comparing Floating-Point Numbers

vii

2.3 Representing Numbers to Arbitrary Precision 45

2.4 Representing Rational Numbers 48
2.5 Generating Random Numbers 50
2.6 Converting Between Numeric Bases 52
2.7 Taking Logarithms 53
2.8 Finding Mean, Median, and Mode 55
2.9 Converting Between Degrees and Radians 58
2.10 Multiplying Matrices 60
2.11 Solving a System of Linear Equations 64
2.12 Using Complex Numbers 67
2.13 Simulating a Subclass of Fixnum 69
2.14 Doing Math with Roman Numbers 73
2.15 Generating a Sequence of Numbers 78
2.16 Generating Prime Numbers 81
2.17 Checking a Credit Card Checksum 85
3. DateandTime.....l 87
3.1 Finding Today’s Date 90
3.2 Parsing Dates, Precisely or Fuzzily 93
3.3 Printing a Date 96
3.4 Iterating Over Dates 100
3.5 Doing Date Arithmetic 102
3.6 Counting the Days Since an Arbitrary Date 104
3.7 Converting Between Time Zones 106
3.8 Checking Whether Daylight Saving Time Is in Effect 109
3.9 Converting Between Time and DateTime Objects 110
3.10 Finding the Day of the Week 113
3.11 Handling Commercial Dates 115
3.12 Running a Code Block Periodically 116
3.13 Waiting a Certain Amount of Time 118
3.14 Adding a Timeout to a Long-Running Operation 121
A, AIMays ... 123
4.1 Tterating Over an Array 125
4.2 Rearranging Values Without Using Temporary Variables 129
4.3 Stripping Duplicate Elements from an Array 130
4.4 Reversing an Array 132
4.5 Sorting an Array 132
4.6 Ignoring Case When Sorting Strings 134

viii | Table of Contents

4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15

Making Sure a Sorted Array Stays Sorted
Summing the Items of an Array

Sorting an Array by Frequency of Appearance
Shuffling an Array

Getting the N Smallest Items of an Array
Building Up a Hash Using Injection
Extracting Portions of Arrays

Computing Set Operations on Arrays
Partitioning or Classifying a Set

5. Hashes

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15

Using Symbols as Hash Keys

Creating a Hash with a Default Value

Adding Elements to a Hash

Removing Elements from a Hash

Using an Array or Other Modifiable Object as a Hash Key
Keeping Multiple Values for the Same Hash Key
Iterating Over a Hash

[terating Over a Hash in Insertion Order
Printing a Hash

Inverting a Hash

Choosing Randomly from a Weighted List
Building a Histogram

Remapping the Keys and Values of a Hash
Extracting Portions of Hashes

Searching a Hash with Regular Expressions

6. Filesand Directories

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11

Checking to See If a File Exists
Checking Your Access to a File
Changing the Permissions on a File
Seeing When a File Was Last Used
Listing a Directory

Reading the Contents of a File
Writing to a File

Writing to a Temporary File
Picking a Random Line from a File
Comparing Two Files

Performing Random Access on “Read-Once” Input Streams

135
140
141
143
145
147
149
152
155

161
162
164
166
168
170
171
174
175
177
179
181
183
184
185

190
191
193
196
198
201
204
206
207
209
212

Table of Contents

7. Code Blocks and Iteration

8. Objects and Classes

6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20
6.21

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11
8.12
8.13
8.14

Walking a Directory Tree

Locking a File

Backing Up to Versioned Filenames

Pretending a String Is a File

Redirecting Standard Input or Output

Processing a Binary File

Deleting a File

Truncating a File

Finding the Files You Want

Finding and Changing the Current Working Directory

Creating and Invoking a Block
Writing a Method That Accepts a Block
Binding a Block Argument to a Variable

Blocks as Closures: Using Outside Variables Within a Code Block

Writing an Iterator Over a Data Structure
Changing the Way an Object Iterates

Writing Block Methods That Classify or Collect
Stopping an Iteration

Looping Through Multiple Iterables in Parallel
Hiding Setup and Cleanup in a Block Method
Coupling Systems Loosely with Callbacks

Managing Instance Data

Managing Class Data

Checking Class or Module Membership

Writing an Inherited Class

Overloading Methods

Validating and Modifying Attribute Values

Defining a Virtual Attribute

Delegating Method Calls to Another Object
Converting and Coercing Objects to Different Types
Getting a Human-Readable Printout of Any Object
Accepting or Passing a Variable Number of Arguments
Simulating Keyword Arguments

Calling a Superclass’s Method

Creating an Abstract Method

214
217
220
222
225
227
231
232
233
235

240
241
244
246
247
250
253
254
256
260
262

269
272
275
277
279
281
283
284
287
291
293
295
297
299

X

Table of Contents

8.15
8.16
8.17
8.18
8.19

Freezing an Object to Prevent Changes
Making a Copy of an Object

Declaring Constants

Implementing Class and Singleton Methods
Controlling Access by Making Methods Private

9. Modulesand Namespaces

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9

Simulating Multiple Inheritance with Mixins

Extending Specific Objects with Modules

Mixing in Class Methods

Implementing Enumerable: Write One Method, Get 22 Free
Avoiding Naming Collisions with Namespaces
Automatically Loading Libraries as Needed

Including Namespaces

Initializing Instance Variables Defined by a Module
Automatically Initializing Mixed-In Modules

10. Reflection and Metaprogramming

10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8
10.9
10.10
10.11
10.12
10.13
10.14
10.15
10.16

Finding an Object’s Class and Superclass

Listing an Object’s Methods

Listing Methods Unique to an Object

Getting a Reference to a Method

Fixing Bugs in Someone Else’s Class

Listening for Changes to a Class

Checking Whether an Object Has Necessary Attributes
Responding to Calls to Undefined Methods
Automatically Initializing Instance Variables
Avoiding Boilerplate Code with Metaprogramming
Metaprogramming with String Evaluations
Evaluating Code in an Earlier Context

Undefining a Method

Aliasing Methods

Doing Aspect-Oriented Programming

Enforcing Software Contracts

11. XMLand HTML

11.1
11.2
11.3

Checking XML Well-Formedness
Extracting Data from a Document’s Tree Structure
Extracting Data While Parsing a Document

302
304
307
309
311

315
319
321
322
324
326
328
329
330

334
335
337
339
341
343
345
347
351
352
355
357
358
361
364
367

372
374
376

Table of Contents

| xi

11.4 Navigating a Document with XPath 377

11.5 Parsing Invalid Markup 380
11.6 Converting an XML Document into a Hash 382
11.7 Validating an XML Document 385
11.8 Substituting XML Entities 388
11.9 Creating and Modifying XML Documents 390
11.10 Compressing Whitespace in an XML Document 394
11.11 Guessing a Document’s Encoding 395
11.12 Converting from One Encoding to Another 396
11.13 Extracting All the URLs from an HTML Document 398
11.14 Transforming Plain Text to HTML 401
11.15 Converting HTML Documents from the Web into Text 402
11.16 A Simple Feed Aggregator 405
12. Graphicsand OtherFileFormats 409
12.1 Thumbnailing Images 409
12.2 Adding Text to an Image 412
12.3 Converting One Image Format to Another 415
12.4 Graphing Data 417
12.5 Adding Graphical Context with Sparklines 421
12.6 Strongly Encrypting Data 424
12.7 Parsing Comma-Separated Data 426
12.8 Parsing Not-Quite-Comma-Separated Data 429
12.9 Generating and Parsing Excel Spreadsheets 431
12.10 Compressing and Archiving Files with Gzip and Tar 433
12.11 Reading and Writing ZIP Files 436
12.12 Reading and Writing Configuration Files 437
12.13 Generating PDF Files 439
12.14 Representing Data as MIDI Music 443
13. Databasesand Persistencel 447
13.1 Serializing Data with YAML 450
13.2 Serializing Data with Marshal 454
13.3 Persisting Objects with Madeleine 455
13.4 Indexing Unstructured Text with SimpleSearch 458
13.5 Indexing Structured Text with Ferret 459
13.6 Using Berkeley DB Databases 463
13.7 Controlling MySQL on Unix 465
13.8 Finding the Number of Rows Returned by a Query 466

xii | Tableof Contents

13.9
13.10
13.11
13.12
13.13
13.14
13.15
13.16
13.17
13.18

Talking Directly to a MySQL Database

Talking Directly to a PostgreSQL Database

Using Object Relational Mapping with ActiveRecord
Using Object Relational Mapping with Og

Building Queries Programmatically

Validating Data with ActiveRecord

Preventing SQL Injection Attacks

Using Transactions in ActiveRecord

Adding Hooks to Table Events

Adding Taggability with a Database Mixin

14. Internet Services o

14.1
14.2
14.3
14.4
14.5
14.6
14.7
14.8
14.9
14.10
14.11
14.12
14.13
14.14
14.15
14.16
14.17
14.18
14.19
14.20

Grabbing the Contents of a Web Page
Making an HTTPS Web Request
Customizing HTTP Request Headers
Performing DNS Queries

Sending Mail

Reading Mail with IMAP

Reading Mail with POP3

Being an FTP Client

Being a Telnet Client

Being an SSH Client

Copying a File to Another Machine
Being a BitTorrent Client

Pinging a Machine

Writing an Internet Server

Parsing URLs

Writing a CGI Script

Setting Cookies and Other HTTP Response Headers
Handling File Uploads via CGI
Running Servlets with WEBrick

A Real-World HTTP Client

15. Web Development: RubyonRails

15.1
15.2
15.3
15.4
15.5

Writing a Simple Rails Application to Show System Status
Passing Data from the Controller to the View

Creating a Layout for Your Header and Footer
Redirecting to a Different Location

Displaying Templates with Render

468
470
473
477
481
485
487
490
492
495

500
502
504
506
508
512
516
520
522
525
527
529
531
532
534
537
540
543
546
551

557
560
563
565
567

Table of Contents

| xiii

16.

15.6

15.7

15.8

15.9
15.10
15.11
15.12
15.13
15.14
15.15
15.16
15.17
15.18
15.19
15.20
15.21
15.22
15.23

Web Services and Distributed Programming

16.1
16.2
16.3
16.4
16.5
16.6
16.7
16.8
16.9
16.10
16.11
16.12
16.13
16.14
16.15
16.16
16.17
16.18

Integrating a Database with Your Rails Application
Understanding Pluralization Rules

Creating a Login System

Storing Hashed User Passwords in the Database
Escaping HTML and JavaScript for Display

Setting and Retrieving Session Information

Setting and Retrieving Cookies

Extracting Code into Helper Functions
Refactoring the View into Partial Snippets of Views
Adding DHTML Effects with script.aculo.us
Generating Forms for Manipulating Model Objects
Creating an Ajax Form

Exposing Web Services on Your Web Site

Sending Mail with Rails

Automatically Sending Error Messages to Your Email
Documenting Your Web Site

Unit Testing Your Web Site

Using breakpoint in Your Web Application

Searching for Books on Amazon

Finding Photos on Flickr

Writing an XML-RPC Client

Writing a SOAP Client

Writing a SOAP Server

Searching the Web with Google’s SOAP Service
Using a WSDL File to Make SOAP Calls Easier
Charging a Credit Card

Finding the Cost to Ship Packages via UPS or FedEx
Sharing a Hash Between Any Number of Computers
Implementing a Distributed Queue

Creating a Shared “Whiteboard”

Securing DRb Services with Access Control Lists
Automatically Discovering DRb Services with Rinda
Proxying Objects That Can’t Be Distributed

Storing Data on Distributed RAM with MemCached
Caching Expensive Results with MemCached

A Remote-Controlled Jukebox

570
573
575
579
581
582
585
587
588
592
594
598
601
604
606
608
609
613

617
620
623
625
627
628
630
632
633
635
639
640
644
645
647
650
652
655

Xiv

Table of Contents

17. Testing, Debugging, Optimizing, and Documenting

17.1
17.2
17.3
17.4
17.5
17.6
17.7
17.8
17.9
17.10

17.11
17.12
17.13
17.14
17.15

Running Code Only in Debug Mode
Raising an Exception

Handling an Exception

Rerunning After an Exception

Adding Logging to Your Application
Creating and Understanding Tracebacks
Writing Unit Tests

Running Unit Tests

Testing Code That Uses External Resources

Using breakpoint to Inspect and Change the State
of Your Application

Documenting Your Application

Profiling Your Application

Benchmarking Competing Solutions

Running Multiple Analysis Tools at Once

Who’s Calling That Method? A Call Graph Analyzer

18. Packaging and Distributing Software

18.1
18.2
18.3
18.4
18.5
18.6
18.7
18.8

Finding Libraries by Querying Gem Respositories
Installing and Using a Gem

Requiring a Specific Version of a Gem

Uninstalling a Gem

Reading Documentation for Installed Gems

Packaging Your Code as a Gem

Distributing Your Gems

Installing and Creating Standalone Packages with setup.rb

19. Automating TaskswithRake

19.1
19.2
19.3
19.4
19.5
19.6
19.7
19.8

Automatically Running Unit Tests
Automatically Generating Documentation
Cleaning Up Generated Files
Automatically Building a Gem

Gathering Statistics About Your Code
Publishing Your Documentation

Running Multiple Tasks in Parallel

A Generic Project Rakefile

662
664
666
668
669
672
674
677
679

684
686
691
694
696
697

702
705
708
711
712
714
717
719

725
727
729
731
732
735
737
738

Table of Contents

XV

20. Multitasking and Multithreading 745

20.1 Running a Daemon Process on Unix 746
20.2 Creating a Windows Service 749
20.3 Doing Two Things at Once with Threads 752
20.4 Synchronizing Access to an Object 754
20.5 Terminating a Thread 757
20.6 Running a Code Block on Many Objects Simultaneously 760
20.7 Limiting Multithreading with a Thread Pool 763
20.8 Driving an External Process with popen 765
20.9 Capturing the Output and Error Streams
from a Unix Shell Command 767
20.10 Controlling a Process on Another Machine 768
20.11 Avoiding Deadlock 770
21. Userinterfacel 773
21.1 Getting Input One Line at a Time 774
21.2 Getting Input One Character at a Time 776
21.3 Parsing Command-Line Arguments 779
21.4 Testing Whether a Program Is Running Interactively 782
21.5 Setting Up and Tearing Down a Curses Program 782
21.6 Clearing the Screen 785
21.7 Determining Terminal Size 786
21.8 Changing Text Color 788
21.9 Reading a Password 791
21.10 Allowing Input Editing with Readline 792
21.11 Making Your Keyboard Lights Blink 794
21.12 Creating a GUI Application with Tk 796
21.13 Creating a GUI Application with wxRuby 800
21.14 Creating a GUI Application with Ruby/GTK 803
21.15 Creating a Mac OS X Application with RubyCocoa 807
21.16 Using AppleScript to Get User Input 815
22. Extending Ruby with OtherLanguages 817
22.1 Writing a C Extension for Ruby 818
22.2 Using a C Library from Ruby 821
22.3 Calling a C Library Through SWIG 825
22.4 Writing Inline C in Your Ruby Code 827
22.5 Using Java Libraries with JRuby 830

xvi | Table of Contents

23. System Administration, 833
23.1 Scripting an External Program 834

23.2 Managing Windows Services 835

23.3 Running Code as Another User 837

23.4 Running Periodic Tasks Without cron or at 839

23.5 Deleting Files That Match a Regular Expression 840

23.6 Renaming Files in Bulk 842

23.7 Finding Duplicate Files 845

23.8 Automating Backups 848

23.9 Normalizing Ownership and Permissions in User Directories 849

23.10 Killing All Processes for a Given User 852
Index ... 855
Table of Contents | xvii

Preface

Life Is Short

This is a book of recipes: solutions to common problems, copy-and-paste code snip-
pets, explanations, examples, and short tutorials.

This book is meant to save you time. Time, as they say, is money, but a span of time
is also a piece of your life. Our lives are better spent creating new things than fight-
ing our own errors, or trying to solve problems that have already been solved. We
present this book in the hope that the time it saves, distributed across all its readers,
will greatly outweigh the time we spent creating it.

The Ruby programming language is itself a wonderful time-saving tool. It makes you
more productive than other programming languages because you spend more time
making the computer do what you want, and less wrestling with the language. But
there are many ways for a Ruby programmer to spend time without accomplishing
anything, and we’ve encountered them all:

* Time spent writing Ruby implementations of common algorithms.

* Time spent debugging Ruby implementations of common algorithms.

* Time spent discovering and working around Ruby-specific pitfalls.

* Time spent on repetitive tasks (including repetitive programming tasks!) that
could be automated.

* Time spent duplicating work that someone else has already made publicly available.
* Time spent searching for a library that does X.
* Time spent evaluating and deciding between the many libraries that do X.

* Time spent learning how to use a library because of poor or outdated
documentation.

* Time lost staying away from a useful technology because it seems intimidating.

Xix

We, and the many contributors to this book, recall vividly our own wasted hours
and days. We’ve distilled our experiences into this book so that you don’t waste your
time—or at least so you enjoyably waste it on more interesting problems.

Our other goal is to expand your interests. If you come to this book wanting to gen-
erate algorithmic music with Ruby then, yes, Recipe 12.14 will save you time over
starting from scratch. It’s more likely that you’d never considered the possibility until
now. Every recipe in this book was developed and written with these two goals in
mind: to save you time, and to keep your brain active with new ideas.

Audience

This cookbook is aimed at people who know at least a little bit of Ruby, or who
know a fair amount about programming in general. This isn’t a Ruby tutorial (see the
Resources section below for some real tutorials), but if you’re already familiar with a
few other programming languages, you should be able to pick up Ruby by reading
through the first 10 chapters of this book and typing in the code listings as you go.

We’ve included recipes suitable for all skill levels, from those who are just starting
out with Ruby, to experts who need an occasional reference. We focus mainly on
generic programming techniques, but we also cover specific application frameworks
(like Ruby on Rails and GUI libraries) and best practices (like unit testing).

Even if you just plan to use this book as a reference, we recommend that you skim
through it once to get a picture of the problems we solve. This is a big book but it
doesn’t solve every problem. If you pick it up and you can’t find a solution to your
problem, or one that nudges you in the right direction, then you’ve lost time.

If you skim through this book once beforehand, you’ll get a fair idea of the problems
we cover in this book, and you’ll get a better hit rate. You’ll know when this book
can help you; and when you should consult other books, do a web search, ask a
friend, or get help some other way.

The Structure of This Book

Each of this book’s 23 chapters focuses on a kind of programming or a particular
data type. This overview of the chapters should give you a picture of how we divided
up the recipes. Each chapter also has its own, somewhat lengthier introduction,
which gives a more detailed view of its recipes. At the very least, we recommend you
skim the chapter introductions and the table of contents.

We start with six chapters covering Ruby’s built-in data structures.

* Chapter 1, Strings, contains recipes for building, processing, and manipulating
strings of text. We devote a few recipes specifically to regular expressions (Reci-
pes 1.17 through 1.19), but our focus is on Ruby-specific issues, and regular

xx | Preface

expressions are a very general tool. If you haven’t encountered them yet, or just
find them intimidating, we recommend you go through an online tutorial or
Mastering Regular Expressions by Jeffrey Friedl (O’Reilly).

* Chapter 2, Numbers, covers the representation of different types of numbers:
real numbers, complex numbers, arbitrary-precision decimals, and so on. It also
includes Ruby implementations of common mathematical and statistical algo-
rithms, and explains some Ruby quirks you’ll run into if you create your own
numeric types (Recipes 2.13 and 2.14).

* Chapter 3, Date and Time, covers Ruby’s two interfaces for dealing with time: the
one based on the C time library, which may be familiar to you from other program-
ming languages, and the one implemented in pure Ruby, which is more idiomatic.

* Chapter 4, Arrays, introduces the array, Ruby’s simplest compound data type.
Many of an array’s methods are actually methods of the Enumerable mixin; this
means you can apply many of these recipes to hashes and other data types. Some
features of Enumerable are covered in this chapter (Recipes 4.4 and 4.6), and
some are covered in Chapter 7.

* Chapter 5, Hashes, covers the hash, Ruby’s other basic compound data type.
Hashes make it easy to associate objects with names and find them later (hashes
are sometimes called “lookup tables” or “dictionaries,” two telling names). It’s
easy to use hashes along with arrays to build deep and complex data structures.

* Chapter 6, Files and Directories, covers techniques for reading, writing, and
manipulating files. Ruby’s file access interface is based on the standard C file
libraries, so it may look familiar to you. This chapter also covers Ruby’s stan-
dard libraries for searching and manipulating the filesystem; many of these reci-
pes show up again in Chapter 23.

The first six chapters deal with specific algorithmic problems. The next four are
more abstract: they’re about Ruby idiom and philosophy. If you can’t get the Ruby
language itself to do what you want, or you’re having trouble writing Ruby code that
looks the way Ruby “should” look, the recipes in these chapters may help.

* Chapter 7, Code Blocks and Iteration, contains recipes that explore the possibili-
ties of Ruby’s code blocks (also known as closures).

* Chapter 8, Objects and Classes, covers Ruby’s take on object-oriented program-
ming. It contains recipes for writing different types of classes and methods, and a
few recipes that demonstrate capabilities of all Ruby objects (such as freezing
and cloning).

* Chapter 9, Modules and Namespaces, covers Ruby’s modules. These constructs
are used to “mix” new behavior into existing classes and to segregate functional-
ity into different namespaces.

* Chapter 10, Reflection and Metaprogramming, covers techniques for programati-
cally exploring and modifying Ruby class definitions.

Preface | xxi

Chapter 6 covers basic file access, but doesn’t touch much on specific file formats.
We devote three chapters to popular ways of storing data.

Chapter 11, XML and HTML, shows how to handle the most popular data inter-
change formats. The chapter deals mostly with parsing other people’s XML doc-
uments and web pages (but see Recipe 11.9).

Chapter 12, Graphics and Other File Formats, covers data interchange formats
other than XML and HTML, with a special focus on generating and manipulat-
ing graphics.

Chapter 13, Databases and Persistence, covers the best Ruby interfaces to data
storage formats, whether you’re serializing Ruby objects to disk, or storing struc-
tured data in a database. This chapter demonstrates everything from different
ways of serializing data and indexing text, to the Ruby client libraries for popu-
lar SQL databases, to full-blown abstraction layers like ActiveRecord that save
you from having to write SQL at all.

Currently the most popular use of Ruby is in network applications (mostly through
Ruby on Rails). We devote three chapters to different types of applications:

* Chapter 14, Internet Services, kicks off our networking coverage by illustrating a

wide variety of clients and servers written with Ruby libraries.

Chapter 15, Web Development: Ruby on Rails, covers the web application frame-
work that’s been driving so much of Ruby’s recent popularity.

Chapter 16, Web Services and Distributed Programming, covers two techniques for
sharing information between computers during a Ruby program. In order to use a
web service, you make an HTTP request of a program on some other computer,
usually one you don’t control. Ruby’s DRb library lets you share Ruby data struc-
tures between programs running on a set of computers, all of which you control.

We then have three chapters on the auxilliary tasks that surround the main program-

ming work of a project.

* Chapter 17, Testing, Debugging, Optimizing, and Documenting, focuses mainly

on handling exception conditions and creating unit tests for your code. There
are also several recipes on the processes of debugging and optimization.

Chapter 18, Packaging and Distributing Software, mainly deals with Ruby’s Gem
packaging system and the RubyForge server that hosts many gem files. Many
recipes in other chapters require that you install a particular gem, so if you’re not
familiar with gems, we recommend you read Recipe 18.2 in particular. The
chapter also shows you how to create and distribute gems for your own projects.

Chapter 19, Automating Tasks with Rake, covers the most popular Ruby build
tool. With Rake, you can script common tasks like running unit tests or packag-
ing your code as a gem. Though it’s usually used in Ruby projects, it’s a general-
purpose build language that you can use wherever you might use Make.

XXii

| Preface

We close the book with four chapters on miscellaneous topics.

* Chapter 20, Multitasking and Multithreading, shows how to use threads to do
more than one thing at once, and how to use Unix subprocesses to run external
commands.

* Chapter 21, User Interface, covers user interfaces (apart from the web interface,
which was covered in Chapter 15). We discuss the command-line interface,
character-based GUIs with Curses and HighLine, GUI toolkits for various plat-
forms, and more obscure kinds of user interface (Recipe 21.11).

* Chapter 22, Extending Ruby with Other Languages, focuses on hooking up Ruby
to other languages, either for performance or to get access to more libraries.
Most of the chapter focuses on getting access to C libraries, but there is one rec-
ipe about JRuby, the Ruby implementation that runs on the Java Virtual
Machine (Recipe 22.5).

* Chapter 23, System Administration, is full of self-contained programs for doing
administrative tasks, usually using techniques from other chapters. The recipes
have a heavy focus on Unix administration, but there are some resources for
Windows users (including Recipe 23.2), and some cross-platform scripts.

How the Code Listings Work

Learning from a cookbook means performing the recipes. Some of our recipes define
big chunks of Ruby code that you can simply plop into your program and use with-
out really understanding them (Recipe 19.8 is a good example). But most of the reci-
pes demonstrate techniques, and the best way to learn a technique is to practice it.

We wrote the recipes, and their code listings, with this in mind. Most of our listings
act like unit tests for the concepts described in the recipe: they poke at objects and
show you the results.

Now, a Ruby installation comes with an interactive interpreter called irb. Within an
irb session, you can type in lines of Ruby code and see the output immediately. You
don’t have to create a Ruby program file and run it through the interpreter.

Most of our recipes are presented in a form that you can type or copy/paste directly
into an irb session. To study a recipe in depth, we recommend that you start an irb
session and run through the code listings as you read it. You’ll have a deeper under-
standing of the concept if you do it yourself than if you just read about it. Once
you’re done, you can experiment further with the objects you defined while running
the code listings.

Sometimes we want to draw your attention to the expected result of a Ruby expres-
sion. We do this with a Ruby comment containing an ASCII arrow that points to the
expected value of the expression. This is the same arrow irb uses to tell you the value
of every expression you type.

Preface | xxiii

We also use textual comments to explain some pieces of code. Here’s a fragment of
Ruby code that I've formatted with comments as I would in a recipe:

1+ 2 #=>3

On a long line, the expected value goes on a new line:
Math.sqrt(1 + 2 +3 + 4+ 5+ 6+ 7 + 8 + 9 + 10)
=> 7.41619848709566

To display the expected output of a Ruby expression, we use a comment that has no
ASCII arrow, and that always goes on a new line:

puts "This string is self-referential.”
This string is self-referential.

If you type these two snippets of code into irb, ignoring the comments, you can
check back against the text and verify that you got the same results we did:

$ irb

irb(main):001:0> 1 + 2

=> 3

irb(main):002:0> Math.sqrt(1 + 2 + 3 + 4 + 5+ 6 + 7 + 8 + 9 + 10)

=> 7.41619848709566

irb(main):003:0> puts "This string is self-referential."

This string is self-referential.

=> nil
If you’re reading this book in electronic form, you can copy and paste the code frag-
ments into irb. The Ruby interpreter will ignore the comments, but you can use
them to make sure your answers match ours, without having to look back at the text.
(But you should know that typing in the code yourself, at least the first time, is bet-
ter for comprehension.)

$ irb

irb(main):001:0> 1 + 2 #=>3

=>3

irb(main):002:0>

irb(main):003:0* # On a long line, the expected value goes on a new line:

1rb(ma1n) 004:0* Math.sqrt(1 + 2 +3 +4+5+6 + 7 + 8 + 9 + 10)

> 7.41619848709566

1rb(ain):005:0> # => 7.41619848709566

irb(main):006:0*

irb(main):007:0* puts "This string is self-referential."

This string is self-referential.

=> nil

irb(main):008:0> # This string is self-referential.

We don’t cut corners. Most of our recipes demonstrate a complete irb session from
start to finish, and they include any imports or initialization necessary to illustrate the

point we’re trying to make. If you run the code exactly as it is in the recipe, you should
get the same results we did.” This fits in with our philosophy that code samples should

* When a program’s behavior depends on the current time, the random number generator, or the presence of
certain files on disk, you might not get the exact same results we did, but it should be similar.

xxiv | Preface

be unit tests for the underlying concepts. In fact, we tested our code samples like unit
tests, with a Ruby script that parses recipe texts and runs the code listings.

The irb session technique doesn’t always work. Rails recipes have to run within
Rails. Curses recipes take over the screen and don’t play well with irb. So sometimes
we show you standalone files. We present them in the following format:

#!/usr/bin/ruby -w
sample ruby file.rb: A sample file

142

Math.sqrt(1 + 2 + 3+ 4+ 5+ 6+ 7 + 8 + 9 + 10)

puts "This string is self-referential.”
Whenever possible, we’ll also show what you’ll get when you run this program:
maybe a screenshot of a GUI program, or a record of the program’s output when run
from the Unix command line:

$ ruby sample ruby file.rb

This string is self-referential.
Note that the output of sample ruby file.rb looks different from the same code
entered into irb. Here, there’s no trace of the addition and the square root opera-
tions, because they produce no output.

Installing the Software

Ruby comes preinstalled on Mac OS X and most Linux installations. Windows
doesn’t come with Ruby, but it’s easy to get it with the One-Click Installer: see http://
rubyforge.org/projects/rubyinstaller/.

If you’re on a Unix/Linux system and you don’t have Ruby installed (or you want to
upgrade), your distribution’s package system may make a Ruby package available.
On Debian GNU/Linux, it’s available as the package ruby-[version]: for instance,
ruby-1.8 or ruby-1.9. Red Hat Linux calls it ruby; so does the DarwinParts system on
Mac OS X.

If all else fails, download the Ruby source code and compile it yourself. You can get
the Ruby source code through FTP or HTTP by visiting http://www.ruby-lang.org/.

Many of the recipes in this book require that you install third-party libraries in the
form of Ruby gems. In general, we prefer standalone solutions (using only the Ruby
standard library) to solutions that use gems, and gem-based solutions to ones that
require other kinds of third-party software.

If you’re not familiar with gems, consult Chapter 18 as needed. To get started, all
you need to know is that you first download the Rubygems library from http://
rubyforge.org/projects/rubygems/ (choose the latest release from that page). Unpack

Preface | xxv

the tarball or ZIP file, change into the rubygems-[version] directory, and run this
command as the superuser:

$ ruby setup.rb

The Rubygems library is included in the Windows One-Click Installer, so you don’t
have to worry about this step on Windows.

Once you've got the Rubygems library installed, it’s easy to install many other pieces
of Ruby code. When a recipe says something like “Ruby on Rails is available as the
rails gem,” you can issue the following command from the command line (again, as
the superuser):

$ gem install rails --include-dependencies

The RubyGems library will download the rails gem (and any other gems on which it
depends) and automatically install them. You should then be able to run the code in
the recipe, exactly as it appears.

The three most useful gems for new Ruby installations are rails (if you intend to cre-
ate Rails applications) and the two gems provided by the Ruby Facets project:
facets_core and facets_more. The Facets Core library extends the classes of the Ruby
standard library with generally useful methods. The Facets More library adds entirely
new classes and modules. The Ruby Facets homepage (http://facets.rubyforge.org/)
has a complete reference.

Some Ruby libraries (especially older ones) are not packaged as gems. Most of the
nongem libraries mentioned in this book have entries in the Ruby Application
Archive (http://raa.ruby-lang.org/), a directory of Ruby programs and libraries. In
most cases you can download a tarball or ZIP file from the RAA, and install it with
the technique described in Recipe 18.8.

Platform Differences, Version Differences,
and Other Headaches

Except where noted, the recipes describe cross-platform concepts, and the code itself
should run the same way on Windows, Linux, and Mac OS X. Most of the platform
differences and platform-specific recipes show up in the final chapters: Chapter 20,
Chapter 21, and Chapter 23 (but see the introduction to Chapter 6 for a note about
Windows filenames).

We wrote and tested the recipes using Ruby version 1.8.4 and Rails version 1.1.2, the
latest stable versions as of the time of writing. In a couple of places we mention code
changes you should make if you’re running Ruby 1.9 (the latest unstable version as
of the time of writing) or 2.0.

xxvi | Preface

Despite our best efforts, this book may contain unflagged platform-specific code, not
to mention plain old bugs. We apologize for these in advance of their discovery. If
you have problems with a recipe, check out the eratta for this book (see below).

In several recipes in this book, we modify standard Ruby classes like Array to add
new methods (see, for instance, Recipe 1.10, which defines a new method called
Stringttcapitalize first letter). These methods are then available to every
instance of that class in your program. This is a fairly common technique in Ruby:
both Rails and the Facets Core library mentioned above do it. It’s somewhat contro-
versial, though, and it can cause problems (see Recipe 8.4 for an in-depth discus-
sion), so we felt we should mention it here in the Preface, even though it might be
too technical for people who are new to Ruby.

If you don’t want to modify the standard classes, you can put the methods we dem-
onstrate into a subclass, or define them in the Kernel namespace: that is, define
capitalize first letter of string instead of reopening String and defining
capitalize first letter inside it.

Other Resources

If you need to learn Ruby, the standard reference is Programming Ruby: The Prag-
matic Programmer’s Guide by Dave Thomas, Chad Fowler, and Andy Hunt (Prag-
matic Programmers). The first edition is available online in HTML format (http:/
www.rubycentral.com/book/), but it’s out of date. The second edition is much better
and is available as a printed book or as PDF (http://www.pragmaticprogrammer.com/
titles/ruby/). It’s a much better idea to buy the second edition and use the first edi-
tion as a handy reference than to try to read the first edition.

“Why’s (Poignant) Guide to Ruby,” by “why the lucky stiff,” teaches Ruby with stories,
like an English primer. Excellent for creative beginners (http://poignantguide.net/rubyy/).

For Rails, the standard book is Agile Web Development with Rails by Dave Thomas,
David Hansson, Leon Breedt, and Mike Clark (Pragmatic Programmers). There are
also two books like this one that focus exclusively on Rails: Rails Cookbook by Rob
Orsini (O’Reilly) and Rails Recipes by Chad Fowler (Pragmatic Programmers).

Some common Ruby pitfalls are explained in the Ruby FAQ (http://www.rubycentral.
com/faq/, starting in Section 4) and in “Things That Newcomers to Ruby Should
Know” (http://www.glue.umd.edu/~billtj/ruby.html).

Many people come to Ruby already knowing one or more programming languages.
You might find it frustrating to learn Ruby with a big book that thinks it has to teach
you programming and Ruby. For such people, we recommend Ruby creator Yukihiro
Matsumoto’s “Ruby User’s Guide” (http://www.ruby-doc.org/docs/UsersGuide/rg/). 1t’s
a short read, and it focuses on what makes Ruby different from other programming
languages. Its terminology is a little out of date, and it presents its code samples

Preface | xvii

through the obsolete eval.rb program (use irb instead), but it’s the best short intro-
duction we know of.

There are a few articles especially for Java programmers who want to learn Ruby: Jim
Weirich’s “10 Things Every Java Programmer Should Know About Ruby” (http:/
onestepback.org/articles/10things/), Francis Hwang’s blog entry “Coming to Ruby
from Java” (http://fhwang.net/blog/40.html), and Chris Williams’s collection of links,
“From Java to Ruby (With Love)” (http://cwilliams.textdriven.com/pages/java_to_ruby)
Despite the names, C++ programmers will also benefit from much of what’s in these
pieces.

The Ruby Bookshelf (http://books.rubyveil.com/books/Bookshelf/Introduction/Bookshelf)
has produced a number of free books on Ruby, including many of the ones men-
tioned above, in an easy-to-read HTML format.

Finally, Ruby’s built-in modules, classes, and methods come with excellent docu-
mentation (much of it originally written for Programming Ruby). You can read this
documentation online at http://www.ruby-doc.org/core/ and http://www.ruby-doc.org/
stdlib/. You can also look it up on your own Ruby installation by using the ri com-
mand. Pass in the name of a class or method, and ri will give you the corresponding
documentation. Here are a few examples:

$ ri Array # A class
$ ri Array.new # A class method
$ ri Array#compact # An instance method

Conventions Used in This Book

The following typographical conventions are used in this book:

Plain text
Indicates menu titles, menu options, menu buttons, and keyboard accelerators
(such as Alt and Ctrl).
Italic
Indicates new terms, URLs, email addresses, and Unix utilities.
Constant width
Indicates commands, options, switches, variables, attributes, keys, functions,
types, classes, namespaces, methods, modules, properties, parameters, values,
objects, events, event handlers, XML tags, HTML tags, macros, programs, librar-
ies, filenames, pathnames, directories, the contents of files, or the output from
commands.
Constant width bold
Shows commands or other text that should be typed literally by the user.
Constant width italic
Shows text that should be replaced with user-supplied values.

xxviii | Preface

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example
code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Ruby Cookbook, by Lucas Carlson
and Leonard Richardson. Copyright 2006 O’Reilly Media, Inc., 0-596-52369-6.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Comments and Questions

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any addi-
tional information. You can access this page at:

http://www.oreilly.com/catalog/rubyckbk
To comment or ask technical questions about this book, send email to:
bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our web site at:

http://www.oreilly.com

Acknowledgments

First we’d like to thank our editor, Michael Loukides, for his help and for acquiesc-
ing to our use of his name in recipe code samples, even when we turned him into a
talking frog. The production editor, Colleen Gorman, was also very helpful.

Preface | xxix

This book would have taken longer to write and been less interesting without our
contributing authors, who, collectively, wrote over 60 of these recipes. The roll of
names includes: Steve Arniel, Ben Bleything, Antonio Cangiano, Mauro Cicio, Mau-
rice Codik, Thomas Enebo, Pat Eyler, Bill Froelich, Rod Gaither, Ben Giddings,
Michael Granger, James Edward Gray II, Stefan Lang, Kevin Marshall, Matthew
Palmer Chetan Patil, Alun ap Rhisiart, Garrett Rooney, John-Mason Shackelford,
Phil Tomson, and John Wells. They saved us time by lending their knowledge of var-
ious Ruby topics, and they enriched the book with their ideas.

This book would be of appallingly low quality were it not for our technical review-
ers, who spotted dozens of bugs, platform-specific problems, and conceptual errors:
John N. Alegre, Dave Burt, Bill Dolinar, Simen Edvardsen, Shane Emmons, Edward
Faulkner, Dan Fitzpatrick, Bill Guindon, Stephen Hildrey, Meador Inge, Eric Jaco-
boni, Julian I. Kamil, Randy Kramer, Alex LeDonne, Steven Lumos, Keith Rosenb-
latt, Gene Tani, and R Vrajmohan.

Finally, to the programmers and writers of the Ruby community; from the celebri-
ties like Yukihiro Matsumoto, Dave Thomas, Chad Fowler, and “why”, to the hun-
dreds of unsung heroes whose work went into the libraries we demonstrate
throughout the book, and whose skill and patience bring more people into the Ruby
community all the time.

xxx | Preface

CHAPTER 1
Strings

Ruby is a programmer-friendly language. If you are already familiar with object-
oriented programming, Ruby should quickly become second nature. If you’ve strug-
gled with learning object-oriented programming or are not familiar with it, Ruby
should make more sense to you than other object-oriented languages because Ruby’s
methods are consistently named, concise, and generally act the way you expect.

Throughout this book, we demonstrate concepts through interactive Ruby sessions.
Strings are a good place to start because not only are they a useful data type, they’re
easy to create and use. They provide a simple introduction to Ruby, a point of com-
parison between Ruby and other languages you might know, and an approachable
way to introduce important Ruby concepts like duck typing (see Recipe 1.12), open
classes (demonstrated in Recipe 1.10), symbols (Recipe 1.7), and even Ruby gems
(Recipe 1.20).

If you use Mac OS X or a Unix environment with Ruby installed, go to your com-
mand line right now and type irb. If you’re using Windows, you can download and
install the One-Click Installer from http://rubyforge.org/projects/rubyinstaller/, and do
the same from a command prompt (you can also run the fxri program, if that’s more
comfortable for you). You’ve now entered an interactive Ruby shell, and you can fol-
low along with the code samples in most of this book’s recipes.

Strings in Ruby are much like strings in other dynamic languages like Perl, Python
and PHP. They’re not too much different from strings in Java and C. Ruby strings are
dynamic, mutable, and flexible. Get started with strings by typing this line into your
interactive Ruby session:

string = "My first string"
You should see some output that looks like this:

=> "My first string"

You typed in a Ruby expression that created a string “My first string”, and assigned
it to the variable string. The value of that expression is just the new value of string,
which is what your interactive Ruby session printed out on the right side of the

arrow. Throughout this book, we’ll represent this kind of interaction in the follow-
ing form:”
string = "My first string" # => "My first string"

In Ruby, everything that can be assigned to a variable is an object. Here, the variable
string points to an object of class String. That class defines over a hundred built-in
methods: named pieces of code that examine and manipulate the string. We’ll
explore some of these throughout the chapter, and indeed the entire book. Let’s try
out one now: String#length, which returns the number of bytes in a string. Here’s a
Ruby method call:

string.length #=>15
Many programming languages make you put parentheses after a method call:
string.length() # => 15

In Ruby, parentheses are almost always optional. They’re especially optional in this-
case, since we’re not passing any arguments into String#length. If you're passing
arguments into a method, it’s often more readable to enclose the argument list in
parentheses:
string.count 'i' #=>2 # "1" occurs twice.
string.count('i") #=>2
The return value of a method call is itself an object. In the case of String#length, the
return value is the number 15, an instance of the Fixnum class. We can call a method
on this object as well:

string.length.next #=>16

Let’s take a more complicated case: a string that contains non-ASCII characters. This
string contains the French phrase “il était une fois,” encoded as UTF-8:t

french_string = "il \xc3\xa9tait une fois" # => "il \303\251tait une fois"

Many programming languages (notably Java) treat a string as a series of characters.
Ruby treats a string as a series of bytes. The French string contains 14 letters and 3
spaces, so you might think Ruby would say the length of the string is 17. But one of
the letters (the e with acute accent) is represented as two bytes, and that’s what Ruby
counts:

french_string.length #=>18

For more on handling different encodings, see Recipe 1.14 and Recipe 11.12. For
more on this specific problem, see Recipe 1.8

You can represent special characters in strings (like the binary data in the French
string) with string escaping. Ruby does different types of string escaping depending

* Yes, this was covered in the Preface, but not everyone reads the Preface.
T “\xc3\xa9” is a Ruby string representation of the UTF-8 encoding of the Unicode character é.

2 | Chapter1: Strings

on how you create the string. When you enclose a string in double quotes, you can
encode binary data into the string (as in the French example above), and you can
encode newlines with the code “\n”, as in other programming languages:

puts "This string\ncontains a newline"

This string

contains a newline
When you enclose a string in single quotes, the only special codes you can use are “\"’
to get a literal single quote, and “\\” to get a literal backslash:

puts 'it may look like this string contains a newline\nbut it doesn\'t'
it may look like this string contains a newline\nbut it doesn't

puts 'Here is a backslash: \\'

Here is a backslash: \
This is covered in more detail in Recipe 1.5. Also see Recipes 1.2 and 1.3 for more
examples of the more spectacular substitutions double-quoted strings can do.

Another useful way to initialize strings is with the “here documents” style:

long string = <<EOF

Here is a long string

With many paragraphs

EOF

=> "Here is a long string\nWith many paragraphs\n"

puts long_string

Here is a long string

With many paragraphs
Like most of Ruby’s built-in classes, Ruby’s strings define the same functionality in
several different ways, so that you can use the idiom you prefer. Say you want to get
a substring of a larger string (as in Recipe 1.13). If you’re an object-oriented pro-
gramming purist, you can use the String#slice method:

string # => "My first string"

string.slice(3, 5) # => "first"
But if you’re coming from C, and you think of a string as an array of bytes, Ruby can
accommodate you. Selecting a single byte from a string returns that byte as a number.

string.chr + string.chr + string.chr + string.chr + string.chr

=> "first"
And if you come from Python, and you like that language’s slice notation, you can
just as easily chop up the string that way:

string[3, 5] # => "first"

Unlike in most programming languages, Ruby strings are mutable: you can change
them after they are declared. Below we see the difference between the methods
String#upcase and String#upcase!:

string.upcase

=> "MY FIRST STRING"
string # =

"My first string"

Strings | 3

string.upcase! # => "MY FIRST STRING"

string # => "MY FIRST STRING"
This is one of Ruby’s syntactical conventions. “Dangerous” methods (generally those
that modify their object in place) usually have an exclamation mark at the end of
their name. Another syntactical convention is that predicates, methods that return a
true/false value, have a question mark at the end of their name (as in some varieties
of Lisp):

string.empty? # => false

string.include? 'MY’ # => true
This use of English punctuation to provide the programmer with information is an
example of Matz’s design philosophy: that Ruby is a language primarily for humans
to read and write, and secondarily for computers to interpret.

An interactive Ruby session is an indispensable tool for learning and experimenting
with these methods. Again, we encourage you to type the sample code shown in
these recipes into an irb or fxri session, and try to build upon the examples as your
knowledge of Ruby grows.

Here are some extra resources for using strings in Ruby:

* You can get information about any built-in Ruby method with the ri command;
for instance, to see more about the String#upcase! method, issue the command
ri "String#upcase!" from the command line.

* “why the lucky stiff” has written an excellent introduction to installing Ruby,
and using irb and ri: http://poignantguide.net/ruby/expansion-pak-1.html

* For more information about the design philosophy behind Ruby, read an inter-
view with Yukihiro “Matz” Matsumoto, creator of Ruby: http://www.artima.com/
intv/ruby.html

1.1 Building a String from Parts

Problem

You want to iterate over a data structure, building a string from it as you do.

Solution

There are two efficient solutions. The simplest solution is to start with an empty
string, and repeatedly append substrings onto it with the << operator:

hash = { "key1" => "val1", "key2" => "val2" }
string = ""

hash.each { |k,v| string << "#{k} is #{vi\n" }
puts string

keyl is val1

key2 is val2

4 | Chapter1: Strings

This variant of the simple solution is slightly more efficient, but harder to read:
string = ""
hash.each { |k,v| string << k << " is " << v << "\n" }
If your data structure is an array, or easily transformed into an array, it’s usually
more efficient to use Array#join:
puts hash.keys.join("\n") + "\n"
key1
key2

Discussion

In languages like Python and Java, it’s very inefficient to build a string by starting with
an empty string and adding each substring onto the end. In those languages, strings are
immutable, so adding one string to another builds an entirely new string. Doing this
multiple times creates a huge number of intermediary strings, each of which is only
used as a stepping stone to the next string. This wastes time and memory.

In those languages, the most efficient way to build a string is always to put the sub-
strings into an array or another mutable data structure, one that expands dynami-
cally rather than by implicitly creating entirely new objects. Once you’re done
processing the substrings, you get a single string with the equivalent of Ruby’s
Arrayttjoin. In Java, this is the purpose of the StringBuffer class.

In Ruby, though, strings are just as mutable as arrays. Just like arrays, they can
expand as needed, without using much time or memory. The fastest solution to this
problem in Ruby is usually to forgo a holding array and tack the substrings directly
onto a base string. Sometimes using Array#join is faster, but it’s usually pretty close,
and the << construction is generally easier to understand.

If efficiency is important to you, don’t build a new string when you can append items
onto an existing string. Constructs like str << 'a' + 'b' or str << "#{var1} #{var2}"
create new strings that are immediately subsumed into the larger string. This is
exactly what you’re trying to avoid. Use str << varl << ' ' << var2 instead.

On the other hand, you shouldn’t modify strings that aren’t yours. Sometimes safety
requires that you create a new string. When you define a method that takes a string
as an argument, you shouldn’t modify that string by appending other strings onto it,
unless that’s really the point of the method (and unless the method’s name ends in
an exclamation point, so that callers know it modifies objects in place).

Another caveat: Array#join does not work precisely the same way as repeated
appends to a string. Array#fjoin accepts a separator string that it inserts between every
two elements of the array. Unlike a simple string-building iteration over an array, it
will not insert the separator string after the last element in the array. This example
illustrates the difference:

data = ['1', '2", '3']

S =

1.1 Building a StringfromParts | 5

data.each { x| s << x << 'and a '}
s
data.join(' and a ')

=> "1 and a 2 and a 3 and a
> "1 and a 2 and a 3"
To simulate the behavior of Array#join across an iteration, you can use
Enumerabletteach with index and omit the separator on the last index. This only
works if you know how long the Enumerable is going to be:

o o

data.each with_index { |x, i| s << x; s << "|" if i < data.length-1 }

s #=> "1]2]3"

1.2 Substituting Variables into Strings

Problem

You want to create a string that contains a representation of a Ruby variable or
expression.

Solution

Within the string, enclose the variable or expression in curly brackets and prefix it
with a hash character.

number = 5
"The number is #{number}." # => "The number is 5."
"The number is #{5}." # => "The number is 5."

"The number after #{number} is #{number.next}."

=> "The number after 5 is 6."

"The number prior to #{number} is #{number-1}."

=> "The number prior to 5 is 4."

"We're ##{number}!" # => "We're #5!"

Discussion

When you define a string by putting it in double quotes, Ruby scans it for special
substitution codes. The most common case, so common that you might not even
think about it, is that Ruby substitutes a single newline character every time a string
contains slash followed by the letter n (“\n”).

Ruby supports more complex string substitutions as well. Any text kept within the
brackets of the special marker #{} (that is, #{text in here}) is interpreted as a Ruby
expression. The result of that expression is substituted into the string that gets cre-
ated. If the result of the expression is not a string, Ruby calls its to_s method and
uses that instead.

Once such a string is created, it is indistinguishable from a string created without
using the string interpolation feature:

"#{number}" == 's5' # => true

6 | Chapter1: Strings

You can use string interpolation to run even large chunks of Ruby code inside a
string. This extreme example defines a class within a string; its result is the return
value of a method defined in the class. You should never have any reason to do this,
but it shows the power of this feature.
%{Here is #{class InstantClass
def bar
"some text"
end

end
InstantClass.new.bar

1.}

=> "Here is some text."
The code run in string interpolations runs in the same context as any other Ruby code
in the same location. To take the example above, the InstantClass class has now been
defined like any other class, and can be used outside the string that defines it.

If a string interpolation calls a method that has side effects, the side effects are trig-
gered. If a string definition sets a variable, that variable is accessible afterwards. It’s
bad form to rely on this behavior, but you should be aware of it:

"I've set x to #{x = 5; x += 1}." #=> "I've set x to 6."

X #=>06
To avoid triggering string interpolation, escape the hash characters or put the string
in single quotes.

"\#{foo}" # => "\#{foo}"

"#{foo}' # => "\#{foo}"
The “here document” construct is an alternative to the %{} construct, which is some-
times more readable. It lets you define a multiline string that only ends when the
Ruby parser encounters a certain string on a line by iteself:

name = "Mr. Lorum"

email = <<END
Dear #{name},

Unfortunately we cannot process your insurance claim at this
time. This is because we are a bakery, not an insurance company.

Signed,

Nil, Null, and None

Bakers to Her Majesty the Singleton
END

Ruby is pretty flexible about the string you can use to end the “here document”:

<<end_of poem

There once was a man from Peru

Whose limericks stopped on line two

end_of_poem

=> "There once was a man from Peru\nWhose limericks stopped on line two\n"

1.2 Substituting Variables into Strings | 7

See Also

* You can use the technique described in Recipe 1.3, “Substituting Variables into
an Existing String,” to define a template string or object, and substitute in vari-
ables later

1.3 Substituting Variables into an Existing String

Problem

You want to create a string that contains Ruby expressions or variable substitutions,
without actually performing the substitutions. You plan to substitute values into the
string later, possibly multiple times with different values each time.

Solution

There are two good solutions: printf-style strings, and ERB templates.

Ruby supports a printf-style string format like C’s and Python’s. Put printf direc-
tives into a string and it becomes a template. You can interpolate values into it later
using the modulus operator:

template = 'Oceania has always been at war with %s.’
template % 'Eurasia' # => "Oceania has always been at war with Eurasia."
template % 'Eastasia' # => "Oceania has always been at war with Eastasia.”

'To 2 decimal places: %.2f" % Math::PI # => "To 2 decimal places: 3.14"
'Zero-padded: %.5d" % Math::PI # => "Zero-padded: 00003"
An ERB template looks something like JSP or PHP code. Most of it is treated as a
normal string, but certain control sequences are executed as Ruby code. The control
sequence is replaced with either the output of the Ruby code, or the value of its last
expression:

require 'erb’

template = ERB.new %q{Chunky <%= food %>!}
food = "bacon"

template.result(binding) # => "Chunky bacon!"
food = "peanut butter"
template.result(binding) # => "Chunky peanut butter!"

You can omit the call to Kernel#binding if you’re not in an irb session:

puts template.result
Chunky peanut butter!

You may recognize this format from the .rhtml files used by Rails views: they use
ERB behind the scenes.

8 | Chapter1: Strings

Discussion

An ERB template can reference variables like food before they’re defined. When you
call ERB#tresult, or ERB#run, the template is executed according to the current values

of those variables.

Like JSP and PHP code, ERB templates can contain loops and conditionals. Here
more sophisticated template:

template = %q{
<% if problems.empty? %>
Looks like your code is clean!
<% else %>
I found the following possible problems with your code:
<% problems.each do |problem, line| %>
* <%= problem %> on line <%= line %>
<% end %>
<% end %>}.gsub(/™M\s+/, ")
template = ERB.new(template, nil, '<>")

problems = [["Use of is_a? instead of duck typing", 23],
["eval() is usually dangerous", 44]]

template.run(binding)

I found the following possible problems with your code:

* Use of is a? instead of duck typing on line 23

* eval() is usually dangerous on line 44

problems = []
template.run(binding)
Looks like your code is clean!

b
sa

ERB is sophisticated, but neither it nor the printf-style strings look like the simple
Ruby string substitutions described in Recipe 1.2. There’s an alternative. If you use
single quotes instead of double quotes to define a string with substitutions, the sub-

stitutions won’t be activated. You can then use this string as a template with eval:

class String
def substitute(binding=TOPLEVEL BINDING)
eval(%{"#{self}"}, binding)

end
end
template = %q{Chunky #{food}!} # => "Chunky \#{food}!"
food = 'bacon’
template.substitute(binding) # => "Chunky bacon!"
food = 'peanut butter’
template.substitute(binding) # => "Chunky peanut butter!"

You must be very careful when using eval: if you use a variable in the wrong way,
you could give an attacker the ability to run arbitrary Ruby code in your eval

1.3 Substituting Variables into an Existing String

| 9

statement. That won’t happen in this example since any possible value of food gets
stuck into a string definition before it’s interpolated:

food = "#{system("dir")}'
puts template.substitute(binding)
Chunky #{system("dir")}!

See Also

* This recipe gives basic examples of ERB templates; for more complex examples,
see the documentation of the ERB class (http://www.ruby-doc.org/stdlib/libdoc/
erb/rdoc/classes/ERB.html)

* Recipe 1.2, “Substituting Variables into Strings”

* Recipe 10.12, “Evaluating Code in an Earlier Context,” has more about Binding
objects

1.4 Reversing a String by Words or Characters

Problem

The letters (or words) of your string are in the wrong order.

Solution

To create a new string that contains a reversed version of your original string, use the
reverse method. To reverse a string in place, use the reverse! method.

s = ".sdrawkcab si gnirts sihT"

s.reverse # => "This string is backwards."
s # => ".sdrawkcab si gnirts sihT"
s.reverse! # => "This string is backwards."
s # => "This string is backwards."

To reverse the order of the words in a string, split the string into a list of whitespace-
separated words, then join the list back into a string.
s = "order. wrong the in are words These"

s.split(/(\s+)/).reverse!.join("'') # => "These words are in the wrong order."
s.split(/\b/).reverse!.join("'") # => "These words are in the wrong. order"

Discussion

The String#tsplit method takes a regular expression to use as a separator. Each time
the separator matches part of the string, the portion of the string before the separator
goes into a list. split then resumes scanning the rest of the string. The result is a list of
strings found between instances of the separator. The regular expression /(\s+)/
matches one or more whitespace characters; this splits the string on word bound-
aries, which works for us because we want to reverse the order of the words.

10 | Chapter1: Strings

The regular expression \b matches a word boundary. This is not the same as match-
ing whitespace, because it also matches punctuation. Note the difference in punctua-
tion between the two final examples in the Solution.

Because the regular expression /(\s+)/ includes a set of parentheses, the separator
strings themselves are included in the returned list. Therefore, when we join the
strings back together, we’ve preserved whitespace. This example shows the differ-
ence between including the parentheses and omitting them:

"Three little words".split(/\s+/) # => ["Three", "little", "words"]

"Three little words".split(/(\s+)/)
<> ["Three", " ", "little", " ", "words"]

See Also

* Recipe 1.9, “Processing a String One Word at a Time,” has some regular expres-
sions for alternative definitions of “word”

* Recipe 1.11, “Managing Whitespace”
* Recipe 1.17, “Matching Strings with Regular Expressions”

1.5 Representing Unprintable Characters

Problem

You need to make reference to a control character, a strange UTF-8 character, or
some other character that’s not on your keyboard.

Solution

Ruby gives you a number of escaping mechanisms to refer to unprintable characters.
By using one of these mechanisms within a double-quoted string, you can put any
binary character into the string.

You can reference any any binary character by encoding its octal representation into
the format “\000”, or its hexadecimal representation into the format “\x00”.

octal = "\000\001\010\020"
octal.each byte { [x| puts x }
#0

#1

#8

16

hexadecimal = "\x00\x01\x10\x20"
hexadecimal.each byte { |x| puts x }
#0

1

16

32

1.5 Representing Unprintable Characters | 11

This makes it possible to represent UTF-8 characters even when you can’t type them
or display them in your terminal. Try running this program, and then opening the
generated file smiley.html in your web browser:
open('smiley.html', 'wb') do |f|
f << '<meta http-equiv="Content-Type" content="text/html;charset=UTF-8">"
T << "\xe2\x98\xBA"
end
The most common unprintable characters (such as newline) have special mneu-
monic aliases consisting of a backslash and a letter.

"\a" == "\x07" # => true # ASCII 0x07 = BEL (Sound system bell)

"\b" == "\x08" # => true # ASCII 0x08 = BS (Backspace)

"\e" == "\x1b" # => true # ASCII 0x1B = ESC (Escape)

"\f" == "\x0c" # => true # ASCII 0x0C = FF (Form feed)

"\n" == "\x0a" # => true # ASCII OxOA = LF (Newline/line feed)

"\r" == "\x0od" # => true # ASCII oxoD = (R (Carriage return)

"\t" == "\x09" # => true # ASCII 0x09 = HT (Tab/horizontal tab)

"\v" == "\x0b" # => true # ASCII OxOB = VT (Vertical tab)
Discussion

Ruby stores a string as a sequence of bytes. It makes no difference whether those
bytes are printable ASCII characters, binary characters, or a mix of the two.

When Ruby prints out a human-readable string representation of a binary character,
it uses the character’s \xxx octal representation. Characters with special \x mneu-
monics are printed as the mneumonic. Printable characters are output as their print-
able representation, even if another representation was used to create the string.
"\x10\x11\xfe\xff" # => "\020\021\376\377"
"\x48\145\x6c\x6c\157\x0a" # => "Hello\n"
To avoid confusion with the mneumonic characters, a literal backslash in a string is
represented by two backslashes. For instance, the two-character string consisting of a
backslash and the 14th letter of the alphabet is represented as “\\n”.

"\\".size #=>1

"\\" == "\x5c" # => true
"\\n"[0] == ?\\ # => true
"\\n"[1] == ?n # => true
"“\\n" =~ /\n/ # => nil

Ruby also provides special shortcuts for representing keyboard sequences like
Control-C. "\C-_x_" represents the sequence you get by holding down the control
key and hitting the x key, and "\M-_x_" represents the sequence you get by holding
down the Alt (or Meta) key and hitting the x key:

"\C-a\C-b\C-c" # => "\001\002\003"

"\M-a\M-b\M-c" # => "\341\342\343"
Shorthand representations of binary characters can be used whenever Ruby expects a
character. For instance, you can get the decimal byte number of a special character

12 | Chapter1: Strings

by prefixing it with ?, and you can use shorthand representations in regular expres-
sion character ranges.

\C-a #=>1
?\M-z # => 250

contains_control chars = /[\C-a-\C-"]/
'Foobar' =~ contains_control chars # => nil
"Foo\C-zbar" =~ contains_control chars #=>3

contains_upper _chars = /[\x80-\xff]/
'Foobar' =~ contains_upper chars # => nil
"Foo\212bar" =~ contains_upper chars #=>3

Here’s a sinister application that scans logged keystrokes for special characters:

def snoop on_keylog(input)
input.each byte do |b|
case b
when ?\C-c; puts 'Control-C: stopped a process?
when ?\C-z; puts 'Control-Z: suspended a process?'
when ?\n; puts 'Newline.'
when ?\M-x; puts 'Meta-x: using Emacs?
end
end
end

snoop_on_keylog("ls -1tR\003emacsHello\012\370rot13-other-window\012\032")
Control-C: stopped a process?

Newline.

Meta-x: using Emacs?

Newline.

Control-Z: suspended a process?

Special characters are only interpreted in strings delimited by double quotes, or
strings created with %{} or %0{}. They are not interpreted in strings delimited by sin-
gle quotes, or strings created with %q{}. You can take advantage of this feature when
you need to display special characters to the end-user, or create a string containing a
lot of backslashes.

puts "foo\tbar"

foo bar

puts %{foo\tbar}

foo bar

puts %Q{foo\tbar}
foo bar

puts 'foo\tbar'

foo\tbar

puts %q{foo\tbar}
foo\tbar

If you come to Ruby from Python, this feature can take advantage of you, making
you wonder why the special characters in your single-quoted strings aren’t treated as

1.5 Representing Unprintable Characters | 13

special. If you need to create a string with special characters and a lot of embedded
double quotes, use the %{} construct.

1.6 Converting Between Characters and Values

Problem

You want to see the ASCII code for a character, or transform an ASCII code into a
string.

Solution

To see the ASCII code for a specific character as an integer, use the ? operator:
?a # => 97
?1 #=> 33
\n # => 10

To see the integer value of a particular in a string, access it as though it were an ele-
ment of an array:
'a'[0] #
"bad sound'[1] #

> 97
> 97
To see the ASCII character corresponding to a given number, call its #chr method.
This returns a string containing only one character:

97.chr #=>"a"

33.chr #o=> "I

10.chr #=>"\n"

0.chr # => "\ooo"

256.chr # RangeError: 256 out of char range
Discussion

Though not technically an array, a string acts a lot like like an array of Fixnum objects:
one Fixnum for each byte in the string. Accessing a single element of the “array” yields a
Fixnum for the corresponding byte: for textual strings, this is an ASCII code. Calling
String#each_byte lets you iterate over the Fixnum objects that make up a string.

See Also

* Recipe 1.8, “Processing a String One Character at a Time”

1.7 Converting Between Strings and Symbols

Problem

You want to get a string containing the label of a Ruby symbol, or get the Ruby sym-
bol that corresponds to a given string.

14 | Chapter1: Strings

Solution

To turn a symbol into a string, use Symbol#to_s, or Symbol#id2name, for which to_s is
an alias.
ta_symbol.to s #
:AnotherSymbol.id2name #
:"Yet another symbol!".to s #

=> "a_symbol"
> "AnotherSymbol"
> "Yet another symbol!"

You usually reference a symbol by just typing its name. If you’re given a string in
code and need to get the corresponding symbol, you can use String.intern:

:dodecahedron.object id # => 4565262
symbol_name = "dodecahedron"
symbol name.intern

symbol name.intern.object id

=> :dodecahedron

#
=> 4565262

Discussion

A Symbol is about the most basic Ruby object you can create. It’s just a name and an
internal ID. Symbols are useful becase a given symbol name refers to the same object
throughout a Ruby program.

Symbols are often more efficient than strings. Two strings with the same contents are
two different objects (one of the strings might be modified later on, and become dif-
ferent), but for any given name there is only one Symbol object. This can save both
time and memory.

"string".object id # => 1503030

"string".object_id # => 1500330
:symbol.object_id # => 4569358
:symbol.object id # => 4569358

If you have n references to a name, you can keep all those references with only one
symbol, using only one object’s worth of memory. With strings, the same code
would use n different objects, all containing the same data. It’s also faster to com-
pare two symbols than to compare two strings, because Ruby only has to check the
object IDs.

"string1" == "string2" # => false
:symboll == :symbol2 # => false

Finally, to quote Ruby hacker Jim Weirich on when to use a string versus a symbol:

* If the contents (the sequence of characters) of the object are important, use a
string.

* If the identity of the object is important, use a symbol.

See Also

* See Recipe 5.1, “Using Symbols as Hash Keys” for one use of symbols
* Recipe 8.12, “Simulating Keyword Arguments,” has another

1.7 Converting Between Strings and Symbols | 15

* Chapter 10, especially Recipe 10.4, “Getting a Reference to a Method” and Rec-
ipe 10.10, “Avoiding Boilerplate Code with Metaprogramming”

* See http://glu.ttono.us/articles/2005/08/19/understanding-ruby-symbols for a sym-
bol primer

1.8 Processing a String One Character at a Time

Problem

You want to process each character of a string individually.

Solution

If you’re processing an ASCII document, then each byte corresponds to one charac-
ter. Use Stringfeach_byte to yield each byte of a string as a number, which you can
turn into a one-character string:

'foobar'.each byte { |x| puts "#{x} = #{x.chr}" }
102 f
111 (o}
111 o}
#98 =D
#97 =a
#1114 = 1

Use Stringttscan to yield each character of a string as a new one-character string:

"foobar'.scan(/./) { |c| puts c }
.F

Hod o oH OH R
R o oo o

Discussion

Since a string is a sequence of bytes, you might think that the String#each method
would iterate over the sequence, the way Arraytteach does. But Stringtteach is actu-
ally used to split a string on a given record separator (by default, the newline):
"foo\nbar".each { |x| puts x }
foo
bar
The string equivalent of Array#feach method is actually each_byte. A string stores its
characters as a sequence of Fixnum objects, and each_bytes yields that sequence.

Stringf#each_byte is faster than String#scan, so if you’re processing an ASCII file, you
might want to use String#each_byte and convert to a string every number passed
into the code block (as seen in the Solution).

16 | Chapter1: Strings

Stringttscan works by applying a given regular expression to a string, and yielding
each match to the code block you provide. The regular expression /./ matches every
character in the string, in turn.

If you have the $KCODE variable set correctly, then the scan technique will work on
UTF-8 strings as well. This is the simplest way to sneak a notion of “character” into
Ruby’s byte-based strings.

Here’s a Ruby string containing the UTF-8 encoding of the French phrase “ca va”:

french = "\xc3\xa7a va"

« »

Even if your terminal can’t properly display the character “¢”, you can see how the
behavior of String#scan changes when you make the regular expression Unicode-
aware, or set $KCODE so that Ruby handles all strings as UTF-8:

french.scan(/./) { |c| puts c }
#

H o H H
L < QU

french.scan(/./u) { |c| puts c }
#c
#a
#
#v
#a
$KCODE = 'u'
french.scan(/./) { |c| puts c }
#¢
a
#
v
a
Once Ruby knows to treat strings as UTF-8 instead of ASCII, it starts treating the

two bytes representing the “¢” as a single character. Even if you can’t see UTF-8, you

can write programs that handle it correctly.

See Also

* Recipe 11.12, “Converting from One Encoding to Another”

1.9 Processing a String One Word at a Time

Problem

You want to split a piece of text into words, and operate on each word.

1.9 Processing a String One WordataTime | 17

Solution

First decide what you mean by “word.” What separates one word from another?
Only whitespace? Whitespace or punctuation? Is “johnny-come-lately” one word or
three? Build a regular expression that matches a single word according to whatever
definition you need (there are some samples are in the Discussion).

Then pass that regular expression into String#scan. Every word it finds, it will yield
to a code block. The word_count method defined below takes a piece of text and cre-
ates a histogram of word frequencies. Its regular expression considers a “word” to be
a string of Ruby identifier characters: letters, numbers, and underscores.
class String
def word_count
frequencies = Hash.new(0)
downcase.scan(/\w+/) { |word| frequencies[word] += 1 }
return frequencies
end
end

%{Dogs dogs dog dog dogs.}.word count

=> {"dogs"=>3, "dog"=>2}

%{"I have no shame," I said.}.word count

=> {"no"=>1, "shame"=>1, "have"=>1, "said"=>1, "i"=>2}

Discussion

The regular expression /\w+/ is nice and simple, but you can probably do better for
your application’s definition of “word.” You probably don’t consider two words sep-
arated by an underscore to be a single word. Some English words, like “pan-fried”
and “fo’c’sle”, contain embedded punctuation. Here are a few more definitions of
“word” in regular expression form:

Just like /\w+/, but doesn't consider underscore part of a word.
/[0-9A-Za-2]/

Anything that's not whitespace is a word.
/IM\S]+/

Accept dashes and apostrophes as parts of words.
/[-"\w]+/

A pretty good heuristic for matching English words.

/OWwH([=" \w) */
The last one deserves some explanation. It matches embedded punctuation within a
word, but not at the edges. “Work-in-progress” is recognized as a single word, and
“—-never—-" is recognized as the word “never” surrounded by punctuation. This
regular expression can even pick out abbreviations and acronyms such as “Ph.D”
and “U.N.C.L.E.”, though it can’t distinguish between the final period of an acro-
nym and the period that ends a sentence. This means that “E.F.F.” will be recog-
nized as the word “E.F.F” and then a nonword period.

18 | Chapter1: Strings

Let’s rewrite our word count method to use that regular expression. We can’t use the
original implementation, because its code block takes only one argument.
Stringttscan passes its code block one argument for each match group in the regular
expression, and our improved regular expression has two match groups. The first
match group is the one that actually contains the word. So we must rewrite word
count so that its code block takes two arguments, and ignores the second one:
class String
def word_count

frequencies = Hash.new(0)

downcase.scan(/(\w+([-".]\w+)*)/) { |word, ignore| frequencies[word] += 1 }

return frequencies

end
end

%{"That F.B.I. fella--he's quite the man-about-town."}.word count
=> {"quite"=>1, "f.b.i"=>1, "the"=>1, "fella"=>1, "that"=>1,
"man-about-town"=>1, "he's"=>1}

Note that the “\w” character set matches different things depending on the value of
$KCODE. By default, “\w” matches only characters that are part of ASCII words:

french = "il \xc3\xa9tait une fois"
french.word_count
=> {"fois"=>1, "une"=>1, "tait"=>1, "il"=>1}

If you turn on Ruby’s UTF-8 support, the “\w” character set matches more characters:

$KCODE="u"
french.word_count
=> {"fois"=>1, "une"=>1, "était"=>1, "il"=>1}

The regular expression group \b matches a word boundary: that is, the last part of a
word before a piece of whitespace or punctuation. This is useful for String#split
(see Recipe 1.4), but not so useful for String#scan.

See Also
* Recipe 1.4, “Reversing a String by Words or Characters”

* The Facets core library defines a String#feach word method, using the regular
expression /([-"\w]+)/

1.10 Changing the Case of a String

Problem

Your string is in the wrong case, or no particular case at all.

1.10 Changing the CaseofaString | 19

Solution

The String class provides a variety of case-shifting methods:

S
S
S
S
S

= "HELLO, I am not

.upcase
.downcase
.swapcase
.capitalize

Discussion

The upcase and downcase methods force all letters in the string to upper- or lower-
case, respectively. The swapcase method transforms uppercase letters into lowercase
letters and vice versa. The capitalize method makes the first character of the string
uppercase, if it’s a letter, and makes all other letters in the string lowercase.

All four methods have corresponding methods that modify a string in place rather
than creating a new one: upcase!, downcase!, swapcase!, and capitalize!. Assuming
you don’t need the original string, these methods will save memory, especially if the

string is large.

#

#
#
#

here. I WENT to tHe MaRKEt.'

=>

"HELLO, I AM NOT HERE. I WENT TO THE MARKET.
"hello, i am not here. i went to the market.
"hello, i AM NOT HERE. i went TO ThE mArkeT.
"Hello, i am not here. i went to the market.

un_banged = 'Hello world.'
un_banged.upcase
un_banged

#=>
=>

banged = 'Hello world.'
banged.upcase!
banged

To capitalize a string without lowercasing the rest of the string (for instance, because
the string contains proper nouns), you can modify the first character of the string in
place. This corresponds to the capitalize! method. If you want something more like

=>
#=>

"HELLO WORLD."
"Hello world."

"HELLO WORLD."
"HELLO WORLD."

capitalize, you can create a new string out of the old one.

class String
def capitalize first letter
self[0].chr.capitalize + self[1, size]

end

def capitalize first_letter!

unless self[0] == Zc
self[o] = ¢

self
end

= self[0,1].upcase[0])

Return nil if no change was made, like upcase! et al.

end

end

n oun n nn

= 'i told Alice. She remembers now.'

.capitalize first letter

#=>
#=>

.capitalize_first letter!

=> "I told Alice. She remembers now."

"I told Alice. She remembers now."
"i told Alice. She remembers now."

20 |

Chapter 1: Strings

To change the case of specific letters while leaving the rest alone, you can use the tr
or tr! methods, which translate one character into another:

"LOWERCASE ALL VOWELS'.tr('AEIOU', 'aeiou')
=> "LoWeRCaSe allL VoWelS"

"Swap case of ALL VOWELS'.tr('AEIOUaeiou', 'aeiouAEIOU")
=> "SwAp cAstE Of alLL VoWelS"

See Also
* Recipe 1.18, “Replacing Multiple Patterns in a Single Pass”

* The Facets Core library adds a Stringttcamelcase method; it also defines the case
predicates String#lowercase? and String#uppercase?

1.11 Managing Whitespace

Problem

Your string contains too much whitespace, not enough whitespace, or the wrong
kind of whitespace.

Solution

Use strip to remove whitespace from the beginning and end of a string:

" \tWhitespace at beginning and end. \t\n\n".strip
Add whitespace to one or both ends of a string with 1just, rjust, and center:

s = "Some text."

s.center(15)

s.1just(15)

s.rjust(15)
Use the gsub method with a string or regular expression to make more complex
changes, such as to replace one type of whitespace with another.

#Normalize Ruby source code by replacing tabs with spaces
rubyCode.gsub("\t", " ")

#Transform Windows-style newlines to Unix-style newlines
"Line one\n\rLine two\n\r".gsub(\n\r", "\n")
=> "Line one\nLine two\n"

#Transform all runs of whitespace into a single space character
"\nm\1rThis string\t\t\tuses\n all\tsorts\nof whitespace.".gsub(/\s+/," ")

=> " This string uses all sorts of whitespace."

Discussion

What counts as whitespace? Any of these five characters: space, tab (\t), newline (\n),
linefeed (\1), and form feed (\f). The regular expression /\s/ matches any one

1.11 Managing Whitespace | 21

character from that set. The strip method strips any combination of those charac-
ters from the beginning or end of a string.

In rare cases you may need to handle oddball “space” characters like backspace (\b
or \010) and vertical tab (\v or \012). These are not part of the \s character group in a
regular expression, so use a custom character group to catch these characters.

" \bIt's whitespace, Jim,\vbut not as we know it.\n".gsub(/[\s\b\v]+/, " ")

=> "It's whitespace, Jim, but not as we know it."
To remove whitespace from only one end of a string, use the lstrip or rstrip
method:

s =" Whitespace madness! "
s.lstrip # => "Whitespace madness! "
s.rstrip # =>" Whitespace madness!"

The methods for adding whitespace to a string (center, 1just, and rjust) take a sin-
gle argument: the total length of the string they should return, counting the original
string and any added whitespace. If center can’t center a string perfectly, it’ll put one
extra space on the right:

"four".center(5) # => "four
"four".center(6) #

Like most string-modifying methods, strip, gsub, 1strip, and rstrip have counter-
parts strip!, gsub!, Istrip!, and rstrip!, which modify the string in place.

1.12 Testing Whether an Object Is String-Like

Problem

You want to see whether you can treat an object as a string.

Solution

Check whether the object defines the to_str method.
'A string'.respond to? :to str # => true
Exception.new.respond_to? :to_str # => true
4.respond to? :to_str # => false

More generally, check whether the object defines the specific method of String you're

thinking about calling. If the object defines that method, the right thing to do is usu-

ally to go ahead and call the method. This will make your code work in more places:
def join to_successor(s)

raise ArgumentError, 'No successor method!' unless s.respond_to? :succ
return "#{s}#{s.succ}"

end
join to_successor('a") # => "ab"
join to successor(4) #=> "45"

22 | Chapter1: Strings

join_to_successor(4.01)

ArgumentError: No successor method!
If 'd checked s.is a? String instead of s.respond to? :succ, then I wouldn’t have
been able to call join to successor on an integer.

Discussion

This is the simplest example of Ruby’s philosophy of “duck typing:” if an object
quacks like a duck (or acts like a string), just go ahead and treat it as a duck (or a
string). Whenever possible, you should treat objects according to the methods they
define rather than the classes from which they inherit or the modules they include.

Calling obj.is_a? String will tell you whether an object derives from the String
class, but it will overlook objects that, though intended to be used as strings, don’t
inherit from String.

Exceptions, for instance, are essentially strings that have extra information associ-
ated with them. But they don’t subclass class name "String". Code that uses is_a?
String to check for stringness will overlook the essential stringness of Exceptions.
Many add-on Ruby modules define other classes that can act as strings: code that
calls is_a? String will break when given an instance of one of those classes.

The idea to take to heart here is the general rule of duck typing: to see whether pro-
vided data implements a certain method, use respond to? instead of checking the
class. This lets a future user (possibly yourself!) create new classes that offer the same
capability, without being tied down to the preexisting class structure. All you have to
do is make the method names match up.

See Also

* Chapter 8, especially the chapter introduction and Recipe 8.3, “Checking Class
or Module Membership”

1.13 Getting the Parts of a String You Want

Problem

You want only certain pieces of a string.

Solution

To get a substring of a string, call its slice method, or use the array index operator
(that is, call the [] method). Either method accepts a Range describing which charac-
ters to retrieve, or two Fixnum arguments: the index at which to start, and the length
of the substring to be extracted.

s = 'My kingdom for a string!'
s.slice(3,7) # => "kingdom"

1.13 Getting the Parts of a String YouWant | 23

s[3,7] # => "kingdom"
s[0,3] #=> "My "

s[11, 5] # => "for a"

s[11, 17] # => "for a string!"”

To get the first portion of a string that matches a regular expression, pass the regular

expression into slice or []:

s[/.ing/] # => "king"
s[/str.*/] # => "string!"
Discussion

To access a specific byte of a string as a Fixnum, pass only one argument (the zero-
based index of the character) into String#slice or [] method. To access a specific
byte as a single-character string, pass in its index and the number 1.

s.slice(3) # => 107
s[3] # => 107
107.chr # = "k"
s.slice(3,1) #=> "k"
s[3,1] #=> "k"

To count from the end of the string instead of the beginning, use negative indexes:

s.slice(-7,3)
S['7)6]

#
#

>
>

-
"string"

If the length of your proposed substring exceeds the length of the string, slice or []
will return the entire string after that point. This leads to a simple shortcut for get-
ting the rightmost portion of a string:

s[15...s.1length] # => "a string!"

See Also

* Recipe 1.9, “Processing a String One Word at a Time”
* Recipe 1.17, “Matching Strings with Regular Expressions”

1.14 Handling International Encodings

Problem

You need to handle strings that contain nonASCII characters: probably Unicode
characters encoded in UTF-8.

Solution

To use Unicode in Ruby, simply add the following to the beginning of code.

$KCODE="u"
require 'jcode'

24 | Chapter1: Strings

You can also invoke the Ruby interpreter with arguments that do the same thing:

$ ruby -Ku -rjcode
If you use a Unix environment, you can add the arguments to the shebang line of
your Ruby application:

#!/usr/bin/ruby -Ku -rjcode
The jcode library overrides most of the methods of String and makes them capable
of handling multibyte text. The exceptions are String#length, Stringticount, and
String#size, which are not overridden. Instead jcode defines three new methods:
String#jlength, string#jcount, and String#jsize.

Discussion

Consider a UTF-8 string that encodes six Unicode characters: efbca1 (A), efbca2 (B),
and so on up to UTF-8 efbcab (F):

string = "\xef\xbc\xa1" + "\xef\xbc\xa2" + "\xef\xbc\xa3" +
"\xef\xbc\xa4" + "\xef\xbc\xa5" + "\xef\xbc\xab"

The string contains 18 bytes that encode 6 characters:

string.size 8

string.jsize

=>
#=>

1
6

String#count is a method that takes a strong of bytes, and counts how many times
those bytes occurs in the string. Stringttjcount takes a string of characters and counts
how many times those characters occur in the string:

string.count "\xef\xbc\xa2" #=>13

string.jcount "\xef\xbc\xa2" #=>1
Stringttcount treats "\xef\xbc\xa2" as three separate bytes, and counts the number of
times each of those bytes shows up in the string. Stringttjcount treats the same string
as a single character, and looks for that character in the string, finding it only once.

"\xef\xbc\xa2".length #=>3

"\xef\xbc\xa2".jlength #=>1
Apart from these differences, Ruby handles most Unicode behind the scenes. Once
you have your data in UTF-8 format, you really don’t have to worry. Given that
Ruby’s creator Yukihiro Matsumoto is Japanese, it is no wonder that Ruby handles
Unicode so elegantly.

See Also

* If you have text in some other encoding and need to convert it to UTF-8, use the
iconv library, as described in Recipe 11.2, “Extracting Data from a Document’s
Tree Structure”

* There are several online search engines for Unicode characters; two good ones are
at http://isthisthingon.org/unicode/ and http://www.fileformat.info/infolunicode/char/
search.htm

1.14 Handling International Encodings | 25

1.15 Word-Wrapping Lines of Text

Problem

You want to turn a string full of miscellaneous whitespace into a string formatted
with linebreaks at appropriate intervals, so that the text can be displayed in a win-
dow or sent as an email.

Solution

The simplest way to add newlines to a piece of text is to use a regular expression like
the following.

def wrap(s, width=78)
s.gsub(/(.{1,#{width}}) (\s+|\Z)/, "\\1\n")
end

wrap("This text is too short to be wrapped.")
=> "This text is too short to be wrapped.\n"

puts wrap("This text is not too short to be wrapped.", 20)
This text is not too
short to be wrapped.

puts wrap("These ten-character columns are stifling my creativity!", 10)
These

ten-character
columns

are

stifling

my

creativity!

Discussion

The code given in the Solution preserves the original formatting of the string, insert-
ing additional line breaks where necessary. This works well when you want to pre-
serve the existing formatting while squishing everything into a smaller space:

poetry = %g{It is an ancient Mariner,
And he stoppeth one of three.

"By thy long beard and glittering eye,
Now wherefore stopp'st thou me?}

puts wrap(poetry, 20)
It is an ancient

Mariner,

And he stoppeth one
of three.

"By thy long beard
and glittering eye,
Now wherefore

stopp'st thou me?

26 | Chapter1: Strings

But sometimes the existing whitespace isn’t important, and preserving it makes the

result look bad:

prose = %q{I find myself alone these days, more often than not,
watching the rain run down nearby windows. How long has it been
raining? The newspapers now print the total, but no one reads them

anymore. }

puts wrap(prose, 60)

I find myself alone these days, more often than not,
watching the rain run down nearby windows. How long has it

been

raining? The newspapers now print the total, but no one

reads them
anymore.

Looks pretty ragged. In this case, we want to get replace the original newlines with
new ones. The simplest way to do this is to preprocess the string with another regu-

lar expression:

def reformat_wrapped(s, width=78)

s.gsub(/\s+/, " ").gsub(/(.{1,#{width}})([\Z)/, "\\1\n")

end

But regular expressions are relatively slow; it’s much more efficient to tear the string

apart into words and rebuild it:

def reformat wrapped(s, width=78)
lines = []
line = ""
s.split(/\s+/).each do |word|
if line.size + word.size >= width
lines << line
line = word
elsif line.empty?
line = word
else
line <<

<< word
end
end
lines << line if line
return lines.join "\n"
end

puts reformat wrapped(prose, 60)

I find myself alone these days, more often than not,
watching the rain run down nearby windows. How long has it
been raining? The newspapers now print the total, but no one

reads them anymore.

See Also

* The Facets Core library defines String#word wrap and String#word wrap! methods

1.15 Word-Wrapping Lines of Text | 27

1.16 Generating a Succession of Strings

Problem

You want to iterate over a series of alphabetically-increasing strings as you would
over a series of numbers.

Solution

If you know both the start and end points of your succession, you can simply create a
range and use Range#each, as you would for numbers:

aa'..'ag').each { |x| puts x }

aa

ab

ac

ad

ae
af

ag

The method that generates the successor of a given string is String#succ. If you don’t
know the end point of your succession, you can define a generator that uses succ,
and break from the generator when you’re done.

HOoHE HF H R H

def endless string succession(start)
while true
yield start
start = start.succ
end
end

This code iterates over an endless succession of strings, stopping when the last two
letters are the same:
endless string succession('fol') do |x]|
puts x
break if x[-1] == x[-2]
end
fol
fom

fon
foo

Discussion

Imagine a string as an odometer. Each character position of the string has a separate
dial, and the current odometer reading is your string. Each dial always shows the
same kind of character. A dial that starts out showing a number will always show a
number. A character that starts out showing an uppercase letter will always show an
uppercase letter.

28 | Chapter1: Strings

The string succession operation increments the odometer. It moves the rightmost
dial forward one space. This might make the rightmost dial wrap around to the
beginning: if that happens, the dial directly to its left is also moved forward one
space. This might make that dial wrap around to the beginning, and so on:

'89999" . succ # => "90000"

'nzzzz'.succ # => "oaaaa"
When the leftmost dial wraps around, a new dial is added to the left of the odome-
ter. The new dial is always of the same type as the old leftmost dial. If the old left-
most dial showed capital letters, then so will the new leftmost dial:

'Zzz'.succ # => "AAaa"

«,_» «,_»

Lowercase letters wrap around from “z” to “a”. If the first character is a lowercase
letter, then when it wraps around, an “a” is added on to the beginning of the string:

'z'.succ # => "aa"
'aa'.succ #=> "ab"
'zz'.succ # => "aaa"

Uppercase letters work in the same way: “Z” becomes “A”. Lowercase and upper-
case letters never mix.

"AA' . succ #=> "AB"

"AZ'.succ # => "BA"
"ZZ'.succ # => "AAA"

'aZ'.succ # => "bA"
'Zz'.succ # => "AAa"

Digits in a string are treated as numbers, and wrap around from 9 to 0, just like a car
odometer.

'f0019"'.succ # => "f0020"
'f0099"' .succ # => "fopoo"
'99'.succ # => "100"

'9799'.succ # => "10A00"

Characters other than alphanumerics are not incremented unless they are the only
characters in the string. They are simply ignored when calculating the succession,
and reproduced in the same positions in the new string. This lets you build format-
ting into the strings you want to increment.

'10-99' .succ # => "11-00"

When nonalphanumerics are the only characters in the string, they are incremented
according to ASCII order. Eventually an alphanumeric will show up, and the rules
for strings containing alphanumerics will take over.

'a-a'.succ # => "a-b"

'z-z".succ # => "aa-a
'Hello!'.succ # => "Hellp!"

%q{'zz"'}.succ #=> "'aaa""
%q{z'zz"}.succ #=> "aa'aa""
"$$$$" . succ #=> "$$$%"

1.16 Generating a Succession of Strings | 29

s = 'l@-'

13.times { puts s = s.succ }

1@.
1@/
1@0
101
1@2
108
@9
1@10

H o HF H B HE R

There’s no reverse version of Stringttsucc. Matz, and the community as a whole,
think there’s not enough demand for such a method to justify the work necessary to
handle all the edge cases. If you need to iterate over a succession of strings in reverse,
your best bet is to transform the range into an array and iterate over that in reverse:

("a".."e").to_a.reverse each { |x| puts x }

H H K B R
LV T N Q M

See Also

* Recipe 2.15, “Generating a Sequence of Numbers”

* Recipe 3.4, “Iterating Over Dates”

1.17 Matching Strings with Regular Expressions

Problem

You want to know whether or not a string matches a certain pattern.

Solution

You can usually describe the pattern as a regular expression. The =~ operator tests a
string against a regular expression:

string = 'This is a 30-character string.’

if string =~ /([0-9]+)-character/ and $1.to_i == string.length
"Yes, there are #$1 characters in that string.”

end

=> "Yes, there are 30 characters in that string."

You can also use Regexpttmatch:

match = Regexp.compile('([0-9]+)-character').match(string)
if match &8 match[1].to i == string.length

"Yes, there are #{match[1]} characters in that string."
end
=> "Yes, there are 30 characters in that string."

30 | Chapter1: Strings

You can check a string against a series of regular expressions with a case statement:

string = "123"

case string

when /*[a-zA-Z]+$/
"Letters"

when /"°[0-9]+$/
"Numbers"

else
"Mixed"

end

=> "Numbers"

Discussion

Regular expressions are a cryptic but powerful minilanguage for string matching and
substring extraction. They’ve been around for a long time in Unix utilities like sed,
but Perl was the first general-purpose programming language to include them. Now
almost all modern languages have support for Perl-style regular expression.

Ruby provides several ways of initializing regular expressions. The following are all
equivalent and create equivalent Regexp objects:

/something/

Regexp.new("something")

Regexp.compile("something")

%r{something}

The following modifiers are also of note.

Regexp: : IGNORECASE i Makes matches case-insensitive.

Regexp: :MULTILINE m Normally, a regexp matches against a single line of a string. This
will cause a regexp to treat line breaks like any other character.

Regexp: :EXTENDED X This modifier lets you space out your regular expressions with
whitespace and comments, making them more legible.

Here’s how to use these modifiers to create regular expressions:

/something/mxi
Regexp.new('something',

Regexp: :EXTENDED + Regexp::IGNORECASE + Regexp::MULTILINE)
%r{something}mxi

Here’s how the modifiers work:

case_insensitive = /mangy/i

case_insensitive =~ "I'm mangy!" # =>4
case_insensitive =~ "Mangy Jones, at your service." # => 0
multiline = /a.b/m

multiline =~ "banana\nbanana" #=>5
/a.b/ =~ "banana\nbanana" # => nil

1.17 Matching Strings with Regular Expressions | 31

But note:
/a\nb/ =~ "banana\nbanana" # =>

extended = %r{ \ was # Match " was"

\s # Match one whitespace character
a # Match "a" }Ixi
extended =~ "What was Alfred doing here?" #=>
extended =~ "My, that was a yummy mango." #=>
extended =~ "It was\n\n\na fool's errand" #=>

See Also

nil

Mastering Regular Expressions by Jeffrey Friedl (O’Reilly) gives a concise intro-
duction to regular expressions, with many real-world examples

RegExLib.com provides a searchable database of regular expressions (http://

regexlib.com/default.aspx)

A Ruby-centric regular expression tutorial (http://www.regular-expressions.info/

ruby.html)
ri Regexp
Recipe 1.19, “Validating an Email Address”

1.18 Replacing Multiple Patterns in a Single Pass

Problem

You want to perform multiple, simultaneous search-and-replace operations on a
string.

Solution

Use the Regexp.union method to aggregate the regular expressions you want to match
into one big regular expression that matches any of them. Pass the big regular expres-
sion into Stringttgsub, along with a code block that takes a MatchData object. You can
detect which of your search terms actually triggered the regexp match, and choose
the appropriate replacement term:

class String
def mgsub(key value pairs=[].freeze)

regexp_fragments = key value_pairs.collect { |k,v| k }

gsub(Regexp.union(*regexp fragments)) do |match|
key value pairs.detect{|k,v| k =~ match}[1]
end
end
end

Here’s a simple example:

"GO HOME!".mgsub([[/.*G0/i, 'Home'], [/home/i, 'is where the heart is']])

=> "Home is where the heart is!"

32

| Chapter1: Strings

This example replaces all letters with pound signs, and all pound signs with the letter P:

"Here is number #123".mgsub([[/[a-z]/1i, "#'], [/#/, 'P']])
#=> “HHHHEE R P123"

Discussion

The naive solution is to simply string together multiple gsub calls. The following
examples, copied from the solution, show why this is often a bad idea:

"GO HOME!".gsub(/.*G0/i, 'Home').gsub(/home/i, 'is where the heart is')
=> "is where the heart is is where the heart is!"

"Here is number #123".gsub(/[a-z]/1i, "#").gsub(/#/, "P")

=> "PPPP PP PPPPPP P123"
In both cases, our replacement strings turned out to match the search term of a later
gsub call. Our replacement strings were themselves subject to search-and-replace. In
the first example, the conflict can be fixed by reversing the order of the substitu-
tions. The second example shows a case where reversing the order won’t help. You
need to do all your replacements in a single pass over the string.

The mgsub method will take a hash, but it’s safer to pass in an array of key-value
pairs. This is because elements in a hash come out in no particular order, so you
can’t control the order of substution. Here’s a demonstration of the problem:

"between".mgsub(/ee/ => 'AA', /e/ => 'E') # Bad code
=> "bEtwEEn"
"between".mgsub([[/ee/, 'AA'], [/e/, 'E']]) # Good code
=> "bEtwAAn"

In the second example, the first substitution runs first. In the first example, it runs
second (and doesn’t find anything to replace) because of a quirk of Ruby’s Hash
implementation.

If performance is important, you may want to rethink how you implement mgsub.
The more search and replace terms you add to the array of key-value pairs, the longer
it will take, because the detect method performs a set of regular expression checks
for every match found in the string.

See Also
* Recipe 1.17, “Matching Strings with Regular Expressions”

* Confused by the *regexp fragments syntax in the call to Regexp.union? Take a
look at Recipe 8.11, “Accepting or Passing a Variable Number of Arguments”

1.19 Validating an Email Address

Problem

You need to see whether an email address is valid.

1.19 Validating an Email Address | 33

Solution

Here’s a sampling of valid email addresses you might encounter:

test addresses = [#The following are valid addresses according to RFC822.
' joe@example.com', 'joe.bloggs@mail.example.com',
'joe+ruby-mail@example.com', 'joe(and-mary)@example.museum',
'joe@localhost',

Here are some invalid email addresses you might encounter:

Complete the 1list with some invalid addresses

'joe', 'joe@', '@example.com',

' joe@example@example.com',

'joe and mary@example.com']
And here are some regular expressions that do an okay job of filtering out bad email
addresses. The first one does very basic checking for ill-formed addresses:

valid = '[* @]+' # Exclude characters always invalid in email addresses
username_and machine = /*#{valid}@#{valid}$/

test_addresses.collect { |i| i =~ username_and machine }

=> [0, 0, 0, 0, 0, nil, nil, nil, nil, nil]
The second one prohibits the use of local-network addresses like “joe@localhost”.
Most applications should prohibit such addresses.

username_and_machine with_tld = /*#{valid}@#{valid}\.#{valid}$/

test addresses.collect { |i| i =~ username_and machine with t1ld }
=> [0, 0, 0, 0, nil, nil, nil, nil, nil, nil]

However, the odds are good that you’re solving the wrong problem.

Discussion

Most email address validation is done with naive regular expressions like the ones
given above. Unfortunately, these regular expressions are usually written too strictly,
and reject many email addresses. This is a common source of frustration for people
with unusual email addresses like joe(and-mary)@example.museum, or people tak-
ing advantage of special features of email, as in joe+ruby-mail@example.com. The
regular expressions given above err on the opposite side: they’ll accept some syntacti-
cally invalid email addresses, but they won’t reject valid addresses.

Why not give a simple regular expression that always works? Because there’s no such
thing. The definition of the syntax is anything but simple. Perl hacker Paul Warren
defined an 6343-character regular expression for Perl’s Mail::RFC822::Address module,
and even it needs some preprocessing to accept absolutely every allowable email
address. Warren'’s regular expression will work unaltered in Ruby, but if you really want
it, you should go online and find it, because it would be foolish to try to type it in.

34 | Chapter1: Strings

Check validity, not correctness

Even given a regular expression or other tool that infallibly separates the RFC822-
compliant email addresses from the others, you can’t check the validity of an email
address just by looking at it; you can only check its syntactic correctness.

It’s easy to mistype your username or domain name, giving out a perfectly valid email
address that belongs to someone else. It’s trivial for a malicious user to make up a valid
email address that doesn’t work at all—TI did it earlier with the joe@example.com non-
sense. !@ is a valid email address according to the regexp test, but no one in this uni-
verse uses it. You can’t even compare the top-level domain of an address against a
static list, because new top-level domains are always being added. Syntactic validation
of email addresses is an enormous amount of work that only solves a small portion of
the problem.

The only way to be certain that an email address is valid is to successfully send email
to it. The only way to be certain that an email address is the right one is to send email
to it and get the recipient to respond. You need to weigh this additional work (yours
and the user’s) against the real value of a verified email address.

It used to be that a user’s email address was closely associated with their online iden-
tity: most people had only the email address their ISP gave them. Thanks to today’s
free web-based email, that’s no longer true. Email verification no longer works to
prevent duplicate accounts or to stop antisocial behavior online—if it ever did.

This is not to say that it’s never useful to have a user’s working email address, or that
there’s no problem if people mistype their email addresses. To improve the quality of
the addresses your users enter, without rejecting valid addresses, you can do three
things beyond verifying with the permissive regular expressions given above:

1. Use a second naive regular expression, more restrictive than the ones given
above, but don’t prohibit addresses that don’t match. Only use the second regu-
lar expression to advise the user that they may have mistyped their email
address. This is not as useful as it seems, because most typos involve changing
one letter for another, rather than introducing nonalphanumerics where they
don’t belong.

def probably valid?(email)

valid = '[A-Za-z\d.+-]+' #Commonly encountered email address characters
(email =~ /#{valid}@#{valid}\.#{valid}/) ==
end

#These give the correct result.

probably valid? 'joe@example.com' # => true
probably valid? 'joe+ruby-mail@example.com’ # => true
probably valid? 'joe.bloggs@mail.example.com' # => true
probably valid? 'joe@examplecom' # => false
probably valid? 'joe+ruby-mail@example.com’ # => true
probably valid? 'joe@localhost' # => false

1.19 Validating an Email Address | 35

This address is valid, but probably valid thinks it's not.
probably valid? 'joe(and-mary)@example.museum' # => false

This address is valid, but certainly wrong.
probably valid? 'joe@example.cpm' # => true

2. Extract from the alleged email address the hostname (the “example.com” of

joe@example.com), and do a DNS lookup to see if that hostname accepts email.
A hostname that has an MX DNS record is set up to receive mail. The following
code will catch most domain name misspellings, but it won’t catch any user-
name misspellings. It’s also not guaranteed to parse the hostname correctly,
again because of the complexity of RFC822.

require 'resolv’
def valid email host?(email)
hostname = email[(email =~ /@/)+1..email.length]
valid = true
begin
Resolv::DNS.new.getresource(hostname, Resolv::DNS::Resource::IN::MX)
rescue Resolv::ResolvError
valid = false
end
return valid
end

#example.com is a real domain, but it won't accept mail
valid email host?('joe@example.com"') # => false

#lcgkxjvoem.mil is not a real domain.
valid email host?('joe@lcqkxjvoem.mil") # => false

#oreilly.com exists and accepts mail, though there might not be a 'joe' there.
valid email host?('joe@oreilly.com") # => true

3. Send email to the address the user input, and ask the user to verify receipt. For

instance, the email might contain a verification URL for the user to click on. This
is the only way to guarantee that the user entered a valid email address that they
control. See Recipes 14.5 and 15.19 for this.

This is overkill much of the time. It requires that you add special workflow to
your application, it significantly raises the barriers to use of your application,
and it won’t always work. Some users have spam filters that will treat your test
mail as junk, or whitelist email systems that reject all email from unknown
sources. Unless you really need a user’s working email address for your applica-
tion to work, very simple email validation should sulffice.

See Also

* Recipe 14.5, “Sending Mail”
* Recipe 15.19, “Sending Mail with Rails”

* See the amazing colossal regular expression for email addresses at http:/www.ex-

parrot.com/~pdw/Mail-RFC822-Address.html

36

| Chapter1: Strings

1.20 C(lassifying Text with a Bayesian Analyzer

Problem

You want to classify chunks of text by example: an email message is either spam or
not spam, a joke is either funny or not funny, and so on.

Solution

Use Lucas Carlson’s Classifier library, available as the classifier gem. It provides a
naive Bayesian classifier, and one that implements Latent Semantic Indexing, a more
advanced technique.

The interface for the naive Bayesian classifier is very straightforward. You create a
Classifier::Bayes object with some classifications, and train it on text chunks
whose classification is known:

require 'rubygems'
require 'classifier’

classifier = Classifier::Bayes.new('Spam', 'Not spam")

classifier.train_spam 'are you in the market for viagra? we sell viagra'

classifier.train not _spam 'hi there, are we still on for lunch?’
You can then feed the classifier text chunks whose classification is unknown, and
have it guess:

classifier.classify "we sell the cheapest viagra on the market"

=> "Spam"

classifier.classify "lunch sounds great"

=> "Not spam"

Discussion

Bayesian analysis is based on probablities. When you train the classifier, you are giv-
ing it a set of words and the classifier keeps track of how often words show up in
each category. In the simple spam filter built in the Solution, the frequency hash
looks like the @categories variable below:

classifier

=> #<Classifier::Bayes:0xb7cec7c8

i @categories={:"Not spam"=>

{ :lunch=>1, :for=>1, :there=>1,

$"2M=>1, istill=»1, :","=>1 },

:Spam=>

{ :market=>1, :for=>1, :viagra=»>2, :"?"=>1, :sell=>1 }
b

i @total words=12>

These hashes are used to build probability calculations. Note that since we mentioned
the word “viagra” twice in spam messages, there is a 2 in the “Spam” frequency hash

1.20 (lassifying Text with a Bayesian Analyzer | 37

for that word. That makes it more spam-like than other words like “for” (which also
shows up in nonspam) or “sell” (which only shows up once in spam). The classifier can
apply these probabilities to previously unseen text and guess at a classification for it.

The more text you use to train the classifier, the better it becomes at guessing. If you
can verify the classifier’s guesses (for instance, by asking the user whether a message
really was spam), you should use that information to train the classifier with new
data as it comes in.

To save the state of the classifier for later use, you can use Madeleine persistence
(Recipe 13.3), which writes the state of your classifier to your hard drive.

A few more notes about this type of classifier. A Bayesian classifier supports as many
categories as you want. “Spam” and “Not spam” are the most common, but you are
not limited to two. You can also use the generic train method instead of calling
train_[category name]. Here’s a classifier that has three categories and uses the
generic train method:

classifier = Classifier::Bayes.new('Interesting', 'Funny', 'Dramatic')

classifier.train 'Interesting', "Leaving reminds us of what we can part
with and what we can't, then offers us something new to look forward
to, to dream about."

classifier.train 'Funny', "Knock knock. Who's there? Boo boo. Boo boo
who? Don't cry, it is only a joke."

classifier.train 'Dramatic', 'I love you! I hate you! Get out right

now.

classifier.classify 'what!’

=> "Dramatic"

classifier.classify "who's on first?"

=> "Funny"

classifier.classify 'perchance to dream'
=> "Interesting"

It’s also possible to “untrain” a category if you make a mistake or change your mind
later.
classifier.untrain_funny "boo"

classifier.untrain "Dramatic", "out"

See Also

* Recipe 13.3, “Persisting Objects with Madeleine”
* The README file for the Classifier library has an example of an LSI classifier

* Bishop (http://bishop.rubyforge.org/) is another Bayesian classifier, a port of
Python’s Reverend; it’s available as the bishop gem

* http:/len.wikipedia.org/wiki/Naive_Bayes_classifier
* hitp://en.wikipedia.org/wiki/Latent_Semantic_Analysis

38 | Chapter1: Strings

CHAPTER 2
Numbers

Numbers are as fundamental to computing as breath is to human life. Even pro-
grams that have nothing to do with math need to count the items in a data structure,
display average running times, or use numbers as a source of randomness. Ruby
makes it easy to represent numbers, letting you breathe easy and tackle the harder
problems of programming.

An issue that comes up when you’re programming with numbers is that there are
several different implementations of “number,” optimized for different purposes: 32-
bit integers, floating-point numbers, and so on. Ruby tries to hide these details from
you, but it’s important to know about them because they often manifest as mysteri-
ously incorrect calculations.”

The first distinction is between small numbers and large ones. If you’ve used other pro-
gramming languages, you probably know that you must use different data types to
hold small numbers and large numbers (assuming that the language supports large
numbers at all). Ruby has different classes for small numbers (Fixnum) and large num-
bers (Bignum), but you don’t usually have to worry about the difference. When you type
in a number, Ruby sees how big it is and creates an object of the appropriate class.

1000.class # => Fixnum
10000000000. class # => Bignum
(2%%30 - 1).class # => Fixnum
(2**30).class # => Bignum

When you perform arithmetic, Ruby automatically does any needed conversions.
You don’t have to worry about the difference between small and large numbers:t

small = 1000
big = small ** 5 # => 1000000000000000

* See, for instance, the Discussion section of Recipe 2.11, where it’s revealed that Matrix#inverse doesn’t work
correctly on a matrix full of integers. This is because Matrix#inverse uses division, and integer division works
differently from floating-point division.

t Python also has this feature.

39

big.class # => Bignum

smaller = big / big #=>1

smaller.class # => Fixnum
The other major distinction is between whole numbers (integers) and fractional num-
bers. Like all modern programming languages, Ruby implements the IEEE floating-
point standard for representing fractional numbers. If you type a number that
includes a decimal point, Ruby creates a Float object instead of a Fixnum or Bignum:

0.01.class # => Float
1.0.class # => Float
10000000000.00000000001.class # => Float

But floating-point numbers are imprecise (see Recipe 2.2), and they have their own
size limits, so Ruby also provides a class that can represent any number with a finite
decimal expansion (Recipe 2.3). There’s also a class for numbers like two-thirds,
which have an infinite decimal expansion (Recipe 2.4), and a class for complex or
“irrational” numbers (Recipe 2.12).

Every kind of number in Ruby has its own class (Integer, Bignum, Complex, and so
on), which inherits from the Numeric class. All these classes implement the basic
arithmetic operations, and in most cases you can mix and match numbers of differ-
ent types (see Recipe 8.9 for more on how this works). You can reopen these classes
to add new capabilities to numbers (see, for instance, Recipe 2.17), but you can’t
usefully subclass them.

Ruby provides simple ways of generating random numbers (Recipe 2.5) and
sequences of numbers (Recipe 2.15). This chapter also covers some simple mathe-
matical algorithms (Recipes 2.7 and 2.11) and statistics (Recipe 2.8).

2.1 Parsing a Number from a String

Problem

Given a string that contains some representation of a number, you want to get the
corresponding integer or floating-point value.

Solution

Use String#to_i to turn a string into an integer. Use String#to_f to turn a string into
a floating-point number.

'400'.to_i # => 400
'3.14".to_f # => 3.14
'1.602e-19'.to_f # => 1.602e-19

40 | Chapter2: Numbers

Discussion

Unlike Perl and PHP, Ruby does not automatically make a number out of a string
that contains a number. You must explicitly call a conversion method that tells Ruby
how you want the string to be converted.

Along with to_i and to_f, there are other ways to convert strings into numbers. If
you have a string that represents a hex or octal string, you can call Stringt#hex or
String#oct to get the decimal equivalent. This is the same as passing the base of the
number into to_i:

'405".oct # => 261
'405'.to_i(8) # => 261
'405" .hex # => 1029
405" .to_i(16) # => 1029
"fed'.hex # => 4077
"fed'.to 1(16) # => 4077

If to_i, to_f, hex, or oct find a character that can’t be part of the kind of number
they’re looking for, they stop processing the string at that character and return the
number so far. If the string’s first character is unusable, the result is zero.

++
il
v

13
=> 1001
=0
=> 60.5

"13: a baker's dozen".to i

1001 Nights'.to i

'The 1000 Nights and a Night'.to i

'60.50 Misc. Agricultural Equipment'.to f

#

#

#
'$60.50" .to_f # => 0.0
"Feed the monster!'.hex # => 65261
'I fed the monster at Canoga Park Waterslides'.hex # => 0
"0xA2Z" .hex # => 162
'-10".oct #=>-8
'-109'.oct #=> -8
'3.14".to i #=>3

Note especially that last example: the decimal point is just one more character that
stops processing of a string representing an integer.

If you want an exception when a string can’t be completely parsed as a number, use
Integer() or Float():
Integer('1001") # => 1001

Integer('1001 nights')
ArgumentError: invalid value for Integer: "1001 nights"

Float('99.44") # => 99.44

Float('99.44% pure')

ArgumentError: invalid value for Float(): "99.44% pure"
To extract a number from within a larger string, use a regular expression. The
NumberParser class below contains regular expressions for extracting floating-point
strings, as well as decimal, octal, and hexadecimal numbers. Its extract numbers
method uses String#scan to find all the numbers of a certain type in a string.

2.1 ParsingaNumberfromaString | 41

class NumberParser
@@number_regexps = {

tto i => /([+-]?[0-9]+)/,
tto £ => /([+-12([0-9]*\.)?[0-9]+(e[+-]1?[0-9]+)?)/1,
toct => /([+-]?[0-7]+)/,
thex => /\b([+-]?(0x)?[0-9a-f]+)\b/1
#The \b characters prevent every letter A-F in a word from being
#considered a hexadecimal number.

}

def NumberParser.re(parsing_method=:to i)
Te = @@number regexps[parsing method]
raise ArgumentError, "No regexp for #{parsing method.inspect}!" unless re
return re

end

def extract(s, parsing method=:to i)
numbers = []
s.scan(NumberParser.re(parsing method)) do |match|

numbers << match[0].send(parsing_method)

end
numbers

end

end

Here it is in action:

p = NumberParser.new

pw = "Today's numbers are 104 and 391."

NumberParser.re(:to_i).match(pw).captures # => ["104"]
p.extract(pw, :to i) # => [104, 391]
p.extract('The 1000 nights and a night') # => [1000]
p.extract('$60.50", :to f) # => [60.5]
p.extract('I fed the monster at Canoga Park Waterslides', :hex)

#t => [4077]

p.extract('In octal, fifteen is 017.', :oct) # => [15]

p.extract('From 0 to 10e60 in -2.4 seconds', :to f)

=> [0.0, 1.0e+61, -2.4]

p.extract('From 0 to 10e60 in -2.4 seconds')

=> [0, 10, 60, -2, 4]
If you want to extract more than one kind of number from a string, the most reliable
strategy is to stop using regular expressions and start using the scanf module, a free
third-party module that provides a parser similar to C’s scanf function.

require 'scanf’
s = '0x10 4.44 10'.scanf('%x %f %d") # => [16, 4.44, 10]

See Also

* Recipe 2.6, “Converting Between Numeric Bases”

42 | Chapter2: Numbers

* Recipe 8.9, “Converting and Coercing Objects to Different Types”
* The scanf module (http://www.rubyhacker.com/code/scanf/)

2.2 Comparing Floating-Point Numbers

Problem

Floating-point numbers are not suitable for exact comparison. Often, two numbers
that should be equal are actually slightly different. The Ruby interpreter can make
seemingly nonsensical assertions when floating-point numbers are involved:

1.8 + 0.1 #=>1.9
1.8 + 0.1 == 1.9 # => false
1.8 + 0.1 > 1.9 # => true

You want to do comparison operations approximately, so that floating-point num-
bers infintesimally close together can be treated equally.

Solution

You can avoid this problem altogether by using BigDecimal numbers instead of floats
(see Recipe 2.3). BigDecimal numbers are completely precise, and work as well as as
floats for representing numbers that are relatively small and have few decimal places:
everyday numbers like the prices of fruits. But math on BigDecimal numbers is much
slower than math on floats. Databases have native support for floating-point num-
bers, but not for BigDecimals. And floating-point numbers are simpler to create (sim-
ply type 10.2 in an interactive Ruby shell to get a Float object). BigDecimals can’t
totally replace floats, and when you use floats it would be nice not to have to worry
about tiny differences between numbers when doing comparisons.

But how tiny is “tiny"? How large can the difference be between two numbers before
they should stop being considered equal? As numbers get larger, so does the range of
floating-point values that can reasonably be expected to model that number. 1.1 is
probably not “approximately equal” to 1.2, but 1020 + 0.1 is probably “approxi-
mately equal” to 1020 + 0.2.

The best solution is probably to compare the relative magnitudes of large num-
bers, and the absolute magnitudes of small numbers. The following code accepts
both two thresholds: a relative threshold and an absolute threshold. Both default
to Float::EPSILON, the smallest possible difference between two Float objects. Two
floats are considered approximately equal if they are within absolute epsilon of each
other, or if the difference between them is relative_epsilon times the magnitude of the
larger one.
class Float
def approx(other, relative epsilon=Float::EPSILON, epsilon=Float::EPSILON)

difference = other - self
return true if difference.abs <= epsilon

2.2 Comparing Floating-Point Numbers | 43

relative error = (difference / (self > other ? self : other)).abs
return relative error <= relative epsilon

end
end
100.2.approx(100.1 + 0.1) # => true
10e10.approx(10e10+le-5) # => true
100.0.approx(100+1e-5) # => false
Discussion

Floating-point math is very precise but, due to the underlying storage mechanism for
Float objects, not very accurate. Many real numbers (such as 1.9) can’t be represented
by the floating-point standard. Any attempt to represent such a number will end up
using one of the nearby numbers that does have a floating-point representation.

You don’t normally see the difference between 1.9 and 1.8 + 0.1, because Float#to s
rounds them both off to “1.9”. You can see the difference by using Kernel#printf to
display the two expressions to many decimal places:

printf("%.55f", 1.9)

1.8999999999999999111821580299874767661094665527343750000

printf("%.55f", 1.8 + 0.1)

1.9000000000000001332267629550187848508358001708984375000
Both numbers straddle 1.9 from opposite ends, unable to accurately represent the
number they should both equal. Note that the difference between the two numbers
is precisely Float: :EPSILON:

Float::EPSILON # => 2.22044604925031e-16

(1.8 + 0.1) - 1.9 # => 2.22044604925031e-16
This EPSILON’s worth of inaccuracy is often too small to matter, but it does when you’re
doing comparisons. 1.9+Float: :EPSILON is not equal to 1.9-Float: :EPSILON, even if (in
this case) both are attempts to represent the same number. This is why most floating-
point numbers are compared in relative terms.

The most efficient way to do a relative comparison is to see whether the two num-
bers differ by more than an specified error range, using code like this:
class Float

def absolute approx(other, epsilon=Float::EPSILON)
return (other-self).abs <= epsilon

end
end
(1.8 + 0.1).absolute_approx(1.9) # => true
10e10.absolute_approx(10e10+le-5) # => false

The default value of epsilon works well for numbers close to 0, but for larger num-
bers the default value of epsilon will be too small. Any other value of epsilon you
might specify will only work well within a certain range.

44 | Chapter2: Numbers

Thus, Float#approx, the recommended solution, compares both absolute and rela-
tive magnitude. As numbers get bigger, so does the allowable margin of error for two
numbers to be considered “equal.” Its default relative epsilon allows numbers
between 2 and 3 to differ by twice the value of Float::EPSILON. Numbers between 3
and 4 can differ by three times the value of Float::EPSILON, and so on.

A very small value of relative epsilon is good for mathematical operations, but if
your data comes from a real-world source like a scientific instrument, you can
increase it. For instance, a Ruby script may track changes in temperature read from a
thermometer that’s only 99.9% accurate. In this case, relative_epsilon can be set to
0.001, and everything beyond that point discarded as noise.

98.6.approx(98.66) # => false
98.6.approx(98.66, 0.001) # => true
See Also

* Recipe 2.3, “Representing Numbers to Arbitrary Precision,” has more informa-
tion on BigDecimal numbers

* If you need to represent a fraction with an infinite decimal expansion, use a
Rational number (see Recipe 2.4, “Representing Rational Numbers”)

* “Comparing floating point numbers” by Bruce Dawson has an excellent (albeit
C-centric) overview of the tradeoffs involved in different ways of doing floating-
point comparisons (http://lwww.cygnus-software.com/papers/comparingfloats/
comparingfloats.htm)

2.3 Representing Numbers to Arbitrary Precision

Problem

You're doing high-precision arithmetic, and floating-point numbers are not precise
enough.

Solution

A BigDecimal number can represent a real number to an arbitrary number of decimal
places.

require 'bigdecimal’
BigDecimal("10").to_s => "0.1E2"

#
BigDecimal("1000").to s # => "0.1E4"
BigDecimal("1000").to_s("F") # => "1000.0"

BigDecimal("0.123456789").t0 s # => "0.123456789E0"
Compare how Float and BigDecimal store the same high-precision number:

nm = "0.123456789012345678901234567890123456789"
nm.to f # => 0.123456789012346

2.3 Representing Numbers to Arbitrary Precision | 45

BigDecimal(nm).to s
=> "0.123456789012345678901234567890123456789E0"

Discussion

BigDecimal numbers store numbers in scientific notation format. A BigDecimal consists
of a sign (positive or negative), an arbitrarily large decimal fraction, and an arbitrarily
large exponent. This is similar to the way floating-point numbers are stored, but a dou-
ble-precision floating-point implementation like Ruby’s cannot represent an exponent
less than Float::MIN EXP (—1021) or greater than Float::MAX EXP (1024). Float
objects also can’t represent numbers at a greater precision than Float::EPSILON, or
about 2.2*10-16.

You can use BigDecimal#split to split a BigDecimal object into the parts of its scientific-
notation representation. It returns an array of four numbers: the sign (1 for positive
numbers, —1 for negative numbers), the fraction (as a string), the base of the expo-
nent (which is always 10), and the exponent itself.

BigDecimal("105000").split

=> [1, "105", 10, 6]
That is, 0.105%(10%*6)

BigDecimal("-0.005").split

#=> [-1, "s", 10, -2]

That is, -1 * (0.5%(10%*-2))
A good way to test different precision settings is to create an infinitely repeating deci-
mal like 2/3, and see how much of it gets stored. By default, BigDecimals give 16 dig-
its of precision, roughly comparable to what a Float can give.

(BigDecimal("2") / BigDecimal("3")).to_ s
=> "0.6666666666666667E0"

2.0/3

=> 0.666666666666667
You can store additional significant digits by passing in a second argument n to the
BigDecimal constructor. BigDecimal precision is allocated in chunks of four decimal
digits. Values of n from 1 to 4 make a BigDecimal use the default precision of 16 dig-
its. Values from 5 to 8 give 20 digits of precision, values from 9 to 12 give 24 digits,
and so on:

def two_thirds(precision)

(BigDecimal("2", precision) / BigDecimal("3")).to_s
end

"0.6666666666666667E0"
"0.6666666666666667E0"
"0.66666666666666666667E0"
"0.666666666666666666666667E0"
"0.6666666666666666666666666667E0"

two_thirds(1)
two_thirds(4)
two_thirds(5)
two_thirds(9)
two_thirds(13)

I n
v oV

H o oH B R
I
Vv Vv

U
v

46 | Chapter2: Numbers

Not all of a number’s significant digits may be used. For instance, Ruby considers
BigDecimal("2") and BigDecimal("2.000000000000") to be equal, even though the sec-
ond one has many more significant digits.

You can inspect the precision of a number with BigDecimal#tprecs. This method
returns an array of two elements: the number of significant digits actually being used,
and the toal number of significant digits. Again, since significant digits are allocated
in blocks of four, both of these numbers will be multiples of four.

BigDecimal("2").precs #=> [4, 8]
BigDecimal("2.000000000000").precs # => [4, 20]
BigDecimal("2.000000000001").precs # => [16, 20]

If you use the standard arithmetic operators on BigDecimals, the result is a
BigDecimal accurate to the largest possible number of digits. Dividing or multiplying
one BigDecimal by another yields a BigDecimal with more digits of precision than
either of its parents, just as would happen on a pocket calculator.

(a = BigDecimal("2.01")).precs # => [8, 8]
(b = BigDecimal("3.01")).precs #=> [8, 8]
(product = a * b).to_s("F") # => "6.0501"
product.precs #=> [8, 24]

To specify the number of significant digits that should be retained in an arithmetic
operation, you can use the methods add, sub, mul, and div instead of the arithmetic
operators.

two_thirds = (BigDecimal("2", 13) / 3)

two_thirds.to s # => "0.666666666666666666666666666666666667E0"
(two_thirds + 1).to s # => "0.1666666666666666666666666666666666667E1"
two_thirds.add(1, 1).to_s # => "0.2E1"

two_thirds.add(1, 4).to s # => "0.1667E1"

Either way, BigDecimal math is significantly slower than floating-point math. Not
only are BigDecimals allowed to have more significant digits than floats, but
BigDecimals are stored as an array