Ruby Techniques for Rails Developers

RUDBY

FOR RAILS

David A. Black

fForeword by David Heinemeier Hansson

M MANNING

Ruby for Rails

Ruby for Rauls

DAVID A. BLACK

MANNING

Greenwich
(74° w. long.)

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in
quantity. For more information, please contact:

Special Sales Department

Manning Publications Co.

209 Bruce Park Avenue Fax:(203) 661-9018

Greenwich, CT 06830 email: manning@manning.com

©2006 Manning Publications. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form or by means electronic, mechanical, photocopying, or otherwise, without
prior written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial
caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books they publish printed on acid-free paper, and we exert our best efforts to that end.

Manning Publications Co. Copyeditor: Liz Welch
209 Bruce Park Avenue Typesetter: Gordan Salinovic
Greenwich, CT 06830 Cover designer: Leslie Haimes

ISBN 1932394699

Printed in the United States of America
12345678910 -VHG - 10 09 08 07 06

for n in nephews + nieces

which is to say: Annie, David, Elizabeth, Rebecca, and Robert,
with all my love. You're all absolutely amazing, and I adore you.

brief contents

PARTI THE RUBY/RAILS LANDSCAPE ...cccececeeeececcecencnseel

1 = How Rubyworks 3
2 wm How Rails works 33
3 = Ruby-informed Rails development 67

PART II RUBY BUILDING BLOCKS ..cetceescceesccessccnssccescces D

4 wm Objects and variables 95
m Organizing objects with classes 121

6 = Modules and program organization 154
m The default object (self) and scope 177

8 = Control flow techniques 206

PART III BUILT-IN CLASSES AND MODULES ..ccceeeeeeeeec 231

9 m Builtin essentials 233
10 m Scalar objects 257

11 m Collections, containers, and enumerability 277

vii

viii BRIEF CONTENTS

12 m Regular expressionsand regexp-based string operations 312

13 wm Rubydynamics 337

14 wm (Re)modeling the R4RMusic application universe 371
15 m Programmatically enhancing ActiveRecord models 392
16 = Enhancing the controllers and views 422

17 m Techniques for exploring the Rails source code 455

appendix m Ruby and Rails installation and resources 471

contents

Sforeword xix
preface xxi
acknowledgments — xxiii
about this book xxvi

about the cover illustration xxxii

How Ruby works 3

1.1 The mechanics of writing a Ruby program 4

Getting the preliminaries in place 5 = A Ruby literacy bootstrap

guide 5 = A brief introduction to method calls and Ruby objects 7

Writing and saving a sample program 8 = Feeding the program to
Ruby 9 = Keyboard and file input 11 » One program,
multiple files 14

1.2 Techniques of interpreter invocation 15

Command-line switches 16 = A closer look at
interactive Ruby interpretation with irb 20

1.3 Ruby extensions and programming libraries 21

Using standard extensions and libraries 21 = Using
C extensions 22 » Writing extensions and libraries 23

CONTENTS

1.4 Anatomy of the Ruby programming environment 24

The layout of the Ruby source code 24 = Navigating the
Ruby installation 25 =« Important standard Ruby tools
and applications 27

1.5. Summary 31

How Rails works 33
2.1 Inside the Rails framework 34

A framework user’s—eye view of application development 35
Introducing the MVC framework concept 36
Meet MVC in the (virtual) flesh 37

2.2 Analyzing Rails’ implementation of MVC 38

2.3 A Rails application walk-through 41

Introducing R4RMusic, the music-store application 42
Modeling the first iteration of the music-store domain 43
Identifying and programming the actions 50 = Designing
the views 53 = Connecting to the application 58

2.4 Tracing the lifecycle of a Rails run 59

Stage 1: server to dispatcher 61 = Stage 2: dispatcher
to controller 62 = Stage 3: performance of a controller
action 62 = Stage 4: the fulfillment of the view 65

2.5 Summary 65

Ruby-informed Rails development 67
3.1 Afirst crack at knowing what your code does 69

Seeing Rails as a domain-specific language 70 = Writing program
code with a configuration flavor 73 « YAML and configuration
that’s actually programming 75

3.2 Starting to use Ruby to do more in your code 77

Adding functionality to a controller 79 = Deploying the Rails helper
files 80 = Adding functionality to models 82

3.3 Accomplishing application-related skills and tasks 85

Converting legacy data to ActiveRecord 85
The irb-based Rails application console 89

3.4 Summary 90

CONTENTS

Objects and variables 95
4.1 From “things” to objects 96
Introducing object-oriented programming 97 = I, object! 98
Modeling objects more closely: the behavior of a ticket 103
4.2 The innate behaviors of an object 108

Identifying objects uniquely with the object_id method 109
Querying an object’s abilities with the respond_to? method 110
Sending messages to objects with the send method 111

4.3 Required, optional, and default-valued arguments 112

Required and optional arguments 112 = Default values for
arguments 113 = Order of arguments 114

4.4 Local variables and variable assignment 115

Variable assignment in depth 117 » Local variables
and the things that look like them 119

4.5 Summary 120

Organizing objects with classes 121
5.1 Classes and instances 122
A first class 123 = Instance variables and object state 126
5.2 Setter methods 130

The equal sign (=) in method names 131
ActiveRecord properties and other =-method applications 133
5.3 Attributes and the attr_* method family 136
Automating the creation of attribute handlers 137 = Two (getter/
setter) for one 138 = Summary of attr_* methods 139
5.4 Class methods and the Class class 140
Classes are objects too! 140 = When, and why, to write a class

method 141 = Class methods vs. instance methods, clarified 143
The Class class and Class.new 144

5.5 Constants up close 145

Basic usage of constants 145 = Reassigning vs.
modifying constants 146

xii CONTENTS

5.6 Inheritance 148

Inheritance and Rails engineering 149 = Nature vs.
nurture in Ruby objects 151

5.7 Summary 153

Modules and program organization 154
6.1 Basics of module creation and use 155

A module encapsulating “stack-like-ness” 157 = Mixing a module
into a class 158 = Leveraging the module further 160

6.2 Modules, classes, and method lookup 163

Hllustrating the basics of method lookup 163 = Defining the same
method more than once 166 = Going up the method search path
with super 168

6.3 Class/module design and naming 170

Mix-ins and/or inheritance 171 = Modular organization
in Rails source and boilerplate code 173

6.4 Summary 176

The default object (self) and scope 177
7.1 Understanding self, the current/default object 179

Who gets to be self, and where 179 = Self as default receiver of
messages 184 = Instance variables and self 186

7.2 Determining scope 188

Global scope and global variables 188 = Local scope 191
Scope and resolution of constants 194

7.3 Deploying method access rules 197

Private methods 197 » Private methods as ActionController
access protection 199 = Protected methods 201

7.4 Writing and using top-level methods 203

Defining a top-level method 203 = Predefined (built-in)
top-level methods 204

7.5 Summary 205

Control flow techniques 206
8.1 Conditional code execution 207

The if keyword and friends 208 = Conditional modifiers 211
Case statements 211

3.2

8.3

8.4

8.5

CONTENTS

Repeating actions with loops 215

Unconditional looping with the loop method 215
Conditional looping with the while and until keywords 216
Looping based on a list of values 218

Code blocks, iterators, and the yield keyword 219

The basics of yielding to a block 219 = Performing multiple
iterations 222 = Using different code blocks 223
More about for 223

Error handling and exceptions 225

Raising and rescuing exceptions 225 = Raising exceptions
explicitly 227 = Creating your own exception classes 228

Summary 230

xiii

Built-in essentials 233

9.1
9.2

9.3

9.4

9.5

9.6

9.7

9.8

9.9

Ruby’s literal constructors 234

Recurrent syntactic sugar 236
Special treatment of += 237
Methods that change their receivers (or don’t) 238

Recetver-changing basics 239 = bang (!) methods 240
Specialized and extended receiver-changing in
ActiveRecord objects 241

Built-in and custom to_* (conversion) methods 242
Writing your own to_* methods 243
Iterators reiterated 244

Boolean states, Boolean objects, and nil 245

True and false as states 246 = true and false as objects 248
The special object nil 249

Comparing two objects 251

Equality tests 251 » Comparisons and the Comparable module
Listing an object’s methods 253

Generating filtered and selective method lists 254
Summary 255

Xiv CONTENTS

Scalar objects 257

10.1 Working with strings 258

String basics 258 = String operations 260
Comparing strings 265
10.2 Symbols and their uses 267

Key differences between symbols and strings 267
Rails-style method arguments, revisited 268

10.3 Numerical objects 270

Numerical classes 270 = Performing arithmetic operations 271

10.4 Times and dates 272
10.5 Summary 275

Collections, containers, and enumerability 277
11.1 Arrays and hashes compared 278

11.2 Using arrays 279

Creating anew array 279 » Inserting, retrieving, and removing array
elements 280 « Combining arrays with other arrays 283 = Array
transformations 285 = Array iteration, filtering, and querying 286
Ruby lessons from ActiveRecord collections 289

11.3 Hashes 292

Creating a new hash 293 » Inserting, retrieving, and removing hash
pairs 294 « Combining hashes with other hashes 296 » Hash
transformations 297 = Hash iteration, filtering, and querying 298
Hashes in Ruby and Rails method calls 301

11.4 Collections central: the Enumerable module 303

Gaining enumerability through each 304
Strings as Enumerables 306

11.5 Sorting collections 307

Sorting and the Comparable module 309
Defining sort order in a block 310

11.6 Summary 311

Regular expressionsand regexp-basedstring operations 312
12.1 What are regular expressions? 313
A word to the regex-wise 314 = A further word to everyone 314

12.2

12.3

12.4

12.5

12.6

CONTENTS

Writing regular expressions 314

The regular expression literal constructor 315
Building a pattern 316

More on matching and MatchData 319

Capturing submatches with parentheses 319
Match success and failure 321

Further regular expression techniques 323

Quantifiers and greediness 323 = Anchors and lookahead
assertions 326 = Modifiers 328 = Converting strings and
regular expressions to each other 329

Common methods that use regular expressions 331
String#tscan 332 w String#split 332 = sub/sub! and
gsub/gsub! 333 « grep 334

Summary 335

Ruby dynamics 337

13.1

13.2

13.3

13.4

13.5

13.6

The position and role of singleton classes 338

Where the singleton methods live 339 = Examining and modifying a
singleton class directly 340 = Singleton classes on the method lookup
path 342 = Class methods in (even more) depth 345

The eval family of methods 347

eval 347 = instance_eval 349 « The most useful
eval: class_eval (a.k.a. module_eval) 349

Callable objects 351

Proc objects 351 = Creating anonymous functions with the
lambda keyword 355 » Code blocks, revisited 356 = Methods
as objects 357

Callbacks and hooks 359

Intercepting unrecognized messages with method_missing 360
Trapping include operations with Module#included 361
Intercepting inheritance with Class#inherited 363
Module#const_missing 365

Overriding and adding to core functionality 365
A cautionary tale 366
Summary 367

XvVi CONTENTS

(Re)modeling the R#RMusic application universe 371

14.1 Tracking the capabilities of an
ActiveRecord model instance 372
An overview of model instance capabilities 373
Inherited and automatic ActiveRecord model behaviors 374
Semi-automatic behaviors via associations 378

14.2 Advancing the domain model 380

Abstracting and adding models (publisher and edition) 380
The instruments model and many-to-many relations 382
Modeling for use: customer and order 386

14.3 Summary 390

Programmatically enhancing ActiveRecord models 392
15.1 Soft vs. hard model enhancement 393
An example of model-enhancement contrast 394
15.2 Soft programmatic extension of models 396

Honing the Work model through soft enhancements 398 = Modeling
the customer’s business 399 w Fleshing out the Composer 401
Ruby vs. SQL in the development of soft enhancements 401

15.3 Hard programmatic enhancement of model
functionality 404

Prettification of string properties 404 = Calculating a work’s
period 409 = The remaining business of the Customer 414

15.4 Extending model functionality with class methods 419
Soft and hard class methods 419
15,5 Summary 421

Enhancing the controllers and views 422
16.1 Defining helper methods for view templates 424

Organizing and accessing custom helper methods 425
The custom helper methods for R#RMusic 427

CONTENTS

16.2 Coding and deploying partial view templates 429

Anatomy of a master template 429 = Using partials
in the welcome view template 430

16.3 Updating the main controller 436
The new face of the welcome action 436
16.4 Incorporating customer signup and login 438

The login and signup partial templates 438 = Logging
in and saving the session state 439 = Gate-keeping the
actions with before_filter 441 = Implementing a signing-up
Jacility 444 = Scripting customer logout 445
16.5 Processing customer orders 446
The view_cart action and template 446 = Viewing and
buying an edition 448 = Defining the add_to_cart
action 449 « Completing the order(s) 449
16.6 Personalizing the page via dynamic code 450
From rankings to favorites 450 = The favorites
Jeature in action 452

16.7 Summary 454

Techniques for exploring the Rails source code 455
17.1 Exploratory technique 1: panning for info 456
Sample info panning: belongs_to 457
17.2 Exploratory technique 2: shadowing Ruby 458

Choosing a starting point 458 = Choose among forks in the
road intelligently 459 » On the trail of belongs_to 460
A transliteration of belongs_to 463

17.3 Exploratory technique 3: consulting the
documentation 464
A roadmap of the online Rails API documentation 466

17.4 Summary 469

appendix Ruby and Rails installation and resources 471
index 477

xvii

Joreword

I can’tlearn alanguage for the sake ofit. Ineed to have a concrete desire to do some-
thing with it—to solve a problem or a task, to create something of value... That’s how
I gotinto Ruby around the summer of 2003. wanted to build a Web application and
decided this was the perfect opportunity to learn Ruby. That Web application was
Basecamp, which eventually served as the point of extraction for Rails.

Coming from PHP and Java, I remember how many of Ruby’s most wonderful
features seemed odd at first. “What is it exactly that makes blocks so special?” 1
thought. “They’re just convenience for writing a line of code at the beginning and
the end.” Little did I know... As I started using Ruby and extracting Rails, I quickly
wised up. Ruby is such an incredibly rich and expressive language that it’s hard to
appreciate its beauty by simply relating it to past experiences with other languages.

To create Basecamp, I needed to live and breathe Ruby. And when I did, I kept
finding aspects of the language that were exactly what I needed for the situation
at hand. Tasks that would have made my eyes roll in PHP or Java made my smile
light up as Ruby time and time again showed that programming could be simple,
fun, and outright beautiful.

As I was learning the language, I often consulted the ruby-talk mailing list. One
voice in particular seemed to know Ruby well and appeared to have the ambition
as well as the ability to help others understand it more fully. That voice belonged
to David A. Black, the author of this book.

FOREWORD

David clearly has an encyclopedic knowledge of Ruby. Not only does he under-
stand how to use it, but he can also explain why things are the way they are. He
connects the dots and allows you to see the bigger picture, providing the missing
piece that turns puzzle into picture. I couldn’t imagine a better person to write
Ruby for Rails. It’s a great honor to have the man who taught me so much about
Ruby now help others understand the language for use with my framework.

This is the book that everyone coming from another language to Rails should
have. To fully realize the potential of Rails, it’s crucial that you take the time to
fully understand Ruby—and with Ruby for Rails David has provided just what you
need to help you achieve that goal.

DAVID HEINEMEIER HANSSON
Creator of Ruby on Rails
Partner at 37signals

preface

When the editors at Manning asked me whether I thought the time was ripe for a
new Ruby book, and if so, what it should be about and who should write it, I
answered:

“Yes.... A Ruby language book purpose-written for Rails practitioners.... Me.”

They agreed.

I warmly welcomed the opportunity. I’d been thinking along “Ruby for Rails”
lines since I started using the Ruby on Rails framework in the Fall of 2004 (which,
by the way, makes me an almost-early adopter). Rails had been first released that
summer, and I learned about it from the presentation by David Heinemeier Hans-
son, the creator of Rails, at the 2004 International Ruby Conference.

Ruby for Rails sounds like it might mean “...as opposed to regular Ruby,” a tool
for dividing Ruby users into Rails and non-Rails camps. I saw it as the opposite:
real Ruby, regular Ruby, on its own terms, but studied primarily because of what it
can do for Rails developers. I was in a good position to understand the potential
of this approach: I'd been programming in Ruby for almost four years before I
started using Rails; and when I did start using it, I quickly gained a view of how a
deeper knowledge of Ruby could help Rails programmers achieve their goals.

An alarm went off in my head, therefore, when I saw how many budding Rails
developers were asking themselves whether it was necessary to learn Ruby in order
to use Rails. The fact that this question was the subject of disagreement and
debate surprised me. And it suggested a couple of points.

.

PREFACE

First, there was clearly room for education about the basics: that Rails is written
in Ruby, and Rails applications are written in Ruby, so if you’re writing Rails appli-
cations, you've already decided to use Ruby. Second, I could see the beginnings of an
inadvertent, self-imposed quarantine on the part of these Rails developers (who
were perfectly well-intentioned, but not in possession of the full picture) and I saw
that something could and should be done about it. People were talking themselves
into living under a glass ceiling, where they could get Rails applications to run and
do some reasonably adroit things with Rails techniques and idioms, but where they
were denying themselves the chance to deploy the full power of Ruby—the lan-
guage which they were in fact already using. That needed to be addressed.

I also noticed a large number of questions in various forums (and various
forms) along the lines of “I know I’'m supposed to write belongs_to :customer,
but what is that?” A number of Rails users told me that they were able to get appli-
cations up and running by imitating and adapting lines of code from other appli-
cations, but they were finding it unsatisfying because they didn’t feel they knew
what was going on. The fact that people were having trouble understanding Rails
code in Ruby terms meant that they were not in a position to go to the next level:
using the full power of Ruby to enhance and extend the functionality of their
Rails applications.

It occurred to me that a Rails-centric Ruby language tutorial could serve the
dual roles of, first, explaining to Rails developers who didn’t yet see that Ruby and
Rails don’t reside in separate silos but, rather, enjoy a parent/child technology rela-
tionship with extremely open lines of communication; and, second, smashing the
glass ceiling that separated Rails people from using Ruby more effectively.

As the book project got under way, my goal became to explain that the learn-
ing of Ruby by a “Rails person” is an entirely additive, win-win proposition. It
doesn’t mean Rails has some deficiency that has to be compensated for by know-
ing a foreign technology. Rather, Rails has a tremendous strength—the strength
of having been written in an elegant, concise, very approachable programming
language—the implications of which for day-to-day Rails programming are impor-
tant and are a pleasure to explore.

Thus Ruby for Rails: a reaffirmation and explanation of the way things stand,
and have always stood, between the language and the framework, and an invita-
tion to shatter that glass ceiling.

acknowledgments

This book has benefited from support of many kinds from many quarters.

At Manning Publications, assistant acquisitions editor Megan Yockey and pub-
lisher’s assistant Blaise Bace saw me ably and enthusiastically through the proposal
and contract phases of the project. I worked initially, and productively, with devel-
opment editor Doug Bennett; subsequently, for reasons of scheduling and logis-
tics, my project was reassigned to development editor Lianna Wlasiuk, who
worked with me in an intense, sustained way through the writing of the book, cou-
pling a marvelous collegiality with a gentle but firm refusal to settle for anything
other than a strong, polished product.

Review editor Karen Tegtmeyer sought, and found, specialists from both the
Ruby and Rails spheres to review the manuscript at the various prescribed phases
of partial completion—a process I like to think I became less surly about, the
more evidence I saw of how materially helpful it could be. Book designer Dottie
Marsico worked with me on the illustrations; I have Dottie to thank for my new-
found OpenOffice Draw skills as well as for her encouragement and quick respon-
siveness to questions and concerns.

As the book moved through the latter stages of preparation and into the pro-
duction stages, I had the indispensable support and help of production director
Mary Piergies, who coordinated the geographically farflung process in a way that
brought it unity and momentum. To copy editor Tiffany Taylor I can pay no
greater tribute than to say that I quickly got into the habit of telling OpenOffice
to hide the history of changes in the document and only show me the text as it

i

XXiv

ACKNOWLEDGMENTS

appeared after Tiffany had worked on it. I have no doubt, moreover, that several
trees owe their lives to Tiffany’s ability to trim away excess verbiage.

Technical proofreader Bruce Williams made numerous suggestions and cor-
rections which, I can assure readers, have measurably improved the readability of
the code samples as well as the text. There’s nothing like a keen second set of
eyes, and a second tester, to convince one, once and for all, that one 7really must
not make little changes to code after cutting-and-pasting it in....

I worked with three proofreaders. Elizabeth R. Martin, who kindly stepped in to
tide the project over during a scheduling gap, brought a sharp eye to bear on the
book’s first chapters. The balance of the manuscript was proofread by Elizabeth
Welch, on whom I have relied not only for error-catching but for constant consul-
tation in discretionary matters of typographical consistency and style. Barbara
Mirecki gave the manuscript a close, skillful final read. Katie Tennant brought a
professional’s skill and care to bear on my well-intentioned, but inevitably imper-
fect, indexing efforts. Typesetter Gordan Salinovic has worked diligently and
responsively with us to ensure a consistent, reader-friendly look.

Manning webmaster Iain Shigeoka worked behind the scenes to keep the infor-
mation flow going among the various members of the production team and me,
and quickly stepped up to help on the few occasions when glitches cropped up.

On the marketing side, Manning’s sales and marketing chief Ron Tomich and
marketing director Helen Trimes have kept the book before the Ruby/Rails pub-
lic eye and have sought my input and collaboration throughout the process. As
much as the popularity of Ruby and Rails can help, there’s no such thing as a
book that promotes itself, and Helen and Ron have been anything but compla-
cent in getting the word out.

Last but by no means least among the members of the Manning team to whom
I offer my thanks is publisher Marjan Bace, who saw the viability of this project
quickly, supported it unreservedly, and piloted it skillfully through many ups and
a sprinkling of downs. Both the book and I benefited from Marjan’s availability,
attentiveness, and mastery of the contours of the publication landscape.

I'd like to thank the reviewers of the original book proposal and all of the out-
side readers who participated in the various partial-manuscript review cycles. Many
of the comments and criticisms of the latter group had more of an impact on the
book than they themselves might have anticipated. Thanks go to Anjan Bacchu,
Christopher Bailey, Jamis Buck, Stuart Caborn, Tom Copeland, Ryan Cox, Jeff
Cunningham, Pat Dennis, Mark Eagle, Sasa Ebach, Shaun Fanning, Hal Fulton,
Benjamin Gorlick, Erik Hatcher, David Heinemeier Hansson, Jack Herrington,
Bob Hutchison, Duane Johnson, Albert Koscielny, Robert McGovern, Andrew

ACKNOWLEDGMENTS XXV

Oswald, George Peter, Michael Schubert, Nicholas Seckar, Jon Skeet, Dave Stein-
berg, Mike Stok, Jon Tirsen, Wayne Vucenic, Doug Warren, Mark Watson, and two
anonymous reviewers.

I owe a lot to the subscribers to the Manning Early Access Program (MEAP)
version of the book, who spotted and reported a nontrivial number of nontrivial
errors while the text was still fluid enough to take corrections. I won’t name them
here (their reports are posted at the Author Online Forum at http://www.man-
ning.com/black) but my thanks go to each and every one of them.

I have been using Ruby for more than five years and Rails since a few months
after its first release. I have many, many friends and colleagues in the collective
Ruby/Rails sphere, a number of whom have helped in one way or another with
bringing this project to fruition. My friend and Ruby Central co-director Chad
Fowler, a constant presence in my Ruby world (and my AIM window), has sup-
ported me with advice, encouragement, a sympathetic ear, and a critical eye,
throughout the book’s evolution. I first learned the rudiments of Rails in a surrep-
titious private IRC chat with David Heinemeier Hansson during a conference pre-
sentation we were both ostensibly listening to (and maybe David was); as I've
worked on Ruby for Rails, David has been a strong supporter of the project as well
as a gracious adviser on technical matters. He has also kindly provided the book
with its foreword.

I've also benefited from help and expressions of interest from many partici-
pants on mailing lists and IRC channels, as well as fellow Rubyists I’'ve met at con-
ferences and user group meetings—too many people to list, as the cliché goes,
but I must mention Marcel Molina and Wayne Vucenic; the members of the New
York Ruby Users Group, especially Sebastian Delmont, Conor Hunt, Francis
Hwang, Gianni Jacklone, Matt Pelletier, and Zed Shaw; the members of both the
London and Denver Ruby Users Groups, who invited me to speak about my work
in progress; and the denizens of the #ruby-lang channel on irc.freenode.net, with
whom I have had a (mostly) delightful nonstop five-year conversation. If anyone
feels unjustly left out of this undoubtedly partial list, please hit me up for a drink
at the next conference.

My family has been enthusiastic and supportive from day one of the project,
following its progress in depth in spite of the book’s remoteness from any of their
areas of interest. Thanks and love go to Barbara Aronstein Black, Gavin Black,
Robin Black, Richard Goldberg, Laurie Schafer, and the book’s dedicatees.

I've received help, feedback, input, and guidance throughout the book-writing
process. Nonetheless, any factual or technical errors, or misjudgments of style, are
my responsibility alone.

about this book

Welcome to Ruby for Rails. This book is an introduction to the Ruby programming
language, purpose-written for people whose main reason for wanting to know
Ruby is that they’re working with, or are interested in working with, the Ruby on
Rails framework and want to do Rails knowledgeably and right.

Ruby is a general-purpose, object-oriented, interpreted programming language
designed and written by Yukihiro Matsumoto (known widely as “Matz”). Intro-
duced in 1994, Ruby rose rapidly in popularity among Japanese programmers. By
the early 2000s, more than twenty Japanese-language books on Ruby had been pub-
lished. The first English-language book on Ruby, Programming Ruby by Dave Tho-
mas and Andy Hunt, appeared in late 2000 and ushered in a wave of Ruby
enthusiasm outside of Japan. Ruby’s popularity in the West has grown steadily since
the appearance of the “Pickaxe book” (the nickname of the Thomas-Hunt work,
derived from its cover illustration).

But 2004 saw a second massive surge of interest, with the introduction of the
Ruby on Rails Web application framework by David Heinemeier Hansson. Built
on a cluster of separate component libraries, the Rails framework handles data-
base storage and retrieval, HTML templating, and all the middle-layer work neces-
sary to connect the underlying data to the Web pages and input forms that display
and update it.

Rails has grown very rapidly in popularity, gaining a solid, wide reputation as a
tremendously powerful development tool. Partly cause, partly effect, Ruby has

XXVi

ABOUT THIS BOOK XXVii

also drawn favorable attention and interest from more and more programmers in
a variety of fields.

Do you have to learn Ruby to use Rails?

Although the Ruby on Rails framework is written in Ruby, it feels in some respects
like a programming language unto itself. There are Rails idioms and conventions,
just as there are Ruby idioms and conventions. The process of writing Rails appli-
cations has a characteristic rhythm and feel that aren’t the same as the rhythm and
feel of other Ruby-based environments. (Those are nice, too. They’re just different.)

Nonetheless, Ruby is the underlying, parent technology of Rails. When you’re
working on a Rails program, you are, by definition, working on a Ruby program.
It follows logically that the more you know about Ruby, the better you will be—the
better you can be—at developing applications with Rails.

Even if you know little or no Ruby, you can probably get a Rails application up
and running just by copying what others have done. But you won’t really under-
stand it, and you certainly won’t be in a position to solve problems when they arise,
nor to keep up knowledgeably with changes and updates in the Rails framework.

To do those things, you need a Ruby foundation. That’s what this book—written
specifically for you, the Rails enthusiast who wants to do it right—will give you. Ruby
Jfor Rails is a Ruby how-to book, more than a Rails how-to book. That doesn’t mean
you shouldn’t read Rails how-to books too. But if you’re serious about Rails, you
should learn at least as much Ruby as this book contains.

How Ruby can help you, in more detail

A solid grounding in Ruby can serve you, as a Rails developer, in four ways:

= By helping you know what the code in your application (including Rails
boilerplate code) is doing

= By helping you do more in, and with, your Rails applications than you can if
you limit yourself to the readily available Rails idioms and techniques (as
powerful as those are)

» By allowing you to familiarize yourself with the Rails source code, which in
turn enables you to participate in discussions about Rails and perhaps even
submit bug reports and code patches

= By giving you a powerful tool for administrative and organization tasks (for
example, legacy code conversion) connected with your application

XXviii

ABOUT THIS BOOK

The last item on this list gets the least attention in this book. The third item, famil-
iarizing yourself with the Rails source code, gets occasional mention and then a
whole chapter (chapter 17, the last in the book) to itself.

It’s the first two items—knowing what your code does, and knowing how to do
more—that drive the book. Virtually everything you’ll see here is designed to con-
tribute to one or both of those goals. They may not always be on the front burner,
as we dig into some of the details and subtleties of Ruby syntax or puzzle over fine
points of domain modeling. But the Ruby syntax, and the code that arises from
the domain modeling, and all the rest of it—it’s all in the book to help you know
what you’re doing and learn how to do more, as a Rails practitioner, through a
deeper knowledge of the Ruby language.

How this book is organized

Ruby for Rails consists of 17 chapters and is divided into four parts. Parts 2 and 3
are closely linked, so there are really three “super-parts”:

= Part 1, “The Ruby/Rails landscape”
= Part 2, “Ruby building-blocks” and part 3, “Built-in classes and modules”
m Part 4, “Rails through Ruby, Ruby through Rails”

The book takes a breadth-first approach to its topic(s). Part 1 provides an over-
view of the programming environment of Ruby and Rails. This part includes a
medium level of detail, but it’s detailed enough to include the creation of a work-
ing Rails application as well as a considerable amount of introductory Ruby mate-
rial. Parts 2 and 3 perform two functions. First, they do the lion’s share of the
book’s nuts-and-bolts teaching of Ruby; the chapters in these parts are where
you’ll find a real Ruby tutorial. Second, while this tutorial is going on, the chap-
ters in parts 2 and 3 keep in close contact with Rails. Examples are drawn from
Rails applications, both real and (where it makes more sense) hypothetical, as well
as from the Rails source code. In addition to giving you a “for Rails” perspective
on Ruby in the process of learning Ruby, this infusion of Rails awareness into the
Ruby tutorial looks ahead to part 4. In the final part, the book returns to the sam-
ple application developed in part 1, revising and augmenting it by deploying Ruby
techniques mastered in the tutorial sections in the middle of the book.

As the book proceeds, the center of gravity shifts back and forth between the
Ruby language and the Rails framework. But wherever the center of gravity lies in
a particular chapter or part of the book, both components of the landscape—
Ruby and Rails—are present to some degree.

ABOUT THIS BOOK XXiX

Who should read this book

Rails application development is attracting a growing population—a rather mot-
ley crew, consisting not only of career programmers but also of system adminis-
trators, project managers, Web designers, database experts, and other computer
practitioners.

This book is of potential interest to all of them. You don’t have to be a pro-
grammer by trade to benefit from this book, although you do need a grasp of the
basic concept of writing and running a computer program. You also need an
understanding of some common underlying concepts of computer and Internet
systems, many of which will be referred to without detailed explanation. You need
to know, for example, what a server is, what a client is; what HTML is; the concept
of a shell and a command line; about files and directory layouts; the basics of how
Web clients and servers talk to each other, including the basics of CGI-based form
processing; and the function and purpose of a database.

Finally, you need to know at least something about the Rails framework. You
don’t have to be a grizzled Rails veteran; you can use this book as part of your
growth as a Rails developer. But you should have a sense of the realm in which
Rails operates—or, if you’re really new to Rails, be willing to combine this book
with other sources of information to get the combined picture by working on sev-
eral fronts.

If you meet all of these requirements, the material in this book should be
accessible and the learning curve comfortable. In short: If you think of yourself as
a Rails person and would also like to bring out your inner Ruby person, this book
is for you. You’ll be rewarded not only with a dramatically greater understanding
of Rails but also with the beginnings of expertise in a very attractive, adaptable,
and popular programming language.

What this book doesn’t include

This book is largely tutorial and explanatory. It is neither a complete Ruby refer-
ence work nor a complete Rails reference work. Decisions have been made as to
what does and does not need to be included in a book whose purpose is to make
the power of Ruby more easily accessible to Rails practitioners. This isn’t to say
that you’ll never find, say, Ruby threads or a benchmark library or the Tk API use-
ful. They’re just not on the “A-list” of goals for this book; and the A-list will give
you a full book’s worth of material to learn, think about, and try out.

The book includes the development of a working Rails application (actually,
two versions of it, tailored for different points in the book) as well as a lot of Ruby
code. It does not, however, take you through everything you can and should do in

XXX

ABOUT THIS BOOK

the course of developing a real-world application. The biggest task in that cate-
gory is probably testing. Please don’t interpret the absence of information about
code testing in this book as a position statement against testing: You should learn
how to test code, and you should test code.

Code conventions

In the text, names of Ruby variables and constants are in monospace. Names of
classes and modules are in monospace where they represent direct references to
existing class or module objects; for example, “Next, we’ll reopen the class defini-
tion block for composer.” Where the name of a class or module is used in a more
high-level narrative sense, the name appears in regular type; for example, “The
domain will include a Composer class.” In all cases, you’ll be able to tell from the
context that a class, module, or other Ruby entity is under discussion.

Names of directories and files are in monospace. Names of programs, such as
ruby and rails, are in monospace where reference is made directly to the program
executable or to command-line usage; otherwise, they appear in regular type.

Names of relational database tables and fields appear in talics.

Technical terms, on first mention, appear in ¢talics. Italics are used for wildcard
expressions, such as entity controller.rb, which indicates a file name with an
“entity” component plus an underscore and the remaining text. A matching file-
name would be, for example, composer_controller.rb.

Code examples

The standalone code samples in the book can be run either by placing them in a
text file and running the ruby command on them, or by typing them into the inter-
active Ruby interpreter irb. (Both of these techniques are explained in chapter 1.)
Toward the beginning of the book, you’ll be walked through the process of creating
and naming program files and saving code samples in them. As the book
progresses, it will assume that you can do this on your own. Only if it really mat-
ters—including, of course, in connection with the actual Rails applications you’ll
develop—will specific filenames for examples be suggested after the first few.

A considerable number of examples in the book, particularly in part 3 (Ruby
built-ins), are presented in the form of irb (Interactive Ruby) sessions. What you’ll
see on the page are cut-and-pasted lines from a live interactive session, where the
code was entered into irb and irb responded by running the code. You’ll be alerted
the first few times this format is used and when it reappears after a hiatus. You’ll also
come to recognize it easily (especially if you start using irb). This mode of presen-
tation is particularly suitable for short code snippets and expressions; and because

ABOUT THIS BOOK XXXi

irb always prints out the results of executing whatever you type in (rather like a cal-
culator), it lets you see results while economizing on explicit print commands.

In other cases, the output from code samples is printed separately after the
samples, printed alongside the code (and clearly labeled as “output”), or embed-
ded in the discussion following the appearance of the code.

Some examples are accompanied by numbered cueballs that appear to the side
of the code. These cueballs are linked to specific points in the ensuing discussion
and give you a way to refer quickly to the line to which the discussion refers.

Command-line program invocations are shown with a dollarsign ($) prompt,
in the general style of shell prompts in UNIX-like environments. The commands
will work on Windows, even though the prompt may be different. (In all environ-
ments, the availability of the commands depends, as always, on the setting of the
relevant path environment variable.)

Code downloads

The complete source code for both versions of the music store Rails application is
available for download from the publisher’s Web site at http://www.man-
ning.com/black. These downloads include SQL command files with which you
can initialize the database tables for the applications and populate those database
with some sample data. Also available for download are some of the longer code
samples from the book that are not connected with the music store application.

Author Online

Purchase of Ruby for Rails includes free access to a private Web forum run by Man-
ning Publications where you can make comments about the book, ask technical
questions, and receive help from the authors and from other users. To access the
forum and subscribe to it, point your Web browser to http://www.manning.com/
black. This page provides information on how to get on the forum once you are
registered, what kind of help is available, and the rules of conduct on the forum.

Manning’s commitment to our readers is to provide a venue where a meaning-
ful dialogue between individual readers and between readers and the author can
take place. It is not a commitment to any specific amount of participation on the
part of the author, whose contribution to the book’s forum remains voluntary
(and unpaid). We suggest you try asking the author some challenging questions,
lest his interest stray!

The Author Online forum and the archives of previous discussions will be

accessible from the publisher’s Web site as long as the book is in print.

about the cover illustration

The figure on the cover of Ruby for Rails is an “Officer of the Grand Signoir,” or an
officer in the army of the Ottoman Sultan. The illustration is taken from a collec-
tion of costumes of the Ottoman Empire published on January 1, 1802, by Will-
iam Miller of Old Bond Street, London. The title page is missing from the
collection and we have been unable to track it down to date. The book’s table of
contents identifies the figures in both English and French, and each illustration
bears the names of two artists who worked on it, both of whom would no doubt be
surprised to find their art gracing the front cover of a computer programming
book...two hundred years later.

The collection was purchased by a Manning editor at an antiquarian flea mar-
ket in the “Garage” on West 26th Street in Manhattan. The seller was an American
based in Ankara, Turkey, and the transaction took place just as he was packing up
his stand for the day. The Manning editor did not have on his person the substan-
tial amount of cash that was required for the purchase and a credit card and
check were both politely turned down. With the seller flying back to Ankara that
evening the situation was getting hopeless. What was the solution? It turned out to
be nothing more than an old-fashioned verbal agreement sealed with a hand-
shake. The seller simply proposed that the money be transferred to him by wire
and the editor walked out with the bank information on a piece of paper and the
portfolio of images under his arm. Needless to say, we transferred the funds the

XxXxii

ABOUT THE COVER ILLUSTRATION xxxiii

next day, and we remain grateful and impressed by this unknown person’s trust in
one of us. It recalls something that might have happened a long time ago.

The pictures from the Ottoman collection, like the other illustrations that
appear on our covers, bring to life the richness and variety of dress customs of two
centuries ago. They recall the sense of isolation and distance of that period-and of
every other historic period except our own hyperkinetic present.

Dress codes have changed since then and the diversity by region, so rich at the
time, has faded away. It is now often hard to tell the inhabitant of one continent
from another. Perhaps, trying to view it optimistically, we have traded a cultural
and visual diversity for a more varied personal life. Or a more varied and interest-
ing intellectual and technical life.

We at Manning celebrate the inventiveness, the initiative, and, yes, the fun of
the computer business with book covers based on the rich diversity of regional life
of two centuries ago, brought back to life by the pictures from this collection.

Part 1

The Ruby/Rails landscape

Iis book is about the Ruby programming language, viewed chiefly from the
perspective of interest in the Ruby on Rails framework. The goal of this first part
of the book is to familiarize you with the landscape of both Ruby and Rails: what'’s
there, and why, and how it all connects.

This part contains three chapters:

Chapter 1, “How Ruby works,” is about the Ruby programming environment:
how to write and execute a Ruby program; where the files associated with Ruby
are located; and what tools Ruby gives you (in addition to the Ruby interpreter
itself) to help you write and maintain programs.

Chapter 2, “How Rails works,” gives you a guided tour of the basic structure of
the Ruby on Rails framework: its components and how they interact; how the Rails
framework fits together with Ruby; and the relation between and among Ruby,
Rails, and a given Rails application. It also includes the first version of the book’s
major sample Rails application, the R4RMusic online sheet-music store. (The sec-
ond version of R4RMusic will be developed in part 4 of the book.)

Chapter 3, “Ruby-informed Rails development,” is a plunge into the process of
understanding in specific terms the ways that knowing Ruby well can help you as a
Rails developer. This chapter is thus a first fulfillment of the book’s overall goal—
and, at the same time, an anchor for the detailed exploration of the Ruby lan-
guage to come in the next two parts.

After reading these chapters, you’ll have your bearings in the landscape. You’ll
know how the Ruby programming language, the Rails application development
framework, and your specific applications all fit together, in considerable techni-
cal detail. You will have walked through the process of writing and running every-
thing from a small, proof-of-concept Ruby program, to a working Rails
application. Along the way, you’ll pick up a number of useful and important Ruby
programming techniques.

Most importantly, you’ll have started to understand and to experience the
effect of Ruby expertise on Rails development power.

How Ruby works

This chapter covers
m A Ruby literacy bootstrap guide

m An overview of the Ruby
programming environment

m Walk-throughs of sample Ruby programs

11

CHAPTER 1
How Ruby works

This book will give you a foundation in Ruby, and this chapter will give your foun-
dation a foundation.

We’re going to look at how Ruby works: what you do when you write a pro-
gram, how you get Ruby to run your program, and how you split a program into
more than one file. You’ll learn several variations on the process of running the
Ruby interpreter (the program with the actual name ruby, to which you feed your
program files for execution) as well how to use some important auxiliary tools
designed to make your life as a Ruby programmer—a Rubyist, to use the prevalent
term—easier and more productive.

This first view of Ruby is from a middle distance; more detail is yet to come.
Still, you’ll learn several very specific, real, and useful Ruby techniques in this
chapter. After all, in order to jump-start the process of writing and running real
programs, you need to write and run real programs. They’ll be kept simple—but
in Ruby, some of the simplest things are among the most often used and most
powerful. When you see Ruby code in this chapter, it’s real Ruby.

The mechanics of writing a Ruby program

The goal of this section is to take you through the actual process of writing and
running a Ruby program. Don’t worry if some of what you see appears to be a bit
of a black box for the moment. The breadth-first approach we’re taking will help
to bootstrap you into the programming cycle from beginning to end. This, in
turn, will give you your bearings for the rest of the chapter and the detailed dis-
cussion of the Ruby language that lies ahead in parts 2 and 3.

NOTE Ruby, ruby, and ... RUBY?! Ruby is a programming language. We talk
about things like “learning Ruby,” and we ask questions like, “Do you
know Ruby?” The lowercase version, ruby, is a computer program; specif-
ically, it’s the Ruby interpreter, the program that reads your programs and
runs them. You’ll see this name used in sentences like, “I ran ruby on my
file, but nothing happened,” or “What’s the full path to your ruby execut-
able?” Finally, there’s RUBY—or, more precisely, there isn’t. Ruby isn’t
an acronym, and it’s never correct to spell it in all capital letters. People
do this, as they do (also wrongly) with Perl, perhaps because they’re used
to seeing language names like BASIC and FORTRAN. Ruby is not such a
language. It’s Ruby for the language, ruby for the interpreter.

1.1.1

1.1.2

The mechanics of writing a Ruby program 5

Getting the preliminaries in place

At this point you need to have Ruby installed on your computer. The process of
installing Ruby is discussed in the appendix. Before proceeding with this chapter,
you should read the appendix and make sure that Ruby is installed and working.

You also need a text editor and a directory (folder to some of you) in which to
store your Ruby program files. You can use any text editor you like. You can even
use a word-processing program, as long as you can save files in plain-text format
(not, for example, Microsoft Word format, RTF, or anything else fancy) and as
long as you can give them filenames that end with the extension .rb (signifying a
Ruby program file).

Meet Interactive Ruby (irb), your new best friend

Some advice for the impatient, as they say—and for everyone, in this case: A won-
derful command-line tool called irb (Interactive Ruby) comes with Ruby. You type
Ruby commands and expressions into irb, and it executes them on the spot. Writ-
ten by Keiju Ishitsuka, irb is indispensable to Ruby programmers, and just using it
to experiment and play with Ruby will speed up your learning and your comfort
with Ruby tremendously.

Because irb is really a kind of alternative Ruby interpreter, it’s not discussed in
detail until section 1.2.2. Feel free to jump to that section and have a look. You
can start using irb right away. Having an open irb session means you can test Ruby
snippets any time and in any quantity.

Meanwhile, we’ll bootstrap your Ruby literacy so we have a shared ground on
which to continuing building and exploring.

A Ruby literacy bootstrap guide

As part of the bootstrap process, it’s worth taking a little time to learn some of the
most common elements of Ruby syntax. Even if the code you're looking at has
some black-box qualities, you can get a lot of mileage out of an awareness of the
meanings of a small number of elements.

The examples in this chapter use the techniques set forth in table 1.1. In the
interest of making the Ruby bootstrapping process as comfortable as possible,
they’re summarized here for you to peruse in advance and easily reference later.
A couple of very fundamental aspects of Ruby and Ruby syntax, however, are too
involved for summary in a table. You need at least a preliminary sense of what an
object is in Ruby and what a method call looks like. We’ll take a first, brief look at
both of those features next. (Like the items in the table, they’ll also be explored at
greater length later in the book.)

CHAPTER 1
How Ruby works

Table 1.1 Synopsis of key elements of Ruby syntax for Ruby literacy bootstrapping purposes

Operation

Example(s)

Comments

Arithmetic

2 + 3 (addition)

2 - 3 (subtraction)
2 * 3 (multiplication)
2 / 3 (division)

The examples show integers.
You can also use floating-point
numbers (2.0).

Putting a value into a variable

x=1
string = "Hello"

This is called variable assign-
ment.

Printing something to the screen

puts "Hello"
print "Hello"

puts adds a newline to the
string it outputs, if there isn’t
one at the end already.

x = "Hello"
puts x print prints exactly what it's
told to and leaves the cursor at
x = "Hello" the end. (Note: on some plat-
print x forms, an extra newline is auto-
matically added at the end of a
X = "Hello" program.)
pX
p outputs an inspect string,
which may contain extra infor-
mation about what it’s printing.
Getting a line of keyboard input gets You can assign the input line

string = gets

directly to a variable (the vari-
able string in the second
example).

Turning a string into a number

x="100".to_ i
s="100"
x=s.to 1

To perform arithmetic, you have
to make sure you have num-
bers rather than strings of char-
acters. to_1i performs string-
to-integer conversion.

Comparing two values

X==Yy

Note the two equal signs (not
just one, as in assignment).

Conditional execution

if x==y

execute this code
else

execute this code
end

Conditional statements always
end with the word end.

Putting comments in code files

This is a comment line.
X =1 # Comment to end of line

Comments are ignored by the
interpreter.

The mechanics of writing a Ruby program 7

1.1.3 A brief introduction to method calls and Ruby objects

A lot of what you’ll see and write in Ruby programs are method calls. Method calls
sometimes consist simply of the name of a method, in bareword form, possibly fol-
lowed by one or more arguments to the method. For example, this code calls the
method puts with one argument:

puts "Hello."

Other method calls use a special syntax: a dot operator, which establishes a rela-
tionship between a value or expression to its left and a method name to its right.
In this example from table 1.1

x = "100".to_ i

the dot means that the message “to_i” is being sent to the string “100”, or that the
method to_i is being called on the string “100”. The string “100” is called the
receiver of the message.

Here’s a method call that uses the full dot notation and also takes an argu-

ment. This is a way to generate a decimal integer equivalent to the base-nine num-
ber 100:

x = "100".to_i(9)

x is now equal to 81 decimal.

This example also shows the use of parentheses around method arguments.
These parentheses are usually optional, but in more complex cases they may be
required to clear up what might otherwise be ambiguities in the syntax. Many pro-
grammers use parentheses in most or all method calls, just to be safe (and for
visual clarity).

In these examples, the string “100” functions as the receiver of the message
“to_i”. Basically, you’re addressing the string with the request Convert yourself to an
integer. The string itself is an object. The whole universe of a Ruby program consists
of messages being sent to objects. An object might be a string (as in the last exam-
ple). It might be an integer—perhaps an integer you want to convert to a string:

100.to_s

When you write a Ruby program, you spend most of your time either telling Ruby
what you want objects to be able to do—what messages you want them to be able
to understand—or sending messages to objects. Nor are you limited in your
object universe to things that Ruby already knows about, like strings and integers.
If you’re writing a Rails application in which one of your entity models is, say,

1.14

CHAPTER 1
How Ruby works

Customer, then when you write the code that causes things to happen—a customer
logging into a site, updating a customer’s phone number, adding an item to a
customer’s shopping cart—in all likelihood you’ll be sending messages to cus-
tomer objects.

We’ll explore all of this in much greater depth later in the book. Again, this
brief sketch is just for Ruby literacy bootstrapping purposes. When you see a dot
in what would otherwise be an inexplicable position, you should interpret it as a
message (on the right) being sent to an object (on the left).

Writing and saving a sample program

Armed with some Ruby literacy (and a summary to refer back to when in doubt),
let’s walk through the steps involved in running a program. It’s highly recom-
mended that you create a separate directory for examples from this book. Some-
thing like this should be suitable:

$ cd

$ mkdir ruby4rails

$ cd ruby4rails
From this point on, the book will assume that all sample programs are kept in this
directory. In some cases it won’t matter, but in others it will (especially when you
start writing programs that take up more than one file, and the multiple files must
be able to find each other easily).

Now you’ll create a program file. The program will be a Celsius-to-Fahrenheit
temperature converter. We’ll walk this example through several stages, adding to
it and modifying it as we go. The first version is very simple, because the focus is
on the file-creation and program-running processes.

Creating a first program file
You can use any text editor (vi, Emacs, Notepad, and so on) to create this and
future Ruby program files; none of the instructions or explanations in this book
are editor-specific. Remember that if you use a word-processing program, you
have to save your file as plain text.

Type the code from listing 1.1 into a text file, and save it under the filename
c2f.rb in your ruby4rails directory.

c = 100
f = (c* 9 / 5) + 32
puts "The result is: "

The mechanics of writing a Ruby program 9

puts £
pl.ltS non
|

You now have a complete (albeit tiny) Ruby program on your disk, and you can
run it.

NOTE RUNNING RUBY PROGRAMS STANDALONE Depending on your operating
system, you may be able to run Ruby program files standalone—that is, with
just the filename, or with a short name (like c2f) and no file extension.
Keep in mind, though, that the .rb filename extension is mandatory in
some cases, mainly involving programs that occupy more than one file
(which you’ll learn about in detail later) and that need a mechanism for
the files to find each other. In this book, all Ruby program filenames end
in .rb to ensure that the examples work on as many platforms as possible.

1.1.5 Feeding the program to Ruby

The process of writing and running Ruby programs revolves around passing your
program source files to the Ruby interpreter, which is called ruby. You’ll do that
now... sort of. You’ll feed the program to ruby; but instead of asking Ruby to run
the program, you’ll ask it to check the program code (the lines of Ruby in the file)
for syntax errors.

Checking for syntax errors
If you accidentally type a space in the middle of the method-call print in c2f.rb
(pr int), that constitutes a syntax error. If you forget to type the # character
before a comment line, you’ll almost certainly introduce a syntax error (unless
the comment you expose is written in perfect Ruby!).

Conveniently, the Ruby interpreter can check programs for syntax errors with-
out running the programs. It reads through the file and tells you whether the syn-
tax is OK. To run a syntax check on your file, do this:

$ ruby -cw c2f.rb

The -c flag means check—that is, check for syntax errors. The -w flag activates a
higher level of warning; Ruby will fuss at you if you’ve done things that are legal
Ruby but are questionable for one reason or another.

Assuming you’ve typed the file correctly, you should see the message

Syntax OK

printed on your screen.

10

CHAPTER 1
How Ruby works

Running the program
To run the program, you pass the file once more to the interpreter, but this time
without the -c and -w flags:

$ ruby c2f.rb
If all goes well, you'll see the output of the calculation:

The result is
212

Trouble in paradise
The result of the calculation is correct, but the output, spread as it is over three
lines, looks bad. You want it all on one line.

Fixing your first Ruby error
The problem can be traced to the difference between the puts command and the
print command. puts adds a newline to the end of the string it prints out, if the
string doesn’t end with one already. print, on the other hand, prints out the
string you ask it to and then stops; it doesn’t automatically jump to the next line.
To fix the problem, you can change the first two puts commands to print:
print "The result is "
print £
puts "."
(Note the blank space after is, which ensures that there will be a space between
is and the number.) Now the output is as follows:

The result is 212.

puts is short for put [i.e., print] string. Although put may not intuitively invoke the
notion of skipping down to the next line, that’s what puts does: Like print, it prints
whatyou tell it to, but then it also automatically goes to the nextline. If you ask puts
to print a line that already ends with a newline, it doesn’t bother adding one.

If you're used to print facilities in languages that don’t automatically add a
newline (such as Perl’s print function), you may find yourself writing code like
this in Ruby when you want to print a value followed by a newline:

print £, "\n"

puts, of course, does this for you. You’ll pick up the puts habit, along with other
Ruby idioms and conventions, as you go along.

1.1.6

The mechanics of writing a Ruby program 11

WARNING EXTRA NEWLINES WHEN YOU MAY NOT WANT THEM On some platforms
(Windows in particular), an extra newline character is printed out at the
end of the run of a program. This means a print that should really be a
puts will be hard to detect, because it will act like a puts. Being aware of
the difference between the two, and using the one you want based on the
usual behavior, should be sufficient to ensure you get the desired results.

On the other side of the equation is the matter of data input. Not every program
comes bundled with all the data it needs hard-coded into itself, as the examples
have so far. Data comes from many sources. In the typical Rails application, it
comes from a database. In Ruby usage generally, program data often comes from
the keyboard and/or one or more files. We’ll look next at how Ruby handles these
forms of input.

Keyboard and file input

Ruby offers lots of techniques for reading and writing data during the course of
program execution. As a Rails developer, you may find yourself using relatively
few of these facilities, because Rails does the data-fetching for you; and your users,
when they input from the keyboard, will generally be typing on a Web form.
Nonetheless, it’s a very good idea to learn at least the basic Ruby keyboard and
file I/O operations. You'll find uses for them, if not in the course of writing every
Rails application, then almost certainly while writing Ruby code to maintain, con-
vert, housekeep, or otherwise manipulate the environment in which you work.

Keyboard input
A program that tells you over and over again that 100° Celsius is 212° Fahrenheit
has limited value. A more valuable program lets you specify a Celsius temperature
and tells you the Fahrenheit equivalent.

Modifying the program to allow for this functionality involves adding a couple
of steps and using two methods (one of which you’re familiar with already):

m gets (get string) suspends the program and waits for one line of input from
the keyboard. (The “newline” character created when you hit the enter key
is included as the last character in the input line.)

m to i (fo integer) converts a string to an integer. You need this method so that
the string you enter will play nicely with the other numbers when you calcu-
late the Fahrenheit result.

Because this is a new program, not just a correction, put the version from listing 1.2
in a new file (c2fi.rb; i stands for interactive):

12 CHAPTER 1

How Ruby works

print "Hello. Please enter a Celsius value: "

c = gets

f = (c.to i * 9/ 5) + 32

print "The Fahrenheit equivalent is "
print £

puts ".

(Note the use of print versus puts to control when the output drops to a new line

and when it doesn’t.)
A couple of sample runs demonstrate the new program in action:

$ ruby c2fi.rb

Hello.

Please enter a Celsius value: 100

The Fahrenheit equivalent is 212.
$ ruby c2fi.rb

Hello.

Please enter a Celsius value: 23

The Fahrenheit equivalent is 73.

NOTE

SHORTENING THE CODE You can shorten the program considerably by
consolidating the operations of input, calculation, and output. A com-
pressed rewrite looks like this:

print "Hello. Please enter a Celsius value: "
print "The Fahrenheit equivalent is ", gets.to i * 9 / 5 + 32,
L \1’1"

This version economizes on variables—there aren’t any!—but requires
anyone reading it to follow a somewhat denser (although shorter) set of
expressions. Any given program usually has several or many spots where
you have to decide between longer (but maybe clearer) and shorter (but
maybe a bit cryptic). And sometimes, shorter can be clearer. It’s all part
of developing a Ruby coding style.

Example with file input
Reading a file from a Ruby program isn’t much more difficult than reading a line

of keyboard input. You’ll dip your toes in it here: You’ll read one number from a file

and convertit from Celsius to Fahrenheit. (Reading datain from a file does getmore

elaborate than this, at times, but this example will show you the basic operation.)
First, create a new file called temp.dat (temperature data), containing just one

line with one number on it:

100

The mechanics of writing a Ruby program 13

Now, create a third program file, called c2fin.rb (in for [file] input), as shown in
listing 1.3.

Listing 1.3 Temperature converter using file input (c2fin.rb)

puts "Reading Celsius temperature value from data file..."
num = File.read("temp.dat")

¢ = num.to_1i

f=(c*9 /5 + 32

puts "The number is " + num

print "Result: "

puts £

This time, the sample run and its output look like this:

$ ruby c2fin.rb

Reading Celsius temperature value from data file...

The number is 100

Result: 212
Naturally, if you change the number in the file, the result will be different.

For the sake of symmetry—and for practical reasons, because you’re likely to
want to do this at some point—let’s look at what’s involved in writing a variant of
the program that saves the result to a file.

Example with file output
The simplest file-writing operation is a little more elaborate than the simplest file-
reading operation (but not much more). If you're scrutinizing the code, you can
see that the main extra item specified when you open a file for writing is the file
mode—in this case, w (for write).

Save the version of the program from listing 1.4 to c2fout.rb, and run it.

Listing 1.4 Temperature converter with file output (c2fout.rb)

print "Hello. Please enter a Celsius value: "
c = gets.to_1i

f=(c*9 /5 + 32

puts "Saving result to output file 'temp.out'"
fh = File.new("temp.out", "w")

fh.puts £

fh.close

(The variable fh is named for file handle. Note that you use puts—actually
fh.puts, where the reference to the filehandle (fh) steers the output to the file

1.1.7

CHAPTER 1
How Ruby works

stream rather than to the screen—to output a line to the file represented by the
file handle.)

If you inspect the file temp.out, you should see that it contains the Fahrenheit
equivalent of whatever number you typed in.

An exercise for the reader

Based on the previous examples, can you write a Ruby program that reads a num-
ber from a file and writes the Fahrenheit conversion to a different file?

One program, multiple files

Up to this point, we’ve approached the writing and execution of a Ruby program
as involving two entities: a program file and the Ruby interpreter. As you start to
write longer programs—and when you look at longer and more complex applica-
tions, including Rails applications and Rails itself—you’ll quickly discover that
very few programs occupy only one file. Unless you're writing something really
compact, like a Celsius converter, your program will probably extend over two,
three, or in some cases dozens of files.

Believe it or not, that’s good news.

True, having a program in a single file lets you see it all in one place. But this
starts to be a liability rather than an asset when you’ve got hundreds or thou-
sands—or hundreds of thousands—of lines of code. Breaking your program into
separate files then starts to make lots of sense.

“require”-ing a file
When your program is spread across multiple files, the technique you’ll use most
often to run it as one program is the require command (the require method,
more accurately), which pulls in a second file from a file that’s already running.

To demonstrate the use of require, you’ll need (no surprise) a program writ-
ten across two files. The first file, regdemo.rb, should contain the following Ruby
code:

puts "This is the first (master) program file."

require 'requiree.rb'

puts "And back again to the first file."
When it encounters the require method call, Ruby reads in the second file. That
file, requiree.rb, should look like this:

puts "> This is the second file, which was 'require'd by the first."

Now, run Ruby on regdemo.rb, and see the results:

1.2

Techniques of interpreter invocation 15

$ ruby regdemo.rb

This is the first (master) program file.

> This is the second file, which was 'require'd by the first.

And back again to the first file.
This program doesn’t do much—it’s just a proof-of-concept demonstration of the
process of using more than one program file—but you can see from the messages
that the second file, requiree.rb, was executed at the point where you put the
require statement in the first file.

Essentially, require goes and looks for another file and (assuming it finds it)
executes it. If it doesn’t find it, your program will terminate with a fatal error.

“load”-ing a file
A close relative of require is load. The main difference is that if you do this

require "requiree.rb"
require "requiree.rb"

nothing happens the second time; whereas if you do this

load "requiree.rb"

load "requiree.rb"
Ruby reads in the file twice.

Doing it twice in a row in the same file is almost certainly pointless, but in some
cases this kind of multiple loading is useful. Rails uses load in preference to
require, for example, in development mode—which means that if you’re trying
your application in a browser and making changes to the code at the same time,
your changes are reloaded, overriding any caching behavior on the part of the
Web server. Multiple require calls in the same place don’t have the same effect if
the application has already read the file in once.

The facilities for getting multiple files to work together loom very, very large in
Ruby programming generally and certainly in the Rails framework. You’ll see
examples of multifile interaction in part 4 of the book, especially in chapter 17,
where we dig into the Rails source code. File-to-file connections make both Ruby
and Rails cohere, separately and together.

Meanwhile, let’s return to the basic Ruby procedural scenario.

Techniques of interpreter invocation

You’ve roughed out the lifecycle of a Ruby program. Now you’re in a position to
back-and-fill a bit.

1.2.1

CHAPTER 1
How Ruby works

As already noted, when you run a Ruby program, you're really running a pro-
gram called ruby and feeding yourprogram to that program. Here, we’ll look at fur-
ther options available to you in the course of doing this. These options include
command-line switches (of which you’ve seen an example in the -cw syntax-checking
flag), techniques for directing your program to the Ruby interpreter without having
to invoke ruby on the command line, and details of how to run the irb interpreter.

Command-line switches

When you start the Ruby interpreter from the command line, you can provide not
only the name of a program file but also one or more command-line switches.
The switches you choose instruct the interpreter to behave in particular ways
and/or take particular actions.

Ruby has more than 20 command-line switches. Some of them are used rarely;
others are used every day by many Ruby programmers. Here we’ll look at several
more of the most commonly used ones. (You've already seen two of them, -c and
-w, used in combination with each other.) These common switches are summa-
rized in table 1.2 and then explained separately.

Table 1.2 Summary of commonly used Ruby command-line switches

Switch Description Example of usage

-c Check the syntax of a program file ruby -c c2f.rb
without executing the program

-w Give warning messages during pro- ruby -w c2f.rb
gram execution

-e Execute the code provided in quota- ruby -e 'puts "Code demo!"'
tion marks on the command line

-v Show Ruby version information, and ruby -v
execute the program in verbose mode

-1 Line mode: print a newline after every | ruby -1 -e 'print "Will jump down!"'
line, if not otherwise present

-rname Load the named extension (require it) | ruby -rprofile
--version Show Ruby version information ruby --version
Check syntax (-c)

The -c switch tells Ruby to check the code in one or more files for syntactical accu-
racy without executing the code. It’s usually used in conjunction with the -w flag.

Techniques of interpreter invocation 17

Turn on warnings (-w)

Running your program with -w causes the interpreter to run in warning mode.
This means you’ll see more warnings than you otherwise would printed to the
screen, drawing your attention to places in your program which, although not syn-
tax errors, are stylistically or logically suspect. It’s Ruby’s way of saying, “What
you’ve done is syntactically correct, but it’s weird. Are you sure you meant to do
that?” (Even without this switch, Ruby issues certain warnings, but fewer than it
does in full warning mode.)

Execute literal script (-e)
The -e switch tells the interpreter that the command line includes Ruby code, in
quotation marks, and that it should execute that actual code rather than executing
the code contained in a file. This can be handy for quick scripting jobs where enter-
ing your code into a file and running ruby on the file may not be worth the trouble.

For example, let’s say you want to see your name backward. Here’s how you
can do this quickly, in one command-line command, using the execute switch:

S ruby -e 'puts "David A. Black".reverse'

kcalB .A divaD
What lies inside the single quotation marks is an entire (although short) Ruby
program. If you want to feed a program with more than one line to the -e switch,
you can use literal linebreaks inside the mini-program:

$ ruby -e 'print "Enter a name: "

puts gets.reverse'
Enter a name: David A. Black

kcalB .A divaD
Or, you can separate the lines with semicolons:
$ ruby -e 'print "Enter a name: "; print gets.reverse'

NOTE NEWLINES IN REVERSED STRINGS Why is there a blank line between the
program code and the output in the two-line reverse examples? Because
the line you enter on the keyboard ends with a newline characte—so when
you reverse the input, the new string starts with a newline! Ruby, as al-
ways, takes you literally when you ask it to manipulate and print data.

Run in line mode (-1)
If you look back at the result of executing the first version of the Celsius conversion
program, the output from Ruby—the number 212—runs together on the screen

18

CHAPTER 1
How Ruby works

with the prompt from the shell (the $ character). The reason, as you saw, was that
you used print rather than puts, so no newline character followed the number.

The -1 switch gives you blanket coverage on putting lines of output on sepa-
rate lines. It’s sometimes convenient to do this when you’re not sure whether the
lines you plan to print end with newlines. In most cases, you can use puts, but the
-1 switch helps you in cases where you don’t have control over the code.

Let’s say someone else writes a program that goes through a file of names and
prints out the first names. For whatever reason, the original programmer uses
print rather than puts, which means that a run of the program on a typical file
produces output like this:

$ ruby firstnames.rb

AdaBarbaraClaraDoris
Now, let’s say you want to use the program, but you want each name on a separate
line. You can tell Ruby to operate in line mode, and you’ll get what you need:

$ ruby -1 firstnames.rb

Ada

Barbara

Clara

Doris
You won’t see the -1 flag as often as you’ll see programs that use puts to ensure
similar behavior. But it can be useful, and you’ll want to be able to recognize it.

Require named file or extension (-rname)

The -r switch lets you specify files to require on the command line. As you’ll see,
require also has the broader purpose of activating extensions (add-on program-
ming facilities). You can use the -r flag for that flavor of require, too.

Run in verbose mode (-v)
Running with -v does two things: It prints out information about the version of
Ruby you’re using, and then it turns on the same warning mechanism as the -w
flag. The most common use of -v is to find out the Ruby version number:

$ ruby -v

ruby 1.8.2 (2004-12-25) [i1686-1inux]
(In this case, we’re using Ruby 1.8.2, released on Christmas Day, 2004, and com-
piled for an 1686-based machine running Linux.) Because there’s no program or
code to run, Ruby exits as soon as it has printed the version number.

Techniques of interpreter invocation 19

Print Ruby version (-version)

Not surprisingly, this flag is like -v except that all - -version does is to print the
Ruby version information. It doesn’t proceed to execute any code, even if you pro-
vide code or a filename. It just prints the version information and exits. You'll see
ruby -v much more often than ruby --version.

Combining switches
It’s not uncommon to combine one or more command-line switches in a single
invocation of Ruby.

You've already seen the cw combination, which checks the syntax of the file
without executing it, while also giving you warnings:

$ ruby -cw filename

Another combination of switches you’ll often see is -v and -e, which shows you
the version of Ruby you’re running and then runs the code provided in quotation
marks. You’ll see this combination a lot in discussions of Ruby, on mailing lists and
elsewhere; people use it to demonstrate how the same code might work differ-
ently in different versions of Ruby. For example, if you want to show clearly that
an operation called 1strip (strip all whitespace from the left-hand side of a
string) was not present in Ruby 1.6.8 but is present in Ruby 1.8.2, you can run a
sample program using first one version of Ruby, then the other:

$ ruby-1.6.8 -ve 'puts " abc".lstrip'

ruby 1.6.8 (2002-12-24) [i686-1linux]

-e:1: undefined method “lstrip' for " abc":String (NameError)
$ ruby -ve 'puts " abc".lstrip'

ruby 1.8.2 (2004-12-25) [i686-1inux]

abc

Theundefinedmethod 'lstrip' message on the firstrun (the one usingversionl.6.8)
means that you’ve tried to perform a nonexistent named operation. When you run
the same Ruby snipped using Ruby 1.8.2, however, it works: Ruby prints abc (with
no leading blanks). This is a convenient way to share information and formulate
questions about changes in Ruby’s behavior from one release to another.

At this point, we’re going to go back and look more closely at the interactive
Ruby interpreter, irb. You may have looked at this section already, when it was
alluded to near the beginning of the chapter. If not, you can take this opportunity
to learn more about this exceptionally useful Ruby tool.

20

CHAPTER 1
How Ruby works

1.2.2 A closer look at interactive Ruby interpretation with irb

One of the great pleasures of using Ruby is using irb. irb is an interactive inter-
preter—which means that instead of processing a file, it processes what you type
in during a session. irb is a great tool for testing Ruby code, and a great tool for
learning Ruby.

To start an irb session, you use the command irb. irb will print out its prompt:

$ irb

irb(main) : 001:0>
Now, you can enter Ruby commands. You can even run a one-shot version of the
Celcius-to-Fahrenheit conversion program. As you’ll see in this example, irb
behaves like a pocket calculator: It evaluates whatever you type in and prints the
result. You don’t have to use a print or puts command:

irb(main) : 001:0> 100 * 9 / 5 + 32

=> 212
To find out how many minutes there are in a year (if you don’t have a CD of the hit
song from the musical Rent handy), type in the relevant multiplication expression:

irb(main) :001:0> 365 * 24 * 60

=> 525600
irb will also, of course, process any Ruby instructions you enter. For example, if
you want to assign the day, hour, and minute counts to variables, and then multi-
ply those variables, you can do that in irb:

irb(main) : 001:0> days = 365

=> 365

irb(main) : 002:0> hours = 24

=> 24

irb(main) :003:0> minutes = 60

=> 60

irb (main) : 004:0> days * hours * minutes

=> 525600
The last calculation is what you’d expect. But look at the first three lines of entry.
When you type days = 365, irb responds by printing 365. Why?

The expression days = 365 is an assignment expression: You're assigning the
value 365 to a variable called days. The main business of an assignment expres-
sion is to assign, so that you can use the variable later. But assignment expressions
themselves—the whole days = 365 line—have a value. The value of an assignment
expression is its right-hand side. When irb sees any expression, it prints out the
value of that expression. So, when irb sees days = 365, it prints out 365. This may

1.3

1.3.1

Ruby extensions and programming libraries 21

seem like overzealous printing, but it comes with the territory; it’s the same behav-
ior that lets you type 2 + 2 into irb and see the result without having to use an
explicit print statement.

Once you get the hang of irb’s approach to printing out the value of everything,
you’ll find it an immensely useful tool (and toy).

TIP EXITING FROM IRB (INTENTIONALLY OR OTHERWISE) If you get stuck in
aloop or frozen situation in irb, press Ctrl-c. To exit, press Ctrl-d or type
exit. Occasionally, irb may blow up on you (that is, hit a fatal error and
terminate itself). Most of the time, though, it will catch its own errors and
let you continue.

Next on our tour of the Ruby landscape are Ruby extensions and libraries. Look-
ing at these facilities will give you a sense of how the core language interacts with
the add-ons that are either bundled in the Ruby distribution or distributed sepa-
rately by third-party programmers interested in enriching the Ruby program-
ming environment.

Ruby extensions and programming libraries

Earlier, you saw a simple example of the use of require to pull in one file from
another during program execution. require is the foundation of a huge amount
of Ruby’s power and richness as a programming language. Specifically, this mech-
anism gives you access to the many extensions and programming libraries bundled
with the Ruby programming language—as well as an even larger number of exten-
sions and libraries written independently by other programmers and made avail-
able for use with Ruby.

The full range of Ruby’s standard library is outside of the scope of this book.
This section provides guidelines and pointers about what Ruby offers and how to
use libraries in your own programs.

Using standard extensions and libraries

When you install Ruby on your system, you really install several layers. First is the
core Ruby language: the basic operations and programming techniques available
when you run the Ruby interpreter.

Second are a large number of extensions and programming libraries bundled with
Ruby—add-ons that help you write programs in different areas of specialization.
These are usually referred to collectively as the standard library. Ruby comes with
extensions for a wide variety of projects and tasks: database management, net-
working, specialized mathematics, XML processing, and many more.

22

1.3.2

CHAPTER 1
How Ruby works

To use a Ruby extension, you require it:

require 'cgi'

require 'REXML/Document'

Extensions are basically just program files (or clusters of related program files that
require each other) containing specialized code, dedicated to a particular area of
programming. When you use, say, the CGI extension, as in the previous example,
you immediately have access to a wide variety of programming commands and
techniques designed to help you write CGI programs. (Ruby on Rails does this;
you’ll see the line require 'cgi' in a number of the program files that make up
the Rails package.) The purpose, as with any extension, is to save everyone a lot of
trouble. Because all those CGI programming techniques are already available
through a simple require command, everyone can use them. The alternative
would be for everyone to write the code required to support those techniques,
which would be difficult and a waste of time.

Note that you say require 'cgi', not require 'cgi.rb'. Aside from looking
nicer, this bareword way of referring to the extension is necessary because not all
extensions use files ending in .rb. Specifically, extensions written in C (more in
the next section) are stored in files ending with .so or .d11. To keep the process
transparent—that is, to save you the trouble of knowing whether the extension
you want uses a .rb file or not—Ruby accepts a bareword and then does some
automatic file-searching and trying out of possible filenames until it finds the file
corresponding to the extension you have requested.

NOTE EXTENSION OR LIBRARY:? The broadest term for a collection of program-
ming commands and techniques that you can pull into your own pro-
gram via a require statement is lbrary. The term extension is usually
reserved for libraries that are distributed with Ruby, as opposed to those
written by third-party programmers and made available to others for use
in their applications. One exception is extensions to Ruby written in the
C programming language—both those provided with Ruby and those
written as add-ons—which are frequently referred to as extensions.

Using C extensions

Some of the extensions that come with Ruby are written in Ruby. They use the
techniques available in the core language to conjure up more layers of functional-
ity and language features. Some extensions, however, are written in C. C exten-
sions in the Ruby distribution include a socket-programming library (for network
applications), a syslog (system logging) programming facility, and several libraries
devoted to database handling.

1.3.3

Ruby extensions and programming libraries 23

Some of these C extensions could have been written in Ruby. There are a cou-
ple of reasons for writing them in C. The main reason is speed—execution speed,
that is. Some C extensions have to be in C; their goal is to provide a bridge
between Ruby and what’s already available to C programmers. They can’t be writ-
ten in Ruby because they’re bringing these features to Ruby.

The Ruby interpreter handles extensions in such a way that when you use one,
you don’t have to worry about whether it was written in Ruby or C. You just
require it

require 'gdbm'

and Ruby finds the files it needs to load, whether they are Ruby files or binary files
produced during the compile process from C source files.

Writing extensions and libraries

Many extensions and add-on libraries are bundled with the official distribution of
the Ruby programming language and are installed on your system when you install
Ruby. But anyone can write an extension or library. When you write Ruby code that
lets you and other programmers do something new and valuable with Ruby, you’ve
written an extension. Your code may not make it into the collection of extensions
that comes with the Ruby language. But you can still make it available to other pro-
grammers, thereby adding value to the Ruby programming environment.

The difference between writing a library and breaking your program into mul-
tiple files lies in what happens to your code. Do you use it in more than one pro-
gram? Do other people use it? If so, then it’s reasonable to call it a library.

The Rails framework is a library (really a bundle of interrelated libraries). As a
Rails developer, you may or may not write Ruby libraries. But you can do so, and it’s
not uncommon for Ruby programmers involved in diverse projects to release parts
ofwhatthey’reworking onaslibrariesand extensionsuseable by other programmers.

TIP VISIT THE RUBY APPLICATION ARCHIVE AND RUBYFORGE If you’re inter-
ested in seeing the kinds of Ruby projects that other Rubyists have made
available, including applications as well as programming libraries and ex-
tensions, the best places to look are the Ruby Application Archive (RAA;
http://raa.ruby-lang.org) and RubyForge (http://www.rubyforge.net).

We’ll conclude this chapter with an examination of the Ruby programming envi-
ronment: what comes with Ruby (including the source code for Ruby); where
Ruby installs itself on your system; and what kinds of applications and program-
ming facilities Ruby provides you.

24

CHAPTER 1
How Ruby works

1.4 Anatomy of the Ruby programming environment

1.4.1

Installing Ruby on your system means installing numerous components of the lan-
guage, possibly including the source code for the language, and definitely includ-
ing a number of disk directories’ worth of Ruby-language libraries and support
files. You won’t necessarily use everything in this section every time you write
something in Ruby, but it’s good to know what’s there. Also, quite a few of the pro-
gramming libraries that come bundled with Ruby are written iz Ruby—so know-
ing your way around the Ruby installation will enable you to look at some well-
written Ruby code and (we hope) absorb some good habits.
We’ll start with the Ruby source code.

The layout of the Ruby source code

The Ruby source code directory (tree) contains the files that house the program
code for the Ruby interpreter as well as a number of bundled add-ons. The core
Ruby language is written in G, so in order to read and fully understand the files,
you need to know C. But even if you don’t know C, you can learn a lot from perus-
ing the comments and documentation contained in the source files.

TIP MAKE SURE YOUR PACKAGE MANAGER GIVES YOU ALL OF RUBY If you in-
stall Ruby via a remote package manager, you may not end up with the
Ruby source on your machine. If that happens, and you want the source,
check for a package named “ruby-source” or something similar. If there’s
no such package, you can download the source from ruby-lang.org and
un-tar it. See the book’s appendix for more information about installing
Ruby and pointers on how to get platform-specific information.

If you examine a directory listing of the top-level directory of the Ruby source
tree, you'll see the following:
m Several subdirectories, including ext/ and 1ib/ (both discussed shortly)

m Informational, legal, and license-related files (such as COPYING, GPL, and
README)

m Files pertaining to the process of building and installing Ruby (all the con-
fig* files, Makefile.in, install-sh, and so on)

m C program and header files (*.c and *.h)

Some of these files are only needed during the building of Ruby. Some of them are
copied over directly when Ruby is installed. And, of course, the building process

1.4.2

Anatomy of the Ruby programming environment 25

generates a number of new files (including ruby, the interpreter) that make their
way onto your system permanently when you install Ruby.

Navigating the Ruby installation

We’ll look at several of the subdirectories of the main Ruby installation to give you
a general sense of what’s in them. This is just an overview. The best way—really,
the only way—to get to know the Ruby installation layout and become comfort-
able with it is to navigate around it and see what’s there.

Before you can either navigate generally or pinpoint files specifically, you
need to know where Ruby is installed on your system. The best way to find out is
to ask Ruby.

How to get Ruby to tell you where it’s installed

Ruby is installed to directories with different names on different platforms and/or
by different packaging systems. You can find out where the installation is on your
system by using irb. First, start up irb with the -r flag, requiring the extension
named rbconfig:

$ irb -rrbconfig

This command causes irb to preload some configuration information for your
particular installation, including information about where various components of
Ruby have been installed.

To get the information, enter an expression like this into irb:

irb(main) :001:0> Config::CONFIG["bindir"]

This request shows you the directory where the Ruby executable files (including
ruby and irb) have been installed; that’s the bindir. To get other information,
you need to replace bindir in the irb command with other terms. But each time,
you’ll use the same basic formula: Config: : CONFIG["term"].

In each of the following sections, the section subtitle includes the term you need. Just
plug that term into the irb command, and you’ll be shown the name of the directory.

The extensions and libraries subdirectory (rubylibdir)
Inside the rubylibdir (whatever that directory may be called on your system),
you’ll find program files written in Ruby. These files provide standard library facil-
ities, which you can require from your own programs if you need the functionality
they provide.

Here’s a sampling of the files you’ll find in this directory:

26

CHAPTER 1
How Ruby works

® cgi.rb—Tools to facilitate CGI programming
m fileutils.rb—Ultilities for manipulating files easily from Ruby programs
m tempfile.rb—A mechanism for automating the creation of temporary files

m tk.rb—A programming interface to the Tk graphics library

Some of the standard extensions, such as the Tk graphics library (the last item on
the previous list), span more than one file; you’ll see a large number of files with
names beginning with ¢k, as well as a whole tk subdirectory, all of which are part of
the Ruby Tk library.

Browsing your rubylibdir will give youa good (although possibly overwhelming,
but in a good way) sense of the many tasks for which Ruby provides programming
facilities. Most programmers use only a subset of these capabilities, but even a subset
of such a large collection of programming libraries makes a huge difference.

The C extensions directory (archdir)

Usually located one level down from the rubylibdir, the archdir contains
architecture-specific extensions and libraries. The files in this directory gener-
ally have names ending in .so or .dll (depending on your platform). These
files are C-language extensions to Ruby; or, more precisely, they are the binary,
runtime-loadable files generated from Ruby’s C-language extension code, com-
piled into binary form as part of the Ruby installation process.

Like the Ruby-language program files in the rubylibdir, the files in the arch-
dir contain standard library components that you can require into your own pro-
grams. (Among others, you'll see the file for the rbconfig extension—the
extension you’re using with irb to uncover the directory names.) These files are
not human-readable, but the Ruby interpreter knows how to load them when
asked to do so. From the perspective of the Ruby programmer, all standard librar-
ies are equally useable, whether written in Ruby or written in C and compiled to
binary format.

The site_ruby directory (sitedir) and its subdirectories (sitelibdir, sitearchdir)
Your Ruby installation includes a subdirectory called site_ruby. As its name sug-
gests (albeit telegraphically), site_ruby is where you and/or your system adminis-
trator store third-party extensions and libraries. Some of these may be code you
yourself write; others are tools you download from other people’s sites and
archives of Ruby libraries.

1.4.3

Anatomy of the Ruby programming environment 27

The site_ruby directory parallels the main Ruby installation directory, in the
sense that it has its own subdirectories for Ruby-language and C-language exten-
sions (sitelibdir and sitearchdir, respectively, in Config terms). When you
require an extension, the Ruby interpreter checks for it in these subdirectories of
site_ruby as well as in both the main rubylibdir and the main archdir.

The gems directory

This directory is a little different; it isn’t part of Ruby’s internal configuration
information because it’s for something that gets installed separately: the Ruby-
Gems packaging system. But you’ll probably see it on any system with Rails
installed, for the simple reason that the Rails framework is usually distributed and
installed using the RubyGems system.

The gems directory is usually at the same level as site_ruby; so, if you’'ve found
site_ruby, look at what else is installed next to it. Inside the gems directory are
one or more subdirectories; and if you explore these, you’ll find (possibly among
other things) the source code for the Rails framework.

We’ll stop here, because the Rails source is a topic for later in the book (particu-
larly for the last chapter, chapter 17). But you have a sense for where Ruby puts
files and directories. We’ll finish this section with a look at some applications and
other programming facilities that come bundled with Ruby.

Important standard Ruby tools and applications

We’ll round out our overview of the Ruby programming environment by examin-
ing some of the most important tools Ruby provides for programmers. (irb belongs
on this list, but it was discussed already and therefore isn’t reintroduced here.)

The debugger
Debugging—fixing errors—is part of programming. There are many techniques
for debugging programs, ranging from rigorous testing to asking for advice on a
chat channel.

The Ruby debugging facility (found in the library file debug. rb) helps you debug
a program by letting you run the program one instruction at a time, with pauses in
between. During the pauses, you're presented with a prompt; at this prompt, you
can examine the values of variables, see where you are in a nested series of com-
mands, and resume execution. You can also set breakpoints—places in your program
where the debugger stops execution and presents you with the prompt.

Here’s a run of c2£fi.rb—the version of the Celsius converter that takes key-
board input—through the debugger. Note the use of the step command; it tells

28

CHAPTER 1
How Ruby works

the debugger to run the next instruction. Note too that the debugger’s prompt
gets run in with the output of the print command—which, as you’ll recall,
doesn’t automatically add a newline character to its output. You use the v 1 com-
mand along the way to examine the values of the local variables ¢ and £. This
example runs Ruby with the debug extension loaded:

$ ruby -rdebug c2fi.rb #1

Debug.rb
Emacs support available.

c2fi.rb:3:print "Please enter a Celsius temperature: "

(rdb:1) step

Please enter a Celsius temperature: c2fi.rb:4:c = gets.to_i

(rdb:1) step

25

c2fi.rb:5:f = (¢ * 9 / 5) + 32

(rdb:1) step

c2fi.rb:5:f = (¢ * 9 / 5) + 32

(rdb:1) step

c2fi.rb:6:puts £

(rdb:1) v 1

c => 25
£ => 77

(rdb:1) step

77
Some programmers are more at home in the debugger than others. Running a
program this way differs a great deal from a normal run, and some people prefer
to debug a program by inserting instructions in the program itself to display infor-
mation on the screen during a program run. That approach to debugging can be
messy, because you have to go back into your program file and disable or remove
the lines that do the displaying. On the other hand, you have to go back into the
file anyway to fix the bug.

Whatever your personal work habits in the realm of debugging, it’s useful to

know that the Ruby debugging facility is available.

Profiling
In programming terms, profiling means measuring how much use is made of sys-
tem resources—time, principally—by different parts of your program. This starts
to matter with longer programs, particularly programs that involve looping
through instructions many times (for example, a program that reads in a long file
and examines or modifies the contents of each line as it’s read in).

None of the examples up to this point require profiling, because they’re short
and simple. However, if you want to see the kind of information that the profiler

Anatomy of the Ruby programming environment 29

gives you—and if you can regard it stoically without worrying, because much of it
will be hard to decipher, at this stage—try running the following command:

S ruby -r profile c2fi.rb

Stand back to make room for the output.

Profiling pinpoints the spots in a program that are using lots of system
resources and therefore potentially slowing the program. The information pro-
vided by the profiler may lead you to tweak part of a program to make it run more
efficiently; or, if there’s no relatively easy way around the resource bottleneck, it
may lead you to rewrite part of the program in C, to make it run faster.

ri and RDoc

ri (Ruby Index) and RDoc (Ruby Documentation) are a closely related pair of
tools for providing documentation about Ruby programs. ri is a command-line
tool; the RDoc system includes the command-line tool rdoc. ri and rdoc are stand-
alone programs; you run them from the command line. You can also use the facil-
ities they provide from within your Ruby programs.

RDoc is a documentation system. If you put comments in your program files
(Ruby or C) in the prescribed RDoc format, rdoc scans your files, extracts the
comments, organizes them intelligently (indexed according to what they com-
ment on), and creates nicely formatted documentation from them. You can see
RDoc markup in many of the C files in the Ruby source tree and many of the Ruby
files in the Ruby installation.

ri dovetails with RDoc: It gives you a way to view the information that RDoc has
extracted and organized. Specifically (although not exclusively, if you customize
it), ri is configured to display the RDoc information from the Ruby source files.
Thus on any system that has Ruby fully installed, you can get detailed information
about Ruby with a simple command-line invocation of ri. For example, if you
want the full, official description of what require does, you can type

$ ri require

(You’ll get more than you want or need, right now—but exactly the right amount
once you’ve learned about the roots and branches of the require mechanism.)
ri and RDoc are the work of Dave Thomas.

ERb

Last but not least (not by a long shot, in connection with Rails), Ruby provides you
with a program called ERb (Embedded Ruby), written by Seki Masatoshi. ERb allows
you to put Ruby code inside an HTML file. Or is it putting HTML in a program file?

30

CHAPTER 1
How Ruby works

It’s really both: You get to embed (hence the name) Ruby inside non-Ruby, and ERb
interprets the whole thing as program input.

ERb reads a file—an ERb document—and prints it out again. Except you’re
allowed to insert Ruby programming instructions in the document (using a spe-
cial syntax, described in a moment). When ERb hits the Ruby instructions, it exe-
cutes them. Depending on what you’ve asked for, it either moves on or prints out
the results of executing the instructions.

ERb reads along, word for word, and then at a certain point (when it sees the
Ruby code embedded in the document) it sees that it has to fill in a blank, which
it does by executing the Ruby code.

You need to know only two things to prepare an ERb document:

m If you want some Ruby code executed, enclose it between <% and %>.
= If you want the result of the code execution to be printed out, as part of the

output, enclose the code between <%= and %>.

ERb will figure out what to do when it hits <% or <%=.
Here’s an example. Save the code from listing 1.5 in your ruby4rails directory
as erbdemo. rb:

Listing 1.5 Demonstration of ERb (erbdemo.rb)

<% page_title = "Demonstration of ERb" %>
<% salutation "Dear programmer," %>
<html>

<head>

<title><%= page title %></title>

</head>

<body>

<p><%= salutation %></p>

<p>This is a brief demonstration of how ERb fills out a template.</p>
</body>

</html>

Now, run the program using the command-line utility erb instead of ruby:

S erb erbdemo.rb

<html>

<head>

<titles>Demonstration of ERb</title> #5
</head>

<body>

<p>Dear programmer,</p>

15

Summary 31

<p>This is a brief demonstration of how ERb fills out a template.</p>

</body>

</html>
The output of the program run is just what you’d expect, given the rules for how
ERb reads and interprets its input. The first two lines of the program are inter-
preted as Ruby instructions (that is, the parts inside the <%...%> markers; the mark-
ers themselves are ignored). Once those two lines have been read, you have two
variables to work with: page title and salutation. The HTML markup instruc-
tion <html> is read in literally and printed out literally, with no change. That’s the
first line of output (except for two blank lines; erb gave you a blank line for each
of those <%...%> lines). The <head> tag also comes through in the output just as it
appeared in the input.

In the <title> tag, you see some Ruby code inside a <%= ... %> delimiter pair.
These are the delimiters you use when you want the result of evaluating the code
to be inserted into the ERb output. The Ruby code, in this case, is the single vari-
able page title, and the value of that variable is the string “Demonstration of
ERDb”. (You know this because you assigned that value to the title variable on the
first line.) So, at this point in the output, ERDb fills in the perceived blank with
“Demonstration of ERb”.

ERb looms very large in the Ruby on Rails framework. Essentially, what you see
on the screen when you connect to a Rails application is, in many cases, the out-
put from an ERb document. That’s a major part of how Rails works: It sets up val-
ues for variables based on the database it’s working with (and various formulas
and manipulations you specify), and then, based on the values of those variables,
it renders a screen’s worth of HTML, courtesy of asking ERb to insert the values
into the document at the appropriate places. Getting a conceptual handle on ERb
at this stage will serve you well in the course of your use of Rails.

Summary

In this chapter, we’ve walked through some important foundational Ruby mate-
rial and facilities. You’ve learned some important terminology, including the dif-
ference between Ruby (the programming language overall) and ruby (the name
of the Ruby interpreter program). You’ve completed (in miniature, but still from
start to finish) the process of writing a Ruby program, saving it in a file, checking
it for syntax errors, and running it. You’ve gotten a taste of how to do keyboard
input in Ruby as well as file input and output. You’ve also learned how to pull in
one program file from another with require and load.

32

CHAPTER 1
How Ruby works

Section 1.2 introduced some of the details of interpreter invocation, in partic-
ular Ruby’s command-line switches (not all of them, but a selection of the most
common and useful) and the use of the interactive Ruby interpreter, irb, for test-
ing, learning, and playing with Ruby.

We then looked at Ruby extensions and libraries, including some specific
example but focusing mainly on the mechanism for calling up extensions in your
code (with require). This overview also included discussion of C extensions,
which are often used for speed or for easy interaction with existing C libraries
written outside of Ruby.

The last section in this chapter took you on a guided tour of the Ruby program-
ming environment. We took stock of the source tree for Ruby—a fount of informa-
tion and detail—as well as the Ruby installation. The programming environment
also includes useful applications and program development facilities, such as ERb,
RDoc, ri, and the debugging and profiling libraries bundled with Ruby.

You now have a good blueprint of how Ruby works and what tools the Ruby
programming environment provides. In the next chapter, we’ll present a similar
introduction to the Rails development environment, but we’ll go a lot further in
the direction of writing actual code. As you’ll see, the Ruby and Rails environ-
ments interact very effectively.

How Rauls works

This chapter covers

m Overview of the Rails framework

m Details of how Rails handles incoming requests
m Domain modeling and database creation

m A complete sample Rails application

33

34

2.1

CHAPTER 2
How Rails works

In this chapter, we’ll look at the anatomy of both the Rails framework overall and
the typical Rails application. In the spirit of chapter 1, this exploration will
include both a medium-level overview and an introduction to some important
concepts. In the spirit of Rails—the spirit, that is, of easy, rapid development of
Web applications—it will also include the creation of a working application.

The Ruby on Rails framework—the programs and programming libraries that
you get when you install Rails on your system—exists for the purpose of allowing
you to write individual Rails applications. A Rails application is the program that
takes control when someone connects to a Rails-driven Web site. It may be an
online shopping service, a survey site, a library catalog, a collaborative authorship
site, or any of many other things. The nature and purpose of Rails applications
vary widely. But the overall shape of one Rails application is much like that of
another; and the framework holds steady. We’ll be looking closely at how both the
framework and a typical application work.

Inside the Rails framework

A framework is a program, set of programs, and/or code library that writes most
of your application for you. When you use a framework, your job is to write the
parts of the application that make it do the specific things you want.

NOTE GETTING RAILS AND RAILS INFORMATION This book’s appendix contains
information about installing Rails and pointers on where to get more in-
formation. You may be working on a system with Rails installed already;
but if not, or if you want to make sure you have your finger on the pulse
of the major sources of Rails information, look at the appendix.

The term framework comes from the field of building construction, where it refers
to a partially built house or building. Once a house reaches the framework stage,
much of the work of building is done—but the house looks exactly like any other
house in the same style at the same stage. It’s only after the framework is in place
that the builders and designers start to do things that make the house distinct
from other houses.

Unlike scaffolding, which gets removed once the house is built, the framework
is part of the house. That’s true in the case of Ruby on Rails, too. When you run
your application, the Rails framework—the code installed in the various Rails
directories on your computer—is part of it. You didn’t write that code, but it’s still
part of your application; it still gets executed when your application runs.

2.1.1

Inside the Rails framework 35

A computer application framework like Rails and a house framework are dif-
ferent in one important respect: The computer framework is reusable. Install
Rails once, and it serves as the framework for any number of applications. What it
provides, it keeps providing; you never have to write the parts of your application
that are pre-written as part of Rails.

The difference between what you can do with Rails and what you would have to
do if you wrote the equivalent of a Rails application from scratch is considerable. If
you’re developing a shopping cart site with Rails, you have to decide things like
whether shipping charges will be shown before checkout, or whether to slap up
links to products similar to those in the customer’s cart. But you don thave to design
a translator that automatically maps database table names to Ruby method names,
or write a comprehensive library of helper routines that automate the generation
of HTML form elements, or engineer a system that layers automatic method calls in
a particular order based on a simple list. These tasks (and many more) have been
programmed already, and they’re available to every Rails application.

The Rails framework exists to be used, and it’s designed for use. The best way
to understand both the “what” and the “why” of its design, and its relation to the
language in which it’s written, is to first grasp what you’re supposed to do when
you use it.

A framework user’s-eye view of application development

When you set out to write a Rails application—leaving aside configuration and
other housekeeping chores—you have to perform three primary tasks:

1 Describe and model your application’s domain. The domain is the universe of
your application. The domain may be music store, university, dating service,
address book, or hardware inventory. Whatever it is, you have to figure out
what’s in it—what entities exist in this universe—and how the items in it
relate to each other. The domain description you come up with will guide
the design of your database (which you’ll need to create and initialize using
the administrative tools provided by the database system) as well as some of
the particulars of the Rails application.

2 Specify what can happen in this domain. The domain model is static; it’s just
things. Now you have to get dynamic. Addresses can be added to an address
book. Musical scores can be purchased from music stores. Users can log in
to a dating service. Students can register for classes at a university. You need
to identify all the possible scenarios or actions that the elements of your
domain can participate in.

36

2.1.2

CHAPTER 2
How Rails works

3 Choose and design the publicly available views of the domain. At this point, you
can start thinking in Web-browser terms. Once you’ve decided that your
domain has students, and that they can register for classes, you can envi-
sion a welcome page, a registration page, and a confirmation page. Cus-
tomers shopping for shoes may have access to a style selector, a shopping
cart, and a checkout page. Each of these pages, or views, shows the user
how things stand at a certain point along the way in one of your domain’s
scenarios. You have to decide which views will exist.

Just about everything you do when you develop a Rails application falls into one
of these three categories. In some respects, the categories are related; in particu-
lar, scripting the specific actions that take place in your domain (category 2) and
deciding what views of the domain you’ll provide (category 3) go hand in hand.
But the layers of development are also separate. That separation isn’t a flaw or a
fault line, but a strength. Keeping the distinct phases of development separate,
while ensuring that they interoperate smoothly, is precisely what a framework
should do.

Even frameworks have frameworks; there are different #ypes of framework. In the
case of Ruby on Rails, we’re dealing with a Model/View/Controller (MVC) framework.

Introducing the MVC framework concept

MVC is the family of frameworks to which Rails belongs, and getting to know
about the family traits will help you understand Rails.

The MVC principle divides the work of an application into three separate but
closely cooperative subsystems. Although the correct term is MVC, for the sake of
matching the framework with the three tasks listed in section 2.1.1, we’ll flip it tem-
porarily to MCV (arguably a more sensible order anyway). Model, controller, and
view, in the general case of any framework of this type, can be described as follows:

m Model—The parts of the application that define the entities that play a role
in the universe of the application (books, hammers, shopping carts, stu-
dents, and so on)

m Controller—The facility within the application that directs traffic, on the one
hand querying the models for specific data, and on the other hand organiz-
ing that data (searching, sorting, massaging it) into a form that fits the
needs of a given view

m View—A presentation of data in a particular format, triggered by a control-
ler’s decision to present the data

2.1.3

Inside the Rails framework 37

Three things happen in an MVC application: You get information; you store and
manipulate that information; and you present that information. On its own, that’s
not remarkable; most computer programs perform operations on data and give
you the results. The MVC principle, however, isn’t just a description of what hap-
pens to the data. It’s also the governing principle behind how you, the developer,
work on a program.

When you’re writing program code to handle one of these areas or layers of
your application (the models, the controller actions, the views), you are only writ-
ing code for that layer. If you wake up one day and decide to write all the entity-
modeling code for an address-book application, all you have to do is make deci-
sions about how you think the address-book universe should be broken down into
entities. You don’t have to worry about how many fields you’ll have to fill in on the
screen to add a new entry, or whether to use a Confirm button when you delete
someone, or anything else practical or visual. All you have to do is model the
domain of the address book. After you’ve done that, you can start thinking about
what you want to be able to do, and what kinds of data presentations you want
access to (one person at a time, everyone who lives in a particular state, all the G’s
or B’s or T’s grouped together, and so on).

This clear-headed division of labor—your labor, as well as the application’s—
makes the MVC approach attractive. You’ll get a lot of mileage out of sticking to
this three-part worldview when it comes to Rails. Whether you’re getting a handle
on Rails’ theoretical underpinnings, bearing down on the details of writing a real-
life Rails application (we’ll do both in this chapter), or navigating the directory
structure of your application, you’ll find that you’re always in this three-part struc-
ture: a universe populated with entities that are manipulated and controlled
through actions that culminate in publicly available views.

Meet MVC in the (virtual) flesh

To see MVC close up, if you haven’t already—and even if you have (you’ll need to
perform this next step anyway, for later)—run the following command from a
directory in which you’d like to place the sample Rails application directory:

$ rails r4rmusicl

The program rails, which is installed with the Rails framework, performs the task
of creating an application directory—in this case, a directory called r4rmusicl.
(Any name will do for this example; but that particular name and directory will
come in handy when we write the sample application.) Inside the application
directory, Rails creates a set of standard subdirectories, populating them with files

38

2.2

CHAPTER 2
How Rails works

necessary for the development and running of a Rails application. If you look
inside the app subdirectory, you’ll see (among other things) subdirectories called
models, controllers, and views. The relevant model and controller program files
and view templates will reside in these subdirectories. The MVC principle guides
the layout of the application and the way the work of programming is organized.

NOTE RAILS APPLICATION NAMES Unlike a domain name, which everyone who
wants to connect to your site must know, the internal name of your Rails
application (for example, r4rmusicl, or myrailsapp) is only the business
of whoever’s writing and/or maintaining the application. It’s just a direc-
tory name; it doesn’t even have to be publicized. If you plan to distribute
or sell your Rails application, then you have to start worrying about
“branding” the application with a unique name. But that kind of brand-
ing is independent of what the application and its directory are called in-
ternally on the system that hosts them.

You’ve now seen that three phases or layers of activity are associated with writing a
Rails application, and that they correspond to the three elements of the MVC
framework concept. Let’s turn to a closer look at how the Rails framework oper-
ates as an MVC implementation.

Analyzing Rails’ implementation of MVC

The MVC concept is all about dividing the work of programming and the func-
tioning of a program into three layers: model, view, and controller. In accordance
with its MVC foundations, Rails is made up largely of three separate programming
libraries—separate in the sense that each has its own name and you can, if you
need to, use them separately from each other.

The three libraries forming the bulk of the Rails framework are listed in
table 2.1. You can see these three libraries installed on your computer. They usu-
ally reside in the gems area of a Ruby installation. (See the book’s appendix for

information about RubyGems.) Assuming a standard, default installation, you can
find them like this:

$ cd /usr/local/lib/ruby/gems/1.8/gems
S 1ls

Analyzing Rails’ implementation of MVC 39

Table 2.1 Overview of how Rails implements the MVC framework design

MVC phase Rails sublibrary Purpose

Model ActiveRecord Provides an interface and binding between the tables in a
relational database and the Ruby program code that
manipulates database records. Ruby method names are
automatically generated from the field names of data-
base tables, and so on.

View ActionView An Embedded Ruby (ERb) based system for defining pre-
sentation templates for data presentation. Every Web
connection to a Rails application results in the displaying
of a view.

Controller ActionController A data broker sitting between ActiveRecord (the database
interface) and ActionView (the presentation engine).
ActionController provides facilities for manipulating and
organizing data from the database and/or from Web form
input, which it then hands off to ActionView for template
insertion and display.

You’ll see subdirectories including (but not limited to) the following:
B actionpack-1.11.2
B activerecord-1.13.2

B rails-1.0.0

NOTE YOUR VERSION NUMBERS MAY VARY The version numbers you see on the
right sides of the directory names may differ from those in this example.
And on some systems, more than one version of each package may be in-
stalled. If that’s the case, look for the versions with the highest numbers,
which will give you the most recent version of each library installed on
the system.

ActionView and ActionController are bundled together under ActionPack. To see
them separately, do this:

$ 1ls actionpack-1.11.2/1ib

You’ll see subdirectories for each of them.

Looking at these directory listings gives you a concrete sense of the fact that
Rails is made up of component packages and that these packages, collectively,
constitute an implementation of the MVC structure.

NOTE THE CONTENTS OF ACTIONPACK ActionView and ActionController are
bundled together as ActionPack because in the MVC structure, V and C
(view and controller) tend to be closely intertwined. For example, the

40

CHAPTER 2
How Rails works

template files that ActionView processes must use the same names for
variables that the controller code, based on ActionController, uses. That
means you can’t design a view without knowing fairly specifically what’s
going on in the controller files. Although they are separate libraries in a
sense, ActionView and ActionController can also be seen as two parts of a
single suite.

Rails: the ties that bind
If these three MVC-friendly, separate libraries are the components of Rails, what
exactly is Rails?

The Rails framework is to a large extent the simultaneous deployment of all three
of these component packages or libraries. ActiveRecord provides a range of pro-
gramming techniques and shortcuts for manipulating data from an SQL database.
ActionController and ActionView (ActionPack, collectively) provide facilities for
manipulating and displaying that data. Rails ties it all together.

Figure 2.1 gives you a schematic view of how Ruby and Rails fit together, along
with the database system that stores your Rails data and the Web server that
exports your finalized HTML pages. Arrows indicate close collaboration between
system components.

Subdirectories in your Rails installation correspond to the support libraries
mentioned in figure 2.1. We won’t discuss these libraries in as much detail as the
“Big Three” (those that correspond directly to the MVC framework concept), but
these other libraries provide important support and auxiliary functionality out-
side the strict MVC division and are often used in more than one of the phases.

Having gotten as far as connecting the dots, so to speak, between the compo-
nents of Rails and the components of the MVC framework structure, and situating
the bundle in the context of the relationship between Rails and Ruby, we’ll now
embark on writing a Rails application. It will be small; the purpose is to do a
breadth-first walk-through of the process. We’ll revisit and extend this example to
in part 4 of the book. For now, we’ll get a foot in the Rails door with a modest—
but working—application.

The application we’ll develop is an online classical sheet-music store. We’ll
name the mythical store in honor of this book: R4RMusic. If you haven’t already
done so, issue the rails r4rmusicl command to create the directory for the appli-
cation. (The 1 at the end signals that this is the first version of the application.)

Relational database
system

Any database system <

A Rails application walk-through

Ruby
Rails framework

supported by Rails
(MySQL, SQlite,
PostgreSQL, etc.)

The design of the
database itself (names
of tables, etc.) will conform
to ActiveRecord guidelines

Web server

ActiveRecord Support libraries
Talks to the database system ActiveSupport
Creates Ruby objects modeled ActionWebService

on the database tables ActionMailer

ActionPack

ActionController ActionView

Manipulates ActiveRecord Fills ERb templates with

objects data processed by
Loads data into variables for ActionController

use in ActionView templates Hands off the resulting
Uses CGl library to process \

form data held in CGl variables

4 '

HTML to the Web server

Popular Web servers used
with Rails include Apache,
WEBKrick (server written in
Ruby and shipped with N\
Ruby), lightTPD

\ routines
Parses incoming

CGl Library ¥ ERDb V

CGl data processing "Embedded Ruby"
Templating system
for mixing static
text with output

from Ruby code

form data
Part of the Ruby
standard library

Figure 2.1 Schematic view of Ruby and the Rails framework

2.3 A Rails application walk-through

41

The steps we’ll follow in writing the R4RMusic application are, in essence, the
three steps outlined at the beginning of this chapter and echoed in the MVC con-
cept—or, in keeping with how we’ll proceed initially, the MCV concept: modeling
the domain, programming the possible actions, and designing the available views.
The goal at the moment is to have something in place that we can add to incre-
mentally. That’s often the way Rails applications evolve.

NOTE DOWNLOADING THE MUSIC STORE CODE AND SQL FROM THE BOOK’S WEB
SITE You can download the complete application code for R4RMusic
(both the version developed in this chapter and the revised version devel-
oped in part 4), along with files containing the SQL commands for creat-
ing the tables and adding some sample data to them, from the Ruby for
Rails Web site (http://www.manning.com/books/black). Doing so will

42

CHAPTER 2
How Rails works

save you having to type everything yourself. You still have to follow the
steps for creating the databases and setting the permissions (as described
next). But defining the tables and pulling in the sample data will be easy
if you use the pre-written file from the Web site.

2.3.1 Introducing R4RMusic, the music-store application

The details of the music store will unfold as we go. But a few comments and direc-
tives up front will help you get your bearings.

In this first iteration of the music store, we’ll only implement a couple of func-
tionalities, mainly pertaining to letting a visitor view the online listings of available
works. We’ll create views based on the works and also let visitors view works by
composer. For the moment—and this will change in part 4, when we revisit the
application—we won’t have any shopping facilities. We’ll focus on the viewing and
browsing of the music store’s inventory.

This example uses MySQL as its relational database backend. You’ll create and
initialize a MySQL database—three databases, to correspond to the production,
development, and test databases that Rails expects to have available. You can also
adapt the SQL examples here for other Rails-supported relational database sys-
tems. (PostgreSQL and SQLite are popular alternatives to MySQL..)

NOTE RAILS MIGRATIONS Rails provides a facility for generating and updating
database tables and fields semi-automatically: migrations. Migrations let
you specify the structure you want your tables to have using Ruby code,
rather than SQL; the migrations engine takes care of the SQL creation.
Migrations also allow for tracking of changes to a database design and
even the reversing of design changes. In the long run, using migrations
instead of writing SQL by hand can make a lengthy, complex develop-
ment process easier. At the same time, migrations introduce complexities
of their own. We’re not using them in this book, both because of some of
their complexities and because spelling out the SQL better serves the
purpose of keeping the layers of the Rails application universe in clear
view. But you should investigate migrations for yourself, in connection
with your Rails work.

The databases will be named rdrmusicl_production, r4rmusicl_development, and
rd4rmusicl_test. Assuming that you called the application r4rmusicl when you asked
Rails to create the directory for it, these database names will appear automatically
in the application’s database configuration file (the file database.yml in the appli-
cation’s config subdirectory). What you have to do to create the databases will

2.3.2

A Rails application walk-through 43

depend on the database system you’re using. (Some further details, especially for
MySQL, are included in the next section.)

Modeling the first iteration of the music-store domain

The first phase of development is to model the domain. Model, taken broadly,
means not only defining and describing the entities in the universe of our applica-
tion, but also designing and creating the databases that the application will use.
On the Rails side, it also means putting in place the files and program code that
the ActiveRecord subsystem—the library concerned with the database records
and their manipulation through Ruby code—can use.

In the spirit of creating something simple but operational, we’ll model three
entities:

® WORK (that is, musical composition; work is a conveniently short word)
= COMPOSER
m EDITION

It would be even simpler (or at least smaller) to model only WORK rather than
both WORK and EDITION. But a little reflection reveals that splitting the work
from its editions makes sense. A symphony doesn’t have a publisher or price;
those things pertain to specific published editions. Keeping the work separate
from the edition also means that the database design can be expanded later to
include CDs and other formats, in addition to sheet music.

Diagraming the domain

Much of the work of modeling a domain comes down to this fact: A domain con-
sists of entities (things), and an entity consists of a combination of properties (text-
strings and numbers; simple, flat, scalar values, like the title of a composition or a
year of publication) and other entities.

There are lots of ways to represent domain models visually. One of the sim-
plest, and one that you can use regardless of whether you have graphics software,
is to list the entities in your domain and, under each entity, to list that entity’s
properties. In some cases, a property of one entity is another entity; for example,
a musical work has a composer property, and a composer is an entity in its own
right. We’ll indicate this by using uppercase for all entities, whether they appear at
the top level of the diagram or are embedded under another entity as one of that
other entity’s properties.

44

CHAPTER 2
How Rails works

Rendered this way, the domain looks like this:

WORK
COMPOSER
EDITION(S)
title

COMPOSER
WORKS (S)
first name
last name

EDITION
WORK
description
publisher
year
price
(The description property of the EDITION entity will contain strings, like “Second”
for a second edition, or “Facsimile” for a facsimile edition.)

Figure 2.2 shows a graphical representation of the same domain.

Notice that the entity relations are circular: A WORK has one or more EDI-
TIONS, and each EDITION has a WORK. To translate these relationships into Rails
terms, we need to make a subtle but important distinction between two shades of
meaning of has. When you see a one-to-many relationship like this, you’re really
seeing a relationship where Thing X has one or more Thing Ys, and Thing Y
belongs to a Thing X.

Translating that into WORK/EDITION terms, a WORK has one or more EDI-
TIONS (zero or more, but that’s logically impossible); and an EDITION belongs to a
WORK. Similarly, each WORK belongs to a COMPOSER, and each COMPOSER has
one or more WORKS.

That way of looking at it will see you through the rest of the database creation
and entity modeling processes.

EDITION

WORK COMPOSER

WORK (S)
first name
last name

description
publisher
year
price

COMPOSER
EDITION(S)
title

Figure 2.2 Graphic sketching out of the R4RMusic entities and their properties

A Rails application walk-through 45

Initializing the databases

To create the database for the application, you need to initialize a database on
your system. How you do this will depend on which database backend you’re
using. In these examples, the database system is MySQL. (Instructions for, and dis-
cussion of, using other database systems, including MySQL, PostgreSQL, and
SQLite, abound on the various Ruby on Rails Web sites and discussion groups.)

In keeping with Rails practice, we’ll initialize three databases: one for develop-
ment, one for production, and one for testing. In keeping with default Rails ter-
minology, because we called the application r4rmusicl, we’ll call the databases
rdrmusicl_development, rdrmusicl_production, and rdrmusicl_test. You should initial-
ize all three of them and create a user and password on them with full read and
write privileges.

WARNING MAKE UP YOUR OWN PASSWORDS Where you see the password railzrulez
in these examples, you should choose a password of your own. Otherwise,
everyone who sees this book will know your database password.

In MySQL, a console session in which you do this looks something like this:

mysql> create database r4rmusicl development;
Query OK, 1 row affected (0.01 sec)

mysql> grant all privileges on r4rmusicl development.*

to 'r4r'@'localhost' identified by 'railzrulez';

Query OK, 0 rows affected (0.00 sec)

You then do the same thing for two more databases: rfrmusicl_production and
rdrmusicl_test.

At this point, you need to let Rails in on the user name and password for the
databases. You do this in the file database.yml, in the config subdirectory. This file
has live configuration sections for MySQL databases and sample sections for other
database systems. In each of the sections you use (the three MySQL sections, if
you’re using MySQL as per the examples here), you need to change the username
and password lines to reflect the permissions on the databases you’ve created:

username: r4r

password: railzrulez
The names of the databases should correspond to the ones you've created. (If
they don’t, you’ve probably mistyped either the database names when you created
them or the application name when you created the application. You'll need to fix
these before you proceed.)

46

CHAPTER 2
How Rails works

Designing and creating the database tables

We have three modeled entities in our domain, and we want three database
tables. With more complex domains—even the music store domain, in more com-
plex form—the correspondence isn’t always one to one. Sometimes there are
extra tables that store information about relationships between entities rather
than information about specific entities. For the moment, though, our domain
model yields a one-to-one relationship between entities and tables.

Translating a domain model into SQL is generally straightforward, as long as
you remember that you have to write Rails-friendly SQL. Down the road, Rails will
work with the database—not just pluck records from it, but also look at the design
of the tables and use that design as a point of departure for providing you with a
lot of programming functionality. Your end of the bargain is to set things up in
such a way that all of Rails’ techniques for interpreting table structure will work.

In practical terms (and to the extent it relates to our three tables), that means
that you have to follow certain rules:

m Each entity (such as EDITION) gets a table in the database named after it,
but in the plural (editions).

® Each such entity-matching table has a field called id, which contains a
unique integer for each record inserted into the table.

m Given entity x and entity y, if entity y belongs to entity x, then table y has a
field called x_id.

m The bulk of the fields in any table store the values for that entity’s simple
properties (anything that’s a number or a string).

The third rule is slightly opaque. In this case, it means that the editions table has a
field called work_id. This corresponds to the concept that each edition belongs to
a particular work. When an edition record is inserted into the table, its work_id
field will be given the same value as the id field of the work to which it belongs.
That way, each edition record is labeled with a kind of property tag, identifying it
as the property of a particular work. (Because id values are unique—they serve as
primary keys—a single integer is enough to identify an edition unambiguously with
the correct work.)

You can also flip this explanation and say that each work has one or more edi-
tions. The have and belongs to relationships are the same thing, just expressed from
a different perspective. And what’s true of the work/edition relationship is also
true of the composer/work relationship in this domain model.

A Rails application walk-through 47

The domain diagram and the requirements and constraints pertaining to the
SQL result in the SQL commands shown in listing 2.1.

Listing 2.1 SQL commands for creating the basic music store database tables

USE r4rmusicl_development;
DROP TABLE IF EXISTS works;
DROP TABLE IF EXISTS editions;
DROP TABLE IF EXISTS composers;

CREATE TABLE works (
id INT(11) NOT NULL AUTO_INCREMENT,
composer_id INT(11),
title VARCHAR(100),
PRIMARY KEY (id)
)

CREATE TABLE editions (
id INT(11) NOT NULL AUTO_INCREMENT,
work_id INT(11) NOT NULL,
description VARCHAR(30),
publisher VARCHAR(60),
year INT (4),
price FLOAT,
PRIMARY KEY (id)
)i

CREATE TABLE composers (
id INT(11) NOT NULL AUTO_INCREMENT,
first_name VARCHAR(25),
last_name VARCHAR(25),
PRIMARY KEY (id)
)i
|

You can create the tables in the database by saving these SQL commands to a file
or, even better, using the file r4rmusicl.sql, which you can download as part of
the complete R4RMusic application package from the Ruby for Rails Web site
(http://www.manning.com/books/black). Feed the SQL file to MySQL like this
(entering the password when prompted):

$ mysgl -u r4r -p < r4rmusicl.sql

The r4rmusicl_development database now contains tables; and if you used the pre-
written file from the book’s Web site, it also contains sample data. Now, let’s work
on some Rails application code to match the database.

48

CHAPTER 2
How Rails works

Writing the Rails model files
It’s time to work on the Rails application code—specifically, the two model files
work.rb and edition.rb. First, we have to create those models. Rails does this
semi-automatically. From the top level of the application directory, issue the fol-
lowing commands:

$ ruby script/generate model work

$ ruby script/generate model edition

$ ruby script/generate model composer
You’ll find the three files you need in the app/models directory. work.rb looks like
this:

class Work < ActionRecord::Base

end
composer.rb and edition.rb look similar. What you see (and don’t worry if there’s
a bit of black-box syndrome at this stage) are empty definitions of Ruby classes.
(They’re not as empty as they look; they have facilities for setting and retrieving
all the entity properties: title, composer, publisher, and so on. Rails endows them with
those facilities automatically, courtesy of examining the field-names in the data-
base tables.) You need to add directives that tell Rails about the associations
between entities—that is, the details of the has and belongs to relationships.

Assoctations is both a descriptive and a technical term. Associations are part of
the ActiveRecord database-handling library. They’re a kind of inter-entity model-
ing subsystem, in which you tell Rails what you consider the relationships between
entities to be and, assuming the table and field names you’ve chosen mesh with
what you’ve asserted, Rails responds by handing you a set of programming fea-
tures that let you manipulate those relationships easily.

To set up this functionality, you need to tell Rails what relationships you want
to establish within the data system. To do so, modify work.rb to look like this:

class Work < ActionRecord::Base

belongs_to :composer

has_many :editions
end

Modify edition.rb to look like this:

class Edition < ActionRecord: :Base
belongs_to :work
end

Composers get similar treatment; composer . rb should look like this:

A Rails application walk-through 49

class Composer < ActionRecord::Base
has _many :works
end
Because we’ve followed the rules in naming the id-related fields in the database,
Rails cooperates by making it easy to add new editions to those belonging to a par-
ticular work or even to change which work an edition belongs to (an unlikely sce-
nario, but possible).

Adding records to the database

There are numerous ways to add data to your database, including through Web

forms. Here, we’ll do it the clunky way: with SQL. This expedient will let us get into

the middle of the stream—doing something with the data—as quickly as possible.
The SQL commands in listing 2.2, issued to the music store_development data-

base, create a small number of records on which we can practice. You are free to

add as many records as you like, for any works (real or imagined) you wish.

Listing 2.2 SQL commands for sample music store inventory data

INSERT INTO composers
VALUES (1, "Johannes", "Brahms") ;
INSERT INTO composers VALUES
VALUES (2, "Claude", "Debussy") ;

INSERT INTO works

VALUES (1,1, "Sonata for Cello and Piano in F Major");
INSERT INTO works

VALUES (2,2,"String Quartet");

INSERT INTO editions
VALUES (1,1,"Facsimile","D. Black Music House", 1998, 21.95);
INSERT INTO editions

VALUES (2,1, "Urtext", "RubyTunes, Inc.", 1977, 23.50);
INSERT INTO editions

VALUES (3,1,"ed. Y.Matsumoto", "RubyTunes, Inc.", 2001, 22.95);
INSERT INTO editions

VALUES (4,2,"","D. Black Music House", 1995, 39.95);
INSERT INTO editions

VALUES (5,2, "Reprint of 1894 ed.", "RubyTunes, Inc.", 2003, 35.95);

NOTE GETTING SQL DATA FROM THIS BOOK’'SWEB SITE You can download some
sample or seed data from the Ruby for Rails Web site (http://www.man-
ning.com/books/black), along with the source code for the application.

50

2.3.3

CHAPTER 2
How Rails works

Note that the second field of each edition record matches the first field—the id
field—of a particular work. Thus the first two editions are both editions of the
Brahms Sonata, whereas the third edition is an edition of the Debussy String Quartet.

We’ve now completed the domain-modeling phase (and then some) and can
move on to defining actions.

Identifying and programming the actions

Now we need to think about the scenarios we want to see happen in our domain.
The possibilities are endless, depending on your application. In this particular
iteration of this particular application, the possibilities are relatively few, but they
are more than enough to take us successfully through this phase and onward to
the next.

We’ll define the following actions:

m Welcome the visitor with a list of all composers whose music is in stock.

m Allow the visitor to click any composer’s name and be shown all works by
that composer.

= Allow the visitor to click the name of composition and be shown all editions
of that composition.

= Allow the visitor to click any edition and be shown details of that edition.

For each of these scenarios, we need to identify (and create, because they don’t
exist yet) an appropriate controller; and in the corresponding controller file, we
need to define the appropriate action. For each controller/action pair, we also
need to design a view; this will come in the next section.

Welcoming the visitor

The majority of controllers correspond directly to an entity model: If there’s a
“work” controller, then there’s probably a “work” model. We’ll start, however, with
a slightly different type of controller. The action of welcoming someone to a site
isn’t logically connected to an entity. It wouldn’t make sense, therefore (although
it would be technically possible) to define welcoming as an action performed by a
work controller or an edition controller. Instead, we’ll create another, disembod-
ied controller—a controller that performs actions for us but that isn’t specific to
one entity—and define the welcome action as an action of that controller. We’ll
call this controller main.

A Rails application walk-through 51

The process for creating a controller is always the same, and it’s similar to the
process we’ve already used for creating a model. The exact command syntax, how-
ever, is a bit different:

$ ruby script/generate controller main welcome
This command accomplishes several tasks, of which the following are relevant here:
m Itcreatesafile called (including path) app/controllers/main_controller.rb.
m Itinserts an empty method definition for the welcome action into that file.

m It creates a file called app/views/main/welcome.rhtml, which will be the file
in which you place the ERb template code for this view.

The welcome action
If you look at main_controller.rb, you'll see this:

class MainController < ApplicationController

def welcome

end

end
This is a controller file, with one action defined—although the definition is
empty. The next step in the process is to decide what, if anything, to put in the
definition.

It pays to bend a little on the separation of programming layers and start think-
ing about the view—not in detail, but in terms of data exchange. The purpose of
an action is to stuff data into Ruby variables that the ERb code in the view file can
unstuff and display. So, we need to anticipate what data the view will need.

The welcome screen will include alist of all the composers whose works we stock.
It turns out that this is easy to accomplish by adding one line to the welcome action:

def welcome

@composers = Composer.find(:all)

end
This code asks the Composer entity model (not any particular composer, but the
model itself—the presiding genius of the model, so to speak) to hand back a list
of all known composers. We should do some sorting, so the list looks as nice as
possible, so let’s change the method as follows:

def welcome

@composers = Composer.find(:all).sort by {|c| [c.last name, c.first name] }
end

52

CHAPTER 2
How Rails works

(You’ll learn about sorting collections of objects in chapter 11. For now, note that
this call to the sort_by method sorts on the composers’ last names and then on
their first names in case of a tie.)

Showing a work, edition, or composer
We need controller files for edition, work, and composer, all equipped with a show
action. To create them, issue the following commands:

$ ruby script/generate controller work show

$ ruby script/generate controller edition show

$ ruby script/generate controller composer show
You’ll find three new controller files in the app/controllers subdirectory, named
for composer, edition, and work. Because we gave the show argument when gener-
ating the controllers, an empty show method definition appears in each of the
three controller files. You now need to add code to those empty methods.

Both the work show action and the edition show action will utilize a common
Rails idiom: grabbing the value of the CGI variable id and using it as an index to
find the correct instance of the relevant entity. In other words, if you’re in the work
controller, performing the show action, and the value of the CGI variable id is 2,
then you want to show the work that’s indexed as 2. Exactly what indexed means
(how the number translates into which work is produced) is up to the model. But
in the typical case, 2 will be treated as the value of the id field in the appropriate
database table.

Here’s how this idiom looks, in the appropriate place in work_controller.rb:

def show

@work = Work.find(params[:id])
end

It looks this way in edition controller.rb:

def show
@edition = Edition.find(params[:id])
end

And, following the same pattern, it looks like this in composer_controller.rb:

def show
@composer = Composer.find(params[:id])
end
The composer controller stashes a particular composer into a variable called ecom-
poser (and does the same for the edition and work). The values contained in these
variables are available to the ERb code in the respective views—as you’ll now see.

A Rails application walk-through 53

2.3.4 Designing the views

A view is an ERb program that shares data with controllers through mutually acces-
sible variables. This differs from the ERb examples in chapter 1, where you put every-
thing—variable assignments and HTML template information—into one file, and
feed the file to ERb. (You can put controller-style code, such as calculations and data-
sifting operations, in your view files, but doing so is consider lopsided. You should
perform the calculations in the controller and then let the view use the results.)

If you look in the app/views directory of the music store application, you’ll see
one subdirectory for each of the controllers we’ve created: main, composer, edi-
tion, and work. Each of these subdirectories was created automatically when the
same-named controller was created with the generate script. (You’ll also see a
layouts subdirectory. We’ll create a default layout in the next subsection.)

For every action that was specified at the time of the creation of the controller
files—the welcome method in the main controller file and the three show methods
in the other controller files—you’ll find an ERb template file with a matching name.
For example, the app/views/work directory contains a file called show.rhtml. This
file is the template that will be rendered when the application receives a request for
the show action of the work controller.

Controller actions and view template files are connected through naming con-
ventions: An incoming request for the main/welcome action triggers execution of
the welcome method in the main controller, followed by rendering of the main/
welcome.rhtml file in the views area. You can override the default behavior: You
can instruct an action to render a differently named template, and you can piece
together views from more than one partial template file, so there’s no longer a
one-to-one correspondence between the actions and the template files. (We’ll use
partial templates for the second iteration of the music store application, in part 4
of the book.) But in the basic case, the controller preps the data and stores it in
variables, and those variables are used in the ERb file corresponding to that action.

NOTE ERB ALTERNATIVES ERb provides one mechanism for producing HTML
from the data + template formula—but not the only such mechanism. An
alternative approach called Builder was developed and contributed to
the Rails framework by Jim Weirich. We’ll stick to ERb examples here, but
you should be aware that there’s at least one alternative way to handle
this phase of the work of a Rails application.

We’ve defined four possible controller actions, and we have four views to design: a
welcome screen, and one show screen for each of the composer, edition, and
work models. We’ll now design those views. First, however, we’ll design a default

54

CHAPTER 2
How Rails works

layout. This layout will encapsulate everything that we want displayed for every
view. We’ll then proceed to the four views.

Designing a default layout

Layouts are like meta-templates. They contain general template code that sur-
rounds the specific template code of one or more views. A typical default layout
might include a menu bar, a copyright notice, and other site-wide elements that it
would be a nuisance to have to insert individually into every template file.

The layout uses a special, “magic” variable, @content_for_layout, at the point
where you want the specific view inserted. The base layout for the music store,
shown in listing 2.3, displays a banner above the view and a copyright notice at the
bottom of the page. The base layout also contains appropriate XML declara-
tions—again, saving you the trouble of putting them in every template file.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en"s>
<head>

<title><%= @page title %></titlex>
</head>
<body>
<hl class="banner">The R4R Music Store</hl>
<%= econtent_for_ layout %> <+——— Interpolate value of magic
<hr/> @content_for_layout variable
<p>Copyright © 2006, R4RMusic</p>
</body>
</html>
||

To use this view as the default, put it in a file with a reasonable name (such as
base.rhtml) in the app/views/layouts directory, and add the following line to the
file app/controllers/application.rb:

class ApplicationController < ActionController::Base

layout "base"

end
application.rb isan umbrella controller file; anything you putin here governs not
justwhat happens in connection with a particular controller (such as the composer
controller) butall actions, application-wide. Thus specifying a default layout in this
file causes all your views to be wrapped appropriately.

A Rails application walk-through 55

TIP A DEFAULT-DEFAULT LAYOUT NAME If you call your default layout ap-
plication.rhtml, you don’t even have to specify it in application.rb.
(It’s good to know how to do the specifying, though.)

The main/welcome view
The welcome view takes advantage of the information in the variable eworks to
generate a list of works. Each item in the list is a hyperlink pointing to the show
action for that work.

Listing 2.4 shows the main/welcome view, which goes in app/views/main/wel-
come.rhtml. (If you find any automatically generated placeholder lines in this or
any other template file, delete them before you enter the template code.)

<p>Click on a composer's name
to see all of that composer's works.</p>

 QJ each
<% @composers.each do |composer| %> method

<%= link to "#{composer.first name} #{composer.last name}",
:controller => "composer",

:action => "ghow",
:id => composer.id %>
</1li>
<% end %>
</uls>

The main action here is a loop, which goes through the list of works one at a time
(that’s the gist of the each method @). Each time through the loop, a list item is
created, complete with a hyperlink generated by the built-in Rails helper method
link_to. The advantage of automating the creation of the list of links in this man-
ner is that it scales: Once you’ve written this template, together with the controller
that populates the @composers variable in the first place (which takes all of two
lines of code), you never have to change it, whether your database has 3 compos-
ers or 300. (With 300 composers, you may want to present them differently—a list
of letters, perhaps, each linked to a second-level action and template that displays
all the composers whose last names start with that letter. But once you’ve written
the templates you want, they deal with whatever data is thrown at them.)

56 CHAPTER 2
How Rails works

The show views
We have three entities—WORK, EDITION, and COMPOSER—and for each of them,
we’ll define a scenario called show. Each show will be slightly different, in keeping
with the fact that each of these three entities consists of different properties:

® Showing a work means showing a list of all available editions of that work.

® Showing an edition means displaying its publisher, date of publication, and

price.

® Showing a composer means displaying a list of all works by that composer.
We’ll make these showings as mutually hyperlinked as we can.

Each show scenario requires a view file. Hence we’ll need three of these:

®m app/views/work/show.rhtml
® app/views/edition/show.rhtml

®m app/views/composer/show.rhtml

These three template files are shown in listings 2.5, 2.6, and 2.7, respectively.

Listing 2.5 work/show.rhtml, the view for the work/show action

<p>Available editions of
<%= @work.title %> by
<%= "#{@work.composer.first name} #{@work.composer.last name}" %>

</p>
<table>
<tr>
<th>Edition</th>
<th>Publisher</th>
</tr>
<% @work.editions.each do |ed| %> <F44444444" @work.editions
<tr> method
<td><%= link to ed.description || "(no descr.)",
:controller => "edition",
raction => "show",
:id => ed.id %></td>
<td><%= ed.publisher %></td>
</tr>
<% end %>
</table>

In the work/show.rhtml template, as in the main/welcome template, an each
instruction performs a loop through a list—this time, a list accessed through the
method call ework.editions @. Note that nowhere in any file have we defined a

A Rails application walk-through 57

method called editions. Rails provides this method automatically, because we
have stated that a work Aas many editions.

Listing 2.6 edition/show.rhtml, the template for the edition/show action

<% @page_title =
"#{e@edition.work.title} (#{@edition.description})" %>
<p>Details of <%= @edition.work.title %>
(<%= @edition.description %>),
by
<%= "#{@edition.work.composer.first name}
#{@edition.work.composer.last name}" %></p>
<table border="1">
<tr>
<th>Publisher</th>
<th>Year</th>
<th>Price</th>
</tr>
<tr>
<td><%= @edition.publisher %></td>
<td><%= @edition.year %></td>
<td>$<%= @edition.price %></td>
</tr>
</table>
||

In the edition/show.rhtml template, notice that a number of method calls to the
object @edition—and double-barreled method calls, like @edition.work.title—
are used to extract the information necessary to complete the view. Again, none
of these methods had to be defined manually. Some of them exist as a result of
directives in the model file—specifically, the directive belongs_to :work in the file
edition.rb. Some, such as year and price, exist because the editions table in the
database has fields with those names. The methods spring into being, courtesy of
ActiveRecord, so that you can pass information back and forth between the data-
base records and your program using simple Ruby method-call syntax.

Listing 2.7 composer/show.rhtml, the template for the composer/show view

<% @page_title =
"Works by #{@composer.first name} #{@composer.last name}" %>
<p>Click on any work to see all available editions of that work.</p>
<uls>
<% @composer.works.each do |work| %>
<%= link to work.title,
:controller => "work",
:action => "show",

58

2.3.5

CHAPTER 2
How Rails works

:id => work.id %>
</1li>
<% end %>

The composer/show.rhtml template presents a flat list of all the works by the rele-
vant composer. Each item in the list is a link to the show view of that work. Admit-
tedly, this list could become long for composers whose works we stock many of. If
it ever gets too long, it will be relatively easy to split into several pages. One of the
advantages of the MVC layering of program responsibility is that you can make
changes at the view level without having to alter the data structures.

At this point, we have everything we need to start the application and connect
to it. We have a database that reflects the current state of our domain model and
contains a little data. We have ActiveRecord model files containing association
directives (belongs_to, has_many) that will prompt Rails to engineer the relation-
ships among entities that you need. The view templates are ready to be filled in,
and the controller files are ready to provide them with the data they need.

Now, we’ll connect to the application.

Connecting to the application

We’ll serve the application by using WEBrick, a Web server bundled with Ruby.
(You can also use Apache or another server, but WEBrick is easier to demonstrate
because it doesn’t require a lot of configuration up front—and everyone who has
Ruby installed also has WEBrick installed.) Before doing that, let’s add a finishing
touch: setting the default page for the application to be the welcome page.

Specifying a default top-level page with a route

We need to define a roufe: a translation rule, which is applied to the URL of the

incoming request to a Rails application. In this case, we want to translate an empty

URL (that is, a domain) into a call to the welcome action of the main controller.
Routes are defined in the file config/routes.rb. Add the following line, which

must be the first map.connect line in the file:

map.connect '', :controller => "main", :action => "welcome"

This line establishes the rule that will perform the appropriate translation of an
empty URL.

To get this default page working correctly, you also have to remove the default
default page—namely, the file public/index.html. You can either delete this file

24

Tracing the lifecycle of a Rails run 59

or rename it to something else (such as index.html.hidden) so that it won’t com-
pete for top-level-page status with the main/welcome action.

Starting WEBrick and connecting to the application
Start the WEBrick server with the following command (issued, like the others,
from the top level of your application directory):

$ ruby ./script/server [-b domainname] [-p port]

The -b and -p flags are optional (as indicated by their placement in square brack-
ets). You can use them to specify values if the server doesn’t start up correctly.

Now, point your browser at http://localhost:3000 (or whatever values you
gave, if you used the optional flags). You should see the welcome screen—and, if
all went well, the list of works.

NOTE CHECKING THE DEVELOPMENT LOG FILE If all did not go well, and if you
can’t tell what’s wrong, look in the log/development.log file. Here
you’ll see error messages that tell you about syntax and other errors that
may have been encountered. Fix anything that’s misnamed or mistyped,
and try again. If a syntax error occurred, you can try connecting again
during the same server session. If it’s a problem affecting the database
connection, you may need to stop the server (with Ctrl-C or a kill com-
mand) and restart it. (If in doubt, there’s no harm in doing this.)

We’ve completed the circuit: The application is running. Play with the site as you
wish. You can add new database records, move elements around in the views—
whatever you wish. Save a copy of the pristine application, because you’ll be using
it as a point of reference and a starting point for further development later in the
book. But there’s no reason not to also use it as a scratchpad for learning your way
around, if you wish.

Now that we’ve reached the plateau of a working application, we’ll take the
opportunity to examine more deeply what’s happening during a successful Rails
session.

Tracing the lifecycle of a Rails run

You've seen the way a framework helps organize an application, and you’ve seen
the way Rails implements the MVC concept. You’ve also walked through the pro-
cess of writing and running a Rails application—a modest one, but one that
involves the three major steps.

60

CHAPTER 2
How Rails works

To round off this annotated tour of how Rails works, we’ll look in detail at what
happens when a request comes in from a Web client to a Rails application. The
players in the game include the Web server and several auxiliary scripts and pro-
grams automatically made available to the Rails application. Although we’re using
WEBTrick for the working example, we’ll examine the basics of what’s involved with
setting up Apache to serve a Rails application. This process is more complicated—
which is why you aren’t doing it in the working example, and why it contains use-
ful lessons about how the whole request-handling process operates.

The process of listening to and responding to a request coming in to a Rails
application can be broken into several stages: the Web server talking to the dis-
patcher (which is a Ruby program); the dispatcher awakening the appropriate
controller and asking that controller (which is also a Ruby program) to perform a
particular action; the performance of that action; and the filling out of the view,
based on the calculations and data manipulations carried out in the controller
action. We’ll look at each of these stages in turn.

As you read, you may want to refer to figure 2.3, which gives a graphical over-
view of the Rails request-handling process.

Rails sequence for http://www.rcrchive.net/rcr/show/231
(controller "rcr", action "show", id"231")

Browser (Web client) .htaccess
START
1. passes URL to server triggers execution of dispatch.fcgi
2. gets back HTML and (or other dispatcher, if specified)
renders it
END A
Web server
app/views/rcr/show.rhtml 1. finds rcrchive application dispatch. fegi
directory, and consults loads dispatcher library
ERb template, filled out to become a .htaccess file and triggers execution of
complete HTML document; that —| 2. returns final HTML document application code based on
document is then sent to the server to browser controller and action fields of
URL

app/controllers/rcr controller.rb

executes its show method, with "id"
CGl variable set to "231"; the
corresponding view template filled out

Figure 2.3 Flow of steps involved in Rails’ typical handling of an incoming request

2.4.1

Tracing the lifecycle of a Rails run 61

Figure 2.3 uses a URL sent to the RCRchive (Ruby Change Request) site as an
example; the URL triggers the display in the client’s browser of RCR #231. Note
that this figure is schematic; the arrows leading from one step to another give you
an indication of the sequence, rather than a technical characterization of how
information is handed around. Still, as a visual anchor for understanding the
basic steps in the process, the figure can help you as you proceed through the rest
of this section.

Stage 1: server to dispatcher

The Web server—Apache, lightTPD, or whatever it may be on a given system—
receives the request from the browser. The server configuration causes the server
to pass the request along to what will turn out to be a Rails application. The server
doesn’t know what Rails is; it just does whatever redirecting or deflecting of the
incoming request it’s set up to do.

For example, to steer the Apache server to the directory of your Rails applica-
tion, you put something like this in the Apache configuration file:

<VirtualHost www.r4rmusic.com>

ServerName www.r4rmusic.com

ServerAlias r4rmusic.com

DocumentRoot "/usr/local/share/railsapps/r4rmusic/public/"

</VirtualHost>
(Of course, you need to register the r4érmusic.com domain and point it to your
site.) Now, when someone contacts this server with a URL that looks like this

http://www.rdrmusic.com/
or like this typical Rails-style URL
http://www.r4rmusic.com/work/show/2

Apache will treat the directory /usr/local/share/railsapps/r4rmusic/public as
the directory for this request. Different Web servers handle this process slightly
differently, but we’ll stick with Apache for the sake of illustration.

When the Apache server is pointed to a directory, it looks in that directory for
a file called .htaccess. Such a file is found in the public directory of any Rails
application. The job of this file is to trigger the execution of the dispatcher: a small
program that is responsible for getting the Rails application to do something.

You can see the dispatcher (actually, several dispatchers; the one your applica-
tion uses can be configured) in the public subdirectory of r4rmusic:

$ cd public

$ 1ls dispatch.*
dispatch.cgi dispatch.fcgi dispatch.rb

62

2.4.2

2.4.3

CHAPTER 2
How Rails works

Which dispatcher is called doesn’t matter for purposes of this overview. The
salient point is that one of these three dispatcher programs gets called.

Stage 2: dispatcher to controller

The dispatcher’s job is to dispatch the request—that is, to send it to the appropri-
ate controller. Controllers are the subprograms in a Rails application that per-
form tasks. They reach back into the database and get data, they search and sort,
they test for password matches, and so forth. Typically, a Rails application has sev-
eral controllers, and each controller is capable of multiple actions. For example,
you may have a customer controller that can perform login, logout, edit (edit pro-
file), and other actions.

How does the dispatcher know which controller to summon, and which action
to request from that controller? It knows by analyzing the incoming URL. More
precisely, it gleans the correct controller and action from the URL after the URL
has passed along an internal conveyor built of transformations and translations.
The URL with which the user connected contains the directives necessary to trig-
ger the correct response from the application, but those directives may need to be
interpreted first. This all happens automatically (although you have to set up the
URL interpretation rules manually if they’re complex).

The upshot of all this rewriting and interpreting of the URL is that the Rails
dispatcher is armed with three pieces of information, two of which are required
and one of which is optional:

® The name of a controller
® The name of an action
m A value for the request’s id
At the point where these values have been established, the automatic processing

of the incoming request meets what you've done as the application developer.
Once the dispatcher passes control onward, what happens is as follows.

Stage 3: performance of a controller action

When the appropriate action, inside the appropriate controller, is executed, it has
automatic access to the following:

m CGI data, including data from a submitted form (via the builtin params
method)

m The controller’s session information (via the built-in session method)

Tracing the lifecycle of a Rails run 63

CGI variables and their values are available through the builtin Rails params
method. For example, to dig out the value of the email input field of a form, you
call params as follows:

params [:emaill]

Or, if the values are stored in a more deeply nested structure, you call params this
way:
params [:user] [:email]

(params returns a hash: a data structure organized as a collection of values coupled
with keys through which you can access those values. Some of the values in params
may be inner or nested hashes, like params [:user]. The details of how these hash
data structures work will be explained in chapter 11, when we talk about collec-
tions and container objects.)

The CGI data made available to the controller in this manner includes an id
entry. The value of this entry is automatically set to the third of the elements in the
canonical Rails URL. For example, suppose the incoming URL looks like this (or
translates to this, based on whatever rewriting and routing rules are in operation):

http://www.r4rmusic.com/work/show/12

As you saw in section 2.3.3, the show action uses the expression params[:id] to
grab the value of the CGI id variable. Thanks to the presence of “12” in the appro-
priate field in the URL, the value of that variable will be automatically set to “12”.
The show action then uses this value to determine which work to display, namely
the work whose id number is 12.

The controller action also has access to its own session information. Rails
applications can cache information from one invocation to another. This can be
handy, for instance, for enabling customers to navigate a site without having to log
in every time they go to a different part of the site. The login status is maintained
in the session cache and checked for validity. The action can set session values:

session['user'] = user.id
It can also retrieve values (if any) set by previous actions:

if session['admin']

administrator is logged in
else

not an administrative session; don't allow special privileges
end

64

CHAPTER 2
How Rails works

What you call your session data, and whether you use the session facility, is up to
you. The session method gives you a kind of cubbyhole where one action can
leave notes for the other actions, if and when that kind of cross-action communi-
cation is necessary.

NOTE THE eparams AND @session VARIABLES The information available
through the params and session methods is also available through the
special predefined variables @params and @session. (These are instance
variables, a special-purpose kind of variable you’ll learn more about in
part 2.) You may see @params and @session in Rails applications; how-
ever, using the methods, rather than the variables, has come to be consid-
ered better practice.

Controller actions, then, are sequences of Ruby code that correspond directly to
the tasks this application can be asked to do: log in a user, add a recipe to a cook-
book, display thumbnails of the first 10 photographs in an online album, and so
forth. A Rails action (the lines of code that define an action in a controller file)
maps closely to what users can do with the application.

Having looked at both models and controllers, let’s see how they relate to each
other.

Controllers and models
Entity models lie close to the database. Controllers don’t; they manipulate data-
base records through instances of the models. Here, user is a specific case or
instance of the User model:

user.email = params[:email]

user.update
In this example, the controller asks the user instance to set its email address equal
to the email address entered on a form and then update itself. The controller
doesn’t know what becomes of that request. But the user instance knows how to
handle the request; it creates an SQL command something like the following:

UPDATE users SET email = 'dblack@wobblini.net' WHERE id = 33;

(This example assumes, arbitrarily, that this user’s record has the value 33 in its id
field.) The controller is protected from having to deal directly with the database.
So are you. When you write Rails application code, you always write code that
manipulates data through nicely named, neatly ordered variables. The code you
write triggers a cascade of database operations. But you don’t have to address the
database directly. You have to design the database, and you have to know what

2.4.4

2.5

Summary 65

the database tables and fields are called (because that knowledge has a direct
bearing on what your model can do). But then you manipulate the database at
an abstract level.

TIP LEARN SQL, EVEN IF IT’S NOT YOUR MAIN FOCUS As a Rails programmer,
you generally don’t have to write SQL statements; Rails provides short-
cuts and automated querying facilities to handle most of that for you.
But it’s likely that you’ll need to write a little SQL now and then—and if
you’'re working with a database system that speaks SQL, you’ll probably
have occasion to interact with the database outside of Rails (for instance,
in an interactive monitor). Picking up the rudiments of SQL is highly
recommended for all Rails developers.

Stage 4: the fulfillment of the view

You're now on the downslope of the process. The rest of the controller’s job is to
pass the data to the view. The view fills in its template, resulting in an HTML docu-
ment that is then handed to the Web server and from there back to the original
Web client.

The basic process is as follows: An incoming HTTP request is deflected from the
server’s default document location to the home directory of the Rails application,
where a dispatcher program is executed. That dispatcher program dispatches the
request to the appropriate controller/action combination, which it figures out
from the URL (applying interpretive rules as needed). The controller then takes
over. On the one hand, the controller has access to the universe of the models,
through which it can manipulate data; and on the other hand, it has the ability to
share data with the view template. The view template gets expanded into HTML,
complete with interpolated data, and the Web server hands it back to the client.

Summary

In this chapter, we’ve surveyed the engineering of the Ruby on Rails framework.
You’ve read about the MVC framework architecture and the Rails implementation
of it through ActiveRecord (which models entities based on database design),
ActionView (which provides templating facilities based on ERDb), and ActionCon-
troller (which runs interference between the data manipulation and its presenta-
tion). You've also gone through the process of creating and running a working
Rails application—an application that you’ll be able to enhance in part 4 of the
book, thanks to your study of the Ruby language in the intervening chapters.
We’ve taken a close look at the stages involved in the processing of an incoming

66

CHAPTER 2
How Rails works

request to Rails application: the server awakening the Rails dispatcher; the dis-
patcher contacting the appropriate controller; the controller executing the
requested action; and the view template being filled out and handed back, in the
form of an HTML document, to the server.

At this point, you have a grasp of how both Ruby and Rails work. Next, we’ll
finish part 1 with a chapter that takes an initial look at the ways in which they
operate together.

Ruby-informed

Rauls development

In this chapter

Exploration of Rails code as Ruby code
Rails as a domain-specific language

Configuration-like programming, and
programming-like configuration

Walk-through of sample enhancements to
controller and model files

Tips on legacy data conversion with Ruby

67

68

CHAPTER 3
Ruby-informed Rails development

This chapter represents something of a pivot point. There’s a lot of material com-
ing up later: two parts of the book devoted to a Ruby language tutorial, and a final
part that brings the threads together in a Ruby-aware second pass at R4RMusic, the
Rails application we created in chapter 2. Still, we’ve already completed one com-
plete cycle of the breadth-first examination of Ruby and Rails, and you’re in a
position to see more closely and more clearly how the study of Ruby can pay off
for a Rails developer.

The focus in this chapter is on that sow, and on the why. The full benefits of
immersing yourself in Ruby can’t, and won’t, all present themselves in this chap-
ter; much more will emerge during parts 2 and 3—the heart of the book’s Ruby
tutorial material—as well as during the further development of the music store
application in part 4. But we’re far enough along that you can clearly see by exam-
ple, and not just take on faith, the kinds of advantages that a Rails developer can
reap from a thorough Ruby grounding.

The introductory “About this book” section listed four ways in which knowing
Ruby well can serve you as a Rails developer:

m By helping you know what the code in your application—including Rails
boilerplate code—is doing

m By helping you do more in, and with, your Rails applications than you can if
you limit yourself to the readily available Rails idioms and techniques (as
powerful as those are)

m By allowing you to familiarize yourself with the Rails source code, which in
turn enables you to participate in discussions about Rails and perhaps sub-
mit bug reports and code patches

m By giving you a powerful tool for administrative and organizational tasks
(for example, legacy code conversion) connected with your application

As stated back in that section, the first two of these four items are the most central
to this book. The main goal of this chapter is to demonstrate to you how much
more meaningful and concrete those first two items already are, now that you've
read the first two chapters. There’s much more to learn and do in the chapters
that lie beyond this—we’re still mapping out the Ruby/Rails landscape at a fairly
high level—but we’re well underway.

In the interest of the “knowing what your code is doing” goal, we’ll look at the
relation between certain typical Rails coding conventions and the bigger Ruby-
language context out of which they have emerged. By way of helping you do
more, we’ll carry out a few representative enhancements, via customized Ruby

A first crack at knowing what your code does 69

code, of Rails application model, helper, and controller files. The purpose is to
give you a collective preview of some of what will come later in the book.

Finally, this chapter serves as the first and only home for the fourth item on the
list, accomplishing application-related tasks. This area of Ruby use lies, for the
most part, outside the Ruby for Rails landscape. But it’s worth noting that Ruby’s
usefulness to you as a Rails developer isn’t limited to the lines of Ruby code you
write in your Rails applications; and we’ll pursue that point by looking at some
issues connected with the process of converting legacy data for use in a Rails appli-
cation. While we’re on the topic of Ruby helping you in a general way, we’ll get
slightly more specific and look at how you can run Interactive Ruby (irb) pre-
loaded with the specifics of the universe of your Rails application.

This chapter will complete the foundation work for the more detailed Ruby
and Ruby-informed Rails exploration to come.

3.1 A first crack at knowing what your code does

It’s hard to imagine that a case needs to be made for understanding your own
code, but it’s worth a few words.

Specific code examples designed to train you in knowing what your Rails code
is doing will be plentiful as we talk about Ruby and circle back to Rails later in the
book. In this section, we’ll look at some points and premises about knowing what
you’'re doing—specifically, points about the relationship between Ruby and Rails.

The Rails framework does two things (among others) very well: It makes you
feel like you’re using not just Ruby but a domain-specific language (DSL) written in
Ruby; and it makes you feel like you’re not really programming but mainly writing
configuration files. Both of these characteristics testify to the power of Ruby
(Ruby is good as a host language for DSLs) and to its skillful deployment in the
Rails framework.

But even when Rails coding feels like configuration—or feels like coding, but
in a language unto itself—it is still, nonetheless, Ruby. That means you’re well
advised to keep an eye on how the layers fit together: that is, on how Ruby and
Rails relate to each other and, contradictory as it may sound, what role Ruby plays
in the process of making Rails sometimes feel like a separate language from Ruby.

In this section, we’ll use the Rails feels like configuration idea and the Rauls feels
like a programming language of ils own idea to examine the relationship between
Ruby and Rails—which is to say, the idea that Rails programming is in fact Ruby pro-
gramming. This will give you an informative look at an important aspect of know-
ing what your Rails code is doing.

70

CHAPTER 3
Ruby-informed Rails development

3.1.1 Seeing Rails as a domain-specific language

One important effect of the configuration look-and-feel of Rails (along with the
repertoire of Rails instructions and techniques available to you) is that using Rails
often feels like using a domain-specific language. A DSL is a language designed to
be used for a specific task or set of tasks in a particular field or domain, rather than
for general-purpose programming. The instruction set in a DSL is relatively narrow.
For example, an imaginary DSL for simulating a poker game might look like this:
with 4 Players:
deal down: 2
deal up: 1
bet
until Dealer.has(6)
deal up: 1
bet
end
etc.
The instruction set of the language is limited to pokerrelated terms, and there
are (presumably) built-in facilities for calculating winning hands, odds of making
certain hands, and so forth.

Like any programming language or tool, a DSL must be designed and written
by someone before it can be used by programmers. If you’re writing a DSL, you
write it in some other programming language.

It turns out that one of Ruby’s strengths is its ability to serve as host language
for DSLs: Ruby is a general-purpose programming language in which it’s easy to
write special-purpose programming languages. There are a couple of reasons for
this. First, Ruby’s relatively uncomplicated syntax makes it (relatively) easy for
people who aren’t principally programmers to learn a useful subset of language
constructs. If you package such a subset as a little computer language of its own,
you’re well on the way to a DSL. Second, Ruby lets you do a great deal of redefin-
ing of language constructs, which means you have a lot of control over what ele-
ments of the language mean.

Here’s a (still imaginary) Ruby version of the poker DSL snippet:

Game.start (:players => 4) do
deal :down => 2

deal :up => 1

bet

until dealer.hand == 6
deal :up => 1
bet

end

etc.

A first crack at knowing what your code does 71

This is just a fragment; before writing this, you’d have to write the code that
defines what Game is, and so forth. But people using this little DSL don’t need to
know how that was done. Someone could easily learn a rule like “The deal com-
mand is followed by :down and :up values” and could also learn the syntax for
those rules without having to know what the code means in Ruby terms.

In some respects, Rails is likewise a domain-specific language written in Ruby.
It’s true that Rails applications span a wide range of use and usefulness; and look-
ing at the whole spectrum of Rails applications, from shopping sites to bulletin
boards to bug-trackers, there may not seem to be anything specific about the Rails
domain. But that’s just a reflection of the wide range of Web sites. Looking at it
from the programming angle, Rails does have a specific domain: Web applica-
tions, particularly interactive, database-driven Web applications. And in a number
of respects, Rails provides you with a domain-specific programming language.

It’s important to develop a sense of how the specificity of Rails is engineered
and how it relates to Ruby. Rails, especially to someone who hasn’t seen much
Ruby code outside of Rails, exhibits specificity at two levels: in the syntax, and in
the terminology. We’ll look at these two levels separately.

Domain specificity in relation to syntax
A common Rails idiom we’ve already seen, and that you may have seen before, is this:

has_many :editions

The syntax used here, with a verb-based directive on the left and what looks like a
configuration spec on the right, seems like it could have been created specifically
for a system like the Rails framework. In fact, it’s a simple Ruby method call. The
name of the method is has_many, and the argument is a Ruby symbol object.

Every time anyone uses this method, it will look essentially the same. You’ll
almost certainly never see this

send ("has many", "editions".intern)

which is equivalent to the previous example (send is a do-it-yourself way to send a
message to an object; intern converts a string object to a symbol object). This
send-based version is, admittedly, far-fetched enough not to be a close call. But
you’ll probably never even see this much more slight variation on the original:

has _many (:editions)

Many Ruby programmers like to put parentheses around method arguments,
even when the parentheses are optional. But when writing Rails applications, even
these programmers (and I'm one of them) don’t use the parentheses—not

72

CHAPTER 3
Ruby-informed Rails development

because of Ruby (Ruby doesn’t care), but because leaving the parentheses off is a
standard Rails convention.

The common idioms you use in Rails aren’t alternatives to Ruby; they’re alter-
natives within Ruby. Long before Rails came along, it was possible to call a method
with a symbol argument:

method from ten years_ago :symbol

And when Rails did come along, it—that is, its creator, core developers, and devel-
oper community—settled on this style of calling such a method. Ruby, meanwhile,
is happy; this method-call style is a mainstream, idiomatic Ruby technique.

Part of learning Ruby as a Rails practitioner is recognizing what’s going on in
your code, and the first lesson is that what’s happening is always Ruby. If there’s
less variety in coding style from one Rails application to another than there could
be—that is, if you see thousands of

has many :editions
and never see

send ("has many", "editions".intern)
or even

has_many (:editions)

it’s not because Rails has special syntax or rules. It’s because the Rails community
has had the sense to rally around a relatively small number of coding conventions,
gaining visual uniformity and a de facto language specificity for Rails development.

Terminology and domain specificity

The other side of the domain-specific coin is the matter of the terminology: for
example, the matter of having a term like has_many, considered separately from
the matter of whether you use parentheses with the term.

The full domain specificity of Rails emerges in the terminology and semantics.
The methods available for the manipulation of database records; the presence of
the terms model, view, and controller in directory and file names; the names of the
underlying libraries and data structures (ActionView and so on)—all of these con-
tribute to the sense that when you’re working on a Rails application, you're work-
ing in a particular context, a particular shop, with its own lingo and its own
specific rules and procedures.

3.1.2

A first crack at knowing what your code does 73

Thisidea meshes nicely with the fact that Rails coding practice is so uniform. The
consensus about syntax keeps the scenery uniform and familiar, while the semantics
of the method, data, and file names give the landscape its specific character.

At the same time, the Rails environment isn’t a self-contained, self-sustaining,
hermetically sealed world of its own. It’s a Ruby environment that has managed
to define its own boundaries elegantly while still functioning as a full-featured
Ruby environment.

This means that if you’re writing a Rails application and you decide you need
to write 2 new method (because no methods available by default do what you
need), you’ll probably make calls to your new method that look like this

new_method :argument

or like some other common Rails idiom. The Rails environment allows for unlim-
ited and unrestricted expansion, courtesy of Ruby, and it encourages programmers
to carry out those expansions in accordance with stylistic conventions. The con-
ventions, in turn, are generally chosen from among the visually most clean and
uncluttered of the alternatives made available by Ruby.

Thus the language supports the domain specificity of the framework, and the
framework supports the participation of the language.

Discussions of Rails coding style always come back to the frequent use of sym-
bol objects (such as :editions) as method arguments and/or hash keys in Rails
applications. We’ve already looked at some aspects of this topic, and next we’ll
return to symbols and head in a slightly different direction: ways in which Rails
programming looks and feels less like programming and more like configuration.
This subtopic, like domain specificity, flows into the stream of knowing what your
Rails code is doing.

Writing program code with a configuration flavor

One of the attractions of Rails is that when you’re writing Rails applications, it
often feels like you’re not so much writing a program as configuring a system—
even though you’re writing Ruby code. Not that there’s anything wrong with feel-
ing like you’re writing a program. But configuring a system almost inevitably feels
easier. When you type

has_one :composer

has_many :editions
in a file called app/models/work.rb, it doesn’t feel so much like you're writing a
roadmap of events as that you're informing the system of some of the conditions
under which it’s going to operate.

74

CHAPTER 3
Ruby-informed Rails development

Rails often makes programming look like configuration. Exactly what configura-
tion means depends on what you’re configuring. For the sake of simplicity, it’s rea-
sonable to say that a configuration file generally contains declarative assignments:

something = some value

Examples abound. The Linux kernel configuration file looks like this, where
everything is a comment (#) or an assignment:

#

Block devices

f?ONFIG_BLK_DEV_FD:y

CONFIG_BLK_DEV_XD=m

CONFIG_PARIDE=m

CONFIG_PARIDE PARPORT=m
Apache-style authorization files look like this, with the colon (:) serving as the asso-
ciation or assignment operator between the names and the encrypted passwords:

dblack:rtiU4FXvUmCYs

matz:b8Plelatd311U
Configuration files can be more elaborate than this, but often they aren’t. And
this kind of simple assignment-style configuration has a well-deserved reputation
for being easy to type and maintain. (It’s even easier when you have a utility pro-
gram to do it for you.)

Part of the Rails strategy for presenting a quickly understandable, relatively
simple domain-specific language for Web application development is that a lot of
what you do in Rails (definitely not all, but a lot) has a configuration-file look and
feel. This fact manifests itself in a couple of ways. We’ve already looked at some of
the ramifications of the frequent use of symbol objects as method arguments. In
many cases, usually with longer argument lists, symbols end up serving not as lone
arguments but as the equivalent of the left-hand side of what looks like a language
for specifying item/value pairs in a configuration file:

<%= link_to "A hyperlink in a view template",

:controller => "main",

:action => "welcome" %>
In this example, each symbol is associated with a value: the symbol :controller
with the string “main”, the symbol :action with the string “welcome”. (The two
symbols are hash keys, and the two strings are the corresponding hash values. The
entire hash is the second argument to the method; the first argument is the first
string: “A hyperlink.”.) This syntax is standard Ruby; and although it’s not

3.1.3

A first crack at knowing what your code does 75

identical to the classic item:value configuration-file syntax, it has some of the
same simplicity and visual balance.

It’s also worth noting that the tendency of Rails developers to adhere to certain
stylistic conventions becomes more important as the code gets more complex.
The configuration-style pairing of symbols and strings in the previous example
would go by the wayside if people started using some of the alternatives, like this:

<%= link_to("A hyperlink in a view template",

Hash[:controller, "main", :action, "welcome"]) %>
The adherence to convention scales upward nicely.

Program code can thus look like an excerpt from a configuration file, which
can have advantages with respect to clarity, easy grasping of the logic of what’s
going on, and communication among developers. At the same time, oddly
enough, configuration files—while also looking like configuration files—can be
program code (of a particular sort). We’ll look next at this phenomenon as it per-
tains to Rails.

YAML and configuration that’s actually programming

The key case in point when it comes to configuration data that’s program code is
the file config/database.yml, which is where the details of the database backend
are specified. This file isn’t written in Ruby, but it’s written in a format that can be
directly read into and written out from Ruby objects: YAML.

YAML (which, tradition has it, originally stood for Yet Another Markup Lan-
guage, but now stands for YAML Ain’t Markup Language) is, depending on your
view, either a markup language or a serialization format. Either way, YAML pro-
vides you with a way to store Ruby objects, including nested data structures, as text
strings—and to thaw those strings back into life as Ruby objects. Here’s a simple
example, in which a nested array structure is turned into its YAML representation
and then back into an array:

require 'yaml'

array = [1, 2, 3, [4, "five", :six]]

puts "Original array:"

puts array.inspect QAAAA"

yarray = array.to_yaml

puts "YAML representation of array: "
puts yarray

thawed = YAML.load (yarray)

puts "Array re-loaded from YAML string: "

p thawed <1—0

76

CHAPTER 3
Ruby-informed Rails development

(Smuggled into this example are the inspect method @, which produces a
detailed string representation of an object, and the p method @, which is equiva-
lent to running puts on the result of inspect.)

The output from running this script is as follows:

Original array:

[1, 2, 3, [4, "five", :six]]
YAML representation of array:

-1
-2
-3
- - 4
- five
- :six
Array re-loaded from YAML string:
[1, 2, 3, [4, "five", :six]]

Note that YAML not only remembers the nesting of the arrays, but also remembers
that “five” was a string and :six was a symbol. Rails uses YAML in several contexts.
In database.yml, you’ve seen blocks that look like this:
development :

adapter: mysqgl

database: r4rmusicl development

username: r4r

password: railzrulez

socket: /tmp/mysqgl.sock
Watch what happens when you run that through the YAML. 1oad method. Put those
lines in a file by themselves (say, sample.yml), and run the following command,
which reads the file back, converts it from a YAML string to a Ruby object, and
then prints out a representation of that object (with p):

ruby -ryaml -e 'p YAML.load(File.read("sample.yml"))'

The output, massaged here to look less run-together than it appears onscreen, is
as follows:

{"development" => {"socket"=>"/tmp/mysqgl.sock",
"username"=>"r4r",
"adapter"=>"mysql",
"password"=>"railzrulez",
"database"=>"r4rmusicl_development"

}
}

You're seeing a printout of a Ruby hash, a data structure consisting of pairs made
up of one key and one value. Actually, you're seeing two hashes. The first has the

3.2

Starting to use Ruby to do more in your code 77

single key development; the value of that key is another hash. That second hash
has keys called socket, username, and so forth. The values are, in every case, on
the right-hand side of the => separator.

Rails is storing its configuration data as potential Ruby data, easily brought to life
with a YAML operation. Here, again, the worlds of programming and configuration
melt into one another, thanks to the facilities and tools available in and for Ruby.

There’s more to the matter of knowing what’s happening when you use Rails
conventions and idioms. The goal here hasn’t been to cover it all but to encour-
age you to become curious about how even the most common Rails techniques
work. No doubt this entails a certain loss of Rails innocence; you cease to be able
to view Rails code as a world unto itself. But keep in mind that Ruby is good at
supporting the kind of domain-specific language, or dialect, that Rails exempli-
fies. There are reasons that Rails was written in Ruby.

Meanwhile, in addition to knowing what Rails idioms mean (and this is an
ongoing process, not one that’s limited to the examples you’ve already seen),
there’s the important matter of learning Ruby so that you can add value and
power to your Rails applications by writing custom code that supplements and
enhances the techniques Rails makes available by default.

Starting to use Ruby to do more in your code

You want to know Ruby techniques so that you can add to what your application
can do and increase the ease with which you get the application to do it. This
doesn’t mean everything you do will be spectacular. It means that you’ll be able to
do more, and do it easily.

Rails is your partner in this process. When you leverage your Ruby skills to
enhance your Rails application, you aren’t out-smarting Rails. You’re doing what
you’re expected to do: work within the Rails framework to achieve the best results
you can.

Nor is this a platitude. It’s a characterization of how the Rails framework is
engineered. The details of what you do on every Rails project—not just the code,
but also the specifics of the setup and configuration—fall into three categories
that cover a wide spectrum of constraint and freedom:

m Things you do a particular way because the rules of Rails say they have to be
done that way

m Customizations you’re likely to want to do and for which Rails provides an
infrastructure (while leaving you a lot of freedom as to specifics)

78

CHAPTER 3
Ruby-informed Rails development

m Open-ended enhancements and extensions of your program, along what-
ever lines you want, using any Ruby-language techniques you wish

The first category includes bedrock-level application characteristics like the file
layout and the need to specify what database your application uses. It also
includes tasks you won’t always perform but that you're expected to do a particu-
lar way, like declaring associations between entities (has_one :composer, and so
on), using layout to specify layouts, and so forth. These expectations come with
the territory of being a framework.

The second category is important and interesting. It includes, for example, the
app/helpers directory, the purpose of which is to house program files containing
routines for use in your templates. You're in charge of naming and writing the
methods, but Rails provides an infrastructure that rationalizes and pre-systematizes
the code for you.

Another example of the second “support and encouragement” category (we
might also call it “structured freedom”) are the method hooks available to you in
your model definition files. A method hook is a method that you may, but aren’t
obliged to, write; and if you do write it, it’s automatically called at a predefined
point during program execution. For example, if you write a method called
before create in one of your model files, then that method will be called auto-
matically every time a database record corresponding to an instance of that model
is created. This allows you to gatekeep the data in an orderly fashion and to man-
age your database at a low level while still writing everything in Ruby.

The third category from the earlier list—open-ended freedom—encompasses
the fact that you’re always writing Ruby code. Rails endows your objects with cer-
tain capabilities: some are inborn, some are based on your database’s organization
and naming scheme. You can endow those objects with any further capabilities
you want. In many cases, you don’t have to do much, if any, of this: The default
Rails universe is very rich, providing a great deal of object functionality. But it
can’t provide every tweak for every imaginable application. What it doesn’t pro-
vide, you provide.

In what follows, examples and discussion will include a sampling of all three
levels at which you, the developer/programmer, operate when you’re writing a
Rails application. We’ll start in the “structured freedom” category, with a look at
examples of controller programming.

Starting to use Ruby to do more in your code 79

3.2.1 Adding functionality to a controller

The controllers are the traffic cops of a Rails application. They gather data from
the database (generally through the friendly programmatic interface provided by
the ActiveRecord models), manipulate and organize the data as required, and
hand it off to be inserted into the view templates.

In the “manipulate and organize” part, the code you write in your controller
files can scale up in power and flexibility. Here’s an example from the Ruby
Change Request site, RCRchive (http://www.rcrchive.net). The purpose of this
site is to let people submit suggestions for changes and enhancements to Ruby
and browse through the changes that have been proposed. (You can also com-
ment on and vote on the various RCRs.)

The first view you see includes a list of all the pending RCRs followed by lists
of accepted, rejected, superseded, and withdrawn RCRs. This initial view is preor-
ganized for you according to the status of the various RCRs.

However, a link takes you to a view of all the RCRs in the archive. (You can also
get there directly by connecting to http://www.rcrchive.net/rcr/all.) By default,
this list is sorted by RCR number, in descending order, so the most recent RCRs are
listed first. By clicking the appropriate column heading, you can see the list sorted
different ways:

m By title

m By author

m By status (pending, accepted, rejected)
When you click, say, the Title heading, you trigger another call to the same
action—the all action in the rcr controller file—but with the CGI parameter
order set to the value “title”. The all method takes the hint and puts all the RCRs
in a variable (ercrs) sorted in the requested order. This sorted list of RCRs is then

handed off to the view.
The logic of the sorting in the controller is as follows:

1 If the sort field is author, sort by author’s name, then by RCR number
(descending).

2 If the sort field is status or title, sort on whichever it is, then by RCR num-
ber (descending).

3 If the sort field is number; sort by RCR number (descending).

The Ruby method that does this—the rcr/all action, in rcr_controller.rb—is
as follows:

80

3.2.2

CHAPTER 3
Ruby-informed Rails development

def all
@order = params[:order] || "number" <1—o

sort_proc = case @order
when "author" then lambda {|r| [r.user.name.downcase, r.number] }
when "status",
"title" then lambda {|r| [r.send(@order).downcase, r.number]}
when "number" then lambda {|r| -r.number }
end
@rcrs = Rcr.find(:all) .sort_by &sort_proc 4—9

end
The variable eorder (an instance variable) is set to the value of the CGI variable
order @, defaulting to the string “number” if that CGI variable isn’t set. At that
point, the variable sort_proc (sorting procedure) is set to one of three possible
lambda expressions (anonymous functions). Which lambda is chosen depends on
the value of @order; the selection is performed through a case statement @.

Once the correct lambda has been chosen, all of the existing RCRs are sorted
according to the logic of that lambda @), using the ActiveRecord find method to
grab all the RCRs and Ruby’s sort_by method to filter the list through whichever
lambda is stashed in sort_proc.

If you know Ruby, this isn’t a difficult method to write. But you do have to
know Ruby! Specifically, you have to know the following:

m The case statement
m The lambda keyword, with which you create an anonymous function
m The send method (notice how status and title can be handled together)

®m The sort_by method, to which you hand a lambda

This code does nothing earth-shatteringly spectacular. You could write it (more
lengthily) without some of the techniques it uses. What is spectacular is how much
you gain in the way of adaptability and ease of development when you know those
Ruby techniques.

Rails knows that it’s a good idea to give the programmer freedom. You get sev-
eral assists in exercising that freedom. An important one, to which we’ll now turn,
is the provision of the helper files.

Deploying the Rails helper files

The most common idioms and techniques—“common” meaning that many appli-
cations have them in common—are provided by Rails. But Rails also provides ways
to address specific needs.

Starting to use Ruby to do more in your code 81

The helper files, located in app/helpers, are a good example and an important
resource. They’re also prime examples of the second category from the list in the
introduction to section 3.2: Rails facilities that you don’t have to use, but that you
may well want to use, to customize and enhance your application.

A helper file is created automatically for every controller you create. Inside the
helper files, you can write arbitrarily many Ruby methods; these methods are
automatically accessible in your view template code.

The advantage of this arrangement is that it saves you repetition. If you’re using
a construct several times in one or more of your templates, you can write a method
that generates the construct, and then call the method from the template.

Here’s an example drawn from the listsorting RCRchive code. Each of the col-
umn headings in the all view of the RCRs is hyperlinked to the rcr/all action.
The links differ from each other in only one respect: the value of the order
parameter (“author”, “title”, “number”, or “status”). That means all four of these
links use almost identical code. To save repetition, a helper method generates an
appropriate link automatically. All you have to do is pass it an order argument.

The helper method, defined in the file rcr_helper.rb, looks like this:

def link_to_order (order)

link to(order.capitalize,
:controller => "rcr",
raction => "all",
:params => { "order" => order })
end
As you can see, it piggybacks on the Rails method link_to. It uses link_to to
write the appropriate HTML for a link to the correct action—with the order
parameter set to the value of the variable order, which was passed in as an argu-
ment to the method.

Inside the view (app/views/rcr/all.rhtml), the following four lines create the

table headers:

<th class="rcr"><%= link to order ("number") %></ths>
<th class="rcr"><%= link to order("title") $%></th>

<th class="rcr"><%= link to order("status") %></th>
<th class="rcr"><%= link to order ("author") %></th>

Each of these lines puts in a call to the custom-written link generator method
link_to_order. The resulting HTML looks like this:

<th class="rcr">Number</th>
<th class="rcr">Title</th>

<th class="rcr"sStatus</th>
<th class="rcr">Author</th>

82

3.2.3

CHAPTER 3
Ruby-informed Rails development

Why not type those four HTML lines into the view file in the first place? Because
using a helper method is more encapsulated. Let’s say I decide to put the column
headings in pure uppercase, instead of capitalized format as they are currently—
in other words, NUMBER instead of Number, TITLE instead of Title, and so on.
Thanks to the fact that the headings are all processed via the same helper
method, I can achieve this by making one change to that method: I change
order.capitalize to order.upcase, and the new format is propagated automati-
cally to all the headings. If the HTML lines are hard-coded into the template file, I
have to dig around in the file and make the changes one at a time by hand, which
is both troublesome and error-prone.

Helper methods figure in Rails in two distinct related ways. Rails provides you
with the apps/helpers directory and file bank to encourage you to write methods
that encapsulate functionality and to keep the view templates organized. But Rails
also supplies you a large number of predefined helper methods. link_to is a per-
fect example: It’s a builtin Rails helper method that gives you a programmatic
interface (a way to get the job done through a method call, rather than by writing
everything by hand) to the creation of the HTML you need.

When you write helper methods, you’re adding to the stockpile of such meth-
ods that Rails has already given you. Rails expects you to build upward and outward:
according to a particular structure, yes, but in an open-ended way.

Speaking of open-ended, we’re now going to plunge into the wide-open area
of enhancing the functionality of ActiveRecord models.

Adding functionality to models

ActiveRecord models are the Ruby incarnation of the same domain universe that
governs your database design. You have an editions table; you have an Edition
model. You then have an arbitrary number of edition objects. Those objects can
perform certain actions, thanks to the methods built into the ActiveRecord
library—and they can perform any action, if you write the code for it.

In part 4 of the book, when we come back to the music store application, we’ll
be writing custom model code. Here, in keeping with the spirit of this chapter,
we’ll see enough to make a case for the importance of the concept.

You can perform two levels of model enhancement: writing a method whose
name corresponds to a predefined callback, or hook; and writing a method from
scratch. The first of these resides in the second of our three freedom categories,
as mapped out at the beginning of section 3.2: the category of structured free-
dom, facilitated but not mandatory enhancement. The second, writing methods

Starting to use Ruby to do more in your code 83

from scratch, belongs in the third category: open-ended programming freedom.
We’ll look at an example of each.

Implementing predefined callback methods

The introduction to section 3.2 mentioned the existence of a before create
hook: If you write a method call before_create in an ActiveRecord model file,
that method will be executed before the database record is created for each
instance of that model.

You can see this in action by making a small and harmless change to the file
app/models/edition.rb in the r4rmusic application. Every edition has a descrip-
tion—basically, a free-form text field for storing descriptive information like
“revised” or the name of an editor. If you don’t specify a string to fill this field,
then by default the field is set to nil (no value).

It might be more graceful to have a default string value for the description field.
If no description exists for the edition at the time the database record is first cre-
ated, let’s have it default to “standard”.

To bring this about, insert the following method definition into edition.rb
(just prior to the end that ends the file):

def before create

self.description = "standard" unless description

end
This code basically says: if description is nil, set it to “standard”. The code is exe-
cuted just before a new edition is saved to the database. Thus any edition without
a description gets one.

(You can try this by changing one of the editions description fields in the
records file created in chapter 2 to NULL [the SQL equivalent of Ruby’s nil] and
reinitializing the database and the records from the files. The “standard” designa-
tion should then show up when you look at that edition in your browser.)

Rails predefines quite a few callback and filter-methods like before_create,
anticipating that you may want to perform programming actions in your applica-
tion but not dictating what those actions should be. These filters are analogous to
the helperile facility: They’re a halfway measure that makes it easy for you to add
the finishing touches.

You can also write methods from scratch for your models. This is one of the
most powerful and useful areas of Rails for the exercising of Ruby skills.

84

CHAPTER 3
Ruby-informed Rails development

Free-form programmatic model enhancement

Let’s say you have a Rails application in which you store people’s names—perhaps
the names of customers in a database. You have a table called (say) customers, and
fields in that table called title, first_name, middle_initial, and last_name. On the Ruby
side, you have a customer.rb model file. Thanks to the database table field names,
you can easily retrieve the title and name components of a given customer.

For example, in a view template, given a customer object in the variable ecus-
tomer, you can display the person’s name like this:

<p>Hello, <%= @customer.title + " " + @customer.first name + " " +

@customer.middle_initial + ". " +

@customer.last _name" %$></p>
You’d want to finesse cases where someone doesn’t have a middle initial, but the
basic idea is that to display a name, you string together its parts.

However, this code is awfully wordy for a template. Besides, you may want to
display the name more than once. It would be nice to have a method that could
do this. You could write a helper method, as we did in the case of 1ink_to_order.
But you may want to access the nice version of the name somewhere else in the
application (maybe when emailing the customer), not just in the views.

The most logical approach is to have the customer object generate the nice
name. To do this, you write a method in the model file. The output of this method
is a string with the components of the name pieced together. (We’ll even take the
precaution of interpolating an empty string if this customer has no middle ini-
tial.) Here’s what your customer.rb file looks like:

class Customer < ActiveRecord: :Base
def nice name

title + " " + first name + " " +
(1f middle initial then middle_initial + ". " else "" end) +
last _name
end
end

If you’re designing a view where you want the person’s name displayed in this for-
mat, and your controller has stashed the relevant instance of Customer in the vari-
able ecustomer, you can write the following, and @customer will know what to do:

<p>Good morning, <%= @customer.nice name %>.</p>

In this example, the knowledge that Ruby lets you chain strings together with the
plus sign enables you to add an enhancement to all customer objects. Conditional
logic (the if/else handling of the middle initial) ensures that you don’t end up

3.3

3.3.1

Accomplishing application-related skills and tasks 85

with stray dots and spaces. Overall, a bit of Ruby skill lets you endow the Customer
model with a new facility—the nice version of its name—and lets you do it well.
The more Ruby you know, the more of this kind of functionality you can cre-
ate, and the more quickly and accurately you can do so. Rails and Ruby operate
together as one system, and writing Ruby code is part of your role in that system.

Accomplishing application-related skills and tasks

As stated in the introduction to this chapter, administrative and organizational
tasks won’t figure prominently in the rest of this book, but this area definitely
merits one section’s worth of attention. I hope you’ll find opportunities to use
Ruby in and around your Rails work in a variety of ways, and this section is
designed to encourage you to look for such opportunities.

We’ll use a common case as our main example: converting legacy data to a
Rails-usable format. This is an area where Ruby can help you a great deal—not
only because the target format is ActiveRecord, but because Ruby is good at
manipulating data in many formats and forms.

This section also includes an introduction to the irb-based application console,
which is basically an irb session into which your model files have been preloaded.
You can use this session interactively to examine and change database records and
run any methods that have been defined for the use of your models. As a subtopic,
the application console is an imperfect fit for this section; but because it’s irb based,
and irb is part of the general Ruby environment, we’ll count it among the facilities
Ruby gives you to enhance your work environment. (If you end up feeling that the
application console is an integral Rails development tool, so much the better!)

Converting legacy data to ActiveRecord

When it comes to converting data, a lot depends on what you start with. You may
be dealing with an old relational database and have to convert it to Rails-friendly
SQL. Or you may need to turn information stored in flat text files into database
records. There’s no single scenario when it comes to the process of dealing with
legacy data. But Ruby skills can help you bootstrap that data into Rails-accessible
form in virtually any case.

We’ll look at an extended example here, based on a real-life case (that’s proba-
bly similar to many real-life cases) involving data from a discussion board stored in
small text files. We get a lucky break because these text files are YAML files. That
gives us a foot in the door when it comes to getting Ruby and, subsequently, Rails
to understand what’s in them.

86

CHAPTER 3
Ruby-informed Rails development

Fach file has a number of fields:

number: 251

username: dblack

date: 10-3-2005

previous: 244

title: I've got something to say about that

body: "This is a sample comment, which in practice could go on
for a long time and have all sorts of markup in it."

The software you’ve been using threads everything together based on message
numbers and tracking responses. Now, you want to convert this to a Rails site.

First, design and create the new database. Based on the previous example, an
appropriate set of tables might look like this:

CREATE TABLE messages (
id INT(4) NOT NULL AUTO_INCREMENT,
user_id INT(4),
previous id INT(4),
number int(6),
title VARCHAR(50),
body TEXT,
date CHAR(10),
PRIMARY KEY (id)
)

CREATE TABLE users (
id INT(4) NOT NULL AUTO_INCREMENT,
name VARCHAR (20),
PRIMARY KEY (id)

)i

Now, create the Rails application:

rails board

cd board

ruby script/generate model user
ruby script/generate model message

Vr Vvr r

In app/models/user.rb, add the following:

class User < ActiveRecord::Base
has_many :messages
end

And put this code in app/models/message . rb:

class Message < ActiveRecord: :Base
belongs_to :user
belongs_to :previous, :class_name => "Message",
:foreign key =>"previous_id"
end

Accomplishing application-related skills and tasks 87

Then, set up config/database.yml.

Now you’ve got to filter the old data into the new Rails environment. The way

we’ll do

1

2

this is as follows:

For each message file, read the file in via YAML.

Retrieve the user corresponding to the message’s username from the
database (or create a new user if no such user exists).

Set the new message’s user property to the user just retrieved (or created).

Create a new Message object, and set its date, number, title, and body
properties from the old values.

If this message has a previous field (used for threading), then set this mes-
sage’s previous property to the id for that message.

Listing 3.1 shows a Ruby script that will perform all these steps. It includes a few
black-box techniques; but the commentary will help you see what it’s doing and
how it maps to the algorithm just prescribed. The script is engineered to be run

from th

e root directory of the (imaginary) new Rails application; from there, it

can easily find and load the config/environment.rb file, which gives it access to

the necessary databases and other application-specific information.

requi

mnums
files

files
m =
num

re 'config/environment.rb'

= {}

= Dir["../file*"] .sort

.each do |file] 4—0

YAML.load (File.read (file))
= m['number']

prev = m['previous']

use
unl
u
u
u
end

mes

mes

mes
mes

r = User.find by name(m['username'])
ess user

ser = User.new

ser.name = m['username']

ser.save

sage = Message.new
sage.save
mnums [num] = message.id

sage.user = user w
sage.number num

88

CHAPTER 3
Ruby-informed Rails development

message . body = m['body']
message.title = m['title']

message.date = m['date']

if prev
message.previous = Message.find (mnums [prev])
end

message.save <)

end

The script initializes an empty hash (key/value collection) called mnums, which will
store message numbers in cases where one message is a response to another mes-
sage @. Also, all of the names of the relevant legacy files are gathered, sorted
alphabetically, into the array files. The script now cycles through the original,
legacy data files one at a time, using each @ . (Make sure that the files are named
in such a way that an alphabetical sort of their names will put them in order by
date of message; for example, you could call them £i1e000, £i1e001, etc.)

For each file, the script creates a Ruby object based on a YAML reading of the
file’s contents €. (Remember that YAML serializes Ruby data to string form and
then can load it back from the string—stored in a file, in this case—to in-memory
data at runtime.) The variables prev and num store the values in the previous and
number fields of this message. There will always be a value for number, but there will
be a value for previous only if this message was a response to another message.
(We’ll need to know this later.)

The script next searches for a user in the database matching the username
from the file. If it doesn’t find one, it creates a new user @). This ensures that each
message will have a valid user associated with it.

The rest of the script handles the message . A new message object is created to
store the message that’s being parsed from the file @. The id field of the new mes-
sage is stored in the mnums hash, keyed to the number of the legacy message. This
provides a mapping between the old message numbering sequence and the
sequence of id values in the new message database.

Various fields of the new message object are initialized to the corresponding
values from the file: user; number, body, title, and date 0. Ifa previous message exists
to which this one was a response (which we’ll know based on whether the variable
prev has a value), that existing message is used to set the previous field of the new
message @. Finally, the new message, with its properties set to reflect who wrote it
and the message to which it was a response (if any), is saved to the database @.

3.3.2

Accomplishing application-related skills and tasks 89

The idea is to translate the data from the terms of one universe to the terms of
another. Ruby can do it all for you: read the old data (easy in this case, because it’s
in YAML, but not difficult even if it’s in other text-based or database formats), test
the values and make decisions about what should be done, and create ActiveRecord
objects whose properties match those in the original dataset. Not only Rails is open-
ended: Ruby itself is equal to all sorts of tasks, including conversions like this that
aren’t part of a Rails application but that may make development of an application
possible in the first place.

The irb-based Rails application console

Our last subtopic in this chapter could belong anywhere. It’s an application-
related skill, so it fits in this section. And it’s something you’ll find extremely use-
ful: the Rails application console.

You’ve already started using irb to test Ruby code snippets and to do quick cal-
culations. Rails applications come complete with an irb-based console—basically,
an irb session preloaded with the components of your application.

To run the console, give this command (from the top level of the application
directory):

$ ruby script/console

At this point, you're in an irb session (with the simple prompt option; the prompt
is >>). During this session, you can examine data, create new data instances, and
so forth. Listing 3.2 shows a session that creates a new Edition object and fills in
its properties (except for description, which is filled in automatically when the
object is saved, thanks to the before_create hook we wrote in section 3.2.3).

$ ruby script/console

Loading development environment.

>> e = Edition.new

=> #<Edition:0x40a0ed3c @new record=true, @attributes={"price"=>nil,
"publisher"=>nil, "description"=»>nil, "year"=>nil, "work id"=>0}>

>> e.work = Work.find (1) 44444"

=> #<Work:0x40al04cec @attributes={"title"=>"Sonata for Cello and Piano in

F\nMajor", "composer id"=>"1", "id"=>"1"}>
>> e.price = 22.50
=> 22.5
>> e.publisher = "Ruby F. Rails, Inc." <4444€)

=> "Ruby F. Rails, Inc."

>> e.year = 2006 4—0

=> 2006

90

3.4

CHAPTER 3
Ruby-informed Rails development

>> e.save

=> true 4—9

>> e.description

=> "standard" <1—°

The console session makes changes to the database (the development database,
by default). Here, we create an Edition object, assign something to its work prop-
erty @ (so that it’s an edition of something) as well as its publisher and year @,
and save it to the database. The save operation returns true €, which means it
has succeeded. The new edition’s description property is set automatically to
“standard” @), as we arranged.

You can make changes directly in your application’s program files while the
session is in progress. If you do, you must reload the files you’ve changed. You can
do this using the load command (which, unlike require, loads a file even if it has
already loaded the file once). For example, if you make a change to edition.rb,
you type the following in the console session:

>> load 'edition.rb'

Rails knows how to find the file and reads it in again.

Don’t forget that the application console is also a regular irb session. If, like
many Ruby programmers, you become an irb devotee, you can save yourself the
trouble of starting up an extra session if the application console is running
already and you need to do a quick irb calculation or code test.

Summary

Chapter 3 has given you a grounding in a number of the many ways that knowing
Ruby can help you as a Rails developer. It’s a pivot chapter: not as detailed or
extensive in terms of Ruby or Rails applicability as what is to come later in the
book, but more detailed than anything that would have made sense before the
first two chapters.

You've seen examples of what it means to gain knowledge of what your Rails
code is doing, mainly in connection with the interplay between what looks like con-
figuration syntax and whatis programming code. (That’s not the only area in which
it pays to understand the Ruby/Rails relationship, but it’s a good one to get a han-
dle on.) You’ve also seen some initial examples of how to deploy your own code,
both in cases where Rails provides you with an infrastructure for doing so (helper
methods and predefined hooks) and in cases where you’re writing methods from

Summary 91

scratch for a certain purpose. As suggested in section 3.2, Rails is designed to pro-
vide you with different levels of choice and freedom; and you’ve seen examples of
everything from prescribed, unchangeable application features (such as the layout
and naming of the directories) to open-ended programming opportunities (such
as adding methods to model files, which allows you to bring just about any Ruby
technique to bear on your Rails application’s behavior).

We also looked—for the first and pretty much the last time in the book—at the
power of Ruby to help you with tasks related to, but not necessarily part of, a given
Rails application. The legacy-data conversion example in section 3.3.1 points the
way to a large number of similar tasks; and I hope you’ll turn to Ruby productively
in the future to help you accomplish them. Also in the “how Ruby helps you with
Rails development” category, we covered the irb-based application console—a
very useful tool in its own right, as well as a good example of the interflow
between the Ruby programming environment and the Rails development process.

Now we’ll turn to the systematic exploration of the Ruby programming lan-
guage. Rails won’t be lost to view, but the center of gravity of the next two parts of
the book will be on Ruby. You now have a good overview of the kinds of tasks that
a greater knowledge of Ruby can help perform do in Rails; and the return on time
invested only gets greater as you go along.

Part 2

Ruby bwilding blocks

Iis is the first of two parts of this book devoted to the exploration and study
of the details of the Ruby programming language. This part comprises five chap-
ters, over the course of which you’ll learn about the major building blocks of
Ruby: the essential constructs and techniques that drive Ruby programs and hold
them together. This discussion includes an introductory situating of Ruby as an
object-oriented language. From there, we’ll move on to look at a series of topics
concerned with how Ruby programs are constructed and how Ruby represents
and manipulates data.

The focus in this part of the book, as well as in part 3, is on learning the Ruby
language. But it’s still Ruby for Rails, and Rails won’t fade from view. Where possi-
ble, Rails-related examples serve the double purpose of illustrating Ruby features
and also showing you Rails techniques or idioms, or nuggets of Rails information.
You’ll also find subsections that discuss in more depth the implications of particu-
lar Ruby constructs for the Rails framework.

We'll start part 2 with a close look at Ruby objects (the most basic building
block) and variables. From there, we’ll segue to an exploration of how you can
organize and automate objects using the aggregation techniques made available
by Ruby’s class and module mechanisms. That will take us through chapter 6.
Chapter 7 examines matters of scope in Ruby: where you are in the overall map of
your program at a given point during execution, and how to tell. Finally, chapter 8
introduces Ruby’s control-flow techniques: conditional execution if structures,
looping, and other related programming facilities.

In short, part 2 will take you through a considerable amount of both the whatand
the how.

Objects and variables

In this chapter
m Objects and object orientation

m Innate vs. learned object capabilities
Method-call syntax and semantics

Variable assignment and usage

95

96

4.1

CHAPTER 4
Objects and variables

In this chapter, we’ll begin exploring the details of the Ruby programming lan-
guage. We’ll look first and foremost at the concept of the object, around which
almost every line of Ruby code you write (for Rails applications or otherwise) will
revolve. Toward the end of the chapter, we’ll get deeper technically than we have
so far into the nature and behavior of variables in Ruby.

Aside from giving you a technical basis for understanding the rest of Ruby, the
study of objects also ties in directly to using a programming language to represent
or model aspects of entities and processes. This kind of modeling of entities is also
part of the design of a relational database, which in turn serves as the blueprint
for the structure of your Rails application. In other words, a lot of modeling is
going on at the programming-language, database-design, and application-design
levels. A thorough and disciplined understanding of Ruby’s object system is essen-
tial to seeing how these systems interoperate in Rails.

Ruby objects are often (perhaps most often) handled via variables that repre-
sent them; and in this chapter you’ll learn about variables as well as objects. And
what you do with objects, broadly speaking, is send them messages; accordingly,
we’ll also look at some details of message sending—the mechanics of calling
methods on objects.

From “things” to objects

When you use Ruby—even when you’re not writing applications, like Rails appli-
cations, that operate in close parallel with a database—you’re always, to one
degree or another, dealing with the matter of mapping “things” to the universe of
your computer program.

In the case of Rails applications, this kind of mapping is front and center: You
design a database with tables and fields, and your program derives filenames, vari-
able names, and much of its programming logic from that database. But apart
from Rails, Ruby iself, as a programming language, is designed such that much of
what you do when you plan and write Ruby programs is to model domains, exam-
ine relations between entities or “things” (like composers and works, or teachers
and students, or shirts and buttons), and find ways to embed those relations in the
structure and terminology of your program.

When you write a computer program, you're creating a kind of symbolic uni-
verse whose components you manipulate using the syntax and semantics of your
programming language. Some programming languages, however, encourage you
further along this road than others.

Ruby is one of those.

4.1.1

From “things” to objects 97

In any Ruby program, the bulk of the design, logic, and action revolve around
objects. When you write Ruby programs, you primarily create objects and ask those
objects to perform actions. Objects are your handle on the universe of your program.
When you want something done—a calculation, an output operation, a data com-
parison—you ask an object to do it. Rather than ask in the abstract whether a
equals b, you ask a whether it considers itself equal to b. If you want to know whether a
given student is taking a class from a given feacher, you ask the student: Do you have
this teacher? Writing a Ruby program is largely a matter of engineering your objects
so that they behave in a manner consistent with the domain or domains you want
your program to emulate.

You'll learn in the following sections how to create an object, and what it looks
like when you ask an object to do something. The main point, as we enter the
world of objects, is that domain modeling (or real-world emulation) crops up not
only when you’re designing databases but also when you’re designing Ruby pro-
grams. Once you get in the domain-modeling mindset, it will see you through the
entire process.

Introducing object-oriented programming

Ruby comes to the idea of manipulating data through objects via a program-
language design principle called object orientation. Many extremely popular pro-
gramming languages are object-oriented (such as Java, C++, Python, as well as
Ruby), and some languages that aren’t fully object-oriented have facilities for
writing object-oriented code (for example, Perl, as described in Object-Oriented
Perl by Damian Conway, from Manning Publications). In object-oriented pro-
gramming (OOP), you perform your calculations, data manipulation, and input/
output operations by creating objects and then requesting information and
actions from those objects.

Different objects have different capabilities. You wouldn’t ask a Book object
(that is, an object designed around the characteristics of a book) how many liters
of liquid it could hold. But you might ask it who its author is—and save the liquid
questions for a Bottle object. (It’s possible to create nonsensical, badly named
objects; but that’s a practice to be avoided rather than cultivated.)

NOTE THE REAL WORLD The term real-world gets thrown around a lot in discus-
sions of programming. There’s room for debate (and there is debate) as
to whether this or that programming language, or even this or that kind
of programming language, corresponds more closely than others to the
shape of the real world. A lot depends on how you perceive the world. Do
you perceive it as peopled with things, each of which has tasks to do and

98

4.1.2

CHAPTER 4
Objects and variables

waits for someone to request the task? If so, you may be into object orien-
tation. Do you see life as a series of to-do items on a checklist, to be gone
through in order? If so, you may want a more procedural language. In
short, there’s no one answer to the question of what the real world is—so
there’s no answer to the question of what it means for a programming
language to model the real world.

Designing object-oriented software is largely a matter of figuring out what you
want your objects to be: what they should do, how they interact with each other,
how many of each there can be (only one music store; many musical works), and
other such questions. As you'll see, Ruby provides a complete set of tools for nam-
ing, creating, addressing, and manipulating objects—and, through the manipula-
tion of those objects, the data they operate on.

1, object!

At first, the concept of object-oriented computer programming tends to come
across as both simple (you write programs that have Books and Bottles and Cars
and Houses, and you hold a kind of conversation with those things) and abstract
(Object? What does that mean? What do I actually type into my program file to create a
House object?). It does have a component of simplicity; it lets you draw on objects,
entities, roles, and behaviors as a source for how you design your program, and
that can be a help. At the same time, to create and use objects in your programs,
you have to learn how it’s done in a given language.

Seeing this explanation concretely can make the abstract parts easier to grasp.
We’ll therefore proceed to some Ruby code. We’ll create a new object. It won’t be
an edition of music, a composer, or anything elaborate; it will be a generic object.
We’ll ask Ruby to create the object and assign it to a variable so that we can manip-
ulate it further:

obj = Object.new

Now we have an object, stored in the variable obj.

The role(s) of the object
Objects are your agents, your proxies, in the universe of your program. You ask
them for information. You assign them tasks to accomplish. You tell them to per-
form calculations and report back to you. You hand them to each other and get
them to work together.

What can our freshly minted, generic object do?

From “things” to objects 99

All Ruby objects are created with certain innate abilities. Those abilities,
though important, aren’t exciting, so we’ll keep them to the side for the moment.
More exciting is what happens when you teach your object how to do the things
you want it to do.

Defining an object’s behavior
Let’s say you’ve created an object and you want it to do something interesting: You
want it to talk. To get it to talk, you have to ask it to talk. But before you ask it to
talk, you have to teach it how to talk.
Specifically, and more technically, you have to define a method for your object.
You do this using a special term—a keyword—namely, the keyword def.
Here’s how you define the method talk for the object obj:
def obj.talk
puts "I am an object."
puts " (Do you object?)"
end
Figure 4.1 shows an analysis of that chunk of code.
When you execute the code—that method definition—obj won’t talk. Rather,
obj will learn how to talk. You can now ask it to talk.

Sending messages to objects

To get your object to talk, you use a construct, a bit of syntax that is probably the
most common and important construct you’ll see in Ruby programs: the message-
sending or method-calling syntax:

object.message

object to which dot operator

method belongs method name

start method
definition

def obj.talk
puts "I am an object"
puts " (Do you object)"
end

method body

end method .
definition Figure 4.1

Anatomy of a method definition

100

CHAPTER 4
Objects and variables

In the context of this construct:

® object can be, and often is, a variable that stands in for an object. It may
also be a literal object construct—for example, a string in quotation marks.

m The dot (.) is the message-sending operator. The message on the right is
sent to the object on the left.

m message is the message that gets sent to object. In practice, message is
almost always the name of a method (like talk, the method defined ear-
lier). In any case, object always thinks message is the name of a method. If
there’s no method by that name, error-handling measures are taken. But
the general idea is that every message you send to an object corresponds to
a method the object can call.

NOTE CALLING METHODS VS. SENDING MESSAGES You’ll hear people talk more
about “calling a method on an object” than about “sending a message to
an object.” It’s fine to fall into that terminology, because that’s what’s
happening most of the time. But it’s important to understand that what’s
really happening is a two-phase process: You send a message to an object;
and the object executes the method with the name that corresponds to
your message. Understanding this will help you understand the possible
outcomes of sending an object a message that does not correspond to the
names of any of its methods.

Using this syntax, you can ask your object to talk:
obj.talk

And it talks:

I am an object.

(Do you object?)
An object is said to respond fo a message if the object has a method defined whose
name corresponds to the message. For example, the object obj responds to talk.
The object to which you send a message is referred to as the receiver of the message.

The semantics of method calls let you go much further than the relatively one-
dimensional talk case, particularly when you start calling methods with arguments.

Methods that take arguments

Methods in Ruby are much like mathematical functions: Input goes in, the wheels
turn, and a result comes out. To feed input to a Ruby method, you call the
method with one or more arguments.

From “things” to objects 101

In a method definition, you indicate the required and/or optional arguments by
means of a list of variables in (sometimes optional) parentheses after the method.
When you call the method, you provide values corresponding to these variables in
your method call.

Let’s say we want our object to function as a Celsius-to-Fahrenheit converter. We
can teach it how to do the conversion by defining a method, which we’ll call c2f:

def obj.c2f (c)
c*9 /5 + 32
end
Notice the variable ¢, which is the name of the only argument to this method.
When we call the method, we’ll use a similar syntax (parentheses), and we’ll insert
a number where ¢ appears in the method definition. Let’s use the converter
method to convert 100:

puts obj.c2f(100)

(We need the puts, or the method does the calculation but we never see the result.)
The result is printed, as requested:

212

WARNING METHOD INPUT VS. KEYBOARD OR FILE INPUT Input to a function or
method means the values you send as arguments—not keyboard input.
Similarly, a method’s output is the result it returns, not what it prints to
the screen. It’s more common to speak of the return value of a method—
what it returns as a result of being executed. We can say that c2f returns
the Fahrenheit equivalent of its argument.

The item in parentheses is an argument. Our c2f method takes one argument. As
you see, there’s a direct correspondence here between the way we define the
method and the way we call the method.

The parentheses are optional in most cases. (In cases where the syntax is more
complex or you call more than one method in a row, you may need the parenthe-
ses to make it clear to Ruby what you mean.) Most people use parentheses for
method calls, but you’ll see method calls with no parentheses—including, typi-
cally, in most Rails applications, for reasons we’ll examine a little later.

At the other end of the process, every method call hands back—returns—a value.

102

CHAPTER 4
Objects and variables

The return value of a method

Ruby code is made up of expressions, each of which evaluates to a particular
value. Table 4.1 shows some examples of expressions and their values (along with
explanatory comments).

Table 4.1 Examples of Ruby expressions and the values to which they evaluate

Expression Value Comments

24+2 4 Arithmetic expressions evaluate to their results.

"Hello" “Hello” A simple, literal string (in quotation marks) evaluates to itself.

"Hello" + " “Hello Strings can be “added” to each other (concatenated) with the

there" there” plus sign.

c =100 100 When you assign to a variable, the whole assignment evaluates
to the value you've assigned.

c*9/5+32 212 The usual rules of precedence apply: Multiplication and division
bind more tightly than addition and are performed first.

A method call is an expression. When you call a method, the method call evalu-
ates to something. This result of calling a method is the method’s return value.
Methods can be lengthy; but there’s a universal rule for determining a method’s
return value: The return value of any method is the value of the last expression evalu-
ated during execution of the method. In the case of the temperature-conversion
method, the last expression evaluated is the only line of the method body:

c * 9 / 5 4+ 32

That means the whole value of the method—the return value—is the result of
that calculation.

Ruby gives you a keyword for making this explicit: return. The use of this key-
word is optional, but many programmers like to use it because it makes explicit
what is otherwise implicit:

def obj.c2f (c)

return ¢ * 9 / 5 + 32
end
This is equivalent to the earlier version of the method, but it’s more expressive
about what it’s doing. On the other hand, it’s wordier. You have to decide, as a
matter of your own style, whether you want to use return.

At this point, our object is doing what we need it to do: listening to our mes-

sages and acting on them. That’s a good illustration of how Ruby works, but it’s a

4.1.3

From “things” to objects 103

bit scrappy. We started with a generic object and taught it to talk and to convert
temperatures. That shows you the mechanics of defining and calling methods, but
it’s not an impressive example of objects modeling real-world entities. Let’s get a
little more real.

Modeling objects more closely: the behavior of a ticket

As we broaden our real-world modeling horizons, for variety’s sake we’ll model
something other than an online sheet-music store. We’ll model a ticket to an
event—not a ticket-selling agency, but the ticket itself. We’ll create it, we’ll endow it
with ticket-like properties, and then we’ll follow its lead through an extended set
of examples and techniques.

But first, let’s take a high-level view at what we expect a ticket object to do and
to know about itself.

The ticket object, behavior-first
We’ll set our sights on a ticket object that can provide data about itself. We want to
be able to ask a ticket, in programming terms, for information about the event it’s
for: when, where, name of event; performer; which seat; how much it costs.

When asked, the ticket will provide the following information:

01/02/03

Town Hall

Author's reading

Mark Twain

Second Balcony, row J, seat 12

$5.50
The goal is to create an object from which we can easily get all this information.
Emphasis on easily: The point of object-oriented programming is that the pro-
gramming language is your partner in designing programs that embody entities
(real-world things) in a form that lets you store and retrieve information easily.

Creating the ticket object
First, we’ll create our ticket object. We assign it to the variable ticket:

ticket = Object.new

Now, let’s endow the object—the ticket—with properties and data. We do this by
defining a series of methods, each of which has a return value matching the value
we want the ticket to have for that item:

def ticket.venue
"Town Hall"

104 CHAPTER 4
Objects and variables

end

def ticket.performer
"Mark Twain"
end

def ticket.event
"Author's reading"
end

def ticket.price <1—o

5.50
end

def ticket.seat
"Second Balcony, row J, seat 12"
end

def ticket.date
"01/02/03"
end
Let’s pause for a moment and make some observations. The majority of the meth-
ods defined here return string values. You can see this at a glance: They hand back
a value inside quotation marks.

The price method @ returns a Sfloating-point decimal number. 5.50. Floating-
point numbers have more complexity and quirkiness than you may think. Some
day you’ll probably come across something peculiar-looking, like this frequently
cited example:

puts 0.5 - 0.4 - 0.1

-2.77555756156289e-17 <——— Not zero!

The problem—or, more accurately, the inevitable consequence of the laws of
mathematics and computers—is that decimal floating-point numbers of arbitrary
length can’t be stored and operated on in binary form with complete accuracy.
So, don’t be surprised if you see this sort of code.

NOTE NOT ALL OBJECTS HAVE TO BE CREATED INDIVIDUALLY A little further
on, you’ll learn how to create objects on a factory basis, without have to
call Object .new and manually add methods for every object. Ruby gives
you plenty of shortcuts; in practice, you rarely end up creating hand-
crafted, one-at-a-time objects. We're doing it here to give you a solid
understanding of objects and methods. That, in turn, will help you
understand the shortcuts when you encounter them.

From “things” to objects 105

Querying the ticket object
Now that our ticket object knows a little about itself, let’s ask it to share the infor-
mation. Rather than produce a raw list of items, let’s make it look nicer. We’ll use
the built-in Ruby methods print and puts (which you encountered in chapter 1)
to get the information in more or less narrative form:

print "This ticket is for: "

print ticket.event + ", at "

print ticket.venue + ", on "

puts ticket.date + "."

print "The performer is "

puts ticket.performer + "."

print "The seat is "
print ticket.seat + ", "

print "and it costs &" Print floating-point number
puts "$.2f." % ticket.price to two decimal places

Save all the code, starting with ticket = Object.new, to a file called ticket.rb, and
run it. You’ll see the following:

This ticket is for: Author's reading, at Town Hall, on 01/02/03.

The performer is Mark Twain.

The seat is Second Balcony, row J, seat 12, and it costs $5.50.
The code for this example consists of a series of calls to the methods defined ear-
lier: ticket.event, ticket.venue, and so forth. We’ve embedded those calls—in
other words, embedded the return values of those methods (“Author’s reading”,
“Town Hall”, and so on)—in a succession of print commands; and we’ve added
connectors (%, at”, “, on”, and so forth) to make the text read well and look nice.

It’s a simple example, but it encompasses important Ruby procedures and
principles. The knowledge of the program resides in the object: the ticket. We
get at that information by asking for it via method calls. Each method, upon being
called, hands back a value. Nothing is more central to Ruby than that process.

Our code works well, but it’s wordy. Ruby has a reputation as a powerful, high-
level language. You’re supposed to be able to geta lot done with relatively littlecode.

This example takes ten lines of printing code to generate three lines of output.
Sometimes a ratio like that may be inevitable, but this isn’t one of them. We can
definitely tighten up this code; so let’s do that, while we’re still on the simple
ticket question-and-answer exercise.

Shortening the code via string interpolation
The goal of shortening the output of our little program gives us an excuse to dip
into one of the most useful programming techniques available in Ruby: string

106

CHAPTER 4
Objects and variables

interpolation. The string interpolation operator gives you a way to drop variables,
method return values, or anything else, into a string. This can save you a lot of
back-and-forth between print and puts.

Here’s how the printing code looks, using string interpolation to drop the val-
ues we need into place:

puts "This ticket is for: #{ticket.event}, at #{ticket.venue}."

puts "The perform is #{ticket.performer}."

puts "The seat is #{ticket.seat}, "

puts "and it costs $#{"%.2f." % ticket.price}"
Whatever’s inside the interpolation operator #{...} gets calculated separately,
and the results of the calculation are pasted automatically into the string. When
you run these lines, you don’t see the #{...} operator on your screen; instead,
you see the resulls of calculating or evaluating what was inside that operator.

We just eliminated six of ten lines of code. We also made the code look a lot
more like the eventual format of the output, rather than something that works
but doesn’t convey much visual information.

Ticket availability: expressing Boolean state in a method
Some things we want to query a ticket about can be expressed as strings and num-
bers. Others are true/false—Boolean—values. And some may go either way.

Consider the matter of whether a ticket has been sold or is still available. One
way to endow a ticket with knowledge of its own availability status is this:

def ticket.availability status

"sold"

end
Another way is to ask the ticket whether it is available and have it report back true
or false:

def ticket.available?

false

end
false is a special term in Ruby, as is the term true. true and false are objects. The
reason for their existence is to provide a way to express truth and falseshood—which
is helpful when you’re writing conditional statements (if-based things) or methods
where all you need to know is whether something is true (as opposed to methods
where you need a number, string, or other object).

You may have noticed that the method name available? ends with a question
mark. Ruby lets you do this so you can write methods that evaluate to true or false
and make the method calls look like questions:

From “things” to objects 107

if ticket.available?

puts "You're in luck!"
else

puts "Sorry--that seat has been sold."
end

Every expression in Ruby evaluates to an object; and every object in Ruby has a
truth-value. The truth-value of almost every object in Ruby is true. The only
objects whose truth-value (or Boolean value) is false are the objects false and
the special non-entity object nil. (You’ll see Booleans and nil in more detail in
chapter 9. For the moment, you can think of both false and nil as functionally
equivalent indicators of a negative test outcome.)

You can play around with if expressions in irb, and you’ll see this in operation:

>> 1if "abc"

>> puts "Strings are 'true' in Ruby!"

>> end

Strings are 'true' in Ruby!

=> nil

>> if 123

>> puts "So are numbers!"

>> end

So are numbers!

=> nil

>> if 0

>> puts "Even 0 is true, which it isn't in some languages."

>> end

Even 0 is true, which it isn't in some languages.

=> nil

>> if 1 ==

>> puts "One doesn't equal two, so this won't appear."

>> end

=> nil
Notice how irb not only obeys the puts method-calls (when conditions are right)
but also, on its own initiative, outputs the value of the entire expression. In the
cases where the puts happens, the whole expression evaluates to nil—because
the return values of puts is always nil. In the last case, where the string isn’t
printed (because the condition fails), the value of the expression is also nil—
because an if statement that fails (and has no else branch to salvage it) also
evaluates to nil.

Remembering that nil has a Boolean value of false, you can, if you wish, get
into some amusing Boolean acrobatics with irb. A call to puts returns nil and is
therefore false, even though the string gets printed. If you put puts in an if clause, the

clause will be false. But it will still be evaluated. So...

108

4.2

CHAPTER 4
Objects and variables

>> if puts "You'll see this"; puts "but not this"; end

You'll see this

=> nil
The first puts is executed, but the value it returns, namely nil, is not true in the
Boolean sense—so the second one isn’t executed.

This is, to use the popular phrase, a contrived example. But it’s a good idea to
get used to the fact that everything in Ruby has a Boolean value, and sometimes
it’s not what you may expect. As is often the case, irb can be a great help in getting
a handle on this concept.

We’ve now manually given our ticket object some behaviors; having done
that, we’re going to turn next to the matter of what behaviors every object in Ruby
is already endowed with at its creation.

The innate behaviors of an object

Even a newly created object isn’t a blank slate. As soon as an object comes into
existence, it already responds to a number of messages. Every object is “born” with
certain innate abilities.

To see a list of innate methods, you can call the methods method (and throw in
a sort operation, to make it easier to browse visually):

p Object.new.methods.sort

The result is a list of all the messages (methods) this newly minted object comes
bundled with. (Warning: the output looks cluttered. This is how Ruby displays
arrays—and the methods method gives you an array of method names. If you want
a list of the methods one per line, use puts instead of p in the command.)

["==", "===", "=~", " 44 ", " gend ", "class",
"clone", "display", "dup", "eql?", "equal?", "extend",
"freeze", "frozen?", "hash", "id", "inspect",

"instance eval", "instance of?", "instance variable get",
"instance_variable_set", "instance variables", "is_a?",
"kind of?", "method", "methods", "nil?", "object_ id",
"private_methods", "protected methods", "public methods",
"respond_to?", "send", "singleton _methods", "taint",
"tainted?", "to_a", "to_s", "type", "untaint"]

Don’t worry if most of these methods make no sense to you right now. You can try
them in irb, if you’re curious to see what they do (and if you’re not afraid of get-
ting some error messages).

4.2.1

The innate behaviors of an object 109

But a few of these innate methods are common enough—and helpful enough,
even in the early phases of acquaintance with Ruby—that we’ll look at them in
detail here. The following methods fit this description:

®m object id
® respond to?

B send

Adding these to your Ruby toolbox won’t be amiss, on account of what they do
and because they serve as examples of innate methods.

Identifying objects uniquely with the object_id method

Every object in Ruby has a unique id number associated with it. You can see an
object’s id by asking the object to show you its object_id:

obj = Object.new

puts "The id of obj is #{obj.object id}."

str = "Strings are objects too, and this is a string!"

puts "The id of the string object str is #{str.object id}."

puts "And the id of the integer 100 is #{100.object_id}."
Having a unique id number for every object can come in handy when you’re try-
ing to determine whether two objects are the same as each other. How can two
objects be the same? Well, 100 is the same as 100. And here’s another case:

a = Object.new

b =a

puts "a's id is #{a.object id} and b's id is #{b.object id}."
Even though the variables a and b are different, the object they both refer to is the
same. (We’ll be looking in depth at how object references work in section 4.4.)

Yet another scenario: Sometimes you think two objects are the same, but
they’re not. This happens a lot with strings. Consider the following example:

string 1 = "Hello"
string 2 = "Hello"

puts "string 1's id is #{string 1.object_id}."

puts "string 2's id is #{string 2.object id}."
Even though these two strings contain the same text, they aren’t, technically, the
same object. If you printed them out, you’d see the same result both times
(“Hello”). But the string objects themselves are different. It’s like having two copies
of the same book: They contain the same text, but they aren’t the same thing as
each other. You could destroy one, and the other would survive.

110

4.2.2

CHAPTER 4
Objects and variables

WARNING THE (POSSIBLY) CONFUSING HISTORY OF THE object id METHOD The
object_id method was introduced into Ruby fairly recently. Previously,
the same method was known as id. The problem was that id is a common
name: Lots of programs, including Rails applications, have methods called
id. That meant the default id method (the one that gives a unique num-
ber) was inadvertently being replaced in a lot of programs. A method
called __id__ was introduced; the underscores make it less likely that any-
one would choose this name for a method in their own program, so it’s
safer. The problem with underscores is that they’re ugly. Matz decided to
add a new method, without underscores (except the word separator):
object_id. That’s now the standard way to obtain an object’s id number.

Although the Ruby object_id method and the ActiveRecord id
method both return numbers, they’re not the same thing. object_id gives
you Ruby’s internal id number for an object; ActiveRecord’s id method
gives you the value of the idfield in the database table for the model you’re
dealing with, if there is such a field.

Id numbers and equality of objects

As in the case of human institutions, one of the points of giving objects id num-
bers in Ruby is to be able to make unique identifications—and, in particular, to be
able to determine when two objects are the same object.

Ruby provides a variety of ways to compare objects for different types of equal-
ity. If you have two strings, you can test to see whether they contain the same char-
acters. You can also test to see whether they are the same object (which, as we’ve
just seen, isn’t necessarily the case, even if they contain the same characters). The
same holds true, with slight variations, for other objects and other types of objects.

Comparing id numbers for equality is just one way of measuring object equality.
We’ll get into further detail about more of these comparisons a little later. Right
now, we’re going to turn to the next innate method on our list: respond_to?.

Querying an object’s abilities with the respond_to? method

Ruby objects respond to messages. At different times during a program run,
depending on the object and what sorts of methods have been defined for it, an
object may or may not respond to a given message. For example, the following
code results in an error:

obj = Object.new
obj.talk

Ruby is only too glad to notify you:

undefined method 'talk' for #<Object:0x40laal8c> (NoMethodError)

4.2.3

The innate behaviors of an object 111

You can determine in advance (before you ask the object to do something)
whether the object knows how to handle the message you want to send it, by using
the respond_to? method. This method exists for all objects; you can ask any object
whether it responds to any message.

respond_to? usually appears in connection with conditional (if) logic. We
haven’t covered this yet, but its use in this example is easy to follow:

obj = Object.new
if obj.respond to? ("talk")

obj.talk
else

puts "Sorry, the object doesn't understand the 'talk' message."
end

respond_to? is an example of introspection or reflection, two terms that refer to exam-
ining the state of a program while it’s running. Ruby offers a number of facilities for
introspection. Examining an object’s methods (with the methods method, as we did
a little while ago) is another introspective or reflective technique.

Sending messages to objects with the send method

You've learned about the dot operator (.), which is used for sending messages to
objects. But what if you don’t know which message you want to send?

How could that happen? Suppose you want to let a user—someone at the key-
board—get information from the ticket object. The way you do this (and yes,
there are slicker ways, but bear with me) is to let the user type in the appropriate
word (“venue”, “performer”, and so on) and then display the corresponding value.

Let’s start with the keyboard input part. Having created the ticket object and
written the methods for it, you’d add this to the program to incorporate key-
board input:

print "Information desired: "

request = gets.chomp
The code getsaline of keyboard inputand chomps off the trailing newline character.

At this point, you could proceed as follows, testing the input for one value after
another (using the double equal-sign comparison operator (==) and calling the
method it matches:

if request == "venue"
puts ticket.venue
elsif request == "performer"

puts ticket.performer

112

4.3

4.3.1

CHAPTER 4
Objects and variables

You’d continue through the whole list of ticket properties.
Or, you can send the word directly to the ticket object. Instead of the previous
code, you do the following:
if ticket.respond to? (request) Q————"
puts ticket.send(request)
else
puts "No such information available"
end
This version uses the send method as an all-purpose way of getting a message to
the ticket object. It relieves you of having to march through the whole list of
possible requests. Instead, having checked that the ticket object will know what
to do @), you hand the ticket the message and let it do its thing.

TIP USING _ send INSTEAD OF send Sending is a broad concept: Email is
sent, data gets sent to I/0 sockets, and so forth. It’s not uncommon for
programs to define a method called send that conflicts with Ruby’s built-
in send method. Therefore, Ruby gives you an alternative way to call send:
__send . By convention, no one ever writes a method with that name, so
the built-in Ruby version is always available and never comes into conflict
with newly written methods. It looks strange, but it’s safer than the plain
send version from the point of view of method-name clashes.

Most of the time, you’ll use the dot operator to send messages to objects. How-
ever, the send alternative can be useful and powerful.

Required, optional, and default-valued arguments

Methods you write in Ruby can take more than one argument, or none at all.
They can also allow a variable number of arguments. We’ll look at a number of
permutations here. These are summarized in table 4.2 at the end of this section.

Required and optional arguments

When you call a Ruby method, you have to supply the correct number of argu-
ments. If you don’t, Ruby tells you there’s a problem. For example,

def obj.one arg(x)
end

obj.one arg(l,2,3)
results in:

ArgumentError: wrong number of arguments (3 for 1)

4.3.2

Required, optional, and default-valued arguments 113

It’s possible to write a method that allows a variable number of arguments. To do
this, you put a star (an asterisk: *) in front of a single argument name:

def obj.multi args(*x)

end
The *x notation means that when you call the method, you can supply any num-
ber of arguments (including none). In this case, the variable x is assigned an array
of values corresponding to whatever arguments were sent. You can then examine
the values one at a time by traversing the array. (We’ll look more closely at arrays
in chapter 11.)

You can fine-tune the number of arguments by mixing required and optional
arguments:

def two_or more(a,b, *c)

In this example, a and b are required arguments. The final *c will sponge up any
other arguments that you may send and put them in an array in the variable c.

Default values for arguments

You can also make an argument optional by giving it a default value. The result
will be that if that argument isn’t supplied, the variable corresponding to the
argument will receive the default value.

Here’s an example:

def default args(a,b,c=1)

puts "Values of variables: ",a,b,c
end

If you make a call like this
default args(3,2)
you’ll see this result:

Values of variables:

3

2

1
You didn’t supply a value for ¢, so c was set to the default value provided for it in
the argument list: 1. If you do supply a third argument, that value overrides the
default assignment of 1. The following call

default_args(4,5,6)

produces this result:

114

CHAPTER 4
Objects and variables

Values of variables:
4
5
6

4.3.3 Order of arguments

The order in which you provide the arguments must correspond to the order in
which they’re listed. That’s always true, but it’s particularly important to keep in
mind when you’re using optional and/or default arguments—either calling meth-
ods that take such arguments or writing such methods in the first place.
If you want to include optional arguments (*x), they have to come after any

non-optional arguments:

def opt args(a,b,*x) # right

def opt_args(a,*x,b) # wrong
You’ll never get as far as calling that second version of the method, because Ruby
won’t let you write it. In order to understand why not, consider what would hap-
pen if you did call it:

opt_args(1,2,3,4)

Obviously, you want to assign 1 to a. But what about the rest? Do you want 2 and 3
to be put into an array and stored in x? Or do you want 2, 3, and 4 to be put in x?
But then, what value does b get? b is a required variable, so something has to go
into it. But that conflicts with the presence of the sponge expression *x to b’s left.

There is logic to the constraints placed on you in the matter of the order of argu-
ments, but the syntax allows for any permutations you need. Table 4.2 shows a num-
ber of argument-list permutations with sample calls and the variable assignments
that take place in each case: the values of the variables inside the method definition
block when the method with the given signature is called with the given arguments.
(The square brackets indicate an array: a = [1,2,3], for example, means that an
array containing three elements has been assigned to the variable a.)

Table 4.2 Sample method signatures with required, optional, and default-valued arguments

Argument type(s) Method signature Sample cali(s) Variable assignments
Required (Req) def m(a,b,c) m(1,2,3) a=1,b=2,c=3
Optional (Opt) def m(*a) m(1,2,3) a=1[1,2,3]
Default-valued (Def) def m(a=1) m a=1

m(2) a=2

44

Local variables and variable assignment 115

Table 4.2 Sample method signatures with required, optional, and default-valued arguments (continued)

Argument type(s) Method signature Sample call(s) Variable assignments
Req/Opt def m(a, *b) m(1) a=1,b= 1]
Req/ Def def m(a,b=1) m(2) a=2,b=1
m(2,3) a=2,b=3
Def/Opt def m(a=1, *b) m a=1,b=1[]
m(2) a=2,b=1]
Req/Def/Opt def m(a,b=2, *c) m(1) a=1,b=2,c=1[]
m(1,3) a=1,b=3,c=1[]
m(1,3,5,7) a=1,b=3,c=1[5,7]

As you can see from table 4.2, the arguments you send to methods are assigned to
variables, and those variables can then be used throughout the duration of the
execution of the method. You've seen variable assignment in a number of con-
texts, and the time is ripe to look at that process in its own right.

Local variables and variable assignment

You’ve seen many examples of Ruby variables in action—specifically, local vari-
ables—and we’ve been describing assignment of values to variables with some
slightly loose (although convenient) terminology. It’s time to consolidate and for-
malize our coverage of this topic.

Local variables are variables that hold their value only during the execution of
a particular section of code. They're called local precisely because once program
execution leaves the scope where the variable was created, the variable’s name no
longer has any meaning.

Local variables give you a kind of scratch-pad facility. You can use, say, the vari-
able name x in more than one place; as long as those places have different scopes,
the two x variables are treated as completely separate.

The classic case is a method definition. Watch what happens with x in this
example:

def say goodbye

x = "Goodbye"

puts x
end

116

CHAPTER 4
Objects and variables

def start here
x = "Hello"
puts x
say_ goodbye
puts "Let's check whether x remained the same:"
puts x
end

start_here
The output from this program is as follows:

Hello

Goodbye

Let's check whether x remained the same:

Hello
When you call start_here (the last line of the program), the method start_here
is executed. Inside that method, the string “Hello” is assigned to x—that is, to this
x, the x in scope at the time.

start_here prints out its x (“Hello”) and then calls the method say_goodbye.
In say_goodbye, something similar happens: a string (“Goodbye”) is assigned to x.
But this is a different x—as we see when the call to say goodbye is finished and
control returns to start_here: We print out this x, and the value is still “Hello”.
Using x as a local variable name in the scope of one method didn’t affect its value
in the scope of the other.

Learning how local variables behave is a side effect of learning about how
Ruby handles scope—a topic we’ll look at in much greater depth in chapter 7.
You've already learned the first lesson: Every method definition establishes a new
local scope, starting with def and ending with end. Scope is a matter of which
identifiers have what meaning at what point in the program, like the two x identi-
fiers in our example.

Local variables can come into being in either of two ways:

m Through assignment: x = object
m As an entry in the method’s argument list, initialized when the method is

called

You’ve seen both of these in action already. But what exactly happens when the
assignment or initialization takes place? What does the variable contain?

Local variables and variable assignment 117

4.4.1 Variable assignment in depth
When you assign to a variable, you appear to be causing the variable to equal the
object on the right-hand side of the assignment:

str = "Hello"

At this point, you can do puts str and other operations, and str will deliver the
string “Hello” for printing and other processing.
Now look at this example:

str = "Hello"
abc = str
puts abc

This, too, prints “Hello”. Apparently the variable abc also contains “Hello”, thanks
to having had str assigned to it.

The next example involves a method called replace, which does an in-place
replacement of a string’s content with new text:

str = "Hello"

abc = str

str.replace ("Goodbye")

puts str
puts abc

Look closely at the output:

Goodbye

Goodbye
The first “Goodbye” is str; the second is abc. But we only replaced str. How did
the string in abc get replaced?

The answer is that variables in Ruby (with some exceptions we’ll show later)
don’t hold object values. str doesn’t contain “Hello”. Rather, str contains a refer-
ence to a string object. It’s the string object that has the characteristic of containing
the letters that make up “Hello”.

When you perform an assignment with a variable name on the left and an
object on the right, the variable receives a reference to the object. When you per-
form an assignment with a variable on the left and a variable on the right, the vari-
able on the left receives a reference to the same object that the right-hand variable refers to.

When you do this

str.replace ("Goodbye")

you’re asking str to do the following:

118

CHAPTER 4
Objects and variables

Replace the contents of the string object to which you are

a reference with "Goodbye".
The variable abc contains another reference to the same string object. Even though
the replace message went to str, it has caused a change to the object that abc is a
reference to.

Consequently, when we print out abc, we see the result: The contents of the
string to which abc is a reference have been changed.

Grasping references

If you’ve done programming in languages with pointers or references or anything
in that vein, Ruby references won’t be hard to understand. If you haven’t, you’ll
need to contemplate them a little.

For every object in Ruby, there can and must be one or more references to that
object. (If there are no references, the object is considered defunct, and its mem-
ory space is released and reused.)

If you act on the object (change it) through one of its references, the object itself
changes. Because all the references still point to the same object, the changes you make
through one reference are reflected if you examine the object through another ref-
erence later. (That’s what happened with str and abc in the previous example.)

Variables contain references to objects. The message-sending notation (the
dot operator), when a variable appears to the left of the dot, sends a message to
the object to which the variable contains a reference. If other variables also contain
references to that object, the effect of sending a message to one variable is the
same as sending it to another. For example, if we used abc.upcase! instead of
str.upcase!, the results would be the same: the single string, to which both refer-
ences refer, would be changed.

Reassigning to variables
Every time you assign to a variable—every time you put a variable name to the left
of an equal sign and something else on the right—you start from scratch: The
variable is wiped clean, and a new assignment is made.

Here’s a new, different version of our earlier example, illustrating this point:

str = "Hello"
abc = str

str = "Goodbye"
puts str

puts abc

4.4.2

Local variables and variable assignment 119

This time the output is as follows:

Goodbye

Hello
When we do the second assignment to str, we give str a reference to a different
string object. str and abc part company at that point. abc still refers to the old
string (the one whose contents are “Hello”), but str now refers to a different
string (a string whose contents are “Goodbye”).

In the first version of the program, we changed a single string; but in the sec-
ond version, we have two separate strings. Once we reuse the variable str, it has
nothing further to do with the object it referred to previously.

Local variables and the things that look like them

Local variables have the quality of barewords; they must start with either a lowercase
letter or the underscore character (_), and they must consist entirely of letters,
numbers, and underscores. (You'll see later that other types of variables start with
punctuation marks, to differentiate them from local variables.) However, local
variables aren’t the only things that look like barewords.

When Ruby sees a plain word sitting there, it interprets it as one of three
things: a local variable, a method call, or a keyword.

Keywords are special reserved words that you can’t use as variable names. def is
a keyword; the only thing you can use it for is to start a method definition. if is
also a keyword; lots of Ruby code involves conditional clauses that start with if, so
it would be too confusing to also allow the use of if as a variable name.

Method calls can be barewords, such as start_here in the previous example.
puts is a method call; so is print.

Here’s how Ruby decides what it’s seeing when it encounters a bareword:

1 If there’s an equal sign (=) to the right of the bareword, it’s a local variable
undergoing an assignment.

2 If the bareword is a keyword, it’s a keyword (Ruby has an internal list of
these and recognizes them).

3 Otherwise, the bareword is assumed to be a method call.
There’s a fourth possibility: that Ruby won’t recognize the bareword. Try running

this script (using the -e switch, which as you’ll recall lets you feed code directly to
Ruby from the command line):

S ruby -e "x"

120

4.5

CHAPTER 4
Objects and variables

You're not assigning to a variable, x isn’t a keyword, and there’s no method called
x. Therefore, you get an error message:

-e:1: undefined local variable or method 'x' for
main:Object (NameError)

Don’t worry about the bells and whistles in this message; the gist of it is that Ruby

[T}

doesn’t know what you mean by “x”.

Summary

We’ve covered a lot of ground in this chapter. You’ve learned about creating a new
object and defining methods for it. You’ve learned about the message-sending
mechanism by which you send requests to objects for information or action. You
also learned how to use some of the important built-in methods that every Ruby
object comes with: object_id, respond to?, and send. And we looked in some
detail at the syntax for method argument lists, including the use of required,
optional, and default-valued arguments.

Finally, we examined local variables and variable assignment. You saw that key-
words and method calls can look like local variables; and Ruby has ways of figur-
ing out what it’s seeing. You also learned that variables receive references to
objects, and more than one variable can refer to the same object.

The chapter started with some comments about domains, entities, models, and
objects; and we’ll end there, too. Writing a Ruby program consists largely of think-
ing about how you might map elements of a domain (even a modest one-entity
domain like “a ticket to an event”) onto a system of objects: objects that can know
things and perform tasks. In this regard, object-oriented programming has a lot in
common with database design. Both involve creating symbolic structures—tables
and fields in one case, objects and methods and names (and more, as you’ll see)
in the other—that encapsulate domain characteristics and behavior.

And Rails, of course, stands between these two worlds, directing database traf-
fic into object-oriented, Ruby-space form, and back again. We’re dealing with a
number of layers, but they converge nicely on the realm of modeling domains
and representing entities.

Creating Ruby objects one by one, as we’ve done here, isn’t much more than
the tip of the iceberg. We’ll open up the discussion exponentially next, by looking
at how to create objects on a multiple, factory basis using Ruby classes.

Organizing objects

with classes

In this chapter

m Creating multiple objects “factory” style
with classes

m Setting and reading object state

m Automating creation of attribute read and write
methods

m Class inheritance mechanics
m Syntax and semantics of Ruby constants

121

122

5.1

CHAPTER 5
Organizing objects with classes

Creating a new object with Object.new—and equipping that object with its own
methods, one method at a time—is a great way to get a feel for the object-
centeredness of Ruby programming. But this approach doesn’t exactly scale; if
you’re running an online box office and your database has to process records for
tickets by the hundreds, you’ve got to find another way to create and manipulate
ticket-like objects in your Ruby programs.

Sure enough, Ruby gives you a full suite of programming techniques for creat-
ing objects on a batch or factory basis. You don’t have to define a separate price
method for every ticket. Instead, you can define a ticket class, engineered in such
a way that every individual ticket object automatically has the price method.

Defining a class lets you group behaviors (methods) into convenient bundles,
so that you can quickly create many objects that behave essentially the same way.
You can also add methods to individual objects, if that’s appropriate for what
you’re trying to do in your program. But you don’t have to do that with every
object, if you model your domain into classes.

Everything you handle in Ruby is an object; and every object is an instance of
some class. This fact holds true even where it might at first seem a little odd. For
example, when you manipulate an ActiveRecord object in a model file, that object
is an instance of a class (Composer, perhaps)—while, at the same time, the class
itself is also an object. You’ll learn in this chapter how this closely interwoven
aspect of the design of Ruby operates.

Classes and instances

In most cases, a class consists chiefly of a collection of method definitions. The
class exists (also in most cases) for the purpose of being instantiated: that is, of hav-
ing objects created that are instances of the class.

Have you guessed that you’ve already seen instantiation in action? It’s our old
signature tune:

obj = Object.new

Object is a built-in Ruby class. When you use the dot notation on a class, you send
a message to the class. Classes can respond to messages, just like objects; in fact, as
you’ll see in more detail later, classes are objects. The new method is called a con-
structor; meaning a method whose purpose is to manufacture and return to you a
new instance of a class, a newly minted object.

Classes and instances 123

5.1.1 A first class

Let’s break the class ice with a first class of our own creation. You define a class
with the class keyword. It’s like the def keyword you’ve been using to define
methods, but the naming scheme is different. Classes are named with constants. A
constant is a special type of identifier, recognizable by the fact that it begins with a
capital letter. Constants are used to store information and values that don’t
change over the course of a program run.

WARNING CONSTANTS AREN'T ALL THAT CONSTANT Constants can change: They’re
not as constant as their name implies. But if you assign a new value to a con-
stant, Ruby prints a warning. The best practice is to avoid assigning new val-
ues to constants that you’ve already assigned a value to. (See section 5.6.2
for more information on reassignment to constants.)

Let’s define a Ticket class. Inside the class definition, we define a single, simple
method.
class Ticket
def event
"Can't really be specified yet..."
end
end
Now we can create a new ticket object and ask it (pointlessly, but just to see the
process) to describe its event:
ticket = Ticket.new
puts ticket.event
The method call ticket.event results in the execution of our event method and,
consequently, the printing out of the (rather uninformative) string specified
inside that method.

Instance methods
The examples of method definitions in chapter 4 tended to involve a specific
object, connected directly with a method name and definition:

def ticket.event
The event method in the previous example, however, is defined in a general way:
def event

That’s because this event method will be shared by all tickets—that is, by all
instances of the Ticket class. Methods of this kind, defined inside a class and

124

CHAPTER 5
Organizing objects with classes

intended for use by all instances of the class, are called instance methods. They
don’t belong only to one object. Instead, every instance of the class can call them.

(Methods that you define for one particular object—as in def ticket.price—
are called singleton methods. You’ve already seen examples, and we’ll look in more
depth at how singleton methods work in chapter 7. Just keep in mind that meth-
ods written inside a class, for the benefit of all of that class’s instances, are instance
methods, whereas a method defined for a specific object (def ticket.event) is a
singleton method of that object.)

Redefining methods
Nothing stops you from defining a method twice, or overriding it:
class C
def m

puts "First definition of method m"
end

def m
puts "Second definition of method m"
end
end

What happens when we call m on an instance of ¢c? Let’s find out:
C.new.m

The printed result is Second definition of method m. The second definition has
prevailed: We see the output from that definition, not from the first. When you
override a method, the new version takes precedence.

Reopening classes
In most cases, when you’'re defining a class, you create a single class definition block:
class C
class code here
end
It’s possible, however, to reopen a class and make additions or changes. Here’s an
example:
class C
def x

end
end

class C

Classes and instances 125

def y
end
end

We open the class definition body, add one method, and close the definition
body. Then, we reopen the definition body, add a second method, and close the
definition body.

The previous example is equivalent to this:

class C

def x
end

def y
end
end
Here we open the class only once and add both methods. Of course, you're not
going to break your class definitions into separate blocks just for fun. There has to
be a reason—and it should be a good reason, because separating class definitions
can make it harder for people reading or using your code to follow what’s going on.
One reason to break up class definitions is to spread them across multiple files.
If you require a file that contains a class definition (perhaps you load it from the
disk at runtime from another file, and you also have a partial definition of the same
class in the file from which the second file is required), the two definitions are
merged. This isn’t something you’d do arbitrarily: It must be a case where a design
reason requires defining a class partially in one place and partially in another.
Here’s a real-life example. Ruby has a Time class. It lets you manipulate times,
format them for timestamp purposes, and so forth. You can use UNIX-style date
format strings to get the format you want. For example, this command

puts Time.new.strftime ("$m-%d-%y")

prints the string “01-07-06” (representing the date on the day I made the method
call and saved its output).

In addition to the built-in Time class, Ruby alsohas a program file called time.rb,
inside of which are various enhancements of, and additions to, the Time class.

time.rb achieves its goal of enhancing the Time class by reopening that class. If
you look for the file time.rb either in the 1ib subdirectory of the Ruby source tree
or in your Ruby installation, you’ll see this on line 49 (at least, for the version of
the file shipped with Ruby 1.8.4):

class Time

That’s a reopening of the Time class, done for the purpose of adding new methods.

126

5.1.2

CHAPTER 5
Organizing objects with classes

You can see the effect best by trying it, using irb --simple-prompt. irb lets you
call a nonexistent method without causing the whole thing to terminate, so you
can see the effects of the require command all in one session:

>> t = Time.new

=> Mon Sep 12 08:19:52 EDT 2005

>> t.xmlschema

NoMethodError: undefined method 'xmlschema' 44444‘)

for Mon Sep 12 08:19:52 EDT 2005:Time

from (irb):8

>> require 'time'

=> true

>> t.xmlschema

=> "2005-09-12T08:19:52-04:00"

Here we send the unrecognized message xmlschema to our Time object @. Then
we load the time.rb file @—and, sure enough, our Time object now has an
xmlschema method. (That method, according to its documentation, “returns a
string which represents the time as dateTime defined by XML Schema.”)

You can spread code for a single class over multiple files or over multiple loca-
tions in the same file. Be aware, however, that it’s considered better practice not to
do so, when possible. In the case of the Time extensions, people often suggest the
possibility of unification: giving Time objects all the extension methods in the first
place, and not separating those methods into a separate library. It’s possible that
such unification will take place in a later release of Ruby.

Ruby is about objects; objects are instances of classes. That means it behooves
us to dig deeper into what the life of an instance consists of. We’ll look next at
instance variables, a special language feature designed to allow every instance of
every class in Ruby to set and maintain its own private stash of information.

Instance variables and object state

When we created individual objects and wrote methods for each action or value
we needed, we hard-coded the value into the object through the methods. With
this technique, if a ticket costs $117.50, then it has a method called price that
returns precisely that amount:

ticket = Object.new

def ticket.price

117.50
end

Classes and instances 127

Now, however, we’'re moving away from one-at-a-time object creation with
Object.new, and setting our sights instead on the practice of designing classes and
creating many objects from them.

This means we’re changing the rules of the game, when it comes to informa-
tion like the price of a ticket. If you create a Ticket class, you can’t give it a price
method that returns $117.50, for the simple reason that not all tickets cost
$117.50. Similarly, you can’t give every ticket the event-name Benefit Concert, nor
can every ticket think that it’s for Row G, Seat 33.

Instead of hard-coding values into every object, we need a way to tell different
objects that they have different values. We need to be able to create a new Ticket
object and store with that object the information about event, price, and other
properties. When we create another ticket object, we need to store different infor-
mation with that object. And we want to be able to do this without having to hand-
craft a method with the property hard-coded into it.

Information and data associated with a particular object is called the state of
the object. We need to be able to do the following:

m Set, or reset, the state of an object (say to a ticket, “You cost $11.99”)
m Read back the state (ask a ticket, “How much do you cost?”)

Conveniently, Ruby objects come with their own value-storage mechanism. You
can make arrangements for an object to remember values you give it. And you can
make that arrangement up front in the design of your classes, so that every
object—every instance—of a given class has the same ability.

Instance variables

The instance variable enables individual objects to remember state. Instance vari-
ables work much like other variables: You assign values to them, and you read
those values back; you can add them together, print them out, and so on. How-
ever, instance variables have a few differences.

m Instance variable names always start with @ (the at sign). This enables you to
recognize an instance variable at a glance.
m Instance variables are only visible to the object to which they belong.

® An instance variable initialized in one method definition, inside a particular
class, is the same as the instance variable of the same name referred to in
other method definitions of the same class.

128

CHAPTER 5
Organizing objects with classes

Listing 5.1 shows a simple example of an instance variable, illustrating the way the
assigned value of an instance variable stays alive from one method call to another.

Listing 5.1 lllustration of an instance variable’s maintenance of its value between

method calls

class C
def inst var init(value)
puts "Setting an instance variable...."
@ivar = value
end

def inst_var_report
puts "Inspecting the value of the instance variable...."
puts @ivar
end
end

c = C.new
c.inst_var init ("Just some string") 4————‘)

c.inst_var_report 44444€,

Thanks to the assignment @ that happens as a result of the call to inst_var
init @, when you ask for a report @, you get back what you put in: the phrase
“Just some string”. Unlike a local variable, the instance variable @ivar retains the
value assigned to it even after the method in which it was initialized has termi-
nated. This property of instance variables—their survival across method calls—
makes them suitable for maintaining state in an object.

Initializing an object with state
The scene is set to do something close to useful with our Ticket class. The missing
step, which we’ll now fill in, is the object initialization process.

When you create a class (like Ticket), you can, if you wish, include a special
method called initialize. If you do so, that method will be executed every time
you create a new instance of the class.

For example, if you write an initialize method that prints a message

class Ticket

def initialize
puts "Creating a new ticket!"

end
end

Classes and instances 129

then you’ll see the message “Creating a new ticket!” every time you create a new
ticket object by calling Ticket.new.

You can deploy this automatic initialization process to set an object’s state at
the time of the object’s creation. Let’s say we want to give each ticket object a
venue and date when it’s created. We can send the correct values as arguments to
Ticket.new, and those same arguments will be sent to initialize automatically.
Inside initialize, we’ll thus have access to the venue and date information, and
we’ll need to save it. We do the saving by means of instance variables:

class Ticket

def initialize (venue,date)
@venue = venue
@date = date
end
Before closing the class definition with end, we should add something else: a way
to read back the venue and date. All we need to do is create methods that return
what’s in the instance variables:
def venue

@venue
end

def date
@date
end
end

Fach of these methods echoes back the value of the instance variable. In each

case, that variable is the last (and only) expression in the method and therefore
also the method’s return value.

NOTE NAMING CONVENTIONS VS. NAMING NECESSITIES The names of the
instance variables, the methods, and the arguments to initialize don’t
have to match. You could use @v instead of @venue, for example, to store
the value passed in the argument venue. However, it’s usually good prac-
tice to match the names, to make it clear what goes with what.

Now we’re ready to create a ticket (or several tickets) with dynamically set values for
venue and date, rather than the hard-coded values of our earlier examples:

th = Ticket.new("Town Hall", "11/12/13")
cc = Ticket.new("Convention Center", "12/13/14")

puts "We've created two tickets."
puts "The first is for a #{th.venue} event on #{th.date}."
puts "The second is for an event on #{cc.date} at #{cc.venue}."

130

5.2

CHAPTER 5
Organizing objects with classes

Run this code, along with the previous class definition of Ticket, and you’ll see
the following:

We've created two tickets.

The first is for a Town Hall event on 11/12/13.

The second is for an event on 12/13/14 at Convention Center.

The phrase “at Convention Center” is a bit stilted, but the process of saving and
retrieving information for individual objects courtesy of instance variables oper-
ates perfectly. Each ticket has its own state (saved information), thanks to what
our initialize method does; and each ticket lets us query it for the venue and
date, thanks to the two methods with those names.

This opens up our prospects immensely. We can create, manipulate, compare,
and examine any number of tickets at the same time, without having to write sep-
arate methods for each of them. All the tickets share the resources of the Ticket
class. At the same time, each ticket has its own set of instance variables to store
state information.

So far we’ve arranged things in such a way that we set the values of the instance
variables at the point where the object is created and can then retrieve those val-
ues at any point during the life of the object. That arrangement is often adequate,
but it’s not symmetrical: What if you want to set values for the instance variables at
some point other than object-creation time? What if you want to change an
object’s state after it’s already been set once?

Setter methods

When you need to change an object’s state once it’s been set, or if you want to set
an object’s state at some point in your program other than the initialize method,
the heart of the matter is assigning (or reassigning) values to instance variables. For
example, if we want tickets to have the ability to discount themselves, we could write
an instance method like this inside the Ticket class definition:

def discount (percent)

@price = @price - (percent * 10) / 100

end
This method represents a limited scenario, though. It isn’t a general-purpose
method for setting or changing an object’s price.

Writing such a method, however, is perfectly possible. Ruby provides some nice
facilities for writing setter methods, as we’ll now see.

5.2.1

Setter methods 131

The equal sign (=) in method names

Let’s say we want a way to set the price of a ticket. As a starting point, price can be
set along with everything else at object creation time:

class Ticket
def initialize (venue,date,price)
@venue = venue
@date = date
@price = price
end
etc.
def price
@price
end
etc.
end

th = Ticket.new("Town Hall", "11/12/13", 65.00)

But the initialization command is getting awfully long. There’s nothing techni-
cally wrong with a long method, but it looks cluttered. We also have to remember
what order to put the many arguments in, so we don’t end up with a ticket whose
price is “Town Hall”. And what if want to change a ticket’s price later? True, we
could create a new ticket object with the same specifications, except for a differ-
ent price; but it would be nicer to be able to tell the ticket we’ve already created,
“Your price has changed; here’s the new value.”

Let’s write a set_price method that allows us to set, or reset, the price of an
existing ticket. We’ll also rewrite the initialize method so that it doesn’t expect
a price figure:

class Ticket
def initialize(venue, date)
@venue = venue

@date = date
end

def set_price (amount)
@price = amount
end

def price
@price
end
end

Here’s some price manipulation in action:

132

CHAPTER 5
Organizing objects with classes

ticket = Ticket.new("Town Hall", "11/12/13")

ticket.set price(65.00) FormatprketOtW°
puts "The ticket costs $#{"%.2f" % ticket.price}." decimal places
ticket.set_price(72.50)

puts "Whoops -- it just went up. It now costs $#{"%.2f" % ticket.price}."

The output is as follows:

The ticket costs $65.00.

Whoops -- it just went up. It now costs $72.50.
We’ve set and reset the price, and the change is reflected in the object’s view of its
own state.

This technique works: You can write all the set_property methods you need, and
the instance variable-based retrieval methods to go with them. But there’s a nicer
way.

The nicer way to change object state dynamically
Ruby allows you to define methods that end with an equal sign (=). Let’s replace
set_price with a method called price=:

def price=(amount)
@price = amount
end

price= does exactly what set_price did, and in spite of the slightly odd method
name, you can call it just like any other method:

ticket.price=(65.00)

The equal sign gives you that familiar “assigning a value to something” feeling, so
you know you’re dealing with a setter method. It still looks odd, but Ruby takes
care of that, too.

Syntactic sugar
Programmers use the term syntactic sugar to refer to special rules that let you write
your code in a way that doesn’t correspond to the normal rules but that is easier to
remember how to do and looks better.

Ruby gives you some syntactic sugar for calling setter methods. Instead of this

ticket.price=(65.00)
you’re allowed to do this:

ticket.price = 65.00

5.2.2

Setter methods 133

When the interpreter sees the message “price” followed by “ =7, it automatically
ignores the space before equal sign and reads the single message “price="—a call
to the method whose name is price=, which we’ve defined. As for the right-hand
side: parentheses are optional on single arguments to methods, so you can just
put 65.00 there and it will be picked up as the argument to the price= method.

The more you use this kind of setter style of method, the more you’ll appreci-
ate how much better the sugared version looks. This kind of attention to appear-
ance is typical of Ruby. It also looms fairly large in Rails application code.
Accordingly, we’ll use some ActiveRecord idioms as a touchstone for a deeper
look at setter methods.

ActiveRecord properties and other =-method applications

In section 5.3 we’ll look at techniques for generating getter and setter methods
automatically. As you’ll see when we get there, automatic generation of these
methods is convenient, but it also always gives you methods that work in the sim-
plest possible way: value in, value out.

Before we get to method automation, a word is in order about how much power
you can derive from getter and setter methods—especially setter—in cases where
you need something beyond the simplest case of storing and retrieving a value.

The power of =
The ability to write your own =-terminated methods, and the fact that Ruby pro-
vides the syntactic sugar way of calling those methods, opens up some interesting
possibilities.

One possibility is abuse. It’s possible to write =-methods that look like they’re
going to do something involving assignment, but don’t:

class Silly

def price=(x)
puts "The current time is #{Time.now}"

end
end

s = Silly.new
s.price = 111.22

This example discards the argument it receives (111.22) and prints out the time:
Fri Jan 13 12:44:05 EST 2006

This example is a caricature of what you might do. But the pointis important. Ruby
checks your syntax but doesn’t police your semantics. You're allowed to write meth-
ods with names that end with =, and you’ll always get the assignment-syntax sugar.

134

CHAPTER 5
Organizing objects with classes

The matter of having the method’s name make any sense in relation to what the
method does is entirely in your hands.

Equal-sign methods can serve as filters or gatekeepers. Let’s say we want to set
the price of a ticket only if the price makes sense as a dollar-and-cents amount. We
can add some intelligence to the price= method to ensure the correctness of the
data. Here, we multiply the number by 100, lop off any remaining decimal-place
numbers with the to_i (convert to integer) operation, and compare the result
with the original number multiplied by 100. This should expose any extra decimal
digits beyond the hundredths column:

class Ticket
def price=(amount)

if (amount * 100).to_i == amount * 100
@price = amount
else
puts "The price seems to be malformed"
end
end

def price
@price
end

end

You can also use this kind of filtering technique to normalize data—that is, to make
sure certain data always takes a certain form. For example, let’s say you have a
travel-agent Web site, where the user needs to type in the desired date of departure.
You want to allow both mm/dd/yy and mm/dd/yyyy, and perhaps even mm/dd/y
(because we’re still in the single digits of the twenty-first century).

If you have, say, a Ruby CGI script that’s processing the incoming data, you
might normalize the year by writing a setter method like this:

class TravelAgentSession

def year=(y) Handles one- or two-digit number
if y.to i < 100 by adding the century to it
@year = y.to_ i + 2000
else
@year = y.to i
end
end
etc.

end

Setter methods 135

Then, assuming you have a variable called date in which you’ve stored the date
field from the form (using Ruby’s CGI library), you can get at the components of
the date like this:

month, day, year = date.split('/"')

self.year = year
The idea is to split the date string into three strings using the slash character (/)
as a divider, courtesy of the built-in split method, and then to store the year value
in the TravelAgentSession object using that object’s year= method.

Methods ending with = are, from Ruby’s perspective, just methods. But the fact
that they also give you the syntactic sugar assignment-like syntax makes them ver-
satile and handy.

Setter methods in ActiveRecord

Method calls using the equal-sign syntax are common in Rails applications. You’ll
see (and write) a lot of statements that follow the basic x.y = z visual formula. Most
of the ones you see will be in controller methods; some will be in model definitions.

When and if you write your own special-purpose setter methods, you’ll do so in
the model files. You’ll see some examples in part 4, when we return to the music
store application and extend it.

Meanwhile, in the context of learning Ruby and getting a sense of Rails’s
deployment of Ruby facilities, two items are worth noting about setter methods in
ActiveRecord.

First, you don’t have to write the majority of these methods yourself.
ActiveRecord automatically creates setter methods for you that correspond to the
field names of your database tables. If you have a tickets table, and it has a venuefield,
then when you create a ticket object, that object already hasa venue= method (venue
setter). You don’t have to write it. (Nor would you want to; ActiveRecord setter meth-
ods do a great deal more than stash a value, integrity-checked or otherwise, in an
instance variable.) Rails leverages the power of Ruby’s setter-method syntax, includ-
ing the associated syntactic sugar, to make life easy for you when it comes to database
interaction in the course of application development.

Second, you often don’t need to use these setter methods, because there are
more automatic ways to populate your object with the values you want it to have.
In particular, when you’re writing a Rails action that processes a Web form, you
can deposit a set of values into an object at once by providing the name of a field
you’ve used in your form template.

136

CHAPTER 5
Organizing objects with classes

For example, say you have the following fields in a form (using the ActionView
form helper method text_field to create the correct HTML automatically):

o

%= text field "customer", "first name" %>
%= text_field "customer", "last name" %>

In the controller action that processes the form, you can do this:
customer = Customer.new (params [:customer])

From the magic (that is, automatically initialized by Rails) params method, which
gives you access to incoming CGI data, ActiveRecord gleans all the values pertaining
to customer and transfers them in bulk to the new Customer object you've created.

You can use setter methods in Rails applications, and you often will; but you’ll
also find that Rails has anticipated your needs and doesn’t make you trudge through

customer.first _name = params[:first_name]

customer.last name = params[:last name]

etc.
when a shortcut can be arranged.

Setter methods, as well as their getter equivalents (v = ticket.venue, for exam-
ple), are important concepts to understand in both Ruby and Rails and also a
good illustration of the way Rails layers its own functionality, and even its own phi-
losophy of design, on top of Ruby.

Ruby also layers its design philosophy on top of Ruby, so to speak—meaning, in
this case, that Ruby provides shortcuts of its own for reaping the benefits of getter
and setter methods.

5.3 Attributes and the attr_* method family

In Ruby terminology (and this would be understood by anyone familiar with
object-oriented programming principles, even though it might operate differently
in other languages), properties or characteristics of objects that you can set
(write) and/or get (read) are called attributes. In the case of ticket objects, we
would say that each ticket has a price attribute as well as a date attribute and a
venue attribute.

Note the sneaking in of read/write as synonyms for set/get in the realm of
attributes. Ruby usage favors read/write. For instance, our price= method would
usually be described as an attribute writer method. date and venue are attribute
reader methods. The read/write terminology can be a little misleading at first,
because it sounds like there might be terminal or file I/O going on. But once you
see how the set/get mechanism works, it’s easy to understand how reading and
writing can apply to internal object data as well as files and screens.

Attributes and the attr_* method family 137

5.3.1 Automating the creation of attribute handlers

So common are attributes, and so frequently do we need a combination of reader
and writer methods, that Ruby provides a set of techniques for creating those
methods automatically. Consider, first, listing 5.2’s full picture of what we have, by
way of attribute reader and/or writer methods, in our Ticket class. (There’s noth-
ing new here; it’s just being pulled together in one place.)

class Ticket
def initialize (venue, date)
@venue = venue
@date = date
end

def price=(price)
@price = price
end

def venue
@venue
end

def date
@date
end

def price
@price
end
end

You'll notice a certain amount of repetition creeping into the code. We have three
methods that look like this:

def something

@something

end
There’s repetition on top of repetition: Not only do we have three such methods,
but each of those three methods repeats its name in the name of the instance vari-
able it uses. And there are three of them. We’re repeating a repetitive pattern.

Any time you see repetition on that scale, you should try to trim it—not by reduc-
ing what your program does, but by finding a way to express the same thing more
concisely. In pursuit of this conciseness, Ruby is one step ahead of us. A built-in

138

5.3.2

CHAPTER 5
Organizing objects with classes

shortcut lets us create that style of method: a method that reads and returns the
value of the instance variable with the same name as the method (give or take a @).
We do it like this:

class Ticket
attr reader :venue, :date, :price
end
(The elements that start with colons (:venue, and so on) are symbols. Symbols are a
kind of naming or labeling facility. They’re a cousin of strings, although not quite
the same thing. We’ll look at symbols in more depth in chapter 10. For the
moment, you can think of them as functionally equivalent to strings.)
The attr_reader (attribute reader) method automatically writes for you the kind
of method we’ve just been looking at. And there’s an attr_writer method, too:
class Ticket
attr writer :price
end
With that single line, we wrote (or, rather, Ruby wrote for us) our price= setter
method. One line takes the place of three. In the case of the reader methods, one
line took the place of nine. That means our whole program now looks like listing 5.3.

class Ticket
attr reader :venue, :date, :price
attr_writer :price

def initialize (venue, date)

@venue = venue
@date = date
end
end

Not only is that code shorter; it’s also more informative—self-documenting, even.
You can see at a glance that ticket objects have venues, dates, and prices. The first
two are readable attributes, and price can be read or written.

Two (getter/setter) for one

In the realm of object attributes, combination reader/writer attributes, like price,
are common. Ruby provides a single method, attr_accessor, for creating both a
reader and a writer method for an attribute. attr_accessor is the equivalent of

5.3.3

Attributes and the attr_* method family 139

attr_reader plus attr writer. We can use this combined technique for price,
because we want both operations:
class Ticket

attr_reader :venue,
attr accessor :price

:date

end

There’s an alternate way to achieve attr_accessor functionality, namely with the
plain attr method, used in the following way:

attr

:price,

true

Calling attr with true as the second argument triggers the creation of both

reader and writer attributes, just like attr_accessor. However, attr_accessor is
generally considered more readable, and it also has the advantage that you can
give it more than one accessor name at a time (whereas attr only takes one, plus
the optional true argument). Without the second argument, attr just provides a
reader attribute.

Summary of attr_* methods

The attr_* family of methods is summarized in table 5.1.

Table 5.1 Summary of the attr_ * family of getter/setter creation methods

Method name

Effect

Example

Equivalent code

attr reader

Creates a reader method

attr reader :venue

def venue
@venue
end

attr writer

Creates a writer method

attr writer :price

def price=(price)
@price = price
end

attr_accessor

Creates reader and writer
methods

attr_accessor :price

def price=(price)
@price = price
end

def price
@price
end

attr

Creates a reader and
optionally a writer method
(if the second argument is
true)

1. attr :venue
2. attr :price, true

1. See attr_reader
2. See attr accessor

140

5.4

54.1

CHAPTER 5
Organizing objects with classes

At this point, you've had a good overview of instance methods—the methods
defined inside class definitions and made available to all instances of the class.
Classes have another kind of method, the class method, and we’ll round out the pic-
ture by looking at class methods now.

Class methods and the Class class

When you call methods on objects, you use this message-sending syntax:

object .message

You may have noticed that the object creation calls we’ve done have conformed to
the standard object-dot-method syntax:

Ticket.new

Analyzing this call in the light of the message-sending formula, we can quickly
draw two conclusions:

= We're sending the message new.

m We’re sending that message to an object called Ticket, which we know to be a
class. (We know it’s a class because of having written it previously.)

The first of these conclusions is unremarkable; messages get sent all the time. The
second—the fact that the receiver of the message is a class—merits close atten-
tion. Because classes are object factories, thinking of them as objects in their own
right takes a leap of imagination. Thinking of classes as receivers of messages also
feels odd at first—although, as you’ll see, it falls into place easily once you get over
the “classes are objects” hurdle.

Classes are objects too!

Classes are special objects: They’re the only kind of object that has the power to
spawn new objects (instances). Nonetheless, they are objects. When you create a
class, like Ticket, you can send messages to it, add methods to it, pass it around to
other objects as a method argument, and generally do anything to it you would
another object.

Here’s an example. Let’s say we’ve created our Ticket class. At this point,
Ticket isn’t only a class from which objects (ticket instances) can arise. Ticket
(the class) is also an object in its own right. As we’ve done with other objects, let’s
add a method to it.

5.4.2

Class methods and the Class class 141

Our method will tell us which ticket, from a list of ticket objects, is the most
expensive. There’s some black-box code here. Don’t worry about the details; the
basic idea is that the sort_by operation sorts by price, with the most expensive
ticket ending up last:

def Ticket.most_expensive (*tickets)
tickets.sort by {|t| t.price }.last
end
Now we can use this method to tell us which of several tickets is the most expen-
sive (we’ll avoid having two tickets with the same price, because our method
doesn’t deal gracefully with that situation):
th = Ticket.new("Town Hall","11/12/13")

cc = Ticket.new("Convention Center","12/13/14/")
fg = Ticket.new("Fairgrounds", "13/14/15/")

th.price = 12.55
cc.price 10.00
fg.price = 18.00

highest = Ticket.most_expensive (th,cc, fg)

puts "The highest-priced ticket is #{highest.venue}."

We have used the class method most_expensive, a class method of the class Ticket,
to select the most expensive ticket from a list.

When, and why, to write a class method

The idea of a class method is that you send a message to the object that is the class
rather than to one of the class’s instances. You send the message most_expensive
to the class Ticket, not to a particular ticket.

Why would you want to do that? Doesn’t it mess up the underlying order: the
creation of ticket objects and the sending of messages to those objects?

Class methods serve a purpose. Some operations pertaining to a class can’t be
performed by individual instances of that class. new is an excellent example. We
call Ticket .new because, until we’ve created an individual ticket, we can’t send it
any messages! Besides, the job of spawning a new object logically belongs to the
class. It doesn’t make sense for instances of Ticket to spawn each other. It does
make sense, however, for the instance-creation process to be centralized as an
activity of the class Ticket.

Another similar case is the built-in Ruby method File.open—a method which,
as its name implies, opens a file. The open operation is a bit like new: It initiates file

142

CHAPTER 5
Organizing objects with classes

input and/or output and gives you a filehandle (a pointer to the stream of file
data) with which you can read from and/or write to the file. It makes sense for
this to be a class method of File: You're requesting the creation of an individual
object (a filehandle, in this case) from the class. The class is acting as a dispatcher
for the objects it creates.

Similarly, finding the most expensive ticket in a list of tickets can be viewed as
an operation from above, something you do in connection with the realm of tick-
ets in general, rather than something that is done by an individual ticket object.
We have a task—finding the most expensive ticket—that depends on knowledge
of ticket objects (you have to know that they have a price method), yet it doesn’t
logically belong at the individual ticket level. Writing most_expensive as a class
method of Ticket lets us keep the method in the family, so to speak, while assign-
ing it to the abstract, supervisory level represented by the class.

Converting the converter
It’s not unheard of to create a class only for the purpose of giving it some class
methods. We can do so in the case of our earlier temperature conversion exer-
cises. Let’s convert the converter to a converter class:
class Temperature
def Temperature.c2f (c)

c* 9 /5 + 32
end

def Temperature.f2c(f)
(E - 32) *5 /9
end
end

And let’s try it out:
puts Temperature.c2f (100)

Sure enough, it works.

The idea is that we have temperature-related utility methods—methods pertaining
to temperature that don’t pertain to a specific temperature. The Temperature class
is a good choice of object to own those methods. We could get fancier and have
Temperature instances that knew whether they were C or F, and could convert
themselves; but practically speaking, having a Temperature class with class meth-
ods to perform the conversions is adequate and is an acceptable design.

Class methods and the Class class 143

5.4.3 Class methods vs. instance methods, clarified

It’s vital to understand that by defining Ticket .most_expensive, we have defined a
method that we can access through the class object Ticket but not through its
instances. Individual ticket objects (instances of the class Ticket) do not have this
method. You can test this easily. Try adding this to the code from section 5.4.1,
where the variable f£g referred to a Ticket object (for an event at the fairgrounds):

puts "Testing the response of a ticket instance...."

wrong = fg.most expensive
You’ll get an error message, because £g has no method called most_expensive.
The class of fg—namely, Ticket—has such a method. But £g, which is an instance
of Ticket, doesn’t.

Remember:

m Instances created by classes are objects.
m (Classes are objects too.

m A class object (like Ticket) has its own methods, its own state, its own iden-
tity. It doesn’t share these things with instances of itself. Sending a message
to Ticket is not the same thing as sending a message to £g or cc or any other
instance of Ticket.

Ifyou ever get tangled up over what’s a class method and what’s an instance method,
you can usually sort out the confusion by going back to these three principles.

TIP SEEING CLASS METHODS AS SINGLETON METHODS ON CLASS OBJECTS
You've seen that you can add a singleton method to any object (that is, a
method defined in connection with, and for the exclusive use of, that
object). Examples that follow the def ticket.price pattern illustrate the
creation of singleton methods. A class method is basically just a method
added to an individual object, where the object getting the method
happens to be a class object. There’s a special term for this case because it’s
common; many classes, including many in the core Ruby language, have
methods attached to them. Also, class methods (or something similar) are
common in object-oriented languages—Ruby comes by the term naturally,
so to speak, even though class methods aren’t a separate construct in the
language in Ruby’s case, just a particular case of a general construct.

A note on notation

In writing about and referring to Ruby methods (outside of code, that is), it’s cus-
tomary to refer to instance methods by naming the class (or module, as the case
may be, and as you’ll see in chapter 6) in which they are defined, followed by a

144

5.4.4

CHAPTER 5
Organizing objects with classes

hash mark (#) and the name of the method; and to refer to class methods with a
similar construct but using a period instead of the hash mark. Sometimes you’ll
see a double colon (::) instead of a period in the class method case.

Here are some examples of this notation:

Notation Method referred to
Ticket#price The instance method price in the class Ticket
Ticket.most_expensive The class method most_expensive, in the class Ticket

Ticket::most_expensive Another way to refer to the class method most expensive

From now on, when you see this notation (in this book or elsewhere), you’ll know
what it means. (The second example (class method reference using a dot) looks
the same as a call to the method, but you’ll know from the context whether it’s a
method call or a reference to the method in a discussion.)

Objects come from classes. If classes are objects, that implies that they, too, come
from a class. A class can be created with a call to the class method new of its class.

And what s the class of a class? It’s a class called Class. Yes, there’s a bit of
“Who’s on first?” here, but the concept is by no means impenetrable. We’ll round
out this discussion with a look at the class Class and its new method.

The Class class and Class.new

Classes are objects; specifically, they are instances of the class Class. As you've
already seen, you can create a class object with the special class keyword formula:

class Ticket

code here

end
That formula is a special provision by Ruby—a way to make class definition blocks
look nice and give you easy access to them.

The other way to create a class is this, which leaves you with a new Class object
in the variable my class:

my class = Class.new

Class.new corresponds precisely to other constructor calls (calls to methods that
create objects), such as Object.new and Ticket.new. When you instantiate the
class Class—when you create an instance of it—you’ve created a class. That class,
in turn, can create instances of its own:

instance of my class = my class.new

5.5

5.5.1

Constants up close 145

In section 5.1.1, you saw that class objects are usually stored in constants (like
Ticket or Object). In the scenario in the previous example, however, we’ve stored
a class in a regular variable (my_class). When we call the new method, we send
the message new to the class through that variable

And vyes, there is a paradox here. The class Class is an instance of itself; that is,
it’s a Class object. And there’s more. Remember the class Object? Well, Object isa
class ... but classes are objects. So Object is an object. And Class is a class. And
Object is a class, and Class is an object.

Which came first? How can the class Class be created unless the class Object
already exists? But how can there bea class Object (or any other class) until there’s
a class Class of which there can be instances?

The best way to deal with this paradox, at least for now, is to ignore it. Ruby has
to do some of this chicken-or-egg stuff in order to get the class and object system
up and running—at which point the circularity and paradoxes don’t matter. In
the course of programming, you just need to know that classes are objects, and
the class of which class-objects are instances is the class called Class.

The proliferation of names of constants in the last few paragraphs is a graphic
reminder of the fact that we haven’t yet looked at constants in more than a place-
holder way. We’ll discuss them a little more deeply now.

Constants up close

Most classes consist principally of instance methods and/or class methods. Con-
stants, however, are an important and common third ingredient in many classes.
You've already seen constants used as the names of classes. Constants can also be
used to set and preserve important data values in classes.

Basic usage of constants

The name of every constant begins with a capital letter. You assign to constants
much as you would to variables. Let’s say we decide to establish a list of predefined
venues for the Ticket class—a list that every ticket object can refer to and select
from. We can assign the list to a constant. Constant definitions usually go at or
near the top of a class definition:
class Ticket
VENUES = ["Convention Center", "Fairgrounds", "Town Hall"]

We can then use this list in instance methods or in class methods (constants are
visible anywhere in the class definition). We can also refer to the constant from

146

5.5.2

CHAPTER 5
Organizing objects with classes

outside the class definition. To do this, we have to use a special path notation: a
double colon (::). Here’s an example where, for the sake of illustration, the class
consists only of a constant assignment:

class Ticket

VENUES = ["Convention Center", "Fairgrounds", "Town Hall"]
end

puts "We've closed the class definition."
puts "So we have to use the path notation to reach the constant."
puts "The venues are:"
puts Ticket::VENUES
The double-colon notation pinpoints the constant VENUES inside the class known

by the constant Ticket, and the list of venues is printed out.

Ruby’s built-in constants
Ruby comes with some predefined constants that you can access this way, and that
you may find useful. Try typing this into irb:

Math: :PI

Math is a module, rather than a class (you’ll learn about modules in the next chap-
ter), but the principle is the same: You’re using the :: connector to do a lookup
on the constant PI defined by Math.

One peculiarity of Ruby constants is that they aren’t constant. You can change
them, in two senses of the word change—and therein lies an instructive lesson.

Reassigning vs. modifying constants

It’s possible to perform an assignment on a constant to which you’ve already
assigned something—that is, to reassign to the constant. However, you’ll get a
warning if you do this (even if you’re not running with the -w command-line
switch). Try this in irb:

A =1
A =2

You’ll receive the following message:
warning: already initialized constant A

The fact that constant names are reusable but the practice of reusing them is a
warnable offense represents a compromise. On the one hand, it’s useful for the
language to have a separate category for constants, as a way of storing data that
remains visible over a longer stretch of the program than a regular variable.

Constants up close 147

(You’ll learn more about the visibility of variables and constants in chapter 7,
when we talk about scope.) On the other hand, Ruby is a dynamic language, in
the sense that anything can change during runtime. Engineering constants to be
an exception to this would theoretically be possible, but doing so would introduce
an anomaly into the language.

In addition, because you can reload program files you’ve already loaded, and
program files can include constant assignments, forbidding reassignment of con-
stants would mean that many file-reloading operations would fail with a fatal error.

So, you can reassign to a constant, but it’s not considered good practice. If you
want a reusable identifier, you should use a variable.

You can also make changes to the object assigned to the constant. For example,
suppose you’ve assigned an empty array to a constant:

A =[]

You can add elements to that array (here, using the << method, which adds a sin-
gle element to the end of an array)

A << "New York"

A << "New Jersey"
and you won’t receive a warning.

You can find examples of this kind of operation in the Rails source code, where
constants figure prominently and the objects they represent undergo fairly frequent
changes. For example, in the file routing.rb (in the lib/action_controller sub-
directory of the ActionPack source tree), is

Helpers = []
and then, a little later, this:

Helpers << url_helper_ name (name) .to_sym

Helpers << hash access_name (name) .to_sym
You’'re seeing the creation of an array that’s designed to store names of helper
methods, followed by the insertion of a couple of such names into the array. No
warning occurs, because the constant name, Helpers, isn’t being reused. Rather,
the object assigned to that name (an array) is having items added to it.

The difference between reassigning a constant name and modifying the object
referenced by the constant is important, and it gives you a useful lesson in two
kinds of change in Ruby: changing the mapping of identifiers to objects (assign-
ment), and changing the state or contents of an object. With regular variable

148

5.6

CHAPTER 5
Organizing objects with classes

names, you aren’t warned when you do a reassignment—but reassignment is still
different from making changes to an object, for any category of identifier.

We’ll return now to classes and look at more techniques involved in their cre-
ation and use. You’ve already seen some of the advantages of creating objects with
a class—certainly in comparison with creating one object at a time and having to
start again when we want (say) a ticket with a different price. But even classes, indi-
vidually and in isolation, can only do so much. The next level of functionality, inher-
itance, adds another axis along which your programming capability can expand.

Inheritance

Without getting too philosophical, it’s reasonable to say that in many cases, two or
more material objects or ideas relate to each other according to the principle of
the general and the specific:

m Musical instrument is general; piano is specific.
m Publication is general; magazine is specific.

m Vehicleis general; bicycle is specific.

And so forth.

Object-oriented programming involves mapping real-world entities and their
relationships onto computer data structures. And just as the general/specific ratio
looms large in the real world, it surfaces in object-oriented class design.

The relation between a general case and a specific case can be expressed
through the technique known as inheritance. Inheritance is a relation between two
classes. To start with the notation, it looks like this:

class Publication

attr accessor :publisher
end

class Magazine < Publication
attr_accessor :editor
end
In this example, Magazine is a subclass of Publication. Conversely, Publication is
the superclass of Magazine. When it comes to instance methods, each class can have
its own, and the classes lower on the inheritance chain also get the methods
defined above. The model cascades:

5.6.1

Inheritance 149

m At the top, in Publication, you put all the methods and accessors (which,
as you’ll recall, are shortcuts for methods) that you want every publication
to have.

m In each subclass, you define the methods you want that particular type of pub-
lication to have. Instances of the subclass—in our example, an instance of
Magazine—have access to all the methods you’'ve defined: those in the
superclass as well as those in the subclass.

We can continue the cascade downward:

class Ezine < Magazine

end
Instances of Ezine will have both publisher and editor accessors, as defined in the
superclass and super-superclass of Ezine.

Collectively, all the classes in the upward chain (a class’s superclass, super-
superclass, and so on) are known as the class’s ancestors. (Ancestry also includes
modules, a close relative of classes that we’ll cover in the next chapter.)

Rails applications provide as good an illustration as any (and better than
many) of inheritance in practice. We’ll look in that direction next to put some
flesh on the inheritance bones.

Inheritance and Rails engineering

Inheritance is one of the key organizational techniques for Rails program design
and the design of the Rails framework. You can see key cases of the use of inherit-
ance as a structuring principle if you look at any Rails controller file, such as app/
controllers/composer_controller.rb from the music store application:

class ComposerController < ApplicationController

end
This code opens a definition block for a class called ComposerController, which is
a subclass of the class ApplicationController. That latter class, in turn, is defined
in a file (automatically created by Rails; it’s the only file in the controllers direc-
tory other than the ones you create) called application controller.rb, which at
the time of its creation looks like this:

class ApplicationController < ActionController: :Base

This call creates a new class, ApplicationController, which inherits from the class
ActionController::Base. (Remember that the :: connector performs lookups of
constants. The constant Base refers to a class defined inside ActionController,

150

CHAPTER 5
Organizing objects with classes

which is a module.) The class ActionController: :Base is predefined in the source
code for the Rails framework, in the ActionController library inside the Action-
Pack multi-library package.

Seeing this inheritance chain, and knowing what you know about classes as the
factories from which objects are created, you can deduce that a controllerin Rails is
an object. Somewhere along the line, something like this happens:

controller = ComposerController.new

At this point, controller contains an instance of ComposerController. And
because ComposerController descends, ultimately, from ActionController: :Base,
it can be further assumed that the instance of it is endowed with whatever
instance methods are defined in ActionController: :Base.

In fact, no specific line of code in the Rails source contains a call to Composer-
Controller.new. The creation of a controller object is a little more complicated,
mainly because, to make life easier for the developers (and the users), Rails takes
it upon itself to figure out that a URL with composer in the controller position (like
http://www.rdrmusic.com/composer/show/1) requires that a file called
composer_controller.rb be tracked down and an object of the class Composer-
Controller be created. There’s some magic involved.

But the principle that a Rails controller is an object holds. To get it to accom-
plish things that a controller is supposed to accomplish, you send it messages.
Some of these messages correspond to instance methods of the ActionControl-
ler::Base class. Some correspond to instance methods you write: your applica-
tion’s actions.

When you define an action, you’re adding an instance method to your controller
class, which is a descendant class of ActionController: :Base. Model classes, too,
inherit from a predefined Rails core class. At the top of each model file (for exam-
ple, app/models/composer.rb) is the following:

class Composer < ActiveRecord: :Base

There’s no automatically placed intermediate class, as there was between the base
level of ActionController and your controller class: Models inherit directly from
the class ActiveRecord::Base. (In many applications, however, model classes
inherit from other model classes—Teacher from Employee, perhaps—but you
have to program that kind of model cascading yourself.) Whatever the details,
though, the engineering of both models and controllers provides a good example
of the kind of central role inheritance can play.

5.6.2

Inheritance 151

Objects get their behaviors from their classes, and from their individual or sin-
gleton methods. Classes endow their instances with their own instance methods,
as well as those of their superclass and more remote ancestors. All in all, Ruby
objects lead interesting and dynamic lives. We’ll conclude this chapter by pulling
some of the threads together with some observations about how objects, classes,
and methods interact.

Nature vs. nurture in Ruby objects

The world is full of pairs of entities exhibiting the general/specific relationship.
We’re used to seeing the animal kingdom this way, as well as everything from
musical instruments to university departments to libraries’ shelving systems to
pantheons of gods.

To the extent that a programming language helps you model the real world
(or, conversely, that the real world supplies you with ways to organize your pro-
grams), you could do worse than to rely heavily on the general-to-specific relation-
ship. As we’ve seen, inheritance—the superclass-to-subclass relationship—mirrors
the general/specific ratio closely. If you hang out in object-oriented circles, you’ll
pick up some shorthand for this relationship: the phrase s a. If, say, Ezine inherits
from Magazine, we say that “an ezine is a magazine”. Similarly, a Magazine object is
a Publication, if Magazine inherits from Publication.

Ruby lets you model this way. You can get a lot of mileage out of thinking
through your domain as a cascaded, inheritance-based chart of objects.

On the other hand, Ruby objects (unlike objects in some other object-oriented
languages) can be individually modified. You can always add methods on a per-
object basis, as we’ve seen from our earliest examples.

In languages where you can’t do this, an object’s class (and the superclass of
that class, and so forth) tells you everything you need to know about the object. If
the object is an instance of Magazine, and you’re familiar with the methods pro-
vided by the class Magazine for the use of its instances, you know exactly how the
object behaves.

In Ruby, however, the behavior or capabilities of an object can deviate from
those supplied by its class. We can make a magazine sprout wings:

mag = Magazine.new
def mag.wings
puts "Look! I can fly!"
end
This demonstrates that the capabilities the object was born with aren’t necessarily
the whole story.

152

CHAPTER 5
Organizing objects with classes

Thus the inheritance tree—the upward cascade of class to superclass to super-
class—isn’t the only determinant of an object’s behavior. If you want to know what
a brand-new magazine object does, look at the methods in the Magazine class and
its ancestors. If you want to know what a magazine object can do later; you have to
know what’s happened to the object since its creation. (And respond_to?—the
method that lets you determine in advance whether an object knows how to han-
dle a particular method—can come in handy.)

Ruby objects are tremendously flexible and dynamic. That flexibility translates
into programmer power: You can make magazines fly, make cows tell you who
published them, and all the rest of it. As these silly examples make clear, the
power entails responsibility: When you make changes to an individual object—
when you add methods to that object, and that object alone—you have to have a
good reason.

Most Ruby programmers are conservative in this area. You’ll see less adding of
methods to individual objects than you might expect. Methods are most often
added to Class objects; those methods are class methods, which are, as we’ve
seen, a good design fit in many cases.

Adding methods to other objects (magazines, tickets, composers, and so on) is
also possible. But you have to do it carefully and selectively, and with the design of
the program in mind.

The not-so-missing link: class Object
In numerous examples in this chapter, we’ve done the following:

obj = Object.new

You're now in a position to understand more deeply what’s going on.

The class Object is at the top of the inheritance chart. Every class is either a
subclass of Object or a sub-subclass of Object or, at some distance, a direct descen-
dant of Object:

class C
end

class D < C
end

puts D.superclass
puts D.superclass.superclass

The output is

Cc
Object

Summary 153

because C is D’s superclass (that’s our doing) and Object is C’s superclass (that’s
Ruby’s doing).

If you go up the chain far enough from any class, you hit 0bject. Any method
available to a bare instance of Object is available to every object. This follows the
principle that an object has access to the instance methods of its class and to those
of its class’s ancestors.

You already know that every object is born with certain capabilities, including
send, object_id, and respond_to?. You now know that every object is born with
the capabilities defined for instances of Object. You might conclude that send and
friends are instance methods of Object.

They’re not. Yes, Object is the ultimate great-great-...-grandparent class of all
classes. But it turns out that classes aren’t the whole story. We’ll explore this in
depth in the next chapter.

5.7 Summary

In this chapter, you’ve learned the basics of Ruby classes. You’ve seen how writing
a class, and then creating instances of that class, allows you to share behaviors
among numerous objects. Through the use of setter methods, either written out
or automatically created with the attr * family of methods, we’ve demonstrated
how to create object attributes, which store object state in instance variables.

From there, we moved to the matter of classes as objects, as well as object facto-
ries. Class methods (methods added individually to class objects) can provide gen-
eral utility functionality connected with the class.

We then looked at Ruby constants, which are a special kind of data container
usually residing inside class definitions. Finally, we examined inheritance: a hier-
archical, cascading relationship between a superclass and one or more subclasses.

This gives you a firm foundation for understanding how objects come into
being and relate to each other in Ruby. Next, we’ll build on that foundation by
looking at another important building-block: modules.

Modules and
program organizalion

In this chapter

Encapsulation of behavior models in modules
Modular extension of class and object capability
The role of modules in the method lookup chain

|
|
|
m Designing class and module hierarchies

154

6.1

Basics of module creation and use 155

This chapter will introduce you to a Ruby construct that’s closely related to
classes: namely, modules. Like classes, modules are bundles of methods and con-
stants. Unlike classes, modules don’t have instances; instead, you specify that you
want the functionality of a particular module to be added to the functionality of a
class, or of a specific object.

The greatest strength of modules is that they help you with program design
and flexibility. You’ll see evidence of this, both in examples of modules you can
write yourself and in the workings of modules that come built into Ruby. As their
name suggests, modules encourage modular design: program design that breaks
large components into smaller ones and lets you mix and match object behaviors.

It’s no accident that modules are similar in many respects to classes: The class
Class is a subclass of Module. Judging by the family tree of classes, classes are a spe-
cialized form of module. (We discussed classes first because Ruby is object-centric
and objects are instances of classes.) In the realm of Rails, modules hold consider-
able sway, particularly in the design and organization of the framework. You need
to understand modules and modularization in order to understand even the two
or three lines of boilerplate code that Rails inserts into all model and controller
templates. (We’ll take a close look at this in section 6.3.2.) Because Rails does a lot
of code organizing and templating for you, you may not need to create new mod-
ules from scratch in your application; but in cases where you add large segments
of code that don’t fit into any predefined Rails slots, and also in cases where you
want to abstract code for reuse, modularization can come in handy.

Looking at modules takes us further along several paths we partially walked in
the previous chapter. We saw that Object is the highest class; here, we’ll meet the
highest module: XKernel. We’ve touched on the fact that objects seek their meth-
ods in both class and superclass; here, we’ll look in considerable detail at how this
method-lookup process works when both classes and modules are involved.

Basics of module creation and use

Writing a module is similar to writing a class, except you start your definition with
the module keyword instead of the class keyword:

module MyFirstModule
def say hello
puts "Hello"
end
end

156

CHAPTER 6
Modules and program organization

When you write a class, you then create instances of the class. Those instances can
execute the class’s instance methods. Modules, however, don’t have instances.
Instead, modules get mixed in to classes. (Modules are sometimes referred to as
mix-ins.) When this happens, the instance of the class has the ability to call
instance methods defined in the module.

For example, using the little module from the previous example, you can go
on to do this:

class ModuleTester

include MyFirstModule
end

mt = ModuleTester.new

mt.say_ hello
Your ModuleTester object will call the appropriate method (say_hello). Notice
that say_helloisn’t defined in the class of which the object is an instance. Instead,
it’s defined in a module that the class mixes in.

The mix-in operation is achieved with the include statement. include is actu-
ally a method. You'll see in detail later how the mixing of a module into a class, via
include, operates.

You may notice that mixing in a module bears a strong resemblance to inherit-
ing from a superclass. In a case where, say, class B inherits from class 2, instances of
class B can call instance methods of class A. In cases where, say, class C mixes in
module VM, instances of C can call instance methods of module M. In both cases, the
instances of the class at the bottom of the list reap the benefits: They get to call
not only their own class’s instances methods, but also those of (in one case) a
superclass or (in the other case) a mixed-in module.

The main difference between inheriting from a class and mixing in a module
is that you can mix in more than one module. No class can inherit from more
than one class. In cases where you want numerous extra behaviors for a class’s
instances—and you don’t want to stash them all into the class’s superclass—you
can use modules to organize your code in a more granular way. Each module can
add something different to the methods available through the class.

Modules open up lots of possibilities, particularly for sharing code among more
than one class (because any number of classes can mix in the same module). We’ll
look next at some further examples, and you’ll get a sense of the possibilities.

Basics of module creation and use 157

6.1.1 A module encapsulating “stack-like-ness”

Modules give you a way of collecting and encapsulating behaviors. A typical mod-
ule contains methods connected to a particular subset of what will be, eventually,
the full capabilities of an object.

By way of fleshing out this statement, we’ll write a module that encapsulates
the characteristic of being like a stack, or stack-like-ness (henceforth written without
the hyphens, now that the word has been coined and introduced into the discus-
sion). We’ll then use that module to impart stacklike behaviors to objects, via the
process of mixing the stacklike module into one or more classes.

As you may know from previous studies, a stack is a data structure that operates
on the LIFO (last in, first out) principle. The classic example is a (physical) stack
of plates. The first plate to be used is the last one placed on the stack. Stacks are
usually discussed as a pair with queues, which exhibit FIFO (first in, first out) behav-
ior. Think of a cafeteria: The plates are in a stack; the customers are in a queue.

Numerous items behave in a stacklike, LIFO manner. The last sheet of printer
paper you put in the tray is the first one printed on. Double-parked cars have to
leave in an order that’s the opposite of the order of their arrival. The quality of
being stacklike can manifest itself in a wide variety of collections and aggregations
of entities.

That’s where modules come in. When you’re designing a program and you
identify a behavior or set of behaviors that may be exhibited by more than one
kind of entity or object, you've found a good candidate for a module. Stacklike-
ness fits the bill: More than one entity, and therefore imaginably more than one
class, exhibits stacklike behavior. By creating a module that defines methods that
all stacklike objects have in common, you give yourself a way to summon stacklike-
ness into any and all classes that need it.

Listing 6.1 shows a simple implementation of stacklikeness, in Ruby module
form. (The code uses a few unfamiliar techniques; they’re explained after the list-
ing.) This example, although simple, involves a couple of different program files,
which you can save to your Ruby for Rails scratchpad directory. Save listing 6.1 in a
file called stacklike.rb.

module Stacklike
attr reader :stack

def initialize

@stack = Array.new <1—o

158

6.1.2

CHAPTER 6
Modules and program organization

end

def add_to_stack (obj) 4—0

@stack.push (obj)
end

def take_from stack 4—9

@stack.pop
end
end

The Stacklike module in listing 6.1 uses an array (an ordered collection of
objects) to represent the stack. Upon initialization, a Stacklike object’s instance
variable @stack is initialized to a new, empty array @. When an object is added to
the stack @, the operation is handled by pushing the object onto the array—that
is, adding it to the end. Removing an object from the stack © involves popping an
element from the array—that is, removing it from the end. (push and pop are
instance methods of the Array class. You’ll see them again when we look at con-
tainer objects, including arrays, in chapter 11.)

The module Stacklike thus implements stacklikeness by selectively deploying
behaviors that already exist for Array objects: Add an element to the end of the
array; take an element off the end. Arrays are more versatile than stacks; a stack
can’t do everything an array can. For example, you can remove elements from an
array in any order, whereas by definition the only element you can remove from a
stack is the one that was added most recently. But an array can do everything a stack
can. As long as we don’t ask it to do anything unstacklike, using an array as a kind
of agent or proxy for the specifically stacklike add/remove actions makes sense.

We now have a module that implements stacklike behavior: maintaining a list
of items, such that new ones can be added to the end and the most recently added
one can be removed. The next question is, what can we do with this module?

Mixing a module into a class
As you’ve seen, modules don’t have instances; so we cannot do this:
s = Stacklike.new <——— Wrong!

In order to create instances (objects) we need a class; and in order to make those
objects stacklike, we need to mix our module into that class. But what class? The
most obviously stacklike thing is probably a stack. Save the code in listing 6.2 to
stack.rb, in the same directory as stacklike.rb.

Basics of module creation and use 159

Listing 6.2 Mixing the Stacklike module into the Stack class

require "stacklike"
class Stack

include Stacklike <k————"

end

The business end of the Stack class in listing 6.2 is the include statement @ with
which we have mixed in the Stacklike module. It ensures that instances of Stack
will exhibit the behaviors defined in Stacklike.

NOTE SYNTAX OF require/load VS. SYNTAX OF include You may have noticed
that when you use require or load, you put the name of the item you’re
requiring or loading in quotation marks, but with include, you don’t.
require and load take strings as their arguments, whereas include takes
the name of a module, in the form of a constant. The requirements to
require and load are usually literal strings (in quotation marks), but a
string in a variable will also work.

Notice that our class’s name is a noun, whereas the module’s name is an adjective.
Neither of these practices is mandatory, but they’re both common. What we end
up with, expressed in everyday language, is a kind of predicate on the class:

Stack objects are stacklike.
That’s English for

class Stack
include Stacklike
end
To see the whole thing in action, let’s create a Stack object and put it through its
paces. The code in listing 6.3 creates a Stack object and performs some opera-
tions on it; you can enter this code at the end of your stack.rb file.

Listing 6.3 Creating and using an instance of class Stack

s = Stack.new <4444"
s.add_to_stack("item one™")
s.add_to_stack("item two")
s.add_to_stack("item three")

puts "Objects currently on the stack:"
puts s.stack

160

6.1.3

CHAPTER 6
Modules and program organization

taken = s.take_from stack 44444€,

puts "Removed this object:"
puts taken

puts "Now on stack:"
puts s.stack

Listing 6.3 starts with the innocentlooking (but powerful) instantiation @ of a
new Stack object, which we’ve assigned to the variable s. That Stack object is born
with the knowledge of what to do when we ask it to perform stack-related actions,
thanks to the fact that its class mixed in the Stacklike module. The rest of the
code involves asking it to jump through some stacklike hoops: adding items
(strings) to itself @, and popping the last one off itself €. Along the way, we ask
the object to report on its state.

Now let’s run the program. Here’s an invocation of stack. rb, together with the
output from the run:

$ ruby stack.rb

Objects currently on the stack:

item one

item two

item three

Removed this object:

item three

Now on stack:

item one

item two
Sure enough, our little Stack object knows what to do. It is, as advertised, stacklike.

The stack class is fine as far as it goes. But it may leave you wondering: Why

did we bother writing a module?

Leveraging the module further

It would be possible to pack all the functionality of the Stacklike module directly
in the stack class without writing a module. Listing 6.4 shows you what the class
would look like.

class Stack
attr reader :stack

def initialize
@stack = Array.new

Basics of module creation and use 161

end

def add_to_stack (obj)
@stack.push (obj)
end

def take_from stack
@stack.pop
end
end

As you’ll see if you add the code in listing 6.3 to listing 6.4 and run it all through
Ruby, it produces the same results as the implementation that uses a module.

Before you end up concluding that modules are pointless, remember what the
modularization buys you: It lets you apply a general concept like stacklikeness to
several cases, not just one.

What else is stacklike?

A few examples came up earlier: plates, printer paper, and so forth. Let’s use a
new one, though, borrowed from the world of urban legend.

Lots of people believe that if you're the first passenger to check in for a flight,
your luggage will be the last off the plane. Real-world experience suggests that it
doesn’t work this way. Still, for stack practice, let’s see what a Ruby model of an
urban-legendly correct cargo hold would look like.

To model it reasonably closely, we’ll include a barebones Suitcase class—a
placeholder that doesn’t fully model suitcase behavior (there are no pack or
snap_shut methods) but that lets us create suitcase objects to fling into the cargo
hold. Also for the sake of real-world resemblance, we’ll give our cargo hold two
methods: load and_report and unload. load_and_report prints a message report-
ing that it’s adding a suitcase to the cargo hold, and it gives us the suitcase object’s
id number (which will help us trace what happens to each suitcase). The unload
method calls take from stack. (We could call take from stack directly, but
unload sounds more like a term you might use to describe removing a suitcase
from a cargo hold.)

Put the code in listing 6.5 into cargohold.rb, and try it.

require "stacklike"

class Suitcase
end

162

CHAPTER 6
Modules and program organization

class CargoHold
include Stacklike 44444"
def load_and_ report (obj)
print "Loading object "
puts obj.object_id
add_to_stack (obj) 4—0
end
def unload
take_from_stack <4444€)
end
end

ch = CargoHold.new 4————‘,

scl = Suitcase.new
sc2 = Suitcase.new
sc3 = Suitcase.new

ch.load_and_report (scl)
ch.load and report (sc2)
ch.load _and report (sc3)

first unloaded = ch.unload

print "The first suitcase off the plane is...."
puts first unloaded.object_ id
|

Atits heart, the program in listing 6.5 isn’t all that different from those in listings 6.2
and 6.3 (which you saved incrementally to stack.rb). It follows much the same pro-
cedure: mixing Stacklike into a class (1) creating an instance of that class @, and
adding items to 0, and removing them from ©, thatinstance (the stacklike thing—
the cargo hold, in this case). It also does some reporting of the current state of the
stack @), as the other program did.

The outputfrom the cargo hold program looks like this (remember that suitcases
are referred to by their object id numbers, which may be different on your system):

Loading object 942912

Loading object 942892

Loading object 942882

The first suitcase off the plane is....942882
The cargo hold example shows how you can use an existing module for a new
class. Sometimes it pays to wrap the methods in new methods with better names
for the new domain (like unload instead of take_ from stack), although if you
find yourself changing too much, it may be a sign that the module isn’t a good fit.

6.2

6.2.1

Modules, classes, and method lookup 163

In the next section, we’re going to put together several of the pieces we’ve
looked at more or less separately: method calls (message sending), objects and
their status as instances of classes, and the mixing of modules into classes. All of
these concepts come together in the process by which an object, upon being sent
a message, looks for and finds (or fails to find) a method to execute whose name
matches the message.

Modules, classes, and method lookup

You already know that when an object receives a message, the result may be the
execution of a method with the same name as the message in the object’s class, or
a method in that class’s superclass—and onward, up to the Object class—or a
method in a module that has been mixed into any of those classes. But how exactly
does this come about? And what happens in ambiguous cases—for example, if a
class and a mixed-in module both define a method with a given name? Which one
does the object choose to execute?

It pays to answer these questions precisely. Imprecise accounts of what hap-
pens are easy to come by. Sometimes they’re even adequate: If you say, “This
object has a push method,” you may well succeed in communicating what you’re
trying to communicate, even though objects don’t “have” methods but, rather,
find them by searching classes and modules.

But an imprecise account won’t scale. It won’t help you understand what’s
going on in more complex cases, and it won’t support you when you’re designing
your own code. Your best course of action is to learn what really happens when you
send messages to objects.

Fortunately, the way it works turns out to be straightforward.

lllustrating the basics of method lookup

In the interest of working toward a clear understanding of how objects find meth-
ods, let’s back-pedal on the real-world references and, instead, write some classes
and modules with simple names like ¢ and M. Doing so will help you concentrate
on the logic and mechanics of method lookup without having to think simulta-
neously about modeling a real-world domain. We’ll also write some methods that
don’t do anything except print a message announcing that they’ve been called.
This will help track the order of method lookup.
Look at the program in listing 6.6.

164

CHAPTER 6
Modules and program organization

Listing 6.6 Demonstration of module inclusion and inheritance

module M
def report
puts "'report' method in module M"
end
end

class C
include M
end

class D < C
end

obj = D.new
obj.report
|

The instance method report is defined in module M. Module M is mixed into class C.
Class D is a subclass of C. obj is an instance of D. Through this cascade, the object
(obj) gets access to the report method.

Still, gets access, like has, is a vague way to put it. Let’s try to get more of a fix on
the process by considering an object’s-eye view of it.

An object’s-eye view of method lookup

You’re the object, and someone sends you a message. You have to figure out how to
respond to it—or whether you can respond to it. Here’s a bit of object stream-of-
consciousness:

1 am a Ruby object, and I've been sent the message “report”. I have to try to find a method
called report in my method lookup path. report, if it exists, resides in a class or module.

I am an instance of a class called D. Does D define an instance method report?
No.

Does D mix in any modules?

No.

Does D’s superclass (C) define a report instance method?

No.

Does ¢ mix in any modules?

Yes: M.

Does M define a report method?

Yes! I’ll execute that method.

Modules, classes, and method lookup 165

The search ends when the method being searched for is found, or with an error

condition if it isn’t found.

NOTE method_missing When you send an object a message it doesn’t under-
stand, the situation triggers execution of a builtin method called
method_missing. The default version of this method treats the problem
as a fatal error. However, you can override method missing as an
instance method in your class. Your version will be then be executed
when instances of that class receive unknown messages.

method_missing is the key to much of the behavior of objects in Rails
applications: They receive messages they don’t understand, and then
their method_missing facilities look among the database fields for match-
ing names and create the corresponding methods on the spot.

This example gives you much of what you need to know about how objects look
for methods to call when they’re asked to call methods. It doesn’t give you all the
information you need; a couple of concepts will materialize down the road. But it

gives you what you need to understand the rest later on.
Let’s move from object stream-of-consciousness to specifics about the method
search scenario, and in particular the question of how far it can go.

How far does the method search go?
Ultimately, every object in Ruby is an
instance of some class descended from
the big class in the sky: Object. That
means however many classes and mod-
ules it may cross along the way, the
search for a method can always go as far
up as Object. It can even go one step fur-
ther: the class Object mixes in a module
more primal than itself: Kernel. If you
get to Kernel and you still haven’t found
the method you’re asking the object to
execute, that means you’re not going to
find it.

Figure 6.1 illustrates the method
search path from our earlier example
(the class D object), up to and including
Kernel. (In the example, the search for
the method succeeds at module M; the

module Kernel

class Ob
(built-in)

include Kernel

(built-in)

ject

3

module M
end

class

end

include M

¢

A

class

D < C

end

object
object.

= D.new
X

Figure 6.1 Diagram of the method lookup
process for an instance of D

166

6.2.2

CHAPTER 6
Modules and program organization

diagram shows how far the object would look if it didn’t find the method there.)
When the message “x” is sent to the object, the method search begins, hitting the
various classes and mix-ins (modules) as shown by the arrows.

Kernel is where the methods common to all Ruby objects are defined, includ-
ing the ones we looked at earlier (respond_to?, object_id, and send). Now you
know why every object has these methods: They're defined in Kernel, Object

mixes in Kernel, and Object is an ancestor of every class in Ruby.

Defining the same method more than once

You learned in chapter 5 that if you define a method twice inside the same class,
the second definition takes precedence over the first. The same is true of mod-
ules. The rule comes down to this: There can be only one method of a given name
per class or module at any given time.

That’s how classes and modules keep house. When we flip to an object’s-eye
view, however, the question of having access to two or more methods with the
same name becomes more involved.

An object’s methods can come from any number of classes and modules. True,
any one class or module can have only one report method (to use that name as an
