

Ruby for Rails

Ruby for Rails
RUBY TECHNIQUES FOR RAILS DEVELOPERS

DAVID A. BLACK

M A N N I N G
Greenwich

(74° w. long.)

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in
quantity. For more information, please contact:

Special Sales Department
Manning Publications Co.
209 Bruce Park Avenue Fax:(203) 661-9018
Greenwich, CT 06830 email: manning@manning.com

©2006 Manning Publications. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form or by means electronic, mechanical, photocopying, or otherwise, without
prior written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial
caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books they publish printed on acid-free paper, and we exert our best efforts to that end.

Manning Publications Co. Copyeditor: Liz Welch
209 Bruce Park Avenue Typesetter: Gordan Salinovic
Greenwich, CT 06830 Cover designer: Leslie Haimes

ISBN 1932394699

Printed in the United States of America

1 2 3 4 5 6 7 8 9 10 – VHG – 10 09 08 07 06

 for n in nephews + nieces

 which is to say: Annie, David, Elizabeth, Rebecca, and Robert,
with all my love. You’re all absolutely amazing, and I adore you.

brief contents

PART I THE RUBY/RAILS LANDSCAPE1

 1 ■ How Ruby works 3

 2 ■ How Rails works 33

 3 ■ Ruby-informed Rails development 67

PART II RUBY BUILDING BLOCKS93

 4 ■ Objects and variables 95

 5 ■ Organizing objects with classes 121

 6 ■ Modules and program organization 154

 7 ■ The default object (self) and scope 177

 8 ■ Control flow techniques 206

PART III BUILT-IN CLASSES AND MODULES231

 9 ■ Built-in essentials 233

 10 ■ Scalar objects 257

 11 ■ Collections, containers, and enumerability 277
vii

viii BRIEF CONTENTS
 12 ■ Regular expressionsand regexp-based string operations 312

 13 ■ Ruby dynamics 337

PART IV RAILS THROUGH RUBY,
RRRRRRRRIRUBY THROUGH RAILS 369

 14 ■ (Re)modeling the R4RMusic application universe 371

 15 ■ Programmatically enhancing ActiveRecord models 392

 16 ■ Enhancing the controllers and views 422

 17 ■ Techniques for exploring the Rails source code 455

 appendix ■ Ruby and Rails installation and resources 471

contents
foreword xix
preface xxi
acknowledgments xxiii
about this book xxvi
about the cover illustration xxxii

PART 1 THE RUBY/RAILS LANDSCAPE1

1 How Ruby works 3
1.1 The mechanics of writing a Ruby program 4

Getting the preliminaries in place 5 ■ A Ruby literacy bootstrap
guide 5 ■ A brief introduction to method calls and Ruby objects 7
Writing and saving a sample program 8 ■ Feeding the program to
Ruby 9 ■ Keyboard and file input 11 ■ One program,
multiple files 14

1.2 Techniques of interpreter invocation 15
Command-line switches 16 ■ A closer look at
interactive Ruby interpretation with irb 20

1.3 Ruby extensions and programming libraries 21
Using standard extensions and libraries 21 ■ Using
C extensions 22 ■ Writing extensions and libraries 23
ix

x CONTENTS
1.4 Anatomy of the Ruby programming environment 24
The layout of the Ruby source code 24 ■ Navigating the
Ruby installation 25 ■ Important standard Ruby tools
and applications 27

1.5 Summary 31

2 How Rails works 33
2.1 Inside the Rails framework 34

A framework user’s–eye view of application development 35
Introducing the MVC framework concept 36
Meet MVC in the (virtual) flesh 37

2.2 Analyzing Rails’ implementation of MVC 38

2.3 A Rails application walk-through 41
Introducing R4RMusic, the music-store application 42
Modeling the first iteration of the music-store domain 43
Identifying and programming the actions 50 ■ Designing
the views 53 ■ Connecting to the application 58

2.4 Tracing the lifecycle of a Rails run 59
Stage 1: server to dispatcher 61 ■ Stage 2: dispatcher
to controller 62 ■ Stage 3: performance of a controller
action 62 ■ Stage 4: the fulfillment of the view 65

2.5 Summary 65

3 Ruby-informed Rails development 67
3.1 A first crack at knowing what your code does 69

Seeing Rails as a domain-specific language 70 ■ Writing program
code with a configuration flavor 73 ■ YAML and configuration
that’s actually programming 75

3.2 Starting to use Ruby to do more in your code 77
Adding functionality to a controller 79 ■ Deploying the Rails helper
files 80 ■ Adding functionality to models 82

3.3 Accomplishing application-related skills and tasks 85
Converting legacy data to ActiveRecord 85
The irb-based Rails application console 89

3.4 Summary 90

CONTENTS xi
PART 2 RUBY BUILDING BLOCKS93

4 Objects and variables 95
4.1 From “things” to objects 96

Introducing object-oriented programming 97 ■ I, object! 98
Modeling objects more closely: the behavior of a ticket 103

4.2 The innate behaviors of an object 108
Identifying objects uniquely with the object_id method 109
Querying an object’s abilities with the respond_to? method 110
Sending messages to objects with the send method 111

4.3 Required, optional, and default-valued arguments 112
Required and optional arguments 112 ■ Default values for
arguments 113 ■ Order of arguments 114

4.4 Local variables and variable assignment 115
Variable assignment in depth 117 ■ Local variables
and the things that look like them 119

4.5 Summary 120

5 Organizing objects with classes 121
5.1 Classes and instances 122

A first class 123 ■ Instance variables and object state 126
5.2 Setter methods 130

The equal sign (=) in method names 131
ActiveRecord properties and other =-method applications 133

5.3 Attributes and the attr_* method family 136
Automating the creation of attribute handlers 137 ■ Two (getter/
setter) for one 138 ■ Summary of attr_* methods 139

5.4 Class methods and the Class class 140
Classes are objects too! 140 ■ When, and why, to write a class
method 141 ■ Class methods vs. instance methods, clarified 143
The Class class and Class.new 144

5.5 Constants up close 145
Basic usage of constants 145 ■ Reassigning vs.
modifying constants 146

xii CONTENTS
5.6 Inheritance 148
Inheritance and Rails engineering 149 ■ Nature vs.
nurture in Ruby objects 151

5.7 Summary 153

6 Modules and program organization 154
6.1 Basics of module creation and use 155

A module encapsulating “stack-like-ness” 157 ■ Mixing a module
into a class 158 ■ Leveraging the module further 160

6.2 Modules, classes, and method lookup 163
Illustrating the basics of method lookup 163 ■ Defining the same
method more than once 166 ■ Going up the method search path
with super 168

6.3 Class/module design and naming 170
Mix-ins and/or inheritance 171 ■ Modular organization
in Rails source and boilerplate code 173

6.4 Summary 176

7 The default object (self) and scope 177
7.1 Understanding self, the current/default object 179

Who gets to be self, and where 179 ■ Self as default receiver of
messages 184 ■ Instance variables and self 186

7.2 Determining scope 188
Global scope and global variables 188 ■ Local scope 191
Scope and resolution of constants 194

7.3 Deploying method access rules 197
Private methods 197 ■ Private methods as ActionController
access protection 199 ■ Protected methods 201

7.4 Writing and using top-level methods 203
Defining a top-level method 203 ■ Predefined (built-in)
top-level methods 204

7.5 Summary 205

8 Control flow techniques 206
8.1 Conditional code execution 207

The if keyword and friends 208 ■ Conditional modifiers 211
Case statements 211

CONTENTS xiii
8.2 Repeating actions with loops 215
Unconditional looping with the loop method 215
Conditional looping with the while and until keywords 216
Looping based on a list of values 218

8.3 Code blocks, iterators, and the yield keyword 219
The basics of yielding to a block 219 ■ Performing multiple
iterations 222 ■ Using different code blocks 223
More about for 223

8.4 Error handling and exceptions 225
Raising and rescuing exceptions 225 ■ Raising exceptions
explicitly 227 ■ Creating your own exception classes 228

8.5 Summary 230

PART 3 BUILT-IN CLASSES AND MODULES231

9 Built-in essentials 233
9.1 Ruby’s literal constructors 234

9.2 Recurrent syntactic sugar 236
Special treatment of += 237

9.3 Methods that change their receivers (or don’t) 238
Receiver-changing basics 239 ■ bang (!) methods 240
Specialized and extended receiver-changing in
ActiveRecord objects 241

9.4 Built-in and custom to_* (conversion) methods 242
Writing your own to_* methods 243

9.5 Iterators reiterated 244

9.6 Boolean states, Boolean objects, and nil 245
True and false as states 246 ■ true and false as objects 248
The special object nil 249

9.7 Comparing two objects 251
Equality tests 251 ■ Comparisons and the Comparable module 252

9.8 Listing an object’s methods 253
Generating filtered and selective method lists 254

9.9 Summary 255

xiv CONTENTS
10 Scalar objects 257
10.1 Working with strings 258

String basics 258 ■ String operations 260
Comparing strings 265

10.2 Symbols and their uses 267
Key differences between symbols and strings 267
Rails-style method arguments, revisited 268

10.3 Numerical objects 270
Numerical classes 270 ■ Performing arithmetic operations 271

10.4 Times and dates 272

10.5 Summary 275

11 Collections, containers, and enumerability 277
11.1 Arrays and hashes compared 278

11.2 Using arrays 279
Creating a new array 279 ■ Inserting, retrieving, and removing array
elements 280 ■ Combining arrays with other arrays 283 ■ Array
transformations 285 ■ Array iteration, filtering, and querying 286
Ruby lessons from ActiveRecord collections 289

11.3 Hashes 292
Creating a new hash 293 ■ Inserting, retrieving, and removing hash
pairs 294 ■ Combining hashes with other hashes 296 ■ Hash
transformations 297 ■ Hash iteration, filtering, and querying 298
Hashes in Ruby and Rails method calls 301

11.4 Collections central: the Enumerable module 303
Gaining enumerability through each 304
Strings as Enumerables 306

11.5 Sorting collections 307
Sorting and the Comparable module 309
Defining sort order in a block 310

11.6 Summary 311

12 Regular expressionsand regexp-basedstring operations 312
12.1 What are regular expressions? 313

A word to the regex-wise 314 ■ A further word to everyone 314

CONTENTS xv
12.2 Writing regular expressions 314
The regular expression literal constructor 315
Building a pattern 316

12.3 More on matching and MatchData 319
Capturing submatches with parentheses 319
Match success and failure 321

12.4 Further regular expression techniques 323
Quantifiers and greediness 323 ■ Anchors and lookahead
assertions 326 ■ Modifiers 328 ■ Converting strings and
regular expressions to each other 329

12.5 Common methods that use regular expressions 331
String#scan 332 ■ String#split 332 ■ sub/sub! and
gsub/gsub! 333 ■ grep 334

12.6 Summary 335

13 Ruby dynamics 337
13.1 The position and role of singleton classes 338

Where the singleton methods live 339 ■ Examining and modifying a
singleton class directly 340 ■ Singleton classes on the method lookup
path 342 ■ Class methods in (even more) depth 345

13.2 The eval family of methods 347
eval 347 ■ instance_eval 349 ■ The most useful
eval: class_eval (a.k.a. module_eval) 349

13.3 Callable objects 351
Proc objects 351 ■ Creating anonymous functions with the
lambda keyword 355 ■ Code blocks, revisited 356 ■ Methods
as objects 357

13.4 Callbacks and hooks 359
Intercepting unrecognized messages with method_missing 360
Trapping include operations with Module#included 361
Intercepting inheritance with Class#inherited 363
Module#const_missing 365

13.5 Overriding and adding to core functionality 365
A cautionary tale 366

13.6 Summary 367

xvi CONTENTS
PART 4 RAILS THROUGH RUBY,
UUUUUUURUBY THROUGH RAILS369

14 (Re)modeling the R4RMusic application universe 371
14.1 Tracking the capabilities of an

ActiveRecord model instance 372
An overview of model instance capabilities 373
Inherited and automatic ActiveRecord model behaviors 374
Semi-automatic behaviors via associations 378

14.2 Advancing the domain model 380
Abstracting and adding models (publisher and edition) 380
The instruments model and many-to-many relations 382
Modeling for use: customer and order 386

14.3 Summary 390

15 Programmatically enhancing ActiveRecord models 392
15.1 Soft vs. hard model enhancement 393

An example of model-enhancement contrast 394
15.2 Soft programmatic extension of models 396

Honing the Work model through soft enhancements 398 ■ Modeling
the customer’s business 399 ■ Fleshing out the Composer 401
Ruby vs. SQL in the development of soft enhancements 401

15.3 Hard programmatic enhancement of model
functionality 404
Prettification of string properties 404 ■ Calculating a work’s
period 409 ■ The remaining business of the Customer 414

15.4 Extending model functionality with class methods 419
Soft and hard class methods 419

15.5 Summary 421

16 Enhancing the controllers and views 422
16.1 Defining helper methods for view templates 424

Organizing and accessing custom helper methods 425
The custom helper methods for R4RMusic 427

CONTENTS xvii
16.2 Coding and deploying partial view templates 429
Anatomy of a master template 429 ■ Using partials
in the welcome view template 430

16.3 Updating the main controller 436
The new face of the welcome action 436

16.4 Incorporating customer signup and login 438
The login and signup partial templates 438 ■ Logging
in and saving the session state 439 ■ Gate-keeping the
actions with before_filter 441 ■ Implementing a signing-up
facility 444 ■ Scripting customer logout 445

16.5 Processing customer orders 446
The view_cart action and template 446 ■ Viewing and
buying an edition 448 ■ Defining the add_to_cart
action 449 ■ Completing the order(s) 449

16.6 Personalizing the page via dynamic code 450
From rankings to favorites 450 ■ The favorites
feature in action 452

16.7 Summary 454

17 Techniques for exploring the Rails source code 455
17.1 Exploratory technique 1: panning for info 456

Sample info panning: belongs_to 457
17.2 Exploratory technique 2: shadowing Ruby 458

Choosing a starting point 458 ■ Choose among forks in the
road intelligently 459 ■ On the trail of belongs_to 460
A transliteration of belongs_to 463

17.3 Exploratory technique 3: consulting the
documentation 464
A roadmap of the online Rails API documentation 466

17.4 Summary 469

appendix Ruby and Rails installation and resources 471
index 477

foreword
I can’t learn a language for the sake of it. I need to have a concrete desire to do some-
thing with it—to solve a problem or a task, to create something of value... That’s how
I got into Ruby around the summer of 2003. I wanted to build a Web application and
decided this was the perfect opportunity to learn Ruby. That Web application was
Basecamp, which eventually served as the point of extraction for Rails.

 Coming from PHP and Java, I remember how many of Ruby’s most wonderful
features seemed odd at first. “What is it exactly that makes blocks so special?” I
thought. “They’re just convenience for writing a line of code at the beginning and
the end.” Little did I know... As I started using Ruby and extracting Rails, I quickly
wised up. Ruby is such an incredibly rich and expressive language that it’s hard to
appreciate its beauty by simply relating it to past experiences with other languages.

 To create Basecamp, I needed to live and breathe Ruby. And when I did, I kept
finding aspects of the language that were exactly what I needed for the situation
at hand. Tasks that would have made my eyes roll in PHP or Java made my smile
light up as Ruby time and time again showed that programming could be simple,
fun, and outright beautiful.

 As I was learning the language, I often consulted the ruby-talk mailing list. One
voice in particular seemed to know Ruby well and appeared to have the ambition
as well as the ability to help others understand it more fully. That voice belonged
to David A. Black, the author of this book.
xix

xx FOREWORD
 David clearly has an encyclopedic knowledge of Ruby. Not only does he under-
stand how to use it, but he can also explain why things are the way they are. He
connects the dots and allows you to see the bigger picture, providing the missing
piece that turns puzzle into picture. I couldn’t imagine a better person to write
Ruby for Rails. It’s a great honor to have the man who taught me so much about
Ruby now help others understand the language for use with my framework.

 This is the book that everyone coming from another language to Rails should
have. To fully realize the potential of Rails, it’s crucial that you take the time to
fully understand Ruby—and with Ruby for Rails David has provided just what you
need to help you achieve that goal.

 DAVID HEINEMEIER HANSSON

 Creator of Ruby on Rails
 Partner at 37signals

preface
When the editors at Manning asked me whether I thought the time was ripe for a
new Ruby book, and if so, what it should be about and who should write it, I
answered:

 “Yes.... A Ruby language book purpose-written for Rails practitioners.... Me.”
 They agreed.
 I warmly welcomed the opportunity. I’d been thinking along “Ruby for Rails”

lines since I started using the Ruby on Rails framework in the Fall of 2004 (which,
by the way, makes me an almost-early adopter). Rails had been first released that
summer, and I learned about it from the presentation by David Heinemeier Hans-
son, the creator of Rails, at the 2004 International Ruby Conference.

 Ruby for Rails sounds like it might mean “…as opposed to regular Ruby,” a tool
for dividing Ruby users into Rails and non-Rails camps. I saw it as the opposite:
real Ruby, regular Ruby, on its own terms, but studied primarily because of what it
can do for Rails developers. I was in a good position to understand the potential
of this approach: I’d been programming in Ruby for almost four years before I
started using Rails; and when I did start using it, I quickly gained a view of how a
deeper knowledge of Ruby could help Rails programmers achieve their goals.

 An alarm went off in my head, therefore, when I saw how many budding Rails
developers were asking themselves whether it was necessary to learn Ruby in order
to use Rails. The fact that this question was the subject of disagreement and
debate surprised me. And it suggested a couple of points.
xxi

xxii PREFACE
 First, there was clearly room for education about the basics: that Rails is written
in Ruby, and Rails applications are written in Ruby, so if you’re writing Rails appli-
cations, you’ve already decided to use Ruby. Second, I could see the beginnings of an
inadvertent, self-imposed quarantine on the part of these Rails developers (who
were perfectly well-intentioned, but not in possession of the full picture) and I saw
that something could and should be done about it. People were talking themselves
into living under a glass ceiling, where they could get Rails applications to run and
do some reasonably adroit things with Rails techniques and idioms, but where they
were denying themselves the chance to deploy the full power of Ruby—the lan-
guage which they were in fact already using. That needed to be addressed.

 I also noticed a large number of questions in various forums (and various
forms) along the lines of “I know I’m supposed to write belongs_to :customer,
but what is that?” A number of Rails users told me that they were able to get appli-
cations up and running by imitating and adapting lines of code from other appli-
cations, but they were finding it unsatisfying because they didn’t feel they knew
what was going on. The fact that people were having trouble understanding Rails
code in Ruby terms meant that they were not in a position to go to the next level:
using the full power of Ruby to enhance and extend the functionality of their
Rails applications.

 It occurred to me that a Rails-centric Ruby language tutorial could serve the
dual roles of, first, explaining to Rails developers who didn’t yet see that Ruby and
Rails don’t reside in separate silos but, rather, enjoy a parent/child technology rela-
tionship with extremely open lines of communication; and, second, smashing the
glass ceiling that separated Rails people from using Ruby more effectively.

 As the book project got under way, my goal became to explain that the learn-
ing of Ruby by a “Rails person” is an entirely additive, win-win proposition. It
doesn’t mean Rails has some deficiency that has to be compensated for by know-
ing a foreign technology. Rather, Rails has a tremendous strength—the strength
of having been written in an elegant, concise, very approachable programming
language—the implications of which for day-to-day Rails programming are impor-
tant and are a pleasure to explore.

 Thus Ruby for Rails: a reaffirmation and explanation of the way things stand,
and have always stood, between the language and the framework, and an invita-
tion to shatter that glass ceiling.

acknowledgments
This book has benefited from support of many kinds from many quarters.

 At Manning Publications, assistant acquisitions editor Megan Yockey and pub-
lisher’s assistant Blaise Bace saw me ably and enthusiastically through the proposal
and contract phases of the project. I worked initially, and productively, with devel-
opment editor Doug Bennett; subsequently, for reasons of scheduling and logis-
tics, my project was reassigned to development editor Lianna Wlasiuk, who
worked with me in an intense, sustained way through the writing of the book, cou-
pling a marvelous collegiality with a gentle but firm refusal to settle for anything
other than a strong, polished product.

 Review editor Karen Tegtmeyer sought, and found, specialists from both the
Ruby and Rails spheres to review the manuscript at the various prescribed phases
of partial completion—a process I like to think I became less surly about, the
more evidence I saw of how materially helpful it could be. Book designer Dottie
Marsico worked with me on the illustrations; I have Dottie to thank for my new-
found OpenOffice Draw skills as well as for her encouragement and quick respon-
siveness to questions and concerns.

 As the book moved through the latter stages of preparation and into the pro-
duction stages, I had the indispensable support and help of production director
Mary Piergies, who coordinated the geographically far-flung process in a way that
brought it unity and momentum. To copy editor Tiffany Taylor I can pay no
greater tribute than to say that I quickly got into the habit of telling OpenOffice
to hide the history of changes in the document and only show me the text as it
xxiii

xxiv ACKNOWLEDGMENTS
appeared after Tiffany had worked on it. I have no doubt, moreover, that several
trees owe their lives to Tiffany’s ability to trim away excess verbiage.

 Technical proofreader Bruce Williams made numerous suggestions and cor-
rections which, I can assure readers, have measurably improved the readability of
the code samples as well as the text. There’s nothing like a keen second set of
eyes, and a second tester, to convince one, once and for all, that one really must
not make little changes to code after cutting-and-pasting it in….

 I worked with three proofreaders. Elizabeth R. Martin, who kindly stepped in to
tide the project over during a scheduling gap, brought a sharp eye to bear on the
book’s first chapters. The balance of the manuscript was proofread by Elizabeth
Welch, on whom I have relied not only for error-catching but for constant consul-
tation in discretionary matters of typographical consistency and style. Barbara
Mirecki gave the manuscript a close, skillful final read. Katie Tennant brought a
professional’s skill and care to bear on my well-intentioned, but inevitably imper-
fect, indexing efforts. Typesetter Gordan Salinovic has worked diligently and
responsively with us to ensure a consistent, reader-friendly look.

 Manning webmaster Iain Shigeoka worked behind the scenes to keep the infor-
mation flow going among the various members of the production team and me,
and quickly stepped up to help on the few occasions when glitches cropped up.

 On the marketing side, Manning’s sales and marketing chief Ron Tomich and
marketing director Helen Trimes have kept the book before the Ruby/Rails pub-
lic eye and have sought my input and collaboration throughout the process. As
much as the popularity of Ruby and Rails can help, there’s no such thing as a
book that promotes itself, and Helen and Ron have been anything but compla-
cent in getting the word out.

 Last but by no means least among the members of the Manning team to whom
I offer my thanks is publisher Marjan Bace, who saw the viability of this project
quickly, supported it unreservedly, and piloted it skillfully through many ups and
a sprinkling of downs. Both the book and I benefited from Marjan’s availability,
attentiveness, and mastery of the contours of the publication landscape.

 I’d like to thank the reviewers of the original book proposal and all of the out-
side readers who participated in the various partial-manuscript review cycles. Many
of the comments and criticisms of the latter group had more of an impact on the
book than they themselves might have anticipated. Thanks go to Anjan Bacchu,
Christopher Bailey, Jamis Buck, Stuart Caborn, Tom Copeland, Ryan Cox, Jeff
Cunningham, Pat Dennis, Mark Eagle, Sasa Ebach, Shaun Fanning, Hal Fulton,
Benjamin Gorlick, Erik Hatcher, David Heinemeier Hansson, Jack Herrington,
Bob Hutchison, Duane Johnson, Albert Koscielny, Robert McGovern, Andrew

ACKNOWLEDGMENTS xxv
Oswald, George Peter, Michael Schubert, Nicholas Seckar, Jon Skeet, Dave Stein-
berg, Mike Stok, Jon Tirsen, Wayne Vucenic, Doug Warren, Mark Watson, and two
anonymous reviewers.

 I owe a lot to the subscribers to the Manning Early Access Program (MEAP)
version of the book, who spotted and reported a nontrivial number of nontrivial
errors while the text was still fluid enough to take corrections. I won’t name them
here (their reports are posted at the Author Online Forum at http://www.man-
ning.com/black) but my thanks go to each and every one of them.

 I have been using Ruby for more than five years and Rails since a few months
after its first release. I have many, many friends and colleagues in the collective
Ruby/Rails sphere, a number of whom have helped in one way or another with
bringing this project to fruition. My friend and Ruby Central co-director Chad
Fowler, a constant presence in my Ruby world (and my AIM window), has sup-
ported me with advice, encouragement, a sympathetic ear, and a critical eye,
throughout the book’s evolution. I first learned the rudiments of Rails in a surrep-
titious private IRC chat with David Heinemeier Hansson during a conference pre-
sentation we were both ostensibly listening to (and maybe David was); as I’ve
worked on Ruby for Rails, David has been a strong supporter of the project as well
as a gracious adviser on technical matters. He has also kindly provided the book
with its foreword.

 I’ve also benefited from help and expressions of interest from many partici-
pants on mailing lists and IRC channels, as well as fellow Rubyists I’ve met at con-
ferences and user group meetings—too many people to list, as the cliché goes,
but I must mention Marcel Molina and Wayne Vucenic; the members of the New
York Ruby Users Group, especially Sebastian Delmont, Conor Hunt, Francis
Hwang, Gianni Jacklone, Matt Pelletier, and Zed Shaw; the members of both the
London and Denver Ruby Users Groups, who invited me to speak about my work
in progress; and the denizens of the #ruby-lang channel on irc.freenode.net, with
whom I have had a (mostly) delightful nonstop five-year conversation. If anyone
feels unjustly left out of this undoubtedly partial list, please hit me up for a drink
at the next conference.

 My family has been enthusiastic and supportive from day one of the project,
following its progress in depth in spite of the book’s remoteness from any of their
areas of interest. Thanks and love go to Barbara Aronstein Black, Gavin Black,
Robin Black, Richard Goldberg, Laurie Schafer, and the book’s dedicatees.

 I’ve received help, feedback, input, and guidance throughout the book-writing
process. Nonetheless, any factual or technical errors, or misjudgments of style, are
my responsibility alone.

about this book
Welcome to Ruby for Rails. This book is an introduction to the Ruby programming
language, purpose-written for people whose main reason for wanting to know
Ruby is that they’re working with, or are interested in working with, the Ruby on
Rails framework and want to do Rails knowledgeably and right.

 Ruby is a general-purpose, object-oriented, interpreted programming language
designed and written by Yukihiro Matsumoto (known widely as “Matz”). Intro-
duced in 1994, Ruby rose rapidly in popularity among Japanese programmers. By
the early 2000s, more than twenty Japanese-language books on Ruby had been pub-
lished. The first English-language book on Ruby, Programming Ruby by Dave Tho-
mas and Andy Hunt, appeared in late 2000 and ushered in a wave of Ruby
enthusiasm outside of Japan. Ruby’s popularity in the West has grown steadily since
the appearance of the “Pickaxe book” (the nickname of the Thomas-Hunt work,
derived from its cover illustration).

 But 2004 saw a second massive surge of interest, with the introduction of the
Ruby on Rails Web application framework by David Heinemeier Hansson. Built
on a cluster of separate component libraries, the Rails framework handles data-
base storage and retrieval, HTML templating, and all the middle-layer work neces-
sary to connect the underlying data to the Web pages and input forms that display
and update it.

 Rails has grown very rapidly in popularity, gaining a solid, wide reputation as a
tremendously powerful development tool. Partly cause, partly effect, Ruby has
xxvi

ABOUT THIS BOOK xxvii
also drawn favorable attention and interest from more and more programmers in
a variety of fields.

Do you have to learn Ruby to use Rails?

Although the Ruby on Rails framework is written in Ruby, it feels in some respects
like a programming language unto itself. There are Rails idioms and conventions,
just as there are Ruby idioms and conventions. The process of writing Rails appli-
cations has a characteristic rhythm and feel that aren’t the same as the rhythm and
feel of other Ruby-based environments. (Those are nice, too. They’re just different.)

 Nonetheless, Ruby is the underlying, parent technology of Rails. When you’re
working on a Rails program, you are, by definition, working on a Ruby program.
It follows logically that the more you know about Ruby, the better you will be—the
better you can be—at developing applications with Rails.

 Even if you know little or no Ruby, you can probably get a Rails application up
and running just by copying what others have done. But you won’t really under-
stand it, and you certainly won’t be in a position to solve problems when they arise,
nor to keep up knowledgeably with changes and updates in the Rails framework.

 To do those things, you need a Ruby foundation. That’s what this book—written
specifically for you, the Rails enthusiast who wants to do it right—will give you. Ruby
for Rails is a Ruby how-to book, more than a Rails how-to book. That doesn’t mean
you shouldn’t read Rails how-to books too. But if you’re serious about Rails, you
should learn at least as much Ruby as this book contains.

How Ruby can help you, in more detail

A solid grounding in Ruby can serve you, as a Rails developer, in four ways:

■ By helping you know what the code in your application (including Rails
boilerplate code) is doing

■ By helping you do more in, and with, your Rails applications than you can if
you limit yourself to the readily available Rails idioms and techniques (as
powerful as those are)

■ By allowing you to familiarize yourself with the Rails source code, which in
turn enables you to participate in discussions about Rails and perhaps even
submit bug reports and code patches

■ By giving you a powerful tool for administrative and organization tasks (for
example, legacy code conversion) connected with your application

xxviii ABOUT THIS BOOK
The last item on this list gets the least attention in this book. The third item, famil-
iarizing yourself with the Rails source code, gets occasional mention and then a
whole chapter (chapter 17, the last in the book) to itself.

 It’s the first two items—knowing what your code does, and knowing how to do
more—that drive the book. Virtually everything you’ll see here is designed to con-
tribute to one or both of those goals. They may not always be on the front burner,
as we dig into some of the details and subtleties of Ruby syntax or puzzle over fine
points of domain modeling. But the Ruby syntax, and the code that arises from
the domain modeling, and all the rest of it—it’s all in the book to help you know
what you’re doing and learn how to do more, as a Rails practitioner, through a
deeper knowledge of the Ruby language.

How this book is organized

Ruby for Rails consists of 17 chapters and is divided into four parts. Parts 2 and 3
are closely linked, so there are really three “super-parts”:

■ Part 1, “The Ruby/Rails landscape”
■ Part 2, “Ruby building-blocks” and part 3, “Built-in classes and modules”
■ Part 4, “Rails through Ruby, Ruby through Rails”

The book takes a breadth-first approach to its topic(s). Part 1 provides an over-
view of the programming environment of Ruby and Rails. This part includes a
medium level of detail, but it’s detailed enough to include the creation of a work-
ing Rails application as well as a considerable amount of introductory Ruby mate-
rial. Parts 2 and 3 perform two functions. First, they do the lion’s share of the
book’s nuts-and-bolts teaching of Ruby; the chapters in these parts are where
you’ll find a real Ruby tutorial. Second, while this tutorial is going on, the chap-
ters in parts 2 and 3 keep in close contact with Rails. Examples are drawn from
Rails applications, both real and (where it makes more sense) hypothetical, as well
as from the Rails source code. In addition to giving you a “for Rails” perspective
on Ruby in the process of learning Ruby, this infusion of Rails awareness into the
Ruby tutorial looks ahead to part 4. In the final part, the book returns to the sam-
ple application developed in part 1, revising and augmenting it by deploying Ruby
techniques mastered in the tutorial sections in the middle of the book.

 As the book proceeds, the center of gravity shifts back and forth between the
Ruby language and the Rails framework. But wherever the center of gravity lies in
a particular chapter or part of the book, both components of the landscape—
Ruby and Rails—are present to some degree.

ABOUT THIS BOOK xxix
Who should read this book

Rails application development is attracting a growing population—a rather mot-
ley crew, consisting not only of career programmers but also of system adminis-
trators, project managers, Web designers, database experts, and other computer
practitioners.

 This book is of potential interest to all of them. You don’t have to be a pro-
grammer by trade to benefit from this book, although you do need a grasp of the
basic concept of writing and running a computer program. You also need an
understanding of some common underlying concepts of computer and Internet
systems, many of which will be referred to without detailed explanation. You need
to know, for example, what a server is, what a client is; what HTML is; the concept
of a shell and a command line; about files and directory layouts; the basics of how
Web clients and servers talk to each other, including the basics of CGI-based form
processing; and the function and purpose of a database.

 Finally, you need to know at least something about the Rails framework. You
don’t have to be a grizzled Rails veteran; you can use this book as part of your
growth as a Rails developer. But you should have a sense of the realm in which
Rails operates—or, if you’re really new to Rails, be willing to combine this book
with other sources of information to get the combined picture by working on sev-
eral fronts.

 If you meet all of these requirements, the material in this book should be
accessible and the learning curve comfortable. In short: If you think of yourself as
a Rails person and would also like to bring out your inner Ruby person, this book
is for you. You’ll be rewarded not only with a dramatically greater understanding
of Rails but also with the beginnings of expertise in a very attractive, adaptable,
and popular programming language.

What this book doesn’t include

This book is largely tutorial and explanatory. It is neither a complete Ruby refer-
ence work nor a complete Rails reference work. Decisions have been made as to
what does and does not need to be included in a book whose purpose is to make
the power of Ruby more easily accessible to Rails practitioners. This isn’t to say
that you’ll never find, say, Ruby threads or a benchmark library or the Tk API use-
ful. They’re just not on the “A-list” of goals for this book; and the A-list will give
you a full book’s worth of material to learn, think about, and try out.

 The book includes the development of a working Rails application (actually,
two versions of it, tailored for different points in the book) as well as a lot of Ruby
code. It does not, however, take you through everything you can and should do in

xxx ABOUT THIS BOOK
the course of developing a real-world application. The biggest task in that cate-
gory is probably testing. Please don’t interpret the absence of information about
code testing in this book as a position statement against testing: You should learn
how to test code, and you should test code.

Code conventions

In the text, names of Ruby variables and constants are in monospace. Names of
classes and modules are in monospace where they represent direct references to
existing class or module objects; for example, “Next, we’ll reopen the class defini-
tion block for Composer.” Where the name of a class or module is used in a more
high-level narrative sense, the name appears in regular type; for example, “The
domain will include a Composer class.” In all cases, you’ll be able to tell from the
context that a class, module, or other Ruby entity is under discussion.

 Names of directories and files are in monospace. Names of programs, such as
ruby and rails, are in monospace where reference is made directly to the program
executable or to command-line usage; otherwise, they appear in regular type.

 Names of relational database tables and fields appear in italics.
 Technical terms, on first mention, appear in italics. Italics are used for wildcard

expressions, such as entity_controller.rb, which indicates a file name with an
“entity” component plus an underscore and the remaining text. A matching file-
name would be, for example, composer_controller.rb.

Code examples

The standalone code samples in the book can be run either by placing them in a
text file and running the ruby command on them, or by typing them into the inter-
active Ruby interpreter irb. (Both of these techniques are explained in chapter 1.)
Toward the beginning of the book, you’ll be walked through the process of creating
and naming program files and saving code samples in them. As the book
progresses, it will assume that you can do this on your own. Only if it really mat-
ters—including, of course, in connection with the actual Rails applications you’ll
develop—will specific filenames for examples be suggested after the first few.

 A considerable number of examples in the book, particularly in part 3 (Ruby
built-ins), are presented in the form of irb (Interactive Ruby) sessions. What you’ll
see on the page are cut-and-pasted lines from a live interactive session, where the
code was entered into irb and irb responded by running the code. You’ll be alerted
the first few times this format is used and when it reappears after a hiatus. You’ll also
come to recognize it easily (especially if you start using irb). This mode of presen-
tation is particularly suitable for short code snippets and expressions; and because

ABOUT THIS BOOK xxxi
irb always prints out the results of executing whatever you type in (rather like a cal-
culator), it lets you see results while economizing on explicit print commands.

 In other cases, the output from code samples is printed separately after the
samples, printed alongside the code (and clearly labeled as “output”), or embed-
ded in the discussion following the appearance of the code.

 Some examples are accompanied by numbered cueballs that appear to the side
of the code. These cueballs are linked to specific points in the ensuing discussion
and give you a way to refer quickly to the line to which the discussion refers.

 Command-line program invocations are shown with a dollar-sign ($) prompt,
in the general style of shell prompts in UNIX-like environments. The commands
will work on Windows, even though the prompt may be different. (In all environ-
ments, the availability of the commands depends, as always, on the setting of the
relevant path environment variable.)

Code downloads

The complete source code for both versions of the music store Rails application is
available for download from the publisher’s Web site at http://www.man-
ning.com/black. These downloads include SQL command files with which you
can initialize the database tables for the applications and populate those database
with some sample data. Also available for download are some of the longer code
samples from the book that are not connected with the music store application.

Author Online

Purchase of Ruby for Rails includes free access to a private Web forum run by Man-
ning Publications where you can make comments about the book, ask technical
questions, and receive help from the authors and from other users. To access the
forum and subscribe to it, point your Web browser to http://www.manning.com/
black. This page provides information on how to get on the forum once you are
registered, what kind of help is available, and the rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaning-
ful dialogue between individual readers and between readers and the author can
take place. It is not a commitment to any specific amount of participation on the
part of the author, whose contribution to the book’s forum remains voluntary
(and unpaid). We suggest you try asking the author some challenging questions,
lest his interest stray!

 The Author Online forum and the archives of previous discussions will be
accessible from the publisher’s Web site as long as the book is in print.

about the cover illustration
The figure on the cover of Ruby for Rails is an “Officer of the Grand Signoir,” or an
officer in the army of the Ottoman Sultan. The illustration is taken from a collec-
tion of costumes of the Ottoman Empire published on January 1, 1802, by Will-
iam Miller of Old Bond Street, London. The title page is missing from the
collection and we have been unable to track it down to date. The book’s table of
contents identifies the figures in both English and French, and each illustration
bears the names of two artists who worked on it, both of whom would no doubt be
surprised to find their art gracing the front cover of a computer programming
book...two hundred years later.

 The collection was purchased by a Manning editor at an antiquarian flea mar-
ket in the “Garage” on West 26th Street in Manhattan. The seller was an American
based in Ankara, Turkey, and the transaction took place just as he was packing up
his stand for the day. The Manning editor did not have on his person the substan-
tial amount of cash that was required for the purchase and a credit card and
check were both politely turned down. With the seller flying back to Ankara that
evening the situation was getting hopeless. What was the solution? It turned out to
be nothing more than an old-fashioned verbal agreement sealed with a hand-
shake. The seller simply proposed that the money be transferred to him by wire
and the editor walked out with the bank information on a piece of paper and the
portfolio of images under his arm. Needless to say, we transferred the funds the
xxxii

ABOUT THE COVER ILLUSTRATION xxxiii
next day, and we remain grateful and impressed by this unknown person’s trust in
one of us. It recalls something that might have happened a long time ago.

 The pictures from the Ottoman collection, like the other illustrations that
appear on our covers, bring to life the richness and variety of dress customs of two
centuries ago. They recall the sense of isolation and distance of that period-and of
every other historic period except our own hyperkinetic present.

 Dress codes have changed since then and the diversity by region, so rich at the
time, has faded away. It is now often hard to tell the inhabitant of one continent
from another. Perhaps, trying to view it optimistically, we have traded a cultural
and visual diversity for a more varied personal life. Or a more varied and interest-
ing intellectual and technical life.

 We at Manning celebrate the inventiveness, the initiative, and, yes, the fun of
the computer business with book covers based on the rich diversity of regional life
of two centuries ago‚ brought back to life by the pictures from this collection.

Part 1

The Ruby/Rails landscape

This book is about the Ruby programming language, viewed chiefly from the
perspective of interest in the Ruby on Rails framework. The goal of this first part
of the book is to familiarize you with the landscape of both Ruby and Rails: what’s
there, and why, and how it all connects.

This part contains three chapters:
Chapter 1, “How Ruby works,” is about the Ruby programming environment:

how to write and execute a Ruby program; where the files associated with Ruby
are located; and what tools Ruby gives you (in addition to the Ruby interpreter
itself) to help you write and maintain programs.

Chapter 2, “How Rails works,” gives you a guided tour of the basic structure of
the Ruby on Rails framework: its components and how they interact; how the Rails
framework fits together with Ruby; and the relation between and among Ruby,
Rails, and a given Rails application. It also includes the first version of the book’s
major sample Rails application, the R4RMusic online sheet-music store. (The sec-
ond version of R4RMusic will be developed in part 4 of the book.)

Chapter 3, “Ruby-informed Rails development,” is a plunge into the process of
understanding in specific terms the ways that knowing Ruby well can help you as a
Rails developer. This chapter is thus a first fulfillment of the book’s overall goal—
and, at the same time, an anchor for the detailed exploration of the Ruby lan-
guage to come in the next two parts.

After reading these chapters, you’ll have your bearings in the landscape. You’ll
know how the Ruby programming language, the Rails application development
framework, and your specific applications all fit together, in considerable techni-
cal detail. You will have walked through the process of writing and running every-
thing from a small, proof-of-concept Ruby program, to a working Rails
application. Along the way, you’ll pick up a number of useful and important Ruby
programming techniques.

Most importantly, you’ll have started to understand and to experience the
effect of Ruby expertise on Rails development power.

How Ruby works
This chapter covers
■ A Ruby literacy bootstrap guide
■ An overview of the Ruby

programming environment
■ Walk-throughs of sample Ruby programs
3

4 CHAPTER 1

How Ruby works
This book will give you a foundation in Ruby, and this chapter will give your foun-
dation a foundation.

 We’re going to look at how Ruby works: what you do when you write a pro-
gram, how you get Ruby to run your program, and how you split a program into
more than one file. You’ll learn several variations on the process of running the
Ruby interpreter (the program with the actual name ruby, to which you feed your
program files for execution) as well how to use some important auxiliary tools
designed to make your life as a Ruby programmer—a Rubyist, to use the prevalent
term—easier and more productive.

 This first view of Ruby is from a middle distance; more detail is yet to come.
Still, you’ll learn several very specific, real, and useful Ruby techniques in this
chapter. After all, in order to jump-start the process of writing and running real
programs, you need to write and run real programs. They’ll be kept simple—but
in Ruby, some of the simplest things are among the most often used and most
powerful. When you see Ruby code in this chapter, it’s real Ruby.

1.1 The mechanics of writing a Ruby program

The goal of this section is to take you through the actual process of writing and
running a Ruby program. Don’t worry if some of what you see appears to be a bit
of a black box for the moment. The breadth-first approach we’re taking will help
to bootstrap you into the programming cycle from beginning to end. This, in
turn, will give you your bearings for the rest of the chapter and the detailed dis-
cussion of the Ruby language that lies ahead in parts 2 and 3.

NOTE Ruby, ruby, and … RUBY?! Ruby is a programming language. We talk
about things like “learning Ruby,” and we ask questions like, “Do you
know Ruby?” The lowercase version, ruby, is a computer program; specif-
ically, it’s the Ruby interpreter, the program that reads your programs and
runs them. You’ll see this name used in sentences like, “I ran ruby on my
file, but nothing happened,” or “What’s the full path to your ruby execut-
able?” Finally, there’s RUBY—or, more precisely, there isn’t. Ruby isn’t
an acronym, and it’s never correct to spell it in all capital letters. People
do this, as they do (also wrongly) with Perl, perhaps because they’re used
to seeing language names like BASIC and FORTRAN. Ruby is not such a
language. It’s Ruby for the language, ruby for the interpreter.

The mechanics of writing a Ruby program 5
1.1.1 Getting the preliminaries in place

At this point you need to have Ruby installed on your computer. The process of
installing Ruby is discussed in the appendix. Before proceeding with this chapter,
you should read the appendix and make sure that Ruby is installed and working.

 You also need a text editor and a directory (folder to some of you) in which to
store your Ruby program files. You can use any text editor you like. You can even
use a word-processing program, as long as you can save files in plain-text format
(not, for example, Microsoft Word format, RTF, or anything else fancy) and as
long as you can give them filenames that end with the extension .rb (signifying a
Ruby program file).

Meet Interactive Ruby (irb), your new best friend
Some advice for the impatient, as they say—and for everyone, in this case: A won-
derful command-line tool called irb (Interactive Ruby) comes with Ruby. You type
Ruby commands and expressions into irb, and it executes them on the spot. Writ-
ten by Keiju Ishitsuka, irb is indispensable to Ruby programmers, and just using it
to experiment and play with Ruby will speed up your learning and your comfort
with Ruby tremendously.

 Because irb is really a kind of alternative Ruby interpreter, it’s not discussed in
detail until section 1.2.2. Feel free to jump to that section and have a look. You
can start using irb right away. Having an open irb session means you can test Ruby
snippets any time and in any quantity.

 Meanwhile, we’ll bootstrap your Ruby literacy so we have a shared ground on
which to continuing building and exploring.

1.1.2 A Ruby literacy bootstrap guide

As part of the bootstrap process, it’s worth taking a little time to learn some of the
most common elements of Ruby syntax. Even if the code you’re looking at has
some black-box qualities, you can get a lot of mileage out of an awareness of the
meanings of a small number of elements.

 The examples in this chapter use the techniques set forth in table 1.1. In the
interest of making the Ruby bootstrapping process as comfortable as possible,
they’re summarized here for you to peruse in advance and easily reference later.
A couple of very fundamental aspects of Ruby and Ruby syntax, however, are too
involved for summary in a table. You need at least a preliminary sense of what an
object is in Ruby and what a method call looks like. We’ll take a first, brief look at
both of those features next. (Like the items in the table, they’ll also be explored at
greater length later in the book.)

6 CHAPTER 1

How Ruby works
Table 1.1 Synopsis of key elements of Ruby syntax for Ruby literacy bootstrapping purposes

Operation Example(s) Comments

Arithmetic 2 + 3 (addition)
2 - 3 (subtraction)
2 * 3 (multiplication)

2 / 3 (division)

The examples show integers.
You can also use floating-point
numbers (2.0).

Putting a value into a variable x = 1
string = "Hello"

This is called variable assign-
ment.

Printing something to the screen puts "Hello"
print "Hello"

x = "Hello"
puts x

x = "Hello"
print x

x = "Hello"
p x

puts adds a newline to the
string it outputs, if there isn’t
one at the end already.

print prints exactly what it’s
told to and leaves the cursor at
the end. (Note: on some plat-
forms, an extra newline is auto-
matically added at the end of a
program.)

p outputs an inspect string,
which may contain extra infor-
mation about what it’s printing.

Getting a line of keyboard input gets
string = gets

You can assign the input line
directly to a variable (the vari-
able string in the second
example).

Turning a string into a number x = "100".to_i
s = "100"
xxx = s.to_i

To perform arithmetic, you have
to make sure you have num-
bers rather than strings of char-
acters. to_i performs string-
to-integer conversion.

Comparing two values x == y Note the two equal signs (not
just one, as in assignment).

Conditional execution if x == y
cccc# execute this code
else
cccc# execute this code
end

Conditional statements always
end with the word end.

Putting comments in code files # This is a comment line.
X = 1 # Comment to end of line

Comments are ignored by the
interpreter.

The mechanics of writing a Ruby program 7
1.1.3 A brief introduction to method calls and Ruby objects

A lot of what you’ll see and write in Ruby programs are method calls. Method calls
sometimes consist simply of the name of a method, in bareword form, possibly fol-
lowed by one or more arguments to the method. For example, this code calls the
method puts with one argument:

puts "Hello."

Other method calls use a special syntax: a dot operator, which establishes a rela-
tionship between a value or expression to its left and a method name to its right.
In this example from table 1.1

x = "100".to_i

the dot means that the message “to_i” is being sent to the string “100”, or that the
method to_i is being called on the string “100”. The string “100” is called the
receiver of the message.

 Here’s a method call that uses the full dot notation and also takes an argu-
ment. This is a way to generate a decimal integer equivalent to the base-nine num-
ber 100:

x = "100".to_i(9)

x is now equal to 81 decimal.
 This example also shows the use of parentheses around method arguments.

These parentheses are usually optional, but in more complex cases they may be
required to clear up what might otherwise be ambiguities in the syntax. Many pro-
grammers use parentheses in most or all method calls, just to be safe (and for
visual clarity).

 In these examples, the string “100” functions as the receiver of the message
“to_i”. Basically, you’re addressing the string with the request Convert yourself to an
integer. The string itself is an object. The whole universe of a Ruby program consists
of messages being sent to objects. An object might be a string (as in the last exam-
ple). It might be an integer—perhaps an integer you want to convert to a string:

100.to_s

When you write a Ruby program, you spend most of your time either telling Ruby
what you want objects to be able to do—what messages you want them to be able
to understand—or sending messages to objects. Nor are you limited in your
object universe to things that Ruby already knows about, like strings and integers.
If you’re writing a Rails application in which one of your entity models is, say,

8 CHAPTER 1

How Ruby works
Customer, then when you write the code that causes things to happen—a customer
logging into a site, updating a customer’s phone number, adding an item to a
customer’s shopping cart—in all likelihood you’ll be sending messages to cus-
tomer objects.

 We’ll explore all of this in much greater depth later in the book. Again, this
brief sketch is just for Ruby literacy bootstrapping purposes. When you see a dot
in what would otherwise be an inexplicable position, you should interpret it as a
message (on the right) being sent to an object (on the left).

1.1.4 Writing and saving a sample program

Armed with some Ruby literacy (and a summary to refer back to when in doubt),
let’s walk through the steps involved in running a program. It’s highly recom-
mended that you create a separate directory for examples from this book. Some-
thing like this should be suitable:

$ cd
$ mkdir ruby4rails
$ cd ruby4rails

From this point on, the book will assume that all sample programs are kept in this
directory. In some cases it won’t matter, but in others it will (especially when you
start writing programs that take up more than one file, and the multiple files must
be able to find each other easily).

 Now you’ll create a program file. The program will be a Celsius-to-Fahrenheit
temperature converter. We’ll walk this example through several stages, adding to
it and modifying it as we go. The first version is very simple, because the focus is
on the file-creation and program-running processes.

Creating a first program file
You can use any text editor (vi, Emacs, Notepad, and so on) to create this and
future Ruby program files; none of the instructions or explanations in this book
are editor-specific. Remember that if you use a word-processing program, you
have to save your file as plain text.

 Type the code from listing 1.1 into a text file, and save it under the filename
c2f.rb in your ruby4rails directory.

c = 100
f = (c * 9 / 5) + 32
puts "The result is: "

Listing 1.1 Simple, limited-purpose Celsius-to-Fahrenheit converter (c2f.rb)

The mechanics of writing a Ruby program 9
puts f
puts "."

You now have a complete (albeit tiny) Ruby program on your disk, and you can
run it.

NOTE RUNNING RUBY PROGRAMS STANDALONE Depending on your operating
system, you may be able to run Ruby program files standalone—that is, with
just the filename, or with a short name (like c2f) and no file extension.
Keep in mind, though, that the .rb filename extension is mandatory in
some cases, mainly involving programs that occupy more than one file
(which you’ll learn about in detail later) and that need a mechanism for
the files to find each other. In this book, all Ruby program filenames end
in .rb to ensure that the examples work on as many platforms as possible.

1.1.5 Feeding the program to Ruby

The process of writing and running Ruby programs revolves around passing your
program source files to the Ruby interpreter, which is called ruby. You’ll do that
now… sort of. You’ll feed the program to ruby; but instead of asking Ruby to run
the program, you’ll ask it to check the program code (the lines of Ruby in the file)
for syntax errors.

Checking for syntax errors
If you accidentally type a space in the middle of the method-call print in c2f.rb
(pr int), that constitutes a syntax error. If you forget to type the # character
before a comment line, you’ll almost certainly introduce a syntax error (unless
the comment you expose is written in perfect Ruby!).

 Conveniently, the Ruby interpreter can check programs for syntax errors with-
out running the programs. It reads through the file and tells you whether the syn-
tax is OK. To run a syntax check on your file, do this:

$ ruby -cw c2f.rb

The -c flag means check—that is, check for syntax errors. The -w flag activates a
higher level of warning; Ruby will fuss at you if you’ve done things that are legal
Ruby but are questionable for one reason or another.

 Assuming you’ve typed the file correctly, you should see the message

Syntax OK

printed on your screen.

10 CHAPTER 1

How Ruby works
Running the program
To run the program, you pass the file once more to the interpreter, but this time
without the -c and -w flags:

$ ruby c2f.rb

If all goes well, you’ll see the output of the calculation:

The result is
212
.

Trouble in paradise
The result of the calculation is correct, but the output, spread as it is over three
lines, looks bad. You want it all on one line.

Fixing your first Ruby error
The problem can be traced to the difference between the puts command and the
print command. puts adds a newline to the end of the string it prints out, if the
string doesn’t end with one already. print, on the other hand, prints out the
string you ask it to and then stops; it doesn’t automatically jump to the next line.

 To fix the problem, you can change the first two puts commands to print:

print "The result is "
print f
puts "."

(Note the blank space after is, which ensures that there will be a space between
is and the number.) Now the output is as follows:

The result is 212.

puts is short for put [i.e., print] string. Although put may not intuitively invoke the
notion of skipping down to the next line, that’s what puts does: Like print, it prints
what you tell it to, but then it also automatically goes to the next line. If you ask puts
to print a line that already ends with a newline, it doesn’t bother adding one.

 If you’re used to print facilities in languages that don’t automatically add a
newline (such as Perl’s print function), you may find yourself writing code like
this in Ruby when you want to print a value followed by a newline:

print f, "\n"

puts, of course, does this for you. You’ll pick up the puts habit, along with other
Ruby idioms and conventions, as you go along.

The mechanics of writing a Ruby program 11
WARNING EXTRA NEWLINES WHEN YOU MAY NOT WANT THEM On some platforms
(Windows in particular), an extra newline character is printed out at the
end of the run of a program. This means a print that should really be a
puts will be hard to detect, because it will act like a puts. Being aware of
the difference between the two, and using the one you want based on the
usual behavior, should be sufficient to ensure you get the desired results.

On the other side of the equation is the matter of data input. Not every program
comes bundled with all the data it needs hard-coded into itself, as the examples
have so far. Data comes from many sources. In the typical Rails application, it
comes from a database. In Ruby usage generally, program data often comes from
the keyboard and/or one or more files. We’ll look next at how Ruby handles these
forms of input.

1.1.6 Keyboard and file input

Ruby offers lots of techniques for reading and writing data during the course of
program execution. As a Rails developer, you may find yourself using relatively
few of these facilities, because Rails does the data-fetching for you; and your users,
when they input from the keyboard, will generally be typing on a Web form.

 Nonetheless, it’s a very good idea to learn at least the basic Ruby keyboard and
file I/O operations. You’ll find uses for them, if not in the course of writing every
Rails application, then almost certainly while writing Ruby code to maintain, con-
vert, housekeep, or otherwise manipulate the environment in which you work.

Keyboard input
A program that tells you over and over again that 100° Celsius is 212° Fahrenheit
has limited value. A more valuable program lets you specify a Celsius temperature
and tells you the Fahrenheit equivalent.

 Modifying the program to allow for this functionality involves adding a couple
of steps and using two methods (one of which you’re familiar with already):

■ gets (get string) suspends the program and waits for one line of input from
the keyboard. (The “newline” character created when you hit the enter key
is included as the last character in the input line.)

■ to_i (to integer) converts a string to an integer. You need this method so that
the string you enter will play nicely with the other numbers when you calcu-
late the Fahrenheit result.

Because this is a new program, not just a correction, put the version from listing 1.2
in a new file (c2fi.rb; i stands for interactive):

12 CHAPTER 1

How Ruby works
print "Hello. Please enter a Celsius value: "
c = gets
f = (c.to_i * 9 / 5) + 32
print "The Fahrenheit equivalent is "
print f
puts "."

(Note the use of print versus puts to control when the output drops to a new line
and when it doesn’t.)

 A couple of sample runs demonstrate the new program in action:

$ ruby c2fi.rb
Hello. Please enter a Celsius value: 100
The Fahrenheit equivalent is 212.
$ ruby c2fi.rb
Hello. Please enter a Celsius value: 23
The Fahrenheit equivalent is 73.

NOTE SHORTENING THE CODE You can shorten the program considerably by
consolidating the operations of input, calculation, and output. A com-
pressed rewrite looks like this:

print "Hello. Please enter a Celsius value: "
print "The Fahrenheit equivalent is ", gets.to_i * 9 / 5 + 32,

nnnnnnn".\n"

This version economizes on variables—there aren’t any!—but requires
anyone reading it to follow a somewhat denser (although shorter) set of
expressions. Any given program usually has several or many spots where
you have to decide between longer (but maybe clearer) and shorter (but
maybe a bit cryptic). And sometimes, shorter can be clearer. It’s all part
of developing a Ruby coding style.

Example with file input
Reading a file from a Ruby program isn’t much more difficult than reading a line
of keyboard input. You’ll dip your toes in it here: You’ll read one number from a file
and convert it from Celsius to Fahrenheit. (Reading data in from a file does get more
elaborate than this, at times, but this example will show you the basic operation.)

 First, create a new file called temp.dat (temperature data), containing just one
line with one number on it:

100

Listing 1.2 Interactive temperature converter (c2fi.rb)

The mechanics of writing a Ruby program 13
Now, create a third program file, called c2fin.rb (in for [file] input), as shown in
listing 1.3.

puts "Reading Celsius temperature value from data file..."
num = File.read("temp.dat")
c = num.to_i
f = (c * 9 / 5) + 32
puts "The number is " + num
print "Result: "
puts f

This time, the sample run and its output look like this:

$ ruby c2fin.rb
Reading Celsius temperature value from data file...
The number is 100
Result: 212

Naturally, if you change the number in the file, the result will be different.
 For the sake of symmetry—and for practical reasons, because you’re likely to

want to do this at some point—let’s look at what’s involved in writing a variant of
the program that saves the result to a file.

Example with file output
The simplest file-writing operation is a little more elaborate than the simplest file-
reading operation (but not much more). If you’re scrutinizing the code, you can
see that the main extra item specified when you open a file for writing is the file
mode—in this case, w (for write).

 Save the version of the program from listing 1.4 to c2fout.rb, and run it.

print "Hello. Please enter a Celsius value: "
c = gets.to_i
f = (c * 9 / 5) + 32
puts "Saving result to output file 'temp.out'"
fh = File.new("temp.out", "w")
fh.puts f
fh.close

(The variable fh is named for file handle. Note that you use puts—actually
fh.puts, where the reference to the filehandle (fh) steers the output to the file

Listing 1.3 Temperature converter using file input (c2fin.rb)

Listing 1.4 Temperature converter with file output (c2fout.rb)

14 CHAPTER 1

How Ruby works
stream rather than to the screen—to output a line to the file represented by the
file handle.)

 If you inspect the file temp.out, you should see that it contains the Fahrenheit
equivalent of whatever number you typed in.

An exercise for the reader
Based on the previous examples, can you write a Ruby program that reads a num-
ber from a file and writes the Fahrenheit conversion to a different file?

1.1.7 One program, multiple files

Up to this point, we’ve approached the writing and execution of a Ruby program
as involving two entities: a program file and the Ruby interpreter. As you start to
write longer programs—and when you look at longer and more complex applica-
tions, including Rails applications and Rails itself—you’ll quickly discover that
very few programs occupy only one file. Unless you’re writing something really
compact, like a Celsius converter, your program will probably extend over two,
three, or in some cases dozens of files.

 Believe it or not, that’s good news.
 True, having a program in a single file lets you see it all in one place. But this

starts to be a liability rather than an asset when you’ve got hundreds or thou-
sands—or hundreds of thousands—of lines of code. Breaking your program into
separate files then starts to make lots of sense.

“require”-ing a file
When your program is spread across multiple files, the technique you’ll use most
often to run it as one program is the require command (the require method,
more accurately), which pulls in a second file from a file that’s already running.

 To demonstrate the use of require, you’ll need (no surprise) a program writ-
ten across two files. The first file, reqdemo.rb, should contain the following Ruby
code:

puts "This is the first (master) program file."
require 'requiree.rb'
puts "And back again to the first file."

When it encounters the require method call, Ruby reads in the second file. That
file, requiree.rb, should look like this:

puts "> This is the second file, which was 'require'd by the first."

Now, run Ruby on reqdemo.rb, and see the results:

Techniques of interpreter invocation 15
$ ruby reqdemo.rb
This is the first (master) program file.
> This is the second file, which was 'require'd by the first.
And back again to the first file.

This program doesn’t do much—it’s just a proof-of-concept demonstration of the
process of using more than one program file—but you can see from the messages
that the second file, requiree.rb, was executed at the point where you put the
require statement in the first file.

 Essentially, require goes and looks for another file and (assuming it finds it)
executes it. If it doesn’t find it, your program will terminate with a fatal error.

“load”-ing a file
A close relative of require is load. The main difference is that if you do this

require "requiree.rb"
require "requiree.rb"

nothing happens the second time; whereas if you do this

load "requiree.rb"
load "requiree.rb"

Ruby reads in the file twice.
 Doing it twice in a row in the same file is almost certainly pointless, but in some

cases this kind of multiple loading is useful. Rails uses load in preference to
require, for example, in development mode—which means that if you’re trying
your application in a browser and making changes to the code at the same time,
your changes are reloaded, overriding any caching behavior on the part of the
Web server. Multiple require calls in the same place don’t have the same effect if
the application has already read the file in once.

 The facilities for getting multiple files to work together loom very, very large in
Ruby programming generally and certainly in the Rails framework. You’ll see
examples of multifile interaction in part 4 of the book, especially in chapter 17,
where we dig into the Rails source code. File-to-file connections make both Ruby
and Rails cohere, separately and together.

 Meanwhile, let’s return to the basic Ruby procedural scenario.

1.2 Techniques of interpreter invocation

You’ve roughed out the lifecycle of a Ruby program. Now you’re in a position to
back-and-fill a bit.

16 CHAPTER 1

How Ruby works
 As already noted, when you run a Ruby program, you’re really running a pro-
gram called ruby and feeding your program to that program. Here, we’ll look at fur-
ther options available to you in the course of doing this. These options include
command-line switches (of which you’ve seen an example in the -cw syntax-checking
flag), techniques for directing your program to the Ruby interpreter without having
to invoke ruby on the command line, and details of how to run the irb interpreter.

1.2.1 Command-line switches

When you start the Ruby interpreter from the command line, you can provide not
only the name of a program file but also one or more command-line switches.
The switches you choose instruct the interpreter to behave in particular ways
and/or take particular actions.

 Ruby has more than 20 command-line switches. Some of them are used rarely;
others are used every day by many Ruby programmers. Here we’ll look at several
more of the most commonly used ones. (You've already seen two of them, -c and
-w, used in combination with each other.) These common switches are summa-
rized in table 1.2 and then explained separately.

Check syntax (-c)
The -c switch tells Ruby to check the code in one or more files for syntactical accu-
racy without executing the code. It’s usually used in conjunction with the -w flag.

Table 1.2 Summary of commonly used Ruby command-line switches

Switch Description Example of usage

-c Check the syntax of a program file
without executing the program

ruby -c c2f.rb

-w Give warning messages during pro-
gram execution

ruby -w c2f.rb

-e Execute the code provided in quota-
tion marks on the command line

ruby -e 'puts "Code demo!"'

-v Show Ruby version information, and
execute the program in verbose mode

ruby -v

-l Line mode: print a newline after every
line, if not otherwise present

ruby -l -e 'print "Will jump down!"'

-rname Load the named extension (require it) ruby -rprofile

--version Show Ruby version information ruby --version

Techniques of interpreter invocation 17
Turn on warnings (-w)
Running your program with -w causes the interpreter to run in warning mode.
This means you’ll see more warnings than you otherwise would printed to the
screen, drawing your attention to places in your program which, although not syn-
tax errors, are stylistically or logically suspect. It’s Ruby’s way of saying, “What
you’ve done is syntactically correct, but it’s weird. Are you sure you meant to do
that?” (Even without this switch, Ruby issues certain warnings, but fewer than it
does in full warning mode.)

Execute literal script (-e)
The -e switch tells the interpreter that the command line includes Ruby code, in
quotation marks, and that it should execute that actual code rather than executing
the code contained in a file. This can be handy for quick scripting jobs where enter-
ing your code into a file and running ruby on the file may not be worth the trouble.

 For example, let’s say you want to see your name backward. Here’s how you
can do this quickly, in one command-line command, using the execute switch:

$ ruby -e 'puts "David A. Black".reverse'
kcalB .A divaD

What lies inside the single quotation marks is an entire (although short) Ruby
program. If you want to feed a program with more than one line to the -e switch,
you can use literal linebreaks inside the mini-program:

$ ruby -e 'print "Enter a name: "
puts gets.reverse'
Enter a name: David A. Black

kcalB .A divaD

Or, you can separate the lines with semicolons:

$ ruby -e 'print "Enter a name: "; print gets.reverse'

NOTE NEWLINES IN REVERSED STRINGS Why is there a blank line between the
program code and the output in the two-line reverse examples? Because
the line you enter on the keyboard ends with a newline character—so when
you reverse the input, the new string starts with a newline! Ruby, as al-
ways, takes you literally when you ask it to manipulate and print data.

Run in line mode (-l)
If you look back at the result of executing the first version of the Celsius conversion
program, the output from Ruby—the number 212—runs together on the screen

18 CHAPTER 1

How Ruby works
with the prompt from the shell (the $ character). The reason, as you saw, was that
you used print rather than puts, so no newline character followed the number.

 The -l switch gives you blanket coverage on putting lines of output on sepa-
rate lines. It’s sometimes convenient to do this when you’re not sure whether the
lines you plan to print end with newlines. In most cases, you can use puts, but the
-l switch helps you in cases where you don’t have control over the code.

 Let’s say someone else writes a program that goes through a file of names and
prints out the first names. For whatever reason, the original programmer uses
print rather than puts, which means that a run of the program on a typical file
produces output like this:

$ ruby firstnames.rb
AdaBarbaraClaraDoris

Now, let’s say you want to use the program, but you want each name on a separate
line. You can tell Ruby to operate in line mode, and you’ll get what you need:

$ ruby -l firstnames.rb
Ada
Barbara
Clara
Doris

You won’t see the -l flag as often as you’ll see programs that use puts to ensure
similar behavior. But it can be useful, and you’ll want to be able to recognize it.

Require named file or extension (-rname)
The -r switch lets you specify files to require on the command line. As you’ll see,
require also has the broader purpose of activating extensions (add-on program-
ming facilities). You can use the -r flag for that flavor of require, too.

Run in verbose mode (-v)
Running with -v does two things: It prints out information about the version of
Ruby you’re using, and then it turns on the same warning mechanism as the -w
flag. The most common use of -v is to find out the Ruby version number:

$ ruby -v
ruby 1.8.2 (2004-12-25) [i686-linux]

(In this case, we’re using Ruby 1.8.2, released on Christmas Day, 2004, and com-
piled for an i686-based machine running Linux.) Because there’s no program or
code to run, Ruby exits as soon as it has printed the version number.

Techniques of interpreter invocation 19
Print Ruby version (--version)
Not surprisingly, this flag is like -v except that all --version does is to print the
Ruby version information. It doesn’t proceed to execute any code, even if you pro-
vide code or a filename. It just prints the version information and exits. You’ll see
ruby -v much more often than ruby --version.

Combining switches
It’s not uncommon to combine one or more command-line switches in a single
invocation of Ruby.

 You’ve already seen the cw combination, which checks the syntax of the file
without executing it, while also giving you warnings:

$ ruby -cw filename

Another combination of switches you’ll often see is -v and -e, which shows you
the version of Ruby you’re running and then runs the code provided in quotation
marks. You’ll see this combination a lot in discussions of Ruby, on mailing lists and
elsewhere; people use it to demonstrate how the same code might work differ-
ently in different versions of Ruby. For example, if you want to show clearly that
an operation called lstrip (strip all whitespace from the left-hand side of a
string) was not present in Ruby 1.6.8 but is present in Ruby 1.8.2, you can run a
sample program using first one version of Ruby, then the other:

$ ruby-1.6.8 -ve 'puts " abc".lstrip'
ruby 1.6.8 (2002-12-24) [i686-linux]
-e:1: undefined method `lstrip' for " abc":String (NameError)

$ ruby -ve 'puts " abc".lstrip'
ruby 1.8.2 (2004-12-25) [i686-linux]
abc

The undefined method 'lstrip' message on the first run (the one using version1.6.8)
means that you’ve tried to perform a nonexistent named operation. When you run
the same Ruby snipped using Ruby 1.8.2, however, it works: Ruby prints abc (with
no leading blanks). This is a convenient way to share information and formulate
questions about changes in Ruby’s behavior from one release to another.

 At this point, we’re going to go back and look more closely at the interactive
Ruby interpreter, irb. You may have looked at this section already, when it was
alluded to near the beginning of the chapter. If not, you can take this opportunity
to learn more about this exceptionally useful Ruby tool.

20 CHAPTER 1

How Ruby works
1.2.2 A closer look at interactive Ruby interpretation with irb

One of the great pleasures of using Ruby is using irb. irb is an interactive inter-
preter—which means that instead of processing a file, it processes what you type
in during a session. irb is a great tool for testing Ruby code, and a great tool for
learning Ruby.

 To start an irb session, you use the command irb. irb will print out its prompt:

$ irb
irb(main):001:0>

Now, you can enter Ruby commands. You can even run a one-shot version of the
Celcius-to-Fahrenheit conversion program. As you’ll see in this example, irb
behaves like a pocket calculator: It evaluates whatever you type in and prints the
result. You don’t have to use a print or puts command:

irb(main):001:0> 100 * 9 / 5 + 32
=> 212

To find out how many minutes there are in a year (if you don’t have a CD of the hit
song from the musical Rent handy), type in the relevant multiplication expression:

irb(main):001:0> 365 * 24 * 60
=> 525600

irb will also, of course, process any Ruby instructions you enter. For example, if
you want to assign the day, hour, and minute counts to variables, and then multi-
ply those variables, you can do that in irb:

irb(main):001:0> days = 365
=> 365
irb(main):002:0> hours = 24
=> 24
irb(main):003:0> minutes = 60
=> 60
irb(main):004:0> days * hours * minutes
=> 525600

The last calculation is what you’d expect. But look at the first three lines of entry.
When you type days = 365, irb responds by printing 365. Why?

 The expression days = 365 is an assignment expression: You’re assigning the
value 365 to a variable called days. The main business of an assignment expres-
sion is to assign, so that you can use the variable later. But assignment expressions
themselves—the whole days = 365 line—have a value. The value of an assignment
expression is its right-hand side. When irb sees any expression, it prints out the
value of that expression. So, when irb sees days = 365, it prints out 365. This may

Ruby extensions and programming libraries 21
seem like overzealous printing, but it comes with the territory; it’s the same behav-
ior that lets you type 2 + 2 into irb and see the result without having to use an
explicit print statement.

 Once you get the hang of irb’s approach to printing out the value of everything,
you’ll find it an immensely useful tool (and toy).

TIP EXITING FROM IRB (INTENTIONALLY OR OTHERWISE) If you get stuck in
a loop or frozen situation in irb, press Ctrl-c. To exit, press Ctrl-d or type
exit. Occasionally, irb may blow up on you (that is, hit a fatal error and
terminate itself). Most of the time, though, it will catch its own errors and
let you continue.

Next on our tour of the Ruby landscape are Ruby extensions and libraries. Look-
ing at these facilities will give you a sense of how the core language interacts with
the add-ons that are either bundled in the Ruby distribution or distributed sepa-
rately by third-party programmers interested in enriching the Ruby program-
ming environment.

1.3 Ruby extensions and programming libraries

Earlier, you saw a simple example of the use of require to pull in one file from
another during program execution. require is the foundation of a huge amount
of Ruby’s power and richness as a programming language. Specifically, this mech-
anism gives you access to the many extensions and programming libraries bundled
with the Ruby programming language—as well as an even larger number of exten-
sions and libraries written independently by other programmers and made avail-
able for use with Ruby.

 The full range of Ruby’s standard library is outside of the scope of this book.
This section provides guidelines and pointers about what Ruby offers and how to
use libraries in your own programs.

1.3.1 Using standard extensions and libraries

When you install Ruby on your system, you really install several layers. First is the
core Ruby language: the basic operations and programming techniques available
when you run the Ruby interpreter.

 Second are a large number of extensions and programming libraries bundled with
Ruby—add-ons that help you write programs in different areas of specialization.
These are usually referred to collectively as the standard library. Ruby comes with
extensions for a wide variety of projects and tasks: database management, net-
working, specialized mathematics, XML processing, and many more.

22 CHAPTER 1

How Ruby works
 To use a Ruby extension, you require it:

require 'cgi'
require 'REXML/Document'

Extensions are basically just program files (or clusters of related program files that
require each other) containing specialized code, dedicated to a particular area of
programming. When you use, say, the CGI extension, as in the previous example,
you immediately have access to a wide variety of programming commands and
techniques designed to help you write CGI programs. (Ruby on Rails does this;
you’ll see the line require 'cgi' in a number of the program files that make up
the Rails package.) The purpose, as with any extension, is to save everyone a lot of
trouble. Because all those CGI programming techniques are already available
through a simple require command, everyone can use them. The alternative
would be for everyone to write the code required to support those techniques,
which would be difficult and a waste of time.

 Note that you say require 'cgi', not require 'cgi.rb'. Aside from looking
nicer, this bareword way of referring to the extension is necessary because not all
extensions use files ending in .rb. Specifically, extensions written in C (more in
the next section) are stored in files ending with .so or .dll. To keep the process
transparent—that is, to save you the trouble of knowing whether the extension
you want uses a .rb file or not—Ruby accepts a bareword and then does some
automatic file-searching and trying out of possible filenames until it finds the file
corresponding to the extension you have requested.

NOTE EXTENSION OR LIBRARY? The broadest term for a collection of program-
ming commands and techniques that you can pull into your own pro-
gram via a require statement is library. The term extension is usually
reserved for libraries that are distributed with Ruby, as opposed to those
written by third-party programmers and made available to others for use
in their applications. One exception is extensions to Ruby written in the
C programming language—both those provided with Ruby and those
written as add-ons—which are frequently referred to as extensions.

1.3.2 Using C extensions

Some of the extensions that come with Ruby are written in Ruby. They use the
techniques available in the core language to conjure up more layers of functional-
ity and language features. Some extensions, however, are written in C. C exten-
sions in the Ruby distribution include a socket-programming library (for network
applications), a syslog (system logging) programming facility, and several libraries
devoted to database handling.

Ruby extensions and programming libraries 23
 Some of these C extensions could have been written in Ruby. There are a cou-
ple of reasons for writing them in C. The main reason is speed—execution speed,
that is. Some C extensions have to be in C; their goal is to provide a bridge
between Ruby and what’s already available to C programmers. They can’t be writ-
ten in Ruby because they’re bringing these features to Ruby.

 The Ruby interpreter handles extensions in such a way that when you use one,
you don’t have to worry about whether it was written in Ruby or C. You just
require it

require 'gdbm'

and Ruby finds the files it needs to load, whether they are Ruby files or binary files
produced during the compile process from C source files.

1.3.3 Writing extensions and libraries

Many extensions and add-on libraries are bundled with the official distribution of
the Ruby programming language and are installed on your system when you install
Ruby. But anyone can write an extension or library. When you write Ruby code that
lets you and other programmers do something new and valuable with Ruby, you’ve
written an extension. Your code may not make it into the collection of extensions
that comes with the Ruby language. But you can still make it available to other pro-
grammers, thereby adding value to the Ruby programming environment.

 The difference between writing a library and breaking your program into mul-
tiple files lies in what happens to your code. Do you use it in more than one pro-
gram? Do other people use it? If so, then it’s reasonable to call it a library.

 The Rails framework is a library (really a bundle of interrelated libraries). As a
Rails developer, you may or may not write Ruby libraries. But you can do so, and it’s
not uncommon for Ruby programmers involved in diverse projects to release parts
of what they’re working on as libraries and extensions useable by other programmers.

TIP VISIT THE RUBY APPLICATION ARCHIVE AND RUBYFORGE If you’re inter-
ested in seeing the kinds of Ruby projects that other Rubyists have made
available, including applications as well as programming libraries and ex-
tensions, the best places to look are the Ruby Application Archive (RAA;
http://raa.ruby-lang.org) and RubyForge (http://www.rubyforge.net).

We’ll conclude this chapter with an examination of the Ruby programming envi-
ronment: what comes with Ruby (including the source code for Ruby); where
Ruby installs itself on your system; and what kinds of applications and program-
ming facilities Ruby provides you.

24 CHAPTER 1

How Ruby works
1.4 Anatomy of the Ruby programming environment

Installing Ruby on your system means installing numerous components of the lan-
guage, possibly including the source code for the language, and definitely includ-
ing a number of disk directories’ worth of Ruby-language libraries and support
files. You won’t necessarily use everything in this section every time you write
something in Ruby, but it’s good to know what’s there. Also, quite a few of the pro-
gramming libraries that come bundled with Ruby are written in Ruby—so know-
ing your way around the Ruby installation will enable you to look at some well-
written Ruby code and (we hope) absorb some good habits.

 We’ll start with the Ruby source code.

1.4.1 The layout of the Ruby source code

The Ruby source code directory (tree) contains the files that house the program
code for the Ruby interpreter as well as a number of bundled add-ons. The core
Ruby language is written in C, so in order to read and fully understand the files,
you need to know C. But even if you don’t know C, you can learn a lot from perus-
ing the comments and documentation contained in the source files.

TIP MAKE SURE YOUR PACKAGE MANAGER GIVES YOU ALL OF RUBY If you in-
stall Ruby via a remote package manager, you may not end up with the
Ruby source on your machine. If that happens, and you want the source,
check for a package named “ruby-source” or something similar. If there’s
no such package, you can download the source from ruby-lang.org and
un-tar it. See the book’s appendix for more information about installing
Ruby and pointers on how to get platform-specific information.

If you examine a directory listing of the top-level directory of the Ruby source
tree, you’ll see the following:

■ Several subdirectories, including ext/ and lib/ (both discussed shortly)

■ Informational, legal, and license-related files (such as COPYING, GPL, and
README)

■ Files pertaining to the process of building and installing Ruby (all the con-
fig* files, Makefile.in, install-sh, and so on)

■ C program and header files (*.c and *.h)

Some of these files are only needed during the building of Ruby. Some of them are
copied over directly when Ruby is installed. And, of course, the building process

Anatomy of the Ruby programming environment 25
generates a number of new files (including ruby, the interpreter) that make their
way onto your system permanently when you install Ruby.

1.4.2 Navigating the Ruby installation

We’ll look at several of the subdirectories of the main Ruby installation to give you
a general sense of what’s in them. This is just an overview. The best way—really,
the only way—to get to know the Ruby installation layout and become comfort-
able with it is to navigate around it and see what’s there.

 Before you can either navigate generally or pinpoint files specifically, you
need to know where Ruby is installed on your system. The best way to find out is
to ask Ruby.

How to get Ruby to tell you where it’s installed
Ruby is installed to directories with different names on different platforms and/or
by different packaging systems. You can find out where the installation is on your
system by using irb. First, start up irb with the -r flag, requiring the extension
named rbconfig:

$ irb -rrbconfig

This command causes irb to preload some configuration information for your
particular installation, including information about where various components of
Ruby have been installed.

 To get the information, enter an expression like this into irb:

irb(main):001:0> Config::CONFIG["bindir"]

This request shows you the directory where the Ruby executable files (including
ruby and irb) have been installed; that’s the bindir. To get other information,
you need to replace bindir in the irb command with other terms. But each time,
you’ll use the same basic formula: Config::CONFIG["term"].

 In each of the following sections, the section subtitle includes the term you need. Just
plug that term into the irb command, and you’ll be shown the name of the directory.

The extensions and libraries subdirectory (rubylibdir)
Inside the rubylibdir (whatever that directory may be called on your system),
you’ll find program files written in Ruby. These files provide standard library facil-
ities, which you can require from your own programs if you need the functionality
they provide.

 Here’s a sampling of the files you’ll find in this directory:

26 CHAPTER 1

How Ruby works
■ cgi.rb—Tools to facilitate CGI programming

■ fileutils.rb—Utilities for manipulating files easily from Ruby programs

■ tempfile.rb—A mechanism for automating the creation of temporary files

■ tk.rb—A programming interface to the Tk graphics library

Some of the standard extensions, such as the Tk graphics library (the last item on
the previous list), span more than one file; you’ll see a large number of files with
names beginning with tk, as well as a whole tk subdirectory, all of which are part of
the Ruby Tk library.

 Browsing your rubylibdir will give you a good (although possibly overwhelming,
but in a good way) sense of the many tasks for which Ruby provides programming
facilities. Most programmers use only a subset of these capabilities, but even a subset
of such a large collection of programming libraries makes a huge difference.

The C extensions directory (archdir)
Usually located one level down from the rubylibdir, the archdir contains
architecture-specific extensions and libraries. The files in this directory gener-
ally have names ending in .so or .dll (depending on your platform). These
files are C-language extensions to Ruby; or, more precisely, they are the binary,
runtime-loadable files generated from Ruby’s C-language extension code, com-
piled into binary form as part of the Ruby installation process.

 Like the Ruby-language program files in the rubylibdir, the files in the arch-
dir contain standard library components that you can require into your own pro-
grams. (Among others, you’ll see the file for the rbconfig extension—the
extension you’re using with irb to uncover the directory names.) These files are
not human-readable, but the Ruby interpreter knows how to load them when
asked to do so. From the perspective of the Ruby programmer, all standard librar-
ies are equally useable, whether written in Ruby or written in C and compiled to
binary format.

The site_ruby directory (sitedir) and its subdirectories (sitelibdir, sitearchdir)
Your Ruby installation includes a subdirectory called site_ruby. As its name sug-
gests (albeit telegraphically), site_ruby is where you and/or your system adminis-
trator store third-party extensions and libraries. Some of these may be code you
yourself write; others are tools you download from other people’s sites and
archives of Ruby libraries.

Anatomy of the Ruby programming environment 27
 The site_ruby directory parallels the main Ruby installation directory, in the
sense that it has its own subdirectories for Ruby-language and C-language exten-
sions (sitelibdir and sitearchdir, respectively, in Config terms). When you
require an extension, the Ruby interpreter checks for it in these subdirectories of
site_ruby as well as in both the main rubylibdir and the main archdir.

The gems directory
This directory is a little different; it isn’t part of Ruby’s internal configuration
information because it’s for something that gets installed separately: the Ruby-
Gems packaging system. But you’ll probably see it on any system with Rails
installed, for the simple reason that the Rails framework is usually distributed and
installed using the RubyGems system.

 The gems directory is usually at the same level as site_ruby; so, if you’ve found
site_ruby, look at what else is installed next to it. Inside the gems directory are
one or more subdirectories; and if you explore these, you’ll find (possibly among
other things) the source code for the Rails framework.

 We’ll stop here, because the Rails source is a topic for later in the book (particu-
larly for the last chapter, chapter 17). But you have a sense for where Ruby puts
files and directories. We’ll finish this section with a look at some applications and
other programming facilities that come bundled with Ruby.

1.4.3 Important standard Ruby tools and applications

We’ll round out our overview of the Ruby programming environment by examin-
ing some of the most important tools Ruby provides for programmers. (irb belongs
on this list, but it was discussed already and therefore isn’t reintroduced here.)

The debugger
Debugging—fixing errors—is part of programming. There are many techniques
for debugging programs, ranging from rigorous testing to asking for advice on a
chat channel.

 The Ruby debugging facility (found in the library file debug.rb) helps you debug
a program by letting you run the program one instruction at a time, with pauses in
between. During the pauses, you’re presented with a prompt; at this prompt, you
can examine the values of variables, see where you are in a nested series of com-
mands, and resume execution. You can also set breakpoints—places in your program
where the debugger stops execution and presents you with the prompt.

 Here’s a run of c2fi.rb—the version of the Celsius converter that takes key-
board input—through the debugger. Note the use of the step command; it tells

28 CHAPTER 1

How Ruby works
the debugger to run the next instruction. Note too that the debugger’s prompt
gets run in with the output of the print command—which, as you’ll recall,
doesn’t automatically add a newline character to its output. You use the v l com-
mand along the way to examine the values of the local variables c and f. This
example runs Ruby with the debug extension loaded:

$ ruby -rdebug c2fi.rb #1
Debug.rb
Emacs support available.

c2fi.rb:3:print "Please enter a Celsius temperature: "
(rdb:1) step
Please enter a Celsius temperature: c2fi.rb:4:c = gets.to_i
(rdb:1) step
25
c2fi.rb:5:f = (c * 9 / 5) + 32
(rdb:1) step
c2fi.rb:5:f = (c * 9 / 5) + 32
(rdb:1) step
c2fi.rb:6:puts f
(rdb:1) v l
 c => 25
 f => 77
(rdb:1) step
77

Some programmers are more at home in the debugger than others. Running a
program this way differs a great deal from a normal run, and some people prefer
to debug a program by inserting instructions in the program itself to display infor-
mation on the screen during a program run. That approach to debugging can be
messy, because you have to go back into your program file and disable or remove
the lines that do the displaying. On the other hand, you have to go back into the
file anyway to fix the bug.

 Whatever your personal work habits in the realm of debugging, it’s useful to
know that the Ruby debugging facility is available.

Profiling
In programming terms, profiling means measuring how much use is made of sys-
tem resources—time, principally—by different parts of your program. This starts
to matter with longer programs, particularly programs that involve looping
through instructions many times (for example, a program that reads in a long file
and examines or modifies the contents of each line as it’s read in).

 None of the examples up to this point require profiling, because they’re short
and simple. However, if you want to see the kind of information that the profiler

Anatomy of the Ruby programming environment 29
gives you—and if you can regard it stoically without worrying, because much of it
will be hard to decipher, at this stage—try running the following command:

$ ruby -r profile c2fi.rb

Stand back to make room for the output.
 Profiling pinpoints the spots in a program that are using lots of system

resources and therefore potentially slowing the program. The information pro-
vided by the profiler may lead you to tweak part of a program to make it run more
efficiently; or, if there’s no relatively easy way around the resource bottleneck, it
may lead you to rewrite part of the program in C, to make it run faster.

ri and RDoc
ri (Ruby Index) and RDoc (Ruby Documentation) are a closely related pair of
tools for providing documentation about Ruby programs. ri is a command-line
tool; the RDoc system includes the command-line tool rdoc. ri and rdoc are stand-
alone programs; you run them from the command line. You can also use the facil-
ities they provide from within your Ruby programs.

 RDoc is a documentation system. If you put comments in your program files
(Ruby or C) in the prescribed RDoc format, rdoc scans your files, extracts the
comments, organizes them intelligently (indexed according to what they com-
ment on), and creates nicely formatted documentation from them. You can see
RDoc markup in many of the C files in the Ruby source tree and many of the Ruby
files in the Ruby installation.

 ri dovetails with RDoc: It gives you a way to view the information that RDoc has
extracted and organized. Specifically (although not exclusively, if you customize
it), ri is configured to display the RDoc information from the Ruby source files.
Thus on any system that has Ruby fully installed, you can get detailed information
about Ruby with a simple command-line invocation of ri. For example, if you
want the full, official description of what require does, you can type

$ ri require

(You’ll get more than you want or need, right now—but exactly the right amount
once you’ve learned about the roots and branches of the require mechanism.)

 ri and RDoc are the work of Dave Thomas.

ERb
Last but not least (not by a long shot, in connection with Rails), Ruby provides you
with a program called ERb (Embedded Ruby), written by Seki Masatoshi. ERb allows
you to put Ruby code inside an HTML file. Or is it putting HTML in a program file?

30 CHAPTER 1

How Ruby works
It’s really both: You get to embed (hence the name) Ruby inside non-Ruby, and ERb
interprets the whole thing as program input.

 ERb reads a file—an ERb document—and prints it out again. Except you’re
allowed to insert Ruby programming instructions in the document (using a spe-
cial syntax, described in a moment). When ERb hits the Ruby instructions, it exe-
cutes them. Depending on what you’ve asked for, it either moves on or prints out
the results of executing the instructions.

 ERb reads along, word for word, and then at a certain point (when it sees the
Ruby code embedded in the document) it sees that it has to fill in a blank, which
it does by executing the Ruby code.

 You need to know only two things to prepare an ERb document:

■ If you want some Ruby code executed, enclose it between <% and %>.

■ If you want the result of the code execution to be printed out, as part of the
output, enclose the code between <%= and %>.

ERb will figure out what to do when it hits <% or <%=.
 Here’s an example. Save the code from listing 1.5 in your ruby4rails directory

as erbdemo.rb:

<% page_title = "Demonstration of ERb" %>
<% salutation = "Dear programmer," %>
<html>
<head>
<title><%= page_title %></title>
</head>
<body>
<p><%= salutation %></p>
<p>This is a brief demonstration of how ERb fills out a template.</p>
</body>
</html>

Now, run the program using the command-line utility erb instead of ruby:

$ erb erbdemo.rb

<html>
<head>
<title>Demonstration of ERb</title> #5
</head>
<body>
<p>Dear programmer,</p>

Listing 1.5 Demonstration of ERb (erbdemo.rb)

Summary 31
<p>This is a brief demonstration of how ERb fills out a template.</p>
</body>
</html>

The output of the program run is just what you’d expect, given the rules for how
ERb reads and interprets its input. The first two lines of the program are inter-
preted as Ruby instructions (that is, the parts inside the <%…%> markers; the mark-
ers themselves are ignored). Once those two lines have been read, you have two
variables to work with: page_title and salutation. The HTML markup instruc-
tion <html> is read in literally and printed out literally, with no change. That’s the
first line of output (except for two blank lines; erb gave you a blank line for each
of those <%…%> lines). The <head> tag also comes through in the output just as it
appeared in the input.

 In the <title> tag, you see some Ruby code inside a <%= ... %> delimiter pair.
These are the delimiters you use when you want the result of evaluating the code
to be inserted into the ERb output. The Ruby code, in this case, is the single vari-
able page_title, and the value of that variable is the string “Demonstration of
ERb”. (You know this because you assigned that value to the title variable on the
first line.) So, at this point in the output, ERb fills in the perceived blank with
“Demonstration of ERb”.

 ERb looms very large in the Ruby on Rails framework. Essentially, what you see
on the screen when you connect to a Rails application is, in many cases, the out-
put from an ERb document. That’s a major part of how Rails works: It sets up val-
ues for variables based on the database it’s working with (and various formulas
and manipulations you specify), and then, based on the values of those variables,
it renders a screen’s worth of HTML, courtesy of asking ERb to insert the values
into the document at the appropriate places. Getting a conceptual handle on ERb
at this stage will serve you well in the course of your use of Rails.

1.5 Summary

In this chapter, we’ve walked through some important foundational Ruby mate-
rial and facilities. You’ve learned some important terminology, including the dif-
ference between Ruby (the programming language overall) and ruby (the name
of the Ruby interpreter program). You’ve completed (in miniature, but still from
start to finish) the process of writing a Ruby program, saving it in a file, checking
it for syntax errors, and running it. You’ve gotten a taste of how to do keyboard
input in Ruby as well as file input and output. You’ve also learned how to pull in
one program file from another with require and load.

32 CHAPTER 1

How Ruby works
 Section 1.2 introduced some of the details of interpreter invocation, in partic-
ular Ruby’s command-line switches (not all of them, but a selection of the most
common and useful) and the use of the interactive Ruby interpreter, irb, for test-
ing, learning, and playing with Ruby.

 We then looked at Ruby extensions and libraries, including some specific
example but focusing mainly on the mechanism for calling up extensions in your
code (with require). This overview also included discussion of C extensions,
which are often used for speed or for easy interaction with existing C libraries
written outside of Ruby.

 The last section in this chapter took you on a guided tour of the Ruby program-
ming environment. We took stock of the source tree for Ruby—a fount of informa-
tion and detail—as well as the Ruby installation. The programming environment
also includes useful applications and program development facilities, such as ERb,
RDoc, ri, and the debugging and profiling libraries bundled with Ruby.

 You now have a good blueprint of how Ruby works and what tools the Ruby
programming environment provides. In the next chapter, we’ll present a similar
introduction to the Rails development environment, but we’ll go a lot further in
the direction of writing actual code. As you’ll see, the Ruby and Rails environ-
ments interact very effectively.

How Rails works
This chapter covers
■ Overview of the Rails framework
■ Details of how Rails handles incoming requests
■ Domain modeling and database creation
■ A complete sample Rails application
33

34 CHAPTER 2

How Rails works
In this chapter, we’ll look at the anatomy of both the Rails framework overall and
the typical Rails application. In the spirit of chapter 1, this exploration will
include both a medium-level overview and an introduction to some important
concepts. In the spirit of Rails—the spirit, that is, of easy, rapid development of
Web applications—it will also include the creation of a working application.

 The Ruby on Rails framework—the programs and programming libraries that
you get when you install Rails on your system—exists for the purpose of allowing
you to write individual Rails applications. A Rails application is the program that
takes control when someone connects to a Rails-driven Web site. It may be an
online shopping service, a survey site, a library catalog, a collaborative authorship
site, or any of many other things. The nature and purpose of Rails applications
vary widely. But the overall shape of one Rails application is much like that of
another; and the framework holds steady. We’ll be looking closely at how both the
framework and a typical application work.

2.1 Inside the Rails framework

A framework is a program, set of programs, and/or code library that writes most
of your application for you. When you use a framework, your job is to write the
parts of the application that make it do the specific things you want.

NOTE GETTING RAILS AND RAILS INFORMATION This book’s appendix contains
information about installing Rails and pointers on where to get more in-
formation. You may be working on a system with Rails installed already;
but if not, or if you want to make sure you have your finger on the pulse
of the major sources of Rails information, look at the appendix.

The term framework comes from the field of building construction, where it refers
to a partially built house or building. Once a house reaches the framework stage,
much of the work of building is done—but the house looks exactly like any other
house in the same style at the same stage. It’s only after the framework is in place
that the builders and designers start to do things that make the house distinct
from other houses.

 Unlike scaffolding, which gets removed once the house is built, the framework
is part of the house. That’s true in the case of Ruby on Rails, too. When you run
your application, the Rails framework—the code installed in the various Rails
directories on your computer—is part of it. You didn’t write that code, but it’s still
part of your application; it still gets executed when your application runs.

Inside the Rails framework 35
 A computer application framework like Rails and a house framework are dif-
ferent in one important respect: The computer framework is reusable. Install
Rails once, and it serves as the framework for any number of applications. What it
provides, it keeps providing; you never have to write the parts of your application
that are pre-written as part of Rails.

 The difference between what you can do with Rails and what you would have to
do if you wrote the equivalent of a Rails application from scratch is considerable. If
you’re developing a shopping cart site with Rails, you have to decide things like
whether shipping charges will be shown before checkout, or whether to slap up
links to products similar to those in the customer’s cart. But you don’t have to design
a translator that automatically maps database table names to Ruby method names,
or write a comprehensive library of helper routines that automate the generation
of HTML form elements, or engineer a system that layers automatic method calls in
a particular order based on a simple list. These tasks (and many more) have been
programmed already, and they’re available to every Rails application.

 The Rails framework exists to be used, and it’s designed for use. The best way
to understand both the “what” and the “why” of its design, and its relation to the
language in which it’s written, is to first grasp what you’re supposed to do when
you use it.

2.1.1 A framework user’s–eye view of application development

When you set out to write a Rails application—leaving aside configuration and
other housekeeping chores—you have to perform three primary tasks:

1 Describe and model your application’s domain. The domain is the universe of
your application. The domain may be music store, university, dating service,
address book, or hardware inventory. Whatever it is, you have to figure out
what’s in it—what entities exist in this universe—and how the items in it
relate to each other. The domain description you come up with will guide
the design of your database (which you’ll need to create and initialize using
the administrative tools provided by the database system) as well as some of
the particulars of the Rails application.

2 Specify what can happen in this domain. The domain model is static; it’s just
things. Now you have to get dynamic. Addresses can be added to an address
book. Musical scores can be purchased from music stores. Users can log in
to a dating service. Students can register for classes at a university. You need
to identify all the possible scenarios or actions that the elements of your
domain can participate in.

36 CHAPTER 2

How Rails works
3 Choose and design the publicly available views of the domain. At this point, you
can start thinking in Web-browser terms. Once you’ve decided that your
domain has students, and that they can register for classes, you can envi-
sion a welcome page, a registration page, and a confirmation page. Cus-
tomers shopping for shoes may have access to a style selector, a shopping
cart, and a checkout page. Each of these pages, or views, shows the user
how things stand at a certain point along the way in one of your domain’s
scenarios. You have to decide which views will exist.

Just about everything you do when you develop a Rails application falls into one
of these three categories. In some respects, the categories are related; in particu-
lar, scripting the specific actions that take place in your domain (category 2) and
deciding what views of the domain you’ll provide (category 3) go hand in hand.
But the layers of development are also separate. That separation isn’t a flaw or a
fault line, but a strength. Keeping the distinct phases of development separate,
while ensuring that they interoperate smoothly, is precisely what a framework
should do.

 Even frameworks have frameworks; there are different types of framework. In the
case of Ruby on Rails, we’re dealing with a Model/View/Controller (MVC) framework.

2.1.2 Introducing the MVC framework concept

MVC is the family of frameworks to which Rails belongs, and getting to know
about the family traits will help you understand Rails.

 The MVC principle divides the work of an application into three separate but
closely cooperative subsystems. Although the correct term is MVC, for the sake of
matching the framework with the three tasks listed in section 2.1.1, we’ll flip it tem-
porarily to MCV (arguably a more sensible order anyway). Model, controller, and
view, in the general case of any framework of this type, can be described as follows:

■ Model—The parts of the application that define the entities that play a role
in the universe of the application (books, hammers, shopping carts, stu-
dents, and so on)

■ Controller—The facility within the application that directs traffic, on the one
hand querying the models for specific data, and on the other hand organiz-
ing that data (searching, sorting, massaging it) into a form that fits the
needs of a given view

■ View—A presentation of data in a particular format, triggered by a control-
ler’s decision to present the data

Inside the Rails framework 37
Three things happen in an MVC application: You get information; you store and
manipulate that information; and you present that information. On its own, that’s
not remarkable; most computer programs perform operations on data and give
you the results. The MVC principle, however, isn’t just a description of what hap-
pens to the data. It’s also the governing principle behind how you, the developer,
work on a program.

 When you’re writing program code to handle one of these areas or layers of
your application (the models, the controller actions, the views), you are only writ-
ing code for that layer. If you wake up one day and decide to write all the entity-
modeling code for an address-book application, all you have to do is make deci-
sions about how you think the address-book universe should be broken down into
entities. You don’t have to worry about how many fields you’ll have to fill in on the
screen to add a new entry, or whether to use a Confirm button when you delete
someone, or anything else practical or visual. All you have to do is model the
domain of the address book. After you’ve done that, you can start thinking about
what you want to be able to do, and what kinds of data presentations you want
access to (one person at a time, everyone who lives in a particular state, all the G’s
or B’s or T’s grouped together, and so on).

 This clear-headed division of labor—your labor, as well as the application’s—
makes the MVC approach attractive. You’ll get a lot of mileage out of sticking to
this three-part worldview when it comes to Rails. Whether you’re getting a handle
on Rails’ theoretical underpinnings, bearing down on the details of writing a real-
life Rails application (we’ll do both in this chapter), or navigating the directory
structure of your application, you’ll find that you’re always in this three-part struc-
ture: a universe populated with entities that are manipulated and controlled
through actions that culminate in publicly available views.

2.1.3 Meet MVC in the (virtual) flesh

To see MVC close up, if you haven’t already—and even if you have (you’ll need to
perform this next step anyway, for later)—run the following command from a
directory in which you’d like to place the sample Rails application directory:

$ rails r4rmusic1

The program rails, which is installed with the Rails framework, performs the task
of creating an application directory—in this case, a directory called r4rmusic1.
(Any name will do for this example; but that particular name and directory will
come in handy when we write the sample application.) Inside the application
directory, Rails creates a set of standard subdirectories, populating them with files

38 CHAPTER 2

How Rails works
necessary for the development and running of a Rails application. If you look
inside the app subdirectory, you’ll see (among other things) subdirectories called
models, controllers, and views. The relevant model and controller program files
and view templates will reside in these subdirectories. The MVC principle guides
the layout of the application and the way the work of programming is organized.

NOTE RAILS APPLICATION NAMES Unlike a domain name, which everyone who
wants to connect to your site must know, the internal name of your Rails
application (for example, r4rmusic1, or myrailsapp) is only the business
of whoever’s writing and/or maintaining the application. It’s just a direc-
tory name; it doesn’t even have to be publicized. If you plan to distribute
or sell your Rails application, then you have to start worrying about
“branding” the application with a unique name. But that kind of brand-
ing is independent of what the application and its directory are called in-
ternally on the system that hosts them.

You’ve now seen that three phases or layers of activity are associated with writing a
Rails application, and that they correspond to the three elements of the MVC
framework concept. Let’s turn to a closer look at how the Rails framework oper-
ates as an MVC implementation.

2.2 Analyzing Rails’ implementation of MVC

The MVC concept is all about dividing the work of programming and the func-
tioning of a program into three layers: model, view, and controller. In accordance
with its MVC foundations, Rails is made up largely of three separate programming
libraries—separate in the sense that each has its own name and you can, if you
need to, use them separately from each other.

 The three libraries forming the bulk of the Rails framework are listed in
table 2.1. You can see these three libraries installed on your computer. They usu-
ally reside in the gems area of a Ruby installation. (See the book’s appendix for
information about RubyGems.) Assuming a standard, default installation, you can
find them like this:

$ cd /usr/local/lib/ruby/gems/1.8/gems
$ ls

Analyzing Rails’ implementation of MVC 39
You’ll see subdirectories including (but not limited to) the following:

■ actionpack-1.11.2

■ activerecord-1.13.2

■ rails-1.0.0

NOTE YOUR VERSION NUMBERS MAY VARY The version numbers you see on the
right sides of the directory names may differ from those in this example.
And on some systems, more than one version of each package may be in-
stalled. If that’s the case, look for the versions with the highest numbers,
which will give you the most recent version of each library installed on
the system.

ActionView and ActionController are bundled together under ActionPack. To see
them separately, do this:

$ ls actionpack-1.11.2/lib

You’ll see subdirectories for each of them.
 Looking at these directory listings gives you a concrete sense of the fact that

Rails is made up of component packages and that these packages, collectively,
constitute an implementation of the MVC structure.

NOTE THE CONTENTS OF ACTIONPACK ActionView and ActionController are
bundled together as ActionPack because in the MVC structure, V and C
(view and controller) tend to be closely intertwined. For example, the

Table 2.1 Overview of how Rails implements the MVC framework design

MVC phase Rails sublibrary Purpose

Model ActiveRecord Provides an interface and binding between the tables in a
relational database and the Ruby program code that
manipulates database records. Ruby method names are
automatically generated from the field names of data-
base tables, and so on.

View ActionView An Embedded Ruby (ERb) based system for defining pre-
sentation templates for data presentation. Every Web
connection to a Rails application results in the displaying
of a view.

Controller ActionController A data broker sitting between ActiveRecord (the database
interface) and ActionView (the presentation engine).
ActionController provides facilities for manipulating and
organizing data from the database and/or from Web form
input, which it then hands off to ActionView for template
insertion and display.

40 CHAPTER 2

How Rails works
template files that ActionView processes must use the same names for
variables that the controller code, based on ActionController, uses. That
means you can’t design a view without knowing fairly specifically what’s
going on in the controller files. Although they are separate libraries in a
sense, ActionView and ActionController can also be seen as two parts of a
single suite.

Rails: the ties that bind
If these three MVC-friendly, separate libraries are the components of Rails, what
exactly is Rails?

 The Rails framework is to a large extent the simultaneous deployment of all three
of these component packages or libraries. ActiveRecord provides a range of pro-
gramming techniques and shortcuts for manipulating data from an SQL database.
ActionController and ActionView (ActionPack, collectively) provide facilities for
manipulating and displaying that data. Rails ties it all together.

 Figure 2.1 gives you a schematic view of how Ruby and Rails fit together, along
with the database system that stores your Rails data and the Web server that
exports your finalized HTML pages. Arrows indicate close collaboration between
system components.

 Subdirectories in your Rails installation correspond to the support libraries
mentioned in figure 2.1. We won’t discuss these libraries in as much detail as the
“Big Three” (those that correspond directly to the MVC framework concept), but
these other libraries provide important support and auxiliary functionality out-
side the strict MVC division and are often used in more than one of the phases.

 Having gotten as far as connecting the dots, so to speak, between the compo-
nents of Rails and the components of the MVC framework structure, and situating
the bundle in the context of the relationship between Rails and Ruby, we’ll now
embark on writing a Rails application. It will be small; the purpose is to do a
breadth-first walk-through of the process. We’ll revisit and extend this example to
in part 4 of the book. For now, we’ll get a foot in the Rails door with a modest—
but working—application.

 The application we’ll develop is an online classical sheet-music store. We’ll
name the mythical store in honor of this book: R4RMusic. If you haven’t already
done so, issue the rails r4rmusic1 command to create the directory for the appli-
cation. (The 1 at the end signals that this is the first version of the application.)

A Rails application walk-through 41
2.3 A Rails application walk-through

The steps we’ll follow in writing the R4RMusic application are, in essence, the
three steps outlined at the beginning of this chapter and echoed in the MVC con-
cept—or, in keeping with how we’ll proceed initially, the MCV concept: modeling
the domain, programming the possible actions, and designing the available views.
The goal at the moment is to have something in place that we can add to incre-
mentally. That’s often the way Rails applications evolve.

NOTE DOWNLOADING THE MUSIC STORE CODE AND SQL FROM THE BOOK’S WEB
SITE You can download the complete application code for R4RMusic
(both the version developed in this chapter and the revised version devel-
oped in part 4), along with files containing the SQL commands for creat-
ing the tables and adding some sample data to them, from the Ruby for
Rails Web site (http://www.manning.com/books/black). Doing so will

Relational database
system

Any database system
supported by Rails
(MySQL, SQlite,
PostgreSQL, etc.)

The design of the
database itself (names
of tables, etc.) will conform
to ActiveRecord guidelines

Web server

Popular Web servers used
with Rails include Apache,
WEBrick (server written in
Ruby and shipped with
Ruby), lightTPD

CGI Library

CGI data processing
routines

Parses incoming
form data

Part of the Ruby
standard library

ERb

"Embedded Ruby"
Templating system

for mixing static
text with output
from Ruby code

Fills ERb templates with
data processed by
ActionController

Hands off the resulting
HTML to the Web server

ActionViewActionController

ActionPack

ActiveRecord Support libraries

Rails framework

Ruby

Manipulates ActiveRecord
objects

Loads data into variables for
use in ActionView templates

Uses CGI library to process
form data held in CGI variables

ActiveSupport
ActionWebService
ActionMailer

Talks to the database system
Creates Ruby objects modeled

on the database tables

Figure 2.1 Schematic view of Ruby and the Rails framework

42 CHAPTER 2

How Rails works
save you having to type everything yourself. You still have to follow the
steps for creating the databases and setting the permissions (as described
next). But defining the tables and pulling in the sample data will be easy
if you use the pre-written file from the Web site.

2.3.1 Introducing R4RMusic, the music-store application

The details of the music store will unfold as we go. But a few comments and direc-
tives up front will help you get your bearings.

 In this first iteration of the music store, we’ll only implement a couple of func-
tionalities, mainly pertaining to letting a visitor view the online listings of available
works. We’ll create views based on the works and also let visitors view works by
composer. For the moment—and this will change in part 4, when we revisit the
application—we won’t have any shopping facilities. We’ll focus on the viewing and
browsing of the music store’s inventory.

 This example uses MySQL as its relational database backend. You’ll create and
initialize a MySQL database—three databases, to correspond to the production,
development, and test databases that Rails expects to have available. You can also
adapt the SQL examples here for other Rails-supported relational database sys-
tems. (PostgreSQL and SQLite are popular alternatives to MySQL.)

NOTE RAILS MIGRATIONS Rails provides a facility for generating and updating
database tables and fields semi-automatically: migrations. Migrations let
you specify the structure you want your tables to have using Ruby code,
rather than SQL; the migrations engine takes care of the SQL creation.
Migrations also allow for tracking of changes to a database design and
even the reversing of design changes. In the long run, using migrations
instead of writing SQL by hand can make a lengthy, complex develop-
ment process easier. At the same time, migrations introduce complexities
of their own. We’re not using them in this book, both because of some of
their complexities and because spelling out the SQL better serves the
purpose of keeping the layers of the Rails application universe in clear
view. But you should investigate migrations for yourself, in connection
with your Rails work.

The databases will be named r4rmusic1_production, r4rmusic1_development, and
r4rmusic1_test. Assuming that you called the application r4rmusic1 when you asked
Rails to create the directory for it, these database names will appear automatically
in the application’s database configuration file (the file database.yml in the appli-
cation’s config subdirectory). What you have to do to create the databases will

A Rails application walk-through 43
depend on the database system you’re using. (Some further details, especially for
MySQL, are included in the next section.)

2.3.2 Modeling the first iteration of the music-store domain

The first phase of development is to model the domain. Model, taken broadly,
means not only defining and describing the entities in the universe of our applica-
tion, but also designing and creating the databases that the application will use.
On the Rails side, it also means putting in place the files and program code that
the ActiveRecord subsystem—the library concerned with the database records
and their manipulation through Ruby code—can use.

 In the spirit of creating something simple but operational, we’ll model three
entities:

■ WORK (that is, musical composition; work is a conveniently short word)

■ COMPOSER

■ EDITION

It would be even simpler (or at least smaller) to model only WORK rather than
both WORK and EDITION. But a little reflection reveals that splitting the work
from its editions makes sense. A symphony doesn’t have a publisher or price;
those things pertain to specific published editions. Keeping the work separate
from the edition also means that the database design can be expanded later to
include CDs and other formats, in addition to sheet music.

Diagraming the domain
Much of the work of modeling a domain comes down to this fact: A domain con-
sists of entities (things), and an entity consists of a combination of properties (text-
strings and numbers; simple, flat, scalar values, like the title of a composition or a
year of publication) and other entities.

 There are lots of ways to represent domain models visually. One of the sim-
plest, and one that you can use regardless of whether you have graphics software,
is to list the entities in your domain and, under each entity, to list that entity’s
properties. In some cases, a property of one entity is another entity; for example,
a musical work has a composer property, and a composer is an entity in its own
right. We’ll indicate this by using uppercase for all entities, whether they appear at
the top level of the diagram or are embedded under another entity as one of that
other entity’s properties.

44 CHAPTER 2

How Rails works
 Rendered this way, the domain looks like this:

WORK
 COMPOSER
 EDITION(S)
 title

COMPOSER
 WORKS(S)
 first name
 last name

EDITION
 WORK
 description
 publisher
 year
 price

(The description property of the EDITION entity will contain strings, like “Second”
for a second edition, or “Facsimile” for a facsimile edition.)

 Figure 2.2 shows a graphical representation of the same domain.
 Notice that the entity relations are circular: A WORK has one or more EDI-

TIONS, and each EDITION has a WORK. To translate these relationships into Rails
terms, we need to make a subtle but important distinction between two shades of
meaning of has. When you see a one-to-many relationship like this, you’re really
seeing a relationship where Thing X has one or more Thing Ys, and Thing Y
belongs to a Thing X.

 Translating that into WORK/EDITION terms, a WORK has one or more EDI-
TIONS (zero or more, but that’s logically impossible); and an EDITION belongs to a
WORK. Similarly, each WORK belongs to a COMPOSER, and each COMPOSER has
one or more WORKS.

 That way of looking at it will see you through the rest of the database creation
and entity modeling processes.

EDITION
WORK COMPOSER

WORK
description
publisher
year
price

COMPOSER
EDITION(S)
title

WORK(S)
first name
last name

Figure 2.2 Graphic sketching out of the R4RMusic entities and their properties

A Rails application walk-through 45
Initializing the databases
To create the database for the application, you need to initialize a database on
your system. How you do this will depend on which database backend you’re
using. In these examples, the database system is MySQL. (Instructions for, and dis-
cussion of, using other database systems, including MySQL, PostgreSQL, and
SQLite, abound on the various Ruby on Rails Web sites and discussion groups.)

 In keeping with Rails practice, we’ll initialize three databases: one for develop-
ment, one for production, and one for testing. In keeping with default Rails ter-
minology, because we called the application r4rmusic1, we’ll call the databases
r4rmusic1_development, r4rmusic1_production, and r4rmusic1_test. You should initial-
ize all three of them and create a user and password on them with full read and
write privileges.

WARNING MAKE UP YOUR OWN PASSWORDS Where you see the password railzrulez
in these examples, you should choose a password of your own. Otherwise,
everyone who sees this book will know your database password.

In MySQL, a console session in which you do this looks something like this:

mysql> create database r4rmusic1_development;
Query OK, 1 row affected (0.01 sec)

mysql> grant all privileges on r4rmusic1_development.*
to 'r4r'@'localhost' identified by 'railzrulez';
Query OK, 0 rows affected (0.00 sec)

You then do the same thing for two more databases: r4rmusic1_production and
r4rmusic1_test.

 At this point, you need to let Rails in on the user name and password for the
databases. You do this in the file database.yml, in the config subdirectory. This file
has live configuration sections for MySQL databases and sample sections for other
database systems. In each of the sections you use (the three MySQL sections, if
you’re using MySQL as per the examples here), you need to change the username
and password lines to reflect the permissions on the databases you’ve created:

username: r4r
password: railzrulez

The names of the databases should correspond to the ones you’ve created. (If
they don’t, you’ve probably mistyped either the database names when you created
them or the application name when you created the application. You’ll need to fix
these before you proceed.)

46 CHAPTER 2

How Rails works
Designing and creating the database tables
We have three modeled entities in our domain, and we want three database
tables. With more complex domains—even the music store domain, in more com-
plex form—the correspondence isn’t always one to one. Sometimes there are
extra tables that store information about relationships between entities rather
than information about specific entities. For the moment, though, our domain
model yields a one-to-one relationship between entities and tables.

 Translating a domain model into SQL is generally straightforward, as long as
you remember that you have to write Rails-friendly SQL. Down the road, Rails will
work with the database—not just pluck records from it, but also look at the design
of the tables and use that design as a point of departure for providing you with a
lot of programming functionality. Your end of the bargain is to set things up in
such a way that all of Rails’ techniques for interpreting table structure will work.

 In practical terms (and to the extent it relates to our three tables), that means
that you have to follow certain rules:

■ Each entity (such as EDITION) gets a table in the database named after it,
but in the plural (editions).

■ Each such entity-matching table has a field called id, which contains a
unique integer for each record inserted into the table.

■ Given entity x and entity y, if entity y belongs to entity x, then table y has a
field called x_id.

■ The bulk of the fields in any table store the values for that entity’s simple
properties (anything that’s a number or a string).

The third rule is slightly opaque. In this case, it means that the editions table has a
field called work_id. This corresponds to the concept that each edition belongs to
a particular work. When an edition record is inserted into the table, its work_id
field will be given the same value as the id field of the work to which it belongs.
That way, each edition record is labeled with a kind of property tag, identifying it
as the property of a particular work. (Because id values are unique—they serve as
primary keys—a single integer is enough to identify an edition unambiguously with
the correct work.)

 You can also flip this explanation and say that each work has one or more edi-
tions. The have and belongs to relationships are the same thing, just expressed from
a different perspective. And what’s true of the work/edition relationship is also
true of the composer/work relationship in this domain model.

A Rails application walk-through 47
 The domain diagram and the requirements and constraints pertaining to the
SQL result in the SQL commands shown in listing 2.1.

USE r4rmusic1_development;
DROP TABLE IF EXISTS works;
DROP TABLE IF EXISTS editions;
DROP TABLE IF EXISTS composers;

CREATE TABLE works (
 id INT(11) NOT NULL AUTO_INCREMENT,
 composer_id INT(11),
 title VARCHAR(100),
 PRIMARY KEY (id)
);

CREATE TABLE editions (
 id INT(11) NOT NULL AUTO_INCREMENT,
 work_id INT(11) NOT NULL,
 description VARCHAR(30),
 publisher VARCHAR(60),
 year INT(4),
 price FLOAT,
 PRIMARY KEY (id)
);

CREATE TABLE composers (
 id INT(11) NOT NULL AUTO_INCREMENT,
 first_name VARCHAR(25),
 last_name VARCHAR(25),
 PRIMARY KEY (id)
);

You can create the tables in the database by saving these SQL commands to a file
or, even better, using the file r4rmusic1.sql, which you can download as part of
the complete R4RMusic application package from the Ruby for Rails Web site
(http://www.manning.com/books/black). Feed the SQL file to MySQL like this
(entering the password when prompted):

$ mysql -u r4r -p < r4rmusic1.sql

The r4rmusic1_development database now contains tables; and if you used the pre-
written file from the book’s Web site, it also contains sample data. Now, let’s work
on some Rails application code to match the database.

Listing 2.1 SQL commands for creating the basic music store database tables

48 CHAPTER 2

How Rails works
Writing the Rails model files
It’s time to work on the Rails application code—specifically, the two model files
work.rb and edition.rb. First, we have to create those models. Rails does this
semi-automatically. From the top level of the application directory, issue the fol-
lowing commands:

$ ruby script/generate model work
$ ruby script/generate model edition
$ ruby script/generate model composer

You’ll find the three files you need in the app/models directory. work.rb looks like
this:

class Work < ActionRecord::Base
end

composer.rb and edition.rb look similar. What you see (and don’t worry if there’s
a bit of black-box syndrome at this stage) are empty definitions of Ruby classes.
(They’re not as empty as they look; they have facilities for setting and retrieving
all the entity properties: title, composer, publisher, and so on. Rails endows them with
those facilities automatically, courtesy of examining the field-names in the data-
base tables.) You need to add directives that tell Rails about the associations
between entities—that is, the details of the has and belongs to relationships.

 Associations is both a descriptive and a technical term. Associations are part of
the ActiveRecord database-handling library. They’re a kind of inter-entity model-
ing subsystem, in which you tell Rails what you consider the relationships between
entities to be and, assuming the table and field names you’ve chosen mesh with
what you’ve asserted, Rails responds by handing you a set of programming fea-
tures that let you manipulate those relationships easily.

 To set up this functionality, you need to tell Rails what relationships you want
to establish within the data system. To do so, modify work.rb to look like this:

class Work < ActionRecord::Base
 belongs_to :composer
 has_many :editions
end

Modify edition.rb to look like this:

class Edition < ActionRecord::Base
 belongs_to :work
end

Composers get similar treatment; composer.rb should look like this:

A Rails application walk-through 49
class Composer < ActionRecord::Base
 has_many :works
end

Because we’ve followed the rules in naming the id-related fields in the database,
Rails cooperates by making it easy to add new editions to those belonging to a par-
ticular work or even to change which work an edition belongs to (an unlikely sce-
nario, but possible).

Adding records to the database
There are numerous ways to add data to your database, including through Web
forms. Here, we’ll do it the clunky way: with SQL. This expedient will let us get into
the middle of the stream—doing something with the data—as quickly as possible.

 The SQL commands in listing 2.2, issued to the music store_development data-
base, create a small number of records on which we can practice. You are free to
add as many records as you like, for any works (real or imagined) you wish.

INSERT INTO composers
 VALUES (1,"Johannes","Brahms");
INSERT INTO composers VALUES
 VALUES (2,"Claude","Debussy");

INSERT INTO works
 VALUES (1,1,"Sonata for Cello and Piano in F Major");
INSERT INTO works
 VALUES (2,2,"String Quartet");

INSERT INTO editions
 VALUES (1,1,"Facsimile","D. Black Music House", 1998, 21.95);
INSERT INTO editions
 VALUES (2,1,"Urtext","RubyTunes, Inc.", 1977, 23.50);
INSERT INTO editions
 VALUES (3,1,"ed. Y.Matsumoto","RubyTunes, Inc.", 2001, 22.95);
INSERT INTO editions
 VALUES (4,2,"","D. Black Music House", 1995, 39.95);
INSERT INTO editions
 VALUES (5,2,"Reprint of 1894 ed.", "RubyTunes, Inc.", 2003, 35.95);

NOTE GETTING SQL DATA FROM THIS BOOK’S WEB SITE You can download some
sample or seed data from the Ruby for Rails Web site (http://www.man-
ning.com/books/black), along with the source code for the application.

Listing 2.2 SQL commands for sample music store inventory data

50 CHAPTER 2

How Rails works
Note that the second field of each edition record matches the first field—the id
field—of a particular work. Thus the first two editions are both editions of the
Brahms Sonata, whereas the third edition is an edition of the Debussy String Quartet.

 We’ve now completed the domain-modeling phase (and then some) and can
move on to defining actions.

2.3.3 Identifying and programming the actions

Now we need to think about the scenarios we want to see happen in our domain.
The possibilities are endless, depending on your application. In this particular
iteration of this particular application, the possibilities are relatively few, but they
are more than enough to take us successfully through this phase and onward to
the next.

 We’ll define the following actions:

■ Welcome the visitor with a list of all composers whose music is in stock.

■ Allow the visitor to click any composer’s name and be shown all works by
that composer.

■ Allow the visitor to click the name of composition and be shown all editions
of that composition.

■ Allow the visitor to click any edition and be shown details of that edition.

For each of these scenarios, we need to identify (and create, because they don’t
exist yet) an appropriate controller; and in the corresponding controller file, we
need to define the appropriate action. For each controller/action pair, we also
need to design a view; this will come in the next section.

Welcoming the visitor
The majority of controllers correspond directly to an entity model: If there’s a
“work” controller, then there’s probably a “work” model. We’ll start, however, with
a slightly different type of controller. The action of welcoming someone to a site
isn’t logically connected to an entity. It wouldn’t make sense, therefore (although
it would be technically possible) to define welcoming as an action performed by a
work controller or an edition controller. Instead, we’ll create another, disembod-
ied controller—a controller that performs actions for us but that isn’t specific to
one entity—and define the welcome action as an action of that controller. We’ll
call this controller main.

A Rails application walk-through 51
 The process for creating a controller is always the same, and it’s similar to the
process we’ve already used for creating a model. The exact command syntax, how-
ever, is a bit different:

$ ruby script/generate controller main welcome

This command accomplishes several tasks, of which the following are relevant here:

■ It creates a file called (including path) app/controllers/main_controller.rb.

■ It inserts an empty method definition for the welcome action into that file.

■ It creates a file called app/views/main/welcome.rhtml, which will be the file
in which you place the ERb template code for this view.

The welcome action
If you look at main_controller.rb, you’ll see this:

class MainController < ApplicationController

def welcome
 end
end

This is a controller file, with one action defined—although the definition is
empty. The next step in the process is to decide what, if anything, to put in the
definition.

 It pays to bend a little on the separation of programming layers and start think-
ing about the view—not in detail, but in terms of data exchange. The purpose of
an action is to stuff data into Ruby variables that the ERb code in the view file can
unstuff and display. So, we need to anticipate what data the view will need.

 The welcome screen will include a list of all the composers whose works we stock.
It turns out that this is easy to accomplish by adding one line to the welcome action:

def welcome
dd@composers = Composer.find(:all)
end

This code asks the Composer entity model (not any particular composer, but the
model itself—the presiding genius of the model, so to speak) to hand back a list
of all known composers. We should do some sorting, so the list looks as nice as
possible, so let’s change the method as follows:

def welcome
dd@composers = Composer.find(:all).sort_by {|c| [c.last_name, c.first_name] }
end

52 CHAPTER 2

How Rails works
(You’ll learn about sorting collections of objects in chapter 11. For now, note that
this call to the sort_by method sorts on the composers’ last names and then on
their first names in case of a tie.)

Showing a work, edition, or composer
We need controller files for edition, work, and composer, all equipped with a show
action. To create them, issue the following commands:

$ ruby script/generate controller work show
$ ruby script/generate controller edition show
$ ruby script/generate controller composer show

You’ll find three new controller files in the app/controllers subdirectory, named
for composer, edition, and work. Because we gave the show argument when gener-
ating the controllers, an empty show method definition appears in each of the
three controller files. You now need to add code to those empty methods.

 Both the work show action and the edition show action will utilize a common
Rails idiom: grabbing the value of the CGI variable id and using it as an index to
find the correct instance of the relevant entity. In other words, if you’re in the work
controller, performing the show action, and the value of the CGI variable id is 2,
then you want to show the work that’s indexed as 2. Exactly what indexed means
(how the number translates into which work is produced) is up to the model. But
in the typical case, 2 will be treated as the value of the id field in the appropriate
database table.

 Here’s how this idiom looks, in the appropriate place in work_controller.rb:

def show
dd@work = Work.find(params[:id])
end

It looks this way in edition_controller.rb:

def show
dd@edition = Edition.find(params[:id])
end

And, following the same pattern, it looks like this in composer_controller.rb:

def show
dd@composer = Composer.find(params[:id])
end

The composer controller stashes a particular composer into a variable called @com-
poser (and does the same for the edition and work). The values contained in these
variables are available to the ERb code in the respective views—as you’ll now see.

A Rails application walk-through 53
2.3.4 Designing the views

A view is an ERb program that shares data with controllers through mutually acces-
sible variables. This differs from the ERb examples in chapter 1, where you put every-
thing—variable assignments and HTML template information—into one file, and
feed the file to ERb. (You can put controller-style code, such as calculations and data-
sifting operations, in your view files, but doing so is consider lopsided. You should
perform the calculations in the controller and then let the view use the results.)

 If you look in the app/views directory of the music store application, you’ll see
one subdirectory for each of the controllers we’ve created: main, composer, edi-
tion, and work. Each of these subdirectories was created automatically when the
same-named controller was created with the generate script. (You’ll also see a
layouts subdirectory. We’ll create a default layout in the next subsection.)

 For every action that was specified at the time of the creation of the controller
files—the welcome method in the main controller file and the three show methods
in the other controller files—you’ll find an ERb template file with a matching name.
For example, the app/views/work directory contains a file called show.rhtml. This
file is the template that will be rendered when the application receives a request for
the show action of the work controller.

 Controller actions and view template files are connected through naming con-
ventions: An incoming request for the main/welcome action triggers execution of
the welcome method in the main controller, followed by rendering of the main/
welcome.rhtml file in the views area. You can override the default behavior: You
can instruct an action to render a differently named template, and you can piece
together views from more than one partial template file, so there’s no longer a
one-to-one correspondence between the actions and the template files. (We’ll use
partial templates for the second iteration of the music store application, in part 4
of the book.) But in the basic case, the controller preps the data and stores it in
variables, and those variables are used in the ERb file corresponding to that action.

NOTE ERB ALTERNATIVES ERb provides one mechanism for producing HTML
from the data + template formula—but not the only such mechanism. An
alternative approach called Builder was developed and contributed to
the Rails framework by Jim Weirich. We’ll stick to ERb examples here, but
you should be aware that there’s at least one alternative way to handle
this phase of the work of a Rails application.

We’ve defined four possible controller actions, and we have four views to design: a
welcome screen, and one show screen for each of the composer, edition, and
work models. We’ll now design those views. First, however, we’ll design a default

54 CHAPTER 2

How Rails works
layout. This layout will encapsulate everything that we want displayed for every
view. We’ll then proceed to the four views.

Designing a default layout
Layouts are like meta-templates. They contain general template code that sur-
rounds the specific template code of one or more views. A typical default layout
might include a menu bar, a copyright notice, and other site-wide elements that it
would be a nuisance to have to insert individually into every template file.

 The layout uses a special, “magic” variable, @content_for_layout, at the point
where you want the specific view inserted. The base layout for the music store,
shown in listing 2.3, displays a banner above the view and a copyright notice at the
bottom of the page. The base layout also contains appropriate XML declara-
tions—again, saving you the trouble of putting them in every template file.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
 <title><%= @page_title %></title>
</head>
<body>
<h1 class="banner">The R4R Music Store</h1>
<%= @content_for_layout %>
<hr/>
<p>Copyright © 2006, R4RMusic</p>
</body>
</html>

To use this view as the default, put it in a file with a reasonable name (such as
base.rhtml) in the app/views/layouts directory, and add the following line to the
file app/controllers/application.rb:

class ApplicationController < ActionController::Base
 layout "base"
end

application.rb is an umbrella controller file; anything you put in here governs not
just what happens in connection with a particular controller (such as the composer
controller) but all actions, application-wide. Thus specifying a default layout in this
file causes all your views to be wrapped appropriately.

Listing 2.3 Base layout for R4RMusic

Interpolate value of magic
@content_for_layout variable

A Rails application walk-through 55
TIP A DEFAULT-DEFAULT LAYOUT NAME If you call your default layout ap-
plication.rhtml, you don’t even have to specify it in application.rb.
(It’s good to know how to do the specifying, though.)

The main/welcome view
The welcome view takes advantage of the information in the variable @works to
generate a list of works. Each item in the list is a hyperlink pointing to the show
action for that work.

 Listing 2.4 shows the main/welcome view, which goes in app/views/main/wel-
come.rhtml. (If you find any automatically generated placeholder lines in this or
any other template file, delete them before you enter the template code.)

<p>Click on a composer's name
to see all of that composer's works.</p>

 <% @composers.each do |composer| %>
 <%= link_to "#{composer.first_name} #{composer.last_name}",
 :controller => "composer",
 :action => "show",
 :id => composer.id %>

 <% end %>

The main action here is a loop, which goes through the list of works one at a time
(that’s the gist of the each method dd). Each time through the loop, a list item is
created, complete with a hyperlink generated by the built-in Rails helper method
link_to. The advantage of automating the creation of the list of links in this man-
ner is that it scales: Once you’ve written this template, together with the controller
that populates the @composers variable in the first place (which takes all of two
lines of code), you never have to change it, whether your database has 3 compos-
ers or 300. (With 300 composers, you may want to present them differently—a list
of letters, perhaps, each linked to a second-level action and template that displays
all the composers whose last names start with that letter. But once you’ve written
the templates you want, they deal with whatever data is thrown at them.)

Listing 2.4 main/welcome.rhtml, the view for the main/welcome action

each
method

B

B

56 CHAPTER 2

How Rails works
The show views
We have three entities—WORK, EDITION, and COMPOSER—and for each of them,
we’ll define a scenario called show. Each show will be slightly different, in keeping
with the fact that each of these three entities consists of different properties:

■ Showing a work means showing a list of all available editions of that work.

■ Showing an edition means displaying its publisher, date of publication, and
price.

■ Showing a composer means displaying a list of all works by that composer.

We’ll make these showings as mutually hyperlinked as we can.
 Each show scenario requires a view file. Hence we’ll need three of these:

■ app/views/work/show.rhtml

■ app/views/edition/show.rhtml

■ app/views/composer/show.rhtml

These three template files are shown in listings 2.5, 2.6, and 2.7, respectively.

<p>Available editions of
 <%= @work.title %> by
 <%= "#{@work.composer.first_name} #{@work.composer.last_name}" %>
</p>

<table>
 <tr>
 <th>Edition</th>
 <th>Publisher</th>
 </tr>
 <% @work.editions.each do |ed| %>
 <tr>
 <td><%= link_to ed.description || "(no descr.)",
 :controller => "edition",
 :action => "show",
 :id => ed.id %></td>
 <td><%= ed.publisher %></td>
 </tr>
 <% end %>
</table>

In the work/show.rhtml template, as in the main/welcome template, an each
instruction performs a loop through a list—this time, a list accessed through the
method call @work.editions a). Note that nowhere in any file have we defined a

Listing 2.5 work/show.rhtml, the view for the work/show action

@work.editions
method

B

B

A Rails application walk-through 57
method called editions. Rails provides this method automatically, because we
have stated that a work has many editions.

<% @page_title =
 "#{@edition.work.title} (#{@edition.description})" %>
<p>Details of <%= @edition.work.title %>
(<%= @edition.description %>),
by
<%= "#{@edition.work.composer.first_name}
 #{@edition.work.composer.last_name}" %></p>
<table border="1">
 <tr>
 <th>Publisher</th>
 <th>Year</th>
 <th>Price</th>
 </tr>
 <tr>
 <td><%= @edition.publisher %></td>
 <td><%= @edition.year %></td>
 <td>$<%= @edition.price %></td>
 </tr>
</table>

In the edition/show.rhtml template, notice that a number of method calls to the
object @edition—and double-barreled method calls, like @edition.work.title—
are used to extract the information necessary to complete the view. Again, none
of these methods had to be defined manually. Some of them exist as a result of
directives in the model file—specifically, the directive belongs_to :work in the file
edition.rb. Some, such as year and price, exist because the editions table in the
database has fields with those names. The methods spring into being, courtesy of
ActiveRecord, so that you can pass information back and forth between the data-
base records and your program using simple Ruby method-call syntax.

<% @page_title =
 "Works by #{@composer.first_name} #{@composer.last_name}" %>
<p>Click on any work to see all available editions of that work.</p>

 <% @composer.works.each do |work| %>
 <%= link_to work.title,
 :controller => "work",
 :action => "show",

Listing 2.6 edition/show.rhtml, the template for the edition/show action

Listing 2.7 composer/show.rhtml, the template for the composer/show view

58 CHAPTER 2

How Rails works
 :id => work.id %>

 <% end %>

The composer/show.rhtml template presents a flat list of all the works by the rele-
vant composer. Each item in the list is a link to the show view of that work. Admit-
tedly, this list could become long for composers whose works we stock many of. If
it ever gets too long, it will be relatively easy to split into several pages. One of the
advantages of the MVC layering of program responsibility is that you can make
changes at the view level without having to alter the data structures.

 At this point, we have everything we need to start the application and connect
to it. We have a database that reflects the current state of our domain model and
contains a little data. We have ActiveRecord model files containing association
directives (belongs_to, has_many) that will prompt Rails to engineer the relation-
ships among entities that you need. The view templates are ready to be filled in,
and the controller files are ready to provide them with the data they need.

 Now, we’ll connect to the application.

2.3.5 Connecting to the application

We’ll serve the application by using WEBrick, a Web server bundled with Ruby.
(You can also use Apache or another server, but WEBrick is easier to demonstrate
because it doesn’t require a lot of configuration up front—and everyone who has
Ruby installed also has WEBrick installed.) Before doing that, let’s add a finishing
touch: setting the default page for the application to be the welcome page.

Specifying a default top-level page with a route
We need to define a route: a translation rule, which is applied to the URL of the
incoming request to a Rails application. In this case, we want to translate an empty
URL (that is, a domain) into a call to the welcome action of the main controller.

 Routes are defined in the file config/routes.rb. Add the following line, which
must be the first map.connect line in the file:

map.connect '', :controller => "main", :action => "welcome"

This line establishes the rule that will perform the appropriate translation of an
empty URL.

 To get this default page working correctly, you also have to remove the default
default page—namely, the file public/index.html. You can either delete this file

Tracing the lifecycle of a Rails run 59
or rename it to something else (such as index.html.hidden) so that it won’t com-
pete for top-level-page status with the main/welcome action.

Starting WEBrick and connecting to the application
Start the WEBrick server with the following command (issued, like the others,
from the top level of your application directory):

$ ruby ./script/server [-b domainname] [-p port]

The -b and -p flags are optional (as indicated by their placement in square brack-
ets). You can use them to specify values if the server doesn’t start up correctly.

 Now, point your browser at http://localhost:3000 (or whatever values you
gave, if you used the optional flags). You should see the welcome screen—and, if
all went well, the list of works.

NOTE CHECKING THE DEVELOPMENT LOG FILE If all did not go well, and if you
can’t tell what’s wrong, look in the log/development.log file. Here
you’ll see error messages that tell you about syntax and other errors that
may have been encountered. Fix anything that’s misnamed or mistyped,
and try again. If a syntax error occurred, you can try connecting again
during the same server session. If it’s a problem affecting the database
connection, you may need to stop the server (with Ctrl-C or a kill com-
mand) and restart it. (If in doubt, there’s no harm in doing this.)

We’ve completed the circuit: The application is running. Play with the site as you
wish. You can add new database records, move elements around in the views—
whatever you wish. Save a copy of the pristine application, because you’ll be using
it as a point of reference and a starting point for further development later in the
book. But there’s no reason not to also use it as a scratchpad for learning your way
around, if you wish.

 Now that we’ve reached the plateau of a working application, we’ll take the
opportunity to examine more deeply what’s happening during a successful Rails
session.

2.4 Tracing the lifecycle of a Rails run

You’ve seen the way a framework helps organize an application, and you’ve seen
the way Rails implements the MVC concept. You’ve also walked through the pro-
cess of writing and running a Rails application—a modest one, but one that
involves the three major steps.

60 CHAPTER 2

How Rails works
 To round off this annotated tour of how Rails works, we’ll look in detail at what
happens when a request comes in from a Web client to a Rails application. The
players in the game include the Web server and several auxiliary scripts and pro-
grams automatically made available to the Rails application. Although we’re using
WEBrick for the working example, we’ll examine the basics of what’s involved with
setting up Apache to serve a Rails application. This process is more complicated—
which is why you aren’t doing it in the working example, and why it contains use-
ful lessons about how the whole request-handling process operates.

 The process of listening to and responding to a request coming in to a Rails
application can be broken into several stages: the Web server talking to the dis-
patcher (which is a Ruby program); the dispatcher awakening the appropriate
controller and asking that controller (which is also a Ruby program) to perform a
particular action; the performance of that action; and the filling out of the view,
based on the calculations and data manipulations carried out in the controller
action. We’ll look at each of these stages in turn.

 As you read, you may want to refer to figure 2.3, which gives a graphical over-
view of the Rails request-handling process.

Rails sequence for http://www.rcrchive.net/rcr/show/231
(controller "rcr", action "show", id"231")

START

END

Browser (Web client) .htaccess

app/views/rcr/show.rhtml dispatch.fcgi

app/controllers/rcr_controller.rb

Web server

1. passes URL to server
2. gets back HTML and
 renders it

triggers execution of dispatch.fcgi
(or other dispatcher, if specified)

ERb template, filled out to become a
complete HTML document; that
document is then sent to the server

1. finds rcrchive application
 directory, and consults
 .htaccess file
2. returns final HTML document
 to browser

loads dispatcher library
and triggers execution of
application code based on
controller and action fields of
URL

executes its show method, with "id"
CGI variable set to "231"; the
corresponding view template filled out

Figure 2.3 Flow of steps involved in Rails’ typical handling of an incoming request

Tracing the lifecycle of a Rails run 61
Figure 2.3 uses a URL sent to the RCRchive (Ruby Change Request) site as an
example; the URL triggers the display in the client’s browser of RCR #231. Note
that this figure is schematic; the arrows leading from one step to another give you
an indication of the sequence, rather than a technical characterization of how
information is handed around. Still, as a visual anchor for understanding the
basic steps in the process, the figure can help you as you proceed through the rest
of this section.

2.4.1 Stage 1: server to dispatcher

The Web server—Apache, lightTPD, or whatever it may be on a given system—
receives the request from the browser. The server configuration causes the server
to pass the request along to what will turn out to be a Rails application. The server
doesn’t know what Rails is; it just does whatever redirecting or deflecting of the
incoming request it’s set up to do.

 For example, to steer the Apache server to the directory of your Rails applica-
tion, you put something like this in the Apache configuration file:

<VirtualHost www.r4rmusic.com>
ServerName www.r4rmusic.com
ServerAlias r4rmusic.com
DocumentRoot "/usr/local/share/railsapps/r4rmusic/public/"
</VirtualHost>

(Of course, you need to register the r4rmusic.com domain and point it to your
site.) Now, when someone contacts this server with a URL that looks like this

http://www.r4rmusic.com/

or like this typical Rails-style URL

http://www.r4rmusic.com/work/show/2

Apache will treat the directory /usr/local/share/railsapps/r4rmusic/public as
the directory for this request. Different Web servers handle this process slightly
differently, but we’ll stick with Apache for the sake of illustration.

 When the Apache server is pointed to a directory, it looks in that directory for
a file called .htaccess. Such a file is found in the public directory of any Rails
application. The job of this file is to trigger the execution of the dispatcher: a small
program that is responsible for getting the Rails application to do something.

 You can see the dispatcher (actually, several dispatchers; the one your applica-
tion uses can be configured) in the public subdirectory of r4rmusic:

$ cd public
$ ls dispatch.*
dispatch.cgi dispatch.fcgi dispatch.rb

62 CHAPTER 2

How Rails works
Which dispatcher is called doesn’t matter for purposes of this overview. The
salient point is that one of these three dispatcher programs gets called.

2.4.2 Stage 2: dispatcher to controller

The dispatcher’s job is to dispatch the request—that is, to send it to the appropri-
ate controller. Controllers are the subprograms in a Rails application that per-
form tasks. They reach back into the database and get data, they search and sort,
they test for password matches, and so forth. Typically, a Rails application has sev-
eral controllers, and each controller is capable of multiple actions. For example,
you may have a customer controller that can perform login, logout, edit (edit pro-
file), and other actions.

 How does the dispatcher know which controller to summon, and which action
to request from that controller? It knows by analyzing the incoming URL. More
precisely, it gleans the correct controller and action from the URL after the URL
has passed along an internal conveyor built of transformations and translations.
The URL with which the user connected contains the directives necessary to trig-
ger the correct response from the application, but those directives may need to be
interpreted first. This all happens automatically (although you have to set up the
URL interpretation rules manually if they’re complex).

 The upshot of all this rewriting and interpreting of the URL is that the Rails
dispatcher is armed with three pieces of information, two of which are required
and one of which is optional:

■ The name of a controller

■ The name of an action

■ A value for the request’s id

At the point where these values have been established, the automatic processing
of the incoming request meets what you’ve done as the application developer.
Once the dispatcher passes control onward, what happens is as follows.

2.4.3 Stage 3: performance of a controller action

When the appropriate action, inside the appropriate controller, is executed, it has
automatic access to the following:

■ CGI data, including data from a submitted form (via the built-in params
method)

■ The controller’s session information (via the built-in session method)

Tracing the lifecycle of a Rails run 63
CGI variables and their values are available through the built-in Rails params
method. For example, to dig out the value of the email input field of a form, you
call params as follows:

params[:email]

Or, if the values are stored in a more deeply nested structure, you call params this
way:

params[:user][:email]

(params returns a hash: a data structure organized as a collection of values coupled
with keys through which you can access those values. Some of the values in params
may be inner or nested hashes, like params[:user]. The details of how these hash
data structures work will be explained in chapter 11, when we talk about collec-
tions and container objects.)

 The CGI data made available to the controller in this manner includes an id
entry. The value of this entry is automatically set to the third of the elements in the
canonical Rails URL. For example, suppose the incoming URL looks like this (or
translates to this, based on whatever rewriting and routing rules are in operation):

http://www.r4rmusic.com/work/show/12

As you saw in section 2.3.3, the show action uses the expression params[:id] to
grab the value of the CGI id variable. Thanks to the presence of “12” in the appro-
priate field in the URL, the value of that variable will be automatically set to “12”.
The show action then uses this value to determine which work to display, namely
the work whose id number is 12.

 The controller action also has access to its own session information. Rails
applications can cache information from one invocation to another. This can be
handy, for instance, for enabling customers to navigate a site without having to log
in every time they go to a different part of the site. The login status is maintained
in the session cache and checked for validity. The action can set session values:

session['user'] = user.id

It can also retrieve values (if any) set by previous actions:

if session['admin']
 # administrator is logged in
else
 not an administrative session; don't allow special privileges
end

64 CHAPTER 2

How Rails works
What you call your session data, and whether you use the session facility, is up to
you. The session method gives you a kind of cubbyhole where one action can
leave notes for the other actions, if and when that kind of cross-action communi-
cation is necessary.

NOTE THE @params AND @session VARIABLES The information available
through the params and session methods is also available through the
special predefined variables @params and @session. (These are instance
variables, a special-purpose kind of variable you’ll learn more about in
part 2.) You may see @params and @session in Rails applications; how-
ever, using the methods, rather than the variables, has come to be consid-
ered better practice.

Controller actions, then, are sequences of Ruby code that correspond directly to
the tasks this application can be asked to do: log in a user, add a recipe to a cook-
book, display thumbnails of the first 10 photographs in an online album, and so
forth. A Rails action (the lines of code that define an action in a controller file)
maps closely to what users can do with the application.

 Having looked at both models and controllers, let’s see how they relate to each
other.

Controllers and models
Entity models lie close to the database. Controllers don’t; they manipulate data-
base records through instances of the models. Here, user is a specific case or
instance of the User model:

user.email = params[:email]
user.update

In this example, the controller asks the user instance to set its email address equal
to the email address entered on a form and then update itself. The controller
doesn’t know what becomes of that request. But the user instance knows how to
handle the request; it creates an SQL command something like the following:

UPDATE users SET email = 'dblack@wobblini.net' WHERE id = 33;

(This example assumes, arbitrarily, that this user’s record has the value 33 in its id
field.) The controller is protected from having to deal directly with the database.

 So are you. When you write Rails application code, you always write code that
manipulates data through nicely named, neatly ordered variables. The code you
write triggers a cascade of database operations. But you don’t have to address the
database directly. You have to design the database, and you have to know what

Summary 65
the database tables and fields are called (because that knowledge has a direct
bearing on what your model can do). But then you manipulate the database at
an abstract level.

TIP LEARN SQL, EVEN IF IT’S NOT YOUR MAIN FOCUS As a Rails programmer,
you generally don’t have to write SQL statements; Rails provides short-
cuts and automated querying facilities to handle most of that for you.
But it’s likely that you’ll need to write a little SQL now and then—and if
you’re working with a database system that speaks SQL, you’ll probably
have occasion to interact with the database outside of Rails (for instance,
in an interactive monitor). Picking up the rudiments of SQL is highly
recommended for all Rails developers.

2.4.4 Stage 4: the fulfillment of the view

You’re now on the downslope of the process. The rest of the controller’s job is to
pass the data to the view. The view fills in its template, resulting in an HTML docu-
ment that is then handed to the Web server and from there back to the original
Web client.

 The basic process is as follows: An incoming HTTP request is deflected from the
server’s default document location to the home directory of the Rails application,
where a dispatcher program is executed. That dispatcher program dispatches the
request to the appropriate controller/action combination, which it figures out
from the URL (applying interpretive rules as needed). The controller then takes
over. On the one hand, the controller has access to the universe of the models,
through which it can manipulate data; and on the other hand, it has the ability to
share data with the view template. The view template gets expanded into HTML,
complete with interpolated data, and the Web server hands it back to the client.

2.5 Summary

In this chapter, we’ve surveyed the engineering of the Ruby on Rails framework.
You’ve read about the MVC framework architecture and the Rails implementation
of it through ActiveRecord (which models entities based on database design),
ActionView (which provides templating facilities based on ERb), and ActionCon-
troller (which runs interference between the data manipulation and its presenta-
tion). You’ve also gone through the process of creating and running a working
Rails application—an application that you’ll be able to enhance in part 4 of the
book, thanks to your study of the Ruby language in the intervening chapters.
We’ve taken a close look at the stages involved in the processing of an incoming

66 CHAPTER 2

How Rails works
request to Rails application: the server awakening the Rails dispatcher; the dis-
patcher contacting the appropriate controller; the controller executing the
requested action; and the view template being filled out and handed back, in the
form of an HTML document, to the server.

 At this point, you have a grasp of how both Ruby and Rails work. Next, we’ll
finish part 1 with a chapter that takes an initial look at the ways in which they
operate together.

Ruby-informed
Rails development
In this chapter
■ Exploration of Rails code as Ruby code
■ Rails as a domain-specific language
■ Configuration-like programming, and

programming-like configuration
■ Walk-through of sample enhancements to

controller and model files
■ Tips on legacy data conversion with Ruby
67

68 CHAPTER 3

Ruby-informed Rails development
This chapter represents something of a pivot point. There’s a lot of material com-
ing up later: two parts of the book devoted to a Ruby language tutorial, and a final
part that brings the threads together in a Ruby-aware second pass at R4RMusic, the
Rails application we created in chapter 2. Still, we’ve already completed one com-
plete cycle of the breadth-first examination of Ruby and Rails, and you’re in a
position to see more closely and more clearly how the study of Ruby can pay off
for a Rails developer.

 The focus in this chapter is on that how, and on the why. The full benefits of
immersing yourself in Ruby can’t, and won’t, all present themselves in this chap-
ter; much more will emerge during parts 2 and 3—the heart of the book’s Ruby
tutorial material—as well as during the further development of the music store
application in part 4. But we’re far enough along that you can clearly see by exam-
ple, and not just take on faith, the kinds of advantages that a Rails developer can
reap from a thorough Ruby grounding.

 The introductory “About this book” section listed four ways in which knowing
Ruby well can serve you as a Rails developer:

■ By helping you know what the code in your application—including Rails
boilerplate code—is doing

■ By helping you do more in, and with, your Rails applications than you can if
you limit yourself to the readily available Rails idioms and techniques (as
powerful as those are)

■ By allowing you to familiarize yourself with the Rails source code, which in
turn enables you to participate in discussions about Rails and perhaps sub-
mit bug reports and code patches

■ By giving you a powerful tool for administrative and organizational tasks
(for example, legacy code conversion) connected with your application

As stated back in that section, the first two of these four items are the most central
to this book. The main goal of this chapter is to demonstrate to you how much
more meaningful and concrete those first two items already are, now that you’ve
read the first two chapters. There’s much more to learn and do in the chapters
that lie beyond this—we’re still mapping out the Ruby/Rails landscape at a fairly
high level—but we’re well underway.

 In the interest of the “knowing what your code is doing” goal, we’ll look at the
relation between certain typical Rails coding conventions and the bigger Ruby-
language context out of which they have emerged. By way of helping you do
more, we’ll carry out a few representative enhancements, via customized Ruby

A first crack at knowing what your code does 69
code, of Rails application model, helper, and controller files. The purpose is to
give you a collective preview of some of what will come later in the book.

 Finally, this chapter serves as the first and only home for the fourth item on the
list, accomplishing application-related tasks. This area of Ruby use lies, for the
most part, outside the Ruby for Rails landscape. But it’s worth noting that Ruby’s
usefulness to you as a Rails developer isn’t limited to the lines of Ruby code you
write in your Rails applications; and we’ll pursue that point by looking at some
issues connected with the process of converting legacy data for use in a Rails appli-
cation. While we’re on the topic of Ruby helping you in a general way, we’ll get
slightly more specific and look at how you can run Interactive Ruby (irb) pre-
loaded with the specifics of the universe of your Rails application.

 This chapter will complete the foundation work for the more detailed Ruby
and Ruby-informed Rails exploration to come.

3.1 A first crack at knowing what your code does

It’s hard to imagine that a case needs to be made for understanding your own
code, but it’s worth a few words.

 Specific code examples designed to train you in knowing what your Rails code
is doing will be plentiful as we talk about Ruby and circle back to Rails later in the
book. In this section, we’ll look at some points and premises about knowing what
you’re doing—specifically, points about the relationship between Ruby and Rails.

 The Rails framework does two things (among others) very well: It makes you
feel like you’re using not just Ruby but a domain-specific language (DSL) written in
Ruby; and it makes you feel like you’re not really programming but mainly writing
configuration files. Both of these characteristics testify to the power of Ruby
(Ruby is good as a host language for DSLs) and to its skillful deployment in the
Rails framework.

 But even when Rails coding feels like configuration—or feels like coding, but
in a language unto itself—it is still, nonetheless, Ruby. That means you’re well
advised to keep an eye on how the layers fit together: that is, on how Ruby and
Rails relate to each other and, contradictory as it may sound, what role Ruby plays
in the process of making Rails sometimes feel like a separate language from Ruby.

 In this section, we’ll use the Rails feels like configuration idea and the Rails feels
like a programming language of its own idea to examine the relationship between
Ruby and Rails—which is to say, the idea that Rails programming is in fact Ruby pro-
gramming. This will give you an informative look at an important aspect of know-
ing what your Rails code is doing.

70 CHAPTER 3

Ruby-informed Rails development
3.1.1 Seeing Rails as a domain-specific language

One important effect of the configuration look-and-feel of Rails (along with the
repertoire of Rails instructions and techniques available to you) is that using Rails
often feels like using a domain-specific language. A DSL is a language designed to
be used for a specific task or set of tasks in a particular field or domain, rather than
for general-purpose programming. The instruction set in a DSL is relatively narrow.
For example, an imaginary DSL for simulating a poker game might look like this:

with 4 Players:
 deal down: 2
 deal up: 1
 bet
 until Dealer.has(6)
 deal up: 1
 bet
 end
 # etc.

The instruction set of the language is limited to poker-related terms, and there
are (presumably) built-in facilities for calculating winning hands, odds of making
certain hands, and so forth.

 Like any programming language or tool, a DSL must be designed and written
by someone before it can be used by programmers. If you’re writing a DSL, you
write it in some other programming language.

 It turns out that one of Ruby’s strengths is its ability to serve as host language
for DSLs: Ruby is a general-purpose programming language in which it’s easy to
write special-purpose programming languages. There are a couple of reasons for
this. First, Ruby’s relatively uncomplicated syntax makes it (relatively) easy for
people who aren’t principally programmers to learn a useful subset of language
constructs. If you package such a subset as a little computer language of its own,
you’re well on the way to a DSL. Second, Ruby lets you do a great deal of redefin-
ing of language constructs, which means you have a lot of control over what ele-
ments of the language mean.

 Here’s a (still imaginary) Ruby version of the poker DSL snippet:

Game.start(:players => 4) do
 deal :down => 2
 deal :up => 1
 bet
 until dealer.hand == 6
 deal :up => 1
 bet
 end
 # etc.

A first crack at knowing what your code does 71
This is just a fragment; before writing this, you’d have to write the code that
defines what Game is, and so forth. But people using this little DSL don’t need to
know how that was done. Someone could easily learn a rule like “The deal com-
mand is followed by :down and :up values” and could also learn the syntax for
those rules without having to know what the code means in Ruby terms.

 In some respects, Rails is likewise a domain-specific language written in Ruby.
It’s true that Rails applications span a wide range of use and usefulness; and look-
ing at the whole spectrum of Rails applications, from shopping sites to bulletin
boards to bug-trackers, there may not seem to be anything specific about the Rails
domain. But that’s just a reflection of the wide range of Web sites. Looking at it
from the programming angle, Rails does have a specific domain: Web applica-
tions, particularly interactive, database-driven Web applications. And in a number
of respects, Rails provides you with a domain-specific programming language.

 It’s important to develop a sense of how the specificity of Rails is engineered
and how it relates to Ruby. Rails, especially to someone who hasn’t seen much
Ruby code outside of Rails, exhibits specificity at two levels: in the syntax, and in
the terminology. We’ll look at these two levels separately.

Domain specificity in relation to syntax
A common Rails idiom we’ve already seen, and that you may have seen before, is this:

has_many :editions

The syntax used here, with a verb-based directive on the left and what looks like a
configuration spec on the right, seems like it could have been created specifically
for a system like the Rails framework. In fact, it’s a simple Ruby method call. The
name of the method is has_many, and the argument is a Ruby symbol object.

 Every time anyone uses this method, it will look essentially the same. You’ll
almost certainly never see this

send("has_many", "editions".intern)

which is equivalent to the previous example (send is a do-it-yourself way to send a
message to an object; intern converts a string object to a symbol object). This
send-based version is, admittedly, far-fetched enough not to be a close call. But
you’ll probably never even see this much more slight variation on the original:

has_many(:editions)

Many Ruby programmers like to put parentheses around method arguments,
even when the parentheses are optional. But when writing Rails applications, even
these programmers (and I’m one of them) don’t use the parentheses—not

72 CHAPTER 3

Ruby-informed Rails development
because of Ruby (Ruby doesn’t care), but because leaving the parentheses off is a
standard Rails convention.

 The common idioms you use in Rails aren’t alternatives to Ruby; they’re alter-
natives within Ruby. Long before Rails came along, it was possible to call a method
with a symbol argument:

method_from_ten_years_ago :symbol

And when Rails did come along, it—that is, its creator, core developers, and devel-
oper community—settled on this style of calling such a method. Ruby, meanwhile,
is happy; this method-call style is a mainstream, idiomatic Ruby technique.

 Part of learning Ruby as a Rails practitioner is recognizing what’s going on in
your code, and the first lesson is that what’s happening is always Ruby. If there’s
less variety in coding style from one Rails application to another than there could
be—that is, if you see thousands of

has_many :editions

and never see

send("has_many", "editions".intern)

or even

has_many(:editions)

it’s not because Rails has special syntax or rules. It’s because the Rails community
has had the sense to rally around a relatively small number of coding conventions,
gaining visual uniformity and a de facto language specificity for Rails development.

Terminology and domain specificity
The other side of the domain-specific coin is the matter of the terminology: for
example, the matter of having a term like has_many, considered separately from
the matter of whether you use parentheses with the term.

 The full domain specificity of Rails emerges in the terminology and semantics.
The methods available for the manipulation of database records; the presence of
the terms model, view, and controller in directory and file names; the names of the
underlying libraries and data structures (ActionView and so on)—all of these con-
tribute to the sense that when you’re working on a Rails application, you’re work-
ing in a particular context, a particular shop, with its own lingo and its own
specific rules and procedures.

A first crack at knowing what your code does 73
 This idea meshes nicely with the fact that Rails coding practice is so uniform. The
consensus about syntax keeps the scenery uniform and familiar, while the semantics
of the method, data, and file names give the landscape its specific character.

 At the same time, the Rails environment isn’t a self-contained, self-sustaining,
hermetically sealed world of its own. It’s a Ruby environment that has managed
to define its own boundaries elegantly while still functioning as a full-featured
Ruby environment.

 This means that if you’re writing a Rails application and you decide you need
to write a new method (because no methods available by default do what you
need), you’ll probably make calls to your new method that look like this

new_method :argument

or like some other common Rails idiom. The Rails environment allows for unlim-
ited and unrestricted expansion, courtesy of Ruby, and it encourages programmers
to carry out those expansions in accordance with stylistic conventions. The con-
ventions, in turn, are generally chosen from among the visually most clean and
uncluttered of the alternatives made available by Ruby.

 Thus the language supports the domain specificity of the framework, and the
framework supports the participation of the language.

 Discussions of Rails coding style always come back to the frequent use of sym-
bol objects (such as :editions) as method arguments and/or hash keys in Rails
applications. We’ve already looked at some aspects of this topic, and next we’ll
return to symbols and head in a slightly different direction: ways in which Rails
programming looks and feels less like programming and more like configuration.
This subtopic, like domain specificity, flows into the stream of knowing what your
Rails code is doing.

3.1.2 Writing program code with a configuration flavor

One of the attractions of Rails is that when you’re writing Rails applications, it
often feels like you’re not so much writing a program as configuring a system—
even though you’re writing Ruby code. Not that there’s anything wrong with feel-
ing like you’re writing a program. But configuring a system almost inevitably feels
easier. When you type

has_one :composer
has_many :editions

in a file called app/models/work.rb, it doesn’t feel so much like you’re writing a
roadmap of events as that you’re informing the system of some of the conditions
under which it’s going to operate.

74 CHAPTER 3

Ruby-informed Rails development
 Rails often makes programming look like configuration. Exactly what configura-
tion means depends on what you’re configuring. For the sake of simplicity, it’s rea-
sonable to say that a configuration file generally contains declarative assignments:

something = some value

Examples abound. The Linux kernel configuration file looks like this, where
everything is a comment (#) or an assignment:

#
Block devices
#
CONFIG_BLK_DEV_FD=y
CONFIG_BLK_DEV_XD=m
CONFIG_PARIDE=m
CONFIG_PARIDE_PARPORT=m

Apache-style authorization files look like this, with the colon (:) serving as the asso-
ciation or assignment operator between the names and the encrypted passwords:

dblack:rtiU4FXvUmCYs
matz:b8P1eIatd3l1U

Configuration files can be more elaborate than this, but often they aren’t. And
this kind of simple assignment-style configuration has a well-deserved reputation
for being easy to type and maintain. (It’s even easier when you have a utility pro-
gram to do it for you.)

 Part of the Rails strategy for presenting a quickly understandable, relatively
simple domain-specific language for Web application development is that a lot of
what you do in Rails (definitely not all, but a lot) has a configuration-file look and
feel. This fact manifests itself in a couple of ways. We’ve already looked at some of
the ramifications of the frequent use of symbol objects as method arguments. In
many cases, usually with longer argument lists, symbols end up serving not as lone
arguments but as the equivalent of the left-hand side of what looks like a language
for specifying item/value pairs in a configuration file:

<%= link_to "A hyperlink in a view template",
 :controller => "main",
 :action => "welcome" %>

In this example, each symbol is associated with a value: the symbol :controller
with the string “main”, the symbol :action with the string “welcome”. (The two
symbols are hash keys, and the two strings are the corresponding hash values. The
entire hash is the second argument to the method; the first argument is the first
string: “A hyperlink…”.) This syntax is standard Ruby; and although it’s not

A first crack at knowing what your code does 75
identical to the classic item:value configuration-file syntax, it has some of the
same simplicity and visual balance.

 It’s also worth noting that the tendency of Rails developers to adhere to certain
stylistic conventions becomes more important as the code gets more complex.
The configuration-style pairing of symbols and strings in the previous example
would go by the wayside if people started using some of the alternatives, like this:

<%= link_to("A hyperlink in a view template",
 Hash[:controller, "main", :action, "welcome"]) %>

The adherence to convention scales upward nicely.
 Program code can thus look like an excerpt from a configuration file, which

can have advantages with respect to clarity, easy grasping of the logic of what’s
going on, and communication among developers. At the same time, oddly
enough, configuration files—while also looking like configuration files—can be
program code (of a particular sort). We’ll look next at this phenomenon as it per-
tains to Rails.

3.1.3 YAML and configuration that’s actually programming

The key case in point when it comes to configuration data that’s program code is
the file config/database.yml, which is where the details of the database backend
are specified. This file isn’t written in Ruby, but it’s written in a format that can be
directly read into and written out from Ruby objects: YAML.

 YAML (which, tradition has it, originally stood for Yet Another Markup Lan-
guage, but now stands for YAML Ain’t Markup Language) is, depending on your
view, either a markup language or a serialization format. Either way, YAML pro-
vides you with a way to store Ruby objects, including nested data structures, as text
strings—and to thaw those strings back into life as Ruby objects. Here’s a simple
example, in which a nested array structure is turned into its YAML representation
and then back into an array:

require 'yaml'
array = [1, 2, 3, [4, "five", :six]]
puts "Original array:"
puts array.inspect
yarray = array.to_yaml
puts "YAML representation of array: "
puts yarray
thawed = YAML.load(yarray)
puts "Array re-loaded from YAML string: "
p thawed

B

C

76 CHAPTER 3

Ruby-informed Rails development
(Smuggled into this example are the inspect method dd, which produces a
detailed string representation of an object, and the p method dd, which is equiva-
lent to running puts on the result of inspect.)

 The output from running this script is as follows:

Original array:
[1, 2, 3, [4, "five", :six]]
YAML representation of array:
- 1
- 2
- 3
- - 4
 - five
 - :six
Array re-loaded from YAML string:
[1, 2, 3, [4, "five", :six]]

Note that YAML not only remembers the nesting of the arrays, but also remembers
that “five” was a string and :six was a symbol. Rails uses YAML in several contexts.
In database.yml, you’ve seen blocks that look like this:

development:
 adapter: mysql
 database: r4rmusic1_development
 username: r4r
 password: railzrulez
 socket: /tmp/mysql.sock

Watch what happens when you run that through the YAML.load method. Put those
lines in a file by themselves (say, sample.yml), and run the following command,
which reads the file back, converts it from a YAML string to a Ruby object, and
then prints out a representation of that object (with p):

ruby -ryaml -e 'p YAML.load(File.read("sample.yml"))'

The output, massaged here to look less run-together than it appears onscreen, is
as follows:

{"development" => {"socket"=>"/tmp/mysql.sock",
 "username"=>"r4r",
 "adapter"=>"mysql",
 "password"=>"railzrulez",
 "database"=>"r4rmusic1_development"
 }
}

You’re seeing a printout of a Ruby hash, a data structure consisting of pairs made
up of one key and one value. Actually, you’re seeing two hashes. The first has the

C
B

Starting to use Ruby to do more in your code 77
single key development; the value of that key is another hash. That second hash
has keys called socket, username, and so forth. The values are, in every case, on
the right-hand side of the => separator.

 Rails is storing its configuration data as potential Ruby data, easily brought to life
with a YAML operation. Here, again, the worlds of programming and configuration
melt into one another, thanks to the facilities and tools available in and for Ruby.

 There’s more to the matter of knowing what’s happening when you use Rails
conventions and idioms. The goal here hasn’t been to cover it all but to encour-
age you to become curious about how even the most common Rails techniques
work. No doubt this entails a certain loss of Rails innocence; you cease to be able
to view Rails code as a world unto itself. But keep in mind that Ruby is good at
supporting the kind of domain-specific language, or dialect, that Rails exempli-
fies. There are reasons that Rails was written in Ruby.

 Meanwhile, in addition to knowing what Rails idioms mean (and this is an
ongoing process, not one that’s limited to the examples you’ve already seen),
there’s the important matter of learning Ruby so that you can add value and
power to your Rails applications by writing custom code that supplements and
enhances the techniques Rails makes available by default.

3.2 Starting to use Ruby to do more in your code

You want to know Ruby techniques so that you can add to what your application
can do and increase the ease with which you get the application to do it. This
doesn’t mean everything you do will be spectacular. It means that you’ll be able to
do more, and do it easily.

 Rails is your partner in this process. When you leverage your Ruby skills to
enhance your Rails application, you aren’t out-smarting Rails. You’re doing what
you’re expected to do: work within the Rails framework to achieve the best results
you can.

 Nor is this a platitude. It’s a characterization of how the Rails framework is
engineered. The details of what you do on every Rails project—not just the code,
but also the specifics of the setup and configuration—fall into three categories
that cover a wide spectrum of constraint and freedom:

■ Things you do a particular way because the rules of Rails say they have to be
done that way

■ Customizations you’re likely to want to do and for which Rails provides an
infrastructure (while leaving you a lot of freedom as to specifics)

78 CHAPTER 3

Ruby-informed Rails development
■ Open-ended enhancements and extensions of your program, along what-
ever lines you want, using any Ruby-language techniques you wish

The first category includes bedrock-level application characteristics like the file
layout and the need to specify what database your application uses. It also
includes tasks you won’t always perform but that you’re expected to do a particu-
lar way, like declaring associations between entities (has_one :composer, and so
on), using layout to specify layouts, and so forth. These expectations come with
the territory of being a framework.

 The second category is important and interesting. It includes, for example, the
app/helpers directory, the purpose of which is to house program files containing
routines for use in your templates. You’re in charge of naming and writing the
methods, but Rails provides an infrastructure that rationalizes and pre-systematizes
the code for you.

 Another example of the second “support and encouragement” category (we
might also call it “structured freedom”) are the method hooks available to you in
your model definition files. A method hook is a method that you may, but aren’t
obliged to, write; and if you do write it, it’s automatically called at a predefined
point during program execution. For example, if you write a method called
before_create in one of your model files, then that method will be called auto-
matically every time a database record corresponding to an instance of that model
is created. This allows you to gatekeep the data in an orderly fashion and to man-
age your database at a low level while still writing everything in Ruby.

 The third category from the earlier list—open-ended freedom—encompasses
the fact that you’re always writing Ruby code. Rails endows your objects with cer-
tain capabilities: some are inborn, some are based on your database’s organization
and naming scheme. You can endow those objects with any further capabilities
you want. In many cases, you don’t have to do much, if any, of this: The default
Rails universe is very rich, providing a great deal of object functionality. But it
can’t provide every tweak for every imaginable application. What it doesn’t pro-
vide, you provide.

 In what follows, examples and discussion will include a sampling of all three
levels at which you, the developer/programmer, operate when you’re writing a
Rails application. We’ll start in the “structured freedom” category, with a look at
examples of controller programming.

Starting to use Ruby to do more in your code 79
3.2.1 Adding functionality to a controller

The controllers are the traffic cops of a Rails application. They gather data from
the database (generally through the friendly programmatic interface provided by
the ActiveRecord models), manipulate and organize the data as required, and
hand it off to be inserted into the view templates.

 In the “manipulate and organize” part, the code you write in your controller
files can scale up in power and flexibility. Here’s an example from the Ruby
Change Request site, RCRchive (http://www.rcrchive.net). The purpose of this
site is to let people submit suggestions for changes and enhancements to Ruby
and browse through the changes that have been proposed. (You can also com-
ment on and vote on the various RCRs.)

 The first view you see includes a list of all the pending RCRs followed by lists
of accepted, rejected, superseded, and withdrawn RCRs. This initial view is preor-
ganized for you according to the status of the various RCRs.

 However, a link takes you to a view of all the RCRs in the archive. (You can also
get there directly by connecting to http://www.rcrchive.net/rcr/all.) By default,
this list is sorted by RCR number, in descending order, so the most recent RCRs are
listed first. By clicking the appropriate column heading, you can see the list sorted
different ways:

■ By title

■ By author

■ By status (pending, accepted, rejected)

When you click, say, the Title heading, you trigger another call to the same
action—the all action in the rcr controller file—but with the CGI parameter
order set to the value “title”. The all method takes the hint and puts all the RCRs
in a variable (@rcrs) sorted in the requested order. This sorted list of RCRs is then
handed off to the view.

 The logic of the sorting in the controller is as follows:

1 If the sort field is author, sort by author’s name, then by RCR number
(descending).

2 If the sort field is status or title, sort on whichever it is, then by RCR num-
ber (descending).

3 If the sort field is number, sort by RCR number (descending).

The Ruby method that does this—the rcr/all action, in rcr_controller.rb—is
as follows:

80 CHAPTER 3

Ruby-informed Rails development
def all
 @order = params[:order] || "number"
 sort_proc = case @order
 when "author" then lambda {|r| [r.user.name.downcase, r.number] }
 when "status",
 "title" then lambda {|r| [r.send(@order).downcase, r.number]}
 when "number" then lambda {|r| -r.number }
 end
 @rcrs = Rcr.find(:all).sort_by &sort_proc
end

The variable @order (an instance variable) is set to the value of the CGI variable
order dd, defaulting to the string “number” if that CGI variable isn’t set. At that
point, the variable sort_proc (sorting procedure) is set to one of three possible
lambda expressions (anonymous functions). Which lambda is chosen depends on
the value of @order; the selection is performed through a case statement dd.

 Once the correct lambda has been chosen, all of the existing RCRs are sorted
according to the logic of that lambda dd, using the ActiveRecord find method to
grab all the RCRs and Ruby’s sort_by method to filter the list through whichever
lambda is stashed in sort_proc.

 If you know Ruby, this isn’t a difficult method to write. But you do have to
know Ruby! Specifically, you have to know the following:

■ The case statement

■ The lambda keyword, with which you create an anonymous function

■ The send method (notice how status and title can be handled together)

■ The sort_by method, to which you hand a lambda

This code does nothing earth-shatteringly spectacular. You could write it (more
lengthily) without some of the techniques it uses. What is spectacular is how much
you gain in the way of adaptability and ease of development when you know those
Ruby techniques.

 Rails knows that it’s a good idea to give the programmer freedom. You get sev-
eral assists in exercising that freedom. An important one, to which we’ll now turn,
is the provision of the helper files.

3.2.2 Deploying the Rails helper files

The most common idioms and techniques—“common” meaning that many appli-
cations have them in common—are provided by Rails. But Rails also provides ways
to address specific needs.

B
C

D

B

C

D

Starting to use Ruby to do more in your code 81
 The helper files, located in app/helpers, are a good example and an important
resource. They’re also prime examples of the second category from the list in the
introduction to section 3.2: Rails facilities that you don’t have to use, but that you
may well want to use, to customize and enhance your application.

 A helper file is created automatically for every controller you create. Inside the
helper files, you can write arbitrarily many Ruby methods; these methods are
automatically accessible in your view template code.

 The advantage of this arrangement is that it saves you repetition. If you’re using
a construct several times in one or more of your templates, you can write a method
that generates the construct, and then call the method from the template.

 Here’s an example drawn from the list-sorting RCRchive code. Each of the col-
umn headings in the all view of the RCRs is hyperlinked to the rcr/all action.
The links differ from each other in only one respect: the value of the order
parameter (“author”, “title”, “number”, or “status”). That means all four of these
links use almost identical code. To save repetition, a helper method generates an
appropriate link automatically. All you have to do is pass it an order argument.

 The helper method, defined in the file rcr_helper.rb, looks like this:

def link_to_order(order)
 link_to(order.capitalize,
 :controller => "rcr",
 :action => "all",
 :params => { "order" => order })
end

As you can see, it piggybacks on the Rails method link_to. It uses link_to to
write the appropriate HTML for a link to the correct action—with the order
parameter set to the value of the variable order, which was passed in as an argu-
ment to the method.

 Inside the view (app/views/rcr/all.rhtml), the following four lines create the
table headers:

<th class="rcr"><%= link_to_order("number") %></th>
<th class="rcr"><%= link_to_order("title") %></th>
<th class="rcr"><%= link_to_order("status") %></th>
<th class="rcr"><%= link_to_order("author") %></th>

Each of these lines puts in a call to the custom-written link generator method
link_to_order. The resulting HTML looks like this:

<th class="rcr">Number</th>
<th class="rcr">Title</th>
<th class="rcr">Status</th>
<th class="rcr">Author</th>

82 CHAPTER 3

Ruby-informed Rails development
Why not type those four HTML lines into the view file in the first place? Because
using a helper method is more encapsulated. Let’s say I decide to put the column
headings in pure uppercase, instead of capitalized format as they are currently—
in other words, NUMBER instead of Number, TITLE instead of Title, and so on.
Thanks to the fact that the headings are all processed via the same helper
method, I can achieve this by making one change to that method: I change
order.capitalize to order.upcase, and the new format is propagated automati-
cally to all the headings. If the HTML lines are hard-coded into the template file, I
have to dig around in the file and make the changes one at a time by hand, which
is both troublesome and error-prone.

 Helper methods figure in Rails in two distinct related ways. Rails provides you
with the apps/helpers directory and file bank to encourage you to write methods
that encapsulate functionality and to keep the view templates organized. But Rails
also supplies you a large number of predefined helper methods. link_to is a per-
fect example: It’s a built-in Rails helper method that gives you a programmatic
interface (a way to get the job done through a method call, rather than by writing
everything by hand) to the creation of the HTML you need.

 When you write helper methods, you’re adding to the stockpile of such meth-
ods that Rails has already given you. Rails expects you to build upward and outward:
according to a particular structure, yes, but in an open-ended way.

 Speaking of open-ended, we’re now going to plunge into the wide-open area
of enhancing the functionality of ActiveRecord models.

3.2.3 Adding functionality to models

ActiveRecord models are the Ruby incarnation of the same domain universe that
governs your database design. You have an editions table; you have an Edition
model. You then have an arbitrary number of edition objects. Those objects can
perform certain actions, thanks to the methods built into the ActiveRecord
library—and they can perform any action, if you write the code for it.

 In part 4 of the book, when we come back to the music store application, we’ll
be writing custom model code. Here, in keeping with the spirit of this chapter,
we’ll see enough to make a case for the importance of the concept.

 You can perform two levels of model enhancement: writing a method whose
name corresponds to a predefined callback, or hook; and writing a method from
scratch. The first of these resides in the second of our three freedom categories,
as mapped out at the beginning of section 3.2: the category of structured free-
dom, facilitated but not mandatory enhancement. The second, writing methods

Starting to use Ruby to do more in your code 83
from scratch, belongs in the third category: open-ended programming freedom.
We’ll look at an example of each.

Implementing predefined callback methods
The introduction to section 3.2 mentioned the existence of a before_create
hook: If you write a method call before_create in an ActiveRecord model file,
that method will be executed before the database record is created for each
instance of that model.

 You can see this in action by making a small and harmless change to the file
app/models/edition.rb in the r4rmusic application. Every edition has a descrip-
tion—basically, a free-form text field for storing descriptive information like
“revised” or the name of an editor. If you don’t specify a string to fill this field,
then by default the field is set to nil (no value).

 It might be more graceful to have a default string value for the description field.
If no description exists for the edition at the time the database record is first cre-
ated, let’s have it default to “standard”.

 To bring this about, insert the following method definition into edition.rb
(just prior to the end that ends the file):

def before_create
 self.description = "standard" unless description
end

This code basically says: if description is nil, set it to “standard”. The code is exe-
cuted just before a new edition is saved to the database. Thus any edition without
a description gets one.

 (You can try this by changing one of the editions description fields in the
records file created in chapter 2 to NULL [the SQL equivalent of Ruby’s nil] and
reinitializing the database and the records from the files. The “standard” designa-
tion should then show up when you look at that edition in your browser.)

 Rails predefines quite a few callback and filter-methods like before_create,
anticipating that you may want to perform programming actions in your applica-
tion but not dictating what those actions should be. These filters are analogous to
the helper-file facility: They’re a halfway measure that makes it easy for you to add
the finishing touches.

 You can also write methods from scratch for your models. This is one of the
most powerful and useful areas of Rails for the exercising of Ruby skills.

84 CHAPTER 3

Ruby-informed Rails development
Free-form programmatic model enhancement
Let’s say you have a Rails application in which you store people’s names—perhaps
the names of customers in a database. You have a table called (say) customers, and
fields in that table called title, first_name, middle_initial, and last_name. On the Ruby
side, you have a customer.rb model file. Thanks to the database table field names,
you can easily retrieve the title and name components of a given customer.

 For example, in a view template, given a customer object in the variable @cus-
tomer, you can display the person’s name like this:

<p>Hello, <%= @customer.title + " " + @customer.first_name + " " +
 @customer.middle_initial + ". " +
 @customer.last_name" %></p>

You’d want to finesse cases where someone doesn’t have a middle initial, but the
basic idea is that to display a name, you string together its parts.

 However, this code is awfully wordy for a template. Besides, you may want to
display the name more than once. It would be nice to have a method that could
do this. You could write a helper method, as we did in the case of link_to_order.
But you may want to access the nice version of the name somewhere else in the
application (maybe when emailing the customer), not just in the views.

 The most logical approach is to have the customer object generate the nice
name. To do this, you write a method in the model file. The output of this method
is a string with the components of the name pieced together. (We’ll even take the
precaution of interpolating an empty string if this customer has no middle ini-
tial.) Here’s what your customer.rb file looks like:

class Customer < ActiveRecord::Base
 def nice_name
 title + " " + first_name + " " +
 (if middle_initial then middle_initial + ". " else "" end) +
 last_name
 end
end

If you’re designing a view where you want the person’s name displayed in this for-
mat, and your controller has stashed the relevant instance of Customer in the vari-
able @customer, you can write the following, and @customer will know what to do:

<p>Good morning, <%= @customer.nice_name %>.</p>

In this example, the knowledge that Ruby lets you chain strings together with the
plus sign enables you to add an enhancement to all customer objects. Conditional
logic (the if/else handling of the middle initial) ensures that you don’t end up

Accomplishing application-related skills and tasks 85
with stray dots and spaces. Overall, a bit of Ruby skill lets you endow the Customer
model with a new facility—the nice version of its name—and lets you do it well.

 The more Ruby you know, the more of this kind of functionality you can cre-
ate, and the more quickly and accurately you can do so. Rails and Ruby operate
together as one system, and writing Ruby code is part of your role in that system.

3.3 Accomplishing application-related skills and tasks

As stated in the introduction to this chapter, administrative and organizational
tasks won’t figure prominently in the rest of this book, but this area definitely
merits one section’s worth of attention. I hope you’ll find opportunities to use
Ruby in and around your Rails work in a variety of ways, and this section is
designed to encourage you to look for such opportunities.

 We’ll use a common case as our main example: converting legacy data to a
Rails-usable format. This is an area where Ruby can help you a great deal—not
only because the target format is ActiveRecord, but because Ruby is good at
manipulating data in many formats and forms.

 This section also includes an introduction to the irb-based application console,
which is basically an irb session into which your model files have been preloaded.
You can use this session interactively to examine and change database records and
run any methods that have been defined for the use of your models. As a subtopic,
the application console is an imperfect fit for this section; but because it’s irb based,
and irb is part of the general Ruby environment, we’ll count it among the facilities
Ruby gives you to enhance your work environment. (If you end up feeling that the
application console is an integral Rails development tool, so much the better!)

3.3.1 Converting legacy data to ActiveRecord

When it comes to converting data, a lot depends on what you start with. You may
be dealing with an old relational database and have to convert it to Rails-friendly
SQL. Or you may need to turn information stored in flat text files into database
records. There’s no single scenario when it comes to the process of dealing with
legacy data. But Ruby skills can help you bootstrap that data into Rails-accessible
form in virtually any case.

 We’ll look at an extended example here, based on a real-life case (that’s proba-
bly similar to many real-life cases) involving data from a discussion board stored in
small text files. We get a lucky break because these text files are YAML files. That
gives us a foot in the door when it comes to getting Ruby and, subsequently, Rails
to understand what’s in them.

86 CHAPTER 3

Ruby-informed Rails development
Each file has a number of fields:

number: 251
username: dblack
date: 10-3-2005
previous: 244
title: I've got something to say about that
body: "This is a sample comment, which in practice could go on
for a long time and have all sorts of markup in it."

The software you’ve been using threads everything together based on message
numbers and tracking responses. Now, you want to convert this to a Rails site.

 First, design and create the new database. Based on the previous example, an
appropriate set of tables might look like this:

CREATE TABLE messages (
 id INT(4) NOT NULL AUTO_INCREMENT,
 user_id INT(4),
 previous_id INT(4),
 number int(6),
 title VARCHAR(50),
 body TEXT,
dddate CHAR(10),
 PRIMARY KEY(id)
);

CREATE TABLE users (
 id INT(4) NOT NULL AUTO_INCREMENT,
 name VARCHAR(20),
 PRIMARY KEY(id)
);

Now, create the Rails application:

$ rails board
$ cd board
$ ruby script/generate model user
$ ruby script/generate model message

In app/models/user.rb, add the following:

class User < ActiveRecord::Base
 has_many :messages
end

And put this code in app/models/message.rb:

class Message < ActiveRecord::Base
 belongs_to :user
 belongs_to :previous, :class_name => "Message",
 :foreign_key =>"previous_id"
end

Accomplishing application-related skills and tasks 87
Then, set up config/database.yml.
 Now you’ve got to filter the old data into the new Rails environment. The way

we’ll do this is as follows:

1 For each message file, read the file in via YAML.

2 Retrieve the user corresponding to the message’s username from the
database (or create a new user if no such user exists).

3 Set the new message’s user property to the user just retrieved (or created).

4 Create a new Message object, and set its date, number, title, and body
properties from the old values.

5 If this message has a previous field (used for threading), then set this mes-
sage’s previous property to the id for that message.

Listing 3.1 shows a Ruby script that will perform all these steps. It includes a few
black-box techniques; but the commentary will help you see what it’s doing and
how it maps to the algorithm just prescribed. The script is engineered to be run
from the root directory of the (imaginary) new Rails application; from there, it
can easily find and load the config/environment.rb file, which gives it access to
the necessary databases and other application-specific information.

require 'config/environment.rb'

mnums = {}
files = Dir["../file*"].sort

files.each do |file|
 m = YAML.load(File.read(file))
 num = m['number']
 prev = m['previous']

 user = User.find_by_name(m['username'])
 unless user
 user = User.new
 user.name = m['username']
 user.save
 end

 message = Message.new
 message.save
 mnums[num] = message.id

 message.user = user
 message.number = num

Listing 3.1 Conversion script to load legacy YAML data into a Rails application database

B

C
D

E

F

G

88 CHAPTER 3

Ruby-informed Rails development
 message.body = m['body']
 message.title = m['title']
 message.date = m['date']

 if prev
 message.previous = Message.find(mnums[prev])
 end

 message.save
end

The script initializes an empty hash (key/value collection) called mnums, which will
store message numbers in cases where one message is a response to another mes-
sage #1. Also, all of the names of the relevant legacy files are gathered, sorted
alphabetically, into the array files. The script now cycles through the original,
legacy data files one at a time, using each #2. (Make sure that the files are named
in such a way that an alphabetical sort of their names will put them in order by
date of message; for example, you could call them file000, file001, etc.)

 For each file, the script creates a Ruby object based on a YAML reading of the
file’s contents #3. (Remember that YAML serializes Ruby data to string form and
then can load it back from the string—stored in a file, in this case—to in-memory
data at runtime.) The variables prev and num store the values in the previous and
number fields of this message. There will always be a value for number, but there will
be a value for previous only if this message was a response to another message.
(We’ll need to know this later.)

 The script next searches for a user in the database matching the username
from the file. If it doesn’t find one, it creates a new user #4. This ensures that each
message will have a valid user associated with it.

 The rest of the script handles the message . A new message object is created to
store the message that’s being parsed from the file #5. The id field of the new mes-
sage is stored in the mnums hash, keyed to the number of the legacy message. This
provides a mapping between the old message numbering sequence and the
sequence of id values in the new message database.

 Various fields of the new message object are initialized to the corresponding
values from the file: user, number, body, title, and date #6. If a previous message exists
to which this one was a response (which we’ll know based on whether the variable
prev has a value), that existing message is used to set the previous field of the new
message #7. Finally, the new message, with its properties set to reflect who wrote it
and the message to which it was a response (if any), is saved to the database #8.

G

H

I

B

C

D

E

F

G

H
I

Accomplishing application-related skills and tasks 89
 The idea is to translate the data from the terms of one universe to the terms of
another. Ruby can do it all for you: read the old data (easy in this case, because it’s
in YAML, but not difficult even if it’s in other text-based or database formats), test
the values and make decisions about what should be done, and create ActiveRecord
objects whose properties match those in the original dataset. Not only Rails is open-
ended: Ruby itself is equal to all sorts of tasks, including conversions like this that
aren’t part of a Rails application but that may make development of an application
possible in the first place.

3.3.2 The irb-based Rails application console

Our last subtopic in this chapter could belong anywhere. It’s an application-
related skill, so it fits in this section. And it’s something you’ll find extremely use-
ful: the Rails application console.

 You’ve already started using irb to test Ruby code snippets and to do quick cal-
culations. Rails applications come complete with an irb-based console—basically,
an irb session preloaded with the components of your application.

 To run the console, give this command (from the top level of the application
directory):

$ ruby script/console

At this point, you’re in an irb session (with the simple prompt option; the prompt
is >>). During this session, you can examine data, create new data instances, and
so forth. Listing 3.2 shows a session that creates a new Edition object and fills in
its properties (except for description, which is filled in automatically when the
object is saved, thanks to the before_create hook we wrote in section 3.2.3).

$ ruby script/console
Loading development environment.
>> e = Edition.new
=> #<Edition:0x40a0ed3c @new_record=true, @attributes={"price"=>nil,

"publisher"=>nil, "description"=>nil, "year"=>nil, "work_id"=>0}>
>> e.work = Work.find(1)
=> #<Work:0x40a04cec @attributes={"title"=>"Sonata for Cello and Piano in

F\nMajor", "composer_id"=>"1", "id"=>"1"}>
>> e.price = 22.50
=> 22.5
>> e.publisher = "Ruby F. Rails, Inc."
=> "Ruby F. Rails, Inc."
>> e.year = 2006
=> 2006

Listing 3.2 irb session that that creates an Edition object and fills in its properties

B

C

C

90 CHAPTER 3

Ruby-informed Rails development
>> e.save
=> true
>> e.description
=> "standard"

The console session makes changes to the database (the development database,
by default). Here, we create an Edition object, assign something to its work prop-
erty #1 (so that it’s an edition of something) as well as its publisher and year #2,
and save it to the database. The save operation returns true #3, which means it
has succeeded. The new edition’s description property is set automatically to
“standard” #4, as we arranged.

 You can make changes directly in your application’s program files while the
session is in progress. If you do, you must reload the files you’ve changed. You can
do this using the load command (which, unlike require, loads a file even if it has
already loaded the file once). For example, if you make a change to edition.rb,
you type the following in the console session:

>> load 'edition.rb'

Rails knows how to find the file and reads it in again.
 Don’t forget that the application console is also a regular irb session. If, like

many Ruby programmers, you become an irb devotee, you can save yourself the
trouble of starting up an extra session if the application console is running
already and you need to do a quick irb calculation or code test.

3.4 Summary

Chapter 3 has given you a grounding in a number of the many ways that knowing
Ruby can help you as a Rails developer. It’s a pivot chapter: not as detailed or
extensive in terms of Ruby or Rails applicability as what is to come later in the
book, but more detailed than anything that would have made sense before the
first two chapters.

 You’ve seen examples of what it means to gain knowledge of what your Rails
code is doing, mainly in connection with the interplay between what looks like con-
figuration syntax and what is programming code. (That’s not the only area in which
it pays to understand the Ruby/Rails relationship, but it’s a good one to get a han-
dle on.) You’ve also seen some initial examples of how to deploy your own code,
both in cases where Rails provides you with an infrastructure for doing so (helper
methods and predefined hooks) and in cases where you’re writing methods from

D

E

B C
D

E

Summary 91
scratch for a certain purpose. As suggested in section 3.2, Rails is designed to pro-
vide you with different levels of choice and freedom; and you’ve seen examples of
everything from prescribed, unchangeable application features (such as the layout
and naming of the directories) to open-ended programming opportunities (such
as adding methods to model files, which allows you to bring just about any Ruby
technique to bear on your Rails application’s behavior).

 We also looked—for the first and pretty much the last time in the book—at the
power of Ruby to help you with tasks related to, but not necessarily part of, a given
Rails application. The legacy-data conversion example in section 3.3.1 points the
way to a large number of similar tasks; and I hope you’ll turn to Ruby productively
in the future to help you accomplish them. Also in the “how Ruby helps you with
Rails development” category, we covered the irb-based application console—a
very useful tool in its own right, as well as a good example of the interflow
between the Ruby programming environment and the Rails development process.

 Now we’ll turn to the systematic exploration of the Ruby programming lan-
guage. Rails won’t be lost to view, but the center of gravity of the next two parts of
the book will be on Ruby. You now have a good overview of the kinds of tasks that
a greater knowledge of Ruby can help perform do in Rails; and the return on time
invested only gets greater as you go along.

Part 2

Ruby building blocks

This is the first of two parts of this book devoted to the exploration and study
of the details of the Ruby programming language. This part comprises five chap-
ters, over the course of which you’ll learn about the major building blocks of
Ruby: the essential constructs and techniques that drive Ruby programs and hold
them together. This discussion includes an introductory situating of Ruby as an
object-oriented language. From there, we’ll move on to look at a series of topics
concerned with how Ruby programs are constructed and how Ruby represents
and manipulates data.

The focus in this part of the book, as well as in part 3, is on learning the Ruby
language. But it’s still Ruby for Rails, and Rails won’t fade from view. Where possi-
ble, Rails-related examples serve the double purpose of illustrating Ruby features
and also showing you Rails techniques or idioms, or nuggets of Rails information.
You’ll also find subsections that discuss in more depth the implications of particu-
lar Ruby constructs for the Rails framework.

We'll start part 2 with a close look at Ruby objects (the most basic building
block) and variables. From there, we’ll segue to an exploration of how you can
organize and automate objects using the aggregation techniques made available
by Ruby’s class and module mechanisms. That will take us through chapter 6.
Chapter 7 examines matters of scope in Ruby: where you are in the overall map of
your program at a given point during execution, and how to tell. Finally, chapter 8
introduces Ruby’s control-flow techniques: conditional execution if structures,
looping, and other related programming facilities.

In short, part 2 will take you through a considerable amount of both the what and
the how.

Objects and variables
In this chapter
■ Objects and object orientation
■ Innate vs. learned object capabilities
■ Method-call syntax and semantics
■ Variable assignment and usage
95

96 CHAPTER 4

Objects and variables
In this chapter, we’ll begin exploring the details of the Ruby programming lan-
guage. We’ll look first and foremost at the concept of the object, around which
almost every line of Ruby code you write (for Rails applications or otherwise) will
revolve. Toward the end of the chapter, we’ll get deeper technically than we have
so far into the nature and behavior of variables in Ruby.

 Aside from giving you a technical basis for understanding the rest of Ruby, the
study of objects also ties in directly to using a programming language to represent
or model aspects of entities and processes. This kind of modeling of entities is also
part of the design of a relational database, which in turn serves as the blueprint
for the structure of your Rails application. In other words, a lot of modeling is
going on at the programming-language, database-design, and application-design
levels. A thorough and disciplined understanding of Ruby’s object system is essen-
tial to seeing how these systems interoperate in Rails.

 Ruby objects are often (perhaps most often) handled via variables that repre-
sent them; and in this chapter you’ll learn about variables as well as objects. And
what you do with objects, broadly speaking, is send them messages; accordingly,
we’ll also look at some details of message sending—the mechanics of calling
methods on objects.

4.1 From “things” to objects

When you use Ruby—even when you’re not writing applications, like Rails appli-
cations, that operate in close parallel with a database—you’re always, to one
degree or another, dealing with the matter of mapping “things” to the universe of
your computer program.

 In the case of Rails applications, this kind of mapping is front and center: You
design a database with tables and fields, and your program derives filenames, vari-
able names, and much of its programming logic from that database. But apart
from Rails, Ruby itself, as a programming language, is designed such that much of
what you do when you plan and write Ruby programs is to model domains, exam-
ine relations between entities or “things” (like composers and works, or teachers
and students, or shirts and buttons), and find ways to embed those relations in the
structure and terminology of your program.

 When you write a computer program, you’re creating a kind of symbolic uni-
verse whose components you manipulate using the syntax and semantics of your
programming language. Some programming languages, however, encourage you
further along this road than others.

 Ruby is one of those.

From “things” to objects 97
 In any Ruby program, the bulk of the design, logic, and action revolve around
objects. When you write Ruby programs, you primarily create objects and ask those
objects to perform actions. Objects are your handle on the universe of your program.
When you want something done—a calculation, an output operation, a data com-
parison—you ask an object to do it. Rather than ask in the abstract whether a
equals b, you ask a whether it considers itself equal to b. If you want to know whether a
given student is taking a class from a given teacher, you ask the student: Do you have
this teacher? Writing a Ruby program is largely a matter of engineering your objects
so that they behave in a manner consistent with the domain or domains you want
your program to emulate.

 You’ll learn in the following sections how to create an object, and what it looks
like when you ask an object to do something. The main point, as we enter the
world of objects, is that domain modeling (or real-world emulation) crops up not
only when you’re designing databases but also when you’re designing Ruby pro-
grams. Once you get in the domain-modeling mindset, it will see you through the
entire process.

4.1.1 Introducing object-oriented programming

Ruby comes to the idea of manipulating data through objects via a program-
language design principle called object orientation. Many extremely popular pro-
gramming languages are object-oriented (such as Java, C++, Python, as well as
Ruby), and some languages that aren’t fully object-oriented have facilities for
writing object-oriented code (for example, Perl, as described in Object-Oriented
Perl by Damian Conway, from Manning Publications). In object-oriented pro-
gramming (OOP), you perform your calculations, data manipulation, and input/
output operations by creating objects and then requesting information and
actions from those objects.

 Different objects have different capabilities. You wouldn’t ask a Book object
(that is, an object designed around the characteristics of a book) how many liters
of liquid it could hold. But you might ask it who its author is—and save the liquid
questions for a Bottle object. (It’s possible to create nonsensical, badly named
objects; but that’s a practice to be avoided rather than cultivated.)

NOTE THE REAL WORLD The term real-world gets thrown around a lot in discus-
sions of programming. There’s room for debate (and there is debate) as
to whether this or that programming language, or even this or that kind
of programming language, corresponds more closely than others to the
shape of the real world. A lot depends on how you perceive the world. Do
you perceive it as peopled with things, each of which has tasks to do and

98 CHAPTER 4

Objects and variables
waits for someone to request the task? If so, you may be into object orien-
tation. Do you see life as a series of to-do items on a checklist, to be gone
through in order? If so, you may want a more procedural language. In
short, there’s no one answer to the question of what the real world is—so
there’s no answer to the question of what it means for a programming
language to model the real world.

Designing object-oriented software is largely a matter of figuring out what you
want your objects to be: what they should do, how they interact with each other,
how many of each there can be (only one music store; many musical works), and
other such questions. As you’ll see, Ruby provides a complete set of tools for nam-
ing, creating, addressing, and manipulating objects—and, through the manipula-
tion of those objects, the data they operate on.

4.1.2 I, object!

At first, the concept of object-oriented computer programming tends to come
across as both simple (you write programs that have Books and Bottles and Cars
and Houses, and you hold a kind of conversation with those things) and abstract
(Object? What does that mean? What do I actually type into my program file to create a
House object?). It does have a component of simplicity; it lets you draw on objects,
entities, roles, and behaviors as a source for how you design your program, and
that can be a help. At the same time, to create and use objects in your programs,
you have to learn how it’s done in a given language.

 Seeing this explanation concretely can make the abstract parts easier to grasp.
We’ll therefore proceed to some Ruby code. We’ll create a new object. It won’t be
an edition of music, a composer, or anything elaborate; it will be a generic object.
We’ll ask Ruby to create the object and assign it to a variable so that we can manip-
ulate it further:

obj = Object.new

Now we have an object, stored in the variable obj.

The role(s) of the object
Objects are your agents, your proxies, in the universe of your program. You ask
them for information. You assign them tasks to accomplish. You tell them to per-
form calculations and report back to you. You hand them to each other and get
them to work together.

 What can our freshly minted, generic object do?

From “things” to objects 99
 All Ruby objects are created with certain innate abilities. Those abilities,
though important, aren’t exciting, so we’ll keep them to the side for the moment.
More exciting is what happens when you teach your object how to do the things
you want it to do.

Defining an object’s behavior
Let’s say you’ve created an object and you want it to do something interesting: You
want it to talk. To get it to talk, you have to ask it to talk. But before you ask it to
talk, you have to teach it how to talk.

 Specifically, and more technically, you have to define a method for your object.
You do this using a special term—a keyword—namely, the keyword def.

 Here’s how you define the method talk for the object obj:

def obj.talk
 puts "I am an object."
ppputs "(Do you object?)"
end

Figure 4.1 shows an analysis of that chunk of code.
 When you execute the code—that method definition—obj won’t talk. Rather,

obj will learn how to talk. You can now ask it to talk.

Sending messages to objects
To get your object to talk, you use a construct, a bit of syntax that is probably the
most common and important construct you’ll see in Ruby programs: the message-
sending or method-calling syntax:

object.message

start method
definition

object to which
method belongs

dot operator

method name

end method
definition

method body

def obj.talk
 puts "I am an object"
 puts "(Do you object)"
end

Figure 4.1
Anatomy of a method definition

100 CHAPTER 4

Objects and variables
In the context of this construct:

■ object can be, and often is, a variable that stands in for an object. It may
also be a literal object construct—for example, a string in quotation marks.

■ The dot (.) is the message-sending operator. The message on the right is
sent to the object on the left.

■ message is the message that gets sent to object. In practice, message is
almost always the name of a method (like talk, the method defined ear-
lier). In any case, object always thinks message is the name of a method. If
there’s no method by that name, error-handling measures are taken. But
the general idea is that every message you send to an object corresponds to
a method the object can call.

NOTE CALLING METHODS VS. SENDING MESSAGES You’ll hear people talk more
about “calling a method on an object” than about “sending a message to
an object.” It’s fine to fall into that terminology, because that’s what’s
happening most of the time. But it’s important to understand that what’s
really happening is a two-phase process: You send a message to an object;
and the object executes the method with the name that corresponds to
your message. Understanding this will help you understand the possible
outcomes of sending an object a message that does not correspond to the
names of any of its methods.

Using this syntax, you can ask your object to talk:

obj.talk

And it talks:

I am an object.
(Do you object?)

An object is said to respond to a message if the object has a method defined whose
name corresponds to the message. For example, the object obj responds to talk.
The object to which you send a message is referred to as the receiver of the message.

 The semantics of method calls let you go much further than the relatively one-
dimensional talk case, particularly when you start calling methods with arguments.

Methods that take arguments
Methods in Ruby are much like mathematical functions: Input goes in, the wheels
turn, and a result comes out. To feed input to a Ruby method, you call the
method with one or more arguments.

From “things” to objects 101
 In a method definition, you indicate the required and/or optional arguments by
means of a list of variables in (sometimes optional) parentheses after the method.
When you call the method, you provide values corresponding to these variables in
your method call.

 Let’s say we want our object to function as a Celsius-to-Fahrenheit converter. We
can teach it how to do the conversion by defining a method, which we’ll call c2f:

def obj.c2f(c)
 c * 9 / 5 + 32
end

Notice the variable c, which is the name of the only argument to this method.
When we call the method, we’ll use a similar syntax (parentheses), and we’ll insert
a number where c appears in the method definition. Let’s use the converter
method to convert 100:

puts obj.c2f(100)

(We need the puts, or the method does the calculation but we never see the result.)
 The result is printed, as requested:

212

WARNING METHOD INPUT VS. KEYBOARD OR FILE INPUT Input to a function or
method means the values you send as arguments—not keyboard input.
Similarly, a method’s output is the result it returns, not what it prints to
the screen. It’s more common to speak of the return value of a method—
what it returns as a result of being executed. We can say that c2f returns
the Fahrenheit equivalent of its argument.

The item in parentheses is an argument. Our c2f method takes one argument. As
you see, there’s a direct correspondence here between the way we define the
method and the way we call the method.

 The parentheses are optional in most cases. (In cases where the syntax is more
complex or you call more than one method in a row, you may need the parenthe-
ses to make it clear to Ruby what you mean.) Most people use parentheses for
method calls, but you’ll see method calls with no parentheses—including, typi-
cally, in most Rails applications, for reasons we’ll examine a little later.

 At the other end of the process, every method call hands back—returns—a value.

102 CHAPTER 4

Objects and variables
The return value of a method
Ruby code is made up of expressions, each of which evaluates to a particular
value. Table 4.1 shows some examples of expressions and their values (along with
explanatory comments).

A method call is an expression. When you call a method, the method call evalu-
ates to something. This result of calling a method is the method’s return value.

 Methods can be lengthy; but there’s a universal rule for determining a method’s
return value: The return value of any method is the value of the last expression evalu-
ated during execution of the method. In the case of the temperature-conversion
method, the last expression evaluated is the only line of the method body:

c * 9 / 5 + 32

That means the whole value of the method—the return value—is the result of
that calculation.

 Ruby gives you a keyword for making this explicit: return. The use of this key-
word is optional, but many programmers like to use it because it makes explicit
what is otherwise implicit:

def obj.c2f(c)
 return c * 9 / 5 + 32
end

This is equivalent to the earlier version of the method, but it’s more expressive
about what it’s doing. On the other hand, it’s wordier. You have to decide, as a
matter of your own style, whether you want to use return.

 At this point, our object is doing what we need it to do: listening to our mes-
sages and acting on them. That’s a good illustration of how Ruby works, but it’s a

Table 4.1 Examples of Ruby expressions and the values to which they evaluate

Expression Value Comments

2 + 2 4 Arithmetic expressions evaluate to their results.

"Hello" “Hello” A simple, literal string (in quotation marks) evaluates to itself.

"Hello" + "
there"

“Hello
there”

Strings can be “added” to each other (concatenated) with the
plus sign.

c = 100 100 When you assign to a variable, the whole assignment evaluates
to the value you’ve assigned.

c * 9 / 5 + 32 212 The usual rules of precedence apply: Multiplication and division
bind more tightly than addition and are performed first.

From “things” to objects 103
bit scrappy. We started with a generic object and taught it to talk and to convert
temperatures. That shows you the mechanics of defining and calling methods, but
it’s not an impressive example of objects modeling real-world entities. Let’s get a
little more real.

4.1.3 Modeling objects more closely: the behavior of a ticket

As we broaden our real-world modeling horizons, for variety’s sake we’ll model
something other than an online sheet-music store. We’ll model a ticket to an
event—not a ticket-selling agency, but the ticket itself. We’ll create it, we’ll endow it
with ticket-like properties, and then we’ll follow its lead through an extended set
of examples and techniques.

 But first, let’s take a high-level view at what we expect a ticket object to do and
to know about itself.

The ticket object, behavior-first
We’ll set our sights on a ticket object that can provide data about itself. We want to
be able to ask a ticket, in programming terms, for information about the event it’s
for: when, where, name of event; performer; which seat; how much it costs.

 When asked, the ticket will provide the following information:

01/02/03
Town Hall
Author's reading
Mark Twain
Second Balcony, row J, seat 12
$5.50

The goal is to create an object from which we can easily get all this information.
Emphasis on easily: The point of object-oriented programming is that the pro-
gramming language is your partner in designing programs that embody entities
(real-world things) in a form that lets you store and retrieve information easily.

Creating the ticket object
First, we’ll create our ticket object. We assign it to the variable ticket:

ticket = Object.new

Now, let’s endow the object—the ticket—with properties and data. We do this by
defining a series of methods, each of which has a return value matching the value
we want the ticket to have for that item:

def ticket.venue
 "Town Hall"

104 CHAPTER 4

Objects and variables
end

def ticket.performer
 "Mark Twain"
end

def ticket.event
 "Author's reading"
end

def ticket.price
 5.50
end

def ticket.seat
 "Second Balcony, row J, seat 12"
end

def ticket.date
 "01/02/03"
end

Let’s pause for a moment and make some observations. The majority of the meth-
ods defined here return string values. You can see this at a glance: They hand back
a value inside quotation marks.

 The price method #1 returns a floating-point decimal number: 5.50. Floating-
point numbers have more complexity and quirkiness than you may think. Some
day you’ll probably come across something peculiar-looking, like this frequently
cited example:

puts 0.5 - 0.4 - 0.1
-2.77555756156289e-17

The problem—or, more accurately, the inevitable consequence of the laws of
mathematics and computers—is that decimal floating-point numbers of arbitrary
length can’t be stored and operated on in binary form with complete accuracy.
So, don’t be surprised if you see this sort of code.

NOTE NOT ALL OBJECTS HAVE TO BE CREATED INDIVIDUALLY A little further
on, you’ll learn how to create objects on a factory basis, without have to
call Object.new and manually add methods for every object. Ruby gives
you plenty of shortcuts; in practice, you rarely end up creating hand-
crafted, one-at-a-time objects. We’re doing it here to give you a solid
understanding of objects and methods. That, in turn, will help you
understand the shortcuts when you encounter them.

B

Not zero!

B

From “things” to objects 105
Querying the ticket object
Now that our ticket object knows a little about itself, let’s ask it to share the infor-
mation. Rather than produce a raw list of items, let’s make it look nicer. We’ll use
the built-in Ruby methods print and puts (which you encountered in chapter 1)
to get the information in more or less narrative form:

print "This ticket is for: "
print ticket.event + ", at "
print ticket.venue + ", on "
puts ticket.date + "."
print "The performer is "
puts ticket.performer + "."
print "The seat is "
print ticket.seat + ", "
print "and it costs $"
puts "%.2f." % ticket.price

Save all the code, starting with ticket = Object.new, to a file called ticket.rb, and
run it. You’ll see the following:

This ticket is for: Author's reading, at Town Hall, on 01/02/03.
The performer is Mark Twain.
The seat is Second Balcony, row J, seat 12, and it costs $5.50.

The code for this example consists of a series of calls to the methods defined ear-
lier: ticket.event, ticket.venue, and so forth. We’ve embedded those calls—in
other words, embedded the return values of those methods (“Author’s reading”,
“Town Hall”, and so on)—in a succession of print commands; and we’ve added
connectors (“, at”, “, on”, and so forth) to make the text read well and look nice.

 It’s a simple example, but it encompasses important Ruby procedures and
principles. The knowledge of the program resides in the object: the ticket. We
get at that information by asking for it via method calls. Each method, upon being
called, hands back a value. Nothing is more central to Ruby than that process.

 Our code works well, but it’s wordy. Ruby has a reputation as a powerful, high-
level language. You’re supposed to be able to get a lot done with relatively little code.

 This example takes ten lines of printing code to generate three lines of output.
Sometimes a ratio like that may be inevitable, but this isn’t one of them. We can
definitely tighten up this code; so let’s do that, while we’re still on the simple
ticket question-and-answer exercise.

Shortening the code via string interpolation
The goal of shortening the output of our little program gives us an excuse to dip
into one of the most useful programming techniques available in Ruby: string

Print floating-point number
to two decimal places

106 CHAPTER 4

Objects and variables
interpolation. The string interpolation operator gives you a way to drop variables,
method return values, or anything else, into a string. This can save you a lot of
back-and-forth between print and puts.

 Here’s how the printing code looks, using string interpolation to drop the val-
ues we need into place:

puts "This ticket is for: #{ticket.event}, at #{ticket.venue}."
puts "The perform is #{ticket.performer}."
puts "The seat is #{ticket.seat}, "
puts "and it costs $#{"%.2f." % ticket.price}"

Whatever’s inside the interpolation operator #{...} gets calculated separately,
and the results of the calculation are pasted automatically into the string. When
you run these lines, you don’t see the #{...} operator on your screen; instead,
you see the results of calculating or evaluating what was inside that operator.

 We just eliminated six of ten lines of code. We also made the code look a lot
more like the eventual format of the output, rather than something that works
but doesn’t convey much visual information.

Ticket availability: expressing Boolean state in a method
Some things we want to query a ticket about can be expressed as strings and num-
bers. Others are true/false—Boolean—values. And some may go either way.

 Consider the matter of whether a ticket has been sold or is still available. One
way to endow a ticket with knowledge of its own availability status is this:

def ticket.availability_status
 "sold"
end

Another way is to ask the ticket whether it is available and have it report back true
or false:

def ticket.available?
 false
end

false is a special term in Ruby, as is the term true. true and false are objects. The
reason for their existence is to provide a way to express truth and falsehood—which
is helpful when you’re writing conditional statements (if-based things) or methods
where all you need to know is whether something is true (as opposed to methods
where you need a number, string, or other object).

 You may have noticed that the method name available? ends with a question
mark. Ruby lets you do this so you can write methods that evaluate to true or false
and make the method calls look like questions:

From “things” to objects 107
if ticket.available?
 puts "You're in luck!"
else
 puts "Sorry--that seat has been sold."
end

Every expression in Ruby evaluates to an object; and every object in Ruby has a
truth-value. The truth-value of almost every object in Ruby is true. The only
objects whose truth-value (or Boolean value) is false are the objects false and
the special non-entity object nil. (You’ll see Booleans and nil in more detail in
chapter 9. For the moment, you can think of both false and nil as functionally
equivalent indicators of a negative test outcome.)

 You can play around with if expressions in irb, and you’ll see this in operation:

>> if "abc"
>> puts "Strings are 'true' in Ruby!"
>> end
Strings are 'true' in Ruby!
=> nil
>> if 123
>> puts "So are numbers!"
>> end
So are numbers!
=> nil
>> if 0
>> puts "Even 0 is true, which it isn't in some languages."
>> end
Even 0 is true, which it isn't in some languages.
=> nil
>> if 1 == 2
>> puts "One doesn't equal two, so this won't appear."
>> end
=> nil

Notice how irb not only obeys the puts method-calls (when conditions are right)
but also, on its own initiative, outputs the value of the entire expression. In the
cases where the puts happens, the whole expression evaluates to nil—because
the return values of puts is always nil. In the last case, where the string isn’t
printed (because the condition fails), the value of the expression is also nil—
because an if statement that fails (and has no else branch to salvage it) also
evaluates to nil.

 Remembering that nil has a Boolean value of false, you can, if you wish, get
into some amusing Boolean acrobatics with irb. A call to puts returns nil and is
therefore false, even though the string gets printed. If you put puts in an if clause, the
clause will be false. But it will still be evaluated. So…

108 CHAPTER 4

Objects and variables
>> if puts "You'll see this"; puts "but not this"; end
You'll see this
=> nil

The first puts is executed, but the value it returns, namely nil, is not true in the
Boolean sense—so the second one isn’t executed.

 This is, to use the popular phrase, a contrived example. But it’s a good idea to
get used to the fact that everything in Ruby has a Boolean value, and sometimes
it’s not what you may expect. As is often the case, irb can be a great help in getting
a handle on this concept.

 We’ve now manually given our ticket object some behaviors; having done
that, we’re going to turn next to the matter of what behaviors every object in Ruby
is already endowed with at its creation.

4.2 The innate behaviors of an object

Even a newly created object isn’t a blank slate. As soon as an object comes into
existence, it already responds to a number of messages. Every object is “born” with
certain innate abilities.

 To see a list of innate methods, you can call the methods method (and throw in
a sort operation, to make it easier to browse visually):

p Object.new.methods.sort

The result is a list of all the messages (methods) this newly minted object comes
bundled with. (Warning: the output looks cluttered. This is how Ruby displays
arrays—and the methods method gives you an array of method names. If you want
a list of the methods one per line, use puts instead of p in the command.)

["==", "===", "=~", "__id__", "__send__", "class",
"clone", "display", "dup", "eql?", "equal?", "extend",
"freeze", "frozen?", "hash", "id", "inspect",
"instance_eval", "instance_of?", "instance_variable_get",
"instance_variable_set", "instance_variables", "is_a?",
"kind_of?", "method", "methods", "nil?", "object_id",
"private_methods", "protected_methods", "public_methods",
"respond_to?", "send", "singleton_methods", "taint",
"tainted?", "to_a", "to_s", "type", "untaint"]

Don’t worry if most of these methods make no sense to you right now. You can try
them in irb, if you’re curious to see what they do (and if you’re not afraid of get-
ting some error messages).

The innate behaviors of an object 109
 But a few of these innate methods are common enough—and helpful enough,
even in the early phases of acquaintance with Ruby—that we’ll look at them in
detail here. The following methods fit this description:

■ object_id

■ respond_to?

■ send

Adding these to your Ruby toolbox won’t be amiss, on account of what they do
and because they serve as examples of innate methods.

4.2.1 Identifying objects uniquely with the object_id method

Every object in Ruby has a unique id number associated with it. You can see an
object’s id by asking the object to show you its object_id:

obj = Object.new
puts "The id of obj is #{obj.object_id}."
str = "Strings are objects too, and this is a string!"
puts "The id of the string object str is #{str.object_id}."
puts "And the id of the integer 100 is #{100.object_id}."

Having a unique id number for every object can come in handy when you’re try-
ing to determine whether two objects are the same as each other. How can two
objects be the same? Well, 100 is the same as 100. And here’s another case:

a = Object.new
b = a
puts "a's id is #{a.object_id} and b's id is #{b.object_id}."

Even though the variables a and b are different, the object they both refer to is the
same. (We’ll be looking in depth at how object references work in section 4.4.)

 Yet another scenario: Sometimes you think two objects are the same, but
they’re not. This happens a lot with strings. Consider the following example:

string_1 = "Hello"
string_2 = "Hello"

puts "string_1's id is #{string_1.object_id}."
puts "string_2's id is #{string_2.object_id}."

Even though these two strings contain the same text, they aren’t, technically, the
same object. If you printed them out, you’d see the same result both times
(“Hello”). But the string objects themselves are different. It’s like having two copies
of the same book: They contain the same text, but they aren’t the same thing as
each other. You could destroy one, and the other would survive.

110 CHAPTER 4

Objects and variables
WARNING THE (POSSIBLY) CONFUSING HISTORY OF THE object_id METHOD The
object_id method was introduced into Ruby fairly recently. Previously,
the same method was known as id. The problem was that id is a common
name: Lots of programs, including Rails applications, have methods called
id. That meant the default id method (the one that gives a unique num-
ber) was inadvertently being replaced in a lot of programs. A method
called __id__ was introduced; the underscores make it less likely that any-
one would choose this name for a method in their own program, so it’s
safer. The problem with underscores is that they’re ugly. Matz decided to
add a new method, without underscores (except the word separator):
object_id. That’s now the standard way to obtain an object’s id number.

Although the Ruby object_id method and the ActiveRecord id
method both return numbers, they’re not the same thing. object_id gives
you Ruby’s internal id number for an object; ActiveRecord’s id method
gives you the value of the id field in the database table for the model you’re
dealing with, if there is such a field.

Id numbers and equality of objects
As in the case of human institutions, one of the points of giving objects id num-
bers in Ruby is to be able to make unique identifications—and, in particular, to be
able to determine when two objects are the same object.

 Ruby provides a variety of ways to compare objects for different types of equal-
ity. If you have two strings, you can test to see whether they contain the same char-
acters. You can also test to see whether they are the same object (which, as we’ve
just seen, isn’t necessarily the case, even if they contain the same characters). The
same holds true, with slight variations, for other objects and other types of objects.

 Comparing id numbers for equality is just one way of measuring object equality.
We’ll get into further detail about more of these comparisons a little later. Right
now, we’re going to turn to the next innate method on our list: respond_to?.

4.2.2 Querying an object’s abilities with the respond_to? method

Ruby objects respond to messages. At different times during a program run,
depending on the object and what sorts of methods have been defined for it, an
object may or may not respond to a given message. For example, the following
code results in an error:

obj = Object.new
obj.talk

Ruby is only too glad to notify you:

undefined method 'talk' for #<Object:0x401aa18c> (NoMethodError)

The innate behaviors of an object 111
You can determine in advance (before you ask the object to do something)
whether the object knows how to handle the message you want to send it, by using
the respond_to? method. This method exists for all objects; you can ask any object
whether it responds to any message.

 respond_to? usually appears in connection with conditional (if) logic. We
haven’t covered this yet, but its use in this example is easy to follow:

obj = Object.new
if obj.respond_to?("talk")
 obj.talk
else
 puts "Sorry, the object doesn't understand the 'talk' message."
end

respond_to? is an example of introspection or reflection, two terms that refer to exam-
ining the state of a program while it’s running. Ruby offers a number of facilities for
introspection. Examining an object’s methods (with the methods method, as we did
a little while ago) is another introspective or reflective technique.

4.2.3 Sending messages to objects with the send method

You’ve learned about the dot operator (.), which is used for sending messages to
objects. But what if you don’t know which message you want to send?

 How could that happen? Suppose you want to let a user—someone at the key-
board—get information from the ticket object. The way you do this (and yes,
there are slicker ways, but bear with me) is to let the user type in the appropriate
word (“venue”, “performer”, and so on) and then display the corresponding value.

 Let’s start with the keyboard input part. Having created the ticket object and
written the methods for it, you’d add this to the program to incorporate key-
board input:

print "Information desired: "
request = gets.chomp

The code gets a line of keyboard input and chomps off the trailing newline character.
 At this point, you could proceed as follows, testing the input for one value after

another (using the double equal-sign comparison operator (==) and calling the
method it matches:

if request == "venue"
 puts ticket.venue
elsif request == "performer"
 puts ticket.performer
...

112 CHAPTER 4

Objects and variables
You’d continue through the whole list of ticket properties.
 Or, you can send the word directly to the ticket object. Instead of the previous

code, you do the following:

if ticket.respond_to?(request)
 puts ticket.send(request)
else
 puts "No such information available"
end

This version uses the send method as an all-purpose way of getting a message to
the ticket object. It relieves you of having to march through the whole list of
possible requests. Instead, having checked that the ticket object will know what
to do #1, you hand the ticket the message and let it do its thing.

TIP USING __send__ INSTEAD OF send Sending is a broad concept: Email is
sent, data gets sent to I/O sockets, and so forth. It’s not uncommon for
programs to define a method called send that conflicts with Ruby’s built-
in send method. Therefore, Ruby gives you an alternative way to call send:
__send__. By convention, no one ever writes a method with that name, so
the built-in Ruby version is always available and never comes into conflict
with newly written methods. It looks strange, but it’s safer than the plain
send version from the point of view of method-name clashes.

Most of the time, you’ll use the dot operator to send messages to objects. How-
ever, the send alternative can be useful and powerful.

4.3 Required, optional, and default-valued arguments

Methods you write in Ruby can take more than one argument, or none at all.
They can also allow a variable number of arguments. We’ll look at a number of
permutations here. These are summarized in table 4.2 at the end of this section.

4.3.1 Required and optional arguments

When you call a Ruby method, you have to supply the correct number of argu-
ments. If you don’t, Ruby tells you there’s a problem. For example,

def obj.one_arg(x)
end

obj.one_arg(1,2,3)

results in:

ArgumentError: wrong number of arguments (3 for 1)

B

B

Required, optional, and default-valued arguments 113
It’s possible to write a method that allows a variable number of arguments. To do
this, you put a star (an asterisk: *) in front of a single argument name:

def obj.multi_args(*x)
end

The *x notation means that when you call the method, you can supply any num-
ber of arguments (including none). In this case, the variable x is assigned an array
of values corresponding to whatever arguments were sent. You can then examine
the values one at a time by traversing the array. (We’ll look more closely at arrays
in chapter 11.)

 You can fine-tune the number of arguments by mixing required and optional
arguments:

def two_or_more(a,b,*c)

In this example, a and b are required arguments. The final *c will sponge up any
other arguments that you may send and put them in an array in the variable c.

4.3.2 Default values for arguments

You can also make an argument optional by giving it a default value. The result
will be that if that argument isn’t supplied, the variable corresponding to the
argument will receive the default value.

 Here’s an example:

def default_args(a,b,c=1)
 puts "Values of variables: ",a,b,c
end

If you make a call like this

default_args(3,2)

you’ll see this result:

Values of variables:
3
2
1

You didn’t supply a value for c, so c was set to the default value provided for it in
the argument list: 1. If you do supply a third argument, that value overrides the
default assignment of 1. The following call

default_args(4,5,6)

produces this result:

114 CHAPTER 4

Objects and variables
Values of variables:
4
5
6

4.3.3 Order of arguments

The order in which you provide the arguments must correspond to the order in
which they’re listed. That’s always true, but it’s particularly important to keep in
mind when you’re using optional and/or default arguments—either calling meth-
ods that take such arguments or writing such methods in the first place.

 If you want to include optional arguments (*x), they have to come after any
non-optional arguments:

def opt_args(a,b,*x) # right
def opt_args(a,*x,b) # wrong

You’ll never get as far as calling that second version of the method, because Ruby
won’t let you write it. In order to understand why not, consider what would hap-
pen if you did call it:

opt_args(1,2,3,4)

Obviously, you want to assign 1 to a. But what about the rest? Do you want 2 and 3
to be put into an array and stored in x? Or do you want 2, 3, and 4 to be put in x?
But then, what value does b get? b is a required variable, so something has to go
into it. But that conflicts with the presence of the sponge expression *x to b’s left.

 There is logic to the constraints placed on you in the matter of the order of argu-
ments, but the syntax allows for any permutations you need. Table 4.2 shows a num-
ber of argument-list permutations with sample calls and the variable assignments
that take place in each case: the values of the variables inside the method definition
block when the method with the given signature is called with the given arguments.
(The square brackets indicate an array: a = [1,2,3], for example, means that an
array containing three elements has been assigned to the variable a.)

Table 4.2 Sample method signatures with required, optional, and default-valued arguments

Argument type(s) Method signature Sample call(s) Variable assignments

Required (Req) def m(a,b,c) m(1,2,3) a = 1, b =2, c = 3

Optional (Opt) def m(*a) m(1,2,3) a = [1,2,3]

Default-valued (Def) def m(a=1) m a = 1

m(2) a = 2

Local variables and variable assignment 115
As you can see from table 4.2, the arguments you send to methods are assigned to
variables, and those variables can then be used throughout the duration of the
execution of the method. You’ve seen variable assignment in a number of con-
texts, and the time is ripe to look at that process in its own right.

4.4 Local variables and variable assignment

You’ve seen many examples of Ruby variables in action—specifically, local vari-
ables—and we’ve been describing assignment of values to variables with some
slightly loose (although convenient) terminology. It’s time to consolidate and for-
malize our coverage of this topic.

 Local variables are variables that hold their value only during the execution of
a particular section of code. They’re called local precisely because once program
execution leaves the scope where the variable was created, the variable’s name no
longer has any meaning.

 Local variables give you a kind of scratch-pad facility. You can use, say, the vari-
able name x in more than one place; as long as those places have different scopes,
the two x variables are treated as completely separate.

 The classic case is a method definition. Watch what happens with x in this
example:

def say_goodbye
 x = "Goodbye"
 puts x
end

Req/Opt def m(a,*b) m(1) a = 1, b = []

Req/Def def m(a,b=1) m(2) a = 2, b = 1

m(2,3) a = 2, b = 3

Def/Opt def m(a=1,*b) m a = 1, b = []

m(2) a = 2, b = []

Req/Def/Opt def m(a,b=2,*c) m(1) a = 1, b = 2, c = []

m(1,3) a = 1, b = 3, c = []

m(1,3,5,7) a = 1, b = 3, c = [5,7]

Table 4.2 Sample method signatures with required, optional, and default-valued arguments (continued)

Argument type(s) Method signature Sample call(s) Variable assignments

116 CHAPTER 4

Objects and variables
def start_here
 x = "Hello"
 puts x
 say_goodbye
 puts "Let's check whether x remained the same:"
 puts x
end

start_here

The output from this program is as follows:

Hello
Goodbye
Let's check whether x remained the same:
Hello

When you call start_here (the last line of the program), the method start_here
is executed. Inside that method, the string “Hello” is assigned to x—that is, to this
x, the x in scope at the time.

 start_here prints out its x (“Hello”) and then calls the method say_goodbye.
In say_goodbye, something similar happens: a string (“Goodbye”) is assigned to x.
But this is a different x—as we see when the call to say_goodbye is finished and
control returns to start_here: We print out this x, and the value is still “Hello”.
Using x as a local variable name in the scope of one method didn’t affect its value
in the scope of the other.

 Learning how local variables behave is a side effect of learning about how
Ruby handles scope—a topic we’ll look at in much greater depth in chapter 7.
You’ve already learned the first lesson: Every method definition establishes a new
local scope, starting with def and ending with end. Scope is a matter of which
identifiers have what meaning at what point in the program, like the two x identi-
fiers in our example.

 Local variables can come into being in either of two ways:

■ Through assignment: x = object

■ As an entry in the method’s argument list, initialized when the method is
called

You’ve seen both of these in action already. But what exactly happens when the
assignment or initialization takes place? What does the variable contain?

Local variables and variable assignment 117
4.4.1 Variable assignment in depth

When you assign to a variable, you appear to be causing the variable to equal the
object on the right-hand side of the assignment:

str = "Hello"

At this point, you can do puts str and other operations, and str will deliver the
string “Hello” for printing and other processing.

 Now look at this example:

str = "Hello"
abc = str
puts abc

This, too, prints “Hello”. Apparently the variable abc also contains “Hello”, thanks
to having had str assigned to it.

 The next example involves a method called replace, which does an in-place
replacement of a string’s content with new text:

str = "Hello"
abc = str
str.replace("Goodbye")
puts str
puts abc

Look closely at the output:

Goodbye
Goodbye

The first “Goodbye” is str; the second is abc. But we only replaced str. How did
the string in abc get replaced?

 The answer is that variables in Ruby (with some exceptions we’ll show later)
don’t hold object values. str doesn’t contain “Hello”. Rather, str contains a refer-
ence to a string object. It’s the string object that has the characteristic of containing
the letters that make up “Hello”.

 When you perform an assignment with a variable name on the left and an
object on the right, the variable receives a reference to the object. When you per-
form an assignment with a variable on the left and a variable on the right, the vari-
able on the left receives a reference to the same object that the right-hand variable refers to.

 When you do this

str.replace("Goodbye")

you’re asking str to do the following:

118 CHAPTER 4

Objects and variables
Replace the contents of the string object to which you are
a reference with "Goodbye".

The variable abc contains another reference to the same string object. Even though
the replace message went to str, it has caused a change to the object that abc is a
reference to.

 Consequently, when we print out abc, we see the result: The contents of the
string to which abc is a reference have been changed.

Grasping references
If you’ve done programming in languages with pointers or references or anything
in that vein, Ruby references won’t be hard to understand. If you haven’t, you’ll
need to contemplate them a little.

 For every object in Ruby, there can and must be one or more references to that
object. (If there are no references, the object is considered defunct, and its mem-
ory space is released and reused.)

 If you act on the object (change it) through one of its references, the object itself
changes. Because all the references still point to the same object, the changes you make
through one reference are reflected if you examine the object through another ref-
erence later. (That’s what happened with str and abc in the previous example.)

 Variables contain references to objects. The message-sending notation (the
dot operator), when a variable appears to the left of the dot, sends a message to
the object to which the variable contains a reference. If other variables also contain
references to that object, the effect of sending a message to one variable is the
same as sending it to another. For example, if we used abc.upcase! instead of
str.upcase!, the results would be the same: the single string, to which both refer-
ences refer, would be changed.

Reassigning to variables
Every time you assign to a variable—every time you put a variable name to the left
of an equal sign and something else on the right—you start from scratch: The
variable is wiped clean, and a new assignment is made.

 Here’s a new, different version of our earlier example, illustrating this point:

str = "Hello"
abc = str
str = "Goodbye"
puts str
puts abc

Local variables and variable assignment 119
This time the output is as follows:

Goodbye
Hello

When we do the second assignment to str, we give str a reference to a different
string object. str and abc part company at that point. abc still refers to the old
string (the one whose contents are “Hello”), but str now refers to a different
string (a string whose contents are “Goodbye”).

 In the first version of the program, we changed a single string; but in the sec-
ond version, we have two separate strings. Once we reuse the variable str, it has
nothing further to do with the object it referred to previously.

4.4.2 Local variables and the things that look like them

Local variables have the quality of barewords; they must start with either a lowercase
letter or the underscore character (_), and they must consist entirely of letters,
numbers, and underscores. (You’ll see later that other types of variables start with
punctuation marks, to differentiate them from local variables.) However, local
variables aren’t the only things that look like barewords.

 When Ruby sees a plain word sitting there, it interprets it as one of three
things: a local variable, a method call, or a keyword.

 Keywords are special reserved words that you can’t use as variable names. def is
a keyword; the only thing you can use it for is to start a method definition. if is
also a keyword; lots of Ruby code involves conditional clauses that start with if, so
it would be too confusing to also allow the use of if as a variable name.

 Method calls can be barewords, such as start_here in the previous example.
puts is a method call; so is print.

 Here’s how Ruby decides what it’s seeing when it encounters a bareword:

1 If there’s an equal sign (=) to the right of the bareword, it’s a local variable
undergoing an assignment.

2 If the bareword is a keyword, it’s a keyword (Ruby has an internal list of
these and recognizes them).

3 Otherwise, the bareword is assumed to be a method call.

There’s a fourth possibility: that Ruby won’t recognize the bareword. Try running
this script (using the -e switch, which as you’ll recall lets you feed code directly to
Ruby from the command line):

$ ruby -e "x"

120 CHAPTER 4

Objects and variables
You’re not assigning to a variable, x isn’t a keyword, and there’s no method called
x. Therefore, you get an error message:

-e:1: undefined local variable or method 'x' for
main:Object (NameError)

Don’t worry about the bells and whistles in this message; the gist of it is that Ruby
doesn’t know what you mean by “x”.

4.5 Summary

We’ve covered a lot of ground in this chapter. You’ve learned about creating a new
object and defining methods for it. You’ve learned about the message-sending
mechanism by which you send requests to objects for information or action. You
also learned how to use some of the important built-in methods that every Ruby
object comes with: object_id, respond_to?, and send. And we looked in some
detail at the syntax for method argument lists, including the use of required,
optional, and default-valued arguments.

 Finally, we examined local variables and variable assignment. You saw that key-
words and method calls can look like local variables; and Ruby has ways of figur-
ing out what it’s seeing. You also learned that variables receive references to
objects, and more than one variable can refer to the same object.

 The chapter started with some comments about domains, entities, models, and
objects; and we’ll end there, too. Writing a Ruby program consists largely of think-
ing about how you might map elements of a domain (even a modest one-entity
domain like “a ticket to an event”) onto a system of objects: objects that can know
things and perform tasks. In this regard, object-oriented programming has a lot in
common with database design. Both involve creating symbolic structures—tables
and fields in one case, objects and methods and names (and more, as you’ll see)
in the other—that encapsulate domain characteristics and behavior.

 And Rails, of course, stands between these two worlds, directing database traf-
fic into object-oriented, Ruby-space form, and back again. We’re dealing with a
number of layers, but they converge nicely on the realm of modeling domains
and representing entities.

 Creating Ruby objects one by one, as we’ve done here, isn’t much more than
the tip of the iceberg. We’ll open up the discussion exponentially next, by looking
at how to create objects on a multiple, factory basis using Ruby classes.

Organizing objects
with classes
In this chapter
■ Creating multiple objects “factory” style

with classes
■ Setting and reading object state
■ Automating creation of attribute read and write

methods
■ Class inheritance mechanics
■ Syntax and semantics of Ruby constants
121

122 CHAPTER 5

Organizing objects with classes
Creating a new object with Object.new—and equipping that object with its own
methods, one method at a time—is a great way to get a feel for the object-
centeredness of Ruby programming. But this approach doesn’t exactly scale; if
you’re running an online box office and your database has to process records for
tickets by the hundreds, you’ve got to find another way to create and manipulate
ticket-like objects in your Ruby programs.

 Sure enough, Ruby gives you a full suite of programming techniques for creat-
ing objects on a batch or factory basis. You don’t have to define a separate price
method for every ticket. Instead, you can define a ticket class, engineered in such
a way that every individual ticket object automatically has the price method.

 Defining a class lets you group behaviors (methods) into convenient bundles,
so that you can quickly create many objects that behave essentially the same way.
You can also add methods to individual objects, if that’s appropriate for what
you’re trying to do in your program. But you don’t have to do that with every
object, if you model your domain into classes.

 Everything you handle in Ruby is an object; and every object is an instance of
some class. This fact holds true even where it might at first seem a little odd. For
example, when you manipulate an ActiveRecord object in a model file, that object
is an instance of a class (Composer, perhaps)—while, at the same time, the class
itself is also an object. You’ll learn in this chapter how this closely interwoven
aspect of the design of Ruby operates.

5.1 Classes and instances

In most cases, a class consists chiefly of a collection of method definitions. The
class exists (also in most cases) for the purpose of being instantiated: that is, of hav-
ing objects created that are instances of the class.

 Have you guessed that you’ve already seen instantiation in action? It’s our old
signature tune:

obj = Object.new

Object is a built-in Ruby class. When you use the dot notation on a class, you send
a message to the class. Classes can respond to messages, just like objects; in fact, as
you’ll see in more detail later, classes are objects. The new method is called a con-
structor, meaning a method whose purpose is to manufacture and return to you a
new instance of a class, a newly minted object.

Classes and instances 123
5.1.1 A first class

Let’s break the class ice with a first class of our own creation. You define a class
with the class keyword. It’s like the def keyword you’ve been using to define
methods, but the naming scheme is different. Classes are named with constants. A
constant is a special type of identifier, recognizable by the fact that it begins with a
capital letter. Constants are used to store information and values that don’t
change over the course of a program run.

WARNING CONSTANTS AREN’T ALL THAT CONSTANT Constants can change: They’re
not as constant as their name implies. But if you assign a new value to a con-
stant, Ruby prints a warning. The best practice is to avoid assigning new val-
ues to constants that you’ve already assigned a value to. (See section 5.6.2
for more information on reassignment to constants.)

Let’s define a Ticket class. Inside the class definition, we define a single, simple
method.

class Ticket
 def event
 "Can't really be specified yet..."
 end
end

Now we can create a new ticket object and ask it (pointlessly, but just to see the
process) to describe its event:

ticket = Ticket.new
puts ticket.event

The method call ticket.event results in the execution of our event method and,
consequently, the printing out of the (rather uninformative) string specified
inside that method.

Instance methods
The examples of method definitions in chapter 4 tended to involve a specific
object, connected directly with a method name and definition:

def ticket.event

The event method in the previous example, however, is defined in a general way:

def event

That’s because this event method will be shared by all tickets—that is, by all
instances of the Ticket class. Methods of this kind, defined inside a class and

124 CHAPTER 5

Organizing objects with classes
intended for use by all instances of the class, are called instance methods. They
don’t belong only to one object. Instead, every instance of the class can call them.

 (Methods that you define for one particular object—as in def ticket.price—
are called singleton methods. You’ve already seen examples, and we’ll look in more
depth at how singleton methods work in chapter 7. Just keep in mind that meth-
ods written inside a class, for the benefit of all of that class’s instances, are instance
methods, whereas a method defined for a specific object (def ticket.event) is a
singleton method of that object.)

Redefining methods
Nothing stops you from defining a method twice, or overriding it:

class C
 def m
 puts "First definition of method m"
 end

 def m
 puts "Second definition of method m"
 end
end

What happens when we call m on an instance of C? Let’s find out:

C.new.m

The printed result is Second definition of method m. The second definition has
prevailed: We see the output from that definition, not from the first. When you
override a method, the new version takes precedence.

Reopening classes
In most cases, when you’re defining a class, you create a single class definition block:

class C
 # class code here
end

It’s possible, however, to reopen a class and make additions or changes. Here’s an
example:

class C
 def x
 end
end

class C

Classes and instances 125
 def y
 end
end

We open the class definition body, add one method, and close the definition
body. Then, we reopen the definition body, add a second method, and close the
definition body.

 The previous example is equivalent to this:

class C
 def x
 end

 def y
 end
end

Here we open the class only once and add both methods. Of course, you’re not
going to break your class definitions into separate blocks just for fun. There has to
be a reason—and it should be a good reason, because separating class definitions
can make it harder for people reading or using your code to follow what’s going on.

 One reason to break up class definitions is to spread them across multiple files.
If you require a file that contains a class definition (perhaps you load it from the
disk at runtime from another file, and you also have a partial definition of the same
class in the file from which the second file is required), the two definitions are
merged. This isn’t something you’d do arbitrarily: It must be a case where a design
reason requires defining a class partially in one place and partially in another.

 Here’s a real-life example. Ruby has a Time class. It lets you manipulate times,
format them for timestamp purposes, and so forth. You can use UNIX-style date
format strings to get the format you want. For example, this command

puts Time.new.strftime("%m-%d-%y")

prints the string “01-07-06” (representing the date on the day I made the method
call and saved its output).

 In addition to the built-in Time class, Ruby also has a program file called time.rb,
inside of which are various enhancements of, and additions to, the Time class.

 time.rb achieves its goal of enhancing the Time class by reopening that class. If
you look for the file time.rb either in the lib subdirectory of the Ruby source tree
or in your Ruby installation, you’ll see this on line 49 (at least, for the version of
the file shipped with Ruby 1.8.4):

class Time

That’s a reopening of the Time class, done for the purpose of adding new methods.

126 CHAPTER 5

Organizing objects with classes
 You can see the effect best by trying it, using irb --simple-prompt. irb lets you
call a nonexistent method without causing the whole thing to terminate, so you
can see the effects of the require command all in one session:

>> t = Time.new
=> Mon Sep 12 08:19:52 EDT 2005
>> t.xmlschema
NoMethodError: undefined method 'xmlschema'
for Mon Sep 12 08:19:52 EDT 2005:Time
 from (irb):8
>> require 'time'
=> true
>> t.xmlschema
=> "2005-09-12T08:19:52-04:00"

Here we send the unrecognized message xmlschema to our Time object #1. Then
we load the time.rb file #2—and, sure enough, our Time object now has an
xmlschema method. (That method, according to its documentation, “returns a
string which represents the time as dateTime defined by XML Schema.”)

 You can spread code for a single class over multiple files or over multiple loca-
tions in the same file. Be aware, however, that it’s considered better practice not to
do so, when possible. In the case of the Time extensions, people often suggest the
possibility of unification: giving Time objects all the extension methods in the first
place, and not separating those methods into a separate library. It’s possible that
such unification will take place in a later release of Ruby.

 Ruby is about objects; objects are instances of classes. That means it behooves
us to dig deeper into what the life of an instance consists of. We’ll look next at
instance variables, a special language feature designed to allow every instance of
every class in Ruby to set and maintain its own private stash of information.

5.1.2 Instance variables and object state

When we created individual objects and wrote methods for each action or value
we needed, we hard-coded the value into the object through the methods. With
this technique, if a ticket costs $117.50, then it has a method called price that
returns precisely that amount:

ticket = Object.new
def ticket.price
 117.50
end

B

C

B
C

Classes and instances 127
Now, however, we’re moving away from one-at-a-time object creation with
Object.new, and setting our sights instead on the practice of designing classes and
creating many objects from them.

 This means we’re changing the rules of the game, when it comes to informa-
tion like the price of a ticket. If you create a Ticket class, you can’t give it a price
method that returns $117.50, for the simple reason that not all tickets cost
$117.50. Similarly, you can’t give every ticket the event-name Benefit Concert, nor
can every ticket think that it’s for Row G, Seat 33.

 Instead of hard-coding values into every object, we need a way to tell different
objects that they have different values. We need to be able to create a new Ticket
object and store with that object the information about event, price, and other
properties. When we create another ticket object, we need to store different infor-
mation with that object. And we want to be able to do this without having to hand-
craft a method with the property hard-coded into it.

 Information and data associated with a particular object is called the state of
the object. We need to be able to do the following:

■ Set, or reset, the state of an object (say to a ticket, “You cost $11.99”)

■ Read back the state (ask a ticket, “How much do you cost?”)

Conveniently, Ruby objects come with their own value-storage mechanism. You
can make arrangements for an object to remember values you give it. And you can
make that arrangement up front in the design of your classes, so that every
object—every instance—of a given class has the same ability.

Instance variables
The instance variable enables individual objects to remember state. Instance vari-
ables work much like other variables: You assign values to them, and you read
those values back; you can add them together, print them out, and so on. How-
ever, instance variables have a few differences.

■ Instance variable names always start with @ (the at sign). This enables you to
recognize an instance variable at a glance.

■ Instance variables are only visible to the object to which they belong.

■ An instance variable initialized in one method definition, inside a particular
class, is the same as the instance variable of the same name referred to in
other method definitions of the same class.

128 CHAPTER 5

Organizing objects with classes
Listing 5.1 shows a simple example of an instance variable, illustrating the way the
assigned value of an instance variable stays alive from one method call to another.

class C
 def inst_var_init(value)
 puts "Setting an instance variable...."
 @ivar = value
 end

 def inst_var_report
 puts "Inspecting the value of the instance variable...."
 puts @ivar
 end
end

c = C.new
c.inst_var_init("Just some string")
c.inst_var_report

Thanks to the assignment #1 that happens as a result of the call to inst_var_
init #2, when you ask for a report #3, you get back what you put in: the phrase
“Just some string”. Unlike a local variable, the instance variable @ivar retains the
value assigned to it even after the method in which it was initialized has termi-
nated. This property of instance variables—their survival across method calls—
makes them suitable for maintaining state in an object.

Initializing an object with state
The scene is set to do something close to useful with our Ticket class. The missing
step, which we’ll now fill in, is the object initialization process.

 When you create a class (like Ticket), you can, if you wish, include a special
method called initialize. If you do so, that method will be executed every time
you create a new instance of the class.

 For example, if you write an initialize method that prints a message

class Ticket
 def initialize
 puts "Creating a new ticket!"
 end
end

Listing 5.1 Illustration of an instance variable’s maintenance of its value between
aaaaaaaaaaaaamethod calls

B

C
D

B
C D

Classes and instances 129
then you’ll see the message “Creating a new ticket!” every time you create a new
ticket object by calling Ticket.new.

 You can deploy this automatic initialization process to set an object’s state at
the time of the object’s creation. Let’s say we want to give each ticket object a
venue and date when it’s created. We can send the correct values as arguments to
Ticket.new, and those same arguments will be sent to initialize automatically.
Inside initialize, we’ll thus have access to the venue and date information, and
we’ll need to save it. We do the saving by means of instance variables:

class Ticket
 def initialize(venue,date)
 @venue = venue
 @date = date
 end

Before closing the class definition with end, we should add something else: a way
to read back the venue and date. All we need to do is create methods that return
what’s in the instance variables:

dddef venue
dddd@venue
ddend

 def date
 @date
 end
end

Each of these methods echoes back the value of the instance variable. In each
case, that variable is the last (and only) expression in the method and therefore
also the method’s return value.

NOTE NAMING CONVENTIONS VS. NAMING NECESSITIES The names of the
instance variables, the methods, and the arguments to initialize don’t
have to match. You could use @v instead of @venue, for example, to store
the value passed in the argument venue. However, it’s usually good prac-
tice to match the names, to make it clear what goes with what.

Now we’re ready to create a ticket (or several tickets) with dynamically set values for
venue and date, rather than the hard-coded values of our earlier examples:

th = Ticket.new("Town Hall", "11/12/13")
cc = Ticket.new("Convention Center", "12/13/14")

puts "We've created two tickets."
puts "The first is for a #{th.venue} event on #{th.date}."
puts "The second is for an event on #{cc.date} at #{cc.venue}."

130 CHAPTER 5

Organizing objects with classes
Run this code, along with the previous class definition of Ticket, and you’ll see
the following:

We've created two tickets.
The first is for a Town Hall event on 11/12/13.
The second is for an event on 12/13/14 at Convention Center.

The phrase “at Convention Center” is a bit stilted, but the process of saving and
retrieving information for individual objects courtesy of instance variables oper-
ates perfectly. Each ticket has its own state (saved information), thanks to what
our initialize method does; and each ticket lets us query it for the venue and
date, thanks to the two methods with those names.

 This opens up our prospects immensely. We can create, manipulate, compare,
and examine any number of tickets at the same time, without having to write sep-
arate methods for each of them. All the tickets share the resources of the Ticket
class. At the same time, each ticket has its own set of instance variables to store
state information.

 So far we’ve arranged things in such a way that we set the values of the instance
variables at the point where the object is created and can then retrieve those val-
ues at any point during the life of the object. That arrangement is often adequate,
but it’s not symmetrical: What if you want to set values for the instance variables at
some point other than object-creation time? What if you want to change an
object’s state after it’s already been set once?

5.2 Setter methods

When you need to change an object’s state once it’s been set, or if you want to set
an object’s state at some point in your program other than the initialize method,
the heart of the matter is assigning (or reassigning) values to instance variables. For
example, if we want tickets to have the ability to discount themselves, we could write
an instance method like this inside the Ticket class definition:

def discount(percent)
 @price = @price - (percent * 10) / 100
end

This method represents a limited scenario, though. It isn’t a general-purpose
method for setting or changing an object’s price.

 Writing such a method, however, is perfectly possible. Ruby provides some nice
facilities for writing setter methods, as we’ll now see.

Setter methods 131
5.2.1 The equal sign (=) in method names

Let’s say we want a way to set the price of a ticket. As a starting point, price can be
set along with everything else at object creation time:

class Ticket
 def initialize(venue,date,price)
 @venue = venue
 @date = date
 @price = price
 end
 # etc.
 def price
 @price
 end
 # etc.
end

th = Ticket.new("Town Hall", "11/12/13", 65.00)

But the initialization command is getting awfully long. There’s nothing techni-
cally wrong with a long method, but it looks cluttered. We also have to remember
what order to put the many arguments in, so we don’t end up with a ticket whose
price is “Town Hall”. And what if want to change a ticket’s price later? True, we
could create a new ticket object with the same specifications, except for a differ-
ent price; but it would be nicer to be able to tell the ticket we’ve already created,
“Your price has changed; here’s the new value.”

 Let’s write a set_price method that allows us to set, or reset, the price of an
existing ticket. We’ll also rewrite the initialize method so that it doesn’t expect
a price figure:

class Ticket
 def initialize(venue, date)
 @venue = venue
 @date = date
 end

 def set_price(amount)
 @price = amount
 end

 def price
 @price
 end
end

Here’s some price manipulation in action:

132 CHAPTER 5

Organizing objects with classes
ticket = Ticket.new("Town Hall", "11/12/13")
ticket.set_price(65.00)
puts "The ticket costs $#{"%.2f" % ticket.price}."
ticket.set_price(72.50)
puts "Whoops -- it just went up. It now costs $#{"%.2f" % ticket.price}."

The output is as follows:

The ticket costs $65.00.
Whoops -- it just went up. It now costs $72.50.

We’ve set and reset the price, and the change is reflected in the object’s view of its
own state.

 This technique works: You can write all the set_property methods you need, and
the instance variable-based retrieval methods to go with them. But there’s a nicer
way.

The nicer way to change object state dynamically
Ruby allows you to define methods that end with an equal sign (=). Let’s replace
set_price with a method called price=:

def price=(amount)
 @price = amount
end

price= does exactly what set_price did, and in spite of the slightly odd method
name, you can call it just like any other method:

ticket.price=(65.00)

The equal sign gives you that familiar “assigning a value to something” feeling, so
you know you’re dealing with a setter method. It still looks odd, but Ruby takes
care of that, too.

Syntactic sugar
Programmers use the term syntactic sugar to refer to special rules that let you write
your code in a way that doesn’t correspond to the normal rules but that is easier to
remember how to do and looks better.

 Ruby gives you some syntactic sugar for calling setter methods. Instead of this

ticket.price=(65.00)

you’re allowed to do this:

ticket.price = 65.00

Format price to two
decimal places

Setter methods 133
When the interpreter sees the message “price” followed by “ =”, it automatically
ignores the space before equal sign and reads the single message “price=”—a call
to the method whose name is price=, which we’ve defined. As for the right-hand
side: parentheses are optional on single arguments to methods, so you can just
put 65.00 there and it will be picked up as the argument to the price= method.

 The more you use this kind of setter style of method, the more you’ll appreci-
ate how much better the sugared version looks. This kind of attention to appear-
ance is typical of Ruby. It also looms fairly large in Rails application code.
Accordingly, we’ll use some ActiveRecord idioms as a touchstone for a deeper
look at setter methods.

5.2.2 ActiveRecord properties and other =-method applications

In section 5.3 we’ll look at techniques for generating getter and setter methods
automatically. As you’ll see when we get there, automatic generation of these
methods is convenient, but it also always gives you methods that work in the sim-
plest possible way: value in, value out.

 Before we get to method automation, a word is in order about how much power
you can derive from getter and setter methods—especially setter—in cases where
you need something beyond the simplest case of storing and retrieving a value.

The power of =
The ability to write your own =-terminated methods, and the fact that Ruby pro-
vides the syntactic sugar way of calling those methods, opens up some interesting
possibilities.

 One possibility is abuse. It’s possible to write =-methods that look like they’re
going to do something involving assignment, but don’t:

class Silly
 def price=(x)
 puts "The current time is #{Time.now}"
 end
end

s = Silly.new
s.price = 111.22

This example discards the argument it receives (111.22) and prints out the time:

Fri Jan 13 12:44:05 EST 2006

This example is a caricature of what you might do. But the point is important. Ruby
checks your syntax but doesn’t police your semantics. You’re allowed to write meth-
ods with names that end with =, and you’ll always get the assignment-syntax sugar.

134 CHAPTER 5

Organizing objects with classes
The matter of having the method’s name make any sense in relation to what the
method does is entirely in your hands.

 Equal-sign methods can serve as filters or gatekeepers. Let’s say we want to set
the price of a ticket only if the price makes sense as a dollar-and-cents amount. We
can add some intelligence to the price= method to ensure the correctness of the
data. Here, we multiply the number by 100, lop off any remaining decimal-place
numbers with the to_i (convert to integer) operation, and compare the result
with the original number multiplied by 100. This should expose any extra decimal
digits beyond the hundredths column:

class Ticket
 def price=(amount)
 if (amount * 100).to_i == amount * 100
 @price = amount
 else
 puts "The price seems to be malformed"
 end
 end

 def price
 @price
 end

end

You can also use this kind of filtering technique to normalize data—that is, to make
sure certain data always takes a certain form. For example, let’s say you have a
travel-agent Web site, where the user needs to type in the desired date of departure.
You want to allow both mm/dd/yy and mm/dd/yyyy, and perhaps even mm/dd/y
(because we’re still in the single digits of the twenty-first century).

 If you have, say, a Ruby CGI script that’s processing the incoming data, you
might normalize the year by writing a setter method like this:

class TravelAgentSession
 def year=(y)
 if y.to_i < 100
 @year = y.to_i + 2000
 else
 @year = y.to_i
 end
 end
 # etc.
end

Handles one- or two-digit number
by adding the century to it

Setter methods 135
Then, assuming you have a variable called date in which you’ve stored the date
field from the form (using Ruby’s CGI library), you can get at the components of
the date like this:

month, day, year = date.split('/')
self.year = year

The idea is to split the date string into three strings using the slash character (/)
as a divider, courtesy of the built-in split method, and then to store the year value
in the TravelAgentSession object using that object’s year= method.

 Methods ending with = are, from Ruby’s perspective, just methods. But the fact
that they also give you the syntactic sugar assignment–like syntax makes them ver-
satile and handy.

Setter methods in ActiveRecord
Method calls using the equal-sign syntax are common in Rails applications. You’ll
see (and write) a lot of statements that follow the basic x.y = z visual formula. Most
of the ones you see will be in controller methods; some will be in model definitions.

 When and if you write your own special-purpose setter methods, you’ll do so in
the model files. You’ll see some examples in part 4, when we return to the music
store application and extend it.

 Meanwhile, in the context of learning Ruby and getting a sense of Rails’s
deployment of Ruby facilities, two items are worth noting about setter methods in
ActiveRecord.

 First, you don’t have to write the majority of these methods yourself.
ActiveRecord automatically creates setter methods for you that correspond to the
field names of your database tables. If you have a tickets table, and it has a venue field,
then when you create a ticket object, that object already has a venue= method (venue
setter). You don’t have to write it. (Nor would you want to; ActiveRecord setter meth-
ods do a great deal more than stash a value, integrity-checked or otherwise, in an
instance variable.) Rails leverages the power of Ruby’s setter-method syntax, includ-
ing the associated syntactic sugar, to make life easy for you when it comes to database
interaction in the course of application development.

 Second, you often don’t need to use these setter methods, because there are
more automatic ways to populate your object with the values you want it to have.
In particular, when you’re writing a Rails action that processes a Web form, you
can deposit a set of values into an object at once by providing the name of a field
you’ve used in your form template.

136 CHAPTER 5

Organizing objects with classes
 For example, say you have the following fields in a form (using the ActionView
form helper method text_field to create the correct HTML automatically):

<%= text_field "customer", "first_name" %>
<%= text_field "customer", "last_name" %>

In the controller action that processes the form, you can do this:

customer = Customer.new(params[:customer])

From the magic (that is, automatically initialized by Rails) params method, which
gives you access to incoming CGI data, ActiveRecord gleans all the values pertaining
to customer and transfers them in bulk to the new Customer object you’ve created.

 You can use setter methods in Rails applications, and you often will; but you’ll
also find that Rails has anticipated your needs and doesn’t make you trudge through

customer.first_name = params[:first_name]
customer.last_name = params[:last_name]
etc.

when a shortcut can be arranged.
 Setter methods, as well as their getter equivalents (v = ticket.venue, for exam-

ple), are important concepts to understand in both Ruby and Rails and also a
good illustration of the way Rails layers its own functionality, and even its own phi-
losophy of design, on top of Ruby.

 Ruby also layers its design philosophy on top of Ruby, so to speak—meaning, in
this case, that Ruby provides shortcuts of its own for reaping the benefits of getter
and setter methods.

5.3 Attributes and the attr_* method family

In Ruby terminology (and this would be understood by anyone familiar with
object-oriented programming principles, even though it might operate differently
in other languages), properties or characteristics of objects that you can set
(write) and/or get (read) are called attributes. In the case of ticket objects, we
would say that each ticket has a price attribute as well as a date attribute and a
venue attribute.

 Note the sneaking in of read/write as synonyms for set/get in the realm of
attributes. Ruby usage favors read/write. For instance, our price= method would
usually be described as an attribute writer method. date and venue are attribute
reader methods. The read/write terminology can be a little misleading at first,
because it sounds like there might be terminal or file I/O going on. But once you
see how the set/get mechanism works, it’s easy to understand how reading and
writing can apply to internal object data as well as files and screens.

Attributes and the attr_* method family 137
5.3.1 Automating the creation of attribute handlers

So common are attributes, and so frequently do we need a combination of reader
and writer methods, that Ruby provides a set of techniques for creating those
methods automatically. Consider, first, listing 5.2’s full picture of what we have, by
way of attribute reader and/or writer methods, in our Ticket class. (There’s noth-
ing new here; it’s just being pulled together in one place.)

class Ticket
 def initialize(venue, date)
 @venue = venue
 @date = date
 end

 def price=(price)
 @price = price
 end

 def venue
 @venue
 end

 def date
 @date
 end

 def price
 @price
 end
end

You’ll notice a certain amount of repetition creeping into the code. We have three
methods that look like this:

def something
 @something
end

There’s repetition on top of repetition: Not only do we have three such methods,
but each of those three methods repeats its name in the name of the instance vari-
able it uses. And there are three of them. We’re repeating a repetitive pattern.

 Any time you see repetition on that scale, you should try to trim it—not by reduc-
ing what your program does, but by finding a way to express the same thing more
concisely. In pursuit of this conciseness, Ruby is one step ahead of us. A built-in

Listing 5.2 Ticket class, with the attribute reader/writer methods spelled out

138 CHAPTER 5

Organizing objects with classes
shortcut lets us create that style of method: a method that reads and returns the
value of the instance variable with the same name as the method (give or take a @).
We do it like this:

class Ticket
 attr_reader :venue, :date, :price
end

(The elements that start with colons (:venue, and so on) are symbols. Symbols are a
kind of naming or labeling facility. They’re a cousin of strings, although not quite
the same thing. We’ll look at symbols in more depth in chapter 10. For the
moment, you can think of them as functionally equivalent to strings.)

 The attr_reader (attribute reader) method automatically writes for you the kind
of method we’ve just been looking at. And there’s an attr_writer method, too:

class Ticket
 attr_writer :price
end

With that single line, we wrote (or, rather, Ruby wrote for us) our price= setter
method. One line takes the place of three. In the case of the reader methods, one
line took the place of nine. That means our whole program now looks like listing 5.3.

class Ticket
 attr_reader :venue, :date, :price
 attr_writer :price

 def initialize(venue, date)
 @venue = venue
 @date = date
 end
end

Not only is that code shorter; it’s also more informative—self-documenting, even.
You can see at a glance that ticket objects have venues, dates, and prices. The first
two are readable attributes, and price can be read or written.

5.3.2 Two (getter/setter) for one

In the realm of object attributes, combination reader/writer attributes, like price,
are common. Ruby provides a single method, attr_accessor, for creating both a
reader and a writer method for an attribute. attr_accessor is the equivalent of

Listing 5.3 Ticket class, with getter and setter methods defined via attr_* calls

Attributes and the attr_* method family 139
attr_reader plus attr_writer. We can use this combined technique for price,
because we want both operations:

class Ticket
 attr_reader :venue, :date
 attr_accessor :price
end

There’s an alternate way to achieve attr_accessor functionality, namely with the
plain attr method, used in the following way:

attr :price, true

Calling attr with true as the second argument triggers the creation of both
reader and writer attributes, just like attr_accessor. However, attr_accessor is
generally considered more readable, and it also has the advantage that you can
give it more than one accessor name at a time (whereas attr only takes one, plus
the optional true argument). Without the second argument, attr just provides a
reader attribute.

5.3.3 Summary of attr_* methods

The attr_* family of methods is summarized in table 5.1.

Table 5.1 Summary of the attr_* family of getter/setter creation methods

Method name Effect Example Equivalent code

attr_reader Creates a reader method attr_reader :venue def venue
@venue
end

attr_writer Creates a writer method attr_writer :price def price=(price)
@price = price
end

attr_accessor Creates reader and writer
methods

attr_accessor :price def price=(price)
@price = price
end

def price
@price
end

attr Creates a reader and
optionally a writer method
(if the second argument is
true)

1. attr :venue
2. attr :price, true

1. See attr_reader
2. See attr_accessor

140 CHAPTER 5

Organizing objects with classes
At this point, you’ve had a good overview of instance methods—the methods
defined inside class definitions and made available to all instances of the class.
Classes have another kind of method, the class method, and we’ll round out the pic-
ture by looking at class methods now.

5.4 Class methods and the Class class

When you call methods on objects, you use this message-sending syntax:

object.message

You may have noticed that the object creation calls we’ve done have conformed to
the standard object-dot-method syntax:

Ticket.new

Analyzing this call in the light of the message-sending formula, we can quickly
draw two conclusions:

■ We’re sending the message new.

■ We’re sending that message to an object called Ticket, which we know to be a
class. (We know it’s a class because of having written it previously.)

The first of these conclusions is unremarkable; messages get sent all the time. The
second—the fact that the receiver of the message is a class—merits close atten-
tion. Because classes are object factories, thinking of them as objects in their own
right takes a leap of imagination. Thinking of classes as receivers of messages also
feels odd at first—although, as you’ll see, it falls into place easily once you get over
the “classes are objects” hurdle.

5.4.1 Classes are objects too!

Classes are special objects: They’re the only kind of object that has the power to
spawn new objects (instances). Nonetheless, they are objects. When you create a
class, like Ticket, you can send messages to it, add methods to it, pass it around to
other objects as a method argument, and generally do anything to it you would
another object.

 Here’s an example. Let’s say we’ve created our Ticket class. At this point,
Ticket isn’t only a class from which objects (ticket instances) can arise. Ticket
(the class) is also an object in its own right. As we’ve done with other objects, let’s
add a method to it.

Class methods and the Class class 141
 Our method will tell us which ticket, from a list of ticket objects, is the most
expensive. There’s some black-box code here. Don’t worry about the details; the
basic idea is that the sort_by operation sorts by price, with the most expensive
ticket ending up last:

def Ticket.most_expensive(*tickets)
 tickets.sort_by {|t| t.price }.last
end

Now we can use this method to tell us which of several tickets is the most expen-
sive (we’ll avoid having two tickets with the same price, because our method
doesn’t deal gracefully with that situation):

th = Ticket.new("Town Hall","11/12/13")
cc = Ticket.new("Convention Center","12/13/14/")
fg = Ticket.new("Fairgrounds", "13/14/15/")

th.price = 12.55
cc.price = 10.00
fg.price = 18.00

highest = Ticket.most_expensive(th,cc,fg)

puts "The highest-priced ticket is #{highest.venue}."

We have used the class method most_expensive, a class method of the class Ticket,
to select the most expensive ticket from a list.

5.4.2 When, and why, to write a class method

The idea of a class method is that you send a message to the object that is the class
rather than to one of the class’s instances. You send the message most_expensive
to the class Ticket, not to a particular ticket.

 Why would you want to do that? Doesn’t it mess up the underlying order: the
creation of ticket objects and the sending of messages to those objects?

 Class methods serve a purpose. Some operations pertaining to a class can’t be
performed by individual instances of that class. new is an excellent example. We
call Ticket.new because, until we’ve created an individual ticket, we can’t send it
any messages! Besides, the job of spawning a new object logically belongs to the
class. It doesn’t make sense for instances of Ticket to spawn each other. It does
make sense, however, for the instance-creation process to be centralized as an
activity of the class Ticket.

 Another similar case is the built-in Ruby method File.open—a method which,
as its name implies, opens a file. The open operation is a bit like new: It initiates file

142 CHAPTER 5

Organizing objects with classes
input and/or output and gives you a filehandle (a pointer to the stream of file
data) with which you can read from and/or write to the file. It makes sense for
this to be a class method of File: You’re requesting the creation of an individual
object (a filehandle, in this case) from the class. The class is acting as a dispatcher
for the objects it creates.

 Similarly, finding the most expensive ticket in a list of tickets can be viewed as
an operation from above, something you do in connection with the realm of tick-
ets in general, rather than something that is done by an individual ticket object.
We have a task—finding the most expensive ticket—that depends on knowledge
of ticket objects (you have to know that they have a price method), yet it doesn’t
logically belong at the individual ticket level. Writing most_expensive as a class
method of Ticket lets us keep the method in the family, so to speak, while assign-
ing it to the abstract, supervisory level represented by the class.

Converting the converter
It’s not unheard of to create a class only for the purpose of giving it some class
methods. We can do so in the case of our earlier temperature conversion exer-
cises. Let’s convert the converter to a converter class:

class Temperature
 def Temperature.c2f(c)
 c * 9 / 5 + 32
 end

 def Temperature.f2c(f)
 (f - 32) * 5 / 9
 end
end

And let’s try it out:

puts Temperature.c2f(100)

Sure enough, it works.
 The idea is that we have temperature-related utility methods—methods pertaining

to temperature that don’t pertain to a specific temperature. The Temperature class
is a good choice of object to own those methods. We could get fancier and have
Temperature instances that knew whether they were C or F, and could convert
themselves; but practically speaking, having a Temperature class with class meth-
ods to perform the conversions is adequate and is an acceptable design.

Class methods and the Class class 143
5.4.3 Class methods vs. instance methods, clarified

It’s vital to understand that by defining Ticket.most_expensive, we have defined a
method that we can access through the class object Ticket but not through its
instances. Individual ticket objects (instances of the class Ticket) do not have this
method. You can test this easily. Try adding this to the code from section 5.4.1,
where the variable fg referred to a Ticket object (for an event at the fairgrounds):

puts "Testing the response of a ticket instance...."
wrong = fg.most_expensive

You’ll get an error message, because fg has no method called most_expensive.
The class of fg—namely, Ticket—has such a method. But fg, which is an instance
of Ticket, doesn’t.

 Remember:

■ Instances created by classes are objects.

■ Classes are objects too.

■ A class object (like Ticket) has its own methods, its own state, its own iden-
tity. It doesn’t share these things with instances of itself. Sending a message
to Ticket is not the same thing as sending a message to fg or cc or any other
instance of Ticket.

If you ever get tangled up over what’s a class method and what’s an instance method,
you can usually sort out the confusion by going back to these three principles.

TIP SEEING CLASS METHODS AS SINGLETON METHODS ON CLASS OBJECTS
You’ve seen that you can add a singleton method to any object (that is, a
method defined in connection with, and for the exclusive use of, that
object). Examples that follow the def ticket.price pattern illustrate the
creation of singleton methods. A class method is basically just a method
added to an individual object, where the object getting the method
happens to be a class object. There’s a special term for this case because it’s
common; many classes, including many in the core Ruby language, have
methods attached to them. Also, class methods (or something similar) are
common in object-oriented languages—Ruby comes by the term naturally,
so to speak, even though class methods aren’t a separate construct in the
language in Ruby’s case, just a particular case of a general construct.

A note on notation
In writing about and referring to Ruby methods (outside of code, that is), it’s cus-
tomary to refer to instance methods by naming the class (or module, as the case
may be, and as you’ll see in chapter 6) in which they are defined, followed by a

144 CHAPTER 5

Organizing objects with classes
hash mark (#) and the name of the method; and to refer to class methods with a
similar construct but using a period instead of the hash mark. Sometimes you’ll
see a double colon (::) instead of a period in the class method case.

 Here are some examples of this notation:

From now on, when you see this notation (in this book or elsewhere), you’ll know
what it means. (The second example (class method reference using a dot) looks
the same as a call to the method, but you’ll know from the context whether it’s a
method call or a reference to the method in a discussion.)

 Objects come from classes. If classes are objects, that implies that they, too, come
from a class. A class can be created with a call to the class method new of its class.

 And what is the class of a class? It’s a class called Class. Yes, there’s a bit of
“Who’s on first?” here, but the concept is by no means impenetrable. We’ll round
out this discussion with a look at the class Class and its new method.

5.4.4 The Class class and Class.new

Classes are objects; specifically, they are instances of the class Class. As you’ve
already seen, you can create a class object with the special class keyword formula:

class Ticket
 # code here
end

That formula is a special provision by Ruby—a way to make class definition blocks
look nice and give you easy access to them.

 The other way to create a class is this, which leaves you with a new Class object
in the variable my_class:

my_class = Class.new

Class.new corresponds precisely to other constructor calls (calls to methods that
create objects), such as Object.new and Ticket.new. When you instantiate the
class Class—when you create an instance of it—you’ve created a class. That class,
in turn, can create instances of its own:

instance_of_my_class = my_class.new

Notation Method referred to

Ticket#price The instance method price in the class Ticket

Ticket.most_expensive The class method most_expensive, in the class Ticket

Ticket::most_expensive Another way to refer to the class method most_expensive

Constants up close 145
In section 5.1.1, you saw that class objects are usually stored in constants (like
Ticket or Object). In the scenario in the previous example, however, we’ve stored
a class in a regular variable (my_class). When we call the new method, we send
the message new to the class through that variable

 And yes, there is a paradox here. The class Class is an instance of itself; that is,
it’s a Class object. And there’s more. Remember the class Object? Well, Object is a
class … but classes are objects. So Object is an object. And Class is a class. And
Object is a class, and Class is an object.

 Which came first? How can the class Class be created unless the class Object
already exists? But how can there be a class Object (or any other class) until there’s
a class Class of which there can be instances?

 The best way to deal with this paradox, at least for now, is to ignore it. Ruby has
to do some of this chicken-or-egg stuff in order to get the class and object system
up and running—at which point the circularity and paradoxes don’t matter. In
the course of programming, you just need to know that classes are objects, and
the class of which class-objects are instances is the class called Class.

 The proliferation of names of constants in the last few paragraphs is a graphic
reminder of the fact that we haven’t yet looked at constants in more than a place-
holder way. We’ll discuss them a little more deeply now.

5.5 Constants up close

Most classes consist principally of instance methods and/or class methods. Con-
stants, however, are an important and common third ingredient in many classes.
You’ve already seen constants used as the names of classes. Constants can also be
used to set and preserve important data values in classes.

5.5.1 Basic usage of constants

The name of every constant begins with a capital letter. You assign to constants
much as you would to variables. Let’s say we decide to establish a list of predefined
venues for the Ticket class—a list that every ticket object can refer to and select
from. We can assign the list to a constant. Constant definitions usually go at or
near the top of a class definition:

class Ticket
 VENUES = ["Convention Center", "Fairgrounds", "Town Hall"]

We can then use this list in instance methods or in class methods (constants are
visible anywhere in the class definition). We can also refer to the constant from

146 CHAPTER 5

Organizing objects with classes
outside the class definition. To do this, we have to use a special path notation: a
double colon (::). Here’s an example where, for the sake of illustration, the class
consists only of a constant assignment:

class Ticket
 VENUES = ["Convention Center", "Fairgrounds", "Town Hall"]
end

puts "We've closed the class definition."
puts "So we have to use the path notation to reach the constant."
puts "The venues are:"
puts Ticket::VENUES

The double-colon notation pinpoints the constant VENUES inside the class known
by the constant Ticket, and the list of venues is printed out.

Ruby’s built-in constants
Ruby comes with some predefined constants that you can access this way, and that
you may find useful. Try typing this into irb:

Math::PI

Math is a module, rather than a class (you’ll learn about modules in the next chap-
ter), but the principle is the same: You’re using the :: connector to do a lookup
on the constant PI defined by Math.

 One peculiarity of Ruby constants is that they aren’t constant. You can change
them, in two senses of the word change—and therein lies an instructive lesson.

5.5.2 Reassigning vs. modifying constants

It’s possible to perform an assignment on a constant to which you’ve already
assigned something—that is, to reassign to the constant. However, you’ll get a
warning if you do this (even if you’re not running with the -w command-line
switch). Try this in irb:

A = 1
A = 2

You’ll receive the following message:

warning: already initialized constant A

The fact that constant names are reusable but the practice of reusing them is a
warnable offense represents a compromise. On the one hand, it’s useful for the
language to have a separate category for constants, as a way of storing data that
remains visible over a longer stretch of the program than a regular variable.

Constants up close 147
(You’ll learn more about the visibility of variables and constants in chapter 7,
when we talk about scope.) On the other hand, Ruby is a dynamic language, in
the sense that anything can change during runtime. Engineering constants to be
an exception to this would theoretically be possible, but doing so would introduce
an anomaly into the language.

 In addition, because you can reload program files you’ve already loaded, and
program files can include constant assignments, forbidding reassignment of con-
stants would mean that many file-reloading operations would fail with a fatal error.

 So, you can reassign to a constant, but it’s not considered good practice. If you
want a reusable identifier, you should use a variable.

 You can also make changes to the object assigned to the constant. For example,
suppose you’ve assigned an empty array to a constant:

A = []

You can add elements to that array (here, using the << method, which adds a sin-
gle element to the end of an array)

A << "New York"
A << "New Jersey"

and you won’t receive a warning.
 You can find examples of this kind of operation in the Rails source code, where

constants figure prominently and the objects they represent undergo fairly frequent
changes. For example, in the file routing.rb (in the lib/action_controller sub-
directory of the ActionPack source tree), is

Helpers = []

and then, a little later, this:

Helpers << url_helper_name(name).to_sym
Helpers << hash_access_name(name).to_sym

You’re seeing the creation of an array that’s designed to store names of helper
methods, followed by the insertion of a couple of such names into the array. No
warning occurs, because the constant name, Helpers, isn’t being reused. Rather,
the object assigned to that name (an array) is having items added to it.

 The difference between reassigning a constant name and modifying the object
referenced by the constant is important, and it gives you a useful lesson in two
kinds of change in Ruby: changing the mapping of identifiers to objects (assign-
ment), and changing the state or contents of an object. With regular variable

148 CHAPTER 5

Organizing objects with classes
names, you aren’t warned when you do a reassignment—but reassignment is still
different from making changes to an object, for any category of identifier.

 We’ll return now to classes and look at more techniques involved in their cre-
ation and use. You’ve already seen some of the advantages of creating objects with
a class—certainly in comparison with creating one object at a time and having to
start again when we want (say) a ticket with a different price. But even classes, indi-
vidually and in isolation, can only do so much. The next level of functionality, inher-
itance, adds another axis along which your programming capability can expand.

5.6 Inheritance

Without getting too philosophical, it’s reasonable to say that in many cases, two or
more material objects or ideas relate to each other according to the principle of
the general and the specific:

■ Musical instrument is general; piano is specific.

■ Publication is general; magazine is specific.

■ Vehicle is general; bicycle is specific.

And so forth.
 Object-oriented programming involves mapping real-world entities and their

relationships onto computer data structures. And just as the general/specific ratio
looms large in the real world, it surfaces in object-oriented class design.

 The relation between a general case and a specific case can be expressed
through the technique known as inheritance. Inheritance is a relation between two
classes. To start with the notation, it looks like this:

class Publication
 attr_accessor :publisher
end

class Magazine < Publication
ddattr_accessor :editor
end

In this example, Magazine is a subclass of Publication. Conversely, Publication is
the superclass of Magazine. When it comes to instance methods, each class can have
its own, and the classes lower on the inheritance chain also get the methods
defined above. The model cascades:

Inheritance 149
■ At the top, in Publication, you put all the methods and accessors (which,
as you’ll recall, are shortcuts for methods) that you want every publication
to have.

■ In each subclass, you define the methods you want that particular type of pub-
lication to have. Instances of the subclass—in our example, an instance of
Magazine—have access to all the methods you’ve defined: those in the
superclass as well as those in the subclass.

We can continue the cascade downward:

class Ezine < Magazine
end

Instances of Ezine will have both publisher and editor accessors, as defined in the
superclass and super-superclass of Ezine.

 Collectively, all the classes in the upward chain (a class’s superclass, super-
superclass, and so on) are known as the class’s ancestors. (Ancestry also includes
modules, a close relative of classes that we’ll cover in the next chapter.)

 Rails applications provide as good an illustration as any (and better than
many) of inheritance in practice. We’ll look in that direction next to put some
flesh on the inheritance bones.

5.6.1 Inheritance and Rails engineering

Inheritance is one of the key organizational techniques for Rails program design
and the design of the Rails framework. You can see key cases of the use of inherit-
ance as a structuring principle if you look at any Rails controller file, such as app/
controllers/composer_controller.rb from the music store application:

class ComposerController < ApplicationController
end

This code opens a definition block for a class called ComposerController, which is
a subclass of the class ApplicationController. That latter class, in turn, is defined
in a file (automatically created by Rails; it’s the only file in the controllers direc-
tory other than the ones you create) called application_controller.rb, which at
the time of its creation looks like this:

class ApplicationController < ActionController::Base

This call creates a new class, ApplicationController, which inherits from the class
ActionController::Base. (Remember that the :: connector performs lookups of
constants. The constant Base refers to a class defined inside ActionController,

150 CHAPTER 5

Organizing objects with classes
which is a module.) The class ActionController::Base is predefined in the source
code for the Rails framework, in the ActionController library inside the Action-
Pack multi-library package.

 Seeing this inheritance chain, and knowing what you know about classes as the
factories from which objects are created, you can deduce that a controller in Rails is
an object. Somewhere along the line, something like this happens:

controller = ComposerController.new

At this point, controller contains an instance of ComposerController. And
because ComposerController descends, ultimately, from ActionController::Base,
it can be further assumed that the instance of it is endowed with whatever
instance methods are defined in ActionController::Base.

 In fact, no specific line of code in the Rails source contains a call to Composer-
Controller.new. The creation of a controller object is a little more complicated,
mainly because, to make life easier for the developers (and the users), Rails takes
it upon itself to figure out that a URL with composer in the controller position (like
http://www.r4rmusic.com/composer/show/1) requires that a file called
composer_controller.rb be tracked down and an object of the class Composer-
Controller be created. There’s some magic involved.

 But the principle that a Rails controller is an object holds. To get it to accom-
plish things that a controller is supposed to accomplish, you send it messages.
Some of these messages correspond to instance methods of the ActionControl-
ler::Base class. Some correspond to instance methods you write: your applica-
tion’s actions.

 When you define an action, you’re adding an instance method to your controller
class, which is a descendant class of ActionController::Base. Model classes, too,
inherit from a predefined Rails core class. At the top of each model file (for exam-
ple, app/models/composer.rb) is the following:

class Composer < ActiveRecord::Base

There’s no automatically placed intermediate class, as there was between the base
level of ActionController and your controller class: Models inherit directly from
the class ActiveRecord::Base. (In many applications, however, model classes
inherit from other model classes—Teacher from Employee, perhaps—but you
have to program that kind of model cascading yourself.) Whatever the details,
though, the engineering of both models and controllers provides a good example
of the kind of central role inheritance can play.

Inheritance 151
 Objects get their behaviors from their classes, and from their individual or sin-
gleton methods. Classes endow their instances with their own instance methods,
as well as those of their superclass and more remote ancestors. All in all, Ruby
objects lead interesting and dynamic lives. We’ll conclude this chapter by pulling
some of the threads together with some observations about how objects, classes,
and methods interact.

5.6.2 Nature vs. nurture in Ruby objects

The world is full of pairs of entities exhibiting the general/specific relationship.
We’re used to seeing the animal kingdom this way, as well as everything from
musical instruments to university departments to libraries’ shelving systems to
pantheons of gods.

 To the extent that a programming language helps you model the real world
(or, conversely, that the real world supplies you with ways to organize your pro-
grams), you could do worse than to rely heavily on the general-to-specific relation-
ship. As we’ve seen, inheritance—the superclass-to-subclass relationship—mirrors
the general/specific ratio closely. If you hang out in object-oriented circles, you’ll
pick up some shorthand for this relationship: the phrase is a. If, say, Ezine inherits
from Magazine, we say that “an ezine is a magazine”. Similarly, a Magazine object is
a Publication, if Magazine inherits from Publication.

 Ruby lets you model this way. You can get a lot of mileage out of thinking
through your domain as a cascaded, inheritance-based chart of objects.

 On the other hand, Ruby objects (unlike objects in some other object-oriented
languages) can be individually modified. You can always add methods on a per-
object basis, as we’ve seen from our earliest examples.

 In languages where you can’t do this, an object’s class (and the superclass of
that class, and so forth) tells you everything you need to know about the object. If
the object is an instance of Magazine, and you’re familiar with the methods pro-
vided by the class Magazine for the use of its instances, you know exactly how the
object behaves.

 In Ruby, however, the behavior or capabilities of an object can deviate from
those supplied by its class. We can make a magazine sprout wings:

mag = Magazine.new
def mag.wings
 puts "Look! I can fly!"
end

This demonstrates that the capabilities the object was born with aren’t necessarily
the whole story.

152 CHAPTER 5

Organizing objects with classes
 Thus the inheritance tree—the upward cascade of class to superclass to super-
class—isn’t the only determinant of an object’s behavior. If you want to know what
a brand-new magazine object does, look at the methods in the Magazine class and
its ancestors. If you want to know what a magazine object can do later, you have to
know what’s happened to the object since its creation. (And respond_to?—the
method that lets you determine in advance whether an object knows how to han-
dle a particular method—can come in handy.)

 Ruby objects are tremendously flexible and dynamic. That flexibility translates
into programmer power: You can make magazines fly, make cows tell you who
published them, and all the rest of it. As these silly examples make clear, the
power entails responsibility: When you make changes to an individual object—
when you add methods to that object, and that object alone—you have to have a
good reason.

 Most Ruby programmers are conservative in this area. You’ll see less adding of
methods to individual objects than you might expect. Methods are most often
added to Class objects; those methods are class methods, which are, as we’ve
seen, a good design fit in many cases.

 Adding methods to other objects (magazines, tickets, composers, and so on) is
also possible. But you have to do it carefully and selectively, and with the design of
the program in mind.

The not-so-missing link: class Object
In numerous examples in this chapter, we’ve done the following:

obj = Object.new

You’re now in a position to understand more deeply what’s going on.
 The class Object is at the top of the inheritance chart. Every class is either a

subclass of Object or a sub-subclass of Object or, at some distance, a direct descen-
dant of Object:

class C
end

class D < C
end

puts D.superclass
puts D.superclass.superclass

The output is

C
Object

Summary 153
because C is D’s superclass (that’s our doing) and Object is C’s superclass (that’s
Ruby’s doing).

 If you go up the chain far enough from any class, you hit Object. Any method
available to a bare instance of Object is available to every object. This follows the
principle that an object has access to the instance methods of its class and to those
of its class’s ancestors.

 You already know that every object is born with certain capabilities, including
send, object_id, and respond_to?. You now know that every object is born with
the capabilities defined for instances of Object. You might conclude that send and
friends are instance methods of Object.

 They’re not. Yes, Object is the ultimate great-great-…-grandparent class of all
classes. But it turns out that classes aren’t the whole story. We’ll explore this in
depth in the next chapter.

5.7 Summary

In this chapter, you’ve learned the basics of Ruby classes. You’ve seen how writing
a class, and then creating instances of that class, allows you to share behaviors
among numerous objects. Through the use of setter methods, either written out
or automatically created with the attr_* family of methods, we’ve demonstrated
how to create object attributes, which store object state in instance variables.

 From there, we moved to the matter of classes as objects, as well as object facto-
ries. Class methods (methods added individually to class objects) can provide gen-
eral utility functionality connected with the class.

 We then looked at Ruby constants, which are a special kind of data container
usually residing inside class definitions. Finally, we examined inheritance: a hier-
archical, cascading relationship between a superclass and one or more subclasses.

 This gives you a firm foundation for understanding how objects come into
being and relate to each other in Ruby. Next, we’ll build on that foundation by
looking at another important building-block: modules.

Modules and
program organization
In this chapter
■ Encapsulation of behavior models in modules
■ Modular extension of class and object capability
■ The role of modules in the method lookup chain
■ Designing class and module hierarchies
154

Basics of module creation and use 155
This chapter will introduce you to a Ruby construct that’s closely related to
classes: namely, modules. Like classes, modules are bundles of methods and con-
stants. Unlike classes, modules don’t have instances; instead, you specify that you
want the functionality of a particular module to be added to the functionality of a
class, or of a specific object.

 The greatest strength of modules is that they help you with program design
and flexibility. You’ll see evidence of this, both in examples of modules you can
write yourself and in the workings of modules that come built into Ruby. As their
name suggests, modules encourage modular design: program design that breaks
large components into smaller ones and lets you mix and match object behaviors.

 It’s no accident that modules are similar in many respects to classes: The class
Class is a subclass of Module. Judging by the family tree of classes, classes are a spe-
cialized form of module. (We discussed classes first because Ruby is object-centric
and objects are instances of classes.) In the realm of Rails, modules hold consider-
able sway, particularly in the design and organization of the framework. You need
to understand modules and modularization in order to understand even the two
or three lines of boilerplate code that Rails inserts into all model and controller
templates. (We’ll take a close look at this in section 6.3.2.) Because Rails does a lot
of code organizing and templating for you, you may not need to create new mod-
ules from scratch in your application; but in cases where you add large segments
of code that don’t fit into any predefined Rails slots, and also in cases where you
want to abstract code for reuse, modularization can come in handy.

 Looking at modules takes us further along several paths we partially walked in
the previous chapter. We saw that Object is the highest class; here, we’ll meet the
highest module: Kernel. We’ve touched on the fact that objects seek their meth-
ods in both class and superclass; here, we’ll look in considerable detail at how this
method-lookup process works when both classes and modules are involved.

6.1 Basics of module creation and use

Writing a module is similar to writing a class, except you start your definition with
the module keyword instead of the class keyword:

module MyFirstModule
dddef say_hello
ddddputs "Hello"
ddend
end

156 CHAPTER 6

Modules and program organization
When you write a class, you then create instances of the class. Those instances can
execute the class’s instance methods. Modules, however, don’t have instances.
Instead, modules get mixed in to classes. (Modules are sometimes referred to as
mix-ins.) When this happens, the instance of the class has the ability to call
instance methods defined in the module.

 For example, using the little module from the previous example, you can go
on to do this:

class ModuleTester
ddinclude MyFirstModule
end

mt = ModuleTester.new
mt.say_hello

Your ModuleTester object will call the appropriate method (say_hello). Notice
that say_hello isn’t defined in the class of which the object is an instance. Instead,
it’s defined in a module that the class mixes in.

 The mix-in operation is achieved with the include statement. include is actu-
ally a method. You’ll see in detail later how the mixing of a module into a class, via
include, operates.

 You may notice that mixing in a module bears a strong resemblance to inherit-
ing from a superclass. In a case where, say, class B inherits from class A, instances of
class B can call instance methods of class A. In cases where, say, class C mixes in
module M, instances of C can call instance methods of module M. In both cases, the
instances of the class at the bottom of the list reap the benefits: They get to call
not only their own class’s instances methods, but also those of (in one case) a
superclass or (in the other case) a mixed-in module.

 The main difference between inheriting from a class and mixing in a module
is that you can mix in more than one module. No class can inherit from more
than one class. In cases where you want numerous extra behaviors for a class’s
instances—and you don’t want to stash them all into the class’s superclass—you
can use modules to organize your code in a more granular way. Each module can
add something different to the methods available through the class.

 Modules open up lots of possibilities, particularly for sharing code among more
than one class (because any number of classes can mix in the same module). We’ll
look next at some further examples, and you’ll get a sense of the possibilities.

Basics of module creation and use 157
6.1.1 A module encapsulating “stack-like-ness”

Modules give you a way of collecting and encapsulating behaviors. A typical mod-
ule contains methods connected to a particular subset of what will be, eventually,
the full capabilities of an object.

 By way of fleshing out this statement, we’ll write a module that encapsulates
the characteristic of being like a stack, or stack-like-ness (henceforth written without
the hyphens, now that the word has been coined and introduced into the discus-
sion). We’ll then use that module to impart stacklike behaviors to objects, via the
process of mixing the stacklike module into one or more classes.

 As you may know from previous studies, a stack is a data structure that operates
on the LIFO (last in, first out) principle. The classic example is a (physical) stack
of plates. The first plate to be used is the last one placed on the stack. Stacks are
usually discussed as a pair with queues, which exhibit FIFO (first in, first out) behav-
ior. Think of a cafeteria: The plates are in a stack; the customers are in a queue.

 Numerous items behave in a stacklike, LIFO manner. The last sheet of printer
paper you put in the tray is the first one printed on. Double-parked cars have to
leave in an order that’s the opposite of the order of their arrival. The quality of
being stacklike can manifest itself in a wide variety of collections and aggregations
of entities.

 That’s where modules come in. When you’re designing a program and you
identify a behavior or set of behaviors that may be exhibited by more than one
kind of entity or object, you’ve found a good candidate for a module. Stacklike-
ness fits the bill: More than one entity, and therefore imaginably more than one
class, exhibits stacklike behavior. By creating a module that defines methods that
all stacklike objects have in common, you give yourself a way to summon stacklike-
ness into any and all classes that need it.

 Listing 6.1 shows a simple implementation of stacklikeness, in Ruby module
form. (The code uses a few unfamiliar techniques; they’re explained after the list-
ing.) This example, although simple, involves a couple of different program files,
which you can save to your Ruby for Rails scratchpad directory. Save listing 6.1 in a
file called stacklike.rb.

 module Stacklike
 attr_reader :stack

 def initialize
 @stack = Array.new

Listing 6.1 The Stacklike module, encapsulating stacklike structure and behavior

B

158 CHAPTER 6

Modules and program organization
 end

 def add_to_stack(obj)
 @stack.push(obj)
 end

 def take_from_stack
 @stack.pop
 end
 end

The Stacklike module in listing 6.1 uses an array (an ordered collection of
objects) to represent the stack. Upon initialization, a Stacklike object’s instance
variable @stack is initialized to a new, empty array #1. When an object is added to
the stack #2, the operation is handled by pushing the object onto the array—that
is, adding it to the end. Removing an object from the stack #3 involves popping an
element from the array—that is, removing it from the end. (push and pop are
instance methods of the Array class. You’ll see them again when we look at con-
tainer objects, including arrays, in chapter 11.)

 The module Stacklike thus implements stacklikeness by selectively deploying
behaviors that already exist for Array objects: Add an element to the end of the
array; take an element off the end. Arrays are more versatile than stacks; a stack
can’t do everything an array can. For example, you can remove elements from an
array in any order, whereas by definition the only element you can remove from a
stack is the one that was added most recently. But an array can do everything a stack
can. As long as we don’t ask it to do anything unstacklike, using an array as a kind
of agent or proxy for the specifically stacklike add/remove actions makes sense.

 We now have a module that implements stacklike behavior: maintaining a list
of items, such that new ones can be added to the end and the most recently added
one can be removed. The next question is, what can we do with this module?

6.1.2 Mixing a module into a class

As you’ve seen, modules don’t have instances; so we cannot do this:

s = Stacklike.new

In order to create instances (objects) we need a class; and in order to make those
objects stacklike, we need to mix our module into that class. But what class? The
most obviously stacklike thing is probably a Stack. Save the code in listing 6.2 to
stack.rb, in the same directory as stacklike.rb.

C

D

Wrong!

B
C

D

Basics of module creation and use 159
require "stacklike"
class Stack
ddinclude Stacklike
end

The business end of the Stack class in listing 6.2 is the include statement #1 with
which we have mixed in the Stacklike module. It ensures that instances of Stack
will exhibit the behaviors defined in Stacklike.

NOTE SYNTAX OF require/load VS. SYNTAX OF include You may have noticed
that when you use require or load, you put the name of the item you’re
requiring or loading in quotation marks, but with include, you don’t.
require and load take strings as their arguments, whereas include takes
the name of a module, in the form of a constant. The requirements to
require and load are usually literal strings (in quotation marks), but a
string in a variable will also work.

Notice that our class’s name is a noun, whereas the module’s name is an adjective.
Neither of these practices is mandatory, but they’re both common. What we end
up with, expressed in everyday language, is a kind of predicate on the class:

Stack objects are stacklike.

That’s English for

class Stack
ddinclude Stacklike
end

To see the whole thing in action, let’s create a Stack object and put it through its
paces. The code in listing 6.3 creates a Stack object and performs some opera-
tions on it; you can enter this code at the end of your stack.rb file.

 s = Stack.new

 s.add_to_stack("item one")
 s.add_to_stack("item two")
 s.add_to_stack("item three")

 puts "Objects currently on the stack:"
 puts s.stack

Listing 6.2 Mixing the Stacklike module into the Stack class

Listing 6.3 Creating and using an instance of class Stack

B

B

C

B

160 CHAPTER 6

Modules and program organization
 taken = s.take_from_stack
 puts "Removed this object:"
 puts taken

 puts "Now on stack:"
 puts s.stack

Listing 6.3 starts with the innocent-looking (but powerful) instantiation #1 of a
new Stack object, which we’ve assigned to the variable s. That Stack object is born
with the knowledge of what to do when we ask it to perform stack-related actions,
thanks to the fact that its class mixed in the Stacklike module. The rest of the
code involves asking it to jump through some stacklike hoops: adding items
(strings) to itself #2, and popping the last one off itself #3. Along the way, we ask
the object to report on its state.

 Now let’s run the program. Here’s an invocation of stack.rb, together with the
output from the run:

$ ruby stack.rb
Objects currently on the stack:
item one
item two
item three
Removed this object:
item three
Now on stack:
item one
item two

Sure enough, our little Stack object knows what to do. It is, as advertised, stacklike.
 The Stack class is fine as far as it goes. But it may leave you wondering: Why

did we bother writing a module?

6.1.3 Leveraging the module further

It would be possible to pack all the functionality of the Stacklike module directly
in the Stack class without writing a module. Listing 6.4 shows you what the class
would look like.

 class Stack
 attr_reader :stack

 def initialize
 @stack = Array.new

D

Listing 6.4 A nonmodular rewrite of the Stack class

B

C D

Basics of module creation and use 161
 end

 def add_to_stack(obj)
 @stack.push(obj)
 end

 def take_from_stack
 @stack.pop
 end
 end

As you’ll see if you add the code in listing 6.3 to listing 6.4 and run it all through
Ruby, it produces the same results as the implementation that uses a module.

 Before you end up concluding that modules are pointless, remember what the
modularization buys you: It lets you apply a general concept like stacklikeness to
several cases, not just one.

 What else is stacklike?
 A few examples came up earlier: plates, printer paper, and so forth. Let’s use a

new one, though, borrowed from the world of urban legend.
 Lots of people believe that if you’re the first passenger to check in for a flight,

your luggage will be the last off the plane. Real-world experience suggests that it
doesn’t work this way. Still, for stack practice, let’s see what a Ruby model of an
urban-legendly correct cargo hold would look like.

 To model it reasonably closely, we’ll include a barebones Suitcase class—a
placeholder that doesn’t fully model suitcase behavior (there are no pack or
snap_shut methods) but that lets us create suitcase objects to fling into the cargo
hold. Also for the sake of real-world resemblance, we’ll give our cargo hold two
methods: load_and_report and unload. load_and_report prints a message report-
ing that it’s adding a suitcase to the cargo hold, and it gives us the suitcase object’s
id number (which will help us trace what happens to each suitcase). The unload
method calls take_from_stack. (We could call take_from_stack directly, but
unload sounds more like a term you might use to describe removing a suitcase
from a cargo hold.)

 Put the code in listing 6.5 into cargohold.rb, and try it.

 require "stacklike"

 class Suitcase
 end

Listing 6.5 Using the Stacklike module a second time, for a different class

162 CHAPTER 6

Modules and program organization

 class CargoHold
 include Stacklike
 def load_and_report(obj)
 print "Loading object "
 puts obj.object_id
 add_to_stack(obj)
 end
 def unload
 take_from_stack
 end
 end

 ch = CargoHold.new
 sc1 = Suitcase.new
 sc2 = Suitcase.new
 sc3 = Suitcase.new

 ch.load_and_report(sc1)
 ch.load_and_report(sc2)
 ch.load_and_report(sc3)

 first_unloaded = ch.unload

 print "The first suitcase off the plane is...."
 puts first_unloaded.object_id

At its heart, the program in listing 6.5 isn’t all that different from those in listings 6.2
and 6.3 (which you saved incrementally to stack.rb). It follows much the same pro-
cedure: mixing Stacklike into a class #1, creating an instance of that class #5, and
adding items to #3, and removing them from #4, that instance (the stacklike thing—
the cargo hold, in this case). It also does some reporting of the current state of the
stack #2, as the other program did.

 The output from the cargo hold program looks like this (remember that suitcases
are referred to by their object id numbers, which may be different on your system):

Loading object 942912
Loading object 942892
Loading object 942882
The first suitcase off the plane is....942882

The cargo hold example shows how you can use an existing module for a new
class. Sometimes it pays to wrap the methods in new methods with better names
for the new domain (like unload instead of take_from_stack), although if you
find yourself changing too much, it may be a sign that the module isn’t a good fit.

B

C

D

E

B E
DC

B

Modules, classes, and method lookup 163
 In the next section, we’re going to put together several of the pieces we’ve
looked at more or less separately: method calls (message sending), objects and
their status as instances of classes, and the mixing of modules into classes. All of
these concepts come together in the process by which an object, upon being sent
a message, looks for and finds (or fails to find) a method to execute whose name
matches the message.

6.2 Modules, classes, and method lookup

You already know that when an object receives a message, the result may be the
execution of a method with the same name as the message in the object’s class, or
a method in that class’s superclass—and onward, up to the Object class—or a
method in a module that has been mixed into any of those classes. But how exactly
does this come about? And what happens in ambiguous cases—for example, if a
class and a mixed-in module both define a method with a given name? Which one
does the object choose to execute?

 It pays to answer these questions precisely. Imprecise accounts of what hap-
pens are easy to come by. Sometimes they’re even adequate: If you say, “This
object has a push method,” you may well succeed in communicating what you’re
trying to communicate, even though objects don’t “have” methods but, rather,
find them by searching classes and modules.

 But an imprecise account won’t scale. It won’t help you understand what’s
going on in more complex cases, and it won’t support you when you’re designing
your own code. Your best course of action is to learn what really happens when you
send messages to objects.

 Fortunately, the way it works turns out to be straightforward.

6.2.1 Illustrating the basics of method lookup

In the interest of working toward a clear understanding of how objects find meth-
ods, let’s back-pedal on the real-world references and, instead, write some classes
and modules with simple names like C and M. Doing so will help you concentrate
on the logic and mechanics of method lookup without having to think simulta-
neously about modeling a real-world domain. We’ll also write some methods that
don’t do anything except print a message announcing that they’ve been called.
This will help track the order of method lookup.

 Look at the program in listing 6.6.

164 CHAPTER 6

Modules and program organization
 module M
 def report
 puts "'report' method in module M"
 end
 end

 class C
 include M
 end

 class D < C
 end

 obj = D.new
 obj.report

The instance method report is defined in module M. Module M is mixed into class C.
Class D is a subclass of C. obj is an instance of D. Through this cascade, the object
(obj) gets access to the report method.

 Still, gets access, like has, is a vague way to put it. Let’s try to get more of a fix on
the process by considering an object’s-eye view of it.

An object’s-eye view of method lookup
You’re the object, and someone sends you a message. You have to figure out how to
respond to it—or whether you can respond to it. Here’s a bit of object stream-of-
consciousness:

 I am a Ruby object, and I’ve been sent the message “report”. I have to try to find a method
called report in my method lookup path. report, if it exists, resides in a class or module.

 I am an instance of a class called D. Does D define an instance method report?

 No.

 Does D mix in any modules?
 No.

 Does D’s superclass (C) define a report instance method?

 No.

 Does C mix in any modules?

 Yes: M.

 Does M define a report method?
 Yes! I’ll execute that method.

Listing 6.6 Demonstration of module inclusion and inheritance

Modules, classes, and method lookup 165
The search ends when the method being searched for is found, or with an error
condition if it isn’t found.

NOTE method_missing When you send an object a message it doesn’t under-
stand, the situation triggers execution of a built-in method called
method_missing. The default version of this method treats the problem
as a fatal error. However, you can override method_missing as an
instance method in your class. Your version will be then be executed
when instances of that class receive unknown messages.

method_missing is the key to much of the behavior of objects in Rails
applications: They receive messages they don’t understand, and then
their method_missing facilities look among the database fields for match-
ing names and create the corresponding methods on the spot.

This example gives you much of what you need to know about how objects look
for methods to call when they’re asked to call methods. It doesn’t give you all the
information you need; a couple of concepts will materialize down the road. But it
gives you what you need to understand the rest later on.

 Let’s move from object stream-of-consciousness to specifics about the method
search scenario, and in particular the question of how far it can go.

How far does the method search go?
Ultimately, every object in Ruby is an
instance of some class descended from
the big class in the sky: Object. That
means however many classes and mod-
ules it may cross along the way, the
search for a method can always go as far
up as Object. It can even go one step fur-
ther: the class Object mixes in a module
more primal than itself: Kernel. If you
get to Kernel and you still haven’t found
the method you’re asking the object to
execute, that means you’re not going to
find it.

 Figure 6.1 illustrates the method
search path from our earlier example
(the class D object), up to and including
Kernel. (In the example, the search for
the method succeeds at module M; the

class Object
 (built-in)
 include Kernel

class D < C
end

class C
 include M
end

object = D.new
object.x

module M
end

module Kernel
 (built-in)

Figure 6.1 Diagram of the method lookup
process for an instance of D

166 CHAPTER 6

Modules and program organization
diagram shows how far the object would look if it didn’t find the method there.)
When the message “x” is sent to the object, the method search begins, hitting the
various classes and mix-ins (modules) as shown by the arrows.

 Kernel is where the methods common to all Ruby objects are defined, includ-
ing the ones we looked at earlier (respond_to?, object_id, and send). Now you
know why every object has these methods: They’re defined in Kernel, Object
mixes in Kernel, and Object is an ancestor of every class in Ruby.

6.2.2 Defining the same method more than once

You learned in chapter 5 that if you define a method twice inside the same class,
the second definition takes precedence over the first. The same is true of mod-
ules. The rule comes down to this: There can be only one method of a given name
per class or module at any given time.

 That’s how classes and modules keep house. When we flip to an object’s-eye
view, however, the question of having access to two or more methods with the
same name becomes more involved.

 An object’s methods can come from any number of classes and modules. True,
any one class or module can have only one report method (to use that name as an
example). But an object can have multiple report methods in its method search
path, because the method search path passes through multiple classes or modules.

 Still, the rule for objects is analogous to the rule for classes and modules: An
object can see only one version of a method with a given name at any given time.
If there are two or more same-named methods in the object’s method lookup
path, the first one encountered is the winner and will be executed.

 Listing 6.7 shows a case where two versions of a method lie on an object’s
method lookup path: one in the object’s class, and one in a module mixed in by
that class.

 module M
 def report
 puts "'report' method in module M"
 end
 end

 class C
 include M
 def report
 puts "'report' method in class C"

Listing 6.7 Two same-named methods on a single search path

Modules, classes, and method lookup 167
 end
 end

 c = C.new
 c.report

When you run listing 6.7, you get the following output:

'report' method in class C.

Two report methods lie on the method lookup path of the object c. But the
lookup hits the class C (c’s class) before it hits the module M (a mix-in of class C).
Therefore, the report method it executes is the one defined in C.

 An object may have two methods with the same name on its method lookup
path in another circumstance: When a class mixes in two or more modules, more
than one of which implement the method being searched for, the modules are
searched in reverse order of inclusion—that is, the most recently mixed-in module is
searched first.

 For example, consider a case where two modules, M and N, both define a report
method and are both mixed into a class, as in listing 6.8.

 module M
 def report
 puts "'report' method in module M"
 end
 end

 module N
 def report
 puts "'report' method in module N"
 end
 end

 class C
 include M
 include N
 end

What does an instance of this class do when you send it the “report” message and
it walks the lookup path, looking for a matching method? Let’s ask it:

 c = C.new
 c.report

Listing 6.8 Mixing in two modules with a same-named method defined

168 CHAPTER 6

Modules and program organization
The answer is, “'report' method in module N'”. The first report method encountered
in c’s method lookup path is the one in the most recently mixed-in module. In this case,
that means N—so N’s report method wins over M’s method of the same name.

 The double-barreled rule, then, is this:

■ If you’re a class or module, you can only have one method of a given name
at a given time.

■ If you’re an object, you can look for a method in multiple classes and/or
modules, but your search stops when you find the first matching method.

Except…

6.2.3 Going up the method search path with super

There is a special way, inside the body of a method definition, to reach upward
and execute the next method with the same name, higher up in the lookup path.
You do this with the super keyword.

 Listing 6.9 shows a basic example (after which we’ll get to the “why would you
do that?” aspect).

 module M
 def report
 puts "'report' method in module M"
 end
 end

 class C
 include M
 def report
 puts "'report' method in class C"
 puts "About to trigger the next higher-up report method..."
 super
 puts "Back from the 'super' call."
 end
 end

 c = C.new
 c.report

The output from running listing 6.9 is as follows:

 'report' method in class C
 About to trigger the next higher-up report method...

Listing 6.9 Using the super keyword to reach up one level in the lookup path

B

C

D

E

Modules, classes, and method lookup 169
 'report' method in module M
 Back from the 'super' call.

The instance of C (namely, c) receives the “report” message #4. The method-
lookup process starts with c’s class (C)—and, sure enough, there is a report
method #2. That method is executed.

 Inside the method, however, is a call to super #3. That means even though you
found a method corresponding to the message (“report”), you must keep looking
and find the next match. The next match for “report”, in this case, is the report
method defined in module M #1.

 Note that M#report would have been the first match in a search for a report
method, if C#report didn’t exist. The super keyword gives you a way to call what
would have been the applicable version of a method, in cases where that method
has been overridden later in the lookup path. Why would you want to do this?

 Sometimes, particularly when you’re writing a subclass, a method in an existing
class does almost what you want, but not quite. With super, you can have the best of
both, by hooking into or wrapping the original method, as listing 6.10 illustrates.

 class Bicycle
 attr_reader :gears, :wheels, :seats

 def initialize(gears = 1)
 @wheels = 2
 @seats = 1
 @gears = gears
 end
 end

 class Tandem < Bicycle
 def initialize(gears)
 super
 @seats = 2
 end
 end

super gives us a nice clean way to make a tandem almost like a bicycle. We change
only what needs to be changed (the number of seats #2), and we use super to trig-
ger the earlier initialize method #1, which sets bicycle-like default values for the
other properties of the tandem.

 When we call super, we don’t explicitly forward the gears argument that is
passed to initialize. Yet when the original initialize method in Bicycle is

Listing 6.10 Using super to wrap a method in a subclass

B

C

E

C
D

B

C
B

170 CHAPTER 6

Modules and program organization
called, any arguments provided to the Tandem version are visible. This is a special
behavior of super. The way super handles arguments is as follows:

■ Called as a bareword, super automatically forwards the arguments that were
passed to the method from which it’s called.

■ Called with an empty argument list—super()—it sends no arguments to the
higher-up method, even if arguments were passed to the current method.

■ Called with specific arguments—super(a,b,c)—it sends exactly those
arguments.

This unusual treatment of arguments exists because the most common case is the
first one, where you want to bump up to the super method with the same argu-
ments as those received by the method from which super is being called. That
case is given the simplest syntax; you just type super.

 You now have a good grasp of both classes and modules, and how individual
objects, on receiving messages, look for a matching method by traversing their
class/module family tree. Next, we’ll look at what you can do with this system—
specifically, the kinds of decisions you can and should make as to the design and
naming of your classes and modules, in the interest of writing clear and compre-
hensible programs.

6.3 Class/module design and naming

The fact that Ruby has classes and modules—along with the fact that from an
object’s perspective, all that matters is whether a given method exists, not what
class or module the method’s definition is in—means that you have a lot of choice
when it comes to your programs’ design and structure. This richness of design
choice raises some considerations you should be aware of.

 We’ve already looked at one case (the Stack class) where it would have been
possible to put all the necessary method definitions into one class but was advanta-
geous to yank some of them out, put them in a module (Stacklike), and then mix
the module into the class. There’s no rule for deciding when to do which. It
depends on your present and (to the extent you can judge them) future needs. It’s
sometimes tempting to break everything out into separate modules, because mod-
ules you write for one program may be useful in another (“I just know I’m going to
need that ThreePronged module again some day!” says the packrat voice in your
head). But there’s such a thing as over-modularization. It depends on the situation.
And you have more than one program architecture design tool at your disposal.

Class/module design and naming 171
6.3.1 Mix-ins and/or inheritance

Module mix-ins are closely related to class inheritance. In both cases, one entity
(class or module) is establishing a close connection—becoming neighbors on a
method lookup path—with another. In some cases, you may find that you can
design part of your program either with modules or with inheritance.

 Our CargoHold class is an example. We implemented it by having it mix in the
Stacklike module. But had we gone the route of writing a Stack class instead of a
Stacklike module, we still could have had a CargoHold. It would have been a sub-
class of Stack, as illustrated in listing 6.11.

 class Stack
 attr_reader :stack

 def initialize
 @stack = []
 end

 def add_to_stack(obj)
 @stack.push(obj)
 end

 def take_from_stack
 @stack.pop
 end
 end

 class Suitcase
 end

 class CargoHold < Stack
 def load_and_report(obj)
 print "Loading object "
 puts obj.object_id
 add_to_stack(obj)
 end
 def unload
 take_from_stack
 end
 end

From the point of view of an individual CargoHold object, the process works in
listing 6.11 exactly as it worked in the earlier implementation, where CargoHold
mixed in the Stacklike module. The object is concerned with finding and

Listing 6.11 CargoHold, inheriting from Stack instead of mixing in Stacklike

172 CHAPTER 6

Modules and program organization
executing methods that correspond to the messages it receives. It either finds
such methods on its method lookup path, or it doesn’t. It doesn’t care whether
the methods were defined in a module or a class. It’s like searching a house for a
screwdriver: You don’t care which room you find it in, and which room you find
it in makes no difference to what happens when you subsequently employ the
screwdriver for a task.

 There’s nothing wrong with this inheritance-based approach to implementing
CargoHold, except that it eats up the one inheritance opportunity CargoHold has.
If another class might be more suitable than Stack to serve as CargoHold’s superclass
(like, hypothetically, StorageSpace or AirplaneSection), we might end up needing
the flexibility we’d gain by turning at least one of those classes into a module.

 There’s no single rule or formula that always results in the right design. But it’s
useful to keep a couple of considerations in mind when you’re making class-versus-
module decisions:

■ Modules don’t have instances. It follows that entities or things are generally best
modeled in classes, and characteristics or properties of entities or things are
best encapsulated in modules. Correspondingly, as noted in section 6.1.1,
class names tend to be nouns, while module names are often adjectives (like
Stack versus Stacklike).

■ A class can have only one superclass, but it can mix in as many modules as it wants.
If you’re using inheritance, give priority to creating a sensible superclass/
subclass relationship. Don’t use up a class’s one and only superclass rela-
tionship to endow the class with what might turn out to be just one of sev-
eral sets of characteristics.

Summing up these rules in one example, here is what you should not do:

module Vehicle
...
class SelfPropelling
...
class Truck < SelfPropelling
ddinclude Vehicle
...

Rather, you should do this:

module SelfPropelling
...
class Vehicle
ddinclude SelfPropelling
...
class Truck < Vehicle
...

Class/module design and naming 173
The second version models the entities and properties much more neatly. Truck
descends from Vehicle (which makes sense), whereas SelfPropelling is a charac-
teristic of vehicles (at least, all those we care about in this model of the world)—a
characteristic that is passed on to trucks by virtue of Truck being a descendant, or
specialized form, of Vehicle.

Nesting modules and classes
You can nest modules and classes inside each other—for example, start a class defi-
nition inside a module definition, like this:

module Tools
ddclass Hammer

To create an instance of the Hammer class defined inside the Tools module, you
use the double-colon constant lookup token (::) to point the way to the name of
the class :

h = Tools::Hammer.new

Nested module/class chains like Tools::Hammer are sometimes used to create sepa-
rate namespaces for classes, modules, and methods. This technique can help if two
classes have a similar name but aren’t the same class. For example, if you have got
a Tool::Hammer class, you can also have a Piano::Hammer class, and the two Hammer
classes won’t conflict with each other because each is nested in its own namespace
(Tool in one case, Piano in the other).

 (An alternative way to achieve this separation would be to have a ToolsHammer
class and a PianoHammer class, without bothering to nest them in modules. How-
ever, stringing names together like that can quickly lead to visual clutter, espe-
cially when elements are nested deeper than two levels.)

 We’ll look further at nested classes, modules, and other constants in the next
chapter, when we talk in more detail about the subject of scope. Meanwhile, note
that this ability to nest modules and classes inside each other (to any depth, in any
order) gives you yet another axis along which you can plan your program’s design
and structure.

6.3.2 Modular organization in Rails source and boilerplate code

Even if it weren’t the main impetus for learning Ruby in this book, Rails would be
a great source of examples of modularization at work. We’ll look here at how
modules manifest themselves in two Rails contexts: the source code of the frame-
work, and the boilerplate code generated when you initialize an application with
the rails command. Both of these are sneak peeks; we’ll look more closely at the

174 CHAPTER 6

Modules and program organization
process of examining the source code in chapter 17, and the discussion of model
and controller files will extend in chapters 14–16 well beyond the point of noting
what’s a class and what’s a module. This is a limited-agenda subsection, but it’s a
useful illustration of the front-and-center status of modules in Rails.

Modularization in the Rails source
The Rails source code makes heavy use of modules, in particular the technique of
reopening the definition bodies of both classes and modules. For a glimpse, go to
your action_controller directory, which resides deep in the gems directory of
your Ruby installation. Its path will look something like this, depending on your
setup and version numbers:

gems/1.8/gems/actionpack1.7.0/lib/action_controller

Once you’re there, try this:

$ grep "module ActionController" *

Watch grep show you all the files that contain this line. (You’ll probably see the
tag #:nodoc: on most of them; this is a directive to the Ruby Documentation
(RDoc), and you can ignore it.) If you don’t have grep on your system, you can use
the following command-line Ruby script instead. (The backslash at the end of the
first line of the script tells Ruby that the following line is a continuation of the cur-
rent one. You could also remove the backslash and type the whole command on
one line.)

$ ruby -ne 'puts ARGF.filename + ":" + $_ \
 if $_ && /module ActionController/' *.rb

For every line displayed by grep (or the Ruby substitute), the ActionController
module is being reopened, and new functionality—nested classes and/or mod-
ules, with their methods—is being added.

 To see some nesting in the wild, a good file to look at is routing.rb (in the
same /usr/local/..../action_controller directory where you did the grep-
ping). The first few lines (with some comments trimmed) are as follows:

module ActionController
 module Routing
 class Route

If you had occasion to create an instance of that Route class, what would you do?
You’d do this:

ActionController::Routing::Route.new

Class/module design and naming 175
That would take you down the chain of nested definitions to the right one: You’re
asking for a new instance of the class Route, which is defined in the module Rout-
ing of the module ActionController.

NOTE CLASS OR MODULE? When you see a construct like
ActionController::Routing::Route

you can’t tell from that construct what’s a class and what’s a module. If
there’s a call to new, you can be pretty sure the last element in the chain
is a class, but otherwise the last element could be any constant—class,
module, or other—and the elements on the left could be either classes or
modules. In many cases, the fact that you can’t tell classes from modules
in this kind of context doesn’t matter; what matters is the nesting or
chaining of names in a way that makes sense. That’s just as well, because
you can’t tell what’s what without looking at the source code or the docu-
mentation. This is a consequence of the fact that classes are modules—the
class Class is a subclass of the class Module—and in many respects (with
the most notable exception being the fact that classes can be instanti-
ated), their behavior is similar.

Some of the deep nesting of classes and modules in the Rails libraries bubbles to
the surface of your application in the code that Rails inserts into your application
files when they’re first created. Now you can understand the syntax and semantics
behind it, which we’ll examine next.

Modularization in Rails boilerplate code
As you’ll recall from chapter 5, as well as from the sample application developed
in chapter 2, each file in the app/models subdirectory of your application looks
something like this when it’s first created with the generate script:

class Composer < ActiveRecord::Base
end

You’re now in a position to decipher this code completely:

■ Composer is a class.

■ The superclass of Composer is ActiveRecord::Base—which must, therefore,
be a class.

■ There’s a class called Base, nested inside a class or module called
ActiveRecord. You can’t tell whether the latter is a class or module just by
looking at the wording in the file. (It’s a module, as it happens.)

Understanding what the boilerplate code means will help you be aware of what
you’re doing when you add code to the model file.

176 CHAPTER 6

Modules and program organization
 When you create your application, there’s nothing in the models directory; you
create all the models with the generate script. However, you get a free controller
file: the generic file app/controllers/application.rb, which serves as an umbrella
controller file for all the other controllers. Upon the automatic creation of this file,
you see something similar to what you saw in the newly minted model files:

class ApplicationController < ActionController::Base
end

This code creates a class (or perhaps reopens a class; you can’t tell by looking,
although in this case the action is creation) called ApplicationController, which
is a subclass of a class called Base that is nested inside a class or module (module,
as it happens) called ActionController. The new class created here ends up serv-
ing as the superclass for the other controller classes you create later with the gen-
erate script—as you can see if you look in one of the application-specific
controller files:

class ComposerController < ApplicationController

We’ll come back and flesh out the ramifications of this discussion, particularly in
part 4 when we revisit the music store application and bear down on further
details of coding inside the model and controller files. Meanwhile, you now have a
good sense of the centrality of modules as well as classes (which, again, are a spe-
cialized form of module) to Ruby programming in general and the Rails frame-
work specifically.

6.4 Summary

This chapter has been both a companion to and a continuation of the previous
chapter on classes. We’ve looked in detail at modules, which are similar to classes
in that they bundle methods and constants together, but which can’t be instanti-
ated. You’ve seen examples of how you might use modules to express the design
of a program. We’ve taken an object’s-eye view of the process of finding and exe-
cuting a method in response to a message. We’ve also looked at some techniques
you can use—including nesting classes and modules inside each other, which can
have the benefit of keeping namespaces separate and clear. Finally, we discussed
aspects of modular organization in the Rails framework source and in some of the
boilerplate code created by Rails when you initialize your application.

 Now that we’re nesting elements inside each other, the next topic we should
and will examine in detail is scope: what happens to data and variables when your
program moves from one code context to another.

The default object
(self) and scope
In this chapter
■ The role of the current or default object, self
■ Scoping rules for variables and constants
■ Method access rules
177

178 CHAPTER 7

The default object (self) and scope
In describing and discussing computer programs, we often use spatial and, some-
times, human metaphors. We talk about being in a class definition, or returning from
a method call. Sometimes there’s a sense of addressing objects in the second per-
son, as in obj.respond_to?("x") (that is, “Hey obj, do you respond to ‘x’?”). As
your program runs, the context and orientation change again and again.

 This chapter is about knowing what’s going on in a Ruby program, based on
understanding what different elements mean, and why, in certain contexts.

 A few components mean the same thing everywhere. Integers, for example,
mean what they mean wherever you see them. The same is true for keywords: You
can’t use keywords like def and class as variable names, so when you see them,
you can easily glean what they’re doing.

 But most elements depend on context for their meaning. Most words and
tokens can mean different things at different times. If you understand what can
change from one context to another, and also what triggers a change in context
(for example, starting a method definition), you can always get your bearings in a
Ruby program. And it’s not just a matter of passive Ruby literacy: You also need to
know about contexts and how they affect the meaning of what you’re doing when
you’re writing Ruby.

 This chapter focuses primarily on two topics: scope and self. As we discussed
briefly a little earlier, the rules of scope govern the visibility of variables (and other
elements, but largely variables). It’s important to know what scope you’re in, so
that you can tell what the variables refer to and not confuse them with variables
from different scopes that have the same name.

 Unlike scope, self isn’t so much a concept as an object. However, self changes
in the course of program. At every moment, only one object is playing the role of
self. But it’s not necessarily the same object from one moment to the next. Self is
like the first person or I of the program. As in a book with multiple first-person
narrators, the I role can get passed around. There’s always one I, but who it is—
what object it is—will vary.

 Both of these components of Ruby pertain directly and centrally to the matter
of staying correctly oriented in a program. In order to know what you’re looking
at, you need to know what scope you’re in. And in order to understand what the
things you’re looking at do, you need to know which object is self.

 The third subtopic of this chapter is method access. Ruby provides mechanisms
for making distinctions among access levels of methods. Basically, this means rules
limiting the calling of methods depending on what self is. Method access is there-
fore a meta-topic, grounded in the study of self and scope. We’ll look at Ruby’s

 Understanding self, the current/default object 179
method-access rules both as a general matter and in their role as a mechanism for
creating layers of access to Rails controller actions.

 Finally, we’ll discuss a topic that pulls together several of these threads: top-
level methods, which are written outside of any class or module definition.

7.1 Understanding self, the current/default object

One of the cornerstones of Ruby programming—the backbone, in some
respects—is the default object or current object, accessible to you in your program
through the keyword self. At every point when your program is running, there is
one and only one self. Being self has certain privileges, as you’ll see. In this sec-
tion, we’ll look at how Ruby determines which object is self at a given point and
what privileges are granted to the object that is self.

7.1.1 Who gets to be self, and where

There is always one (and only one) current object or self. You can tell which object
it is by following a small set of rules. These rules are summarized in table 7.1; the
table’s contents will be explained and illustrated as we go along.

 To know which object is self, you need to know what context you’re in. In prac-
tice, there aren’t all that many contexts to worry about. There’s the top level
(before you’ve entered any other context, such as a class definition). There are
class definition blocks, module definition blocks, and method definition blocks.
Aside from a few subtleties in the way these contexts interact, that’s about it. As
shown in table 7.1, self is determined by which of these contexts you’re in (class
and module definitions are similar and closely related).

 Figure 7.1 gives you a diagrammatic summary of the information from table 7.1.
Both show you that some object is always self, and that which object is self depends
on where you are in the program.

 The most basic and, in some respects, unique program context is the top level,
the context of the program before any class or module definition has been
opened, or after they’ve all been closed. We’ll look next at the top level’s ideas
about self.

180 CHAPTER 7

The default object (self) and scope
Table 7.1 How the current object (self) is determined

Context Example Which object is self?

Top level of program Any code outside of other blocks main (built-in top-level default object)

Class definition class C The class object C

Module definition module M The module object M

Method definitions 1. Top level
ddddef method_name

main (built-in top-level default object)

2. Instance method definition
dddclass C
ddddddef method_name

An instance of C, responding to
method_name

3. Instance method definition in module
dddmodule M
ddddddef method_name

I. Individual object extended by M
II. Instance of class that mixes in M

4. Singleton method (including class
ddmethods)
dddef obj.method_name

obj

self at top level
is the "default
default object,"
main

self inside a
class definition
is the class
object itself

self inside any
method is the
object to which
the message (the
method call) was
sent

for a class method,
that means the
class object

for an instance
method, that
means an instance
of the class whose
instance method
it is

puts "Top Level"
puts "self is #{self}"

class C

end

def m

puts "Class definition block:"
puts "self is #{self}"

def self.x

puts "Class method C.x:"
puts "self is #{self}"

puts "Instance method C#x:"
puts "self is #{self}"

end

end

Figure 7.1 Diagrammatic view of the determination of self in different contexts

 Understanding self, the current/default object 181
The top-level self object
The term top level refers to program code written outside of any class or module
definition block. If you open a brand-new text file and type

x = 1

you have created a top-level local variable x. If you type

def m
end

you have created a top-level method—a method that isn’t defined as an instance
method of a particular class or module nor associated uniquely with an individual
object (it isn’t a singleton method).

 A number of our examples, particularly in the early chapters, involved top-level
code. Once we started writing class and module definitions, more of our code
began to appear inside those definitions. The way self shifts in class, module, and
method definitions is uniform: The keyword (class, module, or def) marks a switch
to a new self. But what is self when you haven’t yet entered any definition block?

 The answer is that Ruby provides you with a start-up self at the top level. If you
ask it to identify itself

ruby -e 'puts self'

it will tell you that it’s called main.
 main is a special term the default self object uses to refer to itself. You can’t

refer to it as main. If you want to grab main for any reason, you need to assign it to
a variable at the top level:

m = main

(It’s not likely that you’d need to do this, but this is how it’s done.)

Self inside class and module definitions
In a class or module definition, self is the class or module object. This innocent-
sounding rule is important. If you master it, you’ll save yourself from several of the
most common mistakes that people make when they’re learning Ruby.

 You can see what self is at various levels of class and/or module definition by
using puts explicitly, as shown in listing 7.1.

182 CHAPTER 7

The default object (self) and scope
 class C
 puts "Just started class C:"
 puts self
 module M
 puts "Nested module C::M:"
 puts self
 end
 puts "Back in the outer level of C:"
 puts self
 end

As soon as you cross a class or module keyword boundary, the class or module
whose definition block you’ve entered—the Class or Module object—becomes
self. Listing 7.1 shows two cases: entering C, and then entering C::M. When you
leave C::M but are still in C, self is once again C.

 Of course, class and module definition blocks do more than just begin and
end. They also contain method definitions; and method definitions, for both
instance methods and class methods, have rules determining self.

The determination of self in instance method definitions
The notion of self inside an instance method definition is subtle, for the following
reason: When the interpreter encounters a def/end block, it defines the method
immediately; but the code inside the method definition isn’t executed until later,
when an object capable of triggering its execution receives the appropriate message.

 When you’re looking at a method definition on paper or on the screen, you
can only know in principle that, when the method is called, self will be the object
that called it (the receiver of the message). At the time the method definition is
executed, the most you can say is that self inside this method will be some future
object that has access to this method.

 You can rig a method to show you its self as it runs:

 class C
 def x
 puts "Class C, method x:"
 puts self
 end
 end

 c = C.new
 c.x

Listing 7.1 Examining self via calls to puts in class and module definitions

Output: C

Output: C::M

Output: C

 Understanding self, the current/default object 183
which outputs:

Class C, method x:
#<C:0xbf4c294c>

The weird-looking item in the output (#<C:0xbf4c294c>) is Ruby’s way of saying
“an instance of C.” (The hexadecimal number after the colon is a memory loca-
tion reference. When you run the code on your system, you’ll probably get a dif-
ferent number.) As you can see, the object we created (obj) takes on the role of
self during execution of the method x.

Self in singleton-method and class-method definitions
Instance methods are made to be shared. But singleton methods—those attached to
a particular object, like the method talk in def obj.talk—can be called by only
one object.

 As you might expect, when a singleton method is executed, self is the object
that owns the method, as an object will readily tell you:

obj = Object.new
def obj.show_me
ddprint "I'm an object; "
ddputs "here's self inside a singleton method of mine:"
ddp self
end

obj.show_me
print "And inspecting obj from outside, "
puts "to be sure it's the same object:"
p obj

The output of this example is as follows:

I'm an object; here's self inside a singleton method of mine:
#<Object:0x40193d40>
And inspecting obj from outside, to be sure it's the same object:
#<Object:0x40193d40>

(As always, the exact hexadecimal number in the object’s inspection string will
probably be different on your run of the code.)

 It makes sense that if a method is written to be called by only one object, that
object gets to be self. Moreover, this is a good time to remember class methods—
defined as singleton methods for class objects. The following example reports on
self from inside a class method of C:

class C
dddef C.x
ddddputs "Class method of class C"

184 CHAPTER 7

The default object (self) and scope
ddddp self
ddend
end

C.x

Here’s what it reports:

Class method of class C
C

Sure enough, self inside a singleton method (a class method, in this case) is the
object whose singleton method it is.

 By way of a little programming tip, here’s a variation on the last example:

class C
dddef self.x
ddddputs "Class method of class C"
ddddp self
ddend
end

Note the use of self.x #1 rather than C.x. This way of writing a class method takes
advantage of the fact that in the class definition, self is C. So, def self.x is the
same as def C.x. The self.x version offers a slight advantage: If you ever decide to
rename the class, self.x will adjust automatically to the new name. If you hard-
code C.x, you’ll have to change C to your class’s new name.

 Being self at a given point in the program comes with some privileges. The
chief privilege enjoyed by self is that of serving as the default receiver of messages, as
you’ll see next.

7.1.2 Self as default receiver of messages

Calling methods (that is, sending messages to objects) usually involves the dot
notation:

obj.talk
ticket.venue
"abc".capitalize

That’s the normal, full form of the method-calling syntax in Ruby. However, a spe-
cial rule governs method calls: If the receiver of the message is self, you can omit the
receiver and the dot. Ruby will use self as the default receiver, meaning the message
you send will be sent to self, as the following equivalencies show:

talk
venue
capitalize

B

Same as self.talk
Same as self.venue

Same as self.capitalize

B

 Understanding self, the current/default object 185
NOTE GIVING METHODS AND VARIABLES THE SAME NAMES You can (but really
shouldn’t) give a method and a variable the same name. If both exist,
and you use the bare identifier (like talk), the variable takes prece-
dence. To force Ruby to see the identifier as a method name, you’d have
to use self.talk or call the method with an empty argument list:
talk(). Because variables don’t take arguments, the parentheses estab-
lish that you mean the method rather than the variable. Again, it’s best to
avoid these name clashes if you can.

Let’s see this concept in action by inducing a situation where we know what self is
and then testing the dot-less form of method calling. In the top level of a class defi-
nition block, self is the class object. And we know how to add methods directly to
class objects. So, we have the ingredients to do a default receiver demo:

class C
dddef C.no_dot
ddddputs "As long as self is C, you can call this method with no dot"
ddend

ddno_dot
end

C.no_dot

The first call to no_dot #1 doesn’t have an explicit receiver; it’s a bareword. When
Ruby sees this (and determines that it’s a method call, rather than a variable or
keyword), it figures that you mean it as shorthand for

self.no_dot

In the case of our example, self.no_dot is the same as C.no_dot, because we’re
inside C’s definition block and, therefore, self is C. The result is that the method
C.no_dot is called, and we see the output.

 The second time we call the method #2, we’re back outside the class definition
block. C is no longer self. Therefore, to call no_dot, we need to specify the
receiver: C.

 The most common use of the dotless method call occurs when you’re calling
one instance method from another. Here’s an example:

class C
dddef x
ddddputs "This is method 'x'"
ddend

dddef y
ddddputs "This is method 'y', about to call x without a dot."

B

C

B

C

186 CHAPTER 7

The default object (self) and scope
ddddx
ddend
end

c = C.new
c.y

The output is as follows:

This is method 'y', about to call x without a dot.
This is method 'x'.

Upon calling c.y, the method y is executed, with self set to c (which is an instance
of C). Inside y, the bareword reference to x is interpreted as a message to be sent to
self. That, in turn, means the method x is executed.

WARNING DON’T LEAVE OUT THE DOT WHEN IT’S NEEDED In one situation, you
must use the full object-dot-message notation, even if you’re sending the
message to the current self: when the method is a setter method—a
method whose name ends with an equal sign. You have to do
self.venue = "Town Hall" rather than venue = "Town Hall", if you want
to call the method venue=. The reason is that Ruby always interprets the
sequence: bareword = value as an assignment to a local variable. To call
the method venue= on the current object, you need to include the
explicit self. Otherwise, you’ll end up with a variable called venue and no
call to the setter method.

7.1.3 Instance variables and self

One of the most useful and important rules to learn in Ruby is this: Every instance
variable you’ll ever see in a Ruby program belongs to whatever object is the cur-
rent object (self) at that point in the program.

 Here’s a classic case where this knowledge comes in handy. See if you can fig-
ure out what this code will print, before you run it:

class C
dddef show_var
dddd@v = "I am an instance variable initialized to a string."
ddddputs @v
ddend
dd@v = "Instance variables can appear anywhere...."
end

C.new.show_var

The code prints the following:

I am an instance variable initialized to a string.

B

C

 Understanding self, the current/default object 187
The trap is that you may think it will print “Instance variables can appear any-
where....” The code prints what it does because the @v in the method definition #1
and the @v outside it #2 are completely unrelated to each other. They are both
instance variables, and both are named @v, but they aren’t the same variable. They
belong to different objects.

 Whose are they?
 The first @v lies inside the definition block of an instance method of C. That

fact has implications, not for a single object, but for instances of C in general:
Each instance of C that calls this method will have its own instance variable @v.

 The second @v belongs to the class object C. This is one of the many occasions
where it pays to remember that classes are objects. Any object may have its own
instance variables—its private stash of information and object state. Class objects
enjoy this privilege as much as any other object.

 The logic required to figure out what object owns a given instance variable is
simple and consistent: Every instance variable belongs to whatever object is play-
ing the role of self (the current object) at the moment the code containing the
instance variable is executed.

 Let’s do a quick rewrite of the example, this time making it a little more chatty
about what’s going on. Listing 7.2 shows the rewrite.

 class C
 puts "Just inside class definition block. Here's self:"
 puts self

 @v = "I am an instance variable initialized to a string"
 puts "And here's the instance variable @v, belonging to self:"
 puts @v

 def show_var
 puts "Inside an instance method definition block. Here's self:"
 puts self
 puts "And here's the instance variable @v, belonging to self:"
 puts @v
 end
 end

 c = C.new
 c.show_var

Listing 7.2 Chatty examination of the relationship between instance variables and self

B
C

188 CHAPTER 7

The default object (self) and scope
The output from this version is as follows:

Just inside class definition block. Here's self:
C
And here's the instance variable @v, belonging to self:
I am an instance variable initialized to a string
Inside an instance method definition block. Here's self:
#<C:0x401c2ac0>
And here's the instance variable @v, belonging to self:
nil

Sure enough, each of these two different objects (the class object C and the
instance of C, c) has its own instance variable @v.

 Understanding self—both the basic fact that such a role is being played by
some object at every point in a program, and knowing how to tell which object is
self—is one of the most vital aspects of understanding Ruby. Another equally vital
aspect is the understanding of scope, to which we will turn now.

7.2 Determining scope

Scope refers to the reach or visibility of variables. Different types of variables have dif-
ferent scoping rules. We’ll be talking chiefly about two types: global and local variables.

 Like the role of self, scope changes over the course of a program. Also as with
self, you can deduce what’s in what scope by reading the program as well as running
it. But scope and self aren’t the same thing. You can start a new local scope without
self changing. Sometimes scope and self change together. They have in common the
fact that they are both necessary to make sense of what you’re seeing. Like knowing
who self is, knowing what scope you’re in tells you the significance of the code.

 We’ll talk first about global scope and then about local scope. Constants also have
scoping rules, which we’ll look at as well.

7.2.1 Global scope and global variables

We’re starting with the scope that’s used least often, but which you need to be
aware of: global scope, meaning scope that covers the entire program. Global scope
is enjoyed by global variables, which we haven’t looked at yet. Global variables are
distinguished by starting with a dollar-sign ($) character. They are available every-
where in your program. They walk through walls: Even if you start a new class or
method definition, even if the identity of self changes, the global variables you’ve
initialized will still be available to you.

 In other words, global variables never go out of scope. In this example, a method
defined inside a class definition body (two scopes removed from the outer or top-
level scope of the program) has access to a global variable initialized at the top:

Determining scope 189
$gvar = "I'm a global!"
class C
dddef examine_global
ddddputs $gvar
ddend
end

c = C.new
c.new.examine_global

You’ll be told by $gvar, in no uncertain terms, “I’m a global!” If you change all the
occurrences of $gvar to a nonglobal, such as var, you’ll see that the first var goes
out of scope inside the method definition block.

Built-in global variables
The Ruby interpreter starts up with a fairly large number of global variables already
initialized. These variables store information that’s of potential use anywhere and
everywhere in your program. For example, the global variable $0 contains the
name of the file Ruby is executing. The global $: (dollar sign followed by a colon)
contains the directories that make up the path Ruby searches when you load an
external file. $$ contains the process id of the Ruby process. And there are more.

TIP LOOK AT English.rb FOR GLOBAL VARIABLE DESCRIPTIONS A good place
to see descriptions of all the built-in global variables you’re likely to need—
and then some—is the file English.rb in your Ruby installation. This file
provides less cryptic names for the notoriously cryptic global variable set.
(Don’t blame Ruby for the names—most of them come from shell lan-
guages and/or Perl and awk.) If you want to use the slightly more friendly
names in your programs, you can do require "English", after which you
can refer to $IGNORECASE instead of $=, $PID instead of $$, and so forth.

The pros and cons of global variables
Global variables are tempting for beginning programmers and people learning a
new language (not just Ruby, either). They appear to solve lots of design prob-
lems: You don’t have to worry about scope, and multiple classes can share infor-
mation by stashing it in globals rather than designing objects that have to be
queried with method calls. Without doubt, global variables have a certain allure.

 However, they’re used very little by experienced programmers. The reasons for
avoiding them are similar to the reasons they are tempting. Using global variables
tends to end up being a substitute for solid, flexible program design, rather than
contributing to it. One of the main points of object-oriented programming is that
data and actions are encapsulated in objects. You’re supposed to have to query
objects for information and to request that they perform actions.

190 CHAPTER 7

The default object (self) and scope
 And objects are supposed to have a certain privacy. When you ask an object to
do something, you’re not supposed to care what the object does internally to get
the job done. Even if you wrote the code for the object, when you send the object
a message, you treat the object as a black box that works behind the scenes and
provides a response.

 Global variables distort the landscape by providing a layer of information
shared by every object in every context. The result is that objects stop talking to
each other and share information by setting global variables.

 Here’s a small example. Let’s go back to our music store. We pick up the action
in mid-program; let’s say we have a Work object, and we want information from it.
We’ll assume the Work class already exists. Here, we’re adding a method called
show_info to it. Then we create a Work object, add some information to it, and ask
it to show its information:

class Work
dddef show_info
ddddputs "Title and composer: #{title}, #{composer}"
ddend
end

work = Work.new
work.composer = "Giuseppe Verdi"
work.title = "La Traviata"
work.show_info

The Work class #1 provides its instance (work) #2 with the ability to store and
retrieve information about itself (its state). From outside the class, we organize
our code so that our queries and requests are all directed toward the work object.

 Here’s another version, using global variables:

class Work
 def show_info
 puts "Title and composer: #{$title}, #{$composer}"
 end
 end

 work = Work.new
 $composer = "Giuseppe Verdi"
 $title = "La Traviata"
 work.show_info

This version still has a Work class and an instance of Work. But the information is
handed around over the heads of the objects, so to speak, in a separate network of
global variables. It’s concise and easy, but it’s also drastically limited. What would
happen if you had lots of works? Or wanted to save a work, with all its internal
information, to a database? Your code would quickly become tangled.

B

C
Shortcut composer
object by using name

B C

Determining scope 191
 Globally scoped data is fundamentally in conflict with the object-oriented phi-
losophy of endowing objects with abilities and then getting things done by send-
ing requests to those objects. Some Ruby programmers work for years and never
use a single global variable (except perhaps a few of the built-in ones). That may
or may not end up being your experience, but it’s not a bad target to aim for.

7.2.2 Local scope

Now that we’ve finished with the “try not to do this” part, let’s move on to a
detailed consideration of local scope. Local scope is part of the bread-and-butter of
Ruby programming. At any given moment, your program is in a particular local scope.
The main thing that changes from one local scope to another is your supply of
local variables. When you leave a local scope—by returning from a method call, or
by doing something that triggers a new local scope—you get a new supply. Even if
you’ve assigned to a local variable x in one scope, you can assign to a new x in a
new scope, and the two xs won’t interfere with each other.

 You can tell by looking at a Ruby program where the local scopes begin and
end, based on a few rules:

■ The top level (outside of all definition blocks) has its own local scope.

■ Every class or module definition block (class, module) has its own local
scope, even nested class/module definition blocks.

■ Every method definition (def) has its own local scope.

Exceptions and additions to these rules exist, but they are fairly few and won’t
concern us right now.

 Figure 7.2 shows the creation of a number of local scopes.Note that every time
you cross into a class, module, or method definition block—every time you step over
a def, class, or module keyword—you start a new local scope. Here’s an example:

class C
dda = 1
dddef local_a
dddda = 2
ddddputs a
ddend
ddputs a
end

c = C.new
c.local_a

B

C

D

E

192 CHAPTER 7

The default object (self) and scope
This code shows the following output:

1
2

The variable a that gets initialized in the local scope of the class definition #1 is in
a different scope than the variable a inside the method definition #2. When you get
to the puts a statement after the method definition #3, you’re back in the class
definition local scope; the a that gets printed is the a you initialized back at the top,
not the a that’s in scope in the method definition. Meanwhile, that a isn’t printed
until later, when you’ve created a C instance and sent the message local_a to it #4.

Method
definition
scope

Class definition
scope

Top level
(outer scope)

a = 0

def t

puts "Top level method t"

end

class C
 a = 1
 def self.x

a = 2
puts "C.x; a = #{a}"

end

def m

a = 3
puts "C#m; a = #{a}"

end

puts "Class scope: a = #{a}"

C.x
c = C.new
c.m
c.n

puts "Top level: a = #{a}"

end

def n

a = 4
puts "C#n; a = #{a}"

end

Figure 7.2 Schematic view of local scopes at the top level, the class-definition level,
and the method-definition level

B
C

D

E

Determining scope 193
Keep in mind that a new local scope begins every time you introduce a definition
block with the def, class, or module keyword. This is true no matter how they’re
nested. Listing 7.3 shows some deep nesting of classes and modules, with a num-
ber of variables called a being initialized and printed out along the way.

 class C
 a = 5
 module M
 a = 4
 module N
 a = 3
 class D
 a = 2
 def show_a
 a = 1
 puts a
 end
 puts a
 end
 puts a
 end
 puts a
 end
 puts a
 end

 d = C::M::N::D.new
 d.show_a

Every definition block, whether for a class, a module, or a method, starts a new
local scope—a new local variable scratchpad—and gets its own variable a.

 Local scope changes often, as you can see. So does the identity of self. Some-
times, but only sometimes, they vary together. The relationship between scope
and self will be the focus of attention next.

Local scope and self
When you start a definition block (method, class, module), you start a new local
scope, and you also create a block of code with a particular self. However, local
scope and self don’t operate entirely in parallel, not only because they’re not the
same thing but also because they’re not the same kind of thing.

 Consider this code snippet:

Listing 7.3 Reuse of a variable name in nested local scopes

Output: 2

Output: 3

Output: 4

Output: 5

Output: 1

194 CHAPTER 7

The default object (self) and scope
class C
dddef x
ddddprint "Here's the inspect-string for 'self':"
ddddp self
dddda = "And I'm a different variable called 'a' each time!"
ddddputs a
ddend
end

c = C.new
c.x
c.x

Yes, we’ve called x twice. Both times, inside the definition block, self is our object
c. But each time the method is called, a new local scope is created. We call it once;
we get a new local scope, in which we initialize a variable called a. That execution
of the method ends, at which point that variable is no longer in scope and ceases
to exist. Then we call the method again—and the same thing happens: a new local
scope, with new, fresh variables. Once again we initialize a, but this a is unrelated
to the a created when we called the method the first time. Self is the same object
both times, as the snippet informs us:

Here's the inspect-string for 'self':#<C:0x40193c3c>
And I'm a different variable called 'a' each time!
Here's the inspect-string for 'self':#<C:0x40193c3c>
And I'm a different variable called 'a' each time!

It’s also possible to change self without entering a new local scope, although that’s
a more advanced technique, and we won’t look at it until somewhat later. The bot-
tom line is that both scope and self tend to go through changes when program
execution hits a definition block, and they always do so in logical and consistent
ways—but not always in sync with each other.

 Like variables, constants are governed by rules of scope. We’ll look next at how
those rules work.

7.2.3 Scope and resolution of constants

As you’ve seen, constants can be defined inside class and method definition
blocks. If you know the chain of nested definitions, you can access a constant from
anywhere:

module M
ddclass C
ddddclass D
ddddddmodule N
ddddddddX = 1

Determining scope 195
ddddddend
ddddend
ddend
end

puts M::C::D::N::X

This code digs all the way down the nest of modules and classes and prints the
value you’ve asked for: 1.

 Constants have a quasi-global nature: If you know the path to a constant
through the classes and/or modules in which it’s nested, you can find it from any-
where. However, on their own, constants are definitely not globals. The constant X
in one scope isn’t the constant X in another:

module M
ddclass C
ddddX = 2
ddddclass D
ddddddmodule N
ddddddddX = 1
ddddddend
ddddend
ddend
end

puts M::C::D::N::X
puts M::C::X

As per the nesting, the first puts gives you 1; the second gives you 2. A particular
constant identifier (like X) doesn’t have an absolute meaning the way a global vari-
able (like $x) does.

 Constant lookup—the process of resolving a constant identifier, finding the right
match for it—bears a close resemblance to searching a filesystem for a file in a
particular directory. For one thing, constants are identified relative to the point of
execution. Another variant of our example illustrates this:

module M
ddclass C
ddddclass D
ddddddmodule N
ddddddddX = 1
ddddddend
ddddend
ddddputs D::N::X
ddend
end

196 CHAPTER 7

The default object (self) and scope
Here, the identifier D::N::X is interpreted relative to where it occurs: inside the
definition block of the class M::C. From M::C’s perspective, D is just one level away.
There’s no need to do M::C::D::N::X, when just D::N::X points the way down the
path to the right constant. Sure enough, we get what we want: a printout of the
number 1.

Forcing an absolute constant path
Sometimes you don’t want a relative path. Sometimes you really want to start the
constant lookup process at the top level—just as you sometimes need to use an
absolute path for a file.

 This may happen if you create a class or module with a name that’s similar to
the name of a Ruby built-in class or module. For example, Ruby comes with a
String class. But if you create a Violin class, you may also have Strings:

class Violin
ddclass String
ddddattr_accessor :pitch
dddddef initialize(pitch)
dddddd@pitch = pitch
ddddend
ddend

dddef initialize
dddd@e = String.new("E")
dddd@a = String.new("A")
dddd# etc.

The constant String in this context #1 resolves to Violin::String, as defined.
Now let’s say that elsewhere in the overall Violin class definition, you need to
refer to Ruby’s built-in String class. If you have a plain reference to String, it will
resolve to Violin::String. To make sure you’re referring to the built-in, original
String class, you need to put the constant path separator :: (double colon) at the
beginning of the class name:

def history
dd::String.new(maker + ", " + date)
end

This way, you’ll get a Ruby String object instead of a Violin::String object. Like
the slash at the beginning of a pathname, the :: in front of a constant means start
the search for this at the top level.

 We have one more major subtopic to cover in the realm of who gets to do
what where, and how, in Ruby programs. That subtopic is Ruby’s system of method
access rules.

B

B

Deploying method access rules 197
7.3 Deploying method access rules

As you’ve seen, the main business of a Ruby program is to send messages to
objects. And the main business of an object is to respond to messages. Sometimes
an object wants to be able to send itself messages that it doesn’t necessarily want
anyone else to send it. For this scenario, Ruby provides the ability to make a
method private.

 There are two access levels other than private: protected and public. Public is the
default access level; if you don’t specify that a method is protected or private, then
it’s public. Public instance methods are the common currency of Ruby program-
ming. Most of the messages you send to objects are calling public methods.

 We’ll focus here on methods that aren’t public. Protected methods are a slight
variant of private methods, so we’ll look most closely at private methods.

7.3.1 Private methods

Think of an object as someone you ask to perform a task for you. Let’s say you ask
someone to bake you a cake. In the course of baking you a cake, the baker will
presumably perform a lot of small tasks: measure sugar, crack an egg, stir batter,
and so forth.

 The baker can do, and does do, all these things. But not all of them have equal
status when it comes to what the baker is willing to do for other people, like you. It
would be weird if you called a baker and said, “Please stir some batter” or “Please
crack an egg.” What you say is, “Please bake me a cake,” and you let the baker deal
with the details. Object orientation is all about modeling behaviors, so let’s model
that behavior (loosely). We’ll use minimal, placeholder classes for some of the
objects in our domain, but we’ll develop the Baker class a little further.

 Save the code in listing 7.4 to a file called baker.rb.

 class Cake
 def initialize(batter)
 @batter = batter
 @baked = true
 end
 end

 class Egg
 end

 class Flour
 end

Listing 7.4 Baker and other baking-domain classes

198 CHAPTER 7

The default object (self) and scope

 class Baker
 def bake_cake
 @batter = []
 pour_flour
 add_egg
 stir_batter
 return Cake.new(@batter)
 end

 def pour_flour
 @batter.push(Flour.new)
 end

 def add_egg
 @batter.push(Egg.new)
 end

 def stir_batter
 end

 private :pour_flour, :add_egg, :stir_batter

 end

There’s something new in this code: the private method #1. As arguments to this
method, you supply a list of methods you want to make private. (If you don’t sup-
ply any arguments, the call to private will act like an “on-switch”: all the instance
methods you define below it, until you reverse the effect by calling public or pro-
tected, will be private.)

 Private means that the method can’t be called with an explicit receiver. You can’t say

b = Baker.new
b.add_egg

As you’ll see, calling add_egg this way results in a fatal error. add_egg is a private
method, but you’ve specified the receiving object (b) explicitly. That’s not allowed.

 OK; let’s go along with the rules. We won’t specify a receiver. We’ll just say

add_egg

But wait. Can we call add_egg in isolation? Where will the message go? How can a
method be called if there’s no object handling the message?

 A little detective work will answer this question.
 If you don’t use an explicit receiver for a method call, Ruby assumes that you want

to send the message to the current object, self. Thinking logically, we can conclude that

Implement @batter as array
of objects (ingredients)

Return new Cake object

Add element
(ingredient) to @batter

B

B

Deploying method access rules 199
add_egg has an object to go to only if self is an object that responds to “add_egg”. In
other words, you can only call the add_egg instance method of Baker when self is an
instance of Baker.

 And when is self an instance of Baker?
 When any instance method of Baker is being executed. Therefore, inside the defini-

tion of bake_cake, you can call add_egg, and Ruby will know what to do. Whenever
Ruby hits that call to add_egg inside that method definition, it will send the mes-
sage “add_egg” to self, and self will be a Baker object.

 It comes down to this: By tagging add_egg as private, you’re saying the Baker
object gets to send this message to itself (the baker can tell himself to add an egg
to the batter), but no one else can send the message to the baker (you, as an out-
sider, can’t tell the baker to add an egg to the batter). Ruby enforces this privacy
through the mechanism of forbidding an explicit receiver. And the only circum-
stances under which you can omit the receiver are precisely the circumstances in
which it’s OK to call a private method. It’s all elegantly engineered.

WARNING PRIVATE AND SINGLETON ARE DIFFERENT It’s important to note the dif-
ference between a private method and a singleton method. A singleton method
is “private” in the loose, informal sense that it belongs to only one object,
but it isn’t private in the technical sense. (You can make a singleton
method private, but by default it isn’t.) A private, non-singleton instance
method, on the other hand, may be shared by any number of objects but
can only be called under the right circumstances. What determines
whether you can call a private method isn’t the object you’re sending the
message to, but which object is self at the time you send the message.

7.3.2 Private methods as ActionController access protection

Rails applications provide a great example of a place you may want to use private
methods. A Rails controller object has a lot in common with a baker. Just as a baker
has to know how to break eggs but doesn’t field direct requests for breaking eggs,
so a controller (in some cases) has to know how to do things for which it doesn’t
field direct requests.

 Here’s an example from a Rails-based site: http://www.rcrchive.net, the offi-
cial site for Ruby Change Requests (RCRs). When you sign up for a new user
account on RCRchive (which you’re welcome to do, by the way, if you’re inter-
ested in following the progress of discussions about possible changes to Ruby, or
suggesting changes), you first connect to http://www.rcrchive.net/user/register,
which you can reach directly or from a link on the homepage. Doing so triggers

200 CHAPTER 7

The default object (self) and scope
the register action in the user controller file (user_controller.rb). To register,
you enter the username and password you want to use, and submit the form.

 Assuming you haven’t chosen a username that’s already in use, the next thing
you see is an acknowledgment screen, letting you know that you’ll get confirma-
tion email with instructions on how to activate your registration. This screen
appears courtesy of the fact that the Submit button for registering triggers an
acknowledge action, also in the user controller file.

 The acknowledge action is associated with the acknowledge view (the template
stored in acknowledge.rhtml), and that view contains the message about receiving
email. In addition to rendering the view, acknowledge also triggers the sending of
the email. This is done by calling another method, invite, which is also in the
user controller file.

 In abbreviated form (just the most relevant lines), the user controller file looks
like this:

class UserController < ApplicationController
 def register
 end

 def acknowledge
 # here, create a new "applicant" object called "app"; then:
 invite(app)
 end

 # etc.

Note the call to the invite method #2. This method sends the email to the appli-
cant. It then returns (assuming it worked), and acknowledge #1 proceeds to ren-
der its own ERb template. invite is a utility method, like add_egg. It’s only of use
to the UserController object that’s handling the tasks. It would be pointless to
allow the invite method to be triggered by itself. Just as you wouldn’t ask a baker
to crack an egg, you shouldn’t ask the RCRchive Rails application to invite some-
one (send them email). That’s the application’s business.

 The problem is, if you use the URL http://www.rcrchive.net/user/invite, the
application’s default behavior is to look inside the user controller and try to call a
method called invite (just as it does with the methods you want it to call, like
acknowledge). Called directly like that, the method will fail: It expects an argu-
ment, and calling it without one, via a URL, will cause a fatal error.

 But there’s another issue: security. What if someone figures out a way to get
invite to execute? What if the method is rewritten in such a way that it doesn’t
crash when it’s called from the outside world? By letting people connect to the

B

C

C
B

Deploying method access rules 201
user/invite action, you’re doing the equivalent of letting them instruct a baker
to break eggs. It isn’t something they should be doing.

 As with the baker and the eggs, the way around this situation is to make invite
a private method. We’ll continue where the previous code snippet left off. This
second snippet also illustrates the “on-switch” use of private with no arguments.

private
def invite(app)
dd# handle sending of email here
end

Being private, invite can only be called internally by the UserController
instance. During execution of acknowledge, the call to invite works. But trying to
trigger it from outside won’t.

 Ruby’s private method mechanism makes it easy to layer your methods into those
that the outside world should have access to and those that it shouldn’t. Rails gives
you ways to authenticate users and protect your application from rogue requests.
But you can gatekeep at an early point with Ruby’s rules for method access.

 The most common access level is the public level. The second most common is
probably private. There’s one more access level, though, which serves a narrow
but sometimes important purpose: protected.

7.3.3 Protected methods

A protected method is like a slightly kinder, gentler private method. The rule for pro-
tected methods is as follows: You can call an object’s protected methods as long as
the default object (self) is an instance of the same class as the object whose
method you’re calling.

 This approach sounds convoluted. But it’s generally used for a particular rea-
son: You want one instance of a certain class to do something with another
instance of its class. Listing 7.5 shows you such a case.

class C

 def initialize(n)
 @n = n
 end

 def n
 @n
 end

Listing 7.5 Example of a protected method and its use

202 CHAPTER 7

The default object (self) and scope
 def compare(c)
 if c.n > n
 puts "The other object's n is bigger."
 else
 puts "The other object's n is the same or smaller."
 end
 end

 protected :n
end

c1 = C.new(100)
c2 = C.new(101)

c1.compare(c2)

The goal in listing 7.5 is to compare one C instance with another C instance. The
comparison, however, depends on the result of a call to the method n. The object
doing the comparing (c1, in the example) has to ask the other object (c2) to exe-
cute its n method. So, n can’t be private.

 That’s where the protected level comes in. With n protected rather than pri-
vate, c1 can ask c2 to execute n, because c1 and c2 are both instances of the same
class. But if you try to call the n method of a C object when self is anything other
than a C object, the method will fail.

 A protected method is thus like a private method, but with an exemption for
cases where the class of self (c1) and the class of the object having the method
called on it (c2) are the same.

Inheritance and private methods
Subclasses inherit the method-access rules of their superclasses. Given a class C
with a set of access rules, and a class D that’s a subclass of C, instances of D will
exhibit the same access behavior as instances of C. You can, however, set up new
rules inside the class definition of D, in which case the new rules will take prece-
dence for instances of D over the rules inherited from C.

 The next and last topic we’ll cover in this chapter is top-level methods. As you’ll
see, top-level methods enjoy a special case status. But even this status meshes logi-
cally with the aspects of Ruby’s design we’ve encountered in this chapter.

Writing and using top-level methods 203
7.4 Writing and using top-level methods

The most natural thing to do with Ruby is to design classes and modules, and
instantiate your classes. But sometimes you just want to write a quick script—a few
commands stuffed in a file and executed.

 The files in the script directory of any Rails application give you some exam-
ples of scripts that consist solely of top-level programming instructions with no
class or module definitions. These scripts perform tasks like starting up a Web
server; creating a new controller, model, or view; or initiating an irb console ses-
sion so you can test your program interactively. These more complex tasks rely on
code with lots of class and modules definitions. The script files themselves config-
ure a few settings and then fire up the larger software components.

 A quick review of main: When you write code at the top level, Ruby provides
you automatically with a default self—a default default object, so to speak. This
object is a direct instance of Object. When you ask it to describe itself

puts self

it says:

main

The object main is like the backstop of a Ruby program: It’s the farthest back you
can fall. main is the current object as soon as your program starts up.

7.4.1 Defining a top-level method

Suppose you define a method at the top level:

def talk
 puts "Hello"
end

Who, or what, does the method belong to? It’s not inside a class or module defini-
tion block, so it doesn’t appear to be an instance method of a class or module. It’s
not attached to any particular object (as in def obj.talk), so it’s not a singleton
method. What is it?

 By special decree (this is just the way it works!), top-level methods are private
instance methods of the Kernel module.

 That decree tells you a lot.
 Because top-level methods are private, you can’t call them with an explicit

receiver; you can only call them by using the implied receiver, self. That means self
must be an object on whose method search path the given top-level method lies.

204 CHAPTER 7

The default object (self) and scope
 But every object’s search path includes the Kernel module, because the class
Object mixes in Kernel, and every object’s class has Object as an ancestor. That
means you can always call any top-level method, wherever you are in your pro-
gram. It also means you can never use an explicit receiver on a top-level method.

 To illustrate this, let’s extend the talk example. Here it is again, with some
code that exercises it:

def talk
 puts "Hello"
end

puts "Trying 'talk' with no receiver..."
talk
puts "Trying 'talk' with an explicit receiver..."
obj = Object.new
obj.talk

The first call to talk succeeds; the second fails, because you’re trying to call a pri-
vate method with an explicit receiver.

 The rules concerning definition and use of top-level methods brings us all the
way back to some of the bareword methods we’ve been using since as early as chap-
ter 1. You’re now in a position to understand exactly how those methods work.

7.4.2 Predefined (built-in) top-level methods

From our earliest examples onward, we’ve been making bareword-style calls to
puts and print, like this one:

puts "Hello"

puts and print are built-in private instance methods of Kernel. That’s why you can—
indeed, must—call them without a receiver. This constraint is a bit out of
character for Ruby (where object.method is the usual idiom). On the other hand,
it creates a category of general utility methods, like puts and print, that increase
the power of Ruby as a scripting language. You can get a lot done with Ruby
scripts that don’t have any class, module, or method definitions, because you can
do so much (print, read and write files, run system commands, exit your program,
and so on) with Ruby’s top-level methods.

 If you want to see all of them, try this:

$ ruby -e 'print Kernel.private_instance_methods.sort'

You can add to the mix by writing your own top-level methods.

Summary 205
7.5 Summary

This chapter covered several important topics pertaining to the art of understand-
ing exactly what’s going on at a given point in a Ruby program. We talked about
the rotating role of self (the current or default object) which serves as the receiver
for method calls if no other receiver is explicitly named and which is the owner of
all instance variables. We also looked closely at variable scope in Ruby—the matter
of the visibility of variables, and the rules governing the separation of variables of
the same name from each other—and at the rules for looking up constants from
any scope.

 We then examined Ruby’s method access rules (public, private, protected),
and saw that these rules are defined in terms of self, the class of self, and the iden-
tity and/or class of the receiver. Both self and method access also played key roles
in the chapter’s final topic: the workings of top-level methods.

 The techniques in this chapter are of great importance to Ruby. Concepts like
the difference between instance variables in a class definition and instance vari-
ables in an instance method definition are crucial and can easily be a source of mis-
understanding. It’s easy to look at a Ruby program and get a general sense of what’s
going on. But to understand a program in depth—and to write well-organized,
robust programs—you need to know how to detect where the various local scopes
begin and end, and how to evaluate the impact of Ruby’s assignment of the role of
self to a given object.

 This chapter has shown you how to get your bearings in a Ruby program. It’s
also shown you some techniques you can use more accurately and effectively in
your code by virtue of having your bearings. But there’s more to explore, relating
to what you can do in the landscape of a program, beyond understanding it. The
next chapter, on the subject of control flow, will address some of these techniques.

Control flow techniques
In this chapter
■ Conditional execution
■ Loops and looping techniques
■ Iterators
■ Exceptions and error handling
206

Conditional code execution 207
As you’ve already seen in the case of method calls—where control of the program
jumps from a line where the call is made, to the line or lines inside a method defi-
nition somewhere else—programs don’t run in a straight line. Instead, execution
order is determined by a variety of rules and programming techniques collectively
referred to as control flow techniques.

 Control flow techniques include the following:

■ Conditional execution—Execution depends on the truth of an expression.

■ Looping—A single segment of code is executed repeatedly.

■ Iteration—A call to a method is supplemented with a block of code, which
the method can call one or more times during its own execution.

■ Exceptions—Error conditions are handled by special control-flow rules.

We’ll look at each of these in turn. They are all indispensable to both the under-
standing and the practice of Ruby. The first, conditional execution (if and
friends) is a fundamental (and easily understood) programming tool in almost
any programming language. Looping is a more specialized but closely related
technique, and Ruby provides you with several ways to do it.

 When we get to iteration, we’ll be in true Ruby hallmark territory. The tech-
nique isn’t unique to Ruby, but it’s a relatively rare programming language fea-
ture that figures prominently in Ruby. Finally, we’ll look at Ruby’s extensive
mechanism for handling error conditions through exceptions. Exceptions stop
the flow of a program, either completely or until the error condition has been
dealt with. Exceptions are objects, and you can create your own exception classes,
inheriting from the ones built in to Ruby, for specialized handling of error condi-
tions in your programs. We’ll discuss how the Rails framework uses this technique:
A large number of exception classes are created to match, by name, the problems
that can arise in the course of running a Rails application.

8.1 Conditional code execution

Allow a user access to a site if the password is correct. Print an error message unless the
requested item exists. Concede defeat if the king is checkmated. The list of uses for control-
ling the flow of a program conditionally—executing specific lines or segments of
code only if certain conditions are met—is endless. Without getting too philo-
sophical, we might even say that decision-making based on unpredictable but dis-
cernible conditions is as common in programming as it is in life.

 Ruby gives you a number of ways to control program flow on a conditional basis.

208 CHAPTER 8

Control flow techniques
8.1.1 The if keyword and friends

The bread-and-butter tool of conditional execution, not surprisingly, is the if key-
word. if clauses can take several forms. The simplest is the following:

if condition
 # code here, executed if condition evaluates to true
end

The code inside the conditional can be of any length, and can include nested con-
ditional blocks.

 You can also put an entire if clause on a single line. To do that, you need to
insert a then keyword after the condition:

if x > 10 then puts x end

You can also use semicolons to mimic the line breaks, and to set off the end keyword:

if x > 10; puts x; end

As a special dispensation from Ruby, you can use a colon instead of then:

if x > 10: puts x; end

Conditional execution often involves more than one branch; you may want to do
one thing if the condition succeeds and another if it doesn’t. For example, if the
password is correct, let the user in; otherwise, print an error message. Ruby makes full pro-
visions for multiple conditional branches.

else and elsif
You can provide an else branch in your if statement:

if condition
 # code executed if condition is true
else
 # code executed if condition is false
end

There’s also an elsif keyword (spelled like that, with no second e). elsif lets you
cascade your conditional logic to more levels than you can with just if and else:

if condition1
 # code executed if condition1 is true
elsif condition2
 # code executed if condition1 is false
 # and condition2 is true
elsif condition3
 # code executed if neither condition1
 # nor condition2 is true, but condition3 is
end

Conditional code execution 209
You can have any number of elsif clauses in a given if statement. The code seg-
ment corresponding to the first successful if or elsif is executed, and the rest of
the statement is ignored:

print "Enter an integer: "
n = gets.to_i
if n > 0
 puts "Your number is positive."
elsif n < 0
 puts "Your number is negative."
else
 puts "Your number is zero."
end

Note that you can use a final else even if you already have one or more elsifs.
The else clause is executed if none of the previous tests for truth has succeeded.
If none of the conditions is true and there is no else clause, the whole if state-
ment terminates with no action.

unless
Sometimes you want an if condition to be negative: if something isn’t true, then exe-
cute a given segment of code. You can do this in several ways. One of them is to use
the not keyword:

if not (x == 1)

The parentheses help keep the code clear when keywords proliferate.
 You can also use the negating ! (exclamation point, or bang) operator:

if !(x == 1)

A third way to express a negative condition uses unless:

unless x == 1

This syntax gives you a more natural-sounding way to express if not or if !.

Some else tips
It pays to keep careful track of your else and elsif statements. In particular, note
that else if—a legitimate expression, which starts a new if statement inside an
else clause—isn’t the same as elsif, which is a branch of the if statement that’s
already open.

 You also have to keep track of your elses. The fact that Ruby requires an end
keyword at the end of every if clause can help you see what’s going on, in cases
that might otherwise be ambiguous. This applies, for example, to the oft-cited

210 CHAPTER 8

Control flow techniques
if/else ambiguity that arises when you have nested ifs. In some languages, you
can’t tell without a special rule what belongs with what. In C, for example, an if
statement might look like this:

if (x)
 if (y) { execute this code }
 else { execute this code };

But wait: Does the code behave the way the indentation indicates (the else
belongs to the second if)? Or does it work like this:

if (x)
 if (y){ execute this code }
else { execute this code };

All that’s changed is the indentation of the third line—and that won’t matter to
the C compiler, but it indicates the ambiguity visually. Which if does the else
belong to? And how do you tell?

 You tell by knowing the rule in C: A dangling else goes with the last
unmatched if (the first of the two behaviors in this example). In Ruby, you have
end to help you out:

if x > 50
 if x > 100
 puts "Big number"
 else
 puts "Medium number"
 end
end

The single else in this statement has to belong to the second if, because that if
hasn’t yet hit its end. The first if and the last end always belong together, the sec-
ond if and the second-to-last end always belong together, and so forth. The if/
end pairs encircle what belongs to them, including else. Of course, this means
you have to place your end keywords correctly.

 Also watch out for else with unless. You can use this combination, but it looks
and sounds a little weird:

unless x > 100
 puts "Small number!"
else
 puts "Big number!"
end

unless/else doesn’t harmonize with regular English-language usage the way if/
else does, and it’s easy to trip over the logic of unless/else (especially if it’s

x is true, but y isn’t

x isn’t true

Conditional code execution 211
nested). In general, if/else reads better than unless/else—and by flipping the
logic of the condition, you can always replace the latter with the former:

if x <= 100
 puts "Small number!"
else
 puts "Big number!"
end

If you come across a case where negating the logic seems more awkward than pair-
ing unless with else, then keep unless. Otherwise, if you have an else clause, if
is generally a better choice than unless.

8.1.2 Conditional modifiers

You can put conditionals in a modifier position, directly after a statement, in which
case they operate on the statement. For example:

puts "Big number!" if x > 100

This is the same as

if x > 100
 puts "Big number!"
end

You can also do this with unless:

puts "Big number!" unless x <= 100

Conditional modifiers have a conversational tone. There’s no end to worry about.
You can’t do as much with them (no else or elsif branching), but when you
need a simple conditional, they’re often a good fit.

8.1.3 Case statements

Ruby has another way to make code branch on the truth or falsehood of conditions:
the case statement. A case statement starts with an expression—usually a single
object or variable, but any expression can be used—and walks it through a list of
possible matches. Each possible match is contained in a when expression consisting
of one or more possible matches and a segment of code. When a given when expres-
sion matches, it’s considered to have won, and its code segment is executed.

 case statements are easier to grasp by example than description. Listing 8.1
shows a case statement that tests a line of keyboard input and branches based on
its value.

212 CHAPTER 8

Control flow techniques
print "Exit the program? (yes or no): "
answer = gets.chomp
case answer
when "yes"
 puts "Good-bye!"
 exit
when "no"
 puts "OK, we'll continue"
else
 puts "That's an unknown answer -- assuming you meant 'no'"
end

The case statement begins with the case keyword #1, continues through all the
when blocks #2 and an else clause #3, and ends with the end keyword #3. At most,
one match will succeed; only one when expression will be executed.

 You can put more than one possible match in a single when, as this snippet shows:

case answer
when "y", "yes"
 puts "Good-bye!"
 exit
etc.

This code will say “Good-bye!” and exit if answer is either “y” or “yes”.

How when works
The basic idea of the case/when structure is that you take an object and cascade
through a series of tests for a match, taking action based on the test that succeeds.
But what does match mean in this context? What does it mean, in our example, to
say that answer matches the word “yes”, or the word “no”, or neither?

 Ruby has a concrete definition of match when it comes to when statements.
Every Ruby object has a case equality method called === (three equal signs, some-
times called the “threequal operator”). The outcome of calling the method deter-
mines whether a when clause has matched.

 You can see this clearly if you look first at a case statement and then at a trans-
lation of this statement into threequal terms. Look again at the case statement in
our previous example. Here’s the same thing (in effect, the same program code)
rewritten to show how the threequal method works, and also to illustrate some
nice syntactic sugar you get when you use the === method:

if "yes" === answer
 puts "Good-bye!"

Listing 8.1 Interpreting user input with a case statement

B
C

D

E

 Syntactic sugar for the method call:
if "yes".===(answer)

B
C D E

Conditional code execution 213
 exit
elsif "no" === answer
 puts "OK, we'll continue"
else
 puts "That's an unknown answer—assuming you meant 'no'"
end

when is really a wrapper—syntactic sugar on top of sugar, if you like—for a call to
the method ===. But why does

"yes" === answer

return true when answer contains “yes”?
 It happens because of how the threequal method is defined for strings. When

you ask a string to threequal against another string (string1 === string2), you’re
asking it to compare its own contents character by character against the other
string and report back true for a perfect match or false otherwise.

 The most important point in this explanation is the phrase for strings. Every
class (and, in theory, every individual object, although it’s usually handled at the
class level) can define its own === method. Objects of that class will then perform
the threequal test (the case equality test) based on how === is defined. For strings,
=== works the same as == (the basic string-equals-some-other-string test method).
But other classes can define the threequal test any way they want.

 case/when logic is object === other_object logic in disguise; and object ===
other_object is object.===(other_object) in disguise. By defining the threequal
method however you wish for your own classes, you can exercise complete control
over the way your objects behave inside a case statement.

Programming objects’ case statement behavior
Let’s say we decide that a Ticket object should match a when clause in a case
statement based on its venue. We can bring this about by writing the appropriate
threequal method. Listing 8.2 shows such a method, bundled with enough ticket
functionality to make a complete working example.

class Ticket
 attr_accessor :venue, :date
 def initialize(venue, date)
 self.venue = venue
 self.date = date
 end

 def ===(other_ticket)

Listing 8.2 Implementing case statement behavior for the Ticket class

B

214 CHAPTER 8

Control flow techniques
 self.venue == other_ticket.venue
 end
end

ticket1 = Ticket.new("Town Hall", "07/08/06")
ticket2 = Ticket.new("Conference Center", "07/08/06")
ticket3 = Ticket.new("Town Hall", "08/09/06")

puts "ticket1 is for an event at: #{ticket1.venue}."

case ticket1
 when ticket2
 puts "Same location as ticket2!"
 when ticket3
 puts "Same location as ticket3!"
 else
 puts "No match"
end

The output from listing 8.2 is as follows:

ticket1 is for an event at: Town Hall.
Same location as ticket3!

The match was found through the implicit use of the === instance method of the
Ticket class #1. Inside the case statement, the first when expression #2 triggers a
hidden call to ===, equivalent to doing this:

if ticket2 === ticket1

Because the === method returns true or false based on a comparison of venues, and
ticket2’s venue isn’t the same as ticket1’s, the comparison between the two tickets
returns false. The body of the corresponding when clause is therefore not executed.

 The next test is then performed: another threequal or case-equality compari-
son between ticket1 and ticket3 #3. This test returns true; that when expressions
succeeds, and the code in its body is executed.

 This kind of interflow between method definitions (===) and code that doesn’t
look like it’s calling methods (case/when) is typical of Ruby. The case/when struc-
ture provides an elegant way to perform cascaded conditional tests; and the fact
that it’s a bunch of === calls means you can make it do what you need by defining
the === method in your classes.

 Conditionals like if and case/when let you control program flow by doing one
thing instead of another. Sometimes, however, you need to perform a single task
again and again. This kind of repetition can be accomplished with loops, which
we’ll look at next.

C

D

B C

D

Repeating actions with loops 215
8.2 Repeating actions with loops

Ruby’s facilities for looping repeatedly through code also allow you to incorporate
conditional logic: You can loop while a given condition is true (such as a variable
being equal to a given value), and you can loop until a given condition is true. You
can also break out of a loop unconditionally, terminating the loop at a certain point
and resume execution of the program after the loop.

 We’ll look at several ways to loop—starting, appropriately, with a method
called loop.

8.2.1 Unconditional looping with the loop method

The loop method doesn’t take any normal arguments: You just call it. However, it
does take a special type of argument called a code block. This code block contains
the code you want to loop through. Code blocks can be written in one of two ways:
either in curly braces ({}) or with the keywords do and end. The following two
snippets are equivalent:

loop { puts "Looping forever!" }
loop do puts "Looping forever!" end

A loose convention holds that one-line code blocks use the curly braces, and multi-
line blocks use do/end. (If we were observing that convention, we’d use the first of
the versions shown here in preference to the second.) But Ruby doesn’t enforce
this convention.

NOTE THE DIFFERENCE BETWEEN do/end AND {} The two ways of delimiting a
code block (do/end and {}) aren’t interchangeable: They differ in the
matter of precedence. When you have a complex statement that involves
multiple method calls chained together, and code blocks are involved,
the choice of delimiter has a bearing on what is executed in what order
and which method call goes with which block. In the vast majority of
cases, you don’t have to worry about this. But it’s useful to know that the
two approaches aren’t quite identical, as you start to use code blocks
more (see section 8.3).

Code blocks will loom large as we proceed through the book—indeed, by the end
of this chapter. You’ll learn much more about what they are, when you use them,
and what they enable you to do. For now, though, we’ll just plug them in and
watch them go.

216 CHAPTER 8

Control flow techniques
Controlling the loop
Generally, you don’t want a loop to loop forever; you want it to stop at some point.
One way to stop the loop is with the break keyword, as in this admittedly verbose
approach to setting n to 10:

n = 1
loop do
 n = n + 1
 break if n > 9
end

Another technique skips to the next iteration of the loop without finishing the
current iteration. To do this, you use the keyword next:

n = 1
loop do
 n = n + 1
 next unless n == 10
 break
end

Here, control falls through to the break statement only if n == 10 is true. If n == 10
is not true (unless n == 10), the next is executed, and control jumps back to the
beginning of the loop before it reaches break.

 You can also loop conditionally: while a given condition is true, or until a condi-
tion becomes true.

8.2.2 Conditional looping with the while and until keywords

Conditional looping is achieved via the keywords while and until, which, like if
and unless, branch on the truth or falsehood of a condition but can go through
the process more than once.

while
The while keyword allows you to run a loop while a given condition is true. while
has to be paired with end. The code between the while clause and end is the body
of the loop. Here’s an example:

n = 1
while n < 11
 puts n
 n = n + 1
end
puts "Done!"

Repeating actions with loops 217
This code prints the following:

1
2
3
4
5
6
7
8
9
10
Done!

As long as the condition n < 11 is true, the loop executes. Inside the loop, n is
incremented by one. The eleventh time the condition is tested, it’s false (n is no
longer less than 11), and the execution of the loop terminates.

 You can also place while at the end of a loop. In this case, you need to use the
keyword pair begin/end to mark where the loop is (otherwise, Ruby won’t know
how many of the lines previous to the while you want to include in the loop):

n = 1
begin
 puts n
 n = n + 1
end while n < 11
puts "Done!"

The output from this example is the same as the output from the previous example.
 There is a difference between putting while at the beginning and putting it at

the end. If you put while at the beginning, and if the while condition is false, the
code isn’t executed:

n = 10
while n < 10
 puts n
end

Because n is already greater than 10 when the test n < 10 is performed the first time,
the body of the statement isn’t executed. However, if you put the while test at the end:

n = 10
begin
 puts n
end while n < 10

the number 10 is printed. Obviously n isn’t less than 10 at any point. But because
the while test is positioned at the end of the statement, the body is executed once
before the test is performed.

218 CHAPTER 8

Control flow techniques
until
Like if and unless, the conditional loop keywords come as a pair: while and
until. until is used the same way as while, but with reverse logic. Here’s another
labor-intensive way to print out the integers from one to 10, this time illustrating
the use of until:

n = 1
until n > 10
 puts n
 n = n + 1
end

The body of the loop (the printing and incrementing of n, in this example) is exe-
cuted repeatedly until the condition is true.

while and until as modifiers
You can use while and until as modifiers at the end of a statement, like if and
unless:

n = 1
n = n + 1 until n == 10
puts "We've reached 10!"

In place of the until statement, you could also use while n < 10.

8.2.3 Looping based on a list of values

We’ve looked at unconditional looping (loop) and conditional looping (while,
until). Another way to loop is to go through a list of values, running the loop
once for each value. For example, let’s say you want to print a chart of Fahrenheit
equivalents of Celsius values. You can do this by putting the Celsius values in an
array and then looping through the array using the for/in keyword pair. The
loop runs once for each value in the array; each time through, that value is
assigned to a variable you specify:

celsius = [0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100]
puts "Celsius\tFahrenheit"
for c in celsius
 puts "c\t#{Temperature.c2f(c)}"
end

The body of the loop (the puts statement) runs 11 times. The first time through,
the value of c is 0. The second time, c is 10; the third time, it’s 20; and so forth.

 for is a powerful tool. Oddly enough, though, on closer inspection it turns out
that for is just an alternate way of doing something even more powerful….

Header for chart
(\t prints a tab)

Code blocks, iterators, and the yield keyword 219
8.3 Code blocks, iterators, and the yield keyword

The control-flow techniques we’ve looked at so far involve controlling how many
times, or under what conditions, a segment of code gets executed. In this section,
we’ll examine a different kind of flow control facility. The techniques we’ll discuss
here don’t just perform an execute-or-skip operation on a segment of code; they
bounce control of the program from one scope to another, and back again.

 It may sound like we’ve gone back to talking about method calls. After all,
when you call a method on an object, control is passed to the body of the method
(a different scope), and when the method has finished executing, control returns
to the point right after the point where the method call took place.

 We are back in method-call territory, but we’re exploring new aspects of it, not
just revisiting the old. We’re talking about a new construct called a code block and a
keyword by the name of yield.

8.3.1 The basics of yielding to a block

We’ve seen method calls, both with and without arguments. What we haven’t seen
(or, more accurately, have only seen in passing, in some of the loop examples in sec-
tion 8.2.2) is another optional component of a Ruby method call: the code block.

 When you call a method—any method, any time, with or without arguments—
you have the option of supplying a code block. The code block can consist of any
number of lines of Ruby code. This code is wrapped either in curly braces, like this

object.method_name {
dddd# code inside block
dd}

or in a do/end keyword pair, like this:

object.method_name do
 dd# code inside block
ddend

But why would you add a block of code to a method call? You’d do it so that your
method can yield.

The yield keyword in action
If you provide a code block when you call a method, then inside the method, you
can yield control to that code block—suspend execution of the method; execute
the code in the block; and return control to the method body, right after the call
to yield.

 It’s like a backward method call. Calling a method causes control to jump
from the line containing the call to the method body. The yield keyword causes

220 CHAPTER 8

Control flow techniques
control to jump from the method body back to the code block sitting next to the
method call.

 Listing 8.3 shows an example: a method called demo_of_yield, which performs
a yield operation. We’ll call it with a code block.

def demo_of_yield
 puts "Executing the method body..."
 puts "About to yield control to the block..."
 yield
 puts "Back from the block—finished!"
end

demo_of_yield { puts "> Control has been passed to the block!" }

The output from this code is as follows:

Executing the method body...
About to yield control to the block...
> Control has been passed to the block!
Back from the block—finished!

When we call the method demo_of_yield, program control jumps to the body of
the method, and the first two puts statements #1 are executed. The method
yields #2 to the code block #4; the code block is, syntactically, part of the method
call, not part of the method, and therefore it’s physically (or lexically) detached
from the method.

 The code inside the block (a single puts statement) is executed, after which
the block is finished. Control returns to the body of the method at the point
immediately after the yield #3.

 A method call in Ruby may involve passing around arguments, and it can also
involve the transfer of control back and forth between the method body and the con-
text of the method call. Any amount of back-and-forth is possible; a method can yield
more than once, and, as you’ll see, most methods that yield at all yield repeatedly.

 Now, let’s look more closely at the behavior of our new construct, the code block.

Passing arguments to a code block
Code blocks have a lot in common with methods. Both consist of lines of code;
both get executed, one by being called directly, one by being yielded to. (There’s
a way to call code blocks directly, but we won’t get into that until chapter 13.)

Listing 8.3 Demonstration of calling a method and yielding control back to the code block

B

C
D

E

B
C E

D

Code blocks, iterators, and the yield keyword 221
 Like a method, a code block can take arguments. You send arguments to a
code block by supplying them to yield. To yield three arguments to a block, you
do this inside your method:

yield(x,y,z)

There is, however, a twist in the way the block specifies the arguments it wants.
Methods do this with parenthetical lists of variable names for the arguments:

def meth(a,b,c)

Code blocks have a different syntax; instead of parentheses, they use a pair of
pipes (||):

some_method {|a,b,c|
dd# code here
dd}

In addition, there are differences between the way methods handle method argu-
ments and the way blocks handle block arguments. We’ll discuss that later. For the
moment, you need to become accustomed to seeing code like this:

def yield_an_arg
 puts "Yielding 10!"
 yield(10)
end

yield_an_arg {|x| puts "> Code block received this argument: #{x}" }

The value 10 is yielded to the code block, where it’s assigned to the variable x (as
seen in the argument list, between the pipes).

Returning a value from a code block
Code blocks would be of limited use if they didn’t have the ability to return values
as well as accept arguments.

 A code block’s return value (like that of a method) is the value of the last
expression evaluated in the code block. This return value is made available inside
the method; it comes through as the return value of yield:

def more_yielding
 puts "The code block shall multiply a number by 10."
 result = yield(3)
 puts "The result of this operation is #{result}."
end

more_yielding {|x| x * 10 }

Here, the block receives an argument, assigns it to the variable x, and returns the
value x * 10. In this example, the method is hard-coded to yield 3. You could write

222 CHAPTER 8

Control flow techniques
it so that it yielded a number input from the keyboard, a random number, or each
number in a list. Whatever the method yields, the block multiplies by 10.

8.3.2 Performing multiple iterations

The process of yielding from a method to a block is called iteration, and any
method that yields to a block is called an iterator. Iteration implies something
repeated: You iterate through a list or over a collection of objects. And, as you’ll
see, most methods that use yield do yield multiple times. The method fires values
at the code block like an automatic baseball-pitching machine. The code block
does something with each value and returns the result.

 We can see this pattern in action by rewriting our temperature chart to use
yield. The new version is shown in listing 8.4.

def temp_chart(temps)
 for temp in temps
 converted = yield(temp)
 puts "#{temp}\t#{converted}"
 end
end

celsiuses = [0,10,20,30,40,50,60,70,80,90,100]
temp_chart(celsiuses) {|cel| cel * 9 / 5 + 32 }

Here’s what’s happening in this example:

■ The method temp_chart #1 takes an argument: a list (array) of Celsius
temperatures.

■ The temperatures we’re going to convert are stashed in an array #5 assigned
to the variable celsiuses, and temp_chart is called #6 with celsiuses as an
argument—and with a code block provided.

■ Inside the method, a for loop #2 goes through the array of temperatures.
Each time through the loop, the next value in the array is assigned to the
variable temp. temp is then yielded #3 to the code block. The return value
from the block is assigned to the variable converted.

■ Inside the code block #6, the yielded argument is assigned to the variable
cel. The first time through, cel is 0. The next time it’s 10, and so forth.

Listing 8.4 Temperature conversion method using a code block to perform the conversion

B
C

D
E

F
G

B

F
G

C

D

G

Code blocks, iterators, and the yield keyword 223
■ The code inside the block converts cel to Fahrenheit and returns the result.

■ Back in temp_chart, the conversion results are printed #4. We get one result
printed out for each value in the array of Celsius temperatures.

In effect, we’ve split the work of temperature conversion between a method and a
code block, and we get the work done by going back and forth between them.

 This may not seem like much of a gain; after all, we could do the same thing
using a method. But the division of labor between method and code block pays
dividends when you start matching different blocks with a single method.

8.3.3 Using different code blocks

Ruby’s code block mechanism means you can share the authorship of a method,
even if you didn’t write the method. The method farms out some of its own work
to the code block you provide.

 An important implication of this behavior is that you can use code blocks to
put the finishing touches on methods that don’t have completely defined behav-
ior. That’s what the yielding or iterating mechanism offers: a way to postpone final
implementation of a method until you call the method and supply the missing bit
of code.

 Look at the temperature example. The method temp_chart doesn’t do any tem-
perature conversion. All it does is yield values to a code block and print out the
results it gets back. The method operates in a partnership with the code block. It’s
in the code block that the conversion takes place.

 We could use the same method to convert temperatures the other way:

fahrens = [32,62,92,122,152,182,212]
temp_chart(fahrens) {|fahr| (fahr - 32) * 5 / 9 }

temp_chart fires the values at the block and prints out a chart of what comes back.
It doesn’t care what the block does. C to F, F to C—it’s all the same, as far as the
method is concerned.

8.3.4 More about for

When you first learned about doing

for x in array of values
 code
end

you were told that, oddly enough, for is an alternate way of doing something even
more powerful. That led us straight into iterators: yield. And yes, that means for
is really an iterator in disguise.

E

224 CHAPTER 8

Control flow techniques
 for is an alternate way of calling a special iterator called each. A number of
Ruby objects respond to the each message. for does it for them.

 The following two snippets are equivalent:

for x in [1,2,3,4,5]
 puts x * 10
end

and

[1,2,3,4,5].each {|x| puts x * 10 }

What you’re not seeing is the method body of each—in this case, Array#each
(because [1,2,3,4,5]is an array). Array#each is written in C; it’s part of the core
C implementation of Ruby (and it could be written in Ruby easily). It goes through
the array, one item at a time, and yields the current item. In this example, the code
block #1 accepts each item as it’s yielded and returns that item multiplied by 10.

 Every for statement is a wrapper around a call to each. Some people prefer the
look and feel of the for version. In particular, it seems to crop up a lot in ERb files.
You may see code like this in an ActionView template file:

<% for s in @students %>
dd<%= link_to s.name,
ddddd:controller => "student",
ddddd:action dd=> "grade",
ddddd:id ddddd=> s.id %>
<% end %>

rather than this:

<% @students.each do |s| %>
d<%= link_to s.name,
dd# etc.
<% end %>

although you’ll definitely see both. The for idiom is more familiar to program-
mers accustomed to languages other than Ruby; each, on the other hand, blends a
little better with other Ruby idioms. You can take your pick.

 So far, we’ve been surveying a cooperative landscape. Everything works so
nicely … but that’s not always the way it goes. Unexpected results happen when
programs run—and not just at the level of an if test returning false. When things
go seriously wrong, programs need to react; and reacting to error conditions
often involves special kinds of control flow intervention. We’ll look next at Ruby
facilities for reacting to, and handling, error conditions.

B

B

Error handling and exceptions 225
8.4 Error handling and exceptions

Way back in chapter 1, we looked at how to test code for syntax errors:

$ ruby -cw filename.rb

Passing the -cw test means Ruby can run your program. But it doesn’t mean noth-
ing will go wrong while your program is running. You can write a syntactically cor-
rect program—a program that the interpreter will accept and execute—that does
all sorts of unacceptable things. Ruby handles unacceptable behavior at runtime
by raising an exception.

8.4.1 Raising and rescuing exceptions

An exception is a special kind of object, an instance of the class Exception or a
descendant of that class. Raising an exception means stopping normal execution
of the program and either dealing with the problem that’s been encountered or
exiting the program completely.

 Which of these happens—dealing with it or aborting the program—depends
on whether you have provided a rescue clause. If you haven’t provided such a
clause, the program terminates; if you have, control flows to the rescue clause.

 To see exceptions in action, try dividing by zero:

$ ruby -e '1/0'

Ruby raises an exception:

-e:1:in `/': divided by 0 (ZeroDivisionError)
 from -e:1

ZeroDivisionError is the name of this particular exception. More technically, it’s
the name of a class—a descendant class of the class Exception. Ruby has a whole
family tree of exceptions, all of them going back eventually to Exception.

Some common exceptions
Table 8.1 shows some common exceptions (each of which is a class, descended
from Exception) along with common reasons they are raised and an example of
code that will raise each one.

 You can try these examples in irb; you’ll get an error message, but the session
shouldn’t terminate. The technique irb uses to make potentially fatal errors non-
fatal is available to you, too.

226 CHAPTER 8

Control flow techniques
rescue to the rescue!
Having an exception raised doesn’t have to mean your program terminates. You
can handle exceptions—deal with the problem and keep the program running—
by means of the rescue keyword.

 You rescue yourself from an exception by using a rescue block. There are two
ways to create such a block:

■ Wrap the code you want to protect in a begin/end pair.

■ To protect an entire method definition, you only need a rescue clause,
placed last inside the method definition body.

Here’s an example of a rescue block with begin/end:

print "Enter a number: "
n = gets.to_i

begin
 result = 100 / n
rescue
 puts "Your number didn't work. Was it zero???"
 exit
end

puts "100/#{n} is #{result}."

Table 8.1 Common exceptions

Exception name Common reason(s) How to raise it

RuntimeError This is the default exception raised by
the raise method.

raise

NoMethodError An object is sent a message it can’t
resolve to a method name.

a = Object.new
a.some_unknown_method_name

NameError The interpreter hits an identifier it can’t
resolve as a variable or method name.

a = some_random_identifier

IOError This is caused by reading a closed
stream, writing to a read-only stream,
and similar operations.

STDIN.puts("Don't write to
STDIN!")

Errno::error This family of errors relates to file IO. File.open(-12)

TypeError A method receives an argument it can’t
handle.

a = 3 + "can't add a string
to a number!"

ArgumentError This is caused by using the wrong num-
ber of arguments.

def m(x); end; m(1,2,3,4,5)

Error handling and exceptions 227
If you run this program and enter 0 as your number, the division operation (100/n)
raises a ZeroDivisionError. Because you’ve done this inside a rescue block, control
is passed to the rescue part of the block. An error message is printed out, and the pro-
gram exits.

 If you enter something other than 0 and the division succeeds, program con-
trol skips over the rescue statement and block, and execution resumes thereafter
(with the call to puts).

 You can refine this technique by pinpointing the exception you want to trap.
Instead of a generic rescue instruction, you tell rescue what to rescue:

rescue ZeroDivisionError

This traps a single type of exception, but not others. The advantage is that you’re
no longer running the risk of inadvertently covering up some other problem by
rescuing it. An open-ended rescue may cast too wide a net.

 In addition to trapping exceptions, you can also raise them in your own code.
We’ll look next at some techniques for doing this.

8.4.2 Raising exceptions explicitly

When it comes to Ruby’s traditional flexibility and compact coding power, excep-
tions are, so to speak, no exception. You can raise exceptions in your own code,
and you can create new exceptions to raise.

 To raise an exception, you use raise plus the name of the exception you wish
to raise. You can also give raise a second argument, which is used as the message
string when the exception is raised:

def fussy_method(x)
 raise ArgumentError, "I need a number under 10" unless x < 10
end

fussy_method(20)

If run from a file called fussy.rb, this code prints out the following:

fussy.rb:2:in `fussy_method':
 I need a number under 10 (ArgumentError)from fussy.rb:5

You can also use rescue in such a case:

begin
 fussy_method(20)
rescue ArgumentError
 puts "That was not an acceptable number!"
end

228 CHAPTER 8

Control flow techniques
By only rescuing ArgumentError, you ensure that if anything else goes wrong and
some other exception is raised, you won’t trap it. That way, you don’t inadvert-
ently mask problems by rescuing excessively.

 Re-raising an exception is a useful technique. The idea is that your code has a
rescue block, and thus handles the exception—but you also pass the exception
along for further handling from wherever your code was called:

def reraiser(filename)
 file_handle = File.new(filename)
rescue Errno::ENOENT => e
 puts "Something's wrong with your filename...."
 raise e
end

This is an example of how to rescue exceptions through the whole body of a
method definition. You don’t have to include explicit begin/end delimiters, as
long as the rescue clause is the last thing in the method; the method’s own end
serves as the end, and the begin is implied. (If you want a rescue scenario for only
part of a method definition, you need to reintroduce the begin/end delimiters.)

 The major new technique introduced in this example (and the main point
here) is the fancy rescue line #1. The => e construct puts the Exception object
into the variable e. Once you’ve stored the exception in a variable, you can do
whatever else you want inside your rescue clause (in this case, printing out a
vague, ominous error message #2) and then re-raise the exception by raising e.
This re-raise bubbles up to wherever your method was called from. For example,
this call to our method

reraiser("some_non_existent_filename")

outputs the following:

Something's wrong with your filename....
reraiser.rb:2:in `initialize': No such file
 or directory - some_non_existent_filename
 (Errno::ENOENT)

First, the rescue clause intercepts the exception and prints out its message #1.
Then, the exception is re-raised, and this time #2 it isn’t rescued.

 When it comes to the types of exceptions you can raise and rescue, you aren’t
limited to Ruby’s built-in exception classes. You can also create your own.

8.4.3 Creating your own exception classes

You create a new exception class by inheriting from Exception or from a descen-
dant class of Exception:

B
C

B

C

B

C

B
C

Error handling and exceptions 229
class MyNewException < Exception
end

raise MyNewException, "some new kind of error has occurred!"

This technique offers two primary benefits. First, by letting you give new names
to exception classes, it performs a self-documenting function: When a MyNew-
Exception gets raised, it will be distinct from, say, a ZeroDivisionError or a plain
vanilla RuntimeError.

 Second, this approach lets you pinpoint your rescue operations. Once you’ve
created MyNewException, you can rescue it by name:

class MyNewException < Exception
end

begin
 puts "About to raise exception..."
 raise MyNewException
rescue MyNewException => e
 puts "Just raised an exception: #{e}"
end

The output from this snippet is as follows:

About to raise exception...
Just raised an exception: MyNewException

Only MyNewException errors will be trapped by that rescue clause. If another
exception is raised first for any reason, it will result in program termination with-
out rescue.

Exceptions and their names in the Rails framework
Creating new exception classes with descriptive names can help document errors
when they happen. In the Rails framework, the major components define a num-
ber of exception classes, each of which has a name that tells you what went wrong
even before you see an associated message. For example, the ActiveController
library defines exception classes called UnknownAction, UnknownController, and
MissingTemplate, among others. (All of these descend from the intermediate class
ActionControllerError, which is a subclass of the built-in StandardError class.)
The names of the exceptions thus serve as documentation of what went wrong.

 For example, in the method perform_action, which is the main control tower
for directing the execution of the method corresponding to the action requested
through the URL, you’ll see this as one of several options:

raise UnknownAction,
 "No action responded to #{action_name}", caller

230 CHAPTER 8

Control flow techniques
This option is executed if the controller can’t find an action corresponding to the
request or a same-named template it can render.

 How much or how little of this you do in your own code will depend on your
needs. A Rails application may not need to define any more exception classes
than Ruby and Rails already provide. If you’re writing other Ruby programs, you
may want to create a new exception class. On the other hand, the exception
classes Ruby provides are useable in a lot of situations, as the earlier examples
with ArgumentError and Errno::ENOENT suggested.

 If you think of new exception classes principally as a way of letting users and
other programmers see your intentions and the nature of a problem more clearly,
you’ll be able to make reasonable decisions about how often to create them.

8.5 Summary

This chapter has covered several wide-ranging topics, all bundled together
because they have in common the fact that they involve control flow. Conditionals
(if/unless and case/when) move control around based on the truth or falsehood
of expressions. Loops (loop, for, and while/until) repeat a segment of code
either unconditionally, conditionally, or once for each item in a list.

 Iterators—methods that yield to a code block you provide alongside the call to
the method—are among Ruby’s most distinctive features. You’ve learned how to
write and call an iterator, techniques you’ll encounter frequently later in this book
(and beyond).

 Finally, we looked at exceptions, Ruby’s mechanism for handling unrecoverable
error conditions. Unrecoverable is relative: You can rescue an error condition and
continue execution, but you have to stage a deliberate intervention via a rescue
block and thus divert and gain control of the program where otherwise it would ter-
minate. You can also create your own exception classes through inheritance from
the built-in Ruby exception classes. The Rails framework makes extensive use of
this technique, creating a spectrum of exceptions with specific, informative names.

 Equipped with knowledge of these techniques, we’ll turn next to the explora-
tion of a series of built-in Ruby classes and modules.

Part 3

Built-in classes and modules

In part 3, we’ll look in detail at a number of the built-in classes and modules
that are part of the Ruby language. Some of them—strings and integers, for
example—you’ve seen before, at least briefly or in a usage context. Here, we'll go
into depth about each of the classes and modules we look at, and you’ll learn how
to use several instance and/or class methods from each one.

The material presented here represents a selection of classes and modules, and
a selection of the methods of those classes and modules. The selection is weighted
toward those that are more, rather than less, likely to be of use to Rails developers.
However, what's really of use to Rails developers is a grasp of the Ruby language as
a system and a reasonably general Ruby literacy. A dual principle has guided the con-
tent of these chapters: not casting such a wide net that the Rails orientation gets
diluted out of existence, but also not scrubbing Ruby clean of its integral, organic,
systemic qualities.

Chapter 9 covers some preliminaries that will help you get your bearings in the
subsequent chapters. It pulls together aspects that a lot of objects have in common,
so those points don’t have to be covered repeatedly or confined to one chapter
when they really apply to all. From chapter 10 on, we’ll discuss specific classes and
modules. Chapter 10 deals with scalar objects: one-dimensional objects like strings
and numbers. Chapter 11 covers Ruby’s built-in collection classes: Array and Hash.
In the course of these two chapters, you’ll also learn about the Comparable and Enu-
merable modules, which are the source of searching, filtering, and sorting capabil-
ities for many Ruby classes (and which you can mix into your own classes).

Chapter 12 discusses regular expressions and, with that material in place, cir-
cles back to discuss string- and array-related methods that use regular expressions
as arguments. Finally, Chapter 13 introduces you to dynamic Ruby—an umbrella
term for a number of subtopics having to do with Ruby’s ability to change the pro-
gramming environment almost arbitrarily during runtime.

As was the case with part 2, Rails-related examples will be used, where doing so
makes sense, to illustrate and sometimes to illuminate Ruby points. (You’ll see
quite a few examples that use the irb --simple-prompt style of presentation, as
described in the “Code conventions” section at the beginning of the book.) By the
time we’ve finished this part, you’ll be well equipped to move on to part 4 and the
Ruby-informed redesign of the music store application.

Built-in essentials
In this chapter
■ Literal object constructors
■ Syntactic sugar
■ Iterators in depth
■ Boolean objects and states
■ Object comparison techniques
■ Runtime inspection of objects’ capabilities
233

234 CHAPTER 9

Built-in essentials
The later chapters in this part of the book will cover specific built-in classes: what
they are, what you can do with them, what methods their instances have. This chap-
ter will discuss a selection of topics that cut across a number of built-in classes.

 The goal is to collect in one place important material that applies to more
than one of the chapters to come. That way, as you explore the built-in classes fur-
ther, you’ll have a grounding in the common material, and you’ll be familiar with
some recurrently important techniques.

 The topics we’ll cover here all have Ruby-wide relevance in common; learning
about them up front can save you a lot of fragmentary effort later. However,
they’re a miscellaneous bunch of subjects—and therefore worth seeing listed in
one place, before you begin reading the chapter:

■ Literal constructors—Ways to create certain objects with syntax, rather than
with a call to new

■ Recurrent syntactic sugar—Things Ruby lets you do to make your code look nicer

■ Methods that change their receivers—Cases where calling a method puts the
receiver in a different state, and why it matters

■ Methods that convert among classes—Methods that convert an object to a class

■ Iterators reiterated—Further exploration of iterators and their uses

■ Boolean states, Boolean objects, and nil—A close look at true and false and
related concepts in Ruby

■ Comparing two objects—Ruby-wide techniques, both default and customizable,
for object-to-object comparison

■ Listing an object’s methods—An important set of techniques for runtime
reflection on the capabilities of an object

You’ll find all of these topics useful as you work through this book, and as you
read and/or write Ruby code (including, but not limited to, Rails source and/or
application code) in the future.

 You may want to fire up an irb session for this chapter; it makes frequent use of
the irb session format for the code examples, and you can often try the examples
with small variations to get a feel for how Ruby behaves.

9.1 Ruby’s literal constructors

Ruby has a lot of built-in classes. Most of them can be instantiated using new:

str = String.new
arr = Array.new

Ruby’s literal constructors 235
Some can’t; for example, you can’t create a new instance of the class Integer. But
for the most part, you can create new instances of the built-in classes.

 In addition, a lucky, select few built-in classes enjoy the privilege of having literal
constructors. That means you can use special notation, instead of a call to new, to cre-
ate a new object of that class.

 The classes with literal constructors are shown in table 9.1. When you use one
of these literal constructors, you bring a new object into existence.

We’ll look in considerable detail at most of these classes and the corresponding
literal constructors. (The only class on the list to which we won’t devote a whole
section or more is Range; but you’ll see an explanation of ranges along the way
when we encounter them.) Meanwhile, try to begin getting used to these nota-
tions, so you can recognize these data types on sight. They’re very common; you’ll
probably see "" and [] more often than you’ll see String.new and Array.new.

NOTE LITERAL CONSTRUCTOR CHARACTERS WITH MORE THAN ONE MEANING
Some of the notation used for literal constructors has more than one
meaning in Ruby. Many objects have a method called [] that looks like a
literal array constructor but isn’t. Code blocks, as you’ve seen, can be
delimited with curly braces—but they’re still code blocks, not hash liter-
als. This kind of overloading of notation is a consequence of the finite
number of symbols on the keyboard. You can always tell what the nota-
tion means by its context, and there are few enough contexts that with a
little practice, it will be easy to differentiate.

We’ll turn next to some cases of syntactic sugar that you’ll see, and possibly use,
recurrently.

Table 9.1 Summary of literal constructors for those built-in Ruby classes that have them

Class Literal constructor Example(s)

String Quotation marks "new string" or 'new string'

Symbol Leading colon :symbol or :"symbol with spaces"

Array Square brackets [1,2,3,4,5]

Hash Curly braces {"New York" => "NY", "Oregon" => "OR"}

Range Two or three dots 0...10 or 0..9

Regexp Forward slashes /([a-z]+)/

236 CHAPTER 9

Built-in essentials
9.2 Recurrent syntactic sugar

As you know, Ruby sometimes let you use sugary notation in place of the usual
object.method(args) method-calling syntax. This lets you do nice-looking things,
such as using a plus sign between two numbers, like an operator:

x = 1 + 2

Here’s the odd-looking method-style equivalent:

x = 1.+(2)

As you delve more deeply into Ruby and its built-in methods, be aware that certain
methods always get this treatment. Methods in this special group—whether
they’re methods of built-in classes, or methods you write in your own classes—can
always be called with the syntactic sugar notation rather than the method-call
notation. For example, you can define the plus-sign method on an object you’ve
created. Here’s a somewhat bizarre but perfectly valid example:

obj = Object.new
def obj.+(other_obj)
 "Trying to add something to me, eh?"
end

puts obj + 100 # output: Trying to add something to me, eh?

The plus sign in the puts statement is a call to the + method of obj, with the inte-
ger 100 as the single argument. If the method chooses to ignore the argument,
and not to perform addition of any kind, it can.

 A number of Ruby’s automatically sugared methods are collected in table 9.2.

Table 9.2 Methods with operator-style syntactic sugar calling notation

Category Name Definition example Calling example Sugared notation

Arithmetic method/
operators

+ def +(x) obj.+(x) obj + x

- def -(x) obj.-(x) obj - x

* def *(x) obj.*(x) obj * x

/ def /(x) obj./(x) obj / x

% def %(x) obj.%(x) obj % x

Get/set/append data [] def [](x) obj.[](x) obj[x]

[]= def []=(x,y) obj.[]=(x,y) obj[x] = y

<< def <<(x) obj.<<(x) obj << x

Recurrent syntactic sugar 237
Remembering which methods get the sugar treatment is not difficult. They fall
into several distinct categories, as table 9.2 shows. These categories are for conve-
nience of grouping only; you can define []= to output Hamlet, if you feel like it.
The category names indicate how these method names are used in Ruby’s built-in
classes, and how they’re most often used, by convention, when programmers
implement them in new classes.

 The extensive use of this kind of syntactic sugar—where something looks like
an operator but is a method call—tells you a lot about the philosophy behind
Ruby as a programming language. The fact that you can define and even redefine
elements like the plus sign, the minus sign, and square brackets means that Ruby
has a great deal of flexibility. No matter what domain you’re modeling, you can
decide that you want to be able to add two of your objects together; all you have to
do is define the + method, after which you’ll be able to use + as an operator.

 There are limits to what you can redefine in Ruby. You can’t redefine any of
the literal object constructors: {} is always a hash literal (or a code block, in that
context), "" will always be a string, and so forth.

9.2.1 Special treatment of +=

Another bit of syntactic sugar you’ll see a lot is the += construct:

x = 1
x += 1

Ruby always interprets this to mean

x = x + 1

Comparison method/
operators

== def ==(x) obj.==(x) obj == x

> def >(x) obj.>(x) obj > x

< def <(x) obj.<(x) obj < x

>= def >=(x) obj.>=(x) obj >= x

<= def <=(x) obj.<=(x) obj <= x

Case equality operator === def ===(x) obj.===(x) obj === x

Table 9.2 Methods with operator-style syntactic sugar calling notation (continued)

Category Name Definition example Calling example Sugared notation

238 CHAPTER 9

Built-in essentials
This approach works for all the arithmetic method/operators, as shown in table 9.3.

The sugar provides a way to make code more concise. You can use either form.
The non-sugared version looks reasonably good in these cases (unlike some other
instances of sugar, where you’d end up with code like x./(y) if you didn’t have the
option of writing x/y).

 We’ll look next at an important criterion by which methods in Ruby can be dis-
tinguished from each other: whether they bring about permanent changes to the
content or state of the objects on which they are called.

9.3 Methods that change their receivers (or don’t)

The basic scenario of calling a method is always the same:

1 A message is sent to a receiver (an object).

2 The object executes the first method on its method lookup path whose
name matches the message (or handles the error condition if there’s no
such method).

3 The method returns a value.

That’s what always happens. In addition, some things sometimes happen. The first
two will be familiar; the third is what we’ll focus on here:

■ A method call may (or may not) include arguments.

■ A method may (or may not) yield one or more times to a code block
associated with the method call.

■ A method may (or may not) modify its receiver.

What does it mean for a method to modify its receiver?

Table 9.3 Sugar notation for arithmetic method/operators

Sugar notation How Ruby sees it

x += 1 x = x + 1

x -= 1 x = x - 1

x *= 2 x = x * 2

x /= 2 x = x / 2

x %= 2 x = x % 2

Methods that change their receivers (or don’t) 239
9.3.1 Receiver-changing basics

To gain perspective on methods that change their receivers, let’s start with an
example of one that doesn’t. Let’s say you have a string:

str = "hello"

You wish to print it out with the first letter capitalized. Ruby has a handy capitalize
method for strings:

puts str.capitalize

The result is “Hello”. Here, the call to capitalize gives you, as its return value, a
new string. It’s this new string that you print out with puts. The original string,
which served as the receiver of the “capitalize” message, still starts with a small h.
You can test this by printing it out:

puts str # output: hello

str is still “hello,” not “Hello”.
 Now, let’s use another string method—this time, one that modifies its receiver.

We’ll check for changes to the original string after making this method call, too:

str = "hello"
str.replace("goodbye")
puts str

This time, you see “goodbye”. You haven’t manufactured a new string; rather,
you’ve modified the old string. The replace method changes the content of its
receiver. (We’ll talk about String#replace in more detail in chapter 10.)

 You should always be aware of whether the method you’re calling changes its
receiver. Neither option is always right or wrong. Which is best depends on what
you’re doing, but it’s important to know. One consideration, weighing in on the
side of modifying objects instead of creating new ones, is efficiency: Creating new
objects (like a second string that’s identical to the first except for one letter) is
expensive, in terms of memory and processing. This doesn’t matter much if
you’re dealing with a small number of objects. But when you get into, say, han-
dling data from large files, and using loops and iterators to do so, creating new
objects can be a drain on resources.

 On the other hand, you need to be cautious about modifying objects in place
because other parts of the program may depend on those objects not to change.
For example, let’s say you have a database of names. You read the names out of
the database into an array. At some point, you need to process the names for
printed output—all in capital letters. You may do something like this:

240 CHAPTER 9

Built-in essentials
names.each do |name|
 capped = name.upcase
 # ...code that does something with capped...
end

In this example, capped is a new object: an uppercase duplicate of name. When you
go through the same array later, in a situation where you do not want the names in
uppercase, such as saving them back to the database, the names will be the way
they were originally.

 By creating a new string (capped) to represent the uppercase version of each
name, you avoid the side effect of changing the names permanently. The opera-
tion you perform on the names achieves its goals without changing the basic state
of the data. Sometimes you’ll want to change an object permanently, and some-
times you’ll want not to; there’s nothing wrong with that, as long as you know
which you’re doing, and why.

9.3.2 bang (!) methods

Ruby lets you define a method whose name ends with an exclamation point. The
built-in classes have many such methods.

 The exclamation point, or bang, has no significance to Ruby internally; bang
methods are called and executed just like any other method. However, by conven-
tion, the bang labels a method as dangerous—specifically, as the dangerous equiva-
lent of a method with the same name but without the bang.

 Dangerous can mean whatever the person writing the method wants it to mean.
In the case of the built-in classes, it usually (although not always) means this
method, unlike its non-bang equivalent, permanently modifies its receiver.

 You’ll find a number of pairs of methods, one with the bang and one without.
Those without the bang perform an action and return a freshly minted object,
reflecting the results of the action (capitalizing a string, sorting an array, and so
on). The bang versions of the same methods perform the action, but they do so in
place: Instead of creating a new object, they transform the original object.

 Examples of such pairs of methods include sort/sort! for arrays, upcase/
upcase! for strings, chomp/chomp! for strings, and reverse/reverse! for strings
and arrays. In each case, if you call the non-bang version of the method on the
object, you get a new object. If you call the bang version, you operate in-place on
the same object to which you sent the message.

 In the rest of the book, you’ll see mention made several times of methods that
have bang equivalents. Unless otherwise specified, that means the bang version of

 Iterate through array of names one at a time

Methods that change their receivers (or don’t) 241
the method replaces the original content of the object with the results of the
method call. Again, no rule says that this is the case, but it’s a common scenario.

 Changing the receiver (or not) is by no means just the domain of built-in Ruby
methods. Everyone who writes Ruby programs deals one way or another with object
state—and that means dealing with the evolution of an object’s state, including
changes to that state brought about by method calls during program execution.

 What state means—and, therefore, what it means for a method call to change
its receiver—varies from one case, one class, to another. For a string object, state
includes the characters in the string; for a ticket object, it’s the venue, price, per-
former, and so forth. The case of ActiveRecord objects provides an interesting
illustration of some of the ramifications of receiver-changing under complex—
and, for our purposes, particular relevant—circumstances.

9.3.3 Specialized and extended receiver-changing
in ActiveRecord objects

Depending how much, and what, you’ve done with Rails, and ActiveRecord in
particular, you know that some methods you can call on an ActiveRecord object
affect the object as it currently exists in program memory, and some methods
affect the database record with which the object is connected. We’ll examine a set
of permutations of these methods in chapter 14, in a different context. But
they’re worth a look here, in connection with the topic of changing the receiver.

 Listing 9.1 shows an example that makes two changes to an object’s properties,
with different effects.

composer = Composer.new
composer.first_name = "Johann"
composer.save
composer.update_attribute("last_name","Bach")

The first change in listing 9.1, which sets the new composer’s first name to
“Johann”, requires a manual save operation to save the new value to the database.
The second change, however, performs an update_attribute operation, which
changes the property in the in-memory object and also writes the record out to
the database, all in one operation.

 You can view what’s going on in this example as an extended version of
changing/not changing the receiver. All these operations change the receiver,
because the Composer object ends up in a different state each time. But the

Listing 9.1 Two ways to set an object property and save a database record

242 CHAPTER 9

Built-in essentials
update_attribute operation also changes the database record connected with the
object: It performs a lateral or meta-change of the receiver, changing its
representation not just in memory, but permanently.

 This is a more complex, multilayered change/no change process than you’ll
usually encounter when you’re dealing with the issue as it relates to built-in Ruby
classes, but it’s instructive. You can think of the basic receiver-changing question
as a starting point for understanding the more elaborate behaviors exhibited by
ActiveRecord objects. Being able to connect such a fundamental concept to the
behaviors of a specialized system like ActiveRecord can help you organize your
thoughts as you explore the more specialized system.

 We’ll rejoin the mainstream agenda here—the exploration of important Ruby-
wide behaviors—by turning, next, to a family of methods that perform conver-
sions of one class of object to another.

9.4 Built-in and custom to_* (conversion) methods

Ruby offers a number of built-in methods whose names start with to_ and end
with something that indicates a class to which the method converts an object: to_s
(to string), to_a (to array), to_i (to integer), and to_f (to float). Not all objects
respond to all of these methods. But many objects respond to a lot of them, and
the principle is consistent enough to warrant looking at them collectively.

 The most commonly used to_ method is probably to_s. Every Ruby object
responds to to_s; every Ruby object has a way of displaying itself as a string. What
to_s does, as the following irb-session excerpts show, ranges from nothing, other
than return its own receiver, when the object is already a string

>> "I am already a string!".to_s
=> "I am already a string!"

to a flattened, probably useless string representation of miscellaneous data

>> ["one", "two", "three", 4, 5, 6].to_s
=> "onetwothree456"

to an informative, if cryptic, descriptive string about an object:

>> Object.new.to_s
=> "#<Object:0x401f81a4>"

(The numbers in the string representing the new object may be different on your
computer; they pertain to memory addresses.)

 Another common and useful to_ method is to_i (to integer). (It’s so useful that
we’ve already used it in earlier examples.) Unlike some programming languages,

Built-in and custom to_* (conversion) methods 243
such as Perl, Ruby doesn’t automatically convert from strings to integers. You can’t
do this

x = "We're number "
y = 1
puts x + y

because Ruby doesn’t know how to add a string and an integer together. Similarly,
you’ll get a surprise if you do this:

print "Enter a number: "
n = gets.chomp
puts n * 100

You’ll see the string version of the number printed out 100 times. (That, by the
way, also tells you that Ruby lets you multiply a string—but it’s always treated as a
string, even if it consists of digits.) If you want the number, you have to turn it into
a number explicitly:

n = gets.to_i

As you’ll see if you experiment with converting strings to integers (which you can
do easily in irb with expressions like "hello".to_i), strings that have no reason-
able integer equivalent (including “hello”) are always converted to 0 with to_i.

 We’ll look next at the creation of homemade to_* methods.

9.4.1 Writing your own to_* methods

In addition to using Ruby’s built-in to_* conversion methods, you can write your
own. Ruby will pick up on the ones you write: If you define your own to_s method
for an object or class, then that to_s method will be called, for example, when an
object that uses it is provided as an argument to puts.

 Let’s go back to our workhorse example class, C. Maybe we want the string rep-
resentation of C objects to be a little nicer than a hexadecimal number inside
angle brackets. Arranging for this result is as easy as writing a to_s method. We’ll
elaborate on the class, to give to_s something to do, as shown in listing 9.2.

class C
 def initialize(name)
 @name = name
 end
 def to_s
 "A C object named #{@name}"
 end

Listing 9.2 Defining the to_s method for a class of your own

244 CHAPTER 9

Built-in essentials
end

c = C.new("Emma")
puts c

We’ve piggybacked here on the automatic calling of to_s by puts; puts is used on
what we predefined in the to_s method, leading to the following output:

A C object named Emma

You can write arbitrarily many to_* methods that don’t correspond to Ruby’s, if
you need them; for instance, if you were writing an application where it was mean-
ingful to do so, you could have a to_c method that caused objects to represent
themselves as instances of your class C. Most custom-written to_* methods, how-
ever, correspond to the ones that Ruby knows about and uses.

 Next, we’ll pick up on a topic we looked at first in chapter 8: iterators. There’s
always more to say about iterators; here, we’ll look at them in light of what you’ve
learned about method calls and return values.

9.5 Iterators reiterated

As we proceed with the core classes and modules, you’ll see a ton of iterators.
Consider this a reminder and a pep talk.

 There’s no doubt that iterators add twists and turns to the basic method call
scenario. But it’s additive: New things happen, but the old things still happen.

 Every Ruby method call produces a return value. That includes iterators. This
fact isn’t always obvious. In many cases, everything you care about happens in the
code block when the method yields to it. The eventual return value of the call to
the iterator may be anticlimactic.

 The best example of an anticlimactic return value is the array method each, a
basic iterator method that walks through the array one item at a time and yields the
item it’s on to the code block. You can do a lot inside an each code block. But the
return value of each is unexciting; each returns its own receiver, the original array:

array = [1,2,3,4,5]
other = array.each {|n| puts "Current element is #{n}" }

Here, other is just another reference to (another variable attached to) array.
There’s rarely any point in capturing the return value of each. The action is in the
code block; the return value is a formality.

Boolean states, Boolean objects, and nil 245
 Yet in other iterator cases, the return value is crucial. The map method of Array
is a perfect example. In some respects, map is a lot like each: It walks through the
array, yielding one item at a time starting with the first and ending with the last.
The difference is that the return value of map is a new array. The elements of this
new array are the results of all the yield operations:

array = [1,2,3,4,5]
other = array.map {|n| n * 10 }
p other

As you’ll see if you run this snippet, the map operation accumulates all the n * 10
calculations from the code block and stores them in a new array. That new array is
the return value of the call to map:

[10,20,30,40,50]

It’s essentially the old array with each element laundered through the code block.
That’s how map works; and, unlike with each, the return value (the new array) is of
primary interest.

 When dealing with iterators (as you will, to a great extent), remember that two
stories are being told: the story of what happens inside the code block when it’s
yielded to (which can happen many times), and the story of the value that gets
returned at the end by the method (which only happens once per method call).
To know what an iterator does, you need to know both its iterative behavior—
what, and when, it yields to the block—and its eventual return value.

 We’ll return now to the subject of Boolean states and objects in Ruby, a topic
we’ve dipped into already but which it pays to examine in more detail.

9.6 Boolean states, Boolean objects, and nil

Every expression in Ruby evaluates to an object; and every object has a Boolean
value of either true or false. Furthermore, true and false are objects. This idea
isn’t as convoluted as it sounds. If true and false weren’t objects, then a pure
Boolean expression like

100 > 80

would have no object to evaluate to.
 In many cases where you want to get at a truth/falsehood value, such as an if

statement or a comparison between two numbers, you don’t have to manipulate
these special objects directly. In such situations, you can think of truth and false-
hood as states, rather than objects.

246 CHAPTER 9

Built-in essentials
 Still, you need to be aware of the existence of the objects true and false, partly
because you may need them in your own code and partly because you may see code
like this usage example from the documentation for ActiveRecord::Schema:

create_table :authors do |t|
t.column :name, :string, :null => false
end

You should recognize instantly that the word false represents the special object
false and isn’t a variable or method name. (That snippet of code, by the way, tells
you how to create a relational database table automatically with a single string col-
umn called name with a NOT NULL constraint. We won’t be studying ActiveRecord
schemas and migrations in this book, but they’re useful as a way of manipulating
the structure of your database.)

 We’ll look at true and false both as states and as special objects, along with the
special object nil.

9.6.1 True and false as states

Every expression in Ruby is either true or false, in a logical or Boolean sense. The
best way to get a handle on this is to think in terms of conditional statements. For
every expression in Ruby, you can do this:

if expression
 # execution reaches this point only if expression is true
end

For lots of expressions, such code makes no sense; but it can be instructive to try it
with a few of them, as listing 9.3 shows.

if (class MyClass; end)
 puts "Empty class definition is true!"
else
 puts "Empty class definition is false!"
end

if (class MyClass; 1; end)
 puts "Class definition with the number 1 in it is true!"
else
 puts "Class definition with the number 1 in it is false!"
end

if (def m; "A call to this method would be 'true'!"; end)
 puts "Method definition is true!"
else

Listing 9.3 Testing the Boolean value of expressions using if constructs

B

C

D

Boolean states, Boolean objects, and nil 247
 puts "Method definition is false!"
end

if "string"
 puts "Strings appear to be true!"
else
 puts "Strings appear to be false!"
end

if 100 > 50
 puts "100 is greater than 50!"
else
 puts "100 is not greater than 50!"
end

As you’ll see if you run the code in listing 9.3, empty class definitions #1 are false;
non-empty class definitions evaluate to the same value as the last value they con-
tain #2 (in this example, the number 1); method definitions are false #3 (even if a
call to the method would return a true value); strings are true #4; and 100 is
greater than 50 #5. You can use this simple if technique to explore the Boolean
value of any Ruby expression.

 The if examples show that every expression in Ruby is either true or false, in
the sense of either passing or not passing an if test. What these examples don’t
show you, however, is what these expressions evaluate to. That is what the if test is
really testing: It evaluates an expression (such as class MyClass; end) and pro-
ceeds on the basis of whether the value produced by that evaluation is true.

 To see what values are returned by the expressions whose truth-value we’ve
been testing, you can print those values:

>> class MyClass; end
=> nil
>> class MyClass; 1; end
=> 1
>> def m; "A call to this method would be 'true'!"; end
=> nil
>> "string literal!"
=> "string literal!"
>> 100 > 50
=> true

Some of these expressions—the empty class definition #1 and the method defini-
tion #3—evaluate to nil, which is a special object (discussed in section 9.6.3). All
you need to know for the moment about nil is that it has a Boolean value of false
(as you can detect from the behavior of the if clauses that dealt with it in listing 9.3).

E

F

B

C

D

E

F

B

C D
E

F

B
D

248 CHAPTER 9

Built-in essentials
 The class definition with the number 1 in it #2 evaluates to the number 1,
because every class definition block evaluates to the last expression contained
inside it, or nil if the block is empty.

 The string literal #4 evaluates to itself; it’s a literal object and doesn’t have to
be calculated or processed into some other form when evaluated. Its value as an
expression is itself.

 Finally, the comparison expression 100 > 50 #5 evaluates to true—not just to
something that has the Boolean value true, but to the object true. The object true
does have the Boolean value true. But, along with false, it also has a special role
to play in the realm of truth and falsehood and how they’re represented in Ruby.

9.6.2 true and false as objects

The Boolean objects true and false are special objects, each being the only
instance of a class especially created for it: TrueClass and FalseClass, respectively.
You can ask true and false to tell you their classes’ names, and they will:

puts true.class # output: TrueClass
puts false.class # output: FalseClass

The terms true and false are keywords. You can’t use them as variable or method
names; they are reserved for Ruby’s exclusive use.

 You can pass the objects true and false around, assign them to variables, and
examine them, just like any other object. Here’s an irb session that puts true
through its paces in its capacity as a Ruby object:

>> a = true
=> true
>> a = 1 unless a
=> nil
>> a
=> true
>> b = a
=> true

You’ll often see true and false used as method arguments and values in a
method-argument hash (structures similar to the link_to examples in chapter 3).
That’s the gist of the create_table example that started this section: For each
field you create in a table, you can specify :null => true (if you want the field to
be allowed to be null; this is also the default) or :null => false (if you don’t).

 In most cases where a method asks for a Boolean argument or a Boolean value
for a key (such as :null in create_table), it will work if you send it an expression
with a Boolean value of true of false:

:null => 100 > 50

E

F

C

Boolean states, Boolean objects, and nil 249
The value of 100 > 50 is true, so this is like writing :null => true. Needless to say,
this kind of trick code doesn’t represent good practice. But it gives you an inter-
esting example of how truth and falsehood can be represented in Ruby.

The relation between true/false as Boolean values and true/false as objects
As we’ve said, every Ruby expression is true or false in a Boolean sense (as indi-
cated by the if test), and there are also objects called true and false. This double
usage of the true/false terminology is sometimes a source of confusion: When you
say that something is true, it’s not always clear whether you mean it has a Boolean
truth value or that it’s the object true.

 Remember that every expression has a Boolean value—including the expression
true and the expression false. It may seem awkward to have to say, “The object true
is true.” But that extra step makes it possible for the model to work consistently.

 Table 9.4 shows a mapping of some sample expressions to both the outcome of
their evaluation and their Boolean value.

Like some of the earlier examples, this table uses the special object nil—an
object it’s time for us to look at more closely.

9.6.3 The special object nil

The special object nil is, indeed, an object (it’s the only instance of a class called
NilClass). But in practice, it’s also a kind of non-object. The Boolean value of nil
is false, but that’s just the start of its non-object-ness.

Table 9.4 Mapping sample expressions to their evaluation results
and Boolean values

Expression
Object to which

expression evaluates
Boolean value of

expression

1 1 true

1+1 2 true

true true true

false false false

"string" "string" false

puts "string" nil false

100 > 50 true true

x = 10 10 true

def x; end nil false

250 CHAPTER 9

Built-in essentials
 nil denotes an absence of anything. You can see this graphically when you
inquire into the value of, for example, an instance variable you haven’t initialized:

puts @x

This command prints nil. (If you try this with a local variable, you’ll get an error;
local variables aren’t automatically initialized to anything, not even nil.) nil is
also the default value for nonexistent elements of container and collection
objects. For example, if you create an array with three elements, and then you try
to access the tenth element (at index 9; array indexing starts at 0), you’ll find that
it’s nil:

>> ["one","two","three"][9]
=> nil

nil is sometimes a difficult object to understand. It’s all about absence and nonex-
istence; but nil does exist, and it responds to method calls like other objects:

>> nil.to_s
=> ""
>> nil.to_i
=> 0
>> nil.object_id
=> 4

The to_s conversion of nil is an empty string (""); the integer representation of
nil is zero; and nil’s object id is 4. (nil has no special relationship to 4; that just
happens to be the number designated as its id.)

 It’s not accurate to say that nil is empty, because doing so would imply that it
has characteristics and dimension (like a number or a collection), which it isn’t
supposed to. Trying to grasp nil can take you into some thorny philosophical ter-
ritory. You can think of nil as an object that exists, and that comes equipped with
a survival kit of methods, but that serves the purpose of representing absence and
a state of being undetermined.

 Coming full circle, remember that nil has a Boolean value of false. nil and
false are the only two objects that do. They’re not the only two expressions that do;
100 < 50 has a Boolean value of false, because it evaluates to the object false. But
nil and false are the only two objects in Ruby with a Boolean value of false. All
other Ruby objects—numbers, strings, ActiveRecord instances—have a Boolean
value of true. Tested directly, they all pass the if test.

 Boolean values and testing provide a segue into the next topic: comparisons
between objects. We’ll look at tests involving two objects, and ways of determin-
ing whether they’re equal (and, if they aren’t, which is greater, and based on
what criteria).

Comparing two objects 251
9.7 Comparing two objects

Ruby objects are created with the capacity to compare themselves to other objects
for equality, using any of several methods. Some objects can also compare them-
selves to each other for greater-than and less-than relationships; and you can
teach objects that can’t do these things how to do them.

 Tests for equality are the most common comparison tests, and we’ll start with
them. We’ll then look at a built-in Ruby module called Comparable, which gives
you a quick way to impart knowledge of comparison operations to your classes
and objects—and which also is present in a number of built-in Ruby classes.

9.7.1 Equality tests

Inside the Object class, all equality-test methods do the same thing: They tell you
whether two objects are exactly the same object. Here they are in action:

>> a = Object.new
=> #<Object:0x401c653c>
>> b = Object.new
=> #<Object:0x401c4bd8>
>> a == a
=> true
>> a == b
=> false
>> a.eql?(a)
=> true
>> a.eql?(b)
=> false
>> a.equal?(a)
=> true
>> a.equal?(b)
=> false

All three of these equality test methods—==, eql?, and equal?—give the same
results in these examples: When you test a against a, the result is true; and when
you test a against b, the result is false. We appear to have three ways of establish-
ing that a is a but not b.

 There isn’t much point in having three tests that do the same thing. Further
down the road, in classes other than the granddaddy Object class, these methods
are redefined to do meaningful work for different objects. Two of them, at most,
are redefined; equal? is usually left alone so that you can always use it to check
whether two objects are exactly the same object.

 Furthermore, Ruby gives you a suite of tools for object comparisons, and not
always just comparison for equality. We’ll look next at how equality tests and their
redefinitions fit into the overall comparison picture.

252 CHAPTER 9

Built-in essentials
9.7.2 Comparisons and the Comparable module

The most commonly redefined equality-test method, and the one you’ll see used
most often, is ==. It’s part of the larger family of equality-test methods, and it’s also
part of a family of comparison methods that includes ==, >, <, >=, and <=.

 Not every class of object needs, or should have, all these methods. (It’s hard to
imagine what it would mean for one bicycle to be greater than or equal to
another.) But for those that do need them, Ruby provides a convenient way to get
them. All you have to do is the following:

1 Mix in a module called Comparable (which comes with Ruby).

2 Define a comparison method with the name <=> in your class.

The comparison method <=> (usually called the spaceship operator or spaceship
method) is the heart of the matter. Inside this method, you define what you mean
by less than, equal to, and greater than. Once you’ve done that, Ruby has all it needs
to provide the corresponding comparison methods.

 For example, let’s say you’re taking bids on a job and using a Ruby script to
help you keep track of what bids have come in. You decide it would be handy to be
able to compare any two Bid objects, based on estimate, using simple comparison
operators like > and <. Greater than means asking for more money, and less than
means asking for less money.

 A simple first version of your Bid class might look like listing 9.4.

class Bid
 include Comparable
 attr_accessor :contractor
 attr_accessor :estimate

 def <=>(other_bid)
 if self.estimate < other_bid.estimate
 -1
 elsif self.estimate > other_bid.estimate
 1
 else
 0
 end
 end
end

Listing 9.4 Example of a class that mixes in the Comparable module

B

Listing an object’s methods 253
The spaceship method #1 consists of a cascading if/elsif/else statement.
Depending on which branch is executed, the method returns -1, 1, or 0. Those
three return values are predefined, prearranged signals to Ruby. Your <=> method
must return one of those three values every time it’s called—and they always mean
less than, equal to, and greater than, in that order.

 You can shorten this method. Bid estimates are either floating-point numbers
or integers (the latter, if you don’t bother with the cents parts of the figure). Num-
bers already know how to compare themselves to each other, including integers to
floats. Bid’s <=> method can therefore piggyback on the existing <=> methods of
the Integer and Float classes, like this:

def <=>(other_bid)
ddself.estimate <=> other_bid.estimate
end

All Ruby numerical classes include Comparable and have a definition for <=>. The
same is true of the String class; you can compare strings using the full assortment
of Comparable method/operators.

9.8 Listing an object’s methods

It’s important not only that you learn the details of methods available to you in
the built-in classes, but also that you learn how to explore further. One way you
can explore further is to ask an object to tell you about its methods.

 How you do this depends on the object. When you ask Class and Module
objects for their methods, you have to distinguish instance methods (methods
that instances of the class, or objects with access to the module, can call) from
methods the class or module can call (class methods and singleton methods of
the module object).

 The simplest and most common case is when you want to know what messages
an object responds to—that is, what methods you can call on it. Ruby gives you a
typically simple way to do this (our examples are suitable for entering into irb;
we’ll let irb show us the results, rather than doing an explicit printout):

"I am a String object".methods

This results in a huge array of method names. At the very least, you’ll want to sort
them so you can find what you’re looking for:

"I am a String object".methods.sort

B

254 CHAPTER 9

Built-in essentials
The methods method works with class and module objects, too. But remember, it
shows you what the object (the class or module) responds to, not what instances
of the class or objects that use the module respond to. For example, asking irb for

String.methods.sort

shows you a list of methods that the Class object String responds to. If you see an
item in this list, you know you can send it directly to String.

 One of the methods you’ll see in that list is instance_methods. This method
tells you all the instance methods that instances of String are endowed with:

String.instance_methods

This list corresponds exactly to what a string object tells you when you ask it for its
methods (two examples back). Keep in mind, though, that an object isn’t con-
fined to the methods it gets from its class. You can add methods to an object or
use extend to add a whole module’s worth of methods. For example, say you add a
method to a string:

>> str = "a plain old string"
=> "a plain old string"
>> def str.some_new_method; end
=> nil

>> str.methods.sort

The output (not shown here, for space and clutter reasons) includes the usual
instance methods of a string, plus some_new_methods. In other words, an object’s
singleton methods show up in its methods list. And if you only want the singleton
methods, use this approach:

>> str.singleton_methods.sort
=> ["some_new_method"]

Ruby is obliging in the matter of giving you information about the state of objects
during runtime, as the next examples will also show.

9.8.1 Generating filtered and selective method lists

Sometimes you’ll want to see the instance methods defined in a particular class
without bothering with the methods every object has (those defined in the Kernel
module). You can view a class’s instance methods without those of the class’s
ancestors by using the slightly arcane technique of providing the argument false
to the instance_methods method:

String.instance_methods(false).sort

Summary 255
You’ll see many fewer methods this way, because you’re looking at a list of only
those defined in the String class itself. This approach gives you a restricted pic-
ture of the methods available to string objects, but it’s useful for looking in a more
fine-grained way at how and where the method definitions behind a given object
are positioned.

 Other method-listing methods include the following:

■ obj.private_methods

■ obj.public_methods

■ obj.protected_methods

■ obj.singleton_methods

The mechanisms for examining objects’ methods are extensive. As always, be
clear in your own mind what the object is (in particular, class/module or not) that
you’re querying, and what you’re asking it to tell you.

9.9 Summary

This chapter has covered several topics that pertain to multiple built-in classes.
You’ve seen Ruby’s literal constructors, which provide a concise alternative to call-
ing new on certain built-in classes. You’ve also seen how Ruby provides you with
syntactic sugar for particular method names, including a large number of meth-
ods with names that correspond to arithmetic operators.

 We looked at the significance of methods that change their own receivers, which
many built-in methods do (many of them bang methods, which end with !). We
also examined the to_* methods: built-in methods for performing conversions
from one core class to another. The chapter also reviewed the importance of iter-
ators, something you’ll see a lot of in upcoming chapters.

 You’ve also learned a number of important points and techniques concerning
Boolean (true/false) values and comparison between objects. You’ve seen that
every object in Ruby has a Boolean value and that Ruby also has special Boolean
objects (true and false) that represent those values in their simplest form. A
third special object, nil, represents a state of undefinedness or absence. We also
discussed techniques for comparing objects using the standard comparison opera-
tor (<=>) and the Comparable module.

 Finally, we looked at ways to get Ruby objects to tell you what methods they
respond to—a kind of metaprogramming technique that can help you see and
understand what’s going on at a given point in your program.

256 CHAPTER 9

Built-in essentials
 The material in this chapter will put you in a strong position to absorb what
comes later. When you read statements like, “This method has a bang alternative,”
you’ll know what they mean. When you see documentation that tells you a partic-
ular method argument defaults to nil, you’ll know what that means. And the fact
that you’ve learned about these recurrent topics will help us economize on repeti-
tion in the upcoming chapters about built-in Ruby classes and modules, and con-
centrate instead on moving forward.

Scalar objects
In this chapter
■ Strings
■ Symbols
■ Numerics
■ Date and time objects
257

258 CHAPTER 10

Scalar objects
The term scalar means one-dimensional. Here, it refers to objects that represent sin-
gle values, as opposed to collection or container objects that hold multiple values.
There are some shades of gray: Strings, for example, can be viewed as collections
of characters in addition to being single units of text. Scalar, in other words, is to
some extent in the eye of the beholder. Still, as a good first approximation, you
can look at the classes discussed in this chapter as classes of one-dimensional, bite-
sized objects; doing so will help you as we move in the next chapter to the matter
of collections and container objects.

 The built-in objects we’ll look at in this chapter include the following:

■ Strings, which are Ruby’s standard way of handling textual material of any
length

■ Symbols, which are another way of representing text in Ruby

■ Numerical objects, including integers and floating-point numbers

■ Times and dates, which Ruby handles (as it handles everything) as objects in
their own right

The upshot of this chapter will be not only that you acquire some mastery of
manipulating these objects, but also that you’re positioned well to explore the
containers and collections—which often contain and collect scalar objects—in
the next chapter.

10.1 Working with strings

Ruby gives you two built-in classes that, between them, provide all the functional-
ity of text: the String class and the Symbol class. We’ll start with strings, which are
the standard way to represent bodies of text of arbitrary content and length.

10.1.1 String basics

A string literal is generally enclosed in quotation marks:

"This is a string."

 Single quotes can also be used:

'This is also a string.'

But a single-quoted string behaves very differently, in some circumstances, than a
double-quoted string. The main difference is that string interpolation doesn’t work
with single-quoted strings. Try these two snippets, and you’ll see the difference:

puts "Two plus two is #{2 + 2}."
puts 'Two plus two is #{2 + 2}.'

Working with strings 259
As you’ll see if you paste these lines into irb, you get two very different results:

Two plus two is 4.
Two plus two is #{2 + 2}.

Single quotes disable the #{...} interpolation mechanism. If you need that mecha-
nism, you can’t use them.

 In general, single- and double-quoted strings behave differently with respect to
the need to escape certain characters with a backslash:

puts "Backslashes (\\) have to be escaped in double quotes."
puts 'You can just type \ once in a single quoted string.'
puts "But whichever type of quotation mark you use..."
puts "You have to escape its quotation symbol, such as \"."
puts 'That applies to \' in single-quoted strings too.'

You can, if necessary, escape (and thereby disable) the string interpolation mecha-
nism in a double-quoted string:

puts "Escaped interpolation: \"\#{2 + 2}\"."

You’ll see other cases of string interpolation and character-escaping as we pro-
ceed. Meanwhile, by far the best way to get a feel for these behaviors firsthand is to
experiment with strings in irb.

WARNING irb ALWAYS PRINTS OUT ITS EVALUATIONS When you use irb to familiar-
ize yourself with string-quoting behaviors, keep in mind that every time
you type an expression into irb, irb evaluates the expression and displays
its string representation. This result can be confusing: String representa-
tions are double-quoted strings and therefore contain a lot of back-
slashes, for character-escaping purposes. The best thing to do is to use
the puts command, so you can see what the string will look like on out-
put. (When you do, the return value printed by irb is nil, because that’s
the return value of all calls to puts.)

Other quoting mechanisms
Ruby gives you several ways to write strings in addition to single and double quota-
tion marks. But even when you’re using these other techniques, keep in mind that
a string is always either fundamentally single-quoted or double-quoted—even if
quotation marks aren’t physically present.

 Table 10.1 summarizes Ruby’s quoting mechanisms. The main reason Ruby
provides mechanisms other than literal quotation marks (%q and %Q) is that they
make it easier to write strings that contain quotation marks (or apostrophes,
which are the same as single quotation marks).

260 CHAPTER 10

Scalar objects
The examples in table 10.1 use curly braces as delimiters for the strings. You can
use almost any punctuation character. For example, the expression %q.string.
represents the string “string”; the two periods serve as delimiters. As long as the
second delimiter matches the first (in the sense of being the same or, in the case
of braces, brackets, and parentheses, being the matching one), the delimiter pair
will work. Curly braces, however, are more or less standard; unless your string con-
tains a closing curly brace, it’s just as well to stick to that practice.

 Representing strings is only the first stage. There’s also the matter of what you
do with strings. We’ll turn now to an exploration of some of Ruby’s important
string operations.

10.1.2 String operations

To put it non-technically, you can do a ton of stuff with strings. Here, we’ll look at
a selection of string-manipulation methods.

 It’s a good idea to keep the following general points in mind as we get deeper
into the study of strings:

■ Most of the string methods we’ll look at return a new String object, leaving
the original string itself unchanged.

■ A number of these methods, however, have bang versions that perform the
change on the original string instead of returning a new string.

■ A few non-bang methods perform changes on the original string. The
names of these methods make it clear that this is happening (such as
replace), even though there’s no ! on the name.

■ Some string methods return something other than a string—for example,
the to_i (to integer) conversion method.

Table 10.1 Summary of string quoting mechanisms

Token
Single- or

double-quoted
Example Print output

' Single 'You\'ll have to "escape" single
quotes.'

You’ll have to “escape” single
quotes.

" Double "You'll have to \"escape\" double
quotes."

You’ll have to “escape” double
quotes.

%q Single %q{'Single-quoted' example—no
escape needed.}

‘Single-quoted’ example—no
escape needed.

%Q Double %Q{"Double-quoted" example—no
escape needed..}

“Double-quoted” example—no
escape needed.

Working with strings 261
Another point to keep in mind is that discussion of several important string
methods will be postponed until after we’ve looked at regular expressions in
chapter 12. But we’ll cover the bulk of the string ground here, and put strings
through their paces: combining them, changing them, getting substrings from
them, and more.

Combining two (or more) strings
There are several techniques for combining strings. These techniques differ as to
whether the second string is permanently added to the first or whether a new,
third string is created out of the first two—in other words, whether the operation
changes the receiver.

 To create a new string consisting of two or more strings, you can use the + operator
(the syntactic sugar form of the + method) to run the original strings together. Here’s
what irb --simple-prompt has to say about adding strings:

>> "a" + "b"
=> "ab"
>> "a" + "b" + "c"
=> "abc"

The string you get back from + is always a new string. You can test this by assigning
a string to a variable, using it in a + operation, and checking to see what its value is
after the operation:

>> str = "Hi "
=> "Hi "
>> str + "there."
=> "Hi there."
>> str
=> "Hi "

The expression str + "there." evaluates to the new string “Hi there.” #1 but
leaves str unchanged #2.

 To add (append) a second string permanently to an existing string, use the <<
method, which also has a syntactic sugar, pseudo-operator form:

>> str = "Hi "
=> "Hi "
>> str << "there."
=> "Hi there."
>> str
=> "Hi there."

In this example, the original string str has had the new string appended to it, as
you can see from the evaluation of str at the end #1.

B

C

B

B
C

B

262 CHAPTER 10

Scalar objects
 Another way to combine strings is through string interpolation:

>> str = "Hi "
=> "Hi "
>> "#{str} there."
=> "Hi there."

The result is a new string: “Hi there.” String interpolation is a general-purpose tech-
nique, but you can use it for this kind of simple additive purpose, among others.

Replacing a string’s contents
To replace the contents of a string, you use replace. Again, the examples here are
geared for use in irb, where you’re shown the value of each expression as you
enter it:

>> str = "Hi there."
=> "Hi there."
>> str.replace("Good-bye.")
=> "Good-bye."
>> str
=> "Good-bye."

The final value of str #2 is “Good-bye.”, the string with which you have replaced #1
str’s original contents. Keep in mind that replacing a string’s contents isn’t the
same as creating a completely new string. str still refers to the same string, which
means other variables referring to that string will also reflect the change:

>> str = "Hi there."
=> "Hi there."
>> x = str
=> "Hi there."
>> str.replace("Good-bye.")
=> "Good-bye."
>> x
=> "Good-bye."

In this example, str and x refer to one and the same string object; that’s estab-
lished when you assign str to x #1. When that one and only string object has its
contents replaced via a method call on str #2, the string’s new contents are also
reflected in x.

 replace thus lets you change a string in such a way that all existing references
to it (variables) still refer to the same string. It’s an example of a non-bang
method that changes an object in place. The name, replace, conveys this fact,
without the need for the exclamation point. (Also, a bang method usually exists in
a pair with a non-bang version, and it’s impossible to imagine what “replacing the
contents of a string object” without changing the string would even mean.)

B

C

B

C

C B

B
C

Working with strings 263
 We’ll look next at several useful methods for manipulating and massaging
strings. We won’t examine everything that strings can do, but we’ll discuss some of
the most important string facilities and behaviors in Ruby.

Massaging strings
Ruby strings have a number of methods, all with logical names, that let you mas-
sage and tweak strings. Some of the most common are summarized in table 10.2.
All of these methods have bang (!) equivalents so that you can perform the oper-
ation in place on an existing string via a variable.

As you’ll see if you choose any of these methods and try it in irb, the non-bang ver-
sion returns a new string, and the bang version modifies the old string in place.
Here’s an example, using reverse and its bang counterpart:

>> str = "Hello"
=> "Hello"
>> str.reverse
=> "olleH"
>> str
=> "Hello"
>> str.reverse!
=> "olleH"
>> str
=> "olleH"

Table 10.2 Miscellaneous string manipulations

Method Example Result

capitalize "ruby".capitalize "Ruby"

upcase "cobol".upcase "COBOL"

downcase "UNIX".downcase "unix"

swapcase "rUBY".swapcase "Ruby"

strip " lose the outer spaces " "lose the outer spaces"

lstrip " lose the left spaces " "lose the left spaces "

rstrip " lose the right spaces " " lose the right spaces"

chop "remove last character" "remove last characte"

chomp "remove training newline\n" "remove trailing newline"

reverse " gnirts eht esrever" "reverse the string"

B

C

264 CHAPTER 10

Scalar objects
The first reverse operation #1 reverses the string; irb reports the value of the
expression as “olleH”. But the string is still “Hello”, as you can see when you ask
irb to show you the value of str. The bang version, reverse! #2, does change the
original string permanently—as you can see, again, by asking irb to display str.

 Meanwhile, we'll look next at working with substrings and individual characters.

Grabbing characters and substrings
Strings come with a pair of get/set methods: the ubiquitous [] and []= methods. To
grab the nth character of a string, you use [] with an index (starting at zero). But
beware: You get back a number, not a character. Specifically, you get the character’s
ASCII value. For example, here’s how to get the ASCII value of the character “c”:

>> "abc"[2]
=> 99

You can turn this number back into a character with the chr method:

>> "abc"[2].chr
=> "c"

You can also use a negative index. If you do, the index is counted from the right
side of the string:

>> "abc"[-2].chr
=> "b"

(You’ll see more negative, right-hand indexing when we look in detail at arrays in
chapter 11.)

 You can grab a substring of a string by giving two arguments to [], in which
case the first argument is the starting index and the second argument is the
length of the substring you want. For example, to get a four-character substring
starting at the sixth character (remember, strings are zero-indexed), you do this:

>> "This is a string"[5,4]
=> "is a"

TIP USING SUBSTRING SYNTAX TO GET ONE CHARACTER Because you can
grab substrings of any length using the two-argument form of String#[],
you can grab any one character (without having to convert it back from
an ASCII value) by requesting a substring of length one: for example,
"abc"[2,1] is “c”.

The string set method []= works the opposite way from []: It changes the string
(in place) by inserting the substring you specify into the position you give. It also
has a two-argument form. Here it is in action:

B

C

Working with strings 265
>> s = "This is a string."
=> "This is a string."
>> s[-1] = "!"
=> "!"
>> s
=> "This is a string!"
>> s[2,2] = "at"
=> "at"
>> s
=> "That is a string!"

This example includes two set operations; after each one, we print out the string.
The first #1 changes the string’s last character from . (period) to ! (exclamation
point). The second #2 changes the third and fourth characters from is to at. The
result is that evaluating s now results in “That is a string!”

 These techniques give you fine-grained control over the contents of strings,
enabling you to do just about any manipulation you’re likely to need.

 This survey has given you a good foundation in string manipulation, although
by no means have we exhausted the topic. Here, as usual, irb is your friend. Test
things, experiment, and see how the string methods interact with each other.

 Meanwhile, we’re going to move on to the matter of string comparisons.

10.1.3 Comparing strings

As you know, Ruby objects can be compared in numerous ways; what the compari-
sons mean, as well as which are available, varies from object to object. Strings have
a full set of comparison capabilities; strings are comparable, in the technical sense
that the class String mixes in the Comparable module.

 We’ll look here at the various kinds of comparisons you can perform between
one string and another.

Comparing two strings for equality
Like Ruby objects in general, strings have several methods for testing equality.
The most common one is == (double equals sign), which comes with syntactic
sugar allowing you to use it like an operator. This method tests for equality of
string content:

>> "string" == "string"
=> true
>> "string" == "house"
=> false

The two literal "string" strings are different objects, but they have the same con-
tent. Therefore, they pass the == test.

B

C

B
C

266 CHAPTER 10

Scalar objects
 Another equality-test method, String#eql?, tests two strings for identical con-
tent. In practice, it usually returns the same result as ==. (There are subtle differ-
ences in the implementations of these two methods, but you can use either. You’ll
find that == is more common.) A third method, String#equal?, tests whether two
strings are the same object:

>> "a" == "a"
=> true
>> "a".equal?("a")
=> false

The first test succeeds because the two strings have the same contents. The second
test fails, because the first string isn’t the same object as the second string. This is
a good reminder of the fact that strings that appear identical to the eye may, to
Ruby, have different object identities.

String comparison and ordering
As officially comparable objects, strings define a <=> method; hanging off this
method are the usual comparison pseudo-operators (the methods whose syntactic
sugar representation makes them look like operators). One of these methods is
the == method we’ve already encountered. The others, in a similar vein, compare
strings based on alphabetical/ASCII order:

>> "a" <=> "b"
=> -1
>> "b" > "a"
=> true
>> "a" > "A"
=> true
>> "." > ","
=> true

Remember that the spaceship method/operator returns -1 if the right object is
greater, 1 if the left object is greater, and 0 if the two objects are equal. In the first
case in the sequence above, it returns -1, because the string “b” is greater than the
string “a”. However, “a” is greater than “A”, because the order is done by ASCII
value, and the ASCII values for “a” and “A” are 97 and 65, respectively. Similarly,
the string “.” is greater than “,” because the ASCII value for a period is 46 and that
for a comma is 44.

 At this point, we’ll leave strings behind—although you’ll continue to see them
all over the place—and turn our attention to symbols. Symbols, as you’ll see, are a
close cousin of strings.

Symbols and their uses 267
10.2 Symbols and their uses

Symbols are instances of the built-in Ruby class Symbol. They have a literal construc-
tor: the leading colon. You can always recognize a symbol literal (and distinguish it
from a string, a variable name, a method name, or anything else) by this token:

:a
:book
:"Here's how to make a symbol with spaces in it."

You can also create a symbol programmatically, by calling the to_sym method (also
known by the synonym intern) on a string, as irb shows:

>> "a".to_sym
=> :a
>> "Converting string to symbol with intern....".intern
=> :"Converting string to symbol with intern...."

Note the tell-tale leading colons on the evaluation results returned by irb.
 You can also easily convert a symbol to a string:

>> :a.to_s
=> "a"

These examples illustrate how closely related symbols are to strings. Indeed they
are related, in that they share responsibility for representing units of text. How-
ever, strings and symbols differ in some important ways.

10.2.1 Key differences between symbols and strings

One major difference between symbols and strings is that only one symbol object
can exist for any given unit of text. Every time you see the notation for a particular
symbol (:a), you’re seeing the same symbol object represented. That differs from the
situation with strings. If you see two identical-looking string literals

"a"
"a"

you’re seeing two different string objects (as the string comparison examples in
section 10.1.3 demonstrated). With symbols, any two that look the same are the
same—the same object. You can test this with the equal? comparison method,
which returns true only if both the method’s receiver and its argument are the
same object:

>> :a.equal?(:a)
=> true
>> "a".equal?("a")
=> false

268 CHAPTER 10

Scalar objects
It’s true that two similar-looking symbol literals are the same object but false that
two similar-looking string literals are.

 Another important difference between strings and symbols is that symbols,
unlike strings, are immutable; you can’t add, remove, or change parts of a symbol.
The symbol :abc is always a different symbol from :a, and you can’t add :bc to :a
to get :abc. Strings are different: You can add "bc" to "a", as we’ve seen.

 Symbols have a reputation as “weird strings,” because they’re string-like in
many ways but also exhibit these differences. Why do they exist? In part because
they’re an element of the system Ruby uses internally to store and retrieve identi-
fiers. When you assign something to a variable—say, with x=1—Ruby creates a cor-
responding symbol: in this case, the symbol :x. The language uses symbols
internally but also lets programmers see and use them.

 This situation can lead to confusion. Ruby’s use of symbols is separate from
yours. In your program, the symbol :x and the variable x aren’t connected. The
name of the variable is, in an informal sense, a “symbol”—the letter x—but it’s not
a symbol object. If you’re interested in how Ruby defines and uses symbol objects
internally, you should find out about it. (You might start with the archives of the
ruby-talk mailing list, where symbols are discussed frequently; see the appendix.)
But you don’t need to know the internals to use symbols; and if you do study the
internals, you need to keep that knowledge separate from symbol semantics as
they apply to your programs.

 Think of it this way: Ruby may use the symbol :x, and you may use the symbol :x,
but it’s also true that Ruby may use the number 100, and so may you. You don’t have
to know how Ruby uses 100 internally in order to use 100 in your code. It’s worth
knowing, however, that symbols are efficient in terms of memory usage and pro-
cessing time. Strings, on the other hand, come with an entourage of behaviors and
capabilities (like being made longer than they started out, having their contents
changed, and so on) that makes them more expensive to maintain and process.

 You’ll often see symbol literals used as arguments to methods and, especially,
as hash keys. Hashes that serve as arguments to methods (a common Rails sce-
nario) are a doubly likely candidate for symbol usage.

10.2.2 Rails-style method arguments, revisited

Symbols play a big role in the kind of programming-as-configuration used in Rails,
which we looked at in chapter 3. In a case like this

class Work < ActiveRecord::Base
ddbelongs_to :composer
dd# etc.

Symbols and their uses 269
:composer (the thing works belong to) is represented by a symbol. This symbol is
an argument to the belongs_to method.

 As noted in chapter 3, because you can get a symbol from a string with to_sym
or intern, you can theoretically write the previous method call like this:

belongs_to "title".intern

This is, of course, not recommended. But it’s not as absurd a point to make as it
may at first appear. You should recognize intern when you come across it. Also,
not every Ruby programmer always opts for literal constructs (like :title) over
programmatic ones (like "title".intern). You’ll often see people use

a = Array.new

rather than

a = []

even though the square brackets (the literal array constructor) achieve the same goal
of creating a new, empty array. (You’ll learn about arrays in detail in chapter 11.)

 In the case of method calls in Rails applications, a consensus exists on the syn-
tax of method calls whose arguments are symbols. You’ll probably never see
intern or to_sym used in such a context. Using symbol literals is second nature in
Rails development. But you should be aware of exactly what you’re seeing and
where it fits into the Ruby landscape.

 Among other places, you’ll see (and have already seen, in part 1) symbols in
Rails method calls in constructs like this:

<%= link_to "Click here",
ddddddddd:controller => "book",
ddddddddd:action => "show",
ddddddddd:id => book.id %>

This is an example of a method argument hash: Each of the symbols is a key, and
each of the values to the right is a value. This style of method call is common in Rails
application code. (We’ll look further at method argument hashes in chapter 11,
once we’ve discussed hashes.)

 Symbols are fast, and they have a sleek look that adds to the cleanness of code.
Rails usage favors them in many contexts, so it’s a good idea (for that reason as
well as for the sake of your general Ruby literacy) to become acquainted with
them on an equal footing with strings.

 Returning to the scalar world at large, let’s move on to a realm of objects that are
as fundamental to Ruby, and to programming in general, as any: numerical objects.

270 CHAPTER 10

Scalar objects
10.3 Numerical objects

In Ruby, numbers are objects. You can send messages to them, just as you can to
any object:

n = 98.6
m = n.round
puts m

x = 12
if x.zero?
ddputs "x is zero"
else
ddputs "x is not zero"
end

puts "The ASCII character equivalent of 97 is #{97.chr}"

As you’ll see if you run this code, floating-point numbers know how to round
themselves #1 (up or down). Numbers in general know #2 whether they are zero.
And integers can convert themselves to the character that corresponds to their
ASCII value #3.

 Numbers are objects; therefore, they have classes—a whole family tree of them.

10.3.1 Numerical classes

Several classes make up the numerical landscape. Figure 10.1 shows a slightly sim-
plified view (mixed-in modules aren’t shown) of those classes, illustrating the
inheritance relations among them.

 The top class in the hierarchy of numerical
classes is Numeric; all the others descend from it.
The first branch in the tree is between floating-
point and integral numbers: the Float and Integer
classes. Integers are broken into two classes: Fixnum
and Bignum. (Bignums, as you may surmise, are very
large integers. When you use or calculate an inte-
ger that’s big enough to be a Bignum, Ruby han-
dles the conversion automatically for you; you
don’t have to worry about it.)

B

C

D

B C

D

Numeric

Float

Fixnum

Integer

Bignum

Figure 10.1
Numerical class hierarchy

Numerical objects 271
10.3.2 Performing arithmetic operations

For the most part, numbers in Ruby behave as the rules of arithmetic and arith-
metic notation lead you to expect. The examples in table 10.3 should be reassur-
ing in their boringness.

Note that when you divide integers, the result will always be an integer. If you want
floating-point division, you have to feed Ruby floating-point numbers (even if all
you’re doing is adding .0 to the end of an integer).

 Ruby also lets you manipulate numbers in non-decimal bases. Hexadecimal
integers are indicated by a leading 0x. Here are some simple-prompt irb evalua-
tions of hexadecimal integer expressions:

>> 0x12
=> 18
>> 0x12 + 12
=> 30

The second 12 in the last expression #1 is a decimal 12; the 0x prefix applies only
to the numbers it appears on.

 Integers beginning with 0 are interpreted as octal (base eight):

>> 012
=> 10
>> 012 + 12
=> 22
>> 012 + 0x12
=> 28

You can also use the to_i method of strings to convert numbers in any base to
decimal. To perform such a conversion, you need to supply the base you want to

Table 10.3 Common arithmetic expressions and their evaluative results

Expression Result Comments

1 + 1 2 Addition

10/5 2 Integer division

10/3 3 Integer division (no automatic
floating-point conversion)

10.0/3.0 3.3333333333 Floating-point division

1.2 + 3.4 4.6 Floating-point addition

-12 - -7 -5 Subtraction

10 % 3 1 Modulo (remainder)

B

B

272 CHAPTER 10

Scalar objects
convert from as an argument to to_i. The string is then interpreted as an integer
in that base, and the whole expression returns the decimal equivalent. You can
use any base from 2 to 36, inclusive. Here are some examples:

>> "10".to_i(17)
=> 17
>> "12345".to_i(13)
=> 33519
>> "ruby".to_i(35)
=> 1194794

Keep in mind that most of the arithmetic operators you see in Ruby are methods.
They don’t look that way because of the operator-like syntactic sugar that Ruby
gives them. But they really are methods, and they can be called as methods:

>> 1.+(1)
=> 2
>> 12./(3)
=> 4
>> -12.-(-7)
=> -5

In practice, no one writes arithmetic operations that way; you’ll always see the syn-
tactic sugar equivalents (1 + 1 and so forth). But seeing examples of the method-
call form is a good reminder of the fact that they are methods—and also of the
fact that you if you define, say, a method called + in a class of your own, you can
use the operator syntactic sugar. (And if you see arithmetic operators behaving
weirdly, it may be that someone has redefined their underlying methods.)

 We’ll turn now to the next and last category of scalar objects we’ll discuss in
this chapter: time and date objects.

10.4 Times and dates

Ruby gives you lots of ways to manipulates times and dates—and Rails enhances
and extends Ruby’s time and date facilities with a variety of new methods. As a
Rails developer, you’re likely to use those added-on methods more than the raw
Ruby ones. Still, you should gain some familiarity with Ruby’s date and time librar-
ies, for the sake of being able to use them when you need them as well as for the
sake of understanding where the Rails methods come from.

 Times and dates are manipulated through three classes: Time, Date, and
DateTime. In order to reap their full benefits, you have to pull one or both of the
date and time libraries into your program or irb session:

require 'date'
require 'time'

Times and dates 273
Rails automatically loads these for you, but in your own non-Rails code you have to
load them yourself. (At some point in the future, all the available date- and time-
related functionality may be unified into one library and made available to pro-
grams by default. But for the moment, you have to do the require operations.)

 The full range of date and time manipulations available to you is impressive.
Want to know what the day we call April 24, 1705 would have been called in England
prior to the calendar reform of 1752? Just load the date package, and then ask

>> require 'date'
=> true
>> Date.parse("April 24 1705").england.strftime("%B %d %Y")
=> "April 13 1705"

(Note that a successful require operation returns true. As always, irb explicitly
shows the return value of every expression you type into it.)

 Let that example stand in for all the fancy things the various date and/or time
classes let you do. On the simpler side, here are some of the potentially useful
date and time techniques you may find yourself using:

>> require 'date'
=> true
>> d = Date.today
=> #<Date: 4907505/2,0,2299161>
>> puts d
2006-01-17

This snippet outputs two different string representations of the Date object d. The
first is the inspect string, which shows that the Date object has been successfully cre-
ated and returned. The second comes from the date’s to_s method, which is auto-
matically called by puts. The to_s string, as you can see, is more human-readable.

 Date objects respond to both a << method and a >> method. They advance or
rewind the date by a number of months; the number is indicated in the argu-
ment. For example

puts d << 2
puts d >> 5

gives you the date two months before and five months after the date stored in d:

2005-11-17
2006-06-17

You can also create and manipulate Time objects. A new Time object tells you,
when asked, its year, month, day, minute, second, and usec (microsecond) values.
Here’s an irb session where a Time object is created and queried:

274 CHAPTER 10

Scalar objects
>> t = Time.new
=> Tue Jan 17 17:51:04 PST 2006
>> t.year
=> 2006
>> t.month
=> 1
>> t.day
=> 17
>> t.hour
=> 17
>> t.min
=> 51
>> t.sec
=> 4
>> t.usec
=> 377285

Time objects also let you display them or store them as strings, based on a UNIX-
style format string (basically, a template that specifies how you want the date for-
matted). The method that does this is strftime.

>> t.strftime("%m-%d-%Y")
=> "01-17-2006"

In the example, the format specifiers used are %m (two-digit month), %d (two-digit
day), and %Y (four-digit year). The hyphens between the fields are reproduced in
the output as literal hyphens. Some useful format specifiers for strftime are
shown in table 10.4.

Table 10.4 Common time and date format specifiers

Specifier Description

%Y Year (four digits)

%y Year (last two digits)

%b, %B Short month, full month

%m Month (number)

%d Day of month (left-padded with zeros)

%e Day of month (left-padded with blanks)

%a, %A Short day name, full day name

%H,%I Hour (24-hour clock), hour (12-hour clock)

%M Minute

%S Second

Summary 275
WARNING TIME FORMATS CAN BE LOCALE-SPECIFIC The %c and %x specifiers, which
involve convenience combinations of other specifiers, may differ from
one locale to another; for instance, some systems put the day before the
month in the %x format. This is good, because it means a particular coun-
try’s style isn’t hard-coded into these formats. But you do need to be
aware of it, so you don’t count on specific behavior that you may not
always get. When in doubt, you can use a format string made up of
smaller specifiers.

Here are some more examples of time format specifiers in action:

>> t.strftime("Today is %x")
=> "Today is 01/17/06"
>> t.strftime("Otherwise known as %d-%b-%y")
=> "Otherwise known as 17-Jan-06"
>> t.strftime("Or even day %e of %B, %Y.")
=> "Or even day 17 of January, 2006."
>> t.strftime("The time is %H:%m.")
=> "The time is 17:01."

Many more date and time representations and manipulations are possible in Ruby.
A third class beyond Date and Time, DateTime, adds more methods and facilities.
It’s a rich programming area, although also a vexing one; there’s some sentiment
among Ruby programmers that it would make sense to unify some or all of the
functionality currently spread across three classes into one class, if possible. Some
find it incongruous, too, that date and time facilities are split between those that
are available by default and those that have to be loaded at runtime. Wherever
these and other discussions lead, the functionality is there if and when you wish to
explore it.

 We’ve reached the end of our survey of scalar objects in Ruby. Next, in chap-
ter 11, we’ll look at collections and container objects.

10.5 Summary

In this chapter, you’ve seen the basics of the most common and important scalar
objects in Ruby: strings, symbols, numerical objects, and time/date objects. Some
of these topics involved consolidating points made earlier in the book; others

%c Equivalent to "%a %b %d %H:%M:%S %Y"

%x Equivalent to "%m/%d/%y"

Table 10.4 Common time and date format specifiers (continued)

Specifier Description

276 CHAPTER 10

Scalar objects
were completely new in this chapter. At each point, we’ve examined a selection of
important, common methods. We’ve also looked at how some of the scalar-object
classes relate to each other. Strings and symbols both represent text; and though
they are different kinds of objects, conversions from one to the other are easy and
common. Numbers and strings interact, too. Conversions aren’t automatic, as
they are (for example) in Perl; but Ruby supplies conversion methods to go from
string to numerical object and back, as well as ways to convert strings to integers in
as many bases as the 10 digits and 26 letters of the alphabet can accommodate.

 Time and date objects have a foot in both the string and numerical camps. You
can perform calculations on them, such as adding n months to a given date; and
you can also put them through their paces as strings, using techniques like the
Time#strftime method in conjunction with output format specifiers.

 The world of scalar objects in Ruby is rich and dynamic. Moreover, most of
what you do with both Ruby and Rails will spring from what you have learned here
about scalar objects: direct manipulation of these objects, manipulation of objects
that share some of their traits (for example, CGI parameters whose contents are
strings), or collections of multiple objects in these categories. Scalar objects aren’t
everything; but they lie at the root of virtually everything else. The tour we’ve
taken of important scalar classes and methods in this chapter will stand you in
good stead as we proceed, next, to look at collections and containers—the two-
(and sometimes more) dimensional citizens of Ruby’s object world.

Collections, containers,
and enumerability
In this chapter:
■ Arrays
■ Hashes
■ The Enumerable module
■ Filtering, transforming, and sorting collections
277

278 CHAPTER 11

Collections, containers, and enumerability
In programming generally, and certainly in Rails applications, you deal not only
with individual objects but with collections of objects. You search through collections
to find an object that matches certain criteria (like an Edition object containing a
particular Work); you sort collections for on-screen presentation in a list; you filter
collections to include or exclude particular items; and so forth. All of these opera-
tions, and similar ones, depend on objects being accessible in collections.

 Ruby represents collections of objects by putting them inside container objects.
In Ruby, two built-in classes dominate the container-object landscape: arrays and
hashes. We’ll start this chapter by looking at the Array and Hash classes: first in com-
parison with each other, to establish an overall understanding, and then separately.
We’ll then examine a built-in Ruby module called Enumerable, which encapsulates
a great deal of the functionality of arrays, hashes, and other collection objects.
Finally, we’ll consider the facilities available for sorting object collections.

 Keep in mind that these collections are, themselves, objects. You send them
messages, assign them to variables, and so forth, in normal object fashion. They
just have an extra dimension, beyond the scalar.

11.1 Arrays and hashes compared

An array is an ordered collection of objects, ordered meaning that you can select
objects from the collection based on a consistent numerical index. You’ll have
noticed that we’ve already used arrays in some of the examples earlier in the
book, going back all the way to our first Rails application walk-through. It’s hard
not to use arrays in Ruby.

 Hashes are unordered collections, meaning that they don’t have a sense of what
their first or second or nth element is. Instead, they store objects in pairs, each pair
consisting of a key and a value. You retrieve a value by means of the key. Hashes (or
similar data storage types) are sometimes called dictionaries or associative arrays in
other languages. They offer a tremendously—sometimes surprisingly—powerful
way of storing and retrieving data.

 Arrays and hashes are closely connected. An array is, in a sense, a hash, where
the keys are consecutive integers. Hashes are, in a sense, arrays, where the indices
are allowed to be anything, not just integers. Transformations of various kinds
between the two are common. Arrays “win,” in the sense that they are the more
basic and fundamental of the two. Quite a few operations that you perform on
hashes produce arrays. For instance, if you select key-value pairs based on some cri-
terion (such as selecting all pairs where the value is a capitalized string), your selec-
tion operation will hand you back an array of the results. When you’re dealing with

Using arrays 279
object-collections of almost any kind, all roads lead to the array: the simple, linear,
numbered collection of objects.

 Still, hashes play at least two huge roles in Ruby and Rails. Some of the founda-
tional Ruby libraries upon which Rails is built use hashes to pass data around; in
particular, the Ruby CGI library makes your CGI form data available to you
through a hash. To get at the values for the form-fields, you have to know how a
hash works. The Rails framework, too, makes heavy use of hashes. A large number
of the most common methods used in writing Rails applications take hashes as
their arguments. (You’ve seen glimpses of this already, in the discussion of symbols
in the previous chapter; you’ll see it again here, from the hash perspective.) To
call these methods correctly, you have to know how to write a hash.

 In the next two sections, we’ll look at arrays and hashes in depth. Let’s start
with arrays.

11.2 Using arrays

Arrays are the bread-and-butter way to handle collections of objects. An array is an
object whose job is to store other objects.

 Arrays are ordered collections; you can get at their contents by the use of numeri-
cal indexes. The contents of an array always remain in the same order, unless you
change it.

11.2.1 Creating a new array

There are two ways to create a new array. First, you can use the new method:

a = Array.new

You can then add objects to the array (using techniques we’ll look at later).
 The other way to create an array is by using the literal array constructor []

(square brackets):

a = []

When you use the literal constructor, you can also put objects into the array at the
same time you create it:

a = [1,2,"three",4, []]

(Notice that the last element in this array is another array. That’s perfectly legiti-
mate; you can nest arrays to as many levels as you wish.)

280 CHAPTER 11

Collections, containers, and enumerability
 The advantage of using Array.new rather than the literal array constructor is
that Array.new lets you specify the size of and, if you wish, initialize the contents of
the array. Here’s an irb exchange that illustrates both possibilities:

>> Array.new(3)
=> [nil, nil, nil]
>> Array.new(3,"abc")
=> ["abc", "abc", "abc"]

If you give one argument to Array.new #1, you get an array of the size you asked for,
with all elements set to nil. If you give two arguments #2, you get an array of the size
you asked for, with each element initialized to contain the second argument.

 You can even supply a code block to Array.new. In that case, the elements of
the array are initialized by repeated calls to the block:

>> n = 0
=> 0
>> Array.new(3) { n += 1; n * 10 }
=> [10, 20, 30]

In this example, the new array has a size of three. Each of the three elements is set
to the return value of the code block. The code inside the block #1, executed
three times, produces the values 10, 20, and 30—and those are the initial values in
the array #2.

 Pre-initializing arrays isn’t always necessary, because your arrays will grow as
you add elements to them. But if and when you need this functionality—and/or if
you see it in use and want to understand it—it’s there.

WARNING BE CAREFUL WITH DEFAULT ARRAY ELEMENTS When you initialize multi-
ple elements of an array using a second argument to Array.new—as in
Array.new(3, "abc")—all the elements of the array are initialized to the
same object. If you do a = Array.new(3,"abc"); a[0] << "def"; puts a[1],
the second element of the array is changed when you add def to the first
element, because they’re the same string object. To create an array that
inserts a different “abc” string into each slot, you should use
Array.new(3) { "abc" }. The code block runs three times, each time
generating a new string (same characters, different string object).

11.2.2 Inserting, retrieving, and removing array elements

Because an array is an ordered collection, any object you add to the array goes
either at the beginning, at the end, or somewhere in the middle. The most gen-
eral technique for inserting one or more items into an array is the setter method
[]= (square brackets and equal sign). This looks odd as a method name in the

B

C

B
C

B
C

B

C

Using arrays 281
middle of a paragraph like this, but thanks to its syntactic sugar equivalent, []=
works smoothly in practice.

 In order to use []=, you need to know that each item (or element) in an array
occupies a numbered position. The first element is at position zero (not position
one). The second element is at position one, and so forth.

 To insert an element with the []= method—using the syntactic sugar that
allows you to avoid the usual method-calling dot—you do this:

a = []
a[0] = "first"

In this example, you end up with a one-element array whose first (and only) ele-
ment is the string “first”.

 Once you have objects in an array, you can retrieve those objects by using the []
method, which is the getter equivalent of the []= setter method:

a = [1,2,3,4,5]
p a[2]

Here, you ask for the third element (remember that the first element is at index 0,
not index 1), which is the integer 3.

 You can also perform these get-and-set methods on more than one element at
a time.

Setting or getting more than one array element at a time
If you give either Array#[] or Array#[]= (the get or set method) a second argu-
ment, it’s treated as a length—a number of elements to set or retrieve. In the case
of retrieval, the results are returned inside a new array.

 Here’s some irb dialogue, illustrating the multi-element operations of the []
and []= methods:

>> a = ["red","orange","yellow","purple","gray","indigo","violet"]
=> ["red", "orange", "yellow", "purple", "gray", "indigo", "violet"]
>> a[3,2]
=> ["purple", "gray"]
>> a[3,2] = "green", "blue"
=> ["green", "blue"]
>> a
=> ["red", "orange", "yellow", "green", "blue", "indigo", "violet"]

After initializing the array a, we grab #1 two elements, starting at index 3 (the
fourth element) of a. The two elements are returned in an array. Next, we set the
fourth and fifth elements, using the [3,2] notation #2, to new values; these new val-
ues are then present in the whole array #3 when we ask irb to display it at the end.

B

C

D

B

C
D

282 CHAPTER 11

Collections, containers, and enumerability
 You can perform operations on elements anywhere in an array. However, oper-
ations affecting, specifically, the beginnings and ends of arrays crop up most often.
Accordingly, a number of methods exist for the special purpose of adding items to,
or removing them from, the beginning or end of an array, as we’ll now see.

Special methods for manipulating the beginnings and ends of arrays
To add an object to the beginning of an array, you can use unshift. After this
operation

a = [1,2,3,4]
a.unshift(0)

the array a now looks like this: [0,1,2,3,4].
 To add an object to the end of an array, you use push. Doing this

a = [1,2,3,4]
a.push(5)

results in the array a having a fifth element: [1,2,3,4,5].
 You can also use a method called << (two less-than signs), which places an

object on the end of the array. << offers some syntactic sugar: You can use it with-
out the usual method-calling dot. The following code adds 5 as the fifth element
of a, just like the push operation in the last example:

a = [1,2,3,4]
a << 5

<< and push differ in that push can take more than one argument. This code

a = [1,2,3,4,5]
a.push(6,7,8)

adds three elements to a, resulting in: [1,2,3,4,5,6,7,8].
 Corresponding to unshift and push are their opposite numbers, shift and

pop. shift removes one object from the beginning of the array (thereby shifting
the remaining objects to the left by one position). pop removes an object from the
end of the array. shift and pop both return the array element that they have
removed, as this example shows:

a = [1,2,3,4,5]
print "The original array: "
p a
popped = a.pop
print "The popped item: "
puts popped
print "The new state of the array: "
p a

Using arrays 283
shifted = a.shift
print "The shifted item: "
puts shifted
print "The new state of the array: "
p a

The output is as follows:

The original array: [1, 2, 3, 4, 5]
The popped item: 5
The new state of the array: [1, 2, 3, 4]
The shifted item: 1
The new state of the array: [2, 3, 4]

As you can see from the running commentary in the output, the return value of
pop and shift is the item that was removed from the array. The array is perma-
nently changed by these operations; the elements are removed, not just referred
to or captured.

 We’ll turn next from manipulating one array to looking at ways to combine two
or more arrays.

11.2.3 Combining arrays with other arrays

Several methods allow you to combine multiple arrays in various ways—something
that, it turns out, is common and useful when you begin manipulating lots of data
in lists. Remember that in every case, even though you’re dealing with two (or
more) arrays, one array is always the receiver of the message. The other arrays
involved in the operation are arguments to the method.

 To add the contents of array b to array a, you can use concat:

>> [1,2,3].concat([4,5,6])
=> [1, 2, 3, 4, 5, 6]

(Note that concat differs in an important way from push. Try replacing concat
with push in the example, and see what happens.)

 concat permanently changes the contents of its receiver. If you want to com-
bine two arrays into a third, new array, you can do so with the + method:

>> a = [1,2,3]
=> [1, 2, 3]
>> b = a + [4,5,6]
=> [1, 2, 3, 4, 5, 6]
>> a
=> [1, 2, 3] B

284 CHAPTER 11

Collections, containers, and enumerability
The receiver of the + message—in this case, the array a—remains unchanged by
the operation (as irb tells you #1).

 Another useful array-combining method is replace. As the name implies,
replace replaces the contents of one array with the contents of another:

>> a = [1,2,3]
=> [1, 2, 3]
>> a.replace([4,5,6])
=> [4, 5, 6]
>> a
=> [4, 5, 6]

The original contents of a are gone, replaced #1 by the contents of the argument
array [4,5,6]. Note that a replace operation is different from reassignment. If
you do this

a = [1,2,3]
a = [4,5,6]

the second assignment causes the variable a to refer to a completely different
array object than the first. That’s not the same as replacing the elements of the
same array object. This starts to matter, in particular, when you have another vari-
able that refers to the original array. It’s worth looking closely at what’s at stake:

>> a = [1,2,3]
=> [1, 2, 3]
>> b = a
=> [1, 2, 3]
>> a.replace([4,5,6])
=> [4, 5, 6]
>> b
=> [4, 5, 6]
>> a = [7,8,9]
=> [7, 8, 9]
>> b
=> [4, 5, 6]

Once you’ve performed the assignment of a to b #1, replacing the contents of a
means you’ve replaced the contents of b #2, because the two variables refer to the
same array. But when you reassign to a #3, you break the connection; a and b now
refer to different array objects: b to the same old array #4, a to a new one.

 No discussion of combining arrays would be complete without zip. zip does a
kind of parallel walk-through of two arrays, producing a third array containing
pairs of items taken from the original two:

>> [1,2,3].zip([4,5,6])
=> [[1, 4], [2, 5], [3, 6]]

B

B

C

D

E

B

B

B
C

D
E

Using arrays 285
Notice that the zipped array is an array of arrays. Each element in it is an array;
each of these little arrays contains one item from the first array (the receiver of
the zip message) and one from the second array (the argument to zip). Zipping
arrays can be handy if you have, say, names in one array and phone numbers in
another, and you want to print them out together. Be sure the two arrays are truly
synchronized as to the order of their elements, because zip doesn’t do any check-
ing for you; it just marches through the arrays and grabs pairs of items.

 In addition to combining multiple arrays, you can also transform individual
arrays to different forms. We’ll look next at techniques along these lines.

11.2.4 Array transformations

As you’ve just seen, Array#zip hands you back an array of arrays. Arrays of arrays
are a common sight. But sometimes, what you really want is just an array. Say you
have two partial arrays of numbers

a = [0,2,4,6]
b = [1,3,5,7]

and you want to zip or interweave them:

numbers = a.zip(b)

At this point, numbers is an array of arrays: [[0,1],[2,3],[4,5],[6,7]]. But what
you want is an array of numbers from 0 to 7.

 To achieve this, you can use flatten. Let’s rewind and pretend we did this in
the first place:

numbers = a.zip(b).flatten

flatten removes the nesting and leaves you with a flat array of the items that were
previously inside nested arrays. numbers is now [0,1,2,3,4,5,6,7]. Note that
flatten flattens completely, no matter how deeply nested the array is:

>> [1,2,[3,4,[5,6],7],[[[8,9]]]].flatten
=> [1, 2, 3, 4, 5, 6, 7, 8, 9]

All the nesting is removed, and only the bottom-level elements are left.

TIP FLATTENING INCREMENTALLY If you want to flatten incrementally—to
flatten some but not all of the levels of nesting inside an array—you can
install and use the flattenx package, available on the Ruby Application
Archive (see appendix).

Another array-transformation method is reverse, which does exactly what it says:

286 CHAPTER 11

Collections, containers, and enumerability
>>[1,2,3,4].reverse
=> [4, 3, 2, 1]

Like its string counterpart, Array#reverse also has a bang [!] version, which per-
manently reverses the array that calls it.

 Another important array transformation method is join. The return value of
join isn’t an array but a string, consisting of the string representation of all the
elements of the array strung together:

>> ["abc", "def", 123].join
=> "abcdef123"

join takes an optional argument; if given, the argument is placed between each
pair of elements:

>> ["abc", "def", 123].join(", ")
=> "abc, def, 123"

Joining with commas (or comma-space, as in the last example) is a fairly common
operation.

 You can also transform an array with uniq. uniq gives you a new array, consist-
ing of the elements of the original array with all duplicate elements removed:

>> [1,2,3,1,4,3,5,1].uniq
=> [1, 2, 3, 4, 5]

Duplicate status is determined by testing pairs of elements with the == method:
Any two elements for which the == test returns true are considered duplicates of
each other. uniq also has a bang version, uniq!, which removes duplicates perma-
nently from the original array.

 The methods we’ve looked at in this subsection involve direct, one-step, pre-
defined changes to arrays. You also have at your disposal a number of methods
that perform transformations on arrays by means of a code block—by iterating
through the array.

11.2.5 Array iteration, filtering, and querying

Array iterator methods generally return either a subset of the elements, information
about the array, or a new array based on element-by-element transformations of the
contents of the original array. In other words, they filter, query, and transform.

 The basis of all these operations is the underlying method each, which iterates
through the array and yields one item at a time to the code block. You’re ahead of
the game, having already seen each in action in simple iteration examples like this:

[1,2,3,4,5].each {|x| puts x * 10 }

Using arrays 287
As you saw in chapter 9, the action in calls to each is in the code block. The return
value of the whole method call is the receiver, unchanged.

 A useful variant of each is each_with_index, which yields two values to the
block each time through the array: the current array element and that element’s
numerical index (starting with 0). Here’s an example:

["a","b","c"].each_with_index {|x,i| puts "element #{i} is #{x}" }

The output of this code is as follows:

element 0 is a
element 1 is b
element 2 is c

Using each_with_index saves you the trouble of using an explicit loop variable to
keep track of iterations.

Array filtering operations
It’s common to want to filter a collection of objects based on some selection crite-
rion. For example, if you have a database of people registering for a conference,
and you want to send payment reminders to the people who haven’t paid, you can
filter a complete list based on payment status.

 Ruby provides rich facilities for filtering arrays and for searching arrays to find
one or more elements that match one or more criteria. We’ll look at several filter-
ing and searching methods here. All of them are iterators: They involve providing
a code block. The code block is the filter; you define your selection criteria (your
tests for inclusion or exclusion) inside the block. The return value of the entire
method is, depending on the method and on what it finds, either one object, in
cases where you specifically search for a single object; an array of objects that
match your criteria (possibly an empty array); or nil, indicating that the criteria
were not met.

 We’ll start with a one-object search: find. find locates the first element in an
array for which the code block, when called with that element as an argument,
returns true. For example, to find the first number greater than 5 in an array of
integers, you can use find like this:

>> [1,2,3,4,5,6,7,8,9,10].find {|n| n > 5 }
=> 6

find iterates through the array, yielding each element in turn to the block. If the
block returns anything with the Boolean value of true, the element yielded “wins,”
and find stops iterating. If find fails to find an element that passes the code-block
test, it returns nil. (Try changing n > 5 to n > 100 in the example, and you’ll see.)

288 CHAPTER 11

Collections, containers, and enumerability
It’s interesting to ponder the case where your array has nil as one of its elements,
and your code block looks for an element equal to nil:

[1,2,3,nil,4,5,6].find {|n| n.nil? }

(Note the use of the built-in nil? method, which returns true if its receiver is the
object nil.) In these circumstances, find always returns nil—whether the search
succeeds or fails! That means the test is useless; you can’t tell whether it suc-
ceeded. You can work around this situation with other techniques, such as the
include? method (listed in table 11.1, a little further on), with which you can find
out whether an array has nil as an element.

 Another common searching and filtering operation is find_all. find_all
returns a new array containing all the elements of the original array that match
the criteria in the code block, not just the first such element (as with find). If no
matching elements are found, find_all returns an empty array:

>> a = [1,2,3,4,5,6,7,8,9,10]
=> [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>> a.find_all {|item| item > 5 }
=> [6, 7, 8, 9, 10]
>> a.find_all {|item| item > 100 }
=> []

The first find_all operation returns an array of all the elements that pass the test
in the block: all elements that are greater than 5 #1. The second operation also
returns an array, this time an array of all the elements in the original array that are
greater than 10. There aren’t any, so an empty array is returned #2. (select is a
synonym for find_all; the two names can be used interchangeably.)

 Just as you can select items, so you can reject items: find out which elements of
an array do not return a true value when yielded to the block. Using the a array
from the previous example, you can do this:

>> a.reject {|item| item > 5 }
=> [1, 2, 3, 4, 5]

to get the array minus any and all elements that are greater than 5.

Array querying methods
Several methods allow you to gather information about an array from the array.
Table 11.1 shows some useful array query methods.

 With the exception of size, all the methods in table 11.1 return either true or
false. They differ in this respect from the selecting methods like find and
find_all, which return one or more elements from the array.

B

C

B

C

Using arrays 289
Arrays are the most basic container objects in Ruby. In and of themselves, they are
extremely useful. They also serve as the anchor or prototype for more complex
collection objects—not only in standard Ruby (which includes array-ish classes
like Matrix and Set), but also in various Ruby programs and libraries. Here, we’re
going to pursue the study of collections and containers by sliding over for a little
while to ActiveRecord and looking at how that library’s collection objects work—
and what lessons in Ruby can be gleaned from their design.

11.2.6 Ruby lessons from ActiveRecord collections

Some programs create their own container objects or classes, endowed with capa-
bilities that suit a special purpose. These special-purpose containers often have a
lot in common with arrays; they frequently use arrays to implement their special
behavior, under the hood.

 For example, say you’re writing a program that models a deck of cards. A deck
of cards and a plain-vanilla Ruby array have a lot in common. You can add ele-
ments (cards), remove elements, search the collection on various criteria, and so
forth. At the same time, however, you may want a deck of cards to do things that
not every array can do:

deck = DeckOfCards.new
deck.jokers = 2
deck.shuffle
deck.cut

You can implement the DeckOfCards class as a subclass of Array, with new meth-
ods added and old ones redefined. Or you can create an array for each instance
of DeckOfCards, held in an instance variable where the actual business of the deck
is conducted:

Table 11.1 Summary of common array query methods

Method name/sample call Meaning

a.size (synonym: length) Number of elements in the array

a.empty? True if a is an empty array; false if it has any elements

a.include?(item) True if the array includes items; false otherwise

a.any? {|item| test } True if any item in the array returns true for the block;
false otherwise

a.all? {|item| test } True if every item in the array returns true for the block;
false otherwise

290 CHAPTER 11

Collections, containers, and enumerability
class DeckOfCards
 def initialize
 @cards = []
 # etc.
 end

 def jokers=(n)
 n.times { @cards << Joker.new }
 end
 # etc.
end

The point of this example isn’t to steer our discussion toward modeling a deck of
cards but to make the point that particular domains have particular characteristics
and needs that can be addressed through creative, adroit use of basic Ruby classes.

 Handling collections of objects in ActiveRecord provides an interesting case, a
case where the study of an area of Rails design can shed light on the possibilities
inherent in Ruby.

Automatic collections from associations
The has_many association between two ActiveRecord models is expressed through
collection semantics. For example, given this

class Work < ActiveRecord::Base
 has_many :editions

every instance of class Work will have its own collection of Edition objects, avail-
able to it through the automatically created editions method. That collection is,
in many respects, an array—but it’s an array with strong opinions about what its
role is and what sorts of operations it should be involved in. You can’t add objects
to it at will; it literally won’t let you. The following example shows a transcript of a
console session from the music store application, in which I try to do unaccept-
able things (with some of the verbose irb output trimmed down):

$ ruby script/console
Loading development environment.

>> w = Work.find(1)
=> #<Work:0x2358fec>
>> e = w.editions
=> [#<Edition:0x2354f78>, ...]
>> e.class
=> Array
>> e.push("Adding a string to the Editions collection!")
ActiveRecord::AssociationTypeMismatch: Edition expected, got String

Assuming existence
of Joker class

B

C

D

Using arrays 291
The code starts by grabbing a Work object and getting from it the full list of its
editions #1. The editions collection reports its class as Array #2. However, the
collection of editions refuses to accept a string as an element: When you try to
push a string onto the collection, you get a fatal error #3.

 This is a good illustration of the fact that a Ruby object (in this case, a collec-
tion of editions) isn’t constrained to behave exactly the way a default or vanilla
instance of its class would behave. For Ruby objects, including objects that house
other objects, being created is just the beginning. What matters is how the object
gets shaped and used down the road. ActiveRecord collections consider them-
selves instances of Array, but they have special knowledge and behaviors that dif-
ferentiate them from arrays in general.

 This is a great example of the Ruby philosophy bearing fruit with practical
results.

Searching and filtering, ActiveRecord-style
ActiveRecord’s approach to finding elements in collections is also instructive. At a
general level, you can perform find operations on the entire existing set of
records for any model you’ve defined. Here’s an example:

Work.find(:all)
Work.find_by_title("Sonata")

You’re operating at the class (and class method) level: You’re looking for all existing
objects (corresponding to database records, under the hood) of the given class.

 A couple of points are noteworthy here. First, ActiveRecord uses find(:all)
rather than find_all. (Actually, either will work, but find_all is considered old-
style usage and is likely to disappear from future versions of ActiveRecord.) Sec-
ond, note the call to the method find_by_title. That method is created
automatically, because instances of Work have title attributes. This is another
example of the Rails framework giving you a good return on your investment: In
return for creating a database field called title, you get a method that lets you
search specifically on that field.

 find(:all) and its close relative find(:first) can both be supplied with condi-
tions, which filter the results for you. These conditions are written as SQL frag-
ments, using the kind of expression you use in an SQL query to narrow a SELECT
operation. For example, to find all works whose titles start with the word The (The
Rite of Spring, The Lark Ascending, and so on), you can do this:

Work.find(:all, :conditions => "title like 'The %'")

B C

D

292 CHAPTER 11

Collections, containers, and enumerability
To find only the first such work, use this:

Work.find(:first, :conditions => "title like 'The %'")

It’s always possible to accomplish this kind of find operation without SQL, through
the use of pure Ruby array operations:

Work.find(:all).select {|work| /^The /.match(work.title) }

However, this approach is less efficient and almost certainly slower than the SQL-
fragment approach, because it involves creating an array of all existing works and
then filtering that array. Providing an explicit SQL fragment allows an optimiza-
tion: The database engine can do the sifting and searching, presumably in a more
efficient way. On the other hand, sometimes you need the ability to program a
selection algorithm using Ruby’s resources—or you don’t mind a small slowdown
in exchange for having the code be entirely in Ruby. You have to decide, based on
each case, which approach is best for this kind of operation.

 What you see here is the creation of a parallel universe of collection searching
and filtering—parallel but not identical to the facilities provided for Ruby arrays.
The syntax is different from plain Ruby syntax, but it meshes with Rails style and
with the specific searching needs of ActiveRecord models.

 Like arrays, hashes have popped up here and there in our discussions. Now,
we’ll look at them in detail.

11.3 Hashes

Like an array, a hash is a collection of objects. Unlike an array, a hash is an
unordered collection: There is no such thing as the first or last or third-from-last
item in a hash. Instead, a hash consists of key-value pairs. Hashes let you perform
lookup operations based on keys.

 A typical use of a hash is to store complete strings along with their abbrevia-
tions. Here’s a hash containing a selection of names and two-letter state abbrevia-
tions, along with some code that exercises it. (The => operator connects a key on
the left with the value corresponding to it on the right.)

state_hash = { "Connecticut" => "CT",
 "Delaware" => "DE",
 "New Jersey" => "NJ",
 "Virginia" => "VA" }

print "Enter the name of a state: "
state = gets.chomp
abbr = state_hash[state]
puts "The abbreviation is #{abbr}."

Hashes 293
When you run this snippet (assuming you enter one of the states defined in the
hash), you see the abbreviation.

 This example involves creating a hash, using hash literal syntax, and assigning
it to a variable. Let’s back-and-fill by looking in detail at how hashes are created.

11.3.1 Creating a new hash

There are three ways to create a hash. One is by means of the literal hash con-
structor, curly braces ({}); this is what we did in the last example. The literal hash
constructor is convenient when you have values you wish to hash that aren’t going
to change; you’re going to type them into the program file once and refer to
them from the program. State abbreviations are a good example.

 You can also create an empty hash with the literal constructor:

h = {}

You’d presumably want to add items to the empty hash at some point; techniques
for doing so will be forthcoming in section 11.3.2.

 The second way to create a hash is with the traditional new constructor:

Hash.new

This always creates an empty hash. However, if you provide an argument to
Hash.new, it’s treated as the default value for nonexistent hash keys. (We’ll return
to this point after looking at key/value insertion and retrieval.)

 The third way to create a hash involves another class method of the Hash class:
the method [] (square brackets). You can put key-value pairs inside the square
brackets, if you want to create your hash already populated with data:

Hash["Connecticut" => "CT",
 "Delaware" => "DE"]

A word about => is in order.

Separating keys from values in hashes
When you physically type in a key/value pair for a hash (as opposed to setting
key/value pairs through a method call, as you’ll learn to do shortly), you can sepa-
rate the key from the value with either a comma or the special hash separator =>
(equal-greater than). The => separator makes for a more readable hash, especially
when the hash includes a lot of entries, but either will work. After each complete
key-value pair, you insert a comma. Look again at the state-name example, and
you’ll see how this syntax works.

 Now, let’s turn to matter of manipulating a hash’s contents.

294 CHAPTER 11

Collections, containers, and enumerability
11.3.2 Inserting, retrieving, and removing hash pairs

As you’ll see as we proceed, hashes have a lot in common with arrays, when it
comes to the get- and set-style operations. However, there are differences, stem-
ming from the underlying differences between arrays (ordered collections,
indexed by number) and hashes (unordered collections, indexed by arbitrary key
objects). As long as you keep this in mind, the behavior of hashes and the behav-
ior of arrays mesh quite well.

Adding a key/value pair to a hash
To add a key/value pair to a hash, you use essentially the same technique as for
adding an item to an array: the []= method, plus syntactic sugar.

 To add a state to state_hash, you do this

state_hash["New York"] = "NY"

which is the sugared version of this:

state_hash.[]=("New York", "NY")

You can also use the synonymous method store for this operation. store takes two
arguments (a key and a value):

state_hash.store("New York", "NY")

When you’re adding to a hash, keep in mind the important principle that keys are
unique. You can have only one entry with a given key. If you add a key-value pair to
a hash that already has an entry for the key you’re adding, the old entry is over-
written. Here’s an example:

h = Hash.new
h["a"] = 1
h["a"] = 2
puts h["a"]

This code assigns two values to the a key of the hash h. The second assignment
clobbers the first, as the puts statement shows by outputting 2.

 Note that hash values don’t have to be unique; you can have two keys that are
paired with the same value. But you can’t have duplicate keys.

Retrieving values from a hash
You retrieve values from a hash with the [] method, plus the usual syntactic sugar
involved with [] (no dot; the argument goes inside the brackets). For example, to
get the Connecticut abbreviation from state_hash, you do this:

conn_abbrev = state_hash["Connecticut"]

Hashes 295
Now conn_abbrev has “CT” assigned to it. Using a hash key is much like indexing
an array—but the index (the key) can be anything, whereas in an array it’s always
an integer.

 Hashes also have a fetch method, which gives you an alternative way of retriev-
ing values by key:

conn_abbrev = state_hash.fetch("Connecticut")

fetch differs from [] in the way it behaves when you ask it to look up a nonexist-
ent key: fetch raises an exception, while [] gives you either nil or a default you’ve
specified (as discussed below).

 You can also retrieve values for multiple keys in one operation, with values_at:

two_states = state_hash.values_at("New Jersey","Delaware")

This code returns an array consisting of ["NJ","DE"] and assigns it to the variable
two_states.

 Now that you have a sense of the mechanics of getting information into and
out of a hash, let’s circle back and look at the matter of supplying a default value
(or default code block) when you create a hash.

Specifying and getting a default value
By default, when you ask a hash for the value corresponding to a nonexistent key,
you get nil:

>> h = Hash.new
=> {}
>> h["no such key!"]
=> nil

However, you can specify a different default value by supplying an argument to
Hash.new:

>> h = Hash.new(0)
=> {}
>> h["no such key!"]
=> 0

Here, we get back the hash’s default value, 0, when we use a nonexistent key. (You
can also set the default on an already existing hash, with the default method.)

 It’s important to remember that whatever you specify as the default value is
what you get when you specify a nonexistent key. This does not mean the key is set
to that value. The key is still nonexistent. If you want a key in a hash, you have to
put it there. You can, however, do this as part of a default scenario for new (non-
existent) keys—by supplying a default code block to Hash.new. The code block will

296 CHAPTER 11

Collections, containers, and enumerability
be executed every time a nonexistent key is referenced. Furthermore, two objects
will be yielded to the block: the hash and the (nonexistent) key.

 This technique gives you a foot in the door when it comes to setting keys auto-
matically when they’re first used. It’s not the most elegant or streamlined tech-
nique in all of Ruby, but it does work. You write a block that grabs the hash and
the key, and you do a set operation.

 For example, if you want every nonexistent key to be added to the hash with a
value of 0, you create your hash like this:

h = Hash.new {|hash,key| hash[key] = 0 }

When the hash h is asked to match a key it doesn’t have, that key is added after all,
with the value 0.

 Given this assignment of a new hash to h, you can trigger the block like this:

>> h["new key!"]
=> 0
>> h
=> {"new key!"=>0}

When you try to look up the key new key #1, it’s not there; it’s added, with the
value 0, and then that value is printed out by irb. Next, when you ask irb to show
you the whole hash #2, it contains the automatically added pair.

 This technique has lots of uses. It lets you make assumptions about what’s in a
hash, even if nothing is there to start with. It also shows you another facet of
Ruby’s extensive repertoire of dynamic programming techniques, and the flexibil-
ity of hashes.

 We’ll turn now to ways you can combine hashes with each other, as we did with
strings and arrays.

11.3.3 Combining hashes with other hashes

The process of combining two hashes into one comes in two flavors: the destruc-
tive flavor, where the first hash has the key/value pairs from the second hash
added to it directly; and the nondestructive flavor, where a new, third hash is cre-
ated that combines the elements of the original two.

 The destructive operation is performed with the update method. Entries in the
first hash are overwritten permanently if the second hash has a corresponding key:

h1 = {"Smith" => "John",
 "Jones" => "Jane" }
h2 = {"Smith" => "Jim" }
h1.update(h2)
puts h1["Smith"]

B

C

Output: Jim

B

C

Hashes 297
In this example, h1’s Smith entry has been changed (updated) to the value it has
in h2. You’re asking for a refresh of your hash, to reflect the contents of the sec-
ond hash. That’s the destructive version of combining hashes.

 To perform nondestructive combining of two hashes, you use the merge
method, which gives you a third hash and leaves the original unchanged:

h1 = {"Smith" => "John",
 "Jones" => "Jane" }
h2 = {"Smith" => "Jim" }
h3 = h1.merge(h2)

p h1["Smith"]

Here, h1’s Smith/John pair isn’t overwritten by h2’s Smith/Jim pair. Instead, a
new hash is created, with pairs from both of the other two.

 Note that h3 has a decision to make: Which of the two Smith entries should it
contain? The answer is that when the two hashes being merged share a key, the
second hash (h2, in this example) wins. h3’s value for the key Smith will be Jim.

 (Incidentally, merge!—the bang version of merge—is a synonym for update.
You can use either name when you want to perform that operation.)

 In addition to being combined with other hashes, hashes can also be trans-
formed in a number of ways, as you’ll see next.

11.3.4 Hash transformations

You can perform several transformations on hashes. Transformation, in this case,
means that the method is called on a hash, and the result of the operation (the
method’s return value) is a hash. The term filtering, in the next subsection, refers
to operations where the hash undergoes entry-by-entry processing and the results
are stored in an array. (Remember that arrays are the most common, general-
purpose collection objects in Ruby; they serve as containers for results of opera-
tions that don’t even involve arrays.)

Inverting a hash
Hash#invert flips the keys and the values. Values become keys, and keys become
values:

>> h = { 1 => "one", 2 => "two" }
=> {1=>"one", 2=>"two"}
>> h.invert
=> {"two"=>2, "one"=>1}

Be careful when you invert hashes. Because hash keys are unique, but values aren’t,
when you turn duplicate values into keys, one of the pairs will be discarded:

Output: John

298 CHAPTER 11

Collections, containers, and enumerability
>> h = { 1 => "one", 2 => "more than 1", 3 => "more than 1" }
=> {1=>"one", 2=>"more than 1", 3=>"more than 1"}
>> h.invert
=> {"one"=>1, "more than 1"=>3}

Only one of the two more than 1 values can survive as a key when the inversion is
performed; the other is discarded. You should invert a hash only when you’re cer-
tain the values as well as the keys are unique.

Clearing a hash
Hash#clear empties the hash:

>> {1 => "one", 2 => "two" }.clear
=> {}

This is an in-place operation: The empty hash is the same hash (the same object)
as the one to which you send the clear message.

Replacing the contents of a hash
Hashes have a replace method:

>> { 1 => "one", 2 => "two" }.replace({ 10 => "ten", 20 => "twenty"})
=> {10 => "ten", 20 => "twenty"}

This is also an in-place operation, as the name replace implies.

11.3.5 Hash iteration, filtering, and querying

You can iterate over a hash several ways. Like arrays, hashes have a basic each
method. On each iteration, an entire key/value pair is yielded to the block, in the
form of a two-element array:

{1 => "one", 2 => "two" }.each do |key,value|
 puts "The word for #{key} is #{value}."
end

The output of this snippet is

The word for 1 is one.
The word for 2 is two.

Each time through the block, the variables key and value are assigned the key and
value from the current pair.

 The return value of Hash#each is the hash—the receiver of the “each” message.

Hashes 299
Iterating through all the keys or values
You can also iterate through the keys or the values on their own—and you can do
each of those things in one of two ways. You can grab all the keys or all the values
of the hash, in the form of an array, and then do whatever you choose with that array:

>> h = {1 => "one", 2 => "two" }
=> {1=>"one", 2=>"two"}
>> h.keys
=> [1, 2]
>> h.values
=> ["one", "two"]

Or, you can iterate directly through either the keys or the values, as in this example:

h = {"apple" => "red", "banana" => "yellow", "orange" => "orange" }
h.each_key {|k| puts "The next key is #{key}." }
h.each_value {|v| puts "The next value is #{value}." }

The second approach (the each_key_or_value methods) saves memory by not
accumulating all the keys or values in an array before iteration begins. Instead, it
looks at one key or value at a time. The difference is unlikely to loom large unless
you have a very big hash, but it’s worth knowing about.

 Let’s look now at filtering methods: methods you call on a hash, but whose
return value is an array.

Hash filtering operations
Arrays don’t have key/value pairs; so when you filter a hash into an array, you end
up with an array of two-element arrays: Each subarray corresponds to one key/
value pair. You can see this by calling find_all or select (the two method names
are synonymous) on a hash. Like the analogous array operation, selecting from a
hash involves supplying a code block containing a test. Any key/value pair that
passes the test is added to the result; any that doesn’t, isn’t:

>> { 1 => "one", 2 => "two", 3 => "three" }.select {|k,v| k > 1 }
=> [[2, "two"], [3, "three"]]

Here, the select operation accepts only those key/value pairs whose keys are
greater than 1. Each such pair (of which there are two in the hash) ends up as a
two-element array inside the final returned array.

 Even with the simpler find method (which returns either one element or nil),
you get back a two-element array when the test succeeds:

>> {1 => "un", 2 => "deux", 3 => "trois" }.find {|k,v| k == 3 }
=> [3, "trois"]

300 CHAPTER 11

Collections, containers, and enumerability
The test succeeds when it hits the 3 key. That key is returned, with its value, in an
array.

 You can also do a map operation on a hash. Like its array counterpart,
Hash#map goes through the whole collection—one pair at a time, in this case—and
yields each element (each pair) to the code block. The return value of the whole
map operation is an array whose elements are all the results of all these yieldings.

 Here’s an example that launders each pair through a block that returns an
uppercase version of the value:

>> { 1 => "one", 2 => "two", 3 => "three" }.map {|k,v| v.upcase }
=> ["ONE", "TWO", "THREE"]

The return array reflects an accumulation of the results of all three iterations
through the block.

 We’ll turn next to hash query methods.

Hash query methods
Table 11.2 shows some common hash query methods.

None of the methods in table 11.2 should offer any surprises at this point; they’re
similar in spirit, and in some cases in letter, to those you’ve seen for arrays. With
the exception of size, they all return either true or false. The only surprise may
be how many of them are synonyms. Four methods test for the presence of a par-
ticular key: has_key?, include?, key?, and member?. A case could be made that this
is two or even three synonyms too many. has_key? seems to be the most popular of
the four and is the most to-the-point with respect to what the method tests for.

Table 11.2 Common hash query methods and their meanings

Method name/sample call Meaning

h.has_key?(1) True if h has the key 1

h.include?(1) Synonym for has_key?

h.key?(1) Synonym for has_key?

h.member?(1) Another (!) synonym for has_key?

h.has_value?("three") True if any value in h is "three"

h.value?("three") Synonym for has_value?

h.empty? True if h has no key/value pairs

h.size Number of key/value pairs in h

Hashes 301
 The has_value? method has one synonym: value?. As with its key counterpart,
has_value? seems to be more popular.

 The other methods—empty? and size—tell you whether the hash is empty and
what its size is. size can also be called as length.

 As simple as their underlying premise may be, hashes are a powerful data
structure. Among other uses, you’ll see them a lot in method calls. Ruby makes
special allowances for hashes in argument lists, and Rails takes full advantage of
them, as you’ll see next.

11.3.6 Hashes in Ruby and Rails method calls

In the previous chapter, you saw this example of the use of symbols as part of a
method argument list:

<%= link_to "Click here",
 :controller => "work",
 :action => "show",
 :id => work.id %>

With a knowledge of hashes as well as symbols, you’re now in a position to understand
this construct—which you’ll see and use frequently in Rails applications—fully.

 This is a method call with two arguments: the string “Click here” and a three-key
hash. You might expect to see curly braces around the hash, like this:

link_to("Click here", { :controller => "work",
 :action => "show",
 :id => work.id })

But as a special sugar dispensation, Ruby permits you to end an argument list,
when you call a method, with a literal hash without the curly braces:

link_to("Click here", :controller => "work",
 :action => "show",
 :id => work.id)

If you dispense with the parentheses around the arguments, you get the original
example, which has the classic Rails method-call look and feel.

 Why does Ruby allow this special usage? To facilitate and “prettify” precisely the
kind of labeling of method arguments by descriptive name that’s so common in
Rails. Passing arguments as key/value pairs allows you to indicate what the argu-
ments are for. The elimination of the curly braces gives the idiom a clean look.

 The original link_to method is defined in the ActionView library. It’s complex,
so for the sake of seeing something similar in operation, we’ll use a scaled-down,

302 CHAPTER 11

Collections, containers, and enumerability
simplified version. Let’s put it in its own ERb file, together with a call to it that gen-
erates the desired HTML tag:

<% def mini_link_to(text, specs)
 target = "/#{specs[:controller]}/#{specs[:action]}/#{specs[:id]}"
 return "#{text}"
 end
%>

<%= mini_link_to "Click here",
 :controller => "work",
 :action => "show",
 :id => 1
%>

Save this code to minilink.erb, and run it with ERb:

$ erb minilink.erb

ERb fills out the template, and the results look like this:

Click here

The method mini_link_to grabbed two arguments: the string “Click here” and
the hash. It then did three lookups by key on the hash, interpolating them into a
string that it assigned to the variable target. Finally, it embedded that result in a
string containing the full syntax of the HTML a tag and used that final string as its
return value.

 You could write a method with similar functionality that doesn’t use a hash
argument. You’d call it like this:

new_link_to("Click here", "work", "show", 1)

On the receiving end, you’d do something like this:

def new_link_to(text,controller,action,id=nil)
 target = "#{controller}/#{action}/#{id}"
 return "#{text}"
end

When you’re writing methods and documenting the correct way to call them,
should you opt for the hash approach? There’s a tradeoff involved. The hash
approach gives you more visual cues in the calling code as to what’s what. Without
the hash, you get a list of values with no indication of what role they will play in
the method. You also have to make sure they’re in the right order (whereas hash
keys can be listed in any order).

Collections central: the Enumerable module 303
 On the other hand, it’s slightly easier for the method to have the relevant val-
ues stuffed directly into the variables in its argument list, rather than having to dig
them out of a hash.

 Rails methods generally favor the hash calling convention. The result is that
when you look at a typical Rails method call, you can tell a great deal about what
it’s doing just by reading the hash keys.

 Hashes also show up in many Rails controller files, particularly (although by no
means exclusively) in the form of the params hash, which is created by default and
contains incoming CGI data. For example, it’s common to see something like this:

@comment = Comment.find(params[:id])

You can infer that when the call came in to this controller file, it was from a form
that included an id field that was filled in (either manually or automatically) with
the database ID number of a particular Comment.

 Hashes are powerful and adaptable collections, and you’ll have a lot of contact
with them as you work on Ruby and Rails projects.

 Now that we’ve discussed arrays and hashes, Ruby’s workhorse collection
objects, we’re going to look under the hood at the source of much of the func-
tionality of both those classes (and many others): the Enumerable module. This
module defines many of the searching and selecting methods you’ve already seen,
and is mixed in by both Hash and Array.

11.4 Collections central: the Enumerable module

Ruby offers a number of predefined modules that you can mix into your own
classes. You’ve already seen the Comparable module in action. Here, we’re going
to talk about one of the most commonly used Ruby modules: Enumerable. We’ve
already encountered it indirectly: Both Array and Hash mix in Enumerable, and by
doing so, they get methods like select, reject, find, and map. Those methods,
and others, are instance methods of the Enumerable module.

 You, too, can mix Enumerable into your own classes:

class C
 include Enumerable
end

By itself, that doesn’t do much. To tap into the benefits of Enumerable, you must
define an each instance method in your class:

class c
 include Enumerable

304 CHAPTER 11

Collections, containers, and enumerability
 def each
 # relevant code here
 end
end

Let’s look more closely at each and its role as the engine for enumerable behavior.

11.4.1 Gaining enumerability through each

Any class that aspires to being enumerable must have an each method; and the
job of each is to yield items to a supplied code block, one at a time.

 In the case of an array, this means yielding the first item in the array, then the
second, and so forth. In the case of a hash, it means yielding a key/value pair (in
the form of a two-element array), then yielding another key/value pair, and so
forth. In the case of a file handle, it means yielding one line of the file at a time.
Exactly what each means thus varies from one class to another. And if you define
an each in a class of your own, it can mean whatever you want it to mean—as long
as it yields something.

 Most of the methods in the Enumerable module piggyback on these each meth-
ods, using an object’s each behavior as the basis for a variety of searching, query-
ing, and filtering operations. A number of methods we’ve already mentioned in
looking at arrays and hashes—including find, select, reject, map, any?, and
all?—are instance methods of Enumerable. They end up being methods of arrays
and hashes because the Array and Hash classes use Enumerable as a mix-in. And
they all work the same way: They call the method each. each is the key to using Enu-
merable. Whatever the class, if it wants to be an Enumerable, it has to define each.

 You can get a good sense of how Enumerable works by writing a small, proof-of-
concept class that uses it. Listing 11.1 shows such a class: Rainbow. This class has an
each method that yields one color at a time. Because the class mixes in Enumer-
able, its instances are automatically endowed with the instance methods defined
in that module.

 In the example, we use the find method to pinpoint the first color whose first
character is “y”. find works by calling each. each yields items, and find uses the
code block we’ve given it to test those items, one at a time, for a match. When
each gets around to yielding “yellow”, find runs it through the block and it passes
the test. The variable r therefore receives the value “yellow”.

class Rainbow
 include Enumerable
 def each

Listing 11.1 An Enumerable class and its deployment of the each method

Collections central: the Enumerable module 305
 yield "red"
 yield "orange"
 yield "yellow"
 yield "green"
 yield "blue"
 yield "indigo"
 yield "violet"
 end
end
r = Rainbow.new
y_color = r.find {|color| color[0,1] == 'y' }
puts "First color starting with 'y' is #{y_color}."

Notice that there’s no need to define find. It’s part of Enumerable, which we’ve
mixed in. It knows what to do and how to use each to do it.

 Enumerable methods often join with each other; for example, each yields to
find, and find yields to the block you provide. You can also get a free each ride
from an array, instead of writing every yield explicitly. For example, Rainbow can
be rewritten like this:

class Rainbow
 COLORS = ["red", "orange", "yellow", "green",
dd"blue", "indigo", "violet"]
 def each
 COLORS.each {|color| yield color }
 end
end

In this version, we ask the COLORS array #1 to iterate via its own each #2, and then
we yield each item as it appears in our block.

 The Enumerable module is powerful and in common use. Much of the search-
ing and querying functionality you see in Ruby collection objects comes directly
from Enumerable, as you can see by asking irb:

>> Enumerable.instance_methods(false).sort
=> ["all?", "any?", "collect", "detect", "each_with_index",
"entries", "find", "find_all", "grep", "include?", "inject",
"map", "max", "member?", "min", "partition", "reject",
"select", "sort", "sort_by", "to_a", "zip"]

(The false argument to instance_methods #1 suppresses instance methods
defined in superclasses and other modules.) This example includes some meth-
ods you can explore on your own and some that we’ve discussed. The upshot is
that the Enumerable module is the home of most of the major built-in facilities
Ruby offers for collection traversal, querying, filtering, and sorting.

Output: First color
starting with “y”
is yellow.

B

C

B

B C

B

306 CHAPTER 11

Collections, containers, and enumerability
 It’s no big surprise that arrays and hashes are enumerable; after all, they are
manifestly collections of objects. Slightly more surprising is the fact that strings,
too, are enumerable—and their fundamental each behavior isn’t what you might
expect. Now that you know about the Enumerable module, you’re in a position to
understand the enumerability of strings, as Ruby defines it.

11.4.2 Strings as Enumerables

The String class mixes in Enumerable; but the behavior of strings in their capacity
as enumerable objects isn’t what everyone expects it to be. There’s nothing you
can’t do, by way of filtering and manipulating strings and parts of strings. But the
results you want may require techniques other than those that first occur to you.

 Enumerable objects, as you now know, have an each method. The each
method yields each item in the collection, one at a time. Strings are, in a sense,
collections of individual characters. You may, then, expect String#each to yield
the string’s characters.

 However, it doesn’t. For purposes of their enumerable qualities, Ruby looks at
strings as collections of lines. If you walk through a string with each, a new value is
yielded every time there’s a new line, not every time there’s a new character:

s = "This is\na multiline\nstring."
s.each {|e| puts "Next value: #{e}" }

This snippet assigns a multiline string (with explicit newline characters (\n)
embedded in it) to a variable and then iterates through the string. Inside the code
block, each element of the string is printed out. The output is as follows:

Next value: This is
Next value: a multiline
Next value: string.

Going through each element in a string means going through the lines, not the
characters. And because each is the point of reference for all the selection and fil-
tering methods of Enumerable, when you perform, say, a select operation or a map
operation on a string, the elements you’re selecting or mapping are lines rather
than characters.

 However, strings have a method that lets you iterate through the characters:
each_byte. It works like this:

"abc".each_byte {|b| puts "Next byte: #{b}" }

The output is also possibly surprising:

Sorting collections 307
Next byte: 97
Next byte: 98
Next byte: 99

You get the ASCII values of the characters. If you want to turn them back into indi-
vidual characters, you can call the chr method on the numbers:

"abc".each_byte {|b| puts "Next character: #{b.chr}" }

This code produces

Next character: a
Next character: b
Next character: c

There have been many discussions about the possibility of adding a method to
Ruby that would allow for direct iteration through characters, without having to
convert. If you find yourself writing a method like this:

class String
 def each_char
 each_byte {|b| yield b.chr }
 end
end

you won’t be the first Rubyist to have done so.
 We’ve searched, transformed, filtered, and queried a variety of collection

objects, using an even bigger variety of methods. The one thing we haven’t done
is sort collections. That’s what we’ll do next, and last, in this chapter.

11.5 Sorting collections

If you have a class, and you want to be able to sort multiple instances of it, you
need to do the following:

■ Define a comparison method for the class (<=>)

■ Place the multiple instances in a container, probably an array

It’s important to understand the separateness of these two steps. Why? Because
the ability to sort is granted by Enumerable, but this does not mean your class has to
mix in Enumerable. Rather, you put your objects into a container object that does
mix in Enumerable. That container object, as an enumerable, has two sorting
methods, sort and sort_by, which you can use to sort the collection.

 In the vast majority of cases, the container into which you place objects you
want sorted will be an array. Sometimes it will be a hash, in which case the result

308 CHAPTER 11

Collections, containers, and enumerability
will be an array (an array of two-element key/value pair arrays, sorted by key or
other criterion).

 Normally, you don’t have to create an array of items explicitly before you sort
them. More often, you sort a collection that your program has already generated
automatically. For instance, you may perform a select operation on a collection of
objects and sort the ones you’ve selected. Or you may be manipulating a collection
of ActiveRecord objects and want to sort them for display based on the values of one
or more of their fields—as in the example from RCRchive in section 3.2.1. (You
might find it interesting to look at that example again after reading this chapter.)

 The manual stuffing of lists of objects into square brackets to create array
examples in this section is, therefore, a bit contrived. But the goal is to focus
directly on techniques for sorting; and that’s what we’ll do.

 Here’s a simple sorting example involving an array of integers:

>> [3,2,5,4,1].sort
=> [1, 2, 3, 4, 5]

Doing this is easy when you have numbers or even strings (where a sort gives you
alphabetical order). The array you put them in has a sorting mechanism, and the
integers or strings have some knowledge of what it means to be in order.

 But what if you want to sort, say, an array of edition objects?

>> [ed1, ed2, ed3, ed4, ed5].sort

Yes, the five edition objects have been put into an array; and yes, arrays are enumer-
able and therefore sortable. But for an array to sort the things inside it, those things
themselves have to have some sense of what it means to be in order. How is Ruby
supposed to know which edition goes where in the sorted version of the array?

 The key to sorting an array of objects is being able to sort two of those objects,
and then doing that over and over until the sort order of the whole collection is
established. That’s why you have to define the <=> method in the class of the
objects you want sorted.

 For example, if you want to be able to sort an array of edition objects by price,
you can define <=> in the Edition class:

def <=>(other_edition)
ddself.price <=> other_edition.price
end

Once you’ve done that, any array of editions you sort will come out in price-sorted
order:

price_sorted = [ed1,ed2,ed3,ed4,ed5].sort

Sorting collections 309
Ruby applies the <=> test to these elements, two at a time, building up enough
information to perform the complete sort.

 Again, the sequence of events is as follows:

■ You teach your objects how to compare themselves with each other, using <=>.

■ You put those objects inside an enumerable object (probably an array) and
tell that object to sort itself. It does this by asking the objects to compare
themselves to each other with <=>.

If you keep this division of labor in mind, you’ll understand how sorting operates
and how it relates to Enumerable.

 Getting items in order and sorting them also relates closely to the Comparable
module, the basic workings of which you saw in chapter 9. We’ll put Comparable in
the picture, so that we can see the whole ordering and sorting landscape.

11.5.1 Sorting and the Comparable module

You may wonder how <=> defining (done for the sake of giving an assist to the sort
operations of enumerable collections) relates to the Comparable module, which,
as you’ll recall, depends on the existence of a <=> method to perform its magical
comparison operations. The <=> method seems to be working overtime.

 It all fits together like this:

■ If you don’t define <=>, you can sort objects if you put them inside an array
and provide a code block telling the array how it should rank any two of the
objects. (This is discussed next, in section 11.5.2.)

■ If you do define <=>, then your objects can be put inside an array and sorted.

■ If you define <=> and also include Comparable in your class, then you get sort-
ability inside an array and you can perform all the comparison operations
between any two of your objects (>, <, and so on), as per the discussion of
Comparable in chapter 9.

The <=> method is thus useful both for classes whose instances you wish to sort
and for classes whose instances you wish to compare with each other using the full
complement of comparison operators.

 Back we go to sorting—and, in particular, to a variant of sorting where you pro-
vide a code block instead of a <=> method to specify how objects should be com-
pared and ordered.

310 CHAPTER 11

Collections, containers, and enumerability
11.5.2 Defining sort order in a block

You can also tell Ruby how to sort an array by defining the sort behavior in a code
block. You can do this in cases where no <=> method is defined for these objects;
and if there is a <=> method, the code in the block overrides it.

 Let’s say, for example, that we’ve defined Edition#<=> in such a way that it
sorts by price. But now we want to sort by year of publication. We can force a year-
based sort by using a block:

year_sort = [ed1,ed2,ed3,ed4,ed5].sort do |a,b|
 a.year <=> b.year
end

The block takes two arguments, a and b. This enables Ruby to use the block as
many times as needed to compare one edition with another. The code inside the
block does a <=> comparison between the respective publication years of the two
editions. For this call to sort, the code in the block is used instead of the code in
the <=> method of the Edition class.

 You can use this code-block form of sort to handle cases where your objects
don’t know how to compare themselves to each other. This may be the case if the
objects are of a class that has no <=> method. It can also come in handy when the
objects being sorted are of different classes and by default don’t know how to com-
pare themselves to each other. Integers and strings, for example, can’t be com-
pared directly: An expression like "2" <=> 4 causes a fatal error. But if you do a
conversion first, you can pull it off:

>> ["2",1,5,"3",4,"6"].sort {|a,b| a.to_i <=> b.to_i }
=> [1, "2", "3", 4, 5, "6"]

The elements in the sorted output array are the same as those in the input array: a
mixture of strings and integers. But they’re ordered as they would be if they were
all integers. Inside the code block, both strings and integers are normalized to
integer form with to_i. As far as the sort engine is concerned, it’s performing a
sort based on a series of integer comparisons. It then applies the order it comes
up with to the original array.

 sort with a block can thus help you where the existing comparison methods
won’t get the job done. And there’s an even more concise way to sort a collection
with a code block: the sort_by method.

Concise sorting with sort_by
Like sort, sort_by is an instance method of Enumerable. The main difference is
that sort_by always takes a block (the block is not optional), and it only requires

Summary 311
that you show it how to treat one item in the collection. sort_by will figure out that
you want to do the same thing to both items every time it compares a pair of objects.

 The previous array-sorting example can be written like this, using sort_by:

>> ["2",1,5,"3",4,"6"].sort_by {|a| a.to_i }
=> [1, "2", "3", 4, 5, "6"]

All we have to do in the block is show (once) what action needs to be performed
in order to prep each object for the sort operation. We don’t have to call to_i on
two objects; nor do we need to use the <=> method explicitly. The sort_by
approach can save you a step and tighten up your code.

 This brings us to the end of our survey of Ruby container and collection
objects. The exploration of Ruby built-ins continues in chapter 12 with a look at
regular expressions and a variety of operations that use them.

11.6 Summary

In this chapter, we’ve looked principally at Ruby’s major container classes, Array
and Hash. They differ primarily in that arrays are ordered (indexed numerically),
whereas hashes are unordered and indexed by arbitrary objects (keys, each associ-
ated with a value). Arrays, moreover, often operate as a kind of common currency
of collections: Results of sorting and filtering operations, even on non-arrays, are
usually returned in array form.

 We’ve also examined the powerful Enumerable module, which endows arrays,
hashes, and strings with a set of methods for searching, querying, and sorting.
Enumerable is the foundational Ruby tool for collection manipulation.

 The chapter also looked at some special behaviors of ActiveRecord collections,
specialized collection objects that use Ruby array behavior as a point of departure
but don’t restrict themselves to array functionality. These objects provide an
enlightening example of the use of Ruby fundamentals as a starting point—but
not an ending point—for domain-specific functionality.

 As we proceed to chapter 12, we’ll be moving in a widening spiral. Chapter 12
is about regular expressions, which relate chiefly to strings but which will allow us
to cover some operations that combine string and collection behaviors.

Regular expressions
and regexp-based
string operations
In this chapter
■ Regular expression syntax
■ Pattern-matching operations
■ The MatchData class
■ Built-in methods based on pattern matching
312

What are regular expressions? 313
In this chapter, we’ll explore Ruby’s facilities for pattern-matching and text pro-
cessing, centering around the use of regular expressions.

 A regular expression in Ruby serves the same purposes it does in other languages:
It specifies a pattern of characters, a pattern which may or may not correctly predict
(that is, match) a given string. You use these pattern-match operations for condi-
tional branching (match/no match), pinpointing substrings (parts of a string that
match parts of the pattern), and various text-filtering and -massaging operations.

 Regular expressions in Ruby are objects. You send messages to a regular expres-
sion. Regular expressions add something to the Ruby landscape but, as objects,
they also fit nicely into the landscape.

 We’ll start with an overview of regular expressions. From there, we’ll move on
to the details of how to write them and, of course, how to use them. In the latter
category, we’ll look both at using regular expressions in simple match operations
and using them in methods where they play a role in a larger process, such as fil-
tering a collection or repeatedly scanning a string.

 As you’ll see, once regular expressions are on the radar, it’s possible to fill
some gaps in our coverage of strings and collection objects. Regular expressions
always play a helper role; you don’t program toward them, as you might program
with a string or an array as the final goal. You program from regular expressions to
a result; and Ruby provides considerable facilities for doing so.

12.1 What are regular expressions?

Regular expressions appear in many programming languages, with minor differ-
ences among the incarnations. They have a weird reputation. Using them is a
powerful, concentrated technique; they burn through text-processing problems
like acid through a padlock. (Not all such problems, but a large number of them.)
They are also, in the view of many people (including people who understand
them well), difficult to use, difficult to read, opaque, unmaintainable, and ulti-
mately counterproductive.

 You have to judge for yourself. The one thing you should not do is shy away
from learning at least the basics of how regular expressions work and the Ruby
methods that utilize them. Even if you decide you aren’t a “regular expression
person,” you need a reading knowledge of them. And you’ll by no means be alone
if you end up using them in your own programs more than you anticipated.

 A number of Ruby built-in methods take regular expressions as arguments
and perform selection or modification on one or more string objects. Regular
expressions are used, for example, to scan a string for multiple occurrences of a

314 CHAPTER 12

Regular expressions and regexp-based string operations
pattern, to substitute a replacement string for a substring, and to split a string into
multiple substrings based on a matching separator.

12.1.1 A word to the regex-wise

If you’re familiar with regular expressions from Perl, sed, vi, Emacs, or any other
source, you may want to skim or skip the expository material here and pick up in
section 12.5, where we talk about Ruby methods that use regular expressions.
However, note that Ruby regexes aren’t identical to those in any other language.
You’ll almost certainly be able to read them, but you may need to study the differ-
ences (such as whether parentheses are special by default or special when
escaped) if you get into writing them.

12.1.2 A further word to everyone

You may end up using only a modest number of regular expressions in your Rails
applications. Becoming a regex wizard isn’t a prerequisite for Rails programming.

 However, regular expressions are often important in converting data from one
format to another, and they often loom large in Rails-related activities like salvag-
ing legacy data. As the Rails framework gains in popularity, there are likely to be
more and more cases where data in an old format (or a text-dump version of an
old format) needs to be picked apart, massaged, and put back together in the form
of Rails-accessible database records. Regular expressions, and the methods that
deploy them for string and text manipulation, will serve you well in such cases.

 Let’s turn now to writing some regular expressions.

12.2 Writing regular expressions

Regular expressions look like strings with a secret “Make hidden characters visi-
ble” switched turned on—and a “Hide some regular characters” switch turned on,
too. You have to learn to read and write regular expressions as a thing unto them-
selves. They’re not strings. They’re representations of patterns.

 A regular expression specifies a pattern. Any given string either matches that
pattern or doesn’t match it. The Ruby methods that use regular expressions use
them either to determine whether a given string matches a given pattern or to
make that determination and also take some action based on the answer.

 Patterns of the kind specified by regular expressions are most easily under-
stood, initially, in plain language. Here are several examples of patterns expressed
this way:

Writing regular expressions 315
■ The letter a, followed by a digit

■ Any uppercase letter, followed by at least one lowercase letter

■ Three digits, followed by a hyphen, followed by four digits

A pattern can also include components and constraints related to positioning
inside the string:

■ The beginning of a line, followed by one or more whitespace characters

■ The character . (period) at the end of a string

■ An uppercase letter at the beginning of a word

Pattern components like “the beginning of a line”, which match a condition
rather than a character in a string, are nonetheless expressed with characters in
the regular expression.

 Regular expressions provide a language for expressing patterns. Learning to
write them consists principally of learning how various things are expressed inside
a regular expression. The most commonly applied rules of regular expression
construction are fairly easy to learn. You just have to remember that a regular
expression, although it contains characters, isn’t a string. It’s a special notation for
expressing a pattern which may or may not correctly describe any given string.

12.2.1 The regular expression literal constructor

The regular expression literal constructor is a pair of forward slashes:

//

As odd as this may look, it really is a regular expression, if a skeletal one. You can
verify that it gives you an instance of the Regexp class, in irb:

>> //.class
=> Regexp

Between the slashes, you insert the specifics of the regular expression.

A quick introduction to pattern-matching operations
Any pattern-matching operation has two main players: a regular expression and a
string. The regular expression expresses predictions about the string. Either the
string fulfills those predictions (matches the pattern), or it doesn’t.

 The simplest way to find out whether there’s a match between a pattern and a
string is with the match method. You can do this in either direction: Regular
expression objects and string objects both respond to match.

316 CHAPTER 12

Regular expressions and regexp-based string operations
puts "Match!" if /abc/.match("The alphabet starts with abc.")
puts "Match!" if "The alphabet starts with abc.".match(/abc/)

Ruby also features a pattern-matching operator, =~ (equal-sign tilde), which goes
between a string and a regular expression:

puts "Match!" if /abc/ =~ "The alphabet starts with abc."
puts "Match!" if "The alphabet starts with abc." =~ /abc/

As you might guess, the pattern-matching “operator” is actually an instance
method of both the String and Regexp classes.

 The match method and the =~ operator are equally useful when you’re after a
simple yes/no answer to the question of whether there’s a match between a string
and a pattern. If there’s no match, you get back nil. Where match and =~ differ
from each other, chiefly, is in what they return when there is a match: =~ returns
the numerical index of the character in the string where the match started,
whereas match returns an instance of the class MatchData:

>> "The alphabet starts with abc" =~ /abc/
=> 25
>> /abc/.match("The alphabet starts with abc.")
=> #<MatchData:0x1b0d88>

We’ll examine MatchData objects a little further on. For the moment, we’ll be con-
cerned mainly with getting a yes/no answer to an attempted match, so any of the
techniques shown thus far will work. For the sake of consistency, and because we’ll
be more concerned with MatchData objects than numerical indices of substrings,
the examples in this chapter will stick to the Regexp#match method.

 Now, let’s look in more detail at the composition of a regular expression.

12.2.2 Building a pattern

When you write a regular expression, you put the definition of your pattern
between the forward slashes. Remember that what you’re putting there isn’t a
string, but a set of predictions and constraints that you want to look for in a string.

 The possible components of a regular expression include the following:

■ Literal characters, meaning “match this character.”

■ The dot wildcard character (.), meaning “match any character.”

■ Character classes, meaning “match one of these characters.”

We’ll discuss each of these in turn. We’ll then use that knowledge to look more
deeply at match operations.

Writing regular expressions 317
Literal characters
Any literal character you put in a regular expression matches itself in the string.
That may sound like a wordy way to put it, but even in the simplest-looking cases
it’s good to be reminded that the regexp and the string operate in a pattern-
matching relationship:

/a/

This regular expression matches the string “a”, as well as any string containing the
letter “a”.

 Some characters have special meanings to the regexp parser (as you’ll see in
detail shortly). When you want to match one of these special characters as itself,
you have to escape it with a backslash (\). For example, to match the character ?
(question mark), you have to write this:

/\?/

The backslash means “don’t treat the next character as special; treat it as itself.”
 The special characters include ^, $, ? , ., /, \, [,], {, }, (,), +, and *.

The wildcard character . (dot)
Sometimes you’ll want to match any character at some point in your pattern. You
do this with the special wildcard character . (dot). A dot matches any character
with the exception of a newline. (There’s a way to make it match newlines too,
which we’ll see a little later.)

 This regular expression

/.ejected/

matches both “dejected” and “rejected”. It also matches “%ejected” and
“8ejected”. The wildcard dot is handy, but sometimes it gives you more matches
than you want. However, you can impose constraints on matches while still allow-
ing for multiple possible strings, using character classes.

Character classes
A character class is an explicit list of characters, placed inside the regular expres-
sion in square brackets:

/[dr]ejected/

This means “match either d or r, followed by ejected. This new pattern matches
either “dejected” or “rejected” but not “&ejected”. A character class is a kind of

318 CHAPTER 12

Regular expressions and regexp-based string operations
quasi-wildcard: It allows for multiple possible characters, but only a limited num-
ber of them.

 Inside a character class, you can also insert a range of characters. A common
case is this, for lowercase letters:

/[a-z]/

To match a hexadecimal digit, you might use several ranges inside a character class:

/[A-Fa-f0-9]/

This matches any character a through f (upper- or lowercase) or any digit.
 Sometimes you need to match any character except those on a special list. You

may, for example, be looking for the first character in a string that is not a valid
hexadecimal digit.

 You perform this kind of negative search by negating a character class. To do so,
you put a caret (^) at the beginning of the class. Here's the character class that
matches any character except a valid hexadecimal digit:

/[^A-Fa-f0-9]/

Some character classes are so common that they have special abbreviations.

Special escape sequences for common character classes
To match any digit, you can do this:

/[0-9]/

But you can also accomplish the same thing more concisely with the special
escape sequence \d:

/\d/

Two other useful escape sequences for predefined character classes are these:

■ \w matches any digit, alphabetical character, or underscore (_).

■ \s matches any whitespace character (space, tab, newline).

Each of these predefined character classes also has a negated form. You can
match any character that is not a digit by doing this:

/\D/

Similarly, \W matches any character other than an alphanumeric character or underscore,
and \S matches any non-whitespace character.

More on matching and MatchData 319
WARNING CHARACTER CLASSES ARE LONGER THAN WHAT THEY MATCH Even a
short character class—[a]—takes up more than one space in a regular
expression. But remember, each character class matches one character in
the string. When you look at a character class like /[dr]/, it may look like
it’s going to match the substring “dr”. But it isn’t: It’s going to match
either d or r.

A successful match returns a MatchData object. Let’s look at MatchData objects and
their capabilities up close.

12.3 More on matching and MatchData

So far, we’ve looked at basic match operations:

regex.match(string)
string.match(regex)

These are essentially true/false tests: Either there’s a match, or there isn’t. Now
we’re going to examine what happens on successful and unsuccessful matches
and what a match operation can do for you beyond the yes/no answer.

12.3.1 Capturing submatches with parentheses

One of the most important techniques of regular expression construction is the
use of parentheses to specify captures.

 The idea is this. When you test for a match between a string—say, a line from a
file—and a pattern, it’s usually because you want to do something with the string
or, more commonly, with part of the string. The capture notation allows you to iso-
late and save substrings of the string that match particular subpatterns.

 For example, let’s say we have a string containing information about a person:

Peel,Emma,Mrs.,talented amateur

From this string, we need to harvest the person’s last name and title. We know the
fields are comma-separated, and we know what order they come in: last name,
first name, title, occupation.

 To construct a pattern that matches such a string, we think along the following
lines:

First some alphabetical characters,
then a comma,
then some alphabetical characters,
then a comma,
then either “Mr.” or “Mrs.”

320 CHAPTER 12

Regular expressions and regexp-based string operations
We’re keeping it simple: no hyphenated names, no doctors or professors, no leav-
ing off the final period on Mr. and Mrs. (which would be done in British usage).
The regular expression, then, might look like this:

/[A-Za-z]+,[A-Za-z]+,Mrs?\./

That pattern matches the string, as irb attests:

>> /[A-Za-z]+,[A-Za-z]+,Mrs?\./.match("Peel,Emma,Mrs.,talented amateur")
=> #<MatchData:0x401f0a6c>

We got a MatchData object rather than nil. But now what? We don’t have any way
to isolate the substrings we’re interested in (“Peel” and “Mrs.”).

 That’s where parenthetical groupings come in. We want two such groupings:
one around the subpattern that matches the last name, and one around the sub-
pattern that matches the title:

/([A-Za-z]+),[A-Za-z]+,(Mrs?\.)/

Now, when we perform the match

/([A-Za-z]+),[A-Za-z]+,(Mrs?\.)/.match(str)

two things happen:

■ We get a MatchData object that gives us access to the submatches (discussed
in a moment).

■ Ruby automatically populates a series of variables for us, which also give us
access to those submatches.

The variables that Ruby populates are global variables, and they have numbers as
names: $1, $2, and so forth. $1 contains the substring matched by the subpattern
inside the first set of parentheses from the left in the regular expression:

puts $1

$2 contains the substring matched by the second subpattern; and so forth. In gen-
eral, the rule is this: After a successful match operation, the variable $n (where n is
a number) contains the substring matched by subpattern inside the nth set of
parentheses from the left in the regular expression.

 We can deploy the match we just did as follows:

puts "Dear #{$2} #{$1},"

The $n-style variables are handy for grabbing submatches. You can, however,
accomplish the same thing in a more structured, programmatic way by leveraging
the fact that a successful match operation has a return value: a MatchData object.

Output: Peel

Output: Dear Mrs. Peel,

More on matching and MatchData 321
12.3.2 Match success and failure

Every match operation either succeeds or fails. Let’s start with the simpler case:
failure. When you try to match a string to a pattern, and the string doesn’t match,
the result is always nil:

>> /a/.match("b")
=> nil

This nil stands in for the false or no answer when you treat the match as a true/
false test.

 Unlike nil, the MatchData object returned by a successful match has a Boolean
value of true, which makes it handy for simple match/no-match tests. Beyond this,
however, it also stores information about the match, which you can pry out of
them with the appropriate methods: where the match began (at what character in
the string), how much of the string it covered, what was captured in the paren-
thetical groups, and so forth.

 To use the MatchData object, you must first save it. Consider an example where
we want to pluck a phone number from a string and save the various parts of it (area
code, exchange, number) in groupings. Listing 12.1 shows how we might do this.

string = "My phone number is (123) 555-1234."
phone_re = /\((\d{3})\)\s+(\d{3})-(\d{4})/
m = phone_re.match(string)
unless m
 puts "There was no match--sorry."
 exit
end
print "The whole string we started with: "
puts m.string
print "The entire part of the string that matched: "
puts m[0]
puts "The three captures: "
3.times do |index|
 puts "Capture ##{index + 1}: #{m.captures[index]}"
end
puts "Here's another way to get at the first capture:"
print "Capture #1: "
puts m[1]

In this code, we use the string method of MatchData #1 to get the entire string on
which the match operation was performed. To get the part of the string that
matched our pattern, we address the MatchData object with square brackets, with

Listing 12.1 Matching a phone number and querying the resulting MatchData object

exit terminates
program immediately

B

C

D

E

B

322 CHAPTER 12

Regular expressions and regexp-based string operations
an index of 0 #2. We also use the nifty times method #3 to iterate exactly three
times through a code block and print out the submatches (the parenthetical cap-
tures) in succession. Inside that code block, a method called captures fishes out
the substrings that matched the parenthesized parts of the pattern. Finally, we
take another look at the first capture, this time through a different technique #4:
indexing the MatchData object directly with square brackets and positive integers,
each integer corresponding to a capture.

 Here’s the output of listing 12.1:

The whole string we started with: My phone number is (123) 555-1234.
The entire part of the string that matched: (123) 555-1234
The three captures:
Capture #1: 123
Capture #2: 555
Capture #3: 1234
Here's another way to get at the first capture:
Capture #1: 123

This gives you a taste of the kinds of match data you can extract from a MatchData
object. You can see that there are two ways of retrieving captures. We’ll focus on
those techniques next.

Two ways of getting the captures
One way to get the parenthetical captures from a MatchData object is by directly
indexing the object, array-style:

m[0]
m[1]
m[2]
#etc.

From 1 onward, these indices correspond to the n in the $n global variables that
contain the captured substrings.

 MatchData objects also have a method called captures, which returns all the
captured substrings in a single array. Because this is a regular array, the first item
in it—essentially, the same as the global variable $1—is item zero, not item one. In
other words, the following equivalencies apply

m[1] == m.captures[0]
m[2] == m.captures[1]

and so forth.
 By far the most common data extracted from a MatchData object consists of the

captured substrings. However, the object contains other information, which you
can take if you need it.

Entire match
First capture (first set of parentheses from left)
Second capture

C D

E

Further regular expression techniques 323
Other MatchData information
The code in listing 12.2, which is designed to be grafted onto listing 12.1, gives
some quick examples of several further MatchData methods.

print "The part of the string before the part that matched was:"
puts m.pre_match
print "The part of the string after the part that matched was:"
puts m.post_match
print "The second capture began at character "
puts m.begin(2)
print "The third capture ended at character "
puts m.end(3)

The output from this supplemental code is as follows:

The string up to the part that matched was: My phone number is
The string after the part that matched was: .
The second capture began at character 25
The third capture ended at character 33

The MatchData object is a kind of clearinghouse for information about what hap-
pened when the pattern met the string. With that knowledge in place, let’s con-
tinue looking at techniques you can use to build and use regular expressions.

12.4 Further regular expression techniques

This section includes coverage of a number of techniques of regular expression
design and usage that will help you both with the writing of your own regular
expressions and with your regular expression literacy. If matching /abc/ makes
sense to you now, matching /^x?[yz]{2}.*\z/ will make sense to you shortly.

12.4.1 Quantifiers and greediness

Regular expression syntax gives you ways to specify not only what you want but
also how many: exactly one of a particular character, 5 to 10 repetitions of a sub-
pattern, and so forth.

 All the quantifiers operate on either a single character or a parenthetical
group. When you specify that you want to match (say) three consecutive occur-
rences of a particular subpattern, that subpattern can be just one character, or it
can be a longer subpattern placed inside parentheses.

Listing 12.2 Supplemental code for phone-number matching operations

324 CHAPTER 12

Regular expressions and regexp-based string operations
Zero or one
Consider a case where you want to match either “Mr” or “Mrs”—and, further-
more, you want to accommodate both the American versions, which end with
periods, and the British versions, which don’t.

 You might describe the pattern as follows:

the character M, followed by the character r, followed by
zero or one of the character s, followed by
zero or one of the character '.'

Regular expression notation has a special character to represent the “zero or one”
situation: the question mark (?). The pattern described above would be expressed
in regular expression notation as follows:

/Mrs?\.?/

The question mark after the “s” means that a string with an “s” in that position will
match the pattern, and so will a string without an “s”. The same principle applies
to the literal period (note the backslash, indicating that this is an actual period,
not a special wildcard dot) followed by a question mark. The whole pattern, then,
will match “Mr”, “Mrs”, “Mr.”, or “Mrs.”

Zero or more
A fairly common case is one in which a string contains whitespace, but you’re not
sure how much. Let’s say you’re trying to match closing </p> tags in an HTML doc-
ument. Such a tag may or may not contain whitespace. All of these are equivalent
in HTML:

</p>
< /p>
</ p>
</p
>

In order to match the tag, you have to allow for unpredictable amounts of
whitespace in your pattern—including none.

 This is a case for the zero or more quantifier, namely the asterisk or, as it’s often
called, the star (*):

/<\s*\/\s*p\s*>/

Each time it appears, the sequence \s* means that the string being matched is
allowed to contain zero or more whitespace characters at this point in the match.
(Note too the necessity of escaping the forward slash in the pattern with a backslash.

Further regular expression techniques 325
Otherwise, it would be interpreted as the slash signaling the end of the regular
expression itself.)

One or more
You can also specify a one or more count. It matches if the string contains at least
one occurrence of the specified subpattern at the appropriate point in the match.
A one-or-more count is indicated with a plus sign (+). For example, the pattern

/\d+/

matches any sequence of one or more consecutive digits.

Greedy and non-greedy quantifiers
The * (zero or more) and + (one or more) quantifiers are greedy. This means they
match as many characters as possible, consistent with allowing the rest of the pat-
tern to match.

 Look at what .* matches in this snippet:

string = "abc!def!ghi!"
match = /.+!/.match(string)
puts match[0]

You’ve asked for one or more characters (using the wildcard dot) followed by an excla-
mation point. You might expect to get back the substring “abc!”, which fits that
description.

 Instead, you get “abc!def!ghi!”. The + quantifier greedily eats up as much of
the string as it can and only stops at the last exclamation point, not the first.

 You can make + as well as * into non-greedy quantifiers by putting a question
mark after them. Watch what happens when you do that with the last example:

string = "abc!def!ghi!"
match = /.+?!/.match(string)
puts match[0]

This version says, “Give me one or more wildcard characters, but only as many as
you see until you hit your first exclamation point—then give me that.” Sure
enough, this time you get “abc!”

 The question mark comes in handy. By all means try it (along with the other
techniques you’re learning here) in irb, and you’ll get a good sense of the differ-
ence between the greedy and non-greedy versions of the quantifiers.

326 CHAPTER 12

Regular expressions and regexp-based string operations
Specific numbers of repetitions
You can also custom-specify how many repetitions of a subpattern you want. You
do this by putting the number in curly braces ({}), as this example shows:

/\d{3}-\d{4}/

This pattern matches 555-1212 and other phone-number-like sequences. You can
also specify a range inside the braces:

/\d{1,10}/

This example matches any string containing 1 to 10 consecutive digits. A single
number followed by a comma is interpreted as a minimum (n or more repeti-
tions). You can therefore match “three or more digits” like this:

/\d{3,}/

Ruby’s regular expression engine is smart enough to let you know if your range is
impossible; you’ll get a fatal error if you try to match, say, {10,2} (at least 10 but
no more than 2) occurrences of a subpattern.

 You can specify a repetition count not only for single characters or character
classes but also for any regular expression atom—any subexpression correspond-
ing to a particular component of the pattern you’re trying to match. Atoms
include parenthetical subpatterns. Thus you can do this:

/([A-Z]\d){5}/

to match five consecutive occurrences of uppercase letter, followed by digit. The repeti-
tion count is understood to apply to the whole parenthesized subexpression.

 We’re going to look next at ways in which you can specify conditions under which
you want matches to occur, rather than the content you expect the string to have.

12.4.2 Anchors and lookahead assertions

Assertions and anchors are different types of creature from characters. When you
match a character (even based on a character class or wildcard), you’re said to be
consuming a character in the string you’re matching. An assertion or an anchor,
on the other hand, doesn’t consume any characters. Instead, it expresses a con-
straint, a condition that must be met before the matching of characters is allowed
to proceed.

 The most common anchors are beginning of line (^) and end of line ($). You
might use the beginning-of-line anchor for a task like removing all the comment
lines from a Ruby program file. You’d accomplish this by going through all the
lines in the file and printing out only those that do not start with a hash-mark (#)

Further regular expression techniques 327
or with whitespace followed by a hash-mark. To determine which lines are com-
ment lines, you could use this regular expression:

/^\s*#/

The ^ (caret) in this pattern anchors the match at the beginning of a line. If the
rest of the pattern matches, but not at the beginning of the line, that doesn’t
count—as you can see with a couple of tests:

>> comment_regexp = /^\s*#/
=> /^\s*#/
>> comment_regexp.match(" # Pure comment!")
=> #<MatchData:0x345d08>
>> comment_regexp.match(" x = 1 # Code plus comment!")
=> nil

Only the line that starts with some whitespace and the hash character is a match for
the comment pattern. The other line doesn’t match and would therefore not be
deleted if you were to use this regular expression to filter comments out of a file.

 Table 12.1 shows a number of anchors, including start and end of line and
start and end of string.

Note that \z matches the absolute end of the string, whereas \Z matches the end
of the string except for an optional trailing newline. \Z is useful in cases where
you’re not sure whether your string has a newline character at the end, and you
don’t want to have to worry about it.

 Hand-in-hand with anchors go assertions, which, similarly, tell the regular expres-
sion processor that you want a match to count only under certain conditions.

Table 12.1 Regular expression anchors

Notation Description Example Sample matching string

^ Beginning of line /^\s*#/ “ # A Ruby comment line”

$ End of line /\.$/ “one\ntwo\nthree.\nfour”

\A Beginning of string /\AFour score/ “Four score”

\z End of string /from the earth.\z/ “from the earth.”

\Z End of string (except for
final newline)

/from the earth.\Z/ “from the earth\n”

\b Word boundary /\b\w+\b/ “!!!word***” (matches “word”)

328 CHAPTER 12

Regular expressions and regexp-based string operations
Lookahead assertions
Let’s say you want to match a sequence of numbers only if it ends with a period.
But you don’t want the period itself to count as part of the match.

 One way to do this is with a lookahead assertion—or, to be complete, a zero-width,
positive lookahead assertion. Here, followed by further explanation, is how you do it:

str = "123 456. 789"
m = /\d+(?=\.)/.match(str)

At this point, m[0] contains “456”—the one sequence of numbers that is followed
by a period.

 Here’s a little more commentary on some of the terminology:

■ Zero-width means it doesn’t consume any characters in the string. The pres-
ence of the period is noted, but you can still match the period if your pat-
tern continues.

■ Positive means you want to stipulate that the period be present. There are
also negative lookaheads; they use (?!...) rather than (?=...).

■ Lookahead assertion means you want to know that you’re specifying what
would be next, without matching it.

Like anchors, assertions add richness and granularity to the pattern language with
which you express the matches you’re looking for. Also in the language-enrichment
category are regular expression modifiers.

12.4.3 Modifiers

A regular expression modifier is a letter placed after the final, closing forward
slash of the regex literal:

/abc/i

The i modifier shown here causes match operations involving this regular expres-
sion to be case-insensitive. The other most common modifier is m. The m (multi-
line) modifier has the effect that the wildcard dot character, which normally
matches any character except newline, will match any character, including newline. This
is useful when you want to capture everything that lies between, say, an opening
parenthesis and a closing one, and you don’t know (or care) whether they’re on
the same line. Here’s an example; note the embedded newline characters (\n) in
the string:

str = "This (including\nwhat's in parens\n) takes up three lines."
m = /\(.*?\)/m.match(str)

Further regular expression techniques 329
The non-greedy wildcard subpattern .*? matches this substring:

(including\nwhat's in parens\n)

Without the m modifier, the dot in the subpattern wouldn’t match the newline
characters. The match operation would hit the first newline and, not having
found a) character by that point, would fail.

 Regular expressions aren’t strings, but a close kinship exists between the two.
We’re going to look next at techniques for converting back and forth from one to
the other, and reasons you may want to perform such conversions.

12.4.4 Converting strings and regular expressions to each other

The fact that regular expressions aren’t strings is easy to absorb at a glance in the
case of regular expressions like this:

/[a-c]{3}/

With its special character-class and repetition syntax, this pattern doesn’t look
much like any of the strings it matches (“aaa”, “aab”, “aac”, and so forth).

 It gets a little harder not to see a direct link between a regular expression and a
string when faced with a regular expression like this:

/abc/

This regular expression is not the string “abc”. Moreover, it matches not only
“abc” but any string with the substring “abc” somewhere inside it. There’s no
unique relationship between a string and a similar-looking regular expression.

 Still, while the visual resemblance between some strings and some regular
expressions doesn’t mean they’re the same thing, regular expressions and strings
do interact in important ways. To begin with, you can perform string (or string-
style) interpolation inside a regular expression. You do so with the familiar #{...}
technique, demonstrated here in an irb session:

>> str = "def"
=> "def"
>> /abc#{str}/
=> /abcdef/

The value of str is dropped into the regular expression and made part of it, just
as it would be if you were using the same technique to interpolate it into a string.

 The interpolation technique becomes more complicated when the string
you’re interpolating contains regular expression special characters. For example,
consider a string containing a period (.). The period, or dot, has a special mean-
ing in regular expressions: It matches any single character except newline. In a

330 CHAPTER 12

Regular expressions and regexp-based string operations
string, it’s just a dot. When it comes to interpolating strings into regular expres-
sions, this has the potential to cause confusion:

>> str = "a.c"
=> "a.c"
>> re = /#{str}/
=> /a.c/
>> re.match("a.c")
=> #<MatchData:0x32fcc4>
>> re.match("abc")
=> #<MatchData:0x32d1cc>

Both matches succeed; they return MatchData objects, rather than nil. The dot in
the pattern matches a dot in the string “a.c”. But it also matches the “b” in “abc”.
The dot, which started life as just a dot inside str, takes on special meaning when
it becomes part of the regular expression.

 You can, however, escape the special characters inside a string before you drop
the string into a regular expression. You don’t have to do this manually: The
Regexp class provides a Regexp.escape class method that does it for you. You can
see what this method does by running it on a couple of strings in isolation:

>> Regexp.escape("a.c")
=> "a\\.c"
>> Regexp.escape("^abc")
=> "\\^abc"

(irb doubles the backslashes because it’s outputting double-quoted strings. If you
wish, you can puts the expressions, and you’ll see them in their real form, with
single backslashes.)

 As a result of this kind of escaping, you can constrain your regular expressions
to match exactly the strings you interpolate into them:

>> str = "a.c"
=> "a.c"
>> re = /#{Regexp.escape(str)}/
=> /a\.c/
>> re.match("a.c")
=> #<MatchData:0x321dcc>
>> re.match("abc")
=> nil

This time, the attempt to use the dot as a wildcard match character fails; “abc”
isn’t a match for the escaped, interpolated string.

 You can also go in the other direction: from a regular expression to a string.

Common methods that use regular expressions 331
Going from a regular expression to a string
Like all Ruby objects, regular expressions can represent themselves in string form.
The way they do this may look odd at first:

>> puts /abc/
(?-mix:abc)

This is an alternate regular expression notation—one that rarely sees the light of
day except when generated by the to_s instance method of regular expression
objects. What looks like mix is a list of modifiers (m, i, and x) with a minus sign in
front indicating that the modifiers are switched off.

 You can play with putsing regular expressions in irb, and you’ll see more about
how this notation works. We won’t pursue it here, in part because there’s another
way to get a string representation of a regular expression that looks more like
what you probably typed: by calling inspect. You can even economize on key-
strokes by using the p method, which is equivalent to calling inspect on an object
and then calling puts on the result:

>> p /abc/
/abc/

Going from regular expressions to strings is useful primarily when you’re studying
and/or troubleshooting regular expressions. It’s a good way to make sure your
regexps are what you think they are.

 At this point, we’re going to bring regular expressions full circle by examining
the roles they play in some important methods of other classes.

12.5 Common methods that use regular expressions

The payoff for gaining facility with regular expressions in Ruby is the ability to
use the methods that take regular expressions as arguments and do something
with them.

 To begin with, you can always use a match operation as a test in, say, a find or
find_all operation on a collection. For example, to find all strings longer than 10
characters and containing at least 1 digit, from an array of strings, you can do this:

array.find_all {|e| e.size > 10 and /\d/.match(e) }

However, a number of methods, mostly pertaining to strings, are based more
directly on the use of regular expressions. We’ll look at several of them in this
section.

332 CHAPTER 12

Regular expressions and regexp-based string operations
12.5.1 String#scan

The scan method goes from left to right through a string, testing repeatedly for a
match with the pattern you specify. The results are returned in an array.

 For example, if you want to harvest all the digits in a string, you can do this:

>> "testing 1 2 3 testing 4 5 6".scan(/\d/)
=> ["1", "2", "3", "4", "5", "6"]

Note that scan jumps over things that don’t match its pattern and looks for a
match later in the string. This behavior is different from that of match, which stops
for good when it finishes matching the pattern completely once.

 If you use parenthetical groupings in the regex you give to scan, the operation
returns an array of arrays. Each inner array contains the results of one scan:

>> str = "Leopold Auer was the teacher of Jascha Heifetz."
=> "Leopold Auer was the teacher of Jascha Heifetz."
>> violinists = str.scan(/([A-Z]\w+)\s+([A-Z]\w+)/)
=> [["Leopold", "Auer"], ["Jascha", "Heifetz"]]

This approach buys you an array of arrays, where each inner array contains the
first name and the last name of a person. Having each complete name stored in its
own array makes it easy to iterate over the whole list of names, which we’ve conve-
niently stashed in the variable violinists:

violinists.each do |fname,lname|
 puts "#{lname}'s first name was #{fname}."
end

The regular expression used for names in this example is, of course, overly sim-
ple: it neglects hyphens, middle names, and so forth. But it’s a good illustration of
how to use captures with scan.

12.5.2 String#split

Another common string operation is split, which, as per its name, splits a string
into multiple substrings, returning those substrings as an array.

 split can take either a regular expression or a plain string as the separator for
the split operation. It’s commonly used to get an array consisting of all the charac-
ters in a string. To do this, you use an empty regular expression:

>> "Ruby".split(//)
=> ["R", "u", "b", "y"]

Another common use case for split is performing a conversion from a flat, text-
based configuration file to a Ruby data format—array, hash, or something fancier

Common methods that use regular expressions 333
like an ActiveRecord database entry. Usually, this involves going through a file line
by line and converting each line. A single-line conversion might look like this:

line = "first_name=david;last_name=black;country=usa"
record = line.split(/=|;/)

This leaves record containing an array:

["first_name", "david", "last_name", "black", "country", "usa"]

With a little more work, you can populate a hash with entries of this kind:

data = []
record = Hash[*line.split(/=|;/)]
data.push(record)

If you do this for every line in a file, you’ll have an array of hashes representing all
the records. That array of hashes, in turn, can be used as the pivot point in con-
verting the data to a different form.

 You can provide a second argument to split; this argument limits the number
of items returned. In this example

>> "a,b,c,d,e".split(/,/,3)
=> ["a", "b", "c,d,e"]

split stops splitting once it has three elements to return and puts everything
that’s left (commas and all) in the third string.

 In addition to breaking a string into parts by scanning and splitting, you can
also change parts of a string with substitution operations.

12.5.3 sub/sub! and gsub/gsub!

sub and gsub (along with their bang, in-place equivalents) are the most common
tools for changing the contents of strings in Ruby. The difference between them is
that gsub (global substitution) makes changes throughout a string, whereas sub
makes at most one substitution.

sub
sub takes two arguments: a regular expression (or string) and a replacement string.
Whatever part of the string matches the regular expression, if any, is removed
from the string and replaced with the replacement string:

>> "typigraphical error".sub(/i/,"o")
=> "typographical error"

You can use a code block instead of the replacement-string argument. The block is
called (yielded to) if there’s a match. The call passes in the string being replaced
as an argument:

334 CHAPTER 12

Regular expressions and regexp-based string operations
>> "capitalize the first vowel".sub(/[aeiou]/) {|s| s.upcase }
=> "cApitalize the first vowel"

If you’ve done any parenthetical grouping, the global $n variables are set and
available for use inside the block.

gsub
gsub is like sub, except it keeps substituting as long as the pattern matches any-
where in the string. For example, here’s how you can replace the first letter of
every word in a string with the corresponding capital letter:

>> "capitalize every word".gsub(/\b\w/) {|s| s.upcase }
=> "Capitalize Every Word"

As with sub, gsub gives you access to the $n parenthetical capture variables in the
code block.

Using the captures in a replacement string
When you use the replacement-string form of sub or gsub, the $n variables aren’t
available inside the replacement string. However, you can access the captures by
using a special notation consisting of backslash-escaped numbers. For example,
you can correct an occurrence of a lowercase letter followed by an uppercase let-
ter (assuming you’re dealing with a situation where this is a mistake) like this:

>> "aDvid".sub(/([a-z])([A-Z])/, '\2\1')
=> "David"

(Note the use of single quotation marks for the replacement string. With double
quotes, you’d have to double the backslashes to escape the backslash character.)

 To double every word in a string, you can do something similar, but using gsub:

>> "double every word".gsub(/\b(\w+)/, '\1 \1')
=> "double double every every word word"

We’ll look next at a method of Enumerable that uses regular expressions in a filter-
ing context.

12.5.4 grep

Unlike the previous methods discussed in this section, grep belongs to Enumerable
rather than String. Like most Enumerable methods, it’s used somewhat rarely on
strings (which, as you’ll recall, perform enumerable operations line by line rather
than character by character) and much more often on arrays.

 grep does a select operation based directly on a regular expression argument. It
returns all the elements in the array (or other enumerable) that match the regular
expression you provide:

Summary 335
>> ["USA", "UK", "France", "Germany"].grep(/[a-z]/)
=> ["France", "Germany"]

You could, in fact, accomplish the same thing with select, but it’s a bit wordier:

["USA", "UK", "France", "Germany"].select {|c| /[a-z]/.match(c) }

grep is a dedicated select operation, designed to make regexp-based selection
operations concise and convenient.

 You can also supply a code block to grep, in which case you get a combined
select/map operation: The results of the filtering operation are yielded one at a
time to the block, and the return value of the whole grep call is the cumulative
result of those yields. For example, to select countries and then collect them in
uppercase, you can do this:

>> ["USA", "UK", "France", "Germany"].grep(/[a-z]/) {|c| c.upcase }
=> ["FRANCE", "GERMANY"]

Keep in mind that grep only selects based on regular expression matching, so it
won’t select anything other than strings—and there’s no automatic conversion
between strings and numbers. Thus if you try this

[1,2,3].grep(/1/)

you get back an empty array; the array has no string element that matches the regu-
lar expression /1/.

 This brings us to the end of our survey of regular expressions and some of the
methods that use them. There’s more to learn; pattern-matching is a sprawling
subject. But this chapter has introduced you to much of what you’re likely to need
and see as you proceed with your study and use of Ruby.

12.6 Summary

This chapter has introduced you to the fundamentals of regular expressions in
Ruby, including character classes, parenthetical captures, and anchors. You’ve
seen that regular expressions are objects—specifically, objects of the Regexp
class—and that they respond to messages (such as “match”). We looked at the
MatchData class, instances of which hold information about the results of a match
operation. You’ve also learned how to interpolate strings into regular expressions
(escaped or unescaped, depending on whether you want the special characters in
the string to be treated as special in the regular expression) and how to generate
a string representation of a regular expression.

336 CHAPTER 12

Regular expressions and regexp-based string operations
 Methods like String#scan, String#split, Enumerable#grep, and the subfamily
of String methods use regular expressions and pattern-matching as a way of
determining how their actions should be applied. Gaining knowledge of regular
expressions gives you access not only to relatively simple matching methods but
also to a suite of string-handling tools that would otherwise not be usable.

 The next chapter is the last in this part of the book and the last in the larger
section of the book comprising the Ruby tutorial in parts 2 and 3. In chapter 13,
we’ll take things to another level by looking directly at some of the features and
techniques that make Ruby dynamic.

Ruby dynamics
In this chapter
■ Singleton classes and per-object behavior
■ The eval family of methods
■ Callable objects
■ Runtime method hooks and callbacks
337

338 CHAPTER 13

Ruby dynamics
Just about everything in Ruby is dynamic. Technically, this means what’s in your
program files doesn’t always determine what happens when the program runs.
Your file may have, say, three class definitions. But it may also have a method that
defines 12 more classes. But only if the user makes a request that requires that
those classes exist….

 This is an example of dynamic behavior on the part of Ruby. Things that, in
other languages, would be determined before the program starts running (like
how many classes will exist, what messages objects are capable of understanding,
and so on) can be changed and renegotiated during runtime in a Ruby program.

 The topic of this chapter, “Ruby dynamics,” is almost a synonym for “Ruby pro-
gramming techniques.” Dynamism pervades Ruby. However, certain techniques and
language constructs lie closer than others to the heart of Ruby’s dynamism, provid-
ing the structure and environment on top of which all the dynamic behavior is built.

 We’ll survey those features of the language here. You’ve already seen dyna-
mism in action; some of the first Ruby code presented in this book involved add-
ing methods at runtime to individual objects (def obj.talk and similar code).
This chapter shows you, in part, the underpinnings of some of these dynamic pro-
gramming techniques and, in part, new programming techniques that let you
take dynamism further.

 These aspects of Ruby aren’t always easy to absorb. But they mesh nicely with
each other and with the language overall. Once you start to see how they work, a
lot of concepts fall into place. Moreover (and this isn’t entirely a coincidence, as
you can imagine), familiarity with dynamic Ruby is indispensable for an under-
standing of the Rails framework. The components of Rails depend fundamentally
on the ability of Ruby objects and classes to undergo all sorts of runtime modifica-
tions, changes, and interceptions. This kind of flexibility on the part of Ruby
allows (for example) ActiveRecord to endow your objects with methods based on
the names of the fields in your database tables. You don’t have to write those
methods; you just create a database, and ActiveRecord does the rest at runtime.

 Nor is the deployment of Ruby’s dynamism restricted to Rails. Dynamism is
everywhere in Ruby, and a grasp of its key foundational techniques will put you in
a good position to understand the language in many of its manifestations.

13.1 The position and role of singleton classes

Our first dynamics topic is the topic of the singleton class. The best way to under-
stand what a singleton class is, and why it’s important, is to take a running leap at
it, starting with the basics.

The position and role of singleton classes 339
 Most of what happens in Ruby involves classes and modules, containing defini-
tions of instance methods

class C
dddef talk
ddddputs "Hi!"
ddend
end

and, subsequently, the instantiation of classes and the calling of those instance
methods:

c = C.new
c.talk

However, as you saw even earlier in this book than you saw instance methods
inside classes, you can also add methods directly to individual objects:

obj = Object.new
def obj.talk
ddputs "Hi!"
end
obj.talk

A method added to a specific object like this is called a singleton method of the
object. When you define a singleton method on a given object, only that object can
call that method.

 As we’ve seen, the most common type of singleton method is the class
method—a method added to a Class object on an individual basis:

class Ticket
dddef Ticket.most_expensive(tickets)
dd# etc.

But any object can have singleton methods added to it. The ability to define
behavior on a per-object basis is one of the hallmarks of Ruby’s design.

 Instance methods—those available to any and all instances of a given class—
live inside a class or module, where they can be found by the objects that are able
to call them. But what about singleton methods? Where does a method live, if that
method only exists to be called by a single object?

13.1.1 Where the singleton methods live

Ruby, as usual, has a simple answer to this tricky question: An object’s singleton
methods live in the object’s singleton class. Every object really has two classes:

■ The class of which it is an instance

■ Its singleton class

Output: Hi!

Output: Hi!

340 CHAPTER 13

Ruby dynamics
The method-calling capabilities of the object amount to the sum of all the
instance methods defined in these two classes (along with methods available
through ancestral classes and/or mixed-in modules). An object can call instance
methods from its original class, and it can also call methods from its singleton
class. It has both.

 You can think of an object’s singleton class as an exclusive stash of methods,
tailor-made for that object and not shared with other objects—not even with
other instances of the object’s class.

13.1.2 Examining and modifying a singleton class directly

Singleton classes are anonymous: Although they are class objects (instances of the
class Class), they spring up automatically without being given a name. Nonethe-
less, you can open the class definition body of a singleton class and add instance
methods, class methods, and constants to it, just as you would with a regular class.

 You do this with a special form of the class keyword. Usually, a constant fol-
lows that keyword:

class C
dd# method and constant definitions here
end

To get inside the definition body of a singleton class, you use a special notation:

class << object
dd# method and constant definitions here
end

The << object notation means the anonymous, singleton class of object. Once you’re
inside the singleton class definition body, you can define methods—and these
methods will be singleton methods of the object whose singleton class you’re in.

 Consider this program, for example:

str = "I am a string"
class << str
dddef twice
ddddself + " " + self
ddend
end

puts str.twice

It produces the following output:

I am a string I am a string

The method twice is a singleton method of the string str. It’s exactly as if we had
done this:

The position and role of singleton classes 341
def str.twice
ddself + " " + self
end

The difference is that we’ve pried open the singleton class of str and defined the
method there. (There’s also a subtle difference between these two approaches to
defining a singleton method, involving the scope of constants, but that’s an
arcane point. For the most part, you can treat them as equivalent.)

Defining class methods with class <<
By far the most frequent use of the class << notation for entering a singleton method
class is in connection with class method definitions. You’ll see this quite often:

class Ticket
ddclass << self
dddddef most_expensive(tickets)
dddd# etc.

This code results in a class method Ticket.most_expensive. That method could
also be defined like this (assuming this code comes at a point in the program
where the Ticket class already exists):

class << Ticket
dddef most_expensive(tickets)
dd# etc.

Because self is Ticket inside the class Ticket definition body, class << self
inside the body is the same as class << Ticket outside the body. (Technically, you
could do class << Ticket even inside the body of class Ticket, but in practice
you’ll usually see class << self whenever the object whose singleton class needs
opening is self.)

 The fact that class << self shows up frequently in connection with the crea-
tion of class methods sometimes leads to the false impression that the class <<
notation can only be used to create class methods, or that the only expression you
can legally put on the right is self. In fact, class << self inside a class definition
block is just one case of the class << object notation. The technique is general: It
puts you in a definition block for the singleton class of object, whatever object
may be. That, in turn, means you’re operating in a context where whatever you
do—whatever you add to the class—pertains only to that one object.

 In chapter 6, we looked at the steps a process takes as it looks for a method
among those defined in its class, its class’s class, and so forth. Now we have a new
item on the radar: the singleton class. What’s the effect of this extra class on the
method lookup process?

342 CHAPTER 13

Ruby dynamics
13.1.3 Singleton classes on the method lookup path

Recall that method searching goes up the class
inheritance chain, with detours for any mod-
ules that have been mixed in. When we first dis-
cussed this process, we hadn’t talked about
singleton methods, and they were not present
in the diagram. Now we can revise the diagram
to encompass them, as shown in figure 13.1.

 An object’s singleton class comes first in the
method lookup path. The singleton class is the
object’s personal method-storage area, so it
takes precedence. After the singleton class
come any modules mixed into it. Next comes
the object’s original class, and so forth.

 There are two ways to insert a module just
above an object’s singleton class in the method
lookup path. First, you can mix the module
into the singleton class:

class C
end

module M
dddef talk
ddddputs "Hello."
ddend
end

obj = C.new
class << obj
ddinclude M
end

obj.talk

The second way is to use extend. As you’ll recall, extend is a sort of per-object vari-
ant of include. Instead of mixing the module into an entire class, extend endows a
single object with access to the module’s instance methods. Given the same class C
and module M from the previous example, you can extend an object like this:

obj = C.new
obj.extend(M)
obj.talk

Output: Hello.

Output: Hello.

class Object

class C

class D

module Kernel

module M

singleton class
of object

object.x

Figure 13.1 Method search order,
revised to include singleton classes

The position and role of singleton classes 343
The effect is almost identical to the effect of including the module M in the
object’s singleton class. (The only differences are obscure and have to do with the
visibility and scope of constants at the time of the extend or include operation.
You can generally treat these two techniques as equivalent.) They both interpose a
module in the object’s method lookup path, after the object’s singleton class but
before the object’s original class.

Singleton module inclusion vs. original-class module inclusion
When you mix a module into an object’s singleton class (or extend the object with
the module), you’re dealing with that object specifically; the methods it learns
from the module take precedence over any methods of the same name in its origi-
nal class. Listing 13.1 shows the mechanics and outcome of doing this kind of
include operation.

 class C
 def talk
 puts "Hi from original class!"
 end
 end

 module M
 def talk
 puts "Hello from module!"
 end
 end

 c = C.new
 c.talk
 class << c
 include M
 end
 c.talk

The output from listing 13.1 is as follows:

Hi from original class!
Hello from module!

The first call to talk dd executes the talk instance method defined in c’s class, C.
Then we mix in the module M, which also defines a method called talk, into c’s
singleton class dd. As a result, the next time we call talk on c dd, the talk that
gets executed (the one that c sees first) is the one defined in M.

Listing 13.1 Including a module in a singleton class

B

C

D

B

C D

344 CHAPTER 13

Ruby dynamics
 It’s all a matter of how the classes and modules on the object’s method lookup
path are stacked. Modules included in the singleton class are encountered before
the original class and before any modules included in the original class.

 You can see this graphically by using the ancestors method, which gives you a
list of the classes and modules in the inheritance and inclusion hierarchy of any
class or module. Starting from after the class and module definitions in the previ-
ous example, try using ancestors to see what the hierarchy looks like:

c = C.new
class << c
ddinclude M
ddp ancestors
end

You’ll get an array of ancestors—essentially, the method lookup path for instances
of this class. Because this is the singleton class of c, that means the method lookup
path for c:

[M, C, Object, Kernel]

(Singleton classes aren’t reported by ancestors. If they were, they would come first.)
 Now, look what happens when you not only mix M into the singleton class of c

but also mix it into c’s class (C). Picking up after the previous example:

class C
ddinclude M
end

class << c
ddp ancestors
end

This time, you see the following result:

[M, C, M, Object, Kernel]

The module M appears twice! Two different classes—the singleton class of c and
the class C—have mixed it in. Each mix-in is a separate transaction. It’s the private
business of each class; the classes don’t consult with each other. (You could even
mix M into Object, and you’d get it three times in the ancestors list.)

 You’re encouraged to take these examples, modify them, turn them this way and
that, and examine the results. Classes are objects too—so see what happens when
you take the singleton class of an object’s singleton class. What about mixing mod-
ules into other modules? There are many possible permutations; you can learn a lot
through experimentation, using what we’ve covered here as a starting point.

The position and role of singleton classes 345
 The main lesson is that per-object behavior in Ruby is based on the same prin-
ciples as “regular,” class-derived object behavior: definition of instance methods in
classes and modules, mixing in of modules to classes, and a method lookup path
consisting of classes and modules. If you master these concepts and revert to them
whenever something seems fuzzy, your understanding will scale upward successfully.

 Equipped with this knowledge, let’s go back and look at a special case within
the world of singleton methods (special, because it’s common and useful): class
methods.

13.1.4 Class methods in (even more) depth

Class methods are singleton methods defined on objects of class Class. In many
ways, they behave like any other singleton method:

class C
end

def C.a_class_method
ddputs "Singleton method defined on C"
end

C.a_class_method

However, class methods also exhibit special behavior. Normally, when you define a
singleton method on an object, no other object can serve as the receiver in a call to
that method. (That’s what makes singleton methods singleton, or per-object.)
Class methods are slightly different: A method defined as a singleton method of a
class object can also be called on subclasses of that class. Given the previous exam-
ple, with C, you can do this:

class D < C
end

D.a_class_method

Here’s the rather confusing output (confusing because the class object we sent
the message to is D, rather than C):

Singleton method defined on C

You’re allowed to call C’s singleton methods on a subclass of C, in addition to C,
because of a special setup involving the singleton classes of class objects. In our
example, the singleton class of C (where the method a_class_method lives) is con-
sidered the superclass of the singleton class of D.

Output: Singleton
method defined on C

346 CHAPTER 13

Ruby dynamics
 When you send a message to the class object D, the usual lookup path is
followed—except that after D’s singleton class, the superclass of D’s singleton class
is searched. That’s defined as the singleton class of C, D’s superclass. And there’s
the method.

 Figure 13.2 shows the relationships among classes in an inheritance relation-
ship and their singleton classes. As you can see from figure 13.2, the singleton
class of C’s child, D, is considered a child (a subclass) of the singleton class of C.

 Singleton classes of class objects are sometimes called metaclasses. (You’ll some-
times hear the term metaclass applied to singleton classes in general, but there’s
nothing particularly meta about them and singleton class is a more descriptive term.)

 You can treat this explanation as a bonus topic. It’s unlikely that an urgent
need to understand it will arise very often. Still, it’s a great example of how Ruby’s
design is based on a relatively small number of rules (such as every object having a
singleton class, and the way methods are looked up). Classes are special-cased
objects; after all, they’re object factories as well as objects in their own right. But
there’s little in Ruby that doesn’t arise naturally from the basic principles of the
language’s design—even the special cases.

 At this point, we’ve covered what we need to, regarding singleton methods and
classes. Next stop on the tour of dynamic Ruby: the eval family of methods. These
methods let you hand the interpreter chunks of code in the form of strings or
code blocks for evaluation based on content determined at runtime (rather than
based on what’s already typed into the program file). As you’ll see, this kind of
dynamic evaluation of code comes in several varieties.

class C

class D

singleton class of

superclass ofsingleton class of D

singleton class of C

Figure 13.2 Relationships among classes in an inheritance relationship, and
their singleton classes

The eval family of methods 347
13.2 The eval family of methods

Like many languages, Ruby has a facility for executing code stored in the form of
strings at runtime. In fact, Ruby has a cluster of techniques to do this, each of
which serves a particular purpose but all of which operate on a similar principle:
that of saying in the middle of a program, “Whatever you read from the program
file before starting to execute this program, execute this right now.”

 The most straightforward method for evaluating a string as code, and also the
most dangerous, is the method eval. Other eval-family methods are a little softer,
not because they don’t also evaluate strings as code, but because that’s not all they
do. instance_eval brings about a temporary shift in the value of self, and
class_eval (also known by the synonym module_eval) takes you on an ad hoc
side-trip into the context of a class definition block. These eval-family methods
can be called with a code block; they don’t always operate as bluntly as eval, which
just executes strings.

 Let’s unpack this description with a closer look at eval and the other eval
methods.

13.2.1 eval

eval executes the string you give it:

>> eval("2+2")
=> 4

eval is the answer, or at least one answer, to a number of frequently asked ques-
tions, such as, “How do I write a method and give it a name someone types in?”
You can do so like this:

print "Method name: "
m = gets.chomp
eval("def #{m}; puts 'Hi!'; end")
eval(m)

This code outputs the following:

Hi!

A new method is being written. Let’s say you run the code and type in abc. The
string you subsequently use eval on is

def abc; puts 'Hi!'; end

After you apply eval to that string, a method called abc exists. The second eval exe-
cutes the string “abc”—which, given the creation of the method in the previous

348 CHAPTER 13

Ruby dynamics
line, constitutes a call to abc. When abc is called, the string “Inside new method!”
is printed out.

The dangers of eval
eval gives you a lot of power, but it also harbors dangers—in some people’s opin-
ion, enough dangers to rule it out as a usable technique. What would happen, for
example, if you entered this instead of abc?

abc; end; system("rm -rf /*"); #

You’d end up running eval on this string:

def abc; end; system("rm -rf /*"); # puts 'Hi!'; end

Everything to the right of the # would be treated as a comment when eval ran on
it and would therefore be discarded. The code that was executed would create a
method called abc (a method that does nothing) and then attempt to remove all
the files on the system, courtesy of the system command. (system sends a com-
mand to the system, as its name implies.)

 In other words, what string you run eval on can make a big difference.
 eval can be seductive. It’s about as dynamic as a dynamic programming tech-

nique can get: You’re evaluating strings of code that probably didn’t even exist
when you wrote the program. Anywhere that Ruby puts up a kind of barrier to
absolute, easy manipulation of the state of things during the run of a program,
eval seems to offer a way to cut through the red tape and do whatever you want.

 But, as you can see, eval isn’t a panacea. If you’re running eval on a string you’ve
written, it’s generally no worse than running a program file you’ve written. But any
time an uncertain, dynamically generated string is involved, the dangers mushroom.

 In particular, it’s very difficult to clean up user input (including input from
Web forms and files) to the point that you can feel safe about running eval on it.
Ruby maintains a global variable called $SAFE, which you can set to a high number
(on a scale of 0 to 4) to gain protection from dangers like rogue file-writing
requests. $SAFE makes life with eval a lot safer. Still, the best habit to get into is the
habit of not using eval.

 It isn’t hard to find experienced and expert Ruby programmers (as well as pro-
grammers in other languages) who never use eval and never will. You have to
decide how you feel about it, based on your knowledge of the pitfalls.

 Let’s move now to the wider eval family of methods. These methods can do
the same kind of brute-force string evaluation that eval does; but they also have
kindler, gentler behaviors that make them usable and useful.

!! DO NOT DO THIS !!

The eval family of methods 349
13.2.2 instance_eval

instance_eval is a specialized cousin of eval. It evaluates the string or code block
you give it, changing self to be the receiver of the call to instance_eval.

 This code

p self
a = []
a.instance_eval { p self }

outputs two different selfs:

main
[]

instance_eval is mostly useful for breaking in to what would normally be another
object’s private data—particularly instance variables. Here’s how to see the value
of an instance variable belonging to any old object (in this case, the instance vari-
able of @x of a C object):

class C
 def initialize
 @x = 1
 end
end

c = C.new
c.instance_eval { puts @x }

This kind of prying into another object’s state is generally considered impolite; if
an object wants you to know something about its state, it provides methods
through which you can inquire. Nevertheless, because Ruby dynamics are based
on the changing identity of self, it’s not a bad idea for the language to give us a
technique for manipulating self directly.

 We’ve saved the most useful of the eval family of methods for last: class_eval
(synonym: module_eval).

13.2.3 The most useful eval: class_eval (a.k.a. module_eval)

In essence, class_eval puts you inside a class definition body:

c = Class.new
c.class_eval do
 def some_method
 puts "Created in class_eval"
 end
end
c = C.new
c.some_method Output: Created in class_eval

350 CHAPTER 13

Ruby dynamics
However, you can do some things with class_eval that you can’t do with the regu-
lar class keyword:

■ Evaluate a string in class-definition context

■ Open the class definition of an anonymous class (other than a singleton class)

■ Gain access to variables in the surrounding scope

The third item on this list is particularly worthy of note.
 When you open a class with the class keyword, you start a new local variable

scope. The block you use with class_eval, however, can see the variables created
in the scope surrounding it. Look at the difference between the treatment of var,
an outer-scope local variable, as between a regular class definition body and a
block given to class_eval:

>> var = "initialized variable"
=> "initialized variable"
>> class C
>> puts var
>> end
NameError: undefined local variable or method `var' for C:Class
 from (irb):3
>> C.class_eval { puts var }
initialized variable

The variable var is out of scope inside the standard class definition block, but still
in scope in the code block passed to class_eval.

 The plot thickens a little when you define an instance method inside the
class_eval block:

>> C.class_eval { def talk; puts var; end }
=> nil
>> C.new.talk
NameError: undefined local variable or method `var' for #<C:0x350ba4>

Like any def, the def inside the block starts a new scope—so the variable var is no
longer visible.

 If you want to shoehorn an outer-scope variable into an instance method, you
have to use a different technique for creating the method: the method
define_method. You hand define_method the name of the method you want to cre-
ate (as a symbol or a string) and provide a code block; the code block serves as the
body of the method.

 To get the outer variable var into an instance method of class C, you therefore
do this:

>> C.class_eval { define_method("talk") { puts var } }
=> #<Proc:0x003452f4@(irb):8>

Callable objects 351
(The return value you’re seeing is a Proc object created from the code block
given to define_method.)

 At this point, the talk instance method of C will, indeed, have access to the
outer-scope variable var:

>> C.new.talk
initialized variable

You won’t see techniques like this used as frequently as the standard class- and
method-definition techniques. But when you see them, you’ll know that they
imply a flattened scope for local variables rather than the new scope triggered by
the more common class and def keywords.

 define_method is an instance method of the class Module, so you can call it on
any instance of Module or Class. You can thus use it inside a regular class defini-
tion body (where the default receiver self is the class object) if there’s a variable
local to the body that you want to sneak into an instance method. That’s not a fre-
quently encountered scenario, but it’s not unheard of.

 We’re going to turn next to a broad but unified category: callable objects.

13.3 Callable objects

A callable object is an object to which you can send the message call, with the
expectation that some code defined in the object (usually in a code block) will be
executed. The main callable objects in Ruby are methods (which you’ve already
seen), Proc objects, and lambdas. Proc objects are self-contained code sequences
that you can create, store, pass around as method arguments, and, when you wish,
execute with the call method. Lambdas are similar to Proc objects. The differ-
ences will emerge as we examine each in turn.

13.3.1 Proc objects

You create a Proc object by instantiating the Proc class, including a code block:

pr = Proc.new { puts "Inside a Proc's block" }

Note that the code block isn’t executed at this point. Instead, it’s saved as the body
of the Proc object. If you want to execute the block (the Proc object), you must
call it explicitly:

pr.call

It will report:

Inside a Proc's block

352 CHAPTER 13

Ruby dynamics
That’s the basic scenario: A code block, supplied to a call to Proc.new, becomes
the body of the Proc object and gets executed when you call that object. Every-
thing else that happens, or that can happen, involves additions to and variations
on this theme.

Proc objects as closures
You’ve already seen that the local variables you use inside a method body aren’t
the same as the local variables you use in the scope of the method call:

def talk
dda = "Hello"
ddputs a
end

a = "Goodbye"
talk
puts a

The identifier a has been assigned to twice, but the two assignments (the two a
variables) are unrelated to each other.

 Proc objects put a slightly different spin on scope. When you construct the
code block for a call to Proc.new, the local variables you’ve created are still in
scope (as with any code block). Furthermore, those variables remain in scope inside
the Proc object, no matter where or when you call it.

 Look at listing 13.2, and keep your eye on the two variables called a.

def call_some_proc(pr)
 a = "irrelevant 'a' in method scope"
 puts a
 pr.call
end

a = "'a' to be used in Proc block"
pr = Proc.new { puts a }
pr.call
call_some_proc(pr)

As in the previous example, there’s an a in the method definition dd and an a in
the outer (calling) scope dd. Inside the method is a call to a Proc object. The code
for that Proc object, we happen to know, consists of puts a. Notice that when the
Proc is called from inside the method dd, the a that is printed out isn’t the a defined
in the method; it’s the a from the scope where the Proc object was originally created:

Listing 13.2 Example of preservation of local context by a Proc object

Output: Goodbye

B

C

D

B
D

C

Callable objects 353
'a' to be used in Proc block
irrelevant 'a' in method scope
'a' to be used in Proc block

The Proc object carries its context around with it. Part of that context is a variable
called a, to which particular string is assigned. That variable lives on inside the Proc.

 A piece of code that carries its creation context around with it like this is called
a closure. Creating a closure is like packing a suitcase: Wherever you open the suit-
case, it contains what you put in when you packed it. When you open a closure (by
calling it), it contains what you put into it when it was created.

Arguments for Proc objects
Like any code block, the block you provide when you create a Proc object can take
arguments:

pr = Proc.new {|x| puts "Called with argument #{x}" }
pr.call(100)

Proc objects handle their arguments in a subtle (some might say complicated)
way. If the Proc takes only one argument, as in the previous example, and you
send it some number of arguments other than one, you get a warning. If you give
it no arguments, the single variable is initialized to nil, and you get a warning:

>> pr = Proc.new {|x| p x }
=> #<Proc:0x401f326c@(irb):1>
>> pr.call
(irb):1: warning: multiple values for a block parameter (0 for 1)
 from (irb):2
nil

If you call the one-argument Proc with more than one argument, you get a warn-
ing, and the arguments are all put into an array:

>> pr.call(1,2,3)
(irb):1: warning: multiple values for a block parameter (3 for 1)
 from (irb):3
[1, 2, 3]

If your Proc takes more than one argument, the arguments you call it with are
assigned to the variables in its argument list. Extra arguments on either end of the
transaction are ignored:

>> pr = Proc.new {|x,y,z| p x,y,z }
=> #<Proc:0x001b5598@(irb):1>
>> pr.call(1,2)
1
2
nil

Output: Called with argument 100

B

354 CHAPTER 13

Ruby dynamics
=> nil
>> pr.call(1,2,3,4)
1
2
3
=> nil

The first time we call pr, we provide three arguments; inside pr, the third argument,
z, gets nothing assigned to it and defaults to nil dd. (Note that the second nil that
irb prints out is the return value of the execution of pr, which returns nil because
it ends with a puts statement!) The second time we call pr, all three variables are
assigned values; the fourth value, 4, is discarded, because there’s no variable left to
assign it to.

 You can also sponge up all the arguments into a single argument, with the star
(*) operator:

pr = Proc.new {|*x| p x }
pr.call
pr.call(1)
pr.call(1,2)

As you’ll see if you run this snippet, x is set to an array on each call to the Proc.
Each time, the array contains all the arguments you’ve called the Proc with:

[]
[1]
[1, 2]

If you have multiple arguments and put the sponge last, it’s assigned an array of
all the arguments that haven’t been assigned to other variables already. Here’s an
example:

pr = Proc.new {|x,*y| p x, y }
pr.call(1,2,3)

The output

1
[2, 3]

represents x, which was assigned the 1, and y, which was assigned the remaining
arguments (2,3) as an array.

 The bottom line is that Procs are a little less fussy than methods about their
argument count—their arity.

 Ruby offers several variations on the callable method-or-function theme. We’ll
look next at another form of anonymous function: the lambda.

B

Callable objects 355
13.3.2 Creating anonymous functions with the lambda keyword

The lambda keyword lets you create an anonymous function. All you have to do is
provide lambda with a code block; that block becomes the function. You can then
send it a “call” message, and the function executes:

>> lam = lambda { puts "A lambda!" }
=> #<Proc:0x00330cb4@(irb):31>
>> lam.call
A lambda!

Lambdas, as you can see from irb’s evaluative printout dd, aren’t objects of a class
called Lambda; rather, they’re objects of class Proc:

>> lam.class
=> Proc

Like all Proc objects, they are closures; they carry the local context of their cre-
ation around with them.

 However, there’s a difference between Procs you create with lambda and those
you created with Proc.new. It’s a subtle difference, but one you may need to be aware
of at some point. It involves the return keyword. return inside a lambda returns
from the lambda. return inside a Proc returns from the surrounding method.

NOTE THE PROC/LAMBDA/BLOCK REALM IN FLUX In recent versions of Ruby—
and in future versions, judging by discussions on various mailing lists and
forums—the matter of how Proc objects, code blocks, and lambdas relate
to each other has been, and still is, in a certain amount of flux. Don’t be
surprised if you see other differences, or even the elimination of differ-
ences, from one version of Ruby to another.

Here’s an illustration of the difference:

def return_test
 l = lambda { return }
 l.call
 puts "Still here!"
 p = Proc.new { return }
 p.call
 puts "You won't see this message!"
end

return_test

The output of this snippet is “Still here!” You’ll never see the second message dd
printed out because the call to the Proc object dd triggers a return from the

B

B

C
D

B

D
C

356 CHAPTER 13

Ruby dynamics
method. The call to the lambda dd, however, triggers a return from the lambda;
execution of the method continues where it left off.

 Before we leave lambda, it’s worth mentioning that lambda has a synonym: proc.
However, because proc and Proc.new look and sound so similar, but don’t do
exactly the same thing, Matz has agreed in principle to phase out proc, leaving
just Proc.new and lambda as the techniques for creating anonymous functions.
You’ll probably continue to see the proc keyword in use for a while; just remem-
ber that it’s a synonym for lambda.

 We’re now going to take another look at code blocks, in light of what we’ve dis-
cussed about anonymous functions.

13.3.3 Code blocks, revisited

A code block (the thing you type after a method call and to which the method
yields) exists only in the syntax of Ruby. There is no such thing as a Block class or
Block object. The block is just some code that floats in front of the method inside
curly braces (or do/end), waiting to be used.

 However, you can convert a code block into a Proc object, inside the method.
You do this by capturing the block in a variable. This variable is part of the argu-
ment list of the method, but it has an ampersand (&) at the beginning:

def grab_block(&block)
 block.call
end

grab_block { puts "This block will end up in the variable 'block'" }

The &var variable must be the last item in the argument list:

def grab_block(x,y,*z,&block)

You can also convert a Proc object or lambda to a code block. You do this with the
ampersand:

lam = lambda { puts "This lambda will serve as a code block" }
grab_block &lam

Here’s another example:

grab_block &lambda { puts "This lambda will serve as a code block" }

The & symbol serves in all of these cases as a signal that conversion back and forth
is going on, as between lambda/Proc on the one hand and code blocks on the other.

B

Callable objects 357
13.3.4 Methods as objects

In practice, the things you call most often in Ruby aren’t Procs or lambdas but
methods. So far, we’ve viewed the calling of methods as something we do at one
level of remove: We send messages to objects, and the objects execute the appro-
priately named method. But it’s possible to handle methods as objects. You’re not
likely to need this technique often, but it’s interesting to know that it’s possible.

 You get hold of a method object by using the method method, with the name of
the method as an argument (in string or symbol form):

class C
 def talk
 puts "Method-grabbing test! self is #{self}."
 end
end

c = C.new
meth = c.method(:talk)

At this point, you have a method object. In this case, it’s a bound method object; it
isn’t the method talk in the abstract, but rather the method talk specifically bound
to the object c. If you send a “call” message to meth, it knows to call itself with c in
the role of self:

meth.call

Here’s the output:

Method-grabbing test! self is #<C:0x353854>.

You can also unbind the method from its object and then bind it to another object,
as long as that other object is of the same class as the original object (or a subclass):

class D < C
end

d = D.new
unbound = meth.unbind
unbound.bind(d).call

Here, the output tells you that the method was, indeed, bound to a D object (d) at
the time it was executed:

Method-grabbing test! self is #<D:0x32d7bc>.

To get hold of an unbound method object directly, without having to call unbind
on a bound method, you can get it from the class rather than from a specific

358 CHAPTER 13

Ruby dynamics
instance of the class, using the instance_method method. This single line is equiva-
lent to a method call plus an unbind call:

unbound = C.instance_method(:talk)

Once you have the unbound method in captivity, so to speak, you can use bind to
bind it to any instance of either C or a C subclass like D.

But why?
There’s no doubt that unbinding and binding methods is a specialized technique,
and you’re not likely to need more than a reading knowledge of it. However, aside
from the principle that at least a reading knowledge of anything in Ruby can’t be
a bad idea, on some occasions the best answer to a “how to” question is, “With
unbound methods.”

 Here’s an example. The following question comes up periodically in Ruby
forums: “Suppose I’ve got a class hierarchy where a method gets redefined:

class A
 def a_method
 puts "Definition in class A"
 end
end

class B < A
 def a_method
 puts "Definition in class B (subclass of A)"
 end
end

class C < B
end

“And I’ve got an instance of the subclass:

c = C.new

“Is there any way to get that instance of the lowest class to respond to the message
(‘a_method’) by executing the version of the method in the class two classes up
the chain?”

 By default, of course, the instance doesn’t do that; it executes the first match-
ing method it finds as it traverses the method search path:

c.a_method

You can, however, force the issue through an unbind and bind operation:

A.instance_method(:a_method).bind(c).call

Output: Definition in class B (subclass of A)

Output: Definition in class A

Callbacks and hooks 359
You can even stash this behavior inside a method in class C

class C
 def call_original
 A.instance_method(:a_method).bind(self).call
 end
end

and then call call_original directly on c.
 This is an example of a Ruby technique with a paradoxical status: It’s within

the realm of things you should understand, as someone gaining mastery of Ruby’s
dynamics; but it’s outside the realm of anything you should probably be doing. If
you find yourself coercing Ruby objects to respond to methods you’ve already
redefined, you should review the design of your program and find a way to get
objects to do what you want as a result of, and not in spite of, the class/module hier-
archy you’ve created.

 Still, methods are callable objects, and they can be detached (unbound) from
their instances. As a Ruby dynamics inductee, you should at least have recognition-
level knowledge of this kind of operation.

 We’ll descend from the dynamic stratosphere next, and look at some of the
ways you can deploy Ruby methods strategically during runtime in the form of
callbacks and hooks.

13.4 Callbacks and hooks

The use of callbacks and hooks is a fairly common meta-programming technique.
These methods are called when a particular event takes place during the run of a
Ruby program. An event is something like

■ A nonexistent method being called on an object

■ A class mixing in a module

■ The subclassing of a class

■ An instance method being added to a class

■ A singleton method being added to an object

■ A reference to a nonexistent constant

For every event in that list, you can (if you choose) write a callback method that
will be executed when the event happens. These callback methods are per-object
or per-class, not global; if you want a method called when the class Ticket gets
subclassed, you have to write the appropriate method specifically for class Ticket.

360 CHAPTER 13

Ruby dynamics
 What follows are descriptions of each of these runtime event hooks. The Rails
framework uses several of them; we’ll see a couple of examples from the Rails
source here and examine Rails hooks in more detail later.

13.4.1 Intercepting unrecognized messages with method_missing

When you send a message to an object, the object executes the first method it
finds on its method lookup path with the same name as the message. If it fails to
find any such method, it raises a NoMethodError exception—unless you have pro-
vided the object with a method called method_missing.

 method_missing is in part a safety net: It gives you a way to intercept unanswer-
able messages and handle them gracefully:

class C
 def method_missing(m)
 puts "There's no method called #{m} here -- please try again."
 end
end

C.new.anything

You can also use method_missing to bring about an automatic extension of the way
your object behaves. For example, let’s say you’re modeling an object that in some
respects is a container but also has other characteristics—perhaps, just for the
sake of variety, a cookbook. You want to be able to program your cookbook as a
collection of recipes, but it also has certain characteristics (title, author, perhaps a
list of people with whom you’ve shared it or who have contributed to it) that need
to be stored and handled separately from the recipes. Thus the cookbook is both
a collection and the repository of metadata about the collection.

 One way to do this would be to maintain an array of recipes and then forward
any unrecognized messages to that array. A simple implementation might look
like this:

class Cookbook
 attr_accessor :title, :author

 def initialize
 @recipes = []
 end

 def method_missing(m,*args,&block)
 @recipes.send(m,*args,&block)
 end
end

Callbacks and hooks 361
Now we can perform manipulations on the collection of recipes, taking advantage
of any array methods we wish. (Let’s assume there’s a Recipe class, separate from
the Cookbook class, and we’ve already created some recipe objects.)

cb = Cookbook.new
cb << recipe_for_cake
cb << recipe_for_chicken
beef_dishes = cb.find_all {|recipes| recipe.main_ingredient ==
 "beef" }

The cookbook instance, cb, doesn’t have methods called << and find_all, so those
messages are passed along to the @recipes array, courtesy of method_missing. We
can still define any methods we want directly in the Cookbook class—we can even
override array methods, if we want a more cookbook-specific behavior for any of
those methods—but method_missing has saved us from having to define a whole
parallel set of methods for handling pages as an ordered collection.

TIP RUBY HAS LOTS OF METHOD-DELEGATING TECHNIQUES In this method
_missing example, we’ve delegated the processing of messages (the
unknown ones) to the array @pages. Ruby has several mechanisms for
delegating actions from one object to another. We won’t go into them
here, but you may come across both the Delegator class and the Simple-
Delegator class in your further encounters with Ruby.

method_missing looms large in the Rails framework. Much of what you do in Rails
involves making calls to nonexistent methods and then having those calls inter-
preted by Rails in the light of the structure of your database. (Examining the
method_missing code, especially in the ActiveRecord::Base class, is worthwhile,
although you may want to hold off until we’ve looked a little more systematically
at how to explore the Rails framework source in chapter 17.) In general,
method_missing is a useful tool—perhaps the most widely used among all the stan-
dard Ruby hooks and callbacks.

13.4.2 Trapping include operations with Module#included

When a module is included (mixed in) to a class, if a method called included is
defined for that module, then that method is called. The method receives the
name of the class as its single argument.

 You can do a quick test of included by having it trigger a message printout and
then perform an include operation:

module M
 def self.included(c)
 puts "I have just been mixed into #{c}."

362 CHAPTER 13

Ruby dynamics
 end
end

class C
 include M
end

You’ll see the message “I have just been mixed into C.” printed out as a result of
the execution of M.included when M gets included by (mixed into) C. (Because
you can also mix modules into modules, the example would also work if C were
another module.)

 When would it be useful for a module to intercept its own inclusion like this?
One commonly discussed case revolves around the difference between instance
and class methods. When you mix a module into a class, you’re ensuring that all
the instance methods defined in the module become available to instances of the
class. But the class object isn’t affected. The following question often arises: What
if you want to add class methods to the class by mixing in the module along with
adding the instance methods?

 Courtesy of included, you can trap the include operation and use the occa-
sion to add class methods to the class that’s doing the including. Listing 13.3
shows an example.

module M
 def self.included(cl)
 def cl.a_class_method
 puts "Now the class has a new class method."
 end
 end

 def an_inst_method
 puts "This module supplies this instance method."
 end
end

class C
 include M
end

c = C.new
c.an_inst_method
C.a_class_method

Listing 13.3 Using the included callback to add a class method as part of a
aaaaaaaaaaaaamix-in operation

Callbacks and hooks 363
The output from listing 13.3 is as follows:

This module supplies this instance method.
Now the class has a new class method.

When class C included module M, two things happened. First, an instance method
called an_inst_method appeared in the lookup path of its instances (such as c).
Second, thanks to M’s included callback, a class method called a_class_method was
defined for the class object C.

NOTE append_features IS A (DEPRECATED) SYNONYM FOR included The method
name included is being phased in to replace the name append_features.
In the Rails framework (at the time of this writing), the latter name occurs
rather than the former. It’s best to get used to the new name, but you should
recognize them both.

Module#included is a useful way to hook into the class/module engineering of
your program. We’ll see some usage of it in the Rails source code in part 4. Mean-
while, let’s look at another callback in the same general area of interest:
Class#inherited.

13.4.3 Intercepting inheritance with Class#inherited

You can also hook into the subclassing of a class, by defining a special class
method called inherited for that class. If inherited has been defined for a given
class, then when you subclass the class, inherited is called with the name of the
new class as its single argument:

class C
 def self.inherited(subclass)
 puts "#{self} just got subclassed by #{subclass}"
 end
end

class D < C
end

The subclassing of C by D automatically triggers a call to inherited and therefore
produces the following output:

C just got subclassed by D

inherited is a class method, so descendants of the class that defines it are also
able to call it. The actions you define in inherited cascade: If you inherit from a
subclass, that subclass triggers the inherited method, and similarly down the
chain of inheritance. If you do this

364 CHAPTER 13

Ruby dynamics
class E < D
end

you’re informed that D just got subclassed by E. You get similar results if you sub-
class E, and so forth.

Using inherited in ActiveRecord
When we return to the music store application in part 4 of the book, we’ll look
closely at some key aspects of how the Rails libraries organize their classes and
modules using inheritance and other techniques. But here’s a preview: the use of
inherited in the ActiveRecord library (slightly rearranged and edited for illustra-
tion purposes).

 The back story to this example is that every time you define a model in your
Rails application, you inherit from a class called ActiveRecord::Base. For exam-
ple, a Work model definition file might start like this:

class Work < ActiveRecord::Base

That’s an inheritance event, suitable for being intercepted or hooked by the
inherited method. Sure enough, the file base.rb in the ActiveRecord source con-
tains a definition for inherited. This snippet of code also gives you a glimpse of
class variables, which are recognizable by the two at-signs (@@) with which their
names start:

module ActiveRecord
 class Base
 @@subclasses = {}
 def self.inherited(child)
 @@subclasses[self] ||= []
 @@subclasses[self] << child
 super
 end
etc.

Every time you inherit from ActiveRecord::Base—essentially, every time you cre-
ate a new model definition—the name of your new class (child, in the code dd)
gets added to an array. That array is stored inside the hash @@subclasses.

NOTE CLASS VARIABLES Class variables, like @@subclasses in the example from
the base.rb source file, are scoped in such a way that they are visible when
self is the class to which they belong, a descendant (to any level) of that
class, or an instance of the class or its descendants. Despite their name,
they’re not really class scoped; they’re more like hierarchy scoped. Matz

B

B

Overriding and adding to core functionality 365
has mentioned plans to change the scoping of class variables in future ver-
sions of Ruby so that their visibility is more confined to the class (or mod-
ule; modules can have class variables too) where they’re defined.

ActiveRecord thus uses the inherited hook to log information internally about the
models you’ve created. This kind of behind-the-scenes interception of information,
generally without impact on (or even the knowledge of) the programmer using a
library, is typical of the use of callbacks and typical of the kind of technique Rails
uses to manage the universe of your domain in Ruby terms as you create it.

13.4.4 Module#const_missing

Module#const_missing is another commonly used callback. As the name implies,
this method is called whenever an unidentifiable constant is referred to inside a
given module or class:

class C
 def self.const_missing(const)
 puts "#{const} is undefined—setting it to 1."
 const_set(const,1)
 end
end

puts C::A
puts C::A

The output of this code is as follows:

A is undefined—setting it to 1.
1
1

Thanks to the callback, C::A is defined automatically when you use it without
defining it. This is taken care of in such a way that puts can print the value of the
constant; puts never has to know that the constant wasn’t defined in the first
place. Then, on the second call to puts, the constant is already defined, and
const_missing isn’t called.

13.5 Overriding and adding to core functionality

One of Ruby’s most powerful features is the ability to change and augment the
language’s core functionality. You can open up core classes just as easily as you can
open up your own classes. And you can add new methods and override old ones
to your heart’s content. Want arrays to know how to shuffle themselves? Here’s
how to teach them:

366 CHAPTER 13

Ruby dynamics
class Array
 def shuffle
 sort_by { rand }
 end
end

There are reasons, however, to be very, very cautious about making changes to the
Ruby core in your own programs. In particular, if you’re writing a code library that
you expect other people to use, and that library contains code that changes the
behavior of core objects and classes, you’re in essence changing the rules of the
game for everyone who uses your code. That means their code may fail to work.

13.5.1 A cautionary tale

Here’s an example involving MatchData. It’s notoriously annoying that when a
match operation fails, you get back nil, and when it succeeds, you get back a
MatchData object. This result is irritating because you can’t do the same things
with nil that you can with a MatchData object. This code, for example, succeeds if
there’s a first capture created by the match:

some_regexp.match(some_string)[1]

But if there’s no match, you get back nil—and because nil has no [] method,
you get a fatal NoMethodError exception when you try the [1] operation.

 It may be tempting to do something like this:

class Regexp
 alias :old_match :match
 def match(string)
 old_match(string) || []
 end
end

This code first sets up an alias for match, courtesy of the alias keyword dd. The
alias means you can now call the method using either of two names. Then, the
code redefines match. The new match hooks into the original version of match
(through the alias) and then returns either the result of calling the original ver-
sion, or (if that call returns nil) an empty array.

 You can now do this:

/abc/.match("X")[1]

Even though the match fails, the program won’t blow up, because the failed
match now returns an empty array rather than nil. The worst you can do with the
new match is try to index an empty array, which is legal. (The value you’ll get is
nil, but at least you’re not trying to index nil.)

B

B

Summary 367
 The problem is that the person using your code may be depending on the
match operation to return nil on failure:

if regexp.match(string)
 do something
else
 do something else
end

Because an array (even an empty one) is true, whereas nil is false, returning an
array for a failed match operation means that the true/false test (as embodied in
an if/else statement) always returns true.

 The moral of the story is that you have to be very careful about changing core
behaviors. Even adding new methods to Array, String, and the other built-in
classes is risky. What if someone else adds a method with the same name that
behaves differently? The only way to be safe is to leave the core methods alone.

 This cautionary tale brings us to the end of our survey of callbacks and hooks
and of Ruby dynamics in general. The techniques in this chapter are powerful
and inventive. Used knowledgeably, they can buy you a lot of programming func-
tionality. A good sense of Ruby’s repertoire of dynamic behaviors will put you in a
new bracket when it comes to understanding and analyzing what Ruby code is
doing—including, but by no means limited to, the Rails framework source and
specific Rails applications.

13.6 Summary

This chapter has given you a guided tour of some of the more meta aspects of
Ruby: techniques for manipulating not only your program’s data but also the pro-
gramming environment. We’ve looked at singleton classes, Ruby’s mechanism for
making per-object behaviors a reality. We’ve discussed callable objects (Procs,
blocks, and their relatives); runtime evaluation of strings with eval, as well as the
operations of the *_eval family; and hooks you can use to make things happen at
predefined junctures (subclassing, calls to nonexistent methods, and so on).

 You’ve also seen some of the power, as well as the risks, of the ability Ruby gives
you to pry open not only your own classes but also Ruby’s core classes. This is
something you should do sparingly, if at all—and it’s also something you should
be aware of other people doing.

 We’ve reached the end of the parts of the book containing concentrated Ruby-
language tutorial material. We’re now in a good position to return to the
R4RMusic application and take it to the next level.

Part 4

Rails through Ruby,
Ruby through Rails

The purpose of this part of the book is to bring to full fruition the book’s over-
all plan: helping you get more out of Rails by knowing more about Ruby. The
goals here are the goals of the book itself:

■ Learning the Ruby foundations of specific Rails techniques

■ Using your Ruby knowledge to add programming value and power to your
Rails applications by writing your own custom code

■ Gaining skill and experience in examining the Rails source code

Over the course of the four chapters that make up part 4, we’ll revisit and revise
R4RMusic, the music store application from chapter 2. Along the way, we’ll use
selected features and components of the application as windows onto the inner
workings of both Ruby and Rails—and, of course, Ruby and Rails together. The
new version of R4RMusic will include a Customer model and rudimentary but
operational shopping-cart capabilities. We’ll also implement more fine-tuned
facilities for handling musical works and published editions, along with the com-
posers, instruments, and publishers associated with them.

The sequence of the first three chapters is guided by the development of the
phases of the application revision process. Domain model and database (re)design
come first, in chapter 14; then, in chapter 15, we’ll add custom-written Ruby code
to the model files, by way of enhancing and augmenting model functionality. Chap-
ter 16 covers the updates and changes to the controller and view files, bringing to
a close the revision of the application.

 Chapter 17 is devoted to demonstrating a variety of techniques for finding
your way around the Rails framework source code and starting to familiarize your-
self with it. We can’t walk through all of it in this book; but once you get a sense of
how to negotiate the source, you’ll be in a position to do as much of it as you wish.

The spotlight is on developing the application in ways that wouldn’t have been
possible before parts 2 and 3 of the book, and that point the way to further Ruby
mastery.

(Re)modeling the
R4RMusic

application universe
In this chapter
■ Expansion and enhancement of the music

store domain
■ Inherited and automatic model capabilities
■ Semi-automated capabilities via ActiveRecord

associations
371

372 CHAPTER 14

(Re)modeling the R4RMusic application universe
The province of this chapter, together with chapter 15, is everything on the
domain-modeling, database-designing, and ActiveRecord-modeling side of the
music store application revision process—in other words, everything pertaining to
the what of the R4RMusic universe.

 In the course of refining and expanding that universe, we’ll be doing several
things, all of them parallel to what we did on the first iteration of the application:

■ Adding new entities to the domain model

■ Revising and tweaking old entities

■ Creating and/or modifying the SQL database table definitions to reflect the
changes

■ Creating and/or modifying ActiveRecord model files to reflect the changes

The first three items on this list are covered in this chapter. The fourth item—cre-
ating and/or modifying model files—is split between this chapter and chapter 15.
(Chapter 15, specifically, covers the process of adding new methods manually to
your model class files.)

 Although the steps we’ll go through here are similar to those we went through
in chapter 2, the scenery has changed. The days of black-box, just-trust-me code
are over, and the glass ceiling separating the “Rails person” from the “Ruby per-
son” is gone. This is where we bring the threads together: knowing what’s really
happening when you use standard Rails techniques, and devising ways to go
beyond those techniques—all thanks to your knowledge of Ruby.

 The first section of this chapter provides a roadmap of how to understand
Rails entity models in Ruby terms. From there, we’ll proceed to a detailed
reassessment and upgrading of the domain database. In addition to illustrating
some important language and framework techniques, that section will anchor the
next chapter, which is devoted to the process of using Ruby code to enhance
ActiveRecord model functionality.

 This chapter doesn’t draw a sharp line between developing the application,
learning Rails techniques, and bringing Ruby techniques to bear on the Rails
application for the sake of added value. The point is that it’s all one process.

14.1 Tracking the capabilities of an ActiveRecord model instance

Rails entity models are Ruby classes. When you do things with Rails data—create a
composer, give a work a title—you’re dealing with instances of those model classes

Tracking the capabilities 373
of an ActiveRecord model instance
on the same terms as you would deal with any Ruby class and its instances. Every-
thing else flows from that fact. If you understand how Ruby classes and their
instances work, there’s nothing about a Rails model instance you can’t under-
stand. And if you know how to write class and instance methods that add program-
ming value to a class, you can add value to your Rails models.

 Let’s look in detail at how an ActiveRecord model instance comes to be able to
do the things it can do.

14.1.1 An overview of model instance capabilities

Like any Ruby object, an instance of a model class—Composer, Work, and so on—
has certain methods you can ask it to execute. The capabilities of a Rails model
instance come from four places:

■ Inheritance on the part of its class, through which the instance gains the abil-
ity to call the instance methods of its class’s superclass (ActiveRecord::Base
or another descendant of that class)

■ Automatic creation of accessor and other methods, based on the field names in the
relevant database table (Composer objects have a title and a title= method,
thanks to the presence of the title field in the composers database table)

■ Semi-automatic creation of accessor and other methods, when prompted with an asso-
ciation directive (such as has_one :composer, in the case of the Work class)

■ Programmatic addition of arbitrarily many instance methods, added to the model
definition file as needed and desired

The open-ended programming power lies in the fourth item. But it’s rooted
firmly in the programming context, already rich with functionality on the part of
the objects, provided by the first three items in the list.

 In the next two subsections, we’ll look more closely the first three of the four
sources of object capability. We’ll examine inheritance and automatic creation of
instance methods together. We’ll consider semi-automatic creation of methods via
associations separately, taking the opportunity to examine more closely the matter
of what an ActiveRecord association is.

 The fourth item on the list, programmatic enhancement of model classes,
we’ll save until chapter 15, which is entirely devoted to it.

 Let’s turn now to a combined discussion of the first two items: behaviors bestowed
upon ActiveRecord model instances automatically or through inheritance.

374 CHAPTER 14

(Re)modeling the R4RMusic application universe
14.1.2 Inherited and automatic ActiveRecord model behaviors

An ActiveRecord model object, such as an instance of the Composer class, already
has a good deal of functionality when it’s created. As with Ruby built-in classes, you
can get a quick sense of how many methods an instance of ActiveRecord::Base (or
one of its subclasses) has by default; just ask the application irb console:

$ ruby script/console
Loading development environment.
>> ActiveRecord::Base.instance_methods.size
=> 180

With almost 200 methods present at birth, a Composer or Work or Edition object can
already do a lot. Some of these capabilities are more important than others for the
typical Rails developer, and we are by no means going to talk about all of them here.
A handful of them, though, are particularly useful and worth discussing.

 Accordingly, we’re going to zero in on a small cluster of instance methods, all per-
taining to the overall lifecycle of ActiveRecord objects: save, update, and destroy.
To get the full picture of this sector of ActiveRecord behavior, we’ll also look at some
related class methods: new, create, find, and delete. (If it seems strange to you that
a discussion of the capabilities of instances involves four class methods but only three
instance methods, keep in mind that some of the class methods call the underlying
instance methods; the two method levels are closely intertwined.)

TIP LOOK AT THE ONLINE RAILS API DOCUMENTATION Chapter 17 includes
detailed discussion of navigating the online Rails API documentation at
http://api.rubyonrails.org. But even now, don’t hesitate to look at that
site at any time—especially the links (on the left side of the screen) to
information about specific method in the Rails framework.

The two lives of the ActiveRecord object
We’re looking at methods that pertain to object creation, persistence (saving to
and retrieving from the database), and destruction. Let’s jumpstart the analysis of
these methods by going briefly back to basics.

 In the vast majority of cases, when you want to create a new object from a Ruby
class, you do this:

b = Bicycle.new

ActiveRecord objects allow for the same treatment. You can create a new Composer
instance like this

c = Composer.new

Tracking the capabilities 375
of an ActiveRecord model instance
and then call methods on the object you’ve created:

c.first_name = "Johannes"
c.last_name = "Brahms"

The difference between an ActiveRecord object and a typical Ruby object, how-
ever, is that the ActiveRecord object lives two lives. On the one hand, it’s a Ruby
object. On the other hand, it’s a handle with which you can directly manipulate a
database record.

 Similarly, the model classes, in their role as object factories, do more than the
standard new of the typical Ruby class. They also have the power to do things that
have a direct impact on the contents of a database.

 This double-life aspect of ActiveRecord objects is directly embodied in the meth-
ods available for creating, changing, saving, and destroying them. You can think of
these methods as an extended, super-charged family branching off from the lowly
new method. These objects need to do more than just spring into existence.

 Some of ActiveRecord’s class-level functionality performs actions on the data-
base without creating a corresponding Ruby object. For example, if you have the
ID number of a record in the composer table, and you do this

Composer.delete(id)

that record is removed from the database directly. You don’t even have to create a
corresponding instance of Composer (although you could, with Composer.find(id)).

 A traditional new operation marks a transition from a state where an instance
doesn’t exist to a state where it does. With the ActiveRecord family of creation
methods, there are not one but two criteria of existence:

■ The existence of an instance of the class

■ The existence of a directly corresponding record in the database

These two criteria can vary independently and be manipulated independently.
 Therein lies the complexity of the world of creating ActiveRecord objects. But

if you think of the whole cluster of methods as variations on new—or as members
of new’s extended family—the concept falls into place.

 Table 14.1 shows the permutations that the methods exhibit. Note that some of
these methods have both instance and class versions, and some are class-only.

376 CHAPTER 14

(Re)modeling the R4RMusic application universe
■ The methods where there is no object in existence before the method is
called are class methods (which you can deduce from the fact that there’s
no instance on which to call them).

■ The designation “(frozen)” means that the instance has been frozen via the
Ruby freeze method. This ensures that the object can’t be altered; its
instance variables can’t be reassigned. This is done after destruction of an
ActiveRecord object. Although a record can be obliterated from the data-
base, there’s no equivalent operation on the Ruby side to destroy all traces
of an instance. Therefore, freezing it is the best way to indicate that its life-
cycle is over.

■ update, delete, and destroy have variants ending in _all (update_all, and
so on), which perform the given operation on all existing database records
and/or corresponding Ruby instances. As always, for complete details on all
available methods, see the Rails API documentation Web site.

The two-life nature of ActiveRecord model objects means you need to be both
Ruby-aware and database-aware when you’re manipulating those objects, either by
themselves or via the class methods of their classes. Much of the point of Rails is to
let you manipulate database records as Ruby objects so you don’t have to concern
yourself with the details of database operations while manipulating objects in your

Table 14.1 ActiveRecord class and instance methods and their relation to object and/or
database-record existence

new
create

(new + save)
find save update

delete
(find + destroy)

destroy

Before method is called:

Is there a
Ruby object?

No No No Yes Yes No Yes

Is there a
database
record?

No No Yes Yes Yes Yes Yes

After method is called:

Is there a
Ruby object?

Yes Yes Yes Yes Yes Yes (frozen) Yes (frozen)

Is there a
database
record?

No Yes Yes Yes Yes No No

Tracking the capabilities 377
of an ActiveRecord model instance
application’s universe. However, you need to be aware of the dual nature of the
objects: Specifically, you must understand that some of the manipulations you per-
form are strictly in Ruby space, whereas other manipulations trigger a change to
the database—and some do both.

Methods created automatically from database field names
In addition to the methods that every ActiveRecord object has by inheritance, these
objects are also endowed with methods based on the field names of the database
tables to which they correspond. Thus, given a composer table with a first_name field,
every instance of the Composer class responds to the message “first_name”.

 Moreover, these instances also respond to “first_name=”—they have a setter
method as well as a getter method for each property they derive from their data-
base table. All this is arranged automatically by ActiveRecord; you don’t need to
define these methods.

 ActiveRecord maps the database structure and naming onto Ruby, turning
table names into classes and field names into instance methods. The former
requires some programmer intervention: You have to create a model file (using
the generate script) to prompt ActiveRecord to see what your classes are (com-
poser, edition, and so on). But once you’ve done that, ActiveRecord can connect
the dots. The field names in the relevant database tables are automatically trans-
ferred to the Ruby side as instance methods of the objects you create.

 Rails is by no means the only system to provide this kind of bridge from data-
base to programming language, or object/relational mapping (ORM). It’s not even
the only one written in Ruby. Relational databases generally do real-world model-
ing by table and field name; and object-oriented languages also do real-world
modeling, via class naming (and module naming, in Ruby’s case) and inheritance
structures. The challenge of getting the two to talk to each other—of coming up
with programming-language idioms that fit into the language but also give you
leverage over the database—has been faced and met many times.

 You don’t have to master ORM systems other than Rails unless you’re inter-
ested in doing so. The point is that Rails is creating a bridge between one model-
ing system (the relational database) and another (the classes and instances and
method-calls of Ruby). The automatic creation of methods based on the names of
database fields is the Rails (or ActiveRecord, strictly speaking) way of giving you a
familiar Ruby idiom—getter and setter methods, in pairs—for manipulating data-
base properties.

 (If you get lulled into forgetting you’re dealing with a database as well as a
bunch of in-memory Ruby Composer and Edition objects, you’ll be reminded

378 CHAPTER 14

(Re)modeling the R4RMusic application universe
when you forget to perform an explicit save operation and all your attribute set-
tings disappear! In some respects, despite the Ruby orientation of Rails, you still
have to be database-aware.)

 We’ve now looked at inherited behaviors and automatically assigned behav-
iors. Moving up the scale of programmer presence (or down the scale of Rails
automation, if you prefer) we’ll next examine the way Rails performs semi-
automatic creation of methods, based on what you’ve specified in the form of
ActiveRecord associations.

14.1.3 Semi-automatic behaviors via associations

ActiveRecord associations give you a semi-automatic way to add instance methods
to your model entity classes. They’re semi-automatic in the sense that Rails creates
them based on a combination of the naming scheme it finds in the database and
the explicit directives you put in the model file. Thus they’re not as automatic as
the accessor methods that spring into being automatically based on the names of
the fields in the database tables, but they’re more automatic than methods you
write from scratch.

What is an association?
The term association vividly and accurately describes the has and belongs to relations
between Rails entity models. When we say, “There’s a one-to-many association
between the Composer and Work models,” we’re using shorthand for saying that
the Composer class definition includes this

has_many :works

and the Work class definition includes this:

belongs_to :composer

One-to-many also implies that the works table in the database has a composer_id field,
which serves the purpose of labeling each work with the ID number of a particular
composer record.

 Associations are the prime example of a Rails idiom that looks like a line in a
configuration file or a directive in a simple declarative language. It’s not uncom-
mon for newcomers to Rails to ask, “When I do that ‘has_many :somethings’ thing,
what exactly am I doing?”

 The answer isn’t hard to come by, if you apply the principles for orienting
yourself in a Ruby program that we’ve already covered. In this code

Tracking the capabilities 379
of an ActiveRecord model instance
class Composer < ActiveRecord::Base
ddhas_many :works
dd# etc.

has_many is a class method call. You know this because

■ It’s at the top level of a class definition body, so self is the class object
(Composer).

■ It’s a bareword, but neither a keyword nor a local variable—which means
it’s a method call, a message being sent to the implied receiver self.

You also know that you didn’t define has_many yourself, so it must be a class
method of the parent class, ActiveRecord::Base. The same is true of the other
associations: belongs_to, has_one, and has_and_belongs_to_many.

 The association directives are class methods of the model classes you create,
which means they’re class methods of ActiveRecord::Base, because they appear
in your classes courtesy of inheriting from that preexisting class. When you call
these methods, they bring about the creation of one or more instance methods,
based on what you’ve specified both in the call to the association method and in
the database. Thus, for example,

class Work < ActiveRecord::Base
ddbelongs_to :composer

causes all instances of Work to have an instance method called composer. That com-
poser method returns the Composer object whose id field matches the composer_id
field of the Work object.

 It’s as if you’d written this

class Work < ActiveRecord::Base
dddef composer
ddddComposer.find(composer_id)
ddend

where composer_id directly pulls up the value of the Work object’s composer_id
field. (just as title pulls up the value of its title field, and so forth). Calling
belongs_to at the class level saves you the trouble of having to write the composer
method manually.

 The association methods are analogous to Ruby’s attr family of methods. In
both of these method families, you use class-method calls to automate the crea-
tion of one or more instance methods. The specifics of what happens are differ-
ent, as between, say, attr_writer and has_and_belongs_to_many. But the basic
contours of how they work (and even how they look) are similar.

380 CHAPTER 14

(Re)modeling the R4RMusic application universe
Onward, in two directions
The next level of model enhancement is the level of programmatic enhance-
ment—the writing of methods, with names of your choice and with functionality
designed by you, in your model files. You saw some of this in chapter 3, and you’ll
be seeing more in chapter 15, which will be devoted entirely to programmatic
model enhancement.

 Meanwhile, by way of setting the stage, we’re going to turn now to the music store
domain model and make some changes to it. These changes will take the music store
to the next level of functionality and will also lead in to the model-programming
coming up in chapter 15.

14.2 Advancing the domain model

Advancing the music store domain model will involve adding new entities and
fine-tuning some old ones.

 We’ll start with domain and database (re)design. From there, we’ll proceed to
look at all the model files: those we have to create and those we need to change.
As was the case in the earlier iteration of the music store, the SQL will be Rails-
friendly and will anticipate certain aspects of the model files.

 As we go through these domain model revisions, the discussion will include
important techniques and points about how things work and what’s involved in
choosing a design, from the combined Ruby/Rails perspective. Understanding
these subtopics will give you a firm footing when we proceed to the matter of pro-
grammatically altering entity models.

 We’re going to make various changes to the domain model. Some will pro-
mote properties to entities—essentially, turning certain fields into tables. Some will
be new entities. Throughout, they will involve the creation of new associations.

14.2.1 Abstracting and adding models (publisher and edition)

In the first iteration of the music store application, publishers were attached to edi-
tions as simple text fields; the editions table had a field called publisher, into which the
name went. In this second iteration, we’ll put publishers in their own model.

 This approach will allow more detail to be stored: not only the name of the
publisher, but also the country. It will also make it easier to associate publishers
directly or indirectly with other entities, should that become necessary. It’s also
less likely, when the publishers are stored as separate records rather than text
strings, that a given publisher’s name will inadvertently be spelled two different
ways, creating the appearance of two publishers where there is only one.

Advancing the domain model 381
 The goal, then, is to extract a Publisher model from the Edition model. One
model must be created, and one must be modified in place. As with all the other
models, you create the Publisher model as follows:

$ ruby script/generate model publisher

This gives you, among other things, the file app/models/publisher.rb. In this file,
you can establish the publisher’s end of the association between publisher and
edition:

class Publisher < ActiveRecord::Base
ddhas_many :editions
end

On the database side, you need to create a new publishers table. It can have as
many fields as you want. In this case, we’ll keep it small, but remember that you
can add other fields (address, phone number, and so on). Note that the name field
of the new publishers table is identical to the publisher field in the editions table:

CREATE TABLE publishers (
ddid INT(11) NOT NULL AUTO_INCREMENT,
ddname VARCHAR(60),
ddcity VARCHAR(30),
ddcountry CHAR(2),
ddPRIMARY KEY (id)
);

To keep all the database tables in sync, you should remove the publisher field from
the editions table and add a publisher_id field. That field’s contents will match the id
field from the record for the edition’s publisher.

 Corresponding to the new publisher_id field in the edition table, you'll need to
add this:

belongs_to :publisher

to the class definition in the edition.rb model file. At this point, the Edition model
has most of what it needs.

 But to make the model complete, it would make sense to add a title field. Why
bother giving titles to editions, when the musical works inside them already have
titles? Because an edition can contain more than one work. In such a case, the edi-
tion has a name—like The Complete String Quartets, or The Late Piano Sonatas—that
refers to the individual works collectively. Musicians shop for these collections, so
they should have their own presence by title in the online catalogue.

 Figure 14.1 gives you a graphic view of the changes to the editions table along
with the creation of the publishers table.

382 CHAPTER 14

(Re)modeling the R4RMusic application universe
The new fields in editions are shown in italics. An arrow shows you the connection,
as Rails will see it, between publisher_id in editions, and id in publishers. Another
arrow (the lighter one) shows that the ghost of the old publisher field (which isn’t
present in the new version of the editions table) lives on as the name field in the
new publishers table.

 We have some more table and model creation to do, in the course of which
we’ll establish some many-to-many associations.

14.2.2 The instruments model and many-to-many relations

The next new model we’ll create is the instrument model. This model was conspicu-
ous by its absence from the first iteration of the music store—after all, it’s common
to want to browse sheet music inventory by instrument. It’s possible to do that by
fishing instrument names out of the titles of works, but it’s cleaner and more accu-
rate to do it by having a separate database table (and ActiveRecord model) for
instruments.

 As usual when a new model comes onto the scene, we generate it

$ ruby script/generate model instrument

and add the new entity to the database.
 The Instrument model has two properties: name and family. Examples of instru-

ment names are violin, piano, and trumpet; examples of instrument families are
strings, keyboard, and brass. The SQL looks like this:

CREATE TABLE instruments (
ddid INT(11) NOT NULL AUTO_INCREMENT,
ddname VARCHAR(20),
ddfamily VARCHAR(15),
ddPRIMARY KEY (id)
);

Instruments relate to musical works in a many-to-many relationship: Any work can
be for any number of instruments, and any instrument can have any number of

CREATE TABLE editions (
 id INT(11) NOT NULL AUTO_INCRIMENT,
 description VARCHAR(30),
 work_id INT(11) NOT NULL,
 publisher_id INT(11) NOT NULL,
 title VARCHAR(100)
 publisher VARCHAR(60),
 year INT(4),
 PRIMARY KEY (id)
);

CREATE TABLE publishers (
 id INT(11) NOT NULL AUTO_INCREMENT,
 name VARCHAR(60),
 city VARCHAR(30),
 country CHAR(2),
 PRIMARY KEY (id)
);

Figure 14.1 Creation of the publishers table and changes to the editions table

Advancing the domain model 383
works written for it. This contrasts with the typical one-to-many relationship, as
exemplified by the association between a work and its composer. Each work has
one composer; in practical terms, each database record for a work is stamped with
the ID of a particular composer record. We’ve seen this in the SQL table definition
for works:

composer_id INT(11),

and in the corresponding association declarations in the model files:

class Work < ActiveRecord::Base
ddbelongs_to :composer
dd# etc.
end

class Composer < ActiveRecord::Base
ddhas_many :works
dd# etc.
end

This mechanism—the entity_id field, coupled with the appropriate associations—
drives the one-to-many relationships. Something similar (but not identical) drives
the many-to-many relationships. If instruments and works stand in a many-to-many
relation to each other, then an instrument record can’t have one work_id field.
That would imply that for every instrument, there is one and only one work to
which it belongs. Nor can the works table have an instrument_id field. That would
make sense only if we were dealing with works that were never written for more
than one instrument.

 Instead, we need a way to keep track of any number of instruments related to
any number of musical works, all at the same time.

Expressing many-to-many in Rails-friendly SQL
A many-to-many relationship is expressed in Rails-friendly SQL with a special, sepa-
rate table. Unlike most other tables, this table doesn’t correspond directly to a
Rails model or Ruby class. Instead, it provides a way for Rails to track and record
each case of a relationship between an edition and an author.

 We’ll use standard Rails-compliant naming for this table: It’s called
instruments_works. It has two fields: one for the ID field of a particular instrument
record and one for a work’s ID. The table’s role is to record the associations between
authors and books. It has no fields other than those that serve this purpose:

CREATE TABLE instruments_works (
ddinstrument_id int(11),
ddwork_id int(11)
);

384 CHAPTER 14

(Re)modeling the R4RMusic application universe
Rails is engineered to glean from this table the fact that instruments and works
can relate in a many-to-many way and to provide a number of programming tech-
niques for maintaining those relationships. All you have to do is design the table
according to the right naming scheme (as we’re doing here) and prompt Rails
with the appropriate association instructions in the relevant model files.

The has_and_belongs_to_many association
Corresponding to the table is the following association instruction in instrument.rb:

class Instrument < ActiveRecord::Base
ddhas_and_belongs_to_many :works
dd# etc.
end

And here’s the mirror-image instruction in work.rb:

class Work < ActiveRecord::Base
 has_and_belongs_to_many :instruments
dd# etc.
end

With this code in place, it’s now possible to query Instrument objects as to their
works and Work objects as to their instruments. When Rails sees something like this

v = Instrument.find(:first,:conditions => "name = 'violin'")
works_for_violin = v.works

it places in works_for_violin a collection of all the Work objects associated (via
entries in the instruments_works table) with the instrument whose name field value
is violin—all the pieces for violin, whether solo or multi-instrument music.

Implications of the instrument model for the work model
In its original incarnation, the Work model had a title field that contained not only
the title of the work but also the instrumentation and the key. Now we’ve pulled
out the instruments. That suggests we could do the same with the key and the
opus number.

 A key table would be overkill; instead, it’s enough to create a key field for the
work table. However, key is a reserved work in SQL. Let’s call the field kee.

 We’ll also add a field for the opus number. This field will be set to accommodate
up to 20 characters. Most opus numbers are shorter, but the works of some com-
posers are indexed in ways that don’t correspond to the standard opus-numbering
scheme. (The works of Mozart, for instance, were catalogued by Ludwig Ritter von
Köchel in the nineteenth century and are referred to by K numbers rather than
opus numbers. Similarly, Bach’s works are referred to with the designation BWV
[from the German for Index of Bach’s Works].)

Advancing the domain model 385
 The opus field in the works table must be able to accommodate strings like
“BMV 1006” and “K.85” as well as numbers. Many works also have a number desig-
nation as well as an opus designation—for example, “Opus 1, no. 3.”

 The SQL for the works table now looks like this:

CREATE TABLE works (
ddid INT(11) NOT NULL AUTO_INCREMENT,
ddcomposer_id INT(11),
ddtitle VARCHAR(100),
ddyear INT(4),
ddkee CHAR(9),
ddopus VARCHAR(20),
ddPRIMARY KEY (id)
);

This table definition should be equal to the task of handling any unconventional
opus designations we throw at it.

 Next, we’ll revisit an existing relationship in a new light.

Editions-to-works many-to-many mapping
In the first iteration of the music store, every edition belonged to a work, and
every work had many editions. That way of modeling the relationship is workable
only up to a point. In the field of music publishing, it’s common for one edition—
one publication—to include multiple works, possibly by different composers
(although most often by the same composer).

 That means that every work can appear in multiple editions, and any one edi-
tion can be an edition of multiple works. Editions and works stand in a many-to-
many relation.

 On the SQL side, this situation isn’t hard to implement. In the editions table, you
remove the work_id field, because the edition no longer belongs to a particular work.
Then, you add a table to store the relationships between works and editions:

CREATE TABLE editions_works (
ddedition_id int(11),
ddwork_id int(11)
);

On the ActiveRecord side, you modify the model files appropriately. In edition.rb,
you remove the belongs_to :work directive and insert the following:

has_and_belongs_to_many :works

In work.rb, add this:

has_and_belongs_to_many :editions,
dddddddddddddddddddddddd:order => "year ASC"

386 CHAPTER 14

(Re)modeling the R4RMusic application universe
(The :order argument is an SQL fragment that tells ActiveRecord to return edi-
tions in ascending order by year—a rough-and-ready way to sort them, but one
that provides a basically chronological listing of multiple editions.)

 The ultimate goal of any online store is to have customers who order things.
Next, we’ll round out the R4RMusic model universe by adding the customer and
order models.

14.2.3 Modeling for use: customer and order

The addition of the Customer entity is the biggest change we’ll make to the R4RMusic
domain model in the course of the application revision process. The Order entity,
also on the creation agenda in this section, is closely related to Customer.

Modeling the customer
The customer will be expected to do the following:

■ Sign up

■ Log in

■ Select items to put in a shopping cart

■ Check out (purchase the items)

As with the other aspects of the application, the goals for Customer will be to cre-
ate an adequately “thick” (detailed) model in support of the planned actions, and
to give you a basis for experimentation and learning. And as with the rest of the
application, if you want to take the underdeveloped parts of the customer and
experiment with developing them further, you can and should.

 On the Rails side, you need to create model and controller files for the customer
model:

$ ruby script/generate model customer
$ ruby script/generate controller customer

On the database side, the relatively simple customer looks like this in SQL form:

CREATE TABLE customers (
ddid INT(11) NOT NULL AUTO_INCREMENT,
ddfirst_name VARCHAR(30),
ddlast_name VARCHAR(30),
ddnick VARCHAR(15),
ddpassword VARCHAR(40),
ddemail VARCHAR(50),
ddPRIMARY KEY (id)
);

Advancing the domain model 387
(The nick is the name under which the customer logs in. It will be created when
the customer signs up for an account.)

Modeling the order
The Customer model is accompanied by an Order model. (You need to generate
a model, but not a controller, for order, using the generate script.) The order
records in the database connect a customer with an edition via their respective ID
fields. The Order model also contains a status field, which can (for example) be
set to “paid” once the order has been paid for, “shipped” when the order has been
shipped, and so forth.

 In order to track orders chronologically, we’ll also equip the orders table with a
special field called created_at. This fieldname is special to Rails: When an order
object is saved, Rails automatically saves the time and date that the save took place
to this field. When the record is retrieved, the date is available via the new object’s
created_at method.

 The whole orders table looks like this:

CREATE TABLE orders (
ddid INT(11) NOT NULL AUTO_INCREMENT,
ddedition_id INT(11),
ddcustomer_id INT(11),
ddstatus CHAR(4),
ddcreated_at DATETIME,
ddPRIMARY KEY (id)
);

The orders table is stamped with the ID of an edition and a customer, which means
it belongs to those two entities. Let’s deal with the associations pertaining to orders.

Associating orders with customers and editions
Every order belongs to a customer; and every order also belongs to an edition.
Therefore, the model file app/models/order.rb includes two belongs_to associa-
tion directives. Here are the first three lines of that file:

class Order < ActiveRecord::Base
ddbelongs_to :customer
ddbelongs_to :edition

On the other side of the has/belongs to balance sheet, customers and editions both
have orders. A customer’s orders consist of all the orders placed by that customer.
(Remember that orders have a status property, so you can track which orders are
still pending, which have been completed, and so on). An edition’s orders are all
orders placed for that edition.

388 CHAPTER 14

(Re)modeling the R4RMusic application universe
 We want Customer and Edition objects to have an orders instance method,
returning a collection of all the object’s orders. For instance, we can do this as
part of the process of preparing a view of a customer’s shopping cart:

c = Customer.find(params[:id])
orders = c.orders

To ensure that Customer objects have an orders method, we need to put an associa-
tion directive in the Customer model file. A first pass at creating that association
looks like this:

class Customer < ActiveRecord::Base
ddhas_many :orders
end

Another subtlety wouldn’t be amiss here: establishing dependence between the cus-
tomer and its orders. Dependence, in this context, means that if the customer
record in the database is ever deleted, all of its orders will be deleted along with it.
It’s a handy way of making sure you don’t end up with a lot of orphaned records
that serve no purpose once the record they pertained to no longer exists.

 The next iteration of the association looks like this:

class Customer < ActiveRecord::Base
ddhas_many :orders,
ddddddddddd:dependent => true
end

The association can benefit from one more little tweak. Let’s specify the order in
which you want the orders listed. We can do this with an SQL fragment, much as
we did for the association between works and editions in section 14.2.2. Here’s the
final version of the has_many association between customers and orders:

class Customer < ActiveRecord::Base
ddhas_many :orders,
ddddddddddd:dependent => true,
ddddddddddd:order => "created_at ASC"
end

We’re asking that the customer’s orders be returned, when requested, in ascend-
ing order based the created_at field. As you’ll recall, created_at is a special field; if a
table has a field of that name, ActiveRecord automatically inserts a creation time-
stamp into that field for each newly created record.

 We’ll add an orders association to the edition model, too, so we can query edi-
tions as to their order history:

class Edition < ActiveRecord::Base
ddhas_many :orders
end

Advancing the domain model 389
It would be possible to make an edition’s orders dependent on the edition object,
as we did in the case of customers. If a given edition was ever removed from the
database, all orders for that edition would also disappear. That may not be a good
idea, though. True, an edition might go out of print; but you’d probably want to
do something more graceful than just deleting all its orders (like flagging them so
the customers who placed the orders could be notified). So we won’t make order
records dependent on the corresponding edition records.

 We’ll add methods to both the customer and edition models in chapter 15. Mean-
while, let’s go back briefly to the Order class and make another important provision:
arranging for every newly created order to be given a default status of “open”.

 The default status can be arranged via the ActiveRecord callback method
before_create.

Setting a default status for orders
If you provide a definition for the special method before_create in an
ActiveRecord model class, then that method is called automatically every time a
new instance of the model is saved to the database. You don’t have to define
before_create; but if you do, ActiveRecord will recognize the name and execute
it the first time a new record is created.

 Define before_create in the Order class as follows:

def before_create
ddself.status = "open"
end

(Note that the explicit receiver self is necessary so that the Ruby parser interprets
status as a method call and not a local variable on the left side of an assignment.)

 Without any further intervention, ActiveRecord will now set the status field of
every newly created order object to “open”. Order objects are also automatically
endowed with a status method, which returns the object’s status, and a status=
method, with which the order’s status can be set. You aren’t stuck with “open”; it’s
just the default, and setting it will be taken care of automatically thanks to
ActiveRecord’s callback facilities.

Viewing the new domain graphically
Figure 14.2 shows a simple graphical representation of the new look of the
R4RMusic domain.

 Keep in mind that figure 14.2 is intended to illustrate the domain itself—the
universe of the music store and its inventory—not to replicate the names of the
database tables and fields. (There’s a close correspondence, of course; but the
illustration is a little more abstract in its property-naming than the tables.) The

390 CHAPTER 14

(Re)modeling the R4RMusic application universe
arrows in figure 14.2 relate directly to the associations among the models in the
domain; as the key indicates, different arrows represent different associations.
These associations are implemented, as we’ve seen, through *_id field names in
the database, association directives in the model files, and/or many-to-many join
tables in the database, as appropriate in each case. The illustration thus gives you
both an overview of entities and their properties, and Rails-specific indications of
how they’re interconnected.

 With the database, the models, and the basic associations in place, we’re ready
to launch into further, programmatic enhancement of the models—the subject of
chapter 15.

14.3 Summary

We’ve worked on two fronts in this chapter: looking at three of the four ways in
which ActiveRecord model classes and objects come by their methods and capa-
bilities, and revisiting and expanding our music store domain. All of this has been

PUBLISHER CUSTOMER
E
D
I
T
I
O
N

W
O
R
K

ORDER

COMPOSER

INSTRUMENT

name
city
price

first name
last name
nick
password
email

description
title
year
price

title
year
key
opus

date
status

first name
middle name
last name
birth year
death year
country

name
family

Belongs to

Has many

Has and belongs
to many

Figure 14.2 Diagram of the revised R4RMusic domain, with ActiveRecord
associations indicated by arrows

Summary 391
in the service of going more deeply into the what side of things: the programming
and design tasks associated with pinning down the specifics of an application’s
universe, and expressing the structure of that universe both in database form and
in Ruby form.

 We looked at inheritance (from ActiveRecord::Base), automatic creation of
methods (based on the names of database fields), and semi-automatic creation of
methods (via ActiveRecord associations). The fourth source of ActiveRecord
object capability—the addition of methods custom-written by the programmer—
will be the topic of chapter 15.

 On the domain-modeling and database side, we added entities to the domain
and made changes and enhancements to existing entities. These changes give
more contour to the domain and put us in a good position to get more deeply
into the programmatic enhancement of models in the next chapter.

Programmatically
enhancing

ActiveRecord models
In this chapter
■ Soft and hard programmatic enhancements
■ Ruby vs. SQL
■ Instance-method enhancement of R4RMusic

models
■ Programmatic enhancement at the class-

method level
392

Soft vs. hard model enhancement 393
In the previous chapter, we looked at some of the ways in which ActiveRecord
objects gain their functionalities (inheritance, methods based on table-field
names, and methods based on associations), and we also revisited the domain and
database modeling for the music store—the foundations of the ActiveRecord
models for that domain. In this chapter, we’ll build on this foundation by looking
at the process of extending and enhancing ActiveRecord models programmatically.

 Enhancing a model programmatically basically means going into the model
file and writing whatever methods you want inside the class definition body of the
model class. Even without this kind of added functionality, ActiveRecord models
are already powerful and versatile. And when you start identifying what more they
might do—and scripting those capabilities yourself, in Ruby—the power and ver-
satility become truly open-ended. Programmatic enhancement of models brings
together your Ruby skills and your Rails knowledge in a particularly dynamic way.

 Naturally, this isn’t something to be done haphazardly. You don’t want to dupli-
cate the functionality that ActiveRecord already gives your objects, and you don’t
want to endow your objects with behaviors that don’t fit their domain. But used
skillfully and in the right places, this kind of pure-Ruby extension of model func-
tionality can add considerably to your applications.

 In this chapter, we’re going to make a distinction between two different kinds
of programmatic model enhancement: soft enhancement and hard enhancement.
We’ll start with a look at what this distinction means; then, we’ll proceed to a
series of examples of each kind, with explanations and discussion of how Ruby is
deployed to achieve the desired extension of model functionality. We’ll also exam-
ine the creation of class methods for ActiveRecord model classes.

 The examples will be taken directly from—or, more accurately, inserted into—
the music store application. By the end of this chapter, the entire model side (the
what of the music store universe) will be in place. At that point we’ll move on to
the process of enhancing the controllers and views, in chapter 16.

15.1 Soft vs. hard model enhancement

In chapter 14, we identified four sources from which an ActiveRecord model can
gain capabilities: inheritance, automatically created methods, semi-automatically
created methods, and open-ended programming. This chapter is about the fourth
of these sources: methods you yourself write, for your own reasons and purposes,
in your model files: programmatic enhancement of models.

 We’re going to divide programmatic enhancement into two categories. The
division we’ll make is descriptive, not official. Its purpose is to help you organize

394 CHAPTER 15

Programmatically enhancing ActiveRecord models
your understanding of what’s involved in adding your own program code to
ActiveRecord model classes, and also to strengthen your insights into how
ActiveRecord classes and objects work.

 We’ll call the two types of programmatic model enhancement soft enhancement
and hard enhancement. The difference between them is best illustrated by example.
We’ll look at an example of each type here, to lay the groundwork, and then
spend most of the rest of the chapter exploring further examples as we delve
more deeply into programming the music store model classes.

15.1.1 An example of model-enhancement contrast

When you write a new method in an ActiveRecord model class, that method does
one of two things:

■ Searches for and returns one or more ActiveRecord objects based on exist-
ing data

■ Manipulates available data into a new, previously nonexistent form

You might say that there are passive methods—those that just unearth information
for you and return it—and active methods—those that bring new data structures
into existence. The difference can be seen by looking at a new version of the Com-
poser class (which you can put in the composer.rb model file for this version of
R4RMusic). Note the two new methods in listing 15.1.

class Composer < ActiveRecord::Base
 has_many :works

 def editions
 works.map {|work| work.editions }.flatten.uniq
 end

 def whole_name
 first_name + " " +
 (if middle_name then middle_name + " " else "" end) +
 last_name
 end
end

The first of the two new methods, editions, is the passive or soft one. It returns an
array of all the editions of all the works by this composer. These editions already
exist; all editions does is gather them together. To do so, it walks one by one

Listing 15.1 One example each of soft and hard programmatic model enhancement

B

C

Soft vs. hard model enhancement 395
through the composer’s works, using map dd. For each work, it grabs an array of
editions. The entire mapping operation results in an array of arrays: one array for
each work, one entry for each edition.

 We then flatten this array of arrays so it’s just one array of edition objects.
Finally, we uniq it; doing so removes duplicate editions if, say, two works by the
same composer appear in one publication (which happens frequently).

 From now on, our composer objects will respond to the “editions” message by
handing back an array containing all editions with works by the composer. Com-
posers now can tell us what their works are (thanks to the has_many association
with the Work model) and can also tell us what editions contain one or more of
their works (thanks to the method we just wrote).

 From the perspective of any code that might use this new method, there won’t
be any noticeable difference in syntax (given a composer object comp) between this

eds = c.editions

and this:

works = c.works

When you add an instance method to an ActiveRecord model class, that instance
method is just as real and has just as much programming status as the methods
that the objects of that class derive automatically or semi-automatically from
ActiveRecord.

 The second of the two new methods in this revision of the Composer class is
whole_name dd—and you’ll recognize it as closely related to an example from
chapter 2, where we took a sneak peek at writing methods for model classes. The
whole_name method uses information available from the composer object’s exist-
ing methods, methods the object has been given based on field names in the com-
posers database table.

 whole_name creates a new object out of this information: a string that contains
existing data but that doesn’t directly correspond to any single property of the
object or to any single or collective existing ActiveRecord object. That’s what
makes whole_name an example of hard programmatic enhancement.

Soft vs. hard model enhancement: the bottom line
The bottom line is that the term soft enhancement describes cases where you’re giv-
ing ActiveRecord an assist, so to speak. Our editions method doesn’t do much
with the data it finds; its job is to extend the reach of the composer’s access to

B

C

396 CHAPTER 15

Programmatically enhancing ActiveRecord models
other existing information. Informally, you might say, “Well, a composer really
already has editions—I just need to give a little boost to make them available.”

 Hard enhancement, on the other hand, involves generating new data, like a
full name. Doing such things isn’t better or worse than doing soft enhancements.
It all depends on what you need.

 Being aware of this distinction is a good way to get yourself thinking about why
and when you might add an enhancement, and to what effect. For example, if you
find yourself doing tons of soft enhancements—programming many ways for a
given model to come up with arrays of properties at one or more levels of remove
(the way editions are at a level of remove from composers, via the composers’
works property)—that may be a sign that your domain model needs revision.
ActiveRecord is engineered to give your model classes most of the functionality
they need. Maybe you should be engineering some associations and letting them
generate the methods, rather than manually writing methods yourself.

 In addition, the soft/hard enhancement dichotomy is an excellent way to orga-
nize an exploration of examples of programmatic enhancement of ActiveRecord
models. And that’s where we’re going next. We’ll look first at soft enhancements
and then at hard enhancements pertaining to the music store application. These
enhancements will mesh with the changes to the domain model and database
design carried out in chapter 14.

 The examples in this chapter will also feed into the controller and view
enhancements in chapter 16. (If the choice of example methods seems arbitrary
at times, keep that in mind!) The goal is to have the what—the things of the music
store universe—have all the functionality they need to live up to what’s expected
of them when they’re picked up and used by the running application.

15.2 Soft programmatic extension of models

In this section, we’ll write methods in several of the R4RMusic model files that
extend what the models can do by reaching along the path already established
by the model’s existing properties. For a change of pace, this section is orga-
nized as a series of questions; the answers involve Ruby code that extends the
model’s capabilities.

 The adoption of the “Q&A” format serves several purposes. For one thing, it’s
close to what happens during a typical development cycle: You realize that you
need access to some information, and you write code that gives you that access. It
also points the way toward doing more. The examples here aren’t magical or
sacred. They represent a good-sized sampling of things you might want to do with

Soft programmatic extension of models 397
these particular models, and they’ve been chosen to represent a broad range of
possibilities. But the point is that the door is open. As you become increasingly
familiar and comfortable with Ruby, writing this kind of code will come more and
more naturally.

 We’ll work model by model, adding soft programmatic enhancement to the
Work, Customer, and Composer models. To give you an overview, here’s a list of
all the questions that we’ll ask and answer by writing methods in this section:

■ The Work model

● Which publishers have published editions of this work?

● What country is this work from?

● What key is this work in?

■ The Customer model

● Which customers have ordered this work?

● What open orders does this customer have?

● What editions does this customer have on order?

● What editions has this customer ever ordered?

● What works does this customer have on order?

● What works has this customer ever ordered?

■ The Composer model

● What editions of this composer’s works exist?

● What publishers have editions of this composer’s works?

As you’ll see, all of these methods involve giving the models a boost—a way to
unearth and collect existing information that isn’t available already in the form
we want it through an existing method.

NOTE PLAIN ARRAYS VS. MAGIC COLLECTIONS You should keep one important
point in mind as you look at, and eventually write, soft enhancements to
your models. When you gather together, say, an array of Edition objects
by traversing a collection of Work objects and accumulating their editions,
you end up with a plain Ruby array. You don’t end up with a magic
ActiveRecord collection. You’ll recall that in discussing arrays in
chapter 11, we looked at ActiveRecord collections as an example of some-
thing array-like that is also endowed with methods and behaviors that go
beyond those of the normal array. Those extra powers aren’t added to
arrays that you create, even if they contain ActiveRecord objects.

398 CHAPTER 15

Programmatically enhancing ActiveRecord models
15.2.1 Honing the Work model through soft enhancements

The soft programmatic extensions to the Work model involve mining the model
and its associated entities for a next level of information. This information, in
turn, might be used for in-house reports, richer on-screen information displays,
or sales profiling.

 All these Work enhancements belong in the work model file, work.rb.

Which publishers have published editions of this work?
This method uses the same basic approach as the editions method that served as
an introductory example in section 15.1. In fact, it builds on that method: It calls
editions and uses map on the resulting array to extract the publisher of each edi-
tion. It then performs a uniq operation, resulting in a nonduplicative list of all
publishers who have published this work:

def publishers
 editions.map {|e| e.publisher}.uniq
end

This technique skims the publishers from the editions, producing a list of the latter.

What country is this work from?
A case could be made for assigning the work either to the native country of the
composer or to the country of first publication. Because we’re dealing with a
sheet-music store and not a library, we don’t necessarily know what the first publi-
cation was. That means if we want to assign a country to a work, it’s best to echo
the composer’s country. This is an easy soft enhancement to the Work model:

def country
 composer.country
end

The enhancement qualifies as soft because it’s passive: It reaches out one level, from
the work to its composer, and gathers information, which it returns unchanged.

Which customers have ordered this work?
A method like this could conceivably be of interest in calculating sales figures and
trends. Once again, we use the editions method as a point of entry for gathering
further information. In this case, we map all the existing orders for all editions of
this work—and from that mapping, we harvest the customers of the orders:

def ordered_by
 editions.orders.map {|o| o.customer }.uniq
end

Soft programmatic extension of models 399
We then make the resulting array unique, in case any customer has purchased
two different editions of the work or purchased one edition twice. For some pur-
poses, you may want to keep such duplicates—for example, if you’re trying to
determine a work’s popularity (in which case someone who bought every edition
of it might legitimately be counted multiple times). But assuming that you’re
interested simply in a list of customers who have bought this work, there’s no
point saving the duplicates.

What key is this work in?
You might not have been expecting this to be one of the enhancements, because the
work’s key is already stored directly in the database. But remember: key is a reserved
word in SQL, so we named the field containing the key kee. The enhancement we
need is one that will let us use key as a method name to get the key of a work.

 It’s simple:

def key
 kee
end

Now, when we ask a work for its key, it will tell us its kee, which is what we really
want to know.

15.2.2 Modeling the customer’s business

In the case of the customer, we want to know a number of things. Some of these
methods are layered on, or embedded into, others. Some will be of direct use at
the controller/view stage.

What open orders does this customer have?
We’ll write open_orders to return an ActiveRecord collection:

def open_orders
 orders.find(:all, :conditions => "status = 'open'")
end

Although we may treat the resulting collection in most contexts as a normal
array, having it be an ActiveRecord collection means that, if the occasion arises,
we’ll be able to query it using the hybrid Ruby/SQL semantics that such collec-
tion objects allow.

What editions does this customer have on order?
Here, we use standard Ruby array methods to grab all the editions this customer
has ordered:

400 CHAPTER 15

Programmatically enhancing ActiveRecord models
def editions_on_order
 open_orders.map {|order| order.edition }.uniq
end

First, we generate an array of editions by iterating through the customer’s orders
and skimming off each order’s edition object (courtesy of map, which will return a
new array). Then, we run the results through uniq, producing a list of editions
without regard to how many copies of each have been ordered.

What editions has this customer ever ordered?
This method is a superset of editions_on_order, returning a list of all the editions
this customer has ever ordered. This information will be useful in calculating a
customer’s favorites (favorite composers and/or instruments):

def edition_history
 orders.map {|order| order.edition }.uniq
end

We’ll now do for works what we’ve already done for editions: provide a way to grab
the works that are on order (regardless of what edition each one is in) and a way
to generate a list of every work the customer has ever ordered.

What works does this customer have on order?
Here, we start with editions_on_order and then dig into the contents of the edi-
tion (its list of works):

def works_on_order
 editions_on_order.map {|edition| edition.works }.flatten.uniq
end

Mapping that operation across all the editions on order returns one array of
works for each edition—overall, an array of arrays. We want a flat array of works,
so we flatten it and then run it through uniq to get rid of duplicate works.

What works has this customer ever ordered?
This method is like the previous one, but it gathers works from all editions, not
just those on order:

def work_history
 edition_history.map {|edition| edition.works }.flatten.uniq
end

All the methods you’ve now added to the Customer class involve looking through
lists of entity model instances (ActiveRecord objects) and returning transformed
lists. The remaining Customer methods fall into the category of hard model

Soft programmatic extension of models 401
enhancement; they involve calculating a new value from existing data. We’ll leave
those for the next section, and turn briefly to the composer.

15.2.3 Fleshing out the Composer

Composers are a fairly inactive element in the universe of our domain. They don’t
change much, and most of them have stopped composing, so there’s not as much
need to provide them with a data-manipulation toolset as there is with some of the
other models. We’ll define only two composer instance methods; they go in the
Composer class, in composer.rb.

What editions of this composer’s works exist?
This is the method that served as the preliminary example of a soft model
enhancement:

def editions
 works.map {|work| work.editions }.flatten.uniq
end

This method is used for the purpose of generating a list of editions to be embed-
ded in a clickable list—something we’ll include among the new and enhanced
music store views in the next chapter.

What publishers have editions of this composer’s works?
This method may possibly be of use only for internal accounting purposes—but
we’ll throw it in for good measure and as a lesson in how easy it is to expand your
application’s repertoire of methods:

def publishers
 editions.map{|edition| edition.publisher }.uniq
end

That brings us to the end of our list of questions and the corresponding soft
enhancements of the R4RMusic models. Our next big topic is hard programmatic
enhancements: methods that go as far as you want them to in manipulating data
and creating new objects and data structures.

 First, by way of final reflection on soft enhancements, a few words are in order
about the relationship between Ruby code and SQL—or, more accurately, the pro-
cess of choosing between Ruby and SQL—in the writing of soft enhancements.

15.2.4 Ruby vs. SQL in the development of soft enhancements

When you write code whose main purpose is to pull records out of a relational data-
base, the most efficient, fastest code you can write is SQL code. As you probably

402 CHAPTER 15

Programmatically enhancing ActiveRecord models
know, much of what ActiveRecord does for you under the hood is to translate your
Ruby code into SQL statements and then query your application’s databases with
those statements.

 In the interest of increasing execution speed, ActiveRecord lets you feed it
pure SQL almost whenever you want. You lose the nice Ruby-wrapped look-and-
feel, but you gain efficiency.

 As a study in Ruby/SQL contrast, take the Composer#editions method from
section 15.2.3:

def editions
 works.map {|work| work.editions }.flatten.uniq
end

This method starts by unconditionally gathering all the works by this composer,
which it does by calling works. At this point, ActiveRecord is finished; the one and
only database query required here returns all the works for this composer. What
remains is pure Ruby: harvesting the editions of the works (courtesy of map) and
massaging the resulting array-of-arrays of editions with flatten and uniq. Each of
these operations creates a new array—potentially a large one, if we’re dealing with
a well-stocked music store.

 Here’s an alternative editions method, written using SQL instead of Ruby to
narrow the selection of Edition objects:

def editions
ddddEdition.find_by_sql("SELECT edition_id from editions_works
ddddLEFT JOIN works ON editions_works.work_id = works.id
ddddLEFT JOIN composers ON works.composer_id = composers.id
ddddWHERE (composers.id = #{id})")
end

This method asks the database engine to do the work. By the time the single call
to find_by_sql is finished, we have all the editions we need; no further Ruby com-
mands are required.

 Database engines such as MySQL tend to be efficient (at least, ideally). Asking
for the right records in the first place, rather than asking for more records than
you need and then pruning them in Ruby, is faster and more efficient.

 But it also means you have to write everything in SQL—which is not necessarily
a hardship from the point of view of programming but does destroy your pro-
gram’s consistent look and feel. Nor is this issue entirely cosmetic. The consistent
“Rubyness” of a Rails application makes for a consistent development experience:
It’s easier to think in Ruby the whole time than it is to switch back and forth. (You

Soft programmatic extension of models 403
have to do some switching anyway, if you’re writing the database; but the ideal is
to keep that process as separate as possible from the higher-level coding.)

 Because it involves hard-coding table and field names into your Ruby methods,
doing soft enhancements in SQL has the potential to make the application code
harder to maintain later on. True, you can’t write a Rails application without
knowing the table and field names; but having them physically present in your
model code takes the coupling of database and code a step further. But it will
make your application faster, as well as giving you “magic” ActiveRecord collec-
tions rather than standard Ruby arrays as containers for your objects.

 What’s the right choice? Not surprisingly, it all depends. Luckily, you don’t
have to make an all-or-nothing, winner-take-all choice between Ruby and SQL as
model enhancement languages. Rails is designed in full knowledge of the pros
and cons of SQL versus pure Ruby. The existence of the find_by_sql method
attests to this fact; so does the use of SQL fragments to specify record order (as in
:order => "created_at, ASC", an SQL hint used in the customer’s has_many
:orders association). The reality of relational database programming is that you
should know some SQL if you’re going to do it, even at one level of remove—and
Rails facilitates your using SQL when you want to.

 The philosophy of this book is that it’s good to use Ruby to enhance the func-
tionality of models until you hit a performance wall and have to use raw SQL. The
relationship between Ruby and SQL, in this context, isn’t unlike the relationship
between Ruby and C in the general Ruby-programming context: Ruby program-
mers write in Ruby, knowing that it isn’t a terribly fast language; when they hit seri-
ous performance bottlenecks, they write parts of their programs as C extensions,
so that those parts will speed up and the whole program will run faster.

 SQL can play a similar role for you in your Rails application development.
Think of Rails applications as Ruby programs, first and foremost. But by all means
take advantage of the options that ActiveRecord gives you, by way of using SQL,
when you spot something you’ve written in Ruby that seems to be seriously slow-
ing your program.

 This meditation on SQL and Ruby truly brings us to the end of our soft pro-
grammatic enhancement discussion and to our next major topic: hard program-
matic enhancements of ActiveRecord models.

404 CHAPTER 15

Programmatically enhancing ActiveRecord models
15.3 Hard programmatic enhancement
of model functionality

In this section, we’re going to pull out the Ruby stops and show how you can add
new functionality to your models that may not have any direct relation to the
models’ basic properties and capabilities. Basically, you can define any method for
your models to respond to. The idea isn’t to create chaos, but to come up with
things you might want to know.

 The examples here are clustered by type of example rather than in a question-
and-answer format. This reflects the fact that hard enhancements tend to have a
purpose other than straightforward querying of an object for information; they
entail the creation of a new object or data structure rather than a culling of exist-
ing objects.

 In the sections that follow, we’ll develop hard programmatic enhancements of
several of the R4RMusic models. The enhancements fall into three categories:

■ Prettification of string properties

■ Calculating a work’s period

■ Providing the customer with more functionality

Your Ruby skills will get a workout here, and you’ll learn a few new techniques
along the way.

15.3.1 Prettification of string properties

A common use for hard model enhancements is the prettification of string proper-
ties—the generation of a new string in which existing string information is
embedded and which looks better, for presentation, than the raw string data avail-
able through the object would look.

 We’ve already seen one example of prettification of strings: the Com-
poser#whole_name method defined for the purpose of easily displaying all the
components of a composer’s name together. This kind of thing can come in
handy frequently and can involve greater complexity and planning than just
stringing strings together. We’ll look at some examples here.

Formatting the names of the work’s instruments
The Work model is a good candidate for some pretty-formatting operations. It has
a title, an opus number, and a list of instruments, all of which are stored in raw
form and are in need of massaging on the way to public viewing.

Hard programmatic enhancement 405
of model functionality
 We’ll begin with the instruments, because the resulting list will be of use in
the title.

 Let’s start with the nice_instruments method, an instance method of the Work
class in work.rb, like this:

 def nice_instruments
 instrs = instruments.map {|inst| inst.name }

This map operation skims the name values from the list of instrument objects and
stores them in a new array, which we save to the variable instrs.

 The next step (almost) is to format these names into a nice string. There’s one
intermediate tweak, though. It has to do with the order of instruments: cello and
piano, or piano and cello?

 We’ll handle this in the following way. First, we create an array of instrument
names in what we consider the canonical (or at least likely to be correct almost
every time) order. Incidentally, you’ll encounter a new technique in this line of
code: the %wf{…} construct, which generates an array whose elements are the indi-
vidual words inside the curly braces.

ordered = %w{ flute oboe violin viola cello piano orchestra }

Next, we sort instrs according to where in this array (at what numbered index)
each instrument occurs. Because it’s possible that we’ll encounter an instrument
that isn’t on this list, if no index is found we return 0, which in a sorting context
means equal to:

instrs = instrs.sort_by {|i| ordered.index(i) || 0 }

We can also put the list of ordered instruments in a constant at the top of the
model file and then refer to that constant in the method. That would probably
make the list easier to maintain. It still has the disadvantage of having to be
updated manually, but in a production environment you could ensure that every
time a new instrument was introduced into the universe, a decision would have to
be made about where it fitted into the list. (You could also start with a much big-
ger list, of course.)

 We now have a list of instrument names sorted according to conventional
instrument-listing semantics. What we now do with those names, for purposes of
inserting them into the nice title of the work, depends on how many there are:

■ If there are none, we want nil (not an empty string, for reasons that will
become apparent when we put together the whole title).

■ If there’s just one, we want it by itself (Partita for Violin).

406 CHAPTER 15

Programmatically enhancing ActiveRecord models
■ If there are two, we want them joined by the word and (Sonata for Violin and
Piano).

■ If there are three or more, we want to join them with commas—except the last
two, which are additionally joined by and (Trio for Violin, Cello, and Piano).

It will be a matter of testing the size of instrs and proceeding accordingly. We
can do this with a case statement, with separate branches for each of the four
possibilities:

ddcase instrs.size
ddwhen 0
ddddnil
ddwhen 1
ddddinstrs[0]
ddwhen 2
ddddinstrs.join(" and ")
ddelse
ddddinstrs[0..-2].join(", ") + ", and " + instrs[-1]
ddend
end

(You can see the code grow in length, as well as complexity, as the number of
instruments in the work increases!)

 The last case—more than two names—is worth examining up close. It uses the
trick of grabbing all elements of the array except the last:

instrs[0..-2]

Negative array indices are counted from the right, so instrs[-2] is the second-to-
last item in the array. All of the items thus selected then get joined with commas.
To the resulting substring, we add the string “, and ” followed by the last item in
the array (instrs[-1]).

 Because we’ve built it in fragments, here’s the full nice_instruments method
in one place:

def nice_instruments
ddinstrs = instruments.map {|inst| inst.name }
ddordered = %w{ flute oboe violin viola cello piano orchestra }
ddinstrs = instrs.sort_by {|i| ordered.index(i) || 0 }
ddcase instrs.size
ddwhen 0
ddddnil
ddwhen 1
ddddinstrs[0]
ddwhen 2
ddddinstrs.join(" and ")
ddelse

Hard programmatic enhancement 407
of model functionality
ddddinstrs[0...-1].join(", ") + ", and " + instrs[-1]
ddend
end

That should give us a reasonably well-formatted, descriptive string for later inser-
tion into the nice title.

Formatting a work’s opus number
Let’s prettify the opus number next. As you’ll recall, the opus field in the database
holds a string. Due to the vagaries of indexing systems, several formats are possi-
ble for entries in this field:

■ Plain opus number (“129”)

■ Opus number plus number designation (“129 no.4”)

■ Special catalogue designation, plus number (“K.84”, “BWV1005”, and so on)

Plain opus numbers, and those with a number designation, should be rendered as
they are but with “op.” in front of them. The more specialized designations
should be rendered exactly as we find them.

 To accomplish this, we have to know whether the string in the opus field begins
with a series of digits. If it does, we can assume that it’s in one of the first two cate-
gories. If it doesn’t, we can assume that it’s a specialized index like K. or BWV.

 We can use a simple regular-expression match operation to test for a digit at the
beginning of the opus string and determine the correct return string accordingly:

def nice_opus
ddif /^\d/.match(opus)
dddd"op. #{opus}"
ddelse
ddddopus
ddend
end

Based on the test for a digit at the beginning of the opus dd, we get back either
the number with “op. ” in front of it dd or the whole original opus string dd.

 Now that we have nice-looking instrument and opus strings available, we can
put together a full-featured title string.

The work’s prettified title
Creating a nice title is a matter of putting the nice components in place, with a
couple of connector words. The format is represented by this example:

Sonata in F Major, op. 99, for cello and piano

B
C

D

B
C D

408 CHAPTER 15

Programmatically enhancing ActiveRecord models
More is going on here than retrieving the parts. We’re also connecting them with
a mixture of commas, spaces, and the word for. The elements of the title are as
follows:

■ Title

■ If there’s a key, then the phrase “in ” + key

■ If there’s an opus number, then the sequence “, ” + nice_opus

■ If there are instruments, then the sequence “, for ” + nice_instruments

The main thing is that if no key is indicated, we don’t want the word in, and like-
wise for the connecting strings for opus and instruments. We therefore have to
put the nice title string together conditionally.

 We do this as follows:

def nice_title
ddt,k,o,i = title, key, nice_opus, nice_instruments
dd"#{t} #{"in #{k}" if k}#{", #{o}" if o}#{", for #{i}" if i}"
end

First, the four pieces of information are retrieved and saved to variables with short
names. There are two reasons to do this. First, it saves us from calling methods
more than once. If we used expressions like

#{nice_opus} if nice_opus

we’d be calling nice_opus twice. Also, assigning the values to one-letter variables
makes for a shorter (if somewhat peculiar-looking) final string.

 Next, we create the string—with much of it included conditionally. There’s
double interpolation going on. First, we interpolated the title. Then, we interpo-
late this entire expression:

" in #{k}" if k

This expression returns, for example, “in F major” if there’s a key. If there’s no key
(if k is nil) then the expression returns nil (the return value of a failed if state-
ment). That nil, in turn, is interpolated in the outer string. The string representa-
tion of nil is “”, the empty string. Therefore, if there’s no key, the whole "in #{k}"
if k expression is rendered as an empty string and has no impact on the final string.

 (The need to test truth-value with if, by the way, is why we have
nice_instruments return nil rather than an empty string if the work has no
instruments. Empty strings evaluate to true in a Boolean context; nil evaluates to
false. It’s possible to test a string for emptiness with empty?, but using nil allows
for a quick Boolean check.)

Hard programmatic enhancement 409
of model functionality
 All told, you can get quite a bit of prettification mileage out of a decent knowl-
edge of how to manipulate, test, and combine strings in Ruby.

A nice title for the Edition model
When it comes to titles of editions, there are two possibilities. Some editions’ titles
are the titles of the one work they contain. Other editions—collections of works,
such as a volume of piano sonatas or string quartets—have one title encompassing
the whole collection: The Late String Quartets, for example, or Suites for Unaccompa-
nied Cello.

 The steps we’ll take to define a nice title for an edition are as follows:

■ If the edition object has its own title, use that.

■ If not, use the nice title of its first work (which is probably its only work—
but for anomalous cases, this is a reasonable fallback).

■ In either case, add the publisher and year, in parentheses, after the title.

We’ll do an “or” operation, using the Boolean operator ||, to handle the first two
steps. This operator returns the value of the expression to its left if that expression
has a Boolean value of true (like, for example, a non-nil title); otherwise, it
returns the value of the expression to its right. We’ll then use a string addition
operation to handle the third step:

def nice_title
dd(title || works[0].nice_title) +
dd" (#{publisher.name}, #{year})"
end

Having this method saves us from worrying later about the edition’s title if it
doesn’t have one that’s different from the name of the work it contains.

15.3.2 Calculating a work’s period

Let’s look at a more involved example: getting musical works to know what period
they come from—not just by date, but by name or description.

Teaching a work what its century is
One fairly easy way to do this is by century. Here’s a method you can add to
work.rb that causes each work to report what century it was written in:

def century
ddc = (year - 1).to_s[0,2].succ
ddc += case c
dddddddwhen "21" then "st"
dddddddelse "th"

410 CHAPTER 15

Programmatically enhancing ActiveRecord models
dddddddend
ddc + " century"
end

This method first determines a two-digit century equivalent of the year. To do this,
it subtracts 1 from the year (so that the zero years, like 2000, land in the right cen-
tury). It then converts the year to a string and grabs the first two characters of the
string. It increments the string with a succ (successor) so that 19, for example,
ends up as 20, which is the correct century designation.

 Next comes an algorithm for adding the correct suffix to the century. This
algorithm only works as far back as the fourth century; it won’t hand the rd suffix
of 3rd correctly. Because the music we’re selling tends to date from a lot later than
the third century, that shouldn’t be a problem.

 Centuries are fine, although they’re easy to glean by looking at the year. You
can also get musical works to give you descriptive information about their period.

A more descriptive periodization of a work
Like painting, literature, architecture, and other arts, musical works are often
described not just by year or century but by terms referring descriptively to a period:
baroque, classical, romantic, and so forth. With a little ingenuity, it’s possible to get
musical works to tell you what period they’re from and to do so programmatically.

 The first step is to make a set of decisions about the period descriptions. It’s pos-
sible to associate a given time period with a description. However, and in spite of
the fact that it involves a bit more work up front, a more scalable approach is to
define each period as a combination of time and place. For example, we might want
British music of the nineteenth century (at least, most of it) to be described as Vic-
torian, whereas that term wouldn’t make sense for music from Italy or France.

 We’re looking for a Ruby data structure that lets us make connections among
time spans, countries, and descriptive period names.

 There are a couple of tools we can reach for. One possibility is to create a new
class, encapsulating periods, along these lines:

class Period
 attr_accessor :name, :start_date, :end_date
 attr_reader :countries
 def initialize
 self.countries = []
 end
end

Hard programmatic enhancement 411
of model functionality
We could then write the time and country specifications for, say, the Baroque
period. Music historians might argue one way or the other about the details, but
we’ll go ahead and define it like this:

period = Period.new
period.name = "Baroque"
period.start_date = 1650
period.end_data = 1750
period.countries = %w{ EN DE FR IT ES NL }

If you put this code in a file in the lib subdirectory of the music application, it will
be visible from the model files at runtime. You could then write a method that
culled all the existing periods and searched them on certain criteria.

 Nothing is wrong with this code in principle, and it would be feasible in prac-
tice. But there’s another valid approach to the problem: storing the period infor-
mation in a hash. This hash can live inside work.rb or in a separately loaded file in
the lib directory. We’ll take the former approach here.

 A period hash can be constructed in any of several ways. One way or another,
you must include a range of dates, a list of countries, and a descriptive tag (like
“Baroque”). Something has to be the key, and something has to be the value, for
each entry.

 Because we have three pieces of information to record for each period, and
hashes are fundamentally based on pairs rather than triples, we need to combine
two of the items into one object—presumably an array. The most logical choice is
for each hash entry to have an array containing the time span of the period along
with the countries. Such an array looks like this:

[1650..1750, %w{ EN DE FR IT ES NL }]

This array contains two elements:

■ A range, bracketing the years covered by the period

■ An inner array of country designations (England, Germany, France, Italy,
Spain, the Netherlands)

NOTE RANGE OBJECTS A range is an object with a starting point and an ending
point and the ability to be queried as to whether it does or doesn’t
include a particular value. The range 1650..1750, for example, includes
1697 but doesn’t include 1811. The two numbers with two dots between
them are a range literal. If you use three dots, the range excludes its own
endpoint; with two, it includes the endpoint. Some ranges, but not all,
can also be iterated through, like arrays. For purposes of dating music,
we’re only interested in being able to determine whether a given year
falls inside the range.

412 CHAPTER 15

Programmatically enhancing ActiveRecord models
The primary remaining task is to link this array (and several others like it) to
descriptive period tags—“Baroque”, in the case of the example.

 But should the arrays serve as hash keys, or hash values? In other words, do we
want a typical pair in the period hash to look like this

"Baroque" => [1650..1750, %w{ EN DE FR IT ES NL }]

or like this

[1650..1750, %w{ EN DE FR IT ES NL }] => "Baroque"

Either form could serve the purpose of matching a work with a period by search-
ing the range of years and the countries and returning the descriptive name. We’ll
use the second version, where the array of match criteria is the key and the name
of the period is the key. Because we’re going from the match criteria to the name,
the left-to-right orientation makes a good visual fit.

 We’ll put the period criteria in a hash. Let’s make it a constant in the Work class:

PERIODS = { [1650..1750, %w{ EN DE FR IT ES NL}] => "Baroque",
dddddddddddd[1751..1810, %w{ EN IT DE NL }] => "Classical",
dddddddddddd[1751..1830, %w{ FR }] => "Classical",
dddddddddddd[1837..1901, %w{ EN }] => "Victorian",
dddddddddddd[1820..1897, %w{ DE FR }] => "Romantic" }

There’s nothing definitive about the scholarship reflected in these choices and
certainly nothing comprehensive about the data, but this data structure has the
benefit of being quite pliable. Notice how the Classical period is defined differ-
ently in France from the other countries. Because the logic depends on both a
time match and a country match, French works of the given period will find the
right match. It’s also easy to change the data in the hash, in the event that scholar-
ship advances or works that aren’t represented here are added to the inventory.

 We now need to write an instance method for the Work class that searches this
hash and finds a match based on the work’s year and country. In the event that no
match is found for a given work, we’ll fall back on the default of providing the
work’s century.

 Here is the period method:

def period
ddpkey = PERIODS.keys.find do |yrange,countries|
ddddyrange.include?(year) && countries.include?(country)
ddend
ddPERIODS[pkey] || century
end

This method uses two Boolean operators: the Boolean or operator (||), which you
saw in action in the nice_title method for editions, and the and operator (&&).

B

C

Hard programmatic enhancement 413
of model functionality
The && operator tests the expression to its left for truth-value, returning the value
of the expression on the right if the expression on the left has a Boolean value of
true. If the expression on the right isn’t true—if it evaluates to false or nil—the
whole expression returns false or nil.

 Starting at the end of the method dd, you can see that it uses an or test to return
either a value from the PERIODS hash or the work’s century. If PERIODS[pkey]
returns something true, which it will if pkey is an existing key of PERIODS (remember
that strings like “Classical” are true in the Boolean sense), then the method returns
that value. If not (in other words, if pkey isn’t an existing key, and specifically if pkey
is nil), the method returns the work’s century.

 pkey is calculated by iterating through the keys of the PERIODS hash dd. Each key,
as you’ll recall, is an array consisting of a range of years (assigned to yrange) and an
array of countries (assigned to countries). If there’s a hash key whose year-range
includes year and whose country-array includes country, that hash key is assigned
to pkey. The and test is performed with the && operator. If no key is found that
passes the double test, pkey is nil and, subsequently, PERIODS[pkey] is also nil. If
a key passes the tests, you get the corresponding value when you ask for it dd.

 We now have a programmatic way to get a work to report its artistic period.
We also have a good example of a case where doing something programmatically
has distinct advantages over just putting data in a database. Yes, we could just cre-
ate a field in the works table that contained the period. But by calculating the
period dynamically, we’ve made it a lot easier to make additions and changes. An
entire chart of periods is available at a glance and can be modified and aug-
mented as needed.

 On the other side of the convenience equation, if you were migrating the data-
base to another application, you’d have to reconstruct a way to get at the period
information, since it wouldn’t be in the database—or you’d have to redesign the
database and write a script that determined each work’s period and put it in a
database field after all. And in making real-world decisions about data storage ver-
sus programmatic calculation of values, you do have to weigh considerations of
that kind.

 We’ll settle on doing periods programmatically, on the theory that the music
store application will be stable and fairly permanent.

 Now we’ll return to a strong candidate for a considerable amount of hard
model enhancement: the Customer.

C

B

B

414 CHAPTER 15

Programmatically enhancing ActiveRecord models
15.3.3 The remaining business of the Customer

The Customer model can be enhanced in a number of ways, and we’re going to
do several. We’ll start by developing code to determine various rankings—the cus-
tomer’s favorites in various categories. We’ll then move from rankings to business
calculations, including the customer’s order history and outstanding balance.
Finally, we’ll teach the customer how to check out (complete all pending orders).

Rankings per customer
It’s popular for online shopping sites to put links and special offers on the screen
based on a customer’s known favorite items. Some of this information may be
stored on the server or on the customer’s computer in the form of cookies. Some
of it (if there isn’t too much to do reasonably quickly) can be calculated in real
time based on the customer’s searching and/or ordering history.

 We’ll perform a couple of calculations of this type: determining this cus-
tomer’s favorite composers and instruments. (Both of these methods are instance
methods of the Customer class and therefore belong in the customer.rb model
file; but they’ll undergo some revision before they’re final.)

 The two methods work in similar ways. First, they create an array of the item’s
history (composer or instrument) by traversing either the edition history or the
work history. This array is in chronological order; the most recently ordered com-
posers or instruments are last. (This happens automatically, because of the way
we’ve specified the ordering of order objects. That order propagates to
edition_history and work_history.)

 Next, we run uniq on the array, because we only want to rank each item once. The
rank is based on how many times the item occurs in the complete array. Finally, we
reverse the result. Because the number of occurrences is higher for the favorites,
they’re at the end of the array—so we reverse it, to put them at the beginning:

def composer_rankings
ddhistory = edition_history.map {|ed| ed.composers }.flatten
ddhistory.uniq.sort_by do |c|
ddddhistory.select {|comp| comp == c}.size
ddend.reverse
end

def instrument_rankings
ddhistory = work_history.map {|work| work.instruments }.flatten
ddhistory.uniq.sort_by do |i|
ddddhistory.select {|instr| instr == i}.size
ddend.reverse
end

Hard programmatic enhancement 415
of model functionality
These two methods will work, but even a glance at them glaringly reveals the fact
that they’re almost identical. You can trim them down a lot by extracting their
common code into a separate method and calling that method where it’s needed:

def rank(list)
ddlist.uniq.sort_by do |a|
ddddlist.select {|b| a == b }.size
ddend.reverse
end

def composer_rankings
ddrank(edition_history.map {|ed| ed.composers }.flatten)
end

def instrument_rankings
ddrank(work_history.map {|work| work.instruments }.flatten)
end

Here’s a walk-through of how these methods work. We’ll use instruments for this
example and refer to them by name for simplicity.

 Let’s say someone orders:

■ A work for cello and piano

■ A work for cello and orchestra

■ A work for orchestra

That means our pre-flattened instrument history is

[["cello", "piano"], ["cello", "orchestra"], ["orchestra"]]

and the flattened version is

["cello","piano","cello","orchestra","orchestra"]

We then send this array to the rank method. Going through these one at a time,
and never repeating an item (thanks to uniq), rank sorts them by how often they
occur in the non-uniqued list. The statistics are as follows:

■ cello => 2

■ piano => 1

■ orchestra => 2

We sort them by this order. When there’s a tie, as between cello and orchestra, the
first one encountered (cello) ends up earlier in the final list—which is what we
want, because it means the instruments from more recently ordered works land
further toward the end of the list.

416 CHAPTER 15

Programmatically enhancing ActiveRecord models
 The almost-final order, then, is piano, cello, orchestra. Because we want the list in
descending order of favoriteness (most favorite first in the array; least favorite
last), we reverse it: orchestra, cello, piano. That gives us a reasonable representation
of this customer’s most- and/or most-recently ordered instruments.

NOTE ALGORITHM GRANULARITY The algorithm we’re using to determine
favorites is reasonably fine-grained. It’s slightly vulnerable, however, to
the ordering of instruments within a work or composers within an edi-
tion. If works for cello and piano are listed with piano first, and cello and
piano are tied, piano will come out ahead. If they’re listed the other way
around, cello will. (You can try this in irb. Paste the rank method directly
into the irb session—it can operate as a standalone, top-level method
inside irb—and then look at the difference between rank(%w{c p c p})
and rank(%w{p c p c}).) It would be possible to store items in a hash
that kept closer track of ties, but it’s questionable whether the effort to
do this would pay off. After all, when it comes to displaying favorite
items on the screen, you’d probably end up choosing among the tied
items anyway. Moreover, if you wanted to be more nuanced, you could
do something along the lines of the instrument-ordering we did for the
nice_instruments method—perhaps write a weighted_instruments
method and then call that instead of instruments. It would still be no
more than a calculated guess. With instruments, this kind of pre-rank
weighting would be hard to justify; with composers, impossible. Deter-
mining customer favorites is a fuzzy process (as anyone knows who has
seen his or her own favorites page on a shopping site populated with
suggestions based on items ordered as gifts for other people).

We now have a way to determine customer favorites—and we’ll come back to it
and complete the picture, when we get to controllers and views in the next chap-
ter. Meanwhile, let’s turn now to the business end of the customer: the methods
we’ll need as a foundation for accepting orders and calculating costs.

Calculating the number of copies ordered
We need a way to know how many copies of a given edition a customer has
ordered. It would be possible, and plausible, to design the application and the
database so that this number was stored in the database and incremented when
the customer changed the number of copies of an edition or ordered another
copy. However, order counting is also a good example of a case where you might
calculate a value on the fly, programmatically; and that’s how we’ll do it here.

 The following method, an instance method of Customer, tells us how many cop-
ies of a given edition the customer has ordered:

Hard programmatic enhancement 417
of model functionality
def copies_of(edition)
ddorders.find(:all, :conditions => "edition_id = #{edition.id}").size
end

The call to the orders method returns an ActiveRecord collection, rather than a
plain array, of all of the customer’s orders. This enables us to use the ActiveRecord
flavor of find to zero in on all the orders for this edition, by matching the edition’s
ID field with the edition_id field in the database records for the customer’s orders.
(Note the use of SQL, and in particular the single equal-sign for comparison where
you would use == in Ruby.) Finally, we take the size of this subset of the customer’s
orders; this tells us how many copies of this edition the customer has ordered.

Remaining unpaid balance
At some point, we’ll need to be able to calculate how much the customer owes for
unpaid orders (their unpaid balance). We already have a method that returns an
array of all the customer’s open orders. All we need to do is add up the prices of
the items in that array.

 Let’s look at two ways to do this: one by hand and one using the Array#inject
method. The first version of the method looks like this:

def balance
 acc = 0
 open_orders.each do |order|
 acc += order.edition.price
 end
 "%.2f" % acc
end

First, we set up an accumulator, initialized to zero. We then cycle through all the
open orders of this customer, adding the price associated with that order (the
price of the edition to which the order pertains) to the accumulator. Finally, we
format the accumulator in a string with two decimal points, corresponding to the
canonical dollars-and-cents format.

 This kind of operation—iterating through a collection and accumulating the
results of some calculation incrementally—can be done automatically with the
inject method. This method initializes an accumulator (in this case, zero) and
then iterates through the array. On the first iteration, inject yields two values to
the block: the accumulator object and the first element of the array. On the sec-
ond and subsequent iterations, it also yields two values: the return value of the
previous call to the block and the current element of the array.

 The inject-based version of the balance method looks like this:

418 CHAPTER 15

Programmatically enhancing ActiveRecord models
def balance
dd"%.2f" % open_orders.inject(0) do |acc,order|
ddddacc + order.edition.price
ddend
end

The two versions produce exactly the same result. Which you use is up to you,
although it’s a good idea to make sure you understand both of them.

Customer check-out
Checking out—paying for all purchases and emptying the shopping cart—is a
two-pronged process. On the one hand, it’s a controller action with an associated
view (a “Thank you” screen or something along those lines). On the other hand,
it’s the business of the customer entity model to do the housekeeping associated
with checking out.

 We’ll write the controller action in the next chapter. Here, let’s specify what
the customer object has to do with regard to the state of its own data when it
checks out. It needs to change the status of every order to “paid”:

def check_out
ddorders.each do |order|
ddddorder.status = "paid"
ddddorder.update
ddend
end

This method sets the status property of each order to “paid” and then updates
the database record to reflect the new value.

 ActiveRecord lets you do this in one command: update_attribute. We could
rewrite the check_out method to use this command:

def check_out
 orders.each do |order|
 order.update_attribute(:status, "paid")
 end
end

Either of these techniques is acceptable.
 We’ve now added a considerable amount of functionality to the composer, work,

and customer models in the form of both soft and hard programmatic enhance-
ment. This draws us closer to a reasonably functional music store; and, most impor-
tant, it provides a display of the kinds of things you can do to, and with, your
ActiveRecord models when you know how to add programmatic value to them.

Extending model functionality with class methods 419
 So far, all the enhancements have involved instance methods. To round out
the chapter, we’ll look next at a few examples of how you can enhance an
ActiveRecord model at the class method level.

15.4 Extending model functionality with class methods

Class methods, in general, are an appropriate choice when you want to calculate
something that pertains generally to a class’s domain, its field of expertise. That’s
true in the case of ActiveRecord model classes too. Although instance methods
make sense when what you want to achieve is at the level of a particular instance
(like determining a work’s century), class methods make sense when you want to
do something at a more abstract level—or, as is often the case, something that
involves searching and manipulation of all the existing records for a given class.

15.4.1 Soft and hard class methods

Class methods written for model classes, like instance methods, can be categorized
as soft or hard, depending on whether they search and retrieve existing data in a
relatively passive, low-impact way, or construct entirely new data structures out of
the data they find. Don’t forget that a number of the class methods your model
classes have by default are even more active than this—methods like delete_all,
which clears the database table corresponding to the class of all its entries. You
probably won’t need to write class methods that do database housekeeping at that
level (ActiveRecord supplies a pretty full toolkit for those operations). Still, some of
the class methods you write for your model classes will be more active than others.

Determining all editions for a list of works
This is a specialized method, but it will come in handy at least once when we get to
view and controller enhancement in chapter 16. It’s a class method on the Edition
class, and therefore it belongs in edition.rb in the app/models subdirectory:

def Edition.of_works(works)
ddworks.map {|work| work.editions }.flatten.uniq
end

This method starts with a list of works—say, all the works by Bach, or all works writ-
ten in 1830, or whatever you want to sent it—and returns a list of editions of all
those works. It’s a useful method for crossing over from a works list to a corre-
sponding editions list.

420 CHAPTER 15

Programmatically enhancing ActiveRecord models
Determining all periods represented in the stock
The following soft class method finds all periods represented by all the works in
the database:

def Work.all_periods
 find(:all).map {|c| c.period }.flatten.uniq.sort
end

This method uses find(:all) to create an array of all the available Work objects. It
then maps through that array, creating a new array consisting of the objects’ peri-
ods. That array, in turn, gets flattened, made unique, and sorted. The result is an
array that might be used, say, to show the visitor a list of all periods represented by
music available in the store.

Determining sales rankings for works
Here we’ll do something parallel to the rankings instance methods we added to
the Customer class. This is an example of hard programmatic enhancement at the
class level: The method creates and returns a new data structure.

 We want a ranking, contained in a hash, of all works by sales order. The keys of
the hash are the database ID fields of the works; the value corresponding to each
key is the number of copies of that work (in any edition) that have been ordered.

 This can be achieved by cycling through all the existing work records and then
doing an inner iteration through all of that work’s editions. For each edition, the
number of orders (equivalent to the size of the edition’s orders collection) is added
to the hash entry for that work. At the end, the hash is returned from the method:

def Work.sales_rankings
 r = Hash.new(0)
 find(:all).each do |work|
 work.editions.each do |ed|
 r[work.id] += ed.orders.size
 end
 end
 r
end

To use this hash, we need to do some sorting, because hashes are unordered:

rankings = Work.sales_rankings
r_sorted = rankings.sort_by {|key,value| value }

This results in an array of arrays, each inner array containing one key-value pair
from the hash, in ascending order by value.

 We can do something similar for composers.

Gives hash default value of zero

Summary 421
Determining sales rankings for composers
We can use Work.sales_rankings as the basis for calculating sales rankings for
composers. This method goes in app/models/composer.rb:

def Composer.sales_rankings
 r = Hash.new(0)
ddWork.sales_rankings.map do |work,sales|
 r[work.composer.id] += sales
 end
 r
end

For each work in the sales rankings hash, we add the sales figure to the hash entry
for the work’s composer. The sales ranking hash provides the information we
need, courtesy of the class method we added to Work.

 This brings us to the end of our model-enhancement workshop (except for one
method sneaked into chapter 16—but that can wait). We’ll turn next to the con-
troller and view realm, where we’ll make our newly intelligent models do things.

15.5 Summary

This chapter has taken you on a guided tour of a selection of programmatic
enhancements to the ActiveRecord model files from the music store application.
You’ve seen examples of both soft and hard enhancements—enhancements that
return instances or collections based on existing data, and enhancements that
manipulate data more actively to produce new representations in new data struc-
tures. We’ve examined this at both the instance-method and class-method levels.

 Along the way, we’ve also noted some of the factors, pro and con, that may
influence you when you’re deciding whether to write a new method for a model
or carry out a database redesign that creates a new table or field. In the case of
determining the period of a work, for example, putting a tag like “Classical” in a
database field is possible and probably faster than calculating a work’s period on
the fly—but this approach is also less flexible and scalable, in the event that you
want to make changes, than maintaining a single hash of period information.
These and other factors are always present, and you need to make the best deci-
sion you can in each case.

 This brings us to the end of our work on the domain-database-model side of the
music store universe. Next, we’ll turn to the realm of ActionPack: the view tem-
plates, and the controllers that feed data to them. This is literally where the action
is and where the work we’ve put into enhancing the models bears visible fruit.

Enhancing the
controllers and views
In this chapter
■ Built-in and custom helper methods
■ Using partial view templates
■ Login and authentication
■ Maintaining session state
■ Dynamic determination of method branching
422

Enhancing the controllers and views 423
In this chapter, we’ll round out the music store application by adding new con-
troller actions and the corresponding views. These actions and views will use the
programmatic model enhancements we completed in chapter 15 as well as the
refinements we made to the music store domain and database in both chapters 14
and 15. They’ll also use a variety of Ruby techniques that were not on our radar
back in chapter 2.

 The actions available in the second version of R4RMusic are summarized in
table 16.1.

A few of these actions haven’t changed since the chapter 2 version of R4RMusic.
The rest we’ll rewrite (or just write, in the case of the new ones) in this chapter. As
always, you’re encouraged to download the complete application code from the
Ruby for Rails Web site, so that you can see every aspect of how the pieces fit together.

Enhancing the controllers and views

Table 16.1 Summary of controller actions and corresponding templates in the second version
of R4RMusic

Controller Description Action method name Master template rendered

Customer Log in login main/welcome.rhtml

Log out logout main/welcome.rhtml

Sign up for a new account signup main/welcome.rhtml

Add an edition to the
shopping cart

add_to_cart customer/view_cart.rhtml

View the shopping cart view_cart customer/view_cart.rhtml

Check out (complete pur-
chases)

check_out customer/check_out.rhtml

Main Welcome the visitor welcome main/welcome.rhtml

Show all works from a
given period

show_period main/show_period.rhtml

Composer Show all editions of a
composer’s works

show composer/show.rhtml

Edition Show publication details
for an edition

show edition/show.rhtml

Instrument Show all works for a given
instrument

show instrument/show.rhtml

Work Show all editions of a
given work

show work/show.rhtml

424 CHAPTER 16

Enhancing the controllers and views
 We’ll proceed as follows. In the first two sections of the chapter, we’ll look at
two important facilities that ActionPack (the combined controller/view subsystem
of Rails) provides to help you organize and extend the functionality of your appli-
cation. The first of these is the helper file facility; the second is the partials mecha-
nism, which lets you split large view templates into smaller files. Many new and
modified views and controller actions necessary for this phase of the application
will be introduced as examples in the course of the exploration of these Action-
Pack facilities.

 Then, in section 16.3, we’ll take a close look at the revisions to the main con-
troller, which handles the main welcome view. The remaining sections of the
chapter will address the views and controller actions associated with the most
important completely new figure in this second version of the application: the
customer. We’ll look at signing up, logging in and out, and ordering items; and
we’ll conclude by programming the display of the customer’s favorites, based on
the ranking methods we developed in chapter 15.

16.1 Defining helper methods for view templates

The view and controller phases of the Model/View/Controller framework work
closely together. The basic contract between the controllers and the views is that
the controllers gather, sort, sift, and prepare data, which they store in instance
variables; and the views use those instance variables in ERb templates. Sometimes,
however, you’ll need to manipulate data or make calculations in ways that can’t be
done in advance by the controller, but have to be done in the template. For exam-
ple—really a whole category of examples—it’s convenient to have access in the
templates to shortcut methods that write out repetitive sequences of HTML.

 ActionPack, the parent package of both ActionController and ActionView,
provides two forms of help in the realm of shortcut methods available for use in
your templates. First, you can use any of a large number of predefined helper
methods; we’ve already seen an example of such a method: link_to. Like many of
the other built-in ActionPack helper methods, link_to gives you a programmatic
(method call–based) alternative to writing out HTML markup manually. (We’re
not going to discuss the built-in helper methods extensively here; but you’ll come
across not only link_to but form_tag, text_field, and others in R4RMusic and in
the majority of Rails applications you write or see.)

 The second way in which ActionPack provides you with helper-method facili-
ties, and the one we’ll focus on in this section, is through the helper file facility,
which gives you a structured way to define methods of your own that extend the

Defining helper methods for view templates 425
functionality of your templates. The helper files exist for the purpose of storing
any and all helper methods you wish to write; those methods, once defined, can
be called from your templates just like the built-in Rails helper methods (link_to
and so on).

 We toured helper files briefly way back in section 3.2.2, as an example of one of
the ways in which Rails supports and encourages the writing of customized code for
your application. In this section, we’ll examine the helper file mechanism closely,
and we’ll also add some helper methods to the R4RMusic application.

16.1.1 Organizing and accessing custom helper methods

The helper file mechanism kicks in whenever you create a controller with the
script/generate utility: As part of the controller creation process, a file with the
name controller_helper.rb is created in your application’s app/helpers

directory. That’s where you put helper methods you want to be able to call from
your templates.

 Inside each controller_helper.rb file is an empty module definition; the mod-
ule is named after the controller. For example, composer_helper.rb contains this:

module ComposerHelper
end

During the rendering of any template inside the app/views/composer directory,
any instance methods you add to the body of this module are directly callable.

 Defining methods in helper files can help you economize on repeated code. For
example, you may find that you frequently want to create a link to the composer/show
action for one composer or another. In such a case, you can write a helper method
that automatically creates a link—such as the following method, link_to_composer,
which piggy-backs on the built-in link_to method:

module ComposerHelper
 def link_to_composer(composer)
 link_to(composer.whole_name,
 :controller => "composer",
 :action => "show",
 :id => composer.id)
 end
end

And here’s an example of how you might use the new link_to_composer method
in a template:

 <% @composers.each do |composer| %>
 <%= link_to_composer(composer) %>

426 CHAPTER 16

Enhancing the controllers and views
 <% end %>

Every time through the each loop, the string that’s returned from the call to
link_to_composer, containing a link to a composer object, is interpolated into the
template, courtesy of the <%= ... %> ERb notation. You end up with a list of links to
composers, as defined by the custom method.

Using methods from a different helper file
By default, templates in the views/composer directory have automatic access to
the methods defined in the ComposerHelper module in the file helpers/

composer_helper.rb. Sometimes, though, you may want to use a composer-related
helper method in a template from another directory. A case in point is the
link_to_composer method, which is used by a number of templates from a num-
ber of directories.

 There are two ways to make a method like link_to_composer available not just
to composer templates, but to others as well:

■ Declare :composer to be a helper in the controller file whose templates
need access to it

■ Define the method in the generic application_helper.rb helper file rather
than the composer_helper.rb file

The first of these options, translated into code, means (for example) doing this in
main_controller.rb:

class MainController < ApplicationController

 helper :composer
 # etc.
end

helper is a class method of ActionController::Base (hence inherited via Appli-
cationController). It establishes a crossover helper relationship; the templates in
views/main now have access to the helper code in composer_helper.rb.

 Then there’s the second approach to making helper methods available across
different controllers and templates: put them all in the generic helper file
application_helper.rb, where they’re visible to and callable from all your con-
trollers and templates.

 Which of the two approaches is best? It’s certainly easier to stash all the helper
methods you may need in application_helper.rb. On the other hand, if you put
each helper method in the most suitable file (for example, the link_to_composer

Defining helper methods for view templates 427
method in composer_helper.rb) and then use explicit helper declarations to
make helper methods visible across controllers, you end up with more explicit
information about what’s being used where.

 As often happens, there’s a tradeoff. Here, we’ll use the first method: distribut-
ing helper methods into different files, and using calls to helper to prompt their
inclusion as needed.

16.1.2 The custom helper methods for R4RMusic

R4RMusic uses some of the built-in helper methods (including link_to). In addi-
tion, we’ll write some custom helper methods for it, thus taking advantage not
only of the predefined helpers but also of the helper file mechanism. We’ll write a
total of six helper methods. This isn’t a huge number, but it will be enough to
illustrate the helper file facility in practice and to help with the organization of
the application’s code.

 The six methods are summarized in table 16.2.

Five of them are automatic link generators; the sixth formats currency figures
(dollars and cents) as strings to exactly two decimal places. In each case, the
method should be written as an instance method in the file specified in the
Defined in column of table 16.2. In addition, you should insert a helper directive
into the controller files indicated in the third column. For instance, because “edi-
tion” appears in the third column for helper methods in both the composer and
work helper files, edition_controller.rb will contain this line:

helper :composer, :work

Here are the first five helper methods:

Table 16.2 Summary of helper methods, their locations, and the controllers that need them

Method Defined in
Included with helper call in

these controller files

link_to_composer composer_helper.rb customer, edition, main

link_to_work work_helper.rb composer, customer, edition,
instrument, main

link_to_edition edition_helper.rb customer, work

link_to_edition_title edition_helper.rb composer, instrument

link_to_instrument instrument_helper.rb main

two_dec application_helper.rb Automatically available to all

428 CHAPTER 16

Enhancing the controllers and views
def link_to_composer(composer)
ddlink_to(composer.whole_name,
dddddddd:controller => "composer",
dddddddd:action => "show",
dddddddd:id => composer.id)
end

def link_to_edition(edition)
ddlink_to edition.description,
dddddddd:controller => "edition",
dddddddd:action => "show",
dddddddd:id => edition.id
end

def link_to_edition_title(edition)
ddlink_to edition.nice_title,
dddddddd:controller => "edition",
dddddddd:action => "show",
dddddddd:id => edition.id
end

def link_to_work(work)
ddlink_to(work.nice_title,
dddddddd:controller => "work",
dddddddd:action => "show",
dddddddd:id => work.id)
end

def link_to_instrument(instrument)
ddlink_to instrument.name,
dddddddd:controller => "instrument",
dddddddd:action => "show",
dddddddd:id => instrument.id
end

The sixth helper method, two_dec, formats a floating-point number as a string to
exactly two decimal places. Its purpose is to make sure prices are displayed in cor-
rect dollars-and-cents format. To achieve this, we use the built-in Ruby utility
method sprintf; like the C method of the same name, sprintf interpolates values
into a string, using format specifiers in the string to format the values correctly.
The format specifier we want is %.2f (floating point to two decimal points), and
the value we want formatted is whatever argument is passed to two_dec.

 two_dec goes in application_helper.rb, which now looks like this:

module ApplicationHelper
 def two_dec(n)
 sprintf("%.2f", n)
 end
end

Coding and deploying partial view templates 429
We don’t need to declare a helper connection in any controller for this method;
it’s in the generic helper file and therefore already visible to all controllers and
templates.

 That’s pretty much it for helper methods in the music store application. We’ll
turn next to another tool provided by ActionPack to help you produce and organize
efficient templating code: the facility for splitting your views into main templates
and partials—modular, reusable template fragments that live in separate files.

16.2 Coding and deploying partial view templates

To get Rails to display a view called composer/show.rhtml, we put a file of that
name beneath the app/views directory, and we request composer/show as the
action in our URL. The file contains template code, which is filled in based on
variables handed over from the controller (@composer, for example).

 Meanwhile, inside composer/show.rhtml, we can trigger the automatic inclu-
sion of one or more partial views. We summon up the partial view at a particular
place in the main or master template with a call to render.

16.2.1 Anatomy of a master template

The best way to see how partial templates fit into the overall template landscape is
by looking at an entire template file, such as the one shown in listing 16.1.

 <% @page_title = "Editions of works by #{@composer.whole_name}" %>

 <h2 class="info"><%= @page_title %></h2>
 <p>Click on any edition to see details.</p>
 <%= render :partial => "editions" %>

The render method examines the name of the partial (editions, in this case),
adds an underscore at the beginning and the .rhtml suffix at the end, and then
looks for the file of the resulting name: _editions.rhtml.

 The _editions.rhtml partial template file is also in the composer view direc-
tory. It’s shown in listing 16.2.

ddd<% @composer.editions.map do |edition| %>

Listing 16.1 The composer/show.rhtml template file

Listing 16.2 The composer/_editions.rhtml partial template

430 CHAPTER 16

Enhancing the controllers and views
ddd<%= link_to_edition_title(edition) %>
ddd(<%= edition.publisher.name %>, <%= edition.year %>)
ddd<% end %>

dThe template code in _editions.rhtml creates a list (a HTML element) of
links to editions. When you click such a link, you trigger the show action for that
edition. (Showing an edition means showing its publication and price details.)

 The HTML for the list of edition links is dropped into the master template in
listing 16.1 at the point where the master template makes the call to render. In
terms of application design, all that’s happened is that we’ve split what might oth-
erwise be one template file into a master file and a partial. It’s never mandatory
that you do this, but it can help keep your template code organized and clear.

 The new version of the master template for the application’s welcome screen,
main/welcome.rhtml, will use quite a few partials. And we, in turn, will use it as a point
of departure for further examination of partials and how templates fit together.

16.2.2 Using partials in the welcome view template

Figure 16.1 shows a screenshot of the R4RMusic application’s welcome screen.The
figure shows things at a point where I’ve already logged in, so you don’t see the
login or signup forms. But that’s OK, because our focus in this section is on three
of the lists: composers, instruments, and musical periods. (We’ll deal with the
favorites list separately, in section 16.6.) These three lists are the portals to brows-
ing the music store’s inventory—and each of them also happens to be generated
by a partial template.

 Let’s start with the composers.

Creating the list of composer links
We’ve already seen the partial that creates the list of composer links; in section 16.1.1,
it served as the example of how to use link_to_composer in a template. It’s shown
again, now officially a partial template called _list.rhtml, in listing 16.3.

 <% @composers.each do |composer| %>
 <%= link_to_composer(composer) %>
 <% end %>

Listing 16.3 The composers/_list.rhtml partial template

Coding and deploying partial view templates 431
To use this partial, put the following line in the master template main/
welcome.rhtml:

 <%= render :partial => "composer/list" %>

Notice that the name of the partial is double-barreled: composer/list. The signifi-
cance of this is that the partial template _list.rhtml is retrieved from the views/
composer directory, which isn’t the same as the directory where the master template
resides (view/main). You could store the composer list partial in the main view direc-
tory, alongside welcome.rhtml. The decision not to do so is semantic or aesthetic:

Figure 16.1 The R4RMusic welcome screen

432 CHAPTER 16

Enhancing the controllers and views
The composer directory is a better fit for a template that generates a list of compos-
ers. As long as you point the way with a path indicator, like composer/list, Rails will
find the template file and render it.

 As we have done unto composers, let us now do unto instruments.

Creating the list of instrument links
Listing 16.4 shows the partial template instrument/_list.rhtml.

 <% @instruments.each do |instrument| %>
 dd<%= link_to_instrument(instrument) %>
 <% end %>

We need a line in welcome.rhtml to render this partial:

<%= render :partial => "instrument/list" %>

(Don’t worry about exactly where this render command goes; we’ll look at the wel-
come template in its entirety a little later.)

 Notice in listing 16.4 that the instrument list partial uses the instance variable
@instruments. That’s a useful reminder that we don’t yet have a controller file for
instruments. That’s easy to fix (and worth a brief detour). First, give the usual
command for controller creation:

$ ruby ./script/generate controller instrument show

This creates the necessary files for the instrument controller; and in the principal
file, instrument_controller.rb, is an empty definition for the show method. That
method needs to be fleshed out and the helper directive inserted.

 Listing 16.5 shows the completed file.

 class InstrumentController < ApplicationController
 helper :work, :edition
 def show
 @instrument = Instrument.find(params[:id])
 end
 end

Listing 16.4 The instrument/_list.rhtml partial template

Listing 16.5 Completed instrument_controller.rb file

Coding and deploying partial view templates 433
The initialization of the @instrument instance variable, necessary for rendering of
the instrument/_list.rhtml partial, is now taken care of.

 On we go, to the third of the three lists on the welcome page: the list of musi-
cal periods.

Creating the list of links to musical periods
Listing 16.6 shows the partial template that generates the list of links to musical
periods.

 <% @periods.each do |period| %>
 <%= link_to period,
 :controller => "main",
 :action => "show_period",
 :id => period %>
 <% end %>
ddd

As per the designation main/_period_list.rhtml, this file is stored directly in the
main views subdirectory. There’s nowhere else to put it; a list of periods is a high-
level concept, not uniquely associated with any of the application models or con-
trollers (composer, instrument, and so on).

 We also need to add the traditional line to the welcome template:

<%= render :partial => "period_list" %>

Like its composer and instrument counterparts, this line causes the insertion of
the list of musical periods into the main welcome screen. (You’ll see exactly where
this line fits into the template shortly.)

 Let’s bring the discussion full circle by looking at the welcome.rhtml template,
also in its entirety.

The complete welcome template
We’ve added enough lines to welcome.rhtml that it’s worthwhile looking at that file
all in one place. You can see the entire welcome template, with its references to par-
tial templates, in listing 16.7. (Any partials mentioned in the template but not yet
discussed will be covered when we develop the views related to the customer.)

Listing 16.6 The main/_period_list.rhtml partial template

434 CHAPTER 16

Enhancing the controllers and views
 <% if @c %>
 <h3>Welcome, <%= @c.first_name %>.</h3>
 <% end %>
 <h2 class="info">Browse works by...</h2>

 <table>
 <tr>
 <th>...Period</th>
 <th>...Composer</th>
 <th>...Instrument</th>
 </tr>
 <tr>
 <td>
 <%= render :partial => "period_list" %>
 </td>
 <td>
 <%= render :partial => "composer/list" %>
 </td>
 <td>
 <%= render :partial => "instrument/list" %>
 </td>
 </tr>
 </table>

 <% if @c %>
 <%= render :partial => "favorites" %>
 <% else %>
 <h2 class="info">Log in or create an account</h2>
 <table border="1">
 <tr>
 <th>Log in to your account</th>
 <th>Sign up for an account</th>
 </tr>
 <tr>
 <td><%= render :partial => "customer/login" %></td>
 <td><%= render :partial => "customer/signup" %></td>
 </tr>
 </table>
 <% end %>

The use of partials keeps the welcome template file of reasonable size while incor-
porating enough semantic information—the names of the partials, primarily—to
make it fully informative as to its content. Rather than a spaghetti-style unrolling
of lists and forms, the master template contains a series of references to subdocu-
ments to be included.

Listing 16.7 views/main/welcome.rhtml

Coding and deploying partial view templates 435
 We’ll leave the subject of partials with a summary, in table 16.3, of all the par-
tials used in the music store application.

Our examination of partials has revealed some organizational techniques for tem-
plate files. But it’s also left us with a couple of loose ends. In particular, the main
controller file is lagging behind; we have nice lists in the views but not much indi-
cation of where those lists get their data. Let’s look at main_controller.rb and
bring it into alignment with the new look of the views.

Table 16.3 Summary of partials used in the music store application views

Partial file directory/filename Description Master template(s) using

composer/_list.rhtml Clickable list of composers’
names

main/welcome.rhtml

composer/_editions.rhtml Clickable list of editions of the
composer’s works

composer/show.rhtml

customer/_cart.rhtml Table of the customer’s open
orders

customer/view_cart.rhtml

customer/_login.rhtml Login form main/welcome.rhtml

customer/_signup.rhtml Signup form main/welcome.rhtml

edition/_details.rhtml Table with edition details and a
link to the shopping cart

edition/show.rhtml

instrument/_list.rhtml Clickable list of all instruments main/welcome.rhtml

instrument/_works.rhtml Clickable list of all works for this
instrument

instrument/show.rhtml

work/_editions.rhtml Clickable list of editions of this
work

work/show.rhtml

main/_period_list.rhtml Clickable list of periods (baroque,
and so on)

main/welcome.rhtml

main/_period.rhtml Display of editions of works from a
given period

main/show_period.rhtml

main/_favorites.shtml Customer’s favorite composers
and instruments

main/welcome.rhtml

436 CHAPTER 16

Enhancing the controllers and views
16.3 Updating the main controller

This time around, we’ll start with the finished product and then account for how
it got that way. Listing 16.8 shows the entire main_controller.rb file for this ver-
sion of the application.

class MainController < ApplicationController

 helper :work, :composer, :instrument
 def welcome
 @composers = Composer.find(:all).sort_by do |composer|
 [composer.last_name, composer.first_name, composer.middle_name]
 end
 @periods = Work.all_periods
 @instruments = Instrument.find(:all, :order => "name ASC")
 end

 def show_period
 @period = params[:id]
 works = Work.find(:all).select do |work|
dddddd(work.period == @period) || (work.century == @period)
 end
 @editions = Edition.of_works(works)
 end
end

There are only two methods (actions) defined in this file; but they’re both worth a
look.

16.3.1 The new face of the welcome action

In case you don’t remember (and don’t feel like looking it up), the main control-
ler file in the previous version of R4RMusic looked like this:

class MainController < ApplicationController
 def welcome
 @composers = Composer.find(:all).sort_by {|c|
 [c.last_name, c.first_name]
 }
 end
end

The new welcome action is bit more involved—but not much more than a bit. Where
the old welcome stored data in one instance variable (a sorted list of composers

Listing 16.8 The file main_controller.rb

Updating the main controller 437
stored in @composers), the new welcome, as listing 16.8 showed, stores data in three:
@composers, @instruments, and @periods.

 The composers are still stored in @composers, and the new middle_name field is
used in the sort. @composers is used by the composer/_list.rhtml partial.

 The variable @periods is assigned a list of all the musical periods represented
in the inventory of the music store. This information is available via the
all_periods class method of Work, a method we wrote in chapter 15. (This is a
good example of how the customization of models at both the instance- and class-
method levels can pay off in simplicity later.) @periods is used in main/
_period_list.rhtml.

 Finally, @instruments contains a list of instruments, sorted in ascending order
by name. @instruments is used in the instrument/_list.rhtml partial.

 The new welcome method primes the pump, so to speak, for the views—which
is what controllers do in general. Here, the three instance variables initialized in
the controller happen to appear in the three list partials we’ve already examined.

 Then there’s the new action, show_period. You’ll recall from listing 16.6 that
the partial template for the list of musical periods includes a reference to this
action. Every link in the list of periods is a link to the show_period action for that
period. The action is specified in a link_to call, as per listing 16.6, with:

:controller => "main",
:action => "show_period"

And which period is shown when you click one of the links to show_period? The
answer is in show_period:

@period = params[:id]

The id parameter tells show_period which period to show.
 Going back to listing 16.6 and its link_to command, the period is stored in the

id parameter like this:

:id => period

For the link to the Baroque period, the id parameter is “Baroque”; for the Classi-
cal period, it’s “Classical”, and so on. show_period extracts the period and stores it
in @period.

 Next, show_period searches through all the works in the database, selecting
only those whose period matches the period in question. Two tests are performed:
one to match the period and one to match the century. The latter serves as a fall-
back in case a century rather than a period has been specified:

438 CHAPTER 16

Enhancing the controllers and views
works = Work.find(:all).select do |work|
dd(work.period == @period) || (work.century == @period)
end

Finally, the @editions variable is assigned all the editions of all the works for this
period, using the of_works class method written in chapter 15. @editions and
@period are then handed off to the main/show_period.rhtml template.

 Examining that template and the partial it uses (main/_period.rhtml), however,
will be left as an exercise for you. (Like all the R4RMusic application code, those files
are available on the book’s Web site.) The goal of this section has been fulfilled: to
look closely at the new main controller file. Although that file includes only two
methods, they illustrate several useful techniques, not least of which is using custom-
written methods from the model files. Facility with Ruby will stand you in good stead
in your controller programming, as well as your model programming.

 We’ll turn next to the main event, in terms of the process of revising the
R4RMusic application: the customer. We already have a customer model from
chapters 14 and 15. Here, we’re going to define actions and create views so that
our customers can do something.

16.4 Incorporating customer signup and login

The first thing we want customers to be able to do is sign up for an account; the
second thing we want them to be able to do is log in to the site. In the process of
making these actions possible, we’ll consider some issues of authorization and
security as they pertain to writing controller actions.

 We’ll put both the login form and the signup form on the top-level welcome
screen. The controller action for signing up is customer/signup (the signup
method in the file customer_controller.rb). The login action is customer/login.
Any new views we create will be placed in the app/views/customer directory.

 Even though it’s backward, in terms of a customer’s relation to the site, let’s
start with the login process. Let’s assume that someone has successfully signed up
(or been manually created as a user), and that we need to make provisions for
that person to log in.

16.4.1 The login and signup partial templates

The main welcome view template, shown in listing 16.9, performs a rendering of
partials for login and signup forms. Those partials live in the customer subdirec-
tory of app/views. The signup partial, _signup.rhtml, contains the form shown in
listing 16.9.

Incorporating customer signup and login 439
<%= form_tag :controller => "customer",
 :action => "signup" %>
 <p>First name: <%= text_field "customer", "first_name" %> </p>
 <p>Last name: <%= text_field "customer", "last_name" %> </p>
 <p>User name: <%= text_field "customer", "nick" %> </p>
 <p>Password: <%= password_field "customer", "password" %> </p>
 <p>Email address: <%= text_field "customer", "email" %> </p>

 <p><input type="Submit" value="Sign up"/></p>

<%= end_form_tag %>

The login partial, _login.rhtml, is shown in listing 16.10.

 <%= form_tag :controller => "customer",
 :action => "login" %>
 <p>User name: <%= text_field "customer", "nick" %></p>
 <p>Password: <%= password_field "customer", "password" %></p>
 <p><input type="Submit" value="Log in"/></p>
ddddd<%= end_form_tag %>

The forms defined in the partials in listings 16.9 and 16.10 appear on the wel-
come screen. Now let’s look at what’s involved in letting someone log in.

16.4.2 Logging in and saving the session state

From the perspective of the customer, logging in takes place once at the begin-
ning of each session. The exact definition of session may vary among sites. Some
terminate sessions by logging you out automatically after a certain amount of time
has lapsed. Ours won’t, but we’ll provide a logout button.

 A session has continuity in the visitor’s mind. The application also has ways to
perceive and maintain session boundaries. When someone requests a controller
action—view details of an edition, look at all music for violin, add something to a
shopping cart—either the action is performed at a point subsequent to a success-
ful login, or it isn’t. If it isn’t, it may not matter; we can allow people to browse the
catalogue without logging in. But it may matter a lot (for instance, if the person is
trying to purchase something).

 In order for the application to track a session, two things have to happen:

Listing 16.9 The customer/_signup.rhtml partial template

Listing 16.10 The customer/_login.rhtml partial template

440 CHAPTER 16

Enhancing the controllers and views
■ When someone logs in, the fact that a login has occurred must be preserved
across multiple requests, along with the identity of the customer (who has
logged in, not just that someone has logged in).

■ When a request for a controller action—any action—comes in, the applica-
tion should determine two things:

● Is someone logged in? and

● Does it matter?

The first point can be handled easily thanks to the built-in Rails session hash, avail-
able via the special session method. (You can also get at the same information
through the @session instance variable, but calling the session method is the pre-
ferred technique.) The session hash is maintained across actions (usually as a file
in /tmp, although there are other ways to persist it). If you put data in the session
hash during one action—say, the action customer/login—then other actions can
pull that data out of the hash.

 Here’s a half-code, half-descriptive (via comments) version of the login action.
This action is the target action of the login form, so when it’s called, the CGI param-
eters are set according to what was entered in that form (nick and password):

class CustomerController < ApplicationController
 # other code here, then:
 def login
 # Examine the form data for "nick" and "password".
 # Retrieve the customer record for the nick, and store
 # it in the variable 'c'.
 # If such a record exists, and its password matches the
 # password from the form, then do this:
 session['customer'] = c.id
 redirect_to :controller => "main", :action => "welcome"
 # Otherwise, report an error.
 end
 # etc.
end

The key point is the saving of the customer’s ID number (upon authentication of
the password) in the session hash. Once that happens, the ID can be retrieved at
any point by any action.

 Meanwhile, the need to determine whether someone is logged in, and
whether it matters, means we have to do some gate-keeping: We must be able to
determine before executing an action what state we’re in with regard to the visitor’s
login status and its importance.

Incorporating customer signup and login 441
 The importance depends on the action: We don’t want unauthorized access to
sensitive actions. But even for harmless actions, like viewing the catalogue or the
welcome screen, we still want to know whether a known person is logged in so we
can greet the person by name, not bother displaying the login form, and so forth.
All of this can be accomplished with the help of a “hook” or callback facility
called before_filter.

16.4.3 Gate-keeping the actions with before_filter

The kind of gate-keeping called for here—examining the state of affairs with
regard to the visitor after an action has been requested but before it’s been exe-
cuted—is accomplished with the use of special hooks, particularly a class method
called before_filter. This method is an overseer: You give it, as arguments (in
symbol form), the names of instance methods that you wish to be run before one
or more actions are run.

 Even though some actions aren’t particularly security-sensitive (like viewing
the welcome screen), you always want to know whether someone is logged in, and
you want to know who it is. To accomplish this, you add code to the generic con-
troller file application.rb. This file contains a class definition:

class ApplicationController < ActionController::Base
end

If you look at any other controller file—say, composer_controller.rb—you’ll see
that the controller class in that file inherits from ApplicationController:

class ComposerController < ApplicationController
end

You can put calls to before_filter in any controller file. But if you put them in
application.rb, the filters you set up are called along the way to any action in any
controller file.

 Let’s set up a filter that will always be executed whenever anyone sends in a
request for any controller action at all. Listing 16.11 shows such an arrangement.

class ApplicationController < ActionController::Base
 layout("base")

 before_filter :get_customer

 def get_customer
 if session['customer']
 @c = Customer.find(session['customer'])

Listing 16.11 Filtering all incoming requests with before_filter

B

C

442 CHAPTER 16

Enhancing the controllers and views
 end
 end

end

We’ve now registered the method get_customer as a filter dd. The method, mean-
while dd, sets the instance variable @c to the Customer object drawn from the data-
base record of the customer who’s logged in, thanks to the fact that the login action
saved that record’s ID number to the session hash. If there’s nothing in ses-
sion['customer'], then the method is not assigned to @c, and @c defaults to nil.

 For the lifespan of the current action, throughout the code that defines the
action, and anywhere in the templates, we can test @c—and if it has a value, then
someone is logged in.

 You can now understand why the welcome template has this in it:

<% if @c %>
 <%= render :partial => "favorites" %>
<% else %>
 <h2 class="info">Log in or create an account</h2>
 #
 # display of login and signup forms handled here
 #
<% end %>

If a customer is logged in, then the site acts accordingly by showing that person’s
favorites. If not—the site also acts accordingly, by displaying login and signup
forms. It all depends on whether @c is a customer object or nil, as determined by
the get_customer filter method.

Levels of authentication concern
We now have a setup where we can always answer the question, “Who, if anyone,
is logged in?” That’s useful because we’re now free to do things like put
customer-specific greetings (“Hi, David!”) on the screen—or lists of the cus-
tomer’s favorite composers.

 But those kinds of items are cosmetic. Even visitors who aren’t logged in are
allowed to look at the welcome screen and the catalogues of composers and works.
The real authentication issues involve placing orders. We don’t want casual visitors
adding to shopping carts; we only want that ability for those who are logged in.
(This isn’t a universal rule at all online shopping sites, but it’s the way we’ll do it
here.) We also don’t want one person prying into the shopping cart of another.

B
C

Incorporating customer signup and login 443
 We need a filter that not only tells us whether someone is logged in but also
interrupts the requested action if this is a casual visitor.

 This filter goes in the Customer controller file because all the potentially sensi-
tive operations are in that file. The relevant code looks like this:

before_filter :authorize, :except => ["signup","login"]

def authorize
ddreturn true if @c
ddreport_error("Unauthorized access; password required")
end

This setup causes the authorize method to be executed before any other customer
action is performed (view_cart, check_out, and so on)—except that we specifically
don’t want to check for a logged-in customer if the visitor is trying to log in or sign
up. We exclude those methods by including them in a list of method names asso-
ciated with the :except of the argument hash of the call to before_filter.

 The way authorize works is simple: It checks for the truth of the variable @c.
That variable is nil (and therefore fails the truth test) unless it was set to a cus-
tomer object in the set_customer method in the ApplicationController class.

 And what is report_error? It’s a homemade, generic error-reporting method,
defined as a private instance method of the ApplicationController class (which
means it goes in the application.rb controller file):

class ApplicationController < ActionController::Base

 # prior code here, then:

 private
 def report_error(message)
 @message = message
 render("main/error")
 return false
 end
end

This method sets the @message instance variable to whatever the error message is
and then renders a simple template residing in app/views/main/error.rhtml:

<% @page_title = "Error" %>
<%= @message %>

report_error returns false, which means that if a call to report_error is the last
thing executed inside another method, such as authorize, then that method, too,
will return false.

444 CHAPTER 16

Enhancing the controllers and views
 Now that people can log in, we need to back-and-fill by making it possible for
them to sign up for accounts. We’ll do that next.

16.4.4 Implementing a signing-up facility

Like logging in, signing up for an account is handled by a form on the welcome
screen. You need to type your name, a nick (the username you want to log in
with), your email address, and a password. When you submit the form, you trigger
the signup action in the customer controller; this action creates a new user record
based on the data you’ve entered:

def signup
ddc = Customer.new(params[:customer])
ddc.password = Digest::SHA1.hexdigest(c.password)
ddc.save
ddsession['customer'] = c.id
ddredirect_to :controller => "main", :action => "welcome"
end

This method doesn’t perform any checks for the validity of the incoming data or
for duplicate user entries (as measured by either nick or email address). There
are a couple of ways to introduce these validity checks. ActiveRecord has a set of
facilities for validating data (ActiveRecord::Validations) which involve defining
data checks in your model files. When you try to save a new or modified record,
the save fails if any of these tests fails.

 Another way to perform validation in the case of incoming form data is to exam-
ine the data before you assign it to the fields of an ActiveRecord object. That’s what
we’ll do here—using, as before, the before_filter technique. We’ll create a filter
called new_customer and run it as a filter only before the signup action:

before_filter :new_customer, :only => ["signup"]

def new_customer
ddapplicant = params[:customer]
ddif Customer.find_by_nick(applicant['nick'])
ddddreport_error("Nick already in use. Please choose another.")
ddelsif Customer.find_by_email(applicant['email'])
ddddreport_error("Account already exists for that email address")
ddend
end

The assignment to applicant dd is a hash based on the naming scheme of the
input fields in the form. (We’ll see the form close up shortly.) To find out whether
a customer already exists with either the nick or the email address submitted on
the form, we use ActiveRecord’s convenient automatic find_by_fieldname dd

B
C

B

C

Incorporating customer signup and login 445
method, which finds a matching record by whatever fieldname you choose (in this
case, nick and email). In the event that either is found, we treat it as an error.

 Next, we’ll add the final link in the customer session chain: the process of log-
ging out.

16.4.5 Scripting customer logout

Logging out involves setting session['customer'] to nil. When the next action, if
any, is requested, filter method set_customer won’t find a customer for the ses-
sion, and the variable @c will be nil—as it was before the login. That’s all there is
to it.

 It would be nice to have a Logout button on the screen all the time during a
logged-in session. We can do this by adding it to app/views/layout/base.rhtml. Let’s
add a navigation bar at the top of the page, making sure the bar includes a logout
option only if someone is already logged in. Here’s the relevant part of base.rhtml:

<body>
<table>
 <tr>
 <td><%= link_to "Home",
 :controller => "main",
 :action => "welcome" %></td>
 <% if @c %>
 <td><%= link_to "View cart",
 :controller => "customer",
 :action => "view_cart" %></td>
 <td><%= link_to "Log out",
 :controller => "customer",
 :action => "logout" %></td>
 <% end %>
 </tr>
</table>

Notice the <% if @c %> conditional clause dd. The conditional ensures that the
View Cart and Log Out options are displayed only if @c is true, which is the case
only if someone is already logged in.

 We now have signup, login, and logout in place. But as the innocent phrase
“View cart” reminds us, we’ve still haven’t implemented the business end of the
customer controller: We must enable customers to place and complete orders.
We’ll do that next.

B

B

446 CHAPTER 16

Enhancing the controllers and views
16.5 Processing customer orders

Logging in is a good first step; but while a customer is logged in, we need to give
that customer the ability to

■ Add an item to his or her shopping cart

■ View the shopping cart

■ Complete the order(s)

This can be accomplished easily with a bit of judicious controller and template
programming.

 What’s notable about the shopping cart, as we’re treating it here, is that it isn’t
a real object. There’s no ShoppingCart class, no shopping_cart_controller.rb
file, and so forth. The shopping cart is essentially a view.

 The shopping cart view is the focal point of the ordering process. Every aspect
of shopping leads up to the view (browsing and choosing items to buy) or tails
away from it (completing orders). Because it sits in the middle of the process, logi-
cally speaking, we’ll start by looking at the view and then flesh out the “how we get
there” and “where we go from there” phases.

16.5.1 The view_cart action and template

Let’s start by adding an action—an instance method—to the customer controller
file, apps/controllers/customer_controller.rb:

def view_cart
end

(You don’t have to write empty actions in controller files; if there’s a view, it will be
rendered when the same-named action is called. But the empty action is useful as
a visual marker.)

 As to the view: Let’s start with a master template, view_cart.rhtml, which will
mainly serve the purpose of calling up a partial containing the real business of the
cart. Here’s view_cart.rhtml:

<% @page_title = "Shopping cart for #{@c.nick}" %>

<%= render :partial => "cart" %>

(Remember that the instance variable @c has been set to the logged-in customer.)
 The bulk of the shopping-cart view goes inside the partial template

_cart.rhtml, which is shown in listing 16.12.

Processing customer orders 447
<table border="1">
 <tr>
 <th>Title</th>
 <th>Composer</th>
 <th>Publisher</th>
 <th>Price</th>
 <th>Copies</th>
 <th>Subtotal</th>
 </tr>

<% @c.editions_on_order.each do |edition| %>
 <% count = @c.copies_of(edition) %>
 <tr>
 <td><%= link_to_edition_title(edition) %></td>
 <td>
 <% edition.composers.each do |composer| %>
 <%= link_to_composer(composer) %>
 <% end %></td>
 <td><%= edition.publisher.name %></td>
 <td class="price"><%= two_dec(edition.price) %>
 <td class="count"><%= count %></td>
 <td class="price"><%= two_dec(edition.price * count) %></td>
 </tr>
<% end %>
 <tr><td colspan="5">TOTAL</td>
 <td class="price"><%= two_dec(@c.balance) %></td>
 </tr>
</table>
<p><%= link_to("Complete purchases",
 :controller => "customer",
 :action => "check_out") %></p>

This partial is relatively long, but its logic is straightforward. It consists of one table
and one link. The link, at the end, is to the check_out action dd. The table consists
of headers plus one row for each edition that the customer has on order dd. The
table contains various pieces of information: title dd, composer dd, publisher dd,
price dd, and copy count dd. The subtotal for each edition is shown, as is the cus-
tomer’s total balance dd.

 Thus the cart. Now, as promised, we’ll examine the “how we got there” side of
things: the process by which the customer selects an edition for inclusion in the cart.

Listing 16.12 The customer/_cart.rhtml partial template

B

C

D

E
F

G

H

I

B
C D E

F G
H

I

448 CHAPTER 16

Enhancing the controllers and views
16.5.2 Viewing and buying an edition

Customers will add editions to their carts. The logical thing to do is to modify the
show template for editions so it includes a link to an action that adds the edition
to the cart of the logged-in customer.

 That’s easily done. While we’re at it, let’s do a makeover of the edition show
template generally. We’ll break it into a master template and a partial. The master
template, still called show.rhtml, looks like this:

<% @page_title = @edition.nice_title %>
<h2 class="info"><%= @page_title %></h2>
<%= render :partial => "details" %>

The partial, _details.rhtml, is shown in listing 16.13.

 Edition: <%= @edition.description %>
 Publisher: <%= @edition.publisher.name %>
 Year: <%= @edition.year %>
 Price: <%= two_dec(@edition.price) %>
<% if @c %>
 <%= link_to "Add to cart",
 :controller => "customer",
 :action => "add_to_cart",
 :id => @edition.id %>
<% end %>

<h3>Contents:</h3>

<% @edition.works.each do |work| %>
 <%= link_to_work(work) %>
 (<%= link_to_composer(work.composer) %>)

<% end %>

Note that the _details.rhtml partial includes a section with the heading Con-
tents dd. Because editions in the new version of the application can contain mul-
tiple works, it behooves us to display them all on the edition’s show view.

 Also, there’s now a link dd—included only if @c is set—that allows the logged-
in customer to add the edition to his or her cart. That implies the existence of an
add_to_cart method, which we haven’t written yet but now will.

Listing 16.13 The editions/_details.rhtml partial template

B

C

C

B

Processing customer orders 449
16.5.3 Defining the add_to_cart action

We move next back to the customer controller file, where we need to add a new
action: add_to_cart. This action’s job is to create a new Order object, connecting
this customer with this edition. After it does this, we ask it to display the cart.

 The add_to_cart method looks like this:

def add_to_cart
dde = Edition.find(params[:id])
ddorder = Order.create(:customer => @c,
ddddddddddddddddddddddd:edition => e)
ddif order
ddddredirect_to :action => "view_cart"
ddelse
ddddreport_error("Trouble with saving order")
ddend
end

The method finds the Edition object corresponding to the CGI ID field and cre-
ates a new Order object linking that edition with the current customer. On suc-
cess, it shows the cart with the new order included. On failure, it reports an error.

 Customers can now put items in their carts and see what they’ve put there. To
complete the cycle, we have to allow the customer to go ahead and purchase
what’s in the cart.

16.5.4 Completing the order(s)

We’re only going to do a placeholder version of the purchasing process here; a
real-world version would have to deal with payment, notification of the customer,
and so forth. We’ll print an acknowledgment to the screen on success, and do a
couple of things behind the scenes to indicate that the orders in the cart have
been completed.

 The shopping cart partial template includes a link to a check_out action:

<p><%= link_to("Complete purchases",
 :controller => "customer",
 :action => "check_out") %></p>

We do, however, have to write the action—once again, as an instance method in
the customer controller file. This method tells the current customer object to
check itself out:

def check_out
dd@c.check_out
end

450 CHAPTER 16

Enhancing the controllers and views
Here’s where having written a check_out instance method in the customer model
file (see section 15.3.3) pays off. All we have to do in the controller action is call
that method.

 We now need a view that acknowledges that the customer has checked out.
(Again, we aren’t doing everything we’d do if this were a full-featured application;
we’re just printing a message.) That view, check_out.rhtml, looks like this:

<% @page_title = "Orders complete" %>
<h2>Thanks for your order, <%= @c.first_name %>!</h2>

We now have customers who can log in, browse the catalog, put items in their
shopping carts, and complete their purchases (in a placeholder kind of way—but
still). We’ve made the necessary enhancements along the way to the templates
and partials involved in the customer scenarios, and we’ve added the necessary
actions to the customer controller class.

 That brings us near the end of the development of the music store application.
We’ll make one more enhancement, though. In chapter 15, we wrote methods
that give rankings of composers and instruments based on the customer’s pur-
chase history. Here, we’ll take that process to the next step by putting a list of the
customer’s favorites on the welcome screen.

16.6 Personalizing the page via dynamic code

This is the last section where we’ll add a new feature to the music store applica-
tion. It will take us back to the model-coding phase, but we’ll tie it into the con-
troller/view phase through the creation of more partials.

 The goal is to personalize the welcome page by displaying a list of favorite com-
posers and instruments based on the logged-in user’s ordering history. Some-
where on the page, we’ll put something that says, “Your favorites!” and a list of
favorite (most often ordered) composers and instruments.

 This section is a bit of a cheat: It asks you to add a method to the customer
model file, customer.rb, as well as writing template code that uses that method.
The writing of that method properly belongs in chapter 15. But as this is the last
of our enhancements to the application, it seems fitting to pull its various compo-
nents together in one place.

16.6.1 From rankings to favorites

We’ve already written methods that rank composers and instruments according to
how many works by/for each the customer has ordered. Rankings come back as

Personalizing the page via dynamic code 451
an array of Composer objects or Instrument objects, with the ones the customer has
ordered the most of first. When a tie occurs—for example, if the customer has
ordered equal number of works for violin and works for flute—the one ordered
most recently comes first, thanks to the fact that the underlying lists from which
all this information is generated are lists of customer orders, and customer orders
are maintained in chronological order. (See section 15.3.3 to review the details of
the rankings code.)

 The rankings arrays serve as the input to the methods that determine the
favorites. They do most of the work for us. All we really have to do is examine a
rankings array and take as many items from it as we want to display.

 Except... we’ll take on a coding challenge.
 Instead of separate favorites methods for each of these things—a
favorite_composers method and a favorite_instruments method—let’s write a
generic favorites method that returns either composers or instruments, depending
on the argument it’s called with.

 So, for example, if we say

@c.favorites :composer

we’ll expect the return value to be an array of Composer objects. And

@c.favorites :instruments

likewise, for Instrument objects.
 The key is that (not by accident) the two rankings methods we wrote in

chapter 15 have similar method names and work similarly. Consider a favorites
method that works something like this:

def favorites(thing)
 method_name = "#{thing}_rankings"
 rankings = self.send(method_name)
 # etc.
end

The strategy is to construct the correct rankings-method name dd (which may be
composer_rankings or instrument_rankings or something else if we ever add
another rankings method) and then call that method by sending the method
name to self dd. The favorites method determines the name of the correct
rankings method dynamically, based on the argument that was passed in. As long
as you name such methods with the convention rankings_thing, and as long as
every rankings method returns a hash of IDs and their rankings, this favorites
method (once it’s completely written) will work for any and all of them.

 B

 c

C

B

452 CHAPTER 16

Enhancing the controllers and views
Limiting the number of favorites listed
What about specifying how long you want the list of favorites to be? That’s easy:
just add another argument, a count argument, to favorites. But let’s do it the
Rails way: Let’s have the method accept a hash of options and parse the count
option out of that hash:

def favorites(thing,options)
 count = options[:count]
 method_name = "#{thing}_rankings"
 rankings = self.send(method_name)
 return rankings[0,count].compact
end

The value plucked out of the options hash dd serves to limit the number of ele-
ments returned from the whole rankings array dd. If the requested number is
greater than the size of the rankings array, the result is padded with nils; but the
compact operation removes them.

 We now have a generalized way to get a customer’s favorite things (composers,
instruments). Let’s go back and trace how the favorites mechanism figures in the
application.

16.6.2 The favorites feature in action

In principle, the favorites list works the same way as the other lists on the welcome
page (composer, instruments, and periods). The idea is to pepper the welcome
screen with as many browsing opportunities as possible; showing a visitor’s favor-
ites is just another way to do this. The details of how the favorites list works are a
little different from the other three (including the fact that it isn’t shown if no
one is logged in). But it’s largely a variation on the same theme.

 As you saw back in listing 16.7, the template for the main welcome view
includes a reference to a favorites partial:

<% if @c %>
 <%= render :partial => "favorites" %>
<% else %>
 # etc.

The favorites partial, in the file app/views/main/_favorites.rhtml, is where the
call to the favorites method goes. That partial is shown in listing 16.14.

B

C

B
C

Personalizing the page via dynamic code 453
 <h2 class="info">Your favorites</h2>

 <% fav_composers = @c.favorites :composer,
 :count => 3 %>
 <% fav_instruments = @c.favorites :instrument,
 :count => 3 %>

 <% fav_composers.each do |composer| %>
 <%= link_to_composer(composer) %>
 <% end %>
 <% fav_instruments.each do |instrument| %>
 <%= link_to_instrument(instrument) %>
 <% end %>

The favorites partial uses the :count parameter of the favorites method to
request a display of up to three favorite composers and up to three favorite instru-
ments. It stores these in local variables and then iterates through them, calling the
appropriate link_to-style helper method on each. The result is a set of links: one
to each of the customer’s three favorite composers and three favorite instruments.

 The local variables aren’t strictly necessary; you could iterate directly through
the array returned by the call to favorites, like this

<% (@c.favorites :composer,
ddddddddddddddddd:count => 3).each do |composer| %>

and so forth. (The variables provide nice visual encapsulation, though.) You
could also extract the customer’s favorites in the controller, rather than in the
view, and pass them to the view in instance variables. Indeed, if more extensive
model-querying were involved, it would belong in the controller; but since har-
vesting the favorites is just a matter of a couple of method calls on a customer
object that the controller has already made available (in the instance variable
@c), it’s reasonable for the queries to take place inside the template code.

 This gives us the favorites list on the welcome screen and brings us to the end
of the development of the music store application. At this point, you should play
with the application, add records to the database, run the application console and
make changes, move things around in the views, write new controller and model
methods, and generally use the music store as a practice and learning tool in any
way you wish. That’s what it’s for.

Listing 16.14 The main/_favorites.rhtml partial template

454 CHAPTER 16

Enhancing the controllers and views
16.7 Summary

This chapter, a companion piece to chapter 15, has taken you through the con-
troller and view phases of the redesign and enhancement of the music store appli-
cation (plus a brief foray back into the model phase, in the last section). You’ve
seen some of the tools that Rails gives you to help you with both organizing and
customizing your templates—in the form of partials and helper files—and used
those tools to keep the template code readable and manageable as the application
has grown. As a final enhancement, we updated the customer model file to
include a mechanism for determining favorites and added template code to the
main welcome view to display those favorites for the logged-in customer.

 If you’re left with the sense that, as of this chapter, it’s become difficult to tell
where Rails programming ends and Ruby programming begins, then the chapter
has succeeded. That’s the goal—to be able to bring Ruby skills to bear seamlessly on
Rails tasks. Whether it’s writing an action, or a method in a helper file, or a highly
specialized suite of methods like the rankings and favorites facility in the music
store application, the ideal situation is one in which you have a large number of
programming techniques at your command and you use whichever ones help you
get your application to do what you want it to do.

 That, in a nutshell, is Ruby for Rails.
 There’s only one more area to explore: the process of becoming acquainted

with the Rails source code. Chapter 17 will give you a guided tour of the basics of
this process.

Techniques for exploring
the Rails source code
In this chapter
■ Panning for information
■ Shadowing Ruby
■ Consulting the documentation
455

456 CHAPTER 17

Techniques for exploring the Rails source code
Exploring the Rails source code is both part of the payoff for strengthening your
Ruby skills, and a great way to strengthen those skills further. The more you know
about how Rails does what it does, the more deeply you can understand what your
application does. Furthermore, gaining familiarity with the Rails source code
opens the door to participation in discussions about Rails at a level that would
otherwise be closed to you. Conceivably, it could even enable you to file intelli-
gent bug reports and submit source-code bug fixes and enhancements. Not every
Rails developer needs to, or wants to, participate in Rails culture at this level; but
if you do want to, you need to know something about the source code and how to
navigate it.

 In this chapter, you’ll learn three techniques for exploring the Rails source
code: panning for info, shadowing Ruby, and consulting the documentation. You
might think that the third of these techniques renders the first two unnecessary
and/or undesirable. It doesn’t. Rails has great documentation, and thanks to
RDoc it’s easy to browse and read. But reading the documentation isn’t the same
as exploring the source code; and the aspects of exploring the source code that
are unique to that process are worthwhile and educational.

17.1 Exploratory technique 1: panning for info

The first exploratory technique we’ll look at is the closest among the three to an
informal, ad hoc technique. Nevertheless, it’s extremely useful (and common),
and instructive in the matter of the structure and layout of the source code.

 The idea of panning for info is to go directly to the source code tree and look
around.

 If this sounds like a haphazard technique for studying the Rails source, try it
for a while; you’ll see that the layout and organization of the code imposes a cer-
tain order on your hunting. Panning for information in the source is a bit hack-
erly, but it’s not random or undirected.

 Furthermore, digging around in the Rails libraries can lead to interesting side
discoveries. Looking for a specific method or class definition and, upon finding it,
pulling the whole file up in a text editor is like fetching a book from a shelf on a
library: There’s always a possibility that something else of interest nearby will
catch your eye.

 And just as walking through a library without having a particular book in mind
can be rewarding, so too can you learn a lot through unstructured, free-floating
exploration of the Rails source code. But we’ll be more structured: As a sustained
case study in the info-panning technique, we’ll use the ActiveRecord association

Exploratory technique 1: panning for info 457
method belongs_to. The goal is to find the method definition and see what
makes the method tick.

17.1.1 Sample info panning: belongs_to

The first step in panning the Rails source for info is to put yourself inside the
appropriate subtree within the source code. In the case of belongs_to, that means
the ActiveRecord library—because belongs_to is a class method of
ActiveRecord::Base. The first step in the search is

$ cd /usr/local/lib/gems/1.8/gems/activerecord-1.9.1

Note that the version number of ActiveRecord may be different on your system.
So may some of the details of what’s there. But the principles of searching, and
many of the specifics of the contents, won’t have changed.

 You’re now looking at a directory containing the following entries:

CHANGELOG examples install.rb lib rakefile
README RUNNING_UNIT_TESTS test

When you’re panning for particular bits of source code in any of the Rails source-
code areas, your best bet is the lib subdirectory:

$ cd lib

In the lib directory are two entries, one a directory and the other a Ruby pro-
gram file:

active_record active_record.rb

The file active_record.rb, sitting at the top of the source-code tree for
ActiveRecord, consists chiefly of a sequence of require statements. It’s the key
that Rails turns to start the ActiveRecord subsystem, which is responsible for every-
thing connected with your application’s communication with the database.

 To see the bulk of the ActiveRecord library code, you need to go down one
more directory level:

$ cd active_record

Here you’ll see a number of further Ruby program files as well as several subdirec-
tories that contain the code for the larger subsystems of ActiveRecord—the asso-
ciations subsystem being one of the largest. The Rails source code that governs
the rules of associations occupies the file associations.rb and all the files inside
the associations subdirectory.

 At this point you can assume you’re in territory where one or more files might
contain what you’re looking for: the file in which the belongs_to class method is

458 CHAPTER 17

Techniques for exploring the Rails source code
defined. Because we’re taking the panning-for-info approach, we’ll reach now for
the most important tool of that trade: grep. This command

$ grep -n "belongs_to" associations.rb

shows you every occurrence of the term belongs_to in that file, together with its line
number. Clearly you don’t need all of them. Because you’re looking for the defini-
tion of belongs_to, you can grep more narrowly:

$ grep "def belongs_to" associations.rb

That takes you directly to line 354, where the definition of belongs_to begins.
(We’re going to hold off on examining the method itself until we’ve covered all
the techniques for tracking through the source code.)

TIP INSTANT grep If you don’t have the grep utility, you can adapt the
rough-and-ready grep replacement tool written in Ruby in section 6.3.2.

17.2 Exploratory technique 2: shadowing Ruby

The second technique for following the trail of Rails into its own source code is to
shadow Ruby—to follow which program files are loaded and executed, in what
order, up to and including whatever file contains the code you’re trying to pin
down. This technique can be a good exercise in and of itself; it’s a useful way to
strengthen your familiarity with the combined Ruby/Rails landscape. It can also
give you a detailed understanding of mechanisms that may not be organized the
way you’d expect. We’ll see a concrete example of this somewhat mysterious pro-
nouncement when we return to belongs_to later in this section.

 You have to use some judgment, and make some judgments, when you shadow
Ruby through the source code. You have to choose a reasonable starting point
and make sensible choices at forks in the road, where the source code files you’re
consulting don’t unambiguously pinpoint the sequence of execution without an
educated guess from you. We’ll expand on both of these judgment-call areas next;
after that, we’ll return to the belongs_to case study.

17.2.1 Choosing a starting point

When a request comes in to a Rails application from a Web server, certain things
always happen. When you’re trying to follow Ruby’s footsteps through the execution
process, it’s reasonable to stride pretty quickly, if at all, through the preliminaries.

 Here’s a summary of some steps you can take for granted without digging
through every file involved:

Exploratory technique 2: shadowing Ruby 459
■ The dispatcher (dispatch.fcgi, dispatch.cgi, or dispatch.rb) loads the
file config/environment.rb.

■ environment.rb loads the bulk of the Rails framework: active_record,
active_controller, and so on.

■ dispatcher.rb, which is located in the rails source tree, works with the
routing (URL rewriting) facilities of ActionController to route the incoming
request to the appropriate controller and action.

■ dependencies.rb from the ActiveSupport library defines methods that sup-
port loading of model definition files (such as edition.rb) that match con-
troller definition file names (such as edition_controller.rb) and other
such automated facilities.

It’s safe to assume, as a starting point, that all necessary model files are loaded
courtesy of detective work on the part of Rails. In shadowing Ruby through a Rails
call into the source code, we’ll therefore start with the model file.

17.2.2 Choose among forks in the road intelligently

In numerous places in the Rails source code, master, umbrella files load in a lot of
subsidiary, related files. active_record.rb is an example of such a file: It consists
almost entirely of require and include statements.

 You can’t follow Ruby down every possible path and subpath when you come to
a file like this. You have to make a calculation of which path or paths you need to
take to get where you’re going. For example, if you’re interested in understand-
ing where belongs_to fits in, the main lines in active_record.rb that will interest
you are the following:

require 'active_record/associations'

and

ActiveRecord::Base.class_eval do
 # ...
 include ActiveRecord::Associations
 # ...
end

You know that belongs_to is an association. It’s reasonable, then, to focus your
attention on those require and include directives in active_record.rb whose tar-
gets appear to be associations-related . You don’t have to look at every line of every
required file; you’re not a human grep utility. And unless there’s a surprising
glitch in the way the Rails source code is put together, the requires and includes
that shout “Relevant!” to you when you read them probably are.

460 CHAPTER 17

Techniques for exploring the Rails source code
 Speaking of belongs_to, let’s use that method again as our case study to dem-
onstrate the process of shadowing Ruby into the Rails source code.

NOTE ACTIVESUPPORT AND NAME-BASED INFERENCE MAGIC One area we won’t
go into here, but which you’re encouraged to explore on your own, is
ActiveSupport, a separate library of routines and facilities used by the other
Rails libraries. ActiveSupport contains many of the routines that help
those other libraries make leaps of logic involving names: If a controller
field in an incoming request contains the word edition, then the corre-
sponding controller file is app/controllers/edition_controller.rb,
the corresponding model file is app/models/edition.rb, and so forth.
This automatic, inference-based gluing of different parts of the Rails
framework together means that triggering execution of a controller file
can automatically trigger the loading of the correct model files; and,
down the road, the correct view templates can be pinpointed automati-
cally based on the naming conventions.

17.2.3 On the trail of belongs_to

Our starting point for tracking belongs_to by shadowing Ruby is the edition
model file, edition.rb:

class Edition < ActiveRecord::Base
 has_and_belongs_to_many :works
 has_many :orders
 belongs_to :publisher

 # etc.
end

We know that this is a class method of ActiveRecord::Base. At least, we know that
ActiveRecord::Base responds to it; we don’t know yet whether it’s defined in the
class definition body of ActiveRecord::Base or perhaps defined in a module and
pulled into the class later—or, possibly, in a superclass of ActiveRecord::Base.

 Back we go to

$ cd /usr/local/lib/ruby/gems/1.8/gems/activerecord-1.9.1/lib

This directory contains a subdirectory called active_record and a file called
active_record.rb. This time, we’ll look directly in active_record.rb, which we
know is loaded by environment.rb when the application starts up.

 active_record.rb shows the first mention of associations, in this line, about
halfway through the file:

require 'active_record/associations'

Exploratory technique 2: shadowing Ruby 461
As discussed in section 17.2.2, it’s reasonable to make an educated guess that of
the several require directives in active_record.rb, the one that mentions associa-
tions is the one we want to track. This require sends Ruby on a search for an
associations.rb file (or .so or .dll—but in Rails everything is in .rb files). We’ll
follow along.

 The first place to be searched is the directory we’re in, the lib. subdirectory of
the ActiveRecord installation. Starting the search in the current directory actually
isn’t default Ruby behavior. But at the top of active_record.rb is this line:

$:.unshift(File.dirname(__FILE__))

This line adds the directory containing active_record.rb to the loadpath of
require. It does this in the following way:

■ The variable $: holds the loadpath, which determines the search order
used by require.

■ __FILE__ is a special Ruby variable that holds the name of the current file:
active_record.rb.

■ File.dirname returns the directory part of the full path- and filename of the
file—in this case, /usr/local/lib/ruby/gems/1.8/gems/activerecord-

1.9.1/lib or equivalent.

■ The unshift operation adds that directory to the front of the load path.

NOTE THE POSITION OF THE CURRENT DIRECTORY IN THE RUBY LOADPATH
By default, the Ruby loadpath includes the current directory, indicated
by the single dot (.) at the end of the list of load directories. (You can see
them all if you do ruby -e 'p $:'.) Also by default, the current directory
is whatever directory was current when the program started executing; so
if you’re in directory zero and give the command ruby one/two/
prog.rb, prog.rb will consider zero (not two) to be its runtime current
directory. This means that even if two files are in the same directory, you
can’t necessarily just require one from the other without either modify-
ing the loadpath ($:) or using a full pathname in the require statement.
The upshot of all this is that Rails does a fair amount of directory and
loadpath manipulation, so that the files that need to see each other can
indeed see each other.

require now looks in activerecord-1.9.1/lib first. When it does, it sees, sure
enough, a directory called active_record. In that directory, it sees the file associ-
ations.rb; and that’s the file it loads.

 associations.rb contains the definition of belongs_to (on line 354 in
ActiveRecord 1.9.1). We’ve succeeded in tracking it down.

462 CHAPTER 17

Techniques for exploring the Rails source code
 But look at where it’s defined. Stripping the module and class nesting down to
a shell, it’s defined in this context:

module ActiveRecord
 module Associations
 module ClassMethods
 def belongs_to(association_id, options = {})
 # etc.

In other words, it’s an instance method defined in a module called
ActiveRecord::Associations::ClassMethods. But in the model file, we use it as a
class method of ActiveRecord::Base. How does this come about?

 To unravel this question, we need to go back up one directory level and into
active_record.rb. Here, a number of lines are wrapped in a class_eval state-
ment. The relevant one (plus the class_eval) looks like this:

ActiveRecord::Base.class_eval do
 include ActiveRecord::Associations
end

What’s going on here? The ActiveRecord::Base class is mixing in ActiveRecord
::Associations. That means instance methods defined in ActiveRecord::Associa-
tions become callable by instances of ActiveRecord::Base—and of its subclasses.

 That still doesn’t explain how ActiveRecord::Base ends up with a class method
called belongs_to. Something else must be happening when associations.rb is
loaded and ActiveRecord::Associations is mixed in.

 Something happening when a module gets mixed in… . That sounds a lot like a hook
or callback. Recall that any module has the ability to define a method called
included, which is called with the class or module that’s doing the including as
the single argument whenever the module gets included. You need to know only
one further thing at this point: Module#included used to be called Mod-

ule#append_features and can still (as of Ruby 1.8.4) be used with that name
(although included is preferred).

 Now, if we look again inside associations.rb, we can spot this:

module ActiveRecord
 module Associations
 def self.append_features(base)
 super
 base.extend(ClassMethods)
 end

The code ensures that whenever a class or module includes the module
ActiveRecord::Associations, that class or module is extended with the module
ActiveRecord::ClassMethods.

Exploratory technique 2: shadowing Ruby 463
 If you find this convoluted, don’t feel discouraged. It is—but it’s convoluted
for the sake of clean organization. Instead of writing belongs_to and the other
association methods directly as class methods of ActiveRecord::Base, Rails puts
them in a module that clearly labels them with the role they’re going to play:
ActiveRecord::Associations::ClassMethods. Then, ActiveRecord::Base is ex-
tended with that module, at which point things proceed as if that module’s
instance methods were class methods of ActiveRecord::Base the whole time. The
best of both worlds is preserved: The code remains organized and labeled with
meaningful class and module names, while the programmer can do things like:

class Edition < ActiveRecord::Base
 belongs_to :publisher
 # etc.
end

without having to worry about how ActiveRecord::Base ended up having a
method called belongs_to.

 You may find it helpful and enlightening to see a transliteration of belongs_to
into simple terms. As you’ll see, there’s nothing here that isn’t among the Ruby
techniques you’ve learned already.

17.2.4 A transliteration of belongs_to

The real context of belongs_to features a lot of long names and is spread out over
multiple files. But it all boils down to what’s shown in listing 17.1.

module A
 module M
 module ClassMethods
 def a_sort_of_class_method
 puts "Instance method of ClassMethods module"
 puts "So this can be made to act like a class method"
 puts "(if a Class object calls it directly)"
 end
 end

 def self.included(c)
 c.extend(ClassMethods)
 end

 end

 class B
 include M
 end

Listing 17.1 A transliteration of belongs_to into simpler terms

B
C

D

E

F

464 CHAPTER 17

Techniques for exploring the Rails source code
end

class C < A::B
 a_sort_of_class_method
end

Module A B plays the role of ActiveRecord. Module A::M C is the equivalent of
ActiveRecord::Associations. Like ActiveRecord::Associations, M contains a
nested module called ClassMethods (whose name is preserved here to pinpoint
the main action). Class A::B F plays the role of ActiveRecord::Base.

 The method A::M::ClassMethods#a_sort_of_class_method D is the equiva-
lent of belongs_to: It’s defined as an instance method several levels deep that gets
attached directly to a Class object—in this case, the object A::B—courtesy of the
callback mechanism of Module#included E (or append_features, in the case of
the Rails code).

 This transliteration shows you the essence of the mechanism whereby an
instance method of a module ends up serving, from the programmer’s perspec-
tive, as a separate class’s class method. This brings us full circle to the mysterious
claim at the beginning of section 17.2: that learning how to shadow Ruby through
the Rails source can help you understand mechanisms that may not be organized
the way you’d expect. From the way it’s used, you might expect belongs_to to be a
normal class method; but it isn’t, and by tracking Ruby’s actions you can both see
that it isn’t and also gain a complete understanding of what it is.

 (As you’ll see in the course of our consideration of the third exploratory tech-
nique—consulting the documentation—the way belongs_to and the other associ-
ation methods are defined results in a documentation anomaly: Even though they
look and feel and act like class methods, they’re instance methods of a module—
and therefore they’re listed as instance methods in the Rails documentation.)

 This brings us to the third and final technique for tracking through the Rails
source code.

17.3 Exploratory technique 3:
consulting the documentation

The third technique for tracking something through the source is to use the doc-
umentation. This will almost certainly be the technique you use most often, unless
you get interested in the source and deeply involved in exploring it. (Part of the
reason for presenting the other two techniques is to suggest to you that a deep
level of exploration is possible.)

Exploratory technique 3: 465
consulting the documentation
 The components of the Rails framework are documented with the Ruby
Documentation (RDoc) system, using RDoc’s simple markup format to generate
browsable documentation from Ruby and C source files. The files that form the
Rails framework are all marked up in RDoc notation.The result is a great deal of
browsable documentation for Rails. To browse it, go to http://api.rubyonrails.org.
Figure 17.1 shows the top-level screen.

Figure 17.1 The top-level screen of api.rubyonrails.org

466 CHAPTER 17

Techniques for exploring the Rails source code
17.3.1 A roadmap of the online Rails API documentation

The layout of the available documentation at api.rubyonrails.org allows for several
types of browsing, depending on what you’re interested in. You can get directly
from the top level of the site to a detailed description of the following:

■ Files in the Rails framework

■ Classes defined in the framework

■ Methods (instance or class) defined anywhere in Rails

The three frames corresponding to these categories appear on the left side of the
screen.

Looking at documentation for a file
If you scroll down the list of the files for which documentation is available, you’ll
see the building blocks of ActiveRecord, ActionPack, and various support libraries
flash before your eyes. If you choose one, you’re shown information about the
file, including:

■ Its full path (which, minus the vendor/rails segment, matches by name a
path somewhere below your installation in which you can find the file)

■ The date it was last modified

■ All the files that this file requires (loads at runtime)

A good example (in the sense that it has a lot of required files) is vendor/rails/
actionpack/lib/action_controller/base.rb. You can see at a glance what needs
to be loaded from this file in order for it to run.

 There’s a limit to how interesting it is, and how useful it’s likely to be, to
browse this kind of meta-information. It’s there, though, if you need it—and if
you do find yourself needing to know how the file-loading will happen, it may be
faster to look here than to plough through the files. But it’s not the most informa-
tive part of the documentation.

 Things get more informative in the class-by-class documentation.

Looking at documentation for a class or module
The second frame from the top, on the left, lists all classes defined in the Rails
framework and lets you click any class to get information about it. This brings you
to the heart of the documentation.

 As an example (and because it contains belongs_to), click the link to
ActiveRecord::Associations::ClassMethods. This brings up, in the right frame, a
page about the class of that name. At the top of this frame is an indication of the

Exploratory technique 3: 467
consulting the documentation
file in which the class is defined. Keep in mind that Ruby classes and modules can
be reopened and their definitions augmented across more than one file. Docu-
mentation for some of the classes and modules lists more than one file as contain-
ing the class or module’s source code. However many there are, you can click
them to get the information screen for each file.

 You’ll also see an indication at the top of this class’s parent class (Object). This
information isn’t included for modules because modules don’t have the same
inheritance relationships as classes.

 Now, the interesting material begins. In general, you’ll see the following in this
frame:

■ Description and usage information for the class or module

■ A combined list of all methods, both instance and class

■ A list of all constants defined for this class or module

■ A list of all classes and modules owned by (nested in) this class or module

■ Detailed descriptions of class methods, alphabetically by method

■ Detailed descriptions of instance methods, alphabetically by method

The latter two categories are further broken down into separate sections for pub-
lic and protected methods. (Private methods aren’t documented.)

 Everything is hyperlinked. You can jump from the combined list of methods to
a particular method’s detailed description. (Note that there may be a class
method and an instance method with the same name. Make sure you’ve jumped
to the correct one.) You can click the name of a nested class or module and be
taken to its descriptive page.

 Most important for the focus of this chapter, you can toggle display of a
method’s source code. Before expanding on this, let’s circle back and take stock
of the third of the three frames on the left side of the screen.

Looking at documentation for a method
The third frame lists the name of every public or protected method defined in the
Rails framework along with the name of the class or module where the method is
defined.

 You can easily find belongs_to in this list. When you click it, you’re taken in
the right frame to the page for ActiveRecord::Associations::ClassMethods
(which you may be on anyway) and down to the description of belongs_to.

 That brings us back to where we were a couple of paragraphs ago—about to
examine the process of looking at the source code through the documentation.

468 CHAPTER 17

Techniques for exploring the Rails source code
 When you’re looking at a method’s detailed description—whether you got there
from clicking its name directly from the Methods list on the left or from navigating
a class or module’s page on the right—you’ll see a Show Source hyperlink. Click it,
and you’ll be looking at the source code for the method together with information
about what file it comes from and file-based line numbers on the left.

 This is definitely the fastest way to zero in on the source code for a method.
The existence of this interface to the source doesn’t mean you’ll never need or
want to look at the source code. For example, if you ever write a patch or bug-fix
for a Rails component, you need to know your way around the source.But the
RDoc system is engineered to give you information, and if that’s what you want,
you’ll find it here.

A small caveat about class vs. instance method documentation
As we’ve seen, Rails uses a roundabout way of defining class methods for a lot of
classes. Instead of the classic class method definition style:

class C
dddef self.meth
dd# etc.

Rails sometimes uses the included hook to hand off a set of class methods
(defined in a module with the name ClassMethods) to a given class.

 If you’re looking for the documentation for, say, the class methods of
ActiveRecord::Association, you’ll find them defined as instance methods of
ActiveRecord::Association::ClassMethods. This is the case with belongs_to—if
you’ve followed the ins and outs of that method’s placement in the code and where
it ends up in the documentation, you’ve seen one of the trickier cases. Just be aware
that there may be a disconnect between the class/instance method distinction in
the way we talk about the code and the way the methods are documented.

 The alphabetical list of all the methods in the framework goes a long way
toward making this documentation anomaly less of a problem than it might other-
wise be. If you can find belongs_to in that list, you don’t have to wrestle with its
pedigree and labeling. Figure 17.2 shows the view you get if you click belongs_to
in the method list, scroll down in the documentation, and click Show Source.

 You’re now in a position to use the online API documentation knowledge-
ably—and to use it, where appropriate for your interests and needs, both as a
source of usage information and as a supplement to your understanding of the
architecture of the Rails framework.

Summary 469
17.4 Summary

This chapter has provided more payoff for the study of Ruby by taking you on a
guided, annotated tour of techniques for exploring and studying the Rails source
code. We’ve used the ActiveRecord association methods, particularly belongs_to,
as a thread to follow as we walked through three techniques: panning for info
with grep and similar tools; shadowing Ruby through the twists and turns of class,
module, and method definitions (and we chose a particularly twisty example; it’s
likely to be easier, rather than harder, as you do more of this kind of thing on your

Figure 17.2 Looking at the belongs_to source on api.rubyonrails.org

470 CHAPTER 17

Techniques for exploring the Rails source code
own); and the less adventurous but extremely convenient approach of consulting
the documentation. In talking about this last technique for getting at the source
code, you saw some of the general usefulness of the online API documentation.

 All of these techniques are useful, even the relatively scrappy, grep-based ones.
And, of course, they don’t exist in isolation. Faced with the need to find and study
something in the source code, you’ll use whatever technique or combination of
techniques seems appropriate. But having seen them broken out and presented
separately will help you think clearly about how to proceed as you explore the
Rails source code further.

appendix:
Ruby and Rails

installation and resources
471

472 APPENDIX

Ruby and Rails installation and resources
This appendix will help you get Ruby and Rails up and running on your system, if
they aren’t already.

 The best possible advice in this area is to go online and get complete, up-to-date
instructions. This appendix, accordingly, includes information about where to go.
You’ll find specific guidelines right here for common-case installation scenarios; but
if you don’t find what you need, have a look at the online resources.

 One way or another, the goal is to install the following:

■ Ruby

■ Rails

■ A Web server

■ A database system

Discussion of Web server and database systems installation and configuration is
beyond the scope of this appendix. You can always use the WEBrick server, which
comes with Ruby; most sites, however, use Apache or lightTPD in production. Rails
works with many database systems, including MySQL, SQLite, and PostgreSQL.
You’ll find more information on the Rails Web site (see the next section).

 Meanwhile, what follows here are some pointers to online resources, followed
by common-case instructions for installing Ruby and Rails on both Windows and
*nix (i.e., Linux, BSD, Solaris, OSX, and other Unix-like systems).

A.1 Online resources for Ruby and Rails

The Ruby language homepage is http://www.ruby-lang.org. You’ll also find the
ruby-docs page (http://www.ruby-doc.org) useful. The Ruby Language FAQ can be
found at http://www.rubygarden.org/faq, and Ruby Garden (the same URL, with-
out /faq) is also a good resource. It includes a Wiki (http://www.rubygarden.org/
ruby) with a lot of information.

 The main English-language general-purpose Ruby mailing list is ruby-talk,
which is also a two-way mirror of the Usenet group comp.lang.ruby (accessible via
Google Groups). Another important mailing list, although somewhat more spe-
cialized, is ruby-core, where Ruby language design and development issues are
discussed. You can find information about subscribing to these lists at http://
www.ruby-lang.org/en/20020104.html.

 A great place to get Ruby advice is the #ruby-lang IRC channel on
irc.freenode.net (or chat.freenode.net). If you ask too many Rails-specific
questions, you’ll be gently steered toward the Rails channel, #rubyonrails.

Common-case instructions 473
for installing Ruby and Rails
 The Rails homepage is http://www.rubyonrails.com. Here you’ll find a portal
to a ton of information. Of particular interest is the Wiki (http://
wiki.rubyonrails.org)—and, for installation information, the installation how-to
page (http://wiki.rubyonrails.org/rails/pages/HowtosInstallation). This page
will probably answer any questions you have about installing Rails.

 You’ll find up-to-date information about mailing lists and other Rails commu-
nity resources at http://www.rubyonrails.org/community.

A.2 Common-case instructions
for installing Ruby and Rails

What follows is some quick, common-case advice about installing Ruby and Rails.
It isn’t a substitute for what’s online, but it covers a few common installation sce-
narios fully enough that it may help you get started.

 The procedures addressed here are these:

1 Installing both Ruby and Rails on Windows

2 Installing Ruby from the source code on *nix systems

3 Installing Ruby with a native package manager on a *nix system

4 Installing the RubyGems package manager

5 Installing Rails with the RubyGems package manager

If you’re running Windows, you may need only step 1 (section A.2.1). If you’re
running a *nix system, you’ll probably do either step 2 or step 3 (sections A.2.2
and A.2.3) followed by both steps 4 and 5 (sections A.2.4 and A.2.5).

 Again, this is not, and does not claim to be, true for every case. If what’s here
doesn’t fit your case, look at the online resources.

A.2.1 One-Click Ruby and Instant Rails for Windows

If you’re running Microsoft Windows, you can use the One-Click Ruby Installer,
by Curt Hibbs. It installs the Ruby language, dozens of popular extensions, a
syntax-highlighting editor, and the free electronic first edition of the book
Programming Ruby: The Pragmatic Programmer’s Guide on your system. You can find
the One-Click Installer at http://rubyforge.org/projects/rubyinstaller. Once
you’ve done that, you can install the RubyGems package manager and Rails (see
sections A.2.4 and A.2.5).

 Or you can do it all in one step using another tool by Curt Hibbs: the Instant
Rails package for Windows (http://instantrails.rubyforge.org/wiki/wiki.pl).
Instant Rails installs Ruby, Rails, the Apache Web server, and MySQL simultaneously.

474 APPENDIX

Ruby and Rails installation and resources
 As of this writing, Instant Rails is Windows-only, but plans are afoot to port it to
Linux, BSD, and OSX.

A.2.2 Installing from the source code on *nix systems

To install Ruby from the source code, you have to get the source code. As of this
writing, the latest stable release of Ruby is 1.8.4. To get this release and compile
and install it, do the following or the equivalent (for example, you can use a dif-
ferent FTP client):

$ ftp ftp.ruby-lang.org
$ cd pub/ruby
$ get ruby-1.8.4.tar.gz
$ quit
$ gzip -dc ruby-1.8.4.tar.gz | tar xf -
$ cd ruby-1.8.4
$./configure
$ make
$ sudo make install

These commands install the interpreter (ruby) to /usr/local/bin and the library
files to /usr/local/lib/ruby/1.8.

A.2.3 Installing Ruby with a package manager

If your operating system or distribution has a native package manager, you may
want to use it to download and install Ruby (rather than installing from source).
Exactly what you need to do depends on your system and its package manager
(rpm, apt, various port utilities, and so on). Use your package manager’s query
facilities to find out what Ruby package or packages are available.

 Some systems and distributions split Ruby into multiple packages, which can
be annoying because it means you can’t be sure you’re getting everything that
comes with the standard distribution (and whether you’re getting things that
don’t). Many users and administrators prefer to install Ruby from the source even
if packages are available.

A.2.4 Installing the RubyGems package manager

The best way to install Rails on a *nix system is with the RubyGems package man-
ager. The first step in the process is to install RubyGems itself.

 The RubyGems project is hosted by RubyForge. The homepage for RubyGems
is http://rubyforge.org/projects/rubygems. Look for the Latest File Releases list,
and download the latest version of RubyGems.

Common-case instructions 475
for installing Ruby and Rails
 You can download it either in tar/gzip format (.tgz file extension) or zip for-
mat (.zip extension). Once you have the file, unpack it using

$ gzip -dc rubygems-0.8.11.tgz | tar xf -

or

$ unzip rubygems-0.8.11.zip

This will create a directory with the same name as the version of RubyGems you’re
installing; in the case shown, the directory will be called rubygems-0.8.11. The
README file in the rubygems-0.8.11 directory includes installation instructions for
the version of RubyGems you’ve downloaded. It also includes pointers to more
detailed information about installing and running RubyGems.

A.2.5 Installing Rails with RubyGems

Once you’ve installed the RubyGems package manager, all you have to do to
install the entire Rails suite (the rails program, ActiveRecord, ActionPack, and
various support libraries) is

$ sudo gem install -y rails

To learn about upgrading to future versions of Rails, see the online documenta-
tion, which is always the most up-to-date source of information.

index
Symbols

#{} (string interpolation
operator) 106

% (modulo method) 236
& prefix to Proc/lambda to use

as code block 356
* (multiplication method)

6, 236
+ (addition method) 6, 236
- (subtraction method) 6, 236
. (dot operator) 6–7, 100
/ (division method) 6, 236
< (comparison method/

operator) 237
<% %> (ERb tag delimiters) 30
<%= %> (ERb interpolative tag

delimiters) 30
<< (append method) 236
<= (comparison method/

operator) 237
== (comparison method/

operator) 237
=== (case equality operator) 237
> (comparison method/

operator) 237
>= (comparison method/

operator) 237
[]= (index setter method) 236

A

ActionController 39–40
See also controllers

ActionPack 39–40

actions, execution sequence 62
ActionView 39–40

form helper methods 74, 136
helper files 80–82
helper methods 35, 136

ActiveRecord 39
(all) vs. find_all 291
automatic creation of instance

methods by 338
collections as 397
conditions argument to

find 291
create (class method) 449
delete_all (class method) 419
find_by_field methods

291, 444
first argument to find

method 291
illustrating receiver-changing

permutations with 241–242
library source code 457
manual 241
methods derived from

database field names 135
models inherit from Base 364
objects as Ruby instances

122, 372
Ruby lessons from collection

handling 289–292
setter(=-terminated) methods

in 133–136
source code files 460
supplies full toolkit for

database record 419
update_attribute method 418
validation facilities 444

ActiveRecord collections
:all modifier of find

method 399, 417
:conditions argument of find

method 399
ActiveSupport library

automatic translation of
action name to filenames
by 460

dependencies.rb 459
named-based inference 460
provides facilities used across

several other
subsystems 460

Apache Web server 58,
60–61, 74

configuration file
examples 61

application domains
actions and views closely

linked 36
choosing publicly available

views of 36
specifying actions within 35

application, connecting to
58–59

arithmetic methods
(operators), summary 6

arithmetic operations 271–272
arrays 279–292

+ method 283
== used to determine dupli-

cates for uniq method 286
[]= method 280
as anchor for more complex

container classes 289
477

478 INDEX
arrays (continued)
as ordered collections

278–279
as resulting form of many col-

lection operations 278
combining with other

arrays 283–285
compared to hashes 278–279
concat method 283
concat vs. + 283
concat vs. push 283
conversion to string with

to_s 242
creating with Array.new 279
difference between push

and 282
each method 224, 286
each vs. map 245
each_with_index method 287
filtering methods 287
find and find_all vs. Boolean

query methods 288
find method 287
find_all method 288
flatten method 285
flattening nested array of

395, 400
getting unique elements 395,

398, 400
grabbing all but last element

of 406
how to add or remove an

object 282
inject method 417
inserting items into 280–283
iterating through with

each 244
joining elements with commas

or comma-space 286
joining into string 406
manipulating beginning and

end of 282
mapping operations 245, 400
most basic Ruby container

methods 289
negative indices count from

right 406
nesting 279, 285
of countries as part of musical

periods 411

pop method 282–283
push method 282
query methods except size

return Boolean 288
replace method 284
resulting from searching

ActiveRecord
collections 400

return values of filtering
methods 287

reverse method 285
reverse! (in-place reverse)

method 286
second argument to Array.new

repeated 280
select method (synonym for

find_all) 288
setting or getting multiple

elements 281
shift method 283
shuffling 365
subclassing 289
supplying a code block to

Array.new 280
transforming 285
uniq method 286
uniq! (in-place uniq)

method 286
unshift method 282
versatility 158
zero-indexed 281
zip method 284

ASCII value, generated by
String#each_byte 307

associations (ActiveRecord) 48
associations.rb (Rails source

file) 457
belongs_to 48
belongs_to as sample source

code 457
configuration-like syntax 73
has_many 48
in source-code tree 457
inter-entity modeling

facility 48
source code files for 461

attr_*methods 136
as self-documenting 138
attr_accessor 138, 148
attr_reader 138–139, 157

attr_writer 138–139
automatic creation of

methods with 138
attributes 136–140

commonness of 137
set of techniques for

creating 136–139

B

bang (!) methods 240–241
among string methods 260
dangerous 240
in built-in classes 240
not the only methods that

change a receiver 260
receiver-changing 240

barewords
as arguments to require 22
how Ruby interprets

significance 119
method calls 7

black box 4, 48
Boolean objects 234, 245–250

as special objects 248
false 106
in relation to Boolean

values 249
vs. Boolean states 245

Boolean values 106–108, 246
every object has one 245
examples of mapping of

expressions to 249
in relation to Boolean

objects 249
vs. Boolean objects 245

breadth-first 4, 68
Builder 53
built-in classes 234

can be opened as easily
as new classes 365

changing or amending 366
circularity of hierarchy 145
literal constructors 235
most instantiated with

new 234
NilClass 249
not instantiable with new 235
syntactic sugar method

naming in 237

INDEX 479
built-in methods
String#to_i 6, 13

built-in modules 155
See also Comparable,

Enumerable
built-in top-level methods 204

C

C extensions 22
written for speed 23

C++ 97
callable objects 351–359

includes Proc objects,
lambdas, and methods 351

callbacks 359–365
ActiveRecord and Rails

technique 365
append_features

(included) 363
automatic extension 360
before_create 78, 83, 89
cascading of

Class#inherited 363
Class#inherited 363–365
examples of events 359
included (class method of

Module) 462
method_missing 360–361
Module#const_missing 365
Module#included 361–363
triggered by events 359

capabilities of an ActiveRecord
model instance

added programmatically 373
automatically created based

on database structure 373
capabilities 372
derived from inheritance 373
inherited 374
semi-automatically created by

association directives 373
capturing submatches with

parentheses 319–320
cargo hold, as example of

stack 161
case equality

=== operator 212
defining

programmatically 213

different for different classes
of objects 213

case statements 80, 211
translated into === calls 212

Celsius-to-Fahrenheit conversion
formula 101

century, calculating from
year 409

CGI library 22
CGI variables, id 52
Class

as instance of itself 145
subclass of Module 155
See also classes

class definitions 122–130, 247
broken up across multiple

files 125
empty 247
reopening 124
reopening, in Rails source

code 174
class methods 140–145

as singleton methods added to
class objects 143

at more abstract level than
instance methods 419

conformity of with regular
method-call syntax 140

criteria for writing 419
File.dirname 461
for searching all existing

records of a class 419
in object-oriented

languages 143
inherited (class method of

Module) 464
origins as module instance

methods in Rails source
code 462

soft model enhancement
with 419–421

vs. instance methods 143–144
when and why to write

141–142
class variables

not actually class-scoped 364
recognizable by @@

prefix 364
scoping rules may change in

future versions of Ruby 364

use of in ActiveRecord source
code 364

visible in class and method
definition bodies 364

classes
ancestors 149
as method 122
as object factories 127
as objects 122, 140–141,

143–144
as specialized modules

155, 175
instantiating 158
nouns for names 159
querying for instance and/or

class methods 253
singleton 338

closures
analogous to packed

suitcase 353
defined 353
Proc objects as 352

code blocks 215
argument syntax differs from

that of method calls 221
converting into Proc object in

method body 356
curly braces as delimiters 215
delimiters 219
do/end delimiters 215
in loops 215
partnership with

methods 223
passing arguments to 220
returning a value from 221
returning values to methods

that yield to them 222
using different ones with same

method 223
why use? 219

collections and containers
arrays and hashes as main

ones in Ruby 278
objects in their own right 278
searching 278
sorting 278, 307–311
ubiquity of in Rails and

elsewhere 278
command-line switches and

flags 16–19
-c (check syntax) 9, 16
combining 19

480 INDEX
command-line switches and flags
(continued)

common 16
-cw (check syntax in warning

mode) 19, 225
-e (execute) 17
-l (line mode) 17
-r (require) 18
-v (verbose) 18
-ve (verbose/execute

script) 19
--version 19
-w (warn) 9, 17

Comparable module 251, 303
comparison of objects 234,

251–253
== 6
== method frequently

redefined 252
Comparable module

and 252–253
determining identity of two

objects with equal? 251
equality tests of instances of

Object 251
family of > <= methods 252
objects born created with

comparison abilities 251
piggybacking on another

class’s method 253
pre-defined return values of

method 253
redefinition of == and eql?

methods in descendants of
Object 251

spaceship method (<=>) as
basis of Comparable
module methods 252

conditionals 84, 207–214
case statement 211–214, 406
conditional modifiers 211
else and elsif 208
empty string 408
fundamental to

programming 207
hypothetical examples of 207
if 6, 107, 111, 208–211
if clause on single line 208
in ERb templates 442
parallel to real-life

decision-making 207

unless 209
unless/else sometimes

awkward 210
usefulness of Boolean objects

for 106
configuration files 74
constants 123, 145–148

actually changeable 123
as class names 123
built-in 146
class/module ambiguity in

notation 175
pre-defined 146
reassigning vs.

modifying 146–148
rules for naming 145–146
used for data storage 145
visibility 145

constructors 122, 293
as distinguishing feature of

class objects 141
creating classes with 144
initialize 128

context, importance to meaning
of Ruby expressions 178

control flow techniques
case statement 211
conditional execution 207
conditional modifiers 211
exceptions 207
iteration 207
iterators 219
looping 207
loops 215–218
while/until 215

controller actions 62–65
controllers (ActionController)

adding functionality to 79–80
application_controller.rb

generic controller 441
as Ruby objects 150
automatic creation of speci-

fied action methods 51
creation of 150
error reporting 443
inherit from

ActionController via
ApplicationController 426

inheritance hierarchy 441
logic of sorting in 79

converting legacy data from
YAML 87

core functionality, adding
to 365

create_table 248
customer

adding items to cart 449
adding orders to cart 446
breaking of tie between

favorites 451
check-out process 418
completing orders 446, 449
controller 446
determining composer and

instrument rankings 414
ID stored in instance

variable 445
logging out 445
order history 414, 451
personalizing page for

450–453
ranking of favorites 450
showing 414, 450
tracking number of copies

ordered per edition 416
tracking via instance

variable 442
view_cart action 446
viewing shopping cart 446
See also customer model

customer model 438–445
check_out method 450
combined rank method for

instruments and
composers 415

example of instrument
history 415

granularity of ranking and
favorites algorithm 416

handling of a tie in rankings
order 415

security issues raised by 438
trying out rankings methods

in irb 416
walk-through of favorites

scenario 415
See also customer

customization, usefulness of for
models 437

INDEX 481
D

database design 35
database.yml (Rails application

configuration file)
45, 75–76, 87

dates, UNIX-style output of 125
DateTime class 272
debugger 27

breakpoints 27
stepping through lines 27
vs. inserting debug

instructions 28
DeckOfCards class

(example) 289
delegation techniques, as

alternatives to
method_missing 361

delete (ActiveRecord:Base
method) 375

Dir (Ruby class) 87
dispatchers 62
domain modeling 35

diagraming a domain 43
range of actions possible in

domain 35
simple approach to

diagraming 43
translating into SQL 46

domain-specific languages 69
explained 70
in relation to Ruby syntax 71
poker sample in Ruby 70
Rails as one 71
relative ease of learning for

non-programmers 71
Ruby as host language for 70
specificity manifested in

terminology 72
written in existing

languages 70

E

editions (of musical works)
naming after title of collection

of works 409
prettified title 409
tracking number of copies

ordered 416
Enumerable module 278,

303–307

all? method 304
any? method 304
different each methods

behave differently 304
each method written

separately for each class
304–306

each_with_index method 287
find method 287, 304
find_all method 288
grep method 334–335
map method 304
methods based on underlying

each method 303
mixed into Array and Hash

classes 303
reject method 288, 304
select method (synonym for

find_all) 288, 304
equal sign (=) in method

names 131–133
equality tests 251
ERb (Embedded Ruby) 29, 39,

51, 53, 200
central to Rails framework 31
demonstration 30
erb (command-line utility) 30
preparation of files in 30
Ruby code in HTML vs.

HTML in Ruby code 29
tag delimiters 30, 426
testing hash-style arguments

with 302
erb (ERb command-line

utility) 30
errors and exceptions 143,

225–230
adding string to integer 243
ArgumentError 112, 226
common exceptions 226
creating your own exception

classes 207, 228–230
descending classes of

Exception 225
descriptive names of used by

Rails 229
exception as instances of

Exception and
descendants 225–227

exceptions are objects 207
in the Rails framework

code 229

intercepting with rescue
keyword 225–226

IOError 226
NameError 120, 226
NoMethodError 110,

226, 366
pinpointing rescue opera-

tions through exception
names 229

raising an exception, possible
outcomes 225

raising exceptions
explicitly 227–228

re-raising exceptions 228
rescue blocks 226
rescuing specific

exceptions 227
RuntimeError 226
self-documented code

through exception
names 229

TypeError 226
ZeroDivisionError (example

of triggering) 225
eval family of methods 337–351

access to variables in
surrounding scope in
class_eval block 350

class_eval 349–351, 462
class_eval vs. class

keyword 350
evaluting strings with

class_eval 350
instance_eval 349
opening definition of

anonymous class with
class_eval 350

extension vs. library 22
extensions 21

C-language 22–23
writing and sharing 23

F

Fahrenheit-to-Celcius conver-
sion formula 142

false
Boolean value 249
false as keyword 250
false as object 248

FIFO (first in, first out) 157
file I/O 141

482 INDEX
file modes, w (write) 13
filehandles 142
filters (ActionController)

before_filter 441, 443–444
except modifier 443
only modifier 444
security and 441
usefulness even for relatively

safe actions 441
floating-point numbers 104

complexity and
quirkiness 104

printing to n places 428
forms, populating ActiveRecord

objects from fields of 135
frameworks

application programmer’s
role in using 34

computer application vs.
house 35

derivation of term 34
overview 34–38
vs. scaffolding 34

G

generate script 175–176
global variables, (runtime

library load path) 461
grep 174

finding methods in Rails
source code files with 458

Ruby substitute for 174

H

hashes 292–307
=> separator for key/value

pairs 293
adding every new key to hash

with code block 296
allow key-based lookup

operations 292
as arrays with arbitrary

indices 278
as unordered collections 278
CGI library uses 279
clear method 298
code block, supplying to a new

constructor 295
combining 296–297

creating 293
creating with []

constructor 293
deciding what should be keys

and what values 412
default code block

technique 296
default method 295
default value nil, by

default 295
duplicate values when

inverting 297
each method 298
each_key method 299
each_value method 299
empty? method 300
fetch method 295
filtering 298
find method 299
four names for key-testing

method 300
get and set operations

294–296
has_key? method 300
has_value? method 300
Hash.new constructor 293
in method argument

lists 301–303
in Rails method calls 301
include? (synonym for

has_key?) 300
invert method 297
iterating over 298–301
key/value pairs 292
key/value structure 278
key? (synonym for

has_key?) 300
keys overwritten if added

twice 294
length (synonym for size) 301
literal constructor convenient

for hashes that won’t
change 293

member? (synonym for
has_key?) 300

merge (non-nondestructive
combination method) 297

merge! (synonym for
update) 297

non-existent keys not automat-
ically added when used 295

of state (i.e., USA) names and
abbreviations 292

priority of keys in merge
operation 297

querying 298–301
Rails methods use hashes as

arguments 279
replace method 298
return array from sort

operations 307
self and key yielded to default

code block 296
size method 300
transforming 297–298
two-element (key,value) array

yielded by iterator
methods 298–299

uniqueness of keys 294
update (destructive combina-

tion method) 296
use in Rails framework 279
value? (synonym for

has_value?) 301
values don’t have to be

unique 294
values_at method 295
vs. arrays 294

helper (ActionController class
method)

and visibility of helper files to
other templates 426

helper files
as extension of helper

methods Rails provides 82
created automatically 81
example from RCRchive 81
save code repetition 81
vs. putting code in view

template files 82
helper files (ActionPack) 80–82

contents of newly-created 425
generic file

application_helper.rb
426, 428

instance methods in callable
from view templates 425

naming conventions 425–426
using from another

directory 426
helper methods

custom, organizing and
accessing 425–427

INDEX 483
helper methods (continued)
defining for view

templates 424
helper methods (ActionPack)

callable from view
templates 425

end_form_tag 439
form_tag 439
password_field 439
stashing in

application_helper.rb vs.
distributing across helper
files 426

text_field 136, 439

I

if
as tool for testing Boolean

value of any expression 247
bread-and-butter tool of con-

ditional execution 208–211
careful placement of

‘end’ 210
else and elsif 208
elsif branches, clauses 209
if/else ambiguity 210
in C vs. Ruby 210
tips on using ‘else’ 209

include (Module class
method) 159

include, mixing modules into
classes 156

[] (index method) 236
index.html, deleting Rails

default 58
inheritance 121–153

as key principle in Rails
design 149

as reflection of general-to-spe-
cific relations 148, 151

cascading of instance method
access through 148, 150

in object-oriented
programming 148

inject method, for incremental
accumulation of results 417

input
file 11–14
gets 6, 11
keyboard 11–14

instance methods 123, 156
Array#unshift 461
notation for referring to 143
vs. class methods 143

instance variables 126–130
and object state 126, 130
matching names with method

names 129
names start with @ 127
persistence across method

calls 128
visibility 127

instruments, musical, algorithm
and specifying order 405

integers 178
chr method 307
no automatic conversion to

string 243
introspection 111

methods (method) 108
irb (Interactive Ruby) 5, 16, 20

as alternative Ruby
interpreter 5

breaking out of with Ctrl-c 21
calculator-like behavior 20
exiting with Ctrl-d 21
learning Ruby with 5, 20
printing strings vs. echoing

string expression
values 259

prints value of each
expression 107

Rails application console 85,
89–90, 290

starting a session 20
testing Ruby code with 20
verbose output from 290

iterators 219–224, 244–245
basics of yielding to a

block 219–222
basis of for keyword in itera-

tion with each 223–224
code block execution vs.

return value of 245
code blocks and 219
commonplace in built-in

classes and modules 244
defined as methods that yield

values to code blocks 222
different from non-iterators

but in an additive way 244
each vs. for 224

each vs. map 245
figure prominently in

Ruby 207
looping with 215
moving control from one

scope to another with 219
multiple iterations 222–223
provide a return value 244
relation to method calls 219
yield keyword 219
yielding arguments to

block 221

K

Kernel#inspect 331
keywords 119, 208–209

alias 366
barewords interpreted as 119
break 216
case 212
class 123, 155, 178
def 99, 123, 178
do 215
end 209–210
end (in case statement) 212
false 106–107, 245–246
module 155
next 216
non-useability as variable

names 178
not 209
parentheses after

consecutive 209
proc deprecated because too

similar to Proc.new 356
rescue 226
return 102
self 179
true 106, 245
until 218
while 216
yield 219–224

knowing what your code is
actually doing 68

L

lambda (keyword) 80
creating anonymous func-

tions with 355

484 INDEX
lambda (keyword) (continued)
supplying code block to and

calling 355–356
layouts 54, 78, 456

default 54
defined 54

learning to do more in your
code 77–85

legacy data, converting to
ActiveRecord 85–89

libraries 21
LIFO (last in, first out) 157
lightTPD Web server 61
Linux 18, 74

kernel configuration file 74
literal constructors 234–235

cannot be redefined 237
colon (for symbol) 235
curly braces (for hashes) 235
ellipsis (for ranges) 235
for arrays ([]) 235, 279
for regular expressions

(//) 315
forward slashes (for regular

expression) 235
more than one meaning for

some constructs 235
overloading of notation 235
quotation marks

(for string) 235
unambiguous in context 235

literals 100
load path, includes current

directory 461
load vs. require 15
local variables

as temporary storage, vs.
direct use of method
return values 453

bareword appearance
119–120

creating through
assignment 116

creating through method
arguments 116

encapsulation with 453
legal characters for names

of 119
local variables, 115–120
log files 59

loops 215–218
conditional, with while and

until 216–218
terminating with break 216
through list of values with

for 218
unconditional 215
until keyword 215
while and until as

modifiers 218
while and until at end of

loop 217
while keyword 215

luggage as example of stacklike
behavior 161

M

main 203
map operations 394
Masatoshi, Seki 29
match operation, treating as

true/false 319
MatchData class 319–323

as example of dangers of
changing core Ruby
functionality 366–367

captures array 321
data about pattern matched

stored in 321
end method 323
post_match method 323
pre_match method 323
string method 321

Matrix class (standard
library) 289

Matsumoto, Yukihiro 110, 364
messages

as part of two-phase
process 100

forwarding unrecognized to a
designated object 360

sending to objects 99
sending with Kernel#send

method vs. dot
operator 111–112

sent to object via reference in
variable 118

message-sending 7

metaphors for computer
programs 178

method 294
method access rules 178–202

facilitating 201
in relation to 178
use in Rails controllers 179

method arguments 100
considerations of order

of 302
default values for 113–114
importance of correct order

of 114–115, 131
last starred (*) as

argument 113
mini_link_to example of hash

form of 302
pros and cons of using special

hash construct 302
Rails convention favoring spe-

cial hash construct in 303
required 112–113
summary of permutations 114
supplying correct number

of 112
using special hash

construct 301
variable number

(using *) 113
method calls 207, 238

basic scenario always the
same 238

introduction to 7–8
return value generated by

every 244
sometimes include a code

block 238
sometimes include

arguments 238
that modify their

receivers 238
method definitions 99

as contextual change 178
scope 116

method lists 254–255
method lookup order 163, 238

convergence of several lan-
guage structure aspects 163

in cases of mixed classes and
modules 155

INDEX 485
method lookup path
bypassing with method

unbinding and binding 358
effect of module inclusion

on 363
first match 358

method_missing, large role in
Rails 361

methods
+ (string concatenation) 84
arguments 101
as objects 357–359
automatically available via

classes 122
binding to an object 357
calling syntax 7
conservatism about adding

singleton 152
definitions 99
efficiency of not changing

receiver 239
ending with question-

mark 106
example of overriding 124
grabbing with

instance_method
method 357

input to, vs. keyboard
input 101

listing an object’s 234
overriding 124
real-world object

modeling 103
reasons for handling as

objects 358
redefining 124
return values 101–102, 238
risk of confusion from

changing receiver 239
setter (=-terminated) 130–136
setters 153
that change their

receivers 234, 238–242
unbound 357

mix-ins See modules
Model/View/Controller (MVC)

framework concept 36–38,
58–59, 65

actions and view tightly
linked 40

breakdown reflected in Rails
application directory
structure 37

controller 36
division of labor 37
model 36
Rails implementation of

38–40
reconceived as MCV 36, 41
separation of programming

concerns 37
three-part structure applicable

generally to Rails
understanding 37

traditional input/calculation/
output model 37

view 36
models (ActiveRecord)

adding functionality to 82–85
as incarnation of

application 82
as Ruby classes 372
born with 180 instance

methods 374
class methods 375
correspondence to database

tables 82
criteria of existence 375
database record creation as

super-charged 375
engineered to have most of

the functionality they
need 396

find method 51, 399
find_by_* method 444
open-ended programmatic

enhancement 84
openness to adding of any

method 404
pre-defined callbacks 83
Ruby object and database

record varying
independently 375

summary of create/delete and
related methods 376

two lives of instances 374
versatile even without custom

code 393
See also programmatic

enhancement of
ActiveRecord models

modularization, Rails as source
of examples 173

modules
and code reuse 155–157, 161
and program design 155, 176
and Rails framework

design 155
cannot be instantiated

155–156, 158
closely related to classes 155
creating 155–163
in Rails boilerplate code 175
in Rails source code 173–176
mixing into classes 158–160
mix-ins vs. inheritance

171–173
querying for instance and/or

class methods 253
renaming (wrapping) meth-

ods to suit sub-domain 162
vs. classes 155
vs. classes in program

design 160
writing your own 155

musical work, determining
country of 397–398

MySQL 42, 45
sample command for

populating database 47
sample console session for

initializing databases 45

N

nil 83, 246–247, 249
as an object 250
as default value for container

elements 250
as default value for instance

variables 250
as method return value 107
Boolean value of false 249
equipped with 250
on Regexp#match

failure 316, 321
one of two false objects

107, 249
only instance of NilClass 249
represented by the empty

string 408

486 INDEX
nil (continued)
represents absence and state

of being undetermined 250
numerical objects 253, 270–272

O

Object (built-in class) 98, 122
object state 127, 130

altering 127
at initialization 128–130
changing dynamically 131
changing with =-terminated

methods 132
different shades of meaning

for different classes 241
reading 127, 129

Object, highest class in
hierarchy 155, 163

object_id (method) 109–110
object-oriented

programming 97–98
and real-world entities

97–102
model 96
program design 98
simultaneously simple and

obscure 98
vs. procedural 98

objects 7–8, 97
actions 97
adding capabilities to 99
addressing in the second

person 178
as agents and proxies for pro-

grammer intentions 98
as instances of classes 122
as receivers of messages

7, 100
batch vs. individual

creation 104
Boolean values 107
calling methods vs. sending

messages 100
can be different even if con-

tents are the same 109
centrality to Ruby 126
creating 122
default string representation

of 243
equality of 110

exhibiting different
capabilities 97

id number 161
id number associated with

each 109
innate behaviors 99, 108–112
instantiation 122, 374
listing methods of 253–255
nature vs. nurture in 151–153
not constrained by their

class 151
responding to messages 100
sending messages to 7, 99
teaching new behaviors 122

opus numbers
determining numerical

content with match
operation 407

not always just numeric 407
prettification of 404
representing as 407
special catalog designation

instead of 407
output

file 13
p 6, 331
print 6
puts 6

P

parentheses
around method arguments 7
conventionally not used in

many Rails constructs
71, 101

favored by most Rubyists even
when optional 101

optional around method
arguments 71, 101, 133

partials (ActionPack partial
templates) 424

basic deployment 425–435
for customer favorites 452
for customer login 439
for customer signup 439
shopping cart 446, 449

perception of the world
and programming

languages 97
Perl 10, 97, 243, 314

playing cards, as example of
array-like domain 289

pop (Array method) 158
PostgreSQL 42, 45
prettification of strings

can involve more than just
concatenation 404

private (method access level)
for security 201
in controller files 199–201
inheritance and 202

Proc objects 351–356
arguments and 353
as closures 352
behavior of possibly in flux in

future versions of Ruby 355
body taken from code block

supplied to constructor 352
calling multi-parameter Procs

with too few arguments 353
calling multi-parameter Procs

with too many
arguments 354

code not executed until
called 351

context of creation and 353
converting to code block 356
difference between creating

with new and with lambda
keyword 355

different handling of objects
than methods 353

local variables still in scope in
block 352

returning from call to 355
warning for calling with too

many arguments 353
profiler 28
program files 5

creating first 8
creating separate directory for

samples 8
importance of multiple in

Ruby and Rails 15
more than one per

program 14–15
naming conventions 5, 9

programmatic enhancement of
ActiveRecord models

adding power and
versatility 393

INDEX 487
programmatic enhancement of
ActiveRecord models
(continued)

advantages of programmatic
vs. database solutions to
some problems 413

class methods 419–421
consistency of syntax between

built-in methods and added
methods 395

different ways to determine
country of musical
work 398

example of 395
examples as pointers to kinds

of things one can do 418
explained 393
full method status of 395
hard 404–419
keeping vs. discarding

duplicate entries in
collections 399

not to be done
haphazardly 393

soft/hard distinction applied
to class methods 419

soft/hard distinction
as aid to choosing
enhancements 396

soft/hard distinction as way of
organizing survey of 396

string 404–409
too much as sign of need to

redesign 396
vs. static storage of informa-

tion in database 416
whole_name method

(Composer) 395
programming freedom

encouraged by Rails
framework design 73

programs, getting your bearings
in 178

protected (method access
level) 201

callable if self is instance of
receiver’s class 201

mainly used for pairs of
objects 201

variant of private 201–202

push (Array method) 158
puts, adding newline 10

Q

queues 157
quoting mechanisms 259

%q and %Q 259
choice of delimiters for %q

and %Q strings 260

R

R4RMusic (first version)
actions 50
breakdown reflected in Rails

application directory
structure 38

composer/show 56–57
controller files 50
creating directory for with

rails utility 37
creating the databases for 45
designing database tables

for 46
edition/show 56–57
entities (models) 43
logic of modeling work-

WORK and EDITION
edition separately 43

main/welcome 50–51
mapping entities into 44
model files (ActiveRecord)

for 48
modeling the domain 43–50
sample SQL data for 49
specifying actions for 50–52
summary of controller

actions 50
work/show 53, 56

R4RMusic (sample
application) 40

R4RMusic (second version)
actions available without

login 439
ActiveRecord model

design 372
add_to_cart action 449
adding new entities 372

all_periods class method
(work model) 420

balance method (customer
model) 417

balance method (customer
model), inject version 418

basing one method on
another 400

calculating customer’s unpaid
balance 417

century method (work
model) 409, 412

check_out action 449–450
check_out method

(Customer model) 450
check_out method (customer

model), first version 418
check_out method (customer

model), second version 418
check_out view 450
check-out process split

between model and control-
ler phases 418

completing purchases
included in stub form 449

composer model 394
Composer#editions 401–402
composer_rankings method

(customer model) 415
composers relatively inactive

part of domain 401
controller enhancement 423
country method (Work) 398
customer 450
customer controller 446
customer favorites derived

from rankings 450–452
customer login 438
Customer#edition_history

400
Customer#open_orders 399
Customer#work_history 400
Customer#works_on_order

400
customer/login 438, 440
customer/signup 438, 444
database design 372
domain modeling 372
dynamic determination of

favorites target 451

488 INDEX
R4RMusic (second version)
(continued)

edition model as point of
entry to Rails source code
exploration 460

edition/show view 448
edition_history method

(Customer) 400
editions method

(Composer) 394, 401–402
editions_on_order method

(Customer) 400
error reporting 443
favorites method 451
first iteration of customer

rankings methods 414
generic 451
helper methods 427
hypothetical Period class 410
hypothetical

weighted_instruments
method 416

instrument_rankings method
(customer model) 415

learning tool you can modify
at will 453

levels of access 442
link_to_composer (helper

method) 425
link_to_edition (helper

method) 428
link_to_edition_title (helper

method) 428
link_to_instrument (helper

method) 428
link_to_work (helper

method) 428
logout button in layout 445
methods built on other

methods 401
music store vs. library 398
navigation bar added 445
nice_instruments method 405
nice_instruments method

(work model) 408, 416
nice_opus method (work

model) 407–408
nice_title method (edition

model) 409
nice_title method (work

model) 408

of_works class method (edi-
tion model) 419

open_orders method (cus-
tomer model) 418

open_orders method
(Customer) 399

ordered_by (Work) 398
period method (work

model) 412
PERIODS hash (work

model) 412
prettified title for

editions 409
pretty title for work

model 407
publishers method

(Composer) 401
publishers method

(Work) 398
revising existing entities 372
revising SQL table

definitions 372
sales_rankings class method

(composer model) 421
sales_rankings class method

(work model) 420
second iteration of customer

ranking methods 415
security concerns 442
session defined by login

action 439
showing customer 442, 453
signup action 444
summary of helper methods

and controllers 427
summary of new actions 423
summary of partials used

in 435
two_dec (helper

method) 428
view enhancement 423
view_cart 446–447
whole_name method

(Composer) 394
Work model 384
Work#ordered_by 398
works_on_order method

(Customer) 400
Rails 372

dependence of on Ruby’s
dynamism 338

R4RMusic sample
application 41–59

rails (command-line utility) 37
Rails API documentation

consulting to understand
source code 455

RDoc format of 456
Rails applications

developing 35–36
maintaining session continuity

in 439
Rails session lifecycle 59–65
Rails source code

ActiveRecord
subdirectories 457

advantages of becoming
familiar with 68

belongs_to as sample 457
documentation not the only

beneficial way to
explore 456

exploring the source-code
tree 456

importance of multiple files
in 15

judgements required
when 458

role of method_missing
in 361

silo organization 457
transliteration of belongs_to

into simple structure 463
Rails special variables

@content_for_layout 54
@page_title 443

Rainbow class as example of
enumerability 305

ranges of years for specifying
musical periods 411

RCRchive (Ruby Change
Request Archive) 79, 81,
200

controller file for User 200
helper method example 81
sorting example 79
use of private methods for

security 201
RDoc (Ruby Documentation

utility) 29
RDoc markup in Ruby source

files 29

INDEX 489
receivers changed during
method calls 234

references 109, 118
and changing objects 118
as quasi-pointers 118
assigned from one variable to

another 117
stored in variables 117–118

reflection 111
filtering method lists with 254
instance_methods

method 254
listing an object’s

methods 234
methods method 254
object_id (method) 109–110
private_methods method 255
protected_methods

method 255
public_methods method 255
respond_to? 110
singleton_methods

method 255
regular expressions 312

$ (end-of-line anchor) 327
$1, $2, etc. 320
* quantifier (zero or

more) 324
+ quantifier (one or

more) 325
? quantifier (zero or one) 324
\d ([0-9] character class) 318
\D (negation of \d class) 318
\S (negation of \s class) 318
\s (whitespace class) 318
\w ([0-9A-Za-z_] character

class) 318
\W (negation of \w class) 318
\z (end-of-string anchor) 327
\Z (end-of-string anchor,

 discounting final newline
character) 327

^ (beginning-of-line
anchor) 327

^ (negation token in character
classes) 318

{} (repetition specifier) 326
• (word-boundary

anchor) 327
A (beginning-of-string

anchor) 327

abbreviations for common
character classes 318

anchors 326–328
and Enumerable#grep 334
and String#gsub 334
and String#sub 333
as arguments to built-in

methods 313
as representations of

patterns 314
assertions 326
basics of pattern

matching 315
begin method of MatchData

class 323
building patterns 316–319
capture variables matching

parentheses left to
right 320

character classes 316–317
character classes are longer

than what they match 319
character ranges in character

classes 318
comma-separated fields

example 319
common methods that

use 331–335
constraints on components

of 315
consumption of a character in

string 326
converting to/from

strings 329–331
difference between strings

and 314–315, 329
escaping special characters in

interpolated strings 330
escaping special characters

with backslash 317
general remarks on 313–314
greediness 323
greediness of quantifiers 325
i (case-insensitivity)

modifier 328
importance of learning

about 313
literal characters in 316
literal characters match them-

selves in 317
literal constructor (//) 315

lookahead assertions 328
m modifier (include newline

in .) 328
match method 315
match success and

failure 321–323
MatchData object return on

successful match 320
modifiers 328–329
multiline mode (m

modifier) 328
negation in character

classes 318
negative assertions 328
nil returned by unsuccessful

match operation 321
non-greedy quantifiers 325
pattern-matching and 313
patterns expressed in plain

language 314
positive assertions 328
post_match method of

MatchData 323
pre_match method of

MatchData 323
quantifiers 323
range of built-in methods that

use them 313
Regexp.escape class

method 330
reputation as opaque and

unmaintainable 313
scan operations with 332
special characters 317
special characters in interpo-

lated strings remain
special 329

special variables for parenthet-
ical captures 320

splitting string with 332
string interpolation

inside 329
string representation of 331
techniques 323–331
two ways of getting captures

from MatchData object 322
useful in converting legacy

data 314
viewing as strings with inspect

method 331

490 INDEX
regular expressions (continued)
wildcard character (.)

316–317
wildcard character

matches 317
wizardry not necessarily indis-

pensable to Rails applica-
tion development 314

writing 314–319
zero-width assertions 326, 328

relational databases 96
repetition

avoiding by extracting com-
mon code into separate
method 415

avoiding in code 137
in customer rankings

methods 415
require 14, 22

foundation of much of Ruby's
power 21

prominence in
active_record.rb source
file 457

vs. load 15
rescue blocks

begin/end delimited 226
capturing exception to a

variable in 228
inside method

definitions 226, 228
respond_to? (method) 109–111
return (keyword) 102
ri (Ruby Index utility) 29
routes (ActionController) 58

configuration file
(routes.rb) 58

Ruby
as administrative and organi-

zational tool 68–69, 85–90
as host language for DSLs 69
basic language literacy 5
bootstrapping knowledge of 5
breadth of standard library 21
breaking 372
components of programming

environment 23
core language vs. standard

library 21
dynamic nature of 338

facility with as aid to Rails
programming 438

high power-to-lines-of-code
ratio 105

how it helps the Rails
developer 68–69

installation 5–6, 25–27
installing source with package

manager 24
learning process 234
programming

environment 24–31
source code 24–25
standard library 21–22
standard tools and

applications 27–31
syntax checking vs. semantic

policing 133
syntax, relatively

uncomplicated 70
techniques you should under-

stand but not necessarily
use 359

terminological
conventions 136

view from 4
writing a program 4–15

ruby (interpreter)
as program others are fed

to 16
building 25
invocation 15–21
verbose mode 18
warning mode 17

ruby (Ruby interpreter) 4, 9
Ruby Application Archive

(RAA) 23
Ruby on Rails

application directory
structure 37

application naming 38
application operations 34
as domain-specific

language 70–73, 77
as Ruby environment 73, 85
as simultaneous deployment

of multiple libraries 40
built-in support for

customization 78, 82–83
code as part of application

code 34

coding conventions 72–73, 75
configuration 69, 71, 74
controllers directory 38
designed for use 35
developing with vs. developing

without 35
dispatcher scripts 60–62,

65, 459
domain vs. domain of

applications 71
environment.rb configura-

tion file 459
framework overview 34
framework source code 174
helper files 78
helper methods 82
layered philosophically on top

of Ruby 136
legacy data and 85
made up of three main pro-

gramming libraries 38
medium-level overview 34
method-call 301
models directory 38
modularity of framework

design 155
open-ended programmer

freedom 78, 80
pre-determined aspects of

applications 78
range of possible

applications 34
source code directory

structure 39–40
support libraries 40
three levels of development

freedom 77
views directory 38

RubyForge 23
RubyGems (packaging

system) 38, 473–475

S

scalar objects 258
scope 173, 178

new local inside method
definition body 352

new, in method
definitions 116

INDEX 491
security for checking incoming
data 444

self (default object)
an object rather than a

concept 178
as first-person of the

program 178
changes during program

execution 178
how Ruby determines it 179
privileges of being 179
rules for determining which

object is 179
unique at any given time 179

send 109
as explicit message-sending

technique 71, 111–112
session variable

persistence of data across
actions 440

storing customer ID in 440
session variable (@session) 440
session, different definitions for

different sites 439
Set class (standard library) 289
setter (=-terminated) methods

abuse of syntax 133
as data filters 134
in ActiveRecord model

files 135
SHA1 encryption 444
shopping cart

adding items 449
not an object but a view of

other objects 446
singleton methods 124
site-ruby directory 26
soft enhancements, Ruby vs.

SQL 401–403
sorting techniques

array most common con-
tainer object for sort
operations 307

in relation to Comparable
module 309

not necessary to mix Enumer-
able into class of objects to
be sorted 307

objects that know how to be
sorted 308

on objects of different, incom-
parable classes 310

on objects with no
method 310

role of method in 307, 309
sort method of

Enumerable 307
sort_by method of

Enumerable 80, 307, 310
sorting against a fixed non-

alphabetical array 405
sorting two objects extrapo-

lated to entire collection
sort 308

use of code block in 309
use of container objects

for 307
using a code block in 310–311

special variables, __FILE__ 461
SQL 40, 42, 49, 83

controllers creating
automatically 64

fragments of as arguments to
ActiveRecord find
methods 291

id field as primary key 46
NULL equivalent to Ruby

nil 83
vs. pure Ruby for collection

searching 292
SQLite 42, 45
stacklike (sample module)

157–158
stacklike, simple

implementation 157
stacks 157

implemented via arrays 158
implementing in module vs.

class 160–163
plates as example of 157
real-world examples of

157, 161
vs. arrays 158

standard library 21–22
string interpolation 105

#{} operator 106
as string-combining

technique 262
doesn’t work inside single-

quoted strings 258
inside regular

expressions 329
learning by using irb 259

strings
+ method 261
<< method 261
as enumerables 306–307
basics 258–260
capitalize method 263
capitalizing 239
chomp method 263
chop method 263
combining two or more 261
conversion of to integers with

to_i 243
disabling interpolation by

escaping # character 259
downcase method 263
each method iterates through

lines rather than
characters 306

each_byte method 306
escaping backslashes in 259
escaping characters inside sin-

gle vs. double quotation
marks 259

escaping quotation marks 259
gsub and gsub! methods

333–334
hypothetical method for char-

acter-wise iteration 307
include Comparable module

methods 253
literals (with quotation

marks) 258
lstrip method 263
massaging 263
match method 315
multiline with newline

character 306
multiplication of with * 243
one of two ways of represent-

ing text 258
operations 260
replacing contents of

239, 262
reverse method 263
rstrip method 263
scan method 332
single vs. double quotation

marks 258
split method 332–333
strip method 263

492 INDEX
strings (continued)
sub and sub! methods

333–334
substitution methods

333–334
succ method 410
swapcase method 263
to_s method of return

receiver 242
upcase method 263
versatility of 260

subclasses 148
submatches, capturing with

parentheses 319
subsumed under ActionPack 39

ActionController 39
ActionView 39

superclasses 148
symbols 71

and configuration 73–75
as arguments 72
as hash keys 73–74
as method arguments 73
one of two ways of represent-

ing text 258
preliminary characterization

of 138
syntactic sugar 132–133, 135,

212–213, 225, 234,
255, 272, 281, 294

and Ruby philosophy 237
arithmetic operators and 237
categories of automatic 237
for + method 236
for setter (=-terminated)

methods 132
making method calls look like

operators 237
methods that always

exhibit 236
potential abuse of 237
recurrent 236–238
special treatment of = (equal

sign) 237
summary of automatic 236
summary of operator-style

notation 236
syntax errors 9
syntax, checking accuracy of 16

T

temperature conversion (code
example) iterator
version 222

temperature converter (code
example) 218

temperature converter (sample
program) 101, 142

adding class methods to 142
text editor, for writing program

files 5, 8
Thomas, Dave 29
tickets to events (code

example) 103–108
Time (Ruby class) 125

strftime method 125
time.rb extension file 125
xmlschema (extension

method from time.rb) 126
time and date objects 272–275

classes pertaining to 272
format strings for controlling

output 274
to_* (conversion)

methods 242–244
built-in 242
every object has to_s 242
not all objects have all 242
to_a (to array) 242
to_f (to float) 242
to_i (to integer) 242
to_s (to string) 242
to_s as most common 242
to_s automatically called by

puts 244
writing a custom default to_s

for a class 243
top-level

methods 203–204
methods as private instance

methods of Object 203
Rails scripts written at 203
scripts vs. class/module-based

programs 203
top-level context 179
two lives of ActiveRecord model

object
as handle for manipulating

database record 375
as Ruby object 375

U

unification
of components of Time

class 126
possibility of for date and time

libraries 273
URLs

as determinant of controller/
action sequence 150

rewriting by Rails routing
subsystem 459

V

variable assignment 6, 98,
117–119

evaluates to right-hand
side 20

variables 96
distinct from object referred

to 109
local 115–120
reassigning to existing 118
visibility 178

view designing 53–58
views, fulfillment 65

W

warnings
for reassigning to a

constant 123
for wrong number of argu-

ments to a block 353
Web site for Ruby for Rails 438
WEBrick 58–60

server script 59
Weirich, Jim 53
word processor for writing pro-

gram files 5
work (musical) period

analogous to other arts 410
calculating 409–413
creating descriptions based on

year and country of
origin 410

date and country pairs stored
in hash 411

INDEX 493
work (musical) period
(continued)

descriptive form of 410
finding all represented 420
hypothetical Period class 410
ranking sales of all 420

work (musical) title
components of 408
Time class 272

www.ruby-lang.org 24

X

XML Schema dateTime
representation 126

Y

YAML 75–77, 85
and converting legacy data 87
data serialization with 75

history of acronym 75
load (deserialization)

method 75
loading library 75
preservation of data classes

during serialization 76
sample 76
serialization of data to string

form 88
to_yaml method 75
use of by Rails 76

	Ruby for Rails
	contents
	foreword
	preface
	acknowledgments
	about this book
	Part I The Ruby/Rails landscape
	How Ruby works
	1.1 The mechanics of writing a Ruby program
	1.1.1 Getting the preliminaries in place
	1.1.2 A Ruby literacy bootstrap guide
	1.1.3 A brief introduction to method calls and Ruby objects
	1.1.4 Writing and saving a sample program
	1.1.5 Feeding the program to Ruby
	1.1.6 Keyboard and file input
	1.1.7 One program, multiple files

	1.2 Techniques of interpreter invocation
	1.2.1 Command-line switches
	1.2.2 A closer look at interactive Ruby interpretation with irb

	1.3 Ruby extensions and programming libraries
	1.3.1 Using standard extensions and libraries
	1.3.2 Using C extensions
	1.3.3 Writing extensions and libraries

	1.4 Anatomy of the Ruby programming environment
	1.4.1 The layout of the Ruby source code
	1.4.2 Navigating the Ruby installation
	1.4.3 Important standard Ruby tools and applications

	1.5 Summary

	How Rails works
	2.1 Inside the Rails framework
	2.1.1 A framework user’s-eye view of application development
	2.1.2 Introducing the MVC framework concept
	2.1.3 Meet MVC in the (virtual) flesh

	2.2 Analyzing Rails’ implementation of MVC
	2.3 A Rails application walk-through
	2.3.1 Introducing R4RMusic, the music-store application
	2.3.2 Modeling the first iteration of the music-store domain
	2.3.3 Identifying and programming the actions
	2.3.4 Designing the views
	2.3.5 Connecting to the application

	2.4 Tracing the lifecycle of a Rails run
	2.4.1 Stage 1: server to dispatcher
	2.4.2 Stage 2: dispatcher to controller
	2.4.3 Stage 3: performance of a controller action
	2.4.4 Stage 4: the fulfillment of the view

	2.5 Summary

	Ruby-informed Rails development
	3.1 A first crack at knowing what your code does
	3.1.1 Seeing Rails as a domain-specific language
	3.1.2 Writing program code with a configuration flavor
	3.1.3 YAML and configuration that’s actually programming

	3.2 Starting to use Ruby to do more in your code
	3.2.1 Adding functionality to a controller
	3.2.2 Deploying the Rails helper files
	3.2.3 Adding functionality to models

	3.3 Accomplishing application-related skills and tasks
	3.3.1 Converting legacy data to ActiveRecord
	3.3.2 The irb-based Rails application console

	3.4 Summary

	Part II Ruby building blocks
	Objects and variables
	4.1 From “things” to objects
	4.1.1 Introducing object-oriented programming
	4.1.2 I, object!
	4.1.3 Modeling objects more closely: the behavior of a ticket

	4.2 The innate behaviors of an object
	4.2.1 Identifying objects uniquely with the object_id method
	4.2.2 Querying an object’s abilities with the respond_to? method
	4.2.3 Sending messages to objects with the send method

	4.3 Required, optional, and default-valued arguments
	4.3.1 Required and optional arguments
	4.3.2 Default values for arguments
	4.3.3 Order of arguments

	4.4 Local variables and variable assignment
	4.4.1 Variable assignment in depth
	4.4.2 Local variables and the things that look like them

	4.5 Summary

	Organizing objects with classes
	5.1 Classes and instances
	5.1.1 A first class
	5.1.2 Instance variables and object state

	5.2 Setter methods
	5.2.1 The equal sign (=) in method names
	5.2.2 ActiveRecord properties and other = -method applications

	5.3 Attributes and the attr_* method family
	5.3.1 Automating the creation of attribute handlers
	5.3.2 Two (getter/setter) for one
	5.3.3 Summary of attr_* methods

	5.4 Class methods and the Class class
	5.4.1 Classes are objects too!
	5.4.2 When, and why, to write a class method
	5.4.3 Class methods vs. instance methods, clarified
	5.4.4 The Class class and Class.new

	5.5 Constants up close
	5.5.1 Basic usage of constants
	5.5.2 Reassigning vs. modifying constants

	5.6 Inheritance
	5.6.1 Inheritance and Rails engineering
	5.6.2 Nature vs. nurture in Ruby objects

	5.7 Summary

	Modules and program organization
	6.1 Basics of module creation and use
	6.1.1 A module encapsulating “stack-like-ness”
	6.1.2 Mixing a module into a class
	6.1.3 Leveraging the module further

	6.2 Modules, classes, and method lookup
	6.2.1 Illustrating the basics of method lookup
	6.2.2 Defining the same method more than once
	6.2.3 Going up the method search path with super

	6.3 Class/module design and naming
	6.3.1 Mix-ins and/or inheritance
	6.3.2 Modular organization in Rails source and boilerplate code

	6.4 Summary

	The default object (self) and scope
	7.1 Understanding self, the current/default object
	7.1.1 Who gets to be self, and where
	7.1.2 Self as default receiver of messages
	7.1.3 Instance variables and self

	7.2 Determining scope
	7.2.1 Global scope and global variables
	7.2.2 Local scope
	7.2.3 Scope and resolution of constants

	7.3 Deploying method access rules
	7.3.1 Private methods
	7.3.2 Private methods as ActionController access protection
	7.3.3 Protected methods

	7.4 Writing and using top-level methods
	7.4.1 Defining a top-level method
	7.4.2 Predefined (built-in) top-level methods

	7.5 Summary

	Control flow techniques
	8.1 Conditional code execution
	8.1.1 The if keyword and friends
	8.1.2 Conditional modifiers
	8.1.3 Case statements

	8.2 Repeating actions with loops
	8.2.1 Unconditional looping with the loop method
	8.2.2 Conditional looping with the while and until keywords
	8.2.3 Looping based on a list of values

	8.3 Code blocks, iterators, and the yield keyword
	8.3.1 The basics of yielding to a block
	8.3.2 Performing multiple iterations
	8.3.3 Using different code blocks
	8.3.4 More about for

	8.4 Error handling and exceptions
	8.4.1 Raising and rescuing exceptions
	8.4.2 Raising exceptions explicitly
	8.4.3 Creating your own exception classes

	8.5 Summary

	Part III Built-in classes and modules
	Built-in essentials
	9.1 Ruby’s literal constructors
	9.2 Recurrent syntactic sugar
	9.2.1 Special treatment of +=

	9.3 Methods that change their receivers (or don’t)
	9.3.1 Receiver-changing basics
	9.3.2 bang (!) methods
	9.3.3 Specialized and extended receiver-changing in ActiveRecord objects

	9.4 Built-in and custom to_* (conversion) methods
	9.4.1 Writing your own to_* methods

	9.5 Iterators reiterated
	9.6 Boolean states, Boolean objects, and nil
	9.6.1 True and false as states
	9.6.2 true and false as objects
	9.6.3 The special object nil

	9.7 Comparing two objects
	9.7.1 Equality tests
	9.7.2 Comparisons and the Comparable module

	9.8 Listing an object’s methods
	9.8.1 Generating filtered and selective method lists

	9.9 Summary

	Scalar objects
	10.1 Working with strings
	10.1.1 String basics
	10.1.2 String operations
	10.1.3 Comparing strings

	10.2 Symbols and their uses
	10.2.1 Key differences between symbols and strings
	10.2.2 Rails-style method arguments, revisited

	10.3 Numerical objects
	10.3.1 Numerical classes
	10.3.2 Performing arithmetic operations

	10.4 Times and dates
	10.5 Summary

	Collections, containers, and enumerability
	11.1 Arrays and hashes compared
	11.2 Using arrays
	11.2.1 Creating a new array
	11.2.2 Inserting, retrieving, and removing array elements
	11.2.3 Combining arrays with other arrays
	11.2.4 Array transformations
	11.2.5 Array iteration, filtering, and querying
	11.2.6 Ruby lessons from ActiveRecord collections

	11.3 Hashes
	11.3.1 Creating a new hash
	11.3.2 Inserting, retrieving, and removing hash pairs
	11.3.3 Combining hashes with other hashes
	11.3.4 Hash transformations
	11.3.5 Hash iteration, filtering, and querying
	11.3.6 Hashes in Ruby and Rails method calls

	11.4 Collections central: the Enumerable module
	11.4.1 Gaining enumerability through each
	11.4.2 Strings as Enumerables

	11.5 Sorting collections
	11.5.1 Sorting and the Comparable module
	11.5.2 Defining sort order in a block

	11.6 Summary

	Regular expressions and regexp-based string operations
	12.1 What are regular expressions?
	12.1.1 A word to the regex-wise
	12.1.2 A further word to everyone

	12.2 Writing regular expressions
	12.2.1 The regular expression literal constructor
	12.2.2 Building a pattern

	12.3 More on matching and MatchData
	12.3.1 Capturing submatches with parentheses
	12.3.2 Match success and failure

	12.4 Further regular expression techniques
	12.4.1 Quantifiers and greediness
	12.4.2 Anchors and lookahead assertions
	12.4.3 Modifiers
	12.4.4 Converting strings and regular expressions to each other

	12.5 Common methods that use regular expressions
	12.5.1 String#scan
	12.5.2 String#split
	12.5.3 sub/sub! and gsub/gsub!
	12.5.4 grep

	12.6 Summary

	Ruby dynamics
	13.1 The position and role of singleton classes
	13.1.1 Where the singleton methods live
	13.1.2 Examining and modifying a singleton class directly
	13.1.3 Singleton classes on the method lookup path
	13.1.4 Class methods in (even more) depth

	13.2 The eval family of methods
	13.2.1 eval
	13.2.2 instance_eval
	13.2.3 The most useful eval: class_eval (a.k.a. module_eval)

	13.3 Callable objects
	13.3.1 Proc objects
	13.3.2 Creating anonymous functions with the lambda keyword
	13.3.3 Code blocks, revisited
	13.3.4 Methods as objects

	13.4 Callbacks and hooks
	13.4.1 Intercepting unrecognized messages with method_missing
	13.4.2 Trapping include operations with Module#included
	13.4.3 Intercepting inheritance with Class#inherited
	13.4.4 Module#const_missing

	13.5 Overriding and adding to core functionality
	13.5.1 A cautionary tale

	13.6 Summary

	Part IV Rails through Ruby, Ruby through Rails
	(Re)modeling the R4RMusic application universe
	14.1 Tracking the capabilities of an ActiveRecord model instance
	14.1.1 An overview of model instance capabilities
	14.1.2 Inherited and automatic ActiveRecord model behaviors
	14.1.3 Semi-automatic behaviors via associations

	14.2 Advancing the domain model
	14.2.1 Abstracting and adding models (publisher and edition)
	14.2.2 The instruments model and many-to-many relations
	14.2.3 Modeling for use: customer and order

	14.3 Summary

	Programmatically enhancing ActiveRecord models
	15.1 Soft vs. hard model enhancement
	15.1.1 An example of model-enhancement contrast

	15.2 Soft programmatic extension of models
	15.2.1 Honing the Work model through soft enhancements
	15.2.2 Modeling the customer’s business
	15.2.3 Fleshing out the Composer
	15.2.4 Ruby vs. SQL in the development of soft enhancements

	15.3 Hard programmatic enhancement of model functionality
	15.3.1 Prettification of string properties
	15.3.2 Calculating a work’s period
	15.3.3 The remaining business of the Customer

	15.4 Extending model functionality with class methods
	15.4.1 Soft and hard class methods

	15.5 Summary

	Enhancing the controllers and views
	16.1 Defining helper methods for view templates
	16.1.1 Organizing and accessing custom helper methods
	16.1.2 The custom helper methods for R4RMusic

	16.2 Coding and deploying partial view templates
	16.2.1 Anatomy of a master template
	16.2.2 Using partials in the welcome view template

	16.3 Updating the main controller
	16.3.1 The new face of the welcome action

	16.4 Incorporating customer signup and login
	16.4.1 The login and signup partial templates
	16.4.2 Logging in and saving the session state
	16.4.3 Gate-keeping the actions with before_filter
	16.4.4 Implementing a signing-up facility
	16.4.5 Scripting customer logout

	16.5 Processing customer orders
	16.5.1 The view_cart action and template
	16.5.2 Viewing and buying an edition
	16.5.3 Defining the add_to_cart action
	16.5.4 Completing the order(s)

	16.6 Personalizing the page via dynamic code
	16.6.1 From rankings to favorites
	16.6.2 The favorites feature in action

	16.7 Summary

	Techniques for exploring the Rails source code
	17.1 Exploratory technique 1: panning for info
	17.1.1 Sample info panning: belongs_to

	17.2 Exploratory technique 2: shadowing Ruby
	17.2.1 Choosing a starting point
	17.2.2 Choose among forks in the road intelligently
	17.2.3 On the trail of belongs_to
	17.2.4 A transliteration of belongs_to

	17.3 Exploratory technique 3: consulting the documentation
	17.3.1 A roadmap of the online Rails API documentation

	17.4 Summary

	appendix: Ruby and Rails installation and resources
	A.1 Online resources for Ruby and Rails
	A.2 Common-case instructions for installing Ruby and Rails
	A.2.1 One-Click Ruby and Instant Rails for Windows
	A.2.2 Installing from the source code on *nix systems
	A.2.3 Installing Ruby with a package manager
	A.2.4 Installing the RubyGems package manager
	A.2.5 Installing Rails with RubyGems

	index

