Ruby on Rails

Web Mashup Projects

uilding web mashups
PACKT

Ruby on Rails Web Mashup
Projects

A step-by-step tutorial to building web mashups

Chang Sau Sheong

[PUBLISHING]

BIRMINGHAM - MUMBAI

Ruby on Rails Web Mashup Projects
A step-by-step tutorial to building web mashups

Copyright © 2008 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the author, Packt Publishing,
nor its dealers or distributors will be held liable for any damages caused or alleged to
be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: April 2008
Production Reference: 1160408

Published by Packt Publishing Ltd.
32 Lincoln Road

Olton

Birmingham, B27 6PA, UK.

ISBN 978-1-847193-93-3
www . packtpub. com

Cover Image by Raghuram Ashok (raghurameiiitb.ac.in)

Credits

Author Project Manager
Chang Sau Sheong Abhijeet Deobhakta
Reviewer Project Coordinators

Walt Stoneburner Aboli Mendhe

Lata Basantani
Senior Acquisition Editor
Douglas Paterson Indexer
Monica Ajmera
Development Editor
Nikhil Bangera Proofreader
Chris Smith
Technical Editor
James Lumsden Production Coordinator
Shantanu Zagade
Editorial Team Leader
Mithil Kulkarni Cover Work
Shantanu Zagade

About the Author

Chang Sau Sheong has more than 12 years experience in software application
development and has spent much of his career in Web and Internet-based
applications. He has a wide range of experience in banking payment-related as well
as Internet-based e-commerce software. Currently he is the Director of Software
Development of a 50+ strong software development team in Welcome Real-time, a
multi-national payment/loyalty software company based in France and Singapore.

Sau Sheong frequently writes for technical magazines and journals including Java
Report, Java World, and Dr. Dobb's Journal. He also contributes to open-source
projects in various technologies including smart cards, Ruby, and Java. His interests
revolve mainly around technology and software development. He has done
programming in Java/Java EE, C, C++, PHP, Python, Perl, Smalltalk, Erlang, Ruby/
Ruby on Rails, various smart card platforms, and also worked on various databases.
He has a wide range of experience in banking payment-related as well as Internet-
based e-commerce software.

Sau Sheong hails from tropical Malaysia but has spent most of his adult and
working life in sunny Singapore, where he shares his spare time enthusiastically
writing software and equally playing Nintendo Wii with his wife and son. He has a
Bachelor's degree in Computer Engineering, a Master's degree in Commercial Law,
and is a certified international arbitrator.

Acknowledgements

Firstly, many thanks to Douglas Peterson, Nikhil Bangera, Walt Stoneburner, and
James Lumsden who patiently guided me through my first book. I would also like
to thank the following people from the Singapore Ruby Brigade who contributed
comments and reviews on this book as well as general support: Peter Bohm, Chew
Choon Keat, Herryanto Siatono, Johan Gozali, Jeffrey Lim, Wong Keng Onn, and
many others from the 'last Thursday of the month' sessions. Grateful thanks also to
Mech, Watt, and Simon for their good support and general cheerleading in Rails and
non-Rails related matters. Special thanks to Sebastien Guillaud and all those people
in Welcome Real-time who believed that I can run software development center,
write a book, and go home in time to tutor my son.

Final thanks to the love of my life, Wooi Ying, who suffered my erratic 'nightlife'
huddling in front of my laptop, creating software and writing this book, and also to
Kai Wen for just being my son.

About the Reviewer

Walt Stoneburner is a software architect with over 20 years of commercial
application development and consulting experience. Fringe passions involve quality
assurance, configuration management, and security. If cornered, he may actually
admit to liking statistics and authoring documentation as well.

He's easily amused by programming language design, collaborative applications,
and ASCII art. Self-described as a closet geek, Walt also evaluates software products
and consumer electronics, draws cartoons, produces photography, writes humor
pieces, performs sleight of hand, enjoys game design, and can occasionally be found
on ham radio.

Walt may be reached directly via email at wls@ewwco.com. He publishes a tech and
humor blog called the Walt-O-Matic at http: //www.wwco.com/~wls/blog/. Rumors
suggest that some of his strange videography may be found on iTunes.

Currently he is employed at Business & Engineering Systems Corporation as a lead
engineer developing advanced software solutions for knowledge management.

Other book reviews and contributions include AntiPatterns and Patterns in Software
Configuration Management (ISBN 978-0-471-32929-9, p. xi) and Exploiting Software: How
to Break Code (ISBN 978-0-201-78695-8, p. xxxiii).

Table of Contents

Preface 1
Chapter 1: Introduction to Web Mashups 5
Web mashups 5
Ruby and Ruby on Rails 6
Types of web mashups 7
What can | do with web mashups? 8
As a new breed of applications 8
Access large sets of external sources 9
Innovate and create extra value for your application 9
Save on development and maintenance 10
Leverage on and integrate common and widely available external
applications 10
Things to watch out for when doing web mashups 10
Unreliable external APls 11
Commercial dependency 11
Losing your users 12
How this book works 13
What does it do? 14
Domain background 14
Requirements overview 14
Design 14
Mashup APIs on the menu 14
What we will be doing 14
Summary 15
Ready? 15
Chapter 2: 'Find closest' mashup plugin 17
What does it do? 17

Building a kiosk locator feature for your site 17

Table of Contents

Requirements overview 18
Design 18
Mashup APIs on the menu 18
Google Maps 19
Yahoo Maps 19
Geocoder.us 19
Geocoder.ca 19
Hostip.info 20
GeoKit 20
Configuring GeoKit 21
Getting an application ID from Yahoo 21
Getting a Google Maps API key from Google 21
Configuring evironment.rb 21
YM4R/GM 23
What we will be doing 23
Creating a new Rails project 24
Installing the Rails plugins that will use the various mashup APls 24
Configuring database access and creating the database 24
Creating scaffolding for the project 25
Populating kiosk locations with longitude and latitude information 26
Populate the database with sample data 26
Bulk adding of longitude and latitude 26
Adding longitude and latitude during kiosk creation entry 28
Creating the find closest feature 29
Displaying kiosks on Google Maps 31
Summary 36
Chapter 3: Proxy mailing list mashup plugin 37
What does it do? 37
Building a proxy mailing list feature for your website 37
Requirements overview 38
Design 39
Define messages 39
Get contacts and customized message data 39
Send messages 39
Sending SMS messages 40
Sending fax messages 41
Mashup APIs on the menu 42
Google Spreadsheets 42
EditGrid 43
Clickatell 44
Interfax 49
Net::HTTP 51

Lii]

Table of Contents

What we will be doing 52
Creating a new Rails project 52
Configuring the database access and creating the database 53
Creating standard scaffolding 53
Allowing the marketing people to create the message templates 54
Allowing the reseller to provide contacts data through a remote link 55

Uploading to and publishing from Google Spreadsheets 56
Uploading to and publishing from EditGrid 61
Creating the rake script to send messages at regular intervals 63
Parsing data from the online spreadsheet 69
Sending a fax with Interfax 70
Sending an SMS through Clickatell 71
Sending an email through ActionMailer 74
Customizing text messages according to the individual recipient 76
Using the mashup 77
Summary 77
Chapter 4: Book sales tracking mashup plugin 79

What does it do? 79

A book sales tracking and shopping cart feature 79

Requirements overview 79

Design 80
Provide information 80
Track sales ranking with a chart 80
Show customer reviews 81
Provide a shopping cart 81
Allow visitors to buy related books 81

Mashup APIs on the menu 81
Amazon E-Commerce Services API 81

Registering for an Amazon Web Service access key 1D 82
Registering as an Amazon Associate 82
Amazon ECS Ruby library 82
Sparklines web service 83

What we will be doing 83
Creating a new Rails project 84
Installing the Amazon ECS Ruby library 85
Creating the books controller 85
Creating the Amazon Rails library 85
Creating the sidebar 88
Getting customer reviews 91
Getting the daily sales ranking 94

Displaying the sales ranking sparkline 95

[iii]

Table of Contents

Creating a shopping cart 97
Adding similar books to the shopping cart 101
Summary 103
Chapter 5: Job board mashup application 105
What does it do? 105
Job board 105
Requirements overview 106
Design 106
Mashup APIs on the menu 107
Facebook 107
Facebook Platform 107
RFacebook 108
Google Maps 108
Indeed 108
Technorati 109
Daylife 109
Net::HTTP 110
XmlISimple 110
What we will be doing 112
Acquire candidates through Facebook 112
Search for jobs through Indeed 113
Display jobs in Google Maps 113
Search and display job news from Daylife 113
Search and display job stories from Technorati 113
Acquiring candidates through Facebook 113
Creating a Rails application 114
Creating a Facebook application 114
Installing and configuring RFacebook 115
Extracting the Facebook user profile 116
Displaying the user profile and creating the search form 118
Deploying and configuring the Facebook application 120
Searching for jobs through Indeed 125
Creating the search action 125
Parsing and displaying the search results 126
Display jobs in Google Maps 127
Displaying the location of the jobs on the map 127
Creating a link on each job to show the news and blog articles 130
Searching and displaying news from Daylife 132
Searching for news on the company 132
Searching and displaying blog articles from Technorati 134
Searching for blog entries on the company 134
Summary 135

[iv]

Table of Contents

Chapter 6: Trip organizer mashup application 137
What does it do? 137
Requirements overview 137
Design 138
Mashup APIs on the menu 138

Google Maps 139
FUTEF 139
WebserviceX Currency Converter 139
Yahoo Maps Geocoding API 140
WeatherBug 140
Kayak 141
GeoNames 141
Flickr 141
Hostip.info 142
Open URI 143
What we will be doing 143
Creating a Rails application 144
Creating the basic Location object 144
Creating a search form 149
Creating the online map 150
Creating the tabs for the information 151
Getting information from Wikipedia 155
Getting places information 156
Getting hotel information 160
Getting weather information 164
Displaying pictures of the location 168
Showing currency exchange rate 171
Showing remote location time compared with local time 179
Showing nice exception pages 182
Summary 183

Chapter 7: Ticketing mashup application 185
What does it do? 185
Online event ticketing 185
Requirements overview 186
Design 186
Mashup APIs on the menu 187

PayPal 187
Website Payment Pro 187
PayPal Sandbox 188

Ruby-PayPal library 190

Google Calendar 190

[v]

Table of Contents

GoogleCalendar library 191
Clickatell 191
What we will be doing 191
Creating a Rails application 192
Creating the flow for the ticketing application 192
Integrating with PayPal for payment 207
Integrating with Google Calendar 211
Integrating with Clickatell 213
Summary 214
Chapter 8: Expenses claims mashup plugin 215
What does it do? 215
Salary and expense claims 215
Requirements overview 216
Design 216
Mashup APIs on the menu 217
PayPal 217
Mass Payment 217
PayPal Sandbox 218
Google 218
Google Account Authentication 218
Google Data APIs 218
Google Document Data List APIs 219
Google Spreadsheet Data APIs 219
Ruby-PayPal library 219
Acts_as_state_machine plugin 219
XmlISimple 220
What we will be doing 220
Creating a Rails application 221
Setting up the database 221
Creating the Payment and Claim Item scaffolds 222
Modifying Payment and creatomg subclasses 222
Creating the Google API access library 223
Creating the Manager class and its controller and views 240
Creating the expense claims parsing rake script 240
Creating the mass payment rake script 242
Modifying the Payment and Claim Item controllers 243
How it works all together 245
Summary 251
Index 253

[vil

Preface

A web mashup is a new type of web application that uses data and services from
one or more external sources to build entirely new and different web applications.
Web mashups usually mash up data and services that are available on the
Internet — freely, commercially, or through other partnership agreements. The
external sources that a mashup uses are known as mashup APIs.

This book shows you how to write web mashups using Ruby on Rails — the new web
application development framework. The book has seven real-world projects — the
format of each project is similar, with a statement of the project, discussion of

the main protocols involved, an overview of the API, and then complete code for
building the project. You will be led methodically through concrete steps to build the
mashup, with asides to explain the theory behind the code.

What This Book Covers

The first chapter introduces the concepts of web mashups to the reader and provides
a general introduction to the benefits and pitfalls of using web mashups as stand-
alone applications or as part of existing web applications.

The first project is a mashup plugin into an existing web application that allows
users to find the location of the closest facility from a particular geographic location
based on a specified search radius. The location is mapped and displayed on
Google Maps.

The second project is another mashup plugin. This plugin allows users to send
messages to their own list of recipients, people who are previously unknown to the
website, on behalf of the website. The project uses Google Spreadsheets and EditGrid
to aggregate the information, and Clickatell and Interfax to send SMS messages and
faxes respectively.

Preface

The third project describes a mashup plugin that allows you to track the sales
ranking and customer reviews of a particular product from Amazon.com. The main
APT used is the Amazon E-Commerce Service (ECS).

The fourth project shows you how to create a full-fledged Facebook application
that allows a user to perform some of the functions and features of a job board. This
mashup uses Facebook, Google Maps, Daylife, Technorati and Indeed.com APIs.

The fifth project shows you how to create a full web mashup application that allows
users to view information on a location. This is the chapter that uses the most
mashup APIs, including Google Maps, FUTEF, WebserviceX, Yahoo! geocoding
services, WeatherBug, Kayak, GeoNames, Flickr, and Hostip.info.

The sixth project describes a mashup plugin that allows an online event ticketing
application to receive payment through Paypal, send SMS receipts, and add event
records in the customer's Google Calendar account. The APIs used are Google
Calendar, PayPal, and Clickatell.

The final project shows a complex mashup plugin used for making corporate
expense claims. It allows an employee to submit expense claims in Google Docs
and Spreadsheets, attaching the claims form and the supporting receipts. His or

her manager, also using Google Docs and Spreadsheets, then approves the expense
claims and the approved claims are retrieved by the mashup and used to reimburse
the employee through PayPal. It uses the PayPal APIs and various Google APIs.

Conventions

In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

There are three styles for code. Code words in text are shown as follows: "This will
copy the necessary files to your RAILS_ROOT/vendor/plugins folder and run the
install.rb script."

A block of code will be set as follows:

class Kiosk < ActiveRecord: :Base
def address
"#{self.street}, #{self.city}, #{self.state}, #{self.zipcode}"
end

[2]

Preface

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items will be made bold:

begin
kiosks.each { |kiosk]

loc = MultiGeocoder.geocode (kiosk.address)
kiosk.lat = loc.lat

Any command-line input and output is written as follows:
$./script/plugin install svn://rubyforge.org/var/svn/geokit/trunk

New terms and important words are introduced in a bold-type font. Words that you
see on the screen, in menus or dialog boxes for example, appear in our text like this:
"clicking the Next button moves you to the next screen".

Important notes appear in a box like this.

Q Tips and tricks appear like this.

Reader Feedback

Feedback from our readers is always welcome. Let us know what you think about
this book, what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply drop an email to feedbackepacktpub. com,
making sure to mention the book title in the subject of your message.

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www . packtpub.com or email
suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

[31]

Preface

Customer Support

Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the Example Code for the Book

Visit http://www.packtpub.com/files/code/3933_Code.zip to directly
download the example code.

The downloadable files contain instructions on how to use them.

Errata

Although we have taken every care to ensure the accuracy of our contents, mistakes
do happen. If you find a mistake in one of our books —maybe a mistake in text or
code —we would be grateful if you would report this to us. By doing this you can
save other readers from frustration, and help to improve subsequent versions of

this book. If you find any errata, report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the let us know link, and entering
the details of your errata. Once your errata are verified, your submission will be
accepted and the errata will be added to the list of existing errata. The existing errata
can be viewed by selecting your title from http://www.packtpub. com/support.

Questions

You can contact us at questionse@packtpub.com if you are having a problem with
some aspect of the book, and we will do our best to address it.

[4]

Introduction to Web Mashups

Web mashups

Welcome to the world of web mashups! A web mashup is a new type of web
application that uses data and services from one or more external sources (usually
from the Internet) to build entirely new and different web applications. This

book shows you how to write web mashups using Ruby on Rails — the new web
application development framework.

The idea of taking data and services from various places and making them available
in a single application is not new. Data feeds such as RSS and ATOM feeds have
been around for a while, making information available for anyone to re-use in
another application. Screen scraping was a commonly used older technology that
takes content directly from another application's display. Portals where different
data and services were aggregated into portlets and displayed on the portal were
popular during the dot-com era. What's so different about web mashups?

The answer is that while older data and service aggregation technologies aggregate
and integrate in a fashion, a true web mashup creates a completely different and
new function out of the existing content and services, driving different purposes
and objectives.

The word mashup itself comes from the world of hip-hop music, where two or

more songs are mixed together to form a new song. Web mashups are primarily

web applications (though it is not a strict requirement). Web mashups also usually
mash up data and services that are available on the Internet — freely, commercially or
through other partnership agreements. The external sources that a mashup uses are
known as mashup APIs.

Introduction to Web Mashups

Ruby and Ruby on Rails

Ruby is a dynamic, object-oriented programming language that is highly suitable for
integrating various pieces of data and software together:

e Ruby is designed for programmer productivity and can be used to quickly
develop maintainable pieces of software.

¢ Ruby is interpreted in real time, meaning that whatever is coded can be
executed immediately without compilation.

¢ Ruby has a significant number of libraries that can be easily re-used through
the gem packaging mechanism.

Ruby on Rails is an open-source full stack web application framework built on Ruby.
Ruby on Rails follows two basic guiding principles — Convention over Configuration
and Don't Repeat Yourself (DRY).

Convention over Configuration is a programming design that favors following

a certain set of programming conventions instead of configuring an application
framework. Certain commonly used configurations (by convention and not by
rule) are pre-set and the framework just works if you follow those conventions. For
example in Ruby on Rails, the convention states that a controller for a model object
Book will be called BookController and all view pages relating to that controller
will be kept in a folder called book.

DRY is a principle that focuses on reducing information duplication by keeping any
piece of knowledge in a system in only one place. For example, in ActiveRecord

(a major component of Ruby on Rails), schema information doesn't need to be
duplicated in complex XML configuration files but is derived from the database
schema itself. If the schema changes, the model changes accordingly, without the
need to make changes in other parts of the system.

All this translates into a highly productive development framework in which web
applications can be developed, deployed, and maintained easily. This framework,
coupled with the fact that it uses Ruby, makes it an excellent platform for developing
web mashups.

For more in-depth discussion into Ruby's capabilities I would recommend
you look at Programming Ruby: The Pragmatic Programmer's Guide by Dave
- Thomas, Chad Fowler, and Andy Hunt as well as The Ruby Way, Second
% Edition: Solutions and Techniques in Ruby Programming by Hal Fulton.
A5

The recommended reading for Ruby on Rails is Agile Web
Development with Rails, Second Edition by Dave Thomas and David
Heinemeier Hansson.

[6]

Chapter 1

A note of caution here — this book is written with Rails 1.2.x in mind and the projects
and examples in this book follows this version. There is no significant change in the
projects though, if you choose to use Rails 2.x instead. As of writing, Rails does not
work with Ruby 1.9. If you're a complete beginner with Ruby and Ruby on Rails I
would recommend you flip through the books mentioned in the information box
opposite before plunging into this one.

Types of web mashups

There are some existing classifications of mashups in various literatures available

on this subject though none are authoritative. In many cases, web mashups are
categorized according to their functionality; for example, some define data mashups,
photo and video mashups, news mashups, and business mashups. However, in this
book, I classify web mashups by how they are used in building an application. From
this perspective, we can see two broad types of web mashups:

e A fully standalone mashup application.

¢ Anembedded mashup plugin.

A mashup application is a web mashup that provides a complete set of functions
for the user. This means a mashup application is the entire purpose of the system.
For example, a mashup might take data from Flickr, the photo storage and sharing
application and mash it up with Google Maps, the online mapping application to
display photos that come from a particular geographical area. By themselves, neither
Flickr nor Google Maps are able to provide these features. However, this mashup's
functionalities only come from combining both APIs; the web application cannot
exist without the APIs. The functionality of the mashup is a synergistic product of
creative usage of APIs from both sources.

A mashup plugin, on the other hand, only provides part of the functionality of

an existing web application. For example a leave (time off work) submission and
approval application's core functionality is to allow users to submit and approve
leave as part of an HR process. A mashup plugin can be embedded into this
application to allow an employee to apply optionally for leave through an online
calendar and send a text message to the manager to alert him or her. The data from
the online calendar is passed to the core application and also the text messaging APIs
to enhance the value of the core application. However, the leave submission and
approval application can still exist and its core functionality is not reduced without
the mashup plugin.

[71

Introduction to Web Mashups

The difference might not be apparent at first glance, but the thinking behind the
mashups and their creation can be quite different. Mashup plugins are usually
created to supplement an existing application that is probably not a mashup. They
are a means of providing more services and data to the user of the application.
Mashup applications, on the other hand, are created mashups in the first place and
all the functionalities are derived from the mashup APIs they source from.

This has an interesting implication in developing web mashups. While many

still regard web mashups as interesting technology toys and probably the latest
buzzword alongside AJAX and Web 2.0, this classification of web mashups allow us
to see mashups not just as Web 2.0 startup applications but potential value-added
services for our existing applications. While mashup applications are an exciting and
growing phenomenon on the Internet, mashup plugins will probably provide the
most practical way of using mashups immediately within an existing environment.

What can | do with web mashups?

So what is in it for you? I assume you are a programmer, either professional or
amateur, looking perhaps to extend your repertoire of skills and capabilities to
develop and maintain software more easily, better, and faster.

Web mashups represent a new way of developing software and along with any new
development techniques come opportunities and risks. Here's an example of what
you can do with mashups:

e Create a platform for a new breed of applications

e Provide access to a large set of external data and service sources

e Innovate and create extra value for your existing applications quickly
e Save on development and maintenance

e Leverage on common or widely available external applications and integrate
them into your application

As a new breed of applications

Web mashups are a new breed of web applications (Wikipedia defines a mashup as a
web application hybrid). While most prominent web mashups use publicly available
APIs like Google Maps, Amazon ECS, and so on, this is not the only way to do
mashups. Significant innovation can be achieved with further aggregation and
hybridization of code and data from publicly available APIs, with private data as
well as private applications.

[8]

Chapter 1

The idea behind web mashups is creativity and innovation in new data and services,
not just aggregation of existing ones, which most of the older technologies focus on.
In comparison with portals, web mashups differ because portals aggregate and dish
out content and applications in discrete packages, whereas mashups integrate the
data and services together and serve them out as a single application.

An example of this is that while a portal will happily display a map of your current
location, your address book, and today's astrology readings in 3 different portlet
windows, a mashup will display the astrology readings of 10 of your friends who are
closest to you, in an online map occupying the whole browser space.

This integrated and mashed up approach to programming can provide much insight
into the way we program applications.

Access large sets of external sources

There are an increasing number of applications on the Internet providing an amazing
variety of data and services as APIs or data sets for mashups. A quick check on the
Programmable Web (http://www.programmableweb.com), which hosts a directory
listing mashup APIs as well as mashup applications, shows up service APIs ranging
from social networks to sending snail mail through the Internet. You can also get
tons of data from hotel bookings to government spending data.

With the wealth of these external data sources, you can build amazing new
applications that bring these data and services into meaningful new services. While
mashups are not the only way to consume large sets of external sources of data and
services, they are probably the most creative. Buzzword aside, anytime you take data
or services from another application, you're already doing a mashup.

Innovate and create extra value for your
application

If you have an existing application already, web mashups can allow you to innovate
and create new value to your application by grafting new functionality through

the external sources. For example, if you run a reservation application, you can
alert your user through text messages from an SMS mashup API, add the date of
reservation into his or her Google Calendar account through Google Calendar APIs,
and show the location of the venue on Yahoo Maps.

[o]

Introduction to Web Mashups

Save on development and maintenance

Using mashups you can build new functions much faster and save on the
development and maintenance effort. For example, if you are the developer

of a facilities reservation system you don't want to spend time mastering the
development of a text message sending component, which you normally would have
to do if you wanted to have that feature.

Besides development, you can also reduce the maintenance of a feature that is
outside your core domain. While this is often critical for startups, it is equally
important for larger organizations that want to focus on their core domain. In the
example given earlier, you don't want to spend time developing and maintaining a
text-messaging component—you'll want to leave it to the text-messaging experts to
do their job.

Leverage on and integrate common and
widely available external applications

Besides saving on effort, instead of doing it yourself —you might want to leverage
on common and popular applications to do the work for you. Effort aside,

such applications already have a widespread user base that is familiar with the
functionality. You can tap these users to extend your own user base and use the
features of these applications to give an easily recognizable interface for your users.

For example, if you want online calendaring features, you wouldn't want to
redevelop another Google Calendar. Instead, you would mash up Google Calendar
APIs into your application and use their interface to provide something more
familiar to your users.

Things to watch out for when doing web
mashups

With all the exciting talk on mashups, it's important to realize that, as with any new
technology and way of programming, the road is usually fraught with dangers.
Rightly the map around mashups should have bright neon lights flashing 'Here

Be Dragons'. Here are some possible problems (but not all) you might face when
developing web mashups:

¢ Unreliable external APIs
e Commercial dependency on third party data and services

e Losing your users to external source providers

[10]

Chapter 1

Unreliable external APIs

One of the most common complaints you will encounter as you develop web
mashups is that you are highly, if not totally, dependent of the reliability of the
mashup APIs you use. The two critical aspects of a web application —availability and
response time —are not under your control, especially from sources that are provided
freely to you.

Unfortunately at this point in time there is no viable way of resolving this
completely. The only way of ensuring full availability and response time that

meets your own requirements is to not have external dependencies at all. This is not
possible of course, because web mashups are all about using external data

and services.

However there are a number of ways to work around this issue:

¢ Do not use mashups for mission-critical services. If the service is mission
critical for you or your user, don't use mashups or at least not those that fail
to guarantee certain availability and response time.

e Have an agreement (normally commercial) with your external mashup API
provider that provides back-to-back service agreements with your own
services. For example, if you promise 98% uptime, make sure you have an
agreement with your provider that also agrees to 98% uptime.

e Design your mashup to have graceful error handling. This could range from
a user-friendly error page to a caching system for data feeds and even a
standby secondary service provider. For example, if you have a mashup that
sends text messages to your users, you can do a mashup with more than one
provider —if a provider fails you, quickly switch to another.

This issue is generally more difficult to accept in mashup applications because
should core functionality of the system be compromised, it is difficult to proceed.
In any case, catering and planning for backup or alternatives in case of an external
source breakdown is a must for all mashups if you intend to go into production.

Commercial dependency

This problem is related to the first. Besides being dependent on the external APIs for
functionality, the larger issue could be that the provider of the external API changes
its service partially or completely. This could range from the provider being shut
down altogether, to the provider changing its business model or commercial terms
and it becoming no longer viable to continue with that provider anymore. Even
simpler issues like changes in API parameters and accessibility can potentially cause
service outage.

[11]

Introduction to Web Mashups

For example, a free service could start to charge a fee (or increase its existing fees)
and you can no longer afford to include it in your mashup. Sometimes the service
itself is no longer sustainable because of licensing issues or the company behind the
service abandons its business model in pursuit of another revenue source.

This problem is more acute in areas where the provider is the only one around.
Again, planning for alternatives is important if you intend to go into production
because this problem can potentially kill your mashup altogether. Some possible
defenses against this risk:

e Avoid using mashups in cases where there is only a single provider.

e Plan for backups and be alert to the happenings of the external providers
you're using. Keep an active lookout for API changes as well as news on
the company providing your sources. For example, if an online mapping
provider is being bought by Google and you use either Google Maps or the
online mapping provider's sources you should be wary that either one or
both services are likely to change.

e Be aware of the competition available to the providers you're using and
design your mashup for easy switching. For example, if you need an online
map make sure you're familiar with more than just Google Maps and design
your system to be able to switch to another online mapping service easily.

Losing your users

Another problem might not be related to reliability or availability at all. If your
mashup becomes commercially interesting, it is sometimes quite easy for your
external source API provider to extend their existing functionality to include yours
and you to be left with an 800-pound gorilla in your backyard. A related risk is for
your users to decide that if they are already using the external provider anyway, they
might as well switch over to it completely and bypass your mashup altogether.

Again both risks are more likely for mashup applications since a mashup
application's main value is in the creative combination of the external sources.
Mashup plugins are less likely to encounter this because your main application
already has functionality that should be different from external APIs (or else you
might want to ask yourself why you're doing it!).

The main defense against such risks is to continually innovate and possibly include
more APIs. A mashup application that combines two APIs creatively is more likely
to be made irrelevant than a mashup application that combines three, four, five or
more APIs and uses them in a creative way that none of your external providers can
match by themselves. Remember that your main advantage in creating a mashup
application is that you are able to be the best of breed by combining the best aspects
and features of various providers to create a unique service for your users.

[12]

Chapter 1

At the end of the day, although there are significant risks in creating web mashups,
there are always ways of mitigating them. Ultimately it's up to you to decide if the
risks are worth taking compared to the services you're providing in your mashup.

How this book works

The approach I use in this book is pragmatic and direct and tends to be hands-on. If
you're not a practicing programmer, you might want to dust off your programming
books and read them again!

There are seven mashup projects in this book, with one chapter per project. Each
chapter has the following sections:

e What does it do?

¢ Domain background

e Requirements overview

e Design

e Mashup APIs on the menu
¢ What we will be doing

e Summary

Each chapter explains the technical (and some domain) aspects of what the project
does in increasing levels of difficulty and complexity. The first few chapters will be
on simpler mashups and we gradually move on to more complex ones. Also, as you
progress with the chapters there are more assumptions made on your abilities to
understand how mashups work. For example, the first few chapters describe how
you can get accounts in the various mashup APIs but subsequent ones dispense

with this altogether, assuming that you can navigate your way to registering for your
own account.

The chapters tend to have less theory and more discussion on background
technology while focusing more on a step-by-step guide in building the project in the
chapter. The chapters also tend to be standalone though there are occasionally some
references back to earlier chapters for some background technology; so feel free to
explore them in any sequence you like.

The following explains each subsequent chapter's structure, section by section.

[13]

Introduction to Web Mashups

What does it do?

This section gives a brief summary of the mashup's functions and objectives. This is
normally just a paragraph or two.

Domain background

What follows after the summary of objectives is a description of the domain
background of the mashup's functions. For example, in Chapter 5 we will be
discussing how we can create a job board mashup. The domain background section of
the chapter gives a simple introduction to job boards, what they are and what they do.

Requirements overview

This section provides an overview of the requirements of the mashup we will be
creating in the chapter. It lists the requirements and objectives to meet in building the
project in the chapter.

Design
This section describes how we will be building the project, the rationale behind the
design, and how we approach the creation of the mashup.

Mashup APIs on the menu

This is a major section in the chapter, and it describes the list of mashup APIs that
we will be using to create the mashup. In the first few chapters we will also describe
how we register for the mashup APIs at the external sources. Later chapters will
dispense with this. All of the APIs are either freely available or have trial accounts
where you have limited access to the APIs.

This section also describes the various libraries we will be using to build the
mashups. This includes open-source libraries as well as libraries included in the
standard Ruby distribution. Whenever necessary there will be some discussion on
the theory behind the libraries and how they work.

What we will be doing

This section is the bulk of the chapter and goes through the step-by-step creation of
the project. All necessary code is shown and major steps are described in detail. Each
major step is explained in its own sub-section. In some cases additional information
is given to explain why certain aspects of the code are written that way.

[14]

Chapter 1

This section starts with the creation of a Ruby on Rails project and ends with a
final completion of the whole project. Most projects are coded in a straightforward
manner without much optimization. In some cases I will even go some way out to
code the project in a way that a more advanced Rubyist might find not following
the 'Ruby Way'. This is intentional as the purpose of the book is to focus on web
mashups and not on Ruby or Ruby on Rails, and the code should normally be very
readable by any programmer, even those less familiar with Ruby.

Summary

The chapter is finally wrapped up in a short summary that describes what we have
done in the chapter.

Ready?

So much for the brief introduction to web mashups! While some of the caveats in this
chapter sound scary, ultimately web mashups are a brave new world altogether, and
an exciting one for programmers.

It's time to jump into the projects, so let's begin and have fun!

[15]

'Find closest' mashup plugin

What does it do?

This mashup plugin allows your Rails website or application to have an additional
feature that allows your users to find the location of the closest facility from a
particular geographic location based on a specified search radius. This mashup
plugin integrates with your existing website that has a database of locations of

the facilities.

Building a kiosk locator feature for
your site

Your company has just deployed 500 multi-purpose payment kiosks around the
country, cash cows for the milking. Another 500 more are on the way, promising to
bring in the big bucks for all the hardworking employees in the company. Naturally
your boss wants as many people as possible to know about them and use them.

The problem is that while the marketing machine churns away on the marvels and
benefits of the kiosks, the customers need to know where they are located to use
them. He commands you:

"Find a way to show our users where the nearest kiosks to him are, and directions
to reach them!"

What you have is a database of all the 500 locations where the kiosks are located, by
their full address. What can you do?

‘Find closest’” mashup plugin

Requirements overview

Quickly gathering your wits, you penned down the following quick requirements:

1. Each customer who comes to your site needs to be able to find the closest
kiosk to his or her current location.

He or she might also want to know the closest kiosk to any location.
You want to let the users determine the radius of the search.

Finding the locations of the closest kiosks, you need to show him how to
reach them.

5. You have 500 kiosks now, (and you need to show where they are) but
another 500 will be coming, in 10s and 20s, so the location of the kiosks need
to be specified during the entry of the kiosks. You want to put all of these on
some kind of map.

Sounds difficult? Only if you didn't know about web mashups!

Design

The design for this first project is rather simple. We will build a simple database
application using Rails and create a main Kiosk class in which to store the kiosk
information including its address, longitude, and latitude information. After
populating the database with the kiosk information and address, we will use a
geolocation service to discover its longitude and latitude. We store the information in
the same table. Next, we will take the kiosk information and mash it up with Google
Maps and display the kiosks as pushpins on the online map and place its information
inside an info box attached to each pushpin.

Mashup APIs on the menu

In this chapter we will be using the following services to create a 'find closest'
mashup plugin:

e Google Maps APIs including geocoding services

e Yahoo geocoding services (part of Yahoo Maps APIs)

e Geocoder.us geocoding services

e Geocoder.ca geocoding services

e Hostip.info

[18]

Chapter 2

Google Maps

Google Maps is a free web-based mapping service provided by Google. It provides

a map that can be navigated by dragging the mouse across it and zoomed in and out
using the mouse wheel or a zoom bar. It has three forms of views —map, satellite and
a hybrid of map and satellite. Google Maps is coded almost entirely in JavaScript and
XML and Google provides a free JavaScript API library that allows developers to
integrate Google Maps into their own applications. Google Maps APIs also provide
geocoding capabilities, that is, they able to convert addresses to longitude and
latitude coordinates.

We will be using two parts of Google Maps:

o Firstly to geocode addresses as part of GeoKit's APIs
e Secondly to display the found kiosk on a customized Google Maps map

Yahoo Maps

Yahoo Maps is a free mapping service provided by Yahoo. Much like Google Maps it
also provides a map that is navigable in a similar way and also provides an extensive
set of APIs. Yahoo's mapping APIs range from simply including the map directly
from the Yahoo Maps website, to Flash APIs and JavaScript APIs. Yahoo Maps also
provides geocoding services. We will be using Yahoo Maps geocoding services as
part of GeoKit's API to geocode addresses.

Geocoder.us

Geocoder.us is a website that provides free geocoding of addresses and intersections
in the United States. It relies on Geo: : Coder: :US, a Perl module available for
download from the CPAN and derives its data from the TIGER/Line data set,
public-domain data from the US Census Bureau. Its reliability is higher in urban
areas but lower in the other parts of the country. We will be using Geocoder.us as
part of GeoKit's API to geocode addresses.

Geocoder.ca

Geocoder.ca is a website that provides free geocoding of addresses in the United
States and Canada. Like Geocoder.us. it uses data from TIGER/Line but in addition,
draws data from GeoBase, the Canadian government-related initiative that provides
geospatial information on Canadian territories. We will be using Geocoder.ca as part
of GeoKit's API to geocode addresses.

[19]

‘Find closest’” mashup plugin

Hostip.info

Hostip.info is a website that provides free geocoding of IP addresses. Hostip.info
offers an HTTP-based API as well as its entire database for integration at no cost. We
will be using Hostip.info as part of GeoKit's API to geocode IP addresses.

GeoKit

GeoKit is a Rails plugin that enables you to build location-based applications. For
this chapter we will be using GeoKit for its geocoding capabilities in two ways:

¢ To determine the longitude and latitude coordinates of the kiosk from its
given address

e To determine the longitude and latitude coordinates of the user from his or
her IP address

GeoKit is a plugin to your Rails application so installing it means more or less
copying the source files from the GeoKit Subversion repository and running
through an installation script that adds certain default parameters in your
environment . rb file.

To install the GeoKit, go to your Rails application folder and execute this at the
command line:

$./script/plugin install svn://rubyforge.org/var/svn/geokit/trunk

This will copy the necessary files to your RAILS_ROOT/vendor/plugins folder and
run the install.rb script.

[- Chapter2
= app
[components
[config
[db
[5 doc
£ lib
2 log
[5 public
| Rakefile
README
[2 script
[test
= tmp
[vendor
[0 plugins
[geokit
[5 ym4r_gm
gmaps_api_key.yml.sample
| init.rb
install.rb
[javascript
B3 lib
_| rakefile.rb
README
[tasks
= test

[20]

Chapter 2

Configuring GeoKit

After installing GeoKit you will need to configure it properly to allow it to work.
GeoKit allows you to use a few sets of geocoding APIs, including Yahoo, Google,
Geocoder.us, and Geocoder.ca.

These geocoding providers can be used directly or through a cascading failover
sequence. Using Yahoo or Google requires you to register for an API key but they are
free. Geocoder.us is also free under certain terms and conditions but both Geocoder.us
and Geocoder.ca have commercial accounts. In this chapter I will briefly go through
how to get an application ID from Yahoo and a Google Maps API key from Google.

Getting an application ID from Yahoo

Yahoo's application ID is needed for any Yahoo web service API calls. You can
use the same application ID for all services in the same application or multiple
applications or one application ID per service.

To get the Yahoo application ID, go to https://developer.yahoo.com/wsregapp/
index.php and provide the necessary information. Note that for this application
you don't need user authentication. Once you click on submit, you will be provided
an application ID.

Getting a Google Maps API key from Google

To use Google Maps you will need to have a Google Maps API key. Go to
http://www.google.com/apis/maps/signup.html. After reading the terms and
conditions you will be asked to give a website URL that will use the Google

Maps APL

For geocoding purposes, this is not important (anything will do) but to display
Google Maps on a website, this is important because Google Maps will not display if
the URL doesn't match. However all is not lost if you have provided the wrong URL
at first; you can create any number of API keys from Google.

Configuring evironment.rb

Now that you have a Yahoo application ID and a Google Maps API key, go to
environment .rb under the RAILS ROOT/config folder. Installing GeoKit should
have added the following to your environment . rb file:

Include your application configuration below

These defaults are

used in GeoKit::Mappable.distance to and in acts_as mappable
GeoKit::default units = :miles

[21]

‘Find closest’” mashup plugin

GeoKit::default formula = :sphere

This is the timeout value in seconds to be used for calls to the
geocoder web

services. For no timeout at all, comment out the setting. The
timeout unit is in seconds.

GeoKit::Geocoders::timeout = 3

These settings are used if web service calls must be routed through
a proxy.

These setting can be nil if not needed, otherwise, addr and port
must be filled in at a minimum. If the proxy requires authentication,
the username and password can be provided as well.
GeoKit::Geocoders: :proxy addr = nil

GeoKit::Geocoders: :proxy port = nil

GeoKit::Geocoders: :proxy_user = nil

GeoKit::Geocoders: :proxy pass = nil

This is your yahoo application key for the Yahoo Geocoder

See http://developer.yahoo.com/fag/index.html#appid and
http://developer.yahoo.com/maps/rest/Vl/geocode.html

GeoKit: :Geocoders: :yahoo = <YOUR YAHOO APP ID>

This is your Google Maps geocoder key.

See http://www.google.com/apis/maps/signup.html and
http://www.google.com/apis/maps/documentation/#Geocoding Examples
GeoKit: :Geocoders: :google = <YOUR GOOGLE MAPS KEY>

This is your username and password for geocoder.us

To use the free service, the value can be set to nil or false. For
usage tied to an account, the value should be set to

username :password.

See http://geocoder.us and

http://geocoder.us/user/signup

GeoKit::Geocoders: :geocoder us = false

This is your authorization key for geocoder.ca.

To use the free service, the value can be set to nil or false. For
usage tied to an account, set the value to the key obtained from
Geocoder.ca

See http://geocoder.ca and

http://geocoder.ca/?register=1

GeoKit::Geocoders: :geocoder ca = false

This is the order in which the geocoders are called in a failover
scenario

If you only want to use a single geocoder, put a single symbol in
the array.

Valid symbols are :google, :yahoo, :us, and :ca

Be aware that there are Terms of Use restrictions on how you can
use the various geocoders. Make sure you read up on relevant Terms of
Use for each geocoder you are going to use.

GeoKit: :Geocoders: :provider order = [:google, :yahoo]

[22]

Chapter 2

Go to the lines where you are asked to put in the Yahoo and Google keys and change
the values accordingly. Make sure the keys are within apostrophes.

Then go to the provider order and put in the order you want (the first will be tried; if
that fails it will go to the next until all are exhausted):

GeoKit: :Geocoders: :provider order = [:google, :yahoo]

This completes the configuration of GeoKit.

YM4R/GM

YM4R/GM is another Rails plugin, one that facilitates the use of Google Maps APlIs.
We will be using YM4R/GM to display the kiosk locations on a customized Google
Map. This API essentially wraps around the Google Maps APIs but also provides
additional features to make it easier to use from Ruby. To install it, go to your Rails
application folder and execute this at the command line:

$./script/plugin install svn://rubyforge.org/var/svn/ymé4r/Plugins/GM/
trunk/ym4r gm

During the installation, the JavaScript files found in the RAILS_ROOT/vendors/
plugin/javascript folder will be copied to the RAILS ROOT/public/javascripts
folder.

A gmaps_api_key.yml file is also created in the RATLS ROOT/config folder. This file
is a YAML representation of a hash, like the database.yml file in which you can set
up a test, development, and production environment. This is where you will put

in your Google Maps API key (in addition to the environment . rb you have
changed earlier).

For your local testing you will not need to change the values but once you deploy
this in production on an Internet site you will need to put in a real value according to
your domain.

What we will be doing

As this project is a mashup plugin, normally you would already have an existing
Rails application you want to add this to. However for the purpose of this chapter, I
show how the mashup can be created on a fresh project. This is what we will

be doing;:

e Create a new Rails project

o Install the Rails plugins (GeoKit and YM4R/GM) that will use the
various mashup APIs

[23]

‘Find closest’” mashup plugin

e Configure the database access and create the database
e Create the standard scaffolding

e Populate the longitude and latitude of the kiosks

e Create the find feature

e Display the found kiosk locations on Google Maps

Creating a new Rails project

This is the easiest part:

$rails Chapter2

This will create a new blank Rails project.

Installing the Rails plugins that will use the

various mashup APlIs

In this mashup plugin we'll need to use GeoKit, a Ruby geocoding library created by
Bill Eisenhauer and Andre Lewis, and YM4R/GM —a Ruby Google Maps mapping
API created by Guilhem Vellut. Install them according to the instructions given in
the section above.

Next, we need to create the database that we will be using.

Configuring database access and creating the
database

Assuming that you already know how database migration works in Rails, generate a

migration using the migration generator:

$./script/generate migration create kiosks

This will create a file 001 _create kiosks.rb file in the RATILS ROOT/db/migrate
folder. Ensure the file has the following information:

class CreateKiosks < ActiveRecord::Migration
def self.up
create table :kiosks do |t]

t.column :name, :string
t.column :street, :string
t.column :city, :string

o+

.column :state, :string

[24]

Chapter 2

t.column :zipcode, :string
t.column :1ng, :float
t.column :lat, :float

end

end
def self.down
drop table :kiosks
end
end

GeoKit specifies that the two columns must be named lat and 1ng. These two
columns are critical to calculating the closest kiosks to a specific location.

Now that you have the migration script, run it to create the Kiosk table in your
RAILS ROOT folder:

Now that you have the migration script, run migrate to create the Kiosk table in your
RAILS ROOT folder:

$rake db:migrate

This should create the database and populate the kiosks table with a set of data. If it
doesn't work please check if you have created a database schema with your favorite
relational database. The database schema should be named chapter2 development.
If this name displeases you somehow, you can change it in the RAILS_ROOT/config/
database.yml file.

Creating scaffolding for the project

You should have the tables and data set up by now so the next step is to
create a simple scaffold for the project. Run the following in your
RAILS ROOT folder:

$./script/generate scaffold Kiosk

This will generate the Kiosk controller and views as well as the Kiosk model.
This is the data model for Kiosk, in the kiosk. rb file. This is found in
RAILS ROOT/app/models/.

class Kiosk < ActiveRecord: :Base
def address
"#{self.street}, #{self.city}, #{self.state}, #{self.zipcode}"
end
end

[25]

‘Find closest’” mashup plugin

Just add in the address convenience method to have quick access to the full address
of the kiosk. This will be used later for the display in the info box.

Populating kiosk locations with longitude and
latitude information

Before we begin geolocating the kiosks, we need to put physical addresses to them.
We need to put in the street, city, state, and zipcode information for each of the
kiosks. After this, we will need to geolocate them and add their longitude and
latitude information. This information is the crux of the entire plugin as it allows you
to find the closest kiosks.

In addition you will need to modify the kiosk creation screens to add in the
longitude and latitude information when the database entry is created.

Populate the database with sample data

In the source code bundle you will find a migration file named 002_populate_
kiosks.rb that will populate some test data (admittedly less than 500 kiosks) into
the system. We will use this data to test our plugin. Place the file in RATLS_ROOT/db/
migrate and then run:

$rake db:migrate

Alternatively you can have some fun entering your own kiosk addresses into the
database directly, or find a nice list of addresses you can use to populate the database
by any other means.

Note that we need to create the static scaffold first before populating the database
using the migration script above. This is because the migration script uses the Kiosk
class to create the records in the database. You should realize by now that migration
scripts are also Ruby scripts.

Bulk adding of longitude and latitude

One of the very useful tools in Ruby, also used frequently in Rails, is rake. Rake is

a simple make utility with rake scripts that are entirely written in Ruby. Rails has a
number of rake scripts distributed along with its installation, which you can find out
using this command:

$rake --tasks

[26]

Chapter 2

Rails rake tasks are very useful because you can access the Rails environment,
including libraries and ActiveRecord objects directly in the rake script. You can
create your own customized rake task by putting your rake script into the
RAILS ROOT/lib/tasks folder.

We will use rake to add longitude and latitude information to the kiosks records that
are already created in the database.

Create an add_kiosk_coordinates.rake file with the following code:

namespace :Chapter2 do
desc 'Update kiosks with longitude and latitude information'
task :add kiosk coordinates => :environment do
include GeoKit::Geocoders

kiosks = Kiosk.find(:all)
begin
kiosks.each { |kiosk]|
loc = MultiGeocoder.geocode (kiosk.address)

kiosk.lat = loc.lat

kiosk.lng = loc.lng

kiosk.update

puts "updated kiosk #{kiosk.name} #{kiosk.address} =»>
[#{loc.lat}, #{loc.lng}]l"

}

rescue
puts $!
end
end
end

In this rake script you first include the Geocoders module that is the main tool for
discovering the coordinate information. Then for each kiosk, you find its longitude
and latitude and update the kiosk record.

Run the script from the console in the RAILS_ROOT folder:
$rake Chapter2:add kiosk coordinates

Depending on your network connection (running this rake script will of course
require you to be connected to the Internet) it might take some time. Run it over a
long lunch break or overnight and check the next day to make sure all records have
a longitude and latitude entry. This should provide your mashup with the longitude
and latitude coordinates of each kiosk. However your mileage may differ depending
on the location of the kiosk and the ability of the geocoding API to derive the
coordinates from the addresses.

[27]

‘Find closest’” mashup plugin

Adding longitude and latitude during kiosk
creation entry

Assuming that you have a kiosks_controller.rb already in place (it would be
generated automatically along with the rest of the scaffolding), you need to add in a
few lines very similar to the ones above to allow the kiosk created to have longitude
and latitude information.

First, include the geocoders by adding GeoKit after the controller definition, in
kiosks_ controller.rb.

class KiosksController < ApplicationController
include GeoKit::Geocoders

Next, add in the highlighted lines in the create method of the controller.

def create
@kiosk = Kiosk.new(params|[:kiosk])
loc = MultiGeocoder.geocode (@kiosk.address)
@kiosk.lat = loc.lat
@kiosk.lng = loc.lng

if @kiosk.save
flash[:notice] = 'Kiosk was successfully created.'
redirect to :action => 'list'
else
render :action => 'new'
end
end

Finally, modify the update method in the controller to update the correct longitude
and latitude information if the kiosk location changes.

def update
@kiosk = Kiosk.find(params/[:1id])
address = "#{params[:kiosk] [:street]}, #{params[:kiosk][:cityl},

#{params[:kiosk] [:statel }"
loc = MultiGeocoder.geocode (address)
params [:kiosk] [:1lat] = loc.lat
params [:kiosk] [:1ng] = loc.lng
if e@kiosk.update attributes (params[:kiosk])

flash[:notice] = 'Kiosk was successfully updated.'
redirect to :action => 'show', :id => @kiosk

else
render :action => 'edit'

end

end

[28]

Chapter 2

Creating the find closest feature

Now that you have the kiosk data ready, it's time to go down to the meat of the code.
What you'll be creating is a search page. This page will have a text field for the user
to enter the location from which a number of kiosks closest to it will be displayed.
However, to be user-friendly, the initial location of the user is guessed and displayed
on the text field.

Create a search action in your controller (called search.rhtml, and place it in
RAILS_ROOT/app/views/kiosks/) to find your current location from the IP address
retrieved from your user.

def search

loc = IpGeocoder.geocode (request.remote ip)

@location = []

@location << loc.street address << loc.city << loc.country code
end

The remote_ip method of the Rails-provided request object returns the originating
IP address, which is used by GeoKit to guess the location from Hostip.info. The
location is then used by search.rhtml to display the guessed location.

Note that if you're running this locally, i.e. if you are browsing the application
from your PC to a locally running server (for example, off your PC as well), you
will not get anything. To overcome this, you can use a dynamic DNS service to
point an Internet domain name to the public IP address that is assigned to your PC
by your ISP. You will usually need to install a small application on your PC that
will automatically update the DNS entry whenever your ISP-assigned IP address
changes. There are many freely available dynamic DNS services on the Internet.

When accessing this application, use the hostname given by the dynamic DNS
service instead of using localhost. Remember that if you're running through an
internal firewall you need to open up the port you're starting up your server with. If
you have a router to your ISP you might need to allow port forwarding.

This is a technique you will use subsequently in Chapters 5 and 6.

Create a search.rhtml file and place it in the RAILS ROOT/app/view/kiosks folder
with the following code:

<hls>Enter source location</hl>

Enter a source location and a radius to search for the closest kiosk.
<% form tag :action => 'find closest' do %>

<%= text field tag 'location', @location.compact.join(',') %>

<%= select_tag 'radius', options for select({'5 miles' => 5, '10
miles' => 10, '15 miles' => 15}, 5) %>

<%= submit_tag 'find' %>

<% end %>

[29]

‘Find closest’” mashup plugin

Here you're asking for the kiosks closest to a specific location that are within a certain
mile radius. We will be using this information later on to limit the search radius.

After that, mix-in the Act sAsMappable module into the Kiosk model in kiosk. rb.

class Kiosk < ActiveRecord: :Base
acts_as mappable
end

This will add in a calculated column called (by default) distance, which you

can use in your condition and order options. One thing to note here is that the
ActsAsMappable module uses database-specific code for some of its functions, which
are only available in MySQL and PostgresSQL.

Next, create the find closest action to determine the location of nearest kiosks.

def find closest
@location = MultiGeocoder.geocode (params|[:location])
if @location.success
@kiosks = Kiosk.find(:all,
:origin => [@location.lat, @location.lng],
:conditions => "distance < #{params[:radius]}",
:order=>'distance')
end
end

The ActsAsMappable module mixed in also overrides the find method to include
an originating location, either based on a geocode-able string or a 2-element array
containing the longitude/latitude information. The returned result is a collection of
kiosks that are found with the given parameters.

Finally create a simple find_closest.rhtml view template (and place it in the
RAILS_ROOT/app/view/kiosks/ folder) to display the kiosks that are retrieved.
We'll add in the complex stuff later on.

<hl><%= h @kiosks.size %> kiosks found within your search radius</hl>

<% @kiosks.each do |kiosk| %>

<%= kiosk.name%>
</1i>

<% end %>

Do a quick trial run and see if it works.

$./script/server

[30]

Chapter 2

Then go to http://localhost:3000/kiosks/search. If you have some data, put in
a nearby location (e.g. from our source data: San Francisco) and click on 'find'. You

should be able to retrieve some nearby kiosks.

YYD Kiosks: search

[« » I e | @ hueo:/ flocalhost:3000/kiosks /search ~[Q~ Google

Enter source location

Enter a source location and a radius to search for the closest kiosk.

Smiles &) IE\
&
YY) Kiosks: find_closest
| « l | & | @ http://localhnost:3000/kiosks/find_closest O =(Q~ Google
3 Iél_osks found within your search
radius
1. kiosk_02
2. kiosk_03
3. kiosk_01
A

Displaying kiosks on Google Maps

Now that you know where the kiosks are located, it's time to show them on Google
Maps. For this we'll be using the YM4R/GM plugin. If you haven't installed this

plugin yet, it's time to go back and install it.

To add display to Google Maps, you will need to change the find_closest action as
well as the find_closest view template. First, add the £ind_closest action in the

kiosks_ controller.rb:

def find closest
@location = MultiGeocoder.geocode (params[:location])
if @location.success
@kiosks = Kiosk.find(:all,
:origin => [@location.lat, @location.lng],

:conditions => ["distance < ?", params/[:radius]],

:order=>'distance')
@map = GMap.new("map div")

[31]

‘Find closest’” mashup plugin

@map.control init(:large map => true, :map type => true)
create marker for the source location

@map.icon global init(GIcon.new(:image =>
"http://www.google.com/mapfiles/ms/icons/red-pushpin.png”,

:shadow => "http://www.google.com/
mapfiles/shadow50.png",

ticon_size => GSize.new(32,32),

:shadow size => GSize.new(37,32),

:icon anchor => GPoint.new(9,32),

:info window anchor => GPoint.new(9,2),

:info shadow anchor =>
GPoint.new(18,25)),

"icon source")
icon source = Variable.new("icon source")
source = GMarker.new([@location.lat, @location.lng],
:title => 'Source',
:info window => "You searched for kiosks

#{params[:radius]} miles around this source",

ticon => icon source)
@map.overlay init (source)
create markers one for each location found
markers = []
@kiosks.each { |kiosk]|
info = <<EOS
#{kiosk.name}

#{kiosk.distance from(@location).round} miles away

<a href="http://maps.google.com/maps?saddr=#{u(@location.to
geocodeable_ s) }&daddr=#{u(kiosk.address) }>directions here from
source

EOS

markers << GMarker.new([kiosk.lat, kiosk.lng]l, :title =>
kiosk.name, :info window => info)

}

@map.overlay global init(GMarkerGroup.new(true, markers), "kiosk
markers")

zoom to the source
@map.center_ zoom init([@location.lat, @location.lngl, 12)

end

end

[32]

Chapter 2

Google Maps APl is a JavaScript library and YM4R/GM code is a library that
creates JavaScript scripts to interact and manipulate the Google Maps API. Almost
all classes in the library correspond with an equivalent Google Maps API class, so
it is important that you are also familiar with the Google Maps API. The online
documentation comes in very useful here so you might want to open up the
Google Maps reference documentation (http://www.google.com/apis/maps/
documentation/reference.html) as you are coding.

Let's go over the code closely.

The first line creates a GMap object that is placed inside a <div> tag with the id
map_div while the second line sets some control options.

@map = GMap.new("map div")
@map.control init(:large map => true, :map_type => true)

The next few lines then create a GMarker object from the source location that the
user entered that uses a specific icon to show it then overlays it on the map. There
are several options you can play around with here involving setting the image to

be shown as the marker. For this chapter I used a red-colored pushpin from Google
Maps itself but you can use any image instead. You can also set the text information
window that is displayed when you click on the marker. The text can be in HTML so
you can add in other information including images, formatting, and so on.

create marker for the source location
@map.icon global init(GIcon.new(:image =>
"http://www.google.com/mapfiles/ms/icons/red-pushpin.png",
:shadow => "http://www.google.com/
mapfiles/shadow50.png",
:icon size => GSize.new(32,32),
:shadow _size => GSize.new(37,32),
:icon_anchor => GPoint.new(9,32),
:info window anchor => GPoint.new(9,2),
:info shadow anchor =>
GPoth.new(IS,25)), "icon source")
icon source = Variable.new("icon source")
source = GMarker.new([@location.lat, @location.lng],
:title => 'Source',
:info window => "You searched for kiosks

#{params[:radius]} miles around this source",
:icon => icon_source)

@map.overlay init (source)

[33]

‘Find closest’” mashup plugin

The lines of code after that go through each of the located kiosks and create a
GMarker object then overlay it on the map too. For each kiosk location, we put in an
info window that describes the distance away from the source location and a link
that shows the directions to get from the source to this kiosk. This link goes back

to Google and will provide the user with instructions to navigate from the source
location to the marked location.

Note that you need to URL encode the location/address strings of the source and
kiosks, so you need to include ERB: : Util as well (along with GeoKit::Geocoders).
This is the u () method. In kiosks controller.rb,add

include ERB::Util

then add the following (beneath the code entered above):

create markers one for each location found
markers = []
@kiosks.each
{ |kiosk|
info = <<EOS
#{kiosk.name}

#{kiosk.distance from(@location).round} miles away

<a href="http://maps.google.com/maps?saddr=#{u(@location.
to_geocodeable s) }&daddr=#{u(kiosk.address) }>directions here from
source
EOS
markers << GMarker.new([kiosk.lat, kiosk.lng],
:title => kiosk.name, :info window => info)

}

@map.overlay global init (GMarkerGroup.new(true, markers),
"kiosk_markers")

Finally the last line zooms in and centers on the source location.

zoom to the source
@map.center zoom init ([@location.lat, @location.lng], 12)

Now let's look at how the view template is modified to display Google Maps. The
bulk of the work has already been done by YM4R/GM so you need only to include a
few lines.

<hl><%= h @kiosks.size %> kiosks found within your search radius</hl>
<ols>

<% @kiosks.each do |kiosk| %>

<%= kiosk.name%>

<% end %>

[34]

Chapter 2

<%= GMap.header %>
<%= javascript include tag("markerGroup") %>
<%= @map.to_html%>
<%= @map.div(:width => 500, :height => 450)%>

Gmap . header creates the header information for the map, including YM4R/GM and
Google Maps API JavaScript files. We are also using GMarkerGroups so we need to
include the GMarkerGroup JavaScript libraries. Next, we need to initialize the map
by calling map. to_html. Finally we'll need to have a div tag that is the same as the
one passed to the GMap constructor in the controller (map_div). This is done by
calling the div method of the GMap object. To size the map correctly we will also need
to pass on its dimensions (height and width here).

And you're ready to roll! Although the page doesn't display the best layout,
you can spice things up by adding the necessary stylesheets to make the view
more presentable.

E Kiosks: find_closest
a €3 hitp: / /localhost:3000/kiosks /find _closest

3 hi_osks found within your search
radius

1. kiosk_02
2. kiosk_03
3. kiosk_01

‘Find closest’” mashup plugin

Summary

What we've learned in this chapter is to create a mashup with Ruby on Rails on a
number of mapping and geocoding providers including Yahoo, Google, geocoder.
us, geocoder.ca, and hostip.info. We learned to create a mashup that gives us a map
of the closest kiosks to a particular location, given an existing database of kiosks
that have location addresses. This is just an introduction to the synergistic value that
mashups bring to the table, creating value that was not available in individual APIs.
When they are all put together, you have a useful feature for your website.

[36]

Proxy mailing list
mashup plugin

What does it do?

This mashup plugin allows your Rails website or application to have a proxy mailing
list feature that includes email, SMS messages, and fax. A normal mailing list allows
a website to send their messages to its list of visitors or users. A proxy mailing list
allows a third-party user to send the messages to their own list of recipients, people
who are previously unknown to the website, on behalf of the website.

Building a proxy mailing list feature for
your website

Your boss calls you in to discuss a new feature for your company's website. There
is a new marketing initiative for your company's products. You have been chosen
to build in a new feature for the marketing folks on the 14 floor that allows them
to send out regular email marketing messages to clients and potential clients. You
dutifully write down the requirements for this mailing list feature:

e Import contacts from a spreadsheet containing the name of the client or
potential client into an internal database
e Allow internal marketing users to define email campaign messages

¢ Send email messages to the clients and potential clients at regular intervals

Doesn't look too hard! You walked away confidently.

Proxy mailing list mashup plugin

The next day your boss calls you in again. Oh surprise — there is a new requirement.
After some meetings, the marketing people decided that sending email messages is
not enough, now they want to send SMS messages and send faxes as well. Because
your clients are scattered around the world, the SMS messages and faxes also need
to be sent around the world! Sighing expectedly, you write down the additional
new requirements:

¢ Allow internal marketing users to define SMS and fax messages
¢ Send SMS messages to clients and potential clients
e Send faxes to clients and potential clients

e Messages need to be sent worldwide

You should have known better than to expect finalized requirements from the
first meeting!

You were still figuring out how to send SMS messages the next day when your boss
called for an emergency meeting with you. With a sinking feeling you walked into
his room.

The marketing people originally wanted to consolidate the contacts data from your
company's resellers around the world into an spreadsheet file, which is used to

feed into the website. However because of data privacy (and you suspect, other
commercial) issues, the resellers now refuse to give your company the contacts data
directly. Instead, the marketing people have struck a deal to let the resellers send the
marketing messages by themselves through your website. Worse, you are no longer
allowed to store any contacts information in your database.

You're stuck now! You don't have the contacts data and now you need to let the
resellers send the marketing messages? How can you do it?

Requirements overview

You consolidated the following (hopefully final now) set of requirements:

1. Allow internal marketing users to define email, SMS, and fax messages in
a template

2. Allow the external resellers to customize the pre-defined marketing messages
according to their list of contacts

3. Send email, SMS, and fax messages to the clients and potential clients around
the world on a regular basis

4. You cannot store any contacts information

Mashups to the rescue!

[38]

Chapter 3

Design
Let's see how we can use Rails and some mashup magic to build this new feature for
your website.

Define messages

Create a simple Rails web application that allows the marketing user to construct
message templates that contain the messages to be sent via email, SMS text
messaging, and fax. This template can be used later as the basis for sending various
messages to the recipients of the marketing blitz.

Get contacts and customized message data

We need to get the reseller's contact information without storing it in our database.
To do this, we need to get the resellers to define or import their contacts into an
online spreadsheet. After that, the resellers need to export the spreadsheet in a data
format that is suitable for extraction and processing by our website. For this chapter,
we will show how this can be done through Google Spreadsheet and EditGrid, two
popular online spreadsheets. The reseller will upload his or her contacts from his or
her spreadsheet into Google Spreadsheet or EditGrid, and then publish a link to this
spreadsheet. Subsequently the reseller will select a message template and create a
message-sending job by providing this link to his or her contacts.

Send messages

The number of contacts provided by each reseller is normally high, so it is unrealistic
to send the messages interactively (that is, to send the message on the click of a
button in the user interface and wait for a response that indicates that the messages
all sent). There are two alternatives for sending messages in a non-interactive way.
One method is to create a threaded job that is separate from the main process and
run it in the background when the reseller clicks on the send button. The other
method is to create jobs that are stored in the database and retrieved separately by
another process at regular intervals to be processed independently. I have chosen to
use the second method of executing the send-message tasks in this chapter, as it is
the simpler of the two.

Emails can be done easily through ActionMailer, with messages captured from
the message template. However, SMS and fax messages are more complex. Let's
go through some basic background knowledge on these types of messages before
coming up with the strategies on sending them.

[39]

Proxy mailing list mashup plugin

Sending SMS messages

SMS or Short Message Service is a technology that enables the sending and receiving
of messages between mobile phones. SMS was part of the GSM (Global System

for Mobile Communications) standards at the beginning but was later ported to
technologies like CDMA and TDMA. SMS is very popular and widely used as it is
supported by all GSM mobile phones.

When an SMS message is sent from a mobile phone, it will reach an SMSC in the
GSM network. The SMSC then forwards the SMS message towards the destination,
passing through one or more network elements, including other SMSCs. If the
recipient is unavailable (for example, when the mobile phone is switched off), the
SMSC will store the SMS message and forward it when the recipient is available.

base station

SMSC

SMSC within
p 4 the GSM Network
g — PR

base station

An SMSC normally belongs to a single network. For SMSes to reach mobile phones
in different GSM networks, an SMS gateway is used to bridge between SMSCs in
different networks.

base station
GSM Network #1

& d— Yy ———» SMSC A

SMS
Gateway

y

& 0 «— <+«——{ SMSC B
>

GSM Network #2

base station

[40]

Chapter 3

SMS gateways are also used to act as a concentrator that can access multiple SMSCs.
This allows applications that send SMSes to channel their messages through a single
gateway to multiple SMSCs without the need to connect to each SMSC individually.
This is the model many bulk SMS providers (including Clickatell, the provider we're
using in this chapter) use.

SMSC #1

SMSC 1

SMS gateway f SMSC #2

SMS
Gateway
4

[«— SMSC 2

SMSC #3

SMSC 3

One SMS message can contain at most 140 bytes of data, so one SMS message can
contain up to:

e 160 characters if the default GSM 7-bit character (ASCII) encoding is used
o 140 characters if 8-bit character encoding is used
e 70 characters if 16-bit Unicode UCS2 character encoding is used

Besides text, SMS messages can also carry binary data like ringtones, pictures,
operator logos, wallpapers, animations, VCards, and WAP configurations to a mobile
phone. However, such uses are vendor-specific and are not as widely supported as
text-based SMS.

Probably the best way to send SMS messages in bulk is through a bulk SMS provider.
A provider with wide global coverage will also allow us to send SMS messages
around the world. As most bulk SMS providers also provide APIs for developers,
this ties in nicely with our requirements to send SMSes to a large number of people
globally. Clickatell, the SMS provider we're using in this chapter provides a bulk
SMS gateway and numerous APIs to connect to it.

Sending fax messages

Fax or facsimile is a telecommunications technology used to transfer copies of
documents over the telephone network. Fax is most commonly used to send
documents between two fax machines connected to a telephone line. A fax machine is
a three-in-one machine, with a scanner, a modem, and a printer rolled into one. The
scanner extracts an image of the document in digital form, the modem sends it across
to the other fax machine via the telephone network, while the printer reproduces it
on the other end, and vice versa. However Internet-based faxing services and multi-
function printers are fast replacing the traditional standalone fax machines.

[41]

Proxy mailing list mashup plugin

Various Internet fax services now provide email and API services for users to

send faxes directly from a file, removing the need for scanning and sending via a
telephone network. The best way to programmatically send faxes would be through
a fax service provider and for this chapter we will be using Interfax and sending
faxes through an XML-RPC-based web service.

Mashup APIs on the menu

After reviewing the strategy and determining the best way to design for the
requirements, we have established the following mashup APIs that we will use for
this chapter:

e Google Spreadsheet and/or EditGrid for the user to store and share the
contacts information

e C(lickatell to send SMS messages
e Interfax to send faxes

The APIs in this chapter have free developer trial accounts so you can experiment
with them a bit. However, the APIs we are using in this chapter are not free for full
commercial use and they have some restrictions on their usage.

We will not be using any specific Ruby libraries for this mashup as the APIs we

use doesn't require them. Instead we will be using standard Ruby libraries that are
available out of the box from any Ruby installation, in particular the Net : : HTTP
module, which allows us to connect to XML-RPC web services and REST-based
HTTP APIs. We will also use the built-in CSV module to simplify conversion of CSV
formatted data into arrays.

Let's run through these online APIs as well as the Net : : HTTP module.

Google Spreadsheets

Google Spreadsheets (http://docs.google.com) is an online spreadsheet service
offered by Google as part of its Google Docs and Spreadsheets offering. Google
Docs and Spreadsheets is a Web-based word processor and spreadsheet application
that allows users to create and edit documents and spreadsheets online while
collaborating in real-time with other users. Google Docs and Spreadsheets combine
the features of two services, Writely and Spreadsheets.

Users can create the spreadsheet online or upload spreadsheets of various formats
including CSV, Excel, and OpenDocument (.ods for spreadsheets). There is a limit
to each spreadsheet, which is 10,000 rows, 256 columns, or 100,000 cells, whichever
limit is reached first. When importing spreadsheets, the import file cannot be larger

[42]

Chapter 3

than 1MB in size. Users are also able to export their documents in various output
formats, which include CSV, Excel, OpenDocument, PDF, and so on. Google
Spreadsheets is free, and any Google user can get it as part of the package.

Google Spreadsheets has its own API, which uses part of the Google Data APIs.
This API requires user account authentication to access information on private
spreadsheets. However for this chapter we will not be using access-controlled data
in Google Spreadsheets and only the published spreadsheets in a comma delimited
(CSV) format.

EditGrid

EditGrid is a free online spreadsheet service with paid subscription for
commercial/enterprise users. EditGrid allows users to create an online
spreadsheet or import spreadsheets in various formats including CSV, Excel, and
OpenDocument. Users are also able to export their documents in various output
formats, which include CSV, Excel, OpenDocument, PDF, and so on.

You will need to register for a free personal account, which requires only a login user
name and a password: http://www.editgrid.com.

EditGrid Login Sign-up Finder

Personal Account Sign-up
We offer personal accounts to the world of users for FREE. The more users we

have, the better software we can make from our users' feedback. Sign up now
and join together in experiencing EditGrid!

Please specify a login name and a password

Login Name
Password
1. Select an Account Type Eesuind doan

2. Fill in Your Details

3. Begin Using EditGrid Your email address
Email

(Optional)

Notify me of

[} Important announcements, system upgrades
[News, events, promotions (EditGrid only)

Please review our Terms of Use and Privacy Policy. If you have any enquiries
about these terms, please contact us at compliance@tnc.hk.

(] 1 agree to the Terms of Use and Privacy Policy.

Sign Up and Begin Using EditGrid »

Home | News | Blog | Forum | Press | Terms | Privacy | Credits | Invite | AboutUs | Contacts A Web 2.0 Online Spreadsheet

| Jobs

[43]

Proxy mailing list mashup plugin

As with Google Spreadsheets, we will not use any of the private APIs but opt to
access the publicly available published spreadsheet in a CSV format.

Clickatell

Clickatell (http://www.clickatell.com)is a bulk SMS provider that provides
SMS messaging services and gateway for over 600 networks in almost 200 countries
for outbound messages, and 100 countries for inbound (two-way) messaging.
Clickatell allows developers to connect to its SMS gateway via various connectivity
options including HTTP/S, SMTP (email to SMS), XML, SMPP (Short Message Peer
to Peer protocol), FTP (file upload for SMS), and a COM object API. This provides
applications with the ability to send SMSes globally, bypassing the need to hook up
to local SMS providers individually.

Clickatell provides a trial account with 10 credits to allow developers to have
a head start in trying out its services. To create a trial account, go to
https://www.clickatell.com/central/user/client/stepl.php.

Trial our sarvice for free with best oreds suppied by Chokstel,
“48 fieids In BOLD are requined,

D you wish i
m Clickam news: —

[
BT

O (Recommended)
| SR IHE
Entar Security Code: | 537TRM

Do you sceapt Clickatalrs
T o Conitern? 2 ™

e

Sacurky & Privacy @

Chapter 3

Fill in the account creation form. You will be required to provide a mobile number.
This is important as in Step 2 a confirmation code is sent to your mobile number,
before a trial account is provided.

@CliCISG ell T

¥ Buy Now | @ My Account | (=] Contact Us

Home Messaging Solutions | Products F'rlclng andEn\rerage'j Success Storles | E:ompan',;"lr;fb | Parmers | Support

INFORMATION REQUEST: Express to
Heathrow = +/- 90 min. Operating
every 20 min (05:15-12:00) & every 30
min (12:00-22:30). Min 3 hrs for travel
between London Gatwick and London
Heathrow.

Registration

“fou are here: Registration

Trial our service for free with test credits supplied by Clickatell.
*All fields in BOLD are required.

Step 1: Register an acco Step 2: Verify your identity l

You will now need to enter codes sent to your email address and mabile number.

Once verifylng your detalls you will recelve your free SMS credits. Please note for security reasons
that these 10 free messages will contain pre-set Clickatell content.

Emall Verfification

verification emall has been sent to * sausheong@gmail.com®. Please retrleve the 6 digit
verification code from within this email and place in the field below: .

Emall Verification Code:

SMS Verification

verification SMS has been sentto ' 6590175988 . Please enter the 8 diglt code found within
the SMS message, Into the field below:

SMS Verification Code:

[Resend SMS Code |
' Complete Registration |

Security & Privacy ' ﬂ ’

Clickatell offers secure communications by encrypting all data to and from the site, and is authenticated by
Thawte. We are committed to your privacy. For more information please read our privacy policy.

About | Newsroom | Contact | Help | Terms | Privacy | Partner options | No Spam | Industry Affiiations

[45]

Proxy mailing list mashup plugin

After entering your confirmation code from both your email and mobile phones, you
will be presented with the homepage of your account.

© Clickatell

Wy e M Central l.. i

Automated Credit Card Billing NEW

We are now offering an automated credit card biling service which will bill your card wh your bal hes a
level pre-defined by you. Set up automated biling now.

! Important Note:
+ Once you have made a purchase, you wil be able to !
1 change the sender id and content of the message. !

Message Volume in August

SME Sent in August 2007
]
=
D
oa
e
4
2
10 11 1% 13 14 15 16 17 15 19 20 21 22 25 24 25 26 27 25 23 50 31
Day of the Month
MESSAGE SUMMARY API CONNECTIONS
Select | Pleaseselect: & o D APLID e
This Month:
0 Messages delivered
0 Undeliverable messages
0 Scheduled messages not yet delivered

CENTRAL NOTICES PURCHASE HISTORY 2007
- FHLY Mo Purchases Made

Coverage | Help Gentre | Contact Support | Terms Copyright @ 2007/8 Clickatell (Pty) Ltd : Bulk SMS Gateway

[46]

Chapter 3

Notice the balance you have at the top of the screen. This is number of credits you
have been given for the trial account. If you run out you can click on a conveniently
located button to buy more credits through various payment methods. Take

note of the Client ID provided, you will need it when you log into the Clickatell
management console. To allow for access to an HTTP AP], click on the Manage My
Products link.

sy merase e CENEFA

I Central Home | My Settings Manage my Products Eilur_ig _J. Message Reports [Help

Manage my Products My Connections:

My Connections
Converters Add Connection %
Two-Way Messaqging

Application Forms
Help Information
Two-Way Messaging

SA Premium Rate Below you will find a quick overview of each connection type. Also take a look at a comparisen of Clickatell gateway
SA Premium Rate MT features and supported messane types
Namibian Premium Rate

HTTPIS: Our most popular connection, HT TP is one of the simpler forms of communicating to the Clickatell AP, It is
used in the form of a HTTP/internet Post. Add connection

Clickatell ICM

SMTP: Ancther form favorite, the SMTP AP| allows messages that are sent via e-mail to be converted to SMS.
SMPT is popular with customers who already have an e-mail messaging system in place. Add connection

COM OBJECT: Popular with windows-based developers, the Clickatell COM APlobject's rich set of methods and
definitions make it easy for a user to integrate SMS sending into their programs or ASP pages. Add connection

XML: If you are familiar with XML, Clickatell offers an XML interface with its own set of DTDs. Currently supports
XML over HTTP. Add connection

ETP: Suitable for cnce off, high volume messaging. The FTP uplead facility allows customers to upload text files to
Clickatell's FTP site, and have the files automatically dispatched to message recipients. Add connection

SMPE: Our most rebust connection, suitable for customers who send large velumes of traffic. Clickatell offers a

global SMPP connection using the SMPP 3.3 standard. Custormers are required to have SMPP client software in
place, and unlike our other APls there are minimum volume reguirements when using SMPP. Add connection

Coverane | Help Gentre | Gontact Support | Terms Copyright © 2007/8 Clickatell (Pty) Ltd : Bulk SMS Gateway

[47]

Proxy mailing list mashup plugin

Then from the drop-down list, select HTTP.

=/ Buy SMS Credits m

Manage my Products

My Connections
Converters

Two-Way Messaging
Application Forms

Two-Way Messaqging

SA Premium Rate

SA Premium Rate MT
Namibian Premium Rate
Clickatell ICM

HTTP APl

This product provides an interface between your applications and the Messaging Gateway. It is a lower level connectivity
option, but offers the maost functionality and flexibility for the Developer and Systems Integrator. With the APl you can set
up alert-based SMS delivery from your server, deliver information to your mobile sales staff and keep in contact with your
customers. This product is intended for machine-generated to User m i

Add HTTP API - Bold ltems Required

Name: chapter3

IP Lock Down:

Dial Prefix: | Singapore (65) $
Callback Url:

NOTE: submission of this form will delete any session_id currently valid for this api_id. Any application using this
| session_id will have to re-authenticate.

HELP INFORMATION

IP Lock Down:

This variable is used to increase the security of your account. Any reguests to the COM AP| from your
account not matching this |P address will be denied. You may have multiple IP Addresses separated by
commas e.g. 192.168.1.1, 192.168.1.2.

Dial Prefix:

If a lot of local numbers are sent with this COM AP which start with a zero, you can specify the default
country prefix to replace the leading zero. le: if you are sending primarily to the UK, you can specify that
the default prefix is 44. This will change the leading zero (if present) to 44.

Callback URL:
This URL when set and used in conjunction with the callback variable will enable your server to pick up
message delivery status. See PDF's for more information.

Coverage | Help Centre | Contact Support | Terms Copyright ® 2007/8 Clickatell (Pty) Ltd : Bulk SME Gateway

Select an appropriate name for this API. Optionally you can set the Dial Prefix if
you are sending a lot of SMSes to a particular country. You can also set a Callback
(to be explained in a later section) for Clickatell to call when reporting the status of
the sent message. You can also specify that only a particular IP address, or set of IP
addresses, can access this API. When you're done, click on the Submit button.

[48]

Chapter 3

Username:
3_gehang
ho S
Central Home My Settings Manage my Products Billing | Message Reporls | Help
Manage my Products My Connections:
My Connections
Converters Add Connection § Show All Connection Types %
Two-Way Messaging
Application Forms Mame Type APIID Dialing Code Last Used
Two-Way Messadin chapterd HTTP 3018001 65 Unknown
SA Premium Rate 1to1of1
SA Premium Rate MT
Namibian Premium Rate
Clickatell ICM Help Information

Below you will find a guick overview of each connection type. Also take a look at a comparison of Clickatell gateway
features and supported message types

HTTP!S: Our most popular connection, HTTP is one of the simpler forms of communicating to the Clickatell APL. It is
used in the form of a HTTP/Internet Post. Add connection

SMTP: Ancther form favorite, the SMTP AP allows messages that are sent via e-mail to be converted to SMS.
SMPT is popular with customers whe already have an e-mail messaging system in place. Add connection

COM OBJECT: Popular with windows-based developers, the Clickatell COM APlobject’s rich set of methods and
definitions make it easy for a user to integrate SMS sending into their programs or ASP pages. Add connection

AML: If you are familiar with XML, Clickatell offers an XML interface with its cwn set of DTDs. Currently supports
AML over HTTP. Add connection

FTP: Suitable for once off, high velume messaging. The FTP upload facility allows customers to upload text files to
Clickatell's FTP site, and have the files automatically dispatched to message recipients. Add connection

SMPP: Our most robust connection, suitable for customers who send large volumes of traffic. Clickatell offers a

global SMPP connection using the SMPP 3.3 standard. Customers are required to have SMPP client software in
place, and unlke our other APls there are minimum volume reguirements when using SMPP. Add connection

Coverage | Help Centre | Contact Support | Terms Copyright © 2007/8 Clickatell (Pty) Ltd : Bulk SMS Gateway

Take note of the API ID given here. We will need it when trying to access the HTTP
API from our mashup.

Interfax

Interfax is a fax service provider that has coverage in a large number of countries.
Interfax provides a number of API interfaces to its fax server including web services,
COM object API, and an email interface. Interfax also provides reports on faxes that
are sent or received through its servers. With Interfax, an application is able to send
text faxes, faxes from base-64 encoded binary documents like PDF documents, Excel
spreadsheets, and Word documents as well as receive faxes as TIF formatted images.

[49]

Proxy mailing list mashup plugin

Interfax provides a free trial account for developers but faxes sent from this trial
account will only reach a single fixed fax number. To be able to send to any other
fax numbers you need to subscribe to its commercial account. To sign up for its free
trial account, go to http://www.interfax.net/Scripts/Reg_BP.asp and fill in the
account creation form.

Developer Tools Prices Help Sign up Login

Email Interface

You zre here: > Developer Registration

Developer Registration
Need to correspond

This form lets you register as an InterFAX developer. Use this form if you wish to with us directly?
develop fax-enabled applications using our developer tools for resale or for in-

Contact our developer
house use.

support who will be
happy to answer any

Do not register with this form if you require InterFAX for any other use, such as questions

enabling fax transmission from users' desktops. In that case, please use the user
registration form.

Requested Username

Requested Password
Digits(0-9),Letters(A-Z,a-z) 4 - 16 characters

Repeat Requested Password

Designated Fax Number
This is the number to which you can fax for free

Country Code: Area code:Fax Number:
.

............. 7

Contact
Name

Company

Contact

Email
This is also the initial email address from which you can test the service. You can add/change

addresses from your login screens later. No free email domains allowed.

Country Singapore)

Optional Information

Product name

Short description of your application

Which developer tool will you be using?

] Web Service
] Email Interface
] COM Object

Check all that apply

Which of our API's will you be using?

How many end users currently use your app? (o o
How many end users are expected to use your app within 12 months? ‘o B
(Submit)

After submitting the form, you will be issued a Business Partner ID and instructions on how to start using InterFAX in
your development.

About | Contact | Privacy | Terms | Loain

@ Interfax Inc

[50]

Chapter 3

After creating the account, you will be given $10 for faxing pages and a business
partner ID. The business partner ID is not needed for sending faxes.

Net::HTTP

Ruby comes with a standard library for managing HTTP connections. While it is not
very sophisticated, it provides the essential and basic capabilities for an application
to connect to web applications through HTTP.

A basic HTTP Get command in Net : : HTTP goes like this:

require 'net/http'’

response = Net::HTTP.get response (URI.parse
("http://www.packtpub.com'))

puts response.body

This sends an HTTP Get to Packt Publishing's website and returns what the web
server delivers through that URL as a Net : : HTTPResponse object.

A basic HTTP post command in Net:HTTP goes like this:

require 'net/http’'
response = Net::HTTP.post form(URI.parse
('http://search.yahoo.com/search'),

{'p'=>'mashups'})
puts response.body

This code sends an HTTP Post to Yahoo's search engine with the parameter
'mashups' and it returns whatever search results are served from Yahoo, as a
Net : : HTTPResponse object.

To react according to the returned Net : : HTTPResponse object, we need to inspect
this object more closely. Net : : HTTPResponse is actually the parent object of a
hierarchy of HTTP response statuses. In order to check the status of the sent
command, we can run the response object through a case loop to check the actual
subclass and respond accordingly.

require 'net/http'
response = Net::HTTP.post form(URI.parse
('http://search.yahoo.com/search'), {'p'=>'mashups'})
case response
when Net::HTTPSuccess
puts response.body
else
puts response.error!
end

[51]

Proxy mailing list mashup plugin

This code indicates that if the response object is of the class Net : : HTTPSuccess
(HTTP code 2xx) it will print out the response body, otherwise it will just print out
the error code.

We will be using Net : : HTTP extensively in this chapter. In later chapters we will
introduce another built-in Ruby package that performs a similar function.

What we will be doing

Although this is a mashup plugin, meaning it is normally added to an existing Rails
application, we will be creating a new project to show how it can be used. This is the
process flow of the mashup:

o The marketing user will create a marketing message template with the email,

SMS, and fax messages.

o The reseller selects the message template to send and provides a link to the
list of contacts to send the message to, then creates a message-sending job.

e Atregular intervals, the system will check for pending jobs, process them
and send all messages to the respective contacts.

This is what we will be doing in the next few pages to implement this mashup:

e Create a Rails project

e Configure the database access and create the database

e Create the standard scaffolding

o Allow the marketing users to create the message templates

e Allow the reseller to provide contacts data through a remote link

o Create the rake script to send messages at regular intervals
This mashup's main processing is not in the web application itself. The Rails web
application is used to get input from the various parties i.e. the message template
from the marketing user and the contacts data from the external reseller. As
explained earlier, the actual processing and sending of the messages is done outside

of the web application in the rake script. The rake script is triggered periodically by a
scheduler like cron in Unix or at in Windows.

Creating a new Rails project
As before, creating the Rails project is the easiest part.

$rails Chapter3

This will create a new blank Rails project.

[52]

Chapter 3

Configuring the database access and creating
the database

The Rails web application is basic and the database needed to support it is simple
as well. Change the necessary environment configuration file (development . rb for
a development environment) to configure access to the database. Then generate a
migration file to create the database:

$./script/generate migration create templates and jobs

This will create a file 001 _create templates and jobs.rbin the RAILS ROOT/db/
migrate folder. Ensure it has the following code:

class CreateTemplatesAndJobs < ActiveRecord::Migration
def self.up
create table :message templates do |t|

t.column 'name', :string
t.column 'sms body', :text, :limit => 160
t.column 'email body', :text
t.column 'fax body', :text

end

create table :jobs do |t
t.column 'message template id', :integer
t.column 'contacts url', :string
t.column 'status', :string, :default => 'pending'

end

end

def self.down
drop_table :message templates
drop_ table :jobs
end
end

Now that we have the migration scripts, run migrate to create the tables:

$rake db:migrate

This should create the database tables needed. The data model in this mashup is
quite simple. The MessageTemplate is the model of the message templates created
by the marketing people, while each Job is created by the reseller.

Creating standard scaffolding
Next, create the standard scaffolding for the tables we've just created:

$./script/generate scaffold MessageTemplate
and:

$./script/generate scaffold Job

[53]

Proxy mailing list mashup plugin

This will create the standard controllers, views, and models for the two classes. Next,
change MessageTemplate and Job (both located in RAILS ROOT/app/models/) to
reflect their relationship:

class MessageTemplate < ActiveRecord::Base
has many :jobs

end

class Job < ActiveRecord::Base
belongs to :message template

end

Allowing the marketing people to create the
message templates

The standard scaffolding should already allow the creation of the message templates
though we might want to do it up a bit if we are giving it to our marketing users! For
testing purposes, go to: http://localhost:3000/message_templates/list and
create some sample marketing messages for each type of message. Remember that
SMS messages should be short and succinct and each message is up to a maximum of
160 characters (when using standard ASCII characters).

S Y Y MessageTemplates: list

4 B € http:/ flocalhost: 3000/ message_templates/list = Q- Google
Listing message_templates

Name Sms body Email body Fax body
Weekly Dear #{display_name}, New Dear #{display_name}, <p/> This is a Dear #{display_name}, <p/> Show Edit Destroy
newsletter product just in! Check out our new series of weekly newsletters to This is a new series of weekly
#1 latest product offers at introduce the <em=>new line of newsletters to introduce the
http://some.big_business.com! gadgets! You might be interested new line of
{additional_message} to know that we have upgraded and gadgets! You might be
improved the gadgets to provide the interested to know that we have

latest features and wowee functions that upgraded and improved the
is guaranteed to bring you more bang for gadgets to provide the latest
the buck! <p/> If you would like to know features and wowee functions
more about our new line of products that is guaranteed to bring you
please click on <a more bang for the buck! <p/> If
href="http://www.big_business.com"=this you would like to know more
link</a=. <p> #{additional_message} about our new line of products
</p> please call us at +1 02 345 6789
now or drop us an email at
newproducts@big_business.com!
<p> #{additional_message}
</p>

New messa e template

Note that in the example above, we have put in some Ruby-like variables in the
messages such as display name. We'll see how this is used in the coming sections.

[54]

Chapter 3

Allowing the reseller to provide contacts data
through a remote link

Next we need to let the reseller provide the contacts to our mashup. The general
strategy is to allow the reseller to create message-sending 'jobs' that have the links
to the contacts information. The reseller will select the message template to use and
provide a link, so a simple job creation form can do this. The scaffold should have
most of the code already in place, so just modify the form.rhtml partial

(RAILS ROOT/app/views/jobs/) to link Job to MessageTemplate.

<%= error messages for 'job' %>
<!--[form:job] -->

<p><label for="job message template">Message template</label>

<%= select('job', 'message template id', MessageTemplate.find(:all).
collect {|t| [t.name, t.id] })%></p>

<p><label for="job contacts url">Contacts url</label>

<%= text field 'job', 'contacts url', :size => 100 %></p>

<!--[eoform:job] -->
R Jobs: new
LI G | @ hup://localhost:3000/jobs /new @ 2(Q- Google
New job

Message template
Weekly newsletter #1 3]

Contacts url

http:/ /spreadsheets.google.com/pub?key=pafEr_vglVZVwDILCgilxZA&output=csvigid=0
(Create \

Back

Open: http://localhost:3000/jobs/new and put in the spreadsheet URL
(see below).

The link we are providing here is for Google Spreadsheets but it should be similar
for EditGrid. Note that the URL is a link to the CSV format of the spreadsheet and
not to the main document.

[55]

Proxy mailing list mashup plugin

Uploading to and publishing from Google
Spreadsheets

Before going into how this link is generated, let's first see from the reseller's
perspective how he or she will upload his or her list of contacts to the Google
Spreadsheet. Log into Google and go to http://docs.google.com.

PO Coogle Docs =]
@~ @ & 2 L@ hup://docs.google.com/?pli=1 A . * Google Q)2
Mail Calendar Documents Photos Groups Web more W | Settings | Help | Sian out
GO gle | Search Docs | Search the Web |
Docs & BETA
Spreadsheets
New- I Upload /= Addtofolder> W Hide
[=] J All items 7 | Name Folders / Sharing Date 4+
. j Created by me
77 Starred
1 Hidden
ﬁ Trash ‘Welcome to Google Docs! Click the "New” button to create a new online document or the “Upload” button to edita file
from your desktop. Your documents will show up here. Learn more
= [Al falders

(] tems notin folders
[® ltems by type
Shared with...

Done [v]

[56]

Chapter 3

Click on the Upload link on the main page and follow the instructions on the page to
upload a spreadsheet.

a0 Upload a File (&)
- '(‘” = ’.‘ _@ htp://docs.google.com /?action=updoc&hl=en v | * Google Q
Mail Calendar D ts Photos Groups Web more ¥ | Settings | Help | Sign out |2
Docs & 8
Spreadsheets

« Back to Google Docs

Upload a File

Browse your computer to select a file to upload: Types of files that you can upload (up to 500KB):

I Browse... I Documents
Or enter the url of a file on the web: & HTML fies and plaintaxt (-bxt).
* Microsoft Word (.doc), Rich Text (.rtf), OpenDocument Text
I (.odt) and StarOffice (.sxw).
What do you want to call it? (if different than the file name) Spreadsheets
I & Comma Separated Value (.csv).

* Microsoft Excel (.xls) files and OpenDocument Spreadsheet

Upload File | (.ods).

Email-in Your Documents and Files

You can start new online documents by emailing them directly to this email address:

Sanchanna-ddndfud?.A enzRAfAANnrad writalu com 1M
Done o

The spreadsheet that the reseller uploads must have the following columns in the
following order:

e Display name

e Additional text (for the marketing messages)

e Email address

e Mobile number (for SMS messages)

e Fax number
All the columns are optional but the display name should be there at the very least,
otherwise the marketing message will have no addressee! If there is a value under

the email column, an email will be sent, if there is a value under the mobile column,
an SMS will be sent, and if there is a value under the fax column, a fax will be sent.

[57]

Proxy mailing list mashup plugin

Now that the spreadsheet is loaded up in Google Spreadsheets, the reseller can
proceed to generate the link that publishes the contacts in CSV format. To generate
this format, go to the document page of the Google Spreadsheet. Then click on the
publish tab at the top right of the screen on the document page.

AAA mailing_list - Google Docs & Spreadsheets
@ 3 T IE http:/ /spreadsheets.google.com/ccc?key=pafEr_vgIVZVwDILCgijxZA&hl= ¥ [>- ' = Google Qg
=] Google Docs a . mailing_list - Google Docs & Sp... @ x

GOUglC Docs & Spreadsheeg;g | New features | Docs Home | Help | Sign Out

Automatically Saved | | Save & close |

“ oo B %;:Furmatv_-! B J U F-1T Ty & B+ L Align~ 5}"5‘3“':i .-DE‘ELE'_-‘ [+ Wrap Text

mailing_list autosaved at Aug 22, 2007 5:05:30 PM GMT+08:00

}F”E‘__' Edit Sort Formulas Revisions

B & [E F 3

1 Display name Text email maobile fax -

= This is a special offer to our 10 most O
Sean loyal customers! sean@somemail.com |

3 Angela Offer while stocks last! +55512345677

4 Kevin Special offer, limited time only! kevin@myispmailer.com +558577654321

5

[

7

8

. e

10

1

12

13 ¥

+ a4 b e

| Add Sheet | | Sheet1¥

Done

An options pane will be opened to the right of the screen. Click on the Publish

now button.

|Fie~| Edit

mailing_list sutosaves atfug 22, 200

Google Docs & Spreadsheets

05.30 PM GMT+08.00

Sort Formulas Revisions

08 mailing_list - Google Docs & Spreadsheets
@ g 4 5 hrp:f [spreadsheets.google.comccc?key=pafEr_vaIVZVwDILCgIxZA&hl=1 ¥ | [= " Google Q)
8 Google Docs (<] mailing_list - Google Docs & Sp... & X

0 ooa § @ Fomatr| B 7 U F-1T* Ty & EF B [Algn~||insert~ | | Delete~ | [yyrap S LUELRGTEETIEELH LN

A] = D . . . 2
This d is not yet published
1 Display name Text email mobile & P";bl‘sﬁ'“g pUte y‘:“rspmafheet
% This is a special offer to our 10 most ':tr‘l i otk e
piiispreadsheets goagle compubHeey=p
Sean loyal customers! sean@somemail.com | SEL_wrqZUnDILC i@
3 Angela Offer while stocks last! +55512345
4 Kevin Special offer, limited time only! kevin@myispmailer.com e
5 iublish now,|
&
7
o
a
10
1"
12
13 Iy
A Vo
[Ada Sheet| | Sheetiv = ¥
Dane [

| New features | Docs Home | Help | Sign Qut

Automatically Saved :_Save & close |

R exen G EETETY

Publish

[58]

Chapter 3

The document is now published. For additional publishing options, including the
option for CSV format, click on the More publishing options link at the bottom of
the options pane.

066 mailing_list - Google Docs & Spreadsheets (=)
@ 3 % i hetp:/spreadsheets. google.com/ccc7key= pafEr_vgIVZVwDILCgxZA&hl=e ¥ > |G|+ GCoogle Q)
a8 Google Docs [~] '. mailing_list - Google Docs & Sp... & 1 i
Google Docs & Spreadsheets | New features | Docs Home | Help | Sign Out
mailing_list aviosaved at Aug 22, 2007 5:05:30 PM GMT+08:00 | Automatically Saved | | Save & close |
[File~| Edit Sort Formulas Revisions [& Preview Print mm Publish
© oox Y B Fomaiy | B £ U F-1T Ty B B+ T [Align~| | insert~ | | Delete v | 7 wrap Bl EUERGIERCER EUTER
A B ¢ o
This document is published on the
. - " b.
1 Display name Text email mobile al| we e
= : Your document is viewable at:
2 This is a special offer to our 10 most TR Al RO RO TR
Sean loyal customers! sean@somemail.com afEr vqVZVwDILCOJxZA
afer volvAvwDIL Cgllef

3 Angela Offer while stocks last! +5551234! Fublshed on Aug 22, 2007 5:10:11 FM

4 Kevin Special offer, limited time only! kevin@myispmailer.com A

5

G | | Re-publish document || Stop |

7

i ¥ Automatically re-publish when changes

g are made

10

" What parts?

12

> 1 All sheets]
14

15

16

12 | Subscribe

12 :\; Mere publishing options

s Re————— >

| Add Sheet | | Sheetlv *
Done a

[59]

Proxy mailing list mashup plugin

The reseller will then see a new pop-up window with several drop-down select
fields. Choose CSV in the file format select field, and click on the Generate URL
button. The reseller will be presented with a URL at the bottom of the window.
This is the link we will ask the resellers to enter in order to retrieve the contacts
and other information.

™) O http: [/spreadsheets.google.com - Coogle Docs & Sp... £

CSQ&()S le More published formats

5
Spreadsheets

Add parameters to customize the URL. Use this tool or see the full
Google Docs & Spreadsheets API Documentation on Google Code.

File format: | csv ~|
What sheets? | Sheet "Sheet1" only ~|
What cells? |l Cells

Evarmple: C13, A1:08, @Ange name

Generate URL

Here's the URL:

http://spreadsheets. google.com/pub?key=pafEr valVZ\WwD
ILCgiJxZA&output=csv&aid=0

Done (v}]

[60]

Chapter 3

Uploading to and publishing from EditGrid

Uploading to and publishing from EditGrid is almost the same. After logging into
EditGrid, the reseller will be presented with his or her workspace.

w

Welcome, sausheong. preferences | logout My Workspace My Public View Finder

Spreadsheets Templates Trash Add-ons Search My Workspace

@ Create New [Upload . Actions ~ AII | By Tag IArchived P o
. _ | search)

B Name Owner Last Updated~> Shared Public

Messages

Mo New Message

There is no active spreadsheets.
Tags list | cloud

Please click here to show all spreadsheets or click here to create a new one.
No tags are defined

Resources

< Public Spreadsheets
openedin the fast 30 davs o Public Templates
Additional Toals
Help

Home | Mews | Blog | Forum | Press | Terms | Privacy | Credits | Invite | AboutUs | Contacts A Web 2.0 Online Spreadsheet

| Jobs

Click on the Upload button to upload a spreadsheet. The format of the spreadsheet
should be the same as the one described above in the Google Spreadsheets section.
The reseller needs to set the permission to public read-only to allow our mashup to
read the contact information.

Welcome, sausheong. preferences | logout My Workspace My Public View Finder v

Upload Spreadsheet

» Click here to upload multiple files
Please pick the file to upload:

| Choose File | no file selected

Name Permission (setdefauld) Upload To Workspace

" Retain Current Name & | Public Read-only 41 [Spreadsheets 3| | My Warkspace &

Supported file types:
MS Excel, OpenDocument, Gnumeric, OpenOffice 1.x, Lotus 1-2-3, CSV

[Upload | [Cancel)

ol lerenie [\ A

Home | MNews | Blog | Forum | Press | Terms | Privacy | Credits | Invite | AboutUs | Contacts A Web 2.0 Online Spreadsheet

| Jobs

[61]

Proxy mailing list mashup plugin

When the information has been uploaded into the spreadsheet, click on File in the
menu bar and select the Permalinks menu item. Permalinks are permanent links on
EditGrid. EditGrid provides permanent links support to allow you to access their
spreadsheets through easy-to-understand URLs.

EditGrid Welcome, sausheong. preferences | logout
Spreadsheet /sausheona/ [|i|
File Egcit View Format Insert Data Share Publish Chat Close
o B 2 S & 2 2kl (o) B 7 U | = = = Wy
WwERE=l R
D4 Seo
[A | B | c | D E F

1 |Display name Text email mobile fax =

2 |Sean This is a special offerto our 10 sean@somemail.com

3 |Angela Offer while stocks last! +55512345678

4 Kevin Special offer, limited time only! kevin@myispmailer.com .+555??654321

5

6 =

7
+ 4 p ' Sheett ki | v
9 Done Read &) Write & O 1users, 0 new msgs

The reseller will see a list of formats in which data from this spreadsheet can be
exported. The reseller needs to choose the CSV format link and use that as the link to
provide as the input in the job creation screen. Make a record of the CSV link.

EditGrid Welcome, sausheong. preferences | logout

My Workspace My Public View Finder
Spreadsheet /sausheong/mailing list = |

Summary Permalinks My Data Formats History Share Post to Blog

Every EditGrid's spreadsheet has a unique permalink, which you can easily remember, bookmark, or send through email.
It's also available for various exported formats, so your spreadsheets can be addressed just like any other files in the internet, while securely
protected by our permission system.

Live View http://www . editgrid.com/user/sausheong/mailing_list
@ Add to bookmark fPDst to del.icio.us IE‘EmaH link

Exports Excel
http://www.editgrid.com/user/sausheong/mailing_list.xls

pAdd to bookmark fPDst to del.icio.us @Eman link

HTML
http://www.editgrid.com/user/sausheong/mailing_list. html

pAdd to bookmark o Post to delicio.us (g Email link

PDF
http://www.editgrid.com/user/saushecng/mailing_list.pdf

pAdd to bookmark o Post to delicio.us G Email link

Csv
http://www.editgrid.com/user/sausheong/mailing_list.csv

pAdd to bookmark o Post to delicio.us L& Email link

OpenDocument
http://www.editgrid.com/user/sausheong/mailing_list.ods

pAdd to bookmark fPDst to del.icio.us @Eman link

[62]

Chapter 3

Creating the rake script to send messages at
regular intervals

This is where the main action starts. As explained in Chapter 2, rake is a build
program much like make, but one built with Ruby syntax. Rake is integrated and
used extensively in Rails for various tasks including database migration (we used
db:migrate earlier on in this chapter). We will be using rake to run a processing
script that will get the data from the remote site and send the messages.

Create a rake script named process_jobs.rake in the RAILS ROOT/1ib/tasks folder:

require 'net/http'

require 'csv'

require 'soap/wsdlDriver'

namespace :chapter3 do
Clickatell credentials
S$clickatell api id = <your Clickatell API ID»>
S$clickatell login = <your Clickatell user name>
$clickatell password = <your Clickatell passwords>
Interfax credentials
$interfax login = <your Interfax user name>
$interfax password = <your Interfax passwords

$interfax driver = SOAP::WSDLDriverFactory.new('http://ws.interfax.
net/dfs.asmx?WSDL') .create_rpc_driver

desc "Activated regularly by AT or cronjob to process all jobs"
task (:process jobs => :environment) do
$clickatell session id = get clickatell session
begin
pending jobs = Job.find all by status 'pending'
if pending jobs.size > 0
puts "#{pending jobs.size} jobs pending processing ..."
else
puts "All jobs has been processed!"
end

pending_jobs.each { |job]|
parse and get contacts data
contacts data = []
csv = parse data(job.contacts url)
puts "Found #{csv.size} contacts for this job!"

csv.each { |line|

contact = {}
contact [:display name] = line[O0]
contact [:additional message] = line[1]

[63]

Proxy mailing list mashup plugin

contact[:email] = line([2]
contact [:mobile no] = line[3]
contact [:fax no] = line([4]

contacts data << contact

}

contacts_data.each { |contact|
send email
if !contact[:email] .nil?
tl = Time.now
sent = Mailer.deliver mail (job.message template, contact)
t2 = Time.now
if sent
puts "Email sent to #{contact[:display name] }
in #{(t2 - tl)} seconds"
end
end

send sms
if lcontact[:mobile no] .nil?
tl = Time.now
sent = send sms(job.message template, contact)
t2 = Time.now
if sent
puts "SMS sent to #{contact[:display name] }
in #{(t2 - tl)} seconds"
end
end

send fax
if lcontact[:fax nol] .nil?
tl = Time.now
sent = send fax(job.message template, contact)
t2 = Time.now
if sent
puts "Fax sent to #{contact[:display name] }
in #{(t2 - tl)} seconds"

end
end

}

job.status = 'processed'

job.save!
}
rescue
puts "Error during sending messages : #{$!}"

end

[64]

Chapter 3

end
-- end of main task --

send fax through Interfax
def send fax(template, contact)
$interfax driver.SendCharFax (
:Username => $interfax login,
:Password => $interfax password,
:FaxNumber => contact[:fax nol,
:Data => template.message body (:fax, contact))

end

send SMS through Clickatell
def send sms(template, contact)
begin
res = Net::HTTP.post form(URI.parse(
'http://api.clickatell.com/http/sendmsg'),
{'session_id' => $clickatell session id,
'cliMsgId' => template.id,
'to'=>contact [:mobile no],
'from' => 'Chapter 3',

'text' => template.message body(:sms, contact),
'callback' => '3"',
'deliv_ack' => '1"',

'req feat' => '8192' })

case res
when Net::HTTPSuccess, Net::HTTPRedirection
puts "Successfully sent message to #{contact[:display name] }"
return true
else
puts res.error!
return false
end
rescue
puts "## Cannot send sms to #{contact[:display name]}! : #{$!}"
end
end

get the clickatell session needed to send SMS messages
def get clickatell session

res = Net::HTTP.post form(URI.parse(
'http://api.clickatell.com/http/auth'),

{rapi_id' => S$clickatell api_id,
'user'=> $clickatell login,
'password' => $clickatell password})

[65]

Proxy mailing list mashup plugin

case res

when Net: :HTTPSuccess, Net::HTTPRedirection
return res.body.split(': ') [1]

else

puts res.error!
end
end

parse data from a CSV file published by Google Spreadsheet
def parse data(url)
res = Net::HTTP.get response (URI.parse (url))
case res
when Net: :HTTPSuccess, Net::HTTPRedirection
csv = CSV.parse (res.body)
header = csv.shift
return csv
else
puts res.error!
end

end
end

We will go through this script part by part. First, we will be using the Net::HTTP,
CSV, and SOAP packages that are default in our Ruby installation so we will require
them at the top of the file.

namespace :chapter3 do
Clickatell credentials
$clickatell api id = <your Clickatell API ID>
$clickatell login = <your Clickatell user name>
$clickatell password = <your Clickatell passwords>

Interfax credentials

$interfax login = <your Interfax user name>

$interfax password = <your Interfax passwords

S$interfax driver = SOAP::WSDLDriverFactory.new('http://ws.interfax.
net/dfs.asmx?WSDL') .create_rpc_driver

The Web Services Description Language (WSDL) is an XML-based language

used to describe web services. WSDL is often used together with SOAP to define
web services as in the case of Clickatell and Interfax. A web service consuming
application (such as our mashup) reads the WSDL to find out what is available from
the web service and how to access it. From there we can generate the proxies that we
use to access the web service as if it were a call to a local object.

[66]

Chapter 3

Preset your global credentials for Clickatell and Interfax. We should have gotten
these credentials when we registered for the developer accounts earlier on. The
last line of this section creates a SOAP client to communicate with Interfax. The
constructor for WSDLDriverFactory takes in a WSDL file provided by Interfax and
creates the necessary local proxy. We will be using this proxy to send our fax.

desc "Activated regularly by AT or cronjob to process all jobs"
task (:process jobs => :environment) do
$clickatell session id = get clickatell session
begin
pending jobs = Job.find all by status 'pending'
if pending jobs.size > 0
puts "#{pending jobs.size} jobs pending processing ..."
else
puts "All jobs has been processed!"
end
pending jobs.each
{ |job]
parse and get contacts data
contacts_data = []

csv = parse data(job.contacts url)
puts "Found #{csv.size} contacts for this job!"

csv.each

{ |1line|
contact = {}
contact [:display name] = line[0]
contact [:additional message] = line[1]
contact [:email] = line[2]
contact [:mobile no] = line[3]
contact [:fax no] = line([4]

contacts data << contact

}

contacts_data.each
{ |contact]
send email
if !contact[:email] .nil?
tl = Time.now
sent = Mailer.deliver mail (job.message template, contact)
t2 = Time.now
if sent
puts "Email sent to #{contact[:display name]}
in #{(t2 - tl1)} seconds"
end
end

[67]

Proxy mailing list mashup plugin

send sms
if lcontact[:mobile no] .nil?
tl = Time.now
sent = send sms(job.message template, contact)
t2 = Time.now
if sent
puts "SMS sent to #{contact[:display name] }

in #{(t2 - tl)} seconds"
end

end

send fax
if l!lcontact[:fax nol .nil?
tl = Time.now
sent = send fax(job.message template, contact)
t2 = Time.now
if sent
puts "Fax sent to #{contact[:display name] }
in #{(t2 - tl)} seconds"

end
end
}
job.status = 'processed'
job.save!
}
rescue
puts "Error during sending messages : #{$!}"
end
end
-- end of main task --

We start off the processing run by getting a Clickatell session:

$clickatell session id = get_ clickatell session

This session is needed by Clickatell to identify that we are an authorized user to send
SMS messages. Next, we get all pending jobs in the system and for each pending job:

pending jobs = Job.find all by status 'pending'
we get the contacts URL and parse it:

csv = parse data(job.contacts url)

[68]

Chapter 3

Remember that the contacts URL is actually a link to a CSV file published from

an online spreadsheet. Parsing it returns an Array of Arrays that has the title row
truncated. We will take this Array of Arrays and create an Array of Hashes to make
the code simpler to read:

csv.each { |line|

contact = {}

contact [:display name] = line[O0]
contact [:additional message] = line[1]
contact [:email] = line[2]

contact [:mobile no] = line[3]

contact [:fax no] = line([4]

contacts_data << contact

}

This is our list of contacts!

Now that we have the contacts data, we iterate through each one of them to

send the messages. We run the contact through three if loops (one for each of the
communications methods) to see if there is any contact information in that row. We
will send the message if there is, that is, if there is an email given we will send the
email message:

sent = Mailer.deliver mail (job.message template, contact)
If there is a mobile number given we will send the SMS message:
sent = send sms(job.message template, contact)
If there is a fax number given, we will send the fax:

sent = send fax(job.message template, contact)

This is the main loop for this script; let's see how we can extract the contacts
information from the online spreadsheet and the send methods for each of the
communications channels next.

Parsing data from the online spreadsheet

We extract the data from the online spreadsheet (either Google Spreadsheets or
EditGrid) through the link that is given by the reseller in the job. To do this we use
Net::HTTP to send an HTTP Get to the server, which should return a plaintext CSV
string embedded within the response object.

parse data from a CSV file published by Google Spreadsheets or
EditGrid

def parse data(url)

[69]

Proxy mailing list mashup plugin

res = Net::HTTP.get response (URI.parse (url))
case res
when Net: :HTTPSuccess, Net::HTTPRedirection
csv = CSV.parse (res.body)
header = csv.shift
return csv
else
puts res.error!
end
end

Next, we use the CSV module (also built into Ruby) to parse the CSV string into an
Array of Arrays. We also remove the header so that we get only data in the returned
Array object.

Sending a fax with Interfax

Sending the fax through Interfax is relatively simple. Using the local proxy we have
created from the WSDL provided by Interfax, we need only call any of the provided
methods. In this example we will use SendCharFax, which sends a text message to
the recipient.

send fax through Interfax
def send fax(template, contact)
$interfax driver.SendCharFax (
:Username => $interfax login,
:Password => S$interfax password,
:FaxNumber => contact[:fax nol,
:Data => template.message body(:fax, contact))
end

The username and password parameters are self-explanatory. The faxnumber
submitted, however, needs to be in the international notation. The format is:

+ <Country-Code><AreaCode><Local number>. For example: A number in New
York, NY, USA will look like: +12123456789, where:

+ is a constant;

1 is the USA country code;
212 is New York area code;
3456789 is the local number.

The data in this case is the text fax message stored in the message template.

The sendCharFax web service is a basic one that only sends text messages. Normally
this is not realistic, as this will only send an ugly string message to the recipient.

[70]

Chapter 3

To improve on this, we can use either Sendfax or SendfaxEx_2 to send files as
faxes. We can send files with types including Word documents, Excel spreadsheets,
Acrobat documents, or HTML-formatted text. To do this we can get the marketing
user to upload a document to the database, which can then be sent to the contacts
(we will skip this to keep this chapter simple). Check out the Interfax developer site
athttp://www.interfax.net/en/dev/webservice/reference.htmltogetﬂw
details of the various web services that are provided by Interfax.

Sending an SMS through Clickatell

Sending an SMS through Clickatell is only slightly more complicated. We will need
to get a session key from Clickatell first by logging in and presenting our credentials,
and then use this session key to send the SMS messages.

get the clickatell session needed to send SMS messages
def get clickatell session
res = Net::HTTP.post form(URI.parse(
'http://api.clickatell.com/http/auth'),
{rapi_id' => Sclickatell api_id,
'user'=> $clickatell login,
'password' => $clickatell password})

case res
when Net::HTTPSuccess, Net::HTTPRedirection
return res.body.split(': ') [1]
else
puts res.error!
end
end

Clickatell provides many different ways for developers to access its services, but

for this chapter we will be using its HTTP APIs. To use the HTTP APIs we use the
Net::HTTP package to send an HTTP Post command to http://api.clickatell.
com/http/auth with the various credentials as part of a Post form in the request
body to get a session key. Note that we need to provide an API ID to Clickatell — this
is the number we get from Clickatell when we register as a developer for that set of
API services (see section above). The session ID is retrieved then stored in a global
variable for use when we send the messages.

send SMS through Clickatell
def send sms(template, contact)
begin
res = Net::HTTP.post form(URI.parse(
'http://api.clickatell.com/http/sendmsg'),
{'session_id' => $clickatell session id,
'cliMsgId' => template.id,

[71]

Proxy mailing list mashup plugin

'to'=> contact[:mobile nol,
'from' => 'Chapter 3',

'text' => template.message body(:sms, contact),
'callback' => '3"',
'deliv_ack' => '1"',
'req feat' => '8192' })
case res

when Net::HTTPSuccess, Net::HTTPRedirection
puts "Successfully sent message to #{contact[:display name] }"
return true
else
puts res.error!
return false
end
rescue
puts "## Cannot send sms to #{contact[:display name]}! : #{$!}"
end
end

We also use Net:HTTP to send the SMS messages through the Clickatell SMS
gateway by sending an HTTP Post request to http://api.clickatell.com/http/
sendmsg with a set of parameters.

The Client Message ID or c1iMsgId is a parameter that's set by the external
application (in our case it is our application), which Clickatell uses to group
messages sent by different applications. Clickatell does not use it internally and we
can use up to 32 alphanumeric characters though we cannot have any spaces in it.

The To parameter is the mobile number we wish to send to. As with Interfax, we
need to provide the full international number, together with country and area codes.
However, unlike for Interfax we should not use '+' or leading 0's.

The From field is an alphanumeric field. Normally when sent through a mobile

phone, the From parameter is populated with the mobile number of the sender.
However Clickatell allows us to use any 11 character alphanumeric string or an
international format mobile number that is between 1 and 16 characters.

The Text parameter contains the text message. To send Unicode characters (for
example, for a Chinese text message) we need to set the 'Unicode' parameter to

"1". For Unicode messages, the text message limit is 70 Unicode characters per
message. SMS messages are limited to 160 characters for normal ASCII characters.
If we wish to send messages longer than 160 characters, we will need to set the
concat parameter to '1', '2', '3' or N number of messages to send. Clickatell does not
automatically do this for us, so we will need to check the length of the characters in
the message and set this accordingly.

[72]

Chapter 3

The callback, deliv_ack, and req_ feat parameters are linked in usage. SMS
messages are sent asynchronously if called by HTTP (since HTTP is a connectionless
protocol). This means we have no idea if the SMS message really gets to the

mobile user.

Clickatell uses the callback parameter to inform our mashup of the status of

the message. If callback is set to '0', no statuses are reported, if it is set to '1', only
intermediate statuses are sent, if it is set to '2', only final statuses are sent and if it is
set to '3', both intermediate and final statuses are sent.

Clickatell uses an HTTP Get command to call a URL that we set in the user interface
to inform us of the status of the sent message and will return the client message ID
(c1iMsgId), To, From, api_id, and timestamp parameters for our application to
identify the message sent. For the rake script earlier, we specified that we do not
want to get the status of the message but under production conditions we should
create a simple action for Clickatell to call.

The delivery acknowledgement parameter (deliv_ack) is closely related to the
callback parameter. If it is set to '0', Clickatell will not report the delivery status to the
handset, but only to the SMS upstream gateway. If it is set to '1', Clickatell will report
the delivery status to the final handset itself. However delivery acknowledgement

is not a guaranteed service as not all upstream gateways report delivery
acknowledgements to the handset.

The requested features parameter (req_feat) is related to the delivery
acknowledgement and callback features. By default Clickatell will send messages
by best effort. However, if we set certain constraints in the requested features
parameter, Clickatell will drop those messages that do not fit the requested features.

Hex value Decimal Feature Description

Hex Value Decimal Feature Description

0x0001 1 FEAT_TEXT Text—set by default.

0x0002 2 FEAT_8BIT 8-bit messaging —set by default.

0x0004 4 FEAT_UDH UDH (Binary) —set by default.

0x0008 8 FEAT_UCS2 UCS2 / Unicode —set by default.

0x0010 16 FEAT_ALPHA Alpha source address (from parameter).
0x0020 32 FEAT_NUMER Numeric source address (from parameter).
0x0200 512 FEAT_FLASH Flash messaging.

0x2000 8192 FEAT_DELIVACK Delivery acknowledgments.

0x4000 16384 FEAT_CONCAT Concatenation—set by default.

[73]

Proxy mailing list mashup plugin

The requested features parameter is set by bitmask, that is we need to add the
decimal values together to get the necessary final value to use. Some values are set
by default as described above. As can be seen from the table, the value 8192 sets the
delivery acknowledgements value, requesting Clickatell to only send messages to
gateways that have delivery acknowledgements.

The values in the table are only a subset of the full set of features available from
Clickatell. For more details on the settings and parameters, you should read the
Clickatell HTTP APIs specification from http://www.clickatell.com/downloads/
http/Clickatell HTTP.pdf.

Sending an email through ActionMailer

ActionMailer is the default framework in Rails used for sending and receiving
emails. Before sending emails, we will need to configure ActionMailer first. Go to
config and open up the appropriate environment configuration file (in development
mode we will normally be using development.rb). Append the following to the end
of the file and change the configuration appropriately:

config.action mailer.delivery method = :smtp
config.action mailer.server settings =
{
:address => <your smtp servers ,
:port => <smtp server ports>,
:domain => <your server domain names> ,
:authentication => :login,
:user _name => <your usernames> ,
:password => <your passwords>

}

address and port are the address and port of the SMTP server that we're using
to send the emails. Domain is the domain the mailer uses to identify itself to the
server specified in address. You should normally use the top-level domain name
of the machine that is sending the email. Use authentication if your SMTP
server requires authentication to log into the system. If you use authentication
you should also enter your SMTP user name and password in user_name and
password respectively.

Now that ActionMailer is configured, generate the Mailer model through the
generate script:

$./script/generate mailer Mailer

[74]

Chapter 3

This creates a Mailer model in our app/model folder. The Mailer class in mailer.rb
inherits from ActionMailer: :Base and is the class we will use to send emails out.

class Mailer < ActionMailer: :Base
def mail (template, contact)

@recipients = contact[:emaill]

@subject = 'Big Business Marketing Message'

@from = <sender emails

@body ['text'] = template.message body(:email, contact)
end

end

Each method in the mailer class sets up the environment for sending a particular
email. In our case, we have only one email to send so we need only one method. The
method sets up the environment by setting up instance variables containing data for
the email's header and body. In our case, we set the recipient to the contact email and
hard-code a marketing message as its subject. Next we set the sender email address
and then the body of the email message from the message template. Body is a hash
used to pass values to the email template. In this case, the message template's email
body is passed to the email template as a variable named etext.

Let's create, then look at the email template named mail.text.html.rhtml.
(RAILS_ROOT/app/views/mailer/). This file is in named in this format:

<method>.<content>.<type>.rhtml

The method is the name of the method in the Mailer class, in this case, mail. The
content and type are the MIME type of the text to be sent. In this case we're sending
an HTML message so the content type is text /html.

<div id='header'>Big Business Banner/divs>
<%= @text%>
<div id='footer'>Copyright Big Business 2007</div>

Note that the email body from the message template has some HTML tags as well,
and this goes well into this email template.

[75]

Proxy mailing list mashup plugin

Customizing text messages according to the
individual recipient

Finally, the messages in the message template can be customized according to the
individual recipient. In this mashup we use the display name as well as additional
text to be added for each recipient, if any. The text for the SMS message for example,
goes like this:

Dear #{display_name}, New product just in! Check out our latest product offers at
http;//some.big_business.com! #{additional_message}

Notice that both display name and the additional text message customization look
like the string replacement syntax in Ruby. This is because we evaluate this text as a
Ruby string inside the Job class in RAIL. ROOT/app/model/MessageTemplate.rb:

class MessageTemplate < ActiveRecord::Base
has _many :jobs
def message_ body (type, contact)
display name = contact[:display_name]
additional message = contact[:additional message]
case type

when :email : eval '"' + self.email body + '"!'
when :sms : eval '"' + self.sms body + '"!'
when :fax : eval '"' + self.fax body + '"!
else 'Incorrect type of message requested'
end
end
end

By evaluating the text as a Ruby string, we replace the values specified in the
message body with the required values from the contact information. Whenever we
need the message text, we just call it like this:

res = Net::HTTP.post form(URI.parse('http://api.clickatell.com/http/
sendmsg') ,
{'session_id' => $clickatell session id,
'cliMsgId' => template.id,
'to'=>contact [:mobile no],
'from' => 'Chapter 3',

'text' => template.message body(:sms, contact),
'callback' => '3"',
'deliv_ack' => '1"',

'req feat' => '8192' })

[76]

Chapter 3

This little trick gives us great flexibility when doing text replacement on the
messages for individual recipients.

This wraps up the mashup. Run this script to send the messages once you have set
up the templates and the jobs.

Using the mashup

To recap the chapter, this is the sequence to follow in using the mashup:

1. Start up the server

2. Create one or more message templates
3. Create ajob

4. Run the rake script to process the job

If you have set up things correctly you should receive the three marketing messages,
through the email, SMS, and fax.

Summary

What we've learned in this chapter is to extract information from online spreadsheets
through CSV and use that information to send messages through three different
communications channels —email, SMS, and fax. We created a marketing message
mashup using Google Spreadsheets and/or EditGrid, both online spreadsheets,
Clickatell, a bulk SMS provider, as well as Interfax, an Internet fax provider.

[77]

Book sales tracking
mashup plugin

What does it do?

This mashup plugin allows you to add a feature to your website to track the sales
ranking and customer reviews of a particular product from Amazon.com. It also
allows visitors to your website to buy the product directly by creating a shopping
cart and adding the product to that shopping cart—to be eventually purchased
through Amazon.com.

A book sales tracking and shopping cart
feature

You have just published your first book and it has been hard. A whole 9 months of
your life has been dedicated to writing that book and you want to make sure that
you get the best out of it. What you want is to track its sales, know what your readers
think about the book, and tie it in with your existing website. You also want to allow
readers to directly buy the book off your website but you don't want to spend the
next 9 months of your life writing an application to do this! What you're looking for
is a mashup between your website and an online book seller like Amazon.com.

Requirements overview

These are the requirements for your book sales tracking and shopping cart mashup:

e Provide information on the book

e Track and chart the sales of the book through the online book seller

Book sales tracking mashup plugin

e Provide customer reviews on your site to show customer feedback that is
posted on the online book seller

e Provide a shopping cart that is integrated into your website that enables
visitors to your website to buy your book easily

o Allow visitors to your website to also buy related books through your
website in order for your to earn some extra income from product
recommendation

Design

This mashup will mostly use the Amazon E-Commerce Services (ECS) API, though
we will use some part of Joe Gregorio's Sparklines web service to chart out the
progress of the sales ranking from week to week. This is how we will implement
the mashup:

Provide information

We will use the ItemLookup web service from Amazon ECS to get these particular
details of your book:

e Title

e Author

e DPublication date

e Price and currency of a new item

e A picture of the book cover

We will also use the SimilarityLookup web service from Amazon ECS API to find
books that are related to your book.

Track sales ranking with a chart

We will create a rake script that is executed every 24 hours to get the latest sales
ranking using the ItemLookup web service from Amazon ECS API. The sales ranking
is then stored in the server. Whenever the info page of the book mashup is called, we
will recall the historic sales ranking information and use the Sparklines web service
to create a sparkline to show its progress.

[80]

Chapter 4

Show customer reviews

We will use the ItemLookup web service from Amazon ECS API to get the customer
reviews and display them. If there are too many reviews in a single page, we will
paginate the reviews.

Provide a shopping cart

We will use the cartCreate web service from Amazon ECS API to create a shopping
cart for the mashup. cartcreate will create a remote shopping cart on Amazon.com
and place the book in it. Then we will provide a button that redirects the visitor to
the Amazon.com checkout page for purchase.

Allow visitors to buy related books

We will use the 1temLookup web service from Amazon to get books that are related
to or similar to your book. We will then allow your visitors to add them to the cart
using the cartAdd web service.

With the design in place, let's look at the mashup APIs we're going to use, in detail.

Mashup APIs on the menu

For this mashup, to access the Amazon ECS APIs we will be using the Amazon ECS
Ruby module developed by Herryanto Siatono and to show the sales ranking and
number of customer reviews, we will be using Joe Gregorio's Sparklines web service.

Amazon E-Commerce Services API

The Amazon E-Commerce Services (ECS) API is a web service API accessible
through SOAP and REST that provides access to Amazon.com's online retail
platform. Using these web services, developers can:

e Find items that are available on sale on Amazon.com, either by Amazon.com
itself or by other merchants

¢ Get detailed information on the items including pricing and availability

e Get customer reviews on the items, including customer ratings

¢ Find items that are similar

e Create and manage remote shopping carts at Amazon.com

[81]

Book sales tracking mashup plugin

To use the Amazon ECS API as a developer you need to register for an Amazon Web
Service (AWS) access key ID. This access ID is used with every request that you send
to the Amazon ECS.

Registering for an Amazon Web Service access
key ID

To register for the AWS access key ID, go to http://www.amazon.com/gp/aws/
registration/registration-form.html. If you're an existing Amazon.com
customer, you can provide your email address and your account password. If
you don't have an existing Amazon Web Services account, you will be asked to
create one.

Once you create the Amazon Web Services account, you will be sent an email and
also redirected to the success page. Select the Amazon E-Commerce Service link as
the service you would like to explore. When you enter the Amazon E-Commerce
web services link, you will see a small button to your right: Your Web Services
Account. Click on it and it will show you a list of actions you can do with your web
services account. Click on the AWS Access Identifiers link to see your access key ID.

Registering as an Amazon Associate

Associates is Amazon.com's affiliate marketing program and it allows you to earn
money by recommending purchases on Amazon.com. When you register to be an
associate, you will receive an associate ID. In the mashup shown in this chapter,
we will include an associate ID in your shopping cart in order for you to earn
extra money.

To join the Associates program, go to http://affiliate-program.amazon.com/join
and click on the 'Apply now' button. Enter your email address and account password
(you should have an account by now) for your account. You will need to fill up a form
and provide information on your site, after which you will be shown an associate ID,
which you can use in your mashup.

Amazon ECS Ruby library

The Amazon ECS library (http://rubyforge.org/projects/amazon-ecs)

is a Ruby package that provides easy access to the Amazon ECS APIs. This

library accesses the Amazon ECS REST APIs using Hpricot (http://code.
whytheluckystiff.net/hpricot) and is flexible enough to allow use of all Amazon
ECS APIs, even those not directly supported with convenience methods.

[82]

Chapter 4

Sparklines web service

Sparkline is the name proposed by Edward Tufte for small, high resolution graphics
embedded in a context of words, numbers, images. A normal chart usually tries to display
as much information as possible and is placed separately from the text but sparklines
are part of the text itself and displays a simple, to-the-point graphic. Tufte describes
sparklines as data-intense, design-simple, word-sized graphics.

Sparklines have been implemented in many different languages, including Ruby.
However for this mashup, instead of coding up sparklines, we will use a sparkline web
service offered by Joe Gregorio (http://bitworking.org/projects/sparklines).

The service consists of a single CGI program (http://bitworking.org/projects/
sparklines/spark.cgi) written in Python that takes query parameters that describe
the sparkline. The web service produces three types of sparklines:

e Discrete —One vertical bar per data point
e Smooth—all the points plotted as a continuous line
e Impulse—Like discrete, but all the lines start at zero

For this mashup we will be using the 'smooth' sparkline that is most commonly used.
To create a sparkline with this web service, the easiest way is to provide a set of
comma-delimited data to the URL given and to display the URL as an image.

For example, this snippet shows how to display this sparkline:

in an HTML page:

<img src= "http://bitworking.org/projects/sparklines/spark.cgi?t
ype=smooth&d=88,84,82,92,82,86,66,82,44,64,66,88,96,80,24,26,
14,0,0,26,8,6,6,24,52,66,36,6,10,14,30&height=14&1imits=0,100
&min-m=true&max-m=true&last-m=true&min-color=red&max-
color=blue&last-color=green&step=3"/>

What we will be doing

For this mashup we will be creating a new Rails application to demonstrate how
you can integrate this feature into your website. The Rails application will have a
left-hand sidebar that shows your book, its details, and a list of similar books. The
sidebar also shows the most recent sales rank from Amazon and a list of historical
sales ranking for the past 10 days, displayed in a sparkline. Your visitors can also
view comments and ratings from other readers posted on Amazon.com.

[83]

Book sales tracking mashup plugin

This mashup also enables you to create a remote shopping cart at Amazon.com to
let your visitors buy directly through you. At the same time, it allows you to earn
some extra money by being an Amazon Associate and referring other similar books
to your visitors and allowing your visitors to add them to the remote shopping cart.
When your visitors are ready to buy, the mashup will redirect them to Amazon.com
for checkout and payment.

This is the sequence of actions we will take to create this mashup:

e Create a Rails application

e Install the Amazon ECS Ruby library

e Create the books controller

e Create the Amazon Rails library and use it to get information on the book
e Create the sidebar view to display the book information and similar books
e Get customer reviews and create the customer comments and ratings view

e Create a rake script to get the sales ranking for each day and populate it into
a YAML file

e Get the sales ranking history from the YAML file and use the information to
create a sparkline representing the sales ranking history

e Create a remote shopping cart and add your book as the first item

e Add alink for each similar book to allow your visitors to add it to
the shopping cart

Note that this mashup doesn't require database access at all. Even the sales ranking
history is stored in a YAML file to be retrieved and displayed. This is ideal in the
case where your existing website doesn't have a database and you're not keen to pay
your hosting company additional money for one. However if you have an existing
database you can easily add another table and add in some simple ActiveRecord
models to represent the history.

Also note that there is very little that you are actually processing or even storing
at your mashup —almost everything is residing at Amazon.com or the sparkline
web service.

Creating a new Rails project

As before, creating the Rails project is the easiest part.
$rails Chapter4

This will create a new blank Rails project.

[84]

Chapter 4

Installing the Amazon ECS Ruby library

To install the Amazon ECS Ruby library, run this command at the console (this can
be anywhere):

$gem install amazon-ecs --include-dependencies

This will install the Amazon ECS Ruby gem from the remote gem repository and will
also install Hpricot if you don't have Hpricot installed.

Creating the books controller

Next, we will need to create the one and only controller in this whole mashup.
Create a file called books controller.rb in the RAILS ROOT/app/controllers
folder. The books controller is a very simple controller. Its main job is to control or
redirect the process flow of the mashup. The controller includes our Amazon Rails
library, which we will create in the next section. Almost all the methods we call in
the controller come from this Amazon Rails library.

class BooksController < ApplicationController
include Amazon
@@book asin = '0974514055'
def sidebar
@book = get book details @@book asin
@similars = get similar products @@book asin
end
end

One of the key pieces of information Amazon.com uses in its retail and
* web services platform is the ASIN or the Amazon Standard Item Number.
% The ASIN is an alphanumeric string that uniquely identifies items in
’ Amazon.com. All items on Amazon.com have an ASIN, even if they are
not on sale. For books, the ASIN and the ISBN number are the same.

We hard-coded the book ASIN as we're only interested in your book. Note that
this file is not the end product; we will be filling up the rest of the methods as we
go along.

Creating the Amazon Rails library

This is a Ruby module that we include in your book controller. It contains the

main processing logic of the mashup. It is used mainly to communicate with the
Amazon ECS API provided by Amazon.com, using the Amazon ECS Ruby library by
Herryanto Siatono.

[85]

Book sales tracking mashup plugin

Create a Ruby file in the RAILS_ROOT/1ib folder called amazon. rb. For those
uninitiated in Ruby on Rails, all Ruby files placed here are directly accessible to the
Rails application during run time. This is why we only need to add the line include
Amazon in the controller.

require 'amazon/ecs'
module Amazon
@@key id = <your Amazon.com access key ID>
@@associate id = <your associate ID>
get the details of the book given the ASIN
def get book details(asin)
book = Hash.new

res = ecs.item lookup(asin, :response group => 'Large')
book[:title] = res.first item.get("title")

book [:publication date] = res.first item.get ("publicationdate")
book [:salesrank] = res.first item.get("salesrank")
book[:image url] = res.first item.get ("mediumimage/url")
book[:author] = res.first item.get ("itemattributes/author")
book[:isbn] = res.first item.get ("itemattributes/isbn")
book[:price] = res.first item.get ("price/currencycode") +

res.first item.get ("price/formattedprice")
book [:total reviews] =
res.first item.get ("customerreviews/totalreviews")
book [:average rating] =
res.first item.get ("customerreviews/averagerating")
book [:0ffer listing id] =
res.first item.get ("offerlisting/offerlistingid")
return book
end
get similar products to a given ASIN
def get similar products(asin)
similars = Array.new
res = ecs.send request(:aWS access key id => @e@key id, :
operation => 'SimilarityLookup', :item id => asin, :
response group => 'Small,Images')
res.items.each do |item|
similar = Hash.new
similar[:asin] = item.get('asin')
similar[:title] = item.get ('itemattributes/title')
similar[:author] = item.get ('itemattributes/author')
similar[:small image] = item.get hash('smallimage')
similars << similar
end
return similars
end
protected
configure and return an Ecs object

[86]

Chapter 4

def ecs
Amazon: :Ecs.configure do |options|
options[:aWS access key id] = eekey id
options[:associate tag] = @eassociate id
end
return Amazon: :Ecs
end
end

Note that as before, this is not how the file will finally look. We will be adding more
functions in terms of methods, as we go along.

We will need to require the Amazon ECS Ruby library, and also define the AWS
access key ID and associate ID that you have acquired from Amazon.com in a
previous section. Define both of them in class variables, as they are not going

to change.

First, we define a convenient method that returns the Amazon: : Ecs object that is
configured with the access key ID and the associate ID.

Next, define two instance methods. The first is to get the book's details and the
second is to get books that are related or 'similar' to your book. Similarity is based on
books that customers bought, that is, customers who bought X also bought Y. This
assures us that the customer is really interested in those books. In both methods you
need to provide an ASIN. In our case the ASIN is from the book controller, where we
hard-coded your book's ASIN.

Let's look at the get _book_details method. We use the Amazon: :Ecs.item lookup
method from the Amazon ECS Ruby library, passing in the ASIN and requesting a
Large response group. This method wraps around the ItemLookup web service from
the Amazon ECS API. This response group returns various pieces of information,
which we subsequently extract into a Hash and display in the view.

Response groups control the kind of information returned by the Amazon
ECS API request. For example, a Large response group returns most of
the available information on the item, whereas the Medium and Small
response groups return less. Besides these generic response groups,
there are very specific ones. For example, if you want to have pricing

% information you can include the Of fer response group as part of the

g response. You can request more than one response group in a single

request. Just place the response groups you want in the response group
parameter, separated by commas. For example in our mashup, in the
get similar products method we requested both the Small and
Image response groups.

[87]

Book sales tracking mashup plugin

The get_similar products method on the other hand uses a web service directly
from the Amazon ECS API called similarityLookup. SimilarityLookup does not
have an equivalent wrapper method in the Amazon ECS Ruby library. However,

the Amazon ECS Ruby library is flexible enough to allow other requests through the
Amazon: :Ecs#send_request method by placing the web service name through the

: operation parameter. We also request two response groups to be returned, that

is, Small and Images. Asin get_book details, we extract the information we need
from the returned response and place it in a Hash, which in turn is placed in an array
of similar items and returned to the view.

Creating the sidebar

The Amazon Rails library is the brain of our mashup but it's not visible or exciting.
Let's create something visible next, the sidebar.

First, create the layout used for all templates in the book views. Create a file in the
folder RAILS ROOT/app/views/layouts named books.rhtml:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en">
<head>
<meta http-equiv="content-type" content="text/html;charset=UTF-8" />
<title>Chapter 4</title>
<%= javascript include tag :defaults %>
<%= stylesheet link tag 'main' %>
</head>
<body>
<%= yield %>
</body>
</html>

Note that Rails will, by default, use the books . rhtml as the layout for the other
view templates, replacing the yield with the actual content of the view. We also
link to a stylesheet called main.css, which is not listed here but included in the
source package.

Next, create a folder called RAILS ROOT/app/views/books and a view file called
sidebar.rhtml in this folder.

<table class="main">
<tr valign="top">
<td class="sidebar">
<div class="info" id="bookBox">
<table class="box">
<tbody><tr>
<td class="topLeft"> </td>

[88]

Chapter 4

<td class="topCenter">
<div class="center">

<hl><%= h @book[:title]%></hl>

<h2><%= h @book[:author] $></h2>

<%= image tag @book[:image url] %>

<p/>

<%= h @book[:price] $>

<p/>

Published <%= h @book[:
publication date] $>

</div>

<div>
<%= h @book|[:salesrank]%></
strong>

</div>

<div>

Other books you might be
interested in

<table>
<% @similars.each { |similar|%>
<tr><td align="'center'>
<%= image tag(similar[:small image] [:
url], :border => 0) %>
</td></tr>
<tr><td align="'center'>
<%= h similar[:title] %>

</td></tr>
<tr><td align="'center'>

</td></tr>
<% }%>
</table>
</div>
</td>
<td class="topRight"> </td>
</tr>
<tr>
<td class="bottomLeft"> </td>
<td class="bottomCenter"> </td>
<td class="bottomRight"> </td>
</tr>
</tbody></table>
</div>
</td>
</table>

[89]

Book sales tracking mashup plugin

This view file will show the sidebar with the details of the book. Now let's quickly
preview the fruits of your labor! Start the server with:

$./script/server

Then gotohttp://localhost:3000/books/sidebar.

& & & Chapter 4

<. > @ hitp:/ /localhost: 3000/ books /sidebar =(Q- Google 3

Programming Ruby:
The Pragmatic
Programmers' Guide,
Second Edition
Dave Thomas

Programming
%21‘_1h_v e

VS

y
USD$29.67

Published 2004-10-01

Current sales rank :
2420

Other books you might be
interested in

o
Wi

14

e

b
Agile Web Development with Rails,
2nd Edition

==
Rails
Fecipes

<)

|

Note the blank space to the right of the page. This is deliberate. After all, the sidebar
is a part of your website, not your entire site. For example, this blank space could be

your existing blog. We will also be using it later on for the customer reviews as well
as the shopping cart.

[90]

Chapter 4

You may notice that the sidebar.rhtml view template uses CSS style
classes from the main. css stylesheet. I did not show this stylesheet in a
+ listing, so as not to distract from the flow of the project. This means that
% if you copied the code from this chapter directly you will not see what is
shown in the figure above. However, if you download the code package
from Packt Publishing's website you will find the main. css stylesheet;
place it in RAILS ROOT/public/stylesheets.

Getting customer reviews

Next, we want to get customer reviews that have been posted on Amazon.com and
display them to the right of the sidebar. To do this, we will add a picture just below
the sales ranking. The picture will display the average customer rating of the book,
using the rating system in Amazon.com, which is 0 stars to 5 stars. Clicking on this
picture will show the customer reviews in blank space to the right of the sidebar. The
Amazon ECS API allows 5 customer reviews to be retrieved in each call, so we will
also do some simple pagination for the customer reviews. Let's get to work!

First, add in the highlighted line into the sidebar.rhtml file at the location shown in
the snippet below.

<div class="center">
<hl><%= h @book[:title] %$></hl>
<h2><%= h @book[:author] %$></h2>
<%= image tag @book[:image url] %>
<p/>
<%= h @book[:pricel $>
<p/>
Published <%= h @book[:
publication datel] $>
</div>
<div class="right-float"><%= link to_
remote (image tag("#{@book[:average ratingl}.
gif", :border => 0), :update => 'update area',:
url => {:action => 'reviews' ,:page => 1})
%></div>
<divs>
Current sales rank :

<%= h @book|[:salesrank] %$>
</div>
</td>
<td><div id="update area"></div></td></tr>
</table>

[91]

Book sales tracking mashup plugin

Here, we are using a 1ink_to_remote on a dynamically generated image name

to call an action named review, which will update an HTML element with the ID
update_area. Place the div element with the ID update area at the bottom of the
page. You will notice that the image links to #{@book [:average_rating] }.gif.
This produces, depending on the average rating of the book (which changes from
time to time) strings like 4.5.gif or 4.0.gif or 0.5.gif and so on depending

on the average rating provided by the customers. You will need to create these
appropriate images and place them in the RAILS_ROOT/public/images folder.

Next, add the following action in the books_controller.rb file:

def reviews
@reviews = get customer reviews @@book asin, params[:page].to i
@page = params[:page] .to i
end

The get _customer reviews method in this action comes from our Amazon Rails
library again, so add this method in the amazon. rb file:

get customer reviews of the product given the ASIN
def get customer reviews(asin,page=1)
res = ecs.item lookup(asin, :review page => page, :response group
=> 'Reviews')
reviews = res.first item/"customerreviews/review"
reviews.collect { |review|
Amazon: :Element.get hash(review)

}

end

The get _customer reviews method, like the get _book_details method, uses
Amazon: :Ecs.item lookup to retrieve the reviews. However, this time we are
asking for the Reviews response group, which we will convert into a Hash and
return it to the view.

Lastly we need to create the reviews view to display the reviews. Create a file named
reviews.rhtml in RAILS ROOT/app/views/books:

<hl>Customer reviews</hl>
<% @reviews.each { |review| %>
<table class='reviews'>
<tr><th><%= h review[:summary] $></th></tr>
<tr><td><div class="left-float"><%= h review[:date] $></div>
<div class="right-float">
<%= image tag("#{reviewl[:ratingl}.0.gif")%>
</divs></td></tr>
<tr><td><%= CGI.unescapeHTML review[:content]%$></td></tr>

[92]

Chapter 4

</table>

<%} %>

:update =>
:page => @page - 1}

<div class='left-float'><%= link to remote '<< previous',
'update area', :url => {:action => 'reviews',
unless @page == 1%></div>

<div class='right-float'><%= link to remote 'next >>',
'update area', :url => {:action => 'reviews',
div>

:update =>
:page => @page + 1} %></

Notice that the image for the rating follows a similar format to that for the average
rating. However because Amazon.com doesn't allow customers to put fractions

of a star as a rating, the rating will always be a whole number. We also need to
unescape the HTML in review[:content] using CGI.unescapeHTML in order to
display the HTML formatting in the text properly. In case you are wondering, CGI is
already included in the Rails framework, which explains why you can use it without
requiring it earlier on.

We also provide a simple pagination mechanism that allows us to move to the next
page of reviews.

Here's how it turns out. Click on the rating graphic to bring up the customer reviews:

4. » & | @ hitp://localhost:3000 /books /sidebar

Chapter 4

& Q~ Google

Customer reviews

Good, but far from perfect.

2007-08-27 oo
This book is a great reference, but the tuterial is somewhat confusing. This has two main reasons:

Programming Ruby:
The Pragmatic
Programmers' Guide,
Second Edltloﬂ 1. Ruby itself is a somewhat confusing language. Really. Don't believe all the hype surrounding it. I'm net saying it isn't

Dave Thomas good, but it uses lots of concepts which aren't that commen in other languages and the syntax is unnecessarily bizarre
sometimes. Python has everything Ruby has, but it's *always* legible, clean and - let's face it - beautiful.

2. The top-down approach of the tutorial isn't efficient if you've never programmed before. I have a good deal of experience
e with other languages, so it was quite straightforward to me, but if that wasn't the case - and this book is also targeted at
Programming © . 5 2
Ruby the newbie audience - I'd probably be lost sometimes.
Not for a Java programmer

m 2007-07-26 Fricirt

Information is set in a haphazard manner. Cannot get a clear picture of how a Ruby program is structured.For ex: Chapter 4
‘ is on "Containers, Blocks, and Iterators”. Chapter 7 "Expressions” again has different information on Loops, Iterators, For ...
In, Variable Scope, Loops, and Blocks etc.

Great book!
2007-07-24 Frichink

I decided to learn Ruby on my own and I'm glad I picked this book. It's very easy to follow and the instructions were very
concise. If you're new to programming like myself, this book will be a great help in getting your feet wet.

That said, this is still THE book te get if you're interested in learning Ruby, at least until someone writes a better one.

USD$29.67
Published 2004-10-01
iy

Current sales rank :
2559

Other books you might be
interested in

=

PAS——
Agile Web Development with Rails,
2nd Edition

A classic, a must-have for anyone learning Ruby

2007-06-27 Pk
This is the book which made Ruby popular in America. I like the way they start out talking about blocks and closures early in
the book. As the book notes a reviewer said about blocks "This is impertant!"”

You must have ocne

2007-06-21 ok
Dave Thomas is surely one of the best writers I've ever seen. He doesn't treat you like an idiot, so it's perfect for
experienced programmers to learn very fast many aspects of the Ruby language.

next >>

Go to # on this page

[93]

Book sales tracking mashup plugin

Getting the daily sales ranking

Now that we have the customer reviews, let's do something about the sales ranking.
Amazon.com provides only the most current sales ranking, which we have already
displayed in the sidebar. Unfortunately it doesn't display any historic sales ranking
and therefore we don't know how the book sales have performed over a period of
time. To do this, we need to keep a history of the sales ranking.

We will keep the historic sales ranking in a YAML file instead of ActiveRecord
although this is also possible. However ActiveRecord is overkill if you do not
already have a database. What we're going to do is to create a rake script that runs
on a regular basis (depending on how often you want to check the sales ranking) and
which stores the ranking in a sequence in a YAML file.

Create a rake script named salesrank.rake in the RAILS ROOT/lib/tasks folder:

namespace :chapter4 do
desc 'Get daily sales ranking'
task :salesrank => :environment do
begin
salesrank = Amazon.salesrank('0974514055")
SalesRank.add (salesrank)
rescue
puts $!
end
end
end

The rake script itself is quite simple. It just calls a class method in the Amazon Rails
library to retrieve the current sales ranking, and then calls another class method in
the SalesRank library to update the YAML file.

Let's look at the new method we are adding to the Amazon library:

get the current sales rank for the product given the ASIN
def self.salesrank(asin)
Amazon: :Ecs.configure do |options|

options[:aWS_access_key id] = eekey id
options[:associate_tag] = @@associate_id
end

res = Amazon::Ecs.item lookup (asin,
:responsg_group => 'SalesRank')
res.first_item.get ('salesrank').to_i
end

[94]

Chapter 4

The Amazon. salesrank method takes in the ASIN from the rake script and calls
Amazon::Ecs.item lookup, requests the SalesrRank response group, then extracts it
from the response and returns it as an integer.

For the sales rank-related features we will create a new SalesRank library. Create an
empty file named salesrank_history.yml in the RAILS ROOT/config folder and a
file named sales_rank.rb in the RAILS ROOT/1ib folder:

module SalesRank
def self.history
history = YAML.load file(RAILS ROOT +
'/config/salesrank history.yml')
history ? history : I[]
end
def self.add(rank)
current = history.last(10) << rank
File.open(RAILS ROOT + '/config/salesrank history.yml',
'w') do |out|
YAML.dump (current , out)
end
end
end

The salesrank_history.yml file is a YAML file that contains the history of the sales
ranking over a period of time.

Run the rake script. Once the rake script has retrieved the most recent sales ranking,
we will add it to the sales ranking history using the SalesRank.add method. Firstly,
the method takes the current history from the salesrank history.yml file as an
Array. However, we limit the history to the last 10 (this number is arbitrary; you

can use any number) sales ranking values and append the latest rank to the end of
the array. Then we re-open the salesrank_history.yml file and write the entire
contents of the array to it, overwriting the previous content. This ensures that we will
only have at most 11 last readings of the sales ranking at any point in time.

Now that we have the rake script, we can use a scheduler to run it periodically. A
good period is to run it once every day in order to get the latest daily sales ranking of
your book.

Displaying the sales ranking sparkline

We have the historic sales ranking now but we need to display it nicely using a
sparkline. To do this we can opt for the simplest way of getting the image, which is
to just place the values into the URL string itself.

[95]

Book sales tracking mashup plugin

Add this class method to sales rank.rb:

def self.sparkline

hist = history

min = hist.sort.first - 100 > 0 ? hist.sort.first - 100 : O

max = hist.sort.last + 100
"http://bitworking.org/projects/sparklines/spark.
cgi?type=smooth&d=#{hist.join(', ') }sheight=15&limits=#{min}, #{max}&m
in-m=true&max-m=true&last-m=true&min-color=red&max-color=blue&last-
color=green&step=10"

end

Firstly we need to find out the minimum and the maximum sales ranking of the
book within the period and put a buffer of 100 ranks below and above it respectively.
Then, we plug in the data from the history, set the maximum and minimum limits
into the web service URL, and return it.

Now that we have the sparkline image, let's put it in the sidebar, just next to the sales
ranking numbers.

<div style="clear: both;"/>

Current sales rank :

<%= image tag SalesRank.sparkline %>
<%= h @book|[:salesrank] $>
</divs>

This is how it will look:

Dave Thomas

Programming
}T'EltJh_\' €

UsDs$29.67
Published 2004-10-01
i

Current sales rank :
———— " 2288

Other books you might be
interested in

Chapter 4

Creating a shopping cart

The last feature for this mashup is to allow your visitors to buy your book directly
from your website. Visitors to your website can add your book and other similar
books to a shopping cart. Payment still goes through Amazon.com and the
shopping cart is located remotely at Amazon.com but you will be able to fully
control and manipulate it.

Firstly, add in a create_new_cart method in the books_controller.rb file
as below:

def create_new_cart

@cart = session[:cart] = create_cart (params[:offer listing id])
redirect_to :action => :cart

end

This method calls the create_cart method in the Amazon Rails library, passing
in the Offer Listing ID of a copy your book, and returns a hash providing the cart's
details. Note that we're using the Offer Listing ID instead of the product ASIN.

We store this hash into the session and redirect the flow to the cart view. Let's
quickly turn to the Amazon Rails library. Add in a method named create_cart in
the amazon. rb file:

create a new cart with an item given the Offer Listing ID
def create_ cart (offerListingId)
cart = Hash.new
res = ecs.send request (:aWS_access_key id => @@key id,
: operation => 'CartCreate', 'Item.l.0fferListingId' =>
offerListingId, 'Item.l.Quantity' => 1)

cart[:cart_id] = res.doc.at("cartid") .inner_html

cart[:hmac] = res.doc.at ("hmac").inner_html
cart[:urlencoded hmac] = res.doc.at ("urlencodedhmac") .inner_ html
cart [:purchase url] = res.doc.at("purchaseurl").inner html

return cart
end

We use the cartcreate web service from Amazon ECS API, passing in the

book's Offer Listing ID as well as the quantity we require. For simplicity's

sake we will hard-code the quantity to 1. You can add up to 10 products in a

single CartCreate web service call, each passing the Offer Listing ID like this:
Item.1l.0fferListingId, Item.2.OfferListingId, Item.3.OfferListingId and
so on; but to keep things simple we'll only add your book to this shopping cart when
we're creating it.

[97]

Book sales tracking mashup plugin

An offer listing ID is an alphanumeric token that uniquely identifies
an item, as opposed to an ASIN, which identifies a product. While it is
. possible to add an item to a cart using an ASIN, the preferred means of
% adding an item is by specifying an Offer Listing ID. This is because an
= Offer Listing ID, not an ASIN, guarantees that an item can be purchased.

Some items (for example variation abstractions or collections) may have
an ASIN but not an Offer Listing ID. Items that do not have an Offer
Listing ID cannot be purchased.

We will also need at least three values in the cart hash. The Cart ID uniquely
identifies a remote shopping cart at Amazon.com, where our newly created
shopping cart is located. The HMAC (Hash Message Authentication Code) is an
encoded alphanumeric token, which is used to authenticate the cart. Both values
must be present to use any of the shopping cart-related web services from Amazon.
com ECS API. The purchase URL is the URL that is submitted to purchase the items
in a remote shopping cart.

Now that we have the create_new_cart action, link a nice shopping cart image
(which you'll need to put in RAILS_ROOT/public/images) to it in the sidebar.
rhtml file as shown in the snippet below:

<div class="center">
<hl><%= h @book[:title]%></hl>
<h2><%= h @book[:author] $></h2>
<%= image tag @book[:image url] %>
<p/>
<%= h @book|[:pricel] $>
<p/>
Published <%= h @book|[:publication date] $>
</divs>
<div style="clear: both;"/>
<div class="left-float"><%=1link to remote(image tag('add to cart.gif',

:border => 0), :update => 'update area', :url => {:action =>
'create new cart', :offer listing id => @book[:o0ffer listing id]}
) $></divs>

<div class="right-float"><%= link_to_remote(image_tag("#{@book[:
average rating] }.gif", :border => 0), :update => 'update area', :url
=> {:action => 'reviews' ,:page => 1}) %></div>

<div style="clear: both;"/>

As in the customer review, we will place the shopping cart in the <div> element with
the ID update area.

[98]

Chapter 4

The create_new_cart action redirects to a cart view, which updates (through AJAX)
the <div> element. Create a method in the books controller.rb file:

def cart
@cart = get cart session([:cart]
end

In the amazon. rb file, add the get_cart method to retrieve the remote shopping
cart from Amazon.com using the CartGet web service, passing in the cart hash we
created when we created the shopping cart (and which we have placed in a session).

get an existing cart
def get cart(cart)
res = Amazon::Ecs.send request (:operation => 'CartGet',
:cart_id => cart[:cart_id], 'HMAC' => cart[:hmac])
items = Array.new
subtotal = nil

purchase url = res.doc.at("purchaseurl") .inner html
cartitems = res.doc.at ("cartitems")
cartitems.each child { |child|
if child.name == 'cartitem!'
item = Hash.new
item[:title] = child.at("title") .inner html
item[:quantity] = child.at ("quantity") .inner html
item[:asin] = child.at("asin").inner html
item[:price] = child.at("price/formattedprice") .inner html

items << item
elsif child.name == 'subtotal'
subtotal = child.at ("formattedprice") .inner html
end
}
return {:items => items, :subtotal => subtotal,
:purchase url => purchase url}

end

This method returns a hash containing the items in the shopping cart, the subtotal,
and purchase URL. This hash is passed to the view and is used for displaying the
shopping cart information. Create a cart . rhtml file in the RAILS_ROOT/apps/
views/books folder:

<hl>Your shopping cart</hl>
You have the following books in your shopping cart:
<p/>
<table>
<tr>
<th class="item column">Item</th>
<th class="gty column">Quantity</ths>

[99]

Book sales tracking mashup plugin

<th class="price column">Price</th>

</tr>
<% @cart[:items] .reverse.each { |item| %>
<tr>
<td><%= h item[:titlel%> </td>
<td><%= h item[:quantity] %> </td>
<td><%= h item[:pricel%> </td>
</tr>
<%} %>
<tr>
<td></td>
<td></td>
<th><%= h @cart[:subtotall %> </th>
</tr>
</tables>
<%= link to (image_ tag('buy.jpg', :border => 0), @cart|[:purchase url]
) %>

Note that we attach the purchase URL to the 'Buy Now!' image (which once again

you'll need to put in the RAILS_ROOT/public/images folder) to redirect the visitor to
Amazon.com for payment.

This is how the page looks like after clicking on the 'Add to Shopping Cart'
image button.

YO Chapter 4

4 > € htrp:/ flocalhost: 3000 /books fsidebar ={Q- Google

Your shopping cart

Programming Ruby: You have the following books in your shopping cart:

The Pragmatic
Programmers' Guide, Item Quantity Price
Second Edition Programming Ruby: The Pragmatic

Programmers' Guide, Second Edition x $29.67

Dave Thomas

$29.67
= \'@ Buy now!
Progrjomig
USDs$29.67

Published 2004-10-01
[addtocart | i

Current sales rank :
~" 2464

Other books you might be
interested in

<

[100]

Chapter 4

Adding similar books to the shopping cart

To increase your earnings, you want to be an Amazon Associate and sell some books
that are related to yours, so you want to allow your visitors to add these similar
books to the shopping cart. To do this, we need to modify some of the methods we
have already created.

Change the get_similar products method in the Amazon Rails library to include
the Offer Listing ID in the returned response.

get similar products to a given ASIN
def get similar products(asin)
similars = Array.new
res = ecs.send request(:operation => 'SimilarityLookup', :item id
=> asin, :response group => 'Small,Images,Offers')
res.items.each do |item|
similar = Hash.new

similar[:asin] = item.get('asin')
similar[:title] = item.get ('itemattributes/title')
similar[:author] = item.get ('itemattributes/author')
similar[:offer listing id] = item.get("offerlisting/
offerlistingid")

similar[:small image] = item.get hash('smallimage')
similars << similar

end

return similars

end

Note that the response group requested now includes the of fers response group,
which gives us the Offer Listing ID. Now change the sidebar.rhtml file as shown in
the snippet below:
<div>
Other books you might be interested in

<table>
<% @similars.each { |similar|%>
<tr><td align='center'>
<%= link to remote(image tag(similar[:small image] [:url], :border
=> 0), :update => 'update area', :url => {:action => 'add item',
offer listing id => similar[:offer listing idl, :quantity => 1})%>
</td></tr>
<tr><td align='center'>
<%= h similar[:title] %>
</td></tr>
<tr><td align='center'>

</td></tr>
<% }%>
</table>
</div>

[101]

Book sales tracking mashup plugin

The change links the similar book image to an add_item action in the book

controller, passing in the Offer Listing ID and the quantity. Next, we need to add a
new method in the books controller.rb file:

def add_item

item = {:offer listing id => params[:offer listing id],

:quantity => params[:quantity]}

@results = add_item to cart(session[:cart], item)
redirect to :action => :cart

end

This method calls the add_item_to_cart method in the Amazon library, passing

on the remote shopping cart and item to be added to the shopping cart. Create this
method in the amazon. rb file:

add a new item to an existing cart

def

end

add_item to cart(cart,item)

res = ecs.send request (:operation => 'CartAdd',
:cart_id => cart[:cart_id], 'HMAC' => cart/[:hmac],
'Item.1.0fferListingId' => item[:offer listing id],
'Ttem.l.Quantity' => item[:quantity])

This method looks very much like the create cart method except that it calls the
Cardadd web service instead of the CartCreate web service.

And we're done! This is how it looks with the additional lines added to the

shopping cart.
ials) Chapter 4
1« = || & |19 huie: localhost: 1000 /backs sidebar BQ- Cocy — 3
; Your shopping cart
Programming Rf‘b‘ﬂ You have the following books in your shopping cart:
The Pragmatic
Programmers’ Guide, Item Quantity Price
< 4 Editi " .
Progr g Ruby: The Pragmatic
Programmers' Guide, Second Edition 1 $29.67
Dave Thomas ¥ - g
Aglle Web Development with Rails, 2nd 1 $26.37
Edition '
Ruby Cookbook (Cookbooks (O'Reilly)) 1 $32.99
$89.03
A By nowd
USD$29.67
Pubdished 2004-10-01
g sawnn’ Hririricd
Current sales rank @
- "7 2464
Other books you might be
interested in
-
X
.
Agile Web Development with Rails,
2nd Edition
RE:

[102]

Chapter 4

Summary

We've learned about Amazon's E-Commerce API web service and how we can use it
to retrieve information on the products sold by Amazon.com and its merchants. We
learned how to retrieve and store historic sales ranking information in a YAML file
and create a sparkline chart using a web service based on the historic sales ranking.
We also learned how to create a remote shopping cart in Amazon.com, then display
and manipulate it.

[103]

Job board mashup application

What does it do?

The job board mashup application is a fully fledged web application (running in
the Facebook interface) that allows a user to perform some functions and features
of a job board. This chapter describes how some functions of a job board can be
performed and enhanced by mashing up APIs from various sources.

Job board

A job board is a web application that 'converts' visits to a web site into actual
candidates registering for consideration for a job. It can belong to a company that is
recruiting its own employees or a third-party provider that helps companies

to recruit.

The basic functions of job board are:

e Acquiring candidates

e Storing and providing access to candidate profiles

e Processing candidate profiles

e Acquiring job postings

e Storing and providing access to job postings

e Processing job postings

e Providing value-added functions to candidates and employers

In this mashup we will show how some of a job board's functions can be duplicated
using various existing APIs on the Internet.

Job board mashup application

Requirements overview

We will define and map some of the functions of a job board and create mashups
to support these functions. We're not going to cover all the functions of a job board
(there are too many to cover) and we will be using numerous APIs from different
providers to provide these functions.

The functions are:

e Create a Facebook application that extracts and displays the user's profile.
Facebook is used here as a marketing tool to acquire candidates.

e Search for jobs through Indeed according to the user's Facebook profile. Most
job boards will have their own database of job postings but here we emulate
acquiring job postings by using a job search engine.

e Display the location of the jobs found using the user's profile in Google
Maps. Displaying job locations in a map provides more visual impact
to candidates.

e Search and display news on the recruiting companies through the Daylife
platform. News on the recruiting company provides more information on the
company and its products and services.

e Search and display blog postings in the blogosphere on the recruiting
companies through Technorati. Blog postings on the recruiting company
provide a different view of the company through the eyes of employees, ex-
employees, customers, or partners.

Design
This mashup application takes input and provides output to many different mashup

APIs. We will break down the process of creating this mashup into different steps.
The final application is not a single piece of software but a mashup in every sense.

We are going to use Facebook as a marketing tool, tapping its social network for
candidates. To do this we will create a Facebook application. This means while the
software resides within our server, the interface is through Facebook.

Searching for jobs through Indeed is displayed through the Facebook application

but displaying them on Google Maps is more conventionally displayed in our own
interface. News and blog entries on the company offering the job are displayed when
clicked on within Google Maps, in a separate panel to the side of the map.

[106]

Chapter 5

Mashup APIs on the menu

We are going to use five different mashup APIs in our mashup application:

e Facebook

e Google Maps
e Indeed

e Daylife

e Technorati
We're also going to use a few technologies to access these APIs:

e RFacebook for accessing Facebook
e YM4R/GM for accessing Google Maps
e Net::HTTP for accessing Indeed, Daylife and Technorati

e XmlSimple for parsing input form Indeed, Daylife, and Technorati

Here's a quick rundown and introduction to the APIs and tools.

Facebook

Facebook (http://www.facebook.com) is a social networking tool that connects you
to other people that you know on Facebook. It has the largest registered user base
among college-focused sites in the United States with an estimated 34 million users
as of September 2007.

In May 2007, Facebook opened up its network to application developers by
launching a set of APIs for third-party developers, called the Facebook Platform.
Since then there has been a flurry of third-party applications developed on Facebook
and as of September 2007 there are more than 4,500 such applications deployed on
its platform.

Facebook Platform

The Facebook Platform consists of several parts:
e Facebook REST APIs
e Facebook Query Language (FQL)
e Facebook Markup (FBML)

[107]

Job board mashup application

Facebook REST APIs allow you to write applications (either completely external or
attached to the Facebook interface) that use Facebook data or write data to user's
Facebook accounts.

FQL allows you to write SQL-like queries in your applications to request Facebook
data. FQL is used instead of the REST APIs if you want to have finer control on what
data you want from Facebook. For example if you only want a small subset of data
from Facebook, or if you want to concatenate data from a few sources in Facebook,
then you might not want to call two or more APIs to do the work where a single FQL
query will do the job. However, FQL as its name implies is only available for reading
data off Facebook.

FBML is a markup language that allows your application to integrate well into the
Facebook application. It is set of HTML-like tags that can be used at various places
in the Facebook application. FBML can be integrated in many different parts of a
Facebook application, though the two main parts are the profile page and the
canvas page.

We will be accessing Facebook through the RFacebook Ruby library and Rails plugin.

RFacebook

RFacebook (http://rfacebook.rubyforge.org/index.html) is a Ruby interface to
the Facebook APIs. You can use the REST APIs, FQL, and FBML through RFacebook.
There are two parts to RFacebook — the gem and the plugin. The plugin is a stub that
calls RFacebook on the Rails library packaged in the gem. RFacebook on Rails library
extends the default Rails controller, model, and view. RFacebook also provides a
simple interface through an RFacebook session to call any Facebook API. RFacebook
uses some meta-programming idioms in Ruby to call Facebook APIs.

Google Maps

Google Maps is a free web-based mapping service provided by Google. Google
provides a free JavasSript API library that allows developers to integrate Google
Maps into their own applications. In this mashup we will be using only the online
mapping function and not the geocoding capabilities of Google Maps. We will be
using the YM4R/GM plugin to access the online map. For more information on
getting a Google Maps API key please refer to Chapter 2.

Indeed

Indeed is a job search engine that allows users to search for jobs based on keywords
and location. It includes job listings from major job boards and newspapers and even
company career pages.

[108]

Chapter 5

Indeed provides a search API through its web services offering. To register for the
web service API go to http://www.indeed.com/jsp/createaccount.jsp and
register for an account. Once you have signed up you will receive a search API key.
You are allowed to make up to 99,999 queries in a single day. The web service API
provided by Indeed is only available through a GET request from a REST URL.

Technorati

Technorati (http://www.technorati.com) is an Internet search engine that
specializes in searching blogs. As of August 2007, Technorati had indexed 94 million
blogs on the Internet. Technorati provides a set of APIs for developers to help them
integrate Technorati data into their applications and to create mashups.

To create a developer account in Technorati, go to http://technorati.com/
signup/ and sign up for an account. Once you have signed up you will be provided
with an API key. The number of queries you make on Technorati each day is tracked
and you are not allowed to make more than 500 queries in a single day, unless you
have a commercial agreement with Technorati.

Technorati provides a number of APIs of which search is only one. You are also able
to get information on its members and the blogs its members own as well as various
blog statistics.

Daylife

Daylife (http://www.daylife.com) is a news aggregation site that gathers news
items from sources around the world and presents them in a meaningful and
connected way. One of the key features in Daylife is its ability to connect different
stories and topics together. Daylife also offers a platform for third-party applications
to use its data. Daylife provides a set of APIs around their News objects through

a REST interface. APIs provided include those used for Articles, Images, Quotes,
Topics, and Searches.

To use the Daylife platform you need to register at http://developer.daylife.
com/member/register. After registering you will be given an API access key and a
shared secret.

To send a request to the Daylife APIs, we need to compose a URL that specifies an
API endpoint and a list of input parameters. Input parameters are provided as
URL-encoded name value pairs.

[109]

Job board mashup application

This what an endpoint looks like:

http://freeapi.daylife.com/<resultformats>/publicapi/<versions>/
<NewsObject name> <method name>

Note that the current version is 4.2 and therefore the version number above is 42.
Daylife provides resultsets in three formats; that is in XML (xmlrest), in serializable
PHP objects (phprest) and in JSON (jsonrest). In this mashup we will use the XML
format only.

Input parameters are appended to the API endpoint as an '&'-separated list of
name-value pairs of arguments as a query string using the standard HTTP
GET formatting.

For example, a call to search for news containing the text "ruby on rails" and a
request for the resultset in an XML format looks like this:

http://freeapi.daylife.com/xmlrest/publicapi/4.2/search getRelatedArt
icles?accesskey=<accesskey>&signature=<signatures>&query=ruby+on+rails

where <accesskey> is your assigned API access key, and <signature> is replaced by
an MD5 hashed signature. To create the signature, we concatenate the API access
key, the shared secret, and a core input that varies according to the API called. We
will be describing how to create the signature in detail when we do it later.

Net::HTTP

For a more detailed discussion on Net : : HTTP please refer to Chapter 3. We will only
be sending GET requests to the REST APIs in this mashup, so our code will be in
this form:

response = Net::HTTP.get response (URI.parse('http://www.packtpub.com'))

XmISimple

XmlSimple (http://xml-simple.rubyforge.org/)is a Ruby API that allows
XML formatted data to be easily read and written to. It is a Ruby translation of the
Per]l module XML: : Simple and is written on top of REXML, an XML parser that is
included in the Ruby distribution.

To install XmlSimple, run this at the command line:

$gem install xml-simple

[110]

Chapter 5

The main use for XmlISimple in our mashup is to read the XML response that is
sent by the API and convert the XML into a nested hash. For example, when we
send a request query to Technorati using its search query, this is the returned
XML response:

<?xml version="1.0" encoding="utf-8"?>
<!-- generator="Technorati API version 1.0 /search" -->
<!DOCTYPE tapi PUBLIC "-//Technorati, Inc.//DTD TAPI 0.02//EN"
"http://api.technorati.com/dtd/tapi-002.xml">
<tapi version="1.0">
<document >
<result>
<query>Ruby on Rails</query>
<querycount>42254</querycount >
<rankingstart></rankingstarts>
</result>
<item>
<weblog>
<name>Urubatan's Weblog</names>
<urlshttp://www.urubatan.info</url>
<rssurls>http://www.urubatan.info/feed/</rssurls>
<atomurl></atomurls>
<inboundblogs>8</inboundblogs>
<inboundlinks>11</inboundlinks>
<lastupdate>2007-10-16 14:17:27 GMT</lastupdate>
</weblog>
<title>Ruby out of the Rails - Nitro and Og</title>
<excerpt> The Ruby language, started to grow inside the enterprises
and to be the topic in many blogs after the Rail framework showed up,
but Rails is not the only option for developing web applications with
Ruby, there are other frameworks, and one of the others is called
Nitro Framework, this one has almost the same age as Rails</excerpt>
<created>2007-10-16 14:17:27 GMT</createds>
<permalink>http://www.urubatan.info/2007/10/ruby-out-of-the-rails-
nitro-and-og/</permalinks>
</item>
</document >
</tapi>

Running this through XmlSimple with this code:

XmlSimple::xml in(xml input, 'force array' => false)

[111]

Job board mashup application

results in a nested hash like this:

{"document"=>
{rresult"=>
{"querycount"=>"42255", "rankingstart"=>{},
"query"=>"Ruby on Rails"},
"item"=>
{"permalink"=>
"http://www.urubatan.info/2007/10/ruby-out-of-the-rails-nitro-
and-og/",
"title"=>"Ruby out of the Rails - Nitro and Og",
"excerpt"=>
" The Ruby language, started to grow inside the enterprises and
to be the topic in many blogs after the Rails framework showed
up, but Rails is not the only option for developing web
applications with Ruby, there are other frameworks, and one of
the others is called Nitro Framework, this one has almost the
same age as Rails",
"weblog"=>
{"inboundlinks"=>"11",
"rgsurl"=>"http://www.urubatan.info/feed/",
"name"=>"Urubatan's Weblog",
"atomurl"=>{},
"url"=>"http://www.urubatan.info",
"inboundblogs"=>"8",
"lastupdate"=>"2007-10-16 14:17:27 GMT"},
"created"=>"2007-10-16 14:17:27 GMT"}},
"version"=>"1.0"}

By setting the attribute force_array to false in this example, we allow elements in
the nested hash not to be an array if there is only 1 element. From the nested hash we
can extract the data that we need.

We will be using XmlSimple pretty extensively in many of the subsequent sections.

What we will be doing

The following section describes the steps we will be taking to create the mashup.

Acquire candidates through Facebook

The first and longest step is to acquire candidates through a Facebook application.
These are the steps we will take to create this Facebook application:

1. Create a Rails application
2. Create a Facebook application
3. [Install and configure the RFacebook plugin and gem

[112]

Chapter 5

Extract the user's Facebook user profile using RFacebook

Display the user profile information we need and create a form to send the
user profile to the search page

6. Deploy and configure the Facebook application

Search for jobs through Indeed

Next, we will enable searching for jobs through Indeed while displaying the jobs in
the Facebook application. The Facebook application also allows you to display the
location of the jobs found in a map and this redirects to our mashup. The steps to
achieve this are:

1. Create the action and use Net::HTTP to send the search parameters to Indeed

2. Parse the results with XML:Simple and display the search results in the
Facebook application

Display jobs in Google Maps

Displaying Google Maps is done in our own mashup interface:

1. Use the search results to display the location of the jobs in the map

2. Create a link on each job to show the news and stories on the company

Search and display job news from Daylife

Searching and displaying job news extracted from Daylife:

1. Use Net:HTTP to accesss Daylife APIs to extract Daylife news data and
display it on the web page

Search and display job stories from Technorati

Searching and displaying job news extracted from Technorati:

1. Use Net:HTTP to access Technorati's REST APIs and extract blog
information

Acquiring candidates through Facebook

We will be creating a Facebook application and displaying it through Facebook.
This application, when added into the list of a user's applications, allows the user to
search for jobs using information in his or her Facebook profile.

[113]

Job board mashup application

Facebook applications, though displayed within the Facebook interface, are actually
hosted and processed somewhere else. To display it within Facebook, you need to
host the application in a publicly available website, then register the application. We
will go through these steps in creating the Job Board Facebook application.

Creating a Rails application
We begin this mashup by creating a Rails application.

$rails Chapter5

This will create a new Ruby on Rails application. Note that in this application we will
not be using ActiveRecord or accessing any databases to retrieve or store data. All
data will be retrieved and parsed from the various APIs we will be using.

Creating a Facebook application

Next, create a Facebook application. To do this, you will need to first add a

special application in your Facebook account —the Developer application. Go to
http://www.£facebook.com/developers and you will be asked to allow Developer
to be installed in your Facebook account.

Y & & Facebook | Add Developer?
L [Ei http: / /www.facebook.com/install.php?api_key=f5ded961c633da58bd638dbd587ada7d @ B Q- Coogle

Profile edit Friends v Networks v Inbox v home account privacy logout

facebook

Searehre Add Developer to your Facebook account?
Q To learn more about this
application, view its about page.
Applications edit .]
EE i Developer - B
E—
Photos by Facebook qu—
AL Groups '
[Events et e
= jow this application to...
[=5] Marketplace
v more E Know who | am and access my information

2‘ Put a box in my profile
E Place a link in my left-hand navigation
E Publish stories in my News Feed and Mini-Feed

i‘ Place a link below the profile picture on any profile

Developer was created by Facebook and is pretty sweet. By clicking
‘add,’ you agree to the Platform Application Terms of Use.

Afraid of abuse by this application?

+] Add Developer [igetlsd Block Developer

Facebook © 2007 about developers jobs advertisers polls terms privacy help

[114]

Chapter 5

Add the Developer application and agree to everything in the permissions list.

You will not have any applications yest, so click on the create one link to create a
new application. Next you will be asked for the name of the application you want to
create. Enter a suitable name; in our case, enter 'Job Board' and you will be redirected
to the Developer application main page, where you are shown your newly created
application with its API key and secret.

-8 .8 Facebook | Developers

| < | | [| [Ed http:/ fwww.facebook.com/develapers /apps.php?ret=4

Profile edit Friends v Networks v Inbox v home account privacy logout

| facebook

Search

Q

Facebook Developer Back to Developer Home

& My Applications
Applications edit
[@] Photos
it Croups
Events APl key created.
ﬂ;_—:I Marketplace
Developer You have 1 key | Apply for another key
more
Job Board | Edit Settings | Delete App | 5tats

About Page View About Page | Edit About Page Submit Application »

Once you have completed your
application you may submit it to
<none> our product directory.

Quick Start

You will need the API key and secret in a while.

Installing and configuring RFacebook

RFacebook consists of two components — the gem and the plugin. The gem contains
the libraries needed to communicate with Facebook while the plugin enables your
Rails application to integrate with Facebook. As mentioned earlier, the plugin is
basically a stub to the gem. The gem is installed like any other gem in Ruby:

$gem install rfacebook
To install the plugin go to your RAILS_ROOT folder and type in:

$./script/plugin install svn://rubyforge.org/var/svn/rfacebook/trunk/
rfacebook/plugins/rfacebook

[115]

Job board mashup application

Next, after the gem and plugin is installed, run a setup rake script to create the
configuration file in the RATLS_ROOT folder:

$rake facebook:setup

This creates a facebook.yml configuration file in RAILS_ROOT/config folder.
The facebook.yml file contains three environments that mirror the Rails startup
environments. Open it up to configure the necessary environment with the API
key and secret that you were given when you created the application in the
section above.

development :
key: YOUR_API_KEY HERE
secret: YOUR API_SECRET HERE
canvas_path: /yourAppName/
callback path: /path/to/your/callback/
tunnel:
username: yourLoginName
host: www.yourexternaldomain.com
port: 1234
local port: 5678

For now, just fill in the API key and secret. In a later section when we configure the
rest of the Facebook application, we will need to revisit this configuration.

Extracting the Facebook user profile

Next we want to extract the user's Facebook user profile and display it on the
Facebook application. We do this to let the user confirm that this is the information
he or she wants to send as search parameters.

To do this, create a controller named search controller.rb in the RATILS ROOT/
app/controllers folder.

class SearchController < ApplicationController
before_filter :require_facebook install
layout 'main'
def index
view
render :action => :view
end
def view
if fbsession.is valid?
response = fbsession.users getInfo(:uids =>
[fbsession.session user id], :fields =>
["current location", "education history",

[116]

Chapter 5

"work history"l])
@work history = response.work history
@education history = response.education history
@current location = response.current location
end
end

Note the before_filter we've added to this controller. This filter is a part of
RFacebook and forces the user to install the application whenever this controller is
used. Let's look at the view action.

fbsession is the current user's Facebook session represented in Rails. fbsession
allows you to call any existing method in the set of Facebook REST APIs through

a commonly used Ruby meta-programming idiom. There is a method in the Ruby
Kernel module (which is included in the base object class and therefore available
to every Ruby object) called method_missing. This is called every time any Ruby
object is sent a message it cannot handle (that is, it is called when there is a 'missing
method'). Normally the Ruby interpreter will raise an error if this happens but this
method (like any method in Ruby) can be overridden to process the message. This
meta-programming idiom is widely used in many Ruby libraries and frameworks,
including Ruby on Rails. For example, in ActiveRecord, the find_by_xxx methods are
implemented in this way.

In the case of RFacebook, method_missing is overridden in fbsession (which is

an instance of RFacebook : : FacebookSession) to call the corresponding Facebook
APL. In the above code, the method users getInfo is called in fbsession. This is
translated into the Facebook API facebook.users.getInfo. The general rule is to
drop 'facebook' and convert the dot (.) to an underscore (_). The parameters passed to
the API are passed as a Hash. In this case, we are passing the current user's Facebook
session UID and a list of fields we want from the APL

RFacebook stores the response in a format called Facepricot, which is an extended
form of Hpricot, but with some specific and simplified methods for getting Facebook
data from the returned response document. In our Job Board Facebook application,
we're looking specifically for three pieces of information — the user's education
history, work history, and current location.

[117]

Job board mashup application

Displaying the user profile and creating the
search form

Now that we have the information let's go to the corresponding view and see how
we can display it. Create a file called view.rhtml in the RAILS_ROOT/app/views/
search folder:

<hl>
Job Board
</hl>
<p>Select to include your education and work history.</p>
<% form tag :action => "search" do %>
<label>Education history <%= check box tag
'education'%></label>
<uls>
<%
education = []
@education history.education info list.each { |education info]
education << education info.concentrations.concentration list
%>
<%= h education info.name %> (<%= h education info.year%s>) -
<%= h education_ info.concentrations.concentration list.join ", "
$></1i>
<% } %>
</uls>
<%= hidden field tag 'education info', education.join(", ") %>
<label>Work history <%= check box tag 'work'$%></labels>
<uls>
<%
work = []
@work history.work info list.each { |work info]
work << work info.position
s>

°

<%= h work_info.company name %> (<%= h work info.start date%>

- <%= work info.end date%>) - <%= h work info.position%>
</1li>
<% } %>
</uls>
<%= hidden field tag 'work info', work.join(", ") %>

<label>Other keywords</labels>
<p>Enter additional keywords to search jobs on (separate keywords with
commas) </p>
<%= text field tag 'keywords'%>

<label>Job location</labels>
<p>Where should the jobs be located?</p>
<% locations = []
locations << @current location.city << @current location.country

o°
\%

[118]

Chapter 5

<%= text field tag 'location', locations.compact.delete if {|item|
item == '' }. join(', ')%>

<p/>

<%= submit tag "search" %>

<% end %>

Let's take a look at how to display the education history. This is sample response
format from the Facebook API documentation:

<education history list="true">
<education infos>
<name>Harvard</name>
<year>2003</year>
<concentrations list="true">
<concentration>Applied Mathematics</concentrations>
<concentration>Computer Science</concentrations>
</concentrations>
</education infox>
</education history>

Note that the education history element has an attribute 1ist=true, which
indicates that there can be one or more education info elements. To get the list
of education info elements, just attach _1ist to education_info to get
education_info_list and use that as a method name. This will produce an
Array of education_info elements, which we iterate to get and display

the information.

<%
education = []
@education history.education_ info list.each { |education info]

education << education info.concentrations.concentration list

%>

<%= h education info.name %>(<%= h education info.year%>) -
<%= h education info.concentrations.concentration list.join ", " %></
li>

}

Repeat this with work history.

o°
o°
\Y

<

<%
work = []
@work history.work info list.each { |work info]
work << work_info.position
%>
<%= h work_info.company name %> (<%= h work info.start date%>
- <%= work_info.end _date%>) - <%= h work info.position%>
</1li>

<% } %>

[119]

Job board mashup application

We wrap a form around the displayed information and place check boxes next to
education and work history to let the user choose if they want to use the data in their
education history, work history, both, or none at all, in the job search. The fields we
are using are the work positions and the education history concentrations. We also
place the current location of the user as indicated in the user profile in a text field.
This allows the user to search jobs in their current location by default or change it
according to the location that they want.

The search form will call a search action in the search controller, which we will
describe in the next part. For now we need to deploy the Facebook application and
then configure it.

Deploying and configuring the Facebook
application

Facebook applications, as mentioned earlier, are displayed through Facebook but
hosted elsewhere. When a user accesses our application through Facebook, Facebook
will call our application and return the results to the user.

http://www.yourdomainname. i http://apps.facebook.com
com/search - job_board
o} o
6 o
Job Board Facebook
Server Server

As a result, the Facebook application needs to be accessible by Facebook and this
means it needs to be hosted in a publicly available Internet site. This also means that
our Facebook application cannot be deployed locally on your desktop PC even for
testing purposes.

If you don't happen to have access to a server on the Internet or have access to a
publicly available hosting account, there is another way of deploying your Facebook
application. Assuming that you're running your application on your PC at home and
accessing it through an ISP, you can use a dynamic DNS service to point an Internet
domain name to the IP address that the ISP assigned to your PC. You will usually
need to install a small application on your PC that will automatically update the
DNS entry whenever your ISP-assigned IP address changes. There are many freely
available dynamic DNS services on the Internet. This is the same technique we used

[120]

Chapter 5

in Chapter 2 to enable us to geolocate the user of the application through Hostip.info.
We will use this technique again in Chapter 6.

The caveat is that if you run your Facebook application on your home PC, you will
need to keep it running all the time, unless it is acceptable that the application can be
unavailable when it is not turned on. Also you should be aware that many ISPs do
not allow their subscribers to run services on their home PCs and some even block
off certain ports, in particular the HTTP port.

No matter where you plan to run the Facebook application, you can start the
application as you start any Rails application.

$./script/server

After you have started up the Facebook application, you need to go back to the
Facebook Developer application in your Facebook account to configure it. Click on
the Edit Settings link for the application. There are a number of settings you need to
configure here.

] -‘_) O Facebook | Developers
EEE @ [http: / jwww.facebook.com/developers/editapp.phpZedit&app_id=6110159005 © ~(Q- Google :T
A
Profile edit Friends v Networks v Inbox v home account privacy logout @
Facebook Developer Baclk to My Applications
Search v
(Y) @ Edit Job Board
Applications edit
Photos Required Fields
A% Groups S
Application Name | Job Board
B Events (Limit: 50 characters)
Marketplace
E Developer ¥ Optional Fields
¥ more Base options
Support E-mail | email@email.com
(Limit: 100 characters) | ; . . h
We will contact you at this addrass if thare are any problems or impertant updates.
Callback Url
i e o e bt b e e dive i 15 v callEack mL
%aa authentication overview for more details
Canvas Page URL http://apps.facebook.com/ !
(*) use FBML () Use iframe
Your application will be view. i Facebock navigation at this URL - either as L)
rendered FBML or loaded in you aren't sure what you should use here,
choosa FBML You can us n FBML on canvas pages with tha < : iframes
tag, and most things you will w to do will be easier and faster with FEML
Fa 0y
Application Type < Website () Desktop
IP Addresses of Servers
Making Requests
(comma-separated) ~
If you supply this information {e.g. 10.1.20.1, 10.1.20.3), reguests from addrasses other
than those listed will be rejected.
) =)
Can your application be -~ Yes (& No
added on Facebook? Select Yes if your application can be added to a user's Facebook account -
| 184

[121]

Job board mashup application

The callback URL is the public URL of your Facebook application. For our Job Board
application, assuming that you are hosting on yourdomainname.com, you should
use http://www.yourdomainname.com:3000/search.

Note that the default port number for the server script in the RAILS_ROOT/script
folder is 3000. You can change it like this:

$./script/server -p 80

There are several ways of integrating your application in Facebook and the two most
common ways are as a canvas page and as a profile box. The canvas page provides
the most real estate for your application as it provides a boxed area that covers most
of the page except for top and left navigation bars.

OO Facebook | My Friends' Notes
4 > Ed http: / jwww.facebook.com/notes. php?ref=sh C}EE =1 Q- Google

Profile edit Friends

Networks v Inbox v home account privacy |ogout

My Notes Notes about You Popular Notes Help

Search ~
Q '] Notes [+ Write a New Note |
Applications edit
Phet Notes Settings:
otos

You are not impaorting notes
23 Groups . v from an external blog.
E Eienits Your friends have not written any notes yer. Import a blog »

[E] Marketplace Na one can see or post

You can write your own or find more friends. comments.

K3 Developer Edit notes privacy »
-4 Job Board
@ Mobile Uploads
&) Posted Items Write notes from
your phone.
:l Notes

« less

Subscribe to these Notes

E My Friends' Notes

Subscription Help »

Facebook © 2007 about developers jobs advertisers polls terms privacy hell

Canvas Page
A

The canvas page URL is the URL you want to use to identify the canvas page of your
application. In our application this is http://apps.facebook.com/job_board/.

Now let's go back quickly to the RFacebook configuration we left alone earlier on:

development:
key: YOUR_API_KEY HERE
secret: YOUR_API_SECRET_HERE

canvas_path: /job board/
callback path: /search
tunnel:

username: yourLoginName

[122]

Chapter 5

host: www.yourexternaldomain.com
port: 1234
local port: 5678

Note the two highlighted settings. The canvas_path setting is the setting you have
just placed in your Canvas Page URL while the callback_path is the relative path
from your application. You can ignore the tunnel settings unless you wish to tunnel a
remote domain name to your local machine.

Another configuration you need to set for the canvas page is whether to display the
page as FBML (Facebook Markup Language) or to load your application as an iframe
within Facebook. Generally speaking, using FBML will result in faster display and
more consistent look-and-feel but the set of available markup is much more limited.
In addition, there are many things not possible with FBML. In our application we
will be using an iframe.

We also want our application to be added to a user's Facebook account, so select Yes
for that setting. You will notice that once we click on the Yes radio button, a whole
new set of configuration settings appears.

We want to re-direct the user to our canvas page once he or she has agreed to install
the application, so enter http://apps.£facebook.com/job_board/ in the Post-Add
URL setting. As we are not integrating with the user's profile in this application, the
other profile-related settings can be ignored.

The next setting to configure is the left-side navigation link. We want to display a
nice little logo and enable our user to access our application by clicking on a link in
the left navigation bar, so enter http: //apps . facebook.com/job_board/ in the
Side Nav URL setting.

Finally, before we complete the configuration, create a small (16 pixel by 16 pixel)
image in JPG, GIF, or PNG format for your application and upload it in the
icon setting.

To add the finishing touches, we want to make our Job Board application's look and
feel very similar to the rest of Facebook even though it's using an iframe. The trick
is to use Facebook's static stylesheets to style your views. Remember in the search
controller we had this line:

class SearchController < ApplicationController
before filter :require facebook install
layout 'main'

[123]

Job board mashup application

This changes the layout of views from this controller to using a layout file called
main.rhtml. So to make the look and feel uniform, let's create this main.rhtml
under RAILS ROOT/app/views/layouts:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1l/DTD/xhtmll-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en">
<head>
<meta http-equiv="content-type" content="text/html;charset=UTF-8"
/>
<title>Job Board</titles>
<%= javascript include tag :defaults %>
<%= stylesheet link tag
'http://static.ak.facebook.com/css/base.css' %>

</head>
<body>

<%= yield %>
</body>
</html>

The highlighted code shows that our main layout uses the base stylesheet used by
Facebook as well.

Now let's take a quick view of your new application!

Ooon Facebook | Job Board
:] 4 > @ [Ed http:/ /apps.facebook.com job_board/?auth_token=46eedd780b22ch946beas71c6672496d& %) "(Q' Coogle

Profile edit nds v Networks v Inbox v home account privacy logout

facebook
Search « Select to include your education and work history.
Q ' [Education history [

Applications edit

Photos
2% Groups

E Events Enter additional keywords to search jobs on (separate keywords with commas)

Work history [

Other keywords

Marketplace

I Developer llob location
JI Job Board

Where should the jobs be located?

v more

(search)

For more information please refer to hrtp://blog.saush.com

s
'r é/{ﬂ/{(’

,1 Page built by Job Board about developers jobs advertisers polls terms privacy help

[124]

Chapter 5

Searching for jobs through Indeed

Now that we have the Facebook application providing search parameters, we will
use these parameters and send a search query to Indeed, then parse the results and
display them in the Job Board canvas page.

Creating the search action

First, let's create the search action in the search controller. Modify search_
controller.rb to add in a search method:

class SearchController < ApplicationController
before filter :require_facebook install
layout 'main'
def index
view
render :action => :view
end
def view
if fbsession.is valid?
response = fbsession.users_getInfo(:uids => [fbsession.
session_user id], :fields => ["current_ location",
"education_history", "work history"])
@work_history = response.work history
@education_history = response.education history
@current location = response.current_ location
end
end
def search
query = []
query << params|[:work info] if params[:work]
query << params|[:education info] if params[:education]
query << params [:keywords]
url = 'http://api.indeed.com/search’
hash = {'key' => 'YOUR INDEED API KEY',
'q'=> query.join(", "),
'limit' => 20,
'latlong' => 1}

hash['1l'] = params|[:location]

parameters = URI.escape(hash.to a.collect {|pair| pair.join('=')}.
join('&'))

res = Net::HTTP.get response(URI.parse(url + '?' + parameters))

case res

when Net::HTTPSuccess, Net::HTTPRedirection
results = XmlSimple::xml in(res.body, 'force array' => false)
@jobs found = results['results']['result']

else

[125]

Job board mashup application

puts res.error!
end
if @jobs found.nil?
@jobs_found = []

flash[:notice] = "No jobs found"
else
session[:jobs] = @jobs found
end
end
end

First, we get the parameters from the search form and push them into an array,
query, if the user wanted to use that parameter. Next, we fashion the URL
parameters out of various parameters required by Indeed, including the API key, the
search parameters, the maximum number of jobs to retrieve, and whether to include
the latitude and longitude information of the job. We also attach the location to
search for the job, if the user has entered any location information.

After formatting the URL parameters properly, we attach them to Indeed's API
search REST URL and use Net : : HTTP to send a GET request to the URL. Note that we
are using GET because Indeed does not support POST requests for the search.

As before we get a returned response object that has data embedded in its body. In
this section we use XmlSimple to extract the XML in the response body and format
it into a nested hash. Please refer to the earlier section on XmlSimple if you have not
installed it. Note that we set the force_array configuration to false in order not to
produce arrays to for single values.

Finally, we get the hash that we're interested in (that is, the jobs that are returned)
and pass it on to the view. We also store the hash of jobs into a session to be
processed later by the map and others.

Parsing and displaying the search results

Let's move on to the view. Create a file called search.rhtml in the RAILS ROOT/
app/views/search/ folder:

<hl>Job Board search results</hls>
<%= h flash[:notice] %>

<%= link to "Back to search", "http://apps.facebook.com/job
board", :target => ' top'%>

<%= link to "Display jobs on a map", "http://www.yourdomainname.com/
map", :target => ' top'$>

<%@jobs_found.each { |job| %>
<li class="title">

[126]

Chapter 5

<a href="<%= job['url']%>" target=" new"><%= h job['jobtitle']l%>, <%=
h job['company'] %>

</1li>

<div class="description"s>

<div class="underline"sLocation</divs>

<%= h job['city']l %>, <%= h job['country']l %>

<div class="underline"sDescription</divs>

<%= job['snippet']l %>

</div>

<%} %>

jobs
by

<img src="http://www.indeed.com/p/jobsearch.gif" style="border: 0;
vertical-align: middle;" alt="job search"s

The code here is quite self-explanatory. We take the jobs found from calling Indeed's
API search and display them accordingly on the page. Remember that this is still a
page in the Facebook application. For the next API we are mashing up with, we will
be using our own site, so place a link on the page back to our mashup application.
We also wrap up the page by including the obligatory link back to Indeed.

Display jobs in Google Maps

Displaying locations on Google Maps has been covered extensively in Chapter 2, so I
will not go into the details of setting up the various plugins to do this but go straight
into the code. However note that this mashup does not do any geocoding so we don't
need to install GeoKit. We only need YM4R/GM.

Displaying the location of the jobs on the map

To display the location of the jobs, we need a new controller. Create a file called
map controller.rbin RAILS ROOT/app/controllers:

require 'net/http’
require 'cgi'
class MapController < ApplicationController
layout 'main'
def index
@jobs = session|:jobs]
@map = GMap.new("map div")

[127]

Job board mashup application

@map.control init(:large map => true, :map_type => true)
markers = {}
count = 1
@jobs.each { |job]
info = <<END

<div style='width: 350px'>
<label>#{job['jobtitle']l} (#{job['company']})</label>

#{job['snippet'] .capitalize}</div>

END

end
end

markers [count] =
GMarker.new([job['latitude'],
job['longitude']l],
:title => job['jobtitle'],
:info window => info)
count = count + 1

}

@map.overlay global init (GMarkerGroup.new (true,
markers) , "job markers")
zoom to the source
@map.center zoom init ([@jobs.first['latitude'],
@jobs.first['longitude']l], 12)

First, take the jobs out from the session where we stored them earlier on. We will
need them in the view, so make them an instance variable. Next, create the map
object and initialize it as described in Chapter 2. Then create a marker for each of the
jobs and put them into a hash. Finally, overlay these markers on the map and zoom
in to the map to display it.

Create a file named index.rhtml in RAILS ROOT/app/views/map:

<table width="1024px">

<tr>

</td>
<td>

N
s
Q,

valign="top">

N

GMap.header %>

N

javascript include tag("markerGroup") %>

N

@map.to_html%>
@map.div(:width => 640, :height => 480)%>

o° o° o° o°

N

<div id="display" style="height:480px;overflow:
auto;width:384px">
<%= render :partial => 'jobs'%$>

[128]

Chapter 5

</td>
</tr>

</table>

<p/>

<%= link to 'Back to Facebook Job Board application',
'http://apps.facebook.com/job board'%>

As in Chapter 2, we add the GMap headers and include the marker group JavaScript

files then convert the map object from the action into HTML and place the div
element in the page. This will show us the map of jobs that have been found

from Indeed.

We're also going to place a list of the jobs that we've found earlier on next to the
map —so render a job partial next to it and set the style to overflow to the height of
the map. This allows you to view the map all the time even as you scroll through the

list of jobs found.

Create a file called jobs.rhtml in the RAILS ROOT/app/views/map:

<h2><%= @jobs.size %> jobs displayed.</h2>

<% count =1
@jobs.each { |[job| %>
<1li class="title">

<a href="#" onclick="job markers.showMarker (<%=
%$>) ;return false;"><%= h job['jobtitle']%>,

job ['company'] %>

</1li>

<div class="description">
<div class="underline">Location</divs>
<%= h job['city']l %>, <%= h job['country']
<div class="underline">Description</div>
<%= job['snippet'] %>

</div>

<%

count += 1

}o%s

jobs

count
<%= h

by <a href="http://www.indeed.com/" title="Job Search"s
<img src="http://www.indeed.com/p/jobsearch.gif"

style="border: 0; vertical-align: middle;"
alt="job search"s

[129]

Job board mashup application

Note that this is very similar to the jobs listing in the Facebook application. The main
difference is that while clicking on the job title in the Facebook application shows the
job URL, clicking on the job title here will show the map showing the location of

the job.

. Job Board
j@ @hltp‘Nwww.vuurdumainﬂame.ccmﬁmap @ B Q- CGoogle

o N
PEEETS L
ea
i ?

Reservation=

Map | saelite | Hybnd | 20 i°bs displayed. -
Rev, salz';"‘“"--' r 1. Data Mashup Engineer, Infosquire
(g Location
S Orem, US

* B

Description
team to create new, cutting edge products and programs

—'F'm Er s related to data mashups, and create new web applications
S § showcasing our technologies. Excellent...
S Cambm‘& /e 2. Web Developers (Facebook plug-ins, Mashup
st BN i Service Apps - NEW Dev), The Bivium Group
=ies) Location
z > Boston, US
Description

and to help design and implement new Facebook plug-in
applications and Mashup Service applications (Ajax, HTML,
Java, JavaScript, Ruby on Rails). Company's...

F ft o 3. Mashup Producer, SERENA Software, Inc.
Roxbury 57 a8 27 Location
4 - 7 SA07AN a2 Calabasas, US
Brae Bum L SV : i
-~ Newton i o gen ¥ Wi i Description
| L) [B :'M el ‘g‘ 3 | The Mashup Producer will be responsible for the analysis,
‘Waban ICORNDE q.) design and implementation of business processes and
S aimsted ke interactive composite applications, or mashups...
J apar 3
o The Brookline |) A Dorcheste "
| [CountryChib , ® Amalcal ey 4. Salesforce.com APl Mashup with Maps, oDesk
o Plain (Rm» Location
AN St T Anaheim, US
Charles River 5 ’ (203) Fark Description
AR B Colmiv e / 4 By We need to access the Salesforce.com APl and create a
AR 4 L mash-up with our maps. This would be prosted on
b 1Y loght Talns of Use AppExchange. Very similar to the apps posted on... o
Back to Facebook Job Board application
| Open “http:/{wvav.google.com/intl/en_ALL/helpfterms_maps.html” in a new window _ 4

Creating a link on each job to show the news and
blog articles

Next we want to find out more about the companies that posted the jobs. In each
job, we want to place a link to search Internet news on the company and another to
search for blog articles that mention the company.

ff) Beimont -

Web Developers (Facebook plug-ins and Mashup Service
apps for Consumer Facing Web company) (The Bivium
Group) -
And to help design and implement new facebook plug-in B ‘
applications and mashup service applications (ajax, html, java, 'C'ﬂmbn‘d
javascript, ruby on rails). company's... = -
Mews Blogs Jobs list

o Martn

[130]

Chapter 5

When we click on the link we want to display the list of news or blog articles to the
right of the map, where the list of jobs is now. We are going to do this using AJAX to
replace the HTML with the list of news or blog articles. However, we also want to be
able to go back to the list of jobs that we had originally.

To do this, modify the index method of the map controller and add a few new lines
into the information box that is popped up when we click on the marker:

@jobs.each { |job]

info = <<END
<div style='width: 350px'>
<label>#{job['jobtitle']l} (#{jobl['company']})</label>

#{job['snippet'] .capitalize}</div>
<a href="#" onclick="new Ajax.Updater('display', '/map/news?comp
any=#{job['company']l }', {asynchronous:true, evalScripts:true}); return
false; ">News
<a href="#" onclick="new Ajax.Updater('display', '/map/blogs?
company=#{job['company'] }', {asynchronous:true, evalScripts:true});
return false;">Blogs
<a href="#" onclick="new Ajax.Updater('display', '/map/list',
{asynchronous:true, evalScripts:true}); return false;">Jobs list</
span>
END

markers [count] =

GMarker.new([job['latitude'],
job['longitude']],
:title => job['jobtitle'],
:info _window => info)
count = count + 1

}

Remember that the AJAX links will not work unless you have added the default
JavaScript libraries in your layout file main.rhtml:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en">
<head>
<meta http-equiv="content-type" content="text/html;charset=UTF-8" />
<title>Job Board</titles
<%= javascript include tag :defaults %>
<%= stylesheet_link tag
'http://static.ak.facebook.com/css/base.css' %>
</head>
<body>
<%= yield %>
</body>
</html>

[131]

Job board mashup application

I will describe what the news and blog links will do in the next few sections but let's
look at what happens when you click on the job list link. Add a new method in the
map controller:

def 1list
@jobs = session|[:jobs]
end

Then create a file called 1ist.rhtml in RATLS _ROOT/app/views/map:
<%= render :partial => 'jobs'%>
This view simply renders the same partial that we created earlier on.

The next two mashup APIs we are using are search based, like Indeed. The main
idea behind using these two APIs is to search for information on the company that is
posting the job then display them in the same right panel as the job list.

Searching and displaying news from Daylife

In this mashup we will use only one API endpoint from the Search API, which

is getRelatedArticles. We will be searching for news the same way as we did
searches on Indeed, that is, constructing the REST URL and sending a GET request to
Daylife using Net : : HTTP.

Searching for news on the company

To search for news on the company that posted the job, add a new method in the
map controller:

def news
server = 'freeapi.daylife.com'
protocol = 'xmlrest'
version = '4.2"'
service name = 'search'
method name = 'getRelatedArticles'
access_key = 'YOUR API ACCESS KEY'
shared secret = 'YOUR SHARED SECRET'

query = params [:company]
core_input = query

url = "http://#{server}/#{protocol}/publicapi/#{version}/
#{service name} #{method name}"

hash = {}

hash[:signature] = Digest::MD5.hexdigest (access key +

shared secret + core input)
hash[:accesskey] = access key
hash[:query] = query

[132]

Chapter 5

parameters = URI.escape (hash.to _a.collect {|pair| pair.join('=')}.
join('&'))

res = Net::HTTP.get response (URI.parse(url + '?' + parameters))

case res

when Net: :HTTPSuccess, Net::HTTPRedirection
results = XmlSimple::xml in(res.body, 'force array' => false)

@results = results['payload'] ['article']
if @results.nil?
flash[:notice] = "No news found for this company."
@results = {}
end
else
flash[:notice] = res.error!
end

end

As with searching through Indeed, we send a GET request to Daylife using Net : :
HTTP and parsing the resulting XML into nested hashes. However we need to specify
the return format and an API version. We also need to create a signature that is sent
along with the API access key with each call.

hash[:signature] = Digest::MD5.hexdigest (access key + shared secret +
core_ input)

To create the signature, we concatenate the API access key, the shared secret, and
a core input that varies according to the API called. For the API we are calling, this
core input is the query we want send to Daylife. This concatenated string is then
hashed with the MD5 hash function to return the signature.

We also need a view corresponding to the action method. Create a file called news.
rhtml in the RAILS ROOT/app/views/map folder:

<hl>News (by <%= link to "Daylife", "http://www.daylife.com"%>)</hl>
<%= h flash[:notice] %>

<% @results.each { |article]| %>
<1li class="title">
<a href="<%= article['url'] ['content']%>" target="job"><%= h
article['headline'] ['content'] $%$>
<div class="description">
<%= article['excerpt'] ['content'] %>
</div>
</1li>
<%} %>

This will be displayed to the right of the online map.

[133]

Job board mashup application

Searching and displaying blog articles from
Technorati

Technorati provides a set of REST APIs for developers to extract and integrate their
data in other applications. The APIs can be called using GET or POST requests. We
will be using the Technorati API search to search for blog articles that discuss the
recruiting company.

Searching for blog entries on the company

As with the Indeed and Daylife searches, we will be using Net : : HTTP to send a GET
request to Technorati and then parsing the XML that is returned using XmlISimple.
The steps are straightforward and don't need much explanation at this stage.

First, add a new method in the map controller:

def blogs
url = 'http://api.technorati.com/search'
hash = {'key' => 'YOUR TECHNORATI API KEY',
'query'=> params ['company'],
'authority' => 'n'}
parameters = URI.escape (hash.to a.collect {|pair]|
pair.join('=')}.join('&"))
res = Net::HTTP.get response (URI.parse(url + '?' + parameters))
case res
when Net::HTTPSuccess, Net::HTTPRedirection
results = XmlSimple::xml in(res.body, 'force array' => false)

@stories = results['document'] ['item']
flash[:notice] = "No blog entries found for this company."
if @stories.nil?
else
flash[:notice] = res.error!
end
end

Then create a view corresponding to the blogs action. Create a file called blogs.
rhtml in the RAILS ROOT/app/views/map folder:

<hl>Blogs entries (by <%= link to "Technorati", "http://www.
technorati.com"%>)</hl>

<%= h flash[:notice] %>

<% unless @stories.nil?

@stories.each { |story| %>

[134]

Chapter 5

<1li class="title">
<a href="<%= h story['permalink']%>" target="job"><%= h
story['title']l%$>
<div class="description">
<%= storyl['excerpt'] %>
</div>
</1li>
<% }
end
%>

And we're done with the mashup!

Summary

Mashup applications are complete applications that use APIs in a synergistic way to
provide value that does not exist before. In this mashup application, we showed how
a job board could benefit from mashing up APIs from various providers including
Facebook, Google Maps, Indeed, Daylife, and Technorati. The combination of the
services and the uniqueness of the emergent services show how new applications
can add extra value to their existing functions by mashing up external services and
integrating them as part of their own.

[135]

Trip organizer mashup
application

What does it do?

The trip organizer is a web mashup application that has features and functions that
allow users to view information on a location for the purpose of organizing a trip.
This mashup uses different APIs to provide these generic functions:

e Mapping

e Information

e Translation
The purpose of this application is to provide a complete set of information for a

traveler before the trip. This application also provides a showcase of mashup APlIs,
as a large number of mashup APIs are used to construct it.

Requirements overview

The trip organizer is an application that wraps various types of information around
a location that the user enters. As a result, the concept of a 'location' is central in the
design of this mashup. A location is a city or a large town in a country, for example,
Athens, Greece or New York, United States. The types of information on a location
shown in this mashup are:

e Map view of the location
e Summary information on the location

e Places of interest around the location

Trip organizer mashup application

e Hotels around the remote location filtered by availability according to a set
of dates and sorted by the number of stars for the hotel, with the location of
each hotel shown on the map

e Weather forecast of the location for today and the next six days
e Pictures of the location or associated locations

e Currency exchange rate of the remote location in comparison with the user's
home country

e Time zone and current time in the remote location, and a comparison with
the user's home time zone

Design

The fundamental design of the system is simple. We will create an object called
Location, which will encapsulate all the information that is required for the mashup.
Then, using a web application we will extract the information from the Location
object and display it on a single web page.

The Location object will hide away all the implementation of extracting information
from the various API providers, so most of the action will reside in this object. For
the currency conversion, we will also create a Currency object, which the Location
object calls, to abstract the currency conversion implementation.

Little to almost no processing is done in this mashup application as the API
providers will be doing most of the processing. The mashup's main work is in taking
input from the user, getting information from the various providers and displaying
it appropriately back to the user. Where needed, data from one provider is passed on
to a second provider.

Mashup APIs on the menu

This application will need to get services from various providers to display
information on a remote location. In this mashup we will be using the largest
number of APIs compared to the applications in the other chapters in this book. APIs
accessed in this mashup are:

e Google Maps (mapping)

e FUTEF Wikipedia (location information)

o WebserviceX Currency Convertor (currency conversion)

¢ Yahoo Geocoding Services (location geocoding)

o WeatherBug (weather)

[138]

Chapter 6

e Kayak (hotel search)
e GeoNames (location information)
e Flickr (location images)

e Hostip.info (IP geocoding)

For most of the APIs, with the exception of YM4R/GM and WebserviceX we will
be using their REST APIs (even though some of them provides multiple types of
interfaces) and accessing them using Open URI.

Google Maps

Google Maps is a free web-based mapping service provided by Google. Google
provides a free JavaScript API library that allows developers to integrate Google
Maps into their own applications. In this mashup we will be using only the online
mapping function and not the geocoding capabilities of Google Maps. We will be
using the YM4R /GM plugin to access the online map.

To access Google Maps you need an API key. For more information on getting a
Google Maps API key please refer to Chapter 2.

FUTEF

Wikipedia is a multilingual web-based encyclopedia that has more than 2 million
English-language articles as of November 2007. FUTEF (http://futef.com)isa
service that provides search access through APIs to Wikipedia. FUTEF provides a
free search API for non-commercial, low volume access. You are required to present
an application ID to access FUTEF services. To request an application ID, go to the
FUTEF API documentation page at http://api.futef.com/apidocs.html. FUTEF
APIs are REST-based and return only JSON formatted data.

WebserviceX Currency Converter

WebserviceX (http://www.webservicex.net) is a web service provider that offers
various types of free web services, and the currency converter is one of them. The
currency converter converts a unit of a currency to another. WebserviceX APIs are
SOAP based.

[139]

Trip organizer mashup application

Yahoo Maps Geocoding API

The Yahoo Maps geocoding API (http://developer.yahoo.com/maps/rest/V1/
geocode . html) allows you to find information on a location, including longitude
and latitude data. Although Yahoo's website indicates only US addresses, the Yahoo
Maps geocoding API allows you get information on any location, including those
outside of the United States.

The geocoding APIs provide precision of data at several levels:

e Address
o Street

e Zip

o Ziptd

o C(City

e State

e Country

The information returned by the geocoding API includes:

Latitude The latitude of the location.
Longitude The longitude of the location.

Address Street address of the result, if a specific location could be determined.
City City in which the result is located.

State State in which the result is located.

Zip Zip code, if known.

Country Country in which the result is located. The result is an ISO 3166-1
country code.

As the Yahoo Maps geocoding API returns only the country code, in this chapter
we will use the GeoNames API to extract the country name. Yahoo Map geocoding
services are free for non-commercial use.

WeatherBug

WeatherBug (http://weatherbug.com) is a website that provides weather
information. WeatherBug has live data from over 8,000 WeatherBug Tracking
Stations across the US and from more than 50,000 other weather stations around
the globe. In this chapter we will be using WeatherBug's international weather
information API through its REST-based APL

[140]

Chapter 6

To register for the WeatherBug API, go to http://apireg.weatherbug. com
and follow the instructions given. You will need to agree to the terms and
conditions and provide some additional information. WeatherBug APIs are free
for non-commercial use.

WeatherBug provides a list of APIs that can be used. We will be using the Forecast
API, which returns a 7-day forecast based on our input. WeatherBug APIs return
responses in XML, RSS, and pipe-delimited formats. The returned response for the
Forecast APl is only in RSS.

Kayak

Kayak (http://www.kayak.com) is a travel search engine that searches through
travel sites around the world to bring various travel products into a single
location. Kayak's search engine looks for travel products from flights and hotels to
rental cars and cruises. Kayak provides various tools and utilities through its

lab, but the one that we will be using in this chapter is its hotel RSS feed

(http ://www.kayak.com/ labs/rss).

GeoNames

GeoNames (http://www.geonames.org) is an extensive geographical database
and is available for download or access through web services, free of charge, under
a creative commons attribution license. GeoNames provide a set of REST-based
web services around the geographical database that returns either XML or JSON
responses. In this chapter we will be using three web service APIs from GeoNames:

e Country information
e Time zone information

e Places information (from Wikipedia)

Flickr

Flickr (http://www.flickr.com) is a web-based photo sharing application that
provides an extensive set of APIs for developers. Usage for non-commercial
purposes is free. Access to the APIs requires you to register for a Yahoo ID and

also apply for an application key. To apply for any application key, go to
http://www.flickr.com/services/api/keys/apply and fill in a simple form
requesting your name and a description of your usage of Flickr APIs. You will be
given both an application key and a shared secret. Afterwards you can edit the
details of the application key to provide additional information like the name of the
application and a public application description, though this is optional.

[141]

Trip organizer mashup application

The application key is necessary for every Flickr API request but the shared secret is
only necessary for API requests that require authentication. You can request Flickr
APIs through three different formats:

e REST
¢ XML-RPC
e SOAP

Flickr will respond to you in any one of five formats (which you can specify):

e REST

o XML-RPC
e SOAP

e JSON

e PHP

In our mashup application, we will be using the REST request format. A REST
request defaults to a REST response, which is basically a simple XML block in
this format:

<?xml version="1.0" encoding="utf-8" ?>
<rsp stat="ok">

[xml-payload-here]
</rsp>

If an error occurs, the following is returned instead:

<?xml version="1.0" encoding="utf-8" ?>
<rsp stat="fail">

<err code="[error-code]" msg="[error-messagel" />
</rsp>

Flickr also provides secured API calls by requiring users to log in for certain method
calls. We will not be using any secured APIs in this chapter.

Hostip.info

Hostip.info (http://www.hostip.info) is a website that provides free geocoding
of IP addresses. Hostip.info offers an HTTP-based API as well as its entire database
for free for integration. We used Hostip.info in Chapter 2 through GeoKit but in this
chapter we will be using it directly through its REST interface.

[142]

Chapter 6

Open URI

Open URI is an easy-to-use wrapper library included in Ruby 1.8 onwards. It wraps
around Net::HTTP, Net::HTTPS, and Net::FTP and allows URLs to be opened and
used like files. For convenience, open URI aliases and replaces Kernel: : open to
allow opening of files, pipes, URIs from a single method. This means that you can
use open directly like this:

open ('http://ws.mashup-api.com')

{
}

Open URI is the simpler, alternative library used to access URLs. It is simpler to
use than Net::HTTP but has limitations as you cannot specify the HTTP method to
use. This effectively prevents us from using Open URI for REST-like interfaces that
require usage of HTTP methods. However, Open URI is probably the better library
to use for getting data from a URL.

|data| results = data.read

In this chapter we will be using only Open URL

What we will be doing

The following section describes the steps we will be taking to create the mashup. The
basic steps are:

=

Create the Rails application

Create the basic Location object

Create a location search form

Create an online map to show the location found

Create the tabs for the information

Get general information from Wikipedia using FUTEF

Get places information from Wikipedia through GeoNames

Get hotel information from Kayak

0 X NG »PDN

Get weather information from WeatherBug
10. Display pictures of the location using Flickr
11. Show currency exchange rate from WebserviceX

12. Show remote location time compared with local time

[143]

Trip organizer mashup application

Creating a Rails application

We begin this mashup as before by creating the usual Rails application.

$rails Chapteré6

This will create a new Ruby on Rails application.

Creating the basic Location object

Our design revolves around a main Location object that provides all the information
that we need for a user-specified location. This can be used for the remote location
and the user's home location, which is detected from the requesting IP address.
Therefore our first but most important task is to build a basic Location class that will
store the information we need as well as to derive basic information on the location.

Create a file called location.rb in the RAILS ROOT/1ib folder:

require 'open-uri'
require 'cgi'
require'pp'

YAHOO GEOCODE _URL = 'http://local.yahooapis.com/MapsService/V1/
geocode'

YAHOO APP ID = '<your Yahoo APP ID>'

GEONAMES SEARCH URL = 'http://ws.geonames.org/search'

GEONAMES COUNTRY URL = 'http://ws.geonames.org/countryInfo?country="
class Location

attr accessor :location, :lat, :long, :city, :state, :country,
country code, :currency, :timezone

def initialize (location='Singapore')
hash = {:appid => YAHOO APP ID, :location => location }

parameters = URI.escape (hash.to _a.collect {|pair| pair.join('=')}.
join('&'))
results = '
open (YAHOO GEOCODE_URL + '?' + parameters) { |s| results =
XmlSimple::xml in(s.read, 'force array' => false) ['Result'] }
if results.class == Array then
cities = ''

results.each {|res]|
if res['Country'] == 'US' or res['Country'] == 'CA'
cities += "<a href='/trip/map?location=#{res['City']},
#{res['State']l}, #{res['Country']}'>#{res['City']l},
#{res['State']l}, #{res['Country']}</1li>"
else
cities += "<a href='/trip/map?location=#{res['City']},
#{res['Country'] }'>#{res['City']l},

[144]

Chapter 6

end

#{res['Country'] }</1i>"
end
cities += ''
raise "More than one city with the same name found! Please
choose one from below:" + cities

end
@country code = results['Country']
@state code = results['State']

@lat = results['Latitude'].to f

@long = results['Longitude'] .to £

hash = {:gq => location, :maxRows => 1, :style => 'FULL' }

parameters = URI.escape (hash.to _a.collect {|pair| pair.join('=')}.

join('&'))

open (GEONAMES SEARCH URL + '?' + parameters) { |s| results =
XmlSimple::xml in(s.read, 'force array' => false) ['geoname'] }

raise "Cannot find this city, please try again with a different
state or country." if results == nil

@city = results['name']

@country = results['countryName']

@timezone = results['timezone'] ['content']

if @country code == 'US' or @country code == 'CA'
@location = "#{ecity}, #{estate code}, #{@country}"
else

@location = "#{ecity}, #{ecountry}"

end

end

First, we needed to define a number of attribute accessors to store the information we
need. We store the following information:

A location string describing the city, for example, Paris, France
The longitude and latitude of the location

The name of the city, state, and country of the location

The currency code of the currency used in that location

The time zone of that location

Next, we created a constructor to define how Location objects are created. We want
to allow the user to create a new Location object by passing in a location name
parameter and we set a default location in case no parameters are passed in.

[145]

Trip organizer mashup application

The first few lines in the constructor will be used repeatedly in the subsequent code:

hash = {:appid => YAHOO APP ID, :location => location }

parameters = URI.escape (hash.to _a.collect {|pair| pair.join('=')}.
join('&'))

results = '

open (YAHOO GEOCODE _URL + '?' + parameters) { |s| results = XmlSimple::
xml in(s.read, 'force array' => false) ['Result'] }

The basic concept behind these few lines is to create a URL string and use it for a
REST API call with Open URL The first line creates a hash with the key names as the
parameter names and the values as the parameter values. In this instance, we need to
provide a Yahoo application ID and a location that we want to geocode. The next line
converts this hash into a string of key-value pairs. We will then append this string to
the geocoding URL and use Open URI to get a response from the Yahoo geocoding
REST API.

s.read is the response retrieved from the API. Yahoo returns an XML response as

shown below, which we then use XmISimple to parse and convert into an array
of hashes.

<ResultSet xsi:schemalLocation="urn:yahoo:maps http://api.local.yahoo.
com/MapsService/V1/GeocodeResponse.xsd" >

<Result precision="zip">
<Latitude>48.856925</Latitude>
<Longitude>2.341210</Longitude>
<Address/>
<City>Paris (Paris)</City>
<States>France</State>
<Zip/>
<Country>FR</Country>

</Result>

</ResultSets>

From this results hash, we extract the country code, state code, and longitude and
latitude information. Note that unfortunately, the name of the city returned by
Yahoo is not consistently usable. For example in the response above, the name of the
city is Paris (Paris), which is not usable for later mashup usage. We will deal with this
in a while.

[146]

Chapter 6

Sometimes more than one city is returned because there could be more than one city
with the same name. For example, a search on Birmingham returns five Birminghams
in the United States alone. This mashup can only display one location so we need to
ask the user to choose exactly which one to show.

if results.class == Array then
cities = ''
results.each {|res]|
if res['Country'] == 'US' or res['Country'] == 'CA'
cities += "<a href='/trip/map?location=#{res['City']},
#{res['State']l}, #{res['Country']l}'>#{res['City']l},
#{res['State']l}, #{res['Country']}</1li>"
else
cities += "<a href='/trip/map?location=#{res['City']},
#{res['Country'] }'>#{res['City']l},
#{res['Country'] }</1li>"
end

}
cities += ''
raise "More than one city with the same name found! Please
choose one from below:" + cities
end

A string with an HTML snippet of a list of locations found is created and an exception
is raised. This will be caught later and the HTML snippet displayed to the user.

Coming back to the city name, we will use another mashup AP], this time
GeoNames, to get the proper city name, as well as the country name and the
time zone.

hash = {:q => location, :maxRows => 1, :style => 'FULL' }
parameters = URI.escape (hash.to _a.collect {|pair| pair.join('=')}.
join('&'))

open (GEONAMES SEARCH URL + '?' + parameters) { |s| results =
XmlSimple::xml in(s.read, 'force array' => false) ['geoname'] }

raise "Cannot find this city, please try again with a different
state or country." if results == nil

@city = results|['name']

@country = results['countryName']

@timezone = results['timezone'] ['content']

This returns the response (truncated for formatting purposes):

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<geonames style="FULL">
<totalResultsCount>1398</totalResultsCount>
<geoname>
<names>Paris</names>

[147]

Trip organizer mashup application

<lat>48.8666667</lat>
<1lng>2.3333333</1ng>
<geonameId>2988507</geonameId>
<countryCode>FR</countryCode>
<countryName>France</countryName>

<fcl>P</fcl>
<fcode>PPLC</fcode>
<fclNames>city, village, ...</fclName>

<fcodeName>capital of a political entity</fcodeName>
<population>2138551</populations>
<alternateNamess>...</alternateNames>

<elevation/>

<adminCodel>A8</adminCodel>
<adminNamel>Ile-de-France</adminNamels>
<adminCode2>75</adminCode2>
<adminName2>Paris</adminName2>
<adminCode3>751</adminCode3>
<adminName3>Arrondissement de Paris</adminName3s>
<adminCode4>75056</adminCode4 >

<adminName4 >Paris</adminName4 >

<timezone dstOffset="2.0" gmtOffset="1.0">Europe/Paris</

timezone>

</geoname>

</geonames>

We get the city name, country name, and time zone from the response.

If you're observant you might notice that in fact, the information found
from Yahoo's geocoding API can also be found in GeoNames and we
might save on a mashup API call if we just used GeoNames only! So why
did we use two mashup APIs instead of one?

Admittedly showing off how to use Yahoo's geocoding APIs is one of the
minor reasons; the main reason is that the GeoNames returns too many
records when the information is too ambiguous. This is true even when
we filter off certain records by their feature code or feature class. For
example, when searching for Paris, instead of returning names of cities
or towns named Paris, it will return all populated places with names
containing Paris. Yahoo's search on the other hand returns what we
required —a list of cities or large towns.

This shows that we need to be careful when using mashup APIs and only
careful study and research in using the API will give us the necessary
data that we need to build our mashup.

[148]

Chapter 6

To properly search through Yahoo Geocoding APIs, we should put in the state codes
for the United States as well as Canada and we re-format the location string that is
the original input:

if @country code == 'US' or @country code == 'CA'
@location = "#{ecity}, #{e@estate code}, #{@country}"
else
@location = "#{ecity}, #{ecountry}"
end

This returns the Location object to the calling class.

Creating a search form

Now that we have the basic Location class, let's turn to the controllers and views to
create a search form for our user. Create a controller named trip controller.rb in
the RAILS ROOT/app/controllers folder:

class TripController < ApplicationController
layout 'main'
def index
end

end

Create the corresponding index.rhtml template in a new RAILS_ROOT/app/views/
trip folder:

<hl>Trip Organizer</hls>
<%= render :partial => 'search'%$>

Also create the _search.rhtml partial in the same folder:

<div id='search form'>

<% form tag(:action => 'map') do -%>

<%= text field tag 'location', @location, :size => 30 %> <%= submit
tag 'Find' %>

<% end -%>

</div>

[149]

Trip organizer mashup application

Creating the online map

Next, we will create the map action that will display a map on the screen. Add a
map method in the trip_controller.rb file.

def

map

session[:location] = Location.new(params[:location])

end

@map = GMap.new("map div")

@map.control init(:large map => true, :map_type => true)

@map.icon global init(GIcon.new(:image => "http://www.google.com/

mapfiles/ms/icons/blue-pushpin.png",

:shadow => "http://www.google.com/mapfiles/shadow50.png",

:icon size => GSize.new(32,32),

:shadow _size => GSize.new(37,32),

:icon_anchor => GPoint.new(9,32),

:info window anchor => GPoint.new(9,2),

:info shadow_anchor => GPoint.new(18,25)),

"icon source")

icon source = Variable.new("icon source")

source = GMarker.new([session[:location].lat,

session[:location] .long],

:title => 'Source',

:info window => "Start here!",

:icon => icon_source)

@map.overlay init (source)

@map.center zoom init ([session[:location].lat,
session[:location] .longl, 12)

@location = session/[:location].location

First, we create a new Location object based on the location entered by the user.
We store this object in the session for later use. The next few lines use YM4R/GM
to create a Google Map marker and set it on the map then zoom in on that location,
similar to what we've done in Chapter 2 and Chapter 5 before this. Ensure that you
download the plugin and amend the gmaps_api_key.yml file.

Next, we create the map template map . rhtml in the
RAILS ROOT/apps/views/trip folder:

<hl>My Trip Organizer</hl>
<table>

<tr>

<td

id="info_panel">
City360

<%= render :partial => 'search'$%>
<%= render :partial => 'tabs'$%$>

[150]

Chapter 6

</td>

<td id="map_ panel">
<%= GMap.header %>
<%= javascript include tag("markerGroup") %>
<%= @map.to html%>
<%= @map.div(:width => 600, :height => 640)%>

</td>

</tr>

</table>

Note the second partial below the search form. We'll be discussing it in the
following section.

Creating the tabs for the information

We will be using tabs to display the information on the location. For tabbing we will
be using AJAX to load the data into the tab pages when needed. At the same time,
whenever the data has been loaded already we don't want to load it again.

For this we turn to the excellent AJAX Tabs code from Flinn Mueller at
http://actsasflinn.com/Ajax Tabs/index.html.

First, create a JavaScript file named tabs. js in the RAILS_ROOT/public/
javascripts folder:

function tabselect (tab)
var tablist = $('tabcontroll') .getElementsByTagName ('li');
var nodes = S$SA(tablist);
var 1lClassType = tab.className.substring (0,
tab.className.indexOf ('-"'));
nodes.each(function(node){
if (node.id == tab.id) {
tab.className=1ClassType+'-selected';
} else {
node.className=1ClassType+'-unselected';

P
}
function paneselect (pane) {
var panelist = $('panecontroll') .getElementsByTagName ('1li');
var nodes = S$A(panelist);
nodes.each(function(node){
if (node.id == pane.id) {
pane.className='pane-selected';
} else {
node.className='pane-unselected';

[151]

Trip organizer mashup application

1)
}
function loadPane (pane, src) {
if (pane.innerHTML=='' || pane.innerHTML=='Loading...') {
reloadPane (pane, src);

}

function reloadPane (pane, src) {

new Ajax.Updater (pane, src, {asynchronous:1, evalScripts:true,
onLoading: function (request) {pane.innerHTML="'Loading...'}})

}

Now, we need to create a layout file called main. rhtml, which we will place in
RAILS ROOT/app/views/layouts

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en">
<head>
<meta http-equiv="content-type" content="text/html;charset=UTF-8" />
<title>City360</title>
<%= javascript include tag :defaults %>
<%= javascript include tag 'tabs' %>
<%= javascript include tag 'PopBox' %>
<%= stylesheet link tag 'main' %>
</head>
<body>
<%= yield %>
</body>
</html>

This JavaScript file requires the use of Prototype. In particular it uses the Ajax
Updater from the Prototype JavaScript library to load the necessary page when
loadPane or reloadPane is called. Notice in the 1oadpane function, if there is
already information in the tab, it will not call reloadpane, which will always load
the page.

Next, add in the following styles in your stylesheet. For this project, we use main.
css in the RATLS ROOT/public/stylesheets folder:

.tabselector, .tab-selector {
width: auto;
border-bottom: 1px solid #c0c0cO;
padding: 10px 0 0 20px;

}

.tab-unselected f{

[152]

Chapter 6

display: inline;
padding: 2px 7px 0 7px;

background-color: #f0f0£f0;
border: 1lpx solid #c0c0cO0;

border-bottom: 0;
color: #c0c0cO;

}

.tab-selected {
display: inline;

padding: 3px 7px 1lpx 7pX;

background: #fff;

border: 1lpx solid #c0c0cO0;

border-bottom: 0;

}

.tab-unselected a {
padding: 6px;
color: #a0alaol;

}

.tab-selected a {
font-weight: bold;
color: #0066CC;
padding: 6px;

}

.panes, .pane-selector {
width: 97%;
padding-left: Opx;
margin: 2%;
min-height: 300px;
overflow: auto;

}

.pane-selected {
list-style-type: none;
display: block;
padding: 10px;

}

.pane-unselected {
list-style-type: none;
display: none;

[153]

Trip organizer mashup application

Finally, create the _tabs.rhtml partial in the RAILS_ROOT/app/views/trip folder:

<ul class="tabselector" id="tabcontroll"s>
<li class="tab-selected" id="info tab">

<%= link to_ function('Info', "tabselect(s$('info tab'));
paneselect ($('info pane'))") %>
<li class="tab-unselected" id="places tab">
<%= link to_ function('Places', "loadPane ($('places pane'), '" +
url for(:action => 'places', :location => params[:location]) +
"), tabselect($('places tab')); paneselect ($('places_
pane'))") %>
<li class="tab-unselected" id="hotels tab">
<%= link to function('Hotels',6 "loadPane ($('hotels pane'), '" +
url for(:action => 'hotels', :location => params[:location]) +
"), tabselect ($('hotels tab')); paneselect ($('hotels
pane'))") %$>
<li class="tab-unselected" id="weather tab"s>
<%= link to function('Weather', "loadPane($('weather pane'), '" +
url for(:action => 'weather',K :location => params[:location])
+ "'), tabselect ($('weather tab')); paneselect ($('weather
pane'))") %>
<li class="tab-unselected" id="pictures tab">
<%= link to function('Pictures', "loadPane ($('pictures pane'), '"
+ url for(:action => 'pictures', :location =>
params[:location]) + "'), tabselect($('pictures tab'));
paneselect ($ ('pictures pane'))") %$></lis>
<p>
<li class="tab-unselected" id="currency tab">
<%= link to function('Currency', "loadPane ($('currency pane'), '"
+ url for(:action => 'currency', :location =>
params [:location]) + "'), tabselect($('currency tab'));
paneselect ($ ('currency pane'))") %$></lis>
<li class="tab-unselected" id="time tab">
<%= link to function('Time', "reloadPane($('time pane'), '" +
url for(:action => 'time', :location => params[:location]) +
"), tabselect($('time tab')); paneselect ($('time pane'))")
$></1li>

<ul class="panes" id="panecontroll"s
<li id="info pane" class="pane-selected">
<%= render :partial => 'info' %>
</1li>
<li id="places pane" class="pane-unselected">
<li id="hotels pane" class="pane-unselected">
<li id="weather pane" class="pane-unselected">
<li id="pictures pane" class="pane-unselected">
<li id="currency pane" class="pane-unselected">
<li id="time pane" class="pane-unselected">

Note that the first pane is a partial and is loaded when the page is displayed.

[154]

Chapter 6

Getting information from Wikipedia

Now that we have the basic skeleton of the page ready, it is time to flesh it out with
information. First up is information about the location from everyone's favorite
online encyclopedia — Wikipedia.

First, we need to go back to the Location class and make some changes. Add these
constants at the top of the class:

FUTEF_URL = 'http://api.futef.com/api/v1'
FUTEF_API ID = '<YOUR FUTEF API ID>'

FUTEEF returns JSON responses so make sure you have installed the Ruby
JSON library:

require 'json'
Then add in this method:

def info
hash = {:appid => FUTEF API ID, :query => @city}
parameters = URI.escape (hash.to _a.collect {|pair| pair.join('=')}.
join('&'))
results = '!
open (FUTEF_URL + '?' + parameters) { |s| results =JSON.parse(s.
read) }
results|['records']
end

As before, we create a hash from the parameters and form a URL parameter

string from it. Then, attaching it to the FUTEF URL, we use Open URI to request
information from Wikipedia through FUTEF. Note that we're making a query on
the city only, and not the full location string. The returned result is in JSON format,
which we parse through the JSON library to get an array of hashes similar to what
we did with XmlSimple.

The information retrieved will be placed in the info tab. As mentioned, the info tab is
a partial that is shown when the main page is loaded. As such we will not be adding
any actions in trip_controller.rb. Create a partial template called _info.rhtml
in the RATLS ROOT/app/views/trip folder:

<div>
<% session[:location] .info.each { |info|%>

<%= info['text']%><p>

<%= link to (info['url']l), info['url']l%><p>
<%} %>

</div>

[155]

Trip organizer mashup application

The code is pretty simple. Using the Location object already instantiated previously
and stored in the session, we call the info method, then iterate through the
information retrieved.

We're ready for a first look at our application. Go to the text box after opening;:
http://localhost:3000/trip and type in a city and country of your choice. In
order not to confuse Yahoo Maps geocoding service, you should enter both city and
country, though sometimes for unique cases (especially in the United States, where
the data is more accurate) you can get away with just entering the city.

————

Trip Organizer

< | > || c huep:/ /localhost:3000/trip/map @ ~(Q- Google
Trip Organizer S
p Org
San Francisco, CA, United States @
Info
San Francisco, California i

The City and County of San Francisco is the fourth most populous
city in California and the fourteenth-maost populous in the United
States, with a 2005 population of 739,426. It is located on the tip of
the San Francisco Peninsula and is the focal poi

http:/ fen.wikipedia.org fwiki/San_Francisco,_California

San Francisco Bay Area

The San Francisco Bay Area, colloguially known as the Bay Area, is a
geographically diverse metropolitan region that surrounds the San
Francisco Bay in Northern California. It encompasses the cities of
San Francisco, San José, and Dakland, and their

http: f fen.wikipedia.org fwiki/San_Francisco_Bay_Area

San Francisco 49ers

The San Francisco 49ers are a professional American football team.
The team plays their home games in 5an Francisco, California, while
the club's headquarters and practice facility are located in Santa
Clara, California. They are currently members of

http:/ fen wikipedia.org /wiki/San_Francisco_49ers

San Francisco Giants

The San Francisco Giants are a Major League Baseball team based in
San Francisco, California, and play in the National League West
Division. New York Giants history Early days and the John McGraw
era One of the most storied clubs in American profess

http:f /en.wikipedia.org /wiki/San_Francisco_Giants

San Francisco Bay

San Francisco Bay is a shallow, productive estuary through which

water draining approximately forty percent of Califarnia, flowing in

the Sacramente and San Joaquin rivers from the Sierra Nevada
mountains, enters the Pacific Ocean. Technically, both v

Getting places information

Next, we want to get information on places of interest within that city or its
surroundings. To do this we will turn to Wikipedia again though this time we will
access it through GeoNames instead.

First, we need to add in the URL for the GeoNames Wikipedia search web service
that we're using. Add this constant at the top of the location. rb file:

GEONAMES WP_URL = 'http://ws.geonames.org/findNearbyWikipedia'

[156]

Chapter 6

Then create a method named places of interest in the location.rb file:

def places _of interest
hash = {:radius => 20, :maxRows => 20, :lat => @lat, :1lng => @long

}

parameters = URI.escape (hash.to _a.collect {|pair| pair.join('=')}.
join('&'))

pp GEONAMES WP _URL + "?" + parameters

results = '

open (GEONAMES WP URL + "?" + parameters) { |s| results =
XmlSimple::xml in(s.read, 'force array' => false) }
pp results
results['entry']
end

The radius here indicates the radius of the search for a place, around the given
longitude and latitude. The maxRows parameter tells GeoNames how many
records we want to retrieve. What is returned is a list of interesting places centered
around the given coordinates.

Having retrieved our data we need to create the action and view to display it. The
action is quite simple; add the following method in trip_controller.rb:

def places
@places = session[:location] .places of interest
end

Then create a file called places.rhtml in the RAILS ROOT/app/views/trip folder:

<div class="data">
<% unless @places.nil?%>
<% @places.each { |info|%>

<p>

<h2><%= link to remote info['title'], :url => {:action => 'show_
place', :long => info['lng'], :lat => info['lat'],
:summary => "<div style='width:350px;'><hl>#{info['title']}
</hl><table><tr valign='top'><td>#{info['summary']}</
td><td> #{image tag info['thumbnailImg'] unless
info['thumbnailImg'] .empty?}</td></tr></table></div>" }%></h2>

<div>

<table>

<tr valign='top's>

<td>

<%= info['summary']%>

</td><td>

<%= image tag info['thumbnaillImg'] unless info['thumbnaillmg'].
empty?%$>

</td>

[157]

Trip organizer mashup application

</tr>
</table>
<%= link to 'more',6 info['wikipediaUrl']%>
</div>
</p>
<% }
else %>
The places of interest tab is not available at the moment. You can try
again later by doing the same search.
<% end %>
</div>

In this page we display the title, summary, and a thumbnail image provided in the
article. We also link to the map using the given longitude and latitude, passing the
summary in. When the user clicks on the link, the location of the place of interest is
shown on the map to the right. To do this, we do an AJAX call to the action
show_place, so we add this method in trip controller.rb:

def show_place
@map = Variable.new("map")
icon place = Variable.new("icon place")
@marker = GMarker.new([params|[:lat],params[:longl],
:title => "Place of interest",
:info window => params[:summary],
:icon => icon place)
end

This action gets the previously created map variable and proceeds to add a new
marker to indicate the place of interest, passing the summary as the information
window to pop up when the icon is clicked. Notice that we used a new icon called
icon_place, and we need to create this when we first create the map. Add the
highlighted portion into the map method in the trip controller.rb file:

def map
session[:location] = Location.new(params[:location])
@map = GMap.new("map div")
@map.control init(:large map => true, :map_ type => true)
@map.icon global init(GIcon.new(:image =>
"http://www.google.com/mapfiles/ms/icons/blue-pushpin.png",
:shadow => "http://www.google.com/mapfiles/shadow50.png",
:icon size => GSize.new(32,32),
:shadow _size => GSize.new(37,32),

[158]

Chapter 6

:icon_anchor => GPoint.new(9,32),

:info window anchor => GPoint.new(9,2),

:info shadow_anchor => GPoint.new(18,25)),

"icon source")

@map.icon global init(GIcon.new(:image => "http://maps.google.

com/mapfiles/ms/micons/yellow-dot.png",

:shadow => "http://maps.google.com/mapfiles/ms/micons/
msmarker.shadow.png",

ticon size => GSize.new(32,32),

:shadow size => GSize.new(59,32),

:icon_anchor => GPoint.new(9,32),

:info _window anchor => GPoint.new(9,2),

:info_shadow anchor => GPoint.new(18,25)),

"icon place")

icon source = Variable.new("icon source")

source = GMarker.new([session[:location].lat,
session[:location] .longl],

:title => 'Source’',

:info window => "Start here!",

:icon => icon_source)

@map.overlay init (source)

@map.center zoom init ([session[:location].lat,
session[:location] .longl, 12)

@location = session[:location].location

end

To display the marker on the map, we need to do some JavaScript magic, using an
RJS template. The R]S template will dynamically add in the JavaScript code that
places the marker on the right location on the map. Create a show_place.rjs filein
the RAILS ROOT/app/views/trip folder:

page << @map.clear overlays
page << @map.add overlay (@marker)

The first line in the R]S template clears the map of existing markers. The second line
adds the marker to the map.

[159]

Trip organizer mashup application

This is how the application looks with the new tab:

Trip Organizer

4 I C | @ http:/ /localhost:3000/trip/map

@|~[Q- Google

Tri

San Francisco, CA, United States

p Organizer

Find

Places

Ao, ..
more

Alamo Square, San Francisco, California

Alamo Sguare is a residential neighborhood and park in San
Francisco, California. Both are located in the Western Addition, a
part of the city's fifth Supervisorial district, and are served by
several Muni bus lines including the 5, 21, 22, and 24. Alamo
Square Park consists of six city blocks at the top of a hill
overlooking much of 5an Francisco, with a number of large and
(.

more

San Francisco, California

The City and County of San Francisco is the 4th
most populous city in California and the ldth
most populous city in the United States, with a
2006 estimated population of {...)

more

Metreon

, 1898, the first in a proposed succession of Sony urban centers
aggregating dining, gaming, music, exhibitions, shopping, and
movies. Located in downtown San Francisco at the corner of 4th
St. and Mission St., Metreon Is a four story 350,000 square foot
(33,000 m? building, built over the corner of the underground
Moscone Center convention center (...}

more

Seals Stadium

Seals Stadium was a minor league baseball stadium that stood in
San Francisco from 1931 through 1959, The stadium was
originally built with three dressing rooms - one for the visiting
tea(m. and one for each of the minor league home teams. the San
<

v

) >

San Francisco, California

The City and County of San Francisco is the
4th most populous city in California and the
14th most populous city in the United

States, with a 2006 estimated population of |

()

Map

Satellite

Hybrid

Getting hotel information

The next tab is the hotels tab. In this tab we process information from Kayak and
display hotels that are available around the location. Kayak is one of the biggest

travel search websites around since its merger with SideStep and its information on

hotels is quite comprehensive.

We start off with adding a new method in the Location class. At the top of the
location.rb file, add the following to enable usage of XmlSimple:

require 'xmlsimple'

Then add the necessary constant used in Kayak:

KAYAK HOTEL URL =

'http://www.kayak.com/h/rss/hotelrss’

[160]

Chapter 6

Next, add in a hotels method:

def hotels
hotels = []
results = '
if @country code == 'US' or @country code == 'CA' then
hotel search = KAYAK HOTEL URL + "/#{CGI::escape (@country
code) }/#{CGI: :escape (@estate code) } /#{CGI: :escape (@city) }"
else
hotel search = KAYAK HOTEL URL + "/#{CGI::escape (@country
code) } /#{CGI: :escape (@city) }"
end
open (hotel search) { |s| results = XmlSimple::xml in(s.read,
'force array' => false) ['channel'] ['item'] }
unless results.nil?
results.each {|hotel]
hotels << Hotel.new(hotel)
}
end
hotels
end

Kayak searches for locations in the United States and Canada differently. For
these two countries, you need to provide a state code, while the rest of the world
doesn't require a state code. This is a sample of the returned feed (truncated for
formatting purposes):

<?xml version="1.0"?>

<rss version="2.0" xmlns:kyk="http://www.kayak.com/h/rss/
hotelextension">

<channel>
<title>Kayak.com Hotels in San Francisco, CA</title>
<link>http://www.kayak.com</link>

<description>Recent prices for hotels in San Francisco,
CA</descriptions>

<language>en-us</language>

<pubDate>Sat, 29 Mar 2008 04:05:22 EDT</pubDate>

<lastBuildDate>Sat, 29 Mar 2008 04:05:22 EDT</lastBuildDate>

<docs>http://www.kayak.com/h/labs/rss</docs>

<managingEditor>webmaster@kayak.com</managingEditor>

<webMaster>webmaster@kayak.com</webMasters>

<item>

<title>The Opal @ $20 ***</title>

<link>http://www.kayak.com/k/redirect/in?ai=&p=&url=%2Fh%2

Fhotel%2Fid%2F38126</1link>

[161]

Trip organizer mashup application

<description>A classic five story hotel, The Opal
San Francisco was constructed in 1908 in the heart
of the city...</description>
<pubDate>Sat, 29 Mar 2008 04:05:22 EDT</pubDate>
<guid>http://www.kayak.com/h/hotel/id/38126</guid>
<kyk:stars>3</kyk:stars>
<kyk:price>19.90</kyk:price>
<kyk:currency>USD</kyk:currency>
<kyk:hotelname>The Opal</kyk:hotelnames>
<kyk:city>San Francisco</kyk:city>
<kyk:state>CA</kyk:state>
<kyk:country>US</kyk:country>
<kyk:thumbnail>http://www.kayak.com/himg/29/9d/da/
leonardo-t11124-t11124 ext 01 a-thumb.jpg</kyk:
thumbnails>

</item>

</channel>

</rss>

As before, we use XmlSimple to extract the information from the returned response.
However, this time we extract the information into Hotel objects and return an array
of Hotel objects. Create a Hotel class in the location. rb file:

class Hotel
attr accessor :name, :link, :thumbnail, :stars, :price,
description, :currency
def initialize (hotel)
@name = hotel['hotelname']
@link = hotel['guid']
@thumbnail = hotel['thumbnail']
@stars = hotel['stars']

@price = hotel['price']
@description = hotel['description']
@currency = hotel['currency']
end
end

You might realize that the returned response is an RSS feed and you

might wonder why we don't parse it as such. This is because the

Kayak hotel feed has Kayak-specific extensions defined in Kayak's
% proprietary namespace tags, and Ruby's default RSS parser cannot handle
namespaces by default. Extracting it using XmlSimple turns out to be a
simpler way to consume the RSS compared to extending the RSS parser to
parse Kayak's tags.

[162]

Chapter 6

Finally, create a simple view to display the hotels that we have retrieved. Add the
following code to your trip_controller.rb file.

def hotels
@hotels = sessgion[:location] .hotels
end

Then, create a file named hotels.rhtml in the
RAILS ROOT/app/views/trip folder:

<div class="data">
<% @hotels.each { |hotel| %>
<h2><%= link to hotel.name, hotel.link %> <%= image tag
"#{hotel.stars}.gif" if hotel.stars %></h2>

°

<p><%= hotel.price %> <%= hotel.currency %></p>
<%= image tag hotel.thumbnail %><%= hotel.description%>
<p>

<% }%>

<% if @hotels.nil? then %>

No hotels found for this city.
<% end%>
</div>

Make sure you have some hotel star images in the RAILS_ROOT/public/images
folder This is how it looks:

allala Trip Organizer
|« | > || g‘ @ http://localhost:3000/trip/map @|~(Q~ Google
Tri : i =i T T T
rip vrganizer ; : i,
San Francisco, CA, United States (Find
Hotels
The Opal TR
19.90 USD

A dlassic five story hotel, The Opal San Francisco was
constructed in 1908 in the heart of the city. The
spacious lobby features a baby grand piano, stained

glass windows, peried antigues, complimentary

wireless internet access, as well as a complimentary

continental breakfast buffet. Additionally, the reception hosts a

¢ i y wine hour every The Opal San Francisca
is just blocks from the Cable Cars, Unien Square, Japan Town and
convenient to Fisherman's Wharf, China Town, Polk Street
restaurants, Union Street shaps and public transportation. Explore
all of these great neighborhoods with their own unique character..
Each of the 164 well appointed guest rooms features central air and
heat, cable television, complimentary secure hardwired high-speed
Internet access and double paned windows that open in each guest
room. The Opal's attentive, friendly staff is always available to assist
with dining, sightseeing and entertainment recommendations. The
Opal also features a fitness /aerobic center, guest laundry facilities,
parking (extra fee) and 24 hour coffee and tea service.. At the time
of check-in guest must provide a picture ID and a valid Credit
Card. Debit cards are not acceptable at check-in .

Hotel Union Square i

23.43 USD

Hotel Union Square is a great choice for both business
and pleasure. Featuring Wireless Internet Access, our I
quest rooms have been completely upgraded with a

stylish California decor. A warm color scheme is

accented with splashes of bright color. All rooms have Wireless High
Speed Internet Access (55.95 per day), Cable TV, On Demand
Movies and Nintendo. Pets are allowed: Dogs only, limit ane dog,
maximum 40lbs, 5§75 nonrefundable deposit. .

imagery ©2008 TerraMetrics - Terms of Use

Trip organizer mashup application

Getting weather information

The weather tab uses WeatherBug to provide information on the weather today as
well as the following six days. As before, the first thing to create is a method in the
Location class to call the WeatherBug APIL.

First, at the top of the location.rb file, add the following to enable the Ruby
RSS library:

require 'rss/1.0'
require 'rss/2.0'

Then, add the necessary constants used in the Location class:

WEATHERBUG_APP KEY = '<YOUR WEATHERBUG APP KEY>'

FORECAST URL = "http://#{WEATHERBUG APP KEY}.api.wxbug.net/
getForecastRSS.aspx?ACode=#{WEATHERBUG APP KEY}"

Next, create a Weather class and a Forecast class to contain the forecast information,
in the location.rb file:

class Weather
attr accessor :forecasts, :today
end
class Forecast
attr accessor :title, :description
def initialize(initial = {})
@title = initial[:title]
@description = initial[:description]
end
end

Note that a Weather object will contain one or more Forecast objects. Then, create a
method called weather in the Location class:

def weather
parameters = "lat=#{@lat}&long=#{@long}&unitType=1"
rss = "'
open (FORECAST URL + '&' + parameters) { |s| rss = RSS::Parser.
parse (s.read, false) }

weather = Weather.new

weather.today = Forecast.new(:title => rss.items.first.title,
description => rss.items.first.description)

weather.forecasts = []

rss.items([1l,rss.items.size - 1] .each {|item| weather.forecasts <<
Forecast.new({:title => item.title, :description => item.
description}) }

weather

end

[164]

Chapter 6

As before, we use Open URI to call WeatherBug's REST API to retrieve forecast
information in an RSS 2.0 formatted feed. This is a sample of the returned response,
truncated for better formatting;:

<rss version="2.0">
<channels>
<titles>Forecast for Paris 2e, France</title>
<link>http://weather.weatherbug.com/France/Paris 2e-weather/
local-forecast/7-day-forecast.html?ZCode=2Z5546&
Units=0</link>
<description>Weatherbug, the owner of the world's largest
weather network is now providing an API to it's weather
data in the form of RSS. This will enable it's
enthusiastic users to build their own applications.</
descriptions>
<language>en-us</language>
<lastBuildDate>Fri, 28 Mar 2008 23:00:00 GMT</lastBuildDate>
<ttl>60</ttl>
<aws:weather xmlns:aws="http://www.aws.com/aws"><aws:api
version="2.0" />
<aws :WebURL>http://weather.weatherbug.com/France/Paris 2e-
weather/local-forecast/7-day-forecast.html?ZCode=2Z5546&
Units=0</aws:WebURL>
<aws:forecasts type="Detailed" date="Fri, 28 Mar 2008
23:00:00 GMT">
<aws:location>
<aws:city>Paris 2e</aws:city>
<aws:citycode>62840</aws:citycode>
<aws:country>France</aws:countrys>
</aws:location>
<aws: forecasts>
<aws:title alttitle="SAT">Today</aws:title>
<aws:short-prediction>Mostly Sunny</aws:short-
prediction>
<aws:image isNight="0" icon="cond026.
gif">http://deskwx.weatherbug.com/images/
Forecast/icons/cond026.gif</aws:image>
<aws:description>Today</aws:description>
<aws:prediction> Scattered clouds. Mild,
Breezy. Temperature of 57&deg;F. Winds
18mph SW. Humidity will be 80% with a dewpoint
of 36&deg; and comfort level of
54&deg;F. There is a 30% chance of
precipitation.</aws:predictions>
<aws:high units="°F">57</aws:high>
<aws:low units="°F">37</aws:low>
</aws:forecast>

</aws:forecasts>
</aws:weathers>

[165]

Trip organizer mashup application


<item>
<title>Today's forecast for Paris 2e, France</title>
<descriptions>
<! [CDATA[
<img src="http://deskwx.weatherbug.com/images/
Forecast/icons/cond026.gif" border="0" alt="Current
Conditions"/>
 Scattered clouds. Mild, Breezy. Temperature
of 57°F. Winds 18mph SW. Humidity will be 80%
with a dewpoint of 36° and comfort level of
54°F. There is a 30% chance of precipitation.

High: 57 °F

<bs>Low: 37 °F
11>
</description>
<pubDate>Fri, 28 Mar 2008 23:00:00 GMT</pubDate>
<guid isPermalink="false">WorldForecastTxt-Fri, 28 Mar 2008
23:00:00 GMT-Today</guids>
<link>http://weather.weatherbug.com/France/Paris 2e-weather/
local-forecast/7-day-forecast.html?ZCode=Z5546&Units=0&
amp;rnd=1</link>
</item>

</channel>
</rss>

However, this time we use Ruby's built-in RSS library to extract the information.
Finally the weather method will return a Weather object.

WeatherBug's RSS feed like Kayak's is in RSS 2.0 format and also uses
proprietary tags. Why do we use the default RSS library to parse the
+ feed this time round instead of XmlSimple? This is because although
% WeatherBug has proprietary namespace tags, the information is actually
’ repeated in the non-proprietary tags. It is even conveniently formatted
in HTML for easy reuse! For simplicity, this time around we use the RSS
information directly.

[166]

Chapter 6

We now turn to the controller and view again. The weather action in the Trip
controller is trivial. Create a weather method in trip controller.rb:

def weather
@weather = session[:location] .weather
end

Next, create a file called weather.rhtml in the RAILS ROOT/app/views/trip folder:

<h2><%= @weather.today.title%></h2>
<p><%= @weather.today.description %$></p>
<% @weather.forecasts.each { |f| %>
<h2><%= f.title %$></h2>

<p><%= f.description %></p>

<% } %>

This gives us today's weather forecast in that location as well as the forecast for the
next 6 days.

Trip Organizer
« | > ¢ | @ hup//localhost:3000/trip/map @ ~(Q- Google
[rip Organizer e -
5an Francisco, CA, United States ("Find
Weather

Saturday's forecast for San Francisco, CA

Mostly cloudy in the morning then becoming partly cloudy. | |

Highs in the 50s to lower 60s. Northwest winds 10 to 20
mph.

Sunday's forecast for San Francisco, CA

Partly cloudy. Highs in the mid 50s to lower 60s. Northwest|
winds 10 to 20 mph. | \

Monday's forecast for San Francisco, CA

Partly cloudy. Highs in the mid 50s ta upper 60s. South .
winds around 5 mph...oecoming southwest in the afterncon. i 3 |

Tuesday's forecast for San Francisco, CA
Mostly cloudy. Highs in the 50s to mid 60s.
Wednesday's forecast for San Francisco, CA

Mostly cloudy. Chance of rain. Lows in the mid to upper
40s. Highs in the 50s to mid 60s.

Thursday's forecast for San Francisco, CA

Partly cloudy. Slight chance of showers. Highs in the mid
505 to upper 60s. Lows in the upper 40s.

Friday's forecast for San Francisco, CA

Partly cloudy. Slight chance of showers. Highs in the mid
505 to upper 60s. Lows in the upper 40s.

[167]

Trip organizer mashup application

Displaying pictures of the location

Next in line is to display pictures of the remote location by searching through Flickr
and showing thumbnails of pictures we find that are labeled or tagged with the
name of the location. As always, we start off by adding a new capability to the
Location class.

First, define the constants we need to connect to Flickr in the Location class:

FLICKR_API _KEY = '<YOUR FLICKR API KEY>'
FLICKR_SEARCH URL = "http://api.flickr.com/services/rest/?api_
key=#{FLICKR_API_KEY}&method=flickr.photos.search"

Then, create a pictures method in the Location class:

def pictures

hash = {:text => @location, :sort => 'relevance', :per page => 32}
parameters = URI.escape (hash.to _a.collect {|pair| pair.join('=')}.
join('&'))
results = '
pics = []
open (FLICKR_SEARCH URL + '&' + parameters) { |s| results =
XmlSimple::xml in(s.read, 'force array' => false) }

results|['photos'] ['photo'] .each { |p]|
pics << ["http://farm#{p['farm']}.static.flickr.com/

#{pl'server']}/#{pl'id']1} #{p['secret']} s.jpg",
"http://farm#{p['farm'] }.static.flickr.com/#{p['server']}/
#{pl'id']1} #{p['secret']l}.jpg", pl'title']]

}

pics

end

We use the public, unauthenticated API method called £1ickr.photos.search,
which returns a list of public photos based on given search criteria. This method also
allows us to sort the pictures according to various criteria. In this chapter we sort the
pictures by relevance to the location name. The default number of pictures returned
by Flickr is 100 and the maximum is 200 but we arbitrarily set it to 32 to speed up the
response. You can visit http://www.flickr.com/services/api/flickr.photos.
search.html to find out more on the other criteria.

The response from Flickr is in XML format as below (truncated to show only
three pictures):

<?xml version="1.0" encoding="utf-8" ?>

<rsp stat="ok">

<photos page="1" pages="62639" perpage="32" total="2004419">
<photo id="2042120799" owner="73362533@N00" secret="69d5799a36"

[168]

Chapter 6

server="2135" farm="3" title="San Francisco Fog IR"
ispublic="1" isfriend="0" isfamily="0" />

<photo id="1013470973" owner="21063397@N00" secret="d3231b3e2d"
server="1382" farm="2" title="Approaching San Francisco"
ispublic="1" isfriend="0" isfamily="0" />

<photo id="103386109" owner="22191840@N00" secret="14c259d3f1"
server="41" farm="1" title="San Francisco" ispublic="1"
isfriend="0" isfamily="0" />

</photos>

</rsp>

What we need to do next is to re-create a URL that will show the Flickr-hosted
image. From Flickr's API documentation at http://www.flickr.com/services/
api/misc.urls.html, we know that one of the three possible formats for defining a
Flickr image URL is:

http://farm{farm-id}.static.flickr.com/{server-id}/{id} {secret}
[mstb] . jpg

The information on the farm ID, server ID, photo ID, and secret are from the
information on the photo. The last options (mstb) are size suffixes where:

s small square 75x75
t thumbnail, 100 on longest side
m small, 240 on longest side

- medium, 500 on longest side

b large, 1024 on longest side (only exists for very large original images)

Therefore, for each returned photo, we create an array of URL strings with the
necessary data from the photo for both a thumbnail and medium size as well as the
title of the picture as entered by the photo owner. The pictures method returns
this array.

Now that we have an array of URLs it is pretty easy to display the pictures in the tab.
Create a simple method in trip_controller.rb for the array of pictures retrieved
from the Location object we stored in the session:

def pictures
@pictures = session[:location] .pictures
end

Create a file called pictures.rhtml in the RATLS ROOT/app/views/trip folder:

<divs>

<% @pictures.each { |pic|%>
<%= image_tag pic[0] %>

<%} %>

</div>

[169]

Trip organizer mashup application

This produces a neat matrix of thumbnail pictures of the location. To add a nice
touch to this pictures tab, we want to let the user click on a picture and pop up the
larger image in the middle of the screen. To do this, we're going to use John Reid's
PopBox JavaScript code from http: //www.c6software.com/Products/PopBox/
Default.aspx.

Download the code from the site, and unzip the package. Copy the PopBox.js
JavaScript file into the RAILS_ROOT/public/javascript folder, and the magminus.
gif file into the RATLS_ROOT/public/images folder. Then change the pictures.
rhtml file to the one below.

<div>
<% @pictures.each { |pic|%>
<%= image tag pic[0], :pbSrc => picl[l], :pbCaption => pic[2],
onclick => "Pop(this, 50, 'PopBoxImageLarge') ;"%>
<% } %>
</divs>

The :pbsrc option sets the medium sized image; the : pbCaption option provides
a caption for the large image. We also pop out the medium sized image when the
thumbnail image is clicked on. Clicking on the image pops up the medium sized
image while clicking on the popped out image brings it back to the thumbnail.

Trip Organizer

| 4 | > ¢ hup://localhost:3000/trip/ map @ |~(Q~ Coogle

Trip Organizer

San Francisco, CA, United States Find

Satellite Hybrid

Pictures

{illimagery €2008 TerraMetrics - Terms of Usa

[170]

Chapter 6

Showing currency exchange rate

The next tab shows the currency exchange rate between the user's home country
and the remote location. For this, we will be using WebserviceX to convert from
one currency to another. WebserviceX uses SOAP so the approach in getting the
conversion is different from what we've used so far.

For the currency conversion, we will use a different approach than with the others.
The Location class is a library under the RATILS_R0OOT/11ib folder and used as a
library class for the entire Rails application. For currency conversion, we will create
a model called Currency, which maps to a list of currencies around the world. This
will provide us with the currency description to be used in our application.

First, we need to get the currency code data. ISO 4217 is an international standard
describing three letter codes that define names of currencies. The first two letters

of the three letters are normally the country codes as defined in ISO 3166-1 alpha 2,
while the last letter is usually the initial of the currency itself. For example, the US
dollar is USD and the Japanese yen is JPY. We need to import the ISO 4217 currency
codes into our database.

Go to the ISO website at http: //www.iso.org/iso/support/fags/fags widely
used standards/widely used standards_other/currency codes/currency
codes_list-1.htmand copy the list of currencies into a spreadsheet, then save it as
a comma delimited file (CSV) named currency_codes.csv in the RAILS_ROOT/db/
migrate folder. The file should contain entries like this:

"AFGHANISTAN", "Afghani", "AFN"
"ALBANIA", "Lek", "ALL"

"ALGERIA", "Algerian Dinar", "DZD"
"AMERICAN SAMOA","US Dollar","USD"
"ANDORRA", "Euro", "EUR"

The first item is the country name, the second is the currency name, and the last is
the ISO 4217 currency code. Now generate a migration file with:

$./script/generate migration create currencies

This will create a migration file in the RAILS_ROOT/db/migrate folder named
001 create currencies.rb. Amend it as follows:

class CreateCurrencies < ActiveRecord::Migration
def self.up
create_ table :currencies do |t]
t.column :country, :string
t.column :name, :string
t.column :code, :string
end

[171]

Trip organizer mashup application

end
def self.down
drop table :currencies
end
end

Run the database migration with:

$rake db:migrate

This will create the database table we need. Next, we need to create the Currency
class. Create a file called currency.rb in the RAILS ROOT/app/models folder:

class Currency < ActiveRecord::Base
end

Then create another migration file, this time to populate the data into the database.
Run the following:

$./script/generate migration currencies data

This will create a file named 002 currencies data.rb in the RAILS ROOT/db/
migrate folder. Add the following code into this file:

require 'csv'
class CurrenciesData < ActiveRecord::Migration
def self.up
down
CSV.open ("#{File.dirname(FILE)}/currency codes.csv",
'r') do |row]|
currency = Currency.new({:country => row[0],
:name => rowl[1l],
:code => rowl[2]})
currency.save
end
end
def self.down
Currency.delete_all
end
end

This migration file will open up the currency_codes.csv file you created earlier
and write each line into the database. Now run the database migration again.

Now that we have the data in the database, let's flesh out the rest of the Currency
class, in currency.rb. We will use the Currency class to do the conversion through
WebserviceX.

[172]

Chapter 6

require 'soap/wsdlDriver'
class Currency < ActiveRecord::Base
WSDL_URL = "http://www.webservicex.net/CurrencyConvertor.asmx?WSDL"
attr accessor :amount
def Currency.get (code)
Currency.find(:first,
:conditions => ['code = ?', codel)
end
def to(to currency)
driver = SOAP::WSDLDriverFactory.new (WSDL URL) .create rpc driver
params = {'FromCurrency' => self.code,
'ToCurrency' => to_currency.code}
amount.to f * driver.ConversionRate (params) .
conversionRateResult.to f
end
end

We will use SOAP to access the currency conversion web service provided by
WebserviceX. As with Chapter 3, we need to require the necessary SOAP library and
also have access to the WSDL provided by WebserviceX.

The to method takes in a Currency object and uses SOAP to send a request to the
web service. The first line creates a local proxy object that is the stub to the remote
service. Using this local proxy, we call the ConversionRate web service, passing
in the FromCurrency and ToCurrency parameters. The returned result is extracted
using the conversionRateResult method and converted to the correct converted
amount accordingly.

Now that we are able to convert from one currency to another, we need to find out
where our user is coming from and get the currency code of his or her country of
origin. To do this, we will use Hostip.info to geocode our user's IP address. Note that
for this part of the chapter, you will need to deploy your application on a publicly
available IP address for testing because Hostip.info will not be able to geocode your
local IP address. For testing purposes you can use the dynamic DNS mechanism to
simulate a publicly available website, as described in Chapter 2 and Chapter 5.

Add the Hostip.info URL constant in the currency . rb file:

IP GEOCODE URL = "http://api.hostip.info/get xml.
php?position=true&ip="

Then add a new class method:

def Currency.get from ip (ipaddr)
results = "'
open (IP_GEOCODE URL + ipaddr) { |s| results = XmlSimple::xml in(s.

[173]

Trip organizer mashup application

read, 'force array' => false) }
country = results['featureMember'] ['Hostip'] ['countryName']
Currency.find(:first, :conditions => ['country = ?',
country.upcasel)
end

This method sends a given IP address (retrieved from the user) and retrieves XML
from Hostip.info indicating the estimated location of the machine with that IP
address. This is a sample of the retrieved XML:

<?xml version="1.0" encoding="ISO-8859-1" ?>
<HostipLookupResultSet version="1.0.0" xmlns="http://www.hostip.info/
api" xmlns:gml="http://www.opengis.net/gml" xmlns:xsi="http://www.
w3.0rg/2001/XMLSchema-instance" xsi:schemalocation="http://www.hostip.
info/api/hostip-1.0.0.xsd">
<gml:description>This is the Hostip Lookup Service</gml:descriptions>
<gml :name>hostip</gml :name>
<gml :boundedBy>
<gml:Null>inapplicable</gml:Nulls>
</gml :boundedBy>
<gml : featureMembers>
<Hostip>
<gml :name>Sugar Grove, IL</gml:name>
<countryName>UNITED STATES</countryName>
<countryAbbrev>US</countryAbbrevs>
<!-- Co-ordinates are available as lng,lat -->
<ipLocation>
<gml : PointProperty>
<gml:Point srsName="http://www.opengis.net/gml/srs/epsg.xml#4326">
<gml:coordinates>-88.4588,41.7696</gml:coordinates>
</gml:Point>
</gml:PointPropertys>
</ipLocations>
</Hostip>
</gml:featureMember>
</HostipLookupResultSet>

There's lots of interesting information here but what we're interested in looking

at is the country name. Using this name we search our database and find the
corresponding currency, then load it up and return the Currency object. This gives us
the currency of the place from which the user is accessing our mashup.

[174]

Chapter 6

Next, we need to get the currency used for the location. To do this, we will revisit our
old friend the Location class. Add the following lines to the end of the constructor in
the location.rb file:

def initialize(location='Singapore')
hash = {:appid => YAHOO APP ID, :location => location }

parameters = URI.escape (hash.to _a.collect {|pair| pair.join('=')}.
join('&'))
results = "'
open (YAHOO GEOCODE _URL + '?' + parameters) { |s| results =
XmlSimple::xml in(s.read, 'force array' => false) ['Result'] }
if results.class == Array then
cities = ''

results.each {|res]|
if res['Country'] == 'US' or res|['Country'] == 'CA'
cities += "<a href='/trip/map?location=#{res['City']},
#{res['State']l}, #{res['Country']}'>#{res['City']l},
#{res['State']}, #{res['Country']}</1li>"

else
cities += "<a href='/trip/map?location=#{res['City']},
#{res['Country'] }'>#{res['City']l},
#{res['Country'] }</1i>"
end
}
cities += ''

raise "More than one city with the same name found! Please
choose one from below:" + cities

end
@country code = results['Country']
@state code = results['State']

@lat = results['Latitude'].to f

@long = results['Longitude'] .to £

hash = {:q => location, :maxRows => 1, :style => 'FULL' }

parameters = URI.escape (hash.to _a.collect {|pair| pair.join('=')}.

join('&'))

open (GEONAMES SEARCH URL + '?' + parameters) { |s| results =
XmlSimple::xml in(s.read, 'force array' => false) ['geoname'] }

raise "Cannot find this city, please try again with a different
state or country." if results == nil

@city = results|['name']

@country = results['countryName']

[175]

Trip organizer mashup application

@timezone = results['timezone'] ['content']
if @country code == 'US' or @country code == 'CA'
@location = "#{ecity}, #{estate code}, #{@country}"
else
@location = "#{ecity}, #{ecountry}"
end

@currency = Currency.find by country(@country.upcase)
end

This will populate the currency attribute in the Location object with the
corresponding Currency object.

Now that we are able to convert currencies as well as get both the local and remote
currencies, we go to the controller and view to display it in the currency tab. As
before, the action in the Trip controller is trivial. Add in a currency method in trip
controller.rb:

def currency
@loc_currency = session[:location].currency

begin
@my currency = Currency.get from ip(request.remote ip)
rescue
@my currency = nil
end
end

The first line gets the remote currency from the Location object in the session. The
second line gets the local currency through the remote_ip method of the request
object. Now create a currency.rhtml file in the RAILS_ROOT/views/trip folder:

<% if @my currency.nil? then %>

<h2>Local currency</h2>

<p>

Currency conversion is not available because we cannot geocode your
current location.

</p>

<p>

The local currency is <%= @loc_currency.name$%> (<%= @loc_currency.
code%>)

</p>

<% else %>

<h2>Current exchange rate</h2>

<p>

<% @my_ currency.amount = 100%>

o\©
\Y
N
oo
1]
®

<%= number to_ currency (@my currency.amount, :unit => '')

[176]

Chapter 6

number to_currency (@my currency.to(@loc_

my_ currency.name%> = <%=
')%> <%= @loc_currency.name%>

currency), :unit => '
</p>
<h2>Conversion</h2>
<p>Enter an amount and click on 'convert'.</p>
<p>
<% form remote tag (:url => {:action => 'convert'}, :update =>
'converted to') do %>

<%= hidden field tag 'from currency', @my currency.code %>

<%= hidden field tag 'to currency',K @loc_currency.code %>
<%= text field tag 'amount',6 '100', :size => 5%> <%= @my_ currency.
name%> = <span id='converted to's? <%= @loc_currency.name%>

<%= submit tag 'convert'%>

<% end %>

</p>

<p>

<% form remote tag (:url => {:action => 'convert'}, :update =>
'converted from') do %>

<%= hidden field tag 'to currency', @my currency.code %>

<%= hidden field tag 'from currency', @loc_currency.code %>
<%= text field tag 'amount',6 '100', :size => 5%> <%= @loc_
currency.name%> = <span id='converted from's? <%= @my_

currency.name$> <%= submit tag 'convert'%>

)

<% end %>
</p>
<% end%>

There are two parts to this template. In the first part, we calculate an equivalent
amount of currency for the remote location for 100 units of the local currency and use
Rails' number_to_currency helper method to format it into a currency format.

<h2>Current exchange rate</h2>

<p>

<% @local_ currency.amount = 100%>

<%= number to_currency(@local currency.amount, :unit => '') %> <%= @
local_currency.name%> = <%= number_ to_currency(@local_ currency.to(@
remote currency), :unit => '')%> <%= @remote_ currency.name$>

</p>

In the second part, we provide a simple facility to convert any amount from and to
the remote currency:

<h2>Conversion</h2>

<p>Enter an amount and click on 'convert'.</p>

<p>

<% form remote tag (:url => {:action => 'convert'}, :update =>
'converted to') do %>

[177]

Trip organizer mashup application

<%= hidden field tag 'from currency', @my currency.code %>
<%= hidden field tag 'to currency',6 @loc_currency.code %>
<%= text field tag 'amount',6 '100', :size => 5%> <%= @my_ currency.
name%> = <span id='converted to's? <%= @loc_currency.name%>

)

<%= submit tag 'convert'%>

<% end %>

</p>

<p>

<% form remote tag (:url => {:action => 'convert'}, :update =>
'converted from') do %>
<%= hidden field tag 'to currency',6 @my currency.code %>
<%= hidden field tag 'from currency', @loc_currency.code %>
<%= text field tag 'amount',6 '100', :size => 5%> <%= @loc_
currency.name%> = <span id='converted from's? <%= @my_
currency.name$> <%= submit tag 'convert'%>

<% end %>

</p>

In the code above, both remote forms link to the same action but they update
different HTML elements. Create the corresponding convert action in the
trip controller.rb file:

def convert
to currency = Currency.get (params[:to_currencyl)
from currency = Currency.get (params[:from currencyl)
from currency.amount = params [:amount]
@converted amount = from currency.to(to_currency)
end

The code is quite similar to that of the default 100 units conversion except that both
currencies are already known. The converted amount is updated into the respective
HTML tags. Finally, create the convert . rhtml template in the RAILS_ROOT/app/
views/trip folder:

<%= number to_ currency (@converted amount, :unit => '') %>

This template consists of one line that converts the number to a currency format.

[178]

Chapter 6

006 City360
1|" _‘ C € http:/ /trip.saush.net/ ~(Q- Google
i i [ttap | Satellts | _Hybrid]
Trip Organizer
San Francisco, CA, United States (Find)

Currency

Current exchange rate
100.00 Singapore Dollar = 72.41 US Dollar

Conversion

Enter an amount and click on 'convert',

100 Singapore Dollar = ? US Dollar { convert
ettt

100 US Dollar = ? Singapore Dollar (convert

Showing remote location time compared with
local time

The last tab shows the current local time for your user as well as the current local
time for the remote location. To do this, we need to find out the time zone from
which your user is accessing this service as well as the time zone of the remote
location. As with the currency conversion, we will use Hostip.info to geocode the
IP address of your user. As before, this tab cannot be viewed properly if it is not
accessed through a publicly available website.

Firstly, we need to install the TZInfo package:

$gem install tzinfo

[179]

Trip organizer mashup application

We need to do this as the default Rails library for timezones does not take account
of daylight savings time as of writing (see http://dev.rubyonrails.org/
ticket/4551 for more information). Remember from the constructor of the Location
class we already have the time zone information.

At the top of the location.rb file, add the following:
require 'tzinfo'

Next, we need to make a change to allow us to create Location objects from IP
addresses. We already have the necessary URL constant for Hostip.info, in the
location.rb file:

IP GEOCODE URL = "http://api.hostip.info/get xml.
php?position=true&ip="

Now, add a new class method in the Location class (which does the same thing as in
the Currency class):

def Location.get from ip (ipaddr)
results = '!'
open (IP_GEOCODE URL + ipaddr) { |s

| results = XmlSimple::xml in(s.
read, 'force array' => false) }
[

country = results['featureMember'] ['Hostip'] ['countryName']
Location.new (country)

end

As with the others in this chapter, we use Open URI to send a request to Hostip.info
to get the name of the country, and XmlSimple to parse the XML formatted response.
Once we have the name of the country, we create and return a Location object for
that country.

Now that we have the information set up, let's show the actual time on the time tab.
Add a new time method in the Trip controller in the trip controller.rb file:

def time
tz = TZInfo::Timezone.get (session[:location] .timezone)
@time = tz.now
@own_loc = Location.get from ip(request.remote ip)
@own_time = TZInfo::Timezone.get (@own_loc.timezone) .now

end

The first line gets a TZInfo: : Timezone object for the remote location through the
Location object in the session and the second line returns the actual current time
from the Timezone object. The third line gets the user's current location as a Location
object, through his or her IP address. Using the user's current location, we get the
user's time zone and return the user's current local time.

[180]

Chapter 6

This information is passed on to a view template to be displayed in the time tab.
Create a file called time.rhtml in the RATLS ROOT/app/views/trip folder:

<h2><%= @own_loc.location%$></h2>

Timezone: <%= @own_loc.timezone %>

<div class="time"><%= @own_time.strftime "$I:%M %p " %$></div>
<h2><%= session[:location] .location%></h2>

Timezone : <%= session[:location].timezone%>

<div class="time"><%= @time.strftime "$I:%M %p" %></div>

This template formats and displays the time for both the user's current location and
the remote location he entered.

000 City360

4‘r | c € http:/ /trip.saush.net/ ~[Q~ Google

Trip Organizer

San Francisco, CA, United States Find

| Map | Satellite | _Hybrid

Time

Singapore, Singapore
Timezone: AsiafSingapore

01:57 AM

San Francisco, CA, United States
Timezone : America/Los_Angeles

10:57 AM

[181]

Trip organizer mashup application

Showing nice exception pages

We've just completed a round of six information and utility tabs, and accessed a total
of nine mashup APIs to retrieve various kinds of information for a remote location.
Almost all the processing is done outside of your own application and the main
activities in your application consist of calling the APIs and formatting the returned
data. This means that the mashup application we just wrote is highly dependent on
the Internet, your external access speed, and the availability of the remote APIs, all of
which we normally cannot control.

This also means that exceptions and errors might occur, so controlling and managing
exceptions and errors is very important. While it will take too long to start a section
on Rails exception handling, a quick solution to this is to catch all exceptions
gracefully from Rails and display a friendly message to your user.

Fortunately Rails has a very easy solution to this. ActionController: :Rescue,
which takes care of exception handling in the controller, has a method named
rescue_action_in_public, which allows you to specify the handling of exceptions
when the application is called from a non-local request (local meaning localhost or
127.0.0.1 and non-local meaning everything else). Just override this method in your
application.rb file or in our case, trip controller.rb:

def rescue_action_in public (exception)
render :template => 'error'
end

This will instruct your controller to render an error template in case of any
exceptions that are raised. The error. rhtml file, in the RAILS ROOT/app/views
folder, can be as simple as:

<hl>Service not available at the moment</hl>

<p>
Something's not happening right, probably not getting data from the
remote service. Try again!

</p>
Also add in this method in trip controller.rb to make all requests non-local:

def local request?
false
end

We will also need to change this parameter in your environment file (development .
rb or test.rb) if you wish to see the nice error page in those environments:

config.action_controller.consider_all_ requests_local = false

[182]

Chapter 6

Summary

We have gone round accessing nine mashup APIs and have shown a set of
information around a remote location. We displayed an online map of the remote
location using Google Maps and a list of Wikipedia articles on the location using
FUTEF. We retrieved and showed a list of places of interest around the location from
Wikipedia through GeoNames. We've also used Kayak to retrieve a list of available
hotels around the location. We retrieved the current weather forecast and those for
the next six days from WeatherBug and displayed pictures of the location through
Flickr. Finally we converted the user's local currency against the remote location's
currency as well as showed the current local time in the user's location and the
remote location by geocoding the user's IP address with Hostip.info.

[183]

Ticketing mashup application

What does it do?

This mashup allows an online event ticketing application to receive payment
through PayPal, send SMS receipts, and add event records in the customer's Google
Calendar account.

Online event ticketing

One of the most popular types of application on the Internet is the ticketing
application. Online ticketing applications generally allow users to choose and buy
tickets over the Internet. There are two types of ticketing applications:

1. Admission ticketing applications provide tickets for transportation and
admission to facilities like amusement parks, museums, zoos, and others.
2. Event ticketing applications provide tickets for movies, theater shows, sports

events, concerts, and similar events.

Event ticketing applications on the Internet include Fandango.com,
MovieTickets.com, and Ticketmaster.com. Online event ticketing applications
typically provide the following basic functions to their users:

e Show a catalogue of events and details of the events

e Show a catalogue of venues for the events

¢ Allow customers to select events, date, time, venue, seat, and number of
tickets to attend the events

e Allow customers to pay for the tickets
e Create and send the tickets to the customers

e Allow customers to check the authenticity and validity of the tickets at the
point of entry to the event

Ticketing mashup application

In addition other value-added functions can include:

¢ Sending reminders to the customers who have bought tickets to the event
e Adding the event to the customer's personal calendar
e Sending tickets or receipts in various forms including email and SMS

¢ Sending marketing emails to customers for promotional purposes

Requirements overview

This mashup shows how an online event ticketing application can use mashup APIs
to perform some of these functions, simplifying the development and maintenance
of the online event ticketing application. The functions we will replace in the online
ticketing application are:

e Allowing customers to pay for tickets

e Adding the event to the customer's personal calendar

e Sending the tickets to the customer as an SMS

Design

In this mashup we will integrate with an existing online ticketing application and
show how the three functions are replaced by mashup APIs from remote sites. The
payment integration will be with PayPal for credit card payment only, while the
calendar integration will be with Google Calendar. We will also revisit Clickatell and
show how an electronic ticket can be sent via SMS.

The ticketing application we will use in this chapter is a movie ticketing application.
Many of the functions are faked and hard-coded because we will not be writing a
full-fledged movie ticketing application. The flow for the ticketing is as follows:

1. Customer selects movie and date of screening
Customer selects movie theater and screening time
Customer selects the number of tickets and types of tickets to buy
Customer enters payment details and Google Calendar credentials

Customer confirms the details

AL N

Application sends payment details to PayPal to request approval

[186]

Chapter 7

7. Application creates event in customer's Google Calendar using the given
Google credentials

Application sends SMS ticket to customer

Application forwards to a confirmation page

Bullet points 1 to 5 are fixed in this chapter. Our mashup will only come into the
picture from point 6 onwards as we use PayPal. In this chapter we will not store any
information in a database even though you will likely want to store the user details
in a real application. Our design passes the information in one page form to the next
page for processing.

Mashup APIs on the menu

The following are the APIs that are used in this chapter.

PayPal

PayPal is an Internet-based financial services company that provides payment and
money transfer services through the Internet. PayPal also offers products for online
merchants to accept payment over the Internet.

Website Payment Pro

Website Payment Pro is a payment solution offered by PayPal that provides the
capabilities of a merchant account and gateway. Website Payment Pro includes:

e PayPal Direct Payment API, which enables a merchant to accept credit card
payments directly on an e-commerce website

e PayPal Express Checkout, which allows customers to pay using their
PayPal account

Website Payment Pro is accessible through different means including the PayPal
Name-Value Pair (NVP) APIs, the PayPal SOAP APIs and its various SDKs. In this
chapter we will be using Website Payment Pro through its NVP APIs with the
Ruby-PayPal library.

[187]

Ticketing mashup application

PayPal Sandbox

The PayPal Sandbox is a self-contained environment in which developers can
prototype and test PayPal applications. The Sandbox simulates almost every function
available in the actual PayPal environment. Registering for a PayPal developer
account provides a merchant account and 2 personal accounts for a developer to run
test applications with those accounts. This includes email addresses, bank account
numbers, and credit card account numbers as shown below.

o006 PayPal Developer Central - Sandbox a
| <> | | ¢ | 3 https:/ /developer.paypal.com/cgi-bin/devscriemd=_sandbox-acct-session Q "'rQ' Google D!
'Y
™y

5 I fil
Paypa’ Developer Central e e et

Sandbox

Home

Test Accounts

Test Email

API Credentials

Your test accounts are listed below. You must have a test business account to represent a

merchant and a test personal account to represent a buyer. To simulate an action on the live site

Can We Help? {paypal.com), select a test account and click Enter Sandbox Test Site. Learn More
Visit the PayPal Developer Test Accounts » Create Test Account
Community to get answers
to integration guestions or Login Email Type Country Status Test Mode
oMl d Sipporeticir ™ css.pa_1195828529 biz Business United States Verified Enabled
@gmail.com
Hide Details
Business Name: Sau Sheong Chang's Test Store
Credit Card: Visa 4154727623381302
Exp Date: 2/2017
CSC/CVV:
Bank Account: Checking (Confirmed)
Routing Number: 325272021
Bank Account Number: 675317902924370
Balance: 1368.19 USD
Email: Confirmed
() css.pa_1195828513_ per Personal United States Verified N/A

@gmail.com

& view Details

css.pa_1195828286_per Personal United States Verified N/A
@gmail.com
e/
i View Details
v
A

[188]

Chapter 7

To register for a PayPal developer account, go to PayPal Developer Central at
https://developer.paypal.com, click on 'Sign Up Now' and follow the online
instructions. After you have a developer account, go to https://www.sandbox .

paypal . com or click on the Sandbox tab in Developer Central, select a test user, and
click on 'Launch Sandbox'.

In this chapter, all our testing will be with the SandBox only. To access the NVP
APIs we will need API credentials. PayPal recommends using the API signature for

credentials most of the time. You can find the API signature, API username, and API
password in PayPal Developer Central.

ooy

PayPal Developer Central - Test Certificates a
| || | [| 3 https:/ /developer.paypal.com/cgi-bin/devscricmd=_certs-session (+] -'rQ' Google]
'Y
p p I Help | Profile | Log out | [M)
ay a Developer Central
Sandbox §
A C. 1 £
Home) :‘j&!"!d DOX
Test Accounts F
Test Email API Credentials
API Credentials You must have credentials to test APIs for Website Payments Pro and Express Checkout in the
Sandbox. In most cases, you will use API signatures and not download certificates.
Can We Help?
The test accounts identified below are enabled for API access.
Visit the PayPal Developer
Cornml.lrllt?«' to/gek a.nswers Note: These credentials will not work outside the Sandbox. You will need new credentials from
to integration questions or | t i
to file a support ticket. paypal.com K. ga lve.
Sandbox Test Accounts With API Signatures
L
Test Account Date Created
Test Account: «css.pa_1195828B529_biz@gmail.com Mov. 23, 2007 06:35:47 PST
API Username: css.pa_1195828529_hiz_apil.gmail.com
API Password: 1195828547
Signature: AJsoTDMhNESFz43L9WKtkP2tVCZZAZ3WI.IxVLjBIfIQsjgBWZYMENPS
Only download a certificate if really necessary. In most cases, you can use an API Signature.
v
|

There are two types of methods of taking payment from a credit card (using Direct
Payment) in PayPal:

e Final sale, where the merchant is asking for payment immediately

e Authorization, where the merchant is only asking for an authorization of

the payment request and the merchant will capture the payment (or ask for
money) at later time

[189]

Ticketing mashup application

In this chapter we will only deal with final sale payment requests.

Ruby-PayPal library

The Ruby-PayPal library (http://rubyforge.org/projects/ruby-paypal)

is a lightweight wrapper library around the PayPal NVP APIs. It provides basic
validation support for input into PayPal NVP APIs to reduce processing time if the
input is erroneous. It also provides interpretation of the response from PayPal and an
easy interface for Ruby developers.

To install it, type the following at a command prompt:

$gem install ruby-paypal

Google Calendar

Google Calendar is a web-based time and event management tool that is presented
in the form of a web calendar. Google Calendar provides a set of APIs that allows
client applications to view and update calendar events in the form of Google Data
(GData) API feeds. To add or remove events from Google Calendar you need to be
authenticated by Google. GData services support two types of authentication:

e ClientLogin, which is normally used for single-user desktop applications but
gives your application full control of the authentication process. However
your application needs to store your user's Google credentials.

e AuthSub, which is normally used for multi-user web applications and
requires your application to redirect to Google's login. This method does not
need to store your user's Google credentials.

Both authentication methods will return an authentication token to your application,
which you will need to use in every request to a Google Calendar API. The
GoogleCalendar library uses ClientLogin for its standalone API and this is the API
we will also use in this chapter.

The Google Calendar API allows you to retrieve three types of calendars:
e A primary calendar that is created for the user when he or she signs up for a
Google Calendar account
e A number of secondary calendars subsequently created by the user

e Imported calendars that are created by someone else but subscribed to by
the user

[190]

Chapter 7

Google calendars contain two main types of events:

e Single occurrence events that happen only once
e Recurrent events that occur at regular intervals

In this chapter we will be creating a single occurrence event in the user's primary
calendar to indicate the movie-screening event.

GoogleCalendar library

Benjamin Francisoud's GoogleCalendar (http://benjamin. francisoud.
googlepages.com/googlecalendar) provides a Ruby on Rails plugin to display
Google Calendar events in Rails as well as a simple library that accesses Google
Calendar services. In this chapter we will be using his library to create Google
Calendar events.

To install the library type the following at the command prompt:

$gem install googlecalendar

Clickatell

Clickatell (http://www.clickatell.com) is a bulk SMS provider that provides
SMS messaging services and gateways for over 600 networks in almost 200 countries
for outbound messages, and 100 countries for inbound (two-way) messaging. We
discussed Clickatell and SMS gateways in detail in Chapter 3 so I will not repeat the
discussion here.

What we will be doing

The following section describes the steps we will be taking to create the mashup. The
basic steps are:
1. Create the Rails application
Create the flow for the ticketing application
Create the PayPal NVP integration Ruby API
Integrate with PayPal for payment
Integrate with Google Calendar for event calendar
Integrate with Clickatell for sending SMS tickets

AL N

[191]

Ticketing mashup application

Creating a Rails application

We begin this mashup as before by creating the usual Rails application.

$rails Chapter 7

This will create a new Ruby on Rails application.

Creating the flow for the ticketing application

Before we can start the integration we need to build the flow for the ticketing
application. The hard-coded flow for the ticketing is as follows:
1. Customer selects movie and date of screening
Customer selects movie theater and screening time
Customer selects the number of tickets and types of tickets to buy

Customer enters payment details and Google Calendar credentials

ARSI

Customer confirms the details

This flow guides the customer to choose the movie, the date and the time of the
screening, as well as the screening theater, then allows the customer to choose the
types and number of tickets to buy. Finally the customer enters his or her payment
details and Google Calendar credentials. You'll notice this design requires us to
persist data between pages. In this chapter we will use one of the simplest methods
to persist data between pages — storing it in the session.

To store data in the session, we create two simple data structures to abstract

the two different types of data we need. The first type revolves around information
about the movie, so we call it Movie. Create a file called movie.rb in the

RAILS ROOT/1ib folder:

class Movie
attr accessor :name, :date, :time, :duration, :theater, :code
end

This is a very simple class, whose main purpose is to contain the data we need for
processing later on. The name field is the name of the movie, while the code field is a
simple string to represent the movie within the application. The time field is the start
time of the movie screening and we use it to store a hash consisting of an hour and
amin key. The duration field represents the number of minutes the movie will run
while the theater field stores the name of the theater that will screen the movie.

[192]

Chapter 7

The other data structure we will use is the Payment data structure, which we will
use to store all information regarding the payment as well as additional information
on the Google Calendar account and the mobile phone number to send the ticket to.
Create a file called payment . rb in the RATLS ROOT/1ib folder:

class Payment
attr accessor :last name, :first name, :card type,
:card no, :exp date, :billing zip,
:google acct, :google pwd, :amount,
:mobile_no
end

This class stores all the necessary payment information needed by PayPal, Google
Calendar, and Clickatell later on. We will create and store objects of both classes in
the session later on during the flow of the application.

Now that we have the data structures, let's turn to the main application. We will only
need one main controller for this chapter: that is the TicketingController. Create a
file called ticketing controller.rb in the RAILS ROOT/app/controllers folder.

We will first create a simple movies display and data selection page. Go to the
ticketing controller.rb file and add in the movies method:

class TicketingController < ApplicationController
layout 'main'
def movies

end

end

Now add a main.rhtml file in the RAILS ROOT/app/views/layout folder:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1l/DTD/xhtmll-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en">
<head>
<meta http-equiv="content-type" content="text/html;charset=UTF-8"
/>
<title>Chapter 7</title>
javascript include tag :defaults %>

N
o°
Il

<%= stylesheet link tag 'main' %>
<%= stylesheet link tag 'colors' %>
<%= stylesheet link tag 'main2' %>
</head>
<body>
<%= yield %>
</body>
</html>

[193]

Ticketing mashup application

Then add a movies.rhtml file in the RATILS ROOT/app/views/ticketing folder:

<h2>Select Movie</h2>
<table>
<tr valign='top'>
<td>
<%= render :partial => '/ticketing/movies/bee movie' %>
</td>
<td>
<%= render :partial => '/ticketing/movies/enchanted' %>
</td>
<td>
<%= render :partial => '/ticketing/movies/no country for old men'

o
5>

<%= render :partial => '/ticketing/movies/the heartbreak kid' %>

</table>

For simplicity, this view is hard-coded with four movies only. This is the
_bee_movie.rhtml partial in the RAILS_ROOT/app/views/ticketing/movies
folder, with the hard-coded details on the movie:

<%= render :partial => '/ticketing/movies/bee movie pic'%>

<p>
<%= render :partial => '/ticketing/date select', :locals =>
{:movie code => 'bee movie', :movie name => 'Bee Movie'}%>
</p>
<uls>

<1li><p>RELEASE DATE</p>11/02/2007 - Nationwide

<p>RUN TIME:</p>1 hr. 30 min.

<p>MPAA RATING:</p>(PG), for mild suggestive humor</lis>

<p>GENRE:</p>Animation</1li>

<1li><p>STARRING:</p>Jerry Seinfeld, Renee Zellweger, Matthew
Broderick, John Goodman, Chris Rock</1li>

<1i><p>DIRECTOR(S) :</p>Simon J. Smith, Steve Hickner

<1i><p>PRODUCER (S) :</p>Jerry Seinfeld, Christina Steinberg

<1li><p>WRITER(S) :</p>Spike Feresten, Barry Marder, Andy Robin, Jerry
Seinfeld</1li>

<1li><p>STUDIO:</p>Paramount Pictures

[194]

Chapter 7

You will find the code for the other three movies in the source code. Copy them into
the RAILS ROOT/app/views/ticketing/movies folder. You may also wish to add
the stylesheets, found in the source code, to make the page look more attractive.

This is the _date_select.rhtml partial in the RAILS ROOT/app/views/ticketing

folder:

<
<
<
<

% form tag(:action =»>
%= hidden field tag
%= hidden field tag

'movie time')

-%>

do

'movie code', movie code%>
'movie name', movie name%>

%= select date(Date.today, :order => [:day, :month, :year],
:use short month => true) %> <%= submit tag 'buy' %>
<% end -%>
This is what the movies selection page looks like:
w e @, Chapter 7
| - I » || & [@htp:/ /localhost:3000/ticketing/ movies ~(Qr Google
Select Movie
LOVE BLOWS
224 Dec 31 20073 1((buy) 22[%)(Dec 411 2007 31 (buy) 22[%[Dec |21/ 2007 % (buy) 22 %1 Dec [#112007 |31 (buy
RELEASE DATE RELEASE DATE RELEASE DATE RELEASE DATE
11/02/2007 - Nationwide 11/21/2007 - Nationwide 11/09/2007 - Limited 10/05/2007 - Nationwide
11/16/2007 - Limited
RUN TIME: RUN TIME: 1172172007 - Nationwide RUN TIME:
1 hr. 30 min. 1 hr. 47 min. 1 hr. 56 min.
RUN TIME:
MPAA RATING: MPAA RATING: e — MPAA RATING:
(PG), for mild suggestive humor (PG}, for some scary images and mild (R}, for strong sexual content, crude humor|
innuendo MPAA RATING: and language
GENRE: (R), for strong graphic viclence and some
|Animation GENRE: language GENRE:
Family Comedy
STARRING: GENRE:
STARRING: AethTAdNeRTTE STARRING:

erry Seinfeld, Renee Zellweger, Matthew
Broderick, John Goodman, Chris Rock
DIRECTOR(S):
Simaon J. Smith, Steve Hickner
PRODUCER(S):

erry Seinfeld, Christina Steinberg
WRITER(S):

Spike Feresten, Barry Marder, Andy Robin, Jerry
Seinfeld

STUDIO:

Paramount Pictures

Amy Adams, Patrick Dempsey, James
Marsden, Timothy Spall, Idina Menzel

DIRECTOR(S):

Kevin Lima

PRODUCER(S):

Barry Josephson, Barry Sonnenfeld
WRITER(S):

Bill Kelly

STUDIO:
Walt Disney Pictures

STARRING:
Tommy Lee Jones, Javier Bardem, Josh Brolin,
Woody Harrelson, Kelly Macdonald
DIRECTOR(S):
Ethan Coen, Joel Coen
PRODUCER(S):
Ethan Coen, Joel Coen, Scott Rudin
WRITER(S):
Joel Coen, Ethan Coen, Cormac McCarthy
STUDIO:
Miramax Films

Ben Stiller, Michelle Monaghan, Malin

Akerman, Jerry Stiller, Rob Corddry
DIRECTOR(S):

Bobby Farrelly, Peter Farrelly
PRODUCER(S):

Bradley Thomas, Ted Field
WRITER(S):

Bobby Farrelly, Peter Farrelly, Neil Simon,
Leslie Dixon, Doug Ellin

STUDIO:

Paramount Pictures

[195]

Ticketing mashup application

This page allows the customer to select the date of the movie screening. Once he or
she has selected the date, he or she will be redirected to another page that allows him
or her to select the theater and the starting time of the screening.

Create a method called movie time in the ticketing controller.rb file:

def movie_time
movie = Movie.new

movie.date = params/[:datel

movie.name = params|[:movie name]
movie.code = params|[:movie code]
movie.time = {}
session[:movie] = movie

end

When we move to this page, we will store the date and the movie selected in the
previous page into a new Movie object and place it in the session. Create the view to
display the time and theater selection page by creating the movie_time.rhtml file in
the RATLS ROOT/app/views/ticketing folder:

o\°

<

values = (0..10).to a
options = options from collection for select (values,
'to_i', 'to_s', 0)

%>
<h2>Select Movie Screening Time</h2>
<% form tag(:action => 'payment details') do -%>
<table >
<tr valign='top's>
<td width='150px'>
<%= render :partial =>
"/ticketing/movies/#{session[:movie] .code} pic"%>
</td>
<td>
<%= render :partial =>
"/ticketing/movies/#{session[:movie] .code} sypnosis"%>
<p>Movie times</p>
<div>
AMC Van Ness 14 - San Francisco
[<%= link to '11:15 am', :action => :ticketing, :hour => '11',
:min => '15', :duration => '90', :theater => 'AMC Van Ness 14
- San Francisco'%>]

[196]

Chapter 7

:action =>
!90[,

[<%= link to '1:15 pm',

:min => '15', :duration =>
San Francisco'$%>]
[<%= link to '5:30 pm',

:min => '30', :duration =>
San Francisco'$%>]
[<%= link to '9:15 pm',

:min => '20', :duration =>
San Francisco'$%>]

:action =>
'90"',
:action =>
'90"',
</div>
<div>
Opera Plaza Cinemas - San Francisco
[<%= link to '11:15 am', :action =>
'11', :min => '15', :duration =>
'AMC Van Ness 14 San Francisco
[<%= link to '1:15 pm', :action =>
:min => '15', :duration => '90',
'AMC Van Ness 14 San Francisco
[<%= link to '5:30 pm', :action =>
:min => '30', :duration => '90',
'AMC Van Ness 14 San Francisco
[<%= link to '9:15 pm', :action =>
:min => '20', :duration => '90',
'AMC Van Ness 14 San Francisco

</div>

<div>

:ticketing,
:theater =>

:ticketing,
:theater =>

:ticketing,
:theater =>

!l3l’
Van Ness 14

:hour
'AMC

=>

!l7l’
Van Ness 14

:hour
'AMC

=>

!21[,
Van Ness 14

:hour
'AMC

=>

:ticketing, :hour =>
'90', :theater =>
'%>]
:ticketing, :hour => '13',
:theater =>
'%>]
:ticketing, :hour => '17',
:theater =>
'%>]
:ticketing, :hour => '21°',
:theater =>

'%>1]

 <%= link to unless request.env['HTTP REFERER'] .nil?,

'back',
</div>
</td>
</tr>
</table>
end

) o
<3 -%>

request.env ['HTTP REFERER']

%>

The movie times and theater are also hard-coded in this page. We will continue with

the Bee Movie pages only from here.

[197]

Ticketing mashup application

This is how it looks:

o Nala

Chapter 7

iIIZ| i“£_| [http:/ /localhost:3000/ticketing/movie_time @ ~(Q- Google

FLTEL R LU T

HONEY JUST GOT FUNNY

Select Movie Screening Time

Synopsis

Barry B. Benson is a graduate bee fresh

out of college who is disillusioned at his
lone career choice: making honey. On a
rare trip outside the hive, Barry"s life is

saved by Vanessa, a florist in New York

City. As their relationship blossoms, he

discovers humans are mass consumers

of honey and decides to sue the human

race for stealing bees” honey.

Movie times
AMC Van Ness 14 - San Francisco [11:15 am] [1:15 pm] [5:30 pm] [9:15 pm]

Opera Plaza Cinemas - San Francisco [11:15 am] [1:15 pm] [5:30 pm] [9:15 pm]

back

4

Selecting a movie theater and a screen time will re-direct the customer to choose the

number and type of tickets that he or she wants to purchase. Create a ticketing

method in the ticketing controller.rb file:

def ticketing

session[:movie] .theater = params/[:theater]

session[:movie] .time[:hour] = params[:hour]

session[:movie] .time[:min] = params[:min]

session[:movie] .duration = params|[:duration]

end

Note how the Movie object in the session is updated with new information.

Create the corresponding view template in the file ticketing.rhtml under the

RAILS ROOT/app/views/ticketing folder:

o\©

<

values = (0.

.10) .to_a

options = options from collection for_ select(values, 'to i',
'to_s', 0)

o°
\%

[198]

Chapter 7

<h2>Select Tickets</h2>
<% form tag(:action => 'payment details') do -%>
<table width="100%">
<tr valign='top'>
<td width='150px'>
<%= render :partial =>

"/ticketing/movies/#{session[:movie] .code} pic"%>

</td>
<td>
<div>
<div>Ticket
Type</div>
<div>Ticket
Quantity</div>
<divs>Service*
Charge</div>
<div>Ticket*
Price</divs>
<div>
Total*</div>
<divs</div>
</divs>
<div>
<div>
<label>ADULT</label>
<div>
<%= select tag 'adult tix', options%>
</div>
<div>$0.00</div>
<div>$0.00</div>
<div>$0.00</div>
<divs></div>
</div>
<div>
<label>CHILD</label>
<div>
<%= select tag 'child tix', options%>
</div>
<div>$0.00</div>
<div>$0.00</div>
<div>$0.00</div>
<divs</div>
</div>
<div>
<label>SENIOR</labels>
<div>
<%= select tag 'senior tix',6 options%>
</divs>
<div>$0.00</div>

[199]

Ticketing mashup application

<div>$0.00</div>
<div>$0.00</div>
<divs</divs
</divs>
<div>
<div>Total</divs> <%= link to 'back', :action =»>
:movies %> <%= submit tag 'continue'%></spans>
<div>$0.00</div>
<div>$0.00</div>
<div>$0.00</div>
<div>$0.00</div>
<divs</divs
</divs>
</div>
</td>
</tr>
</tables>

)

<% end -%>

This is how the ticketing page looks (note, it is a dummy page and not a shopping
cart— the real action takes place later in the chapter):

N

Chapter 7
| - | LA G [@ http: / /localhost:3000 /ticketing// ticketing?theater=AMC+Van+ () ~(Q~ Google !

Select Tickets *per ticket
Lineid i i AEia TR Ticket Ticket Service* Ticket*
HOMEY JUST GOT FUNNY Type Quantity Charge Price Total*
ADULT 0 = 50.00 30.00 $0.00
CHILD 0 = 50.00 $0.00 $0.00
SENIOR 0 = £0.00 £0.00 $0.00

Total $0.00 $0.00 $0.00 $0.00 hack

[200]

Chapter 7

Now that we have all the information on the movie the customer wants to buy tickets
for, we need to get the payment and other details from him or her. We will ask for
these in a single payment details page. Create a method named payment_detailsin
the ticketing controller.rb file:

def payment details
session[:payment] = nil
end

This is a very simple method that will just show the payment_details view
template. We will also remove any previous payment details information in the
session. Now create the view template by adding a payment_details.rhtml file in
the RATLS ROOT/app/views/ticketing folder:

o\°

<

cards = %w(Visa Mastercard Amex Discover)
card options = options from collection for select(cards, 'to_s',
'to_s', 'Visa')

%>
<h2 >Enter your Billing Information</h2>
<% form tag(:action => 'confirm payment') do -%>
<table width="100%">
<tr valign='top's>
<td width="150px">
<%= render :partial =>
"/ticketing/movies/#{session[:movie] .code} pic"%>
</td>
<td>
<divs>

<label>First name:</label>
<div><%= text field tag 'first name'$></divs>
<labels>Last name:</label>
<div><%= text field tag 'last name'$></divs
</1lis
<1li >
<label>Credit Card Type:</labels>
<divs>
<%= select _tag 'card type', card options%>
</div>
</1lis
<1li >
<label>Card number:</labels>

<div>

[201]

Ticketing mashup application

<%= text field tag 'card no', '', :maxlength => 16%>
 (no dashes or spaces)</divs>
</1li>
<lis
<labelExp. Date:</label>
<div>

)

<%= select month Date.today, :field name => 'expdate month'
%$>/<%= select_year Date.today, :start_year => 2007,

:end year => 2020, :field name => 'expdate year'%>
</div>
lis

<label>Billing Zip Code:</labels>
<div>
<%= text field tag 'billing zip', '', :maxlength =>
8%>
</divs>
</1li>
<lis

<spans<input name="add event" type="checkbox">

<label>Yes, I would like to add this as an event in my
Google Calendar.</labels>
</1li>
<1li >
<label>Google account:</labels>
<div><%= text field tag 'google acct'$%></divs
</1li>
<1li >
<label>Google password:</label>
<div><%= password field tag 'google pwd'$%$></div>
</1li>
<1li >
<label>Mobile no (to receive ticket confirmation) :</labels>
<div><%= text field tag 'mobile no'$%$></divs
</1li>
<1li >
<label>Total:</labels>
<div>$10.00
<%= hidden field tag 'amount',6 '10'%>
</div>
</1li>
<1li >
<%= link to unless request.env['HTTP_REFERER'].nil?,
'back', request.env['HTTP REFERER'] %> <%=
submit tag 'continue'$s></spans

[202]

Chapter 7

</1li>

</div>
</td>
</tr>
</table>
<% end -%>

This is how the page looks:

Chapter 7
| - | » | | & | [@hp://localhost:3000/ticketing/ payment_details Q@ ~(Q~ Google
Enter your Billing Information
HONEY JUST GOT FUNNY First name: Sau Sheong Last name: Chang
Credit Card Type: | Visa v
*Card #: |4574806205610007 (no dashes or spaces)

a

Exp. Date: | February 3/ 2017 %

Billing Zip Code: 520244

B Yes, | would like to add this as an event in my Google Calendar.

Google account: | gasheang.chang@gmail

4 Google password: | ...eeee.

Mobile no (to | +5590123456
receive ticket

confirmation):

Total: $10.00

back | continue

Note that the sample code in this chapter requires the customer to fill in all the
information. In a real application, you would have required the user to register and
log in first, perhaps even asked him or her to save details of a frequently used credit
card in the database. You would also have stored his mobile phone number and
details on his or her Google account, enough to add the event to his or her Calendar
if he or she gave you prior permission.

Finally, we need to provide a page for the customer to review the information
he or she has entered. Add a method confirm payment in the
ticketing controller.rb file:

def confirm payment
if session[:payment] .nil?
payment = Payment.new

[203]

Ticketing mashup application

payment.first name = params[:first name]
payment.last name = params|[:last name]
payment.card type = params|[:card typel]
payment.card no = params|[:card no]
payment .exp date = {:month => params[:date] [:expdate month],
:year => params[:date] [:expdate_year]}
payment.billing zip = params[:billing zip]
payment.google acct = params[:google acct]
payment.google pwd = params[:google pwd]
payment .mobile no = params|[:mobile no]
payment .amount = params[:amount]
session[:payment] = payment
end
end

As before, we create a Payment object to store the information entered by the
customer then place it into the session. Create a file confirm payment.rhtml in the
RAILS_ROOT/app/views/ticketing folder to display all the fields in the session that
we have just stored:

<h2>Confirm details</h2>
<% form tag(:action => 'process payment') do -%>
<table width="100%">
<tr valign='top'>
<td width="150px">
<%= render :partial =>
"/ticketing/movies/#{session[:movie] .code} pic"%>

</td>
<td>
<div>

<labels>Movie:</labels>
<div><%= session[:movie] .name %$></divs>
</1li>

<label>Screening date:</label>
<div><%= session[:movie] .date[:day]l%>/<%=
session|[:movie] .date[:month] $>/<%=
session[:moviel] .date[:year] $></div>
</1li>

<label>Screening time:</label>
<div><%= session[:movie] .time[:hour] $>:<%=
session[:movie] .time[:min] $></div>

[204]

Chapter 7

</1li>

<label>Theater:</label>
<div><%= session[:movie] .theater%$></divs>
</1li>

<label>Tickets:</label>
<div>2 adults, 2 children, 1 senior</divs>
</1li>

<hr/>

<label>Name:</label>
<div><%= session[:payment] .first name%> <%=
session[:payment] .last name%></divs>
</1li>

<label>Credit Card Type:</labels>
<div>
<%= session|[:payment] .card type%>
</div>
</1li>

<label>Credit Card Number:</label>
<div><%= session[:payment] .card no%></divs>
</1li>

<label>Exp. Date:</label>
<div>
<%= session[:payment] .exp datel[:month]l%>/<%=
session[:payment] .exp date[:year] %>
</div>
</1li>

<label>Billing Zip Code:</labels>

<div><%= session[:payment] .billing zip%></div>

</1li>

label>Google account:</label>
<div><%= session[:payment] .google acct%></divs>
</1li>

<label>Mobile no:</labels>

[205]

Ticketing mashup application

<div><%= session[:payment] .mobile no%$></divs

</1li>

<label>Total:</labels>
<div>$<%= session|[:payment] .amount%></div>

</1li>

<%= link to unless request.env['HTTP_REFERER'].nil?,

'back', request.env['HTTP_REFERER']

%> <%= submit tag

)

'submit payment'$></spans>

</1i>

</divs>
</td>
</tr>
</tables>
end -%>

)
<3

This is what the confirmation page looks like:

P

Chapter 7

|T_|r_| ,:q:| [@ hrtp:/ /localhost:3000 /ticketing/ confirm_payment

Q@ [~[Q~ Google]

Confirm details

AR RS

HONEY JUST GOT FUNNY

[rRTpr—
Movie:

Screening date:
Screening time:
Theater:
Tickets:

Bee Movie

24/12/2007

17:30

AMC Van Ness 14 - San Francisco

2 adults, 2 children, 1 senior

Name:

Credit Card Type:
*Card #:

Exp. Date:

Billing Zip Code:

Google account:

Total:

Mobile no:

Sau Sheong Chang

Visa

4574806205610007

2/2017

520244
sausheong.chang{@gmail.com
+6590123456

510

back

[206]

Chapter 7

This concludes the basic flow to acquire enough information from the customer to
begin the main processing. Finally, before we proceed to the integration with the
mashup APIs, we need to create a method that will tie in all the integrations. Create a
method called process payment in the ticketing controller.rb file:

def process payment
if do_payment.ack == 'Success' then
send_sms
add_to_calendar
end
end

Note that there are three private methods called here. The first performs the payment
transaction and we read its response to see if it is successful before continuing to
send the SMS ticket and also adding to the Google Calendar. Finally, create a simple
view template to show the success (or failure) of the payment processing. Create

a file called process_payment.rhtml in the RAILS ROOT/app/views/ticketing
folder, and add a message of your choosing.

Next, we'll look into each integration in turn.

Integrating with PayPal for payment

The first integration with the mashup API is with PayPal. For this, we will use my
Ruby-PayPal library, found in http://rubyforge.org/projects/ruby-paypal. To
install it, type the following at a command prompt:

$gem install ruby-paypal

This library provides a simple wrapper around the PayPal NVP APIs and will
provide us with the method calls to access the PayPal payment gateway. For this
chapter we will be using Direct Payment only, which allows merchants with a
PayPal business account to accept credit card payments through PayPal.

In this chapter we will be using the Sandbox test server and payment accounts
provided by PayPal once you register with PayPal as a developer. Registration
provides you with a merchant account as well as two test customer accounts with
simulated credit card and PayPal accounts.

To process the credit card payment from the customer, we need to have the
following information from the customer:

e Card type

e Card number

e CVV2

[207]

Ticketing mashup application

o Expiry date

e [P address of the customer making the request
¢ Payment amount

e Customer's first name

e Customer's last name

The CVV (Card Verification Value) is a security feature in credit and debit cards for
preventing credit card fraud. CVV1 is encoded in the magstripe of the card and used
during transactions in person. CVV2 is used when the card is not present with the
merchant for example over the Internet, by mail or fax or phone. The CVV2 is not
encoded in the magstripe and is usually printed on the back signature panel of

the card.

Although the CVV2 value is not mandatory in the NVP API documentation, we will
need it in a real production environment as PayPal will need it to do a CVV2 check.
However you are not allowed to store CVV2. In this chapter, since we're using the
Sandbox and the Sandbox ignores CVV2 (unless it is set to '000' in which case an
error is returned), we will not use CVV2.

The card type must be of one of the few values supported by PayPal, which are Visa,
Mastercard, American Express, Discover, Switch, and Solo. Switch and Solo are UK
debit cards and require the currency to be in British pounds and the payment action
to be authorization only (not final sale). In this sample application we will be using
perhaps the most commonly used credit card at the moment, Visa.

The card number is the credit or debit card number. Although PayPal verifies the
authenticity of the number that is sent, the Ruby-PayPal library also uses the Luhn
algorithm and checks for the validity of the credit card number before sending it

to PayPal's NVP API. The Luhn algorithm is a simple public domain checksum
algorithm that is used for verifying ISO 7812 numbers. For more information on the
Luhn algorithm please visit http://en.wikipedia.org/wiki/Luhn_algorithm.

Credit card numbers are a special type of ISO 7812 numbers and share a common
numbering scheme. The first 6 digits of a credit card number is known as the Bank
Identification Number (BIN) and they share a similar pattern. For example, all

Visa card numbers start with the number 4 and all Mastercard card numbers start
with number 51, 52, 53, 54, or 55. A simple check on such rules will provide a quick
turnaround telling you if the card entered is valid or not. The Ruby-PayPal library
also provides this simple check. For more information on credit card numbers you
can visit http://en.wikipedia.org/wiki/Credit card number.

[208]

Chapter 7

The expiry date is an important part of the credit card information as it tells us
not only if the credit card has expired but can also be used to identify validity of
the card. The format for the expiry date is MMYYYY where MM is a 2-digit string
representing the month (with a leading 0 if necessary) and YYYY is a 4-digit string
representing the year.

The IP address is the IP address of where the customer logs in. PayPal uses this as a
means to detect fraud but you can use any valid IP address as an input.

The payment amount is the final amount to be paid by the customer, including any
applicable taxes, shipping costs, and so on. This amount cannot exceed US $ 10,000
in any currency and the input format uses a dot ('.") as a decimal separator and a
comma (',') as the optional thousands separator. If you read the NVP APIs you will
notice a number of 'amount' fields like tax amount, item amount, shipping amount,
handling amount, and so on. These amounts all add up to the final amount field and
are optional.

The first and last name fields are 25-character long strings that represent the
customer's first and last name respectively but there is no check on these fields.

The PayPal APIs for accepting credit card transactions are called the Direct Payment
APIs and there are two ways of accepting payment in Direct Payment:

o The first is to do a final sale where the merchant is requesting full and final
payment. To request a final sale, use the do_direct_payment_sale method.

e The second is to do an authorization of the payment request where the initial
call is for the authorization of payment. Subsequently, the payment can be
captured in separate request or requests.

In this chapter, we will do the simpler single transaction for final sale.

With the explanation above, let's create the method to process PayPal transactions.
Add in the require statement at the beginning of the ticketing controller.rb
file to use the PayPal library:

require 'ruby-paypal'
Then create a new private method in the ticketing controller.rb file:

def do_payment
paypal = Paypal.new('<merchant username>', '<merchant passwords',
'<merchant_API_signature>')
ipaddr = request.remote ip
amount = session/[:payment] .amount
card _type = session|[:payment].card type
card no = session/[:payment] .card no

[209]

Ticketing mashup application

month = session[:payment] .exp date[:month].to i < 10 ? "0" +
session[:payment] .exp date[:month] : session[:payment].
exp date[:month]

exp_date = "#{month}#{session[:payment] .exp date[:year]}"
first name = session[:payment].first name
last name = session[:payment].last name

#call direct payment for final sale and return a paypal response
object return paypal.do direct payment sale(ipaddr, amount,
card type, card no, exp date, first name, last name)

end

The first line creates the Paypal object that allows us to interact with the PayPal
NVP APIs. The Ruby-PayPal library only supports the API signature method of
establishing API credentials. By default the Ruby PayPal library connects to the
Sandbox. In production mode, you can change the URL for the PayPal server by
providing the URL as the fourth parameter to the Paypal object constructor method.

The last line calls the do_direct payment sale method, which in turn sends
a request to PayPal to do a final sale direct payment with the various pieces of
information we have gathered along the way.

The API responds with a PayPalResponse object that contains a standard set of
information including;:

e Acknowledgement status (ACK)

e Timestamp

e Version

¢ Build number

e Correlation ID (a debugging token)
If the ACK field is 'Error' additional fields describing the error are also provided. For
Direct Payment we will also get the following additional information in the response:

e Amount (the same amount that has been sent in the method call)

e Address Verification System (AVS) system code

e Result of the CVV2 check by PayPal

e A unique Transaction ID of the payment transaction
The Address Verification System (AVS) is a system used to verify a credit card by
checking the billing address of the credit card provided by the user with the address
on file at the credit card company. AVS for Visa and Mastercard is used in very few
countries (mostly in the US, Canada, and UK) though American Express uses AVS in

more countries. AVS is only important if you have entered a billing address for the
credit card.

[210]

Chapter 7

PayPal also does a CVV2 check on our behalf if we submit the CVV2. However, if the
transaction returns a 'Success' in the ACK field, there is normally no need to inspect
CVV2 or AVS return codes. We would only inspect these codes if the returned ACK
field is 'SuccessWithWarning' or 'Error'.

Note that for this chapter we have conveniently used PayPal for processing credit
card payment from customers. In a real application, you are not allowed to only use
Direct Payment without Express Checkout. This is because the following business
rules of using PayPal Website Payment Pro need to be applied:

e Merchants need to present Express Checkout and associate messaging before
asking for billing and shipping information.

e Merchants need to display PayPal as a payment option alongside other
payment options if offered.

e Merchants need to show the PayPal graphic along with other payment
graphics where applicable (for example, if we have shown the Visa graphic
we need to show the PayPal graphic).

Integrating with Google Calendar

Next in line is the mashup with Google Calendar. The integration is relatively simple
using the GoogleCalendar library and consists of two steps:

¢ Logging into GData services

¢ Adding a new Google Calendar event

First, add the require line at the top of the ticketing controller.rb file:

require 'googlecalendar'

Then create a private method called add_to_calendar in
ticketing controller.rb:

def add to calendar

gcal = GData.new

#authenticate

account = session[:payment].google acct

password = session|[:payment] .google pwd

gcal.login (account, password)

#add new event

time start = Time.mktime (session[:movie] .date[:year],
session|[:movie] .date[:month],
session[:movie] .date[:day],
session[:movie] .time [:hour],
session[:movie] .time[:min])

time _end = time start +

[211]

Ticketing mashup application

(session[:movie] .duration.to i * 60)
event =
{ :title=> "Watch movie #{session[:movie] .name}",
:content=> "Watch movie #{session[:moviel].name}",
:author=> "#{session|[:payment].first name}
#{ session[:payment].last name }",
:email=> session/[:payment] .google acct,
:where=> session[:movie] .theater,
:startTime =>
time start.utc.strftime('%Y-%m-%dT$H:3%M:%SZ2"'),
:endTime =>
time end.utc.strftime ('%Y-%m-%dT%H:%M:%SZ2') }
gcal.new_event (event)
end

We first log into GData services using the 1ogin method and this gives us an
authenticated GData object. Next, we use this GData object and add a new event into
the primary calendar using new_event and passing a hash of parameters into it.

This is what the customer's primary Google calendar looks like after you have added
in a new event:

T

Coogle Calendar

: I 7’7: ;7¢ | [http:/ /www.google.com/calendar/render EE ~(Q~ Google
Gmail Calendar Documents Photos Groups Web more v sausheong.chang@gmail.com | What's New | Settings | Help | Sign out
‘ Ot)gle E’Searcn Public Calendars) (Search MrCaIendars\ Show Search Oplions
Calendar E
Create Event RS Today: Dee 23 - 29 2007 SPrint Day Week Month Next4 Days Agenda
Quick Add Sun 12/23 Mon 12/24] Wed 12/26 Thu 12127 Fri 12/28 Sat 12/28
« December 2007 =
S MTWTF S = £
25 26 27 28 29 30 1 0
2 3 4 56 7 8
9 10 11 12 13 14 15| 12pm
16 17 18 19 20 21 22
B3 2aFF2 27 838 E v
N3t 1 2 3 4 o Watch movie Bee Movie
6§ 7 B 9 10 11 12
= 2pm Mon, December 24, 5:30 — 7:00pm
w Add | * Where: AMC Van Ness 14 - San Francisco (map)
3
My Calendars i [Delete]
i 5ean Chang i s edit event details»
Other Calendars .
Mznzge calendars
Spm
5:30pm
Watch movie,
Spm Bee Movie
Tpm
Bpm
9pm
10pm
11pm

[212]

Chapter 7

Integrating with Clickatell

Finally, we integrate sending an SMS ticket using Clickatell. As with Chapter 3, we
will use Clickatell as the SMS gateway to send the SMS ticket. In Chapter 3 we used
Clickatell directly from HTTP but in this chapter we will extract a simple Clickatell
library into the RAILS_ROOT/1ib folder and use it from the Ticketing controller.

Create a file called sms.rb in the RAILS ROOT/1ib folder:

class SMS
def initialize(login,password,api id)
res = Net::HTTP.post_form(
URI.parse('http://api.clickatell.com/http/auth'),
{'api_id' => api_id,
'user'=> login,
'password' => password})

case res
when Net::HTTPSuccess, Net::HTTPRedirection
@clickatell session id = res.body.split(': ') [1]
else
puts res.error!
end
end

def send(message, mobile_no)
begin
res = Net::HTTP.post_ form(
URI.parse ('http://api.clickatell.com/http/sendmsg'),
{'session_id' => @clickatell session id,
'cliMsgId' => 'Chapter7',
'to'=> mobile no,
'from' => '<a valid sender ID>',
'text' => message,
'callback' => '3"',
'deliv_ack' => '1',
'req feat' => '8192' })
case res
when Net::HTTPSuccess, Net::HTTPRedirection
return true
else
return false
end
rescue
puts "## Cannot send sms : #{$!}"
end
end
end

[213]

Ticketing mashup application

This is very similar to the code we have used in Chapter 3 except that we require that
the user logs in before sending the SMS every time. Obviously this is not efficient and
in a production environment this code should be re-factored to store the Clickatell
session for a period of time before expiring and requiring re-authentication.

In the ticketing controller.rb file, add the following send_sms method to
send the ticket:

def send_sms

sms = SMS.new('<Clickatell user name>', '<Clickatell passwords>',
'<Clickatell API ID>')
message = "You have bought 3 tickets for #{session[:movie].

name} at #{session[:movie].theater} on #{sessionl[:
movie] .date[:day] }/#{session[:movie] .date[:
month] } /#{session[:movie] .date[:year]} #{sessionl[:
movie] .time[:hour] }:#{session[:movie] .time[:min] }. Your
seat numbers are S10 to S13. Enjoy your movie!"
sms.send (message, session|[:payment].mobile no)
end

As mentioned, we will need to log in every time before sending the SMS ticket.
Note that this method hard-coded the seat numbers, which in a realistic scenario
the ticketing system will generate. We have also hard-coded the number of tickets
bought for simplicity.

Summary

We have created a simple online event ticketing process flow and replaced a few
components of the flow with mashup APIs to show the viability of re-using such
functions with mashup APIs. First, we integrated with PayPal to provide payment
processing for the ticket that was bought. Next we used Google Calendar and added
a new event into the customer's primary calendar. Finally we sent the ticket as an
SMS to the customer.

[214]

Expenses claims
mashup plugin

What does it do?

This mashup allows an employee to submit expenses claims in Google Docs and
Spreadsheets, and attach the claims form as well as the supporting receipts. His or
her manager, also using Google Docs and Spreadsheets, then approves the expenses
claims and they are retrieved by the mashup and used to reimburse the employee
through PayPal.

Salary and expense claims

Most online payment applications relate to buying something off the Internet so
sometimes we tend to forget purchase and sale is not the only payment-related
transaction. One of the most common payment transactions is the salary, which
is a periodic payment paid by the employer to an employee and specified in an
employment contract.

Another form of payment particularly common in the corporate world is the
expenses claim. Expenses claims are claims for reimbursement of expenses incurred
during the course of an employee's duties. Claim reimbursement payments are also
paid periodically.

This mashup describes how an online payment system like PayPal can be used for
these payment types and how a typical expense claims process can be automated
through Google Docs and Spreadsheets and integrated into the payment process.

Expenses claims mashup plugin

Requirements overview

The expense claims web mashup plugin enhances an HR management application
by extending the expense claims capabilities through a well-known interface. Most
salaried workers who claim expenses are familiar with the process of expense claims,
which normally involves filling up forms and attaching evidence receipts. These
claim submissions are then routed to their managers who in turn approve or reject
them accordingly. Approved claims are vetted and archived for audit purposes,
while the reimbursement payment is done at the end of the month.

Design
This mashup is slightly different from most of the other mashups in this book

because the user interface in this mashup is minimal. The main bulk of processing is
within a rake script that runs periodically.

This is the flow of the mashup:

1. The employee creates and fills up an expense claim spreadsheet in Google
Docs and Spreadsheets.

2. He or she also attaches the expense evidence (i.e. expense receipts) into a
word processor document in Google Docs and Spreadsheets.

3. The employee then shares these two documents with his or her manager
for approval.

4. Upon receiving the shared documents, the manager will approve or reject
the expense claim. Rejection is out of scope in this mashup, and in most cases
verbally disputed and out of most systems.

5. If the manager approves the claim, he or she will place it into an
approved-claims folder.

6. Atregular intervals (once a week or once a moth) a rake script will
be automatically run to retrieve all the claim documents in the
approved-claims folder.

7. The script parses the spreadsheets to retrieve the claim details and amount
and stores the evidence in a word processor document in the database.

8. Using the claim amounts the script creates a set of claims payments
in PayPal.

9. After the expense claims spreadsheet is parsed, it is removed from the
manager and placed into his or her trashbin.

10. At the end of the month, another rake script runs to send the salary and
claims payments to all the employees.

[216]

Chapter 8

We will be creating a Payment class for this mashup. This class represents a payment
to the employee. The information in this class will be used to trigger the actual
payment of funds through PayPal. There are two types of payments; one is the
monthly salary and the other is the monthly expense claim reimbursement. In our
mashup we will subclass Payment into a Salary and Claim class respectively and

use a Single-Table Inheritance design built-in with Rails. Each expense claim would
normally come with a few claims items bundled into one, so a Claim object will in
turn contain one or more Claim Item objects.

The employee is not mapped in the system but we will need a Manager class to
manage the manager's accounts.

Mashup APIs on the menu

The two main mashup APIs we will be using in this chapter are PayPal and Google.
For Google we will be using four different mashup APIs within Google, all of which
falls under the Google Data APIs family.

PayPal

PayPal is an Internet-based financial services company that provides payment and
money transfer services through the Internet. PayPal also offers products for online
merchants to accept payment over the Internet.

Mass Payment

The API we will be using in PayPal is the Mass Payment APL. The Mass Payment
APl is an API that allows you to send payments to up to 250 recipients with a single
API call. However, unlike the other payment APIs in PayPal, the sender pays for the
transaction. The current transaction fee for Mass Payment is 2% per payment, with a
maximum of $1.00 per payment.

The Mass Payment API is available in Website Payment Pro through either the
Name-Value Pair (NVP) APIs or the SOAP APIs. In this chapter we will be using the
Ruby-PayPal library that wraps around the NVP APIs. More details on the PayPal
NVP library can be found in Chapter 7.

[217]

Expenses claims mashup plugin

PayPal Sandbox

The PayPal Sandbox is a self-contained environment in which developers can
prototype and test PayPal applications. The Sandbox simulates almost every function
available in the actual PayPal environment. We will be using the Sandbox to simulate
our salary and expense claims mashup. Details on how to acquire an account in the
PayPal Sandbox are found in Chapter 7.

Google

Google is an Internet-based company that provides a number of useful online
services, many of which are also accessible through mashup APIs. In this mashup we
will be using four different Google APIs:

e Google Account Authentication APIs
¢ Google Data APIs

e Google Document List Data APIs
e Google Spreadsheet Data APIs

Google Account Authentication

This set of APIs allows third-party applications to authenticate to Google APIs. There
are currently two ways of authenticating a third-party application:

1. Using the ClientLogin API (which is mostly for desktop applications, and for
which you need to have access to the user's login credentials)

2. Using the AuthSub API (which is for web applications and for which you are
not required to have the user's login credentials)

In this mashup we will be using the ClientLogin API because we are running it from
a rake script.

Google Data APIs

The Google Data APIs provide a simple, standard protocol for reading and writing
data to and from Google services. Google Data API uses the XML-based Atom 1.0
and RSS 2.0 syndication formats as well as the Atom Publishing Protocol.

To get data from the service, you need to send an HTTP Get request to the service.
To update data, you send an HTTP put request and to delete data you send an HTTP
Delete request. Data that is returned is in either a RSS or Atom feed.

[218]

Chapter 8

The Google Data API is the basis on which we use the other two sets of Google APIs
in this mashup — the Google Document Data List APIs and the Google Spreadsheet
Data APIs.

Google Document Data List APIs

The Google Documents List Data API allows third-party applications to access
documents stored in Google Docs using Google Data API feeds. For our purposes
we will use the Google Documents List Data API to search for spreadsheets in the
approved-claims folder, as well as to retrieve the word processor document as a
PDF document.

Google Spreadsheet Data APIs

The Google Spreadsheets Data API allows third-party applications to view and
update spreadsheets in Google spreadsheet using Google Data API feeds. For this
mashup we will be using this API to get data off the expense claim spreadsheet and
populate a payment database.

Ruby-PayPal library

The Ruby-PayPal library (http://rubyforge.org/projects/ruby-paypal) is

a lightweight wrapper library around the PayPal NVP APIs. It provides basic
validation support for input into PayPal NVP APIs to reduce processing time if the
input is erroneous. It also provides interpretation to the response from PayPal and an
easy interface for Ruby developers.

To install it, type the following at a command prompt:
$gem install ruby-paypal

In Chapter 7, we used it for Direct Payment for accepting credit card payment from
cardholders. In this chapter we will use it for Mass Payment to reimburse expenses
claimed by employees.

Acts_as_state_machine plugin

While not strictly necessary for this mashup, we will also be using the
acts_as_state_machine plugin to make the Payment class behave as a state
machine. This useful plugin relieves us of writing a lot of code to simulate the state
changes in Payment objects.

[219]

Expenses claims mashup plugin

To install the plugin, go to the $rRAILS_ROOT folder and run this command at
the console:

$./script/plugin install
http://elitists.textdriven.com/svn/plugins/acts_as state machine/trunk/

This copies the plugin into your $RAILS_ROOT/vendor/plugin folder and you're
ready to go.

XmlISimple

XmlSimple (http://xml-simple.rubyforge.org/) is a Ruby API that allows
XML formatted data to be easily read and written to. It is a Ruby translation of the
Per]l module XML::Simple and is written on top of REXML, an XML parser that is
included in the Ruby distribution.

To install XmlSimple, run this at the command line:
$gem install xml-simple

As in Chapter 5, we will use XmlSimple to read in an XML response (in this case an
ATOM feed) that is sent by the API and convert the XML into a nested hash.

What we will be doing

The following section describes the steps we will be taking to create the mashup. The
basic steps are:

=

Create a Rails application

Set up the database

Create the Payment and Claim Item scaffolds

Modify Payment and create its subclasses

Create the Google API access library

Create the Manager class and its controller and views
Create the expense claims parsing rake script

Create the mass payment rake script

e N A L

Modify the Payment and Claim Item controllers

[220]

Chapter 8

Creating a Rails application

We begin this mashup as before by creating the usual Rails application.

$rails Chapters8

This will create a new Ruby on Rails application. We will not be using most of its
interface but will be running the rake scripts located in the SRAILS ROOT/1ib/tasks
folder. Running the scripts should be automated at a regular interval.

Setting up the database

Next, we will set up the database for this chapter with a data migration script. I
assume that you have already created a database and set up the database access
correctly. First, create the migration script using the built-in generator by running the
following at the command line:

$./script/generate migration create payments
This will create a file 001 _create payments.rb in the db/migrate folder:

class CreatePayments < ActiveRecord::Migration
def self.up
create table :payments do |t]

t.column 'type', :string, :default =>
'salary' # either salary or claims
t.column 'name', :string
t.column 'description',6 :string
t.column 'email', :string
t.column 'amount',6 :float
t.column 'state', :string, :default =>
'pending' # states are pending, suspended and paid
t.column 'expense evidence', :binary, :limit => 10.megabytes
t.column 'created on', :datetime
t.column 'updated on', :datetime
end

create table :claim items do |t|

t.column 'claim id', :integer
t.column 'expense date', :date
t.column 'project', :string
t.column 'item', :string
t.column 'remarks',6 :string
t.column 'created on', :datetime
t.column 'amount',6 :float

end

end

[221]

Expenses claims mashup plugin

def self.down
drop_table :payments
drop table :claim items
end
end

Note that the payments table contains data for both salary and claimas we're using
the single table inheritance design. Also note that the claim items table's foreign
key is claim id and not payment_id. We also placed a binary field in the payments
table to store the data for the word processor document.

Now that you have the migration script, run migrate to create the tables:

$rake db:migrate

Creating the Payment and Claim Item
scaffolds

Next, create the Payment and Claim scaffolds with the following command:

$./script/generate scaffold Payment

and:

$./script/generate scaffold ClaimItem

This will generate the necessary files that we will modify for later usage.

Modifying Payment and creatomg subclasses

We will use the acts_as_state_machine plugin to make Payment a state machine.
Modify the payment . rb file in the $RAILS_ROOT/app/models folder.

class Payment < ActiveRecord::Base
acts as_state machine :initial => :pending
state :pending, :enter => :add to account payable
state :paid, :enter => :log payment
state :suspended
event :pay do
transitions :from => :pending, :to => :paid
end
event :suspend do
transitions :from => :pending, :to => :suspended
end
event :unsuspend do

[222]

Chapter 8

transitions :from => :suspended, :to => :pending
end
def add to account payable
hook up with accounts system to record expense in account payable
end
def log payment
hook up with accounts system to log actual payment
end
end

This maps to a Payment object that it created and initialized to the pending state.
Each event maps to a method that transitions the state of the object. For example
by calling:

payment .pay!

The event pay is triggered and this transitions the payment from the pending state to
the paid state. In turn, as the paid state is entered, the 1og payment method is called
to log this payment to the account payable in the company's accounting system.

Then, subclass the Payment class into Salary and Claim classes. Both classes need to
be created as separate files in the $RAILS ROOT/app/models folder:

class Salary < Payment
end

and:

class Claim < Payment has many :claim items
end

Creating the Google API access library

We have the models now but unlike in the previous chapters, the next step is not
to create the views but to populate the database. To do this, we will first parse the
expense claims in Google Docs and Spreadsheets. We will need to create a library
that accesses Google Data and extracts the necessary information for us.

Create a library file named gdata.rb in the $RAILS_ROOT/1ib folder:

require 'net/http'
require 'net/https’
require 'open-uri'
require 'xmlsimple'

GOOGLE_CLIENT LOGIN URL = 'www.google.com/accounts/ClientLogin'
GOOGLE_DOCS_URL = 'docs.google.com'
GOOGLE_SPREADSHEETS URL = 'spreadsheets.google.com!'

[223]

Expenses claims mashup plugin

SPREADSHEET CATEGORY = {"term"=>"http://schemas.google.com/docs/
2007#spreadsheet",
"scheme"=>"http://schemas.google.com/g/2005#kind",
"label"=>"spreadsheet"}
convenience module to use HTTP (mainly used for login)
module Net
class HTTPS < HTTP
def initialize (address, port = nil)
super (address, port)
self.use ssl = true
end
end
end
class GData
def login(email, password)
@user_1id = email

gdoc_params = { '"Email' => email,
'Passwd' => password,
'source' => 'saush-gdocs-01"',
'accountType' => 'HOSTED OR GOOGLE',
'service' => 'writely'

}

gss_params = { 'Email' => email,
'Passwd' => password,
'source' => 'saush-gss-01',
'accountType' => 'HOSTED OR GOOGLE',
'service' => 'wise'

}

gdoc_response = Net::HTTPS.post form(
URI.parse ("https://#{GOOGLE CLIENT LOGIN URL}"),
gdoc_params)
gdoc_response.error! unless gdoc response.kind of?
Net: :HTTPSuccess
@gdoc_token = gdoc_response.body.split(/=/).last
gss_response = Net::HTTPS.post form(
URI.parse ("https://#{GOOGLE CLIENT LOGIN URL}"),
gss_params)
gss_response.error! unless gss response.kind of?
Net: :HTTPSuccess
@gss_token = gss_response.body.split(/=/) .last
end
Get a Google Docs feed
def gdoc_ feed(feed)
results = "'

[224]

Chapter 8

open("http://" + GOOGLE DOCS URL + feed, 'Authorization' =>
"GoogleLogin auth=#{@gdoc_token}") { |s|
results = XmlSimple::xml in(s.read, 'force array' => false)
}
return results
end
Get a Google Spreadsheets feed
def gss feed(feed)
results = "'
open("http://" + GOOGLE SPREADSHEETS URL + feed, 'Authorization'
=> "GoogleLogin auth=#{e@gss token}") { |s|
results = XmlSimple::xml in(s.read, 'force array' => false)
}
return results
end
returns all spreadsheets in a given folder
returns an array of GSpreadsheet objects
def spreadsheets in folder(folder)
feed = gdoc_feed("/feeds/documents/private/full/-
/%7Bhttp:%2F%2Fschemas.google.com$2Fdocs%2F2007%2Ffolders%
2F#{@user_ id}%7D#{folder}")
spreadsheets = []
spreadsheet data = []
if feed['totalResults'].to i > 1 then
spreadsheet data = spreadsheet data + feed['entry']
else
spreadsheet data = spreadsheet data << feed['entry']
end
spreadsheet data.each { |doc]|
if doc['category'].include? SPREADSHEET CATEGORY then

ss = Spreadsheet.new
ss.title = doc['title'] ['content']
ss.author = doc['author'] ['name']

ss.spreadsheet id = doc['id']
doc['link'] .each { |link]|
case link['rel']

when "http://schemas.google.com/spreadsheets/
2006#worksheetsfeed"

hack to overcome bug in Google Spreadsheets http://
code.google.com/p/gdata-issues/issues/detail?id=321
wks link = 1link['href'].sub "trix.", "
ss.worksheets = get worksheets from(wks 1link)
when "alternate"
ss.link = link['href']
when "edit™

[225]

Expenses claims mashup plugin

ss.edit link = link['href']
end
}
ss.updated on = doc|['updated']
spreadsheets << ss
end
}
return spreadsheets
end
get a list of worksheets in this spreadsheet
def get worksheets from(worksheetfeed)
uri = URI.parse worksheetfeed
worksheets = []
feed = gss feed(uri.path)
if feed['totalResults'].to i > 1 then
feed['entry'] .each {|ws|
worksheets << populate worksheet (ws)
}
else
worksheets << populate worksheet (feed['entry'])
end
return worksheets
end
populate a Worksheet object from a feed
def populate worksheet (data)
ws = Worksheet.new
ws.title = datal['title'] ['content']
ws.row _count = data['rowCount']
ws.col count = data['colCount']
ws.worksheet id = data['id']
data['link'].each { |link|
case link['rel']
when "http://schemas.google.com/spreadsheets/2006#1listfeed"
ws.rows = get rows(link['href'])
when "edit™
ws.edit link = link['href']
end
}
return ws
end
get row data from list feed
def get rows(listfeed)
uri = URI.parse listfeed
rows = []

[226]

Chapter 8

feed = gss feed(uri.path)
if feed['totalResults'].to i > 1 then
feed['entry'] .each { |row]|
rows << Row.new.merge (row)

}

elsif feed['totalResults'].to_ i == 1 then
rows << Row.new.merge (feed['entry'])
end

return rows
end
def get pdf document (docid)
results = "'
url = "http://docs.google.com/MiscCommands?command=saveasdoc&exp
ortformat=pdf&docID=#{docid}"
open(url, 'Authorization' => "GoogleLogin auth=#{@gdoc token}")

Is|
results = s.read
return results
end

delete the spreadsheet
def delete (spreadsheet)
url = URI.parse (spreadsheet.edit link)
res = Net::HTTP.new(url.host, url.port).start {|http| http.
delete (url.path, 'Authorization' => "GoogleLogin auth=#{e
gdoc_token}") }
case res
when Net::HTTPSuccess, Net::HTTPRedirection
return true
else
return false
end
end
end
Models a Google spreadsheet
class Spreadsheet
attr accessor :title, :author, :spreadsheet id,
:worksheets, :link, :edit link,
:updated on
end
Models a worksheet in a spreadsheet under Google Spreadsheets
class Worksheet
attr accessor :title, :row _count, :col count,
:worksheet id, :rows, :edit link
end

[227]

Expenses claims mashup plugin

Models a row in a worksheet, in a spreadsheet under Google
Spreadsheets
class Row < Hash
def method missing(m, *a)
if m.to_s.upcase =~ /=$/
self[$7] = al[o0]
elsif a.empty?
self [m.to_s]
else
raise NoMethodError, "#{m}"
end
end
end

This is a pretty long library but it is the heart of the code that extracts information
from the Google spreadsheet so we will work through it step by step.

Before we begin, you should know that Google Docs and Spreadsheets are actually
a few applications rolled into one, namely the Docs, Spreadsheets, and Presentations
applications. For this mashup we will focus only on the Docs and Spreadsheets
applications. Both Docs and Spreadsheets are accessed through different URLs

and different APIs though there is some interchangeability through the Google

Data APIs.

First, we create a convenience module to access HTTPS as the login to Google APIs is
through HTTPS only. Next, we create the main Gbata class, which houses

all the Google data parsing methods. The first method we need though, is the

login method:

def login(email, pwd)
@user_1id = email

gdoc_params = { '"Email' => email,
'Passwd' => pwd,
'source' => 'saush-gdocs-01"',
'accountType' => 'HOSTED OR GOOGLE',
'service' => 'writely'

}

gss_params = { 'Email' => email,
'Passwd' => pwd,
'source' => 'saush-gss-01"',
'accountType' => 'HOSTED OR GOOGLE',
'service' => 'wise'

}

gdoc_response = Net::HTTPS.post form(URI.parse("https://
#{GOOGLE_URL}/accounts/ClientLogin"), gdoc_params)

[228]

Chapter 8

gdoc_response.error! unless gdoc_ response.kind of? Net::
HTTPSuccess

@gdoc_token = gdoc_response.body.split(/=/).last
gss_response = Net::HTTPS.post form(URI.parse ("https://#{GOOGLE
URL}/accounts/ClientLogin"), gss params)

gss_response.error! unless gss_ response.kind of? Net::
HTTPSuccess

@gss_token = gss_response.body.split(/=/) .last
end

This method allows us to log in through Google Account Authentication APIs to
access the Google Document Data List and the Google Spreadsheet Data APIs. In this
mashup we will be using the ClientLogin API. This means that we will be sending an
HTTP post request to https://www.google.com/accounts/ClientLogin with the
following required parameters, requesting an authentication token.

Parameter Description

accountType This is the type of account to be authenticated. Possible values are:
o GOOGLE (authenticate as a Google account)

e HOSTED (authenticate as a hosted account i.e. accounts
hosted on Google)

e HOSTED_OR_GOOGLE (authenticate first as a hosted
account; if attempt fails, authenticate as a Google account)

For our mashup we will be using HOSTED_OR_GOOGLE.

Email The user's full email address.

Passwd The user's password.

Service Name of the Google service that is requested. For Google Docs the
service name is writely; for Google Spreadsheets the service name
iswise.

Source This is a string identifying our application, for logging purposes.

The response from Google comes in a form like this:

HTTP/1.0 200 OK

Server: GFE/1.3
Content-Type: text/plain
SID=DQAAAGgA. . .7Zg8CTN
LSID=DQAAAGSA. . .1k8BBbG
Auth=DQAAAGgA. . .dk3fA5N

[229]

Expenses claims mashup plugin

Google will return either an HTTP 200 response, if login succeeded, or an HTTP 403
response, if login failed. If successful, we parse the response to get the token string
(from Auth), which we need in our subsequent API calls. Note that we have to log in
in twice, once into Google Docs and another time into Google Spreadsheets because
we cannot use the same token for both applications.

Armed with the token we can now call the Google Document List and Spreadsheet
APIs. First, we need to be able to get the feeds. Google Docs and Google
Spreadsheets have different URLs for their feeds so we need to have a method

for each:

def gdoc_ feed(feed)
results = '!
open("http://" + GOOGLE _DOCS URL + feed, 'Authorization' =>
"GoogleLogin auth=#{@gdoc_token}") { |s|
results = XmlSimple::xml in(s.read, 'force array' => false)
}
return results
end
def gss_ feed(feed)
results = '!
open("http://" + GOOGLE SPREADSHEETS URL + feed, 'Authorization'
=> "GoogleLogin auth=#{@gss token}") { |s]|
results = XmlSimple::xml in(s.read, 'force array' => false)
}
return results
end

We use Open URI here to get the feed and parse it through XmlSimple as in
Chapter 7. The returned results are an array of hashes with the information, which
we will parse into the various container objects. Note that we need to pass in an
Authorization value with the Google login token in the header.

Before we examine the feed, let's go through the container objects that we will be
storing the spreadsheet information in. The first one is the Spreadsheet class:

class Spreadsheet
attr accessor :title, :author, :spreadsheet id,
:worksheets, :1link, :edit link,
:updated on
end

[230]

Chapter 8

This class models a Google Spreadsheet document. Each spreadsheet contains one
or more worksheets, so worksheets is an array of Worksheet objects. The 1ink is
the URL to the spreadsheet while the edit_1ink is the URL of the feed should we
need to modify the spreadsheet or delete it. We will be using this in a while.

Next we look at the Worksheet class, which models a worksheet in the Google
spreadsheet document:

class Worksheet
attr accessor :title, :row _count, :col count,
:worksheet id, :rows, :edit link
end

This is very similar to the Spreadsheet class but this time, it contains an array
of rows instead. Finally we take a look at the Row class, which models a row in
the worksheet:

class Row < Hash
def method missing(m, *a)
if m.to_s.upcase =~ /=$/
self[$7] = al0]
elsif a.empty?
self [m.to_s]
else
raise NoMethodError, "#{m}"
end
end
end

The row class extends Hash and doesn't have any attributes. Instead it overrides the
method_missing method to redirect any method calls to the internal hash with the
method name as the key to the hash. Let's look at why we do this as we inspect the
feeds more closely.

[231]

Expenses claims mashup plugin

Take this spreadsheet for example:

Peter - Google Docs

| - (] -;:?-.http:.,-f,;-sprea&gﬁeets.goog"ie,com.;ccg?l;e\,mp.;[r_E.r_\.qu‘E\;'\;'aB[-:s_BEFEdUeaEHI;en T Q soogle

Go 3|k Docs @gmail.com | Docs Home | Help | Sign Out

Peter Autosaved on Feb 2, 2008 8:54:37 AM GMT+08:00 Save & close

Fle~ | Edit Sort Formulas Revisions & Print | |

v oce ¥ [Formatv| B 7 U s F-1I* Ty B BF L Align~ | Insert~ | Delete~ | ¥ WrapText @

A B c D i

Date Amount Item Project Remarks
2 10-Mar-2008 $9.50 Taxi Project A Taxi to the hotel 2
3 4-Mar-2008 $22.30 Dinner Project B Dinner in Paris
4 156-Mar-2008 $300.00 Travel Project A Travelled to Singapore
5 16-Mar-2008 $12.50 Taxi Project A Taxi fare to the hotel
& 29-Mar-2008 $13.25 Medical None Medical bill
T
8 | |
a
10
11
12
13
+ <
Add Sheet| | ltems¥ | Total Email Evidence -

Cancelled'opening the ﬁige

This produces an ATOM feed that looks like this:

<entry>
<id>http://docs.google.com/feeds/documents/private/full/
spreadsheet%3ApafEr vqlVZWG3p3RrzQUeQ</id>
<updated>2008-02-02T00:54:37.383Z</updated>
<category scheme="http://schemas.google.com/docs/2007/folders/
somemail@gmail.com" term="approved-claims"
label="approved-claims"/>
<category scheme="http://schemas.google.com/g/2005#kind"
term="http://schemas.google.com/docs/2007#spreadsheet"
label="gpreadsheet"/>
<title type="text">Peter</titles>
<content type="text/html" src="http://spreadsheets.google.com/fm?£f
mcmd=102& ; key=pafEr vqlVZWG3p3RrzQUeQ"/>
<link rel="alternate" type="text/html" href="http://spreadsheets.
google.com/ccc?key=pafEr vqlVZWG3p3RrzQUeQ"/>
<link rel="http://schemas.google.com/spreadsheets/
2006#worksheetsfeed" type="application/atom+xml"
href="http://spreadsheets.google.com/feeds/worksheets/
pafEr vqlVZWG3p3RrzZQUeQ/private/full"/>
<link rel="self" type="application/atom+xml" href="http://
docs.google.com/feeds/documents/private/full/

[232]

Chapter 8

spreadsheet%3ApafEr vqlVZWG3p3RrzQUeQ"/>
<link rel="edit" type="application/atom+xml" href="http://
docs.google.com/feeds/documents/private/full/
spreadsheet%3ApafEr vqlVZWG3p3RrZQUeQ/fc5gdcuf"/>
<author>
<name>sausheong</name>
<email>username@gmail.com</email>
</authors>
</entry>

This is a spreadsheet feed that is returned when we search for spreadsheets or ask
for spreadsheet listings. Notice that it is placed within an <entry> element. Two
links we are interested in is the worksheet feed link and the edit link. We use the
worksheet feed link to get to the worksheet feed, while we will need the edit link
later to delete the spreadsheet after parsing it.

To parse this feed, we run it through XmlISimple. This returns a hash following the
structure above:

{"category"=>
[{"term"=>"approved-claims",

"scheme"=>"http://schemas.google.com/docs/2007/folders/
somemail@gmail.com",

"label"=>"approved-claims"}, {"term"=>"http://schemas.google.
com/docs/2007#spreadsheet™,

"scheme"=>"http://schemas.google.com/g/2005#kind",

"label"=>"gpreadsheet"}],

"title"=>{"type"=>"text", "content"=>"Peter"},

"author"=>{"name"=>"sausheong", "email"=>"somemailegmail.com"},

"id"=>"http://docs.google.com/feeds/documents/private/full/

spreadsheet%3ApafEr vqlVZWG3p3RrzZQUeQ",

"content"=> {"src"=>"http://spreadsheets.google.com/
fm?fmcmd=102&key=pafEr vqglVZWG3p3RrzQUeQ",
"type"=>"text/html"},

"link"=> [{"href"=>"http://spreadsheets.google.com/ccc?key=pafEr

vglVZWG3p3RrZQUeQ",

"rel"=>"alternate",

"type"=>"text/html"},

{"href"=>"http://spreadsheets.google.com/feeds/worksheets/pafEr
vqlVZWG3p3RrzZQUeQ/private/full", "rel"=>"http://schemas.google.
com/spreadsheets/2006#worksheetsfeed",
"type"=>"application/atom+xml"},

{"href"=>"http://docs.google.com/feeds/documents/private/full/
spreadsheet%3ApafEr vglVZWG3p3RrzZQUeQ",
|lrel|l=>llselfll ,

"type"=>"application/atom+xml"},

{"href"=>"http://docs.google.com/feeds/documents/private/full/
spreadsheet%3ApafEr vqlVZWG3p3RrZQUeQ/fc5gdcuf",

[233]

Expenses claims mashup plugin

Ilrelll=>lleditll ,
"type"=>"application/atom+xml"}],
"updated"=>"2008—02—O2TOO:54:37.383Z"}

This code shows how XmlSimple translates the feed into hashes and arrays

of hashes. For example, to get to the worksheet feed, we would check
hash['link'] ['rel'] to find out which element contains the worksheet feed and
refer to hash['1link'] ['href'] as the worksheet feed.

Next, we want to get to the worksheet feed.

<?xml version="1.0" encoding="UTF-8"?>

<feed xmlns="http://www.w3.0rg/2005/Atom" xmlns:openSearch=
"http://a9.com/-/spec/opensearchrss/1.0/" xmlns:gs=
"http://schemas.google.com/spreadsheets/2006" >

<id>http://spreadsheets.google.com/feeds/worksheets/

pafEr vqlVZWG3p3RrzZQUeQ/private/full</id>

<updated>2008-02-02T00:54:37.383Z</updated>

<category scheme="http://schemas.google.com/spreadsheets/2006"
term="http://schemas.google.com/spreadsheets/2006#worksheet"/>

<title type="text"s>Peter</title>

<link rel="alternate" type="text/html" href="http://spreadsheets.
google.com/ccc?key=pafEr vqlVZWG3p3RrZQUeQ"/>

<link rel="http://schemas.google.com/g/2005#feed" type="application/
atom+xml" href="http://spreadsheets.google.com/feeds/worksheets/
pafEr vqlVZWG3p3RrzZQUeQ/private/full"/>

<link rel="http://schemas.google.com/g/2005#post" type="application/
atom+xml" href="http://spreadsheets.google.com/feeds/worksheets/
pafEr vqlVZWG3p3RrzZQUeQ/private/full"/>

<link rel="gelf" type="application/atom+xml" href="http://
spreadsheets.google.com/feeds/worksheets/pafEr vqlVZWG3p3RrzZQUeQ/
private/full"/>

<authors>
<names>sausheong</name>
<email>somemail@gmail.com</email>

</authors>

<openSearch:totalResults>4</openSearch:totalResults>

<openSearch:startIndex>1l</openSearch:startIndex>

<entry> <ids>http://spreadsheets.google.com/feeds/worksheets/
pafEr vqlVZWG3p3RrzZQUeQ/private/full/odé6</id>
<updated>2008-02-02T00:54:37.383Z</updated>
<category scheme="http://schemas.google.com/spreadsheets/2006"

term="http://schemas.google.com/spreadsheets/2006#worksheet" />
<title type="text">Items</titlex>
<content type="text">Items</contents>
<link rel="http://schemas.google.com/spreadsheets/2006#listfeed"
type="application/atom+xml" href="http://spreadsheets.google.

[234]

Chapter 8

com/feeds/list/pafEr vqlVZWG3p3RrzQUeQ/od6/private/full"/>

<link rel="http://schemas.google.com/spreadsheets/2006#cellsfeed"
type="application/atom+xml" href="http://spreadsheets.google.
com/feeds/cells/pafEr vqglVZWG3p3RrzZQUeQ/od6/private/full"/>

<link rel="gelf" type="application/atom+xml" href="http://
spreadsheets.google.com/feeds/worksheets/
pafEr vqlVZWG3p3RrZQUeQ/private/full/odée"/>

<link rel="edit" type="application/atom+xml" href="http://
spreadsheets.google.com/feeds/worksheets/
pafEr vqlVZWG3p3RrZQUeQ/private/full/odé6/buljirOswo"/>
<gs:rowCount>100</gs: rowCount>
<gs:colCount>20</gs:colCount>
</entry>
</feed>

This is a worksheet feed containing all the worksheets in the particular spreadsheet
(only the first worksheet is shown). Each worksheet is contained within an <entry>
element. The link we're interested here is the list feed. The list feed is a feed of the
contents of the worksheet shown in rows. The worksheet also has a cell feed, which
shows the contents of the worksheet by individual cells. However, for this mashup
we will be using the list feed only. As before, we get the URL to the list feed, which
returns an ATOM feed containing the rows in the worksheet. Each row again is
represented within an <entry> element.

<entry> <ids>http://spreadsheets.google.com/feeds/list/
pafEr vqlVZWG3p3RrZQUeQ/od6/private/full/cokwr</id>
<updated>2008-02-02T00:54:37.383%Z</updated>
<category scheme="http://schemas.google.com/spreadsheets/2006"
term="http://schemas.google.com/spreadsheets/2006#1list"/>
<title type="text">3/10/2008</title>
<content type="text"samount: $9.50, item: Taxi, project: Project
A, remarks: Taxi to the hotel</contents
<link rel="gelf" type="application/atom+xml" href="http://
spreadsheets.google.com/feeds/list/pafEr vqlVZWG3p3RrzQUeQ/
odé/private/full/cokwr"/>
<link rel="edit" type="application/atom+xml" href="http://
spreadsheets.google.com/feeds/list/pafEr vqlVZWG3p3RrzQUeQ/
odé6/private/full/cokwr/gf6ji7n3£2d53"/>

<gsx:date>3/10/2008</gsx:date>

<gsx:amount>$9.50</gsx:amount>

<gsx:item>Taxi</gsx:item>

<gsx:project>Project A</gsx:project>

<gsx:remarks>Taxi to the hotel</gsx:remarks>
</entry>

[235]

Expenses claims mashup plugin

By running this through XmlSimple, we get the rows from the worksheet, each row
looking like this:

{"remarks"=>"Taxi to the hotel",
"category"=>{"term"=>"http://schemas.google.com/spreadsheets/

2006#list",
"scheme"=>"http://schemas.google.com/spreadsheets/2006"},
"title"=>{"type"=>"text", "content"=>"3/10/2008"},

"project"=>"Project A",
"date"=>"3/10/2008",
"id"=>"http://spreadsheets.google.com/feeds/list/pafEr_
vqlVZWG3p3RrZQUeQ/od6/private/full/cokwr",
"amount"=>"$9.50",
"content"=>
{rtype"=>"text",
"content"=>
"amount: $9.50, item: Taxi, project: Project A, remarks: Taxi
to the hotel"},
"item"=>"Taxi",
"link"=>
[{"href"=>"http://spreadsheets.google.com/feeds/list/pafEr
vqlVZWG3p3RrZQUeQ/od6 /private/full/cokwr",
"rel"=>"gelf",
"type"=>"application/atom+xml"},
{"href"=>"http://spreadsheets.google.com/feeds/list/pafEr_
vqglVZWG3p3RrZQUeQ/od6/private/full/cokwr/gf6ji7n3£2d53",
"rel"=>"edit",
"type"=>"application/atom+xml"}],
"updated":>"2008—02—02TOO:54:37.383Z"}

As you can see, this hash contains data that is accessible by calling a method with
the name of the first row of the column. In the sample earlier, the row that is mapped
is row 2 in the spreadsheet shown in the screenshot above. You can see that calling
hash['remarks'] will return the value of the row for the corresponding remarks
column. It is now clear why the Row class is a subclass of Hash with an overridden
method_missing. Calling a properly populated Row object with the name of the
column will return the row value.

With all the groundwork on the feeds, let's look at the code that will populate the
Spreadsheet, Worksheet, and Row objects. First, we need to get all the spreadsheets
from the approved-claims folder, and we have an appropriately named
spreadsheets_in folder method to do this:

def spreadsheets in folder (folder)
feed = gdoc_feed("/feeds/documents/private/full/-
/%7Bhttp:%2F%2Fschemas.google.com%2Fdocs%2F2007%2Ffolders
$2F#{@user i1d}%7D#{folder}")
spreadsheets = []
spreadsheet data = []

[236]

Chapter 8

if feed['totalResults'].to i > 1 then

spreadsheet data = spreadsheet data + feed['entry']
else

spreadsheet data = spreadsheet data << feed['entry']
end

spreadsheet data.each { |doc]|
if doc['category'].include? SPREADSHEET CATEGORY then

ss = Spreadsheet.new
ss.title = doc['title'] ['content']
ss.author = doc['author'] ['name']

ss.spreadsheet id = doc['id']
doc['link'] .each { |link]|
case link['rel']
when "http://schemas.google.com/spreadsheets/
2006#worksheetsfeed"
hack to overcome bug in Google Spreadsheets http://
code.google.com/p/gdata-issues/issues/detail?id=321
wks link = 1link['href'].sub "trix.", "
ss.worksheets = get worksheets from(wks 1link)
when "alternate"
ss.link = link['href']
when "edit™
ss.edit link = link['href']
end
}
ss.updated on = doc|['updated']
spreadsheets << ss
end
}
return spreadsheets
end

With the previous background, it is now easy to understand the code. Note that
we're using the Google Document List Data API here. We parse the feed /feeds/
documents/private/full/-/%$7Bhttp:%2F%2Fschemas.google.com%2Fdocs%$2F20
07%2Ffolders%2F<user's Google email ID>%7D<folder to searchs toreturn a
feed containing all documents in the folder. Next, for each document we check if the
document is a spreadsheet and populate a newly created spreadsheet accordingly.
At the time of writing there exists a bug in Google Spreadsheet Data API that adds

a string 'trix.' to the spreadsheet link, so we need to work around to remove it. To
populate the array of worksheets, we call another method get_worksheets_from,
parsing the corrected worksheet feed.

def get worksheets from(worksheetfeed)
uri = URI.parse worksheetfeed

worksheets = []
feed = gss_feed(uri.path)
puts '-- end worksheet --'

if feed['totalResults'].to i > 1 then

[237]

Expenses claims mashup plugin

feed['entry'] .each {|ws|
worksheets << populate worksheet (ws)
}

else
worksheets << populate worksheet (feed['entry'])
end
return worksheets
end

get_worksheets_from parses the feed and calls another method, populate_
worksheet to work through the worksheet content.

def populate worksheet (data)
ws = Worksheet.new
ws.title = datal['title'] ['content']
ws.row _count = datal['rowCount']
ws.col count = data['colCount']
ws.worksheet id = data['id']
data['link'].each { |link|
case link['rel']
when "http://schemas.google.com/spreadsheets/2006#1listfeed"
ws.rows = get rows(link['href'])
when "edit™
ws.edit link = link['href']
end
}
return ws
end

populate worksheet works through the worksheet content and creates a new
worksheet for each worksheet in the spreadsheet. This method in turn calls get_rows
to create and populate the Row objects.

def get_rows (listfeed)
uri = URI.parse listfeed
rows = []
feed = gss feed(uri.path)
if feed['totalResults'].to i > 1 then
feed['entry'] .each { |row|
rows << Row.new.merge (row)
}

elsif feed['totalResults'].to_ i == 1 then
rows << Row.new.merge (feed['entry'])
end
return rows
end

Now that we can get a properly populated Spreadsheet document, let's finish up
with the rest of the library methods.

[238]

Chapter 8

After we parse the expense claim spreadsheet, we need to remove the spreadsheet
from the approved-claims folder so that it won't be parsed again in the next
scheduled run. To do this, we will use the Document Data List API again in a
delete method:

def delete (spreadsheet)
url = URI.parse (spreadsheet.edit link)
res = Net::HTTP.new(url.host, url.port).start {|http| http.
delete (url.path, 'Authorization' => "GoogleLogin auth=#{e
gdoc_token}") }
case res
when Net::HTTPSuccess, Net::HTTPRedirection
return true
else
return false
end
end

This is a simple method. We get the spreadsheet's edit link and send an HTTP
Delete request to the URL, using the authentication token. This will remove the
spreadsheet from the application and place it in the trash bin. The expense claim
spreadsheet is not deleted until the manager empties the trash bin.

The final method we will be creating in our Google library is a method that retrieves
a word processor document from Google Docs and saves it in PDF format.

def get pdf document (docid)
results = ''

url = "http://docs.google.com/MiscCommands?command=saveasdoc&exp
ortformat=pdf&docID=#{docid}"

open(url, 'Authorization' => "GoogleLogin auth=#{@gdoc token}")
|s| results = s.read

return results
end

This time we use Open URI again to send an HTTP request to an undocumented
(as of now) URL that allows us to save the document in various formats. The
returned result is a string containing the data in the PDF document.

[239]

Expenses claims mashup plugin

Creating the Manager class and its controller
and views

As an intermediate step, we need to create a simple Manager class that represents
the manager. We will use the Manager to store and retrieve a set of managers who
manage the employees.

Create a migration file for the managers:
$./script/generate migration create managers

This will generate a 002_create_managers.rb migration script in the
$RAILS_ROOT/db/migrate folder. Modify it to look like this:

class CreateManagers < ActiveRecord::Migration
def self.up
create table :managers do |t]

t.column 'name', :string

t.column 'google username', :string

t.column 'google password', :string

t.column 'created on', :datetime
end

end
def self.down
drop_table :managers
end
end

Then run the migration to create the database tables.

$rake db:migrate

Next, create the necessary scaffolding for the Manager class:

$./script/generate scaffold Manager

This is all we need to do for now, except to enter a few manager records.

Creating the expense claims parsing rake
script

With our Google library now complete, let's turn to creating the script that parses
through the expense claims spreadsheets on Google Docs and Spreadsheets. Create a
rake script named check_claims.rake in the $RAILS ROOT/1ib/tasks folder:

require 'GData'’
namespace :chapter8 do
desc "Activated regularly by AT or cronjob to process expense

[240]

Chapter 8

claims™"
task(:check claims => :environment) do
Manager.find(:all) .each { |manager|
puts "Processing claims for manager [#{manager.name}]"
gdata = GData.new
gdata.login manager.google username, manager.google password
spreadsheets = gdata.spreadsheets in folder 'approved-claims'
spreadsheets.each { |spreadsheet|
puts "Processing [#{spreadsheet.title} 1"
claim = Claim.new
claim.name = spreadsheet.title
spreadsheet .worksheets.each { |worksheet |
case worksheet.title
when 'Items'
worksheet .rows.each {|row|
item = ClaimItem.new

item.expense date = row.date

item.project = row.project

item.remarks = row.remarks if row.remarks
item.amount = row.amount.delete('$').to £

item.item = row.item
claim.claim items << item
}
when 'Total’
claim.amount =
worksheet.rows [0] .totalamount.delete('$"') .to_ £
when 'Email'
claim.email = worksheet.rows[0] .email
when 'Evidence'

doc_id = "'
URI.parse (worksheet.rows [0] .evidencedocument) .query.split ('&') .each
{|p| doc_id = p.split('=')[1] if p.include? 'docid=' }
claim.expense evidence = gdata.get pdf document (doc_id)
else
raise 'Unknown worksheet found!'
end

}

claim.save
puts "Expense claims ($#{claim.amount}) entered into system."
if gdata.delete (spreadsheet) then
puts "Moved claims spreadsheet to trashbin"
end

end
end

[241]

Expenses claims mashup plugin

This script is quite straightforward. It starts off with getting all the managers entered
into the mashup, and iterates through them to check on their approved expense
claims. First, it gets all the spreadsheets in the approved-claims folder and creates a
Claim object for each claims spreadsheet.

Next, it works through each worksheet in each spreadsheet. When it finds the
Items worksheet, it will store each of the claim items in this worksheet into a claim
details object, which is subsequently attached to the Claim object. When it finds

an Evidence worksheet, it will look for the URL of the word processor document
in Google Docs and extract it as a PDF then save it into a binary field in the Claim
object. This document will be used later for auditing the expense claims.

Finally after the spreadsheet it parsed, the claim object is persisted into the database
and the claims spreadsheet in Google Spreadsheets is moved to the trash bin.

This script should be run on a regular basis, either executed through a Windows task
scheduler or a cron job in Unix. The frequency of the execution depends mostly on
the work patterns of employees submitting claims. Since this is a monthly expense
claims reimbursement, the script should be run at least once a month.

Creating the mass payment rake script

The previous section described how to extract the expense claims data. This section
will describe how we will use this data to reimburse the employees for their
expenses. The main mechanism is a rake script, which is run at the end of the salary
month, just after the salary payment. This means that the script is normally run once
a month.

Create a rake script named masspay . rake in the SRAILS ROOT/1ib/tasks folder:

require 'rubygems'
require 'ruby-paypal'
namespace :chapter8 do
desc "Activated regularly by AT or cronjob to process payments"
task (:masspay => :environment) do
payments = Payment.find all by state('pending')
pending payments = []
payments.each { |payment|
puts "Paying [#{payment.name}]"
pay = PayPalPayment.new
pay.email = payment.email
pay.unique id = "claim #{Time.now.to i}"
pay.note = 'Reimbursement for expense claim'
pay.amount = payment.amount
payment.pay!
pending payments << pay

[242]

Chapter 8

}

paypal = Paypal.new('PAYPAL PRO ACCOUNT USERNAME',
'PAYPAL ACCOUNT PASSWORD',
'PAYPAL API SIGNATURE')
if paypal.do mass payment (pending payments, "Payment sent #{Time.
now}") .ack == "Success"
puts "Successfully processed #{pending payments.size} payments"
else
raise "Error in payment processing, please check the error logs"
end
end
end

Notice that we're using the Ruby-PayPal gem here. The logic in the script is simple as
well. It finds all pending payment records in the database and iterates through each
one of them and creates an array of PayPalPayment objects. This array is then sent to
the Paypal object for mass payment.

This results in payment to the employees who have their expense claims approved
and successfully recorded in the mashup. The payment record in the database is then
set to paid and will not be run in the subsequent months.

Modifying the Payment and Claim Item
controllers

Finally after the models have been created and data populated into the database, it's
time to see how it looks with a simple user interface. We already have the models;
we just need to tweak the scaffold-generated controllers a bit to meet our needs.
Modify the 1ist method in claim items_controller.rb file in the $RAILS ROOT/
app/controllers folder to display the expense claim details of a specific claim only:

def list

@claim item pages, @claim items = paginate :claim items, :per page
=> 10, :conditions => ['claim id = ?', params[:1d]]
end

Also change the payments_controller.rb file in the RAILS ROOT/app/
controllers folder and add in an expense_evidence method to display the
expense evidence in Adobe Acrobat (PDF) format:

def expense evidence
payment = Payment.find(params[:id])
send_data (payment .expense evidence,
:type => "application/pdf",
:disposition => "inline",
:filename => "#{payment.name} evidence.pdf")
end

[243]

Expenses claims mashup plugin

This method will use the document (stored in a binary format) in the payment table
and show it as an inline PDF document.

Correspondingly modify the 1ist.rhtml view in RAILS_ROOT/app/views/
payments to show the extra actions.

<hl>Salary and Expense Payments</hls>
<table>
<tr>
<th>Date</th>
<th>Type</th>
<th>Name</th>
<th>Status</th>
<th>Email</th>
<th>Amount</th>
<th>Actions</th>
</tr>
<% for payment in @payments %>
<tr>
<td><%=h payment.created on.strftime '%d/%m/%Y' %$></td>
<td><%=h payment.type %></td>
<td><%=h payment.name %></td>
<td><%=h payment.state %$></td>
<td><%=h payment.email %></td>
<td><%=h number to currency payment.amount %$></td>

<td>
<%= link_to 'Show', :action => 'show', :id => payment %> |
<%= link_to 'Edit', :action => 'edit', :id => payment %> |
<%= link to 'Del', { :action => 'destroy', :id => payment },
:confirm => 'Are you sure?', :method => :post %>
<%= link to 'Evidence', :action => 'expense_evidence',
:id => payment %> |
<%= link to 'Details', :controller => 'claim items',
:id => payment if payment.kind of? Claim %>
</td>
</tr>
<% end %>
</tables>
<%= link to 'Previous page', { :page => @payment pages.current.

previous } if @payment pages.current.previous %>

<%= link to 'Next page', { :page => @payment pages.current.next } if @
payment pages.current.next %>

<%= link to 'New payment',6 :action => 'new' %>

[244]

Chapter 8

Now we have everything. To show you more clearly how it all works, let's go
through the process by screenshots.

How it works all together

We start off with the employee. If it is the first time he or she is claiming for expense
reimbursement, he or she can upload a spreadsheet template (Excel or any other
spreadsheet document format supported by Google Docs and Spreadsheets) by the
Finance department. There is a template in the source code material. Otherwise he or
she just needs to duplicate an existing expense claims spreadsheet. This is how the
spreadsheet should look:

Peter - Google Docs

| - [+ -;?:http:..-’f;.spreadgﬁeets.goog"ie,com.;’ccc?l;ey= pa-F.E.r_\.rqiifE\.'\u'C.B p3RrZQUeQ&hI=en B Q

Go 3|k Docs @gmail.com | Docs Home | Help | Sign Out

2d on Feb 2, 2008 8:54:37 AM GMT+08:C Save & close

Peter ruic

File= | Edit Sort Formulas Revisions & Print | |

Collla" [Formatv| B 7 U &« F-1I- Ty B O T Algn~ Insert~ |Delete~ o WrapText (@

A B c D i
Date Amount Item Project Remarks
2 10-Mar-2008 $9.50 Taxi Project A Taxi to the hotel
3 4-Mar-2008 $22.30 Dinner Project B Dinner in Paris
4 15-Mar-2008 $300.00 Travel Project A Travelled to Singapore
5 16-Mar-2008 $12.50 Taxi Project A Taxi fare to the hotel
6 29-Mar-2008 $13.25 Medical MNone Medical bill
T
8 | |
:
10
11
12
13
¥ L4

Add Sheet Items¥ | Total Email Evidence

Cancelled'opening the page 3 /

[245]

Expenses claims mashup plugin

He or she also needs to scan his or her expense receipts and attach them to a word

processor document.

Receipts - Peter - Coogle Docs

: | - ¢ _@ http://docs.google.com/Doc?docid=ddpdfvd2_41757nv2dn&hl=en =~ Q- Coogle
(O« '3": Docs @gmail.com | Docs Home | Help | Sign out
Receipts - Peter Save | Save & close | | Discard changes
saved on February 4, 2 111 AM by Sausheong

Filev| Edit Inset Revisions EditHTML [& Preview ' Print & Emalil |

el § B B IrU FT-Tgh == = Style ~ || Change ~
, Haotel Mapoleon Paris

i 40 Avenue de Friediand

i 75008 Paris, France

GET NMumber: 20-064315M

| Salouioi VAKUN TAHPINES WAL

} 270172008 11.45 EwB1 45161

! TAKE AWAY e P Y e

i Gty Descriptions Amovint 2 KaAYA TOAST SET-4 1250

: 1 LOC-TOFU 1-PC 15.00 2 Tatal 1250

:: 1 WES-HAM & CHEESE BUM 7.30 o, GST 051

: 2 Total 2230 Tendered 20 00

| CASH 30.00 CASH 1250

H CHAMNGE -2.10 &

i INCLUSIWE ST 7% 7.0 CHANGE e

> Sat 18- 1-2008 1053722

i #122124 Lo001 CLERK 2

> Thank yau

Have & Nice Day THaANK You

H FOR YOUR VISIT

, CshEPOOZ POE:1002 Shr:2008002701

, 2710172008 11:45

Taxi

Check spelling ~

Cancelled opening the page

[246]

Chapter 8

He or she links up the claims spreadsheet with the receipts document through the

Evidence worksheet in the claims spreadsheet.

Peter - Google Docs

>

<]

¢ _(_5 http://spreadsheets.google.com/ccc?key=pafEr_vglVZWG3p3RrZQUeQ&hl=en =~ 'Q' Google

Goc a3|(.‘ Docs

Peter sutosaved on Feb 4, 2008 9:09:24 AM GMT+08:00

@gmail.com | Docs Home | Help | Sign Out

File= Edit Sort Formulas Revisions & Print]

ol T E% Format~| B I U &=« F-1T- Ty B 0 T Alan~ | Insert~ | Delete~ | o WrapText @
A B c o

1 |Evidence document | “

2 http://docs.google.com/Doc?docid=ddpdfvd2_41757rv2dn&hl=en q

3

4

5

6

T

o) 3

o B ~

Add Sheet | ltems Total Email Evidencew > | Evidence document

Save & close

o

| Loading “http://sp

google.comccc?key=patEr valVZWG3p3RrZ0UeQ&hl=en", completed 9 of 10 items

When ready to submit his claims to his or her manager for approval, he or she shares
both documents with his or her manager. (The manager needs to have set up an
account through the application—http://localhost:3000/managers/new).

Google Docs - All items
4| » ¢ | @hmp://docs.google.com #all @ ~(Q- Google
Gmail Calendar Documents Photos Reader Web more ¥ @gmail.com | Settings | Help | Sign out
‘ ‘[0")8 le (‘Search Docs) (Search the Web)
Docs 4 =
Add collaborators or viewers S
=i N +
- A To: :
= _| Allitems " Date 4
/1 Created by mg Choose from contacts
o i
'J Opened by me | as Collaborators % | - they will be able to make changes
5 Starred L.t
Hidden Subject: | Receipts - Peter, Peter
D I've shared these ilems with you using Google Docs. To open them, Ju#tchckl.ne
= & Allfolders links below.
Items not in fol
@ Items by type
[# Shared with...
s
Links will be included with your message.
(Send invitations | [Skip sending invitations | (Cancel |
Select: All 2, None Showing items 1-2 of 2
Loading "http://docs.google.com/#all”, c B3 of B4 items

[247]

Expenses claims mashup plugin

When his or her manager sees the expense claims, he or she can open up both
documents to review and change the expense claims as necessary. Any changes
will be reflected back to the employee so he or she knows what has been approved.
When the manager is ready to approve the claims, he or she will place the claims
spreadsheet and receipt document into a folder named approved-claims together
with all the other approved expense claims documents.

Coogle Docs - Folder - approved-claims
4| - ¢ _@ http://docs.google.com/#folders /folder.7 147603f-7adc-49a3-85d4-b3466al0280e ~(Q~ Google
Gmail Calendar Documents Photos Reader Web more ¥ {@gmail.com | Settings | Help | Sign out
(;0 { nge ("Search Docs) [Search the Web)
Docs
A 4] 2 e
B4 Altems All folders ./ approved-claims Add description
rl
<1 Created by me
{* Opened by me Name + Folders / Sharing Date
7 Starred =] L) Mary Sausheong, me Jan 30 ==
Hidden H i) Peter Sausheong, me 9:08 am
Trash 0 & Recelpts - Mary Sausheong, me 1:55 am Sausheon
=7 Allfolders] & Recelpts - Peter Sausheong, me 9:15am Sausheon
Items not in folders
7 approved-claims (4 ltlems)
[# Items by type
Shared with...
Select: All 4, None Showing items 1-4 of 4
Loading “http://docs.google.com/#tolders/folder. 71476031-7adc-49a3-8504-b3466a10280e”, completed 52 of 53 items 4

At scheduled intervals, the check-claims rake script will be run to extract these
documents from the manager's approved-claims folder and save them as claims
payments into the database. After the data is extracted, the claims spreadsheet is
moved into the manager's trash bin, which the manager can empty at a later time
while the original claims spreadsheet still remains with the employee.

[248]

Chapter 8

The Finance person can also review the claims and audit the expense receipts from
the mashup.

«/» c

Payments: index

http:HIocalhost:?.DDO;'paymenls

~[Q- Coogle

Date
04/02/2008
04/02/2008

Mew payment

Type
Claim
Claim

Mary

Salary and Expense Payments
Name
Peter

Status Email Amount
pending @gmail.com $357.55
pending [@gmail.com £45.00

Actions

Show | Edit | Del | Evidence | Details
Show | Edit | Del | Evidence | Details

4]

Clicking on the Evidence link will retrieve and display the PDF document and
clicking on the Details link will show the details of the claims.

(oM. Claim Items: index

| 4| » | ¢ [#hup://localhost:3000/claim_items/index/17 @ ~(Q- Google)
Claim items for Peter

Date Project Item Remarks Amount

10/03/2008 Project A Taxi Taxi to the hotel £9.50

04/03/2008 Project B Dinner Dinner in Paris £22.30

15/03/2008 Project A Travel Travelled to Singapore £300.00

16/03/2008 Project A Taxi Taxi fare to the hotel £12.50

28/03/2008 None Medical Medical bill $13.25
back

A

[249]

Expenses claims mashup plugin

At the end of the month, the mass payment rake script is run and the employee is
paid through PayPal. This is the history of the payment that was paid out of the

company's account (which includes two employees in this example):

History - PayPal

| ‘1:] EJnltps:,’fwww.sandbux.pavpai.(om.ius.'cgl—bm,lwebscr?dlspat(h:b(S314bceu?73f1548350520?SH(BbBaBSUQ&Sleb&lcS(Di-'Q' Google

Test Site

PayPal

Auction Tools | Products & Sarvices

Log Out | Security Center | Search|

My Account
=

Overview Add Funds Withdraw History Resolution Center Profile Virtual Terminal

History History
Basic Search
Search

Settlement And
Reconcillation System Show: (TR o
Advanced Search
Download My History ® Within: (FhepastDay |3

Fram: = , 5 4 oo
et O 2| s 2] ¢ (20

Month Day Year

Business Overview
View reports on sales, M e
disputes, and other 2] /3]t [20 (Search)
financial activity. Month Day Year

Recent Activity Last updated 2/3/2008 22:33 PST

Payments Sent from Feb. 2, 2008 to Feb. 3, 2008
To/From Name/Email Status Details Action
| -$402.55 USD

Date Type Gross

Feb. 3, 2008 | Mass Payment Sent | To Mass Payment | Completed | Details |

Mobile | Money Market | Debit Card | Referrals | About Us | Accounts | Fess | Privacy | Plus Card | Security Center |
Contact Us | Lepal Agreements | Developers

Fee Net Amount |

| -$1.90 USD | -3404.45 USD

<

[250]

Chapter 8

This is the history of the payment that is received by the employee:

History - PayPal &
< .B‘h(tps:waw.sandbox.paypai.comfus;‘cgi—bin}webscr?dispa((h:bcs314bce0773f1548350520783(6b0a83 ~[Q~ Google |

Test Site
Paypar Loo Out | Security Center Searchl
o My Account “Auction Tools || Products & Services

Overview Add Funds Withdraw History Resolution Center Profile

History History
Basic Search
Search
Download My History
Show: | - Payments Received 4]
® Within: (The PastDay %]
@ Fem o]/ [

Month Day Year

To: Dy e

Month Day Year
Recent Activity Last updated 2/3/2008 22:53 PST
Payments Received from Feb. 2, 2008 to Feb. 3, 2008

Date Type To/From | Name/Email Status Details | Action Amount

Feb. 3, 2008 | Payment | From Sau Sheong Chang's Test Store | Completed | Details $357.55 USD

Mobile | Money Market | Debit Card | Referrals | About Us | Accounts | Fees | Privacy | Plus Card | Security Center |
Contact Us | Legal Agreements | Developers |

Summary

We have created a simple expense claims mashup using Google Docs and
Spreadsheet and PayPal. We allowed the employee to submit expense claims
through a spreadsheet and a word processor document with attached scans of
expense receipts. The expense claim is then approved by his or her immediate
manager and placed into an approved-claims folder. At periodic intervals, we use
a script to extract the contents of the claims spreadsheet and archive the receipts
documents into a PDF format and save them into the mashup database. At the end
of the month, we use the information in the database to send mass payments to all
employees through PayPal.

[251]

A

API. See mashups APIs

B

book sales tracking, mashup plugin

Amazon associate program, joining 82

Amazon associate program, registering as
82

Amazon ECS Ruby library 82

Amazon ECS Ruby library, installing 85

Amazon Rails library, creating 85-88

Amazon web service (AWS) access key 1D,
registering for 82

books controller, creating 85

customer reviews, displaying 81

customer reviews, retrieving 91-93

design 80

feature, displaying 79

functions 79

Rails project, creating 84

requirements 79

sales rank, retrieving 94

sales rank, tracking 80

sales rank history, storing in YAML file 84

sales ranking sparkline, displaying 95

shopping cart, books adding to 102

shopping cart, creating 97-100

shopping cart, providing 81

shopping cart, similar books adding to 101

sidebar, creating 88-91

steps 83, 84

Index

E

expenses claims, mashup plugin

about 215

acts_as_state_machine plugin 219

claim item controllers, creating 243-245
claim item scaffolds, creating 222
ClientLogin API 229

database, setting up 221

design 216, 217

expense claim rake script, creating 240-242
functions 215

Google 218

Google account authentication 218

Google API access library, creating 223-229
Google Data API 218

Google Document Data List 230, 231
Google Document Data List API 219
Google Spreadsheet Data 230-233

Google Spreadsheet Data API 219
manager class, creating 240

mashup APIs 217

Mass Payment API, PayPal 217

mass payment rake script, creating 242, 243
parameters 229

payment, creating 222

payment, modifying 222

PayPal 217

PayPal Sandbox, PayPal 218

Rails application, creating 221
requirements 216

Ruby-PayPal library 219

steps 220

subclasses, creating 222
working 245-251
worksheet feed 234-240
XmlSimple 220

F

find closest, mashup plugin
database, creating 24
database, populating with sample data 26
database access, configuring 25
design 18
environment.rb configuring, Geokit 21, 23
find closest feature, displaying 29, 30
functions 17
Geocoder.ca geocoding services 19
Geocoder.us geocoding services 19
geocoding services, Google maps APIs 19
geocoding services, Yahoo maps APIs 19
GeoKit, configuring 21
GeoKit, geocoding capabilities 20
GeoKit, installing 20
GeoKit, Rails plugin 20
Google maps API key, Geokit 21
Google maps APIs 19
Hostip.info 20
kiosk location, populating 26
kiosk locator feature, building 17
kiosks, displaying on Google maps 31-35
latitude information, adding 28
latitude information adding, rake used 27
longitude information, adding 28
longitude information adding, rake used 27
mashup APIs 18
Rails plugins, installing 24
Rails project, creating 24
requirements 18
scaffold, creating 25
steps 24
Yahoo application id, Geokit 21
Yahoo maps APIs 19
YM4R/GM, Rails plugin 23

G

GData
GData, authentication types 190

GData
Google
Google calendar 190
GoogleCalendar library 191
Google Data 190
Google Data API 218
Google Document Data List API 219
Google maps 19, 108, 139
Google Spreadsheet Data API 219
Google Spreadsheets 42

J

job board, mashup application

about 105

blog articles displaying, from Technorati
134

blog articles searching, from Technorati 134

candidates acquiring, Facebook used 112

company blog entries, searching for 134

company news, searching for 132, 133

DayLife 109, 110

design 106

Facebook 107

Facebook application, configuring 122,123

Facebook application, creating 114, 115

Facebook application, deploying 120, 121

Facebook platform 107, 108

Facebook user profile, extracting 116, 117

functions 105

Google maps 108

Indeed 108, 109

job location displaying, Google maps used
127,129

job news displaying, from DayLife 113, 132

job news searching, from DayLife 113,132

jobs displaying, Google maps used 113, 127

jobs searching for, Indeed used 113,125

job stories displaying, from Technorati 113

job stories searching, from Technorati 113

link creating on jobs, Google maps used
130-132

mashup APIs 107

Net::HTTP 110

Rails application, creating for Facebook 114

requirements 106

RFacebook 108

[254]

RFacebook, configuring 116
RFacebook, installing 115

search action creating, Indeed used 125,126

search form, creating 118-120

search results displaying, Indeed used 127

search results parsing, Indeed used 126
steps 112

Technorati 109

user profile, displaying 118, 119
XmlSimple 110

XmlSimple, installing 110-112

mashup
about 5
project, overview 13, 14

mashup APIs
Amazon E-Commerce Services (ECS) API

81

Clickatell 44,191
DaylLife 109, 110
EditGrid 43
Facebook 107
Flickr 141, 142
Futef 139
GData 190
Geocoder.ca geocoding services 19
Geocoder.us geocoding services 19
GeoKit 20
Geonames 141
Google 218
Google calendar 190
GoogleCalendar library 191
Google Data 190
Google Data API 218
Google maps 19, 108, 139
Google Spreadsheet Data API 219
Hostip.info 20, 142
Indeed 108
Interfax 49
Kayak 141
PayPal 187,217
sparklines 83
Technorati 109
Weatherbug 140, 141
WebServiceX currency converter 139

XmlSimple 110-112, 220
Yahoo maps 19
Yahoo maps geocoding API 140
YM4R/GM 23
mashup application and mashup plugin,
differences 8
mashup application
job board 105
ticketing application 105
trip organizer 137
mashup plugin
acts_as_state_machine plugin 219
book sales tracking 79
expenses claims 215
find closest 17
proxy mailing list 37
ticketing application 185
messages
defining 39
fax messages, sending 41
SMSC, about 40
SMS gateway 41
SMS message 41
SMS messages, sending 40

N

Net:HTTP 110

(0

online event ticketing 185
Open URI 143

P

PayPal
Mass Payment API, PayPal 217
PayPal developer account, registering for
189
PayPal developer central 189
PayPal Name-Value Pair (NVP) APIs 187
PayPal Sandbox 188
PayPal Sandbox, PayPal 218
website payment pro, PayPal 187
proxy mailing list, mashup plugin
Clickatell 44-48
contacts, providing 55

[255]

contacts, uploading 39

CSV format 43

data, parsing from online spreadsheet 69

database, creating 53

database access, configuring 53

design 39

EditGrid 43, 44

EditGrid, publishing from 62

EditGrid, uploading to 61

email sending, ActionMailer used 74, 75

fax messages, sending 41

fax sending, Interfax used 70

Google Spreadsheets 42

Google Spreadsheets, publishing from
58, 59

Google Spreadsheets, uploading to 56, 57

Interfax 49, 50

mailing feature, building 37, 38

mashup APIs 42

mashup used 77

messages, defining 39

messages, sending 39

message template, selecting 39

message templates, creating 54

Net:HTTP 51

Rails project, creating 52

rake script, creating 63-69

requirements 38

scaffold, creating 53, 54

SMS messages, sending 40

SMS sending, Clickatell used 71-73

spreadsheet, creating 42

steps 52

text messages, customizing 76, 77

R

Rails rake task 27
Ruby
about 6
API, XMLSimple 110-112,120
rake tool 26
Ruby-PayPal library 190, 219
Ruby on Rails
about 6

convention over configuration principle 6

DRY principle 6
principles 6

S

salary and expenses claims 215
SMSC 40
SMS messages 40

T

ticketing application, mashup application

aboutl 105

Address Verification System (AVS) 210

card number, customer details 208

card type, customer details 208

Card Verification Value (CVV), customer
details 208

Clickatell 191

Clickatell, integrating with 213, 214

credit card payment processing, Paypal
used 207, 208

customer details 207

CVV2 check 211

design 186, 187

direct payment APIs 209

expiry date, customer details 209

first name, customer details 209

flow, creating 192-207

functions 185

GData, authentication types 190

GData services, logging in 211

Google calendar 190

Google calendar, calendars retrieving 191

Google calendar, events 191

Google calendar event, adding 211, 212

GoogleCalendar library 191

GoogleCalendar library, installing 191

GoogleCalendar library, integrating with
211, 212

IP address, customer details 209

last name, customer details 209

mashup APIs 187

online event ticketing 185

online event ticketing, functions 185, 186

payment amount, customer details 209

PayPal 187

PayPal, integrating with 207-209

PayPal developer account, registering for
189

PayPal developer central 189

[256]

PayPal Name-Value Pair (NVP) APIs 187
PayPal Sandbox 188

Rails application, creating 192
requirements 186

Ruby-PayPal library 190

SMS ticket sending, Clickatell used 213, 214

steps 191

types 185

website payment pro, PayPal 187

trip organizer, mashup application

currency exchange rate displaying,
WebServiceX used 171-179

design 138

exception pages, displaying 182

Flickr 141, 142

functions 137

Futef 139

Geonames 141

Google maps 139

Hostip.info 142

hotel information retrieving, Kayak used
160-163

information retrieving from wikipedia,
Futef used 155

Kayak 141

location object, creating 144-149

Mashup APIs 138, 139

online map, creating 150

Open URI 143

pictures displaying, Flickr used 168,170

places information retrieving, Geonames
used 156-160

Rails application, creating 144

remote location time displaying, Hostip.
info used 179-181

requirements 137, 138

search form, creating 149

steps 143

tabs, creating 151-154

Weatherbug 140, 141

weather information retrieving,

Weatherbug used 164-166

WebServiceX currency convertor 139

Yahoo maps geocoding API 140
types, web mashups 7

w

web mashups
about 5
commercial dependency, problem 11
commercial dependency, solution 12
developing, problems 10
development effort, reducing 10
external applications, integrating 10
external sources, accessing 9
maintenance effort, reducing 10
mashup application 7
mashup application and mashup plugin,

differences 8

mashup plugin 7
new functionality, creating 9
platform, creating 8
Ruby and Ruby on Rails 6
types 7
unreliable external APIs, problem 11
unreliable external APIs, solution 11
users losing, problem 12
uses 8

[257]

	Ruby on Rails Web Mashup Projects
	Table of Contents
	Preface
	Chapter 1: Introduction to Web Mashups
	Web mashups
	Ruby and Ruby on Rails

	Types of web mashups
	What can I do with web mashups?
	As a new breed of applications
	Access large sets of external sources
	Innovate and create extra value for your application
	Save on development and maintenance
	Leverage on and integrate common and widely available external applications

	Things to watch out for when doing web mashups
	Unreliable external APIs
	Commercial dependency
	Losing your users

	How this book works
	What does it do?
	Domain background
	Requirements overview
	Design
	Mashup APIs on the menu
	What we will be doing
	Summary

	Ready?

	Chapter 2: 'Find closest' mashup plugin
	What does it do?
	Building a kiosk locator feature for your site
	Requirements overview
	Design
	Mashup APIs on the menu
	Google Maps
	Yahoo Maps
	Geocoder.us
	Geocoder.ca
	Hostip.info
	GeoKit
	Configuring GeoKit
	Getting an application ID from Yahoo
	Getting a Google Maps API key from Google
	Configuring evironment.rb

	YM4R/GM

	What we will be doing
	Creating a new Rails project
	Installing the Rails plugins that will use the various mashup APIs
	Configuring database access and creating the database
	Creating scaffolding for the project
	Populating kiosk locations with longitude and latitude information
	Populate the database with sample data
	Bulk adding of longitude and latitude

	Adding longitude and latitude during kiosk creation entry
	Creating the find closest feature
	Displaying kiosks on Google Maps

	Summary

	Chapter 3: Proxy mailing list mashup plugin
	What does it do?
	Building a proxy mailing list feature for your website
	Requirements overview
	Design
	Define messages
	Get contacts and customized message data
	Send messages
	Sending SMS messages
	Sending fax messages

	Mashup APIs on the menu
	Google Spreadsheets
	EditGrid
	Clickatell
	Interfax
	Net::HTTP

	What we will be doing
	Creating a new Rails project
	Configuring the database access and creating the database
	Creating standard scaffolding
	Allowing the marketing people to create the message templates
	Allowing the reseller to provide contacts data through a remote link
	Uploading to and publishing from Google Spreadsheets
	Uploading to and publishing from EditGrid

	Creating the rake script to send messages at regular intervals
	Parsing data from the online spreadsheet
	Sending a fax with Interfax
	Sending an SMS through Clickatell
	Sending an email through ActionMailer
	Customizing text messages according to the individual recipient

	Using the mashup
	Summary

	Chapter 4: Book sales tracking mashup plugin
	What does it do?
	A book sales tracking and shopping cart feature
	Requirements overview
	Design
	Provide information
	Track sales ranking with a chart
	Show customer reviews
	Provide a shopping cart
	Allow visitors to buy related books

	Mashup APIs on the menu
	Amazon E-Commerce Services API
	Registering for an Amazon Web Service access key ID
	Registering as an Amazon Associate

	Amazon ECS Ruby library
	Sparklines web service

	What we will be doing
	Creating a new Rails project
	Installing the Amazon ECS Ruby library
	Creating the books controller
	Creating the Amazon Rails library
	Creating the sidebar
	Getting customer reviews
	Getting the daily sales ranking
	Displaying the sales ranking sparkline
	Creating a shopping cart
	Adding similar books to the shopping cart

	Summary

	Chapter 5: Job board mashup application
	What does it do?
	Job board
	Requirements overview
	Design
	Mashup APIs on the menu
	Facebook
	Facebook Platform
	RFacebook

	Google Maps
	Indeed
	Technorati
	Daylife
	Net::HTTP
	XmlSimple

	What we will be doing
	Acquire candidates through Facebook
	Search for jobs through Indeed
	Display jobs in Google Maps
	Search and display job news from Daylife
	Search and display job stories from Technorati
	Acquiring candidates through Facebook
	Creating a Rails application
	Creating a Facebook application
	Installing and configuring RFacebook
	Extracting the Facebook user profile
	Displaying the user profile and creating the search form
	Deploying and configuring the Facebook application

	Searching for jobs through Indeed
	Creating the search action
	Parsing and displaying the search results

	Display jobs in Google Maps
	Displaying the location of the jobs on the map
	Creating a link on each job to show the news and blog articles

	Searching and displaying news from Daylife
	Searching for news on the company

	Searching and displaying blog articles from Technorati
	Searching for blog entries on the company

	Summary

	Chapter 6: Trip organizer mashup application
	What does it do?
	Requirements overview
	Design
	Mashup APIs on the menu
	Google Maps
	FUTEF
	WebserviceX Currency Converter
	Yahoo Maps Geocoding API
	WeatherBug
	Kayak
	GeoNames
	Flickr
	Hostip.info
	Open URI

	What we will be doing
	Creating a Rails application
	Creating the basic Location object
	Creating a search form
	Creating the online map
	Creating the tabs for the information
	Getting information from Wikipedia
	Getting places information
	Getting hotel information
	Getting weather information
	Displaying pictures of the location
	Showing currency exchange rate
	Showing remote location time compared with local time

	Showing nice exception pages
	Summary

	Chapter 7: Ticketing mashup application
	What does it do?
	Online event ticketing
	Requirements overview
	Design
	Mashup APIs on the menu
	PayPal
	Website Payment Pro
	PayPal Sandbox

	Ruby-PayPal library
	Google Calendar
	GoogleCalendar library
	Clickatell

	What we will be doing
	Creating a Rails application
	Creating the flow for the ticketing application
	Integrating with PayPal for payment
	Integrating with Google Calendar
	Integrating with Clickatell

	Summary

	Chapter 8: Expenses claims mashup plugin
	What does it do?
	Salary and expense claims
	Requirements overview
	Design
	Mashup APIs on the menu
	PayPal
	Mass Payment
	PayPal Sandbox

	Google
	Google Account Authentication
	Google Data APIs
	Google Document Data List APIs
	Google Spreadsheet Data APIs

	Ruby-PayPal library
	Acts_as_state_machine plugin
	XmlSimple

	What we will be doing
	Creating a Rails application
	Setting up the database
	Creating the Payment and Claim Item scaffolds
	Modifying Payment and creatomg subclasses
	Creating the Google API access library
	Creating the Manager class and its controller and views
	Creating the expense claims parsing rake script
	Creating the mass payment rake script
	Modifying the Payment and Claim Item controllers

	How it works all together
	Summary

	Index

