

What readers are saying about

Scripted GUI Testing with Ruby

If you care about your application, you care about testing. And if you

have an application with a user interface, you should care about test-

ing it. This book gives you what you need to start testing in an agile

manner, using a modern programming language and excellent tech-

niques. This book covers a wide range of GUI testing and should be in

every developer’s bookshelf.

Ola Bini

JRuby Core Developer, ThoughtWorks

This book provides the most thorough and enjoyable introduction

to GUI testing in Ruby (or any language, for that matter) I’ve yet to

encounter. It was not only technically enlightening but a pleasure to

read—something few technical books achieve. I am tempted to buy

copies for every QA tester I know—and probably a lot of developers,

too!

Thomas Lockney

Software Developer

Ian Dees brings the joy of Ruby to the task of GUI testing, allowing

you to “let the computers and the people each do what they’re good

at.” Testers and nontesters alike will find value in his discussions of

automating GUI actions to both save time and improve quality.

David Mullet

The Ruby on Windows blog

Scripted GUI Testing with Ruby is a must-read for small to medium-

sized development shops building any kind of GUI application.

Although aimed at the QA segment, the book’s readability and well-

considered refactorings will be a benefit to developers. More impor-

tant, by providing a concrete soup-to-nuts introduction to RSpec, it

shows a path bridging that crucial gap between product designers

and implementors. Ian shows us that a QA’s job—long-considered

monotonous and akin to visiting the dentist—can in fact bring clar-

ity of understanding to all members of a project. And even better,

time and money that would have been wasted on manual click-and-

pray testing can now be dedicated to truly creative software destruc-

tion, leaving the boring bits to the robots. For that reason alone, QAs,

developers, and project managers need to pick up this book so they

can understand what QA and communication are really about.

Duncan Beevers

Developer, Kongregate

Scripted GUI Testing with Ruby really is unique in the market, and

I’m glad to see it published. Like Ian, I wish I’d had this in my hands

four years ago. After reading and working through Scripted GUI Test-

ing with Ruby, I have several new toolsets in my testing arsenal. I had

heard a bit about some of the tools Ian covers in this book, but now

I know how they’ll apply to my work and, thanks to the examples,

exactly how to use them.

Alex LeDonne

Senior Software Quality Analyst

Scripted GUI Testing with Ruby

Ian Dees

The Pragmatic Bookshelf
Raleigh, North Carolina Dallas, Texas

Many of the designations used by manufacturers and sellers to distinguish their prod-

ucts are claimed as trademarks. Where those designations appear in this book, and The

Pragmatic Programmers, LLC was aware of a trademark claim, the designations have

been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The

Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g

device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher

assumes no responsibility for errors or omissions, or for damages that may result from

the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team

create better software and have more fun. For more information, as well as the latest

Pragmatic titles, please visit us at

http://www.pragprog.com

Copyright © 2008 Ian Dees.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-

ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or

otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-10: 1-934356-18-2

ISBN-13: 978-1-9343561-8-0

Printed on acid-free paper with 50% recycled, 15% post-consumer content.

http://www.pragprog.com

Contents
1 Introduction 10

1.1 Testing for Fun and Profit 10

1.2 Behavior-Driven Development and RSpec 13

1.3 About This Book . 15

1.4 Acknowledgments . 17

I One Big Example 18

2 An Early Success 19

2.1 First Steps . 19

2.2 Door #1: Windows . 23

2.3 Door #2: Swing with JRuby 30

2.4 Review . 35

3 Refactoring with RSpec 36

3.1 RSpec: The Language of Lucid Tests 38

3.2 Building a Library . 43

3.3 The Story So Far . 48

4 Next Iteration: Simplify! 49

4.1 Abstracting the Common Code 50

4.2 Cleaning Windows . 51

4.3 Polishing JRuby . 62

4.4 Satisfaction . 64

5 The Home Stretch 66

5.1 Save Me! . 66

5.2 The Password Is... 72

5.3 Document Wrangling . 77

5.4 Cut to the Paste . 81

5.5 Are We There Yet? . 87

CONTENTS 8

II Aspects of Testing 88

6 Branching Out 89

6.1 Testing the App . 89

6.2 Testing the Tests . 89

6.3 Putting the Pieces Together 90

6.4 Moving On . 91

7 Keep ’Em Guessing: Introducing Randomness 92

7.1 Keys, Menu, or Mouse? 92

7.2 Adding Lorem Ipsum to the Mix 97

7.3 A Test Monkey Could Do This Job 100

7.4 Breaking Camp . 103

8 Turn the Tables: Matrix Testing 104

8.1 What to Test . 104

8.2 ZenTest and the Art of Matrix Maintenance 106

8.3 Fit to Be Tested . 111

9 Testing the Tubes: Web Applications 118

9.1 In-Browser Testing . 119

9.2 Selenium . 119

9.3 Selenium and RSpec . 126

9.4 Interacting with Ajax . 131

9.5 Watir . 135

9.6 Wrapping Up . 138

10 Testing in Plain English: Story Runner 139

10.1 From Examples to Stories 139

10.2 Designing with Stories 144

10.3 Extending Our Design 151

10.4 Where to Go from Here 156

11 One More Thing: Testing on the Mac 158

11.1 Taking the Reins . 158

11.2 From AppleScript to Ruby 160

11.3 RSpec and AppleScript 165

http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=8

CONTENTS 9

A Other Windows Techniques 168

A.1 Windows Script Host . 168

A.2 Win32::GuiTest . 169

A.3 Winobj . 170

A.4 A Few Win32 Definitions 171

B Resources 173

B.1 Websites . 173

B.2 Books . 173

B.3 Bibliography . 174

Index 175

http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=9

Chapter 1

Introduction
What do you want from your tests?

Your answer to that question will shape your software testing efforts to

a great degree. It will especially affect how you do your GUI tests and

in particular what role automation plays for you.

Lots of folks talk about automated testing, but the term is a bit of a

misnomer. All but the most deluded toolkit vendors admit that test-

ing requires human ingenuity. So, the whole “manual vs. automated”

argument is a bit of a red herring.

There are tasks that computers are good at, such as generating a

million-word document on the fly to try to crash a spell checker. And

there are things only a human tester will catch, such as when some-

thing doesn’t look quite right about a particular layout in landscape

mode.

So, why not let the computers and the people each do what they’re good

at doing? Really, all testing is human activity. Some tasks are just more

computer-assisted than others, which is why I prefer the term scripted

testing over the more traditional automated testing.

In this book, we’ll look at ways that writing test scripts can make you a

better tester. We’ll cast our net both deep and wide. In the first half of

this book, we’ll delve deeply into a real-world app and come up with a

set of Ruby scripts that exercise all of its features. In the second half,

we’ll take a broader survey of GUI testing topics.

1.1 Testing for Fun and Profit

Back to our original question: what do you want from your tests?

TESTING FOR FUN AND PROFIT 11

Most answers to that question boil down to “fun” or “profit.” Take, for

instance, this quote:

Testing is the process of executing a program with the intent of finding

errors.1

This is clearly in the “profit” category. How much testing can we afford

to do, and how much money will we save by catching bugs before they

get out the door? Actuaries have tables of industry-wide numbers on

this topic, and every other testing book seems to open with the same

stats on how many bajillion dollars we’re losing this year.

How about this one?

The purpose of testing is to make quality visible.2

This one is more about the “fun” side: shining a light into the darkness,

making the invisible spring forth. So artistic!

I can already hear the battle lines being drawn. Before anyone gets

hurt, let’s talk about a Grand Unified Theory of sorts between the two

camps.

What We’re Looking For

Let’s look at the “profit” answer for a second. If the purpose of testing

is to find bugs, what kinds of bugs are we looking for?

The act of running an automated script—especially a GUI one—may find

regressions, but it isn’t likely to find old bugs. After all, a simple script

will typically do the same thing each time (although in Chapter 7, Keep

’Em Guessing: Introducing Randomness, on page 92, we’re going to see

some exceptions). If it didn’t unearth that botched search on the first

run, it’s probably not going to after the tenth.

On the other hand, writing a script can find some of the earliest prob-

lems to be introduced: bad or missing requirements.

An example is in order here. Imagine a word processor’s Undo feature.

The UI designer has dutifully spelled out what kinds of actions can be

undone, how the menu item changes its name to Undo Typing or Undo

Delete or whatever, and so on.

1. The Art of Software Testing [Mye79]
2. The Complete Guide to Software Testing [Het84]

http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=11

TESTING FOR FUN AND PROFIT 12

But one thing that no one thought of—or rather, everyone thought of

differently—is what happens when someone undoes all his changes

and then exits the program. Should the word processor prompt him to

save?3 The UI design seems to say so: all modified documents should

be saved.

So in our hypothetical example, that’s how the programmer imple-

mented the feature. Any change, including Undo, sets a “dirty” flag

somewhere, which the app checks at exit time. But that’s not how the

tester wrote the script:

type_in "Hello"

undo

fail "Undo failed to delete 'Hello'" unless document.empty?

exit :expect_prompt => false

The tester interpreted the design as having a loophole for empty doc-

uments, in contrast to the programmer’s more literal view. They flag

down the designer, and the three of them sit down to hash things out.

An interesting thing happened here. The tests became the centerpiece

of a conversation—between designer, developer, and tester. And we’ve

landed firmly in the warm and fuzzy “shine a light on quality” aspect of

the “fun” motive.

Caveat Tester

Before we get too carried away, it’s worth noting that there is a cost

to automation. It will almost certainly take longer to write a program

that clicks a button than just to click the button yourself and see what

happens. And test scripts can watch only what they’re told to watch;

your judgment is vastly more discerning.

In other words, automation is never a replacement for manual activity.

Use it to extend your reach—to do things you couldn’t have done with

your bare hands.

For instance, use automation to tell you a few moments after someone’s

check-in whether the changes are good enough to spend time testing by

hand.4 Or have the build run all night with millions of different input

combinations. Or script a complicated setup activity so that you can

quickly and repeatably demonstrate a bug you found manually.

3. Of course, the tester will be asking lots of other questions, too, such as “Will the

program hang or crash if the list of undone changes has 10,000 actions it?”
4. http://www.martinfowler.com/articles/continuousIntegration.html

http://www.martinfowler.com/articles/continuousIntegration.html
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=12

BEHAVIOR-DRIVEN DEVELOPMENT AND RSPEC 13

Also, please consider that some domains are better suited than oth-

ers for automation. Test oracles—pass/fail criteria—are much easier to

write for text than for, say, audio or complicated images.

1.2 Behavior-Driven Development and RSpec

The idea of tests as conversation pieces isn’t a new one. You’re no doubt

familiar with the idea of test-driven development, or TDD, whose prac-

titioners write their code-level unit tests before doing anything else.

When TDD was a new buzzword, skeptics heard that these enthusi-

asts were touting their tests as proof that their programs worked. But

unit tests aren’t written that way—an algorithm that works in a cou-

ple of specific cases might fail in a thousand other cases. Critics were

absolutely right to be suspicious of these kinds of claims.

The important idea in TDD wasn’t the tests; it was the fact that writing

the tests forces developers to think through how their code will behave.

People tried renaming the practice to test-driven design, but of course

everyone still got hung up on that first word.

What people were calling tests were really examples of how a piece of

code was supposed to behave. So, the successors to TDD had names

like example-driven development or behavior-driven development.

From Tests to Behavior

It may seem surprising that people fretted so much about what to name

their practice. But “getting the words right” is one of the key ideas

behind BDD. If the tests are going to be a lingua franca among the pro-

grammers, testers, and users, then it had better be a clear language.

In the earliest days of BDD, proponents focused on object-level unit

tests. Even within the narrow scope of individual source code files,

developers found it helpful to write their examples in a format that

they could credibly show to a subject-matter expert and say, “Is this

right?”

Of course, end users don’t care that your AbstractFactoryPattern class

works; they care whether the program works. Fortunately, the ideas

behind BDD apply at the application level, too. Instead of describing

source code, you’re describing a GUI. Rather than giving examples in a

programming language, you’re giving them in a natural language. But

http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=13

BEHAVIOR-DRIVEN DEVELOPMENT AND RSPEC 14

you’re still focusing on writing something that your customers (or some-

one who understands their needs) can read or perhaps even modify.

RSpec’s Roles

RSpec was the first Ruby implementation of the ideas behind BDD and

followed its early focus on source code. Tests—referred to as examples—

were written in Ruby and typically exercised individual methods of a

class. For instance, here’s how the developer of a Stereo class might

test its mute() method:

describe 'The mute button' do

it 'reduces the volume to zero' do

@stereo.volume = 10

@stereo.mute

@stereo.volume.should == 0

end

end

As you can see, example notation is a bit technical, but it’s still legible.

It doesn’t take a Ruby expert to figure out what the test does. You

could imagine the developer huddling around a printout with the team’s

resident audiophile to figure out another facet of the object’s behavior,

such as whether the unmute feature should be instant or gradual.

As nice as RSpec examples are for describing individual features, there

are clearer ways to describe application behavior as a whole. The Story

Runner, a recent addition to RSpec, reads and runs tests that are writ-

ten in plain English.

For example, if your team is trying to figure out how your word pro-

cessor should create new documents on your lab’s French-localized

machine, you and the designers and coders might come up with some-

thing like this:

Given a North American locale

When I open a new word processor document

Then the paper size should be "Letter"

Given a European locale

When I open a new word processor document

Then the paper size should be "A4"

It’s wordy but clear. It’s also running code, which RSpec’s Story Runner

can execute on a thousand different combinations of locale and operat-

ing system.

http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=14

ABOUT THIS BOOK 15

And it can run it all over again in six months, when the next version

comes out with the development team’s new localization code.

Which Notation to Use

Many projects use both flavors of RSpec: Ruby examples for unit tests

and plain-English stories for UI tests. Of course, your program doesn’t

have to be written in Ruby for you to benefit from RSpec. Although

you’ll write your unit tests in your app’s language, you can still test the

user interface with RSpec.

In this book, we’re going to start from the ground up, and that means

we’ll see the Ruby side of RSpec first—because “classic” RSpec exam-

ple notation is the way to test Ruby libraries like the one we’ll build.

The plain-English Story Runner format will pop up later, when we talk

about the role of tests in program design.

For the many facets of RSpec that aren’t addressed here, you may want

to refer to the numerous examples and article links on the documenta-

tion page of RSpec’s website.5

1.3 About This Book

As much as I love talking about GUI tests, it’s much more illustrative

to show them. So, we’re going to spend the first half of this book build-

ing up a test script (“test” in the sense of “set of examples”) for a live

application. I don’t mean some toy “pet store” sample project; I mean a

real program people are using for something other than writing books

on testing.

By the halfway point, we’ll have a somewhat typical GUI test project on

our hands, with the same refactoring and changing of direction you’d

see in the real world. From there, we’ll branch out into a survey of GUI

testing topics, leaving behind our one big example for several smaller

illustrations.

Who It’s For

This book is for testers who code and for coders who test. It’s the book

I wish I had four years ago. That’s when I faced the equally unpleasant

tasks of fixing old, broken GUI tests and coaxing a rickety third-party

5. See http://rspec.info/documentation/.

http://rspec.info/documentation/
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=15

ABOUT THIS BOOK 16

toolkit into running new tests. I started looking for a how-to guide on

GUI testing to help me down this road.

Unfortunately, there were none. Plenty of people had written beauti-

fully about testing in general but not about user interfaces specifically.

What few GUI books did exist were long, dry, restricted to technologies

I couldn’t use, or built on test frameworks that looked like someone’s

homework assignment.

A lot of folks are having the same problem I had. Some of you are testers

who are sick of hearing the “testers don’t code” slander and want to

use scripting in your palette of techniques. Others are QA engineers

tired of the messy generated code and clunky APIs of GUI toolkits. Still

others are software developers who want to test and improve their own

programs.

How to Use It

The best way to get a feel for GUI test scripts is to write a bunch of ’em.

You’ll get the most out of the examples by following along and typing

in the code yourself. If you want to compare your code with the version

in the book, the latter is available at http://www.pragprog.com/titles/idgtr/

source_code.

If you’re a web tester, you may want to peek ahead at Chapter 9, Testing

the Tubes: Web Applications, on page 118, where we deal with concerns

specific to web apps. Then come back and read Part I—although it uses

a desktop app for its examples, you’ll find a lot of practices there that

are relevant for testing of any kind.

The code examples in this book are written in Ruby. That is how we

are going to create the building blocks to support those plainspoken

English-like tests. You don’t have to be a Ruby expert to follow along,

but you should probably have some basic familiarity with the language.

We’ll be writing short programs, installing libraries, running scripts

from the command line, and so on.

Regulars from other scripting languages can pick up most of the Ruby

they need from the online version of the Pickaxe book.6 If, on the other

hand, this is your first scripting project, you may want to read Brian

Marick’s Everyday Scripting with Ruby [Mar06].

6. http://www.ruby-doc.org/docs/ProgrammingRuby

http://www.pragprog.com/titles/idgtr/source_code
http://www.pragprog.com/titles/idgtr/source_code
http://www.ruby-doc.org/docs/ProgrammingRuby
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=16

ACKNOWLEDGMENTS 17

About the Examples

This book follows several conventions that are common among Ruby

programs. If you’ve written a lot of Ruby, you’ve probably used most

of these, but if you’re new to the language, most of them are less than

obvious.

Implicit return: Since Ruby can use a function’s last expression as the

return value, I will usually omit return statements unless one is

needed for clarity.

Ternary operator: Simple assignments will often use a ? b : c as short-

hand for if a then b else c; end.

Logical assignments: Ruby programmers frequently use a ||= b (an ab-

breviation of a = a || b) to say, “If a doesn’t already have a value,

make it equal to b.” A related, but less common, shortcut is a &&=

b in place of a = a && b.

method_missing(): Ruby’s method_missing() hook lets you specify what to

do when a nonexistent function is called. This feature can be

abused, so I use it only in a couple of cases—mainly when an

object needs to support a potentially infinite set of method names.

Several examples involve typing text into a command prompt. I’ll adopt

whichever format is most appropriate for each example (C:\> for Win-

dows, $ for others). In practice, they’re mostly interchangeable—some-

times with minor tweaks, such as dropping the word sudo if you’re on

Windows.

1.4 Acknowledgments

I’m indebted to a great many people for their indulgence and help

on this book. Many thanks to Jackie Carter, my awesome editor, for

patiently shepherding this undertaking and for her constant attention

to flow; my lovely family for putting up with a rambling, distracted me

for over a year; Ola Bini for always finding a better way to say it in

Ruby; James Bach for injecting a healthy dose of reality; Duncan Beev-

ers, Alex LeDonne, Thomas Lockney, and David Mullet for making sure

the darn thing works; Ryan Davis for ZenTest subtleties; Daniel Stein-

berg and the Prags for rolling the dice on this project; Brian Marick for

writing the book that inspired mine; David Chelimsky and the RSpec

crew for setting the standard for clear test language; and of course Matz

for optimizing Ruby for programmer happiness.

http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=17

Part I

One Big Example

I’m an idealist. I don’t know where I’m going, but I’m on my

way.

Carl Sandburg

Chapter 2

An Early Success
You have read the disclaimers. You’re undertaking your automation

project with open eyes. Your application domain is well-suited for

scripted testing. Now what?

We’re going to spend the next few chapters building an automated test

suite from the ground up. Along the way, we’ll look for ways to stream-

line our tests and make our scripts easier to understand.

In this chapter, we’re going to familiarize ourselves with the tools we

need and write a simple GUI control script. We’ll leave the writing of

pass/fail tests for later chapters. For now, it’ll be enough to get confi-

dent with the basics: simulating keystrokes, pushing buttons, and so

on.

2.1 First Steps

Rather than collecting a bunch of toy examples, we’ll choose a single

real-world program and exercise its user interface thoroughly over the

course of the book. Before we plunge into the craft of test writing, let’s

get an early success into the logbook. We’ll create a basic but working

automation script and start controlling a live application.

Some of the code in this chapter is a bit dense. We’re working toward

writing self-descriptive code like this:

note.select_all

note.cut

note.text.should == ''

But to get there, we need to do a little plumbing work. You’ll see repet-

itive sections and hairy API calls in the coming pages that just scream

FIRST STEPS 20

to be distilled into something cleaner. Keep in mind the places you’d

want to tidy up; we’ll likely get to them in future chapters.

Choose Your Own Adventure

As you follow along in the examples, you’ll be able to choose which

platform to implement them on. Door #1 is the Windows door, through

which you’ll see classic Win32 API calls driving an application. Door

#2 is the cross-platform door. Behind it, you’ll test a Swing app on

the Java runtime using JRuby.1 The screenshots from Door #2 came

from a Mac, but the examples should work almost anywhere Java runs,

including Linux or Windows (but probably not Java-powered toasters).

The Windows-specific sections will usually be a few pages longer than

the corresponding cross-platform ones. Am I hiding a bunch of extra

secrets there? No—it’s just that the two tracks begin at two different

places.

For Java, we are coming out of the blocks with a full-blown GUI auto-

mation library from the good folks at NetBeans. But the Ruby GUI test

options for Windows are a little less mature, so we are going to build

our own.

The two tracks will eventually converge as we find concepts that are

common to both worlds. Until then, I’ll mark the parts that are specific

to one or the other. Feel free to read either or both—they don’t depend

on each other.

Chosen your platform yet? Good! Now, let’s find an application to sub-

ject to our scripting ambitions.

Finding a Guinea Pig

What program should we test? Without a doubt, you have your own

GUI projects you want to automate. It would be nice if the examples in

this book addressed the same kinds of challenges you encounter in the

real world, so we’ll write a test script for an app that real customers

have been using in the wild.

Keep in mind that the values we’ll be stressing—clear test scripts and

reasonable expectations of automation—will serve any project well. We

could base a book’s worth of test scripts around a Windows GUI, a web

application, a Unix console program, or what have you.

1. A Ruby implementation written in Java.

http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=20

FIRST STEPS 21

Figure 2.1: LockNote’s main window

But let’s “stack the deck” a bit by choosing an application that fits the

format of this book well. We’d like something simple so that we can write

some meaningful tests for it in four chapters. That probably means a

text-based app, since comparing images is a huge topic in its own right.

Meet LockNote...

A bit of searching on SourceForge turns up LockNote, a Notepad-like

text editor for Windows that encrypts your files when you save them.2

A screenshot of LockNote’s main window appears in Figure 2.1.

LockNote will serve our needs amply. It is available for free, so you

can follow along with the examples in this book. It serves a well-defined,

readily understood purpose. It uses standard Windows components

such as edit controls, push buttons, and check boxes. Finally, its focus

on text means that the techniques we use for testing Undo, Find/

Replace, and Cut/Copy/Paste will be easy to apply to other projects.

So if you’re following along in Windows, grab LockNote’s “source +

binary” distribution from the release page.3 Why do we need LockNote’s

2. http://sf.net/projects/locknote—I have nothing to do with LockNote or the Steganos com-

pany, by the way.
3. http://downloads.sf.net/locknote/locknote-1.0.3-src%2Bbinary.zip

http://sf.net/projects/locknote
http://downloads.sf.net/locknote/locknote-1.0.3-src%2Bbinary.zip
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=21

FIRST STEPS 22

Figure 2.2: JunqueNote’s main window

source code? It’s in C++, and isn’t this is a Ruby book? Yes, but one

small piece of that source will come in handy later.

...and JunqueNote

LockNote will do just fine for Windows testing, but what about the

cross-platform track? For that, I’ve written a simple clone of LockNote

called JunqueNote (see Figure 2.2). Its encryption is not beefy enough to

use on real data, but it’s feature-for-feature compatible with LockNote.

JunqueNote runs on the Java runtime, but like the tests you’ll be writ-

ing, its source code (which comes with this book) is in Ruby. To use it,

you’ll need to download and install JRuby.4

You’ll also need to install the Cheri gem for drawing JunqueNote’s UI,

as well as the Crypt gem for encrypting the saved files. If the jruby exe-

cutable is in your PATH, the following two commands will do the trick:

$ sudo jruby -S gem install cheri

$ sudo jruby -S gem install crypt

Now, you should be able to start JunqueNote by grabbing a copy of

junquenote_app.rb and running the following command:5

$ jruby junquenote_app.rb

4. http://jruby.codehaus.org

5. http://www.pragprog.com/titles/idgtr/source_code/junquenote/junquenote_app.rb

http://jruby.codehaus.org
http://www.pragprog.com/titles/idgtr/source_code/junquenote/junquenote_app.rb
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=22

DOOR #1: WINDOWS 23

Take a Test-Drive

In the upcoming chapters, we’re going to exercise every menu com-

mand, dialog box, and keyboard shortcut in LockNote and JunqueNote.

But for now, let’s just focus on getting the software running and poking

a couple of buttons using Ruby.

We’re going to start with the simplest code that could possibly work.

That means using a few platform-specific calls at first, and these are

naturally going to differ between the two apps. But we’ll eventually be

able to test both programs from the same script.

In the meantime, take a few minutes to explore LockNote or JunqueNote

by hand. Create a couple of password-protected documents. Type in

your impressions of this book so far (don’t worry, I can’t read them:

they’re encrypted!). Experiment with edge cases such as entering a mis-

matched password/confirmation pair or hitting Undo when you haven’t

changed anything. I’ll wait here for you.

Ready to move on? Great! The next section introduces the Windows-

specific calls you’ll need to drive LockNote. A few pages later, we’ll cover

the cross-platform JunqueNote app in Section 2.3, Door #2: Swing with

JRuby, on page 30.

2.2 Door #1: Windows

I’m all for jumping right in, but our first couple of techniques merit a

bit of discussion before we try them for real.

Launching the App

First up—the following Ruby code will start almost any program:

system 'C:\Path\To\Program.exe'

But Ruby will pause indefinitely at that line, sitting patiently until

someone manually closes the program—not very conducive to auto-

mated testing! To return control to Ruby right away, we’ll pair system()

with Windows’ start command (and switch to forward slashes for quoting

reasons):

system 'start "" "C:/Path/To/Program.exe"'

This line will tell Windows to launch the app, but it doesn’t tell us much

about the results. Did the program start successfully? Did it crash? Did

we try to run a nonexistent program? To answer these questions and to

http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=23

DOOR #1: WINDOWS 24

gain control of the app, we’ll need to find its main window using some

platform-specific mojo.

Finding the Main Window

Ruby can call Windows functions nearly as easily as regular Ruby class

methods, thanks to the Win32API library that ships with the Ruby one-

click installer for Windows.6 A Win32API object is a lot like a plain ol’

Ruby Proc.7 It supplies us with a call() method to invoke its assigned

Windows function.

For this step, we’ll need the FindWindow() API call to search for the pro-

gram’s main window by title. To bridge the gap between the dynamically

typed Ruby world and Windows’s static C types, Ruby needs hints at

the parameter types. First, let’s look at the C function signature for

FindWindow():

HWND FindWindow(LPCTSTR windowClass, LPCTSTR title);

So, FindWindow() needs two string parameters:

• The window class, which allows us to narrow our search to a spe-

cific kind of window, such as a button or edit control. Since we’re

just searching for a plain ol’ window, we’re going to pass in a NULL

pointer, which we do by using Ruby’s nil identifier.

• The window’s title.

In the shorthand of Ruby’s Win32API library, the (LPCTSTR, LPCTSTR) func-

tion signature shown earlier is abbreviated to [’P’, ’P’]. Each ’P’ denotes

a string pointer argument.

FindWindow() returns an HWND, or window handle, which is the unique

number assigned to this window. We’ll use that number to take control

of the program. Ruby needs a hint for this return value. Again, we use

a shorthand notation: ’L’ for “long integer.”

The complete Ruby declaration for FindWindow() looks like this:

find_window = Win32API.new 'user32', 'FindWindow', ['P', 'P'], 'L'

And we use it like so:

handle = find_window.call nil, 'Window Title'

6. http://rubyforge.org/frs/?group_id=167. The examples in this book were written using Ruby

1.8.6.
7. http://www.ruby-doc.org/core/classes/Proc.html

http://rubyforge.org/frs/?group_id=167
http://www.ruby-doc.org/core/classes/Proc.html
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=24

DOOR #1: WINDOWS 25

There’s a bit more to it, of course. A program typically takes a couple

of seconds to launch completely and display its main window. If we call

FindWindow() the instant we start our app, the answer will come back

zero, meaning “no such window.” We’ll eventually wrap the function in

a while loop to keep calling it until we get a nonzero answer.

A Working Test Script

Now we know how to launch a Windows program from Ruby and how

to find a running application. It’s time to put those two pieces together

into one script.

Save the following code on your hard drive as windows_basics.rb. I’ve got

LockNote installed in C:\LockNote; you’ll need to adjust the script if your

copy is in a differently named folder.

Download early_success/windows_basics.rb

require 'Win32API'

Ê def user32(name, param_types, return_value)

Win32API.new 'user32', name, param_types, return_value

end

find_window = user32 'FindWindow', ['P', 'P'], 'L'

system 'start "" "C:/LockNote/LockNote.exe"'

sleep 0.2 while (main_window = find_window.call \
Ë nil, 'LockNote - Steganos LockNote') <= 0

puts "The main window's handle is #{main_window}."

As we prepare the script, let’s look at a couple of points of interest in

the code.

Since every Win32 call in this book comes from user32.dll, we’ve defined

a helper function at Ê to avoid having to type Win32API.new ’user32’, ...

every time. At Ë, we use a nonobvious feature of Ruby variable scoping:

main_window retains its value, even after the while loop exits.

Go ahead and run what you have so far:

C:\> ruby windows_basics.rb

If all goes well, you’ll see LockNote launch, and the console will print a

nonzero number identifying the program’s main window. Exit the pro-

gram manually—we’ll find a way to close it from our script later in this

chapter.

http://media.pragprog.com/titles/idgtr/code/early_success/windows_basics.rb
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=25

DOOR #1: WINDOWS 26

Now that we’ve created a basic script that launches an application, let’s

add a few features to actually control the program.

Typing Text

Simulated typing of text is something we’re going to add in several

stages. For now, we’re just going to type lowercase letters and spaces.

We’ll add mixed case and punctuation (things that require key combi-

nations) as we need them.

As we did with FindWindow(), let’s start with the C definition of the Win-

dows keybd_event() function:

void keybd_event(

BYTE keyCode,

BYTE unused,

DWORD event,

DWORD extraInfo);

For now, we need to worry only about the keyCode and event param-

eters. They specify which key on the keyboard we’re referring to and

whether we’re simulating the key going up or down.

The BYTE and DWORD parameter types are, respectively, 8-bit characters

and long integers, or ’I’ and ’L’ in Ruby-speak. The function doesn’t

return a value, so we give it a ’V’ for void.

We’ll need a couple of Windows-specific constants representing the “up”

and “down” events, too. Add this code to the end of your script:

Download early_success/windows_basics.rb

keybd_event = user32 'keybd_event', ['I', 'I', 'L', 'L'], 'V'

KEYEVENTF_KEYDOWN = 0

KEYEVENTF_KEYUP = 2

Now, we’ll teach our script to type in a few words. On its own, keybd_

event() doesn’t support the notion of capital or lowercase letters; it deals

in keystrokes. In other words, pressing the A key looks the same to

keybd_event(), whether Caps Lock is on or off.

Many of the “virtual key codes” required by keybd_event() are crypti-

cally assigned numbers, but at least the basics are easy. Whether we’re

typing capital or lowercase letters, the alphabetic keys are always rep-

resented by the ASCII codes for capital letters A–Z—and hence the call

to upcase() at Ê.

http://media.pragprog.com/titles/idgtr/code/early_success/windows_basics.rb
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=26

DOOR #1: WINDOWS 27

Download early_success/windows_basics.rb

Ê "this is some text".upcase.each_byte do |b|

keybd_event.call b, 0, KEYEVENTF_KEYDOWN, 0

sleep 0.05

keybd_event.call b, 0, KEYEVENTF_KEYUP, 0

sleep 0.05

end

Go ahead and add the previous section to the end of your script and

then run it again. Did you get the sensation of watching over someone’s

shoulder as they type? Excellent. Exit LockNote (you can answer “No”

to the save prompt for now), and I’ll meet you in the next section. For

extra credit, you can rerun the script with Caps Lock on and see how

the same keystrokes can generate different characters.

Exiting the App

Until now, you’ve been closing LockNote manually after each run of the

script. Let’s look at a way to automate that process a little.

A Close Call

We’ll need a new Windows API call to send the Close command to Loc-

kNote:

BOOL PostMessage(

HWND window,

UINT message,

WPARAM wParam,

LPARAM lParam);

PostMessage() sends an event to a window. As we discussed earlier, the

window is identified by its integer handle, or HWND. The message has

its own unique integer ID, plus two parameters, also integers. The func-

tion returns a BOOL, yet another integer type. Four integer parameters,

returning an integer—this one is going to be easy to translate to Ruby.

The way we tell a program that someone has clicked its Close button

is to send it the WM_SYSCOMMAND message with the first parameter set

to SC_CLOSE (the second parameter is unused this time). The numeric

values of this message and its parameter are defined by Microsoft; we’ll

just hard-code them here.

http://media.pragprog.com/titles/idgtr/code/early_success/windows_basics.rb
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=27

DOOR #1: WINDOWS 28

Joe Asks. . .

What Do We Need Control IDs For?

Each window has a unique window handle. So, why are we
introducing a new “control ID” concept?

The difference is that a window handle is assigned by Windows
when the window is created, whereas a control ID is assigned
by the developer when the program is written. The No button
in a dialog box will have a different window handle every time
the program runs, but it will always have a control ID of 7.

Add this code to the end of your script:

Download early_success/windows_basics.rb

post_message = user32 'PostMessage', ['L', 'L', 'L', 'L'], 'L'

WM_SYSCOMMAND = 0x0112

SC_CLOSE = 0xF060

post_message.call main_window, WM_SYSCOMMAND, SC_CLOSE, 0

When you run the new version of the script, the app should now exit on

its own. Well, almost. Since we’ve typed text into the window and then

tried to exit, we’re now staring at a save prompt. And we’ll need another

trick in our toolkit to deal with that.

The No Button

There are lots of ways to say “No” to a dialog box. We can press Alt+N .

In some dialog boxes, we can press Esc . But both those approaches are

keyboard-based, and we already know how to press keys from Ruby.

Let’s teach our script to use the mouse instead.

We want to click the No button inside that save dialog box. To find an

item inside a dialog box, we’ll use the GetDlgItem() function:

HWND GetDlgItem(HWND dialog, int control);

The control parameter is the No button’s control ID, defined by Microsoft

to be IDNO, or 7.

http://media.pragprog.com/titles/idgtr/code/early_success/windows_basics.rb
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=28

DOOR #1: WINDOWS 29

Add this code to the end of your script:

Download early_success/windows_basics.rb

get_dlg_item = user32 'GetDlgItem', ['L', 'L'], 'L'

Ê dialog = timeout(3) do

sleep 0.2 while (h = find_window.call \
Ë nil, 'Steganos LockNote') <= 0; h

end

IDNO = 7

button = get_dlg_item.call dialog, IDNO

The block of code at Ë, where we find the save prompt by its window

title, looks very similar to the way we found the main window in Sec-

tion 2.2, A Working Test Script, on page 25.

The only difference is at Ê, where we call timeout() to bail out of the loop

if it takes too long. Other than that, it kind of feels like we’re repeating

ourselves. Hold that thought—we’ll return to it in a later chapter.

Once we’ve found the No button, we need to get the coordinates of its

upper-left and lower-right corners. The GetWindowRect() API call gives

us all four of these values in one C structure:

BOOL GetWindowRect(HWND window, LPRECT rectangle);

A RECT contains four integers laid out one after the other in memory.

The only way to have any control over memory placement with Ruby is

inside a string, so we’ll need to pack() these four values into a string to

pass into the function and then unpack() them when we’re done. The

notation is similar to the one we used for Win32API’s parameter types.

To prepare four integer coordinates for Windows to fill in, we’d say [0, 0,

0, 0].pack ’LLLL’.

Add the following code to your script:

Download early_success/windows_basics.rb

get_window_rect = user32 'GetWindowRect', ['L', 'P'], 'I'

rectangle = [0, 0, 0, 0].pack 'L*'

get_window_rect.call button, rectangle

left, top, right, bottom = rectangle.unpack 'L*'

Ê puts "The No button is #{right - left} pixels wide."

Since we haven’t added the code to click the mouse button yet, how do

we know the call to GetWindowRect() worked? For now, we’ll just throw

in a debugging statement at Ê to tell us the width of the No button. Go

http://media.pragprog.com/titles/idgtr/code/early_success/windows_basics.rb
http://media.pragprog.com/titles/idgtr/code/early_success/windows_basics.rb
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=29

DOOR #2: SWING WITH JRUBY 30

ahead and run the script. Does the reported width value look sensible?

On a typical Windows setup, it should be 75 pixels or so.

Clicking the Button

Now, we can actually click the button. First, we call SetCursorPos() to

move the mouse over the button; then, we call mouse_event() twice to

simulate a left click (which consists of two events: the left button goes

down and then back up).

SetCursorPos() takes two integer parameters representing the mouse’s X

and Y coordinates. mouse_event() takes five integers, but we’ll be using

only the first parameter, which indicates what the mouse is doing—left

button up, right button down, and so forth. We’ve already seen how to

translate simple functions like these into Ruby, so let’s gloss over the C

function definitions and go right to our script. Add the following code:

Download early_success/windows_basics.rb

set_cursor_pos = user32 'SetCursorPos', ['L', 'L'], 'I'

mouse_event = user32 'mouse_event', ['L', 'L', 'L', 'L', 'L'], 'V'

MOUSEEVENTF_LEFTDOWN = 0x0002

MOUSEEVENTF_LEFTUP = 0x0004

center = [(left + right) / 2, (top + bottom) / 2]

Ê set_cursor_pos.call *center

mouse_event.call MOUSEEVENTF_LEFTDOWN, 0, 0, 0, 0

mouse_event.call MOUSEEVENTF_LEFTUP, 0, 0, 0, 0

Don’t miss the familiar parameter-expansion asterisk at Ê to expand

the center array into two parameters.

Close any open copies of LockNote and run the script again. This time,

the mouse click should land right in the middle of the No button at the

end.

And that’s a great stopping point for the Windows code for now.

2.3 Door #2: Swing with JRuby

Welcome to the cross-platform path, where we’ll test the JunqueNote

application on the Java runtime, with help from the JRuby interpreter.

http://media.pragprog.com/titles/idgtr/code/early_success/windows_basics.rb
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=30

DOOR #2: SWING WITH JRUBY 31

Apps Are Objects

Launching an app is simple in JRuby. Both our test script and Jun-

queNote will be running in the same Java virtual machine. The script

assumes that the implementation of JunqueNote lives inside the Jun-

queNoteApp class. This class could have been written in any language

that targets the Java runtime: Java, Groovy, JRuby, Jython, and so

on.8

All you have to do is use the same syntax you’d use to create any Ruby

object:

JunqueNoteApp.new

That’ll eventually bring up the main window, but it’ll take a few sec-

onds. Before we can use this code in a real script, we’ll need to account

for the delay.

Pushing the Swing with Jemmy

To manipulate JunqueNote’s windows and controls, we’re going to turn

to Jemmy, an open source library that can drive Java user interfaces

built on the Swing library.9 Jemmy is written in Java, but it works

transparently in JRuby.

For each Swing class representing a type of GUI control—such as JBut-

ton, JTextField, or JMenuBar—Jemmy provides an “operator” to drive that

control—JButtonOperator, JTextFieldOperator, or JMenuBarOperator.

JunqueNote’s main window is a JFrame, so we can search for it using a

JFrameOperator:

require 'java'

require 'jemmy.jar'

Ê include_class 'org.netbeans.jemmy.operators.JFrameOperator'

Ë main_window = JFrameOperator.new 'JunqueNote'

As long as jemmy.jar is somewhere in JRuby’s load path, we can require

it like we would a regular Ruby library. From that point on, Jemmy

classes are available in Ruby under their fully spelled-out Java names,

like org.netbeans.jemmy.operators.JFrameOperator.

8. It happens to be written in JRuby. See code/junquenote/junquenote_app.rb for details.
9. http://jemmy.netbeans.org

http://jemmy.netbeans.org
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=31

DOOR #2: SWING WITH JRUBY 32

But we’d like to be able to say just JFrameOperator, without all that

org.netbeans stuff before it. The include_class call at Ê sets up this easier-

to-type alias for us.

The call at Ë will block until the main window appears. Later, we’ll

adjust Jemmy’s timeouts so that we won’t be drumming our fingers for

ages if something has gone wrong.

OK, enough talk. Ready to try this stuff out for real?

Make It So

Turning our burgeoning knowledge of JRuby into a working script is as

simple as combining our app-launching code with a Jemmy operator.

Save the following code on your hard drive as jruby_basics.rb, in the same

directory as junquenote_app.rb and jemmy.jar:10

Download early_success/jruby_basics.rb

require 'java'

require 'jemmy.jar'

require 'junquenote_app'

include_class 'org.netbeans.jemmy.JemmyProperties'

include_class 'org.netbeans.jemmy.TestOut'

Ê %w(Frame TextArea MenuBar Dialog Button).each do |o|

include_class "org.netbeans.jemmy.operators.J#{o}Operator"

end

Ë JemmyProperties.set_current_timeout 'DialogWaiter.WaitDialogTimeout', 3000
Ì JemmyProperties.set_current_output TestOut.get_null_output

JunqueNoteApp.new

main_window = JFrameOperator.new 'JunqueNote'

puts "The main window's object ID is #{main_window.object_id}."

At Ê, we’re pulling in all the Jemmy operators we’ll need for this chap-

ter. Rather than having a bunch of nearly identical include_class calls

that differ by just a few characters, we’ve put the repetitive part of the

code into a loop.

At Ë and Ì, we set a couple of timing- and logging-related Jemmy con-

figuration parameters. Notice how that JRuby allows you to call Java

10. http://www.netbeans.org/download/qa/jemmy.jar

http://media.pragprog.com/titles/idgtr/code/early_success/jruby_basics.rb
http://www.netbeans.org/download/qa/jemmy.jar
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=32

DOOR #2: SWING WITH JRUBY 33

methods like setCurrentTimeout() with more Ruby-like names such as

set_current_timeout().

Go ahead and run what you have so far:

$ jruby jruby_basics.rb

You should now be looking at a JunqueNote window and a message

on your command line. Success! Go ahead and shut down the app

manually.

Keyboard Solo

It’s time to give some life to the test script. Let’s teach it to type text into

the main window.

Unlike Win32, where you just type keystrokes and they land where they

land, Jemmy directs keyboard input to whichever specific control you

name. To get at the text area inside the window, we create a JTextArea-

Operator.

The operator’s typeText() method does all the work for us:

Download early_success/jruby_basics.rb

Ê edit = JTextAreaOperator.new main_window
Ë edit.type_text "this is some text"

You may have noticed in Ë that we changed the method name to type_

text(), with an underscore and different capitalization. As we discovered

in the previous section, JRuby lets us use a more Ruby-friendly alter-

nate spelling for any Java method. Since we’re writing our test script in

Ruby, we’ll use the Ruby-style names from here on out.

The text area belongs to the main window, so at Ê, JTextAreaOperator

takes its parent, main_window, as a parameter at creation time.

Run what you have so far. JunqueNote’s main window should appear,

and then its contents should change as if someone has been typing into

it. You’ll still need to close the window by hand, but we’re about to fix

that.

Quittin’ Time!

If we can launch JunqueNote from a script, then we should be able to

exit it from the same script. Lo and behold, the File menu has an Exit

item. Let’s use that.

http://media.pragprog.com/titles/idgtr/code/early_success/jruby_basics.rb
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=33

DOOR #2: SWING WITH JRUBY 34

Joe Asks. . .

Why Strings?

Why are we using strings to find menu items and dialog box
controls? Doesn’t that make our test script fragile in the face of
international translations or the whims of the GUI designer?

We search for GUI objects by name because that’s how the
Jemmy API is written. No one says we have to hard-code our
search strings, though. Using Jemmy’s Bundle class, you could
put your menu and button names in a property file. . .

junquenote.exit_menu=File|Exit

and use them like this:

include_class 'org.netbeans.jemmy.Bundle'

bundle = Bundle.new
bundle.load_from_file 'english.txt'
exit_menu = bundle.get_resource 'junquenote.exit_menu'

menu.push_menu_no_block exit_menu

I’ve skipped this step for the examples in this book to keep the
source code brief (and because I’m pretty sure JunqueNote
will never be translated to any other languages).

With Jemmy, we find menu items by their captions:

Download early_success/jruby_basics.rb

menu = JMenuBarOperator.new main_window

menu.push_menu_no_block 'File|Exit', '|'

Why is the method named push_menu_no_block()? That’s a signal to

Jemmy that we want our script to keep running without interruption.

As you’ve probably guessed, there’s also a plain push_menu() method,

but that one pauses the whole script until the app has completely fin-

ished responding to the menu. So it’s suitable only for quick actions like

Cut or Paste. Exiting the app is a potentially slow operation, because it

brings up a “Do you want to save?” dialog box.

Speaking of the save prompt, we don’t care about keeping our docu-

ments around just yet. So, we’ll answer “No” for now, using another

Jemmy operator to click the appropriate button.

http://media.pragprog.com/titles/idgtr/code/early_success/jruby_basics.rb
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=34

REVIEW 35

We’ll handle it like this:

Download early_success/jruby_basics.rb

dialog = JDialogOperator.new "Quittin' time"

button = JButtonOperator.new dialog, "No"

button.push

Now, when you run the script, the app should shut down for you.

2.4 Review

Whew! Just one chapter of code, and we’ve gotten a lot done already.

We’ve launched the program we’re testing, simulated typing, sent the

command to exit the app, and sent mouse input to dismiss a dialog

box. Twice!

Of course, we haven’t written any tests yet, so we have no way of know-

ing whether the app is even doing its job. And our script is full of

platform-specific API calls. It would be nice to be able to say something

like the following without worrying about the specifics of the keystrokes

or mouse events we’re sending:

note.text = "This is a complete sentence."

or:

note.save_as 'MyNote'

We’ll clear these hurdles in the upcoming chapters.

http://media.pragprog.com/titles/idgtr/code/early_success/jruby_basics.rb
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=35

Listen to me. I’m should-ing all over myself.

Al Franken

Chapter 3

Refactoring with RSpec
Now that we have a working script that drives an application, it might

be tempting to jump right in and add some tests. After all, we know how

to use platform calls like SendMessage() on Windows or typeText() on the

Java runtime to make our test script push buttons and type keystrokes.

We could just intersperse a few pass/fail checks in between all those

function calls, right? Not so fast—let me tell you a story first. . . .

Write Once, Read Never

On one project, I inherited a bunch of old machine-written test scripts

that had been generated by a capture/playback tool. Apparently,

someone had long ago pressed Record in the capture tool and performed

a bunch of tasks in the software they were testing. When they were done,

the playback tool had generated a C program that, after a couple of tests

were added, looked something like this:

MoveMouse(125, 163);

Delay(0.65);

LeftButtonDown();

Delay(0.074);

LeftButtonUp();

GetWindowText(hCtrl, buffer, bufferSize);

if (0 != lstrcmp(buffer, L"Some text"))

LOG_FAILURE("Text didn't match\n");

Delay(0.687);

MoveMouse(204, 78);

//

// ...and so on, for pages and pages

What did this code even do? The capture/playback tool wasn’t kind

enough to write any comments (and how could it, anyway?).

The test script had been broken for a long time, because the GUI had

gradually changed out from under it. Some buttons had moved slightly,

CHAPTER 3. REFACTORING WITH RSPEC 37

and now the hard-coded mouse clicks in the test script fell on empty

spaces. Other controls had migrated to completely different windows.

The new GUI was great for our customers, of course, since the software

had become easier to use. But maintaining that spaghetti test code was a

nightmare. The only way to figure out where to make changes was to run

it until it broke, try tweaking the hard-coded pixel locations, and rerun it.

In the end, it was cheaper (and better for morale!) to scrap the test code

than to continue trying to revive the dead script.

Even when they’re carefully written by a real live human being, GUI

tests can be hard to maintain, for two main reasons:

• Lack of clarity: You start with a short script, you keep adding a few

tests at a time to the end, and soon you have a huge, amorphous

blob of code. The tests at the end of the file might depend on

something that happened at the very beginning, making it hard

to reorganize the code later. And there’s seldom any indication of

why each click or keystroke is happening.

• Fragility: A lot of test scripts follow an alternating pattern: poke

some buttons, check the results, poke more buttons, and so on.

It’s easy and tempting to mix details that might change with high-

level concepts that will probably remain constant. But if the GUI

designer changes the Search feature from a toolbar button to a

menu item, you don’t want to have to go through your entire script

looking for places that need to be fixed.

How do we avoid those pitfalls? Instead of freely mixing pass/fail tests

into our GUI automation code, we need to separate our concerns. The

tests, which say what our application should do, belong in a different

place from the Windows API calls, which say how it should do it.

In this chapter, we’ll add the first batch of tests to our scripting project,

but we’re going to do it carefully and cleanly. All the tests will go into

their own separate file to avoid the kind of coding chaos we saw in the

earlier example.

Don’t worry—we’re not going to throw away all that working code we

wrote in the ..._basics.rb files from the previous chapter. Quite the con-

trary! We’re going to lavish it with attention and put it into a Ruby class

to make it easier to call from our tests.

First, though, we’ll direct our focus to the tests themselves. We want

the intent behind the test code to be crystal clear to whoever is reading

or maintaining it—which will probably be us. So, let’s treat ourselves

http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=37

RSPEC: THE LANGUAGE OF LUCID TESTS 38

to some beautiful source code. We’re going to write our tests using a

dedicated test description language (built on Ruby!) called RSpec.

3.1 RSpec: The Language of Lucid Tests

Let’s talk for a minute about the art of writing good test scripts. If we

want our test code to be clear, it should be written in the application’s

problem domain—that is, using the same concepts that end users see

when they use the software. In the case of LockNote, we should write

scripts that deal in documents and passwords, not menu IDs and edit

controls.

We also want to keep our test script from becoming one long, tangled,

interdependent mess. So, we’ll start with small, self-contained tests.

Once we have confidence in our building blocks, we can assemble them

into more meaningful tests.

During this process, it’s helpful to think of these little units of test code

as examples of correct behavior. I really mean it when I say we’re going

to start small. Our first examples will fit on a cocktail napkin.

The Napkin

Imagine that you’re sitting down for coffee with your software designers,

chatting about how the program is going to work. Someone grabs a

napkin, everyone huddles around talking and sketching excitedly, and

you end up with something like Figure 3.1, on the following page.

That kind of simplicity is just for sketches, right? Surely we have to

abandon such hand-wavy descriptions when we actually start imple-

menting our tests.

But what if we could write our test code the same way we wrote those

notes on the napkin?

describe the main window

it launches with a welcome message

it exits without a prompt if nothing has changed

it prompts before exiting if the document has changed

With just a handful of little examples like these, we could write about

facets of our application’s behavior in a specialized test description lan-

guage. The language is easy to write and clear to read. There’s just one

problem: how do we get from paper to practice?

http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=38

RSPEC: THE LANGUAGE OF LUCID TESTS 39

Figure 3.1: The ultimate requirements capture tool

http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=39

RSPEC: THE LANGUAGE OF LUCID TESTS 40

Joe Asks. . .

What Will This Buy Me?

What kinds of bugs will tests catch at this level of detail? Bad
requirements, for one. When you fill in the bodies of those exam-
ples, your team will be forced to consider all kinds of usability
edge cases as you describe how the app is really going to work.

You don’t need a test script to do that. A sharp eye and empa-
thy for your customer will help unearth the same kinds of issues.

But if you do choose to express your ideas as running code, you
can press it into service later in the project as an automated
“smoke test” that runs every time a developer checks in code.

Introducing RSpec

The notation we’ve been using on this napkin is as real as Ruby. It’s

called RSpec.1 It’s implemented as a Ruby library, but you can also

think of it as a language of its own—a test description language that just

happens to be built on Ruby’s strong metaprogramming foundation.2

The philosophy behind RSpec is that a good test should do more than

exercise the code; it should also communicate its intentions clearly.

RSpec provides two motifs for helping us write clear tests:

• The describe/it notation provides an overall structure for your test

script.

• The should verb is how you write the individual pass/fail tests.

describe/it

A few paragraphs ago, we saw that a good test script is more like a series

of examples of correct behavior than an exhaustive specification. RSpec

encourages this view of testing. Each example in RSpec is expressed as

a sentence beginning with it, as in “it self-destructs when I hit the red

button.” We gather each group of related examples that describe one

feature in, fittingly enough, a describe block.

1. http://rspec.rubyforge.org

2. Metaprogramming is simply “programs writing programs.” It’s the technique that

makes Ruby such a great platform for coders to build their own languages.

http://rspec.rubyforge.org
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=40

RSPEC: THE LANGUAGE OF LUCID TESTS 41

describe 'The main window' do

it 'launches with a welcome message'

it 'exits without a prompt if nothing has changed'

it 'prompts before exiting if the document has changed'

end

Figure 3.2: The napkin, translated into RSpec

It takes only a few keystrokes to transform our cocktail napkin into a

set of RSpec examples, as in Figure 3.2.

The code looks almost like it depends on some kind of fancy English

language processing, but really it’s just Ruby. describe() and it() are

plain ol’ Ruby functions supplied by the RSpec library.

We’ll eventually fill in each of those it descriptions with specific tests,

with help from RSpec’s should idiom.

should

In some testing toolkits, you’re expected to use a system of “assertions”

to write your pass/fail tests, something like this:

ASSERT_EQUAL(windowTitle, "My Program");

RSpec is a little different. Rather than asking you to make your style

of writing more like programming, it bends the programming language

to look more like natural writing. The previous example would look like

this in RSpec:

window_title.should == 'My Program'

“Window title should equal ’My Program.”’ You could practically read

this code aloud. You could even show it to someone who’s never seen

Ruby before, and they’d probably understand what it does.

With RSpec, the should() and should_not() methods are available to every

object in Ruby.3 All of the following are valid tests in RSpec:

(2 + 2).should == 4

1.should be < 2

['this', 'list'].should_not be_empty

{:color => 'red'}.should have_key(:color)

3. Thanks to Ruby’s “open classes,” whose definitions can be modified on the fly. This

flexibility is what makes RSpec possible.

http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=41

RSPEC: THE LANGUAGE OF LUCID TESTS 42

Any test written with should() will raise an exception (and show up in

the test report as a failed test) if its condition turns out to be false.

Similarly, its companion method, should_not(), fails on true conditions.

Take a look at those last two tests. be_empty tells RSpec to call the

empty?() method of the array. have_key calls the hash table’s has_key?()

method. This technique works for any method, not just empty?(). In

general, be_xyz calls xyz?(), and have_xyz calls has_xyz?().

Trying It

Let’s grab the RSpec library and take it for a test-drive:

C:\> gem install rspec

Now our cocktail napkin translation is more than just a nicely for-

matted description of behavior. It’s running code—try it! Save the code

snippet (from Figure 3.2, on the preceding page) as note_spec.rb, and

run it with the spec executable, like this:

C:\> spec --format specdoc note_spec.rb

The main window

- launches with a welcome message (PENDING: Not Yet Implemented)

- exits without a prompt if nothing has changed (PENDING: Not Yet Implemented)

- prompts before exiting if the document has changed (PENDING: Not Yet Implemented)

Finished in 0.017212 seconds

3 examples, 0 failures, 3 pending

...

RSpec has noticed that our tests haven’t been implemented yet. But

we’ve definitely made progress. Three empty tests are better than no

tests at all. Now, let’s fill in those details.

Putting It to Work

So far, our test script is merely an outline of what we will be doing. It de-

scribes which parts of the program we’re testing, but it doesn’t contain

any pass/fail tests yet. Let’s change that.

Remember our cautionary tale from the beginning of the chapter? We

want to write our tests in the vocabulary of LockNote or JunqueNote

and leave the platform-specific calls for a different part of the code. So,

we’re going to imagine that someone has lovingly provided a note-taking

API just for us and code to that API. (Guess who’s going to “lovingly

provide” this API? Heaven helps those who help themselves. . . .)

http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=42

BUILDING A LIBRARY 43

Replace the first it clause in your script with the following:

Download with_rspec/note_spec.rb

it 'launches with a welcome message' do

Ê note = Note.new
Ë note.text.should include('Welcome')
Ì note.exit!

end

The code at Ê will create a new window (by launching the application).

We’ll add the implementation in a few minutes, using the automation

techniques from the previous chapter.

At Ë, we add our first actual pass/fail test. We want to make sure the

word “Welcome” appears somewhere in the editable portion of the main

window.

Finally, we shut down the app at Ì. We’ll follow the Ruby tradition of

giving “dangerous” methods like exit!() an exclamation point. We want

whoever is reading this code to know that the exiting program will dis-

card the active document and steamroller over any save prompts along

the way.

Now, when we run our script, we see the following:

1)

NameError in 'The main window launches with a welcome message'

uninitialized constant Note

...

No surprise there. We’ve started tossing around this new term in our

code, Note, without telling Ruby what it is. It’s time to teach Ruby all

about our note taking.

3.2 Building a Library

Up to this point, we’ve been working downward from our high-level test

concepts to the specifics of LockNote and JunqueNote. Now it’s time

to build upward from the Windows and Java API calls we learned in

Chapter 2, An Early Success, on page 19. We’re going to put that low-

level code together into a coherent library usable from our tests.

We want to do for our GUI tests what RSpec’s creators did for testing

in general: provide a way to express concepts clearly. RSpec will be our

“gold standard” of beauty: we’re going to shoot for a note-taking API

clean enough to be at home inside an RSpec test.

http://media.pragprog.com/titles/idgtr/code/with_rspec/note_spec.rb
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=43

BUILDING A LIBRARY 44

A Touch of Class

The code we need to implement a clean API is already there in our two

..._basics.rb files; it just needs to be touched up a bit and organized into

a Ruby class. We’ll start with an empty class called Note in a new file

named after the app we’re testing (locknote.rb or junquenote.rb):

class Note

end

Later, we’ll add each chunk of platform-specific calls as we find a good

home for it.

To tell RSpec which program we’re testing, we pass the name of the app

with the -r option. So on Windows, we have this:

C:\> spec -rlocknote -fs note_spec.rb

And for the cross-platform version, we have this:

$ jruby -S spec -rjunquenote -fs note_spec.rb

What are the results when we try it?

1)

NoMethodError in 'The main window launches with a welcome message'

undefined method `text' for #<Note:0x1016e1c>

As we expected, RSpec was able to create a Note object, but it couldn’t

do anything more. We haven’t yet taught it to get the current docu-

ment’s text. In fact, we haven’t even taught it to launch the application

yet. Let’s do so now.

Starting Up

Reorganizing the code into a class will be pretty much the same whether

you’re playing the Windows or JRuby version of our home game.

Creating a new Note object should cause the app to launch. So, we’ll

move our window creation code from the previous chapter into Note’s

initialize() method:

«platform definitions»

class Note

def initialize

«code up through the first `puts`»

end

«more to come...»

end

http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=44

BUILDING A LIBRARY 45

I won’t show all the code here, because it’s nearly an exact repeat of

what you wrote in the previous chapter. You just put all your require

lines (and Jemmy imports, for you JRuby readers) into the “platform

definitions” section at the top and paste everything else up to the first

puts into the body of initialize().

We’ll use the main_window variable in some of the other methods we’re

defining, so we need to “promote” it to an attribute of the Note class.

Replace main_window with @main_window everywhere you see it.

Now that we’ve taught our Note class how to launch the app, let’s move

on to text entry.

Typing Into the Window

You’ve already written the code to simulate typing. It just needs to be

made a bit more general. Grab the handful of lines that deal with key-

board input—look for “this is some text”—and paste them into a new

type_in() method inside the Note class:

def type_in(message)

«typing code here»

end

Of course, you’ll probably want to replace the "this is some text" string

literal with the message parameter that our top-level test script passes

in. That takes care of writing text—how about reading it back?

Getting Text Back from the Window

Up until now, we’ve been driving the GUI from our script, but we haven’t

retrieved any data from it yet. To change that state of affairs, we’ll need

one more platform-specific technique. It’s an easy one, though, so I’m

going to present the Windows and JRuby variants back-to-back.

Windows: The WM_GETTEXT Message

First, we want to drill down into LockNote’s user interface and find the

editable area that contains the document’s text. This text area is a child

window of the main window. To grab hold of it, we’ll use FindWindowEx().

It’s like the FindWindow() function we used before, but with a couple of

extra parameters—including the parent window option we need.

Once we’ve found the edit control, we’ll send it the WM_GETTEXT message

to find out what’s inside it. You’ve seen the PostMessage() call for send-

ing a message to a window. Its cousin SendMessage() is similar but is

guaranteed to wait until the window actually responds to our message.

http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=45

BUILDING A LIBRARY 46

Joe Asks. . .

What’s the Significance of the Window Class?

In the previous chapter, we mentioned that a window class

identifies whether a given window is a button, edit control, dia-
log box, or whatnot.

The basic controls that come with Windows have names like
edit or button. This window class’s name, ATL:00434310, is a little
more complicated—it’s a customization from Microsoft’s open
source Windows Template Library, used by LockNote’s develop-
ers to write the application.

The meanings of SendMessage()’s parameters are different for every Win-

dows message. For WM_GETTEXT, the last two parameters are the max-

imum size string we can accept and a pointer to the string where we

want Windows to put the text we’re asking for.

Here’s what these two new API calls look like in use. Add the following

code inside your LockNote class:

Download with_rspec/locknote.rb

def text

find_window_ex = user32 'FindWindowEx', ['L', 'L', 'P', 'P'], 'L'

send_message = user32 'SendMessage', ['L', 'L', 'L', 'P'], 'L'

edit = find_window_ex.call @main_window, 0, 'ATL:00434310', nil

Ê buffer = '\0' * 2048

send_message.call edit, WM_GETTEXT, buffer.length, buffer

return buffer

end

As another concession to the manual memory management of the Win-

dows world, we have to presize our buffer at Ê, just like we did with

get_window_rect() in the previous chapter.

JRuby: The text Property

The JRuby approach to getting text is similar to the Windows one: we

look for the editable text area (which belongs to the main window) and

http://media.pragprog.com/titles/idgtr/code/with_rspec/locknote.rb
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=46

BUILDING A LIBRARY 47

quiz it about its contents. Jemmy’s JTextAreaOperator provides the text

property for this purpose:

Download with_rspec/junquenote.rb

def text
Ê edit = JTextAreaOperator.new @main_window

edit.text

end

The code at Ê should look familiar; the type_in() method you wrote in

the previous section contains one just like it. This is a sign that our

code needs some cleanup, which we’ll get to in the next chapter.

Closing the Window

OK, Windows and Swing readers should both be ready for one final step

in this chapter. Paste the remainder of your code into this skeleton:

def exit!
Ê begin

«remainder of code»

Ë @prompted = true

Ì rescue

end

end

Windows users, you’ll have to add one extra line at Ê: paste in the

definition of find_window() again just before the begin. We’ll remove the

need for this repetition soon.

Our higher-level test code will need to know if the program prompted

us to save our document. So, we’re going to wait for a few seconds

for a save prompt to appear. If we see a prompt, we remember this

event in the @prompted attribute at Ë. If not, we’ll get a TimeoutError (or

NativeException in JRuby).

An exception isn’t necessarily a bad thing in this case. It could be that

we’re exiting the app without changing anything—no need for a save

prompt then. We just catch the exception at Ì, and @prompted stays nil.

So, how do we use @prompted in our test script? As we discussed earlier,

any test that reads should have_xyz will call a function named has_xyz?()

and check its return value for true or false/nil.

def has_prompted?

@prompted

end

http://media.pragprog.com/titles/idgtr/code/with_rspec/junquenote.rb
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=47

THE STORY SO FAR 48

Two More Tests

We now have all the tools required to fill in the other two examples:

Download with_rspec/note_spec.rb

it 'exits without a prompt if nothing has changed' do

note = Note.new

note.exit!

note.should_not have_prompted

end

it 'prompts before exiting if the document has changed' do

note = Note.new

note.type_in "changed"

note.exit!

note.should have_prompted

end

There you have it: one cocktail napkin turned into a working test plan.

3.3 The Story So Far

At last, we have a test script that actually runs some tests! And they’re

written in a clear language free of platform-specific API jargon. Simple

Ruby code exercises the user interface, and RSpec’s should verb tells us

whether it responded correctly.

We’ve also managed to avoid the maintenance trap of bogging down

our top-level test code with details like window or menu captions. Of

course, those specific API calls like FindWindow() and pushMenu() had to

go somewhere. We kept them out of our main test script, note_spec.rb,

but they’re still lurking in the supporting Note class inside locknote.rb

and junquenote.rb.

So, now the Note class has two kinds of code in it: general GUI func-

tion definitions (which are reusable from project to project) and the

“note-taking API” (which we created just for this project). In the next

chapter, we’ll move the reusable parts into their own file. Not only will

this change help us in future projects, but it will be handy for this one.

We’re about to teach our Note class a few new tricks, and we don’t want

them to get lost in the noise.

http://media.pragprog.com/titles/idgtr/code/with_rspec/note_spec.rb
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=48

Programs must be written for people to read, and only

incidentally for machines to execute.

Abelson and Sussman, Structure and

Interpretation of Computer Programs

Chapter 4

Next Iteration: Simplify!
Have you ever put up wallpaper in a house? Sometimes, an air bubble

gets trapped under the paper. You mash your thumb down on it with

satisfaction, but you haven’t really eliminated it. You’ve just moved it

elsewhere.

Software complexity is kind of like that, too. We spent the entire previ-

ous chapter building a clean test script that was free of the mundane

details of platform API definitions. But they’re still hiding out in our

project, cluttering up our Note class.

If you think about it, the bindings to the Windows environment are

pretty much the same, no matter which project they’re being used in.

And you could say the same for the Java runtime ones. So, why don’t

we move these platform bindings to their own file that we can use in

future projects?

What we want to do is separate the code that deals with text editing

in general from the code that deals in platform API calls. We’ll split the

Note class into layers, something like Figure 4.1, on the following page.

In this chapter, we’re going to fill in all three of those layers.1

We’ll start by putting the barest Note skeleton into note.rb. Then we’ll

take on the left and right halves of the diagram in separate Windows

and JRuby tracks. As we learn new low-level GUI calls and then apply

them in our project, we’ll be bouncing back and forth between (for

example) windows_gui.rb and locknote.rb. To help keep things straight,

I’ve marked each code sample with the file it came from.

1. Why three layers instead of just two? The topmost layer holds code common to the

Windows and Swing apps. If your project is a single-platform one, you won’t need it.

ABSTRACTING THE COMMON CODE 50

locknote.rb

class LockNote < Note
 include WindowsGui

 # implementation specific
 # to LockNote; e.g., passwords
end

junquenote.rb

class JunqueNote < Note
 include SwingGui

 # implementation specific
 # to JunqueNote; e.g., passwords
end

windows_gui.rb

module WindowsGui
 # general Windows concepts;
 # e.g., menus, buttons
end

swing_gui.rb

module SwingGui
 # general Swing concepts;
 # e.g., menus, buttons
end

note.rb

class Note
 # features common
 # to both apps, e.g. Undo
end

Figure 4.1: The three layers

By the end of the chapter, we’ll have enough tools to unify the two

worlds somewhat.

4.1 Abstracting the Common Code

Here’s the skeleton of Note with the platform-specific code removed:

Download simplify/note.rb

class Note
Ê @@app = nil

Ë @@titles = {}

def self.open

@@app.new

end

end

http://media.pragprog.com/titles/idgtr/code/simplify/note.rb
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=50

CLEANING WINDOWS 51

We don’t want our top-level test script to have to say LockNote.new or

JunqueNote.new. Instead, we’ll provide a generic open() method that will

automatically create a new LockNote or JunqueNote object, depending

on which platform we’re running on.2

There are about a zillion ways to do this. The simplest for now is just

to keep around an attribute called @@app at Ê to store the name of the

class that controls the application. (While we’re in this part of the code,

we’ll also add a @@titles collection for dialog box titles, which will come

in handy later.)

Everywhere our RSpec script used to say Note.new, it’s going to say

Note.open instead. locknote.rb and junquenote.rb will each contain a line

specifying which Note implementation open() should use, followed by a

list of dialog box titles that are specific to the app.

The code is nearly identical for both programs, so I’ll just show the

version inside LockNote:

Download simplify/locknote.rb

@@app = LockNote

@@titles[:save] = 'Steganos LockNote'

It doesn’t seem like much of a start, but we have enough of a foundation

to build up our entire application’s behavior.

So, now we’ll turn our attention to the platform-specific parts of the

implementation. One more time, we’re going to deal with this part of

the reorganization effort in separate Windows and JRuby sections.

4.2 Cleaning Windows

Let’s start with those Win32 API calls. Their definitions are scattered

all over the place and sometimes even repeated. Using them is kind

of a chore. They’re not really functions, so we can invoke them only

using their call() method. If only they were real Ruby methods so that

we could gather them into a module and include them into LockNote. . . .

Special Promotion

We’d like to figure out a way to “promote” a Win32API object to a method.

The naïve way to do it would be to wrap each object in a method.

2. Fans of design patterns are jumping on their chairs yelling, “Factory! Factory! Fac-

tory!” right about now.

http://media.pragprog.com/titles/idgtr/code/simplify/locknote.rb
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=51

CLEANING WINDOWS 52

def find_window(wnd_class, title)

@find_window_api ||= Win32API.new \

'user32', 'FindWindow', ['P', 'P'], 'L'

@find_window_api.call wnd_class, title

end

This is a decent first start, but we’re repeating the name of the Windows

function in no fewer than four places! And we’d have to repeat this

structure, too, for each API function we want to use. How do we DRY

up this code?3 By specifying only the parts unique to each function—

something like this:

Download simplify/windows_gui.rb

module WindowsGui

def_api 'FindWindow', ['P', 'P'], 'L'

def_api 'keybd_event', ['I', 'I', 'L', 'L'], 'V'

rest of API definitions here...

WM_GETTEXT = 0x000D

WM_SYSCOMMAND = 0x0112

rest of constant definitions here...

end

def_api() would do the heavy lifting of creating the Win32API object and

somehow adding a new Ruby method that calls it. But def_api() doesn’t

exist. We’re going to have to write it.

RSpec to the Rescue, Again

How exactly should def_api() work? Let’s express our intent as a series

of real, runnable RSpec examples:

Download simplify/windows_gui_spec.rb

require 'windows_gui'

Ê describe WindowsGui do

include WindowsGui

it 'wraps a Windows call with a method' do

Ë find_window(nil, nil).should_not == 0

end

it 'enforces the argument count' do

Ì lambda {find_window}.should raise_error

end

end

3. DRY = “Don’t Repeat Yourself.” See http://c2.com/cgi/wiki?DontRepeatYourself.

http://media.pragprog.com/titles/idgtr/code/simplify/windows_gui.rb
http://media.pragprog.com/titles/idgtr/code/simplify/windows_gui_spec.rb
http://c2.com/cgi/wiki?DontRepeatYourself
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=52

CLEANING WINDOWS 53

FindWindow() will do for a guinea pig. We’ve already defined it in our

excerpt from windows_gui.rb earlier, so our test can just go ahead and

call it.

First, we’ll try an example of normal find_window() usage at Ë. Passing

it two nils is guaranteed to return some top-level window’s handle.

But we also want to make sure def_api() does some rudimentary param-

eter checking, so our tests will also try calling find_window() incorrectly.

You can pronounce the lambda at Ì as, “The code that...”. So, the whole

line reads, “The code that calls find_window() with no arguments should

raise an error.”

At Ê, we see that describe can take a Ruby class name as its parameter,

as an alternative to the free-form string names we used for descriptions

in the previous chapter. It doesn’t make too much difference either way;

using a class name is perhaps a little cleaner.

Home and DRY

Of course, we still have to write def_api():

Download simplify/windows_gui.rb

require 'Win32API'

module WindowsGui
Ê def self.def_api(function, parameters, return_value)

api = Win32API.new 'user32', function, parameters, return_value

Ë define_method(function.snake_case) do |*args|
Ì api.call *args

end

end

end

Don’t miss the self keyword at Ê, since def_api() is a class-level method.

Ë is where the real magic happens. define_method() is Ruby’s secret

sauce for adding methods to classes on the fly, at runtime, without

even knowing the function name ahead of time.

That’s a good thing, too, because we’re calculating those names. We’re

transforming Windows-style, mixed-case identifiers (known as Camel-

Case) into the more Ruby-like, underscored (aka snake_case) ones.

We’ll write that translation code in a minute.

We first encountered the “flexible number of parameters” asterisk in

Section 2.2, Clicking the Button, on page 30. We’re using it again at Ë.

http://media.pragprog.com/titles/idgtr/code/simplify/windows_gui.rb
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=53

CLEANING WINDOWS 54

We get all the passed-in arguments packed into one array, and at Ì, we

expand them into multiple arguments for the Windows API call.

Now, about those function names. . . .

Yak Shaving

Since function renaming is at heart just a string translation, let’s add a

snake_case() method to the String class. We want it to convert CamelCase

text but leave alone text that’s already in snake_case.

We’ll document our expectations in RSpec; this is becoming an epic

bout of yak shaving!4

Download simplify/windows_gui_spec.rb

describe String, '#snake_case' do

it 'transforms CamelCase strings' do

'GetCharWidth32'.snake_case.should == 'get_char_width_32'

end

it 'leaves snake_case strings intact' do

'keybd_event'.snake_case.should == 'keybd_event'

end

end

snake_case() is actually pretty easy to write. We’ll use a regular expres-

sion to look for a lowercase letter followed by a number or uppercase

letter (a few rare Windows calls end in numbers). Just above your imple-

mentation of def_api(), put the following code:

Download simplify/windows_gui.rb

class String

def snake_case
Ê gsub(/([a-z])([A-Z0-9])/, '\1_\2').downcase

end

end

Did it work? Let’s find out:

C:\> spec -fs windows_gui_spec.rb

WindowsGui

- wraps a Windows call with a method

- enforces the argument count

4. Yak shaving is working on a task that, although important, is several steps removed

from our goal, such as putting off our GUI script work—to write a test—for a conversion

of a function name—from an API—in a utility class.

http://media.pragprog.com/titles/idgtr/code/simplify/windows_gui_spec.rb
http://media.pragprog.com/titles/idgtr/code/simplify/windows_gui.rb
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=54

CLEANING WINDOWS 55

String#snake_case

- modifies CamelCase strings

- leaves snake_case strings intact

Finished in 0.581 seconds

4 examples, 0 failures

Huzzah!

The Keyboard Revisited

Let’s turn our attention to the keyboard. In Section 2.2, Typing Text,

on page 26, we threw in a quick hack to type lowercase letters. But

what about numbers, capital letters, spaces, and so on? It’s time to

give type_in() a little love.

Press and Release

How do we type a capital A? We hold down the Shift key, press and

release the A key, and finally release the Shift key.5

Capital letters aren’t the only things that require multiple keys to be

pressed at once. Keyboard shortcuts like Ctrl+A and many punctua-

tion characters also need them. So, let us then imagine a “compound

keystroke” function we’d use like this. . .

keystroke VK_CONTROL, 'a'

assuming we’ve defined the Windows codes for the modifier keys as

building blocks:

Download simplify/windows_gui.rb

module WindowsGui

VK_SHIFT = 0x10

VK_CONTROL = 0x11

VK_BACK = 0x08

end

How will we implement this function? Just like human fingers would,

our code will press and hold each key in order and then release them

in reverse order.

5. Or we turn on Caps Lock , but that’s outside the scope of this book. From here on

out, we’re assuming Caps Lock is off.

http://media.pragprog.com/titles/idgtr/code/simplify/windows_gui.rb
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=55

CLEANING WINDOWS 56

Download simplify/windows_gui.rb

module WindowsGui

def keystroke(*keys)

return if keys.empty?

keybd_event keys.first, 0, KEYEVENTF_KEYDOWN, 0

sleep 0.05

keystroke *keys[1..-1]

sleep 0.05

keybd_event keys.first, 0, KEYEVENTF_KEYUP, 0

end

end

That takes care of typing a single character, once we know what keys

we have to press in order to type it.

From Character to Keystrokes

How do we get from the concept of a character to a series of key codes?

By extending String to do this translation for us:

Download simplify/windows_gui.rb

class String

def to_keys
Ê unless size == 1

raise "conversion is for single characters only"

end

Ë ascii = unpack('C')[0]

Ì case self

when '0'..'9'

[ascii - ?0 + 0x30]

when 'A'..'Z'

[WindowsGui.const_get(:VK_SHIFT), ascii]

when 'a'..'z'

[ascii - ?a + ?A]

when ' '

[ascii]

else

raise "Can't convert unknown character #{self}"

end

end

end

Recall that in Ruby, single characters and strings are the same data

type, so we’ll do a quick length check at Ê to make sure we’re dealing

with one character at a time.

http://media.pragprog.com/titles/idgtr/code/simplify/windows_gui.rb
http://media.pragprog.com/titles/idgtr/code/simplify/windows_gui.rb
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=56

CLEANING WINDOWS 57

At Ë, we base our calculation on the ASCII code for the character. This

simplistic method will be fine as long as we narrow our examples to

1-byte characters like the ones my U.S. English keyboard can type. For

international text, see the emerging Ruby 1.9 work, or use one of the

Unicode add-ons for Ruby 1.8.

Ì is where we translate the various characters into their virtual key

codes, based on the API documentation.6 These particular keystrokes

are fairly standard, but if you ever add more punctuation characters

to this function, take caution. Different international keyboard layouts

may use different keystrokes to represent a given character.

From here, implementing type_in() is a simple matter. First, we move it

into WindowsGui alongside its Windows API friends. Inside the method,

we use String#scan() to call keystroke() once for each character:

Download simplify/windows_gui.rb

module WindowsGui

def type_in(message)

message.scan(/./m) do |char|

keystroke(*char.to_keys)

end

end

end

Our keyboard entry code is now both more complete and cleaner than

it was a few minutes ago. There’s just one last section of LockNote that

needs tidying.

Pain-Free Windows

The methods that open and close LockNote were pretty long in the pre-

vious chapter. Most of the code was low-level stuff about dialog boxes

and mouse coordinates. Let’s get that code into WindowsGui where it

belongs.

Slim Packaging

We’ll start simply with a new Window class, which will just be a thin

wrapper around a window handle.

6. http://msdn.microsoft.com/en-us/library/ms645540.aspx

http://media.pragprog.com/titles/idgtr/code/simplify/windows_gui.rb
http://msdn.microsoft.com/en-us/library/ms645540.aspx
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=57

CLEANING WINDOWS 58

Put the following definition inside WindowsGui:

Download simplify/windows_gui.rb

module WindowsGui

class Window
Ê include WindowsGui

attr_reader :handle

def initialize(handle)

@handle = handle

end

def close

post_message @handle, WM_SYSCOMMAND, SC_CLOSE, 0

end

Ë def wait_for_close

timeout(5) do

sleep 0.2 until 0 == is_window_visible(@handle)

end

end

def text

buffer = '\0' * 2048

length = send_message @handle, WM_GETTEXT, buffer.length, buffer

length == 0 ? '' : buffer[0..length - 1]

end

end

end

You may have noticed at Ê that we’re including WindowsGui inside a

class that’s nested in WindowsGui. This might well seem a little circular,

but I promise it will work. All those API calls we need will get imported

just fine.

The other thing we’ve added is a wait_for_close() method at Ë, which in

turn relies on another Windows API call, IsWindowVisible(). This function

takes a window handle and returns an integer. Take a shot at defining

it with def_api()—how does your version compare to the one in this

chapter’s source code?

Keeping Up Appearances

Creating a new Window requires a window handle. But where do we get

the window handle in the first place?

There are two ways. For a top-level window like LockNote’s main win-

dow, we typically wait in a loop until the window appears. So, let’s add

http://media.pragprog.com/titles/idgtr/code/simplify/windows_gui.rb
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=58

CLEANING WINDOWS 59

a class-level method to do that. The code is the same loop construct we

wrote two chapters ago:

Download simplify/windows_gui.rb

class WindowsGui::Window
Ê extend WindowsGui

def self.top_level(title, seconds=3)

@handle = timeout(seconds) do

sleep 0.2 while (h = find_window nil, title) <= 0; h

end

Window.new @handle

end

end

Why are we referencing WindowsGui at Ê? Didn’t we already do that?

Yes, but just for instance methods. This time, we’re making Windows-

Gui’s methods available to class-level methods of Window.

The other way to get a window handle is to look inside a parent window

for child controls. Just for fun, we’ll allow searching by title, window

class, or control ID:

Download simplify/windows_gui.rb

class WindowsGui::Window

def child(id)

result = case id

when String
Ê by_title = find_window_ex @handle, 0, nil, id.gsub('_', '&')

by_class = find_window_ex @handle, 0, id, nil

by_title > 0 ? by_title : by_class

when Fixnum

get_dlg_item @handle, id

else

0

end

raise "Control '#{id}' not found" if result == 0

Window.new result

end

end

One thing to note on searching by title: control names like “Yes” are

actually stored by Windows as &Yes, with the first character of their

keyboard shortcut marked with an ampersand. (This difference is one

of many reasons it’s better to use control IDs.) In a nod to clarity,

we’ll allow callers to use underscores instead of ampersands; it’s easy

enough to add a translation at Ê.

http://media.pragprog.com/titles/idgtr/code/simplify/windows_gui.rb
http://media.pragprog.com/titles/idgtr/code/simplify/windows_gui.rb
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=59

CLEANING WINDOWS 60

Now that we have the general concept of windows, we’ll move on to

dialog boxes.

A Meaningful Dialog (Box)

A dialog box is just a top-level window that is on the screen only for a

short term. Ruby has a convention for this kind of short-lived object.

Just like File#open() keeps a file open for the duration of one block only,

we want to be able to write dialog box code like this:

dialog('Are you sure?') do |dialog|

do stuff with dialog,

including clicking OK

end

Ruby waits until the dialog is closed

before continuing here

It’s easy to write an implementation that fits this pattern. All we need

to do is yield a Window object to the code that called us:

Download simplify/windows_gui.rb

module WindowsGui

def dialog(title, seconds=3)

d = begin

w = Window.top_level(title, seconds)
Ê yield(w) ? w : nil

rescue TimeoutError

end

d.wait_for_close if d

return d

end

end

And just like exit!() in the previous chapter, dialog() won’t throw an

exception if the window never appears. It will just return a Window

object (which will evaluate to true) or nil.

The code at Ê lets us bail out of closing, if we really want to force it to

stay open. There’s one edge case in the next chapter where we’ll need

to do exactly that.

Clicking the Window Shut

The rectangle and mouse-clicking code is nearly the same as before. All

we need to do is make the hard-coded IDNO control ID into a parameter.

http://media.pragprog.com/titles/idgtr/code/simplify/windows_gui.rb
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=60

CLEANING WINDOWS 61

Download simplify/windows_gui.rb

class WindowsGui::Window

def click(id)

h = child(id).handle

rectangle = [0, 0, 0, 0].pack 'LLLL'

get_window_rect h, rectangle

left, top, right, bottom = rectangle.unpack 'LLLL'

center = [(left + right) / 2, (top + bottom) / 2]

set_cursor_pos *center

mouse_event MOUSEEVENTF_LEFTDOWN, 0, 0, 0, 0

mouse_event MOUSEEVENTF_LEFTUP, 0, 0, 0, 0

end

end

With all these improvements, LockNote’s initialize() function is now a

three-liner:

Download simplify/locknote.rb

require 'windows_gui'

require 'note'

class LockNote < Note

include WindowsGui

@@app = LockNote

@@titles[:save] = 'Steganos LockNote'

def initialize

system 'start "" "C:/LockNote/LockNote.exe"'

@main_window = Window.top_level 'LockNote - Steganos LockNote'

@edit_window = @main_window.child 'ATL:00434310'

end

end

And entering text is just a matter of keystrokes:

Download simplify/locknote.rb

class LockNote

def text

@edit_window.text

end

def text=(message)

keystroke VK_CONTROL, ?A

keystroke VK_BACK

type_in(message)

end

end

http://media.pragprog.com/titles/idgtr/code/simplify/windows_gui.rb
http://media.pragprog.com/titles/idgtr/code/simplify/locknote.rb
http://media.pragprog.com/titles/idgtr/code/simplify/locknote.rb
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=61

POLISHING JRUBY 62

Exiting the app doesn’t contain any platform code at all anymore, so it’s

moved out of LockNote entirely. See Section 4.4, Satisfaction, on page 64

for the definition.

4.3 Polishing JRuby

We don’t have much work to do to hide the details of Swing GUIs from

the rest of our code. Jemmy already presents a pretty clean interface

for opening windows and typing characters.

So, we won’t be building up an abstraction, the way we did for Windows;

we’ll be adapting one.

Getting Started

Note’s open() method creates a new JunqueNote object. We need to fill

in its initializer:

Download simplify/junquenote.rb

Ê require 'swing_gui'

require 'junquenote_app'

require 'note'

class JunqueNote < Note

include SwingGui

@@app = JunqueNote

@@titles[:save] = "Quittin' time"

def initialize

JunqueNoteApp.new

@main_window = JFrameOperator.new 'JunqueNote'
Ë @edit_window = JTextAreaOperator.new @main_window

end

end

This is almost identical to how we created a new JunqueNote object in

the previous chapter. Only two things are different.

At Ê, we’re including a new swing_gui.rb file, which will contain all those

import and include_class directives that plug us into the Java runtime.

In Section 3.2, JRuby: The text Property, on page 46, the line that finds

the edit control was duplicated in every method that needed it. If we

put the line at Ë instead, it needs to appear in our script only once.

http://media.pragprog.com/titles/idgtr/code/simplify/junquenote.rb
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=62

POLISHING JRUBY 63

Getting Text

Now that @edit_window is part of the JunqueNote class, getting text into

and out of the window is much simpler:

Download simplify/junquenote.rb

class JunqueNote

def text

@edit_window.text

end

def text=(message)

@edit_window.clear_text

@edit_window.type_text message

end

end

And that just leaves the topic of, well, leaving.

Getting Out

Our top-level test script is going to attempt to close the program’s main

window, wait for a confirmation dialog box, and click a No button—all

without knowing on which platform it’s running.

So, our Swing GUI adapter is going to have to fulfill three expectations:

1. The main window needs a close() method to signal that we’re exit-

ing the program. We’re already covered here, since JFrameOperator

comes out of the box with this feature.

2. The JunqueNote object needs a dialog() method that waits for a dia-

log box to show, runs some caller-supplied code, and returns true

if the dialog box indeed appeared. We’ll have to add this method

ourselves.

3. The dialog() method exposes some kind of object that supports a

click() operation.

First, let’s look at dialog().

It belongs to JunqueNote for this project, but we’d like to be able to use

it in any project. So, we’ll put it in a SwingGui module that can be mixed

into any class.

http://media.pragprog.com/titles/idgtr/code/simplify/junquenote.rb
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=63

SATISFACTION 64

Download simplify/swing_gui.rb

module SwingGui

def dialog(title, seconds=3)

JemmyProperties.set_current_timeout \

'DialogWaiter.WaitDialogTimeout', seconds * 1000

begin

d = JDialogOperator.new title
Ê yield d

d.wait_closed

true

rescue NativeException

end

end

end

At Ê, we pass the JDialogOperator object back to the caller to run what-

ever code he wants. The only thing we need to guarantee is that the

object supports a click() method:

Download simplify/swing_gui.rb

class JDialogOperator

def click(title)
Ê b = JButtonOperator.new self, title.gsub('_', '')

b.push

end

end

Why are we removing underscores from the button name at Ê? In the

notation of our generic Note class, we use an underscore to indicate

which character in the name carries the keyboard shortcut (for exam-

ple, _No means “N is for No”). But Jemmy doesn’t care about shortcuts

for buttons, so we strip out this extra information.

With these two additions, we’ve successfully adapted our Swing inter-

face to a generic one.

4.4 Satisfaction

We’ve spent a while developing Windows and Swing abstractions sepa-

rately. It’s time to take a first step at reuniting the two camps. The code

for this section is going to go into the Note class inside note.rb, because

LockNote and JunqueNote are both going to use it.

http://media.pragprog.com/titles/idgtr/code/simplify/swing_gui.rb
http://media.pragprog.com/titles/idgtr/code/simplify/swing_gui.rb
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=64

SATISFACTION 65

Ready for our first piece of common GUI code?

Download simplify/note.rb

class Note

def exit!

@main_window.close

Ê @prompted = dialog(@@titles[:save]) do |d|

d.click '_No'

end

end

def has_prompted?

@prompted

end

end

Each app has its own title for the “Do you want to save first?” dialog

box, so we use the @@titles attribute at Ê to keep the code nice and

generic.

It may not feel like we’ve accomplished much in this chapter. After all,

our test script doesn’t behave differently than it did before all this reor-

ganization. But look at locknote.rb, for instance. It’s gone from 130-odd

lines of Windows definitions mixed with LockNote concepts to fewer

than 40 lines of targeted, application-specific code. Sure, windows_gui.rb

is a bit hefty, but we’re going to be able to reuse that part of the code

in other projects.

More important, the building blocks of keystrokes and dialog boxes are

now in good enough shape that we can plunge right into implementing

the next round of tests.

http://media.pragprog.com/titles/idgtr/code/simplify/note.rb
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=65

A poem is never finished, only abandoned.

Paul Valéry

Chapter 5

The Home Stretch
We now have everything we need to write good examples for the rest of

the features of LockNote and JunqueNote. Over the past few chapters,

we’ve built a solid connection to the underlying platform API, found a

clean abstraction of the application, and employed a world-class test

description language to tie it all together.

So, all we have to do is finish writing those tests. In particular, we

need to exercise the password dialog box that protects each document’s

contents. And we’ll top things off by making sure that the program acts

like the text editors people are used to—cut, paste, and all that.

We have a lot of ground to cover, but we also have a lot of good tools

to help us—so I’m going to pick up the pace a bit. I may gloss over

the details of the occasional low-level API call or omit a definition if it’s

similar to what we’ve seen before, but the full source code to the chapter

is available in case you want to take a closer peek at the terrain we’re

racing through.

5.1 Save Me!

In previous chapters, we’ve been mostly concerned with the behavior

and appearance of the main window. We’ve always canceled out of the

Save dialog box. Let’s change that.

The Spec

Imagine how you’d want the Save feature to work. You have a new docu-

ment with no password, you click Save As, and you assign a password.

SAVE ME! 67

describe 'Saving a document for the first time' do

it 'requires a password' do

Ê note = Note.open

note.save_as 'SavedNote', 'password'

note.should have_prompted(:for_password)
Ë note.exit!

end

end

We’ll be using that setup and teardown code at Ê and Ë in a lot of our

examples, so we’re going to add a RSpec-ful twist to put that common

code in one place.

Learning to Share

In all the tests we’ve written so far, we create a new Note object at

the beginning of each example, and we call the object’s exit!() method

afterward.

Wouldn’t it be nice to have to type that code only once?

Enter our trio of champions: before, after, and :shared. These three fea-

tures of RSpec help you reuse setup and teardown code across several

examples. The custom is to put this common code into its own file,

spec_helper.rb (don’t forget to add require ’spec_helper’ at the top of your

spec!).

Download home_stretch/spec_helper.rb

Ê describe 'a new document', :shared => true do

Ë before do

@note = Note.open

end

Ì after do

Í @note.exit! if @note.running?

end

end

Our common setup/teardown code is at Ë and Ì. RSpec will run any-

thing in a before or after block at the beginning or end of each example,

respectively. Notice that @note has become an attribute, since it’s now

shared between the setup routine and the actual test code.

The :shared => true tag at Ê tells RSpec that we’re not going to run this

describe block directly; instead, we’re going to incorporate it into other

describe blocks. We’ll see how to do that in a minute.

http://media.pragprog.com/titles/idgtr/code/home_stretch/spec_helper.rb
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=67

SAVE ME! 68

See the bit about @note.running? at Í? That will let us cavalierly write

test code without regard to tidying up. Some examples will call exit!()

themselves (if they’re testing a specific way to leave the app), and others

will just leave it to the cleanup code.

Here’s what the implementation of running?() looks like inside LockNote:

Download home_stretch/locknote.rb

def running?

@main_window.handle != 0 && is_window(@main_window.handle) != 0

end

IsWindow() is an API call that pretty much does what it says on the tin.

The Ruby declaration for it is trivial, so we don’t need to elaborate on it

here.

And here’s the JunqueNote version:

Download home_stretch/junquenote.rb

def running?

@main_window && @main_window.visible

end

In order to use the shared setup/teardown code, we just put it_should_

behave_like at the top of our describe block, like so:

Download home_stretch/note_spec.rb

describe 'Saving a document for the first time' do

it_should_behave_like 'a new document'

it 'requires a password' do

Ê @note.save_as 'MyNote'
Ë @note.should have_prompted(:for_password)

end

end

At Ê, we’re calling a new save_as() method that we’re eventually going

to have to implement; more on that in a sec.

But first, note that should have_prompted now has a parameter at Ë.

Why is that?

As our script grows, we are going to have to track several kinds of

prompts. In addition to the classic “are you sure you want to exit?” dia-

log box, we’ll need to watch for a filename prompt, a password prompt,

and so on.

http://media.pragprog.com/titles/idgtr/code/home_stretch/locknote.rb
http://media.pragprog.com/titles/idgtr/code/home_stretch/junquenote.rb
http://media.pragprog.com/titles/idgtr/code/home_stretch/note_spec.rb
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=68

SAVE ME! 69

The new implementation of has_prompted() is easy: we just have to

change the @prompted attribute from a Boolean to a hash:

Download home_stretch/note.rb

def has_prompted?(kind)

@prompted[kind]

end

Any of the old specs that use should have_prompted will need to be

updated, as will the exit!() method. You’ll also see (in Section 5.3, Reini-

tializing initialize(), on page 79) that initialize() sets @prompted to an empty

Hash.

Now, let’s turn our attention to save_as().

Saving Flexibly

The basic mechanics of saving are pretty simple. We pick a filename

and then pick a password. But in most of our RSpec examples, we don’t

care as much what the password is as we do how it’s entered (for exam-

ple, do we cancel or perhaps try a mismatched password/confirmation

pair?).

So, it makes sense for our script to assume that the password and con-

firmation will usually be, say, “password,” and let individual examples

override these defaults. That’s what the code at Ê accomplishes in the

following excerpt:

Download home_stretch/note.rb

DefaultOptions = {

:password => 'password',

:confirmation => true

}

def save_as(name, with_options = {})
Ê options = DefaultOptions.merge with_options

Ë @path = @@app.path_to(name)

File.delete @path if File.exist? @path

Ì menu 'File', 'Save As...'

Í enter_filename @path

assign_password options

end

Notice that save_as() doesn’t take a full path; it just takes a document

name. At Ë, we transform one into the other by adding a directory and

http://media.pragprog.com/titles/idgtr/code/home_stretch/note.rb
http://media.pragprog.com/titles/idgtr/code/home_stretch/note.rb
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=69

SAVE ME! 70

an extension.1 That keeps potentially changing information such as file

extensions and absolute paths out of our top-level test code.

All the real work happens in enter_filename() and assign_password() at Í.

enter_filename() is worth taking a look at here:

Download home_stretch/note.rb

def enter_filename(path, approval = '_Save')
Ê dialog(@@titles[:file]) do |d|

d.type_in path

d.click approval

end

end

assign_password() will have to wait for now; passwords are a big enough

topic for their own section. All we need to do for now is trust that it’ll

wait for the password prompt, do the typing for us, and fill in the rele-

vant parts of @prompted with true or false values.

At Ì, we’re doing a bit of multiplatform magic to make menus work the

same in both LockNote and JunqueNote. We want that call to translate

to something like this on Windows:

WM_COMMAND = 0x0111

@main_window.post_message WM_COMMAND, ID_FILE_SAVE_AS, 0

...and this in JRuby:

@main_window.push_menu_no_block 'File|Save As...', '|'

Let’s look at the JRuby translation first. All we have to do is paste that

line of code into a function definition and change the hard-coded menu

item into a parameter.

Actually, we want to parameterize the kind of menu too, not just the

name. Instead of always calling push_menu_no_block(), we would like

to choose push_menu() or push_menu_no_block(), based on whether the

script is supposed to block waiting for the action to complete:

Download home_stretch/junquenote.rb

def menu(name, item, wait = false)

action = wait ? :push_menu : :push_menu_no_block

@menu_bar.send action, name + '|' + item, '|'

end

1. LockNote saves its documents as self-decoding .exes, while JunqueNote uses its own

extension.

http://media.pragprog.com/titles/idgtr/code/home_stretch/note.rb
http://media.pragprog.com/titles/idgtr/code/home_stretch/junquenote.rb
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=70

SAVE ME! 71

Joe Asks. . .

What’s with the New send_message()?

So, you’ve noticed that the fourth parameter of send_message()
has changed from a string pointer to a plain ol’ integer? Good
eye.

Different Windows messages have different interpretations of
that last value. And we’ll be using it as an integer much more
often than as a buffer. So, we’ve changed it. The old version is
still around, but it’s now called send_with_buffer().

Now, let’s look at the Windows equivalent. We need to get from ’File’,

’Save As...’ to the equivalent C constant name, ID_FILE_SAVE_AS or ID_FILE_

SAVEAS (different apps use different underscoring conventions):

Download home_stretch/locknote.rb

def menu(name, item, wait = false)

multiple_words = /[.]/

single_word = /[.]/

[multiple_words, single_word].each do |pattern|

words = item.gsub(pattern, '').split

const_name = ['ID', name, *words].join('_').upcase

msg = WM_COMMAND

begin

id = LockNote.const_get const_name

action = wait ? :send_message : :post_message

return send(action, @main_window.handle, msg, id, 0)

rescue NameError

end

end

end

The only thing remaining is to figure out how we get C names like

ID_FILE_SAVE_AS into Ruby in the first place. JRuby folks, we’ll see you

after the next section.

Is It C, or Is It Ruby?

On Windows, we might be tempted to hard-code the integer value of

each menu ID, but there’s a better solution.

http://media.pragprog.com/titles/idgtr/code/home_stretch/locknote.rb
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=71

THE PASSWORD IS... 72

LockNote’s developers have gone to all the trouble of providing C header

files containing their menu IDs. Why duplicate that effort? WindowsGui

can be taught to read these definitions directly from the C source code:

Download home_stretch/windows_gui.rb

def self.load_symbols(header)

File.open(header) do |f|

f.grep(/#define\s+(ID\w+)\s+(\w+)/) do

name = $1
Ê value = (0 == $2.to_i) ? $2.hex : $2.to_i
Ë WindowsGui.const_set name, value

end

end

end

All we have to do is look through a header file for #define statements,

figure out whether a given definition is decimal or hex at Ê, and dynam-

ically assign the constant at Ë.

And we use it like this:

Download home_stretch/locknote.rb

BasePath = "C:\\LockNote"

WindowsGui.load_symbols "#{BasePath}\\src\\resource.h"

WindowsGui.load_symbols "#{BasePath}\\src\\atlres.h"

ID_HELP_ABOUT = ID_APP_ABOUT

I’m fudging a little bit here. The second file, atlres.h, doesn’t come with

LockNote—it’s part of the Windows Template Library. The exact path

will depend on WTL’s version number and where it’s installed. You’ll

either need to modify the test script to point to your copy of WTL or just

grab a version of atlres.h online and put it in LockNote’s src directory.2

One last thing: you’ll see that I’ve added an alias for the one menu

command that doesn’t fit the ID_menu_item pattern.

OK, enough about the menu. Let’s tackle those prompts.

5.2 The Password Is...

There are three different situations where we need to enter a password

in LockNote:

• In order to open a saved document, we enter its password once to

unlock it.

2. http://wtl.cvs.sf.net/wtl/wtl/include/atlres.h

http://media.pragprog.com/titles/idgtr/code/home_stretch/windows_gui.rb
http://media.pragprog.com/titles/idgtr/code/home_stretch/locknote.rb
http://wtl.cvs.sf.net/wtl/wtl/include/atlres.h
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=72

THE PASSWORD IS... 73

• When we save a document for the first time, we enter its password

twice.

• When we change a password, we have to enter the old one once

and the new one twice.

The Three Flavors

Let’s look at the simplest case first:

Download home_stretch/note.rb

def unlock_password(with_options = {})

options = DefaultOptions.merge with_options
Ê options[:confirmation] = false

enter_password options

watch_for_error

end

To unlock an existing document, we need to enter the password only

once. So at Ê, we forcibly set :confirmation to false. That’s the signal

to our password entry function (which we’ll define soon) to skip the

confirmation step.

When we’re saving a document, the picture is a little more complicated.

If there’s an error message (that is, if the password and confirmation

don’t match), we end up back in the password prompt. Our new func-

tion reflects this difference at Ê:

Download home_stretch/note.rb

def assign_password(with_options = {})

options = DefaultOptions.merge with_options

enter_password options

watch_for_error

if @prompted[:with_error]
Ê enter_password :cancel_password => true

end

end

Changing a password is the most complicated case of the three, but

we can think of it as just a single-entry “unlock document” dialog box,

followed by a double-entry “assign password” dialog box. The only thing

different is how we handle the options passed in.

http://media.pragprog.com/titles/idgtr/code/home_stretch/note.rb
http://media.pragprog.com/titles/idgtr/code/home_stretch/note.rb
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=73

THE PASSWORD IS... 74

Download home_stretch/note.rb

def change_password(with_options = {})

old_options = {
Ê :password => with_options[:old_password]}

new_options = {

:password => with_options[:password],

:confirmation =>

with_options[:confirmation] ||
Ë with_options[:password]}

menu 'File', 'Change Password...'

unlock_password old_options

assign_password new_options

end

There seems to be a lot of option juggling at Ê and Ë. But it’s all for a

good cause.

We don’t want to require our top-level test script to have to trail a mile

of parameters off the end of change_password(), like this:

@locknote.change_password \

:old_password => 'password',

:old_confirmation => false,

:password => 'new',

:confirmation => 'new'

Yuck! The previous option code will let us reduce that to the following:

@locknote.change_password \

:old_password => 'password',

:password => 'new'

That’s much better. Now all we have to do is define the two utility func-

tions shared by these three password entry methods.

No Surprises

The implementation of enter_password() contains no surprises at all.3

First, let’s see the LockNote way.

3. The Windows version has a couple new constants, though—see Section A.4, A Few

Win32 Definitions, on page 171 for their definitions.

http://media.pragprog.com/titles/idgtr/code/home_stretch/note.rb
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=74

THE PASSWORD IS... 75

Download home_stretch/locknote.rb

def enter_password(with_options = {})

options = DefaultOptions.merge with_options

@prompted[:for_password] = dialog(@@titles[:dialog]) do |d|

type_in options[:password]

confirmation =

options[:confirmation] == true ?

options[:password] :

options[:confirmation]

if confirmation

keystroke VK_TAB

type_in confirmation

end

d.click options[:cancel_password] ? IDCANCEL : IDOK

end

end

And now, here’s JunqueNote’s version:

Download home_stretch/junquenote.rb

def enter_password(with_options = {})

options = DefaultOptions.merge with_options

@prompted[:for_password] = single_password_entry \

options[:password], options[:cancel_password]

confirmation =

options[:confirmation] == true ?

options[:password] :

options[:confirmation]

if @prompted[:for_password] && confirmation

single_password_entry confirmation, false

end

end

def single_password_entry(password, cancel)

dialog('Input') do |d|

d.type_in password

d.click(cancel ? 'Cancel' : 'OK')

end

end

In case the password entry fails, we’ll need to watch for errors.

http://media.pragprog.com/titles/idgtr/code/home_stretch/locknote.rb
http://media.pragprog.com/titles/idgtr/code/home_stretch/junquenote.rb
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=75

THE PASSWORD IS... 76

Here’s how to do that in LockNote:

Download home_stretch/locknote.rb

ErrorIcon = 0x0014

def watch_for_error

if @prompted[:for_password]

@prompted[:with_error] = dialog(@@titles[:dialog]) do |d|
Ê d.click IDCANCEL if get_dlg_item(d.handle, ErrorIcon) > 0

end

end

end

There’s just one subtle point here. In LockNote, as in most Windows

apps, nearly all dialog boxes have the same title. So, the only way to

know we’re inside an error dialog box—and not, say, in a password

dialog box—is to look for the little exclamation mark icon.

If the test at Ê passes, we’ve found an error dialog box, and the dialog()

method we wrote in Section 4.2, Pain-Free Windows, on page 57 will

dismiss it automatically.

If, on the other hand, the error icon isn’t there, the expression has a

value of nil, which accomplishes two things for us:

• @prompted[:with_error] will also be assigned a value of nil, meaning

“we didn’t see an error prompt.”

• We’re implicitly telling dialog() not to dismiss the window. We need

to leave it onscreen, because no doubt some other piece of code is

expecting to see it.

JunqueNote doesn’t need any icon-spotting code, since its error dialog

box has a distinct title. Accordingly, its watch_for_error() method will be

a little simpler:

Download home_stretch/junquenote.rb

def watch_for_error

if @prompted[:for_password]

@prompted[:with_error] = dialog('Oops') do |d|

d.click 'OK'

end

end

end

Got all that? Good! It’s time to put our password code to use.

http://media.pragprog.com/titles/idgtr/code/home_stretch/locknote.rb
http://media.pragprog.com/titles/idgtr/code/home_stretch/junquenote.rb
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=76

DOCUMENT WRANGLING 77

5.3 Document Wrangling

We should now feel confident that we can handle any type of password

dialog box that either LockNote or JunqueNote throws at us. So, let’s

wade on in to some cross-platform test cases.

Password Special Cases

We have test code that can assign a password and save a document to

disk. Let’s take care of a couple of special cases around passwords. If

we try to save a document but cancel or mistype the password, the app

should skip saving the file:

Download home_stretch/note_spec.rb

describe 'The password assignment prompt' do

it_should_behave_like 'a new document'

it 'ignores the new password if cancelled' do

@note.text = 'changed'

@note.save_as 'MyNote', :cancel_password => true

@note.exit!
Ê @note.should have_prompted(:to_confirm_exit)

end

it 'ignores an unconfirmed password' do

@note.text = 'changed'

@note.save_as 'SavedNote', :confirmation => 'mismatch'

@note.should have_prompted(:with_error)

@note.exit!
Ë @note.should have_prompted(:to_confirm_exit)

end

end

How do we know that the file never got saved? Because the next time

we try to exit, it asks us whether we want to save. We watch for this

condition at Ê and Ë.

Grand Reopening

Let’s move on to the prompt that greets us when we reopen a saved

document:

Download home_stretch/note_spec.rb

describe 'The password entry prompt' do

Ê it_should_behave_like 'a saved document'

it 'ignores the password if cancelled' do

note = Note.open 'SavedNote', :cancel_password => true

note.should_not be_running

end

http://media.pragprog.com/titles/idgtr/code/home_stretch/note_spec.rb
http://media.pragprog.com/titles/idgtr/code/home_stretch/note_spec.rb
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=77

DOCUMENT WRANGLING 78

it 'exits with an error message for an invalid password' do

note = Note.open 'SavedNote', :password => 'invalid'

note.should_not be_running

note.should have_prompted(:with_error)

end

end

As you can see at Ê, this test uses a new shared behavior, called “a

saved document.” Its job is to make sure we have an example of a

saved note in place before our test starts:

Download home_stretch/spec_helper.rb

describe 'a saved document', :shared => true do

before do

Ê Note.fixture 'SavedNote'

end

end

The fixture() method at Ê is responsible for preparing a saved file. We

could generate one from the GUI every time we run our tests, but it’s

much faster to use a prefab one that we build by hand.

A Permanent Fixture

So, let’s put that sample file together.

Launch LockNote or JunqueNote manually from where you installed

it, and save a new document called SavedNoteFixture with the creative

choice of “password” as the password.4 Then, add the following class-

level method to Note():

Download home_stretch/note.rb

require 'fileutils'

class Note

def self.fixture(name)

source = @@app.path_to(name + 'Fixture')

target = @@app.path_to(name)

FileUtils.rm target if File.exist? target

FileUtils.copy source, target

end

end

Now, our script will always have a fresh copy of its test fixture in place.

The two path_to() implementations aren’t worth showing here; they just

wrap the fixture name with the appropriate directory and extension.

4. I have the same combination on my luggage!

http://media.pragprog.com/titles/idgtr/code/home_stretch/spec_helper.rb
http://media.pragprog.com/titles/idgtr/code/home_stretch/note.rb
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=78

DOCUMENT WRANGLING 79

Reinitializing initialize()

We’ll need to add a couple of parameters to LockNote’s initialize() method

to allow us to start the application with a saved file instead of a “Wel-

come to the app” message.

Download home_stretch/locknote.rb

def initialize(name = 'LockNote', with_options = {})

options = DefaultOptions.merge(with_options)

@prompted = {}

@path = LockNote.path_to(name)

system 'start "" "' + @path + '"'

unlock_password options

if @prompted[:with_error] || options[:cancel_password]

@main_window = Window.new 0

sleep 1.0

else

@main_window = Window.top_level "#{name} - Steganos LockNote"

@edit_window = @main_window.child "ATL:00434310"

set_foreground_window @main_window.handle

end

end

The method has gotten a little bigger, but it’s all just pieces we’ve built

up over the course of the chapter. JunqueNote gets a similar treatment:

Download home_stretch/junquenote.rb

def initialize(name = nil, with_options = {})

options = DefaultOptions.merge(with_options)

@prompted = {}

@path = JunqueNote.path_to(name) if name

@program = JunqueNoteApp.new

@main_window = JFrameOperator.new 'JunqueNote'

@edit_window = JTextAreaOperator.new @main_window

@menu_bar = JMenuBarOperator.new @main_window

if name

menu 'File', 'Open...'

enter_filename @path, '_Open'

unlock_password options

end

if @prompted[:with_error] || options[:cancel_password]

@program = nil

end

end

http://media.pragprog.com/titles/idgtr/code/home_stretch/locknote.rb
http://media.pragprog.com/titles/idgtr/code/home_stretch/junquenote.rb
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=79

DOCUMENT WRANGLING 80

Unlike a LockNote file, a saved JunqueNote document is not self-

decrypting; we have to trigger the Open menu item ourselves.

Last Night’s Notes

Just one more set of examples on the subject of document manage-

ment and then we can move on to text editor stuff such as cutting and

pasting.

We’ve dealt with the act of saving files. And we’ve dealt with how to

reopen them. Now, we need to look at how a document behaves after

we’ve reopened it:

Download home_stretch/note_spec.rb

describe 'A previously saved document' do

it_should_behave_like 'a saved document'
Ê it_should_behave_like 'a reopened document'

it 'preserves and encrypts the contents of the file' do

@note.text.should include('Welcome')
Ë IO.read(@note.path).should_not include('Welcome')

end

it 'does not require a password on subsequent saves' do

@note.text = 'changed'
Ì @note.exit! :save_as => 'MyNote'

@note.should_not have_prompted(:for_password)

end

it 'supports changing the password' do

@note.change_password \

:old_password => 'password',

:password => 'new'

@note.exit!

@note = Note.open 'SavedNote', :password => 'new'

@note.should_not have_prompted(:with_error)

@note.should be_running

end

end

Notice at Ê that we’re piling multiple it_should_behave_like expressions

on top of each other. RSpec does what you’d expect here: it runs the

before and after blocks in the order that you list the shared behaviors.

Speaking of shared behavior, we’re using a new one here called “a

reopened document.” It’s just like “a new document” that we defined

in Section 5.1, Learning to Share, on page 67, except that now we’re

starting with an existing file called SavedNote instead of a new file.

http://media.pragprog.com/titles/idgtr/code/home_stretch/note_spec.rb
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=80

CUT TO THE PASTE 81

The line at Ë merits a closer look. We want to make sure that LockNote

and JunqueNote are scrambling their on-disk files to protect them from

prying eyes. So, as a quick check, we look at the entire contents of the

file for a sample word from the text.

And how did we get the document’s full path so we could read the file?

By making path a read-only attribute of the Note class.

At Ì, we see that exit!() will need a new parameter so that we can indi-

cate when we want to save on exiting, instead of just blowing past the

confirmation dialog box.

Here’s the new, more flexible version of the exit!() method:

Download home_stretch/note.rb

def exit!(with_options = {})

options = DefaultOptions.merge with_options

@main_window.close

@prompted[:to_confirm_exit] = dialog(@@titles[:exit]) do |d|

d.click(options[:save_as] ? '_Yes' : '_No')

end

if options[:save_as]

path = @@app.path_to options[:save_as]

enter_filename path

assign_password options

end

end

As with initialize(), you can see that exit!() is built on the simple dialog

box and utility functions we’ve put together throughout this chapter.

5.4 Cut to the Paste

We have been talking about documents and passwords for so long that

it’s easy to forget that there are text-editing features we need to test as

well.

The Undo That You Do

Folks using LockNote and JunqueNote will expect to find all the stan-

dard text-editing features they’re used to: Undo, Cut, Copy, Paste, and

so forth.

http://media.pragprog.com/titles/idgtr/code/home_stretch/note.rb
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=81

CUT TO THE PASTE 82

Let’s put together a few simple examples of how these should work:

Download home_stretch/note_spec.rb

describe 'The editor' do

it_should_behave_like 'a new document'

it 'supports multiple levels of undo' do

@note.text = 'abc'

@note.undo

@note.text.should == 'ab'

@note.undo

@note.text.should == 'a'

end

it 'supports copying and pasting text' do

@note.text = 'itchy'

@note.select_all

@note.copy

@note.text.should == 'itchy'

@note.text = 'scratchy'

@note.select_all

@note.paste

@note.text.should == 'itchy'

end

it 'supports cutting and pasting text' do

@note.text = 'pineapple'

@note.select_all

@note.cut

@note.text.should be_empty

@note.text = 'mango'

@note.select_all

@note.paste

@note.text.should == 'pineapple'

end

end

We’ve introduced several new methods here: undo(), select_all(), cut(),

copy(), and paste(). Their implementations will all follow the same pat-

tern:

def some_function

menu 'Edit', 'Some Function'

end

Of course, Ruby can and should write those functions for us.

http://media.pragprog.com/titles/idgtr/code/home_stretch/note_spec.rb
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=82

CUT TO THE PASTE 83

Download home_stretch/note.rb

[:undo, :cut, :copy, :paste, :find_next].each do |method|

item = method.to_s.split('_').collect {|m| m.capitalize}.join(' ')
Ê define_method(method) {menu 'Edit', item, :wait}

end

Notice the :wait at Ê? This signals that the script should wait at that

spot until the app has finished carrying out the Undo, or Paste, or

whatever it’s working on. As long as you’re sure that the task will take

only, say, a couple tenths of a second to complete, this is usually a

reasonable approach. You may want to add a timeout in case the app

hangs, though.

Blocking on a menu event like this wouldn’t work for something that

required a lengthy user interaction, like Save As or Find. Whatever code

you’d written to deal with dialog boxes and buttons would never run,

because you’d be waiting forever in your menu function.

Searching for a Replacement

Now that we have a handle on Undo and Cut/Paste, let’s move on to

text searching. With the few examples we have, it wouldn’t be such a

bad thing to hard-code our search term into our spec. But it would be

mildly annoying if we later decided—as I did while writing this book—to

switch to a different sample sentence and had to manually recalculate

where all the matches occur. (“Let’s see, the second occurrence of the

word fox happens at the 16th character. . . .”)

So, let’s set up a new shared behavior and calculate our search matches

using regular expressions for case matching, multiple occurrences, and

so on:

Download home_stretch/spec_helper.rb

describe 'a searchable document', :shared => true do

before do

@example = 'The longest island is Isabel Island.'

@term = 'Is'

@first_match = @example.index(/Is/i)

@second_match = @example.index(/Is/i, @first_match + 1)

@reverse_match = @example.rindex(/Is/i)

@word_match = @example.index(/Is\b/i)

@case_match = @example.index(/Is/)

@note.text = @example

end

end

http://media.pragprog.com/titles/idgtr/code/home_stretch/note.rb
http://media.pragprog.com/titles/idgtr/code/home_stretch/spec_helper.rb
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=83

CUT TO THE PASTE 84

Now, writing the actual examples is a snap:

Download home_stretch/note_spec.rb

describe 'The Find window' do

it_should_behave_like 'a new document'

it_should_behave_like 'a searchable document'

it 'supports searching forward' do

@note.go_to :beginning

@note.find @term

@note.selection.begin.should == @first_match

@note.find_next

@note.selection.begin.should == @second_match

end

it 'supports searching backward' do

@note.go_to :end

@note.find @term, :direction => :back

@note.selection.begin.should == @reverse_match

end

it 'can restrict its search to whole words' do

Ê pending 'on hold' do

@note.go_to :beginning

@note.find @term, :whole_word => true

@note.selection.begin.should == @word_match

end

end

it 'can restrict its search to exact case matches' do

@note.go_to :beginning

@note.find @term, :exact_case => true

@note.selection.begin.should == @case_match

end

end

What’s with the new pending tag at Ê? Neither LockNote nor Jun-

queNote has implemented whole-word matching yet, so we wrap the

test in a pending block.

When a future version of either app comes along and implements this

feature, our test reports will switch from saying, “This feature is pend-

ing,” to complaining, “You said this feature was absent, but it’s there

now!” That will be our clue to revisit our test script.

The cornerstone of the search tests is the find() method we’re going to

add to LockNote. . .

http://media.pragprog.com/titles/idgtr/code/home_stretch/note_spec.rb
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=84

CUT TO THE PASTE 85

Download home_stretch/locknote.rb

WholeWord = 0x0410

ExactCase = 0x0411

SearchUp = 0x0420

def find(term, with_options={})

menu 'Edit', 'Find...'

appeared = dialog('Find') do |d|

type_in term

d.click WholeWord if with_options[:whole_word]

d.click ExactCase if with_options[:exact_case]

d.click SearchUp if :back == with_options[:direction]

d.click IDOK

d.click IDCANCEL

end

raise 'Find dialog did not appear' unless appeared

end

and to JunqueNote:

Download home_stretch/junquenote.rb

def find(term, with_options={})

command = 'Find...'

command = 'Find Exact Case...' if with_options[:exact_case]

command = 'Reverse ' + command if :back == with_options[:direction]

menu 'Edit', command

dialog('Input') do |d|

d.type_in term

d.click 'OK'

end

end

After we’ve performed the search, we need to figure out whether we

found anything. The Find feature highlights the next match, so on Win-

dows, all we need to do is send the EM_GETSEL message to the text win-

dow and do a little byte arithmetic:

Download home_stretch/locknote.rb

def selection

result = send_message @edit_window.handle, EM_GETSEL, 0, 0

bounds = [result].pack('L').unpack('SS')
Ê bounds[0]...bounds[1]

end

http://media.pragprog.com/titles/idgtr/code/home_stretch/locknote.rb
http://media.pragprog.com/titles/idgtr/code/home_stretch/junquenote.rb
http://media.pragprog.com/titles/idgtr/code/home_stretch/locknote.rb
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=85

CUT TO THE PASTE 86

Since a text selection spans a range of characters, it makes sense to

return a Ruby Range object from selection(), as we do at Ê (notice the

three dots marking this Range’s excluded endpoint).

In JRuby, we just use Jemmy’s getSelectionStart() and getSelectionEnd()

methods:

Download home_stretch/junquenote.rb

def selection

first = @edit_window.get_selection_start

last = @edit_window.get_selection_end

Range.new(first, last - 1)

end

Finally, we need a way to jump around in the document so that we can

go to the end and search backward. For the coarse-grained control of

jumping from one end of the document to the other, we can just rely on

keyboard commands in Windows. . .

Download home_stretch/locknote.rb

def go_to(where)

case where

when :beginning

keystroke VK_CONTROL, VK_HOME

when :end

keystroke VK_CONTROL, VK_END

end

end

or JTextArea built-ins in JRuby:

Download home_stretch/junquenote.rb

def go_to(where)

case where

when :beginning

@edit_window.set_caret_position 0

when :end

@edit_window.set_caret_position text.length

end

end

That’s enough for us to do some basic text searches. We could try com-

bining, say, a backward search with case matching. Doing so wouldn’t

really illuminate the process of writing examples, so let’s move on.

http://media.pragprog.com/titles/idgtr/code/home_stretch/junquenote.rb
http://media.pragprog.com/titles/idgtr/code/home_stretch/locknote.rb
http://media.pragprog.com/titles/idgtr/code/home_stretch/junquenote.rb
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=86

ARE WE THERE YET? 87

5.5 Are We There Yet?

Wow. Let’s just take a step back and exult in what we’ve accomplished.

In less than 200 lines of test code, we’ve touched every feature of our

application.

What’s more, we’ve created a test script that we could hand to any

nondeveloper—a documentation writer, a manager, or, in my case, a

long-suffering spouse—and they would get the gist of how the program

works. So, are we done?

Well, there are still a couple of minor things we haven’t covered. I

didn’t show you the code that hits the About menu item and watches

for a simple help dialog box. But you could write that code in your

sleep.5 And we could, if we wanted, use the shared-behavior technique

to streamline the previous chapter’s code.

But I suspect that’s too literal of an answer. After all, we’ve exercised

the app pretty well from a sketchy, cocktail-napkin perspective. You’re

probably wondering, “Can we please stop writing test code now?”

You could. But you’d miss out on the best part.

We’re nearing the limit of what these simple tests will do for us. How do

we catch things like memory leaks, buffer overflows, and weird glitches

that happen only on certain kinds of input?

There’s a huge colossal world of scripted testing techniques out there.

Let’s go take a peek.

5. I am writing it in my sleep. It’s 2:15 a.m. here; if I can do it, you can do it.

http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=87

Part II

Aspects of Testing

Chapter 6

Branching Out
We’ve spent the first half of this book building up a series of test scripts

for a real-world app. What do we have to show for it?1 Two things.

6.1 Testing the App

First, we now have a simple automated test for the program’s GUI. We

can use it like a crude floodlight to spot the most severe regressions

cheaply. It’s not going to catch the kind of subtle, weird bugs you see

only by actually interacting with the app (in other words, most bugs).

But our script can do at least one thing a manual test can’t: it can run

after every build as a quick “go or no-go” indicator. If a developer checks

in a code change that screws up the app badly enough to fail this suite,

the build will probably be of too poor quality to bother testing manually.

6.2 Testing the Tests

Another point that’s easy to miss: we’ve exercised our test framework

itself. The process of writing that Note class and throwing it up against

the app over and over and over again shook out lots of issues with our

own test code.

By working out the finer points of timing, character sets, dialog boxes,

and so on, we’ve gained some measure of confidence in the building

1. Aside from the warm, fuzzy feeling of having created a specification out of running

code, I mean.

PUTTING THE PIECES TOGETHER 90

blocks of our tests.2 That’ll become important as we assemble these

blocks into more complicated setups in the later chapters.

So when we put together an overnight stress test that includes some-

thing like this. . .

note.text = punishingly_huge_random_text

note.cut

note.paste

...

we’ll have a good idea that the underlying GUI code will drive our app

appropriately.

6.3 Putting the Pieces Together

A quick acceptance test and a warm feeling about being an integral

part of the development process are nice. But what about catching

some bugs?

Now that we know how to find windows and controls, type keystrokes,

and click buttons, how might we combine these steps in ways that help

us find and remove errors from the application?

Here are a few ideas:

• Run a loop that opens, modifies, and saves a document all night

while watching the app’s memory usage to try to catch resource

leaks.

• To unearth buffer overruns, open every dialog box in the app and

flood each text control with extra-long strings, illegal characters

(for example, filenames with pipes), embedded NUL bytes, huge

numbers, and so on.

• Barrage the main window of the app with random keystrokes and

clicks for a few hours, trying to trip it up somehow.

• Repeat a complicated series of steps in order to trigger an inter-

mittent bug that happens only under very specific conditions.

• Try dozens or hundreds of different combinations of input data.

Over the next few chapters, we are going to look at some of these

techniques.

2. See the Heckle (http://seattlerb.rubyforge.org) and rcov (http://eigenclass.org/hiki.rb?rcov)

projects for examples of how we can quantify this confidence.

http://seattlerb.rubyforge.org
http://eigenclass.org/hiki.rb?rcov
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=90

MOVING ON 91

6.4 Moving On

Where the first half of the book was a depth-first look at scripting one

application, this half will be a broader survey of GUI testing topics. The

level of detail will be a little lighter. We’ll look at a few different test

techniques and at how to test on a couple more app platforms.

The examples won’t be “bilingual” anymore, and they won’t always be

confined to LockNote (though we will look at it for a couple more tests).

We’re going to start gradually by injecting bits of random behavior into

the scripts we wrote for Part I. By the time we’ve reached the end of

Chapter 7, Keep ’Em Guessing: Introducing Randomness, on the next

page, we’ll have departed from our clean RSpec aesthetic and created a

punishing test monkey to bash on the GUI.

From there, it’s on to Chapter 8, Turn the Tables: Matrix Testing, on

page 104, where we’ll explore data-driven testing. When you cut nearly

all the boilerplate and programmer-speak out of your tests, you’re left

with just the data in a clean, tabular format.

In Chapter 9, Testing the Tubes: Web Applications, on page 118, we’ll

look at web testing toolkits and techniques. As with desktop apps, keep

an eye out for ways to keep the mechanics of buttons and clicks from

cluttering up the language of our tests.

Some situations demand longer, more involved scripts. In Chapter 10,

Testing in Plain English: Story Runner, on page 139, we’ll see how to

weave our tests into an overarching, plain-language narrative.

Finally, to cleanse the palate, we’ll have a bit of fun on the Mac desktop

in Chapter 11, One More Thing: Testing on the Mac, on page 158.

Ready to get started?

http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=91

Chapter 7

Keep ’Em Guessing:
Introducing Randomness

All right, no more Mr. Nice Tester. We’ve been coddling our applica-

tion, gently running our test scripts the same way each time. That was

fine for documenting our expectations of the app and getting our test

framework up to speed.

But there could be dozens of bugs lurking in the program, waiting to be

exposed if we’d only just do things with a little different order or timing.

Let’s try to trip up the app with a little randomness.

7.1 Keys, Menu, or Mouse?

In all our previous tests, we always exercise each feature the same way.

For example, we always paste text by selecting the Paste item from the

Edit menu. But there are at least two other ways to paste: pressing

Ctrl+V and using the right-click menu.

What if there were some weird interaction that caused problems with

text manipulation, but only under certain unusual circumstances in-

volving the keyboard? A lot of bugs are like that. If your test script

always uses the menu, you’ll never catch it.1

1. Your manual tests might catch it, if you don’t treat them like a rote “try all the menus”

exercise.

KEYS, MENU, OR MOUSE? 93

Keeping Things Interesting

Why not teach our script to act a bit differently each time? Let’s start

small with a single feature—Paste, for instance. Each time the test

script calls paste(), we’ll decide based on a random number whether

to use the menu bar, keyboard, or context (right-click) menu:

Download guessing/locknote.rb

srand
Ê $seed ||= srand

srand $seed

puts "Using random seed #{$seed}"

class LockNote

def paste

case rand(3)

when 0

menu 'Edit', 'Paste'

puts 'Pasting from the menu'

when 1

keystroke VK_CONTROL, ?V

puts 'Pasting from a keyboard shortcut'

when 2
Ë @main_window.click EditControl, :right

type_in 'P'

puts 'Pasting from a context menu'

end

end

end

At Ë, we’ve added a new parameter to Window#click() to let us spec-

ify which mouse button we want to use. As in previous chapters, we

identify the edit area by its window class. (EditControl is just a constant

assigned to that hard-to-remember ’ATL:something’ name.)

If we add code like this to some of our other functions, our test script

will behave a little more like a real user: sometimes it’ll use the mouse

and sometimes the keyboard.

There is one potential downside to changing things up on each run like

this. If your test happens to find a bug in the app, you might have

trouble repeating the problem on the next run.

That’s why it’s important to record the value you use to seed Ruby’s

pseudorandom number generator, as we have at Ê. Because srand()

returns the previous seed value, it takes three calls to the function to

get what we want.

http://media.pragprog.com/titles/idgtr/code/guessing/locknote.rb
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=93

KEYS, MENU, OR MOUSE? 94

Now, if we need to “play back” a particular sequence, we can put the

seed we want in an external file, say, seed.rb. . .

Download guessing/seed.rb

$seed = 12345

and use it like this:

C:\> spec -rseed -rlocknote -fs note_spec.rb

Adding that case/when code to every action that we want to randomize

is going to get old really fast. Let’s think about a way to avoid that kind

of duplication.

Action!

What we’re really doing in that case structure is defining all the differ-

ent ways the Paste action could be carried out. Other actions in our

software (Exit, Undo, Find) also have multiple ways for the user to per-

form them.

It makes sense to teach our test library the notion of defining an action,

so we can do something like this:

Download guessing/locknote.rb

def_action :paste,

:menu => ['Edit', 'Paste', :wait],

:keyboard => [VK_CONTROL, ?V],

:context => 'p'

The body of def_action() is just our Paste example from earlier, made

more general:

Download guessing/locknote.rb

class LockNote

@@default_way = :random

def self.def_action(name, options, way = nil)

define_method name do

keys = options.keys.sort {|k| k.to_s}

Ê way ||= @@default_way

key = case way

when nil; keys.last

when :random; keys[rand(keys.size)]

else way

end

action = options[key]

http://media.pragprog.com/titles/idgtr/code/guessing/seed.rb
http://media.pragprog.com/titles/idgtr/code/guessing/locknote.rb
http://media.pragprog.com/titles/idgtr/code/guessing/locknote.rb
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=94

KEYS, MENU, OR MOUSE? 95

case key

when :menu

menu *action

puts "Performing #{name} from the menu bar"

when :keyboard

keystroke *action

sleep 0.5

puts "Performing #{name} from a keyboard shortcut"

when :context

@main_window.click LockNote::EditControl, :right

sleep 0.5

type_in action

sleep 0.5

puts "Performing #{name} from a context menu"

else

raise "Don't know how to use #{key}"

end

end

end

end

Notice how, at Ê, we’ve turned the preferred type of action into what

amounts to a configuration setting. You could use :random for overnight

stress testing, :keyboard to run a few tests on a mouse-free machine, or

something else (e.g., :preferred) for times when you need predictability.

Equipped with this class-level method, we can define several common

GUI actions:

Download guessing/locknote.rb

def_action :undo,

:menu => ['Edit', 'Undo', :wait],

:keyboard => [VK_CONTROL, ?Z]

def_action :cut,

:menu => ['Edit', 'Cut', :wait],

:keyboard => [VK_CONTROL, ?X],

:context => 't'

def_action :copy,

:menu => ['Edit', 'Copy', :wait],

:keyboard => [VK_CONTROL, ?C],

:context => 'c'

def_action :delete,

:keyboard => [VK_BACK],

:context => 'd'

http://media.pragprog.com/titles/idgtr/code/guessing/locknote.rb
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=95

KEYS, MENU, OR MOUSE? 96

def_action :select_all,

:menu => ['Edit', 'Select All', :wait],

:keyboard => [VK_CONTROL, ?A],

:context => 'a'

Our script has just been given a bit more bug-finding potency, but it’s

also more expressive now. It almost reads like documentation: “The

Undo action can be triggered from the Edit > Undo menu or the Ctrl+Z

keystroke.”

Decluttering

Although our test library has become more readable, our test report

has become a mess:

Using random seed 12345

The editor

Performing select_all from the menu bar

Performing delete from a keyboard shortcut

Performing select_all from a keyboard shortcut

Performing cut from a keyboard shortcut

Performing select_all from a context menu

Performing delete from a keyboard shortcut

Performing select_all from the menu bar

Performing paste from the menu bar

- supports cutting and pasting text

Finished in 13.809 seconds

1 example, 0 failures

Let’s use Ruby’s logging library so we can separate the test report from

the extra info:

Download guessing/locknote.rb

require 'logger'

Ê class SimpleFormatter < Logger::Formatter

def call(severity, time, progname, msg)

msg2str(msg) + "\n"

end

end

$logger = Logger.new STDERR
Ë $logger.formatter = SimpleFormatter.new

Logger’s default format is pretty verbose: it includes a time stamp, a

logging level, and so on. At Ê and Ë, we’ve trimmed it to just a simple

description.

http://media.pragprog.com/titles/idgtr/code/guessing/locknote.rb
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=96

ADDING LOREM IPSUM TO THE MIX 97

Now, if we replace all our calls to puts(), like this one. . .

puts "Performing #{name} from the menu bar"

with calls to $logger.info(), like this. . .

$logger.info "Performing #{name} from the menu bar"

then all the extra information not part of the test report will be directed

to wherever the Logger is pointed, in this case STDERR. On Windows, you

can redirect standard error to a file with the 2> operator:

C:\> spec -rlocknote -fs note_spec.rb 2>actions.txt

If one of our tests suddenly fails in the face of randomness, we now

have the random number seed to re-create it and a detailed record of

GUI actions to help us diagnose it.

7.2 Adding Lorem Ipsum to the Mix

Lorem Ipsum refers to a collection of random-looking pseudo-Latin text

used by typographers for centuries as filler. In this section, we’re going

to feed LockNote this and other kinds of random text.

Why? Well, back when we were just documenting requirements, using

the same example text each time was fine. But that’s not going to cut

it for bug hunting. If the app we’re testing has some kind of error that

shows up only with certain text—accented characters, long documents,

or something like that—we’d like to increase our chances of finding it.

Line Noise

It’d be pretty easy to generate a brutal sequence of random printable

and nonprintable ASCII characters, something like this:

def random_characters(length)

(1..length).collect {rand 256}.pack 'C*'

end

You absolutely should test your document-handling code with text like

this, but the GUI might not be the easiest place to do so. After all, if your

random string contains NUL or vertical-tab characters, you probably

won’t be able to type them in.

So, assuming you’re taking care of the truly untypeable examples in

your non-GUI tests, let’s narrow our focus to strings we can enter from

the GUI. Just for fun, we’ll throw in some UTF-8-encoded international

characters, too, using Ruby’s included jcode library.

http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=97

ADDING LOREM IPSUM TO THE MIX 98

require 'jcode'

$KCODE = 'U'

AsciiStart = 0x20

LatinStart = 0xA1

def random_characters(length)

codes = (1..length).collect do

start = (rand(2) == 0) ? AsciiStart : LatinStart

start + rand(95)

end

codes.pack 'U*'

end

You might want to draw your random characters from a bigger pool

than this fairly small Latin set. You’ll need to define the virtual key

codes for each character your script might need to type: punctuation,

accented characters, and so on. The exact keystrokes will depend heav-

ily on your keyboard layout.

Readable Text

The previous methods will generate strings that look like line noise.

You’ll probably also want to be able to generate “saner” strings that will

be legible when they show up in your result logs. Just for fun, let’s use

a pseudorandom Lorem Ipsum text generator from the Internet.

Ruby’s built-in open-uri library allows us to fetch text from websites

pretty easily:

require 'open-uri'

doc = open 'http://www.lipsum.com/feed/html'

The result is a big chunk of HTML, with plenty of angle brackets for

everyone. We need to drill down to the part that actually has the gener-

ated text in it:

<div id="lipsum">

<p>

Lorem ipsum dolor sit amet,...

</p>

...

</div>

We could grab the words with a set of clever-enough regular expres-

sions, but there’s an easier way. The Hpricot library provides an easy

way to parse HTML.

http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=98

ADDING LOREM IPSUM TO THE MIX 99

You can install it like this. . .

C:\> gem install hpricot

and use it like so:

Download guessing/spec_helper.rb

require 'rubygems'

require 'hpricot'

require 'open-uri'

module RandomHelper

def random_paragraph

doc = Hpricot open('http://www.lipsum.com/feed/html?amount=1')
Ê (doc/"div#lipsum p").inner_html.strip

end

end

The string div#lipsum p at Ê is an XPath expression meaning “a para-

graph inside the div whose id is lipsum.”2

To use random_paragraph() in our RSpec tests, all we need to do is

include the helper class, as we have at Ê in this code:

Download guessing/spec_helper.rb

describe 'a searchable document', :shared => true do

Ê include RandomHelper

before do

Ë @example = random_paragraph

words = @example.split /[^A-Za-z]+/

last_cap = words.select {|w| w =~ /^[A-Z]/}.last
Ì @term = last_cap[0..1]

@first_match = @example.index(/#{@term}/i)

@second_match = @first_match ?

@example.index(/#{@term}/i, @first_match + 1) :

nil

@reverse_match = @example.rindex(/#{@term}/i)

@word_match = @example.index(/#{@term}\b/i)

@case_match = @example.index(/#{@term}/)

@note.text = @example

end

end

2. We’ll talk more about picking apart HTML documents with XPath in Chapter 9, Test-

ing the Tubes: Web Applications, on page 118.

http://media.pragprog.com/titles/idgtr/code/guessing/spec_helper.rb
http://media.pragprog.com/titles/idgtr/code/guessing/spec_helper.rb
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=99

A TEST MONKEY COULD DO THIS JOB 100

randompredictable

Figure 7.1: How random should we be?

Then, we replace the formerly hard-coded text at Ë with a call to our

new function. We’ll need a new search term, too. At Ì, we grab the

first two letters of the last capitalized word. That should make for some

interesting lowercase/uppercase and forward/backward searches.

Now that we have a few different tools for generating text, let’s turn the

randomness level up a notch.

7.3 A Test Monkey Could Do This Job

By this point, we’ve definitely made our test script a little more flexible.

We use different input data each time through and a different way of

driving each feature.

But we’re still running the same general sequence of events: add text,

hit Undo twice, check the answer, and so on. Let’s try to be a bit more

spontaneous. We’re going to leave RSpec behind for a bit and enter

the world of the test monkey, a script that bashes haphazardly at your

program in order to help you shake out problems.

Of course, there’s a catch. One advantage of using predictable inputs is

that you know what the output should be. As you gradually introduce

more randomness—I like to imagine a continuum like Figure 7.1—it

becomes more difficult to define “passing” and “failing.”

If all we’re doing is clicking at random X/Y coordinates and typing

meaningless keystrokes, it’s nearly impossible to specify in advance

what the application should do. The role of a test monkey is rather dif-

ferent from an RSpec script. Rather than a “spec that runs,” it’s more

like a spotlight you can shine on an app to draw out the bugs.3

3. A test monkey that shines a light? Of course I’m calling this thing monkeyshines.rb!

http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=100

A TEST MONKEY COULD DO THIS JOB 101

Test monkeys come in many forms: some have no notion of UI elements

and instead just treat the screen as a blank canvas for clicking, while

others at least know how to press a button or select a menu item. For

this chapter, we’ll look at the latter.

We’ll specifically exclude any actions that would exit the app. So if at

any point LockNote isn’t running, we may have crashed it. As you follow

along with these tests, you may also find it interesting to keep an eye

on the app and its memory consumption as it runs. You’re in sleuth

mode now, recording all these observations as clues.

Random (Inter)action

To pick a random GUI action to perform, we need a way to describe

what actions are possible. That’s exactly what def_action() from Sec-

tion 7.1, Action!, on page 94 does. How convenient! All we have to do is

dress it up with a little bookkeeping:

require 'set'

class LockNote

@@actions = Set.new

def self.def_action(name, options)

@@actions << name

define_method name do

...rest of method, as before

end

end

end

Each time we define a new GUI operation, LockNote will remember its

name in @@actions. When it comes time to run our test monkey, we’ll

choose a bunch of random actions and turn ’em loose on the GUI. Set,

by the way, is an often-overlooked utility class that comes with Ruby.

It’s like an Array with no duplicates.

We’re not limited to just actions that can be expressed with def_action().

We can add any member function of LockNote to @@actions. For example,

here are a couple of new ones for typing and clicking:

Download guessing/locknote.rb

def random_typing

num = 1 + rand(50)

random_text = (1..num).collect {rand(26) + ?a}.pack 'c*'

type_in random_text

$logger.info "Typing #{random_text}"

end

http://media.pragprog.com/titles/idgtr/code/guessing/locknote.rb
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=101

A TEST MONKEY COULD DO THIS JOB 102

def random_clicking

num = 1 + rand(10)

num.times do

point = nil

(rand(2) + 1).times do

point = @main_window.click(EditControl, :left, point || :random)

$logger.info "Clicking #{point.inspect}"

end

end

end

@@actions << :random_typing << :random_clicking

Now we can pound on LockNote by calling random_action() a bunch of

times:

Download guessing/monkeyshines.rb

note = Note.open

100.times {note.random_action}

The test log will contain a full record of what we did. If we find a bug

and want to try to re-create it, we can set the random seed and play the

whole script back. But there’s a way to get a little finer-grained control

than that.

Data Can Be Code, Too

Right now, our log messages are plain English: “performing select_all

from the menu bar” and so forth. Just as we transformed written exam-

ples into RSpec tests in previous chapters, let’s turn our log files into

Ruby programs. All it takes is a change of logging format. Here are

replacements for all our calls to $logger.info():

Menu bar

$logger.info "menu '#{action[0]}', '#{action[1]}'"

Keyboard

$logger.info "keystroke " + action.join(', ') + "; sleep 0.5"

Context menu

$logger.info "@main_window.click EditControl, :right; sleep 0.5"

$logger.info "type_in '#{action}'; sleep 0.5"

Random typing

$logger.info "type_in '#{random_text}'"

Random mousing

$logger.info "@main_window.click EditControl, :left, " + point.inspect

Now we can cut and paste sections of our test log into a Ruby script

and replay just the parts we care about.

http://media.pragprog.com/titles/idgtr/code/guessing/monkeyshines.rb
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=102

BREAKING CAMP 103

instance_eval() will let us run the code in the context of a single LockNote

object:

Download guessing/replay.rb

require 'LockNote'

EditControl = LockNote::EditControl

Note.open.instance_eval do

menu 'Edit', 'Select All'

type_in 'asggzwhcbgk'

keystroke 17, 90; sleep 0.5

@main_window.click EditControl, :left, [370, 253]

@main_window.click EditControl, :left, [370, 253]

@main_window.click EditControl, :left, [644, 255]

...

end

And there you have it. Our passive test log has become an active tool

we can use to track down bugs. We’ve completed the cycle from code to

data and back to code again.

7.4 Breaking Camp

What we’ve done in this chapter is dipped our toes into uncertainty.

There are several ways we could make our test monkey more destruc-

tive (and therefore more effective):

• Get more sophisticated by adding dialog boxes (for passwords and

searching) to our monkey’s repertoire.

• Get more primitive by adding mouse dragging and a bigger palette

of random characters to type.

• Rather than doing a fixed number of actions, keep pounding on

LockNote until it exits and then report and start again.

• Answer questions more interesting than just “Is it running?” by

using the Windows tasklist command to monitor memory usage and

CPU time.

Those are all appealing variations on the theme. What I’d like to do now,

though, is look at a completely different way to introduce diversity to a

test project.

We have a good handle on changing one thing at a time—the characters

our script is typing, for instance. In the next chapter, we’re going break

into two dimensions and try combinations of changes.

http://media.pragprog.com/titles/idgtr/code/guessing/replay.rb
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=103

Whoa.

Neo, and other Keanu characters

Chapter 8

Turn the Tables: Matrix Testing
In the previous chapter, we looked at several different ways to bring

some variety into our tests. But we were typically changing just one

thing at a time. There were three ways to paste text, so we had three

different pasting tests.

What if we needed to run all three of those tests on, say, five different

types of documents? We’d want to cover all fifteen combinations. That’s

the idea behind matrix testing.

In this chapter, we’ll look at ways to express many different combina-

tions of tests in a compact tabular format. In particular, we’ll explore

the two most popular Ruby libraries for matrix testing, ZenTest and

RubyFIT.

But first, let’s pick a different app to test. I’m ready for a break from

the text editors we’ve been exercising.

8.1 What to Test

It’d be nice to test some kind of calculator. There are infinitely many

combinations of numbers to test, which means we’ll have to think care-

fully about boundary conditions and cases that are likely to fail.

Another SourceForge search reveals TimeCalc (see Figure 8.1, on the

next page), an integer calculator that can add intervals of a day, hour,

minute, or second.1 Perfect! Not only will we be able to try different

combinations of integers, but we can also test various unit conversions

(from seconds to minutes, and so forth).

1. http://sf.net/projects/timecalc

http://sf.net/projects/timecalc

WHAT TO TEST 105

Figure 8.1: TimeCalc

TimeCalc is an older app, so it needs one minor tweak to compile with

recent Java versions. First, in your project folder, create a nested sub-

sub-subdirectory called org/crocodile/timecalc and extract the source

into it. Next, change line 284 of TimeCalc.java, where it says this. . .

helpd=new Dialog(null,"Help", true);

into this:

helpd=new Dialog((Frame)null,"Help", true);

Now the code will compile normally, with a few warnings we don’t have

to worry about for this chapter:

$ javac org/crocodile/timecalc/TimeCalc.java

Note: org/crocodile/timecalc/TimeCalc.java uses or overrides a deprecated API.

Note: Recompile with -Xlint:deprecation for details.

Note: org/crocodile/timecalc/TimeCalc.java uses unchecked or unsafe operations.

Note: Recompile with -Xlint:unchecked for details.

$ javac org/crocodile/timecalc/TimeCalcApp.java

Note: org/crocodile/timecalc/TimeCalcApp.java uses or overrides a deprecated API.

Note: Recompile with -Xlint:deprecation for details.

TimeCalc was written using the older AWT user interface library. For-

tunately, JRuby and Jemmy can control AWT apps just fine; we just

use names like Frame instead of JFrame:

require 'java'

$CLASSPATH << '.'

include_class 'org.crocodile.timecalc.TimeCalcApp'

include_class 'org.netbeans.jemmy.operators.FrameOperator'

TimeCalcApp.main(nil)

main_window = FrameOperator.new 'Time Calc'

http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=105

ZENTEST AND THE ART OF MATRIX MAINTENANCE 106

I’ve written a simple Calculator class that drives the application using

the same techniques we discussed in the first half of the book. Going

into the details of the source code here would be repetitive. If you’d like

to look at it on your own, you can find it in code/tables/calculator.rb.

8.2 ZenTest and the Art of Matrix Maintenance

ZenTest is an entire suite of testing tools from Ryan “zenspider” Davis

and Eric Hodel that includes a matrix test library called FunctionalTest-

Matrix. To use it, we just install ZenTest. . .

$ sudo jruby -S gem install ZenTest

and load the parts of ZenTest and Ruby’s bundled Test::Unit that we

need (plus RSpec, so our tests can still use the should notation inside):

Download tables/matrix.rb

require 'test/unit'

require 'test/unit/ui/console/testrunner'

require 'functional_test_matrix'

require 'spec'

Test::Unit::TestCase.extend FunctionalTestMatrix

Now we’re ready to start writing tables.

Into the Matrix

We’re going to look at one tiny slice of the calculator’s functionality

in this section. We’ll add together a few different combinations of time

spans and make sure that both addition and overflow detection work.

Let’s think about some of the cases we want to test. The calculator

doesn’t allow negative numbers—but we should at least test with 0 and

1, a huge number near the upper end of the calculator’s range, and also

an uninteresting number like 2.2 The table of expected behavior might

look like this, then:

Addition To 0... To 1... To 2... To a Huge

Number...

...add 0 0 1 2 Huge

...add 1 1 2 3 Huge + 1

...add 2 2 3 4 Overflow

...add a huge number Huge Huge + 1 Overflow Overflow

2. Here come the angry letters from the Official Fan Club of 2!

http://media.pragprog.com/titles/idgtr/code/tables/matrix.rb
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=106

ZENTEST AND THE ART OF MATRIX MAINTENANCE 107

We could test all sixteen combinations in RSpec, but it would be pretty

verbose. Even if we pull out all the stops and use as many of RSpec’s

code-sharing features as we can, we can compress it only so far. Here’s

a single describe block from such an effort:

Download tables/calculator_spec.rb

describe 'Starting with 1' do

include AdditionHelper

it_should_behave_like 'a new calculator'

before do

@calc.enter_number 1

@calc.plus

end

it 'should add 0 correctly' do

add_and_check(0, 1)

end

it 'should add 1 correctly' do

add_and_check(1, 2)

end

two more nearly-identical examples

end

By the time we fill in the other two examples, copy and paste the whole

describe block four times, add the “new calculator” shared behavior,

and implement AdditionHelper, we’re well over 120 lines.

With ZenTest’s FunctionalTestMatrix, we can write these different combi-

nations much more compactly:

Download tables/matrix.rb

class CalculatorTest

matrix :addition, :to_0, :to_1, :to_2, :to_huge

action :add_0, 0, 1, 2, :huge

action :add_1, 1, 2, 3, :huge_1

action :add_2, 2, 3, 4, :over

action :add_huge, :huge, :huge_1, :over, :over

end

Our matrix is done, but we still need to write support code to connect

it to the calculator app.

http://media.pragprog.com/titles/idgtr/code/tables/calculator_spec.rb
http://media.pragprog.com/titles/idgtr/code/tables/matrix.rb
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=107

ZENTEST AND THE ART OF MATRIX MAINTENANCE 108

Connecting the Matrix

The connecting code takes the form of CalculatorTest, a test case recog-

nizable by Test::Unit:

Download tables/matrix.rb

require 'calculator'

class CalculatorTest < Test::Unit::TestCase

def setup
Ê @calc ||= Calculator.single

@calc.clear

end

end

At Ê, we’re sharing a single instance of Calculator across all our tests,

because the original calculator was written to exit the entire Java pro-

cess when it’s turned off. That would abort our test suite, so we should

hit the Off button only at the very end of our script.

The idea behind FunctionalTestMatrix is that a matrix like this one. . .

matrix :test_name, :condition_a, :condition_b,

action :first_action, :result_a1, :result_b1,

action :second_action, :result_a2, :action_a2,

will make the following sequence of calls to your test class:

setup

matrix_init_test_name(:condition_a)

matrix_setup_first_action(:condition_a, :result_a1)

matrix_test_result_a1(:condition_a)

setup

matrix_init_test_name(:condition_b)

matrix_setup_first_action(:condition_b, :result_b1)

matrix_test_result_b1(:condition_b)

setup

matrix_init_test_name(:condition_a)

matrix_setup_second_action(:condition_a, :result_a2)

matrix_test_result_a2(:condition_a)

setup

matrix_init_test_name(:condition_b)

matrix_setup_second_action(:condition_b, :result_b2)

matrix_test_result_b2(:condition_b)

So, you just define all those method names in your test class, and

you are set. For the calculator, that means writing a lot of functions

like matrix_setup_add1(), matrix_setup_add2(), matrix_test_3(), matrix_test_

http://media.pragprog.com/titles/idgtr/code/tables/matrix.rb
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=108

ZENTEST AND THE ART OF MATRIX MAINTENANCE 109

overflow(), and so on. All those matrix_setup_add...() methods are going to

look the same, except for the numbers they’re adding. We’ll just write

a generic method_missing() that will transform matrix_setup_add1(:to_2,

3) into matrix_setup_add(1). Similarly, we’ll turn matrix_test_3(:to_2) into

matrix_test(3):

Download tables/matrix.rb

class CalculatorTest

alias_method :old_method_missing, :method_missing

def method_missing(name, *args)

case name.to_s

when /matrix_setup_add_(.+)/

matrix_setup_add $1

when /matrix_test_(.+)/

matrix_test $1

else

old_method_missing name, *args

end

end

end

All that’s left is to write those test methods:

Download tables/matrix.rb

class CalculatorTest

Constants = {:huge => 2**63 - 2, :huge_1 => 2**63 - 1, :over => 0}

Ê def number_for(value)

Constants[value.to_s.intern] || value.to_s.to_i

end

def matrix_init_addition(_, value)

@seconds = number_for value

@calc.enter_number @seconds

end

def matrix_setup_add(value)

@adding = number_for value

@calc.plus

@calc.enter_number @adding

@calc.equals

end

def matrix_test(expected)

@calc.total_seconds.should == number_for(expected)

end

end

http://media.pragprog.com/titles/idgtr/code/tables/matrix.rb
http://media.pragprog.com/titles/idgtr/code/tables/matrix.rb
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=109

ZENTEST AND THE ART OF MATRIX MAINTENANCE 110

At Ê, we have a utility function that lets us treat actual numbers like 3

and names like :huge the same in our test cases.

After all the tests have run and Test::Unit has reported the results to us,

we’ll need to turn off the calculator. The simplest way to do this (though

not the safest) is just to add a new TestCase class after CalculatorTest. The

new pseudotest will delay for a bit to allow Test::Unit to finish its report

and then shut down the calculator:

Download tables/matrix.rb

class CalculatorOff < Test::Unit::TestCase

def test_off

Thread.new {sleep 3; Calculator.single.off}

end

end

Test::Unit runs test cases in the order it finds them in the file. So,

CalculatorOff won’t shut down the calculator until all the other steps

have run.

Run matrix.rb. After the calculator gets put through its paces, you should

see a report that sixteen test steps (plus our seventeenth “power-down”

step) have passed.

Horror Vacui

Greek art from the Archaic period often packed every available space

with details, in a style known as horror vacui, or “fear of empty space.”

It certainly seems we have a touch of horror vacui in our test matrix.

Every possible combination of row and column has an expected result.

Testing all possible pairs of our selected numbers is probably a good

idea for a calculator test. But for your own tests, you might have some

combinations that aren’t physically possible to get into from the user

interface.

FunctionalTestMatrix allows you to put :na into any cell of the matrix to

leave that row/column pair untested. If we were really sure that our

calculator correctly treated addition as commutative (we shouldn’t be

so trusting!), we could remove about half the combinations like this,

using the slightly more legible _ alias for :na.

http://media.pragprog.com/titles/idgtr/code/tables/matrix.rb
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=110

FIT TO BE TESTED 111

Download tables/matrix.rb

class CalculatorTest

_ = :na

matrix :addition, :to_0, :to_1, :to_2, :to_huge

action :add_0, 0, _, _, _

action :add_1, 1, 2, _, _

action :add_2, 2, 3, 4, _

action :add_huge, :huge, :huge_1, :over, :over

end

So, there you have it: a test table built in plain Ruby. What’s next?

How about finding a way to embed the results in the same table that

describes the tests, instead of printing them at the end of our test run?

8.3 Fit to Be Tested

In 2002, Ward Cunningham created a testing library called the Frame-

work for Integrated Test, or Fit. The idea was similar to our ZenTest

example earlier: test authors could write their tests as tables, rather

than as imperative programs.

But unlike ZenTest, where tables are written as Ruby code, Fit uses

HTML as its test description language. So, any program that can save

documents as web pages—a word processor, for instance—becomes a

potential test-authoring tool. The goal was to make test writing easier

for nonprogrammers. But a nice side effect of using HTML is that we

can embed the results into the tables, right alongside the tests.

Getting Fit

Fit’s original implementation language was Java, but it has been ported

to many other languages, including (fortunately for us) Ruby:

$ sudo jruby -S gem install fit

A Fit “test script” is just an HTML file with a bunch of tables in it. Each

table is considered an independent test fixture, whose behavior usually

follows one of Fit’s predefined fixture types.

Some fixtures are declarative in style: each row is a separate test case,

and the order doesn’t matter. Others are more like imperative program-

ming languages: each row denotes one step of a process.

Column Fixtures

One of the key features of the time calculator is its ability to under-

stand times that are entered in unusual ways. If you were to do some

arithmetic with a time of 86,401 seconds, you’d probably expect the

http://media.pragprog.com/titles/idgtr/code/tables/matrix.rb
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=111

FIT TO BE TESTED 112

calculator to treat that value as if you had entered it the “official” way

of one day, zero hours, zero minutes, and one second.

Here’s a table that shows how the calculator should convert several

combinations of hours, minutes, and seconds to more normal-looking

formats (where the seconds and minutes range from 0 to 59 and the

hours range from 0 to 23):

Days

In

Hours

In

Mins

In

Secs

In

Days

Out

Hours

Out

Mins

Out

Secs

Out

1 47 59 59 2 23 59 59

1 47 59 60 3 0 0 0

1 47 59 61 3 0 0 1

0 0 0 86399 0 23 59 59

0 0 0 86400 1 0 0 0

0 0 0 86401 1 0 0 1

This table translates almost directly into the HTML structure used by

Fit’s ColumnFixture class. The following code draws the table shown in

Figure 8.2, on the following page:

Download tables/TestTimeSample.html

<table border="1">

<tbody>

<tr><td colspan="8">CalculateTime</td></tr>
Ê <tr>

<td>days</td>

<td>hours</td>

<td>mins</td>

<td>secs</td>

<td>days()</td>

<td>hours()</td>

<td>mins()</td>

<td>secs()</td>

</tr>

<tr>

<td>1</td> <td>47</td> <td>59</td> <td>59</td>

<td>2</td> <td>23</td> <td>59</td> <td>59</td>

</tr>

<tr>

<td>1</td> <td>47</td> <td>59</td> <td>60</td>

<td>3</td> <td>0</td> <td>0</td> <td>0</td>

</tr>

<!-- ... and so on -->

</tbody>

</table>

http://media.pragprog.com/titles/idgtr/code/tables/TestTimeSample.html
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=112

FIT TO BE TESTED 113

Figure 8.2: ColumnFixture, before test

All we had to do is change the column names to match Fit’s conventions

in the row beginning at Ê. For instance, instead of “days in” and “days

out,” we now have days and days(), respectively.

Fit will go through the table one row at a time, reading from left to

right within each row. Inside each cell, it will look at the column name

and either read or write an attribute of a test fixture object (we’ll define

that in a minute), depending on whether the column name ends in

parentheses.

So, a value of 2 in the nonparenthesized days column would cause Fit

to run something like the following pseudocode. . .

fixture.days = 2

whereas a 2 in the days() column (with parentheses) would read the

attribute instead and check the result:

passed = (fixture.days == 2)

Where does Fit get that fixture object?3 The title of the table is “Calculate-

Time,” so Fit will look in calculate_time.rb for a class called CalculateTime.

Let’s put that class together. First, here’s the initializer:

Download tables/calculate_time.rb

require 'fit/column_fixture'

require 'calculator'

3. Actually, Fit’s internal name for this variable is adapter, but who’s counting?

http://media.pragprog.com/titles/idgtr/code/tables/calculate_time.rb
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=113

FIT TO BE TESTED 114

class CalculateTime < Fit::ColumnFixture

def initialize

@calc = Calculator.single

@days = @hours = @mins = @secs = nil

end

end

Next, we need to provide accessors for those attributes. Let’s look at the

pseudocode for how Fit will process a typical row of test data:

fixture.days = 1

fixture.hours = 47

fixture.mins = 59
Ê fixture.secs = 59

passed = (fixture.days == 2)

passed &&= (fixture.hours == 23)

passed &&= (fixture.mins == 59)

passed &&= (fixture.secs == 59)

Not until Ê do we have all four values that will be entered into the

calculator. So, the only nontrivial accessor is the writer for secs. This

one will do all the button pushing. It will enter the four numbers, add

zero (which will cause the calculator to do the unit conversion), and

parse the results:

Download tables/calculate_time.rb

class CalculateTime

attr_accessor :days, :hours, :mins

attr_reader :secs

def secs=(value)

@secs = value

@calc.enter_time @days, @hours, @mins, @secs

@calc.plus

@calc.enter_number 0

@calc.equals

@days, @hours, @mins, @secs = @calc.time

end

end

To run the test, we need a custom test harness to shut down the cal-

culator at the end, just like we did with ZenTest. All we have to do is

create our own copy of the fit file in <<fit directory>>/bin and add a custom

test runner.

http://media.pragprog.com/titles/idgtr/code/tables/calculate_time.rb
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=114

FIT TO BE TESTED 115

Download tables/fit.rb

class CalcRunner < Fit::FileRunner

def run(args)

process_args args

process

$stderr.puts @fixture.totals

Calculator.single.off # will exit

end

end

CalcRunner.new.run(ARGV)

Put that code in place of the line that calls Fit::FileRunner, and save it in

your project directory as fit.rb. Now you can test the calculator like this:

$ jruby fit.rb TestTime.html TestTimeResults.html

Open TestTimeResults.html in your browser. You should see the same table

that you started with, but with all the output columns (the ones with

parentheses in the title) shaded light green to signify that the test

passed, something like Figure 8.3, on the next page.

You’ll notice that we’ve really tested only a few combinations of days,

hours, minutes, and seconds—mostly near the edges of legal ranges.

Go ahead and experiment with adding some more tests to the table.

What kinds of values make good sense to try?

Action Fixtures

Of Fit’s many different kinds of test fixtures, the column fixture we just

discussed is the closest fit to this chapter’s matrix-driven theme. But

the action fixture is worth looking at as well.

An action fixture is more like a traditional test script: do this, press

this, read this, check this value, and so on. Since we spent the first

half of the book moving specific GUI actions out of the test script, I’m

not going to take a whole lot of time putting them back in.

It’s still worth writing a quick action fixture, just to get a feel for it. After

all, if you have a project full of declarative Fit tests and you need to add

only one or two sequential tests, creating a separate RSpec project for

just those extra tests might be overkill.

http://media.pragprog.com/titles/idgtr/code/tables/fit.rb
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=115

FIT TO BE TESTED 116

Figure 8.3: ColumnFixture, after test

So, here’s a simple addition test as an action fixture:

<table border="1">

<tbody>

<tr><td colspan="3">fit.ActionFixture</td></tr>

<tr><td>start</td><td colspan="2">CalculatorActions</td></tr>

<tr><td>enter</td><td>number</td><td>2</td></tr>

<tr><td>press</td><td colspan="2">plus</td></tr>

<tr><td>enter</td><td>number</td><td>3</td></tr>

<tr><td>press</td><td colspan="2">equals</td></tr>

<tr><td>check</td><td>total_seconds</td><td>5</td></tr>

</tbody>

</table>

The first two rows of the table tell Fit to look for an ActionFixture called

CalculatorActions in calculator_actions.rb. Each subsequent row contains

one of three words Fit understands:

• enter x y passes whatever we supply for y to the x() method of our

fixture.

• press x calls our fixture’s x() method.

• check x y calls the x() method and compares the result with y.

As with the column fixture, Fit will color any pass/fail cells of the table

according to their status.

We’ve now seen several different ways we can vary more than one

parameter at once. Now we’re left with the much more difficult task

of choosing what conditions should vary and which combinations we

should test.

http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=116

FIT TO BE TESTED 117

Brian Marick’s workshop materials provide a wonderful discussion on

selecting effective test values.4 It’s also worth exploring the idea of pair-

wise testing, or covering many combinations with as few test cases as

possible.5

What’s next? Well, just as there are some tests that call out for a com-

pact table representation, there are others that are best expressed in a

lengthier narrative setting: a story.

So in a couple of chapters, we’re going to test a simple web app with

a set of readable, engaging stories. Ah, but first, how do we test web

apps? Find out in the next chapter.

4. http://www.exampler.com/testing-com/writings/half-day-programmer.pdf

5. http://www.pairwise.org/articles.asp

http://www.exampler.com/testing-com/writings/half-day-programmer.pdf
http://www.pairwise.org/articles.asp
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=117

The Internet is not something that you just dump something

on. It’s not a big truck. It’s a series of tubes.

Sen. Ted Stevens

Chapter 9

Testing the Tubes:
Web Applications

Ready to break out of the desktop for a little while? Let’s test the GUIs

of some web apps. There are several different tacks we could take.

• Impersonating a browser: A headless script sends the same kinds

of requests a browser would but just measures response times

without bothering to look at the content of the web page.

• Parsing the HTML ourselves: Start with the “impersonator,” but

add the ability to drill into the web page to identify links, buttons,

text, and other GUI elements.

• Driving an actual browser: With this approach, a test script would

launch, say, Firefox and cause it to fill in forms, visit links, etc.

So, are we impersonators, parsers, or drivers? All three, I hope.

The impersonator approach is good for finding bottlenecks in your app.

You can quickly assemble a bunch of simple test nodes to hit your site

at once and use something like Julian Boot’s “Getting Real Numbers”

technique to analyze the results.1 When you need a little more sophis-

tication, maybe for a quick-running functional test, you can parse the

replies from the server with something like Webrat.2

But going through a real web browser is the closest to how your end

users are going to see the app. And it’s the only practical way to test

1. http://conferences.oreillynet.com/presentations/rails2007/boot_julian.pdf

2. http://agilewebdevelopment.com/plugins/webrat

http://conferences.oreillynet.com/presentations/rails2007/boot_julian.pdf
http://agilewebdevelopment.com/plugins/webrat

IN-BROWSER TESTING 119

JavaScript-heavy pages from a script. I hope you’re using a mixture of

all these techniques to test your web app. Since this is a GUI book,

though, this chapter will focus on in-browser testing.

9.1 In-Browser Testing

In this chapter, we’ll write a few simple scripts to exercise a single fea-

ture of a web application. The focus is on the nuts and bolts of control-

ling the browser, not on simulating a lengthy, interactive session on the

site. For that, you’ll have to wait until the next chapter.

Rather than directly parsing a web page’s HTML, an in-browser test will

launch a web browser and use some kind of scripting interface to direct

the browser as it clicks buttons and follows links. The exact method of

controlling the browser varies. Some browsers support their platforms’

native automation interfaces, like Internet Explorer’s COM bindings or

Safari’s AppleScript dictionary. The Watir family of test toolkits are sim-

ple wrappers around these specific APIs.

Other test libraries are more platform-independent. Selenium RC, for

instance, acts as a local web proxy sitting between the real browser and

the outside world. It injects its own JavaScript code into every page the

browser sees, and test scripts interact with the provided JavaScript

interface by sending Selenium simple commands over TCP.

No matter whether you’re going through a simple Ruby/COM bridge or

through three layers of JavaScript and network libraries, your top-level

test script will have pretty much the same structure. In fact, for simple

tests, it can consist of exactly the same code, as we’ll see later.

9.2 Selenium

Selenium is a suite of web testing tools. It includes an IDE for writing

scripts, an HTML-based scripting language called Selenese (a bit like

Fit from the previous chapter), a TCP server for programming languages

other than Selenese, and a few more goodies.

Covering all of Selenium would be a huge undertaking. We need only a

couple of its technologies for this book: the Core engine that runs the

tests inside a browser and the Remote Control server that lets us direct

those tests from Ruby.

http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=119

SELENIUM 120

Hello, Selenium

The OpenQA folks offer an all-in-one Selenium package, with both

the server software and the various programming language bindings

(including Ruby).3 However, I prefer to work “inside out.” Rather than

downloading a Selenium server that has its own Ruby files inside, I’ve

installed a Ruby library that has its own copy of the Selenium server

inside:

$ sudo gem install Selenium

It’s important to capitalize Selenium’s name just for the previous com-

mand; for the rest of this chapter, you’ll spell it in all lowercase letters.

The gem puts the selenium command in your PATH, so you can launch

the server with one word. Go ahead and try it:

$ selenium

«bunch of startup messages»

20:47:41.895 INFO - Started SocketListener on 0.0.0.0:4444

Leave that running and grab another command line to run your tests.

A Taste of Web Testing

Let’s see what it’s like to drive a real web app. A search engine is a

pretty intuitive concept, so we’ll use the book search on the Pragmatic

Programmers’ website. We’ll search for books on Ruby, parse through

the detailed results, and select an item for the shopping cart.

We’ll stop short of actually logging into the purchasing system. Andy

and Dave were kind enough to let me use their site for this example,

and I don’t want to set loose tens of millions of readers4 hammering on

the accounts system for what’s just supposed to be an example.5

Getting Connected

The first thing we need to do is load the main pragprog.com page. Take

the Ruby code on the following page for a spin.

3. http://www.openqa.org/selenium-rc/download.action

4. I can dream, can’t I?
5. Maybe those of you with last names from A–M can run the code examples on Mon-

day/Wednesday/Friday, and N–Z can have Tuesday/Thursday. Weekends are for num-

bers and underscores.

pragprog.com
http://www.openqa.org/selenium-rc/download.action
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=120

SELENIUM 121

Download tubes/selenium_example.rb

require 'rubygems'

require 'selenium'

browser = Selenium::SeleniumDriver.new \
Ê 'localhost', 4444, '*firefox', 'http://www.pragprog.com', 10000

browser.start

browser.open 'http://www.pragprog.com'

At Ê, we connect to the Selenium server and tell it our browser prefer-

ence. As you’re running these tests, you might experiment by replacing

*firefox with *iexplore, *safari, *opera, or one of the other Selenium-defined

names.6 When you run what you have so far. . .

$ ruby selenium_example.rb

you should end up with something like Figure 9.1, on the following

page. Selenium has inserted itself into the top half of the window; in

the upper-right corner, you can see the list of actions it’s performing.

Using a Search Form

Once we’ve started the browser and landed on a web page, how do we

interact with it? For our simple search form smoke test, it’ll probably

suffice to type in a known search term and make sure a specific book

pops up in the results.

So just for fun, let’s search for book titles containing the word Ruby.

Here’s the core of the search form on the page we’re going to use, sim-

plified a bit:

<input id="q">

<button class="go">

And here’s the Ruby code that will drive those controls using Selenium:

Download tubes/selenium_example.rb

Ê browser.type '//input[@id="q"]', 'Ruby'
Ë browser.click '//button[@class="go"]'

browser.wait_for_page_to_load 5000

Notice how the id=... and class=... identifiers at Ê and Ë parallel the

form elements. These identifiers use XPath, a notation for describing

the structure of XML documents (which also happens to work OK for

HTML).7

6. Search http://wiki.openqa.org for special browser strings, or just visit

http://tinyurl.com/2mp5dw.
7. http://www.w3.org/TR/xpath

http://media.pragprog.com/titles/idgtr/code/tubes/selenium_example.rb
http://media.pragprog.com/titles/idgtr/code/tubes/selenium_example.rb
http://wiki.openqa.org
http://tinyurl.com/2mp5dw
http://www.w3.org/TR/xpath
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=121

SELENIUM 122

Figure 9.1: Selenium and Firefox

XPath is a huge topic, and it’s only one of several ways Selenium can

use to find parts of a web page. So, in lieu of an all-encompassing

tutorial, this chapter will just explain a few XPath concepts on the fly,

as we encounter them.

Making Sense of the Results

The search form spits out a chunk of HTML that looks like this (minus

the stuff we don’t need for this example):

<table id="bookshelf">

<tr>

<td class="description">

<h4>Book Title</h4>

<p class="by-line">by One Author and Another Author, with One Helper</p>

</td>

</tr>

... rest of results ...

</table>

http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=122

SELENIUM 123

We have two tasks ahead of us: finding the number of search results

(that is, rows in the table) and grubbing out a book’s details (title,

author, and so on) from each row. For the first task, Selenium pro-

vides a function, get_xpath_count(), once we conjure up the right XPath

expression. Let’s get conjurin’!

Counting the Rows

Here’s how to look for <tr> elements inside the bookshelf table:

//table[@id="bookshelf"]/tr

However, some web browsers take it upon themselves to “clean up” the

HTML and add extra tags while they’re rendering a page. For exam-

ple, sometimes a table will get a <tbody> tag added just inside it. So,

the previous XPath expression won’t always work. We can modify the

expression to watch for <tbody>, like this:

//table[@id="bookshelf"]/tbody/tr

But that will fail on browsers that don’t modify the HTML. For this

example, we’ll just go with an expression that will match both:

//table[@id="bookshelf"]//tr

This will match any <tr> inside the table, even if it’s buried inside a

sub-subtable. Fortunately, this page doesn’t use nested tables.

Now that we have an XPath expression that will match any row inside

the table, Selenium’s get_xpath_count() function will tell us the number

of rows in the table:

Download tubes/selenium_example.rb

num_results = browser.get_xpath_count('//table[@id="bookshelf"]//tr').to_i

Not all projects hand us such a simple layout on a silver platter. Some-

times, you end up with really hard-to-write, fragile XPath expressions

with lots of nested div/div/div/p/span/a stuff. Fortunately, there are ways

to cut across all those layers. Let’s look at one of those ways as we iter-

ate through the search results.

Looping Through the Results

Each search result is an <a> within an <h4> within a <td> within a <tr>

within a <table>. So to find, say, the third result, we could use this:

//table[@id="bookshelf"]/tr[3]/td/h4/a

http://media.pragprog.com/titles/idgtr/code/tubes/selenium_example.rb
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=123

SELENIUM 124

Aside from the earlier <tbody> issue, this expression specifies five lay-

ers of HTML structure directly. That can be kind of fragile in the face

of change. Instead, let’s jump right into the table and look for <td

class="description"> tags. A first attempt might look like this:

//td[@class="description"][3]/h4/a

But that would match only the third <td class="description"> in a table

row. This table doesn’t have any three-element rows. What we want is

the third <td class="description"> anywhere on the page. The descendant

modifier (XPath calls it the descendant “axis”) allows us to write a little

more general version:

descendant::td[@class="description"][3]/h4/a

Here’s how to put it all together:

Download tubes/selenium_example.rb

results = (1..num_results).map do |n|
Ê element = "xpath=/descendant::td[@class='description'][#{n}]/h4/a"

title = browser.get_text(element)
Ë url = browser.get_attribute(element + '@href')

{:title => title, :url => url, :element => element}

end

results.each do |r|

puts 'Title: ' + r[:title]

puts 'Link: ' + r[:url]

puts

end

The expression at Ê finds the nth <td class="description"> item anywhere

on the page and then drills into it to get the hyperlink. The leading

xpath= isn’t part of the XPath standard. It’s an extra hint for Selenium,

which needs to be explicitly told we’re using XPath if our expression

starts with anything other than //.

Using descendant is overkill for this fairly simple layout. But when you

have a big, complicated page to parse and no easy id or class attributes

to grab hold of, the fancier XPath axes may be the only way to spec-

ify what you’re looking for. Just be aware that the more general the

expression, the more you risk matching more items on the page than

you intended.

http://media.pragprog.com/titles/idgtr/code/tubes/selenium_example.rb
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=124

SELENIUM 125

Jumping Off the Site

So far, all the links we’ve followed and forms we’ve filled out have stayed

within the same domain. If you happen to need to follow a link to

another site, you’ll need to be aware of one of Selenium’s subtleties.

Let’s continue from the previous example, where we looked through a

list of search results. If we now click a book’s title. . .

Download tubes/selenium_example.rb

pickaxe = results.find {|r| r[:title].include? 'Programming Ruby 3'}

browser.click pickaxe[:element]

browser.wait_for_page_to_load 5000

we’ll get a full details page, including a “Buy Now” form that looks a

little like this:

<form id="buy-now">

<div>

<label>Select a Format:</label>

<select name="sku_id">

... book format options ...

</select>

<button class="add-to-cart" type="submit">

Add to Cart

</button>

</div>

</form>

Let’s add some code to put the book in our cart and then log in to make

the purchase. Note the secure URL of the login link: we’re moving from

http:// to https://.

Download tubes/selenium_example.rb

browser.click '//button[@class="add-to-cart"]'

browser.wait_for_page_to_load 5000

browser.open 'https://secure.pragprog.com/login'

browser.wait_for_page_to_load 5000

What happens when you run the code now? Probably something like

this:

«path»/selenium.rb:162:in `do_command': Permission denied to get property

Location.href (SeleniumCommandError)

Here’s why we’re seeing an error. Remember that the Selenium server

injects its JavaScript libraries on the fly into each page we visit. Since

we’re testing pages that live at pragprog.com, the web browser has

http://media.pragprog.com/titles/idgtr/code/tubes/selenium_example.rb
http://
https://
http://media.pragprog.com/titles/idgtr/code/tubes/selenium_example.rb
pragprog.com
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=125

SELENIUM AND RSPEC 126

been fooled into thinking that the http://pragprog.com domain is hosting

all that JavaScript. Because of the “same-origin” security policy, your

browser won’t let those scripts control pages on any other domain.8 And

the secure https://pragprog.com domain is considered different from the

regular http://pragprog.com domain.

Fortunately, there’s a workaround. In addition to all the supported

browsers we discussed earlier (*iexplore, *firefox, and so on), Selenium

allows a couple of experimental browser strings, *iehta and *chrome.

These control Internet Explorer and Firefox, respectively, but using

their native scripting interfaces rather than vanilla JavaScript injected

into a page.

These will do the trick, but be aware that you’re bypassing an important

safeguard. Ideally, you should be in control of the content of whatever

page you’re going to land on.

Go ahead and adjust the connection line of your test script to use one

of the experimental browsers:

browser = Selenium::SeleniumDriver.new \

'localhost', 4444, '*chrome', 'http://www.pragprog.com', 10000

The example should successfully land on the login page now.

9.3 Selenium and RSpec

Just as we did with the desktop apps we tested in the first half of this

book, we’re going to take a batch of the interface-specific code we have

so far and package it up in a nice RSpec test. It’s good practice, and it’ll

come in handy later in the chapter.

Searching with Class

The first thing we’ll do is put all that browser-specific stuff inside a

BookSearch class, as shown on the following page.

8. http://www.mozilla.org/projects/security/components/same-origin.html

http://pragprog.com
https://pragprog.com
http://pragprog.com
http://www.mozilla.org/projects/security/components/same-origin.html
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=126

SELENIUM AND RSPEC 127

Download tubes/book_selenium.rb

require 'rubygems'

require 'selenium'

class BookSearch

def initialize

@browser = Selenium::SeleniumDriver.new \

'localhost', 4444, '*firefox', 'http://www.pragprog.com', 10000

@browser.start

end

def close

@browser.stop

end

end

Now, let’s give the class a find() method that returns a title-indexed list

of all books matching any given search term:

Download tubes/book_selenium.rb

class BookSearch
Ê ResultCounter = '//table[@id="bookshelf"]//tr'

ResultReader = 'xpath=/descendant::td[@class="description"]'

def find(term)

@browser.open '/'

@browser.type '//input[@id="q"]', term

@browser.click '//button[@class="go"]'

@browser.wait_for_page_to_load 5000

num_results = @browser.get_xpath_count(ResultCounter).to_i

(1..num_results).inject({}) do |results, i|
Ë full_title = @browser.get_text("#{ResultReader}[#{i}]/h4/a")

byline = @browser.get_text("#{ResultReader}[#{i}]/p[@class='by-line']")

url = @browser.get_attribute("#{ResultReader}[#{i}]/h4/a@href")

title, subtitle = full_title.split ': '
Ì authors = authors_from byline

results.merge title =>

{

:title => title,

:subtitle => subtitle,

:url => url,

:authors => authors

}

end

end

end

The XPath expressions at Ê are the same as earlier in the chapter. We’re

http://media.pragprog.com/titles/idgtr/code/tubes/book_selenium.rb
http://media.pragprog.com/titles/idgtr/code/tubes/book_selenium.rb
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=127

SELENIUM AND RSPEC 128

just stashing them in constants to keep their purpose clear so we don’t

have to repeat ourselves so much at Ë.

Pulling author and contributor names from the byline at Ì requires a

bit of regular expressing matching:

Download tubes/book_selenium.rb

class BookSearch

def authors_from(byline)

byline[3..-1].gsub(/(,? and)|(,? with)/, ',').split(',')

end

end

Now we have a BookSearch class that could easily be modified to support

any book search engine we care to (or any web browser we care to, as

we’ll soon see).

A Few Examples

Let’s see what it would look like to call this code from some RSpec tests:

Download tubes/search_spec.rb

describe 'Searching for Ruby' do

before :all do

@search = BookSearch.new

@results = @search.find 'Ruby'

end

after :all do

@search.close

end

it 'should find the Pickaxe book' do

book = @results['Programming Ruby']

book.should_not be_nil

book[:authors].should include('Dave Thomas')

end

it 'should not find the Ajax book' do

@results.should_not have_key('Pragmatic Ajax')

end

it 'should fail (on purpose) to find Gilgamesh' do

Ê @results.should have_key('Gilgamesh')

end

end

I’ve added an intentional failure at Ê so that we can look at ways to

report problems. For reasons that will become clear later, I haven’t put

a require line in the spec file. So, you’ll need to specify the book_selenium

library on the command line.

http://media.pragprog.com/titles/idgtr/code/tubes/book_selenium.rb
http://media.pragprog.com/titles/idgtr/code/tubes/search_spec.rb
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=128

SELENIUM AND RSPEC 129

$ spec -rbook_selenium search_spec.rb

Give that a shot. The text report will mention the one failed test, but

what if we’d like to do something a little more informative?

Fancy Reporting

RSpec includes a lovely HTML formatter:

$ spec -fhtml -rbook_selenium search_spec.rb

That will print nice syntax-colored source code of whatever failures it

encounters. And with just a small twist, we can add screenshots, too.

Add a new Ruby file called html_capture.rb. First we’ll use RSpec’s config

hooks to take a screenshot after every test step:

Download tubes/html_capture.rb

require 'spec/runner/formatter/html_formatter'

Spec::Runner.configure do |config|

config.before :all do

$example_num = 1

end

config.after do

Ê `screencapture #{$example_num}.png`

$example_num += 1

end

end

Using global variables is about the crudest way to keep track of which

step we’re on, but it’ll do for a simple example like this. The screencap-

ture call at Ê is Mac-specific. If you’re on Windows, you’ll need to install

the RMagick and win32capture gems and then replace that code with

something like this:

width, height, bmp = Win32::Screenshot.foreground

Magick::Image.from_blob(bmp)[0].write "#{$example_num}.png"

Now RSpec will take a screen capture after every example. To include

just the failed ones in our report, we’ll create a new report formatter:

Download tubes/html_capture.rb

class HtmlCapture < Spec::Runner::Formatter::HtmlFormatter

def extra_failure_content(failure)

img = %Q(<img src="#{example_number}.png"

alt="" width="25%" height="25%" />)

super(failure) + img

end

end

http://media.pragprog.com/titles/idgtr/code/tubes/html_capture.rb
http://media.pragprog.com/titles/idgtr/code/tubes/html_capture.rb
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=129

SELENIUM AND RSPEC 130

Figure 9.2: A Selenium test report

To use our custom formatter, we use the command line both to load

the new Ruby file and to specify the formatter class:

$ spec -rhtml_capture -fHtmlCapture -rbook_selenium search_spec.rb > out.html

After the test runs, open out.html in your browser. You should see some-

thing like Figure 9.2.

There are lots of potential improvements to this approach. We’re not

really using the screenshots of the passed steps, so perhaps we can

skip taking them. We could turn the tag into a link. We could

detect which OS we’re running and automatically use the appropriate

screen capture method.

There is a Ruby gem called Spec::Ui that does all this. As of this writing,

it’s a couple of versions behind RSpec, but it’s still worth looking into.9

9. http://rspec-ext.rubyforge.org

http://rspec-ext.rubyforge.org
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=130

INTERACTING WITH AJAX 131

Figure 9.3: Drag and drop

We’ve seen an overview of how RSpec and Selenium plug into each

other. Now, let’s look at one place where Selenium outshines other web-

testing toolkits: mouse-driven Ajax sites.

9.4 Interacting with Ajax

So far, we’ve looked only at straight HTML pages. How do we test some-

thing a little more interactive, like a JavaScript-heavy site?

For this section, we’ll use a simple drag-and-drop list. I’ve included one

in the source code for this book, in dragdrop.html. To use it, you’ll need

an open source JavaScript library called script.aculo.us.10

10. http://script.aculo.us

http://script.aculo.us
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=131

INTERACTING WITH AJAX 132

Download and open the latest source archive from script.aculo.us site.

Copy all the .js files from the lib and src directories to the same folder

where you’re keeping dragdrop.html.

Open dragdrop.html manually in your browser, and click the “Reorder”

link. If the JavaScript files are in the right place, then you should see

a bunch of little black draggable handles, as in Figure 9.3, on the pre-

ceding page.

Selenium works best when the browser is going through an actual web

server, rather than just reading files off a disk. For the tests in this

section, fire up a separate command prompt, and run the trivial Ruby-

based server included in this chapter’s source code (web_server.rb).11

I’m assuming you’re running behind a firewall or taking some other

measure to keep people from hitting this page from the outside world.

Let’s write a couple of tests to exercise the drag-and-drop capabilities

of the joke list. First, here’s the outline of the RSpec description:

require 'joke_list'

describe JokeList do

before do

@list = JokeList.new

end

after do

@list.close

end

tests will go here...

end

For the first example, we’ll just do a single drag to the end of the list:

Download tubes/list_spec.rb

it 'lets me drag an item to the end' do

@list.order('doctor').should == 2

@list.move 2, 5

@list.order('doctor').should == 5

end

Let’s go ahead and fill in enough of the JokeList class to drive the web

browser for that example.

11. Or you can use your favorite web server package and adjust the port numbers in the

script if you want to use something other than 8000.

http://media.pragprog.com/titles/idgtr/code/tubes/list_spec.rb
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=132

INTERACTING WITH AJAX 133

Here’s the setup and teardown code:

Download tubes/joke_list.rb

require 'rubygems'

require 'selenium'

class JokeList

def initialize

@browser = Selenium::SeleniumDriver.new \

'localhost', 4444, '*firefox', "http://localhost:8000", 10000

@browser.start

@browser.open 'http://localhost:8000/dragdrop.html'

end

def close

@browser.stop

end

end

JokeList also needs an order() method so we can see where a given joke

is in the list. I’ve given each joke a unique id attribute in the HTML, and

Selenium’s get_element_index() method will take those IDs directly:

Download tubes/joke_list.rb

class JokeList

def order(item)

@browser.get_element_index(item).to_i + 1

end

end

Now we need to add drag and drop. There are a few different ways to do

this in Selenium. If we’re just doing something really simple like moving

an item past the end of a list, we can say this. . .

@browser.drag_and_drop element, '0, +300'

which will break as soon as we try to test a list that’s taller than 300

pixels. Coordinates retrieved at runtime are much more resilient than

hard-coded offsets:

last_y = @browser.get_element_position_top(last_element) +

@browser.get_element_height(last_element)

@browser.drag_and_drop element, "0, #{last_y}"

But it turns out Selenium lets us specify the drop target directly:

@browser.drag_and_drop_to_object element, last_element

http://media.pragprog.com/titles/idgtr/code/tubes/joke_list.rb
http://media.pragprog.com/titles/idgtr/code/tubes/joke_list.rb
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=133

INTERACTING WITH AJAX 134

Here’s what it looks like in context:

Download tubes/joke_list.rb

class JokeList

Reorder = '//a[@id="reorder"]'
Ê Draggable = 'selenium.browserbot.findElement("css=.drag").visible()'

Locked = '!' + Draggable

def move(from_order, to_order)

from_element = "//li[#{from_order}]/span[@class='drag']"

to_element = "//li[#{to_order}]/span[@class='drag']"

@browser.click Reorder
Ë @browser.wait_for_condition Draggable, 2000

@browser.drag_and_drop_to_object from_element, to_element

@browser.click Reorder
Ì @browser.wait_for_condition Locked, 2000

end

end

One thing to note is that XPath uses 1 to denote the first item in a list,

rather than the 0 we’re used to from Ruby. To keep things straight,

I’m using order or pos for XPath-style, 1-based positions, and index for

Ruby-style, 0-based indices.

Another thing we need to worry about is timing. When you’re testing

an Ajax page, you often need to wait for a portion of a page to refresh.

To simulate a server round-trip, dragdrop.html pauses slightly before

showing the drag handles when you click the “Reorder” link.

A naïve approach would be to add a fixed delay to our test script. But

those are awfully prone to breakage. Instead, we’re using Selenium’s

handy wait_for_condition() method at Ë and Ì. This function will wait

until a given JavaScript piece evaluates to true. To access elements

on the page Selenium is controlling, you go through the browserbot

attribute, like we’re doing at Ê.

We’ll write one more example—something a little more substantial—and

move on. Just for fun, let’s implement an alphabetic sort on the list. An

end user might do something like an insertion sort: visually scan the

list for the item that should go last, move it to the end, scan for the item

that should be next-to-last, and so forth.12

12. Yes, it’s O(n2) comparisons, but that’s how people work.

http://media.pragprog.com/titles/idgtr/code/tubes/joke_list.rb
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=134

WATIR 135

Download tubes/list_spec.rb

it 'lets me drag multiple items to sort' do

original = @list.items

original.length.downto(1) do |last_pos|

subset = @list.items[0..last_pos - 1]

max_pos = subset.index(subset.max) + 1

@list.move max_pos, last_pos

end

@list.items.should == original.sort

end

This new example requires us to be able to retrieve the current order of

the jokes:

Download tubes/joke_list.rb

class JokeList

def items

num_items = @browser.get_xpath_count('//li').to_i

(1..num_items).map {|i| @browser.get_text "//li[#{i}]/span[2]"}

end

end

There’s a lot more to interactive web pages than just drag and drop,

of course. But we’ve touched on several places where Selenium does

fairly well, including mouse input and waiting for state changes, both

cornerstones of rich Internet apps.

9.5 Watir

Selenium is the big kid on the block of web application testing. It’s

open source, cross-platform, and based on readily available technology,

and it works with almost any programming language. Sometimes that’s

overkill for what you need. Sometimes you want something that’s not

language-neutral but that’s designed expressly for Ruby.

Designed for Ruby

That’s the thinking behind Watir (Web Application Testing in Ruby).13

Rather than trying to be all things to all people, it aims to provide a

familiar experience specifically for Ruby developers.

13. http://wtr.rubyforge.org

http://media.pragprog.com/titles/idgtr/code/tubes/list_spec.rb
http://media.pragprog.com/titles/idgtr/code/tubes/joke_list.rb
http://wtr.rubyforge.org
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=135

WATIR 136

In Selenium, you have one big, monolithic browser object that sup-

ports the typical operations: clicking, typing, dragging, and so on. By

contrast, Watir uses a separate, small Ruby object for each little chunk

of HTML that you specify.

So instead of this. . .

browser.get_text('//div[@id="foo"]/p')

you get the following:

browser.div(:id, 'foo').p.text

It’s much easier and more natural from a Ruby standpoint to specify

objects in Watir.

Of course, there’s a trade-off. The original Watir supports only Internet

Explorer. There is a separate library called SafariWatir, which, as the

name implies, drives the Safari browser on the Mac. But it’s a newer

project, and many of Watir’s features (such as searching for an element

by class or XPath) are not yet implemented.

There’s also FireWatir for Firefox on Windows, Mac, or Linux. It relies on

a binary Firefox extension called JSSh that, as of this writing, presents

a few installation challenges.

Using Watir with RSpec

It’s relatively easy to convert the book search example from the first

half of this chapter to Watir. Of course, the top-level test code doesn’t

need to change at all. Only the BookSearch class will need to be adapted.

Here’s the setup and teardown code:

Download tubes/book_watir.rb

require 'rubygems'

require 'watir'

class BookSearch

def initialize

@browser = Watir::IE.new

end

def close

@browser.close

end

end

http://media.pragprog.com/titles/idgtr/code/tubes/book_watir.rb
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=136

WATIR 137

No big surprises there. Here’s the new implementation of find():

Download tubes/book_watir.rb

class BookSearch

def find(term)

@browser.goto 'http://www.pragprog.com'
Ê @browser.text_field(:id, 'q').set('Ruby')
Ë @browser.button(:class, 'go').click

bookshelf = @browser.table(:id, 'bookshelf')

num_results = bookshelf.row_count

(1..num_results).inject({}) do |results, i|
Ì book = bookshelf[i][2]

full_title = book.h4(:index, 1).text

byline = book.p(:class, 'by-line').text

url = book.link(:index, 1).href

title, subtitle = full_title.split ': '

authors = authors_from byline

results.merge title => {

:title => title,

:subtitle => subtitle,

:url => url,

:authors => authors }

end

end

end

The first thing you noticed was probably the way Watir accesses the

form elements at Ê and Ë. The text_field() and button() methods return

individual Ruby wrappers around those controls.

It’s not just form controls that get this treatment. Watir also provides

the most common HTML tags, like the h4() and p() methods we call to

retrieve the results.

Tables also act like fairly well-behaved Ruby objects in that they can be

indexed with [], as at Ì, or iterated over using each, and so on. (They’re

not full-fledged Ruby Enumerables, though.)

To run the test, we just pass in the path to the new implementation of

BookSearch on the command line:

$ spec -rbook_watir search_spec.rb

You should see the same results that you did with Selenium.

http://media.pragprog.com/titles/idgtr/code/tubes/book_watir.rb
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=137

WRAPPING UP 138

9.6 Wrapping Up

We’ve hit the highlights of controlling a browser from a script and driv-

ing a web page. The scripts we’ve seen have all been at a pretty superfi-

cial level of detail, though. They were enough to get us up and running

in Selenium and Watir. But it would be nice to see a little more realistic

of an example.

To do that, we’re going to need some more of RSpec’s expressiveness.

Read on to find out how to craft richer tests that can simulate a lengthy

user interaction with an app.

http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=138

Chapter 10

Testing in Plain English:
Story Runner

We’ve seen tests that look like cocktail napkins, and we’ve seen more

compact tests that look like tables. They can be sort of legible to non-

technical readers, but it still takes someone who knows Ruby to actu-

ally write them—to know where to put all those parentheses and do/end

blocks and so forth.

What if the top-level tests could do away with Ruby syntax altogether

and just be in plain text? That’s the premise of Story Runner, a recent

addition to RSpec.

10.1 From Examples to Stories

RSpec really has two sides to it. The “classic” describe/it notation, also

known as example notation, is typically used for code-level unit tests.

As you saw in the first half of the book, it also came in handy for library-

level functional testing of the LockNote and JunqueNote classes we wrote.

The newer Story Runner is more geared toward user acceptance tests.

The emphasis is on legibility over conciseness. At the time of this writ-

ing, Story Runner is still a relatively recent addition to RSpec. But it’s

rapidly becoming the preferred way of writing user interface tests.

FROM EXAMPLES TO STORIES 140

Review: What Are Examples For?

Consider the following test that we saw earlier in Chapter 5, The Home

Stretch, on page 66:

describe 'A previously saved document' do

it_should_behave_like 'a saved document'

it_should_behave_like 'a reopened document'

it 'supports changing the password' do

@note.change_password \

:old_password => 'password',

:password => 'new'

@note.exit!

@note = Note.open 'SavedNote', :password => 'new'

@note.should_not have_prompted(:with_error)

@note.should be_running

end

end

This code exercised the change_password() method of the Note class.

Since it was testing just one feature under one set of circumstances,

it used a prefab test fixture instead of creating a new document from

scratch.

The describe/it example has given us some degree of confidence that

change_password() pushes the right GUI buttons to set a document’s

password. Now it’s time to actually use that function in some accep-

tance tests.

Starting with Stories

Let’s look at how we might use Story Runner to write a user acceptance

test. Rather than exercise the app feature by feature, the way we did

when we were doing functional testing, we’re going to look at broader

descriptions that might cover several features—user stories, in other

words.1

For LockNote and JunqueNote, we might imagine a couple of general

things people expect out of the app: password protection of documents

and basic text-editing features. In Story Runner parlance, each of these

would be considered a story.

1. If you’re a fan of agile software development, you’ve probably encountered the idea of

user stories in a similar, but not identical, context. Dan North explains RSpec’s specific

take on stories at http://dannorth.net/whats-in-a-story.

http://dannorth.net/whats-in-a-story
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=140

FROM EXAMPLES TO STORIES 141

Within, say, the password story, there are several different ways an end

user could interact with the program. He might create a new document,

save it, rename it, reopen it, get the password wrong on the first try,

and finally view the contents. Or he might open an existing document,

add some text at the end, and then change the password. Each of these

scripted interactions is called a scenario in RSpec.

In RSpec, a story starts with a name and a free-form description. The

latter can be anything; the custom is to follow the basic pattern, “As a

«role», I want to «do something» so that I can «get some result».”

Let’s see how that concept looks for our password-changing example:

Download story/password.story

Story: Password protection

As a security-conscious person

I want to encrypt each document with a password

So that only I (and the NSA) can read it

Good. Now for the individual test steps.

Scenarios in a Story

There are lots of facets to passwords: how to create one, when to enter

one, how to change one, what to do with a bad one, and so on. If we were

creating a new app from scratch, we’d sketch out several different sce-

narios of the different ways people might lock and unlock documents.

They’d all go under the general umbrella of the password protection

story.

Imagine one of these specific scenarios of how someone might use a

note-taking app in the real world:

1. Open a new document.

2. Type some text.

3. Save the document with a password.

4. Exit the program.

5. Use the old password to reopen the document.

6. Change the password from the old one to the new one.

7. Exit the program.

8. Use the new password to reopen the document.

Much as a describe block groups individual examples together, a Story

contains one or more Scenarios. Each of these Scenarios follows a con-

sistent script: “Given «some condition», When «I perform some action», Then

http://media.pragprog.com/titles/idgtr/code/story/password.story
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=141

FROM EXAMPLES TO STORIES 142

«I expect a particular result».” The previous list is pretty easy to rewrite in

this format:

Download story/password.story

Scenario: Changing the password

Given a new document

When I type "this is my document"

And I save the document as "Secrets" with password "unguessable"

And I exit the app

And I open the document "Secrets" with password "unguessable"

Then the app should be running

And the text should be "this is my document"

When I change the password from "unguessable" to "uncrackable"

And I exit the app

And I open the document "Secrets" with password "uncrackable"

Then the app should be running

And the text should be "this is my document"

The idea is that someone close to the customer will write these stories

and that someone familiar with Ruby (possibly the same person, but

not necessarily) will write the test code that implements them.

Pattern Matching in Scenarios

So, how do we link these textual stories to all those Ruby calls that type

keystrokes? RSpec uses a simple pattern-matching method. For each

Given, When, or Then line in the plain-text user story, we need to write a

corresponding chunk of Ruby code to implement that test step. RSpec

sensibly calls these step definitions. Here’s what a step definition file

looks like:

Download story/password.rb

require 'rubygems'

require 'spec/story'

Ê steps_for :app_state do

Given 'a new document' do

@note = Note.open

end

When 'I exit the app' do

@note.exit!

end

Then 'the app should be running' do

@note.should be_running

end

end

http://media.pragprog.com/titles/idgtr/code/story/password.story
http://media.pragprog.com/titles/idgtr/code/story/password.rb
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=142

FROM EXAMPLES TO STORIES 143

The steps_for line at Ê groups a series of related definitions. Each Given,

When, or Then block will run when RSpec encounters a matching phrase

inside a scenario.

The matching algorithm has a little flexibility to it. A step introduced

with And will be read as if it began with whatever the previous starting

word was. So, the stilted When X / When Y / When Z becomes the more

fluid When X / And Y / And Z.

Step definitions can be plain strings or regular expressions. They can

have parameters, too:

Download story/password.rb

steps_for :documents do

When 'I type "$something"' do |something|

@note.text = something

end

Ê When 'I save the document as "$name" with password "$password"' do

|name, password|

@note.save_as name, :password => password

end

When 'I open the document "$name" with password "$password"' do

|name, password|

@note = Note.open name, :password => password

end

When 'I change the password from "$old" to "$password"' do

|old, password|

@note.change_password :old_password => old, :password => password

end

Then 'the text should be "$something"' do |something|

@note.text.should == something

end

end

At Ê, you can see how step parameters are assigned. Each dollar vari-

able inside the string is a placeholder for one parameter, and they’re

passed into the block in left-to-right order. The names of the dollar

variables don’t have to match the block parameters—I could have called

them $1 and $2—but it’s nice to be consistent.

RSpec will look for matches in the same order that you give the step

definitions. So, When I eat will match When "I $verb" if it appears before

When "I eat", even though the latter is more specific.

http://media.pragprog.com/titles/idgtr/code/story/password.rb
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=143

DESIGNING WITH STORIES 144

You’ve no doubt noticed that we haven’t yet connected the step defini-

tions in password.rb with the user story in password.story. Here’s how to

do that. Notice that step groups are composable—we can specify that

RSpec should use both the app_state and documents groups for pattern

matching as it runs the tests:

Download story/password.rb

with_steps_for :app_state, :documents do

run 'password.story'

end

Go ahead and give it a shot:

C:\> ruby -rlocknote password.rb

Here’s the JRuby equivalent:

$ jruby -rjunquenote password.rb

So, what have we done? We’ve written a test in about three times the

number of lines it would have taken us in “classic” RSpec. After all the

emphasis on efficient notation, why would we want to write something

so wordy?

User stories are quite a bit wordier than their cocktail-napkin counter-

parts, but this verbosity can be useful. For instance:

• Writing stories in plain text helps close the loop from customer

wishes to running code.

• When you find a bug in software, capturing it in a story can help

the developers re-create the problem.

• In contrast to the petite examples that exercise a single feature,

a story is a good fit for a long test that simulates a complex user

interaction and may touch on many features.

10.2 Designing with Stories

Most of the sample apps we’ve tested in this book have been real-world

programs that existed long before the book did. That gave us the chance

to see the typical gotchas and caveats that would be missing from a toy

demo program.

But if we used someone else’s preexisting app for this chapter, we’d

miss out on one place where stories really come in handy: documenting

designs before you have a real app. To get a feel for this process, we’ll

build a web program from the ground up.

http://media.pragprog.com/titles/idgtr/code/story/password.rb
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=144

DESIGNING WITH STORIES 145

No-Hassle Party Invitations

What kind of site should we build? Here’s an idea I wish someone would

implement. We’re all tired of those party-planning sites that send guests

a 100KB GIF-laden email invitation that doesn’t actually tell them any-

thing about the party. Or that make you go through a million “easy

steps” just to ask a few friends over for dinner.

Let’s go to the other extreme and imagine a site where all the details

are right there on the page and no registrations or email addresses are

required at all. Ideally, all we should have to do is name the party; even

the time should be a reasonable default. We’ll call our site “Novite,” as

in “no-hassle invite.”

Getting Started

The source code to Novite comes with this book. It just happens to be

written in Ruby (using the Rails framework), but it could have been

written in anything. The tests we’re writing here aren’t going to interact

with the app’s Ruby source at all; everything is going to go through the

browser.

To drive the web browser, we’re going to use Selenium RC. As we did

in the previous chapter, we’ll launch the Selenium server and leave it

running during our tests. Our test code will use the Ruby wrapper for

Selenium to send commands to the server.

So, you’ll have two servers running during the test: the web server and

Selenium RC. First, if you don’t already have Rails installed, you’ll need

to do so:

$ sudo gem install -y rails

Then, go to where you put the source for this book and hop into the

novite subdirectory. Before the first time you launch the app, you’ll need

to create the database:

$ rake db:migrate

Now you’re ready to start the web server:

$ ruby script/server

Leave that running in its own terminal, start the Selenium server in a

second terminal like we did in the previous chapter, and do your testing

from a third one:

$ selenium

Ready to write the first story?

http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=145

DESIGNING WITH STORIES 146

Sending Invitations

The first thing that happens is that the host has to plan the party. And

we want that to happen with no preliminary steps: no registration, no

giving out of email addresses, just party planning:

Download story/invite.story

Story: minimalist invites

As a host with lots to do

I want to plan a party with a minimum of mouse clicks

So that I can get on with the rest of my tasks

Scenario: manual invites

Given a party called "Celebration"

And a description of "There's a party goin' on"

And a location of "Right here"

And a starting time of September 29, 2010 at 12:30 PM

And an ending time of September 29, 2010 at 12:35 PM

When I view the invitation

Then I should see the Web address to send to my friends

And the name should be "Celebration"

And the description should be "There's a party goin' on"

And the location should be "Right here"

And the party should begin on September 29, 2010 at 12:30 PM

And the party should end on September 29, 2010 at 12:35 PM

Although this isn’t Ruby, Ruby can be taught to understand it. Let’s do

that now. We could put Selenium calls directly in the step definitions,

like this:

steps_for :invite do

Given 'a party called "$name"' do |name|

@browser = Selenium::SeleniumDriver.new \

'localhost', 4444, '*firefox', 'http://localhost:3000', 10000

@browser.start

@browser.open '/parties/new'

@browser.type 'id=party_name', name

end

end

But that becomes unwieldy quickly, even for this trivial app. So, all the

specific stuff about browsers and forms and links is going to go into

a Party class, which we’ll define in party.rb in a moment. First, though,

let’s take care of that middle layer—the step definitions.

Rather than starting and stopping our browser for each individual sce-

nario, it’d be nice to create one Selenium object that will stick around for

the entire test. RSpec makes this task pretty easy.

The Story Runner offers a steady stream of feedback on its progress

by sending messages to a “listener” object you supply: story_started(),

http://media.pragprog.com/titles/idgtr/code/story/invite.story
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=146

DESIGNING WITH STORIES 147

scenario_succeeded(), and so on. We can keep the web browser around

for as long as we need it by listening for the run_started() and run_ended()

callbacks:

Download story/novite_stories.rb

require 'rubygems'

require 'spec/story'

require 'chronic'

require 'party'

class Listener

attr_reader :browser

def run_started(num_scenarios)

@browser = Selenium::SeleniumDriver.new \

'localhost', 4444, '*firefox', 'http://localhost:3000', 10000

@browser.start

end

def run_ended

@browser.stop

end

def method_missing(name, *args, &block)

We don't care about the rest of the Story Runner events.

end

end

listener = Listener.new

Spec::Story::Runner.register_listener(listener)

We’ll be ready to define the first batch of tests in just a second. First,

though, we’ll need to install the Chronic library for time parsing. That

way, our test scripts can describe parties informally as starting at times

like “Saturday at 10 p.m.”

$ sudo gem install chronic

You can see Chronic in action at Ë in the following code:

Download story/novite_stories.rb

steps_for :planning do

Given 'a party called "$name"' do |name|

@party = Party.new(listener.browser)

@party.name = name

end

Given 'a description of "$desc"' do |desc|

@party.description = desc

end

http://media.pragprog.com/titles/idgtr/code/story/novite_stories.rb
http://media.pragprog.com/titles/idgtr/code/story/novite_stories.rb
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=147

DESIGNING WITH STORIES 148

Given 'a location of "$loc"' do |loc|

@party.location = loc

end

Ê Given /an? $event time of $sometime/ do |event, sometime|

clean = sometime.gsub ',', ' '
Ë date_time = Chronic.parse clean, :now => Time.now - 86400

if event == 'starting'

@party.begins_at = date_time

else

@party.ends_at = date_time

end

end

When 'I view the invitation' do

@party.save_and_view

end

end

As we discussed earlier, step definitions can take regular expressions.

At Ê, we’ve used one to match both “a starting” and “an ending.”

Here are the steps for looking at an invitation after we’ve saved it:

Download story/novite_stories.rb

steps_for :reviewing do

Then 'the $setting should be "$value"' do |setting, value|

@party.send(setting).should == value

end

Then 'the party should $event on $date_time' do |event, date_time|

actual_time =

(event == 'begin') ?

@party.begins_at :

@party.ends_at

clean = date_time.gsub ',', ' '

expected_time = Chronic.parse clean, :now => Time.now - 86400

actual_time.should == expected_time

end

Then 'I should see the Web address to send to my friends' do

@party.link.should match(%r{^http://})

end

end

http://media.pragprog.com/titles/idgtr/code/story/novite_stories.rb
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=148

DESIGNING WITH STORIES 149

Finally, we’ll run the story:

Download story/novite_stories.rb

with_steps_for :planning, :reviewing do

run 'invite.story'

end

Now that we’ve written the top-level test script in plain text and the

step definitions to mediate between plain text and Ruby, it’s time to

wade into the depths of the Selenium code to control the browser.

The Problem Domain

Let’s take a first cut at that Party class. Now, before we get too carried

away and add a bunch of nearly identical methods that look like this. . .

def name

@browser.get_text 'id=party_name'

end

def has_name?

name rescue nil

end

def name=(name)

@browser.type 'id=party_name', name

end

repeat for location, description, etc.

Let’s let Ruby write those methods for us:

Download story/party.rb

require 'rubygems'

require 'selenium'

require 'time'

class Party

def initialize(browser)

@browser = browser

@browser.open '/parties/new'

end

def self.def_setting(setting, type = :read_write)

if type == :readable || type == :read_write

define_method(setting) do

@browser.get_text("id=party_#{setting}")

end

http://media.pragprog.com/titles/idgtr/code/story/novite_stories.rb
http://media.pragprog.com/titles/idgtr/code/story/party.rb
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=149

DESIGNING WITH STORIES 150

define_method("has_#{setting}?") do

send(setting) rescue nil

end

end

if type == :writable || type == :read_write

define_method("#{setting}=") do |value|

@browser.type "id=party_#{setting}", value

end

end

end

def_setting :name

def_setting :description

def_setting :location

def_setting :link, :readable

def_setting :notice, :readable

def_setting :recipients, :writable

end

Setting the time is another operation that we can make simpler with

a little finesse. The procedure is nearly identical for the starting and

stopping times. We just need to select the year, month, day, hour,

and minute, which are all combo boxes with IDs like party_begins_at_1i,

party_begins_at_2i, and so on:

Download story/party.rb

class Party

def begins_at=(time); set_time(:begin, time) end

def ends_at= (time); set_time(:end, time) end

def set_time(event, time)

['%Y', '%B', '%d', '%H', '%M'].each_with_index do |part, index|

element = "id=party_#{event}s_at_#{index + 1}i"

value = time.strftime part

@browser.select element, value

end

end

end

Retrieving the time is simpler. The web page for the invitation will

describe the party like so: “You’re invited to Celebration on Wednes-

day, September 29, 2010, from 12:30 PM to 12:35 PM!” We just have

to pick out the starting time and do a little time math to figure out

whether it ends on the same day or the next day.2

2. This code doesn’t account for parties longer than twenty-four hours. We might want

http://media.pragprog.com/titles/idgtr/code/story/party.rb
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=150

EXTENDING OUR DESIGN 151

Download story/party.rb

class Party

def begins_at; get_times.first end

def ends_at; get_times.last end

def get_times

begins_on = @browser.get_text 'party_begins_on'

begins_at = @browser.get_text 'party_begins_at'

ends_at = @browser.get_text 'party_ends_at'

begins = Time.parse(begins_on + ' ' + begins_at)

ends = Time.parse(begins_on + ' ' + ends_at)

ends += 86400 if ends < begins

[begins, ends]

end

def has_times?

get_times rescue nil

end

end

After all those gymnastics, the save_and_view() method is refreshingly

straightforward:

Download story/party.rb

class Party

def save_and_view

@browser.click 'id=party_submit'

@browser.wait_for_page_to_load 5000

@saved = true

end

end

Take what you have so far for a spin:

$ ruby novite_stories.rb

You should see something like Figure 10.1, on the following page. Now

that we have a passing test, it’s time to move on to the next story.

10.3 Extending Our Design

In the most basic and paranoid scenario, we don’t want the party host

to have to trust us with any email addresses: not his and not his

to allow this and reword the invitations or show an error message chiding the user’s

hard-partying habits. Feel free to add this use case as another story and update the app,

if you like.

http://media.pragprog.com/titles/idgtr/code/story/party.rb
http://media.pragprog.com/titles/idgtr/code/story/party.rb
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=151

EXTENDING OUR DESIGN 152

Figure 10.1: Partying with Selenium

guests’. We’ll just hand him a chunk of text (including a link) he can

paste into his email client and send out himself.

Once we’ve proven our trustworthiness, a few party planners may feel

confident enough to let us send the email for them. These will contain

simple “Yes” and “No” links right there in the message for the users to

RSVP. Both these scenarios will be part of the RSVP story:

Download story/rsvp.story

Story: minimalist RSVPs

As a guest with lots to do

I want to RSVP to an invite with a minimum of mouse clicks

So that I can get on with the rest of my tasks

Now, on to the scenarios.

RSVPing in a Web Form

First, we will look at the case where attendees RSVP manually on the

web page.

http://media.pragprog.com/titles/idgtr/code/story/rsvp.story
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=152

EXTENDING OUR DESIGN 153

Download story/rsvp.story

Scenario: email-free RSVPs

Given a party called "a disco anniversary"

When I view the invitation

Then I should see the party details

When I answer that "Robert Bell" will not attend

Then I should see "Robert Bell" in the list of decliners

Novite contains an RSVP form right there on the party’s own web page.

There’s no verification here. What happens if one of the host’s friends

starts maliciously RSVPing on behalf of other guests? Those sorts of

people will stop getting invited to parties, that’s what!

Our new version of the app looks like Figure 10.2, on the next page.

Here’s the latest batch of step definitions:

Download story/novite_stories.rb

steps_for :rsvp do

Then 'I should see the party details' do

@party.should have_name

@party.should have_description

@party.should have_location

@party.should have_times

end

When /I answer that "$guest" will(not)? attend/ do |guest, answer|

attending = !answer.include?('not')

@party.rsvp guest, attending

end

Then 'I should see "$guest" in the list of $type' do |guest, type|

want_attending = (type == 'partygoers')

@party.responses(want_attending).should include(guest)

end

end

RSVPing is as simple as typing in a name, checking or unchecking the

“attending” check box, and clicking the submit button:

Download story/party.rb

class Party

def rsvp(name, attending)

@browser.type 'guest_name', name

@browser.click 'guest_attending' unless attending

@browser.click 'rsvp'

@browser.wait_for_page_to_load 5000

end

end

http://media.pragprog.com/titles/idgtr/code/story/rsvp.story
http://media.pragprog.com/titles/idgtr/code/story/novite_stories.rb
http://media.pragprog.com/titles/idgtr/code/story/party.rb
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=153

EXTENDING OUR DESIGN 154

Figure 10.2: Invitation with RSVPs

Novite shows one big list of every guest who has RSVPed, right there

on the invitation. So, all we have to do to figure out who’s going to the

party is use the XPath techniques from the previous chapter to loop

through the list and then weed out the ones that do (or don’t) have the

word not in the appropriate place:

Download story/party.rb

class Party

RsvpItem = '//ul[@id="guests"]/li'

def responses(want_attending)

num_guests = @browser.get_xpath_count(RsvpItem).to_i

return [] unless num_guests >= 1

all = (1..num_guests).map do |i|

name = @browser.get_text \

"#{RsvpItem}[#{i}]/span[@class='rsvp_name']"

rsvp = @browser.get_text \

"#{RsvpItem}[#{i}]/span[@class='rsvp_attending']"

[name, rsvp]

end

http://media.pragprog.com/titles/idgtr/code/story/party.rb
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=154

EXTENDING OUR DESIGN 155

matching = all.select do |name, rsvp|

is_attending = !rsvp.include?('not')

!(want_attending ^ is_attending)

end

matching.map {|name, rsvp| name}

end

end

That takes care of using the web form. It’s time to turn our attention to

email.

RSVPing with a Link

We want our guests to be able to RSVP directly from an email message.

First, we need to think about how the host is going to specify the recip-

ients. Novite has an optional field where the host can type in a list of

addresses separated by commas. So, we’ll pop a couple of names into

the list, parse the resulting email, and follow an RSVP link:

Download story/rsvp.story

Scenario: RSVP links from email

Given a party called "a salute to e-mail"

And a guest list of "one@example.com,two@example.com"

When I view the invitation

Then I should see that e-mail was sent to "one@example.com,two@example.com"

When I view the e-mail that was sent to "one@example.com"

Then I should see "Yes/No" links

When I follow the "Yes" link

Then I should see "one@example.com" in the list of partygoers

In the real world, we’d probably do some kind of verification that the

sender is not a spambot and then actually send the mail to a test server

that we control. This version of Novite just pretends to send the mes-

sage, so we’ll have to fudge a little:

Download story/novite_stories.rb

steps_for :email do

Given 'a guest list of "$list"' do |list|

@party.recipients = list

end

Then 'I should see that e-mail was sent to "$list"' do |list|

@party.notice.include?(list).should be_true

end

When 'I view the e-mail that was sent to "$address"' do |address|

@email = @party.email_to address

end

http://media.pragprog.com/titles/idgtr/code/story/rsvp.story
http://media.pragprog.com/titles/idgtr/code/story/novite_stories.rb
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=155

WHERE TO GO FROM HERE 156

Then 'I should see "Yes/No" links' do

@email.should match(%r{Yes - http://})

@email.should match(%r{No - http://})

end

When 'I follow the "$answer" link' do |answer|

link = %r{#{answer} - (http://.+)}.match(@email)[1]

@party.rsvp_at link

end

end

I’ve given Novite a special URL to show the email that would get sent

to a particular party guest. The simplest way to implement this was to

add a suffix to the normal URL for a party, as in http://party.txt?email=

name%40example.com.

Download story/party.rb

class Party

def email_to(address)

@browser.open link + '.txt?email=' + address

@browser.get_body_text

end

def rsvp_at(rsvp_link)

@browser.open rsvp_link

end

end

Now all that’s left is to tell Story Runner to run our two new scenarios:

Download story/novite_stories.rb

with_steps_for :planning, :reviewing, :rsvp, :email do

run 'rsvp.story'

end

Add that to the end of your step definition file and give it another whirl.

You should see a whirlwind of web interaction, followed by a successful

test report.

10.4 Where to Go from Here

This sure was a lot of code just to exercise the most simplistic of web

apps. Fortunately, we’re over the biggest hurdles. Adding new scenarios

and stories will be much simpler, since the infrastructure is in place.

Was it worth it? I think so. Writing those stories forced a confrontation

of every little nuance of the user interaction: what degree of privacy to

offer, how exactly guests will RSVP to an invitation, and so forth. If you

http://media.pragprog.com/titles/idgtr/code/story/party.rb
http://media.pragprog.com/titles/idgtr/code/story/novite_stories.rb
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=156

WHERE TO GO FROM HERE 157

craft your tests in plain text, you stand a chance at being able to use

them to communicate with the people who really matter: the ones who

are going to be using your app.

Even so, take note of the effort required to write and maintain these test

scripts. Automation is not a cheap prospect, and you’ll need to consider

the trade-offs in the context of your own project.

Whew! After a chapter this heavy, how about something a little lighter

to finish off?

http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=157

Chapter 11

One More Thing:
Testing on the Mac

This final chapter will be a little breezier than the previous material.

We’re going to look at a few basic techniques for scripting OS X applica-

tions. But we’re not going to delve too deeply into all the little gotchas

and corner cases that we explored in the first half of this book with

Windows and Swing programs.

We’re actually going to do the opposite. We’re going to find the minimum

amount of effort it takes to port a couple of our existing text-editing

tests to the TextEdit program that comes with Macs. If you’re testing

Mac apps, these ideas will just be a jumping-off point for your own

explorations.

11.1 Taking the Reins

We’re going to be using AppleScript to control an application’s GUI.

Many programs expose their own AppleScript interfaces, and if you’re

writing things like stress tests for Mac apps, you should definitely be

using any scripting hooks your program provides.

This chapter will use something a little more universal, though: Apple’s

accessibility frameworks. This built-in feature of recent versions of OS

X lets you send keystrokes and menu commands to nearly any pro-

gram.1 It still uses AppleScript, but instead of talking directly to the

app, you talk to the System Events interface instead.

1. http://apple.com/applescript/uiscripting

http://apple.com/applescript/uiscripting

TAKING THE REINS 159

To use this technique on your Mac, you’ll need to turn on the acces-

sibility features first. The setting is called “Enable access for assistive

devices,” and you’ll find it in the System Preferences under Universal

Access, as in Figure 11.1, on the following page.

Here’s a tiny script to copy and paste some text using the system text

editor:

Download one_more_thing/textedit.applescript

tell application "TextEdit"

activate

end tell

tell application "System Events"

tell process "TextEdit"

keystroke "H"

keystroke "i"

end tell

end tell

tell application "System Events"

tell process "TextEdit"

tell menu bar 1

tell menu bar item "Edit"

tell menu "Edit"

click menu item "Select All"

click menu item "Copy"

set rightArrow to 124

key code rightArrow

click menu item "Paste"

end tell

end tell

end tell

end tell

end tell

You can run it directly from a Terminal window with the osascript com-

mand:

$ osascript textedit.applescript

AppleScript is lovely and all, but wouldn’t it be nice if our Ruby test

scripts looked like. . . well, Ruby? There are a couple of libraries that

will do this for us, and we’ll look at one of them in a moment. Most of

these depend on some binary extensions to Ruby, though. It’s worth

putting together a rudimentary solution in pure Ruby first, just to see

what’s involved.

http://media.pragprog.com/titles/idgtr/code/one_more_thing/textedit.applescript
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=159

FROM APPLESCRIPT TO RUBY 160

Figure 11.1: Enabling GUI scripting

11.2 From AppleScript to Ruby

What we’d eventually like is to write test code that has the same verbs

as AppleScript but is recognizable as Ruby. For our TextEdit example,

we’d like something like this:

Download one_more_thing/textedit-pure.rb

require 'applescript'

include AppleScript

RightArrow = 124

http://media.pragprog.com/titles/idgtr/code/one_more_thing/textedit-pure.rb
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=160

FROM APPLESCRIPT TO RUBY 161

Ê tell.application("TextEdit").activate!

tell.application("System Events").

process("TextEdit").

menu_bar(1).
Ë menu_bar_item("Edit").
Ì menu("Edit") do

keystroke! "H"

keystroke! "i"

click_menu_item! "Select All"

click_menu_item! "Copy"

key_code! RightArrow

click_menu_item! "Paste"

end

For scripts this simple, we need only a few features in our AppleScript

binding:

• A top-level tell() method like the one at Ê will create a new scripting

object to kick off a chain of AppleScript calls.

• Methods called on the scripting object become tell / end tell pairs in

AppleScript (with underscores becoming spaces). So, Ë will put a

matching tell menu bar item "Edit" and end tell at the right places in

the generated code.

• A Ruby method with an exclamation point, like the one at Ê,

becomes just one line of AppleScript, with no tell or end tell. It

should be the last method called in the chain, since it will (usu-

ally) cause the script to start running.

• Our test script can use a single Ruby block to group a few related

commands together, as at Ì. Exclamation-point methods inside a

block don’t have an immediate effect; the block saves them up and

runs the whole script as soon as it exits.

This is far from a universal Ruby-to-AppleScript translator. For one

thing, it doesn’t handle the using modifier in code like do something using

something else. And it allows only single-parameter functions. But it’s

just enough to generate the AppleScript we need for these examples.

How do we get from application("TextEdit").activate! to tell application "TextE-

dit" / activate / end tell? We use that staple of Ruby metaprogramming,

method_missing().

http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=161

FROM APPLESCRIPT TO RUBY 162

Download one_more_thing/applescript.rb

module AppleScript

class Command
Ê def initialize

@lines = []

@tells = 0

end

def method_missing(name, *args, &block)
Ë immediate = name.to_s.include? '!'

param = args.shift

script = name.to_s.chomp('!').gsub('_', ' ')

script += %Q(#{param.inspect}) if param

Ì unless immediate

script = 'tell ' + script

@tells += 1

end

@lines << script

Í if block_given?

@has_block = true

instance_eval &block

go!

elsif immediate && !@has_block

go!

else

self

end

end

end

end

A more sophisticated approach would require us to do lots of bookkeep-

ing with things like the levels of nesting. But the simple binding we’re

building doesn’t need to worry about interleaving tell and non-tell com-

mands. A simple array of commands and a count of how many end tells

we need at the end are all we need to track at Ê.

At Ë, we do the basic string processing to build up a line of Apple-

Script: detecting exclamation points, turning underscores to spaces,

and putting quotes around string arguments.

At Ì, we track whether this is a single-line command to run immedi-

ately or a tell / end tell pair.

http://media.pragprog.com/titles/idgtr/code/one_more_thing/applescript.rb
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=162

FROM APPLESCRIPT TO RUBY 163

Finally, at Í, we figure out whether we’re looking at the last statement

in the script, so we can make the decision to run everything now or

just return the script object (so that the test script can chain a bunch

of commands off each other).

The go!() method just needs to concatenate all the lines together and

send them to AppleScript:

Download one_more_thing/applescript.rb

module AppleScript

class Command

def go!

clauses = @lines.map do |line|

'-e "' + line.gsub('"', '\"') + '"'

end.join(' ') + ' '

clauses += '-e "end tell" ' * @tells

`osascript #{clauses}`.chomp("\n")

end

end

end

As we saw earlier, osascript runs AppleScript programs. Normally, you

pass it a filename to read, but you can also just send it a chunk of

script with the -e option. This option accepts only very short excerpts,

but you can pass several -e arguments in a row.

The last piece is the module-level tell() method, which is trivial:

Download one_more_thing/applescript.rb

module AppleScript

def tell

Command.new

end

end

With essentially a twenty-line method_missing() function, we’ve managed

to put together a basic, but functional, AppleScript generator in Ruby.

It’ll handle the simple kinds of scripting calls where you just need to do

a little typing and maybe activate a pull-down menu or two.

Now, this class won’t handle more complicated actions. And there’s

definitely an overhead to launching an external osascript process for

every GUI action. It’s time to graduate to a more sophisticated library.

A Faster, Better Bridge

RubyOSA and rb-appscript, two popular Ruby/AppleScript bindings,

remove the overhead of a separate process by interacting directly with

http://media.pragprog.com/titles/idgtr/code/one_more_thing/applescript.rb
http://media.pragprog.com/titles/idgtr/code/one_more_thing/applescript.rb
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=163

FROM APPLESCRIPT TO RUBY 164

Apple’s scripting APIs.2,3 Both libraries have glue-code portions written

in C. If you don’t mind installing a binary gem, you can get faster,

more flexible interoperability between the two languages than with the

previous pure-Ruby approach.

For the simple tests in this chapter, either library would do just fine.

For no particular reason other than that I find it slightly easier to use,

I’ll give examples using rb-appscript:

$ sudo gem install rb-appscript

Here’s how the previous simple TextEdit automation steps translate to

rb-appscript:

Download one_more_thing/textedit.rb

require 'rubygems'

require 'appscript'

include Appscript

app("TextEdit").activate

events = app("System Events")

events.keystroke "H"

events.keystroke "i"

edit = app('System Events').

processes['TextEdit'].

menu_bars[1].

menu_bar_items['Edit'].

menus['Edit']

edit.menu_items['Select All'].click

edit.menu_items['Copy'].click

RightArrow = 124

events.key_code RightArrow

edit.menu_items['Paste'].click

As you can see, it’s pretty similar to our pure-Ruby wrapper. Collec-

tions such as menus are treated a little more like Ruby objects with

rb-appscript. Rather than saying click_menu_item(’Paste’), you fetch the

entire menu_items collection, index it using square brackets, and then

call the click() method.

2. http://rubyosa.rubyforge.org

3. http://appscript.sourceforge.net/rb-appscript

http://media.pragprog.com/titles/idgtr/code/one_more_thing/textedit.rb
http://rubyosa.rubyforge.org
http://appscript.sourceforge.net/rb-appscript
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=164

RSPEC AND APPLESCRIPT 165

11.3 RSpec and AppleScript

TextEdit is a general-purpose editing program. It does not have the en-

cryption and password features of LockNote or JunqueNote. So, we’re

going to take the tests we developed in Chapter 5, The Home Stretch,

on page 66 and narrow them down just to basic editor stuff: Cut, Copy,

Paste, and Undo.

We’re using almost exactly the same test script from the first half of this

book—that’s the whole point of the exercise. There is actually one dif-

ference as to how the various apps implement Undo, though. LockNote

and JunqueNote undo character-by-character, while TextEdit can undo

multiple characters at a time. Here’s the new body of the Undo test:

Download one_more_thing/note_spec.rb

@note.text = 'abc'

@note.text = 'def'

@note.undo

@note.text.should == 'abc'

@note.undo

@note.text.should be_empty

We’re going to implement only a couple of the features of the Note class.

But we can still use the same note.rb from before, as long as we leave

those unused features alone. We just need to provide a new TextNote

class for the AppleScript stuff. Here’s the startup and shutdown code,

using our pure-Ruby AppleScript generator:

Download one_more_thing/textnote.rb

require 'applescript'

require 'note'

class TextNote < Note

include AppleScript

@@app = TextNote

def initialize(name = 'Untitled', with_options = {})

tell.application('TextEdit').activate!

end

DontSave = 2

def exit!

menu 'TextEdit', 'Quit TextEdit'

http://media.pragprog.com/titles/idgtr/code/one_more_thing/note_spec.rb
http://media.pragprog.com/titles/idgtr/code/one_more_thing/textnote.rb
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=165

RSPEC AND APPLESCRIPT 166

tell.

application('System Events').

process('TextEdit').

window('Untitled').

sheet(1).
Ê click_button!(DontSave)

end

def running?

tell.

application('System Events').
Ë process!('TextEdit') == 'TextEdit'

end

end

We won’t bother to record whether a Save prompt appears, but we still

need to watch for it and click the right button. The Don’t Save button

has a fancy UTF-8 apostrophe in it. Rather than deal with character

encodings here, we’ll just click the button by its order in the dialog box

at Ê.

Ë is the first place where we’ve actually looked at the output of osascript.

AppleScript will return either the string TextEdit or an error message.

The latter will show up on stderr, too, so we’ll need to deal with that when

it’s time to run the script. Setting and getting text is pretty similar to

what we’ve done before:

Download one_more_thing/textnote.rb

class TextNote

def text

tell.

application('System Events').

process('TextEdit').

window('Untitled').

scroll_area(1).

text_area(1).

get_value!

end

def text=(new_text)

select_all

tell.application('System Events').

process('TextEdit').

window('Untitled') do

new_text.split(//).each {|k| keystroke! k}

end

end

end

http://media.pragprog.com/titles/idgtr/code/one_more_thing/textnote.rb
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=166

RSPEC AND APPLESCRIPT 167

Menus are also straightforward:

Download one_more_thing/textnote.rb

class TextNote

def menu(name, item, wait = false)

tell.application('System Events').

process('TextEdit').

menu_bar(1).

menu_bar_item(name).

menu(name).

click_menu_item! item

end

Ê def undo; menu('Edit', 1) end

def select_all; menu('Edit', 'Select All') end

def cut; menu('Edit', 'Cut') end

def copy; menu('Edit', 'Copy') end

def paste; menu('Edit', 'Paste') end

end

The only thing to note is that the Undo menu item’s caption changes

while you’re editing the document; it becomes Undo Typing, Undo Cut,

or what have you. So at Ê, we have to invoke it by its relative position

inside the Edit menu instead.

Believe it or not, that’s all it takes to port these tests to the Mac. Give it a

whirl, and feel free to redirect stderr somewhere to keep the AppleScript

warnings out of the main test report:

$ spec -rtextnote -fs note_spec.rb 2>/dev/null

That should be enough to get a bit of the flavor of testing GUIs through

AppleScript. For your own tests, there are a lot more factors to think

about: internationalization, file dialog boxes, and so forth.

You may find it helpful to have an automated tool to help you browse

through an application’s interface and find the right nested set of “text

area within a scroll area within a window” descriptions. Apple provides

a decent free one called UI Element Inspector.4 You can find paid alter-

natives as well.

So, there you have it—a whirlwind tour of GUI testing techniques. I

hope you’ve enjoyed the ride and have also absorbed a little healthy

skepticism toward automation along the way. Thanks for coming along;

I can’t wait to hear about the cool tests you’ll build. Take care.

4. http://www.apple.com/applescript/uiscripting/downloads/uiinspector.dmg

http://media.pragprog.com/titles/idgtr/code/one_more_thing/textnote.rb
http://www.apple.com/applescript/uiscripting/downloads/uiinspector.dmg
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=167

Appendix A

Other Windows Techniques
The Windows examples in this book all used the Win32API Ruby library

to control applications. Win32API was a good fit for the needs of these

apps. It’s mature, it ships with the Windows build of Ruby, and it’s a

simple base on which to build good testing abstractions.

Win32API is far from the only way to control a Windows program from

Ruby, though. There are several other libraries and techniques that

may be a good fit for your application.

A.1 Windows Script Host

For several years, Windows has shipped with the Windows Script Host

library to help system administrators automate some of their routine

tasks (http://msdn.microsoft.com/en-us/library/9bbdkx3k.aspx).

Like testers, admins often find themselves needing to drive an applica-

tion that doesn’t have its own developer API. Through the WshShell COM

object, scripts can launch apps, search for windows by title, and send

keystrokes. (Of course, they can also do lots of non-GUI things, such

as interact with the file system, create COM objects, and so on.)

Here’s a tiny snippet of WSH code so you can get a feel for the differ-

ences between it and the Win32 API:

Download windows/wsh.rb

require 'win32ole'

wsh = WIN32OLE.new 'Wscript.Shell'

wsh.Exec 'notepad'

sleep 1

http://msdn.microsoft.com/en-us/library/9bbdkx3k.aspx
http://media.pragprog.com/titles/idgtr/code/windows/wsh.rb

WIN32::GUITEST 169

wsh.AppActivate 'Untitled - Notepad'

wsh.SendKeys 'This is some text'

wsh.SendKeys '%EA'

wsh.SendKeys 'And this is its replacement'

wsh.SendKeys '%{F4}'

if wsh.AppActivate 'Notepad'

wsh.SendKeys 'n'

end

As you can see, typing keystrokes into the app is considerably simpler.

Instead of having to look up virtual key codes in a table and manually

construct a sequence of key-down/key-up events, you can just pass

SendKeys the characters you want to type. There’s even a simple nota-

tion for key combinations (for example, %{F4} for Alt+F4).

On the downside, WSH doesn’t really provide an easy way to get infor-

mation back out of a program. For example, we can’t read the text in a

window or drill down into a dialog box to find out whether a button is

enabled.

Fortunately, there’s nothing preventing you from using the two APIs

side by side in your test script. You could easily use WSH for launching

apps and typing keystrokes and use the Windows API for the rest.

A.2 Win32::GuiTest

In 2002, a coder nicknamed “MoonWolf” ported the Win32::GuiTest library

from Perl to Ruby (http://raa.ruby-lang.org/project/win32-guitest). At its

heart, GuiTest is a catalog of commonly used Windows API function

wrappers. So, rather than having to look up a ton of C functions in the

MSDN documentation and write their Ruby versions yourself, you can

just use the provided definitions.

Here’s the same simple script as before, ported to GuiTest:

Download windows/wgui.rb

require 'win32/guitest'
Ê require 'win32/guitest_svn'

include Win32::GuiTest

system 'start "" "C:/Windows/System32/notepad.exe"'

sleep 1

http://raa.ruby-lang.org/project/win32-guitest
http://media.pragprog.com/titles/idgtr/code/windows/wgui.rb
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=169

WINOBJ 170

w = findWindowLike(nil, /^Untitled - Notepad$/).first

w.sendkeys 'This is some text'

w.sendkeys ctrl('a')

w.sendkeys 'And this is its replacement'

e = w.children.find {|c| c.classname == 'Edit'}
Ë puts e.windowText

w.sendkeys alt(key('F4'))

sleep 0.5

d = findWindowLike(nil, /^Notepad$/).first

d.sendkeys 'n'

As you can see, this library can do the same sorts of things as WSH.

But GuiTest can also pick apart the window structure and get text back

from the app, as we’ve done at Ë.

To get the best use of the code, you’ll need some updates that Wayne

Vucenic and Chris McMahon gave the project in 2005.1 Their reposi-

tory on RubyForge contains both the original MoonWolf code and their

new version. Each has features the other lacks. In a real project, you

might combine the two, presumably a little more elegantly than just

squishing them together the way I did at Ê (and causing an avalanche

of redefinition warnings).

GuiTest has some nice touches, such as the ability to use regular

expressions to search for windows. And the API will be familiar to devel-

opers coming from the original Perl library. It wasn’t a perfect match for

the examples in this book because it’s a bit tricky to install and because

its Windows-like API didn’t seem at home alongside more stereotypical

Ruby code.

A.3 Winobj

Winobj aims to provide a more Ruby-like wrapper around the Windows

API.2 Rather than dumping all the Win32 functions into one flat names-

pace, Winobj provides separate classes for buttons, edit controls, labels,

and so forth. When it first connects to a top-level window, it automati-

cally finds the children of the window and creates Ruby objects to rep-

resent them.

1. http://rubyforge.org/projects/guitest

2. http://rubyforge.org/projects/wet-winobj

http://rubyforge.org/projects/guitest
http://rubyforge.org/projects/wet-winobj
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=170

A FEW WIN32 DEFINITIONS 171

The following is the familiar Notepad exercise. I’ve omitted the step

where we exit the app, because we’d have to supply our own custom

window-closing code.

Download windows/wobj.rb

require 'wet-winobj'

require 'winobjects/WinLabel'

require 'winobjects/WinCheckbox'

require 'winobjects/WinRadio'

include Wet::WinUtils

include Wet::Winobjects

system 'start "" "C:/Windows/System32/notepad.exe"'

sleep 1

w = app_window 'title' => 'Untitled - Notepad'

e = w.child_objects.first

e.set 'This is some text'

e.set 'And this is its replacement'

puts e.text

Winobj is more of an automation library than a testing library. Instead

of simulating keystrokes to fill in a text window, it will just set the text

directly by sending the process a message. As of this writing, the library

provides only a few simple window operations, and some features take

a lot of fiddling to get working. If you’re just writing a quick stress test

to try to overfill an edit control and crash a program, this basic level of

control may be all you need.

A.4 A Few Win32 Definitions

These libraries may or may not be a perfect match for your project. I

hope this book has demonstrated that you can roll your own abstrac-

tions atop Win32API fairly easily in Ruby. If you decide to go down that

path, here are the constant definitions used in the first part of the book:

Download home_stretch/windows_gui.rb

Windows messages - general

WM_COMMAND = 0x0111

WM_SYSCOMMAND = 0x0112

SC_CLOSE = 0xF060

Windows messages - text

WM_GETTEXT = 0x000D

EM_GETSEL = 0x00B0

EM_SETSEL = 0x00B1

http://media.pragprog.com/titles/idgtr/code/windows/wobj.rb
http://media.pragprog.com/titles/idgtr/code/home_stretch/windows_gui.rb
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=171

A FEW WIN32 DEFINITIONS 172

Commonly-used control IDs

IDOK = 1

IDCANCEL = 2

IDYES = 6

IDNO = 7

Mouse and keyboard flags

MOUSEEVENTF_LEFTDOWN = 0x0002

MOUSEEVENTF_LEFTUP = 0x0004

KEYEVENTF_KEYDOWN = 0

KEYEVENTF_KEYUP = 2

Modifier keys

VK_SHIFT = 0x10

VK_CONTROL = 0x11

VK_MENU = 0x12 # Alt

Commonly-used keys

VK_BACK = 0x08

VK_TAB = 0x09

VK_RETURN = 0x0D

VK_ESCAPE = 0x1B

VK_OEM_1 = 0xBA # semicolon (US)

VK_OEM_102 = 0xE2 # backslash (US)

VK_OEM_PERIOD = 0xBE

VK_HOME = 0x24

VK_END = 0x23

VK_OEM_COMMA = 0xBC

And here are the API calls we encountered:

Download home_stretch/windows_gui.rb

def_api 'FindWindow', ['P', 'P'], 'L'

def_api 'FindWindowEx', ['L', 'L', 'P', 'P'], 'L'

def_api 'SendMessage', ['L', 'L', 'L', 'P'], 'L', :send_with_buffer

def_api 'SendMessage', ['L', 'L', 'L', 'L'], 'L'

def_api 'PostMessage', ['L', 'L', 'L', 'L'], 'L'

def_api 'keybd_event', ['I', 'I', 'L', 'L'], 'V'

def_api 'GetDlgItem', ['L', 'L'], 'L'

def_api 'GetWindowRect', ['L', 'P'], 'I'

def_api 'SetCursorPos', ['L', 'L'], 'I'

def_api 'mouse_event', ['L', 'L', 'L', 'L', 'L'], 'V'

def_api 'IsWindow', ['L'], 'L'

def_api 'IsWindowVisible', ['L'], 'L'

def_api 'SetForegroundWindow', ['L'], 'L'

As you can see, this is only the barest of lists. You’ll probably need

to add a couple more constants and function calls from the official API

documentation.3 But even the few items shown here will get you started

toward building your own library for scripting Windows apps.

3. http://msdn.microsoft.com/en-us/library/aa383749.aspx

http://media.pragprog.com/titles/idgtr/code/home_stretch/windows_gui.rb
http://msdn.microsoft.com/en-us/library/aa383749.aspx
http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=172

Appendix B

Resources
B.1 Websites

RSpec.http://rspec.info

RSpec’s headquarters contains full API documentation, downloads, plenty of

examples, and links to its creators’ BDD articles.

Behaviour-Driven Development http://behaviour-driven.org

This wiki maintained by Dan North has tons of BDD articles and links.

Ruby on Windows . http://rubyonwindows.blogspot.com

David Mullet’s blog offers tons of practical techniques for controlling Windows

applications from Ruby.

“Architectures of Test Automation” http://www.kaner.com/testarch.html

Actually, you should read everything on Cem Kaner’s website, but this article

in particular summarizes tons of research on test automation.

James Bach . http://www.satisfice.com/blog

James’s writing will urge you to confront exactly what information your tests

are supposed to reveal and then challenge you to design them accordingly.

Brian Marick. .http://www.exampler.com

Brian covers test construction, automation trade-offs, and programmer/tester

roles, all under the umbrella of exploratory testing.

B.2 Books

Lessons Learned in Software Testing [CK02]

These guys have seen it all when it comes to testing, GUI or other-

wise. Before you set off tilting at the windmill of 100% automation,

read what this book has to say about the right time and place for

automated testing.

http://rspec.info
http://behaviour-driven.org
http://rubyonwindows.blogspot.com
http://www.kaner.com/testarch.html
http://www.satisfice.com/blog
http://www.exampler.com

BIBLIOGRAPHY 174

Facts and Fallacies of Software Engineering [Gla92]

Robert Glass has been gathering data for decades and has seen

which software practices work and which do not, including the

thorny issues of testing and tools.

Everyday Scripting with Ruby [Mar06]

Brian writes about the nuts and bolts of the using the language—

getting Ruby, how to structure and run your programs, and so

on—to solve real-life problems.

B.3 Bibliography

[CK02] Bret Pettichord Cem Kaner, James Bach. Lessons Learned

in Software Testing: A Context-Driven Approach. John Wiley

& Sons, New York, 2002.

[Gla92] Robert L. Glass. Facts and Fallacies of Software Engineering.

Addison-Wesley Professional, Reading, MA, 1992.

[Het84] William C. Hetzel. The Complete Guide to Software Testing.

QED Information Sciences, Wellesley, MA, 1984.

[Mar06] Brian Marick. Everyday Scripting with Ruby: For Teams,

Testers, and You. The Pragmatic Programmers, LLC,

Raleigh, NC, and Dallas, TX, 2006.

[Mye79] Glenford J. Myers. The Art of Software Testing. John Wiley

& Sons, New York, 1979.

http://books.pragprog.com/titles/idgtr/errata/add?pdf_page=174

Index
A
Action fixtures, 115–117

after, 67, 80

Ajax, 131f, 131–135

AppleScript, 158–159

GUI scripting, 160f

RSpec and, 165–167

Ruby and, 160–164

Ruby bindings, 164

Automated testing, 10

see also Scripted testing

Automation script, 19–35

JRuby and, 30–35

JunqueNote and, 22f, 22

LockNote and, 21f, 21–22

Windows and, 23–30

B
before, 67, 80

Behavior-driven development (BDD),

13, 14

Boot, Julian, 118

Browser preferences, 121

Bugs, 89, 90, 92, 102

C
Calculator testing, 105f, 104–106

column fixtures, 113f, 116f

conversions, 112

ZenTest and, 106–111

CamelCase, 54

Chronic library, 147

Clarity, tests, 37

Code, for this book, 16

Column fixtures, 113f, 112–115, 116f

Compound keystrokes, 55

Control IDs, 28

copy(), 82

Cunningham, Ward, 111

cut(), 82

D
Davis, Ryan, 106

def_action(), 94, 101

def_api(), 52, 53

dialog(), 63

Dialog boxes, 60

Document path, 81

Don’t repeat yourself (DRY), 52, 53

see also Note class

Drag and drop, 131f

DRY, see Don’t repeat yourself (DRY)

E
Email addresses, Novite example, 154f,

152–156

enter_filename(), 70

enter_password(), 74, 75

Errors, reporting, 128

Everyday Scripting with Ruby: For

Teams, Testers, and You (Marick),

16

Exclamation mark, 43, 76, 162

exit!(), 81

F
find(), 84

Fit testing, 113f, 116f, 111–117

fixture(), 78

Fixtures

action, 115–117

column, 113f, 112–115, 116f

Fragility, test, 37

Framework for Integrated Test (Fit),

113f, 116f, 111–117

GLOBAL VARIABLES 176 MATRIX TESTING

G
Global variables, 129

go!(), 163

GUI testing, 118–138

Ajax interactions, 131f, 131–135

in-browser testing, 119

maintenance of, 37

Selenium and, 122f, 119–126

Selenium and RSpec, 126–131

Watir and, 135–137

see also Mac OS X applications

H
Heckle, 90n

Hodel, Eric, 106

Horror vacui, 110–111

Hpricot library, 99

HTML

bookshelf example, 122

Fit and, 111

parsing, 99

RSpec and, 129

Selenese, 119

I
In-browser testing

Ajax interactions, 131f, 131–135

overview, 119

Selenium and, 122f, 119–126

Selenium and RSpec, 126–131

Watir and, 135–137

initialize(), 79

“It” sentences, 41

J
Java, as platform, 20

Jemmy, 31–32

AWT applications, 105

directories, 32n

downloading, 31n

keyboard input, 33

operators, 32

strings and, 34

text property, 47

JRuby

AWT applications, 105

basic application, 30–35

code cleanup, 62–64

document navigation tools, 86

RSpec, 47

text property, 47

JunqueNote, 22f, 22

dialog(), 63

download, 22n

enter_password(), 75

exiting, 33–35

initialize(), 79

Jemmy and, 31

JRuby and, 30–35

search tests, 85

text editing, 81–86

K
Key codes, 56

Keyboard shortcuts, 55

L
Layers, 50f, 49–65

common code, abstracting, 50–51

JRuby and, 62–64

Windows and, 51–62

Links, RSVPing from, 155

LockNote, 21f, 21–22

child window, 45–46

document extensions, 70n

enter_password(), 74

Lorem Ipsum, 97–100

menu IDs, 72

opening and closing shortcuts,

57–62

passwords, 72–76

random_action(), 102

search tests, 84

source code, 21n

text editing, 81–86

Windows and, 25–26

Windows, exiting, 27–30

Logical assignments, 17

Lorem Ipsum, 97–100

M
Mac OS X applications, 158–167

AppleScript and, 158–159, 160f

AppleScript and RSpec, 165–167

AppleScript to Ruby, 160–164

Marick, Brian, 16, 117n

Matrix testing, 104–117

calculator test, 105f, 104–106

Fit and, 113f, 116f, 111–117

horror vacui, 110–111

MCMAHON 177 SAVING DOCUMENTS

ZenTest, 106–111

McMahon, Chris, 170

Menu IDs, 72

Metaprogramming, 40n

method_missing(), 17, 161, 163

N
NetBeans, 20

No button, Windows, 28–30

North, Dan, 140n

Notation, 15

Note class, 49–65

AppleScript and, 165

document path, 81

fixture, permanent, 78

JRuby and, 62–64

open(), 62

platform-free code, 50–51

Windows and, 51–62

Novite example, 144–151, 152f, 154f

P
Pairwise testing, 117

Party planning, see Novite example

Passwords

LockNote, 72–76

special cases, 77

Story Runner and, 141

paste(), 82

path, 81

Pattern matching, 142–144

Platform, 20

Prompts, 68

R
random_action(), 102

Randomness, 92–103

level of, 100f

options, 103

test monkey, 100–103

testing keys, menu and mouse,

92–97

rb-appscript, 164

rcov, 90n

Refactoring, RSpec, 36–48

library, building, 43–48

overview, 41f, 40–42

test maintenance, 36–38

test quality, 39f, 38–40

test script, 42–43

return statements, 17

RSpec, 14–15

AppleScript and, 165–167

def_api, 52–53

HTML formatter, 129

library, 42

refactoring, 36–48

library, building, 43–48

overview, 41f, 40–42

test maintenance, 36–38

test quality, 39f, 38–40

test script, 42–43

Selenium and, 126–131

setup/teardown code, 67–69

shared behavior, 80

should() and should_not(), 41

Story Runner, 139–156

design and purpose, 139–140

Novite example, 144–151, 152f

pattern matching, 142–144

user acceptance test, 140–144

as test description language, 41f,

40–42

test script, 42–43

Watir and, 136

Ruby

AppleScript and, 160–164

AppleScript bindings, 164

vs. C, 71

dialog boxes, 60

key codes and, 56

logging library, 96

Party class and, 149

Proc objects, 24n

random number generator, 93

RSpec and, 40–42

Selenium and, 146

Selenium gem, 120

should(), 41

Spec::Ui, 130

text-editing functions, 82

Watir and, 135

for Windows, 24n

ZenTest, loading, 106

RubyOSA, 164

S
Same-origin policy, 126

Save feature, 66–72

save_as(), 69–71

Saving documents, 77

SCREEN CAPTURE 178 WEBSITES

Screen capture, 129

script.aculo.us, 132

Scripted testing

vs. automated testing, 10

decluttering, 96–97

good tests, 39f, 38–40

keys, menu and mouse, 92–97

Loren Ipsum, 97–100

maintenance of, 36–38

test monkey, 100–103

testing tests, 89–90

see also GUI testing

Search forms, 121

Searching

classes and, 126

text, 83–86

Security

https://, 125

passwords, 72–77, 141

same-origin policy, 126

Story Runner and, 141

select_all(), 82

Selenium and GUI testing, 122f,

119–126

Ajax and, 131f, 131–135

browser preferences, 121

drag and drop, 133

installing, 120

links, following, 125

Novite example, 152f

RSpec, 126–131

Ruby and, 146

test report, 130f

vs. Watir, 135–137

XPath and, 124

send_message(), 71

Setup/teardown code, 67–69

:shared, 67

should(), 41

should_not(), 41

Simplifying, see Note class

snake_case (), 54

Spec::Ui, 130

Story Runner, 139–157

design and purpose, 139–140

email addresses, 154f, 152–156

Novite example, 144–151, 152f

pattern matching, 142–144

user acceptance test, 140–144

Strings

AppleScript and, 162

key codes and, 56

use of, 34

T
Tables, bookshelf example, 123

tell(), 161

Ternary operators, 17

Test monkey, 100–103

Test report, decluttering, 96–97

Test-driven development (TDD), 13

Testing

automated, 10

behavior driven, 13–14

reasons for, 10–13

RSpec and, 14–15

see also GUI testing; Matrix testing;

Scripted testing

“Text” property, 47

Text searching, 83–86

Text-editing features, 81–86

TextEdit example, 160–164

Time, setting, 150

TimeCalc, 104, 105f

type_in(), 55–57

Typing text, 26, 45, 55–57

U
UI Element Inspector, 167

undo(), 82

V
Vucenic, Wayne, 170

W
wait_for_condition(), 134

Watir, 135–137

Web application testing in Ruby, see

Watir

Web applications, see GUI testing

Web forms, RSVPing, 152

Webrat, 118

Websites

for altres.h, 72n

for code for this book, 16

for continuous integration article,

12n

for DRY principle, 52n

for Getting Real Numbers (Boot)

presentation, 118n

WIN32 API CALLS 179 ZENTEST

for GUI scripting in AppleScript,

158n

for Heckle, 90n

for Jemmy, 31, 32n

for JRuby, 22n

for JunqueNote, 22n

for LockNote, 21

for LockNote source code, 21n

for pairwise testing, 117n

Proc objects, 24n

for rb-appscript, 164n

for rcov, 90n

for RSpec, 40n

for Ruby and Windows, 24n

for Ruby programming background,

16n

for RubyOSA, 164n

for same-origin policy, 126n

for script.aculo.us, 131n

for Selenium browser preferences,

121n

for Selenium download, 120n

for Spec::Ui, 130n

for Stories, Dan North on, 140n

for test values workshop, 117n

for TimeCalc, 104n

for UI Element Inspector, 167n

for Watir, 135n

for Webrat, 118n

for XPath, 121n

Win32 API calls, 51–52

Win32::GuiTest, 169

Window class, 46

Windows

basics, 23–30

child window in LockNote, 45–46

code cleanup, 51–62

main window, finding, 24

menu IDs, 71–72

as platform, 20

RSpec, 47

Ruby for, 24n

screencapture call, 129

Script Host library, 168–169

send_message(), 71

typing text, 26

Win32::GuiTest, 169–170

Winobj, 170–171

WM_GETTEXT message, 45–46

X
XPath

div#lipsum, 99

identifiers, 121

list item numbering, 134

Selenium and, 122

tables and, 124

Y
Yak shaving, 54–55

Z
ZenTest, 106–111

It All Starts Here
If you’re programming in Ruby, you need the PickAxe Book: the definitive reference to the

Ruby Programming language, now in the revised 3rd Edition for Ruby 1.9. Or check out

how to use FXRuby, a popular, cross-platform GUI.

Programming Ruby (The Pickaxe)
The Pickaxe book, named for the tool on the cover,

is the definitive reference to this highly-regarded

language. • Up-to-date and expanded for Ruby

version 1.9 • Complete documentation of all the

built-in classes, modules, and methods

• Complete descriptions of all standard libraries

• Learn more about Ruby’s web tools, unit testing,

and programming philosophy

Programming Ruby: The Pragmatic

Programmer’s Guide, 3rd Edition

Dave Thomas with Chad Fowler and Andy Hunt

(900 pages) ISBN: 978-1-9343560-8-1. $49.95

http://pragprog.com/titles/ruby3

FXRuby
Get started developing GUI applications using

FXRuby. With a combination of tutorial exercises

and focused, technical information, this book goes

beyond the basics to equip you with proven,

practical knowledge and techniques for developing

real-world FXRuby applications. Learn directly

from the lead developer of FXRuby, and you’ll be

writing powerful and sophisticated GUIs in your

favorite programming language.

FXRuby Create Lean and Mean GUIs with Ruby

Lyle Johnson

(240 pages) ISBN: 978-1-9343560-7-4. $36.95

http://pragprog.com/titles/fxruby

http://pragprog.com/titles/ruby3
http://pragprog.com/titles/fxruby

Web 2.0
Welcome to the Web, version 2.0. You need some help to tame the wild technologies out

there. Start with Prototype and script.aculo.us, a book about two libraries that will make

your JavaScript life much easier. See how to reach the largest possible web audience with

The Accessible Web.

Prototype and script.aculo.us
Tired of getting swamped in the nitty-gritty of

cross-browser, Web 2.0–grade JavaScript? Get back

in the game with Prototype and script.aculo.us, two

extremely popular JavaScript libraries that make it

a walk in the park. Be it Ajax, drag and drop,

autocompletion, advanced visual effects, or many

other great features, all you need is write one or

two lines of script that look so good they could

almost pass for Ruby code!

Prototype and script.aculo.us: You never knew

JavaScript could do this!

Christophe Porteneuve

(330 pages) ISBN: 1-934356-01-8. $34.95

http://pragprog.com/titles/cppsu

The Accessible Web
The 2000 U.S. Census revealed that 12% of the

population is severely disabled. Sometime in the

next two decades, one in five Americans will be

older than 65. Section 508 of the Americans with

Disabilities Act requires your website to provide

equivalent access to all potential users. But beyond

the law, it is both good manners and good business

to make your site accessible to everyone. This book

shows you how to design sites that excel for all

audiences.

The Accessible Web

Jeremy Sydik

(304 pages) ISBN: 1-934356-02-6. $34.95

http://pragprog.com/titles/jsaccess

http://pragprog.com/titles/cppsu
http://pragprog.com/titles/jsaccess

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style and continue to garner awards and

rave reviews. As development gets more and more difficult, the Pragmatic Programmers

will be there with more titles and products to help you stay on top of your game.

Visit Us Online
Scripted GUI Testing with Ruby’s Home Page

http://pragprog.com/titles/idgtr

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news

Check out the latest pragmatic developments in the news.

Buy the Book
If you liked this PDF, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: pragprog.com/titles/idgtr.

Contact Us
Phone Orders: 1-800-699-PROG (+1 919 847 3884)

Online Orders: www.pragprog.com/catalog

Customer Service: orders@pragprog.com

Non-English Versions: translations@pragprog.com

Pragmatic Teaching: academic@pragprog.com

Author Proposals: proposals@pragprog.com

http://pragprog.com/titles/idgtr
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
pragprog.com/titles/idgtr
www.pragprog.com/catalog

	Contents
	Introduction
	Testing for Fun and Profit
	Behavior-Driven Development and RSpec
	About This Book
	Acknowledgments

	One Big Example
	An Early Success
	First Steps
	Door #1: Windows
	Door #2: Swing with JRuby
	Review

	Refactoring with RSpec
	RSpec: The Language of Lucid Tests
	Building a Library
	The Story So Far

	Next Iteration: Simplify!
	Abstracting the Common Code
	Cleaning Windows
	Polishing JRuby
	Satisfaction

	The Home Stretch
	Save Me!
	The Password Is...
	Document Wrangling
	Cut to the Paste
	Are We There Yet?

	Aspects of Testing
	Branching Out
	Testing the App
	Testing the Tests
	Putting the Pieces Together
	Moving On

	Keep 'Em Guessing: Introducing Randomness
	Keys, Menu, or Mouse?
	Adding Lorem Ipsum to the Mix
	A Test Monkey Could Do This Job
	Breaking Camp

	Turn the Tables: Matrix Testing
	What to Test
	ZenTest and the Art of Matrix Maintenance
	Fit to Be Tested

	Testing the Tubes: Web Applications
	In-Browser Testing
	Selenium
	Selenium and RSpec
	Interacting with Ajax
	Watir
	Wrapping Up

	Testing in Plain English: Story Runner
	From Examples to Stories
	Designing with Stories
	Extending Our Design
	Where to Go from Here

	One More Thing: Testing on the Mac
	Taking the Reins
	From AppleScript to Ruby
	RSpec and AppleScript

	Other Windows Techniques
	Windows Script Host
	Win32::GuiTest
	Winobj
	A Few Win32 Definitions

	Resources
	Websites
	Books
	Bibliography

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	P
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

